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ABSTRACT

Entanglement Generation and Applications

in Quantum Information. (May 2006)

Tiegang Di, B.S.; M.S., JiLin University;

M.S., Texas A&M University

Chair of Advisory Committee: M. Suhail Zubairy

This dissertation consists of three sections. In the first section, we discuss the gener-

ation of arbitrary two-qubit entangled states and present three generation methods.

The first method is based on the interaction of an atom with classical and quantized

cavity fields. The second method is based on the interaction of two coupled two-level

atoms with a laser field. In the last method, we use two spin-1/2 systems which

interact with a tuned radio frequency pulse. Using those methods we have generated

two qubit arbitrary entangled states which is widely used in quantum computing and

quantum information. In the second section, we discuss a possible experimental im-

plementation of quantum walk which is based on the passage of an atom through a

high-Q cavity. The chirality is determined by the atomic states and the displacement

is characterized by the photon number inside the cavity. Our scheme makes quan-

tum walk possible in a cavity QED system and the results could be widely used on

quantum computer. In the last section, we investigate the properties of teleporting

an arbitrary superposition of entangled Dicke states of any number of atoms (qubits)

between two distant cavities. We also studied teleporting continuous variables of an

optical field. Teleportation of Dicke states relies on adiabatic passage using multi-

atom dark states in each cavity and a conditional detection of photons leaking out
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of both cavities. In the continuous variables teleportation scheme we first reformu-

late the protocol of quantum teleportation of arbitrary input optical field states in

the density matrix form, and established the relation between the P-function of the

input and output states. We then present a condition involving squeeze parameter

and detection efficiency under which the P-function of the output state becomes the

Q function of the input state such that any nonclassical features in the input state

will be eliminated in the teleported state. Based on the research in this section we

have made it possible of arbitrary atomic Dicke states teleportation from one cavity

to another, and this teleortation will play an essential role in quantum communi-

cation. Since quantum properties is so important in quantum communication, the

condition we give in this section to distinguish classical and quantum teleportation is

also important.
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CHAPTER I

INTRODUCTION

Quantum entanglement constitutes perhaps the single most characteristic property

that makes quantum mechanics distinct from any classical theory. Entangled states

are employed not only to test the foundations of quantum mechanics such as in

Bell’s inequalities, but they also play a central role in various quantum information

processes ranging from quantum teleportation, quantum dense coding and quantum

cryptography to quantum computing. So it is obvious that quantum entanglement

lies at the heart of quantum computing and quantum informatics. The question of

how to generate quantum entangled states has attracted much attention.

Quantum entanglement, which is associated with peculiar nonclassical correla-

tions was first introduced by Einstein, Podolsky, and Rosen(EPR) [1]. Later they

turned out to be essential to performing quantum computational and quantum infor-

mation tasks that are impossible for classical systems [2, 3, 4, 5]. Quantum entangled

states consist of finite dimensional states and continuous variable states [6] in Hilbert

space. Most of those implementations use atomic states, photonic states or spin states

as basis. Many methods of the quantum state engineering inside a cavity have been

proposed in the literature. These include methods based on atom-field entanglement

[7, 8, 9] and quantum state mapping between multilevel atoms and cavity fields[10].

Several schemes have been proposed to create paticular entangled states. Some papers

introduced ways to generate particular entangled states using cavity QED methods.

These include Bell basis state [11], the GHZ state [12], states with fixed total photon

numbers [13]. Generation of two cavities entangled state of fixed number of photons

This dissertation follows the style of Physical Review A.
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and generation entanglement by passive optical devices has been studied [14, 15].

A generation of arbitrary superposition of Dicke states has been proposed recently

[16] using trapped ions [17] whose energy levels represent basis vectors for a qubit.

Trapped-ion techniques make it possible to study interactions between photons and

a few trapped ions inside a cavity. Kimble et al. produced arbitrary superpositions

of Dicke states based on this technique, and showed how to generate arbitrary two

photon states [18].

Without a cavity, using atom-field interactions it is also possible to make entan-

gled states. It is well known that the generation of a one-qubit arbitrary atomic state

can be realized by using the interaction of an atom with a classical field in a two-level

atomic system[19]. For the two qubit case, properties of multi-atom systems have

used to generate entangled atomic or photonic states [20, 21], and to create two-atom

system entanglement such as pairwise atomic states [22, 23]. Recent studies of multi-

atom systems made special entangled states available via the control of the quantum

phase [24].

