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ABSTRACT

Identification of Powered Parafoil-Vehicle Dynamics from Modelling and Flight Test

Data. (May 2005)

Gi-Bong Hur, B.S.; M.S., Seoul National University, Korea

Chair of Advisory Committee: Dr. John Valasek

During the final approach and landing phase of the X-38/Crew Return Vehicle, a

steerable parafoil is used to maneuver and land at a targeted ground base under

autonomous control. To simulate and verify performance of the onboard Parafoil

Guidance, Navigation and Control system (PGNC), a commercial powered parafoil-

vehicle, called the Buckeye consisting of a parafoil and vehicle two-body system like

the X-38/CRV was modified to accommodate the avionics and scale-downed parafoil

for aerodynamic similarity and a series of flight tests were conducted.

Dynamic modelling and system identification results for the Buckeye are de-

scribed in this dissertation. The vehicle dynamics are modelled as all 8 degrees-of-

freedom system comprising 6 states for the parafoil and 2 states for the relative pitch

and yaw motion of the vehicle with respect to the parafoil. Modal analysis for the

linearized model from the nonlinear model shows the number and order of dynamic

modes as well as the system is controllable and observable. For system identifica-

tion, the overparameterized Observer/Kalman Filter Identification (OKID) method

is applied to identify a linear model of the Buckeye two-body system from the flight

data assuming that disturbances at a calm day are represented as periodic distur-

bances. The identification results show that the overparameterized OKID works well

for powered parafoil-vehicle two-body system identification under calm day condi-

tions using flight data. For the data with possible discrete gusts the OKID shows

limitation to identify a linearized model properly. Several sensor packages including

airdata and Inertial Measurement Unit are designed and installed for the parameters

for identification. The sensor packages successfully supply data of the parameters for

identification and suggest a feasible, low cost method for the parafoil-vehicle two-body

dynamic parameters.
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CHAPTER I

INTRODUCTION AND BACKGROUND

Because of its low speed handling qualities and versatility of application for precision

aerial delivery and recovery of payloads, the parafoil has been used in many areas

from leisure to more sophisticated aerial recovery. Much research has been done at

NASA Johnson Space Center to describe the dynamic behavior of the parafoil and to

develop guidance and control algorithms using wind tunnel tests, ground tow tests and

actual aerial drop tests.1–4 In Europe, the Institute of Flight Research of the German

Aerospace Center (DLR) has conducted research to identify the dynamic behavior of a

parafoil-payload system and to investigate Guidance Navigation and Control (GNC)

concepts.5–8 They used three degrees-of-freedom (DOF) and four-DOF models for

their own parafoil-payload system, ALEX(Autonomous Landing Experiment)-I and

-II, to apply system identification algorithms and GNC designs.6 The ALEX system

is to be dropped from a helicopter to acquire flight data at 10 Hz. The flight data

were reconstructed with constant wind assumption and used for system identification

based on 3-DOF and 4-DOF model in which the relative motion was not accounted.

Recently Slegers and Costello studied on the dynamic modelling of the parafoil with

9-DOF, including three inertial positions of the joint as well as the three Euler angles

of the parafoil and the payload.9 In the research both the parafoil and the payload

are free to rotate about joint but are constrained by the force and the twisting torque

due to relative yaw angle only at the joint. They used reduced state linear model

based on a nonlinear 6-DOF parafoil and payload model to apply for the predictive

control design.10 In the research the parafoil and the payload were modelled as a

single rigid body without relative motion. Meanwhile, NASA acquired a self-powered

Buckeye parafoil-vehicle as a test bed, which was modified by Southwest Research

This dissertation follows the style and format of the Journal of Guidance, Control,
and Dynamics.
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Figure 1.1 Buckeye Unmanned Powered Parafoil Test Bed in Flight

Institute (SwRI) to accommodate the Parafoil Guidance, Navigation and Control

(PGNC) computer (Figure 1.1) as well as other avionics instruments. Since it can

climb to target altitudes repeatedly by its own power, the Buckeye is very useful and

cost effective in obtaining flight data for the parafoil as well as PGNC parameters,

such as PGNC commands and errors. In addition, the Buckeye can give reliable

and repeatable flight data for identification provided that required parameters are

acquired from proper sensor instrumentations, which could not be done in previous

researches. The modified Buckeye vehicle is being evaluated using the flight test

facilities of the Texas A&M University Flight Mechanics Laboratory.

The Observer/Kalman Filter Identification (OKID) methodology was selected
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for identification of the longitudinal and lateral/directional dynamical models of the

Buckeye parafoil-vehicle system from flight data. OKID is a time domain technique

which identifies a discrete input/output mapping from known input output data

records. Since first being developed by Juang in the early 1990’s,11 the method

has been successfully employed to identify linear system models of flexible spacecraft

structures12–14and aircraft.15 Chen and Valasek applied the method for on-line sys-

tem identification of six-DOF simulated aircraft dynamics, and found it is suitable

for identification of linear aircraft models even without perfect trim conditions and in

the presence of turbulence.15 As the Buckeye flight is power-off gliding, it is supposed

to be vulnerable to atmospheric disturbance including discrete gusts and stochastic

atmospheric turbulence. To identify the system under disturbance an overparame-

trized OKID method16,17 for unknown periodic disturbance was applied to calm day

flight data assuming that the stochastic atmospheric disturbance at calm day can be

represented by combination of a number of periodic disturbances.

In this research, the dynamics of the Buckeye vehicle are modelled with eight

degrees-of-freedom: six for the parafoil, and two for the relative pitch and yaw atti-

tudes of the vehicle. The parafoil and the vehicle are assumed as rigid bodies and the

elasticity of the risers and suspension lines are ignored in modelling. Instrumentation

was designed and installed to measure the states that describe eight-DOF motion of

the Buckeye-vehicle, including an Inertial Measurement Unit (IMU) for attitudes and

body-rate data, and a multi-function Aeroprobe flow sensor which measures angle-

of-attack, sideslip angle, and static and dynamic pressures . Optical position sensing

techniques such as the VisNav vision-based relative position sensor18 and video cam-

era imaging systems7 were not selected for calculating the relative yaw angle because

of availability and/or post processing requirements. Instead, a series of accelerom-

eters are installed in the mid-section of the parafoil for the pitch and yaw angle of

the parafoil. Relative yaw angles are then calculated by comparing the sideslip angle

of the vehicle and that of the parafoil reduced from side velocity by integrating the

lateral accelerometer outputs. Prior to flight testing, the OKID method was evalu-

ated via simulation using the 8-DOF Parafoil Dynamic Simulator (PDS) , and with

previously recorded Buckeye flight data. Identification results of these evaluations for
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longitudinal and lateral/directional motions are presented also.

1.1 Research Objectives

Most of the researches mentioned above have been focused on the dynamics and guid-

ance performance problem of total system in which the parafoil and the payload are

regarded as one body neglecting relative motion between them. The limitation of the

researches for modelling and flight test seem to be caused by the difficulty in acquiring

parameters of the parafoil itself in flight data. As mentioned in some researches7,8

the dynamic characteristics are closely related to the kinematical interaction between

the two bodies. In this research a low cost, feasible sensor package is designed and

installed to supply parameters of the parafoil as well as for the vehicle. As all the

required parameters are available from the Buckeye flight data, the study on the dy-

namics of the parafoil is mainly focused other than other researches. A systematic

analytical and computational study, including flight tests, was undertaken with the

following objectives:

1. Develop a nonlinear analytical model of a parafoil-vehicle two-body system,

verified by an identified linear model from flight test data.

2. Evaluate the suitability of the OKID method for identification of flight dynamics

from flight test data.

In this research the parafoil and the vehicle are assumed as rigid bodies and

the dynamics of the Buckeye-vehicle are to be modelled with eight-DOF: six for the

parafoil and two for the relative pitch and yaw attitudes of the vehicle. The risers and

suspension lines connecting the two bodies are of very flexible nature and nonlinearity.

Nevertheless here the risers and suspension lines are regarded as rigid bodies and the

assumption is justified in Ref. 8 by following reasons:

• Many possible motions are restricted or prevented by combining single lines or

belts to functional units.
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• Used materials offer practically no lengthening when stressed in normal oper-

ating condition; their modulus of elasticity is of the size of steel.

• Lift of the parafoil and weight of the vehicle produce an initial tension in risers

and suspension lines which is increased by maneuvering loads; sagging is not to

fear.

• Mechanical constraints additionally brace the connections between the parafoil

and the vehicle.

As the risers and suspension lines are assumed as rigid bodies the relative roll mo-

tion between the parafoil and the vehicle can be ignored and this corresponds to

observations from flight tests.

Sensors for airdata and inertial parameters for the hanging vehicle were installed,

and accelerometers and remote data acquisition system for the parafoil were acquired

and installed. As sensor weight can cause possible deformation of the parafoil induc-

ing change of aerodynamic shape, sensor installation on the flexible parafoil is very

limited. With the minimum installation of accelerometers and integrating those data,

body rates as well as attitudes for the parafoil can be reduced. In addition to the

sensors on the parafoil, 5-hole multifunction probe and Inertial Measurement Unit

(IMU) installed in the hanging vehicle supply time histories of states consisting of

eight-DOF of motion during the flight. Pre-flight tests for investigating the proper

control inputs were done. The OKID method has been applied to the eight-DOF

simulation results from the PDS and the analytical model and some flight data for

system identification. Further investigation for the OKID application to actual flight

test data, which include sensor noise and disturbances, are conducted. The following

tasks are committed to accomplish the research objectives:

1. Deriving nonlinear and linear analytical model and conducting system analysis

2. Experiment design, including sensor selection and installation to measure ob-

servable dynamic parameters of the two-body system

3. Analytical and computational study using the nonlinear simulation for genera-

tion of test inputs to identify the parafoil-vehicle dynamics
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4. Conduct flight tests and data reduction for various conditions, and apply the

OKID algorithm

5. Verify the analytical model describing the parafoil-vehicle dynamics from iden-

tification of flight test data

1.2 Flight Test Vehicle Description

The flight test vehicle, Buckeye was manufactured by a Buckeye Aviation Inc. for

leisure purpose. Originally it accommodates one or two pilot seats and has endurance

of +3 hours with 10 gallons of fuel for fun flight. It has 65 hp water cooled Rotax

582 piston engine for powerplant, providing 600-800 fpm climb rate. (figure 1.2).

As the Buckeye system is relatively simple to operate and flexible to modify,

NASA and Southwest Research Institute modified to use the vehicle as a test bed for

survey of parafoil dynamics, guidance, navigation and control (PGNC) algorithms.

It can provide lots of flight test chances without much cost or risk of committing the

large scale parafoil drop test, and generate valuable data to feedback for aerodynamic

database tuning as well as pre-check of PGNC algorithm prior to large scale model

drop test with less effort. For those purposes, the pilot seats and other spaces are

replaced with the PGNC computer box and avionics instruments, actuators for remote

control, telemetry etc. (figure 1.3). The parafoil is replaced to a scale downed of the

actual or large scale parafoil for the X-38 also. To compensate the weight increase

and risk of hard landing, the landing gears are reinforced and modified also. As a

result, the modified Buckeye becomes a Unmanned Aerial Vehicle (UAV) capable of

self guidance, navigation, control and independent power cutoff and recovery function

for safety as well.
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Figure 1.2 Original Buckeye 582 Powered Parachute
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Figure 1.3 Modified Buckeye Test Bed
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1.3 Organization of the Dissertation

Following this introduction, Chapter II presents the development of an analytical

model of the Buckeye parafoil-vehicle system as a test vehicle. Full eight degrees-of-

freedom nonlinear equations of motion are derived and linearized equation of motion is

presented. With the linearized model, linear system analysis was committed including

controllability and observability analysis as well as modal analysis and the results are

described for power-off gliding flight condition.

In chapter III, the identification method applied for the research is described.

The OKID (Observer Kalman-Filter Identification) method was used to develop a

linear model from the simulated and flight test data as well for the Buckeye system.

Expansion of the OKID with overparameterization for identification under unknown

periodic disturbances are documented.

Chapter IV presents the detail of sensors and their installation that provide the

Buckeye-vehicle attitudes, speed and dynamic responses for identification applica-

tions. And the detail of experiment design that is applied to the flight test was

presented. The Parafoil Dynamic Simulator (PDS) was fully used to generate the

input shapes to stimulate the Buckeye dynamics prior to actual flight test.

Chapter V displays the flight test data and identification results. The identified

model was described and compared to the analytical model for validation of the

identified method and analytical model.

Finally, concluding remarks of this dissertation are summarized in Chapter VI

and recommendations for further research are in Chapter VII.
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CHAPTER II

ANALYTICAL MODEL

2.1 Introduction

Although the dynamics of conventional aircraft are generally well understood, the

Buckeye has a unique configuration which results in non-standard dynamics. It has

a flexible parafoil which functions as a wing, and the parafoil is attached to the

payload vehicle with suspension lines and risers. Aerodynamic forces and torques

are mainly on the parafoil due to it’s attitudes and control inputs and those forces

and torques on the vehicle are relatively small in the Buckeye-vehicle because of

the vehicle’s non aerodynamic shape. The forces and torques on the parafoil act

through the risers and the attaching confluence point to the suspended vehicle. In

the parafoil the distance between an aerodynamic center and the center of mass is

much bigger than conventional aircraft. In addition to that the suspended vehicle is

located far below (same order of magnitude with parafoil span) than the conventional

aircraft and this causes the total system’s C.G. is located far below. In this case the

aerodynamic forces cause bigger effect on the rotational motion of the system than for

conventional aircraft. Thus, it seems not appropriate to apply conventional aircraft

dynamical models directly to the parafoil-vehicle configuration.

In this thesis the parafoil and the hanging vehicle are assumed to be rigid bodies,

connected by a joint at the confluence point. The risers and suspension lines are also

regarded as rigid bodies as described in Chapter I. There are 12 degrees-of-freedom

based on the two-body though, the number of degrees-of-freedom can be reduced

because they are bound on each other. In addition to the rigid body assumption for

riser and suspension lines, it has been observed that the relative roll motion between

the parafoil and the vehicle is negligible from previous flight tests, otherwise relative

pitch and yaw motions are assumed to exist. So eight degrees-of-freedom model is
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assumed in this research, composed of three positions and three attitudes for the

parafoil, and two degrees-of-freedom for the relative pitch and yaw motions of the

hanging vehicle with respect to the parafoil. All external forces and torques are

restricted to be either aerodynamic or inertial.

In deriving equations of motion of the two bodies, a classical Newtonian principles

or Lagrangian approach can be possible. But as described in the following sections

there are holonomic and non-holonomic constraints between the two bodies and this

cause derivations of extra differential equations and/or Lagrangian multipliers which

must be eliminated by algebraic means. By way of contrast, the use of Kane’s19,20

equation permits the automatic elimination of all constraint forces associated with

workless constraints, and it leads to equations having simplest possible form, provided

generalized speeds are selected optimally, described in following sections. In this

chapter, nonlinear equations of motion for the Buckeye parafoil system are derived

using Kane’s equation19,21 which is referred as the principle of virtual velocity.22

The Kane’s equation is described briefly in the following section for the Buckeye

application. Prior to deriving the equations of motion, coordinate systems in which

these equations are written are described. And linearized equations of motion are

derived based on appropriate assumptions made along the linearization.

2.2 Coordinate Systems

Figure 2.1 shows three axis systems: the earth fixed system XE, YE, ZE, the parafoil

body fixed axis systemXP , YP , ZP , and the hanging vehicle body fixed axisXV , YV , ZV .

The earth fixed system is regarded as an inertial reference frame: on which Newton’s

laws of motion are valid. The direction cosine matrix between the basis unit vectors of

the earth axis and the parafoil axis for finite rotation sequence of 3(Ψ)− 2(Θ)− 1(Φ)

is as follows:
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Figure 2.1 Axis System for Buckeye Parafoil-Vehicle
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where Ψ,Φ,Θ are Euler angles of the parafoil and the trigonometric functions are

abbreviated as such cos Ψ = cΨ, sin Ψ = sΨ, · · · and unit vectors i, j,k are for the

earth fixed inertial coordinate system XE , YE, ZE and subscripts P, V on unit vectprs

are for the parafoil and the vehicle axis respectively. Similarly the direction cosine

matrix of unit vectors for 3-2-1 rotation sequence between the parafoil and the vehicle

is
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where Ψr,Φr,Θr are relative angles of the vehicle with respect to the parafoil measured

at the confluence point as in Figure 2.2. In case of zero relative roll angle, the above

direction cosine matrix equation can be rewritten as:
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As the maneuvering of the Buckeye-vehicle including relative motion does not

show big attitudes changes around 90 degrees in the research, singularity in calculation

is not to fear and other coordinate transformation methods preventing the singularity

are not considered.

2.3 Nonlinear Equations of Motion

2.3.1 Introduction of Kane’s Equation

The Kane’s equation was introduced in early 80’s by Thomas R. Kane and D.A.Levinson19,21

to develop a method to reduce the labor required for the formulation of equations

of motion and/or the complexity of equations for complex dynamic system. In what

follows, it is shown that how one can formulate dynamical equations of motion for

n−m degrees-of-freedom nonholonomic system by a using a law of motion expressed
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Figure 2.2 Schematic Diagram of Buckeye Parafoil-Vehicle System
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as

Fr + F

∗
r = 0 (r = 1, . . . , n−m) (2.4)

where m is the number of nonholonomic constraints, while Fr and F

∗
r are quantities

that will be defined shortly, subsequent to the introduction of generalized speeds,

partial angular velocities and partial velocities.

Whereas generalized coordinates, which is characterizing the configuration of a

system, play a central role in Langragian mechanics,23–25 quantities more directly

associated with the motion of a system are of paramount importance in connection

with the Kane’s method. If generalized coordinates q1, . . . , qn of a system are subject

to constraint equation of the form

n
∑

r=1

Asrq̇r +Bs = 0 (s = 1, . . . , m) (2.5)

where Asr and Bs are functions of q1, . . . , qn, and t, then one always can introduce

n−m quantities u1, . . . , un−m as

ur ,

n−m
∑

s=1

Yrsq̇s + Zr = 0 (r = 1, . . . , n−m) (2.6)

where Yrs and Zr are functions of q1, . . . , qn, and t, these functions being chosen such

that the above equation can be solved uniquely for q̇1, . . . , q̇n−m and that one can sat-

isfy Eqn. (2.5) identically for all values of u1, . . . , un−m by expressing q̇n−m+1, . . . , q̇n as

suitable functions of u1, . . . , un−m. The quantities u1, . . . , un−m are called generalized

speeds.

It can be shown that, once generalized speeds u1, . . . , un−m have been introduced,

ω, the angular velocity of a rigid body belongs to a system, and v, the velocity of a

particle belongs to a system, can be expressed uniquely as

ω ,

n−m
∑

r=1

ωrur + ωt (2.7)

and

v ,

n−m
∑

r=1

vrur + vt (2.8)
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where ωr,vr,ωt,vt are functions of q1, . . . , qn, and t. In practice, ωr, called the

r

th partial angular velocity, and vr, called r

th partial velocity, are formed by simply

inspecting the coefficients of u1, . . . , un−m in expressions having the form of the right-

hand members of Eqn.(2.7) and (2.8).

Given a system S consisting of N particles P1, . . . , PN , suppose that n−m gen-

eralized speeds have been introduced, and let vPi
r denote the rth partial velocity of

Pi. Then, if Ri is the resultant of all contact and body forces acting on Pi, then the

n−m quantities F1, . . . , Fn−m defined as

Fr ,

N
∑

i=1

vPi
r · Ri (r = 1, . . . , n−m) (2.9)

are called generalized active forces for S; if R∗
i denotes the inertia forces for Pi, that

is , if R∗
i is defined as

R∗
i , −miai (i = 1, . . . , N), (2.10)

where mi is the mass of Pi and ai is the inertial acceleration of Pi, then the n −m

quantities F ∗
1 , . . . , F

∗
n−m defined as

F

∗
r ,

N
∑

i=1

vPi
r · R∗

i (r = 1, . . . , n−m) (2.11)

are called generalized inertia forces for S.

If there is a rigid body B belongings to S and if a set of contact and/or body

forces acting on B is equivalent to a couple of torque T together with a force R

applied at a point Q of B, then (Fr)B, the contribution of this set of forces to Fr, is

given by

(Fr)B = ωr · T + vr · R (r = 1, . . . , n−m) (2.12)

where ωr and vr are, respectively, the rth partial angular velocity of B and the rth

partial velocity of Q. Q is usually at the C.G. point of the body.

As for the contribution to the generalized inertia forces defined in Eqn. (2.11),

these, too, can be easily for a rigid body. Specifically, (F ∗
r )B, the contribution to F ∗

r

of a rigid body B can be expressed as

(F ∗
r )B = ωr · T

∗ + vr · R
∗ (r = 1, . . . , n−m) (2.13)
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where ωr and vr are, respectively, the rth partial angular velocity of B and the rth

partial velocity of the mass center of B, while T∗ and R∗ depend on inertial angular

velocity ω of B, the inertial angular acceleration α of B, the central mass moment of

inertia I of B, the mass M of B, and the inertial acceleration a∗ of the mass center

of B. T∗ and R∗ are given by

T∗ = −α · I − ω × I · ω, R∗ = −ma∗ (2.14)

and are called, respectively, the inertia torque for B and inertia force for B.

Applying those equations to Kane’s equation, equation of motion can be con-

structed.

Fr + F

∗
r = 0 (r = 1, . . . , n−m)

Rewriting above equation with Eqn.(2.13),(2.14) for rigid body B,

(Fr)B + (F ∗
r )B = vr · (R + R∗) + ωr · (T + T∗)

= 0 (r = 1, . . . , n−m)

(2.15)

2.3.2 8-DOF Equations of Motion

As the Buckeye parafoil-vehicle is assumed as two rigid body system in the 3-D space

coordinate, so the degrees-of-freedom can be 12(= 6 × 2). But the two bodies are

assumed to be connected through massless joint and the degrees-of-freedom reduced

to 9(= 12− 3) by the constraints. And from observation of flight test the roll motion

of the vehicle relative to the parafoil, Φr is assumed to be negligible. So we can

choose following 8 variables as generalized coordinates and equations of motion will

be derived for the independent 8 degrees of freedom. The generalized coordinates are:

{q1 = Φ, q2 = Θ, q3 = Ψ, q4 = X, q5 = Y, q6 = Z, q8 = Θr, q9 = Ψr}

where q7 = Φr = 0. To derive the equations of motion efficiently, the virtual power

method22 based on the Kane’s dynamics19,21 was adopted.
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2.3.2.1 Kinematics

From Figure 2.1 the position vectors for the parafoil and the vehicles are written as

follows:

RP = Xi + Y j + Zk

RV = RP + ρP − ρV

(2.16)

Linear velocities of the parafoil and the vehicle are

ṘP = VP = Ẋi + Ẏ j + Żk

= U iP + V jP +WkP

ṘV = VV = UV iV + VV jV +WV kV

= VP + ρ̇P − ρ̇V

= VP + ωP × ρP − ωV × ρV

(2.17)

The angular velocities of the parafoil and the vehicle are written as follows:

ωP = P iP +QjP +RkP

=
(

Φ̇ − Ψ̇sΘ
)

iP +
(

Θ̇cΦ + Ψ̇cΘsΦ
)

jP +
(

Ψ̇cΘcΦ − Θ̇sΦ
)

kP

ωV = PV iV +QV jV +RV kV

= ωP + ωV/P

(2.18)

From above equations the positions, velocities and angular velocities are considered

as kinematic constraint equations. To use the Kane’s equation,19,21 we designate the

generalized speeds first in the form of following equation.

u1 = P, u2 = Q, u3 = R, u4 = U, u5 = V, u6 = W

u7 = PV , u8 = QV , u9 = RV , u10 = UV , u11 = VV , u12 = WV
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Then the kinematic relations in above equations (2.16)-(2.18) can be rewritten with

the generalized coordinates and speeds in the form of kinematic differential equations.























q̇1

q̇2

q̇3























=













1 s1t2 c1t2

0 c1 −s1

0 s1/c2 c1/c2



































u1

u2

u3























(2.19)























q̇4

q̇5

q̇6























=













c3c2 −s3c1 + c3s2s1 s3s1 + s2c1c3

s3c2 c3c1 + s3s2s1 −c3s1 + s3s2c1

−s2 s1c2 c1c2



































u4

u5

u6























(2.20)























q̇7

q̇8

q̇9























=













1 0 t8

0 1 0

0 0 1/c8



































u7

u8

u9























+













−c8c9 − s8
2
c9/c8 −s9c8 − s8

2
s9/c8 0

s9 −c9

−c9t8 −s9t8 −1



































u1

u2

u3























(2.21)

where c, s, and t represents sin, cos and tan trigonometric functions respectively and

the subscript numbers are representing generalized coordinates.

Using Eqn. (2.19) to (2.21) we can derive those partial velocities and partial

angular velocities. From Eqn. (2.18) it can be seen that

ωP = u1iP + u2jP + u3kP (2.22)

and this equation has the same form as Eqn. (2.7). The coefficients of u1 to u8 are

the partial angular velocities of the parafoil, which are

ωP
1 = iP , ωP

2 = jP , ωP
3 = kP ,

ωP
4 = ωP

5 = · · · = ωP
8 = 0

(2.23)
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The angular velocity for the vehicle in Eqn.(2.18) is,

ωV = u7iV + u8jV + u9kV

From the assumption of constraint, q7 = 0, q̇7 = 0. Using the kinematical differential

equation (2.21), u7 can be written as follows:

u7 = (c9/c8)u1 + (s9/c8) u2 − t8 u9 (2.24)

So the angular velocity of the vehicle can be rewritten by representing the dependent

generalized speed u7 as function of constrained generalized speeds u1, u2, · · · , u9, from

above nonholonomic constraint equation such as

ωV = u7iV + u8jV + u9kV

= [(c9/c8)u1 + (s9/c8) u2 − t8 u9]iV

+ u8jV + u9kV

(2.25)

Then partial angular velocities for the vehicle are

ωV
1 = c9/c8iV , ωV

2 = s9/c8jV , ωV
3 = 0,

ωV
4 = ωV

4 = ωV
6 = 0,

ωV
7 = jV , ωV

8 = −t8iV + kV .

(2.26)

From Eqn (2.17), the velocity vector for the parafoil is

VP = u4 iP + u5 jP + u6 kP (2.27)

and partial velocities for the parafoil are

vP
1 = vP

2 = vP
3 = 0,

vP
4 = iP , vP

5 = jP , vP
6 = kP ,

vP
7 = vP

8 = 0.

(2.28)

The partial velocities for the vehicle can be derived with the same procedure for the

parafoil. From Eqn.(2.17) the velocity vector of the vehicle is

VV = u10 iV + u11 jV + u12 kV
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and constraint equations from kinematics are as follows:

u10 = (ρxP
s8 + ρzP

c8c9)u2 − ρzP
s9c8u1 + s9c8u5 + c8c9u4

+ ρxP
s9c8u3 − ρzV

u8 − s8u6

u11 = c9u5 + ρxP
c9u3 + (ρzV

s9/c8 − ρzP
s9)u2 + (ρzV

c9/c8 − ρzP
c9)u1

− (ρxV
+ ρzV

t8)u9 − s9u4

u12 = ρxV
u8 + c8u6 + s8s9u5 + s8c9u4 + ρxP

s8s9u3

+ (ρzP
s8c9 − ρxP

c8)u2 − ρzP
s8s9u1

(2.29)

Therefore, substituting u10, u11, u12, in the constraint equations into the velocity vec-

tor of the vehicle and making partials yields

vV
1 = −ρzP

s9c8iV + (ρzV
c9/c8 − ρzP

c9)jV − ρzP
s8s9kV ,

vV
2 = (ρxP

s8 + ρzP
c8c9)iV + (ρzV

s9/c8 − ρzP
s9)jV

+ (ρzP
s8c9 − ρxP

c8)kV ,

vV
3 = ρxP

s9c8iV + ρxP
c9jV + ρxP

s8s9kV ,

vV
4 = c8c9iV − s9jV + s8c9kV ,

vV
5 = s9c8iV + c9jV + s8s9kV ,

vV
6 = −s8iV + c8kV ,

vV
7 = −ρzV

iV + ρxV
kV ,

vV
8 = −(ρxV

+ ρzV
t8)jV .

(2.30)

Note that subscript numbers in Eqn.(2.23), (2.26), (2.28), (2.30) are limited to 8

because there are 8 independent variables due to 4 constraints described in Eqn.(2.24),

(2.29).
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2.3.2.2 Generalized Forces

Inertial Forces To obtain Kane’s equations for the two-body Buckeye system,

the inertial accelerations including rotational accelerations are described first. From

Eqn.(2.17) and (2.18), time derivatives of velocities can be derived. The inertial

translational accelerations for the parafoil and the vehicle are

aP =
d

dt

VP =
∂VP

∂t

+ ωP × VP

=
(

U̇ − V R+WQ

)

iP +
(

V̇ + UR −WP

)

jP +
(

Ẇ − UQ+ V P

)

kP

= (u̇4 − u5u3 + u6u2)iP + (u̇5 − u6u1 + u3u4)jP + (u̇6 − u4u2 + u5u1)kP

(2.31)

aV =
d

dt

VV =
∂VV

∂t

+ ωV × VV

=

[

ρxV
u8

2 + ρxV
u9

2 + s8u2u4 + ρzP
s8u1

2 + ρzP
s8u2

2 + ρzV
t8u9

2

+ (ρxP
s8 + ρzP

c8c9)u̇2 − s8u1u5 − ρxP
s8u1u3 − ρzV

u̇8 − s8u̇6

−
[

ρzV
c9u1u9 + c9c8

2
u3u5 + ρxP

c9c8
2
u2

2 + ρxP
c9c8

2
u3

2 − c9c8
2
u2u6

− ρzP
c9c8

2
u1u3 − c9c8

2
u̇4 − s9(c8

2
u3u4 + ρxP

c8
2
u1u2 + ρzP

c8
2
u2u3

+ c8
2
u̇5 + ρxP

c8
2
u̇3 − ρzV

u2u9 − c8
2
u1u6 − ρzP

c8
2
u̇1)

]

/c8

]

iV

+

[

c9u3u4 + ρxP
c9u1u2 + ρzP

c9u2u3 + ρxV
t8u8u9 + 2s1s2c1

2
c2c9u2u6

+ (2ρzV
c9u2u9 − ρzV

u8u9 − ρxV
c8c9u1u8 − ρzV

c9c8
3
u2u3)/c8

2

+ c9u̇5 + ρxP
c9u̇3 + s9

[

u3u5 + ρxP
u2

2 + ρxP
u3

2 + ρzV
c8u1u3

+ ρzV
s8 [ t8u1u3 + (u2u8 + 2c9u1

2 + 4s9u1u2 − 2c9u2
2)/c8

2] (2.32)

− u2u6 − ρzP
u1u3 − 2ρzV

u1u9/c8
2 − ρxV

u2u8/c8 − u̇4

− (ρzP
− ρzV

/c8)u̇2

]

− ρzV
u8u9 − c9u1u6 − ρzV

s8 [ c9t8u2u3

+ u1(2u2 − c9u8)/c8
2] − s1s2c2c9u6(2s1c1u3 + 2c1

2
u2 − 2s1c1u3)

− (ρxV
+ ρzV

t8)u̇9 − c9(ρzP
− ρzV

/c8)u̇1

]

jV
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+

[

ρzV
u8

2 + ρxV
t8u9

2 + ρzV
t

2
8u9

2 + s8c9u2u6 + ρzP
s8c9u1u3 + ρxV

u̇8

+ s8c9u̇4 + s9

[

s8u3u4 + ρxP
s8u1u2 + ρzP

s8u2u3 + s8u̇5 + ρxP
s8u̇3

− s8u1u6 − (ρxV
c8u2u9 + ρzV

s9u1
2 + 2ρzV

s8u2u9 − 2ρzV
c9u1u2

− ρzV
s9u2

2)/c8
2 − ρzP

s8u̇1

]

− s8c9u3u5 − ρxP
s8c9u2

2 − ρxP
s8c9u3

2

− (ρxP
c8 − ρzP

s8c9)u̇2 − (c8
3
u2u4 + ρzP

c8
3
u1

2 + ρzP
c8

3
u2

2

+ ρxV
c8c9u1u9 + 2ρzV

s8c9u1u9 − ρzV
u1

2 − c8
3
u1u5 − ρxP

c8
3
u1u3

− c8
3
u̇6)/c8

2

]

kV

and angular acceleration for the parafoil is

αP = ω̇P =
∂ωP

∂t

+ ωP × ωP

= Ṗ iP + Q̇jP + ṘkP

= u̇1iP + u̇2jP + u̇3kP

(2.33)

and for the vehicle,

αV = ω̇V =
∂ωV

∂t

+ ωV × ωV

=

[

2c9/c8
2
u2u9 + c9/c8u̇1 − 1/c8

2
u8u9 − c8c9u2u3

− s8(2/c8
2
u1u2 + c9t8u2u3 − c9/c8

2
u1u8) − t8u̇9

− s9

[

2/c8
2
u1u9 − c8u1u3 − s8(t8u1u3 + 1/c8

2
u2u8

+ 2c9/c8
2
u1

2 + 4s9/c8
2
u1u2 − 2c9/c8

2
u2

2) − 1/c8
2
u̇2

]

]

iV

+ u̇8 jV + u̇9 kV

(2.34)

Using the inertial acceleration terms above, inertia torques and forces can be

expressed using Eqn.(2.14).

T∗ = −α · I − ω × I · ω, R∗ = −ma∗
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For the parafoil,

TP∗ = −αP · IP − ωP × IP · ωP , RP∗ = −mPaP (2.35)

Expanding TP∗, RP∗ with acceleration terms in Eqn.(2.31),(2.33) yields

TP∗ = −

[

IxxP
u̇1 + IxzP

u̇3 + IxzP
u1u2 +

(

IzzP
− IyyP

)

u3u2

]

iP

−

[

IyyP
u̇2 +

(

IxxP
− IzzP

)

u1u3 − IxzP

(

u

2
1 − u

2
3

)]

jP

−

[

IzzP
u̇3 + IxzP

u̇1 +

(

IyyP
− IxxP

)

u1u2 − IxzP
u2u3

]

kP

(2.36)

RP∗ = −mP

(

u̇4 − u5u3 + u6u2

)

iP −mP

(

u̇5 + u4u3 − u6u1

)

jP

−mP

(

u̇6 − u4u2 + u5u1

)

kP

(2.37)

Inertial torques and forces for the vehicle can be presented similarly as Eqn.(2.35)

such as,

TV ∗ = −αV · IV − ωV × IV · ωV , RV ∗ = −mV aV (2.38)

Expanding TV ∗ with above acceleration terms in Eqn.(2.32),(2.34) yields

TV ∗ =

[

IyyV
u8u9 + IxxV

{

s8 [ c9t8u2u3 + u1(2u2 − c9u8)/c8
2 ] + t8u̇9

+ (u8u9 + c9c8
3
u2u3 − 2c9u2u9 − c8c9u̇1)/c8

2 + s9

[

2u1u9/c8
2

− c8u1u3 − s8

(

t8u1u3 + (u2u8 + 2c9u1
2 + 4s9u1u2 − 2c9u2

2)/c8
2
)

− u̇2/c8

] }

− u8(IzzV
u9 + IxzV

u7) − IxzV
u̇9

]

iV

+

[

u7(IzzV
u9 + IxzV

u7) − u9(IxxV
u7 + IxzV

u9) − IyyV
u̇8

]

jV (2.39)

+

[

u8(IxxV
u7 + IxzV

u9) + IxzV

{

s8[ c9t8u2u3 + u1(2u2 − c9u8)/c8
2 ]

+ t8u̇9 + (u8u9 + c9c8
3
u2u3 − 2c9u2u9 − c8c9u̇1)/c8

2

+ s9

[

2u1u9/c8
2 − c8u1u3 − s8

(

t8u1u3 + (u2u8 + 2c9u1
2



26

+ 4s9u1u2 − 2c9u2
2)/c8

2
)

− u̇2/c8

] }

− IyyV
u7u8 − IzzV

u̇9

]

kV

where u7 is constraint speed in Eqn.(2.24). And RV ∗ can be expanded by substituting

Eqn.(2.32) into Eqn.(2.38) and following equation is presented in terms of dependent

variables u10, u11 and u12 to save space and readability. Those dependent variables

are in Eqn.2.29.

