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ABSTRACT

Robust Control of Redundantly Actuated Dynamical Systems. (May 2006)

Manoranjan Majji, B.E. (Hons), Birla Institute of Technology and Science

Chair of Advisory Committee: Dr. John L. Junkins

The eigenstructure assignment scheme for robust multivariable feedback control

is extended to redundantly actuated dynamical systems. It is shown that an or-

thonormal set of close loop eigenvectors is always exactly assignable in the case of

redundant actuation proving the inherent robustness in the control design method-

ology. A choice of close loop eigenvector set to minimize the feedback gain matrix

is suggested. Partial Eigenstructure Assignment methodology is proposed for second

order mechanical systems. A methodology for coordinated actuation of redundant

actuator sets by a trained weighted minimum norm solution is presented. To apply

the methodology to hyper-redundant actuator arrays, for application to smart ac-

tuator arrays, a novel adaptive discretization algorithm is proposed. The adaptive

aggregation strategy, based on the physics of the system, introduces nodes, to op-

timize a performance index of the overall plant model. The dimensionality of the

inputs thus reduces to a finite number, making it a candidate plant for control by

the robust redundant control scheme. The adaptive aggregation together with robust

redundant control methodology is demonstrated on a finite element model of a novel

morphing wing. This schema unifies the traditionally disparate methods of modeling

and controller design.
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CHAPTER I

INTRODUCTION

Redundancy in sensing and actuation has taken a center stage in control of modern

day dynamical systems, owing to their complex functionality and increased perfor-

mance targets. Classical control theory being largely developed for under-actuated

systems, there is a need to extend the domain of control theory and develop methods

to handle redundancy effectively.

A. Redundancy in Mechanics

The current machinery for dealing with redundancy issues can be broadly classified

in to the following categories.

• Kinematic Redundancy

• Actuator Redundancy

This classification is entirely based on the nature of the problem (Inspired from Naka-

mura [1], the classification here is required to focus the features of the present thesis).

In this thesis, we are only interested in developing methods to handle actuator re-

dundancy. Let us take a close look at each of the types.

1. Kinematic Redundancy

This type of redundancy is clearly understood with examples from robotics. Con-

sider a robotic arm moving in a 2-D plane. If there are obstacles in the plane, it

would need more than two joints for obstacle avoidance and dexterous end effector

manipulation. Kinematic redundancy constitutes problems of this nature. In the
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robotics literature, this dimension of the manipulation variable (number of indepen-

dent generalized coordinates) is called the degree of Manipulability and the number

of extra joints (the redundant coordinates given by the constraints), the degree of Re-

dundancy. When the constraint equations are known, methods of analytical dynamics

are typically used to solve the system equations in terms of the generalized coordi-

nates as summarized by Junkins and Turner [2]. Constrained optimization methods

[1] are routinely used in solving these problems. When the redundancy is small, sin-

gular configurations occur quite often, whose measures and avoidance schemes are

widely known [1, 3]. When kinematic redundancies are large, Chirakjian[4], presents

a continuum type methodology for determining kinematically optimal configurations.

2. Actuator Redundancy

Actuator redundancy is the scenario where in we have more actuators than the

degrees of freedom of the system to be controlled. In most cases, this occurs together

with kinematic redundancy (passive damping at each kinematic degree of freedom is

an example). In many cases, the actuators themselves are dynamical systems that

may contribute additional degrees of freedom to be considered. The proposed thesis

focuses on issues dealing with this type of redundancy. While the theoretical kine-

matic redundancy reduces the number of generalized coordinates in the mathematical

model of the system, the redundant actuator sets act as generalized external forces

in the equations of motion influencing the much smaller number of states. Physically

this is found in robotic systems when the external forces act on the redundant kine-

matic degrees of freedom. A three degree of freedom planar manipulator with with

motors at all three joints is an example. There have been several ways of redundancy

handling in the literature.
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This thesis proposes a methodology to handle actuator redundancy at a level cho-

sen by the designer. It is strongly felt that redundancy in actuation can be utilized

to provide robustness and coordination in systems, going one step beyond the con-

ventional control system objectives of stability, regulation or tracking. Redundancy

in actuation can be used to increase the system reliability (performance under actua-

tor failure) and the load distributions can be optimized to meet certain performance

criteria [5]. In lieu of the importance of redundant actuation, let us briefly look at

certain ways of handling redundancy in use in several applications.

B. Actuator Redundancy Management

Redundancy in actuation has applications and methods of management in most

areas of engineering. This section discusses some of these areas and points at the

corresponding methods of handling redundancy, particular to that area. There is a

heavy bias towards applications in mechanical systems.

1. Robotic Applications

In robotic systems, redundancy is handled by several strategies. One particular

approach shown in Nakamura [1] uses a prioritization approach achieving local/global

optimal control formulations. Typical applications include robots with parallel actu-

ated wrists and dexterous fingers. Modeling of such closed link robot mechanisms with

redundant actuators poses an equally difficult challenge. The advantages of redun-

dancy in handling actuator failure and in optimizing load distribution were pointed

out by Nakamura and Ghodoussi[5]. They suggested modeling of redundant joints by

equivalent open chains and control optimization was done by a simple optimization

scheme. A simpler modeling method, along with a comparison of several redundant



4

control schemes was proposed by Cheng[6]. A computationally fast methodology for

multi-fingered grasping applications, Dynamics Force Distribution, is presented by

Zheng[7]. Junkins et al.[8], propose a novel methodology for coordination of redun-

dant sets of actuators in multi-body systems with a weighted pseudo-inverse, with

weights determined by the current work space coordinates

2. Redundant Actuation in Aircraft

In aircraft control problems, with the on-set of non-traditional control surfaces, the

redundant actuation methods have taken a center stage, in recent times, with increase

in computation power and hardware capacities. Prioritization of redundant actuator

sets is one of the methods of handling redundancy in aircraft control, such schemes,

called “Daisy Chain Control Allocation” were first demonstrated by Buffington[9].

When the redundant sets of actuators are actually constrained by their operation lim-

its, Durham[10] proposes constrained control allocation schemes. Bodson[11] presents

an overview of constrained control allocation strategies. In the presence of actuator

constraints, the pseudo-inverse solution cannot meet the demanded accelerations com-

puted from a square plant. In the light of the same, direct allocation, which Bodson

poses as a linear programming problem, presents a highly desirable candidate for

real-time application. Singla[12] proposes an approximation approach to recursively

allocate using adaptive distribution functions addressing the high dimensionality of

the control space with computational efficiency with an application to the morphing

problem.