The investigation of spin entanglements has had a long history since EPR paradox

was first introduced, for example the spin entanglement was studied when Bennett

et al. [25] proposed the first protocol for quantum teleportion. Compared with

atomic states or photonic states, spin states are more stable. In contrast atomic-

photon system will collapse soon due to decoherence. This is a important advantage

in quantum computing and quantum information. Recently, some schemes theories

on generation of entanglements are built on the interactions between spins and radio

frequency pulses. In this area special spin entangled states have been prepared [26, 27]

and entangled states can be also created and studied by means of nuclear-magnetic-

resonance(NMR) methods [28].

It is widely believed that a quantum computer can solve some problems faster
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than classical computer. Many classical algorithms used in computer are based on

random walks. It is therefore interesting to consider the quantum analog of classical

random walk. There are a number of different types of quantum walk. Discrete

time quantum walks were proposed by Aharonov et al. [29] and Meyer[30, 31, 32]

and further developed by Watrous [33]. These walks rely on an auxiliary quantum

system, a “quantum coin”, in order to make the time steps in the walk correspond

to the action of a unitary operator. Aharonov et al. [34] and Ambainis et al[35]

gave the first explicitly algorithmic context for coined quantum walks. Nayak et

al. [36] studied in detail the properties of quantum walk in one dimension. Farhi

and Gutmann [37] introduced continuous time quantum walks in 1997. Recently

Hillery et al.[38] developed a discrete-time quantum walk model which is based on an

analogy to optical interferometers, and does not require a quantum coin. Quantum

walks in systems with one and two absorbing walls have also been studied[39]. Two

algorithmic applications of quantum walks have been proposed so far. Childs et al

[40] proved that a continuous time quantum walk can find its way across a special

type of graph exponentially faster than any classical algorithm. Shenvi et al. [41]

demonstrated that a search algorithm based on a coined quantum walk can obtain

the same quadratic speedup as Grover’s search algorithm.

Methods for the implementation of the coined quantum walk on a number of

different physical systems have recently been suggested. These include ion traps [42],

neutral atoms trapped in an optical lattice [43], and cavity QED, in which it is the

phase of the field that undergoes the walk [44]. Very recently, additional optical

implementations have been proposed using either linear optical elements [45, 46] or

cavities [47, 48]. In these cavity implementations the walk takes place along frequency

components of the cavity field. These papers also show that an experimental quantum

walk has, in fact, been carried out, though it was not interpreted as such at the time
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[49].

Bennett et al. [2] first proposed a protocol for teleporting an unknown quantum

state of two-state systems such as spin- 1
2

particles via a classical information channel

and a quantum channel built from nonlocal quantum correlation between the sender

and the receiver which share a quantum entangled state. From then on, quantum

teleportation has been of interest to the physics community for many years. It holds

promise for many useful applications in quantum communication and quantum com-

puting. It consists of three steps. The first step is to prepare an entangled pair of

particles that is shared between sender (Alice) and receiver (Bob). The second step

is a joint measurement by Alice of the unknown system and one particle of the en-

tangled pair in a Bell basis. In the last step, classical communication from Alice to

Bob allows him to reconstruct the unknown state at his end following appropriate

unitary transformations. This protocol has been verified experimentally for discrete

[50], as well as continuous [51], systems. Usually atomic states are considered ideal

for the storage of quantum information and are used as the stationary qubits. Earlier

proposals for teleporting atomic states [52] used the atoms themselves as the carriers

of quantum information (the ‘flying qubits’), and recently massive particle teleporta-

tion based on the Bennett et al. protocol was demonstrated by two groups using ions

in a trap [53].