RV ∗ = −mV

[

u11(s9u2 + c9u1)

]

kP

+mV

[

u11

(

u9 + c8u3

)

+ u12

(

s9u1 − u8 − c9u2

)

− u̇10

]

iV

−mV

[

u10

(

u9 + c8u3 + s8s9u2 + s8c9u1

)

+ u12

(

s8u3 − s9c8u2 − c8c9u1

)

+ u̇11

]

jV

+mV

[

s8u11u3 − u10

(

s9u1 − u8 − c9u2

)

− u̇12

]

kV

(2.40)

Active Forces Resultant (active) forces and torques for the parafoil are mainly due

to aerodynamics and inertia as well as the joint force and torque due to the hanging

vehicle. The aerodynamic forces act on the aerodynamic centers of the parafoil and

the vehicle. The joint forces and torques are applied each other through the confluence

joint and inertia forces on C.G. of the parafoil and the vehicle respectively. The inertia

forces on the parafoil and the vehicle are GP = mPg and GV = mV g and can be
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expressed in the following;

GP = mPg = mP gk

= −mP sΘgiP +mP cΘsΦgjP +mP cΘcΦgkP

= −mP g(s2iP − c2s1jP − c2c1kP )

GV = mV g = mV gk

= −mV g (s2c8c9 + s8c1c2 − s1s9c2c8) iV

+mV g (s2s9 + s1c2c9) jV

−mV g (s2s8c9 − c1c2c8 − s1s8s9c2)kV

(2.41)

The aerodynamic forces and torques are expressed such as,

FaP
= FxP

iP + FyP
jP + FzP

kP

TaP
= LP iP +MP jP +NPkP

FaV
= FxV

iV + FyV
jV + FzV

kV

TaV
= LV iV +MV jV +NV kV

(2.42)

where LP,V ,MP,V , NP,V are aerodynamic torques with respect to XP,V , YP,V , ZP,V axis

respectively. The resultant (active) forces and torques for the parafoil can be written

as follows:

RP = FxP
iP + FyP

jP + FzP
kP +mPg + Fcons

TP = LP iP +MP jP +NPkP + rP × FaP
+ ρP × Fcons − Tcons

(2.43)

where ρP is a vector from the parafoil C.G. to the confluence point and rP is a vector

from the C.G. to the aerodynamic center of the parafoil such as

ρP = ρxP
iP + 0jP + ρzP

kP , rP = rxP
iP + 0jP + rzP

kP

and Fcons is force term acting on the parafoil through confluence point due to the

vehicle and Tcons is torque term modelled to reflect the returning torque due to the
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difference between the parafoil and the vehicle heading angles. In the nominal model

it is assumed to be zero at first and is described in the following paragraph. The

resultant (active) forces and torques for the vehicle can be expressed also as follow;

RV = FxV
iV + FyV

jV + FzV
kV +mV g − Fcons

TV = LV iV +MV jV +NV kV + rV × FaV
− ρV × Fcons + Tcons

= LV iV +MV jV +NV kV + Tcons

(2.44)

The hanging vehicle of the Buckeye is composed of a console box, panel, frames and

struts etc. and the complexity of the shape prevents accurate modelling for aerody-

namic forces and torques. The detail aerodynamic modelling is beyond this research

workscope and most parts are not supposed to generate consistent aerodynamic forces

or torques except drag. So only drag is taken account for the vehicle’s aerodynamic

terms. The vehicle’s constrained motion is mainly rotational about the confluence

point and the rotation torques due to drag is much less than that from weight of

the vehicle. For simplification of equations of motion description, the aerodynamic

center of the vehicle is assumed to be located at the C.G. of the vehicle (rV = 0) in

above Eqn.(2.44). The term rV is provided as an input parameter in the simulation

code and can be activated with appropriate aerodynamic model of the vehicle. As

described in the following paragraph Fcons is a vector parallel to ρV so there’s no

influence on the vehicle torque(ρV × Fcons = 0).

Kane’s Equation To construct the Kane’s equation, substituting equations (2.43),

(2.44) into Eqn. (2.12),

(Fr)P = ωP
r · TP + vP

r · RP (r = 1, . . . , 8)



29

and expanding yields

(F1)P = ωP
1 ·TP + vP

1 · RP = iP · TP

= LP + ρzP
ρxV

Fcons s9 c8 / lρ + ρzP
ρzV

Fcons s8 s9 / lρ − rzP
FyP

(F2)P = MP + rzP
FxP

− rxP
FzP

− Fcons ( ρxP
s

2
9 ( ρxV

s8 − ρzV
c8 )

+ c9 ( ρzP
ρxV

c8 + ρzP
ρzV

s8 + ρxP
ρxV

s8 c9 − ρxP
ρzV

c8 c9 ) ) / lρ

(F3)P = NP + rxP
FyP

+ Tcons - ρxP
Fcons s9 ( ρxV

c8 + ρzV
s8 ) / lρ

(F4)P = ωP
4 ·TP + vP

4 · RP = iP · RP

= FxP
− mP g s2 − ρxV

Fcons c8 c9 / lρ − ρzV
Fcons s8 c9 / lρ

(F5)P = FyP
+ mP g s1 c2 − Fcons s9 ( ρxV

c8 + ρzV
s8 ) / lρ

(F6)P = FzP
+mP g c1 c2 + Fcons ( ρxV

s8 − ρzV
c8 ) / lρ

(F7)P = (F8)P = 0

(2.45)

Using Eqn. (2.12) for the vehicle,

(Fr)V = ωV
r · TV + vV

r · RV (r = 1, . . . , 8)

and expanding yields,

(F1)V = ωV
1 · TV + vV

1 · RV = (c9/c8)iV ·TV

+
[

(−ρzP
s9c8)iV + c9 (ρzV

/c8 − ρzP
)jV − ρzP

s8s9kV

]

· RV

= LV c9/c8 + ρzV
FyV

c9 /c8 + mV g ρzV
s1 c2 /c8

+ s8 (Tcons c9 /c8 − ρzP
FzV

s9 − ρzP
ρzV

Fcons s9 /lρ )

+ s9 (mV g ρzV
s2 c9 /c8 − ρzP

FxV
c8 − ρzP

ρxV
Fcons c8 /lρ

− mV g ρzV
s1 s9 c2 /c8 ) − ρzP

FyV
c9 − mV g ρzP

s1 c8

− rzV
FyV

c9 /c8

(2.46a)
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(F2)V = (s9/c8)jV · TV +
[

(ρxP
s8 + ρzP

c8c9)iV + (ρzV
s9/c8 − ρzP

s9)jV

+ (ρzP
s8c9 − ρxP

c8)kV

]

· RV

= ρzP
FxV

c8 c9 + ρzP
ρxV

Fcons c8 c9 /lρ + s8 ( ρxP
FxV

+ ρzP
FzV

c9

+ ρxP
ρxV

Fcons /lρ + ρzP
ρzV

Fcons c9 /lρ ) − ρxP
FzV

c8

− mV g ρzP
s2 − ρxP

ρzV
Fcons c8 /lρ − mV g ρxP

c1 c2

− s9 ( ρzP
FzV

+ rzV
FyV

/c8 − Tcons t8 − LV /c8 − ρzV
FyV

/c8

− mV g ρzV
s2 s9 /c8 − mV g ρzV

s1 c2 c9 /c8 )

(2.46b)

(F3)V =
[

ρxP
s9c8iV + ρxP

c9jV + ρxP
s8s9kV

]

· RV

= ρxP
FyV

c9 + mV gρxP
s1 c2 + ρxP

s9 [FxV
c8

+ ρxV
Fcons c8 /lρ + s8 (FzV

+ ρzV
Fcons /lρ ) ]

(2.46c)

(F4)V = ωV
4 · TV + vV

4 · RV =
[

c8c9iV − s9jV + s8c9kV

]

·RV

= FxV
c8 c9 + ρxV

Fcons c8 c9 /lρ + s8 c9 (FzV
+ ρzV

Fcons /lρ )

− FyV
s9 − mv g s2

(2.46d)

(F5)V =
[

s9c8iV + c9jV + s8s9kV

]

· RV

= FyV
c9 + mV g s1 c2 + s9 (FxV

c8 + ρxV
Fcons c8 /lρ

+ s8 (FzV
+ ρzV

Fcons /lρ ) )

(2.46e)

(F6)V =
[

− s8iV + c8kV

]

· RV

= FzV
c8 + ρzV

Fcons c8 /lρ + mV g c1 c2

− s8 (FxV
+ ρxV

Fcons /lρ )

(2.46f)
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(F7)V = jV · TV +
[

− ρzV
iV + ρxV

kV

]

· RV

= MV + rzV
FxV

+ ρxV
FzV

+ mV g ρxV
c1 c2 c8

+ mV g ρzV
s2 c8 c9 + mV g ρzV

s8 c1 c2 + mV g ρxV
s1 s8 s9 c2

− rxV
FzV

− ρzV
FxV

− mV g ρxV
s2 s8 c9

− mV g ρzV
s1 s9 c2 c8

(2.46g)

(F8)V = kV · TV +
[

− ρxV
jV

]

·RV

= NV + rxV
FyV

+ rzV
FyV

t8 − ρxV
FyV

− LV t8

− Tcons c8 − ρzV
FyV

t8 − mV g ρxV
s2 s9 − Tcons s

2
8 /c8

− mV g ρxV
s1 c2 c9 − mV g ρzV

s2 s9 t8

− mV g ρzV
s1 c2 c9 t8

(2.46h)

Following same procedures above, the inertial torques and forces can be written in

the form of Eqn.(2.13),

(F ∗
r )P = ωP

r · T∗
P + vP

r · R∗
P (r = 1, . . . , n−m)

Substituting yields

(F ∗
1 )P = ωP

1 · T∗
P + vP

1 ·R∗
P = iP · T∗

P

= −

[

IxxP
u̇1 + IxzP

u̇3 + IxzP
u1u2 +

(

IzzP
− IyyP

)

u2u3

]

(F ∗
2 )P = −

[

IyyP
u̇2 +

(

IxxP
− IzzP

)

u1u3 − IxzP

(

u

2
1 − u

2
3

)

]

(F ∗
3 )P = −

[

IzzP
u̇3 + IxzP

u̇1 +
(

IyyP
− IxxP

)

u1u2 − IxzP
u2u3

]

(F ∗
4 )P = ωP

4 · T∗
P + vP

4 ·R∗
P = iP · R∗

P (2.47)

= −mP

(

u̇4 − u3u5 + u2u6

)

(F ∗
5 )P = −mP

(

u̇5 − u1u6 + u3u4

)
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(F ∗
6 )P = −mP

(

u̇6 − u2u4 + u1u5

)

(F ∗
7 )P = (F ∗

8 )P = 0

Using Eqn. (2.13) for the vehicle,

(F ∗
r )V = ωV

r · T∗
V + vV

r · R∗
V (r = 1, . . . , 8)

Substituting yields

(F ∗
1 )V = ωV

1 ·T∗
V + vV

1 ·R∗
V

= (c9/c8)iV · T∗
V +

[

(−ρzP
s9c8)iV + c9 (ρzV

/c8 − ρzP
)jV

− ρzP
s8s9kV

]

· R∗
V

(F ∗
2 )V = (s9/c8)jV · T∗

V +
[

(ρxP
s8 + ρzP

c8c9)iV + (ρzV
s9/c8 − ρzP

s9)jV

+ (ρzP
s8c9 − ρxP

c8)kV

]

· R∗
V

(F ∗
3 )V =

[

ρxP
s9c8iV + ρxP

c9jV + ρxP
s8s9kV

]

· R∗
V

(F ∗
4 )V = ωV

4 ·T∗
V + vV

4 ·R∗
V

=
[

c8c9iV − s9jV + s8c9kV

]

· R∗
V (2.48)

(F ∗
5 )V =

[

s9c8iV + c9jV + s8s9kV

]

· R∗
V

(F ∗
6 )V =

[

− s8iV + c8kV

]

· R∗
V

(F ∗
7 )V = jV ·T∗

V +
[

− ρzV
iV + ρxV

kV

]

· R∗
V

(F ∗
8 )V = kV ·T∗

V +
[

− ρxV
jV

]

·R∗
V

As the full expanded form of above equation (2.48) is too long to display, it is

abbreviated without difficulty of understanding the derivation of equations.

Substituting Eqn.(2.45),(2.46a-2.46h),(2.47), (2.48) into Kane’s equation (2.4),

then 8-DOF nonlinear equations of motion can be constructed as following form.

[

(Fr)P + (Fr)V

]

+
[

(F ∗
r )P + (F ∗

r )V

]

= 0 (r = 1, . . . , 8)
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Substituting yields eight equations of motion which are long algebraic forms with

double multiplication of direction cosine matrices for the parafoil and the vehicle.

The full 8-DOF equations of motion were derived using a symbolic dynamic solver

AUTOLEVTM .26,27 AUTOLEVTM is an advanced symbolic manipulation computer

program and it’s purpose is to relieve the user of burdens associated with manu-

ally performing such time-consuming tasks specially for deriving multi-body dynamic

equations of motion.27 AUTOLEVTM program has been validated by numerous ap-

plications and example. In Appendix A a simple two-body pendulum dynamics was

solved by AUTOLEV and the resulting equations of motion are compared to those

from Newtonian Mechanics.

Joint Torque Model The torque model for the vehicle is provided to adjust the

yawing moment of the vehicle in flight data identification phase. Let’s define Fcons

as joint force and Tcons as joint torque acting on the confluence point of the parafoil

by the vehicle. The joint force for the parafoil is a fraction of the net resultant force

of the vehicle, function of the relative attitudes. It is shown in following equation.

Fcons = −
[

(FaV
+ GV ) · −u

]

u

=
{

[ρxV
FxV

+ ρzV
FzV

−mV g ρxV
(s2c8c9 + s8c1c2 − s1s9c2c8)

−mV g ρzV
(s2s8c9 − c1c2c8 − s1s8s9c2)]/lρ

}

u

, −(Fcons) u

(2.49)

where u is a unit vector from C.G. of the vehicle to the confluence point such as:

u =
ρV

‖ρV ‖
= (ρxV

/lρ)iV + (ρzV
/lρ)kV , lρ = ‖ρV ‖

And the constraint joint torque, Tcons is caused by the difference of heading angle

between the parafoil and the vehicle. The universal joint model as for longitudinal

motion is not sufficient to describe the constraint torque. For lateral/directional

motion the joint is modelled as a bar on which the vehicle is hanging as in Figure

2.3. As a nominal model, this torque is assumed such that there is no aerodynamic,

structural or elastic torque due to twisting of risers, suspension lines or canopy shape.
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Figure 2.3 Joint Model for Relative Torque
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In the phase of comparing with flight data, a damping term proportional to the

yaw rate change is considered to describe the motion in addition to the spring term

proportional to the relative yaw angle here.

Tcons = −[(Fcons · kP )1/2 sin
(

2(B/H)Ψr

)

]kP

= −
[

− 0.5B Fcons sin
(

2(B/H)Ψr

)

(ρxV
sin Θr − ρzV

cos Θr)/‖ρV ‖
]

kP

=
[

0.5B Fcons sin (2B q9/H)(ρxV
s8 − ρzV

c8)/lρ
]

kP

, −(Tcons) kP

(2.50)

where B is half width of the hanging point of the vehicle, H is height from the parafoil

quarter chord to the confluence point along the ZP (kP ) axis as in Figure 2.3.

2.4 Linearized Equation of Motion

For stability and control analysis the 8-DOF nonlinear equations of motion are lin-

earized. It is assumed that the motion consists of small deviations about a reference

condition of steady state flight. From the nonlinear equations of motion in section 2.3,

linearized equations of motion were derived using the small angle, small-perturbation

theory and Taylor series expansion method.

All the variables in the equations of motion are replaced by a reference value

plus a perturbation. The reference values so called trimmed values of all the variables

are denoted by a subscript zero, and the small perturbations by prefix ∆ as in the

followings:

qr ≈ qr0
+ ∆qr,

ur ≈ ur0
+ ∆ur, (r = 1, · · · , 8)

(2.51)

And the forces and torques also can be represented as follows:

FxP
≈ FxP 0 + ∆FxP

, LP ≈ LP 0 + ∆LP ,

...
... (2.52)

FzV
≈ FzV 0 + ∆FzV

, NV ≈ NV 0 + ∆NV
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In this research the reference flight is gliding without power and the condition is

assumed to be symmetric and steady. Thus V0 = Φ0 = Ψ0 = P0 = Q0 = R0 = 0

and the relative terms Φr0
= Ψr0

= Φ̇r0
= Θ̇r0

= Ψ̇r0
= 0. Using the generalized

coordinates and speeds defined in the previous section, zero reference values can be

represented as follows:

q10
= Φ0 = 0, q20

= Θ0, q30
= Ψ0 = 0,

q40
= X0 = 0, q50

= Y0 = 0, q60
= Z0 = −h,

q70
= Φr0

= 0, q80
= Θr0

, q90
= Ψr0

= 0,

(2.53a)

u10
= P0 = 0, u20

= Q0 = 0, u30
= R0 = 0,

u40
= U0, u50

= V0 = 0, u60
= W0,

u70
= PV0

= 0, u80
= QV0

= 0, u90
= RV0

= 0.

(2.53b)

All the perturbation quantities and their derivatives are assumed to be small, so

that their squares and products are negligible compared to first-order quantities. In

dealing with the trigonometric functions in equations the small angle assumption is

adopted such that sin θ ≈ θ, cos θ ≈ 1 for general small angle θ in radian. In Ref. 28

these small angle approximations give quite acceptable results even for perturbed

angles as large as 15 degrees. The perturbed angles of the Buckeye-vehicle are within

the range. To make the complex description of 8-DOF equations of motion brief,

several assumptions are made for further deriving of equations. Those assumptions

are itemized as follows:

• On aerodynamics of the parafoil: In steady-state of gliding condition, the active

side force and roll, yaw axis torques in the reference condition are assumed to

be zeros and presented in the following equations.

FyP 0 = LP 0 = NP 0 = 0
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• On aerodynamics of the vehicle: The configuration of the hanging vehicle of the

Buckeye doesn’t have aerodynamic shape enough to show the forces and torques

in general function of aerodynamic parameters. So, only drag is assumed to

exist and the other aerodynamic forces and torques are neglected in deriving

the linearized equations.

FyV
= LV = MV = NV = 0

2.4.1 Linearized Model

Following the procedures for derivations of 8-DOF nonlinear equations of motion

and using the assumtions described in previous section including small angle and

small-perturbation theory, the linearized equations of motion can be derived for the

generalized coordinates and speeds.

Applying the small-perturbation theory to the active force equation Fr( = (Fr)P +

(Fr)V ) in the Eqn.(2.45) yields

F1 = ∆LP − rzP
∆FyP

− C10mV g c20
∆q1

− [CT1 − C13C4B
2
t80
/(H l

2
ρ) − C13 ρzP

C3 / l
2
ρ]∆q9

F2 = ∆MP + rzP
∆FxP

− rxP
∆FzP

+ [C6 − ρxV
( ρxP

C4

+ ρzP
C3 ) /l2ρ ] ∆FxV

+ [CT2 −
(

C13 (ρxP
C3

− ρzP
C4 ) + C2mV g (ρxP

C4 + ρzP
C3 )

)

/ l

2
ρ ] ∆q8

− [C5 + ρzV
( ρxP

C4 + ρzP
C3) /l

2
ρ] ∆FzV

− mV g [C7 + C2 ( ρxP
C4 + ρzP

C3 ) /l2ρ ] ∆q2

F3 = ∆NP + rxP
∆FyP

+ mV g ρxP
c20

∆q1 + [ρxP
CF1

+ C13C4B
2
/(H l

2
ρ) − C13 ρxP

C3 / l
2
ρ ]∆q9

F4 = ∆FxP
+ s80

∆FzV
+ c80

∆FxV
− CF2 ∆q8

− (mP + mV ) g c20
∆q2 (2.54)
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F5 = ∆FyP
+ ∆q1 (mP +mV ) g c20

+ ∆q9 CF1

F6 = ∆FzP
+ c80

∆FzV
− CF1 ∆q8 − s80

∆FxV

− (mP +mV ) g s20
∆q2

F7 = ρxV
∆FzV

− ρzV
∆FxV

− C1mV g∆q2 − C1mV g∆q8

F8 = −C9mV g c20
∆q1 − [C9mV g s20

+ C13 C4B
2
/(H l

2
ρ c80

) ] ∆q9

where

C1 =
(

ρxV
s(20+80) − ρzV

c(20+80)

)

C2 =
(

ρxV
c(20+80) + ρzV

s(20+80)

)

C3 =
(

ρxV
c80

+ ρzV
s80

)

C4 =
(

ρxV
s80

− ρzV
c80

)

C5 =
(

ρxP
c80

− ρzP
s80

)

C6 =
(

ρxP
s80

+ ρzP
c80

)

C7 =
(

− ρxP
s20

+ ρzP
c20

)

C8 =
(

ρxP
c20

+ ρzP
s20

)

C9 = ρxV
+ ρzV

t80

C10 = ρzP
− ρzV

c80

C11 =
(

C5 − ρxV

)

C12 =
(

C6 − ρzV

)

C13 =
(

mV g C1 − ρxV
FxV 0 − ρzV

FzV 0

)

CT1 = [mV g (C2 + s20
C4) + FzV 0 ρxV

− FxV 0 ρzV

+ ρzP
(FzV 0 s80

+ FxV 0 c80
)]

CT2 = [C5 FxV 0 + C6 FzV 0 −mV g C1]
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CF1 = (FxV 0 c80
+ FzV 0

s80
)

CF2 = (FxV 0 s80
− FzV 0 c80

)

Note that above Eqn.(2.54) shows perturbed active forces from the steady-state

gliding flight in the research. Based on the assumption of steady-state gliding flight

of no acceleration in any axis, following equations are set to hold.

0 = MP 0 + rzP
FxP 0 − rxP

FzP 0 + C6 FxV 0 − C5 FzV 0 −mV g C8

− C13 ( ρxP
C4 + ρzP

C3 ) /l2ρ

0 = FxP 0 + c80
FxV 0 + s80

FzV 0 − (mP +mV ) g s20

0 = FzP 0 + c80
FzV 0 − s80

FxV 0 + (mP +mV ) g c20

0 = ρxV
FzV 0 − ρzV

FxV 0 +mV g C2

Linearization of joint force (2.49) and torque (2.50) show that they can be represented

by the constants coefficients as follows:

Fcons = (C13 + ρxV
∆FxV

+ ρzV
∆FzV

+mV g C2 )/lρ ∆q2

+mV g C2 /lρ ∆q8

Tcons = C13C4 [B2
/(H lρ

2)] ∆q9

(2.55)

In the same manner linearization of inertial term F

∗
r (= (Fr)

∗
P + (Fr)

∗
V ) can be repre-

sented as

F

∗
1 = −CI2 ∆u̇1 − CI1 ∆u̇3 +mV C10 ∆u̇5 − CI3 ∆u̇9

−mV C10 u60
∆u1 +mV C10 u40

∆u3 +mV C10D8 ∆u9

F

∗
2 = −CI5 ∆u̇2 +mV D9 ∆u̇4 +mV D10 ∆u̇6 + CI4 ∆u̇8

−mV D11 ∆u2

F

∗
3 = −CI1 ∆u̇1 − CI7 ∆u̇3 −mV ρxP

∆u̇5 + CI6 ∆u̇9

+mV u60
ρxP

∆u1 −mV u40
ρxP

∆u3 −mV ρxP
D8 ∆u9
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F

∗
4 = mV D9 ∆u̇2 − (mP +mV ) ∆u̇4 −mV C4 ∆u̇8 +D13 ∆u2 (2.56)

F

∗
5 = mV C10 ∆u̇1 −mV ρxP

∆u̇3 − (mP +mV ) ∆u̇5 +mV C9 ∆u̇9

+ u60
(mP +mV ) ∆u1 − u40

(mP +mV ) ∆u3 −mV D8 ∆u9

F

∗
6 = mV D10 ∆u̇2 − (mP +mV ) ∆u̇6 −mV C3 ∆u̇8 +D14 ∆u2

F

∗
7 = CI4 ∆u̇2 −mV C4 ∆u̇4 −mV C3 ∆u̇6 − CI9 ∆u̇8

+mV D12 ∆u2

F

∗
8 = −CI10 ∆u̇1 + CI6 ∆u̇3 +mV C9 ∆u̇5 − CI11 ∆u̇9

−mV u60
C9 ∆u1 +mV u40

C9 ∆u3 +mV C9D8 ∆u9

where all constant terms,

CI1 = IxzP
−mV C10 ρxP

CI2 = IxxP
+mV C10

2 + IxxV
/c80

2

CI3 = mV C10C9 + (IxzV
− IxxV

t80
)/c80

CI4 = mV (C5 ρxV
+ C6 ρzV

)

CI5 = IyyP
+mV (C5

2 + C6
2)

CI6 = mV C9 ρxP

CI7 = IzzP
+mV ρxP

2

CI9 = IyyV
+mV (ρxV

2 + ρzV

2)

CI10 = mV C10C9 + IxzV
/c80

− IzzV
s80
/c80

2

CI11 = IzzV
+mV C9

2 − IxzV
t80

− t80
(IxzV

− IxxV
t80

)

D8 = (u100
− u120

t80
− u40

/c80
)

D9 = (C5 s80
− C6 c80

)

D10 = (C5 c80
+ C6 s80

)



41

D11 = C5 u100
+ C6 u120

D12 = ρxV
u100

+ ρzV
u120

D13 = mV D6 −mP u60

D14 = mV D7 +mP u40

Substituting those Fr and F

∗
r in Eqn.(2.54),(2.56) into Kane’s equation makes

8-DOF linear equations of motion of the Buckeye parafoil two-body system. From

the linearized Kane’s equations, moving all terms except accelerations terms to RHS

and multiply −1 on both sides yields

CI2 ∆u̇1 + CI1 ∆u̇3 −mV C10 ∆u̇5 + CI3 ∆u̇9

= mV C10 u60
∆u1 +mV C10 u40

∆u3 +mV C10D8 ∆u9

+∆LP − rzP
∆FyP

− ∆q1mV g c20
C10

−[CT1 − C13C4B
2
t80
/(H l

2
ρ) − C13 ρzP

C3 / l
2
ρ]∆q9

(2.57a)

CI5 ∆u̇2 −mV D9 ∆u̇4 −mV D10 ∆u̇6 − CI4 ∆u̇8

= −mV D11 ∆u2 + ∆MP + rzP
∆FxP

− rxP
∆FzP

+ [C6 − ρxV
( ρxP

C4 + ρzP
C3 ) /l2ρ ] ∆FxV

+ [CT2 −
(

C13 (ρxP
C3 − ρzP

C4 )

+C2mV g (ρxP
C4 + ρzP

C3 )
)

/ l

2
ρ ] ∆q8

− [C5 + ρzV
( ρxP

C4 + ρzP
C3) /l

2
ρ] ∆FzV

−mV g [C7 + C2 ( ρxP
C4 + ρzP

C3 ) /l2ρ ] ∆q2

(2.57b)

CI1 ∆u̇1 + CI7 ∆u̇3 +mV ρxP
∆u̇5 − CI6 ∆u̇9

= mV u60
ρxP

∆u1 −mV u40
ρxP

∆u3 −mV ρxP
D8 ∆u9

+∆NP + rxP
∆FyP

+ ∆q1mV g c20
ρxP

+ [ρxP
CF1 + C13C4B

2
/(H l

2
ρ) − C13 ρxP

C3 / l
2
ρ ]∆q9

(2.57c)
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−mV D9 ∆u̇2 + (mP +mV ) ∆u̇4 +mV C4 ∆u̇8

= D13 ∆u2 + ∆FxP
+ c80

∆FxV
+ s80

∆FzV
− ∆q2 (mP

+mV ) g c20
− ∆q8 CF2

(2.57d)

−mV C10 ∆u̇1 +mV C9 ∆u̇3 + (mP +mV ) ∆u̇5 −mV ρxV
∆u̇9

= u60
(mP +mV ) ∆u1 − u40

(mP +mV ) ∆u3 −mV D8 ∆u9

+∆FyP
+ ∆q1 (mP +mV ) g c20

+ ∆q9CF1

(2.57e)

−mV D10 ∆u̇2 + (mP +mV ) ∆u̇6 +mV C3 ∆u̇8

= D14 ∆u2 + ∆FzP
− s80

∆FxV
+ c80

∆FzV
− ∆q2 (mP

+mV ) g s20
− ∆q8CF1

(2.57f)

−CI4 ∆u̇2 +mV C4 ∆u̇4 +mV C3 ∆u̇6 + CI9 ∆u̇8

= mV D12 ∆u2 + ρxV
∆FzV

− ρzV
∆FxV

− ∆q2mV g C1

−∆q8mV g C1

(2.57g)

CI10 ∆u̇1 − CI6 ∆u̇3 −mV C9 ∆u̇5 + CI11 ∆u̇9

= −mV u60
C9 ∆u1 +mV u40

C9 ∆u3 +mV C9D8 ∆u9

−∆q1mV g c20
C9

− [C9mV g s20
+ C13C4B

2
/(H l

2
ρ c80

) ] ∆q9

(2.57h)

Note that above equations of motion are nothing but another expression of Newton’s

second law, Ma = F.

The linear equations of motion in Eqn.(2.57a) - (2.57h) can be represented for

state-space form ẋ = Ax+B u which is used for linear system analysis. To do so all

the force and torque terms are represented as function of states defined as follows:

x = [ ∆u4, ∆u6, ∆u2, ∆q2, ∆u8, ∆q8, ∆u5, ∆u1, ∆u3, ∆q1, ∆u9, ∆q9 ]

Those generalized coordinate and speed terms can be replaced with familiar terms

with physical sense in the following respectively.

x = [u, w, q, θ, qV , θr, v, p, r, φ, rV , ψr]
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Presenting the forces and torques with perturbed states and their stability derivatives,

we can define the forces and torques as in following equations. Forces and torques

can be represented by Taylor series expansion about any parameters, however, the

forces and torques are represented as function of a few parameters which regarded as

meaningful effect on them for very slow flight region of the Buckeye in the research.

Representing the forces and torques with stability derivatives and perturbed states

in body axes, subscript b, yields

∆FxP
= (Fxu

)b∆u+ (Fxw
)b ∆w + (Fxq

)b ∆q + (Fx δe
)b δe

∆FyP
= (Fyv

)b ∆v + (Fyp
)b ∆p+ (Fyr

)b ∆r + (Fyδr
)bδr

∆FzP
= (Fzu

)b ∆u+ (Fzw
)b ∆w + (Fzq

)b ∆q + (Fz δe
)b δe

∆LP = (Lv)b ∆v + (Lp)b ∆p + (Lr)b ∆r + (Lδr)b δr

∆MP = (Mu)b ∆u+ (Mw)b ∆w + (Mq)b ∆q + (Mδe)b δe

∆NP = (Nv)b ∆v + (Np)b ∆p+ (Nr)b ∆r + (Nδr)b δr

∆FxV
= (FxuV )b∆uV + (Fx∆θr

)b ∆θr

∆FzV
= (FzuV )b∆uV + (Fz∆θr

)b ∆θr

(2.58)

where perturbed control input δe is symmetrical deflection of trailing edge flap of the

parafoil and δr is asymmetric differential deflection of the trailing edge flap defined

in the following equation.

δe ≡
δ(flap)left + δ(flap)right

2

δr ≡ δ(flap)left − δ(flap)right

In above equation, ∆uV can be represented from the linearized kinematic constraint
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equation,

∆uV = cos Θr0
∆u− sin Θr0

∆w + (ρxP
sin Θr0

+ ρzP
cos Θr0

)∆q

− ρzV
∆qV −W0V

∆θr

U0V
= U0 cos Θr0

−W0 sin Θr0

W0V
= U0 sin Θr0

+W0 cos Θr0

(2.59)

Observing the linearized Equations of motion in Eqn.(2.57a)-(2.57h) reveals that

the longitudinal and lateral/directional motions are not coupled. In addition, the

forces and torques in Eqn.(2.58) show the parameters in one axis don’t affect an-

other axes’s forces and torques. Thus we can analyze the longitudinal and the lat-

eral/directional motion separately and respectively. Solving Eqn.(2.57a)-(2.57h) with

Eqn.(2.58) for ẋ yields state-space form of ẋ = Ax + Bu. Rearranging the longi-

tudinal equations of motion in Eqn.(2.57b),(2.57d),(2.57f),(2.57g) and solving them

about the longitudinal states shows

ẋ = Alo x + Blo u (2.60a)

where states x = [∆u,∆w,∆q,∆θ,∆qV ,∆θr], control u = δe,

Alo =

































A

lo
1,1 A

lo
1,2 A

lo
1,3 A

lo
1,4 A

lo
1,5 A

lo
1,6

A

lo
2,1 A

lo
2,2 A

lo
2,3 A

lo
2,4 A

lo
2,5 A

lo
2,6

A

lo
3,1 A

lo
3,2 A

lo
3,3 A

lo
3,4 A

lo
3,5 A

lo
3,6

0 0 1 0 0 0

A

lo
5,1 A

lo
5,2 A

lo
5,3 A

lo
5,4 A

lo
5,5 A

lo
5,6

0 0 −1 0 1 0

































(2.60b)
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Blo =

































B

lo
1,1

B

lo
2,1

B

lo
3,1

0

B

lo
5,1

0

































(2.60c)

All matrix elements are represented in the appendix C.

Also the lateral/directional state-space equations can be represented as follows:

ẋ = Ala x + Bla u (2.61a)

where states x = [∆v,∆p,∆r,∆φ,∆rV ,∆ψr], control u = δr

Ala =

































A

la
1,1 A

la
1,2 A

la
1,3 A

la
1,4 A

la
1,5 A

la
1,6

A

la
2,1 A

la
2,2 A

la
2,3 A

la
2,4 A

la
2,5 A

la
2,6

A

la
3,1 A

la
3,2 A

la
3,3 A

la
3,4 A

la
3,5 A

la
3,6

0 1 tanΘ0 0 0 0

A

la
5,1 A

la
5,2 A

la
5,3 A

la
5,4 A

la
5,5 A

la
5,6

0 − tanΘr0
−1 0 1/ cos Θr0

0

































(2.61b)

Bla =

































B

la
1,1

B

la
2,1

B

la
3,1

0

B

la
5,1

0

































(2.61c)

And the matrix elements are also in the appendix C.