3. Spacecraft Applications

In spacecraft attitude control problems, the Control Moment Gyros (CMG) and

Reaction Wheels form a major class of actuators. Four Single Gimbal CMGs (SGCMGs)
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in a pyramidal configuration, form a redundant set of actuators in the reorientation

maneuvers of spacecraft (This might seem inconsistent at the first blush, but redun-

dancy holds due to the fact that the controllability definitions can be extended to

the special case of second order mechanical systems, as has been done by Hughes

and Skelton [13]. We shall discuss the redundant actuation with emphasis on the

second order mechanical systems in particular and will have to modify the definition

of redundant actuation, as external forces cannot influence the kinematics directly

but are coupled in a cascade form of differential equations). Control laws can only

be implementable, if consistent with actuator dynamics. In some cases, the actu-

ator dynamical models have been included in the control law design. Design of a

steering law for redundant SGCMGs was modified by Bedrossian [14] to avoid such

singular configurations of the CMGs. Schaub, et al.[15] extended this methodology to

obtain control laws for variable speed CMGs, essentially, they introduced additional

redundancy to allow a better redistribution of the internal momentum.

Having looked at some applications of redundantly actuated dynamical systems,

let us point out some distinctive features of systems with redundant actuation.

C. Redundantly Actuated Dynamical Systems

Dynamical systems with redundant actuators are found to possess some distinc-

tive features. The controllability of these systems is, of course, much higher than

the ordinary, underactuated dynamical systems. We demonstrate the same in what

follows and mention certain other things that a designer may wish to consider with

regard to utilizing the actuator redundancy. We shall expand upon those topics in

later chapters.
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1. Controllability

As is obvious from the name, we should expect redundantly actuated dynamical

systems have improved controllability. In the state space model of a linear system,

ẋ = Ax+Bu (1.1)

A ∈ <n×n, B ∈ <n×m, x ∈ <n, u ∈ <m, the controllability grammian is given by

C(t0, tf ) =

∫ tf

t0

Φ(t0, τ)B(τ)B(τ)T Φ(t0, τ)
Tdτ. (1.2)

where Φ(t0, τ) is the state transition matrix and B, the control influence matrix (also

called the distribution matrix). Assuming B has a full row rank, which usually is a

fair assumption owing to the fact that each actuator which is installed and operated

independently affects the states of the system differently, we have a mapping between

the space of controls and the state space that is atypical to the conventional dynamical

systems. While the conventional mapping frequently is from a lower dimensional

control space to a higher dimensional state space (under actuated case), this class

of redundant systems under discussion maps inputs from a higher dimensional space

of controls to a lower dimensional state space m ≥ n. We already know that such

systems are endowed with special properties. One such property is what we call super

controllability, explained below.

A careful look at the controllability grammian reveals the fact that the grammian

is positive definite at every interval (t0, tf ) of time over which Φ(t0, t) is of rank n

at (atleast one instant) t ∈ (t0, tf). This is due to the full rank structure of the

control distribution matrix B . Therefore, for tf = t0 + ∆t,∆t → 0, we have the

controllability grammian C(t0, t0 + ∆t) > 0, owing to the fact that B has full row

rank. This implies that we can, in principle, travel from any point to any other
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point in the state space, indeed a nice property. This property also carries forward

for second order mechanical systems owing to the extension of the definitions given

by Hughes and Skelton[13]. We are hence motivated to investigate the robustness

properties of this class of systems.

2. Other Features

Now, Robustness is an important issue in these systems, for, most heavily redun-

dant systems (the systems we are considering for distributed control applications),

are poorly modeled. Thus the control methodology or policy should be robust to

parameter variations of the plant model. Thus we must face the dual curses of high

dimensionality and model uncertainty.

Another issue in the so-called, hyper-redundant actuation strategies is that the

redundancy frequently needs to have some kind of system specific coordination. These

issues are addressed to some extent in this thesis.

D. Organization of the Thesis

The Eigenstructure assignment (EsA) scheme is introduced in chapter II. The

assignable subspace of eigenvectors concept is then introduced. It is then shown that

for redundantly actuated dynamical systems, in particular, an orthonormal target set

is always exactly assignable. A preferred target choice of close loop is then suggested.

EsA scheme is then specialized to second order mechanical systems. A novel 2 step

EsA scheme is proposed (partial EsA), for assignment of a target real set of closed

loop eigenvectors to a second order system. This procedure is then compared with

traditional algorithms and applications of the same are discussed. The eigenstructure

assignment scheme is then applied to a redundantly actuated multi-link manipulator
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model and the robustness to plant parameter perturbations is demonstrated.

Chapter III discusses coordination among redundant actuator sets. A trained

weighted pseudoinverse approach to redundant control via state feedback is presented.

This methodology is then demonstrated on the multilink example of chapter II. The

EsA approach is then applied to handle Hyper-redundancy in actuation. Distributed

Control problems, where there are arrays of redundant actuators to control structures

are proposed. A solution of these problems via EsA approach is presented by an

adaptive aggregation approach. These details are discussed in chapter IV. In chapter

II, we first introduce the EsA scheme.
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CHAPTER II

EIGENSTRUCTURE ASSIGNMENT

The Eigenstructure assignment methodology for robust multivariable feedback is

understood and considered to be a useful tool in control of dynamical systems via

state and output feedback[16]. After the pole placement strategy was extended to

multivariable systems by Wonham [17], it was soon recognized that the additional

freedom in the feedback gain matrix could be utilized to assign some components of

eigenvectors. Srinathkumar [18], first proposed the idea of assignability of some com-

ponents of the closed loop eigenvectors by choosing the gain matrix of the state and

output [19]. Moore [20] derived necessary and sufficient conditions for this procedure.

Sinswat, et al.[21] established the assignable subspace of eigenvectors that could be

assigned. Numerical methods for well conditioned solutions were later arrived at by

Kautsky, et al. [22]. Bhattacharya, et al. [23, 24] solved the problem of eigenstructure

assignment by a solution of the a matrix equation, the Matrix Sylvester Equation.

In classical problems, the case with lesser number of actuators are normally con-

sidered. Therefore it is impossible to assign exactly a given target set of eigenvectors.

Rew, Junkins and Juang [25] present a multi-objective optimization criteria to mini-

mize the error between the assigned eigenvectors and the target set. The application

of this multivariable feedback control scheme to flexible spacecraft by an extension

considering second order state space representations of mechanical systems was pio-

neered by Juang [26, 27]. Later, Kim, et al.[28], specialized the Eigenstructure assign-

ment procedure to the second order mechanical systems by establishing the second

order Sylvester Equation procedure. Further details on these different schemes and

algorithms for eigenstructure assignment are also summarized in Junkins and Kim
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[29].

