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ABSTRACT

Parameter Estimation in Ordinary Differential Equations. (May 2003)

Chee Loong Ng, B.S., National University of Singapore

Chair of Advisory Committee: Dr. Bart Childs

The parameter estimation problem or the inverse problem of ordinary differen-

tial equations is prevalent in many process models in chemistry, molecular biology,

control system design and many other engineering applications. It concerns the re-

construction of auxillary parameters by fitting the solution from the system of ordi-

nary differential equations( from a known mathematical model) to that of measured

data obtained from observing the solution trajectory.

Some of the traditional techniques (for example, initial value technques, multiple

shooting, etc.) used to solve this class of problem have been discussed. A new algo-

rithm, motivated by algorithms proposed by Childs and Osborne(1996) and Z. F. Li’s

dissertation(2000), has been proposed. The new algorithm inherited the advantages

exhibited in the above-mentioned algorithms and, most importantly, the parameters

can be transformed to a form that are convenient and suitable for computation. A

statistical analysis has also been developed and applied to examples. The statistical

analysis yields indications of the tolerance of the estimates and consistency of the

observations used.
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CHAPTER I

INTRODUCTION

A. Regression Analysis

The technique of regression is a useful statistical tools for the exploration of one

variable on others. There are different forms of regression analysis, namly simple,

parametric, non-parameter, etc. In this section, I shall focus only on simple linear

regression as it is needed in our discussion.

I will use a definition of regression analysis as being fitting a model to data.

In simple linear regression, we usually have a relationship of the form

Yi = α + βxi + εi (1.1)

where Yi is a random variable and xi is another observable variable. It is common

to assume that E(εi) = 0. A major purpose of regression analysis is to predict Yi

from knowledge of xi. Yi is usually referred to as the dependent variable and xi, the

independent variable. Using statistical notation, we can state our inferences as

E(Yi|xi) = α + βxi (1.2)

According to Casella & Berger [1], when we perform a regression analysis we in-

vestigate the relationship between a predictor and a response variable. There are two

steps to the analysis. The first step is a data-oriented one, in which we attempt only

to summarize the observed data. We do not make any assumptions about parameters

as we are interested only in the data at hand. The second step in the regression

analysis is the statistical one, in which we attempt to infer conclusions about the

The journal model is IEEE Transactions on Automatic Control.
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relationship in the population. To do this, we need to make assumptions about the

population.

I will be concerned with a particular problem that meets the above definition

of regression analysis. This problem is the estimation of unknown parameters in

differential equations where I have observations of the response (solution) of the dif-

ferential equation. Further, these observations will be noisy (due to noise or limited

precision). The number of these will be significantly greater than the number required

to uniquely determine a solution. This is often called parameter estimation (PE ) [2].

We are usually not concerned with the second step of regression analysis when

doing PE . This is because in the PE problem we usually have significant detailed

knowledge of the ODE model as it is based on concrete theoretical and extensive

scientific analysis.

The linear relationship between the independent variables and the observations

in the PE problem arises due to the application of Newton’s linearization technique [3]

on the differential equation and the finite difference approximation on the derivatives.

As such, the assumption in 1.2 may not be fully justified. We do, however hope that

E(Yi|xi) ≈ α + βxi (1.3)

will be a reasonable approximation.

B. The Boundary Values Problem in Ordinary Differentiation Equations

The general interest to the linear multi-points boundary values problem in ODE is

to find the solution to the differential equation subject to m boundary conditions [4].

This problem can be formulated mathematically as follows:
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ẏ = g(y, x) (1.4)

subject to the m boundary conditions:

q(y(xi)) = bi (1.5)

where:

y is the state vector of n elements,

x is the independent variable, often time.

qi is an operator that defines a linear combination of the elements of the state vector,

y, that is equal to the boundary value bi at x = xi.

The boundary values conditions are considered at many values of the independent

variables.

These boundary value problems can be solved by use of:

1. superposition methods which are also known as shooting methods. Childs’ codes

have used these [5].

2. finite difference methods.

3. spline or finite element methods.

The last two should enable faster solutions and also has common applicability in

partial differential equations problems.

We are concentrating on the second because the last one has a function mini-

mization that conflicts with the use of the least squares process for the specification

of the observations.
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C. Analysis of Variance

Analysis Of Variance (ANOVA) is a commonly used tool to identify sources of vari-

ability from two or more independent potential sources. It is concerned with analyzing

variation of means. It provides a useful way of thinking about the way in which dif-

ferent treatments affect a measured variable — the idea of allocating variation to

different sources. The ANOVA procedure makes the following assumptions:

• Independence of samples;

• Normality of sampling distributions;

• Equal variance of groups;