The matrices A,B are composed of dimensional stability derivatives and the

definitions are in Table 2.1 and 2.2.28,29 Note that the dimensional derivatives in
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Eqn.(2.58) are those for body axes, otherwise those in the tables are for stability

axes. To construct those system matrices in body axes, those dimensional derivatives

in the table should be converted to ones for body axis with following relationships

between the body axes, subscript b, and the stability axes, no subscript.30 For the

longitudinal derivatives,

(Fxu
)b = Fxu

cos2
α0 − (Fxw

+ Fzu
) sinα0 cosα0 + Fzw

sin2
α0

(Fxw
)b = Fxw

cos2
α0 + (Fxu

− Fzw
) sinα0 cosα0 − Fzu

sin2
α0

(Fzu
)b = Fzu

cos2
α0 − (Fzw

− Fxu
) sinα0 cosα0 − Fxw

sin2
α0

(Fzw
)b = Fzw

cos2
α0 + (Fzu

+ Fxw
) sinα0 cosα0 + Fxu

sin2
α0

(Fxq
)b = Fxq

cosα0 − Fzq
sinα0

(Fzq
)b = Fxq

cosα0 + Fxq
sinα0

(Mu)b = Mu cosα0 −Mw sinα0

(Mw)b = Mw cosα0 +Mu sinα0

(Mq)b = Mq (2.62)

(Fxδe
)b = Fxδe

cosα0 − Fzδe
sinα0

(Fzδe
)b = Fzδe

cosα0 + Fxδe
sinα0

(Mδe)b = Mδe

(FxuV
)b = FxuV

cos2
α0 − (FxwV

+ FzuV
) sinα0 cosα0 + FxwV

sin2
α0

(FxwV
)b = FxwV

cos2
α0 + (FxuV

− FzwV
) sinα0 cosα0 − FzuV

sin2
α0

(FzuV
)b = FzuV

cos2
α0 − (FzwV

− FxuV
) sinα0 cosα0 − FxwV

sin2
α0

(FzwV
)b = FzwV

cos2
α0 + (FzuV

+ FxwV
) sinα0 cosα0 + FxuV

sin2
α0

(FxθrV
)b = FxαV

= U0V
FxwV

(FzθrV
)b = FzαV

= U0V
FzwV
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where α0 is a trimmed angle-of-attack. For the lateral/directional derivatives,

(Fyv
)b = Fyv

(Fyp
)b = Fyp

cosα0 − Fyp
sinα0

(Fyr
)b = Fyr

cosα0 + Fyr
sinα0

(Fyδr
)b = Fyδr

(Lv)b = Lv cosα0 −Nv sinα0

(Lp)b = Lp cos2
α0 − (Lr +Np) sinα0 cosα0 +Nr sin2

α0 (2.63)

(Lr)b = Lr cos2
α0 − (Nr − Lp) sinα0 cosα0 −Np sin2

α0

(Lδr)b = Lδr cosα0 −Nδr sinα0

(Nv)b = Nv cosα0 + Lv sinα0

(Np)b = Np cos2
α0 − (Nr − Lp) sinα0 cosα0 − Lr sin2

α0

(Nr)b = Nr cos2
α0 + (Lr +Np) sinα0 cosα0 +Np sin2

α0

(Nδr)b = Nδr cosα0 + Lδr sinα0

2.5 Modal Analysis

With the linearized equations of motion in Eqn.(2.60a), (2.61a), one can calculate

modal characteristics of the system as well as conduct controllability and observabil-

ity analysis.31,32 The nominal aerodynamic derivatives are referred from the aerody-

namic dataset block in the nonlinear 8-DOF simulation tool, PDS (Parafoil Dynamic

Simulator) from NASA.33 The database was generated initially for ”PARASIM”33

program in Boeing for NASA Marshall Space Flight Center under contract NAS8-

36631 and has been updated for the big parafoil for scaled X-38/CRV based on lots

of empirical and experimental sources such as wind tunnel tests, tow tests, drop
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Table 2.1 Summary of Longitudinal Dimensional Derivatives

Fxu
=

−(CDu+2CD0
)QS

U0
Fxw

=
−(CDα−CL0

)QS

U0

Fzu
=

−(CLu+2CL0
)QS

U0
Fzw

=
−(CLα+CD0

)QS

U0

Fzα
= U0Fzw

Fxδe
= Cxδe

QS

Fzq
= −Czq

c̄
2U0

QS Fzδe
= −Czδe

QS

Mu = Cmu

QSc̄
U0

Mw = Cmα

QSc̄
U0

Mα = U0Mw

Mq = Cmq

c̄
2U0

(QSc̄) Mδe = Cmδe
QSc̄

FxuV
=

−(CDuV
+2CD0V

)QSV

U0V

FzuV
=

−(CLu V
+2CL0 V

)QSV

U0V

FxwV
=

−(CDα V
−CL0V

)QSV

U0V

FzwV
=

−(CLα V
+CD0V

)QSV

U0V

FxθrV
= FxαV

= U0V
FxwV

FzθrV
= FzαV

= U0V
FzwV

Table 2.2 Summary of Lateral/Directinal Dimensional Derivatives

Fyβ
= Cyβ

QS Lβ = ClβQSb Nβ = Cnβ
QSb

Fyp
=

CypQSb

2U0
Lp =

ClpQSb2

2U0
Np =

CnpQSb2

2U0

Fyr
= Cyr QSb

2U0
Lr =

Clr QSb2

2U0
Nr = Cnr QSb2

2U0

Fyδr
= Cyδr

QS Lδr = Clδr
QSb Nδr = Cnδr

QSb
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tests of the X-38/CRV.3,4 For this research non-dimensional derivatives were referred

for nominal condition of the Buckeye gliding condition at altitudes. The nominal

non-dimensional derivatives used for the research are in Table 2.3. A summary of

the mass, geometric, and aerodynamic characteristics of the Buckeye parafoil-vehicle

were obtained from measurement and calculation as in Table 2.4.

Table 2.3 Summary of Nominal Non-Dimensional Derivatives

CL0
= 0.7230 CYβ

= −0.0046/deg

CD0
= 0.2309 Clβ = −0.00064/deg

CLα
= 0.0631/deg Cnβ

= 0.0001/deg

CDα
= 0.0182/deg CYp

= 0

Cmα
= −0.00135/deg Clp = −0.15/rad

Cm0
= −0.03196 Cnp

= 0.023/rad

CLq
= CDq

= 0 CYr
= 0

Cmq
= −0.30/rad Clr = 0.005/rad

CLδe
= 0.0419/in Cnr

= −0.0936/rad

CDδe
= 0.0191/in CYδr

= −0.00081/in

Cmδe
= −0.0040/in Clδr

= 0.00053/in

CD0V
= 0.3623 Cnδr

= −0.000038/in

2.5.1 Longitudinal Motion

Substituting all the values in Table 2.3 and 2.4 to Eqn.(2.60a), the system matrix A

and control matrix B can be obtained.

ẋ = Ax + Bu (2.64)
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Table 2.4 Geometric, Aerodynamic, and Mass Data for the Buckeye

Wing area, S, ft2 500 Wing MAC chord, c̄, f t 11.5

Wing span, b, ft 43.478 Rigging angle, Θrig, deg 7

Parafoil mass including enclo- Vehicle mass with nominal

sed air at sea level, mP , slug 1.73 5 gallon of fuel, mV , slug 19.15

Parafoil .25c location (1.56, Confluence point location in (1.56,

in parafoil body axis, 0, parafoil axis,(ρxP
, ρyP

, ρzP
), ft 0,

(rxP
, ryP

, rzP
), ft -2.29) 19.56)

Confluence point location in (0.178, Distance from vehicle C.G. to

vehicle axis,(ρxV
, 0, ρzV

), ft -0.266), confluence point, lρ, ft 2.273,

Total system weight, W, lb 671.66

Parafoil and enclosed air Vehicle mass moment of

mass moment of inertia, inertia about vehicle body axes,

IxxP
, slug − ft

2 257.01 IxxV
, slug − ft

2 30.3

IyyP
, slug − ft

2 27.97 IyyV
, slug − ft

2 122.8

IzzP
, slug − ft

2 252.53 IzzV
, slug − ft

2 122.8

Reference (trim) condition

gliding speed,V∞0, ft/sec 39.0 U0, ft/sec 36.8

V0, ft/sec 0 W0, ft/sec 10.8

Parafoil pitch angle,Θ0, deg -0.80 Vehicle relative pitch,Θr0
, deg 4.12
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where

x = [∆u,∆w,∆q,∆θ,∆qV ,∆θr], u = [δe]

A =

































−10.4378 29.4910 −8.5769 −32.1709 −0.0005 1.1585

−0.4660 −14.9655 36.6555 0.4489 −0.0004 2.0798

0.5387 −1.5207 −0.1376 0 −0.0005 1.2014

0 0 1 0 0 0

−0.0187 0.0618 0.0725 0 −0.0 −11.2972

0 0 −1 0 1 0

































(2.65)

B =

































−2.0744

−0.9537

0.1072

0

−0.0028

0

































(2.66)

The eigenvalues of system matrix A in the Table 2.5 shows the system is stable

and and there are three oscillatory modes in the configuration and flight condition.

Making output equation such as

y = Cx, C = I
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and similarity transformation, x = Mξ, between state space and modal space, the

real modal A,B,C matrices are determined to be

Amreal =

































−12.5727 8.0476 0 0 0 0

−8.0476 −12.5727 0 0 0 0

0 0 −0.1661 1.0612 0 0

0 0 −1.0612 −0.1661 0 0

0 0 0 −0.0317 3.5143

0 0 0 0 −3.5143 −0.0317

































(2.67)

Bmreal =

































−2.1250

−4.2548

−0.0417

−0.0866

0.0081

−0.0587

































(2.68)

Cmreal =

































0.9598 0 0.9130 0 0.4477 0.0076

−0.0810 0.2639 0.3034 −0.1092 0.1839 0.0255

−0.0509 −0.0005 0.1378 −0.0329 0.0782 0.0137

0.0029 0.0019 −0.0501 −0.1220 0.0037 −0.0223

0.0009 −0.0023 0.1545 −0.0298 −0.8314 0

−0.0030 −0.0018 0.0005 −0.0158 −0.0016 0.2588

































(2.69)

The Am real matrix provides the eigenvalues, number of modes and order of modes.

There are three stable oscillatory mode. With the Bm real matrix, one can tell all

three modes are controllable by the symmetrical flap input, δe and the input is mainly

effective for the first stable oscillatory mode. And from the Cm real , forward speed
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is observed strongly in the first and second stable mode, vertical speed is observable

mainly in the second oscillatory mode and somewhat in the third oscillatory mode.

Pitch rate of the parafoil is observable in the second stable oscillatory mode and

the pitch rate of the vehicle is observed in the third oscillatory mode mainly. Pitch

angle is observed in the second oscillatory mode and somewhat in the third mode.

The relative pitch angle can be observed mainly in the third oscillatory mode. From

observation the third stable mode is mainly related to the vehicle dynamics.

The inverse modal matrix is presented below showing the relationships between

modes and states.































































ξ1

ξ2

ξ3

ξ4

ξ5

ξ6































































=

































0.7563 −0.0149 −4.5240 1.1967 −0.0168 0.3220

−0.0279 0.9982 −2.1323 −0.3175 0.0039 −0.0120

0.2216 0.0184 4.1113 −1.2066 0.5053 −0.3300

−0.0100 0.0053 −0.2456 −0.9223 −0.0313 −0.0666

0.0409 −0.0069 0.7699 0.0248 −0.9069 −0.0392

0.0008 0.0073 −0.0609 −0.1168 −0.0061 0.9924































































































u

w

q

θ

qV

θr































































By examination:

• the first stable oscillatory mode is composed mainly of states of the parafoil,

primarily pitch rate, and lesser pitch angle and to lesser extent vertical and

forward speeds.

• the second oscillatory mode is composed of primarily parafoil pitch rate and

lesser pitch angle and to a lesser extent vehicle pitch rate and relative pitch

angle.

• the third oscillatory mode is composed of primarily relative pitch angle and

pitch rate of the vehicle and lesser pitch angle of the parafoil.

Dynamic characteristics of longitudinal motion is summarized in the Table 2.5.
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Table 2.5 Eigenvalues of Longitudinal Motion

λ1,2 = −12.5727 ± 8.0476 , ζ = 0.8422 , ωn = 14.9277

λ3,4 = −0.1661 ± 1.0612 , ζ = 0.1546 , ωn = 1.0741

λ5,6 = −0.0317 ± 3.5143 , ζ = 0.0090 , ωn = 3.5144

2.5.2 Lateral/Directional Motion

Substituting all the values in Table 2.3 and 2.4 to Eqn.(2.61a), the system matrix A

and control matrix B in the following equation can be obtained for lateral/directional

motion.

ẋ = Ax + Bu (2.70)

where states x = [∆v,∆p,∆r,∆φ,∆rV ,∆ψr], control u = δr and

A =

































−9.0804 8.6462 −37.1133 32.1709 0 −0.2432

−0.4147 −0.1205 −0.0279 0 0 −0.0334

−0.0971 −0.1527 −0.1945 0 0 −0.7074

0 1.0000 −0.0140 0 0 0

−0.0078 −0.0017 −0.0004 0 0 1.4502

0 −0.0719 −1.0000 0 1.0026 0

































(2.71)

B =

































−0.1936

−0.0088

−0.0020

0

−0.0002

0

































(2.72)

Following the same procedure of similarity transformation for modal anaysis and
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with output equation of

y = Cx, C = I ,

the real modal A,B,C matrices for lateral/directional motion are determined to be

Amreal =

































−12.8955 0 0 0 0 0

0 −0.0044 1.3594 0 0 0

0 −1.3594 −0.0044 0 0 0

0 0 0 −0.0417 0.6110 0

0 0 0 −0.6110 −0.0417 0

0 0 0 0 0 −0.1601

































(2.73)

Bmreal =

































0.2673

0.0017

0.0008

0.0003

0.0007

0.0005

































(2.74)

Cmreal =

































−0.9989 −0.8756 0 0.0551 −0.1291 0.0259

−0.0456 0.0477 −0.3671 0.1202 0.0500 0.0940

−0.0114 0.0750 −0.0739 0.0571 −0.1196 −0.5336

0.0035 −0.2694 −0.0334 0.0709 −0.2003 −0.6336

−0.0009 −0.0137 0.0106 0.0300 0.4066 −0.4829

−0.0011 0.0819 0.0676 0.8570 0 −0.2668

































(2.75)

Examining the Am real matrix, there are four, the first and fourth stable mode, the

second and third stable oscillatory mode. As can be seen in the Am real matrix, the

eigenvalues and dynamic properties are summarized in the Table 2.6. The Bm real
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matrix shows all four modes are controllable by the asymmetrical flap input, δr and

the input is mainly effective for the first stable mode and second stable oscillatory

mode. And from the Cm real , side speed or sideslip angle is observed mainly in the

first stable and second oscillatory stable mode in almost same extent, roll rate is

observable in the third stable mode and fourth stable mode and lesser in the first and

second mode. Yaw rate is observed mainly in the fourth stable mode. Bank angle is

observable mainly in the fourth stable mode and lesser in the third oscillatory mode.

Yaw rate of the vehicle is observable in the third oscillatory and fourth stable mode

and the relative yaw angle can be observed strongly in the third oscillatory mode and

lesser in the fourth stable mode .

The inverse modal matrix for lateral/directional motion is presented below show-

ing the relationships between modes and states.































































ξ1

ξ2

ξ3

ξ4

ξ5

ξ6































































=

































−0.9749 0.3577 −2.8732 2.4320 −0.0002 0.0027

−0.0250 −0.3760 2.9618 −2.3778 −0.2623 0.0629

0.0422 −0.9572 0.0397 −0.2510 0.0191 0.1490

−0.0062 0.2795 −0.5952 0.2092 −0.1083 0.9873

−0.0017 0.1349 −0.4936 −0.1473 0.7652 −0.0005

0.0007 0.1608 −0.7311 −0.1471 −0.3070 0.0490































































































v

p

r

φ

rV

ψr































































By examination:

• the first stable mode is composed of only states of the parafoil, primarily yaw

rate, bank angle and some of side speed and lesser roll rate.

• the second oscillatory stable mode is composed of primarily yaw rate and bank

angle and roll rate with amount of about half of yaw rate. Also composed of

almost the parafoil states.

• the third oscillatory stable mode is composed of primarily roll rate of the vehicle

and relative yaw angle and yaw rate with amount of half of relative yaw angle.

• the fourth stable mode is composed mainly of yaw rate and the vehicle’s yaw

rate.



57

Table 2.6 Eigenvalues of Lateral/Directional Motion

λ1 = −12.8955

λ2,3 = −0.0044 ± 1.3594 , ζ = 0.0680 , ωn = 0.6124

λ4,5 = −0.0417 ± 0.6110 , ζ = 0.0032 , ωn = 1.3595

λ6 = −0.1601

The nominal linear model dynamics shows that the relative yaw motion of the

vehicle is oscillatory and slightly stable. For the nominal model with modified U-joint

in Section 2.3.2.2, it is assumed that yaw torque proportional to relative yaw angle

exists and restoring torque model from other factors such as twisted canopy, elastic

suspension lines and risers as well as aerodynamics of the vehicle is not modelled. The

yaw torque model is updated and described at the phase of identification of flight data

to match the time responses between the model and flight data in Chapter V. The

identified model has all the combined effect not accounted in the analytical model as

well as from the relative yaw angle. In general the lateral/directional motion of the

parafoil-vehicle shows the system is stable and oscillatory stable yawing motion of

the hanging vehicle.

2.6 Conclusion

With the approach of Kanian dynamics and using Kane’s equation, 8-DOF nonlinear

equations of motion were derived for the Buckeye parafoil two-body system. To

get neater equations of motion several assumptions were made within the physically

acceptable limitations for practical application. Based on the nonlinear equations of

motion linearized ones were derived for stability and control analysis. The linearized

model was used as a reference model for system identification for flight data later.
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CHAPTER III

SYSTEM IDENTIFICATION METHOD

3.1 Introduction

For identification of the parafoil-vehicle Buckeye system, the Observer/Kalman Filter

Identification (OKID) method was used. OKID, a time domain technique, identifies

a discrete input-output mapping from known input-output data records. Since first

being developed by Juang11,13, 14, 34 in the early 1990’s, the method has been success-

fully employed to identify flexible spacecraft structures12 and aircraft.15 Chen and

Valasek15 applied the method for on-line system identification of six DOF simulated

aircraft dynamics, and found it is suitable for identification of linear aircraft models

even without perfect trim conditions and in the presence of sensor noise. A variant

of this OKID algorithm was applied here to the simulation and the flight test data of

the parafoil-vehicle.

3.2 Observer Kalman-Filter Identification Formulation

The Observer/Kalman Filter Identification (OKID) is an extension of Eigen System

Realization (ERA) which was developed to permit efficient identification of large flex-

ible space structures. The ERA algorithm was extended by Juang and Pappa35 from

Ho and Kalman’s approach36 to system identification using the concept of minimum

realization. The time domain ERA algorithm solves for sampled pulse response his-

tories which is called system Markov parameters. It has been used successfully on

flexible structures,37 and for system with sensor noise.38 But there are two basic lim-

itations of the ERA technique, one is that the initial conditions of the system states

and controls must be zero, and the other is that the perturbed system must decay to

zero in steady-state. Those limitation causes difficulty in practical applications such
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as aircraft system identification. In practical environment of airborne vehicle, the

trim states are usually imperfect with even small atmospheric disturbances like gusts

and turbulence. Additionally, the latter requirement results in not only excessive

input-output data record and storage requirements but also long computing time or

failure to process to invert the large input matrix caused by the long time to decay

to steady-state.

Based on the concept of stochastic Kalman filter estimation and the techniques of

deterministic Markov parameter identification, OKID generates a state-space discrete

linear model representation of the nonlinear system in the time-domain. For lightly

damped systems, like the phugoid mode in the aircraft longitudinal motion, OKID

can artificially improve system damping, thereby making the system deadbeat after

a small number of steps. This significantly reduces the required data record, stor-

age space, and computation time, features which make OKID applicable to lightly

damped system as well as online identification. Nonzero initial conditions on the

states and controls can be easily accommodated with OKID, so the technique is ap-

plicable to flight vehicles. In practice system identification must often contend with

external disturbances. For the specific case of flight vehicle identification the exter-

nal disturbances are typically discrete gusts and stochastic atmospheric turbulence.

As mentioned ideal linear system identification is almost impossible in practice be-

cause external disturbances, often unknown, act on the system. So the accuracy of

the identified model using OKID will depend upon how closely the stochastic distur-

bance approximates the modelled disturbance in OKID. Figure 3.1 shows the process

of OKID algorithm.39

This section starts by reviewing the basic formulation of OKID algorithm. The

discrete-time linear state-space perturbation model of the trimmed nonlinear parafoil-

vehicle dynamics can be represented in the general discrete state-space form:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

(3.1)

where x(k) ∈ R

n
, y(k) ∈ R

m
, u(k) ∈ R

r are states, outputs and control inputs with

dimension of n,m, and r respectively. Following Juang,14 solving for the output
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Figure 3.1 OKID Program Flowchart
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with zero initial condition x(0) = 0 from Eqn. (3.1) in terms of the previous inputs

u(k) (k = 0, 1, 2, · · · , l − 1), yields

x(0) = 0,

y(0) = Du(0);

x(1) = B u(0),

y(1) = CB u(0) + Du(1);

x(2) = AB u(0) + B u(1),

y(2) = CAB u(0) + CB u(1) + Du(2);

...

(3.2)

x(l − 1) =

l−1
∑

i=1

A

i−1
B u(l− 1 − i),

y(l− 1) =

l−1
∑

i=1

CA

i−1
B u(l− 1 − i) + Du(l − 1)

Eqn.(3.2) can be grouped in a matrix form to yield

m×l
y =

Y

m×rl

rl×l

U
(3.3)

where

y = [y(0) y(1) y(2) · · · y(l − 1)]

Y = [D CB CAB · · · CA

l−2
B]

and

U =

























u(0) u(1) u(2) · · · u(l − 1)

u(0) u(1) · · · u(l − 2)

u(0) · · · u(l − 3)

. . .
...

u(0)
























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Eqn.(3.3) is a matrix representaion of the relationship between the input and out-

put time histories. The matrix y is an m × l output data matrx where m is the

number of outputs and l is the number of data samples. The matrix Y , of di-

mension m × rl with r the number of inputs, contains all the Markov parameters

D, CB, CAB, · · · , CAl−2
B, which is to be determined and are commonly used as

the basis to identify mathematical models for linear dynamic systems. Linear state-

space model can then be generated from Markov parmeters using the relation with

Hankel matrix14,15
U . For lightly damped system, however, the slow decaying re-

sponse may produce too large Hankel matrix to solve for its inverse numerically in

practice, and therefore impractically long computation time. The OKID method

overcomes this problem by introducing an observer into the system, which places

eigenvalues as desired. Adding and subtracting an observer term Gy(k) in right side

of the Eqn.(3.1) yields

x(k + 1) = Ax(k) + Bu(k) + Gy(k) − Gy(k)

= (A+ GC)x(k) + (B + GD)u(k) − Gy(k)

which can be written compactly as

x(k + 1) = Āx(k) + B̄v(k) (3.4)

where

Ā = A + GC

B̄ = [B + GD, −G]

v(k) =







u(k)

y(k)







and G is an n × m arbitrary matrix chosen to make the matrix Ā as stable as de-

sired, i.e. place the eigenvalues of Ā to any desired values. Although Eqn.(3.4) is

mathematically identical to Eqn.(3.1), it is expressed using different system matrices

and has a different input. In fact, Eqn.(3.4) is an observer equation if the states x(k)

is considered as an observer state vector. Therefore, the Markov parameters of the
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system in Eqn.(3.4) will be referred to as the observer Markov parameters. Because

the n×m matrix G can be arbitrarily chosen, the eigenvalues of Ā may be arbitrarily

assigned for an observable system. The mathematical development here can be inter-

preted from the point of view of Ref.14,34 as attempting to place all eigenvalues of Ā

at the origin, i.e., a deadbeat observer. This ensures that CĀk−1
B̄ ≈ 0 for k ≥ p in

real data including noise, where p is the number of independent Markov parameters

and sufficiently large integer. Note that v(k) is the input vector for the new observer

system in Eqn.(3.4) and is composed of the nominal system inputs and outputs of

Eqn.(3.1).

For non-zero initial conditions for imperfect trim condition of airborne vehicle

system, the following derivation is used. From Eqn.(3.4), it is easy to show that

x(k + 1) = Āx(k) + B̄v(k),

x(k + 2) = Āx(k + 1) + B̄v(k + 1)

= Ā

2
x(k) + ĀB̄v(k) + B̄v(k + 1),

...

x(k + p) = Āx(k + p− 1) + B̄v(k + p− 1)

= Ā

p
x(k) + Ā

p−1
B̄v(k) + Ā

p−2
B̄v(k + 1)

+ · · ·+ B̄v(k + p− 1)

(3.5)

Using the measurement equation in Eqn.(3.2), yields

y(k + p) = Cx(k + p) + Du(k + p)

= CĀ

p
x(k) + CĀ

p−1
B̄v(k) + CĀ

p−2
B̄v(k + 1) + · · ·

+ CB̄v(k + p− 1) + Du(k + p)

(3.6)

The set of these equations for a sequence of k = 0, · · · , l − 1 can be written as

ȳ = CĀ

p
x + Ȳ V̄

(3.7)
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where

ȳ = [y(p) y(p+ 1) · · · y(l − 1)]

Ȳ = [D CB̄ CĀB̄ · · · CĀ

(p−1)
B̄]

V̄ =

























u(p) u(p+ 1) · · · u(l − 1)

v(p− 1) v(p) · · · v(l − 2)

v(p− 2) v(p− 1) · · · v(l − 3)

...
...

. . .
...

v(0) v(1) · · · v(l − p− 1)

























(3.8)

Note that D CB̄ CĀB̄ · · · CĀ

(p−1)
B̄ are observer Markov parameters, and V̄

is a Hankel matrix. The first term in Eqn.(3.7) represents the effect of the preceding

p − 1 time steps. For the case where Āp is sufficiently small and all the states in

x are bounded, Eqn.(3.7) can be approximated by neglecting the first term on the

right-hand side,
m×l
ȳ = Ȳ

m×[(r+m)p+r]

[(r+m)p+r]×l

V̄

(3.9)

which has following least-squares solution:

Ȳ = ȳ V̄

T [V̄ V̄

T ]−1
or Ȳ = ȳ V̄

† (3.10)

provided that [V̄ V̄ T ]−1 exists, otherwise V̄

T [V̄ V̄ T ]−1 should be replaced by V̄

†,

pseudo inverse of the matrix V̄ . For nonzero unknown initial conditions, Eqn.(3.9)

must be used in order to eliminate the effect of initial conditions because the initial

conditions become negligible when they are multiplied by Ā

p. In other words, the

initial conditions have little effect on the measured data after p time steps.

Now the Markov parameters include the system Markov parameters and the ob-

server gain Markov parameters. The system Markov parameters are used to compute

the system matrices A,B,C, and D whereas the observer gain Markov parameters

are used to determine the observer gain matrix G. System Markov parameters Y can

then be recovered from the observer Markov parameters Ȳ through partition of Ȳ as:

Ȳ = [D CB̄ CĀB̄ · · · CĀ(p−1)
B̄] = [Ȳ0 Ȳ1 Ȳ2 · · · Ȳp] (3.11)
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from which we get observer Markov parameters

Ȳ0 = D

Ȳk = CĀ

(k−1)
B̄

= [C(A+GC)k−1(B +GD) − C(A+GC)k−1
G]

, [Ȳ
(1)
k − Ȳ

(2)
k ]; k = 1, 2, 3, · · ·

(3.12)

Based on the definition of system Markov parameters, we have system Markov para-

meters

Y1 = CB = C(B +GD) − (CG)D

= Ȳ

(1)
1 − Ȳ

(2)
1 D

Y2 = CAB

= Ȳ

(1)
2 − Ȳ

(2)
1 Y1 − Ȳ

(2)
2 D

...

(3.13)

By induction, the general relationship between the actual system Markov parameters

and the observer Markov parameters is

D = Y0 = Ȳ0

Yk = Ȳ

(1)
k −

k
∑

i=1

Ȳ

(2)
i Y(k−i) for k = 1, · · · , p

Yk = −

p
∑

i=1

Ȳ

(2)
i Y(k−i) for k = p+ 1, · · · , ∞

(3.14)

Now the desired discrete system realization [A,B,C,D] is obtained from the system
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Markov parameters using singular value decomposition (SVD) of the Hankel matrix:

H(k − 1) =



















Yk Yk+1 · · · Yk+β−1

Yk+1 Yk+2 · · · Yk+β

...
...

. . .
...

Yk+α−1 Yk+α · · · Yk+α+β−2



















=



















CA

k−1
B CA

k
B · · · CA

β−1
B

CA

k
B CA

k+1
B · · · CA

β
B

...
...

. . .
...

CA

α−1
B CA

α
B · · · CA

α+β−2
B



















(3.15)

It can be proved by observing the Hankel matrix that

H(k − 1) = PαA
k−1

Qβ (3.16)

where

Pα =



















C

CA

...

CA

α−1



















and Qβ =
[

B AB · · · Aβ−1
B

]

(3.17)

For k = 1, using a singular value decomposition yields

H(0) = PαQβ

where block matrix Pα is the observability matrix, whereas the block matrix Qβ is the

controllability matrix. If the order of the system is n, then the minimum dimension

of the state matrix is n× n. Therefore, the Hankel matrix H(0) is of rank n. Based

on the properties of the Hankel matrix composed of the Markov parameters (pulse-

response samples), the ERA is used to compute the three matrices A,B, and C. The

ERA process starts with the factorization of the Hankel matrix by use of SVD:

H(0) = PαQβ = RΣST (3.18)
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where the columns of matrix R and S are orthonormal, and is a rectangular matrix

composed of singular values of the Hankel matrix:

Σ =







Σn 0

0 0






and Σn = diag [σ1, σ2, · · · , σn]

where n is the system order and σi’s are singlar values.

Let Rn, Sn be the matrix formd by the first n columns of R and S respectively.

Hence, the matrix H(0) becomes

H(0) = RnΣnSn , (3.19)

where RT
nRn = I = S

T
n Sn. We can write the equality

H(0) =
[

RnΣ1/2
n

] [

Σ1/2
n Sn

]

∼= PαQβ

Therefore we obtain

B = the first r columns of Qβ

C = the first m rows of Pα

(3.20)

With k = 2 in the Hankel matrix,

H(1) = PαAQβ = RnΣ1/2
n AΣ1/2

n S

T
n

One obvious solution for the state matrix A becomes

A = Σ−1/2
n R

T
nH(1)SnΣ

−1/2
n

(3.21)

As in equations (3.19),(3.20),(3.21), the procedure requires computation of two Hankel

matrices, H(0) and H(1). The identfied system matrices are

A = Σ−1/2
n R

T
nH(1)SnΣ

−1/2
n

B = the first r columns of Qβ = Σ1/2
n S

T
nEr

C = the first m rows of Pα = E

T
mRnΣ1/2

n

D = Y0

(3.22)

where E

T
m = [Im 0m · · · 0m] , E

T
r = [Ir 0r · · · 0r] and Ii, 0i are identity and null

matrix of order i respectively.
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3.3 OKID under Disturbance

In practical applications such as the aerial vehicle system identification in this flight

test research, the outputs usually include sensor noises and disturbance effects as well

as pure system outputs produced by given inputs. For identification from disturbance

contaminated input-output time responses, Juang, Phan and Goodzeit et al.16,17, 40

expanded OKID for system identification with unknown disturbances. Valasek and

Chen15 applied this version to nonlinear aircraft with disturbances. Consequently

Goodzeit’s approaches converge to a result saying that ”despite the unknown distur-

bances altering the autoregressive moving average model with exogenous input (ARX)

model coefficients, the system Markov parameters can still be recovered exactly as if

the disturbances were not present”. From these Markov parameters one can obtain a

minimum-order state-space realization then can predict the disturbance-free response

to arbitrary inputs.

From the derivation in Section 3.2, the system input and output relationship

can be expressed by the following recursive finite-difference equation, known as the

autoregresive model with exogenous input (ARX):

y(k) = −Ȳ
(2)
1 y(k − 1) − Ȳ

(2)
2 y(k − 2) − · · · − Ȳ

(2)
p y(k − p)

+ Ȳ0 u(k) + Ȳ

(1)
1 u(k − 1) + · · ·+ Ȳ

(1)
p u(k − p)

(3.23)

where Ȳ
(1)
i , Ȳ

(2)
i are defined as in Eqn.(3.12). This equation says the current out-

put y(k) can be expressed by the current input u(k), p past control inputs u(k −

1), · · · , u(k − p) and system outputs y(k − 1), · · · , y(k − p). Following Juang and

Goodzeit’s approach, we define the periodic disturbance effect term η(k) and it’s

auto-regressive model with order τ ,

η(k) = γ1 η(k − 1) + γ2 η(k − 2) + · · ·+ γτ η(k − τ) (3.24)

where the disturbance order τ is arbitrary to express the disturbance effect assuming

that all periodic disturbance can be represented as combinations of a simple periodic

disturbance such as sine wave. If there are f distinct frequencies present in the

disturbances, then τ is 2f or 2f + 1, depending on whether any disturbance has
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nonzero mean. Current output with the periodic disturbance becomes:

y(k) = −Ȳ
(2)
1 y(k − 1) − Ȳ

(2)
2 y(k − 2) − · · · − Ȳ

(2)
p y(k − p)

+ Ȳ0 u(k) + Ȳ

(1)
1 u(k − 1) + · · ·+ Ȳ

(1)
p u(k − p) + η(k)

, α1 y(k − 1) + α2 y(k − 2) + · · ·+ αp y(k − p)

+ β0 u(k) + β1 u(k − 1) + · · ·+ +βp u(k − p) + η(k)

(3.25)

By substituting Eqn.(3.24) into Eqn.(3.25), we have

y(k) − γ1 y(k − 1) − γ2 y(k − 2) − · · · − γτ y(k − τ)

= α1 y(k − 1) + α2 y(k − 2) + · · · + αp y(k − p)

+ β0 u(k) + β1 u(k − 1) + · · ·+ βp u(k − p) + η(k)

− γ1[α1 y(k − 2) + α2 y(k − 3) + · · · + αp y(k − p− 1)

+ β0 u(k − 1) + β1 u(k − 2) + · · ·+ βp u(k − p− 1)] − γ1 η(k − 1)

− γ2[α1 y(k − 3) + α2 y(k − 4) + · · · + αp y(k − p− 2)

+ β0 u(k − 2) + β1 u(k − 3) + · · ·+ βp u(k − p− 2)] − γ2 η(k − 2)

...

− γτ [α1 y(k − τ − 1) + α2 y(k − τ − 2) + · · ·+ αp y(k − p− τ)

+ β0 u(k − τ) + β1 u(k − τ − 1) + · · ·+ βp u(k − p− τ)] − γτ η(k − τ)

(3.26)
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Expanding above equation yields

y(k) = (α1 + γ1) y(k − 1) + (α2 + γ2 − γ1 α1) y(k − 2)

+ (α3 + γ3 − γ1 α2 − γ2 α1) y(k − 2) + · · ·

+ (αp + γp − · · · − γp−2 α2 − γp−1 α1) y(k − p)

+ (γp+1 − γ1 αp − γ2 αp−1 − · · · − γp α1) y(k − p− 1)

+ (γp+2 − γ2 αp − γ3 αp−1 − · · · − γp+1 α1) y(k − p− 2) + · · ·

+ (−γτ−1 αp − γτ αp−1) y(k − p− τ + 1)

+ (−γτ αp) y(k − p− τ)

+ β0 u(k) + (β1 − γ1 β0) u(k − 1) + (β2 − γ1 β1 − γ2 β0) u(k − 2) + · · ·

+ (βp − γ1 βp−1 − γ2 βp−2 − · · · − γp β0) u(k − p)+

+ (−γ1 βp − γ2 βp−1 − · · · − γp−1 β0) u(k − p− 1) + · · ·

+ (−γτ βp) u(k − p− τ)

(3.27)

Note that the disturbance terms η(k), · · · , η(k − τ) were cancelled out, so we don’t

need to worry about the disturbance term from now on. From above derivation, one

obtains the input-output model of the following form

y(k) = ᾱ1 y(k − 1) + ᾱ2 y(k − 2) + · · · + ᾱp+τ y(k − p− τ)

+ β̄0 u(k) + β̄1 u(k − 1) + · · · + β̄p+τ u(k − p− τ)

(3.28)
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where the output coefficients are

ᾱ1 = α1 + γ1

ᾱ2 = α2 + γ2 − γ1 α1

...

ᾱp = αp + γp − · · · − γp−2 α2 − γp−1 α1

...

ᾱp+τ = −γτ αp

(3.29)

and the input coefficients are

β̄0 = β0

β̄1 = β1 − γ1 β0

...

β̄p = βp − γ1 βp−1 − · · · − γp β0

...

β̄p+τ = −γτ βp

(3.30)

By assuming that measurements of u(k) and y(k) are available for k = 0, 1, · · · , l− 1

and defining ζ = p+ τ , the model coefficients matrices can be calculated by following

the same procedures in Section 3.2. Note that the order of the system increases from

p to ζ = p+ τ . Let the (m+ r) × l vector v(k) be defined as

v(k) =







y(k)

u(k)






, k = 0, 1, · · · , l − 1 (3.31)

Equation (3.28) produces the following matrix equation:

[y0 y] = θ[V0 V ] (3.32)
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where

y0 = [y(0) y(1) · · · y(ζ − 1)] ,

y = [y(ζ) y(ζ + 1) · · · y(l − 1)] ,

θ =
[

β̄0 (ᾱ1 β̄1) · · · (ᾱζ−1 β̄ζ−1) (ᾱζ β̄ζ)
]

,

V0 =

























u(0) u(1) · · · u(ζ − 1)

0 v(0) · · · v(ζ − 2)

...
...

. . .
...

0 0 · · · v(0)

0 0 · · · 0

























,

V =

























u(ζ) u(ζ + 1) · · · u(l − 1)

v(ζ − 1) v(ζ) · · · v(l − 2)

...
...

. . .
...

v(1) v(2) · · · v(l − ζ)

v(0) v(1) · · · v(l − ζ − 1)

























.

(3.33)

For tests starting with some transient response, y0 and V0 are deleted under the same

condition for identifying the observer Markov parameters with a deadbeat observer as

in Eqn.(3.7),(3.8), and the observer Markov parameter θ from disturbance-corrupted

input-output data can be

θ = y V̄

+ (3.34)

The data set must be sufficiently long so that one has at least as many equations as

the number of unknowns, and more to average out the effect of noise. Furthermore,

the excitation input must be sufficiently rich so that the rows of the input data in V

are full rank.