The flexibility of the methodology to allow the designer to explore the arbitrariness

of the closed loop admissible eigenvectors, in addition to the pole assignment makes

the method a popular tool for feedback gain calculations. It is well known that

near orthogonality of the closed loop eigenvectors is desirable to minimize sensitivity

of the eigenvalue placement to the model errors. Arbitrary selection of the closed

loop eigenvectors can lead to a highly sensitive gain matrix calculation. Hence the

generation of a well conditioned closed loop eigenvector matrix is a key issue to achieve

robustness to plant parametric uncertainties. Let us now consider the basics of this

design process.

A. Eigenstructure Assignment Methodology

Consider the linear dynamical system in the state space form.

ẋ = Ax+Bu (2.1)

with system matrix,A ∈ <n×n, control influence matrix, B ∈ <n×m and a state

feedback control law, u = Gx. This would give us a closed loop system,

ẋ = (A+BG)x (2.2)

with corresponding closed loop eigenvalue problems written as

(A+BG)φi = λiφi (2.3)

(A+BG)Tψi = λiψi (2.4)

where the left and the right eigenvector sets are normalized according to the relations

φiφ
T
i = 1, ψT

i φj = δij . This implies that, we can, in principle dictate the closed loop
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properties by tailoring the gain matrix, G. Let the parameter vector, hi be defined

by the relation, hi = −Gφi. Now, the right eigenvalue problem can be rewritten as,

(A− λiI)φi = Bhi (2.5)

when written in matrix form, this equation becomes

AΦ − ΦΛ = BH (2.6)

where Φ = [φ1, φ2, . . . , φn],Λ = diag[λ1, λ2, . . . , λn] and H = [h1, h2, . . . , hn]. This is

a matrix equation belonging to the class of generalized Lyapunov Equations called

the Sylvester Equation[23, 24]. The solution of this equation gives us the eigenvector

set achieved by a given state feedback gain matrix.

1. Robustness

The robustness of this scheme is derived from a theorem due to Patel and Toda,

[30]. We state the theorem and discuss the robustness properties.

Theorem II.1 (Patel and Toda [30]) Consider the asymptotically stable closed loop

system ẋ = ACLx. The perturbed closed loop system matrix, ACL + ∆ of the original

systems remains asymptotically stable for all perturbations, ∆, bounded by

‖∆‖ <
min[−<λ(ACL)]

κ(ΦCL)
(2.7)

where, ΦCL is the closed loop modal matrix, κ(.) is the conditioned number defined

as the ratio of the maximum to the minimum singular values of the matrix, (.) and

<{.}, denoting the real part of {.}

Proof Original proof given by Patel and Toda [30] uses a transient response for-

mation. An elegant proof of this theorem using simple matrix norm results is given
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by Kautsky et al.[22]. A constructive proof using Lyapunov Theory is presented by

Junkins and Kim [29]. Its relationship with the stronger Bauer Fike Theorem [31] is

discussed by Junkins and Kim[32]. �

Hence by choosing the closed loop modal matrix, ΦCL, to be well conditioned, κ(Φ) =

1, whenever possible, we could in principle, bound the unstructured perturbation ma-

trix, by a judicious choice of the minimum eigenvalue and thus design the feedback

gain matrix to achieve robustness to the perturbation.

2. Assignability of Eigenvectors

Perfect conditioning of the closed loop modal matrix, in general is not possible.

When the systems are under actuated, there only some components of the closed loop

eigenvectors that can be assigned arbitrarily by the designer. This was pointed out

by Srinathkumar[18] and his theorem is given in the appendix. We present a slightly

different argument revealing a nice decomposition of the assignable space, along with

its dimensionality.

Consider the closed loop system of the underactuated linear system, 2.2, i.e., n <

m, with the feedback gains computed from, K = (BTB)−1BT [A−ΦT ΛT ΦT
T ]. Substi-

tuting this feedback control gain, we get the following closed loop eigenvalue problem.

(A+BK)ΦT = ΦT ΛT (2.8)

(I − B(BTB)−1BT )AΦCL +B(BTB)−1BT ΦT ΛT Φ−1
T ΦCL = ΦCLΛCL (2.9)

where, ΦCL is the closed loop eigenvector set achieved by the gain matrix. We can

clearly notice the orthogonal projector, B(BTB)−1BT and its orthogonal complement.

It is known that this projector projects on to the range space of B. If QR of order

n × m, (assuming a row rank of m for B), is a matrix with its columns forming
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an orthonormal set spanning the range of B,(This can always be determined from

the SVD of the projector [33, 34]) the projector can be written as B(BTB)−1BT =

QRQ
T
R. Its orthogonal complement being given by another orthonormal set QN ,

(I − B(BTB)−1BT ) = QNQ
T
N . Thus the closed loop eigenvalue problem becomes,

QNQ
T
NAΦCL +QRQ

T
RΦT ΛT Φ−1

T ΦCL = ΦCLΛCL (2.10)

Note the clear separation of the closed loop eigenstructure. From this it is clear that

the least squares solution of the gain matrix has acted as an orthogonal projector,

only assigning m components of each mode(QR, being the orthonormal basis for

the range space of B). The null space of the projector clearly retains the open loop

eigenstructure. This agrees with Srinathkumar[18],and is an important revelation, as

we have found an associated orthonormal set, QR. We found that this is one choice

orthogonal target set of eigenvectors to minimize the feedback gain matrix, by trial

and error computation, as will be pointed out later.

B. Robust Eigenstructure Assignment (EsA) for Redundantly Actuated Systems

Systems with greater number of control inputs than the states in the plant model

m ≥ n are said to be redundantly actuated. We find that we can say much more

about the feedback gains in the case of the redundantly actuated systems. We also

note that the results of this section also hold for the case of square plants (Plants

with actuators equal to the number of states). Thus we have the following (obvious)

lemma for redundantly actuated state feedback solutions.

Lemma II.1 For a redundantly actuated linear dynamical system,2.1,a target ortho-

normal set of eigenvectors is exactly assignable, for a given target set of distinct closed

loop eigenvalues, ΛCL.
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Proof We need to show that, for every desired orthonormal eigenvector set, Φ, of

the closed loop, there exists a feedback gain matrix, G, which can place the poles at

the target location, ΛCL.

Given, an orthonormal target modal matrix for the closed loop, we can always com-

pute the right hand side of the matrix Sylvester equation,

AΦ − ΦΛCL = −BGΦ ≡ BH (2.11)

The feedback gain matrix is then obtained by taking the minimum norm solution of

the resulting redundant equation sets and is given by,

Hmin norm = B†(AΦ − ΦΛCL) (2.12)

where B† ≡ WBT (BWBT )−1. Note that the exact solution is possible only due to

the assumed full rank structure of B and the dimension of its range space. In the

standard underactuated case, this attainment of an arbitrary set of eigenvectors is

impossible, in general and we are better off with minimizing some criterion using the

approach of Rew, et al.[25]. Substituting the calculated gain, and forming the closed

loop system, we get,

ẋ = (A− BG)x = (A−BB†(AΦ − ΦΛCL))x = ΦΛCLΦTx. (2.13)

Thus the closed loop modal matrix is assigned exactly. �

We are now ready to state an evident fact and a useful consequence of this lemma.