Consider the terms in the one-way ANOVA model

Yij = θi + εij

where the θi are unknown parameters, εij are error random variables, i = 1, . . . , k,

and j = 1, . . . , n. Under these assumptions, in particular if Yij ∼ n(θi, σ
2), it can be

shown that

(1/σ2)
k∑

i=1

ni∑
j=1

(Yij − Yi)
2 ∼ χ2

N−k (1.6)

where Yi = (1/ni)
∑

j Yij [1]. Furthermore, if the parameters of concerned are the

same for every i and j, then

(1/σ2)
k∑

i=1

ni(Yi − Y )2 ∼ χ2
k−1 (1.7)

and

(1/σ2)
k∑

i=1

(Yi − Y )2 ∼ χ2
N−1 (1.8)

where Y =
∑

i niYi/
∑

i ni
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Table I. ANOVA table

Source Degrees
freedom

Sum of squares Mean square F statistic

Treatment k-1 SSB=
∑

ni(yi − Y )2 MSB=SSB/(k-1) F=MSB/MSW
Error N-k SSW=

∑ ∑
(yij − yi)2 MSW = SSW/(N-k)

Total N-1 SST=
∑ ∑

(yij − Y )2

It is common to summarize the results of an ANOVA F test in a standard form

called an ANOVA table as in Table I adapted from [1].

D. Method of Maximum Likelihood Estimation

The method of Maximum Likelihood Estimation(MLE) is by far, the most popu-

lar techniques for deriving estimators. Suppose if X1, · · · , Xn are an independent

and identically distributed random variables from a population with pdf or pmf

f(x|θ1, · · · , θk), the likelihood function is defined by

L(θ|x) = L(θ1, · · · , θk|x1, · · · , xn) =
n∏

i=1

f(xi|θ1, · · · , θk) (1.9)

A maximum likelihood estimator(MLE) of the parameter θ based on a sample X

is θ̂(X) where θ̂(x) is a parameter value at which L(θ|x) attains its maximum as a

function of θ, with x being held fixed.

It is interesting to note that the least square estimators of α and β in equation 1.1

are also the MLE of α and β [1].

E. Parameter Estimation Problem

Consider ordinary differentiation equation of the following form:

ẏ = f(x, y, θ) (1.10)
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subject to the following boundary conditions:

bci(xi, yi, θ) = 0 (1.11)

where x ∈ [a, b] the independent variable, y = y(x, θ) denotes the state vector de-

pending on x and θ (∈ �) denotes the parameter vector and lastly bci denotes the

boundary condition constraints observed at xi.

Let m be the number of measurements available from the process, ŷi denotes

the ith observed values (termed observation), given in terms of functions of states

and parameters at data points xi and εi denotes the inherent errors presence in this

measurement.

The primary goal in parameter estimation problem is to identify reasonable values

for the parameter θ by fitting a theoretical model to the measured data points.

In this model, we assume that εi is an independent and identically distributed

random variable which follows a normal distribution with mean 0 and variance σ2.

We aim to minimize
i=m∑
i=1

ε2
i (1.12)

subject to the least square constraints. The method of MLE and regression analy-

sis are commonly used statistical tools to identify the parameters and perform the

required analysis.

The available data may arise from different processes under different conditions

and the parameter estimation problem thus consists of several independent problem

sets which have only the parameters θ in common [6]. This is where we can apply the

idea of ANOVA to perform the required analysis. In this instance, we aim to analyse

the variation in the mean between the data points obtained from these different sets.
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CHAPTER II

HISTORY

The parameter estimation problem is also called by the names: system identification

problem, parameter identification problem, and inverse problem [2] & [4]. The esti-

mation of parameters — or unknown initial values — given data on the trajectory of

a differential equation system. It involves the fitting of the solutions of a system of

differential equations to data corresponding to a realization of a particular solution

trajectory observed in the presence of noise [7]. We are particularly concerned with

estimating parameters in the case of a non-linear multi-point boundary values ordi-

nary differential equations (ODE) because of application potential in many process

models [2].

Typically, the approach to this problem is solved by initial valve problem (IVP)

methods [4], [8] & [9]. It involves the repeated solution of the initial value problem

using some forms of iterative algorithm to improve the fit. This approach has several

drawbacks, which was discussed by [6]. It was shown by many that this approach

causes deterioration of efficiency as it focuses on the parameters and thus neglect-

ing inherent state information on the inverse problem. Another reason is that this

elimination of the state information can result in a substantial loss of stability for the

solution structure. This is especially pertinent for the case when bad initial parameter

values were chosen. In this instance, the IVP may be ill-conditioned and hard to solve.

In some instances, even when the parameter problem is perfectly well-conditioned, a

solution may not even exist. This situation was illustrated by Bock in [6], which he

termed as a “notorious test” problem. In that problem, the ODE for two states and
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one unknown parameter p with fixed initial values is given by:

ẋ1 = x2 ẋ2 = µ2x1 − (µ2 + p2)sin(pt) (2.1)

where x1(0) = 0, x2(0) = π and t ∈ [0, 1]. The solution of the true parameter value

p=π is x1(t) = sinπt, x2(t) = πcosπt. It has been shown that for true value of

p ( correct to 16 decimals) and with the highest integration accuracy, the solution

is properly reproduced only on the first half of the interval! [6]. The problem is

characterized by having positive and negative eigenvalues.