From the definitions in Eqn.(3.12), (3.25) and the observer Markov parameters

θ in Eqn.(3.29), (3.30), one can derive the system Markov parameters and the state-

space model as follows: Since the first input coefficient is simply the direct trans-

mission term in the equivalent state-space model, and thus is equal to the system
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input-output matrix D:

D = Y0 = β0 = β̄0 = Ȳ0 (3.35)

Now the system Markov parameters can be fully recovered from the observer Markov

parameters in the same way described in Section 3.2 by replacing p to ζ = p +

τ . In the following equations, Yi denotes system Markov parameters, [ β̄i ᾱi] are

disturbance-corrupted observer Markov parameters, and [ Ȳ
(1)
i − Ȳ

(2)
i ] , [βi αi] are

the disturbance-free observer Markov parameters. From Eqn.(3.13),(3.14),(3.29) and

(3.30) one can find the relationship between the Markov parameters such that

Y1 = Ȳ

(1)
1 − Ȳ

(2)
1 Y0

= β1 + α1 Y0

= (β̄1 + γ1 Ȳ0) + (ᾱ1 − γ1) Y0

= β̄1 + ᾱ1 Y0

(3.36)

where the terms involving the disturbance coefficients γi cancel themselves out and

thus makes the expression for the system Markov parameters from the disturbance-

corrupted coefficients be identical with those from the disturbance-free coefficients.

In the same fashion, one obtains the expression for the system Markov parameters in

the general case,

D = Y0 = Ȳ0 = β̄0

Yk = Ȳ

(1)
k −

k
∑

i=1

Ȳ

(2)
i Y(k−i)

= β̄i +

k
∑

i=1

ᾱi Y(k−i) for k = 1, · · · , ζ

Yk = −

p
∑

i=1

Ȳ

(2)
i Y(k−i)

=

p
∑

i=1

ᾱi Y(k−i) for k = ζ + 1, · · · , ∞

(3.37)

From the derivations above, despite unknown disturbances altering the ARX

model coefficients, the system Markov parameters can still be recovered exactly as if
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the disturbances were not exist. Once we get the system Markov parameters we can

get a minimum-order state-space realization by following the same ERA procedure

described in Section 3.2.

If we approximate a random disturbance as a very large order periodic distur-

bance, we can apply periodic disturbance OKID method to system identification with

an arbitrary disturbance.

3.4 Conclusion

In this chapter, equations for a time-domain identification algorithm OKID have been

presented. This algorithm has been shown to be useful and effective for identifying

linear system matrices from input-output time histories of nonlinear systems under

disturbance in several research applications. The main features of OKID are:

• Time domain method

• Nonzero initial conditions

• Arbitrary multiple inputs and outputs

• Observer effectively increases damping

– Permits shorter data record

– Compresses number of required Markov parameters

– Smaller Hankel matrix → Reduced computational effort

• Works well for lightly damped systems (full decay not necessary)

• Observer gain G is obtained directly, and can be used to arbitrarily place system

poles

And the derivation of periodic disturbance OKID shows that the system Markov

parameters can be recovered from disturbance-corrupted input-output data and then

minimum-order state-space realization can be achieved.
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CHAPTER IV

EXPERIMENT DESIGN

4.1 Introduction

Testing airborne vehicle is a complex and interrelated process. Generally there are

three main factors in flight test planning, which are safety, cost and schedule men-

tioned in Ward’s.41 As the flight tests for identification are inserted between PGNC

tests all the PGNC standard operation procedures are complied for safety and ef-

ficiency. And there are not enough data parameters with high sample rate for the

identification test, necessary data acquisition subsystems are chosen and acquired at

minimal cost for the test. As the identification test has lower priority than PGNC

test the test schedule depends on that of NASA’s PGNC test. Several clean runs are

expected for the identification test.

To accomplish the research objectives of modelling and it’s verification from flight

tests, all states used to define the analytical model should be recorded from flight

tests. From Chapter II, there are 12 of states and two control inputs to construct

longitudinal and lateral/directional linear models of the Buckeye. Some of them are

measured directly from flight tests, and some are calculated by kinematic equations

using measured ones. In this chapter, all the prerequisite work and analysis prior

to flight test for proper data acquisition is described. It can be categorized in three

broad areas as follows: sensors provision for data acquisition systems description;

validation of OKID algorithm on the simulated data; and flight test design using a

simulation study.
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4.2 Data Acquisition System and Installation

To describe the dynamics of the airborne vehicle from flight test, appropriate data set

representing the dynamic behavior should be acquired through the tests. It means

that the dynamic description should be observable, and appropriate sensors should

be provided for the data acquisition. Necessary hardware provisions (including sensor

installations) are limited because the existing hardware capability for data handling

should impact the test vehicle as little as possible.

As shown in Chapter II all longitudinal and lateral/directional modes are observ-

able and controllable in the Buckeye parafoil-vehicle’s two-body dynamics. Natural

frequencies of oscillatory modes of each motion are 14.93 rad/sec and 1.36 rad/sec for

longitudinal and lateral/directional respectively. Thus the frequency of the highest

oscillatory motion is 2.38 Hz. To avoid aliasing and to detect all the motion including

un-modelled or unexpected dynamics with the existing hardware capability, nominal

data acquisition frequency of 25 Hz - greater than 10 times the highest frequency -

was used.

The data types to be acquired from the Buckeye can be categorized by data

properties and required sensor types as follows.

• air data: static and dynamic pressure; airspeed; angle-of-attack; and sideslip

angle of the hanging vehicle

• inertial measurements: attitudes; accelerations; and body rates of the hanging

vehicle

• parafoil inertial measurements: attitudes; accelerations; and body rates of the

parafoil

• vehicle status: control inputs; engine rpm; and positions on Earth including

altitude etc.

For the identification three data acquisition subsystems were added to the exist-

ing system. Position data from existing Global Positioning System (GPS) and other

vehicle status data at low sampling rates for PGNC tests are not used for identifica-

tion. Thus the added three subsystems are described in the following subsections.
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4.2.1 Air Data sensor

There is a pitot tube in the original Buckeye system to provide speed data as a PGNC

parameter. It is located at about 5 inches in front of the computer box where the

flow is affected by the interference with the box and other strut and frames. Thus it’s

reduced speed can be affected by the attitude change of the vehicle. It is determined

not suitable to be used for identification. It’s data acquisition rate is about 5 Hz and

it is much less than the required acquisition rate which should reflect dynamics for

identification purpose. Practically the angle-of-attack and sideslip angle are required

to measure and extra vanes are needed if the probe is used. So a Multifunction probe

was acquired to provide accurate data at high sampling rate. The original pitot tube

was used for initial calibration stage of the multifunction probe.

To prevent additional cost and efforts for a hardware provision such as a vane

type or differential pressure type for flow angles, a 5-hole multifunction probe42 man-

ufactured by Aeroprobe Corporation (Figure 4.1) was used. It can measure pressure

data as well as flow angles at the same time. In addition to the multifunction ca-

pability, it avoids much of the time-delay caused by the pneumatic delay inside the

probe. It gives a quick response time for flow property variations at frequencies up

to 100 Hz.42 It was modified for the Buckeye application and installed in front of the

hanging vehicle so as to clear the aerodynamic interference of the vehicle (Figure 4.2).

The closeup of the probe tip in the inset of Figure 4.2 shows the 5-hole locations.

The technical specification is summarized in Table 4.1.

In general the multifunction probe is calibrated in a wind tunnel varying flow

speed and angles at the manufacturing stage. The calibration data is used for reduc-

tion of flow magnitude and direction, total and static pressures, Mach and Reynold’s

number ad fluid properties like density and viscosity from the recorded data.43 Once

it is calibrated, there is no need to recalibrate unless the aerodynamic shape of the

tip is altered.43 To use the probe for the Buckeye test, several in the field calibration

tests were conducted for the verification of sensor performance and the operational

temperature effects.44 The initial conditions for every test are recorded at the very

first stage of each test for the ambient pressure and temperature. The data is used
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Table 4.1 Technical Specification of Multifunction Aeroprobe

Range Operational

Sample Rate Speed Flow Direction Vibration Temperature

100 Hz 20 - 60 Kts ±60deg ±4g 20-100 ◦
F

during the reduction later. The data from the probe is saved in the onboard Flight

Computer (ACP) and downloaded after flight tests. Depending upon workload of the

ACP, the data is saved at a variable update rate of 55-60 Hz. To protect the probe

from unexpected roll-over incidents during take-off and landing, a roll-bar and dorsal

beam were installed to provide clearance from the ground (Figure 4.2).

4.2.2 Inertial Measurement Unit

To measure attitudes and body rates, an Inertial Measurement Unit (IMU)45 manu-

factured by Watson Industries, Inc. was installed near the C.G. on the floor of the

hanging vehicle of the Buckeye (Figure 4.3). The weight of the IMU is less than 4

lbs and it can survive in 600 g’s shock. Operational temperature ranges from -30 ◦
C

to 71 ◦
C. The sensor technical specification of the IMU is summarized in Table 4.2.

The data is saved in the ACP at 35 to 37 Hz depending on the workload of the ACP.

Table 4.2 Technical Specification of IMU

Angular Rates Accelerations Attitude

Range ±100◦/sec ±2 g’s ±60◦

Resolution < 0.02◦/sec 1 mg 0.09◦

Bandwidth > 70 Hz

Bias < 0.1◦/sec < 20 mg

Frequency Response 20 Hz 20 Hz
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Figure 4.1 5-Hole Multifunction Aeroprobe, Courtesy of Aeroprobe Corp.
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Figure 4.2 5-Hole Multifunction Aeroprobe Installed on Buckeye
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Figure 4.3 Inertial Measurement Unit Installed on Buckeye
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4.2.3 Sensors for Parafoil Motion

The multifunction probe and IMU installed on the vehicle are limited to providing

data for the parafoil itself. Since it is essential to measure parameters of the parafoil

in this research, several techniques were investigated. Measuring the parameters of

the parafoil was challenging because the parafoil is made of fabric cloth. Some pro-

posed techniques for measuring the relative heading angle between the parafoil and

hanging vehicle were an optical data acquisition system such as a video camera7,8 and

the VisNav18 sensor. The former was not adopted as it requires special video analysis

software with excessive post processing and limited usage (it supplies only relative

heading). The VisNav sensor can produce both pitch and yaw information simulta-

neously but, a unit was not available for testing. Therefore a new data acquisition

system was considered and installed in the parafoil prior to the flight tests.

Four main requirements were considered to design the system. First of all, as it

must be installed in the parafoil it must weigh as little as possible. Thus number of

units and weight should be minimized, and the configuration shouldn’t deform the

aerodynamic shape when the parafoil is opened. Second, as there are no hard places

to install the sensors, a special installation technique is required. Third, the system

should survive repeated possible impacts when the Buckeye lands and the parafoil

falls down on the ground. Last, data acquisition rate should be high enough to supply

sufficient data for analysis.

4.2.3.1 Accelerometers

Based on the requirements, small Crossbowr accelerometers and a Bluetoothr wire-

less data acquisition system including the Valitecr ReadyDAQ AD2000 Data Logger

was selected for the parafoil data acquisition. The onboard sensor package is com-

posed of two 1-axis (CXL02LF1) and two 3-axis (CXL01LF3) accelerometers and a

remote transmitter (Figure 4.4) that weighs 2.7 lbs including cables, connectors and

two batteries. Accelerometers were carefully sewn in the canopy of the parafoil (Fig-

ure 4.5). The sensitive axes of the accelerometers were aligned to directions of the
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Figure 4.4 Accelerometers and Remote Data Transmitter on the Parafoil
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Figure 4.5 Accelerometers and Data Transmitter Locations on the Parafoil

parafoil body axes. To minimize the dynamic effect due to weight increase of the

parafoil, the box housing remote transmitter and power supplier was installed at the

C.G. of the parafoil. The remote data receiver and logger were installed on the vehicle

to save data from possible crashes during take-offs and landings for repeated tests.

The accelerometer outputs are 3-axes accelerations which are integrated to 3-axes

velocities of the parafoil. The specifications of the CXL01LF3 and two CXL02LF1

Crossbow accelerometers are given in Table 4.3.

4.2.3.2 Wireless Data Acquisition System

Since it is not practical to connect wires from the sensors on the parafoil to data

acquisition system on the Buckeye vehicle, a wireless data acquisition system was de-

signed. Because the existing hardware capacity is limited for further data acquisition

expansion, an independent data acquisition system was adopted. It is composed of

a Crossbow WSC-100 wireless transmitter, receiver, and Valitec data logger. The
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Table 4.3 Technical Specification of Accelerometers on the Parafoil



86

wireless smart I/O modules provide 8 channels of data stream with a range of 100

ft across a 2.4 GHz Frequency Hopping Spread Spectrum to prevent frequency in-

terference. The I/O module can transmit at a maximum rate of 100 Hz with 12-bit

resolution. The Valitec AD2000 data logger, can save data at rates up to 500 Hz with

a serial cable connected to the receivers. In the configuration used in this research,

the acquisition rate was set to 25 Hz considering for reasons of the flight time, power

consumption of remote sensor package, and saving capability of the logger.

4.2.4 Multi-rate Data Acquisition

As described in above, data acquisition systems were added to the existing Buckeye

data acquisition system which was originally designed for NASA’s PGNC testing,

which required only a low rate data stream and small data storage. Nominal data

acquisition rates are 5 Hz for PGNC parameters, and 1 or 2 Hz for general vehicle

parameters and GPS data. For these reasons data acquisition systems for the purpose

of system ID were designed and added within the limits of the expandable capacity

of the existing hardware. This situation mandated different rates for each subsystem

and the need for synchronization for later use. The synchronization of the data stream

is described in Chapter V. The subsystems sample rates are summarized below:

• Air Data: around 59 Hz depending on the ACP workload

• IMU: around 36 Hz depending on the ACP workload

• Parafoil accelerometers: 25 Hz constant

• Control input 5 Hz, GPS: 2 Hz from nominal system

4.3 OKID Application for Nonlinear Simulation Data

A nonlinear, non real-time eight DOF simulation for the Buckeye parafoil-vehicle

is used to generate appropriate input amounts for flight test applications, and to

generate time histories for the OKID identification routine. During the simulation

states and controls are integrated at 50 Hz and stored at 25 Hz like flight data with

inputs. The input amplitudes and durations must excite the dynamics modes, but
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prevent the system from going unstable. A controllability and observability analysis

was done using an identified state-space linear model to confirm and verify the result

with the analytical model. The nonlinear simulation code used in this research is

Parafoil Dynamic Simulator (PDS) supplied from NASA. A full descriptions of the

PDS nonlinear simulation is provided in Appendix D.

4.3.1 Identified Linear Model and Time Histories

As shown in the following figures, the PDS nonlinear simulation starts at some fea-

sible arbitrary initial flight conditions and settles to steady-state after some time.

After it stabilizes, a small amount of input (symmetric for longitudinal and asym-

metric for lateral/directional) is applied for two seconds to excite the dynamic modes.

The resulting inputs and outputs are then fed to the OKID routine. The following

figures show the accuracy of the identified linear model by comparing the nonlinear

simulation histories and linear model simulation with the same inputs. Results from

the longitudinal identification in Figure 4.6 demonstrate that the OKID local linear

model approximates the nonlinear dynamics very well. Figure 4.7 shows that the

lateral/directional identification results of the OKID model follow the responses of

the nonlinear model quite closely.

4.3.2 Input Survey through Simulation Analysis

Figure 4.8 shows that the identified linear model comes short of representing the large

input nonlinear dynamic responses because the applied input is beyond the linear

range of the identified model. Figure 4.9 shows the effect of an excitation control

input for the same flight condition. It implies that inputs causing large perturbations

can adversely affect the fidelity of identified linear model. For flight test application,

the magnitude of the inputs should be scaled properly for better identification.
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4.4 Flight Test Design

All information from the simulation study and previous flight testing experience was

considered to design the test. Simulation study of the Buckeye parafoil-vehicle enables

us to validate the performance of OKID, help select appropriate inputs for flight test,

and indicates flight characteristics of the parafoil-vehicle. As described previously the

Buckeye has only three control devices consisting of this left and right trailing edge

flaps and engine rpm. For gliding flight dynamics to be identified, only two controls

are available, the left and right trailing edge flaps. These controls are not sufficient

to stabilize the Buckeye at desired trim point as for conventional aircraft. With

change of the flaps the gliding attitude and corresponding sink rate can be controlled.

For the Buckeye flight test the flaps are set to zero at initial and the parameters

for trimming converges to a trim point for given weight and C.G. condition while

gliding without input change. As noted from the simulation study, long stabilized

flight is required before input initiation even without atmospheric disturbance. As

atmospheric disturbance can affect the equilibrium state significantly, test date and

time should be chosen carefully with long stabilization flight for test. In designing

the flight test several assumptions are made as follows:

• Parafoil is a rigid body; No elastic effect

• Vehicle starts perfectly trimmed condition

• No distortion effect from location of aeroprobe

• Parafoil sideslip angle is calculated from speeds integrated from accelerations

• Multi-rate sampling will be sufficient

• IMU is located at C.G. of the vehicle as close as possible

• Number of accelerometers on the parafoil are sufficient; Two for X, Y axis, 4

for Z axis

• 25 Hz of the parafoil sensor sampling rate is enough based on analytical model

• 5 Hz of control input sampling rate is enough
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4.4.1 Test Procedures

The identification flight tests were conducted during routine PGNC tests, all PGNC

standard operating procedures for operation were used.44 General procedures for

PGNC test flights are as follows:

1. Preflight check

2. Take-off and climb for altitudes. Usually 1500 to 2000 ft AGL.

3. Engine off gliding for PGNC test with ”Auto” or ”Manual”

4. At predetermined safe altitude, engine restart and climb

5. Repeat step 2 to 4 for tests within the endurance limit

6. Land and data archiving

The identification flight tests were inserted between step 2 to 4 in place of the PGNC

flight. Procedures for identification tests consisted of the following:

1. Stabilization flight

At altitude with engine-off, let it glide for a while enough to be stabilized. Based

on the simulation study it should be at least 30 seconds without disturbance

and any input. In practice with disturbance 50 seconds looked appropriate.

Longer time limits maneuvering altitudes.

2. Input commands

After stabilization flight, put predetermined inputs at the PGNC input note-

book computer in the ground station manually. Automatic input was not pro-

vided due to resource limit of computing power.

3. Input commands for validation data for ID

About 20 seconds following Input commands, apply another small inputs. This

tie histories used to validate the linear model identified from the first input

command.



94

4.4.2 Test Inputs

An infinite number of inputs could be used for the test but one must consider how

open loop dynamics can be excited first.41 There mentioned three types of control

inputs for airplane dynamic flight test in Ref.41. Unlike for airplanes the control

input of the parafoil is limited to only downward deflection of the trailing edge flap.

Thus step input or pulse (singlet) input are candidates for control input. During flight

tests the input commands are exerted by discrete key stroke command with ground

station notebook computer manually. From the nonlinear simulation study and OKID

applications small pulse inputs of less than 30 percentage of full control authority

appear good enough to stimulate dynamic modes. It is supposed to generate responses

be distinguished from those due to small disturbance excitation and stimulate the

open loop dynamic without much of nonlinear effect. For longitudinal motion a

symmetric flap input of two to three seconds were applied and asymmetric left pulse

flap followed by right pulse flap inputs were applied for lateral/directional motion. A

typical input history is shown in Figure 4.10.

4.4.3 Flight Tests

For NASA’s PGNC tests there have been more than 35 flights since Oct. 18th, 2001 in

the Flight Test Facility of Flight Mechanics Laboratory of Texas A&M University.44

As part of the flight tests, 7 system identification flights were conducted from July

2003 to July 2004.

The Buckeye-parafoil system does not fly like other powered airplanes or pow-

ered ultralights during gliding. While gliding it is very vulnerable to atmospheric

disturbances and the gliding speed is almost the same order of magnitude as most

atmospheric disturbances. To remove any unexpected/undesirable disturbance ef-

fects including turbulence, test flights were supposed to be conducted during calm

conditions. But despite of careful selection of the test date, it was inevitable to have

disturbances, and this resulted in disturbance-corrupted data on most of the flights.

On the Buckeye there are only two control inputs, symmetrical trailing edge flap



95

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

time [sec]

fla
p 

in
pu

t [
%

]

Symmetrical input for longitudinal

left
right

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

time [sec]

fla
p 

in
pu

t [
%

]

Asymmetrical input for lateral/directional

left
right

Stabilization flight w/o input 

excitation for ID excitation for validation 

Stabilization flight w/o input 

excitation for ID excitation for validation 

Figure 4.10 Typical Input Shapes for Identification Test

for longitudinal, and asymmetrical trailing edge flap for lateral/directional motion

respectively during power-off gliding. Precise trim for general aircraft requires many

parameters to be steady-state and can be achieved with 3-axis controls and power.

But for gliding Buckeye, there are limited trim points which can be achieved with

two controls. With zero deflection of flaps and no power with given weight and C.G.

condition, there is one trim point during gliding flight. At the trim point, all body

rates are zero, all three axis speeds are constant. With it’s slow flight speed it is

very sensitive to atmospheric disturbance, which can prevent the Buckeye from being

trimmed in short time. So unusual trimming technique was adopted for the Buckeye

and it was allowed to dynamically settle before committing input commands. The

settling time depends upon atmospheric conditions, and was selected to be around 30

to 50 seconds based on the nonlinear simulation and previous flight experience with

the Buckeye.

All test runs are summarized in Table 4.4. There are 42 runs of test maneuvers,
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including 19 longitudinal and 23 of lateral/directional shots during the tests. From

the flight data most of runs are corrupted by disturbances and in many cases the flight

histories show bigger responses even without control inputs than those due to inputs

and can not be stabilized within a reasonable time. It is supposed to be corrupted by

disturbance such as discrete gusts which can not be represented by combinations of

periodic disturbance in OKID routine. Showing all the time histories determined not

to be suitable for inputs for identification in this dissertation are lengthy and tedious,

comments are put in the ”Remarks” column in the table. Additionally malfunctions of

the sensor packages occurred on some flights. In Table 4.4 the run ID’s are designated

as three digit numbers. The first digit of the run ID is 1 for longitudinal and 2 for

lateral/directional test and the rest two digits are numbered sequentially.

4.5 Conclusions

Data acquisition system for identification of the Buckeye system were designed and

described in detail. Being composed several independent subsystem, it provides useful

data stream for the dynamic parameters of the Buckeye system. It is noteworthy that

relatively simple and low cost system was constructed as data acquisition system for

the parafoil parameters.

Computational simulations were performed to evaluate proposed OKID routine

for identification of the Buckeye parafoil-vehicle. The various simulation analyses

prove that the identified linear model follows the nonlinear results very well for given

input commands even for large inputs which can cause nonlinear responses not imple-

mented in the OKID linear model. The results proves that OKID routine is suitable

for identification of the linear system from nonlinear dynamic motions of the Buckeye

parafoil-vehicle.

The OKID application study for the simulation results with various input shapes

gives intuitions on the input shape. Typical input commands are designed for the

identification test.
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Table 4.4 Flight Test Log for Identification

Flight ID Run ID Run Time (sec) Input Remarks
(Date) Start Input Stop

B34 101 1781.5 1793 1820 pulse

(7/24/03) 201 2322 2340 2356 -

202 2381 2404 pulse

203 3011 3026 3045 -

102 3062 3072 3077 -

103 3077 3083 3087 -

204 3087 3093 3112 -

205 3124 3130 3145 -

104 3936 3944 3949 pulse

206 3949 3956 3972 -

105 4002 4009 4014 pulse

207 4015 4020 4031 pulse

208 4031 4038 4047 pulse

209 4048 4054 4066 -

B35a 106 5346 5373 5385 pulse

(8/1/03) 107 6446 6470 6507 pulse
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Table 4.4 Continued

Flight ID Run ID Run Time (sec) Input Remarks
(Date) Start Input Stop

108 6540 6560 6570 pulse

210 7575 7620 -

109 7650 7705 -

110 7700 7720 -

B35b 211 2112 2210 pulse

(8/1/03) 111 2197 2230 -

212 3746 3780 -

213 3780 3805 -

214 3835 3865 -

215 3887 3915 -

112 3945 3975 - 9”, 5sec

113 4736 4765 - 8”, 5sec

B37 114 1733 1765 1780 -
1780 1790

(10/1/03) 216 2385 2415 2430 pulse

217 3257 3310 3325 -
3330 3342

115 3362 3396 3405 -
3411 3420

218 4320 4381 4392 6” pulse
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Table 4.4 Continued

Flight ID Run ID Run Time (sec) Input Remarks
(Date) Start Input Stop

219 4402 4422 4” pulse

116 4412 4422 4480 6” step
4480 4520 - no input

B41 - 2328 2379 2420 pulse

(12/19/03) - 3266 3318 3363 pulse probe

- 3800 3853 3895 pulse mal-function

- 4610 4665 4708 pulse

- 5142 4192 5230 pulse
5232 5258 10.5” pulse

B43 117 2922 2930 2936 pulse

(7/19/04) 118 2936 2949 2985 random

119 3004 3028 3049 pulse

220 3870 3924 3945 random

221 3945 3953 3965 pulse

222 3965 3975 3987 pulse

223 3987 4010 4047 pulse

B44 - 10690 - 13458 - probe
mal-function
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CHAPTER V

IDENTIFICATION RESULTS FROM FLIGHT TEST DATA

5.1 Introduction

In this chapter, flight test preparations, actual tests, and data saving are described

including data reductions. Reduced data were applied to identification routines and

its results are presented in the form of mathematical models, descriptions and figures.

Finally the identified model from flight data is compared with the analytical model.

5.2 Data Reduction

To construct data sets for identification tests, all of the raw data was reduced by

postprocess consisting of filtering and interpolation. All reduction was performed as

carefully as possible so as not to affect the original dynamic properties of the data.

Reduction procedures are described in following in detail in subsections.

5.2.1 Air Data

Air data including speeds and flow angles were constructed by postprocessing raw

pressures of the 5-hole multifunction probe. The postprocessing code and calibration

equations for of the multifunction probe were provided by the manufacturer, Aero-

probe Inc. Technical development and calibration methods are described in detail in

Johansen’s thesis43,46 and paper.47 Reduction procedures in Ref. 44 are followed.

The raw pressure data was converted to velocity and flow angle data with engi-

neering units through the reduction code Multiprober. As can be seen in Figure 5.1,

typical airdata has noise and must be filtered to be useful for identification. The con-

verted probe parameters in the legend box are defined in Figure 5.2 representing the
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pitch, sideslip, roll, cone angles and 3-axis speed u, v, w with total velocity V magap.
42

The subscript ”ap” says it is a probe data.

Figure 5.2 Coordinate Definition for Multifunction Probe

To remove high frequency noise we need a low pass filter that removes all the

data points that respond at frequencies higher than the cutoff frequency while keeping

the response with lower frequencies than the cutoff frequency.48 The cutoff frequency

was selected from the analysis of the data’s power spectral density. A power spectral

density from Fast Fourier Transform of a typical data stream reveals that how much of

the data responds at a particular frequency48 (Figure 5.3). One can decide significant

frequencies to be included in the filtered data. From Figure 5.3, the aeroprobe data

is almost near the very low frequency and magnitudes of the spectral density over

bigger frequencies are very small (around 10−4 times) with respect to the magnitude

at the very low frequency. It means that most of signals are coming from noise except
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system’s dynamic response. Thus the cutoff frequency for the low pass filter is selected

to remove high frequency noise. The cut-off frequency was selected by trial and error

method with ”buttord.m” in Matlabr to have minimal distortion for filtered data

with respect to original ones. For the probe data the cut-off frequency 0.3 Hz as 3

dB frequency was selected. There are several low pass filters such as Chebyshev type

I, type II, Butterworth, Elliptic etc. and a Butterworth filter used for parafoil data

processing during the parafoil tow test in Ref.49 was selected because it smoothed

the data with minimal distortion as well as is convenient to use. As the filter is to

be used for off-line signal processing, mathematical complexity such as higher order

of the filter was allowed. To remove the undesirable time shift that typically occurs

during filtering, the Matlabr command ”filtfilt.m” which filters data forward and

backward to remove time shift was used.48 The designed filter properties in frequency

domain are shown in Figure 5.4. In Figure 5.5 the filtered data stream shows good

matches compared to the unfiltered ones. The roll angle histories from the probe

shows some peaks after 3040 seconds and it corresponds to fluctuation by power-on

of the Buckeye. Power-on data were not used for identification. The power effect can

be seen clearly from probe pitch angle (vehicle’s angle-of-attack, refer definition in

Fig.5.2) which decreases on the first chart in Figure 5.5. No saturation was observed

from gliding flight data for identification. Note that the roll angle in Figure 5.5 is not

the roll attitude of the parafoil or vehicle. The definition is in Figure 5.2.

5.2.2 IMU Data

The IMU data of accelerations, attitudes, and body rates of the vehicle are saved

in binary form in the harddisk of ACP. The DOS (Disk Operating System)r based

conversion code ”IMU-TAMU.EXE” was supplied by NASA and gives 3-axis body

accelerations, body rates, and attitudes from saved binary data in the ACP. The

data stream has noise and is supposed to be filtered out also. The noise level of IMU

accelerometers is relatively small compared to the parafoil data as seen in Figure 5.6.

The accelerometers of IMU and the parafoil have full range of +2 -2g. The noise of

the IMU data is almost negligible compared with that from the parafoil data. In the
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figure ”pf” represents parafoil data and ”IMU” does IMU data in the legend. The

power spectral density by Fourier transformation can be seen in Figure 5.7. As can

be seen in the figure significant responses exist at around 3 Hz and the responses

disappears as frequency increases. A Butterworth filter was designed with cutoff

frequency of 3 Hz for passband for 3 dB and stopband 5 Hz for 60 dB attenuation as

in Figure 5.8. In Figure 5.9 the filtered data stream shows good matches compared

to the unfiltered ones. The full range of accelerometers are ± 2 g’s and the full range

of bodyrates are ± 100 deg/sec.
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5.2.3 Parafoil Accelerometers

Since there is no rigid structure in the parafoil, it was challenging to install sensors

on the fabric body and get useful data from them. As described in chapter IV, a min-

imum number of small accelerometers were installed and aligned to the parafoil body

axis as close as possible. As expected, the accelerometer had to cope with the noisy

environment and fabric vibration, as well as sensor noise itself during flight (Figure

5.6). Typical power spectral density of parafoil data stream from Fourier Transfor-

mation is shown in Figure 5.10. From the figure there is no dominant frequencies in

the data stream. A Butterworth filter was designed with cutoff frequency of 0.2 Hz

(Figure 5.11) and applied for the accelerometer data (Figure 5.12).
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Because of the physical constraints of a parafoil, only light and small accelerom-

eters were installed. Three axis velocities are reduced by integrating the three axis

acceleration data. Pitch and roll attitudes are converted directly from accelerations,

and pitch and roll rates of the parafoil are reduced by differentiating attitude data

with respect to time. Sideslip angle was calculated from reduced velocities, and yaw

rate was reduced by differentiation of sideslip angle.

5.2.4 Synchronization of Multi-rate Sensor Outputs

As described earlier, the data acquisition system is composed of four subsystems with

different acquisition frequencies. To apply the OKID routine, the data set should be

prepared at a common sample rate. Extrapolation of coarse data for higher rate data

could generate unknown dynamics, so high rate data was interpolated for the slower

rate. The slowest data stream comes from the parafoil accelerometers at 25 Hz, and

the 5 Hz of control input data in PGNC parameters.

Being different from normal technique of continuous control stick input for air-

craft flight test with various input frequencies, the input commands in this research

were exerted through a notebook computer by pressing keyboard discretely at about

4-6 Hz. In addition the control inputs for identification were put monotonously for

increase and decrease and hold 2 to 4 seconds at maximum for pulse input shape as in

Figure 4.10 and Figure 5.13. As can be seen from Figure 5.13, there is little possibility

of aliasing. As the control input histories were recorded from the potentiometers of

control winch motors and the recorded data were used for inputs for identification

directly, the dynamics of winch from the keyboard input to the flap deflection was not

modelled with the assumption for rigid riser and strings for tension. As in Figure 5.13

the flap positions are converted from raw data and extrapolated for 25 Hz. No extra

instrumentation for high frequency input sensing was provided for cost minimization.

From analytical data, natural frequencies of oscillatory modes of each motion are

14.93 rad/sec and 1.36 rad/sec for longitudinal and lateral/directional respectively.

Thus the frequency of the highest oscillatory motion is 2.38 Hz. To avoid aliasing

and to detect all the motion including un-modelled or unexpected dynamics with the
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existing hardware capability, nominal data acquisition frequency of 25 Hz - greater

than 10 times the highest frequency - was used. Higher rates of multifunction probe

and IMU data were reconstructed by interpolating at 25 Hz. The time histories for

original and interpolated are compared in Figure 5.14, and shows that the interpolated

trajectory represents the original one very well.

5.3 OKID Application to Flight Test Data

Figures 5.15 to 5.20 show filtered flight data for a typical stabilized flight B35a, B37,

and B43. Much of the data seems to be corrupted by disturbances. After 50 seconds

of flight without any inputs, all states should be stabilize to steady-state values.
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However the time histories show that the states are not stabilized with no input. The

B43 flight conducted on July 19th, 2004 showed the best shot ever, and it was this

data that was applied to OKID routine for identification (Fig. 5.19, 5.20).
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Figure 5.15 Stabilization Flight of B35a - Longitudinal States

5.3.1 Identified Linear System Model

As described above in section 5.2 all data of B43 flight are reduced and synchronized

at 25 Hz and applied to the OKID routine. The order of the system Markov parame-

ters is set to large enough to cover all expected periodic disturbances - it is called as
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Figure 5.16 Stabilization Flight of B35a - Lateral/Directional States
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Figure 5.17 Stabilization Flight of B37 - Longitudinal States
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Figure 5.18 Stabilization Flight of B37 - Lateral/Directional States
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Figure 5.19 Stabilization Flight of B43 - Longitudinal States
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Figure 5.20 Stabilization Flight of B43 - Lateral/Directional States
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overparameterization in Ref. 16. The system Markov parameters are related to the

data length, which should be greater than the number of parameters to be identified.

Large numbers of system Markov parameters results in a high computational bur-

den, but it doesn’t matter for the off-line identification of this Buckeye identification

research. With system Markov parameter larger than the order of the system to be

identified, there are extra singular values of the which do not belongs to the system.

From Figure 5.21 one can select the order of the system from the dominant singular

values. The system order was picked to be 10 for the case in which we don’t know

the system order, and the modal singular values are calculated and plotted. One can

tell easily from the modal singular values in Figure 5.21 that the system order to

be identified is 6, because the other singular values have much less significance than

those for the system. In general the singular values of the Hankel matrix include

true identifiable dynamic modes of the system, uncontrollable disturbance modes,

and uncontrollable modes from overparameterization.16

5.3.1.1 Longitudinal Model

Applying the input and output time histories of flight B43 to the OKID routine, a

linear system with matrices A,B,C,D and an observer gain G were identified. With

the deadbeat observer gain G and overparameterization, the OKID find sinular values

of the large system including internal models of disturbance from the overparame-

teriation. The OKID routine sums all the singular values and compare it with the

sum of significant singular values of system which can be picked from the Hankel

singular value chart in Figure 5.21. As can be seen in Figure 5.21 the order of mag-

nitudes of singular values for unknown disturbances are much less than those of the

system. With the singular value ratio of following equation the OKID routine de-

termines whether the model with the picked order describes the system well or not
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quantitatively.

singular value ratio =

n�

i=1

σn

N�

j=1

σN

× 100

where N = system order from overparameterization

n = system order picked from large singular values

σi,j = singular values

Figure 5.22 shows that the model of picked order of system with observer gain

could estimate and track the flight test output time histories quite well. In this case

the singular value ratio was 100% because a lot of singular values from the overpa-

rameterization were much less significant (≈ 10−10). In Figure 5.22, the sequentially
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Figure 5.22 Estimated Trajectory by OKID with Observer Gain G

numbered outputs are matched to parafoil forward velocity u, parafoil vertical veloc-
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ity w, parafoil pitch rate q, parafoil pitch angle θ, vehicle’s pitch rate qv, and vehicle’s

relative pitch angle θr respectively. As described in Chapter III the system matri-

ces without observer gain can be found from the estimated system matrices from

distinguishing the system Markov parameters from the observer Markov parameters.

Figure 5.23 shows responses of the linear model with system matrices distinguished

from the augmented system matrices with observer gain. That is the identified linear

model from OKID. Comparing those two figures one can say that the OKID has great

advantage to the ERA algorithm because the time histories does not show quick fad-

ing to steady state. The responses in Figure 5.23 are for the identified system only

without the internal models of disturbance in OKID. The disturbance effects are

shown prominently after the control input ended, when the identified model doesn’t

follow the disturbed trajectories. The differences between estimated trajectory in

Figure 5.22 and model trajectory in Figure 5.23 are caused by the observer gain for

the output histories to follows exact track (deadbeat). Identified model are shown in

Table 5.1. There are two stable oscillatory modes and two real stable modes in the

motion. Detail description are in Section 5.4.