Theorem II.2 A redundantly actuated linear dynamical system is asymptotically

stable for all additive perturbations of the plant parameters, bounded by, ‖∆‖ <

min[−<{λ(ACL)}], where, ACL, is the closed loop system
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Proof Using the Patel and Toda theorem II.1, the bound on the allowable plant

parameter perturbations for the system, 2.1, to be asymptotically stable is that

‖∆‖ <
min[−<{λi(ACL)}]

κ(Φ)
(2.14)

Clearly, when, the linear system is redundantly actuated, from lemma, II.1, a given

orthonormal target closed loop modal matrix is always exactly assignable. Therefore,

if ΦCL, is the target modal matrix, and if it were chosen orthonormal (or unitary),

κ(Φ) = 1. This proves the theorem. �

We can easily see the additional freedom the designer has. For example, we can place

the smallest of the closed loop poles at a chosen location, away from the imaginary

axis in the open left half plane, to bound the parametric uncertainty possible and

still guarantee asymptotic stability of the system.

Example: The following is an example system with 2 states and 3 control inputs,

where we have assigned the closed loop eigenvalues and eigenvectors at a target set

to demonstrate the aforementioned properties of the redundantly actuated dynamical

systems.

A =







10 2

5 20






, B =







2 −1 1

3 2 −1






; (2.15)

Φtarget =







cosθ sinθ

−sinθ cosθ






,ΛCL target =







−10 0

0 −15







Φtargetis the target eigenvector set generated by varying the parameter θ from

00 to 450. We then calculate the gain matrix for the state feedback from the matrix

Sylvester equation. The resulting closed loop system properties are analyzed as shown

in figure 1. In the first subplot, the eigen value assignment error e ≡ Λtarget −ΛCL, is
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plotted as a function of the parameter θ, used to generate the target eigenvector set.

Second subplot shows the magnitude of the feedback gain matrix as a function of the

parameter. The third subplot shows the condition number of the closed loop modal

matrix showing unity for all targets. This shows the exact assignment of the target

modal matrix by the scheme.
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Fig. 1. Eigenstructure assignment: 2D example

1. Target Sets of Eigenvectors

The varying feedback gain matrix magnitude in the figure 1 , indicates that there

exist a target orthonormal set which could minimize the magnitude of the state feed-

back gain. This motivates us to pose the following optimization problem. We want

to find an symmetric matrix that is closest to a given matrix. This is very much

similar to the famous Procrustes problem in psychometrics[34]. We would like to find
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an orthogonal modal matrix to minimize the cost function,

min
Φ

‖BG‖F = min
Φ

‖A− ΦΛΦT‖F (2.16)

One particular choice inspired from Juang and Maghami [27] has the property of

staying as close as possible to the open loop modal matrix, given by, Φtarget = UEV
H
E ,

where, A = EΛOLE
−1 is the spectral decomposition of the open loop system matrix,

and E = UEΣEVE , is the singular value decomposition of E. The performance index,

with this choice of the target eigen vector set becomes,

‖BG‖ = tr(ATA) + tr(Λ2) − 2tr(V H
E ΛVEΣEV

H
E ΛOpenloopVEΣ−1

E ) (2.17)

We are interested in real time computation of the gain minimizing target modal

matrix. The parametrization of Φ to make the determination of a minimizing target,

an optimization problem is therefore avoided.

Observations: In contrast to the suggestions of Juang and Maghami [27], it was

observed that, a better target for closed loop modal matrix is the unitary matrix span-

ning the range space of B. With this set as the target set of closed loop eigenvectors,

the feedback gains were observed considerably smaller in magnitude in comparison

with the gain magnitudes when open loop system range was used as an orthonormal

matrix. A random test case is shown in figure 2. This is not surprising considering the

result in equation 2.10, and the fact that the range of B determines the closed loop

modal matrix. But, more concrete results or a general proof could not be obtained at

present time. Also, substituting, the product AB would do apparently do no better

in the achievement of lower gains as this also belongs to the same Krylov subspace

[34] (or the controllability space), in terms of the linear algebraic systems.
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Fig. 2. Comparison of various orthonormal target sets for feedback gain minimization

C. Second Order Mechanical Systems: Partial Eigenstructure Assignment

Extension of the Eigenstructure Assignment scheme to second order systems has

been discussed extensively in the literature. Among other methods, the sequential

eigenstructure assignment by Juang [27] and the second-order Sylvester Equation

approach by Kim, et al.[28] are particularly attractive.

When we have the same number of actuators as the states of the system, it was

found that there exists yet another attractive and simple methodology for gain com-

putation for simultaneous feedback of position and velocity and partial eigenstructure

assignment. The following section summarizes the same.
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1. Partial Eigenstructure Assignment of Second Order Systems

Most of the second order mechanical systems, in practice allow the assignability of a

part of the eigenstructure. This is because, the external forces do not apply directly

on the kinematics part of the dynamical system. It therefore follows from the devel-

opments of Srinathkumar[18], that only n components (of the total 2n state variables,

of course assuming there are atleast n) of each mode can be assigned arbitrarily. This

is sufficient for most practical applications, if we desire a complex conjugate pair of

target set of closed loop eigenvalues. This is because of the following structure of the

modal matrix for any linear second order mechanical system.

Θ =







Φ Φ

ΦΛ ΦΛ






(2.18)

Clearly, because of the constraints from the kinematics and the complex conjugate

eigenvalues of the second order system, the determination of the n× n principal sub

modal matrix, Φ, determines the entire modal matrix. We utilize this fact and try

and make the principal sub modal matrix, Φ, as well conditioned as possible. Now

we develop a systematic method to do the partial EsA.