Many of these problems can be solved using Multiple Shooting Methods [10].

This method involves the superposition of the initial value solutions of the differential

equations over short subintervals and enforcing continuity of the solution across the

boundaries of the intervals. It involves the conversion of the original second order

ODE to two first order equations, parameterization of the parameters and making

an initial estimates of the parameters. The systems of differential equation is then

integrated over the intervals. This approach results in the solving of a constrained

over-determined systems, usually by using the least square constraints approach. A

point to note is that a good selection of mesh is neccessary. This is to avoid drifting

too far away from the solution trajectory [6].

Once we have decided on a suitable parameterization, we can then proceed with

the matching of the computed and observed data points in order to estimate the

auxillary parameters. Childs and Osborne [10] have proposed a stable and efficient

algorithm in handling the matching between the solutions (of the ODE) and the

observed data. Minimization of the sum of squares of the discrepanies between these

data points is carried out using Fisher’s method of scoring [11]. Fisher’s method

incorporates the idea of Maximum likelihood (MLE) and Gauss-Newton methods

in its approach. It has thus inherited some of the advantages (quadratic rate of
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convergence and good transformation of invariance properties) associated with Gauss-

Newton’s method. In addition, it only requires first derivative information. An

implementation code, ps_quasi has also been provided by Childs in [5].

Li [12] in his dissertation, has proposed a method addressing the issues of explicit

parameterization and restrictions (large sample size and the correctness of model

formulation) associated with Gauss-Newton’s method. The proposed method first

transforms the ODEs estimation problem into a non-linear programming problem by

applying the finite difference method, where both the state variables and the param-

eters are regarded as unknown variables. The system of equations to be mimimized

can be extensively huge when there is a large sample of observation data. The ad-

vantage is that it has few degrees of freedom. Cyclic reduction is then applied to

reduce it to a minimization problem with a fixed number of constraints. This does

not require explicit imposing of extra initial or boundary conditions. The author has

also made use of Sequential Quadratic Programming (SQP) method [12] to relax the

restrictions imposed by Gauss-Newton methods.
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CHAPTER III

PROPOSED WORK

Li’s dissertation has provided an in-depth discussion of the various methods of getting

the solutions to the estimation problem. This work can be viewed as an extension to

his approach with an appropriate statistical analysis of the results.

A new algorithm has been developed for solving this class of problem, motivated

by algorithms proposed by [5] and [12]. This new algorithm is summarized in Fig. 1.

This new algorithm has inherited some of the merits exhibited in the algorithms

of [5] and [12]. One of them is the quadratic convergence of Gauss-Newton’s method.

In addition, the parameterization (of the unknown parameters) can be carried out

easily and convergence is rapid in most cases. In the solving of over-determined

system of equations, Li made use of SQP techniques. I use the approach of Childs

which he had used in his implementation in [5]. To faciliate the statistical analysis,

a small ODE solver(written in Matlab Version 6.5) implementing the algorithm in

Fig. 1 has been developed. An outline of the implementing codes is in Appendix B.

A. Problem: Spring Mass Dashpot Model

The model of a spring mass dashpot, electrical circuit, or other physical systems

is used as a sample problem for the simple solver to solve. This model has been

implemented by Childs in [5] and the numerical results have been presented and

analyzed in [10]. The results obtained in my thesis will provide a good basis of

comparision between the two approaches.

This problem is modelled mathematically as follows:

ẍ + µẋ + ξx = λsin(t) (3.1)
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1. Parameterization of the state vector and the unknown parameters by a lineariza-

tion about a reference solution, w, on the specified ODE — this is common to

Childs and Osborne’s work;

2. Application of the finite difference technique to the state vector and its deriva-

tives. This results in a system of algebraic equations rather than ODEs;

3. Forming a system of algebraic equations that is to be solved as a constrained

least squares problem;

4. Solving the system of equation using a constrained least squares approach;

5. Iteration of steps 3 through 4 using the newly computed results as the referenced

solutions, until the specified iterations or the desired tolerance level is reached;

6. Calculation of the statistics reflecting the quality of the fit.

Fig. 1. Proposed new algorithm

subject to the n + 1 boundary conditions:

qi(x(ti)) = bi (3.2)

for i = 1, 2, . . . , n + 1. Notice that the notorious test problem can be obtained with

specific values of the parameters µ, ξ and λ. Childs’codes, using multiple shooting

has been used to solve this problem, though unpublished.

The constants µ, ξ and λ are unknown and the estimation of these parameters

are of primary focus.