Table 5.1 Eigenvalues of Identified Longitudinal Model

λ1,2 = −0.0757 ± 3.0689 , ζ = 0.0247 , ωn = 3.0698

λ3,4 = −0.1025 ± 0.9130 , ζ = 0.1116 , ωn = 0.9188

λ5 = −0.1062

λ6 = −0.0002

5.3.1.2 Lateral/Directional Model

Following the same process as the longitudinal model identification, a set of synchro-

nized time histories with lateral/directional inputs was applied to the OKID routine.

The estimated time histories with observer gain in Figure 5.24 shows that the iden-

tified model with observer gain can describe the flight data well. Also the singular
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value ratio was 100% here. Variable names in the figure represents the same states

as in Figure 5.25 with the same order. In Figure 5.25, the identified linear model

by OKID shows trajectories for the same input of flight data. One can see the dis-

turbance effect in Figure 5.25. Identified model properties from OKID are shown in

Table 5.2. There are two stable oscillatory modes and two real stable modes in the

motion. Modal analysis results are describe in Section 5.4.

Table 5.2 Eigenvalues of Identified Lateral/Directional Model

λ1,2 = −0.1010 ± 2.8619 , ζ = 0.0353 , ωn = 2.8636

λ3,4 = −0.3661 ± 0.3627 , ζ = 0.7104 , ωn = 0.5153

λ5 = −0.0765

λ6 = −0.0019

5.3.2 Time History Comparison

To verify the identified linear model, the trajectories from several flight runs at similar

flight conditions are compared to the linear model trajectory with the same flight test

inputs. But since the flight trajectories do not start from the stabilized initial values

because of disturbances and they are unknown, the comparison of the linear simula-

tion histories of the identified model with unknown initial values is less meaningful.

In the following there are several figures for trajectory comparison as reference test

cases.

5.3.2.1 Longitudinal Motion

Figure 5.26 and Figure 5.27 are constructed with the assumption that the initial

conditions of both Run 118 and Run 119 are the same as those of Run 117 since

they were recorded during the same flight, B43. Figure 5.26 shows that there are

mismatches in the trajectories due to apparent data shifting while the frequencies



129

0 5 10 15 20 25
−5

0

5
Estimated (− −) and real outputs

N
o.

 1
 o

ut
pu

t

0 5 10 15 20 25
−2

0

2

N
o.

 2
 o

ut
pu

t

0 5 10 15 20 25
−5

0

5

N
o.

 3
 o

ut
pu

t

0 5 10 15 20 25
−2

0

2

N
o.

 4
 o

ut
pu

t

0 5 10 15 20 25
−2

0

2

N
o.

 5
 o

ut
pu

t

0 5 10 15 20 25
−20

−10

0

N
o.

 6
 o

ut
pu

t

Time (sec)
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appear to be very close and the magnitudes from OKID are amplified. Figure 5.27

also shows that the frequencies of the identified model are close to those of the flight

data, but in this case the OKID amplitudes are attenuated instead of amplified as

they were in Figure 5.27. The responses from flight data are getting bigger after

control input ends. It shows the responses are affected by atmospheric disturbance

and the order of magnitude is as big as that due to input command. During input

commands, the linear model responses seem to be shifted with similar frequencies

from flight data. It can be caused by initial condition difference.
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5.3.2.2 Lateral/Directional Motion

For the lateral/directional motion, the identified model from flight B43, Run 220 was

used for trajectory comparison in an attempt to minimize unknown initial condition

difference. Run 221, 222 of the same flight were chosen for comparison. The same

input used in the flight was used for the linear model, and then the trajectories are

compared as in Figures 5.28, 5.29. Similar to the longitudinal cases, the trajectories

from input commands show some phase shift with similar frequencies.
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5.4 Modal Analysis of Identified Model

To compare the identified model with the analytical model, modal analysis was con-

ducted for the identified linear model. Comparing the modal properties, dynamic

characteristics of the analytical model in Chapter II can be verified.

5.4.1 Longitudinal

After examining several OKID models, the identified model from Run 117 is picked

as a nominal system because it’s trajectories are matched better with flight data. As

the trajectories are disturbed by disturbances the ”match” means there were lesser

disturbance at the test. As there are few flight data available not disturbed much,

the choice was limited to runs of B43. As shown in Figures 5.15 to 5.20, B43 flight

shows responses with less atmospheric disturbance. Clean flight data could give good

identification results and the trajectories would be well matched for the case. The

model for better match (assuming clearer, calmer flight data) was chosen as a nominal

model. The identified continuous longitudinal system matrices from flight Run117 are

shown in the following:

x = [∆u,∆w,∆q,∆θ,∆qV ,∆θr], u = [δe]

A =














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
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


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



−0.1227 −3.1390 −0.2884 −0.1804 0.1068 −0.0012

2.9784 −0.0271 0.1017 0.1021 0.0276 −0.0000

0.1835 −0.1683 −0.0224 −0.3488 0.6493 −0.0011

0.2113 −0.1072 0.3610 0.0044 0.6268 0.0000

0.2862 0.1818 −0.4831 −0.6524 −0.2922 0.0008

−0.2091 −0.2312 −0.0928 0.0734 0.4246 −0.0029
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(5.1)
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control distribution matrix

B =


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(5.2)

and output matrix

C =


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and carry through matrix
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
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















−0.0001

0.0021

−0.0477

−0.0033

0.1530

0.0018

































(5.4)

The eigenvalues of this system in Table 5.1 shows that it is stable, as there are

two oscillatory and two real stable modes. From the output equation and similarity

transformation, x = Mξ, between state space and modal space, the real modal
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A,B,C matrices are determined to be

Amreal =

































−0.0757 3.0689 0 0 0 0

−3.0689 −0.0757 0 0 0 0

0 0 −0.1025 0.9130 0 0

0 0 −0.9130 −0.1025 0 0

0 0 0 −0.1062 0

0 0 0 0 0 −0.0002

































(5.5)

Bmreal =

































3.3064

−2.5216

−4.8758

0.9982

6.4485

−3.4137

































(5.6)

Cmreal =

































−0.0208 0.0063 0.0043 −0.0158 0.0190 −0.0005

−0.0006 0.0002 0.0000 −0.0004 0.0003 −0.0001

−0.3546 0.0890 0.0116 −0.0218 −0.0002 0.0000

0.0319 0.1152 −0.0251 −0.0099 0.0036 −0.0000

−0.0010 −0.0056 −0.0104 −0.0303 0.0000 0.0000

−0.0336 −0.1148 −0.0076 0.0205 −0.0047 0.0000

































(5.7)

The Am real matrix provides the eigenvalues, number of modes and order of modes.

There are two stable oscillatory modes and two stable real modes. With the Bm real

matrix, one can tell that all modes are controllable by the symmetrical flap input,

δe and the input is effective almost evenly for all modes. From the Cm real , forward

speed is observed strongly in the first oscillatory mode and third stable mode, vertical
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speed is observable mainly in the first, second oscillatory mode and somewhat in the

third real mode. Pitch rate of the parafoil is observable in the first stable oscillatory

mode and the pitch rate of the vehicle is observed in the second oscillatory mode

and lesser in the first oscillatory mode. Pitch angle is observed mainly in the first

oscillatory mode and some in the second oscillatory mode. The relative pitch angle

can be observed mainly in the first oscillatory mode and one fifth lesser in the second

oscillatory mode.

The inverse modal matrix is presented below showing the relationships between

modes and states.































































ξ1
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ξ4

ξ5
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
















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









































=

































0.9988 −0.0096 0.0506 0.0345 0.0489 −0.0001

−0.0142 −0.9938 −0.0942 −0.0722 0.0476 −0.0004

0.0156 −0.0665 0.2195 −0.2872 0.8442 −0.0005

0.0219 0.0888 −0.4805 −0.6351 −0.1883 0.0003

−0.0734 0.1398 1.4392 −1.8062 −1.0310 0.0233

0.0225 −0.0305 −1.6439 1.4992 0.9883 0.9769
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
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
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
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
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
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
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































By examination:

• the first stable oscillatory mode is composed mainly of forward and vertical

speed of the parafoil and one tenth lesser of pitch rate of the parafoil.

• the second stable oscillatory mode is composed of primarily vehicle’s pitch rate

and lesser parafoil pitch rate and pitch angle.

• the third stable mode is composed of primarily vehicle pitch rate and pitch

attitude and lesser vehicle’s pitch rate.

• the fourth stable mode is composed of primarily states of the parafoil pitch rate

and angle and lesser of vehicle’s pitch rate and angle.

Even though most of the flight data is corrupted by disturbances, several favor-

able runs are applied to the OKID routine. Although OKID performs well for system
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identification under periodic disturbance, it can not produce accurate models if there

are discrete disturbances like gusts common in the real world. In that case, the OKID

model trajectories will not matched well with flight data, and it’s eigenvalues will not

show close match either. As in Figure 5.30, the analytical model has very stable mode

compared to the identified eigenvalues. In that case the longitudinal motion damps

out quickly as can be seen in Figure 4.6. The rest of the flight modes are similar

to identified ones from flight data. In Figure 5.30 eigenvalues identified from flight
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Figure 5.30 Comparison of Longitudinal Eigenvalues from OKID Model and Analyti-

cal Model

data are seen to be consistent and agree with flight observation. The number of flight

modes and order of modes agree with those from the analytical model except that one
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pair of conjugate poles are divided into two real poles. The dynamic characteristics

from the analytical model seem to represent the actual motions of the Buckeye system

except for the fast stable oscillatory mode. The nonlinear aerodynamic database used

for the analytical model has been constructed and amended mainly by using flight

test data of a large (around more than ten times larger) parafoil which was used for

a scaled X-38 flight test. The large parafoil does not seem to correctly represent the

aerodynamic characteristics of the small parafoil of the Buckeye.

Generally speaking, based on the flight data the identified parafoil-vehicle system

is longitudinally stable. Comparing to the general dynamics of airplanes, the first

oscillatory mode is similar to the phugoid mode related to forward and vertical speed

and the second is similar to the short period mode related to pitch rate and pitch

angle. The third and fourth real modes are mainly related to pitch responses between

the parafoil and the hanging vehicle, and they are additional modes due to the hanging

vehicle which are not in general aircraft dynamics.

5.4.2 Lateral/Directional

Flight Run 220 was chosen as a nominal identified model from several runs applied to

OKID. It’s trajectories are in Figure 5.25. Identified system matrices are as follows:

x = [∆v,∆p,∆r,∆φ,∆rV ,∆ψr], u = [δr]

A =

































−0.1698 −2.787 0.0181 0.0077 0.0038 −0.00018

2.936 −0.0293 0.0094 −0.00074 −0.0034 −0.00019

−0.3517 0.1293 −0.1592 0.0353 0.0789 −0.0011

−0.5165 0.2281 −0.5404 −0.3797 0.0558 0.01997

−0.43 0.1762 −0.4807 −0.7036 −0.2521 0.01937

−0.251 0.1399 −0.2818 −0.3757 −0.3994 −0.0226

































(5.8)
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control distribution matrix

B =

































2.9155

−1.2649

2.8469

4.3784

3.6272

2.2233

































(5.9)

output matrix

C =

































−0.0711 −0.0154 0.0626 0.0050 −0.0074 0.0016

1.0912 0.2609 −0.0050 −0.0117 −0.0049 0.0003

0.0799 −0.2934 0.0156 −0.0072 −0.0097 0.0002

−0.0977 0.3687 −0.0186 0.0090 0.0088 0.0004

0.0097 −0.0149 −0.0073 −0.0181 0.0037 0.0012

−0.1093 −0.0292 0.0944 −0.0104 −0.0077 −0.0005

































(5.10)

and carry through matrix

D =

































−0.0032

−0.7238

0.0104

−0.0151

0.0427

−0.0079

































(5.11)

Following the same procedure of the similarity transformation for the longitudinal

modal analysis, the real modal A,B,C matrices for lateral/directional motion are
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determined to be

Amreal =

































−0.1010 2.8619 0 0 0 0

2.8619 −0.1010 0 0 0 0

0 0 −0.3661 0.3627 0 0

0 0 0.3627 −0.3661 0 0

0 0 0 0 −0.0765 0

0 0 0 0 0 −0.0019

































(5.12)

Bmreal =

































−1.8652

4.2465

−4.8988

−18.8278

9.8825

−4.0700

































(5.13)

Cmreal =

































−0.0150 −0.0503 −0.0110 −0.0035 0.0057 0.0003

0.1660 0.7449 −0.0013 0.0049 0.0000 −0.0000

−0.2063 0.0554 −0.0081 0.0044 0.0006 0.0000

0.2593 −0.0676 0.0084 −0.0047 −0.0005 0.0010

−0.0083 0.0079 0.0028 0.0051 0.0022 −0.0007

−0.0250 −0.0759 −0.0176 −0.0006 0.0074 −0.0046

































(5.14)

Examining the Am real matrix, there are two stable oscillatory modes and two stable

real modes. The eigenvalues can be seen in the Am real matrix. The Bm real matrix

shows that all modes are controllable by the asymmetrical flap input, δr, and the input

is mainly effective for the second oscillatory mode and to less extent for the third real

mode. From the Cm real , side speed or sideslip angle is observed mainly in the first

oscillatory mode. Roll rate, yaw rate and bank angle are mainly observable in the
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first oscillatory mode. Yaw rate of the vehicle and relative yaw angle are observable

over all modes but primarily in the first oscillatory mode. Note that the parafoil’s

variables are hardly observable in real modes and two variables, relative yaw angle

and vehicle’s yaw rate which are related to the vehicle are hardly observable in the

two real modes as well as in oscillatory modes.

The inverse modal matrix for lateral/directional motion is presented below show-

ing the relationships between modes and states.






















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




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
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




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
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
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


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


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








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
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




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


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
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−0.0009 0.9985 −0.0067 −0.0031 −0.0016 0.0001

1.0000 0.0246 0.0041 0.0003 −0.0013 −0.0001

−0.0153 −0.1837 −1.7423 −0.2823 0.7340 0.0363

−0.1400 −0.2248 −0.7389 −0.7580 −0.1077 0.0297

0.1598 0.4225 4.5675 −1.4752 0.6478 0.4091

−0.0449 −0.1868 −2.8251 1.7574 −1.3820 0.5547
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
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





By examination of the inverse modal matrix:

• the first oscillatory stable mode is composed of primarily roll rate and side

speed, and one hundredth times lesser yaw rate. It is composed almost entirely

of the parafoil states.

• the second stable mode is composed of states of the parafoil and the vehicle,

primarily yaw rate and lesser bank angle of the parafoil and vehicle’s yaw rate

to the same extent of the bank angle. It is a combined mode for the parafoil

and the vehicle.

• the third stable mode is composed of primarily yaw rate and side speed, bank

angle with one third the amount of yaw rate.

• the fourth stable mode is composed of mainly yaw rate, lesser bank angle and

vehicle’s yaw rate of about half of yaw rate.

Even though most of the flight data is corrupted by disturbances, several favor-

able runs performed at relatively calm condition were applied to the OKID routine.
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The identified eigenvalues are compared to those of the analytical model in Figure

5.31. Note that the analytical model has a very stable mode compared to the identi-

fied eigenvalues. As in the longitudinal motion, the lateral/directional motion damps

out quickly as can be seen in Figure 4.7. The rest of the flight modes are similar

to ones identified from flight data. In Figure 5.31 eigenvalues identified from flight
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Figure 5.31 Comparison of Lateral/Directional Eigenvalues from OKID Model and

Analytical Model

data are consistent over several runs. The number of flight modes and the order of

modes agree with those from the analytical model. The dynamic characteristics of

the analytical model seem to represent the actual motions of the Buckeye system,
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except fast stable mode just like in the longitudinal motion. As mentioned earlier

the nonlinear database seems to not correctly represent aerodynamic characteristics

of the small parafoil of the Buckeye.

In summary, the identified parafoil-vehicle system is lateral/directionally stable

also. The flight modes exhibited by the identified model show some different modes

from the general motion of airplanes. The two real stable modes are strongly related

to yaw rate, which is different from the roll and spiral modes in typical airplane

dynamics. Other than longitudinal motion, the hanging vehicle’s states are related

to every mode. That means that the vehicle motion is closely coupled to the parafoil

motion in lateral/directionally, since the joint between the parafoil and the vehicle is

not modelled as universal joint such as it is for the longitudinal motion analysis.

5.5 Comparison of Trajectories between Analytical and Identified Model

As can be seen in Figure 5.30 and 5.31, the identified model has different pole locations

for both axes. Observing the figures one can tell that the frequencies are similar

but the damping terms are different than the analytical model’s, even though the

number of modes are the same and stable. Simulation trajectories from the nonlinear

analytical model are compared with those from linear simulation with the identified

model in Figures 5.32, 5.33, and 5.34. To verify the analytical model, the PDS

simulation trajectories using the same aero database as the analytical model are

plotted in the same figures for comparison. In the figures legend ”TAMU” is the

nonlinear simulation code programmed from the 8-DOF analytical model.

Assuming that the trajectory from flight data contains extra nonlinear dynamic

effects not included in the analytical model, the trajectory can not be tracked exactly

by the analytical model. For pitch rate responses in Figure 5.32, while the identi-

fied model shows oscillation with fast frequency, the analytical model responses show

combined phugoid and short period modes, with speed and pitch angle changes at

relatively slow frequency. The difference is suspected to come from unmodelled dy-

namics such as flexibility and elasticity of the parafoil, risers and suspension strings.
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Figure 5.33 Comparison of Trajectories from OKID Model, Nonlinear Analytical

Model and NASA’s PDS without Torque Model - Lateral/Directional
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Model and NASA’s PDS with Torque Model - Lateral/Directional



149

Note that the vehicle attitudes are tracked better. Using the same aerodynamic data-

base and geometry PDS and ”TAMU” trajectories are identical except minor trimmed

value difference.

For lateral/directional trajectories in Figure 5.33, sideslip and yaw rates match

better than other states with some phase shift, while roll rate and bank angle changes

are much less than the analytical model’s. Note that the vehicle’s relative yaw angles

are not limited in the analytical model without the joint torque model. The joint

torque model is adjusted to accommodate the flight responses of the vehicle from

basic model in Eqn. (2.50), as Eqn. (5.15). The joint torque model is composed of

spring effect proportional to relative yaw angle and damping term proportional to

relative yaw rate. With trial and error, the model coefficients are chosen as Ktorq =

0.3, Ctorq = −1.2 to match the relative yaw angle trajectory as in Figure 5.34. The

joint torque model in PDS doesn’t work for the Buckeye parafoil-vehicle motion (Fig.

5.34).

Tcons =
{

Ktorq

[

0.5B Fcons sin (2B q9/H)(ρxV
s8 − ρzV

c8)/lρ
]

+ Ctorq (u9 − u3)
bV

2 V∞
qDY N SV bV

}

kP

(5.15)

For both axes, identified model trajectories of relative vehicle motion are matched

well to those of analytical model. In analytical modelling of the vehicle, there exists

only drag as an aerodynamic term and gravitational force has major effect on it and

it’s good enough for modelling the vehicle.

5.6 Error Analysis

Doing experiments like flight test in practice result in unexpected errors which can

effect the results. In this section some possible errors are summarized and their effects

are discussed.

• Missing a degree-of-freedom in making an analytical model: One degree-of-

freedom of relative roll motion between the parafoil and the vehicle was ignored
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in the analytical model to simplify the dynamics. Based on the assumption on

the rigidity of risers and suspension lines when they have tension in flight it is

reasonable to remove the degree-of-freedom as the Buckeye vehicle is connected

directly to the lines with the assumption that the parafoil is rigid wing. If

there is a detail dynamic model of flexible curved shaped parafoil then the roll

degree-of-freedom should be provided for relative roll motion in addition to

degrees-of-freedom from the flexible parafoil dynamics.

• Sensor noise: Typically sensor noise has property of very high frequency. In

this dissertation a low pass filter was used to remove them using power spectral

density analysis not to reject possible high frequency dynamics of the system. To

minimize the noise effect selection and maintenance of sensors during operations

should be well controlled and noise property must be considered in designing

the experiment.

• The vehicle not being trimmed exactly: Theoretically the inputs for identifica-

tion excite dynamics from trimmed condition. But in practice it is very difficult

to trim perfectly and even worse in UAV (Unmanned Aerial Vehicle). Possi-

ble deviation from the trimmed initial condition can cause transient response

in addition to the response due to control input. It can cause the identifica-

tion routine’s performance and require more tests to get correct results. In the

dissertation the time shifts between the response of identified model and flight

test response can be seen because of the imperfect trimmed flight test and ini-

tial condition mismatch between test response and those from identified model

response.

• Aero dataset used for nonlinear simulation: It would be very good to assure of

identification results if there is a reference model to be compared with identified

ones. In this dissertation a nonlinear model was used as a nominal reference

model. It was generated by linearization of nonlinear aero database made for

large parafoil ten times bigger than that of the Buckeye. From analysis it has

typical pole locations different from several identified ones. As those of identified

models coincide each other, the nominal linearized model was not considered to
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represent the Buckeye’s dynamics well. The aero database should be modified

to be used for scale-downed parafoil dynamics simulation. Global performance

variables such as gliding path, position, altitudes were well represented by sim-

ulation with the aero database though.

• Weather effect in flight testing: As the parafoil flight is actually gliding through

air with same magnitude of wind speed, it is very vulnerable to wind gust,

turbulence and disturbance. Because of adverse wind effect, some precious flight

test results turned to useless for identification. As it can not be controlled by

any means in the field, the flight date and time must be picked for calm day.

The author considered this as the biggest issue to perform flight tests of low

speed UAV.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

In this dissertation, an analytical and simulation study on the Buckeye parafoil-

vehicle system and experimental research work for flight test are presented. They are

summarized in the following.

An 8-DOF analytical model was developed for the Buckeye parafoil-vehicle two-

body system. Using an empirical aerodynamic database constructed for X-38/CRV

parafoil, nonlinear 8-DOF simulation can be done for given control inputs. A lin-

ear model was derived by linearization of the 8-DOF nonlinear model. It was used

to investigate stability and control of the system. It describes the linear dynam-

ics of the Buckeye parafoil-vehicle system well. For identification of the Buckeye

parafoil-vehicle system, the Observer/Kalman Filter Identification (OKID) method

was used. OKID, a time domain technique, identifies a discrete input-output map-

ping from known input-output data records. The formulation for identification under

disturbance are developed and documented. To acquire parameters to be usable for

identification, several data acquisition systems including 5-hole multifunction probe,

Inertial Measurement Unit and accelerometer package on the parafoil were designed

and installed on the Buckeye. They supplied all the parameters required for system

identification with high sampling rates. For identification purpose a detail flight test

procedure was planned and executed without any safety concern. All 7 sorties were

completed under atmospheric disturbances and several sets of good data were applied

to the OKID routine for identification.

Before giving conclusions evaluations for assumptions made in the flight test

design are summarized:

• Parafoil is a rigid body: Globally yes, but OKID model shows some of unmod-

elled responses

• Vehicle starts perfectly trimmed condition: No,Very difficult
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• No distortion effect from location of aeroprobe: Yes

• Parafoil sideslip angle calculated from speeds integrated from accelerations: ef-

fectively represent the sideslip angle

• Multi-rate sampling will be sufficient: yes

• IMU is located at C.G. of the vehicle as close as possible: yes, no extra dynamic

effect on the vehicle motion

• Number of accelerometers on the parafoil are sufficient: yes, but the more the

better if weight is OK

• 25 Hz of the parafoil sensor sampling rate is enough based on analytical model:

yes, ID model shows slow responses

• 5 Hz of control input sampling rate is enough: yes, no dynamic effects

Based upon the analysis and results presented in this dissertation, the following

conclusions are made:

• The OKID routine successfully identifies linear model under light and mod-

erate disturbances, and the modal properties of the identified model show

that dynamic modes and it’s order are consistent for the test cases presented.

By overparameterization the OKID routine can identify a linear model from

disturbance-corrupted flight data successfully. This says that the OKID is suit-

able for identifying a linear model from flight data of parafoil-vehicle two-body

system.

• The 8-DOF analytical model was verified by comparing the response with PDS’s

for the same inputs. This model seems to be valuable to describe the dynamics

of the parafoil-vehicle with appropriate database. The large number of stable

eigenvalues in both axes are considered to be coming from the X-38’s big parafoil

database used for analytical modelling. The database seems not represents the

aerodynamics of the small parafoil correctly.
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• The data acquisition subsystems have worked well to provide usable set of data

for identification and proved they are sufficient for data acquisition for iden-

tification. Specially the accelerometer package for the parafoil was a suitable

method for obtaining the parafoil parameters with minimum cost. If a weight

increase is allowed for the parafoil, more sensors are preferable for better mea-

surement averaging for the flexible parafoil.
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CHAPTER VII

RECOMMENDATIONS

1. During the test we found that the unmanned aerial vehicle (UAV) Buckeye with

2 minimal control inputs can not be perfectly trimmed for identification test

under disturbance. Under disturbance, even a longer trim settling time does not

help to effectively stabilize the Buckeye for testing. To minimize the disturbance

effect, careful selection of test dates and conditions are recommended.

2. The discrepancy between the analytical model and the identified is mainly due

to the aerodynamic database used for the analytical model. For scaling down

the database for the small parafoil of the Buckeye system, further investigations

of sensitivity and a parametric study with more flight data is needed.

3. If time histories from the big parafoil are available for all of the parameters

being identified, OKID can identify the linear model for the big parafoil from

the time histories. In that case the aerodynamic database can be verified too.

To increase the order of the parafoil dynamics to account for elastic effects,

more accelerometers distributing strategically on the parafoil are needed. This

could increase the weight of the parafoil, so it is most suitable for use on the

big parafoil.

4. As mentioned above the dynamics of the parafoil have nonlinearities which can

not be modelled precisely in the linear dynamic model. Applying nonlinear

identification methods can be helpful to identify the dynamics of the parafoil

including embedded nonlinearity.

5. Goodzeit and al. suggest that the disturbance effect can be discriminated from

the identified overparameterization model by checking modal damping and the

contribution factor.16 The embedded disturbance effect can be identified from

the input-output data and the disturbance response can be calculated and used
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as a feedforward control signal to compensate it’s effect. Once the feedforward

controller is designed, it will be good for systems vulnerable to disturbances like

parafoils.

6. Three independent data acquisition subsystems have caused an extra burden for

preparing identification data sets. Synchronization, separate data reductions as

well as casting a sampling frequency bottle-neck limited by the slowest frequency

of a subsystem are issues. For better identification a unified and synchronized

data acquisition system with high sampling rate will help.
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APPENDIX A

SAMPLE APPLICATION OF KANE’S DYNAMICS

As mentioned in Chapter II, the Kane’s equation was introduced in early 80’s by

Thomas R. Kane and D. A. Levinson19,21 to develop a method to reduce the labor re-

quired for the formulation of equations of motion and/or the complexity of equations

for complex dynamic system. For assisting engineers and scholars to develop model

for complex multibody dynamic systems in practice, a symbolic dynamic solver for

dynamic systems has been developed by Kane and Levinson.26,27 The symbolic dy-

namic solver is AUTOLEVTM and it has been used for developing the 8-DOF model

of the Buckeye. It is quite well documented and has been validated from numerous

examples in Reference 26,27.

To assure the validity and to apply AUTOLEVTM to this research an example

of ”Cart-Pendulum” in Reference 25 was applied to AUTOLEVTM and the resulting

equations of motion were compared to those from Newtonian dynamics. It is two-body

system and can be regarded as a simplified system representing the parafoil-vehicle

two-body system.

The ”Cart-Pendulum” system consists of a cart moving on an axis and a pen-

dulum hanging on the cart as in Figure 7.1. Following the notations in Ref. 25, the

kinematic equations can be derived as follows:

Kinematics of m1:

R1 = xn1, Ṙ1 = V1 = ẋn1, R̈1 = V̇1 = ẍn1 (A.1)

Kinematics of m2:

R2 = xn1 + rer = (x+ r sin θ)n1 + (−r cos θ)n2

Ṙ2 = V2 = ẋn1 + rθ̇eθ = (ẋ+ rθ̇ cos θ)n1 + (rθ̇ sin θ)n2

R̈2 = V̇2 = ẍn1 − rθ̇

2er + rθ̈eθ

= (ẍ− rθ̇

2 sin θ + rθ̈ cos θ)n1 + (rθ̇2 cos θ + rθ̈ sin θ)n2

= (ẍ sin θ − rθ̇

2)er + (ẍ cos θ + rθ̈)eθ

(A.2)
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Figure 7.1 Cart-Pendulum Two-Body System

Making use of Newton’s second law, we have the vector equations of motion

miR̈i = miV̇i = Fi (A.3)

Referring to the free body diagram on the right side of Figure 7.1, and making use of

Eqn.(A.1) and (A.2) to obtain

m1ẍ = −kx+ Fr sin θ

0 = N −m1g − Fr cos θ

(A.4)

and for the m2 equations, taking components of Eqn.(A.3) in the er, eθ basis

m2(ẍ sin θ − rθ̇

2) = −Fr +m2 cos θ

m2(ẍ cos θ + rθ̈) = −m2g sin θ

(A.5)

Solvng the first of Eqn.(A.5) for the constraint force (pendulum tension) Fr, we obtain

Fr = m2g cos θ −m2(ẍ sin θ − rθ̇

2) (A.6)
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which, substituting into the first of Eqn.(A.4) and the second of Eqn.(A.5) eliminates

the constraint force Fr and leads to the pair of differential equations of motion that

govern the system dynamics:

(m1 +m2 sin2
θ)ẍ−m2rθ̇

2 sin θ = −kx+m2g sin θ cos θ

(m2 cos θ)ẍ+ (m2r)θ̈ = −m2g sin θ

(A.7)

Derivng differential equations via Kane’s equation uses same concept of the vir-

tual power form of D’Alembert’s Principle mentioned in the Ref. 25. Both method

derive the equations of motion via a path that does not require us to first introduce

the constraint forces (N,Fr), then eliminate them. This is very effective approach

for multibody problems that usually have lots of constraint forces between them and

causes tedious derivation and elimination of the constraint forces. Here we make use

of equations in Section2.3.1 to derive equations of motion via Kane’s equation. For

the initial development we choose general coordinates q1 = x, q2 = θ. And we define

generalized speeds u1
∆
= ẋ, u2

∆
= θ̇. From positions and velocities in Eqn.(A.1) and

Eqn.(A.2)

R1 = q1n1, Ṙ1 = V1 = q̇1n1 = u1n1

R2 = q1n1 + rer

Ṙ2 = V2 = q̇1n1 + rq̇2eθ = u1n1 + ru2eθ

= (u1 cos q2 + ru2)eθ + u1 sin q2er

(A.8)

Partial velocities,

v

1
1

∆
=
∂V1

∂u1
= n1, v

1
2

∆
=
∂V1

∂u2
= 0

v

2
1

∆
=
∂V2

∂u1
= n1, v

2
2

∆
=
∂V2

∂u2
= reθ

(A.9)

Resultant forces for m1 and m2:

Q1 = −kq1n1 + (N −m1g)n2 + Frer

Q2 = −m2gn2 − Frer

(A.10)
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Using the definitions in Eqn.(2.9), generalized active forces are:

F1 = v

1
1 · Q1 + v

2
1 · Q2

= n1 · {−kq1n1 + (N −m1g)n2 + Frer} + n1 · {−m2gn2 − Frer}

= −kq1

F2 = v

1
2 · Q1 + v

2
2 · Q2

= reθ · {−m2gn2 − Frer}

= −rm2g sin q2

(A.11)

Calculate accelerations:

R̈1 = V̇1 = u̇1n1 = q̈1n1

R̈2 = V̇2 = q̈1n1 − rq̇

2
2er + rq̈2eθ

(A.12)

Inertia forces for m1 and m2:

Q∗
1

∆
= −m1V̇1 = −m1q̈1n1

Q∗
2

∆
= −m2V̇2

= −m2 {q̈1n1 − rq̇

2
2er + rq̈2eθ}

(A.13)

Using the definitions in Eqn.(2.11), generalized inertia forces are:

F

∗
1 = v

1
1 · Q

∗
1 + v

2
1 ·Q

∗
2

= n1 · {−m1q̈1n1} + n1 · {−m2 (q̈1n1 − rq̇

2
2er + rq̈2eθ)}

= −m1q̈1 −m2q̈1 +m2rq̇
2
2 sin q2 −m2rq̈2 cos q2

= −(m1 +m2)q̈1 +m2rq̇
2
2 sin q2 −m2rq̈2 cos q2

F

∗
2 = v

1
2 · Q

∗
1 + v

2
2 ·Q

∗
2

= reθ · −m2 {q̈1n1 − rq̇

2
2er + rq̈2eθ}

= −m2rq̈1 cos q2 −m2r
2
q̈2

(A.14)
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Substituting Eqn.(A.11),(A.14) into Kane’s equation in Eqn.(2.4) leads to the system

of differential equations:

0 = F1 + F

∗
1

= −kx− (m1 +m2)q̈1 +m2rq̇
2
2 sin q2 −m2rq̈2 cos q2

0 = F2 + F

∗
2

= −m2gr sin q2 −m2rq̈1 cos q2 −m2r
2
q̈2

= −m2gr sin q2 −m2rq̈1 cos q2 −m2rq̈2

(A.15)

Rearranging above equation yields

(m1 +m2)q̈1 + (m2r cos q2)q̈2 −m2rq̇
2
2 sin q2 = −kx

(m2r cos q2)q̈1 + (m2r)q̈2 = −m2gr sin q2

(A.16)

This Kane’s approach is mentioned in Ref. 25 as virtual power form of D’Alembert’s

principle. Comparing Eqn.(A.16) to those (Eqn.(A.7)) obtained from Newton’s sec-

ond law, these equations have different forms. The more elegant form of Eqn.(A.16) is

preferred due to the symmetry of acceleration coefficients (”mass matrix”). Both sets

of equations are correct and it is easy to rearrange Eqn.(A.7) via linear combinations

of the two equations to obtain the form of Eqn.(A.16)

As can be seen from the derivations from both methods, the Kane’s approach (or

virtual power form of D’Alembert’s Principle) saves efforts to derive the constraint

equations to be canceled at last. For multibody problems with more degrees of

freedom and more constraints, the Kane’s approach can save time and effort much to

derive equations of motion.

2-DOF equations of motion for the cart-pendulum system were derived using

a symbolic dynamic solver AUTOLEVTM . The symbols used for AUTOLEV are

summarized as follows:
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MA: m1 MB: m2

X: x R: r

THETA: θ

Q1: x Q1’: ẋ

Q2: θ Q2’: θ̇

U1: ẋ U2: θ̇

The procedure for symbolic calculation and the 2-DOF equations of motion in

text form are appended. The equations of motion at line (51) and (52) are same as

derived by hand for the simple 2-DOF cart-pendulum system in Eqn.(A.16).