Let the second order mechanical system be given by

Mẍ+ Cẋ+Kx = Bu (2.19)

with M ∈ <n×n, x ∈ <n, u ∈ <m, B ∈ <m×n, and m ≥ n, rank(B) = n. With a

position and velocity feedback, u = Gx = G1x + G2ẋ, the closed loop eigenvalue

problem for the second order mechanical system is given by

(

Mλ2
i + (C − BG2)λi + (K −BG1)

)

φi = 0 (2.20)
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where, λi ∈ Cn = λRi + jλIi, λRi, λIi ∈ < and j2 = −1. We assign a set of distinct

complex target poles and their conjugates are assigned automatically. Let us assume

for simplicity that the n × n principal mode matrix is real. The analysis can be

repeated with out loss of generality to derive the matrix equation in the complex

target as well, without loss of generality. Separating the real and imaginary parts of

the above equation, we get the following two conditions,

(

M(λ2
Ri − λ2

Ii) + (C −BG2)λRi + (K −BG1)
)

φi = 0 (2.21)

j (2MλRiλIi + (C −BG2)λIi)φi = 0 (2.22)

Clearly the equations above represent a cascade and one of them is the matrix

Sylvester equation, we saw earlier. From the above conditions, together with the

fact that we can assign a target n × n principal modal sub matrix exactly owing to

the fact that the plant is atleast square, we have the following feedback gains.

G2 = B−1(C + 2MΦΛRΦT ) (2.23)

G1 = B−1(MΦ(Λ2
R − Λ2

I)Φ
T − 2MΦΛ2

RΦT +K) (2.24)

It is found that these gains assign the closed loop poles along with the principal target

modal sub-matrix exactly (subject to appropriate scaling and complex magnitude

considerations). We demonstrate these features with the following example problem

(example 5.4 from Junkins and Kim [29]) and discuss the positive features of the

algorithm proposed above.
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2. Example

Consider the undamped open loop second order system with the following para-

meters,

M =













1 0 0

0 1 0

0 0 1













, K =













20 −10 0

−10 30 −20

0 −20 20













(2.25)

With these parameter matrices, consider the target eigenvalues given by, Λtarget =

diag (−0.72+1.24i,−0.72−1.24i,−2.23+3.87i,−2.23−3.87i,−3.4+5.9i,−3.4−5.9i),

that is ω1 = 1.44, ω2 = 4.47, ω3 = 6.92, ζ1 = ζ2 = ζ3 = 0.5. The assigned

eigenvalues computed from the above methodology and the corresponding closed loop

eigenvectors are shown below.

Λ = diag(−0.72+1.24i,−0.72−1.2i,−2.2+3.8i,−2.2−3.8i,−3.46+5.9i,−3.46−5.9i),

(2.26)

Φ =

































−0.52218 − 0.533i 0 0

0 −0.11656 − 0.1935i 0

0 0 −0.0737 − 0.125i

1.0405 − 0.0267i 0 0

0 1.012 − 0.022i 0

0 0 1.0051 − 0.00918i

































(2.27)

The above equations are the representative modes of closed loop system. The other

three modes are the complex conjugates of the above modes. At first blush, it may

seem that this is not the eigenstructure we wanted. That is due to the bi-orthogonality

conditions we imposed for normalization. Upon dividing each column so as to make

the principal sub-modal matrix unity, we unravel the following scaled modes (that is,
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divide ith eigenvector with its i,i th entry, in the above set).

Φscaled =

































1 0 0

0 1 0

0 0 1

−0.72 + 1.2471i 0 0

0 −2.235 + 3.8711i 0

0 0 −3.46 + 5.9929i

































(2.28)

Clearly, this is the target eigenstructure. We also recover the condition number by

this scaling to have the same conditioning as the target modal matrix.

This can be compared with the solution in Junkins and Kim [29] in table 5.3.

Using a unitary matrix as a target, the norm of the feedback gains required was

‖G‖F = 50.91, whereas in this case, the norm of the gain matrix was found to be

‖G‖F = 37.363.

Thus we can see from the above that we need not always use a projection method to

stay as close as possible to a known, well conditioned system. It is also of consequence

to note: If we concentrate on the assignable sub modal matrix, noting that the second

order mechanical systems have a special structure and with a square plant, then we

can always assign exactly the assignable target sub matrix.

3. Features of the Partial EsA Algorithm

Whenever possible, the partial EsA algorithm has the following advantages and disad-

vantages when compared to its cousins proposed in Juang and Maghami [27], Juang

et al.[26] and Kim, et al.[28].

• The algorithm above is computationally less expensive than its cousins. Juang
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[26] algorithm uses the SVD for each eigenvalue/vector assignment and a ma-

trix inverse is required, whereas we need only one matrix inverse. Juang’s

method[27] requires a QR step and an SVD for each eigenvalue/vector as the

procedure uses angle between subspaces. Kim’s approach is actually quite sim-

ilar to the present approach, but does not use the same matrix manipulations

as the above algorithm.

• This algorithm doesn’t need the modal damping assumption which is important

for Kim’s algorithm. The damping can be general and even asymmetric. In fact,

the only restriction we need in the above development is to have an invertible

(or full rank) control influence matrix and a positive definite mass matrix.

• The drawback of this method is that we need at least n actuators for 2n state

variables in the second order form. This can be relaxed but we cannot assign

the target submodal matrix. The method needs further development for those

cases (May be using some kind of a projection criterion).

• The method needs an extension to assign complex principal modal sub matrices.

This brings about a change in the structure of the conditions that need to be

satisfied.

• An arbitrary selection of target eigenvector set can lead to very high gains and

a sensitive feedback controller. Therefore we need to select the target modal

matrices judiciously.
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CHAPTER III

EXAMPLE APPLICATION

In this section we shall demonstrate the utility of the EsA methodology, by control-

ling a redundantly actuated robotic manipulator. The schematic of the manipulator

is shown in figure 3. Assuming unit lengths for the links, the constrained equations

Fig. 3. Schematic of a redundantly actuated robot

of motion of the manipulator are given by

Mq̈ + G̃ = B̃u (3.1)

G̃ = G− F1 (3.2)

B̃ = B + F2 (3.3)
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where q = [qL, qR, qP ]T = [θ1, θ2, θ6, θ5, θ3, xc3, yc3]
T are the unconstrained degrees

of freedom of the left, right arms and the platform respectively. The control input

u = [u1, u2, u6, u5, u3, fx, fy]
T are the joint torques ui at the ith joint and the resultant

forces fx,y due to thrusters at the payload mass center. The control effectiveness

matrix, is given by the principle of virtual work as

B =







































1 −1 0 0 0 0 0

0 1 0 0 −1 sinθ23 −cosθ23

0 0 1 −1 0 0 0

0 0 0 1 −1 sinθ53 −cosθ53

0 −1 0 −1 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1







































(3.4)

where θij = θj − θi and F1, F2 are the forces due to geometric constraints. The

geometric constraints are given by

cosθ1 + cosθ2 +
1

2
cosθ3 − xc3 = 0 (3.5)

sinθ1 + sinθ2 +
1

2
sinθ3 − yc3 = 0

cosθ6 + cosθ5 −
1

2
cosθ3 − xc3 +D = 0

sinθ6 + sinθ5 −
1

2
sinθ3 − yc3 = 0

The constraint jacobian being given by

J =



















−sinθ1 −sinθ2 0 0 −1
2
sinθ3 −1 0

cosθ1 cosθ2 0 0 1
2
cosθ3 0 −1

0 0 −sinθ6 −sinθ5
1
2
sinθ3 −1 0

0 0 cosθ6 cosθ5 −1
2
cosθ3 0 −1



















(3.6)
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giving the jacobian derivative,