The differential equation is linearized about a reference solution on the parameter

and the state variables and finite difference method is then applied to the equation.
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This is what we have:

[2 + hµ0]xi+1 + [−4 + 2h2ξ0]xi + [2 − hµ0]xi−1

[h(wi+1 − wi−1)]µ + [2wih
2]ξ − λ2h2sin(ti) = [wi+1 − wi−1]hµ0 + 2ξ0wih

2 (3.3)

where w, µ0 and ξ0 are reference solutions or assumed initial estimates.

Suppose we have n partitions in the mesh, n + 1 observations to be met in

the “least square sense” and n − 1 equations are “exact” (from the finite difference

method). We will then have a system of equations of the following form:




a11 a12 · · · a1(n+1) a1(n+2) a1(n+3) a1(n+4)

0 a22
. . . · · · a2(n+2) a2(n+3) a2(n+4)

0 0
. . . · · · a3(n+2) a3(n+3) a3(n+4)

0 0
. . . . . .

...
...

...

0
. . . . . . . . . a(n−1)(n+2) a(n−1)(n+3) a(n−1)(n+4)

1 0 · · · · · · · · · · · · · · ·
0 1 · · · · · · · · · · · · · · ·
. . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . .

...

· · · · · · · · · 1 0 0 0







x1

...

xn+2

xn+3

xn+4




=




b1

b2

...

...

...

b2n




(3.4)

Using block notation, we can partition this large matrix into four block of smaller

matrices of the following form:


 A1 A2

A3 A4





 xe

xl


 =


 be

bl


 (3.5)

where the matrices A1, A2, A3, and A4 are of order (n − 1) × (n − 1), (n − 1) × 5,
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(n + 1) × (n − 1), and (n + 1) × 5 respectively. xe and xl are the respective “exact”

and “least square” state vectors. The (n − 1) × (n − 1) tri-diagonal matrix, A1, is of

the following form:




a11 a12 a13 · · · · · · 0

0 a22 a23 a24 · · · 0

0 0 a33 a34 · · · 0

. . . . . . . . . . . . . . .
...

· · · · · · · · · · · · a(n−1)(n−2) a(n−1)(n−1)




The system of equations

[
A1 A2

] 
 xe

xl


 =

[
be

]
(3.6)

is to be solved exactly while computing the least square solution for these over-

determined system:
[

A3 A4

]
 xe

xl


 =

[
bl

]
(3.7)

This system of equations is then reduced to the following form:


 A′

1 A′
2

A′
3 A′

4





 xe

xl


 =


 b′e

b′l


 (3.8)

where A′
1 is an identity matrix, A′

3, a zero matrix, and b′e and b′l are the corresponding

vectors on the right hand side of the equation after reduction.

xl is obtained by solving the (n + 1) × 5 systems of equations

A′
4 ∗ xl = b′l (3.9)
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in a “least square sense” and subsequently xe is obtained from

xe = b′e − A′
2 ∗ xl (3.10)

B. Statistical Approach

At this point, I will discuss the statistical approaches and methodologies that will be

used. This portion of the discussion is an adaption from [7].

Forming the “normal equation” in 3.7, we have

[
(A′

4)
T A′

4

](
xl

)
=

[
(A′

4)
T ∗ bl

]
(3.11)

We shall denote the normal equations by

N ∗ xl = (A′
4)

T ∗ bl (3.12)

where

N = (A′
4)

T ∗ (A′
4) (3.13)

Let SSE denotes the sum of squares of errors. The variance of xl is:

V (xl) = N−1 ∗ s2 (3.14)

where s2=SSE/(degrees of freedom). The degree of freedom is computed by taking

the difference between the total number of equations and total number of unknowns.

The variance of xe is:

V (xe) = (A′
2)V (xe)(A

′
2)

T (3.15)

The covariance matrix for x is:

V (x) =


 V (xe) 0

0 V (xl)


 . (3.16)
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The prediction interval of an observation is computed based on the following [13]:

b̂i ± t(m − (n + 4), α/2)
√

s2 + V (i, i) (3.17)

where V (i, i) is the diagonal element at position (i, i) of V (x). The second term

in this equation is an indication of the “tolerance of the estimate” and is a good

indicator of quality of the estimation process for the unknown state which includes

the solution of the ODE and its parameters. The term tolerance of the estimate will

be used interchangeably with confidence estimate in this thesis.
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CHAPTER IV

COMPUTATIONAL RESULTS

A. Test Cases for ODE Solver

The solver was first validated modularly and then verification was then carried out

as a whole to determine if the coding was done correctly.

1. Testing the Constrained Least Squares Method

The code of [5] includes a Fortran 90 implementation of the algorithm developed

starting with equation 3.5. This is done using a Gauss Jordan maximum pivot strat-

egy with the least squares part using a singular value decomposition strategy. My

development was done using MATLAB 6.5 and it is recognized that there are possible

problems where the strategy used by Childs may be preferable.