(1) %degrees off

(2) AUTOZ off

(3) % Newtonian, bodies, frames, points

(4) Newtonian N

(5) Bodies A,B

(6) Points O

(7) % variables, constants

(8) Variables U{2}’

(9) Variables X’, THETA’

(10) Constants R

(11) Constants G

(12) Constants K %spring constant

(13) %

(14) Mass A=MA, B=MB

(15) Inertia B, 0, 0, 0

-> (16) I_B_BO>> = 0>*0>

(17) %
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(18) Simprot(N,B,3,1.5*pi+THETA)

-> (19) N_B = [SIN(THETA), COS(THETA), 0; -COS(THETA), SIN(THETA),

0; 0, 0, 1]

(20) % position vectors

(21) P_O_Ao>=X*N1>

-> (22) P_O_AO> = X*N1>

(23) P_Ao_Bo>=R*B1>

-> (24) P_AO_BO> = R*B1>

(25) % kineamatic differential eqn

(26) X’=U1

-> (27) X’ = U1

(28) THETA’=U2

-> (29) THETA’ = U2

(30) % angular velocities

(31) W_A_N>=0>

-> (32) W_A_N> = 0>

(33) W_B_N>=THETA’*B3>

-> (34) W_B_N> = U2*B3>

(35) % velocities

(36) V_Ao_N>=DT(P_O_Ao>,N)

-> (37) V_AO_N> = U1*N1>
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(38) V2pts(N,B,Ao,Bo)

-> (39) V_BO_N> = R*U2*B2> + U1*N1>

(40) % forces

(41) Gravity(-G*N2>)

-> (42) FORCE_AO> = -G*MA*N2> -> (43) FORCE_BO> = -G*MB*N2>

(44) Force_Ao>+= -K*X*N1>

-> (45) FORCE_AO> = -K*X*N1> - G*MA*N2>

(46) % Equations of motion

(47) Zero=Fr()+Frstar()

-> (48) ZERO[1] = MB*R*SIN(THETA)*U2^2 - K*X - (MA+MB)*U1’ -

MB*R*COS(THETA)*U2’

-> (49) ZERO[2] =

-MB*R*(G*SIN(THETA)+R*U2’+COS(THETA)*U1’)

(50) Kane()

-> (51) ZERO[1] = MB*R*SIN(THETA)*U2^2 - K*X - (MA+MB)*U1’ -

MB*R*COS(THETA)*U2’

-> (52) ZERO[2] =

-MB*R*(G*SIN(THETA)+R*U2’+COS(THETA)*U1’)



170

APPENDIX B

8-DOF EQUATIONS OF MOTION FOR THE BUCKEYE PARAFOIL-VEHICLE

IN AUTOLEV SYMBOLIC FORM

Full 8-DOF equations of motion for two-body parafoil-vehicle were derived using

a symbolic dynamic solver AUTOLEVTM . The variable names are the same as used

in chapter II except some greek symbols such as OMEGA for ω, RHO for ρ etc. The

symbols used for AUTOLEV are summarized as follows:

FAP1: FxP
FAP2: FyP

FAP3: FzP

TAP1: LP TAP2: MP TAP3: NP

RAP1: rxP
RAP2: ryP

RAP3: rzP

RHOPX: ρxP
RHOPY: ρyP

RHOPZ: ρzP

FAV1: FxV
FAP2: FyV

FAP3: FzV

TAV1: LV TAP2: MV TAP3: NV

RAV1: rxV
RAP2: ryV

RAP3: rzV

RHOVX: ρxV
RHOPY: ρyV

RHOPZ: ρzV

MP: mP MV: mV

IP1: IxxP
IP2: IyyP

IP3: IzzP

IV1: IxxV
IV2: IyyV

IV3: IzzV

Q1: q1 ... Q1’: q̇1 ...

U1: u1 ... U1’: u̇1 ...

The 8-DOF equations of motion in text form are as follows:

ZERO1[1] = TAP1 + IP2*U2*U3 + MV*RHOPZ*SIN(Q9)^2*U3*U4 +

MV*RHOPZ*COS( Q9)^2*U3*U4 + MV*RHOPX*RHOPZ*SIN(Q9)^2*U1*U2 +

MV*RHOPX*RHOPZ*COS(Q9)^ 2*U1*U2 + MV*RHOPZ^2*SIN(Q9)^2*U2*U3 +
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MV*RHOPZ^2*COS(Q9)^2*U2*U3 + IV1*COS(Q9)^2*TAN(Q8)^2*U2*U3 +

MV*RHOPZ*RHOVX*COS(Q9)*TAN(Q8)*U8*U9

+ MV*RHOVZ^2*COS(Q9)^2*TAN(Q8)^2*U2*U3 + MV*RHOPZ*SIN(Q2)*COS(Q1)*COS

(Q2)*SIN(2*Q1)*COS(Q9)^2*U2*U6 +

2*MV*RHOPZ*SIN(Q2)*COS(Q1)*COS(Q2)* SIN(Q1)^2*COS(Q9)^2*U3*U6 +

MV*RHOPZ*U5’ + MV*RHOPX*RHOPZ*U3’ + MV*RH

OPZ^2*SIN(Q9)*COS(Q9)*U2’ +

SIN(Q8)*((CONTOR*COS(Q9)*COS(Q8)^2+2*IV1*

COS(Q9)*U1*U2+MV*RHOPZ*RHOVZ*COS(Q8)*U1*U8+2*MV*RHOVZ^2*COS(Q9)*U1*U2-

IV1*U1*U8-MV*RHOVZ^2*U1*U8-IV1*SIN(Q8)*COS(Q8)*U2*U3-2*MV*RHOPZ*RHOVZ*

COS(Q8)*COS(Q9)*U1*U2-MV*RHOVX*RHOVZ*COS(Q8)*COS(Q9)*U8*U9-MV*RHOVZ^2*

SIN(Q8)*COS(Q8)*U2*U3)/COS(Q8)^3-SIN(Q9)*(RHOPZ*FAV3-MV*RHOPZ*RHOVZ*

U8^2-MV*RHOPZ*RHOVX*TAN(Q8)*U9^2-MV*RHOPZ*RHOVZ*COS(Q9)*TAN(Q8)*U1*U3-

(2*IV1*U2^2+2*MV*RHOVZ^2*U2^2+MV*RHOPZ*RHOVZ*COS(Q8)*U9^2+3*MV*RHOPZ*

RHOVZ*COS(Q8)*U1^2+MV*RHOPZ*RHOVZ*COS(Q8)*COS(Q9)*U2*U8-2*IV1*U1^2-2*

MV*RHOVZ^2*U1^2-IV1*COS(Q9)*U2*U8-2*MV*RHOPZ*RHOVZ*COS(Q8)*U2^2-MV*RH

OVZ^2*COS(Q9)*U2*U8-SIN(Q9)*(2*IV1*SIN(Q9)*U2^2+4*IV1*COS(Q9)*U1*U2+

MV*RHOPZ*RHOVZ*COS(Q8)*U1*U8+2*MV*RHOVZ^2*SIN(Q9)*U2^2+4*MV*RHOVZ^2*

COS(Q9)*U1*U2+MV*RHOPZ*RHOVX*COS(Q8)^2*U2*U9+2*MV*RHOPZ*RHOVZ*SIN(Q8)*

COS(Q8)*U2*U9+3*MV*RHOPZ*RHOVZ*SIN(Q9)*COS(Q8)*U1^2-IV1*U1*U8-MV*RHOVZ

^2*U1*U8-2*IV1*SIN(Q9)*U1^2-2*MV*RHOVZ^2*SIN(Q9)*U1^2-IV1*SIN(Q8)*COS(

Q8)*U2*U3-6*MV*RHOPZ*RHOVZ*COS(Q8)*COS(Q9)*U1*U2-3*MV*RHOPZ*RHOVZ*SIN(

Q9)*COS(Q8)*U2^2-MV*RHOVZ^2*SIN(Q8)*COS(Q8)*U2*U3))/COS(Q8)^3-MV*RHOPZ

*RHOVX*U8’)) - RAP3*FAP2 - RHOPZ*FAV2*COS(Q9) -

G*MV*RHOPZ*SIN(Q1)*COS (Q2)*SIN(Q9)^2 -

G*MV*RHOPZ*SIN(Q1)*COS(Q2)*COS(Q9)^2 - IP3*U2*U3 - IP6*U1*U2 -

MV*RHOPZ*SIN(Q9)^2*U1*U6 - MV*RHOPZ*COS(Q9)^2*U1*U6 - MV*

RHOPZ*RHOVZ*COS(Q9)*U8*U9 - MV*RHOPZ*RHOVZ*SIN(Q9)^2*U2*U9 -
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MV*RHOPZ* RHOVZ*SIN(Q9)*COS(Q9)*U1*U9 -

MV*RHOPZ*RHOVX*SIN(Q9)*COS(Q9)*TAN(Q8)* U1*U9 -

2*MV*RHOPZ*RHOVZ*SIN(Q9)*COS(Q9)*TAN(Q8)^2*U1*U9 - 2*MV*RHOPZ*

SIN(Q1)*SIN(Q2)*COS(Q2)*COS(Q1)^2*COS(Q9)^2*U2*U6 -

MV*RHOPZ*SIN(Q1)* SIN(Q2)*COS(Q2)*SIN(2*Q1)*COS(Q9)^2*U3*U6 -

IP1*U1’ - IP6*U3’ - MV*RH OPZ*RHOVX*COS(Q9)*U9’ -

MV*RHOPZ^2*SIN(Q9)^2*U1’ - MV*RHOPZ*RHOVZ*COS( Q9)*TAN(Q8)*U9’ -

MV*COS(Q9)^2*(RHOPZ-RHOVZ/COS(Q8))^2*U1’ - MV*SIN(

Q9)*COS(Q9)*(RHOPZ-RHOVZ/COS(Q8))^2*U2’ -

(RAV3*FAV2*COS(Q9)*COS(Q8)^2

+RHOPZ*FAV1*SIN(Q9)*COS(Q8)^4+2*IV1*COS(Q9)^2*U2*U9+IV3*COS(Q9)*COS(

Q8)^2*U8*U9+IV6*COS(Q9)*COS(Q8)^2*U7*U8+2*MV*RHOVZ^2*COS(Q9)^2*U2*U9+

MV*RHOPZ*RHOVZ*COS(Q8)*COS(Q9)*U8*U9+IV1*SIN(Q9)*COS(Q8)*COS(Q9)*U1*

U3+MV*RHOVZ*COS(Q8)^2*COS(Q9)^2*U3*U4+MV*RHOPX*RHOVZ*COS(Q8)^2*COS(Q9)

^2*U1*U2+MV*RHOPZ*RHOVX*COS(Q8)^2*COS(Q9)^2*U1*U8+MV*RHOVZ*SIN(Q9)*COS

(Q9)*COS(Q8)^2*U3*U5+MV*RHOVZ^2*SIN(Q9)*COS(Q8)*COS(Q9)*U1*U3+2*MV*RH

OPZ*RHOVZ*COS(Q8)^2*COS(Q9)^2*U2*U3+2*MV*RHOPZ*RHOVZ*SIN(Q9)*COS(Q8)*

COS(Q9)*U1*U9+MV*RHOPX*RHOVZ*SIN(Q9)*COS(Q9)*COS(Q8)^2*U2^2+MV*RHOPX*

RHOVZ*SIN(Q9)*COS(Q9)*COS(Q8)^2*U3^2+MV*RHOPZ*RHOVX*SIN(Q9)*COS(Q9)*

COS(Q8)^2*U2*U8+MV*RHOVZ*SIN(Q2)*COS(Q1)*COS(Q2)*SIN(2*Q1)*COS(Q8)^2*

COS(Q9)^2*U2*U6+IV1*COS(Q8)*COS(Q9)^2*U1’+IV6*COS(Q9)*COS(Q8)^2*U9’+

IV1*SIN(Q9)*COS(Q8)*COS(Q9)*U2’+MV*RHOPZ*RHOVZ*SIN(Q9)*COS(Q8)^4*U8’+

MV*RHOVZ*COS(Q8)^2*COS(Q9)^2*U5’+MV*RHOPX*RHOVZ*COS(Q8)^2*COS(Q9)^2*

U3’-TAV1*COS(Q9)*COS(Q8)^2-RHOVZ*FAV2*COS(Q9)*COS(Q8)^2-G*MV*RHOVZ*SIN

(Q2)*SIN(Q9)*COS(Q9)*COS(Q8)^2-IV1*COS(Q9)*U8*U9-MV*RHOVZ^2*COS(Q9)*

U8*U9-2*IV1*SIN(Q9)*COS(Q9)*U1*U9-IV1*COS(Q8)*COS(Q9)^2*U2*U3-IV2*COS(

Q9)*COS(Q8)^2*U8*U9-2*MV*RHOVZ^2*SIN(Q9)*COS(Q9)*U1*U9-2*MV*RHOPZ*RHO

VZ*COS(Q8)*COS(Q9)^2*U2*U9-MV*RHOPZ*RHOVX*SIN(Q9)*COS(Q8)^4*U8^2-MV*
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RHOPZ*RHOVX*SIN(Q9)*COS(Q8)^4*U9^2-MV*RHOVX*RHOVZ*COS(Q8)*COS(Q9)^2*

U1*U8-MV*RHOVZ*COS(Q8)^2*COS(Q9)^2*U1*U6-MV*RHOVZ^2*COS(Q8)*COS(Q9)^2*

U2*U3-MV*RHOVZ^2*COS(Q9)*COS(Q8)^2*U8*U9-MV*RHOVX*RHOVZ*SIN(Q9)*COS(

Q8)*COS(Q9)*U2*U8-MV*RHOVZ*SIN(Q9)*COS(Q9)*COS(Q8)^2*U2*U6-MV*RHOPZ*

RHOVZ*SIN(Q9)*COS(Q9)*COS(Q8)^2*U1*U3-MV*RHOPZ*RHOVZ*SIN(Q9)*COS(Q9)*

COS(Q8)^4*U1*U3-MV*RHOVZ*SIN(Q1)*COS(Q2)*COS(Q8)^2*COS(Q9)^2*(G+SIN(

Q2)*SIN(2*Q1)*U3*U6+2*SIN(Q2)*COS(Q1)^2*U2*U6-2*SIN(Q1)*SIN(Q2)*COS(

Q1)*U3*U6)-IV1*SIN(Q8)*COS(Q8)*COS(Q9)*U9’-MV*RHOVX*RHOVZ*COS(Q9)*COS(

Q8)^2*U9’-MV*RHOVZ*SIN(Q9)*COS(Q9)*COS(Q8)^2*U4’-MV*RHOVZ^2*SIN(Q8)*

COS(Q8)*COS(Q9)*U9’)/COS(Q8)^3

ZERO1[2] = TAP2 + RAP3*FAP1 + RHOPZ*FAV1*COS(Q8)*COS(Q9) +

IP3*U1*U3

+ IP6*U1^2 + MV*RHOPX*U1*U5 + MV*RHOPZ*U3*U5 + MV*RHOPX*RHOPZ*U3^2 +

MV*RHOPX^2*U1*U3 + MV*RHOPZ*RHOVZ*U1*U9 +

MV*RHOPX*RHOVZ*COS(Q8)*U8^2 + MV*RHOPZ*RHOVX*TAN(Q8)*U1*U9 +

MV*RHOPX*RHOVZ*U1^2/COS(Q8) + 2*MV* RHOPZ*RHOVZ*TAN(Q8)^2*U1*U9 +

MV*RHOPX*U6’ + MV*RHOPX*RHOVX*COS(Q8)* U8’ +

MV*RHOPZ*RHOVZ*COS(Q8)*COS(Q9)*U8’ + SIN(Q8)*(RHOPX*FAV1+RHOPZ*

FAV3*COS(Q9)+MV*RHOPX*RHOVZ*U8’-MV*RHOPX*RHOVX*U8^2-MV*RHOPZ*RHOVZ*COS

(Q9)*U8^2-MV*RHOPZ*RHOVX*COS(Q9)*TAN(Q8)*U9^2-MV*RHOPZ*RHOVZ*COS(Q9)*(

U1^2+U9^2)/COS(Q8)^2-MV*RHOPZ*RHOVX*COS(Q9)*U8’) - RAP1*FAP3 -

RHOPX* FAV3*COS(Q8) - G*MV*RHOPZ*SIN(Q2) -

G*MV*RHOPX*COS(Q1)*COS(Q2) - IP1* U1*U3 - IP6*U3^2 -

MV*RHOPX*U2*U4 - MV*RHOPZ*U2*U6 - MV*RHOPX*RHOPZ* U1^2 -

MV*RHOPZ^2*U1*U3 - MV*RHOPX*RHOVX*COS(Q9)*U1*U9 - MV*RHOPX*RHO

VZ*COS(Q9)*TAN(Q8)*U1*U9 - MV*RHOPZ*RHOVX*COS(Q8)*COS(Q9)*U8^2 -

MV* RHOPZ*RHOVX*COS(Q8)*COS(Q9)*U9^2 - IP2*U2’ - MV*RHOPZ*U4’ -
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MV*(RHOPX* SIN(Q8)+RHOPZ*COS(Q8)*COS(Q9))^2*U2’ -

MV*(RHOPX*COS(Q8)-RHOPZ*SIN(Q8) *COS(Q9))^2*U2’ -

SIN(Q9)*(RHOPZ*FAV2+MV*RHOPX*RHOVX*U2*U9+MV*RHOPZ*

RHOVZ*U8*U9+MV*RHOPX*RHOVZ*TAN(Q8)*U2*U9+MV*RHOPZ*RHOVZ*SIN(Q9)*U1*U9+

MV*RHOPZ*RHOVX*SIN(Q9)*TAN(Q8)*U1*U9+2*MV*RHOPZ*RHOVZ*SIN(Q9)*TAN(Q8)^

2*U1*U9+MV*SIN(Q1)*COS(Q2)*COS(Q9)*(2*RHOPZ*SIN(Q2)*U2*U6+RHOPZ*SIN(

Q2)*SIN(2*Q1)*U3*U6-RHOVZ*(G+2*SIN(Q2)*U2*U6+SIN(Q2)*SIN(2*Q1)*U3*U6)/

COS(Q8)-2*SIN(Q1)*SIN(Q2)*U6*(RHOPZ*SIN(Q1)*U2+RHOPZ*COS(Q1)*U3-RHOVZ*

(SIN(Q1)*U2+COS(Q1)*U3)/COS(Q8)))+MV*RHOPZ*RHOVX*U9’+MV*RHOPZ*RHOVZ*

TAN(Q8)*U9’+MV*SIN(Q9)*(RHOPZ-RHOVZ/COS(Q8))^2*U2’+MV*COS(Q9)*(RHOPZ-

RHOVZ/COS(Q8))^2*U1’-CONTOR*TAN(Q8)-MV*RHOPZ*RHOVX*TAN(Q8)*U8*U9-MV*

RHOPZ*RHOVZ*COS(Q9)*U2*U9-MV*RHOPZ*RHOVX*COS(Q9)*TAN(Q8)*U2*U9-2*MV*

RHOPZ*RHOVZ*COS(Q9)*TAN(Q8)^2*U2*U9-MV*RHOPZ*SIN(Q2)*COS(Q1)*COS(Q2)*

COS(Q9)*SIN(2*Q1)*U2*U6-MV*RHOPZ^2*COS(Q9)*U1’-SIN(Q8)*(SIN(Q9)*(MV*

RHOPZ*RHOVZ*TAN(Q8)*U1*U3+(2*IV1*COS(Q9)*U2^2+MV*RHOPZ*RHOVZ*COS(Q8)*

U2*U8+2*MV*RHOVZ^2*COS(Q9)*U2^2+3*MV*RHOPZ*RHOVZ*COS(Q8)*COS(Q9)*U1^2+

6*MV*RHOPZ*RHOVZ*SIN(Q9)*COS(Q8)*U1*U2-IV1*U2*U8-MV*RHOVZ^2*U2*U8-4*

IV1*SIN(Q9)*U1*U2-2*IV1*COS(Q9)*U1^2-4*MV*RHOVZ^2*SIN(Q9)*U1*U2-2*MV*

RHOVZ^2*COS(Q9)*U1^2-3*MV*RHOPZ*RHOVZ*COS(Q8)*COS(Q9)*U2^2)/COS(Q8)^3)

-MV*RHOPZ*RHOVZ*COS(Q9)*TAN(Q8)*U2*U3-(IV1*COS(Q9)*U1*U8+MV*RHOVX*RHO

VZ*COS(Q8)*U8*U9+MV*RHOVZ^2*COS(Q9)*U1*U8+4*MV*RHOPZ*RHOVZ*COS(Q8)*U1*

U2-2*IV1*U1*U2-2*MV*RHOVZ^2*U1*U2-MV*RHOPZ*RHOVZ*COS(Q8)*COS(Q9)*U1*

U8-IV1*COS(Q8)*U9’-MV*RHOVZ^2*COS(Q8)*U9’)/COS(Q8)^3)-(TAV1*COS(Q8)^2+

RHOVZ*FAV2*COS(Q8)^2+G*MV*RHOVZ*SIN(Q2)*SIN(Q9)*COS(Q8)^2+IV1*U8*U9+

MV*RHOVZ^2*U8*U9+2*IV1*SIN(Q9)*U1*U9+IV2*COS(Q8)^2*U8*U9+IV1*COS(Q8)*

COS(Q9)*U2*U3+2*MV*RHOVZ^2*SIN(Q9)*U1*U9+MV*RHOVZ^2*COS(Q8)^2*U8*U9+

MV*RHOVX*RHOVZ*SIN(Q9)*COS(Q8)*U2*U8+MV*RHOVX*RHOVZ*COS(Q8)*COS(Q9)*

U1*U8+MV*RHOVZ*SIN(Q9)*COS(Q8)^2*U2*U6+MV*RHOVZ*COS(Q9)*COS(Q8)^2*U1*
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U6+MV*RHOVZ^2*COS(Q8)*COS(Q9)*U2*U3+2*MV*RHOPZ*RHOVZ*COS(Q8)*COS(Q9)*

U2*U9+MV*RHOPX*RHOVZ*COS(Q9)*COS(Q8)^2*U1*U2+MV*RHOPZ*RHOVZ*SIN(Q9)*

COS(Q8)^2*U1*U3+MV*RHOPZ*RHOVZ*SIN(Q9)*COS(Q8)^4*U1*U3+MV*RHOVX*RHOVZ*

COS(Q8)^2*U9’+MV*RHOVZ*SIN(Q9)*COS(Q8)^2*U4’-RAV3*FAV2*COS(Q8)^2-2*IV1

*COS(Q9)*U2*U9-IV3*COS(Q8)^2*U8*U9-IV6*COS(Q8)^2*U7*U8-2*MV*RHOVZ^2*

COS(Q9)*U2*U9-MV*RHOPZ*RHOVZ*COS(Q8)*U8*U9-IV1*SIN(Q9)*COS(Q8)*U1*U3-2

*MV*RHOPZ*RHOVZ*SIN(Q9)*COS(Q8)*U1*U9-MV*RHOVZ*SIN(Q9)*COS(Q8)^2*U3*

U5-MV*RHOVZ*COS(Q9)*COS(Q8)^2*U3*U4-MV*RHOVZ^2*SIN(Q9)*COS(Q8)*U1*U3-

MV*RHOPX*RHOVZ*SIN(Q9)*COS(Q8)^2*U1^2-MV*RHOPX*RHOVZ*SIN(Q9)*COS(Q8)^2

*U3^2-MV*RHOPZ*RHOVX*SIN(Q9)*COS(Q8)^2*U2*U8-MV*RHOPZ*RHOVX*COS(Q9)*

COS(Q8)^2*U1*U8-MV*RHOPZ*RHOVZ*COS(Q9)*COS(Q8)^2*U2*U3-MV*RHOPZ*RHOVZ*

COS(Q9)*COS(Q8)^4*U2*U3-MV*RHOVZ*SIN(Q2)*COS(Q1)*COS(Q2)*COS(Q9)*SIN(2

*Q1)*COS(Q8)^2*U2*U6-IV6*COS(Q8)^2*U9’-IV1*SIN(Q9)*COS(Q8)*U2’-IV1*COS

(Q8)*COS(Q9)*U1’-MV*RHOVZ*COS(Q9)*COS(Q8)^2*U5’-MV*RHOPX*RHOVZ*COS(Q9)

*COS(Q8)^2*U3’)/COS(Q8)^3)

ZERO1[3] = CONTOR + TAP3 + RAP1*FAP2 + RHOPX*FAV2*COS(Q9) +

IP1*U1*U2 + IP6*U2*U3 + MV*RHOPX*U1*U6 +

MV*RHOPX*RHOVZ*COS(Q9)*U8*U9 + MV*RHOPX

*SIN(Q1)*COS(Q2)*(G+SIN(Q2)*SIN(2*Q1)*U3*U6+2*SIN(Q2)*COS(Q1)^2*U2*U6-

2*SIN(Q1)*SIN(Q2)*COS(Q1)*U3*U6) + MV*RHOPX*RHOPZ*U1’ +

MV*RHOPX*RHOVX *COS(Q9)*U9’ + MV*RHOPX*RHOVZ*COS(Q9)*TAN(Q8)*U9’ +

MV*RHOPX*(RHOVX*

COS(Q8)*U1*U8+RHOVZ*COS(Q8)*U2*U3+RHOVZ*COS(Q9)*U8*U9-2*RHOVZ*U2*U9-

RHOVZ*COS(Q8)*U1’)/COS(Q8)^2 - IP2*U1*U2 - MV*RHOPX*U3*U4 -

MV*RHOPX* RHOPZ*U2*U3 - MV*RHOPX^2*U1*U2 -

MV*RHOPX*RHOVX*COS(Q9)*TAN(Q8)*U8*U9 -

MV*RHOPX*SIN(Q2)*COS(Q1)*COS(Q2)*SIN(2*Q1)*U2*U6 - IP3*U3’ -
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IP6*U1’ - MV*RHOPX*U5’ - MV*RHOPX^2*U3’ -

RHOPX*SIN(Q8)*(MV*RHOVZ*U1*(U8-2*COS

(Q9)*U2)/COS(Q8)^2-SIN(Q9)*(FAV3-MV*RHOVZ*U8^2-MV*RHOVX*TAN(Q8)*U9^2-

MV*RHOVZ*COS(Q9)*TAN(Q8)*U1*U3-MV*(RHOVZ*U9^2+3*RHOVZ*U1^2+RHOVZ*COS(

Q9)*U2*U8-2*RHOVZ*U2^2-SIN(Q9)*(RHOVZ*U1*U8+RHOVX*COS(Q8)*U2*U9+2*RHO

VZ*SIN(Q8)*U2*U9+3*RHOVZ*SIN(Q9)*U1^2-6*RHOVZ*COS(Q9)*U1*U2-3*RHOVZ*

SIN(Q9)*U2^2))/COS(Q8)^2-MV*RHOVX*U8’)) -

RHOPX*SIN(Q9)*(MV*SIN(Q1)*

SIN(Q2)*SIN(Q9)*COS(Q2)*U6*(SIN(2*Q1)*U3+2*COS(Q1)^2*U2-2*SIN(Q1)*COS(

Q1)*U3)-MV*RHOVZ*SIN(Q9)*U2*U9-MV*RHOVZ*COS(Q9)*U1*U9-MV*RHOVX*COS(Q9)

*TAN(Q8)*U1*U9-2*MV*RHOVZ*COS(Q9)*TAN(Q8)^2*U1*U9-MV*SIN(Q2)*SIN(Q9)*

COS(Q1)*COS(Q2)*SIN(2*Q1)*U2*U6-(FAV1*COS(Q8)^3+2*MV*RHOVZ*SIN(Q9)*U2*

U9+2*MV*RHOVZ*COS(Q9)*U1*U9+MV*RHOVX*COS(Q8)*COS(Q9)*U2*U8+MV*RHOVZ*

COS(Q8)^3*U8’+MV*RHOVZ*SIN(Q9)*COS(Q8)*U1’-MV*RHOVX*COS(Q8)^3*U8^2-MV*

RHOVX*COS(Q8)^3*U9^2-MV*RHOVX*SIN(Q9)*COS(Q8)*U1*U8-MV*RHOVZ*SIN(Q9)*

COS(Q8)*U2*U3-MV*RHOVZ*COS(Q9)*COS(Q8)^3*U1*U3-MV*RHOVZ*COS(Q8)*COS(

Q9)*U2’)/COS(Q8)^2)

ZERO1[4] = FAP1 + FAV1*COS(Q8)*COS(Q9) + MP*U3*U5 + MV*U3*U5 +

MV*RHO PX*U2^2 + MV*RHOPX*U3^2 + MV*RHOVZ*U1*U9 +

MV*RHOVX*TAN(Q8)*U1*U9 + 2* MV*RHOVZ*TAN(Q8)^2*U1*U9 +

MV*RHOVZ*COS(Q8)*COS(Q9)*U8’ + SIN(Q8)*COS(

Q9)*(FAV3-MV*RHOVZ*U8^2-MV*RHOVX*TAN(Q8)*U9^2-MV*RHOVZ*(U1^2+U9^2)/COS

(Q8)^2-MV*RHOVX*U8’) +

SIN(Q9)*(MV*RHOVX*TAN(Q8)*U8*U9+MV*RHOVZ*COS(

Q9)*U2*U9+MV*RHOVX*COS(Q9)*TAN(Q8)*U2*U9+2*MV*RHOVZ*COS(Q9)*TAN(Q8)^2*

U2*U9-FAV2-MV*RHOVZ*U8*U9-MV*RHOVZ*SIN(Q9)*U1*U9-MV*RHOVX*SIN(Q9)*TAN(

Q8)*U1*U9-2*MV*RHOVZ*SIN(Q9)*TAN(Q8)^2*U1*U9-MV*RHOVX*U9’-MV*RHOVZ*TAN
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(Q8)*U9’-MV*(RHOVZ*U8*U9+2*RHOVZ*SIN(Q9)*U1*U9+RHOVX*SIN(Q9)*COS(Q8)*

U2*U8+RHOVX*COS(Q8)*COS(Q9)*U1*U8+RHOVZ*COS(Q9)*COS(Q8)^3*U2*U3-2*RHO

VZ*COS(Q9)*U2*U9-RHOVZ*SIN(Q9)*COS(Q8)^3*U1*U3-RHOVZ*SIN(Q8)*(SIN(Q9)*

U2*U8+COS(Q9)*U1*U8+6*SIN(Q9)^2*U1*U2+3*SIN(Q9)*COS(Q9)*U1^2+SIN(Q8)*

SIN(Q9)*COS(Q8)*U1*U3-4*U1*U2-3*SIN(Q9)*COS(Q9)*U2^2-SIN(Q8)*COS(Q8)*

COS(Q9)*U2*U3)-RHOVZ*SIN(Q9)*COS(Q8)*U2’-RHOVZ*COS(Q8)*COS(Q9)*U1’)/

COS(Q8)^2) - MP*U2*U6 - MV*U2*U6 - MV*RHOPZ*U1*U3 -

MV*RHOVX*COS(Q8)* COS(Q9)*U8^2 - MV*RHOVX*COS(Q8)*COS(Q9)*U9^2 -

SIN(Q2)*(G*MP+G*MV-MV*

SIN(Q9)*COS(Q2)*COS(Q9)*U6*(COS(Q1)*SIN(2*Q1)*U2-SIN(Q1)*(SIN(2*Q1)*

U3+2*COS(Q1)^2*U2-2*SIN(Q1)*COS(Q1)*U3))) - MP*U4’ - MV*U4’ -

MV*RHOPZ *U2’

ZERO1[5] = FAP2 + FAV2*COS(Q9) + MP*U1*U6 + MV*U1*U6 +

MV*RHOVZ*COS( Q9)*U8*U9 +

SIN(Q1)*COS(Q2)*(G*MP+G*MV*SIN(Q9)^2+G*MV*COS(Q9)^2+MV*SIN

(Q2)*SIN(2*Q1)*COS(Q9)^2*U3*U6+2*MV*SIN(Q2)*COS(Q1)^2*COS(Q9)^2*U2*U6-

G*MV*SIN(Q1)*SIN(Q2)*COS(Q2)*SIN(Q3)^2*SIN(Q8)^2*(SIN(2*Q9)-2*SIN(Q9)*

COS(Q9))-2*MV*SIN(Q1)*SIN(Q2)*COS(Q1)^3*COS(Q9)^2*U3*U6-2*MV*COS(Q1)*

SIN(Q1)^3*SIN(Q2)^3*COS(Q9)^2*U3*U6-2*MV*SIN(Q2)*COS(Q1)*SIN(Q1)^3*COS

(Q2)^2*COS(Q9)^2*U3*U6) + MV*RHOPZ*U1’ + MV*RHOVX*COS(Q9)*U9’ +

MV*RH OVZ*COS(Q9)*TAN(Q8)*U9’ +

MV*(RHOVX*COS(Q8)*U1*U8+RHOVZ*COS(Q8)*U2*U3+

RHOVZ*COS(Q9)*U8*U9-2*RHOVZ*U2*U9-RHOVZ*SIN(Q8)*U1*(U8-2*COS(Q9)*U2)-

RHOVZ*COS(Q8)*U1’)/COS(Q8)^2 +

SIN(Q9)*(MV*RHOVZ*SIN(Q9)*U2*U9+MV*RHO

VZ*COS(Q9)*U1*U9+MV*RHOVX*SIN(Q9)*TAN(Q8)*U2*U9+MV*RHOVX*COS(Q9)*TAN(

Q8)*U1*U9+2*MV*RHOVZ*SIN(Q9)*TAN(Q8)^2*U2*U9+2*MV*RHOVZ*COS(Q9)*TAN(



178

Q8)^2*U1*U9+MV*SIN(Q2)*SIN(Q9)*COS(Q1)*COS(Q2)*SIN(2*Q1)*U2*U6+SIN(Q8)

*(FAV3+MV*RHOVZ*(2*U2^2-3*U1^2-U9^2-COS(Q9)*U2*U8)/COS(Q8)^2-MV*RHOVZ*

U8^2-MV*RHOVX*TAN(Q8)*U9^2-MV*RHOVZ*COS(Q9)*TAN(Q8)*U1*U3-MV*RHOVZ*SIN

(Q9)*(TAN(Q8)*U2*U3-(U1*U8+3*SIN(Q9)*U1^2-6*COS(Q9)*U1*U2-3*SIN(Q9)*

U2^2)/COS(Q8)^2)-MV*RHOVX*U8’)+(FAV1*COS(Q8)^3+2*MV*RHOVZ*SIN(Q9)*U2*

U9+2*MV*RHOVZ*COS(Q9)*U1*U9+MV*RHOVX*COS(Q8)*COS(Q9)*U2*U8+MV*RHOVZ*

COS(Q8)^3*U8’+MV*RHOVZ*SIN(Q9)*COS(Q8)*U1’-MV*RHOVX*COS(Q8)^3*U8^2-MV*

RHOVX*COS(Q8)^3*U9^2-MV*RHOVX*SIN(Q9)*COS(Q8)*U1*U8-MV*RHOVZ*SIN(Q9)*

COS(Q8)^3*U2*U3-MV*RHOVZ*COS(Q9)*COS(Q8)^3*U1*U3-MV*RHOVZ*COS(Q8)*COS(

Q9)*U2’)/COS(Q8)^2) - MP*U3*U4 - MV*U3*U4 - MV*RHOPX*U1*U2 -

MV*RHOPZ* U2*U3 - MV*RHOVX*COS(Q9)*TAN(Q8)*U8*U9 -

MV*SIN(Q2)*COS(Q1)*COS(Q2)* SIN(2*Q1)*U2*U6 - MP*U5’ - MV*U5’ -

MV*RHOPX*U3’

-> (454) ZERO1[6] = FAP3 + FAV3*COS(Q8) + G*MP*COS(Q1)*COS(Q2) +

G*MV*COS(Q1)* COS(Q2) + MP*U2*U4 + MV*U2*U4 + MV*RHOPZ*U1^2 +

MV*RHOPZ*U2^2 + MV*RH OVX*COS(Q9)*U1*U9 +

MV*RHOVZ*COS(Q9)*TAN(Q8)*U1*U9 + MV*SIN(Q9)*(RHOVX

*U2*U9+RHOVZ*TAN(Q8)*U2*U9+RHOVZ*(SIN(Q9)*U1^2-2*COS(Q9)*U1*U2-SIN(Q9)

*U2^2)/COS(Q8)) + MV*RHOPX*U2’ +

SIN(Q8)*(MV*RHOVX*U8^2-FAV1-MV*RHOVZ* U8’) - MP*U1*U5 - MV*U1*U5 -

MV*RHOPX*U1*U3 - MV*RHOVZ*COS(Q8)*U8^2 - MV*RHOVZ*U1^2/COS(Q8) -

MP*U6’ - MV*U6’ - MV*RHOVX*COS(Q8)*U8’

ZERO1[7] = TAV2 + RAV3*FAV1 + RHOVX*FAV3 +

G*MV*RHOVZ*SIN(Q8)*COS(Q1)* COS(Q2) + IV3*U7*U9 + IV6*U7^2 +

MV*RHOVX*RHOVZ*U9^2 + MV*RHOVZ*SIN( Q8)*U2*U4 +

MV*RHOPZ*RHOVZ*SIN(Q8)*U1^2 + MV*RHOPZ*RHOVZ*SIN(Q8)*U2^2 +
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MV*RHOVZ^2*TAN(Q8)*U9^2 + MV*RHOVX*SIN(Q8)*COS(Q9)*U3*U5 +

MV*RHOPX* RHOVX*SIN(Q8)*COS(Q9)*U2^2 +

MV*RHOPX*RHOVX*SIN(Q8)*COS(Q9)*U3^2 + MV* RHOPX*RHOVZ*SIN(Q8)*U2’