J̇ =



















−θ̇1cosθ1 −θ̇2cosθ2 0 0 −1
2
θ̇3cosθ3 0 0

−θ̇1sinθ1 −θ̇2sinθ2 0 0 −1
2
θ̇3sinθ3 0 0

0 0 −θ̇6cosθ6 −θ̇5cosθ5
1
2
θ̇3cosθ3 0 0

0 0 −θ̇5sinθ5 −θ̇5sinθ5
1
2
θ̇3sinθ3 0 0



















(3.7)

giving us the constraint forces as

F1 = JT (JM−1JT )−1(JM−1G− J̇ q̇) (3.8)

F2 = −JT (JM−1JT )−1JM−1B (3.9)

Thus we are led to the constraint free form of the equations of the manipulator given

by

MLq̈L + G̃L = B̃Lu (3.10)

MRq̈R + G̃R = B̃Ru (3.11)

MP q̈P + G̃P = B̃Pu (3.12)

(3.13)

For payload manipulation, we prescribe a reference maneuver. A smooth, nominal,

rest-to-rest maneuver is prescribed given by

qpref(t) = f(τ)[qpref(tf ) − qpref(t0)] + qpref(t0) (3.14)

q̇pref(t) =
df(τ)

dτ

(qpref(tf ) − qpref(t0))

(tf − t0)
(3.15)

q̈pref(t) =
d2f(τ)

dτ 2

(qpref(tf ) − qpref(t0))

(tf − t0)2
(3.16)

where, τ = (t−t0)
(tf−t0)

and the shape function f(τ) = τ 3(10 − 15τ + 6τ 2) is chosen, as

this nominal reference is known to simultaneously minimize the translational and
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rotational jerk integrals applied to the payload. Assuming that the position and the

velocity of the payload coordinates, qp, q̇p are available for measurement, we propose

the feedback control law,

u = WB̃p(B̃
T
p WB̃p)

−1[G̃p +Mpq̈pref +MpK(qp − qpref) +MpC(q̇p − q̇pref)]; (3.17)

where, the active stiffness and the damping K,C are designed by the second order

eigenstructure assignment methodology discussed in chapter II.

To demonstrate the robustness of the control law, 3.17, we introduce perturbations

in the manipulator parameters, model errors and initial condition errors as shown in

table I. Clearly, these are large model errors and the objective shall be to stay as close

as possible to the reference trajectory. The response of the system is shown in the

figures 4,5. From figures 4,5, it is apparent that the structure of the simple feedback

scheme is robust for a variety of plant parametric uncertainty types. This would not

have been possible if the plant was under-actuated as the number of feedback gains

to be designed would be lesser and we should be focusing more on stability of the

plant than the robustness. Hence redundancy in actuation has been shown to address

other objectives of control of dynamic systems rather than stability alone. In the next

section, we explore another such feature of redundantly actuated dynamical systems,

coordination.
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Table I. Applied additive parameter perturbations to plant model

Type of Perturbation Amount of Perturbation (Percentage)

Mp, Elements of Mass Matrix 60

qp(t0), Initial conditions 20

scaled G̃ Model Error 60

Error in q̈ref model parameters 40
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Fig. 4. Robust position tracking of the platform coordinates
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CHAPTER IV

COORDINATION OF REDUNDANT ACTUATOR SETS

Coordination is an important feature that the redundant actuator sets should

possess in order to achieve the global control objective without having conflicting local

goals. Junkins and Akella[8] demonstrated coordination among redundant actuators

by making the weight matrix a function of one of the state variables. We extend the

idea with an objective of improving controllability of the system.

A. Trained Weighting Approach for Coordination

The central objective of this approach is to determine the influence of each control

input towards the state evolution and make the weighting function in the pseudo-

inverse (3.17), so as to increase the contribution of actuators with maximum effec-

tiveness instantaneously. We achieve this objective by training weight functions, using

unit actuator inputs (force/torque). Training involves the propagation of a variety of

points in the states space (An evenly distributed grid of points) to derive an effective-

ness metric for each actuator in the redundant set, while maintaining zero force input

from the rest of the actuators. For example, the distance traveled from each point

in the state space in a given time by applying a unit force from only one actuator

being a candidate metric measuring the effectiveness of that actuator at that point

in the state space. This off-line computation, then gives us data to fit the perfor-

mance metric as a function of the required variable (some norm in the state space

is a good candidate). Thus, we have a knowledge of the relative importance of each

actuator in the workspace by repeated training from various feasible points in the

given work space. When a dynamical system traverses from one point in the state

space to another, the local effectiveness of each actuator in such a transport is being
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approximated grossly by this process.

The idea is illustrated in the figure 6. Consider the black line to be a part of the

operating region. Naturally, at different points of the operating region in the state

space, different actuators have different control effectiveness on the system. Given a

point, say x(t2), one such metric to measure effectiveness of actuator would be the

distance in the state space, traversed by applying unit actuation force, in one time

unit. This when repeated for all actuators gives us a means of comparison between the

relative strengths of actuator sets at that given point in the state space. For example,

as can be noted from figure 6, at x(t2), the most effective actuator would be u2, as it

takes x(t2) to x(t2+∆) in ∆ time, which is the largest of the distances by the available

controls u1, u2, u3. After the positive weight function determination, we could use it

in the control implementation. We can extend this procedure from one actuator at a

time to two actuators at a time so that we can populate the instantaneous correlation

terms in the trained weight matrix. We could use any choice of weight functions for

this approximation.

A potential drawback in this scheme is that if a given actuator is highly effective, it

will be given the maximum weight and some other actuator with poorer effectiveness

may be given only slight torques, leading to some kind of overload on some actuators.

The implementation on the redundant robot example (chapter III) showed similar

phenomena. It appears from figure 8 that the motor at joint 1 has been given some

”rest” as it is ineffective in the region (comparing figures 7 and 8, figure 7 shows control

forces different in magnitude from equal weighting approach). This makes complete

sense, physically, as in the given maneuver, the payload, being rotated clockwise,

requires a greater effort from the elbow and shoulder joints of the right manipulator.
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The left shoulder thus requires only slight effort. The unusually high control effort

on each actuator is due to the fact that the system parameters are highly perturbed

along with the initial conditions.