The validity of my constrained least squares was tested by use of intermediate

results from Childs’ code being furnished for test cases. The differences were small and

deemed to be acceptable. These were likely caused by the slight increases in precision

available from the use of pivoting and singular value decomposition in Childs’ code.

B. Result for Spring Mass Dashpot Problem

I will use a problem that was used by Childs [5] to give me a basis of comparison. The

ODE is second order and there are three unknown parameters. I will use observations

on the same fixed range of the independent variable. I will divide this into n intervals

where n will be 16, 32, 64, 128, and 256.

The state of the problem will be n+4 from the three parameters and n+1 values

of the dependent variable of the ODE at end-points of the intervals.
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Table II. Summary of specific dependent variables at each iteration for 32 intervals

Independent variables t
Iter.\t 0.0 4.0 8.0 12.0 16.0 Norm(w − x)

0 -3.5889576336 7.5278558980 -3.4424224401 -0.1575283205 5.6609498154
1 -2.9967033632 6.2783624427 -2.8704563483 -0.1243323378 4.7227238309 4.7747e+000
2 -2.9962886298 6.2781553821 -2.8697644659 -0.1240454630 4.7233446345 4.6044e-002
3 -2.9961913066 6.2781235934 -2.8697877596 -0.1240425389 4.7234108259 3.7575e-004
4 -2.9961912858 6.2781236180 -2.8697877681 -0.1240425108 4.7234107807 1.2330e-007
5 -2.9961912858 6.2781236180 -2.8697877680 -0.1240425109 4.7234107808 1.6414e-010
6 -2.9961912858 6.2781236180 -2.8697877680 -0.1240425109 4.7234107808 3.3702e-013

A random noise has been added to the observations and we have started the

iteration with the reference solutions multiplied by a user-specified perturbation (in

this case, it was specified as 1.2). The parameters values of µ and ξ are 25% off the

true values. The iterative methods stop when we have achieved the specified iterations

(maximum of 8 iterations in my program) or when the desired norm of the solutions

(norm(w − x) < 0.5e − 10) has been reached, whichever comes first. The estimates

of dependent variables x(ti) where ti = 0, 4, 8, 12, 16 for the 32 intervals are shown

in Table II at each iteration. The estimates of the state vectors and the parameters

close in well to the analytical solution and the true values at the first iteration. This

has demostrated the rapid convergence of the algorithm. From Tables II & III, we

noticed that we have achieved the quadratic convergence. The quadratic convergence

was not too obvious towards the later iterations. Detailed results of the estimate,

lower limit, upper limit & confidence estimate are as shown in Table IV. A plot of

the test solutions is shown in Fig. 2. A scatter plot showing the difference between

the numerical solutions & the observation is reported in Fig. 3. One can observe that

all the points lie within the limits of the tolerance estimate.

From Table V, we can clearly observe that the values of the parameter values

are closer to the true parameter values when the mesh is increased. This is definitely

in-line with what we expect from the result. It was not so clear cut in the case of the

confidence estimates. The confidence estimates for 32 intervals are larger than that
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Table III. Summary of parameter values at each iteration

Iteration mu xi lambda sqrt(2-norm)

0 0.1500000000 1.2500000000 1.0000000000

1 0.1922049830 1.0240557389 0.9595342732 2.3339e-001

2 0.2003692255 0.9790424175 0.9578898754 4.5777e-002

3 0.2003658136 0.9790424087 0.9578989751 9.7183e-006

4 0.2003658059 0.9790424176 0.9578989100 6.6137e-008

5 0.2003658059 0.9790424176 0.9578989101 8.3486e-011

6 0.2003658059 0.9790424176 0.9578989101 1.7699e-013
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Fig. 2. Plot of test solutions



19

Table IV. Summary of statistics for 32 intervals

Specifics for the boundary conditions & parameter estimates
t alpha(alpha=0.05)=2.05 d.f=28