- RAV1*FAV3 - RHOVZ*FAV1 - G*MV*RHOVX*SIN(Q2)* SIN(Q8)*COS(Q9) -

IV1*U7*U9 - IV6*U9^2 - MV*RHOVZ*SIN(Q8)*U1*U5 - MV*

RHOPX*RHOVZ*SIN(Q8)*U1*U3 - MV*RHOVX^2*TAN(Q8)*U9^2 -

MV*RHOVX*RHOVZ* TAN(Q8)^2*U9^2 - MV*RHOVX*SIN(Q8)*COS(Q9)*U2*U6 -

MV*RHOPZ*RHOVX*SIN( Q8)*COS(Q9)*U1*U3 - IV2*U8’ - MV*RHOVX^2*U8’ -

MV*RHOVZ^2*U8’ - MV*RH OVZ*SIN(Q8)*U6’ -

MV*RHOVX*SIN(Q8)*COS(Q9)*U4’ - MV*RHOPZ*RHOVX*SIN( Q8)*COS(Q9)*U2’

- MV*SIN(Q9)*(RHOVX*SIN(Q8)*U3*U4+RHOPX*RHOVX*SIN(Q8)*

U1*U2+RHOPZ*RHOVX*SIN(Q8)*U2*U3+RHOVX*SIN(Q8)*U5’+RHOPX*RHOVX*SIN(Q8)*

U3’-G*RHOVX*SIN(Q1)*SIN(Q8)*COS(Q2)-RHOVX*SIN(Q8)*U1*U6-RHOPZ*RHOVX*

SIN(Q8)*U1’-(RHOVX*RHOVZ*SIN(Q9)*U1^2+RHOVX^2*COS(Q8)*U2*U9+RHOVZ*COS(

Q8)^3*U3*U4+2*RHOVX*RHOVZ*SIN(Q8)*U2*U9+RHOPX*RHOVZ*COS(Q8)^3*U1*U2+

RHOPZ*RHOVZ*COS(Q8)^3*U2*U3+RHOVZ*COS(Q8)^3*U5’+RHOPX*RHOVZ*COS(Q8)^3*

U3’-G*RHOVZ*SIN(Q1)*COS(Q2)*COS(Q8)^3-2*RHOVX*RHOVZ*COS(Q9)*U1*U2-RHO

VX*RHOVZ*SIN(Q9)*U2^2-RHOVZ*COS(Q8)^3*U1*U6-RHOVZ^2*COS(Q8)*U2*U9-RHO

PZ*RHOVZ*COS(Q8)^3*U1’)/COS(Q8)^2) -

MV*(RHOVX*RHOVZ*U1^2+RHOVX*COS(

Q8)^3*U1*U5+RHOPX*RHOVX*COS(Q8)^3*U1*U3+RHOVZ*COS(Q9)*COS(Q8)^3*U3*U5+

RHOVZ^2*COS(Q8)*COS(Q9)*U1*U9+RHOPX*RHOVZ*COS(Q9)*COS(Q8)^3*U2^2+RHOPX

*RHOVZ*COS(Q9)*COS(Q8)^3*U3^2+RHOVX*COS(Q8)^3*U6’-G*RHOVX*COS(Q1)*COS(

Q2)*COS(Q8)^3-G*RHOVZ*SIN(Q2)*COS(Q9)*COS(Q8)^3-RHOVX*COS(Q8)^3*U2*U4-

RHOPZ*RHOVX*COS(Q8)^3*U1^2-RHOPZ*RHOVX*COS(Q8)^3*U2^2-2*RHOVX*RHOVZ*

SIN(Q8)*COS(Q9)*U1*U9-RHOVX^2*COS(Q8)*COS(Q9)*U1*U9-RHOVZ*COS(Q9)*COS(

Q8)^3*U2*U6-RHOPZ*RHOVZ*COS(Q9)*COS(Q8)^3*U1*U3-RHOPX*RHOVX*COS(Q8)^3*

U2’-RHOVZ*COS(Q9)*COS(Q8)^3*U4’-RHOPZ*RHOVZ*COS(Q9)*COS(Q8)^3*U2’)/COS
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(Q8)^2

ZERO1[8] = TAV3 + RAV1*FAV2 + RAV3*FAV2*TAN(Q8) + IV1*U7*U8 +

IV6*U8* U9 + IV3*TAN(Q8)*U8*U9 + IV6*TAN(Q8)*U7*U8 +

MV*RHOVX*SIN(Q9)*U3*U5 + MV*RHOVX*COS(Q9)*U3*U4 +

MV*RHOPX*RHOVX*SIN(Q9)*U2^2 + MV*RHOPX*RHOVX* SIN(Q9)*U3^2 +

MV*RHOPX*RHOVX*COS(Q9)*U1*U2 + MV*RHOPZ*RHOVX*COS(Q9)* U2*U3 +

MV*RHOVX^2*TAN(Q8)*U8*U9 + MV*RHOVX*RHOVZ*TAN(Q8)^2*U8*U9 +

MV*RHOVZ*SIN(Q9)*TAN(Q8)*U3*U5 + MV*RHOVZ*COS(Q9)*TAN(Q8)*U3*U4 +

MV* RHOPX*RHOVZ*SIN(Q9)*TAN(Q8)*U2^2 +

MV*RHOPX*RHOVZ*SIN(Q9)*TAN(Q8)*U3^2 +

MV*RHOPX*RHOVZ*COS(Q9)*TAN(Q8)*U1*U2 + MV*RHOPZ*RHOVZ*COS(Q9)*TAN(

Q8)*U2*U3 +

MV*RHOVX*SIN(Q2)*COS(Q1)*COS(Q2)*COS(Q9)*SIN(2*Q1)*U2*U6

+ MV*RHOVZ*SIN(Q2)*COS(Q1)*COS(Q2)*COS(Q9)*TAN(Q8)*SIN(2*Q1)*U2*U6 +

2*IV6*TAN(Q8)*U9’ + MV*RHOVX*COS(Q9)*U5’ +

MV*RHOPX*RHOVX*COS(Q9)*U3’ + MV*RHOVZ*COS(Q9)*TAN(Q8)*U5’ +

MV*RHOPX*RHOVZ*COS(Q9)*TAN(Q8)*U3’ - RHOVX*FAV2 - TAV1*TAN(Q8) -

RHOVZ*FAV2*TAN(Q8) - G*MV*RHOVX*SIN(Q2)* SIN(Q9) -

G*MV*RHOVZ*SIN(Q2)*SIN(Q9)*TAN(Q8) - IV2*U7*U8 - MV*RHOVX*

RHOVZ*U8*U9 - IV2*TAN(Q8)*U8*U9 - MV*RHOVX*SIN(Q9)*U2*U6 -

MV*RHOVX* COS(Q9)*U1*U6 - MV*RHOPZ*RHOVX*SIN(Q9)*U1*U3 -

MV*RHOVZ^2*TAN(Q8)*U8* U9 - MV*RHOVZ*SIN(Q9)*TAN(Q8)*U2*U6 -

MV*RHOVZ*COS(Q9)*TAN(Q8)*U1*U6

- MV*RHOPZ*RHOVZ*SIN(Q9)*TAN(Q8)*U1*U3 - MV*SIN(Q1)*COS(Q2)*COS(Q9)*(

G*RHOVX+G*RHOVZ*TAN(Q8)+2*RHOVX*SIN(Q2)*U2*U6+2*RHOVZ*SIN(Q2)*TAN(Q8)*

U2*U6+RHOVX*SIN(Q2)*SIN(2*Q1)*U3*U6+RHOVZ*SIN(Q2)*TAN(Q8)*SIN(2*Q1)*

U3*U6-2*SIN(Q1)*SIN(Q2)*U6*(RHOVX*SIN(Q1)*U2+RHOVX*COS(Q1)*U3+RHOVZ*
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SIN(Q1)*TAN(Q8)*U2+RHOVZ*COS(Q1)*TAN(Q8)*U3)) - IV3*U9’ -

IV1*TAN(Q8)^ 2*U9’ - MV*RHOVX*SIN(Q9)*U4’ -

MV*RHOPZ*RHOVX*SIN(Q9)*U2’ - MV*RHOPZ* RHOVX*COS(Q9)*U1’ -

MV*RHOVZ*SIN(Q9)*TAN(Q8)*U4’ - MV*(RHOVX+RHOVZ*TAN (Q8))^2*U9’ -

MV*RHOPZ*RHOVZ*SIN(Q9)*TAN(Q8)*U2’ - MV*RHOPZ*RHOVZ*COS(

Q9)*TAN(Q8)*U1’ -

(CONTOR*COS(Q8)^4+MV*RHOVX*RHOVZ*COS(Q8)*U8*U9+MV*

RHOVZ^2*SIN(Q8)*U8*U9+2*IV6*COS(Q8)*COS(Q9)*U2*U9+IV6*SIN(Q9)*COS(Q8)^

4*U1*U3+2*MV*RHOVX*RHOVZ*SIN(Q9)*COS(Q8)*U1*U9+2*MV*RHOVZ^2*SIN(Q8)*

SIN(Q9)*U1*U9+MV*RHOVX*RHOVZ*COS(Q9)*COS(Q8)^4*U2*U3+MV*RHOVX^2*SIN(

Q9)*COS(Q8)^2*U2*U8+MV*RHOVX^2*COS(Q9)*COS(Q8)^2*U1*U8+MV*RHOVX*RHOVZ*

SIN(Q8)*SIN(Q9)*COS(Q8)*U2*U8+MV*RHOVX*RHOVZ*SIN(Q8)*COS(Q8)*COS(Q9)*

U1*U8+IV6*SIN(Q9)*COS(Q8)^2*U2’+IV6*COS(Q9)*COS(Q8)^2*U1’-IV6*COS(Q8)*

U8*U9-2*IV6*SIN(Q9)*COS(Q8)*U1*U9-IV6*COS(Q9)*COS(Q8)^4*U2*U3-2*MV*RH

OVX*RHOVZ*COS(Q8)*COS(Q9)*U2*U9-2*MV*RHOVZ^2*SIN(Q8)*COS(Q9)*U2*U9-MV*

RHOVX*RHOVZ*SIN(Q9)*COS(Q8)^4*U1*U3-MV*RHOVX*RHOVZ*SIN(Q9)*COS(Q8)^2*

U2’-MV*RHOVX*RHOVZ*COS(Q9)*COS(Q8)^2*U1’-MV*RHOVZ^2*SIN(Q8)*SIN(Q9)*

COS(Q8)*U2’-MV*RHOVZ^2*SIN(Q8)*COS(Q8)*COS(Q9)*U1’)/COS(Q8)^3 -

SIN(

Q8)*(CONTOR*TAN(Q8)+MV*RHOVX*RHOVZ*COS(Q9)*TAN(Q8)*U2*U3+(IV1*U8*U9+2*

IV1*SIN(Q8)*U1*U2+IV1*COS(Q8)*COS(Q9)*U2*U3+IV6*COS(Q8)*COS(Q9)*U1*U8+

2*MV*RHOVX*RHOVZ*COS(Q8)*U1*U2+2*MV*RHOVZ^2*SIN(Q8)*U1*U2+MV*RHOVZ^2*

COS(Q8)*COS(Q9)*U2*U3-2*IV1*COS(Q9)*U2*U9-2*IV6*COS(Q8)*U1*U2-IV1*SIN(

Q8)*COS(Q9)*U1*U8-MV*RHOVX*RHOVZ*COS(Q8)*COS(Q9)*U1*U8-MV*RHOVZ^2*SIN(

Q8)*COS(Q9)*U1*U8-IV1*COS(Q8)*COS(Q9)*U1’)/COS(Q8)^3-IV6*COS(Q9)*TAN(

Q8)*U2*U3-SIN(Q9)*(MV*RHOVX*RHOVZ*TAN(Q8)*U1*U3-IV6*TAN(Q8)*U1*U3-(2*

IV1*U1*U9+IV6*COS(Q8)*U2*U8+2*IV1*SIN(Q8)*COS(Q9)*U2^2+2*IV6*COS(Q8)*

COS(Q9)*U1^2+4*IV6*SIN(Q9)*COS(Q8)*U1*U2+2*MV*RHOVX*RHOVZ*COS(Q8)*COS(
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Q9)*U2^2+2*MV*RHOVZ^2*SIN(Q8)*COS(Q9)*U2^2-IV1*SIN(Q8)*U2*U8-IV1*COS(

Q8)*U1*U3-MV*RHOVX*RHOVZ*COS(Q8)*U2*U8-MV*RHOVZ^2*SIN(Q8)*U2*U8-MV*RH

OVZ^2*COS(Q8)*U1*U3-4*IV1*SIN(Q8)*SIN(Q9)*U1*U2-2*IV1*SIN(Q8)*COS(Q9)*

U1^2-2*IV6*COS(Q8)*COS(Q9)*U2^2-4*MV*RHOVX*RHOVZ*SIN(Q9)*COS(Q8)*U1*

U2-4*MV*RHOVZ^2*SIN(Q8)*SIN(Q9)*U1*U2-2*MV*RHOVX*RHOVZ*COS(Q8)*COS(Q9)

*U1^2-2*MV*RHOVZ^2*SIN(Q8)*COS(Q9)*U1^2-IV1*COS(Q8)*U2’)/COS(Q8)^3))
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APPENDIX C

MATRIX ELEMENTS OF THE STATE-SPACE EQUATIONS

The elements of the state-space equations are presented here. They are solved

using the symbolic tool AUTOLEV. The variable’s and constants name are symbol-

ized as in the appendix B. All the constants symbols are same as in the body of the

dissertation.

For longitudinal matrices:

ALONG[1,1] =

(MV^2*(C4*CI4*D10-CI9*D10*D9-C3*(C4*CI5-CI4*D9))*(FZU+COS

(NQ8)^2*FZUV-SIN(NQ8)*COS(NQ8)*FXUV)+(C3*MV^2*(C3*CI5-CI4*D10)-CI4*(

C3*D10*MV^2-CI4*(MP+MV))-CI9*(CI5*(MP+MV)-D10^2*MV^2))*(FXU+COS(NQ8)^2

*FXUV+SIN(NQ8)*COS(NQ8)*FZUV)-MV*COS(NQ8)*(CI4*D9*(MP+MV)-C4*CI5*(MP+

MV)-D10*MV^2*(C3*D9-C4*D10))*(RHOVX*FZUV-RHOVZ*FXUV)-MV*(CI9*D9*(MP+

MV)-C4*CI4*(MP+MV)-C3*MV^2*(C3*D9-C4*D10))*(MU+RAP3*FXU+COS(NQ8)*(C6+

RHOVX*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-

RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FXUV-RAP1*FZU-COS(NQ8)*(C5-

RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-

RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FZUV))/CDEN1

ALONG[1,2] =

(MV*SIN(NQ8)*(CI4*D9*(MP+MV)-C4*CI5*(MP+MV)-D10*MV^2*(C3*

D9-C4*D10))*(RHOVX*FZUV-RHOVZ*FXUV)+MV^2*(C4*CI4*D10-CI9*D10*D9-C3*(

C4*CI5-CI4*D9))*(FZW+SIN(NQ8)^2*FXUV-SIN(NQ8)*COS(NQ8)*FZUV)+(C3*MV^2*

(C3*CI5-CI4*D10)-CI4*(C3*D10*MV^2-CI4*(MP+MV))-CI9*(CI5*(MP+MV)-D10^2*

MV^2))*(FXW-SIN(NQ8)^2*FZUV-SIN(NQ8)*COS(NQ8)*FXUV)+MV*(CI9*D9*(MP+MV)

-C4*CI4*(MP+MV)-C3*MV^2*(C3*D9-C4*D10))*(RAP1*FZW+SIN(NQ8)*(C6+RHOVX*(
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RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FXUV-MW-RAP3*FXW-SIN(NQ8)*(C5-RHOVZ

*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ

*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FZUV))/CDEN1

ALONG[1,3] =

((C3*MV^2*(C3*CI5-CI4*D10)-CI4*(C3*D10*MV^2-CI4*(MP+MV))-

CI9*(CI5*(MP+MV)-D10^2*MV^2))*(D13+FXQ+C6*SIN(NQ8)*FZUV+C6*COS(NQ8)*

FXUV)-MV*(CI4*D9*(MP+MV)-C4*CI5*(MP+MV)-D10*MV^2*(C3*D9-C4*D10))*(D12*

MV+C6*RHOVX*FZUV-C6*RHOVZ*FXUV)-MV^2*(C4*CI4*D10-CI9*D10*D9-C3*(C4*CI5

-CI4*D9))*(C6*SIN(NQ8)*FXUV-D14-FZQ-C6*COS(NQ8)*FZUV)-MV*(CI9*D9*(MP+

MV)-C4*CI4*(MP+MV)-C3*MV^2*(C3*D9-C4*D10))*(MQ+RAP3*FXQ+C6*(C6+RHOVX*(

RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FXUV-D11*MV-RAP1*FZQ-C6*(C5-RHOVZ*(

RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FZUV))/CDEN1

ALONG[1,4] =

-G*(MV^2*SIN(NQ2)*(MP+MV)*(C4*CI4*D10-CI9*D10*D9-C3*(C4*

CI5-CI4*D9))+COS(NQ2)*(MP+MV)*(C3*MV^2*(C3*CI5-CI4*D10)-CI4*(C3*D10*

MV^2-CI4*(MP+MV))-CI9*(CI5*(MP+MV)-D10^2*MV^2))-C1*MV^2*(CI4*D9*(MP+

MV)-C4*CI5*(MP+MV)-D10*MV^2*(C3*D9-C4*D10))-MV^2*(CI9*D9*(MP+MV)-C4*

CI4*(MP+MV)-C3*MV^2*(C3*D9-C4*D10))*(RHOPZ*COS(NQ2)-RHOPX*SIN(NQ2)-C2*

(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2)))/CDEN1

ALONG[1,5] =

-RHOVZ*((C3*MV^2*(C3*CI5-CI4*D10)-CI4*(C3*D10*MV^2-CI4*(
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MP+MV))-CI9*(CI5*(MP+MV)-D10^2*MV^2))*(SIN(NQ8)*FZUV+COS(NQ8)*FXUV)-

MV^2*(C4*CI4*D10-CI9*D10*D9-C3*(C4*CI5-CI4*D9))*(SIN(NQ8)*FXUV-COS(NQ8

)*FZUV)-MV*(CI4*D9*(MP+MV)-C4*CI5*(MP+MV)-D10*MV^2*(C3*D9-C4*D10))*(

RHOVX*FZUV-RHOVZ*FXUV)-MV*(CI9*D9*(MP+MV)-C4*CI4*(MP+MV)-C3*MV^2*(C3*

D9-C4*D10))*((C6+RHOVX*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHO

PZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FXUV-(C5-

RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-

RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FZUV))/CDEN1

ALONG[1,6] =

-(MV^2*(C4*CI4*D10-CI9*D10*D9-C3*(C4*CI5-CI4*D9))*(CF1+

SIN(NQ8)*(FXTHERV-NU12*FXUV)-COS(NQ8)*(FZTHERV-NU12*FZUV))+MV*(CI4*D9*

(MP+MV)-C4*CI5*(MP+MV)-D10*MV^2*(C3*D9-C4*D10))*(RHOVX*(FZTHERV-NU12*

FZUV)-C1*G*MV-RHOVZ*(FXTHERV-NU12*FXUV))+(C3*MV^2*(C3*CI5-CI4*D10)-CI4

*(C3*D10*MV^2-CI4*(MP+MV))-CI9*(CI5*(MP+MV)-D10^2*MV^2))*(CF2-SIN(NQ8)

*(FZTHERV-NU12*FZUV)-COS(NQ8)*(FXTHERV-NU12*FXUV))+MV*(CI9*D9*(MP+MV)-

C4*CI4*(MP+MV)-C3*MV^2*(C3*D9-C4*D10))*(CT2+(C6+RHOVX*(RHOPX*RHOVZ*COS

(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/

(RHOVX^2+RHOVZ^2))*(FXTHERV-NU12*FXUV)-(C13*RHOPX*RHOVX*COS(NQ8)+C13*

RHOPX*RHOVZ*SIN(NQ8)+C13*RHOPZ*RHOVZ*COS(NQ8)-C13*RHOPZ*RHOVX*SIN(NQ8)

-C2*G*MV*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(

NQ8)-RHOPZ*RHOVZ*SIN(NQ8)))/(RHOVX^2+RHOVZ^2)-(C5-RHOVZ*(RHOPX*RHOVZ*

COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8

))/(RHOVX^2+RHOVZ^2))*(FZTHERV-NU12*FZUV)))/CDEN1

ALONG[2,1] =

(MV^2*(C3*CI4*D9-CI9*D10*D9-C4*(C3*CI5-CI4*D10))*(FXU+COS

(NQ8)^2*FXUV+SIN(NQ8)*COS(NQ8)*FZUV)+MV*COS(NQ8)*(C3*CI5*(MP+MV)-CI4*
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D10*(MP+MV)-D9*MV^2*(C3*D9-C4*D10))*(RHOVX*FZUV-RHOVZ*FXUV)+(C4*MV^2*(

C4*CI5-CI4*D9)-CI4*(C4*D9*MV^2-CI4*(MP+MV))-CI9*(CI5*(MP+MV)-D9^2*MV^2

))*(FZU+COS(NQ8)^2*FZUV-SIN(NQ8)*COS(NQ8)*FXUV)+MV*(C3*CI4*(MP+MV)-CI9

*D10*(MP+MV)-C4*MV^2*(C3*D9-C4*D10))*(MU+RAP3*FXU+COS(NQ8)*(C6+RHOVX*(

RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FXUV-RAP1*FZU-COS(NQ8)*(C5-RHOVZ*(

RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FZUV))/CDEN1

ALONG[2,2] =

(MV^2*(C3*CI4*D9-CI9*D10*D9-C4*(C3*CI5-CI4*D10))*(FXW-SIN

(NQ8)^2*FZUV-SIN(NQ8)*COS(NQ8)*FXUV)+(C4*MV^2*(C4*CI5-CI4*D9)-CI4*(C4*

D9*MV^2-CI4*(MP+MV))-CI9*(CI5*(MP+MV)-D9^2*MV^2))*(FZW+SIN(NQ8)^2*FXUV

-SIN(NQ8)*COS(NQ8)*FZUV)-MV*SIN(NQ8)*(C3*CI5*(MP+MV)-CI4*D10*(MP+MV)-

D9*MV^2*(C3*D9-C4*D10))*(RHOVX*FZUV-RHOVZ*FXUV)-MV*(C3*CI4*(MP+MV)-CI9

*D10*(MP+MV)-C4*MV^2*(C3*D9-C4*D10))*(RAP1*FZW+SIN(NQ8)*(C6+RHOVX*(RH

OPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RH

OVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FXUV-MW-RAP3*FXW-SIN(NQ8)*(C5-RHOVZ*(

RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FZUV))/CDEN1

ALONG[2,3] =

-((C4*MV^2*(C4*CI5-CI4*D9)-CI4*(C4*D9*MV^2-CI4*(MP+MV))-

CI9*(CI5*(MP+MV)-D9^2*MV^2))*(C6*SIN(NQ8)*FXUV-D14-FZQ-C6*COS(NQ8)*FZ

UV)-MV^2*(C3*CI4*D9-CI9*D10*D9-C4*(C3*CI5-CI4*D10))*(D13+FXQ+C6*SIN(

NQ8)*FZUV+C6*COS(NQ8)*FXUV)-MV*(C3*CI5*(MP+MV)-CI4*D10*(MP+MV)-D9*MV^2

*(C3*D9-C4*D10))*(D12*MV+C6*RHOVX*FZUV-C6*RHOVZ*FXUV)-MV*(C3*CI4*(MP+

MV)-CI9*D10*(MP+MV)-C4*MV^2*(C3*D9-C4*D10))*(MQ+RAP3*FXQ+C6*(C6+RHOVX*
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(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FXUV-D11*MV-RAP1*FZQ-C6*(C5-RHOVZ*(

RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FZUV))/CDEN1

ALONG[2,4] =

-G*(MV^2*COS(NQ2)*(MP+MV)*(C3*CI4*D9-CI9*D10*D9-C4*(C3*

CI5-CI4*D10))+C1*MV^2*(C3*CI5*(MP+MV)-CI4*D10*(MP+MV)-D9*MV^2*(C3*D9-

C4*D10))+SIN(NQ2)*(MP+MV)*(C4*MV^2*(C4*CI5-CI4*D9)-CI4*(C4*D9*MV^2-CI4

*(MP+MV))-CI9*(CI5*(MP+MV)-D9^2*MV^2))+MV^2*(C3*CI4*(MP+MV)-CI9*D10*(

MP+MV)-C4*MV^2*(C3*D9-C4*D10))*(RHOPZ*COS(NQ2)-RHOPX*SIN(NQ2)-C2*(RHO

PX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHO

VZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2)))/CDEN1

ALONG[2,5] =

RHOVZ*((C4*MV^2*(C4*CI5-CI4*D9)-CI4*(C4*D9*MV^2-CI4*(MP+

MV))-CI9*(CI5*(MP+MV)-D9^2*MV^2))*(SIN(NQ8)*FXUV-COS(NQ8)*FZUV)-MV^2*(

C3*CI4*D9-CI9*D10*D9-C4*(C3*CI5-CI4*D10))*(SIN(NQ8)*FZUV+COS(NQ8)*FXUV

)-MV*(C3*CI5*(MP+MV)-CI4*D10*(MP+MV)-D9*MV^2*(C3*D9-C4*D10))*(RHOVX*

FZUV-RHOVZ*FXUV)-MV*(C3*CI4*(MP+MV)-CI9*D10*(MP+MV)-C4*MV^2*(C3*D9-C4*

D10))*((C6+RHOVX*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHO

VX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FXUV-(C5-RHOVZ*(

RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FZUV))/CDEN1

ALONG[2,6] =

-(MV^2*(C3*CI4*D9-CI9*D10*D9-C4*(C3*CI5-CI4*D10))*(CF2-

SIN(NQ8)*(FZTHERV-NU12*FZUV)-COS(NQ8)*(FXTHERV-NU12*FXUV))+(C4*MV^2*(
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C4*CI5-CI4*D9)-CI4*(C4*D9*MV^2-CI4*(MP+MV))-CI9*(CI5*(MP+MV)-D9^2*MV^2

))*(CF1+SIN(NQ8)*(FXTHERV-NU12*FXUV)-COS(NQ8)*(FZTHERV-NU12*FZUV))-MV*

(C3*CI5*(MP+MV)-CI4*D10*(MP+MV)-D9*MV^2*(C3*D9-C4*D10))*(RHOVX*(FZTHE

RV-NU12*FZUV)-C1*G*MV-RHOVZ*(FXTHERV-NU12*FXUV))-MV*(C3*CI4*(MP+MV)-

CI9*D10*(MP+MV)-C4*MV^2*(C3*D9-C4*D10))*(CT2+(C6+RHOVX*(RHOPX*RHOVZ*

COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8

))/(RHOVX^2+RHOVZ^2))*(FXTHERV-NU12*FXUV)-(C13*RHOPX*RHOVX*COS(NQ8)+

C13*RHOPX*RHOVZ*SIN(NQ8)+C13*RHOPZ*RHOVZ*COS(NQ8)-C13*RHOPZ*RHOVX*SIN(

NQ8)-C2*G*MV*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*

COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8)))/(RHOVX^2+RHOVZ^2)-(C5-RHOVZ*(RHOPX*RH

OVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN

(NQ8))/(RHOVX^2+RHOVZ^2))*(FZTHERV-NU12*FZUV)))/CDEN1

ALONG[3,1] =

(COS(NQ8)*(MP+MV)*(C3*D10*MV^2+C4*D9*MV^2-CI4*(MP+MV))*(

RHOVX*FZUV-RHOVZ*FXUV)+MV*(D9*C3^2*MV^2-CI9*D9*(MP+MV)-C4*(C3*D10*MV^2

-CI4*(MP+MV)))*(FXU+COS(NQ8)^2*FXUV+SIN(NQ8)*COS(NQ8)*FZUV)+MV*(D10*

C4^2*MV^2-CI9*D10*(MP+MV)-C3*(C4*D9*MV^2-CI4*(MP+MV)))*(FZU+COS(NQ8)^2

*FZUV-SIN(NQ8)*COS(NQ8)*FXUV)+(MP+MV)*(C3^2*MV^2+C4^2*MV^2-CI9*(MP+MV)

)*(MU+RAP3*FXU+COS(NQ8)*(C6+RHOVX*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*

SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))

*FXUV-RAP1*FZU-COS(NQ8)*(C5-RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*

SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))

*FZUV))/CDEN1

ALONG[3,2] =

(MV*(D10*C4^2*MV^2-CI9*D10*(MP+MV)-C3*(C4*D9*MV^2-CI4*(

MP+MV)))*(FZW+SIN(NQ8)^2*FXUV-SIN(NQ8)*COS(NQ8)*FZUV)+MV*(D9*C3^2*MV^2
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-CI9*D9*(MP+MV)-C4*(C3*D10*MV^2-CI4*(MP+MV)))*(FXW-SIN(NQ8)^2*FZUV-SIN

(NQ8)*COS(NQ8)*FXUV)-SIN(NQ8)*(MP+MV)*(C3*D10*MV^2+C4*D9*MV^2-CI4*(MP+

MV))*(RHOVX*FZUV-RHOVZ*FXUV)-(MP+MV)*(C3^2*MV^2+C4^2*MV^2-CI9*(MP+MV))

*(RAP1*FZW+SIN(NQ8)*(C6+RHOVX*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(

NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FX

UV-MW-RAP3*FXW-SIN(NQ8)*(C5-RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*

SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))

*FZUV))/CDEN1

ALONG[3,3] =

-(MV*(D10*C4^2*MV^2-CI9*D10*(MP+MV)-C3*(C4*D9*MV^2-CI4*(

MP+MV)))*(C6*SIN(NQ8)*FXUV-D14-FZQ-C6*COS(NQ8)*FZUV)-(MP+MV)*(C3*D10*

MV^2+C4*D9*MV^2-CI4*(MP+MV))*(D12*MV+C6*RHOVX*FZUV-C6*RHOVZ*FXUV)-MV*(

D9*C3^2*MV^2-CI9*D9*(MP+MV)-C4*(C3*D10*MV^2-CI4*(MP+MV)))*(D13+FXQ+C6*

SIN(NQ8)*FZUV+C6*COS(NQ8)*FXUV)-(MP+MV)*(C3^2*MV^2+C4^2*MV^2-CI9*(MP+

MV))*(MQ+RAP3*FXQ+C6*(C6+RHOVX*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(

NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FX

UV-D11*MV-RAP1*FZQ-C6*(C5-RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(

NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FZ

UV))/CDEN1

ALONG[3,4] =

-G*MV*(MP+MV)*(C1*(C3*D10*MV^2+C4*D9*MV^2-CI4*(MP+MV))+

SIN(NQ2)*(D10*C4^2*MV^2-CI9*D10*(MP+MV)-C3*(C4*D9*MV^2-CI4*(MP+MV)))+

COS(NQ2)*(D9*C3^2*MV^2-CI9*D9*(MP+MV)-C4*(C3*D10*MV^2-CI4*(MP+MV)))+(

C3^2*MV^2+C4^2*MV^2-CI9*(MP+MV))*(RHOPZ*COS(NQ2)-RHOPX*SIN(NQ2)-C2*(

RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2)))/CDEN1
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ALONG[3,5] =

RHOVZ*(MV*(D10*C4^2*MV^2-CI9*D10*(MP+MV)-C3*(C4*D9*MV^2-

CI4*(MP+MV)))*(SIN(NQ8)*FXUV-COS(NQ8)*FZUV)-(MP+MV)*(C3*D10*MV^2+C4*

D9*MV^2-CI4*(MP+MV))*(RHOVX*FZUV-RHOVZ*FXUV)-MV*(D9*C3^2*MV^2-CI9*D9*(

MP+MV)-C4*(C3*D10*MV^2-CI4*(MP+MV)))*(SIN(NQ8)*FZUV+COS(NQ8)*FXUV)-(

MP+MV)*(C3^2*MV^2+C4^2*MV^2-CI9*(MP+MV))*((C6+RHOVX*(RHOPX*RHOVZ*COS(

NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(

RHOVX^2+RHOVZ^2))*FXUV-(C5-RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN

(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*

FZUV))/CDEN1

ALONG[3,6] =

-(MV*(D10*C4^2*MV^2-CI9*D10*(MP+MV)-C3*(C4*D9*MV^2-CI4*(

MP+MV)))*(CF1+SIN(NQ8)*(FXTHERV-NU12*FXUV)-COS(NQ8)*(FZTHERV-NU12*FZUV

))+MV*(D9*C3^2*MV^2-CI9*D9*(MP+MV)-C4*(C3*D10*MV^2-CI4*(MP+MV)))*(CF2-

SIN(NQ8)*(FZTHERV-NU12*FZUV)-COS(NQ8)*(FXTHERV-NU12*FXUV))-(MP+MV)*(

C3*D10*MV^2+C4*D9*MV^2-CI4*(MP+MV))*(RHOVX*(FZTHERV-NU12*FZUV)-C1*G*

MV-RHOVZ*(FXTHERV-NU12*FXUV))-(MP+MV)*(C3^2*MV^2+C4^2*MV^2-CI9*(MP+MV)

)*(CT2+(C6+RHOVX*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHO

VX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*(FXTHERV-NU12*FX

UV)-(C13*RHOPX*RHOVX*COS(NQ8)+C13*RHOPX*RHOVZ*SIN(NQ8)+C13*RHOPZ*RHOVZ

*COS(NQ8)-C13*RHOPZ*RHOVX*SIN(NQ8)-C2*G*MV*(RHOPX*RHOVZ*COS(NQ8)-RHOPX

*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8)))/(RHOVX^2+

RHOVZ^2)-(C5-RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*

RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*(FZTHERV-NU12*

FZUV)))/CDEN1



191

ALONG[4,1] = 0 ALONG[4,2] = 0 ALONG[4,3] = 1 ALONG[4,4] = 0

ALONG[4,5] = 0 ALONG[4,6] = 0 ALONG[5,1] =

-(COS(NQ8)*(MP+MV)*(CI5*(MP+MV)-D10^2*MV^2-D9^2*MV^2)*(

RHOVX*FZUV-RHOVZ*FXUV)+MV*(CI4*D9*(MP+MV)-C3*D10*D9*MV^2-C4*(CI5*(MP+

MV)-D10^2*MV^2))*(FXU+COS(NQ8)^2*FXUV+SIN(NQ8)*COS(NQ8)*FZUV)+MV*(CI4*

D10*(MP+MV)-C4*D10*D9*MV^2-C3*(CI5*(MP+MV)-D9^2*MV^2))*(FZU+COS(NQ8)^2

*FZUV-SIN(NQ8)*COS(NQ8)*FXUV)-(MP+MV)*(C3*D10*MV^2+C4*D9*MV^2-CI4*(MP+

MV))*(MU+RAP3*FXU+COS(NQ8)*(C6+RHOVX*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX

*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2)

)*FXUV-RAP1*FZU-COS(NQ8)*(C5-RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*

SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))

*FZUV))/CDEN1

ALONG[5,2] =

(SIN(NQ8)*(MP+MV)*(CI5*(MP+MV)-D10^2*MV^2-D9^2*MV^2)*(RH

OVX*FZUV-RHOVZ*FXUV)-MV*(CI4*D10*(MP+MV)-C4*D10*D9*MV^2-C3*(CI5*(MP+

MV)-D9^2*MV^2))*(FZW+SIN(NQ8)^2*FXUV-SIN(NQ8)*COS(NQ8)*FZUV)-MV*(CI4*

D9*(MP+MV)-C3*D10*D9*MV^2-C4*(CI5*(MP+MV)-D10^2*MV^2))*(FXW-SIN(NQ8)^2

*FZUV-SIN(NQ8)*COS(NQ8)*FXUV)-(MP+MV)*(C3*D10*MV^2+C4*D9*MV^2-CI4*(MP+

MV))*(RAP1*FZW+SIN(NQ8)*(C6+RHOVX*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*

SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))

*FXUV-MW-RAP3*FXW-SIN(NQ8)*(C5-RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX

*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2)

)*FZUV))/CDEN1

ALONG[5,3] =

-((MP+MV)*(CI5*(MP+MV)-D10^2*MV^2-D9^2*MV^2)*(D12*MV+C6*

RHOVX*FZUV-C6*RHOVZ*FXUV)+MV*(CI4*D9*(MP+MV)-C3*D10*D9*MV^2-C4*(CI5*(
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MP+MV)-D10^2*MV^2))*(D13+FXQ+C6*SIN(NQ8)*FZUV+C6*COS(NQ8)*FXUV)-MV*(

CI4*D10*(MP+MV)-C4*D10*D9*MV^2-C3*(CI5*(MP+MV)-D9^2*MV^2))*(C6*SIN(NQ8

)*FXUV-D14-FZQ-C6*COS(NQ8)*FZUV)-(MP+MV)*(C3*D10*MV^2+C4*D9*MV^2-CI4*(

MP+MV))*(MQ+RAP3*FXQ+C6*(C6+RHOVX*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*

SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))

*FXUV-D11*MV-RAP1*FZQ-C6*(C5-RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*

SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))

*FZUV))/CDEN1

ALONG[5,4] =

G*MV*(MP+MV)*(C1*(CI5*(MP+MV)-D10^2*MV^2-D9^2*MV^2)+SIN(

NQ2)*(CI4*D10*(MP+MV)-C4*D10*D9*MV^2-C3*(CI5*(MP+MV)-D9^2*MV^2))+COS(

NQ2)*(CI4*D9*(MP+MV)-C3*D10*D9*MV^2-C4*(CI5*(MP+MV)-D10^2*MV^2))-(C3*

D10*MV^2+C4*D9*MV^2-CI4*(MP+MV))*(RHOPZ*COS(NQ2)-RHOPX*SIN(NQ2)-C2*(

RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2)))/CDEN1

ALONG[5,5] =

RHOVZ*((MP+MV)*(CI5*(MP+MV)-D10^2*MV^2-D9^2*MV^2)*(RHOVX*

FZUV-RHOVZ*FXUV)+MV*(CI4*D9*(MP+MV)-C3*D10*D9*MV^2-C4*(CI5*(MP+MV)-D10

^2*MV^2))*(SIN(NQ8)*FZUV+COS(NQ8)*FXUV)-MV*(CI4*D10*(MP+MV)-C4*D10*D9*

MV^2-C3*(CI5*(MP+MV)-D9^2*MV^2))*(SIN(NQ8)*FXUV-COS(NQ8)*FZUV)-(MP+MV)

*(C3*D10*MV^2+C4*D9*MV^2-CI4*(MP+MV))*((C6+RHOVX*(RHOPX*RHOVZ*COS(NQ8)

-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHO

VX^2+RHOVZ^2))*FXUV-(C5-RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(

NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*FZ

UV))/CDEN1
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ALONG[5,6] =

-((MP+MV)*(CI5*(MP+MV)-D10^2*MV^2-D9^2*MV^2)*(RHOVX*(FZT

HERV-NU12*FZUV)-C1*G*MV-RHOVZ*(FXTHERV-NU12*FXUV))-MV*(CI4*D10*(MP+MV)

-C4*D10*D9*MV^2-C3*(CI5*(MP+MV)-D9^2*MV^2))*(CF1+SIN(NQ8)*(FXTHERV-NU

12*FXUV)-COS(NQ8)*(FZTHERV-NU12*FZUV))-MV*(CI4*D9*(MP+MV)-C3*D10*D9*

MV^2-C4*(CI5*(MP+MV)-D10^2*MV^2))*(CF2-SIN(NQ8)*(FZTHERV-NU12*FZUV)-

COS(NQ8)*(FXTHERV-NU12*FXUV))-(MP+MV)*(C3*D10*MV^2+C4*D9*MV^2-CI4*(MP+

MV))*(CT2+(C6+RHOVX*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RHOPZ*

RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*(FXTHERV-NU12*

FXUV)-(C13*RHOPX*RHOVX*COS(NQ8)+C13*RHOPX*RHOVZ*SIN(NQ8)+C13*RHOPZ*RH

OVZ*COS(NQ8)-C13*RHOPZ*RHOVX*SIN(NQ8)-C2*G*MV*(RHOPX*RHOVZ*COS(NQ8)-

RHOPX*RHOVX*SIN(NQ8)-RHOPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8)))/(RHO

VX^2+RHOVZ^2)-(C5-RHOVZ*(RHOPX*RHOVZ*COS(NQ8)-RHOPX*RHOVX*SIN(NQ8)-RH

OPZ*RHOVX*COS(NQ8)-RHOPZ*RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))*(FZTHERV-

NU12*FZUV)))/CDEN1

ALONG[6,1] = 0 ALONG[6,2] = 0 ALONG[6,3] = -1 ALONG[6,4] = 0

ALONG[6,5] = 1 ALONG[6,6] = 0

BLONG[1] =

(MV^2*(C4*CI4*D10-CI9*D10*D9-C3*(C4*CI5-CI4*D9))*FZDE+MV*(

CI9*D9*(MP+MV)-C4*CI4*(MP+MV)-C3*MV^2*(C3*D9-C4*D10))*(RAP1*FZDE-MDE-

RAP3*FXDE)+(C3*MV^2*(C3*CI5-CI4*D10)-CI4*(C3*D10*MV^2-CI4*(MP+MV))-CI9

*(CI5*(MP+MV)-D10^2*MV^2))*FXDE)/CDEN1

BLONG[2] =

-(MV*(C3*CI4*(MP+MV)-CI9*D10*(MP+MV)-C4*MV^2*(C3*D9-C4*D10)

)*(RAP1*FZDE-MDE-RAP3*FXDE)-MV^2*(C3*CI4*D9-CI9*D10*D9-C4*(C3*CI5-CI4*
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D10))*FXDE-(C4*MV^2*(C4*CI5-CI4*D9)-CI4*(C4*D9*MV^2-CI4*(MP+MV))-CI9*(

CI5*(MP+MV)-D9^2*MV^2))*FZDE)/CDEN1

BLONG[3] =

-((MP+MV)*(C3^2*MV^2+C4^2*MV^2-CI9*(MP+MV))*(RAP1*FZDE-MDE-

RAP3*FXDE)-MV*(D10*C4^2*MV^2-CI9*D10*(MP+MV)-C3*(C4*D9*MV^2-CI4*(MP+

MV)))*FZDE-MV*(D9*C3^2*MV^2-CI9*D9*(MP+MV)-C4*(C3*D10*MV^2-CI4*(MP+MV)

))*FXDE)/CDEN1

BLONG[4] = 0 BLONG[5] =

-((MP+MV)*(C3*D10*MV^2+C4*D9*MV^2-CI4*(MP+MV))*(RAP1*FZDE-

MDE-RAP3*FXDE)+MV*(CI4*D10*(MP+MV)-C4*D10*D9*MV^2-C3*(CI5*(MP+MV)-D9^2

*MV^2))*FZDE+MV*(CI4*D9*(MP+MV)-C3*D10*D9*MV^2-C4*(CI5*(MP+MV)-D10^2*

MV^2))*FXDE)/CDEN1

BLONG[6] = 0

For lateral/direction matrices:

ALAT[1,1] =

-((CI10*(CI1*CI6+CI3*CI7)+CI6*(CI1*CI3+CI2*CI6)+CI11*(CI1

^2-CI2*CI7))*FYV-MV*(CI10*(C9*CI1+CI3*RHOPX)-CI11*(C10*CI1+CI2*RHOPX)

-CI6*(C10*CI3-C9*CI2))*(NV+RAP1*FYV)-MV*(CI11*(C10*CI7+CI1*RHOPX)-CI6

*(C10*CI6+C9*CI1)-CI10*(C9*CI7-CI6*RHOPX))*(LV-RAP3*FYV))/(MV^2*(C9*

CI1+CI10*RHOPX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-

CI11*RHOPX)+MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*

CI7)*(C10*C9*MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+

CI1*(MP+MV))-(CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[1,2] =
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-((CI10*(CI1*CI6+CI3*CI7)+CI6*(CI1*CI3+CI2*CI6)+CI11*(CI1

^2-CI2*CI7))*(NU6*(MP+MV)+FYP)-C9*CLA2*NU6*MV^2-MV*(CI10*(C9*CI1+CI3*

RHOPX)-CI11*(C10*CI1+CI2*RHOPX)-CI6*(C10*CI3-C9*CI2))*(MV*NU6*RHOPX+

NP+RAP1*FYP)-MV*(CI11*(C10*CI7+CI1*RHOPX)-CI6*(C10*CI6+C9*CI1)-CI10*(

C9*CI7-CI6*RHOPX))*(LP-C10*MV*NU6-RAP3*FYP))/(MV^2*(C9*CI1+CI10*RHOPX

)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^

2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2

-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*

CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[1,3] =

((CI10*(CI1*CI6+CI3*CI7)+CI6*(CI1*CI3+CI2*CI6)+CI11*(CI1^

2-CI2*CI7))*(NU4*(MP+MV)-FYR)+MV*(CI11*(C10*CI7+CI1*RHOPX)-CI6*(C10*

CI6+C9*CI1)-CI10*(C9*CI7-CI6*RHOPX))*(C10*MV*NU4+LR-RAP3*FYR)-C9*CLA2

*NU4*MV^2-MV*(CI10*(C9*CI1+CI3*RHOPX)-CI11*(C10*CI1+CI2*RHOPX)-CI6*(

C10*CI3-C9*CI2))*(MV*NU4*RHOPX-NR-RAP1*FYR))/(MV^2*(C9*CI1+CI10*RHOPX

)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^

2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2

-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*

CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[1,4] =

-G*COS(NQ2)*((MP+MV)*(CI10*(CI1*CI6+CI3*CI7)+CI6*(CI1*CI3

+CI2*CI6)+CI11*(CI1^2-CI2*CI7))+C10*MV^2*(CI11*(C10*CI7+CI1*RHOPX)-

CI6*(C10*CI6+C9*CI1)-CI10*(C9*CI7-CI6*RHOPX))-C9*CLA2*MV^2-RHOPX*MV^2

*(CI10*(C9*CI1+CI3*RHOPX)-CI11*(C10*CI1+CI2*RHOPX)-CI6*(C10*CI3-C9*

CI2)))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2

*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+
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(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10

*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[1,5] =

D8*MV*(CI10*(CI1*CI6+CI3*CI7)+CI6*(CI1*CI3+CI2*CI6)+CI11*

(CI1^2-CI2*CI7)+C10*MV*(CI11*(C10*CI7+CI1*RHOPX)-CI6*(C10*CI6+C9*CI1)

-CI10*(C9*CI7-CI6*RHOPX))-C9*CLA2*MV-MV*RHOPX*(CI10*(C9*CI1+CI3*RHOPX

)-CI11*(C10*CI1+CI2*RHOPX)-CI6*(C10*CI3-C9*CI2)))/(MV^2*(C9*CI1+CI10*

RHOPX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX

)+MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*

C9*MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))

-(CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[1,6] =

-(CF1*(CI10*(CI1*CI6+CI3*CI7)+CI6*(CI1*CI3+CI2*CI6)+CI11*

(CI1^2-CI2*CI7))+MV*(CI11*(C10*CI7+CI1*RHOPX)-CI6*(C10*CI6+C9*CI1)-

CI10*(C9*CI7-CI6*RHOPX))*(CT1-C13*C4*B^2*TAN(NQ8)/(H*(RHOVX^2+RHOVZ^2

))-C13*RHOPZ*(RHOVX*COS(NQ8)+RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))-CLA2*

MV*(C9*G*MV*SIN(NQ2)+C13*C4*B^2/(H*COS(NQ8)*(RHOVX^2+RHOVZ^2)))-MV*(

CI10*(C9*CI1+CI3*RHOPX)-CI11*(C10*CI1+CI2*RHOPX)-CI6*(C10*CI3-C9*CI2)

)*(NFAV1*RHOPX*COS(NQ8)+NFAV3*RHOPX*SIN(NQ8)+C13*C4*B^2/(H*(RHOVX^2+

RHOVZ^2))-C13*RHOPX*(RHOVX*COS(NQ8)+RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2)

))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RH

OPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(

CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*

RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[2,1] =
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(CLA6*MV*FYV-CLA7*(NV+RAP1*FYV)-(C9*MV^2*(C9*CI7-CI6*RHO

PX)-CI11*(CI7*(MP+MV)-MV^2*RHOPX^2)-CI6*(C9*RHOPX*MV^2-CI6*(MP+MV)))*

(LV-RAP3*FYV))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10

*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6

*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*

CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(

MP+MV)))

ALAT[2,2] =

(C9*MV*NU6*(CI6*(C10*RHOPX*MV^2+CI1*(MP+MV))-RHOPX*MV^2*(

C9*CI1+CI3*RHOPX)-CI7*(C10*C9*MV^2-CI3*(MP+MV)))+CLA6*MV*(NU6*(MP+MV)

+FYP)-CLA7*(MV*NU6*RHOPX+NP+RAP1*FYP)-(C9*MV^2*(C9*CI7-CI6*RHOPX)-CI

11*(CI7*(MP+MV)-MV^2*RHOPX^2)-CI6*(C9*RHOPX*MV^2-CI6*(MP+MV)))*(LP-

C10*MV*NU6-RAP3*FYP))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1+CI3*RHOPX)+

MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*CI3-C9*CI2)*(

C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(MP+MV))-(CI1*

CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-CI6^2)*(C10^2*

MV^2-CI2*(MP+MV)))

ALAT[2,3] =

(CLA7*(MV*NU4*RHOPX-NR-RAP1*FYR)-C9*MV*NU4*(CI6*(C10*RHO

PX*MV^2+CI1*(MP+MV))-RHOPX*MV^2*(C9*CI1+CI3*RHOPX)-CI7*(C10*C9*MV^2-

CI3*(MP+MV)))-CLA6*MV*(NU4*(MP+MV)-FYR)-(C9*MV^2*(C9*CI7-CI6*RHOPX)-

CI11*(CI7*(MP+MV)-MV^2*RHOPX^2)-CI6*(C9*RHOPX*MV^2-CI6*(MP+MV)))*(C10

*MV*NU4+LR-RAP3*FYR))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1+CI3*RHOPX)+

MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*CI3-C9*CI2)*(

C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(MP+MV))-(CI1*

CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-CI6^2)*(C10^2*
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MV^2-CI2*(MP+MV)))

ALAT[2,4] =

-G*MV*COS(NQ2)*(CLA7*RHOPX-CLA6*(MP+MV)-C9*(CI6*(C10*RHO

PX*MV^2+CI1*(MP+MV))-RHOPX*MV^2*(C9*CI1+CI3*RHOPX)-CI7*(C10*C9*MV^2-

CI3*(MP+MV)))-C10*(C9*MV^2*(C9*CI7-CI6*RHOPX)-CI11*(CI7*(MP+MV)-MV^2*

RHOPX^2)-CI6*(C9*RHOPX*MV^2-CI6*(MP+MV))))/(MV^2*(C9*CI1+CI10*RHOPX)*

(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*

(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-

CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*

CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[2,5] =

D8*MV*(CLA7*RHOPX-CLA6*MV-C9*(CI6*(C10*RHOPX*MV^2+CI1*(

MP+MV))-RHOPX*MV^2*(C9*CI1+CI3*RHOPX)-CI7*(C10*C9*MV^2-CI3*(MP+MV)))-

C10*(C9*MV^2*(C9*CI7-CI6*RHOPX)-CI11*(CI7*(MP+MV)-MV^2*RHOPX^2)-CI6*(

C9*RHOPX*MV^2-CI6*(MP+MV))))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1+CI3*

RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*CI3-C9*

CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(MP+MV))-

(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-CI6^2)*(

C10^2*MV^2-CI2*(MP+MV)))

ALAT[2,6] =

-(CLA7*(NFAV1*RHOPX*COS(NQ8)+NFAV3*RHOPX*SIN(NQ8)+C13*C4*

B^2/(H*(RHOVX^2+RHOVZ^2))-C13*RHOPX*(RHOVX*COS(NQ8)+RHOVZ*SIN(NQ8))/(

RHOVX^2+RHOVZ^2))-CF1*CLA6*MV-(C9*G*MV*SIN(NQ2)+C13*C4*B^2/(H*COS(NQ8

)*(RHOVX^2+RHOVZ^2)))*(CI6*(C10*RHOPX*MV^2+CI1*(MP+MV))-RHOPX*MV^2*(

C9*CI1+CI3*RHOPX)-CI7*(C10*C9*MV^2-CI3*(MP+MV)))-(C9*MV^2*(C9*CI7-CI6
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*RHOPX)-CI11*(CI7*(MP+MV)-MV^2*RHOPX^2)-CI6*(C9*RHOPX*MV^2-CI6*(MP+

MV)))*(CT1-C13*C4*B^2*TAN(NQ8)/(H*(RHOVX^2+RHOVZ^2))-C13*RHOPZ*(RHOVX

*COS(NQ8)+RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2)))/(MV^2*(C9*CI1+CI10*RHO

PX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+

MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*

MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(

CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[3,1] =

(MV*(C9*(CI1*CI3+CI2*CI6)-CI11*(C10*CI1+CI2*RHOPX)-CI10*(

C10*CI6-CI3*RHOPX))*FYV+(C9*MV^2*(C10*CI3-C9*CI2)+CI10*(C10*C9*MV^2-

CI3*(MP+MV))-CI11*(C10^2*MV^2-CI2*(MP+MV)))*(NV+RAP1*FYV)-(CI11*(C10*

RHOPX*MV^2+CI1*(MP+MV))-C9*MV^2*(C10*CI6+C9*CI1)-CI10*(C9*RHOPX*MV^2-

CI6*(MP+MV)))*(LV-RAP3*FYV))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1+CI3*

RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*CI3-C9*

CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(MP+MV))-

(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-CI6^2)*(

C10^2*MV^2-CI2*(MP+MV)))

ALAT[3,2] =

(MV*(C9*(CI1*CI3+CI2*CI6)-CI11*(C10*CI1+CI2*RHOPX)-CI10*(

C10*CI6-CI3*RHOPX))*(NU6*(MP+MV)+FYP)+(C9*MV^2*(C10*CI3-C9*CI2)+CI10*

(C10*C9*MV^2-CI3*(MP+MV))-CI11*(C10^2*MV^2-CI2*(MP+MV)))*(MV*NU6*RHO

PX+NP+RAP1*FYP)-C9*MV*NU6*(RHOPX*MV^2*(C10*CI3-C9*CI2)-CI1*(C10*C9*

MV^2-CI3*(MP+MV))-CI6*(C10^2*MV^2-CI2*(MP+MV)))-(CI11*(C10*RHOPX*MV^2

+CI1*(MP+MV))-C9*MV^2*(C10*CI6+C9*CI1)-CI10*(C9*RHOPX*MV^2-CI6*(MP+

MV)))*(LP-C10*MV*NU6-RAP3*FYP))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1+CI3

*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*CI3-
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C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(MP+

MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-CI6^2

)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[3,3] =

(C9*MV*NU4*(RHOPX*MV^2*(C10*CI3-C9*CI2)-CI1*(C10*C9*MV^2-

CI3*(MP+MV))-CI6*(C10^2*MV^2-CI2*(MP+MV)))-MV*(C9*(CI1*CI3+CI2*CI6)-

CI11*(C10*CI1+CI2*RHOPX)-CI10*(C10*CI6-CI3*RHOPX))*(NU4*(MP+MV)-FYR)-

(CI11*(C10*RHOPX*MV^2+CI1*(MP+MV))-C9*MV^2*(C10*CI6+C9*CI1)-CI10*(C9*

RHOPX*MV^2-CI6*(MP+MV)))*(C10*MV*NU4+LR-RAP3*FYR)-(C9*MV^2*(C10*CI3-

C9*CI2)+CI10*(C10*C9*MV^2-CI3*(MP+MV))-CI11*(C10^2*MV^2-CI2*(MP+MV)))

*(MV*NU4*RHOPX-NR-RAP1*FYR))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1+CI3*

RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*CI3-C9*

CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(MP+MV))-

(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-CI6^2)*(

C10^2*MV^2-CI2*(MP+MV)))

ALAT[3,4] =

G*MV*COS(NQ2)*((MP+MV)*(C9*(CI1*CI3+CI2*CI6)-CI11*(C10*

CI1+CI2*RHOPX)-CI10*(C10*CI6-CI3*RHOPX))+C10*(CI11*(C10*RHOPX*MV^2+

CI1*(MP+MV))-C9*MV^2*(C10*CI6+C9*CI1)-CI10*(C9*RHOPX*MV^2-CI6*(MP+MV)

))+RHOPX*(C9*MV^2*(C10*CI3-C9*CI2)+CI10*(C10*C9*MV^2-CI3*(MP+MV))-CI

11*(C10^2*MV^2-CI2*(MP+MV)))-C9*(RHOPX*MV^2*(C10*CI3-C9*CI2)-CI1*(C10

*C9*MV^2-CI3*(MP+MV))-CI6*(C10^2*MV^2-CI2*(MP+MV))))/(MV^2*(C9*CI1+

CI10*RHOPX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*

RHOPX)+MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(

C10*C9*MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+

MV))-(CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))
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ALAT[3,5] =

-D8*MV*(MV*(C9*(CI1*CI3+CI2*CI6)-CI11*(C10*CI1+CI2*RHOPX)

-CI10*(C10*CI6-CI3*RHOPX))+C10*(CI11*(C10*RHOPX*MV^2+CI1*(MP+MV))-C9*

MV^2*(C10*CI6+C9*CI1)-CI10*(C9*RHOPX*MV^2-CI6*(MP+MV)))+RHOPX*(C9*MV^

2*(C10*CI3-C9*CI2)+CI10*(C10*C9*MV^2-CI3*(MP+MV))-CI11*(C10^2*MV^2-

CI2*(MP+MV)))-C9*(RHOPX*MV^2*(C10*CI3-C9*CI2)-CI1*(C10*C9*MV^2-CI3*(

MP+MV))-CI6*(C10^2*MV^2-CI2*(MP+MV))))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*

CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10

*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(

MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-

CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[3,6] =

-((C9*G*MV*SIN(NQ2)+C13*C4*B^2/(H*COS(NQ8)*(RHOVX^2+RHOVZ

^2)))*(RHOPX*MV^2*(C10*CI3-C9*CI2)-CI1*(C10*C9*MV^2-CI3*(MP+MV))-CI6*

(C10^2*MV^2-CI2*(MP+MV)))-CF1*MV*(C9*(CI1*CI3+CI2*CI6)-CI11*(C10*CI1+

CI2*RHOPX)-CI10*(C10*CI6-CI3*RHOPX))-(CI11*(C10*RHOPX*MV^2+CI1*(MP+

MV))-C9*MV^2*(C10*CI6+C9*CI1)-CI10*(C9*RHOPX*MV^2-CI6*(MP+MV)))*(CT1-

C13*C4*B^2*TAN(NQ8)/(H*(RHOVX^2+RHOVZ^2))-C13*RHOPZ*(RHOVX*COS(NQ8)+

RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2))-(C9*MV^2*(C10*CI3-C9*CI2)+CI10*(

C10*C9*MV^2-CI3*(MP+MV))-CI11*(C10^2*MV^2-CI2*(MP+MV)))*(NFAV1*RHOPX*

COS(NQ8)+NFAV3*RHOPX*SIN(NQ8)+C13*C4*B^2/(H*(RHOVX^2+RHOVZ^2))-C13*

RHOPX*(RHOVX*COS(NQ8)+RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2)))/(MV^2*(C9*

CI1+CI10*RHOPX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-

CI11*RHOPX)+MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*

CI7)*(C10*C9*MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+

CI1*(MP+MV))-(CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))
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ALAT[4,1] = 0 ALAT[4,2] = 1 ALAT[4,3] = TAN(NQ2) ALAT[4,4] = 0

ALAT[4,5] = 0 ALAT[4,6] = 0 ALAT[5,1] =

-(MV*(CI10*(C10*CI7+CI1*RHOPX)+CI6*(C10*CI1+CI2*RHOPX)+

C9*(CI1^2-CI2*CI7))*FYV-(CI10*(C10*RHOPX*MV^2+CI1*(MP+MV))-C9*MV^2*(

C10*CI1+CI2*RHOPX)-CI6*(C10^2*MV^2-CI2*(MP+MV)))*(NV+RAP1*FYV)-(C9*

MV^2*(C10*CI7+CI1*RHOPX)-CI6*(C10*RHOPX*MV^2+CI1*(MP+MV))-CI10*(CI7*(

MP+MV)-MV^2*RHOPX^2))*(LV-RAP3*FYV))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*

CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10

*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(

MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-

CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[5,2] =

-(MV*(CI10*(C10*CI7+CI1*RHOPX)+CI6*(C10*CI1+CI2*RHOPX)+

C9*(CI1^2-CI2*CI7))*(NU6*(MP+MV)+FYP)-C9*MV*NU6*(RHOPX*MV^2*(C10*CI1+

CI2*RHOPX)+CI1*(C10*RHOPX*MV^2+CI1*(MP+MV))+CI7*(C10^2*MV^2-CI2*(MP+

MV)))-(CI10*(C10*RHOPX*MV^2+CI1*(MP+MV))-C9*MV^2*(C10*CI1+CI2*RHOPX)-

CI6*(C10^2*MV^2-CI2*(MP+MV)))*(MV*NU6*RHOPX+NP+RAP1*FYP)-(C9*MV^2*(

C10*CI7+CI1*RHOPX)-CI6*(C10*RHOPX*MV^2+CI1*(MP+MV))-CI10*(CI7*(MP+MV)

-MV^2*RHOPX^2))*(LP-C10*MV*NU6-RAP3*FYP))/(MV^2*(C9*CI1+CI10*RHOPX)*(

C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(

C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-

CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*

CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[5,3] =

(MV*(CI10*(C10*CI7+CI1*RHOPX)+CI6*(C10*CI1+CI2*RHOPX)+C9*
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(CI1^2-CI2*CI7))*(NU4*(MP+MV)-FYR)+(C9*MV^2*(C10*CI7+CI1*RHOPX)-CI6*(

C10*RHOPX*MV^2+CI1*(MP+MV))-CI10*(CI7*(MP+MV)-MV^2*RHOPX^2))*(C10*MV*

NU4+LR-RAP3*FYR)-C9*MV*NU4*(RHOPX*MV^2*(C10*CI1+CI2*RHOPX)+CI1*(C10*

RHOPX*MV^2+CI1*(MP+MV))+CI7*(C10^2*MV^2-CI2*(MP+MV)))-(CI10*(C10*RHO

PX*MV^2+CI1*(MP+MV))-C9*MV^2*(C10*CI1+CI2*RHOPX)-CI6*(C10^2*MV^2-CI2*

(MP+MV)))*(MV*NU4*RHOPX-NR-RAP1*FYR))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*

CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10

*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(

MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-

CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[5,4] =

-G*MV*COS(NQ2)*((MP+MV)*(CI10*(C10*CI7+CI1*RHOPX)+CI6*(

C10*CI1+CI2*RHOPX)+C9*(CI1^2-CI2*CI7))+C10*(C9*MV^2*(C10*CI7+CI1*RHO

PX)-CI6*(C10*RHOPX*MV^2+CI1*(MP+MV))-CI10*(CI7*(MP+MV)-MV^2*RHOPX^2))

-C9*(RHOPX*MV^2*(C10*CI1+CI2*RHOPX)+CI1*(C10*RHOPX*MV^2+CI1*(MP+MV))+

CI7*(C10^2*MV^2-CI2*(MP+MV)))-RHOPX*(CI10*(C10*RHOPX*MV^2+CI1*(MP+MV)

)-C9*MV^2*(C10*CI1+CI2*RHOPX)-CI6*(C10^2*MV^2-CI2*(MP+MV))))/(MV^2*(

C9*CI1+CI10*RHOPX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*

CI6-CI11*RHOPX)+MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI

10*CI7)*(C10*C9*MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2

+CI1*(MP+MV))-(CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[5,5] =

D8*MV*(MV*(CI10*(C10*CI7+CI1*RHOPX)+CI6*(C10*CI1+CI2*RHO

PX)+C9*(CI1^2-CI2*CI7))+C10*(C9*MV^2*(C10*CI7+CI1*RHOPX)-CI6*(C10*RH

OPX*MV^2+CI1*(MP+MV))-CI10*(CI7*(MP+MV)-MV^2*RHOPX^2))-C9*(RHOPX*MV^2

*(C10*CI1+CI2*RHOPX)+CI1*(C10*RHOPX*MV^2+CI1*(MP+MV))+CI7*(C10^2*MV^2
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-CI2*(MP+MV)))-RHOPX*(CI10*(C10*RHOPX*MV^2+CI1*(MP+MV))-C9*MV^2*(C10*

CI1+CI2*RHOPX)-CI6*(C10^2*MV^2-CI2*(MP+MV))))/(MV^2*(C9*CI1+CI10*RHO

PX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+

MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*

MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(

CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[5,6] =

-(CF1*MV*(CI10*(C10*CI7+CI1*RHOPX)+CI6*(C10*CI1+CI2*RHOPX

)+C9*(CI1^2-CI2*CI7))+(C9*MV^2*(C10*CI7+CI1*RHOPX)-CI6*(C10*RHOPX*MV^

2+CI1*(MP+MV))-CI10*(CI7*(MP+MV)-MV^2*RHOPX^2))*(CT1-C13*C4*B^2*TAN(

NQ8)/(H*(RHOVX^2+RHOVZ^2))-C13*RHOPZ*(RHOVX*COS(NQ8)+RHOVZ*SIN(NQ8))/

(RHOVX^2+RHOVZ^2))-(C9*G*MV*SIN(NQ2)+C13*C4*B^2/(H*COS(NQ8)*(RHOVX^2+

RHOVZ^2)))*(RHOPX*MV^2*(C10*CI1+CI2*RHOPX)+CI1*(C10*RHOPX*MV^2+CI1*(

MP+MV))+CI7*(C10^2*MV^2-CI2*(MP+MV)))-(CI10*(C10*RHOPX*MV^2+CI1*(MP+

MV))-C9*MV^2*(C10*CI1+CI2*RHOPX)-CI6*(C10^2*MV^2-CI2*(MP+MV)))*(NFAV1

*RHOPX*COS(NQ8)+NFAV3*RHOPX*SIN(NQ8)+C13*C4*B^2/(H*(RHOVX^2+RHOVZ^2))

-C13*RHOPX*(RHOVX*COS(NQ8)+RHOVZ*SIN(NQ8))/(RHOVX^2+RHOVZ^2)))/(MV^2*

(C9*CI1+CI10*RHOPX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*

CI6-CI11*RHOPX)+MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI

10*CI7)*(C10*C9*MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2

+CI1*(MP+MV))-(CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

ALAT[6,1] = 0 ALAT[6,2] = -TAN(NQ8) ALAT[6,3] = -1 ALAT[6,4] = 0

ALAT[6,5] = 1/COS(NQ8) ALAT[6,6] = 0

BLAT[1] =

-((CI10*(CI1*CI6+CI3*CI7)+CI6*(CI1*CI3+CI2*CI6)+CI11*(CI1^2
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-CI2*CI7))*FYDR-MV*(CI10*(C9*CI1+CI3*RHOPX)-CI11*(C10*CI1+CI2*RHOPX)-

CI6*(C10*CI3-C9*CI2))*(NDR+RAP1*FYDR)-MV*(CI11*(C10*CI7+CI1*RHOPX)-

CI6*(C10*CI6+C9*CI1)-CI10*(C9*CI7-CI6*RHOPX))*(LDR-RAP3*FYDR))/(MV^2*

(C9*CI1+CI10*RHOPX)*(C9*CI1+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*

CI6-CI11*RHOPX)+MV^2*(C10*CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI

10*CI7)*(C10*C9*MV^2-CI3*(MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2

+CI1*(MP+MV))-(CI11*CI7-CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

BLAT[2] =

(MV*(CI11*(C10*CI7+CI1*RHOPX)-C9*(CI1*CI6+CI3*CI7)-CI6*(C10

*CI6-CI3*RHOPX))*FYDR-(CI11*(C10*RHOPX*MV^2+CI1*(MP+MV))-C9*MV^2*(C9*

CI1+CI3*RHOPX)-CI6*(C10*C9*MV^2-CI3*(MP+MV)))*(NDR+RAP1*FYDR)-(C9*MV^

2*(C9*CI7-CI6*RHOPX)-CI11*(CI7*(MP+MV)-MV^2*RHOPX^2)-CI6*(C9*RHOPX*

MV^2-CI6*(MP+MV)))*(LDR-RAP3*FYDR))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1

+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*

CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(

MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-

CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

BLAT[3] =

(MV*(C9*(CI1*CI3+CI2*CI6)-CI11*(C10*CI1+CI2*RHOPX)-CI10*(

C10*CI6-CI3*RHOPX))*FYDR+(C9*MV^2*(C10*CI3-C9*CI2)+CI10*(C10*C9*MV^2-

CI3*(MP+MV))-CI11*(C10^2*MV^2-CI2*(MP+MV)))*(NDR+RAP1*FYDR)-(CI11*(

C10*RHOPX*MV^2+CI1*(MP+MV))-C9*MV^2*(C10*CI6+C9*CI1)-CI10*(C9*RHOPX*

MV^2-CI6*(MP+MV)))*(LDR-RAP3*FYDR))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1

+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*

CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(

MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-
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CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

BLAT[4] = 0 BLAT[5] =

-(MV*(CI10*(C10*CI7+CI1*RHOPX)+CI6*(C10*CI1+CI2*RHOPX)+C9*(

CI1^2-CI2*CI7))*FYDR-(CI10*(C10*RHOPX*MV^2+CI1*(MP+MV))-C9*MV^2*(C10*

CI1+CI2*RHOPX)-CI6*(C10^2*MV^2-CI2*(MP+MV)))*(NDR+RAP1*FYDR)-(C9*MV^2

*(C10*CI7+CI1*RHOPX)-CI6*(C10*RHOPX*MV^2+CI1*(MP+MV))-CI10*(CI7*(MP+

MV)-MV^2*RHOPX^2))*(LDR-RAP3*FYDR))/(MV^2*(C9*CI1+CI10*RHOPX)*(C9*CI1

+CI3*RHOPX)+MV^2*(C10*CI1+CI2*RHOPX)*(C9*CI6-CI11*RHOPX)+MV^2*(C10*

CI3-C9*CI2)*(C9*CI7-CI6*RHOPX)+(CI1*CI6+CI10*CI7)*(C10*C9*MV^2-CI3*(

MP+MV))-(CI1*CI11+CI10*CI6)*(C10*RHOPX*MV^2+CI1*(MP+MV))-(CI11*CI7-

CI6^2)*(C10^2*MV^2-CI2*(MP+MV)))

BLAT[6] = 0
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APPENDIX D

PDS NONLINEAR SIMULATION50

Parafoil Dynamic Simulator (PDS) is originated from PARASIM that is a result

of the Advanced Recovery System Guidance, Navigation and Control Model Devel-

opment and Analysis Program developed by Boeing as a sub-contract of Pioneer

Aerospace Corp. PARASIM is a high fidelity eight degrees-of-freedom two rigid body

closed loop guidance, navigation and control (GN&C) computer simulation coded by

standard Fortran-77. PARASIM simulates the flight of the Advanced Recovery Sys-

tem (ARS) parafoil and payload from steady glide after parafoil deployment, through

the closed loop guided and controlled guide to a precise flared landing at the target.

NASA Johnson modified the PARASIM for X-38/CRV (Crew Return Vehicle)

parafoil simulation for verifying the Parafoil Guidance Navigation & Control algo-

rithm (PGNC). Mainly PDS has same structures of PARASIM, whereas the database

is constructed for X-38/CRV parafoil and PGNC algorithm for X-38/CRV.

PDS simulates the flight of X-38/CRV parafoil from deploying stage, through

steady glide and flare, to touchdown. The program feature an 8 degrees-of-freedom

dynamics module linking two rigid bodies, the parafoil and the payload. The parafoil

is modelled with 6 degrees-of-freedom and the payload rigid body may move relative

to the parafoil rigid body in yaw and pitch about the load bar. The program was

constructed using wind tunnel data, and validated by repeated drop test program of

the scaled X-38/CRV. The simulation incorporates two-body dynamics, parafoil and

payload aerodynamics, actuator and navigation sensor models, as well as guidance

and control algorithms.

PDS used for the Buckeye simulation in this thesis is part of the PDS composed

of two-body dynamics and their aerodynamics for open loop simulation. Guidance,

navigation and control algorithms are deactivated for open loop simulation. During

the Buckeye simulation it uses same aerodynamic database of the big parafoil for

X-38/CRV with actual geometry of the Buckeye.
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Input and Output of PDS The NAMELIST input is used for data initialization for

PDS and the lists are summarized as follows:

• Start: Start-up state

• Sim: Simulation operations

• Design: Vehicle design parameters: weights, inertias, sizes, etc.

• Guid: Guidance mission data load parameters

• Nav: Guidance mission data load parameters

• Cont: Control mission data load parameters, winch parameters, manual control

aray

• AeroPF: Parafoil aerodynamic coefficients

• AeroPL: Payload aerodynamics coefficients

• Winds: Wind and density dispersions

PDS outputs two trajectory text files such as PARA????.TRJ and PARA????.GGP

where ???? is file name designator. Those are time history text files formatted for

specific graphic plotter and lists. These output files can be converted to another

format for a specific purpose.
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