Fig. 6. Schematic illustrating the idea of training the weight matrix approximating

effectiveness
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CHAPTER V

APPLICATION TO DISTRIBUTED CONTROL PROBLEMS:

HYPER-REDUNDANT ACTUATION

In smart structures, the actuation is distributed in space. Shape memory alloys

and piezo-electric materials are examples for this type of actuators. Nominally, they

have inputs at several places and the smart matter delivers a distributed force input

to the structures they are installed upon, in accordance with the input voltage signal

at that location. It is envisioned that there will be novel smart sensing and actuation

technologies using nano-materials in the near future which will increase the input

dimensionality by an order of magnitude more than the current smart systems. Such

actuators are poorly modeled and the over all system is thereby poorly captured by the

physics based models. Hence there is a need for the control synthesis methodology to

be insensitive to parametric uncertainties. Stability of such systems which have a con-

tinuum of actuators, governed by partial differential equations is a highly developed

area. Wang[35, 36] pioneered the extension of Lyapunov’s direct method to analyze

the stability of such systems and is accredited to have developed several models of

distributed parameter systems for optimization of aeroelastic systems[37]. This later

laid foundation for the development of distributed parameter control theory. Bailey

and Hubbard[38] were among the first to demonstrate the active vibration damping

of a cantilever beam using distributed parameter control logic, via Lyapunov’s sec-

ond method. This was extended to accommodate more general boundary conditions

and non-uniform actuator spatial distributions by Burke and Hubbard[39]. The in-

teresting aspect of this approach of treating the control as a distributed parameter is

that there is no need for the discretizing the states to obtain a discretized model of

the distributed parameter plant. The control partial differential equation is obtained
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directly along with its own boundary conditions.

However, the grace of this method is lost immediately owing to the fact that

most of the real life applications use the discretized equations due to the collocated

nature of the sensor outputs and actuator inputs (although smart material maybe

represented as a continuum, the input voltages have to be applied at finite locations).

Recently, there has been a lot of work in the area of distributed actuation. Fromherz

and Jackson[40] implement a paper transport method, using precomputed analytical

solution to the total force averaging problem which is posed as a constrained opti-

mization problem. Hogg and Huberman[41] propose a heirarchical structure to be

ideal for controlling smart matter. Therefore to control smart material, we go one

step further and propose an adaptive aggregation scheme.

A. Algorithm for Adaptive Discretization

In the adaptive aggregation scheme,using physics based model, we populate the

control influence matrix iteratively in accordance with a performance measure. This

is done as described in figure 8. We start with a control influence matrix and evaluate

the actuator position effectiveness by an actuator placement effectiveness measure.

In the cantilever beam example presented in figures 9,10,11, we use the measure

proposed by Hamdan and Nayfeh[42]. This measure forms a matrix whose i, jth

element approximates the influence of jth actuator on the ith mode of the system.

The algorithm is shown to place actuator nodes at several locations along the length

on a beam problem. The node insertion for each iteration is plotted in Fig. 10. Fig.11

shows the improvement of condition number of the control influence matrix of the

beam problem with each node insertion. However, the node insertion shown in this

simple example is not sufficient. The node insertion at each iteration is performed
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only at locations with largest controllability index. This results in what is called

a greedy algorithm leading to insertion of nodes at the same locations each time.

As a result there are an increasingly large number of nodes at sensitive locations.

This issue is to be handled by a more uniform methodology of node insertion. This

methodology becomes more important for distributed actuation in large structures

as there is an increased need for sensitivity based aggregation in such applications.

However, the practicality of the algorithm dictates to have it working along with a

spatial discretization tool.

Fig. 9. Schematic of the adaptive aggregation scheme for hyper-redundant actuation

B. Application to the Morphing Wing

The above discretization procedure is applied to a finite element model of a novel

morphing wing. The wing, shown in figure 12, consists of three twisting sections

that change the wing twist profile, owing to the elastomeric skin that deforms on a
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Fig. 10. Aggregation history with Hamdan Nayfeh Greedy strategy

flexible skeleton. An overly simplified model, with large model errors is being used to

demonstrate the methodology. The actual structure of the wing is nonlinear due to

several elements. Viscoelasticity, together with the coupled aerodynamics make the

problem more complex. As a preliminary analysis, the wing is approximated by three

members in torsion with varying geometric parameters (polar moment of inertia). The

mass and stiffness matrices are computed from a three element finite element model of

this structure (determined with with appropriate material properties). Five different

force distributions are used as control inputs on the three elements and a second order

mechanical system is constructed from the same, with four state variables and five

control inputs. The open loop eigenvalues and close loop eigenvalues achieved are

shown in table II, together with the condition numbers of the closed loop and the

open loop modal matrix. Note that the desired closed loop modal matrix condition

number is achieved exactly due to the partial eigenstructure assignment.
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Clearly, we need a methodology to identify the unmodeled dynamics to compensate

for the modeling errors that we have committed to this model. An implementation

of this algorithm therefore should use an estimator of the eigen frequencies of the

model error and try to compensate them to maintain stability and achieve the set

performance goals. One way to do this is to have a sliding window and construct

a linear model via adaptation and try to compensate for stability. Such an idea is

discussed in the appendix. But the idea presented in the appendix is not suitable

for a real time application due to several reasons. We may want to use a method

to identify the frequencies from a sliding window of sampled data. The Eigensystem

Realization Algorithm[43] is a potential candidate to extract the participating modes.

Thus, for this type of problems of hyper-redundant actuator arrays, which are

poorly modeled in general, the discretization scheme, together with the robust redun-
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dant eigenstructure assignment is promising to be a simple and practical approach.

Fig. 12. Morphing Wing experiment
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Table II. Eigenvalues for the structural model of the morphing wing

Openloop Eigenvalues Target Eigenvalues Closeloop Eigenvalues

0+163.3i -100+163.3i -100+163.3i

0-163.3i -100-163.3i -100-163.3i

247.21i -200+247.21i -200+247.21i

-247.21i -200-247.21i -200-247.21i

341.01i -300+341.01i -300+341.01i

-341.01i -300-341.01i -300-341.01i

Openloop Modal κ(Φ) Desired Close Loop κ(Φ) Achieved Cond. No. κ(Φ)

10.8555 2.3719 2.3719
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CHAPTER VI

CONCLUSION

A robust approach for the control of systems with greater number of inputs than the

states of the plant model is presented in the thesis. The approach uses an extension

to eigenstructure assignment algorithm, originally developed with a focus on under

actuated systems. For second order mechanical systems, the partial eigenstructure

assignment methodology is proposed. For real submodal target matrices, the position

and velocity feedback gain calculation equations are given in a two step process. These

results have been compared with traditional assignment approaches. The procedure

is demonstrated on a robot with uncertain properties and robust tracking of reference

trajectories is shown.