t estimate lower limit ≤ observation ≤ upper limit est. tol
0.00 -2.996191 -3.010333 ≤ -2.990798 ≤ -2.982050 0.014142
0.50 -6.272323 -6.286241 ≤ -6.270183 ≤ -6.258405 0.013918
1.00 -7.664581 -7.678363 ≤ -7.667390 ≤ -7.650798 0.013783
1.50 -6.945614 -6.959233 ≤ -6.940782 ≤ -6.931994 0.013620
2.00 -4.448840 -4.462219 ≤ -4.452971 ≤ -4.435462 0.013378
2.50 -0.945945 -0.959023 ≤ -0.946393 ≤ -0.932867 0.013078
3.00 2.579729 2.566873 ≤ 2.589216 ≤ 2.592585 0.012856
3.50 5.199926 5.187107 ≤ 5.204425 ≤ 5.212744 0.012818
4.00 6.278124 6.265247 ≤ 6.273213 ≤ 6.291000 0.012877
4.50 5.617531 5.604686 ≤ 5.625127 ≤ 5.630375 0.012845
5.00 3.487672 3.474997 ≤ 3.490940 ≤ 3.500346 0.012675
5.50 0.529402 0.516878 ≤ 0.522523 ≤ 0.541926 0.012524
6.00 -2.430933 -2.443494 ≤ -2.436697 ≤ -2.418371 0.012561
6.50 -4.605946 -4.618696 ≤ -4.604082 ≤ -4.593197 0.012749
7.00 -5.450819 -5.463710 ≤ -5.448769 ≤ -5.437929 0.012891
7.50 -4.794757 -4.807612 ≤ -4.797949 ≤ -4.781902 0.012855
8.00 -2.869788 -2.882482 ≤ -2.868685 ≤ -2.857094 0.012694
8.50 -0.233939 -0.246496 ≤ -0.234915 ≤ -0.221382 0.012557
9.00 2.387063 2.374536 ≤ 2.378382 ≤ 2.399590 0.012527
9.50 4.295607 4.283036 ≤ 4.286892 ≤ 4.308177 0.012571
10.0 5.003687 4.991064 ≤ 5.000674 ≤ 5.016311 0.012624
10.5 4.353865 4.341202 ≤ 4.344466 ≤ 4.366528 0.012663
11.0 2.550602 2.537915 ≤ 2.547924 ≤ 2.563289 0.012687
11.5 0.096821 0.084137 ≤ 0.099315 ≤ 0.109505 0.012684
12.0 -2.345075 -2.357740 ≤ -2.355021 ≤ -2.332410 0.012665
12.5 -4.129769 -4.142473 ≤ -4.141046 ≤ -4.117065 0.012704
13.0 -4.796733 -4.809598 ≤ -4.796026 ≤ -4.783868 0.012865
13.5 -4.186200 -4.199276 ≤ -4.184513 ≤ -4.173124 0.013076
14.0 -2.474870 -2.488013 ≤ -2.483583 ≤ -2.461726 0.013143
14.5 -0.124043 -0.137020 ≤ -0.131274 ≤ -0.111065 0.012977
15.0 2.244623 2.231824 ≤ 2.241902 ≤ 2.257422 0.012799
15.5 4.012419 3.999395 ≤ 4.017851 ≤ 4.025443 0.013024
16.0 4.723411 4.709657 ≤ 4.717458 ≤ 4.737164 0.013754
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Fig. 3. Observation error against estimates tolerance

of 64 and 128 interval. This is somewhat expected since we have lesser observations.

But this was not the case for 64 intervals and 128 intervals. In this instance, it was

much smaller in the 64 intervals case. The probable cause could be due to the finite

difference approximations.

The parameter values obtained for λ using 16 intervals were off by about 15%. In

the case of 256 intervals, the results obtained were very close with the 128 intervals.

Both converge in 5 iterations. In fact, better estimates are obtained for µ in the case

when we have 128 intervals. The percentage of error for µ is 0.019%(in 128 intervals)

as compared to 0.22%(in 256 intervals). The value for λ is somewhat similar at

approximately 0.3% off the true value. The estimated value obtained for ξ differs by

only about 0.05%. Detailed output for 16 intervals and 256 intervals are as attached

in appendix A.
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Table V. Comparison of parameters estimate and tolerance estimate for varying num-

bers of intervals

No. of Interval(n)

16 32 64 128 256

estimate-µ 0.202412 0.200366 0.199636 0.199962 0.200441

estimate-ξ 0.917702 0.979042 0.995276 0.998709 0.999153

estimate-λ 0.845241 0.957899 0.984949 0.997118 1.003011

est. tol.-µ 0.015778 0.012131 0.011433 0.010614 0.011348

est. tol.-ξ 0.015737 0.012129 0.011435 0.010615 0.011348

est. tol.-λ 0.020265 0.014670 0.012841 0.011319 0.011738

s2 0.000052 0.000035 0.000033 0.000029 0.000033

C. Comparison between Childs’s Approach and Proposed Approach

The observations generated from my approach were used with Childs’ code [5] to

generate estimates for x(t0), µ, ξ & λ. Results are summarized in Table VI.

A similar pattern was observed between the two approaches. The computed

percentage got better as we increased the number of intervals in most cases. This

may be due to the characteristics of the noise added. Extensive tests should enable

resolution of these anomalies. It may be a result of the finite difference approximation

that we have applied.
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Table VI. Comparison of Childs’s approach & proposed approach

Childs’s approach Proposed approach
n=16

estimate confidence estimate as a % estimate confidence estimate as a %
x(t0) -2.995 0.1822e-01 0.61 -2.989 0.1987e-01 0.66

µ 0.1995 0.4710e-02 2.36 0.2024 0.1578e-01 7.79
ξ 1.0 0.4709e-02 0.47 0.9177 0.1574e-01 1.71
λ 0.9979 0.2217e-01 2.22 0.8452 0.2027e-01 2.40

n=32
x(t0) -2.992 0.1463e-01 0.49 -2.996 0.1414e-01 0.47

µ 0.1997 0.4387e-02 2.20 0.2004 0.1213e-01 6.05
ξ 1.001 0.4414e-02 0.44 0.9790 0.1213e-01 1.24
λ 0.9978 0.1702e-01 1.71 0.9579 0.1467e-01 1.53

n=64
x(t0) -3.001 0.1070e-01 0.36 -2.999 0.1253e-01 0.42

µ 0.2003 0.3959e-02 1.98 0.1996 0.1143e-01 5.72
ξ 0.9998 0.3980e-02 0.40 0.9953 0.1144e-01 1.15
λ 1.002 0.1212e-01 1.21 0.9849 0.1284e-01 1.30

n=128
x(t0) -2.999 0.8906e-02 0.30 -3.000 0.1116e-01 0.37

µ 0.1999 0.4172e-02 2.09 0.1999 0.1061e-01 5.31
ξ 1.0 0.4185e-02 0.42 0.9987 0.1062e-01 1.06
λ 0.9995 0.9891e-02 0.99 0.9971 0.1132e-01 1.14
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CHAPTER V

SUMMARY

I have studied the parameter estimation problem in Ordinary Differentiation Equa-

tion (ODE). These are common in many process models in the field of Engineering.

This class of problem concerns the re-construction of auxillary parameters by fitting

the numerical solutions to that of the measured data from observing the solution

trajectory.

I have briefly discussed some of the commonly used techniques for parameter esti-

mation problem in Chapter I. In particular, Linear Regression, Maximum Likelihood

Estimators (MLE), ANOVA approaches were discussed. The traditional ANOVA is

not applicable to this problem and a similar display based on confidence estimates is

shown.

I went on to relate those techniques that are applicable to the parameter estima-

tion problem in ODE and how we can adapt it to the solving of this class of problem.

Linearity between the observations and the independent vectors is due to the appli-

cation of Newton’s linearization and the finite difference approximation. Some of the

traditional techniques used in the solving of ODE were discussed in Chapter II.

I have used algorithms from [5] and [12]. In Chapter III, the main focus of my

thesis is introduced. I have proposed a new algorithm combining the merits seen in

[5] and [12]. I discussed and explained the statistical approach used in the analysis.

To faciliate the statistical analysis process, I have developed a small ODE solver

using Matlab 6.5. I have applied to the well-known spring mass dashpot problem and

results obtained and some findings were presented in Chapter IV. Some thoughts on

future research areas are proposed in Chapter VI.
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CHAPTER VI

FUTURE WORK

This thesis has provided some statistical analysis of the fit of numerical solutions

of ODEs to simulated observations. This is particularly helpful in aiding the under-

standing of the relationship between the observations and the parameters in the ODE.

This has furthered understanding on the behavior of the observations in relation to

its actual analytical solution and the independent vector. Several other aspects and

variations of what have been done are worthy of future research and investigations.

1. In [7], the steady state problem was mentioned, which arises as t −→ ∞. It

may be interesting to study the behavior of the observations and the parameter

values in relation to its independent vectors.

2. In my thesis, I have considered the case where we have n − 1 exact equations.

How will it affect the parameter values if we know the true values of some of

the observations? We could vary the number of exact equations and analyse its

impact on the parameter values.

3. My examples were based on ODEs. Most engineering and science problems are

based on partial differential equations. The statistical procedures developed

here are applicable for these problems as well.

4. This methodology can be used by engineers and scientists in many areas. These

codes should allow the testing of the constructed device to ensure that the

parameters “designed” are reflected in the performance of the actual device.
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APPENDIX A

OUTPUT

This appendix contains output obtained for 16 and 256 intervals.

Output for 16 intervals
noise:1.0000e-002
perturbation:1.2000e+000
Iteration µ xi λ sqrt(2-norm)

0 0.1500000000 1.2500000000 1.0000000000
1 0.1926216893 0.9736350572 0.8389008659 3.2272e-001
2 0.2024087790 0.9176924375 0.8453444390 5.7157e-002
3 0.2024122387 0.9177021467 0.8452399016 1.0504e-004
4 0.2024123693 0.9177020255 0.8452408038 9.1967e-007
5 0.2024123696 0.9177020252 0.8452408060 2.2603e-009
6 0.2024123697 0.9177020252 0.8452408060 9.7552e-012

Sqrt of 2-norm(w − x)
Iteration dependent variable parameter overall

1 3.4012e+000 3.2272e-001 3.4165e+000
2 8.3922e-003 5.7157e-002 5.7769e-002
3 1.0053e-003 1.0504e-004 1.0108e-003
4 1.1658e-006 9.1967e-007 1.4849e-006
5 3.6539e-009 2.2603e-009 4.2965e-009
6 1.3590e-011 9.7552e-012 1.6729e-011