An important issue in redundancy management, coordination is discussed. A novel

trained weighting approach is presented, which facilitates an online weighting of the

control forces depending on the local controllability of individual actuator sets.

The methods proposed in the thesis are applied to hyper redundant actuator sets

by an adaptive aggregation strategy, which helps bring down actuator dimensionality

from infinity to finite inputs.

Directions for Future Research: It is felt that the redundancy in actuation can

bring about some difference in systems with output feedback form. Further results in

this direction have to be developed. The guaranteed stability region due to the Patel

Toda theorem, is improved if we could construct a compensator based on discrete time

data as indicated in the appendix. A strong theoretical foundation is recommended

for the adaptive aggregation approach so as to extend the results for smaller orders
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of redundancy to hyper redundant actuation. Application of the above methodology

to an experimental structure is also recommended in order to achieve a well desired

closure between theory and practice.
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APPENDIX A

ASSIGNABILITY OF EIGENSTRUCTURE

In this appendix, we summarize the result of Srinathkumar [18], about the assignable

components in the closed loop modal matrix. This is stated in the following theorem.

The original theorem stated in [18] has been modified and the full state feedback

version is presented for clarity. Extension to output feedback is straightforward. Let

us consider the Linear system with some partitions, before we state the theorem,

ẋ = Ax+Bu =







A11 A12

A21 A22






x+







B1

B2






u (A.1)

B ∈ <n×m, m < n,A ∈ <n×n, x ∈ <n, u ∈ <m, with B1 ∈ <m×m nonsingular.

Theorem A.1 (Srinathkumar and Rhoten[18]) Given a linear system (A,B),

of the form equation A.1, and a state feedback control law, u = Kx, only m entries

in each closed loop mode may be arbitrarily assigned.

Proof The closed loop eigenvalue problem can be written as

(A+BK)ui = λiui (A.2)

It would be convenient to introduce the partition of the eigenvector, ui = [zT
i , w

T
i ]T .

With this partition, the closed loop eigenvalue problem becomes,







A11 +B1K1 A12 +B1K2

A21 +B2K1 A22 +B2K2













zi

wi






= λi







zi

wi






(A.3)
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Eliminating the feedback gains, we get

([AT
11, A

T
12]

T +B1K)u = λz (A.4)

(λIn−m − F )w = (G+ λS)z (A.5)

where G = A21 − SA11,F = A22 − SA12 and S = B2B
−1
1 . Clearly, equation A.5, is a

set of n−m constraints. Therefore, m components, of ui, namely, zi can be assigned

arbitrarily. �
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APPENDIX B

ADAPTATION TO ACCOMMODATE UNMODELED DYNAMICS

In this appendix, we present a technique of construction of a linear model from

the input and state information. This could be applied for the identification of a

dynamic model, whose states are the unmodeled plant dynamics, to be used for

compensation by the control law. Let us discuss the methodology and then apply it

to a two link manipulator example.

Before talking about control, let us talk a little bit about a possible way of control-

ling a dynamical system without the knowledge of its mathematical model. Consider

the nonlinear system,

ẋ = f(x, u) (B.1)

for a given reference trajectory, qref(t), let there exist a control to make the tracking

error go to zero. Assuming the trajectory and reference are continuously differentiable,

the error dynamics is continuous and is locally linearizable. Thus we assume the

validity of the linearization about a nominal trajectory.

Now, let us consider the linearized system,

ẋ =
∂f

∂x
|xnom,unom

x+
∂f

∂u
|xnom,unom

u+ f(xnominal, unominal) (B.2)

The error dynamics therefore could be assumed to be linear in the local domain

D ∈ <someneighborhood. The linear dynamics can thus be written as

ė = Ape+Bpu+ dp (B.3)
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in some domain D. This can therefore be identified in that domain by standard

adaptive control methods. Following the standard adaptive control regimen [44, 45],

we construct the Lyapunov functional.

V (Ãp, B̃p, d̃p, ε1) =
1

2
εT1 Pε1 + tr

{

ÃT
p PÃp

2γ1

}

+ tr

{

B̃T
p PB̃p

2γ2

}

+
1

2
d̃T

pP d̃p (B.4)

giving us the identification laws

˙̂
Ap = γ1ε1e

T (B.5)

˙̂
Bp = γ2ε1u

T (B.6)

˙̂
dp = γ3ε1 (B.7)

With these online parameter estimates, we can construct an instantaneous linearized

system, which represents the error dynamics, along a reference trajectory of the un-

known system. This is systematically done as follows.

• Consider the region of interest in the state space and construct the reference

trajectory.

• Split the trajectory in to intervals.

• This can be done by considering small intervals of time.

• Owing to the state continuity, small time intervals lead to small domains in the

state space making the linear approximation valid. This interval thus becomes

a design variable.

• Extract the state variable and compute the tracking error from the reference

trajectory.

• Integrate the identification equations along with the dynamics.
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• Design an appropriate control law to regulate the error dynamics. (Use certainty

equivalence left right and center !!!)

Example Application Having developed a methodology for model error compensa-

tion, we would now like to apply it to the mathematical model of a two link open

chain manipulator(the rigid cousin of example 4.6 in Junkins and Kim [29], shown in

figure 15). Over a span of 20 seconds, 10 intervals of 2 seconds each were considered

for realizing an equivalent linear model via the proposed methodology. Since the

control influence matrix, B is known, we opt not to learn it via adaptation.

However there is a problem that we have and that is that the control torque inputs

to the system affect only the velocity states and do not affect the position states. The

danger in this scenario is clearly seen from the following identified system equations

(in first order state space form)







ė1

ė2






=







Âp11 Âp12

Âp21 Âp22













e1

e2






+







02×2

I2×2













τ1

τ2






+







d̂1

d̂2






(B.8)

Clearly the equation B.8 shows that the unforced kinematics part of the system, is

experiencing disturbance from d̂1. This disturbance has to be rejected. We could use

the ES assignment approach, to reject the disturbance by making the target close

loop poles farther away from the imaginary axis. But we choose to use another nice

nonlinear control methodology, Backstepping [44]. Let us now derive a control law

for this system via backstepping and implement the same along with the adaptive

linearized identification methodology.

This has been implemented on the nonlinear robot model in tandem with the

linearized identification strategy in small intervals of 2 seconds at a time. The results
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are shown in the figures 13, 14. We emphasize the elegance of this method. Nowhere

have the physics based equations been used in the entire control law development. It

is assumed that the plant model is completely unknown and only the state and the

control information is available to the designer.

Thus this methodology can be used to construct a linear model over a sliding

window of continuous time state information.
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