Output for 256 intervals
noise:1.0000e-002
perturbation:1.2000e+000
Iteration µ xi λ sqrt(2-norm)

0 0.1500000000 1.2500000000 1.0000000000
1 0.1920047790 1.0409758036 1.0028120232 2.1322e-001
2 0.2004417979 0.9991504054 1.0030275202 4.2668e-002
3 0.2004413589 0.9991525042 1.0030107253 1.6931e-005
4 0.2004413604 0.9991525024 1.0030107385 1.3332e-008
5 0.2004413604 0.9991525024 1.0030107385 1.7813e-012
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Sqrt of 2-norm(w − x)
Iteration dependent variable parameter overall

1 1.3352e+001 2.1322e-001 1.3354e+001
2 3.1863e-003 4.2668e-002 4.2787e-002
3 2.2489e-004 1.6931e-005 2.2553e-004
4 5.1245e-008 1.3332e-008 5.2951e-008
5 1.3666e-011 1.7813e-012 1.3781e-011
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APPENDIX B

SOURCE CODES

The simple ODE solver is written in Matlab 6.5. Readers who are interested in looking at
the source codes for further research works can request a copy of it from Professor Bart
Childs at bart@cs.tamu.edu. I have provided some write-up of each function as follows:

Application Script

This is a simple script that solve ODE of the form:
x′′ + µx′ + ξx = λsin(ωt) where µ, ξ and λ are unknown parameters to be estimated. ω is
a known constant in the equation. It is set to 1.0 so that we have a period of 2π. The true
parameters values are 0.2, 1.0 and 1.0 respectively. When there is a change in the number
of data points, or equations, the following may need to be changed:
a - the starting independent variable of the region of interval under consideration;
c - the ending point of the region of intervals;
n - the no. of interval (in the region);
the input(data) file (if any)
p - to indicate no. of exact parameter;
no exact eqn - indicate no. of exact equations;
noise - add random noise to the observations;
perturb - perturbation is the deviation of the reference solutions from the observations;
The pseudo-code of the script test v4 original latest.m is as follows:

script <test_v4_original_latest.m>
%Specification of input values (as mentioned above)
%Calculate the analytic solutions, observations & reference solution w\\
call <analytic_soln.m>

while(iter <9 & norm(w-x)<0.5e-10)
%Form the system of exact & least squares equations
call <form_eqn3_v4_original_latest.m>
%Perform reduction to the system of equation
call <reduced_matrix_v4.m>
%Solve the constraint least squares equations\\

call <l_sqr_solver_v4.m>
assign w=x

end while
%Output
call script <print_output.m>
%Computing the statistics
call <test_stat.m>
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Analytic Solution

This function is used to compute the exact analytic function. The variables and parameters
needed for the analytic solution are:
t : array of independent variable;
n: number of intervals;
noise: to add noise to observations;
perturb: to start the referenced solution at a user-specified perturbation level;

This function will return analytical solutions, observations & referenced solu-
tions

Form Equation

This function form eqn3 v4 original latest.m is used to form the system of algebraic
equations after the application of the finite difference techniques and Gauss-Newton lin-
earization.
The input to this function are array of independent variables, number of intervals, the
gap between independent variables, array of observations, array of referenced solutions and
lastly, a flag array to indicate whether the parameters exact or not.

This function will return a matrix A of order 2n×(n+4) and the corresponding column
vector b from the system of algebraic equations Ax = b.

Reduced Matrix

This function reduced matrix v4.m is used to convert the matrix to a form that is suitable
for us to apply the least square constraint method. The input to this function are the matrix
A, column vector b in the system of algebraic equation Ax = b.

This function will return a matrix B of the form:
[

A1 A2

A3 A4

]
where A1 is a n × n

identity matrix, and A3 is a zero matrix.
The corresponding column vector(from the right hand side of the equation) will be

returned as well.

Least Square Solver

This function l sqr solver v4.m uses the least square constraints method to solve the
system of equation. The input to this function is the reduced matrix B & b’ after applying
the function reduced matrix v4.m. The matrix B is first broke up into block of matrix of

the form
[

A1 A2

A3 A4

]
. The column vector b’ is also broke up into two blocks of matrix(

be

bl

)
. There are two steps to the solving of the least square problem. The equations that

are to met in the least square sense A4xl = bl are first solved. The exact solutions are then
obtained by solving xe = be − A2xl.

This function returns the least square solutions xl and the exact solutions are xe.
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Generate Statistics

The script test stat.m is first called in test v4 original latext.m. It is used to generate sum
of squares of errors SSE, variance s2, the covariance matrix, the prediction interval
& confidence estimates. Three other scripts (print stat output,print stat output1,print estimates)
that reside within this script are used for the printing of output. Lastly, the script also plots
a scatter diagram.
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