This protocol has been extended to various quantum states in a finite dimensional

Hilbert space [13, 14, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]. Teleportation of

single-photon polarization states has been carried out experimentally [66, 67, 68]. In

principle, a quantum state can be teleported with arbitrary accuracy in these pro-

tocols. Another class of protocol relates to the teleportation of continuous variable

quantum states. The first protocol for teleporting quantum states in an infinite-

dimensional Hilbert space was suggested by Vaidman, employing the perfect correla-
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tion in both position and momentum of two particles in the EPR state [69]. The two

quadrature-phase components of a single-mode optical field are analogous to position

and momentum of a particle. Braunstein and Kimble [70] employed quantum nonlo-

cal correlation between quadrature-phase components of optical fields in a two-mode

squeezed vacuum state as a quantum information channel and proposed a quantum

optical version of teleportation of continuous variables. Based on this protocol, quan-

tum teleportation of a coherent state of a single-mode optical field was demonstrated

experimentally [71, 72, 73]. In this protocol, the ideal teleportation could be obtained

only if the initial two-mode squeezed vacuum state was ideally squeezed. However

this is not possible as it would require infinite amount of energy to produce ideal two-

mode squeezed vacuum state. In any quantum communication channel, perhaps the

most interesting states required for teleportation are those whose quantum statistical

description has no classical analog. Such nonclassical states of the radiation field are

described by a P-representation P (α) that is not positive definite over the entire com-

plex plane. As a result of nonideal squeezing (and also nonideal homodyne detection

efficiencies), the nonclassical nature of any input beam will tend to disappear in the

process of teleportation in the protocol suggested in [70]. In previous studies, only

certain nonclassical properties and specific kinds of input states have been considered

and the resulting conditions are dependent on the nonclassical properties and the

input states under consideration [74, 75]. In the very recent paper, Caves and Wod-

kiewicz [76] established the relation between the Wigner functions of the input and

output states in the teleportation of continuous variables and showed that the Wigner

function of the output state is the Q-function of the input state when e−2r = 1/2.

Based on the relation between the variances of the phase-quadrature amplitudes of

the input and output states, Ralph et al [77] obtained the same conclusion.
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CHAPTER II

GENERATION OF ARBITRARY TWO-QUBIT ENTANGLED STATES

A. Preparation of an arbitrary two-photon entangled state

We consider a method for creating an arbitrary entangled state between two cavity

fields. We restrict ourselves to only qubit states, i.e., the only allowed values for

photon numbers in the two cavities are 0 and 1. The two cavities interact with each

other via interaction with a two-level atom that is resonant with the cavity fields.

The atom also interacts with two other auxiliary classical field. The atom is therefore

entangled with the cavity field. However a conditional measurement reduces the

final state of the atom to the desired entangled cavity field state. In general the

proposed method is statistical as the probability of finding the final state of the atom

in a particular state can be less than unity. However we show that, by choosing

the interaction times of the atom and the fields appropriately together with special

choice of relative phase between the atomic dipole and the two classical fields, we

can generate a wide class of entangled states with unit probability, thus leading to a

deterministic outcome.

We consider a system of two high Q cavities. The field modes inside the cavities

can interact with each other via interaction with a resonant two-level atom that passes

sequentially through the two cavities. Our goal is the generation of the state

|ψ〉 = c00 |00〉 + c01 |01〉 + c10 |10〉 + c11 |11〉 , (2.1)

where c00, c01, c10 and c11 are arbitrary complex amplitudes of corresponding states

which satisfy the normalization condition

|c00|2 + |c01|2 + |c10|2 + |c11|2 = 1. (2.2)
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The schematics of the system is shown in Fig. 1. Here a resonant two-level atom

initially in its excited state |a〉 interacts with two classical fields in addition to the

interaction with the quantized field inside the two cavities. The classical and quantum

interactions, characterized by the subscripts C and Q, respectively, are given by the

following time evolution matrices

UC(τ) =

⎛
⎜⎝ cos(|r| τ) −ieiθsin(|r| τ)

−ie−iθsin(|r| τ) cos(|r| τ)

⎞
⎟⎠ (2.3)

where τ is the interaction time of the atom with the field and r = |r|exp(iθ) is the

complex Rabi frequency,

UQ(τ) =

⎛
⎜⎝ cos(|g|

√
aa†τ) −iaeiφ sin(|g|

√
a†aτ)√

a†a

−ia†e−iφ sin(|g|
√

aa†τ)√
aa† cos(|g|

√
a†aτ)

⎞
⎟⎠

(2.4)

where a and a† are the annihilation and creation operators for the cavity field and g

is the vacuum Rabi frequency and φ is the relative phase between the atomic dipole

and the cavity field. We assume that the radiation field in both cavities is initially

CA QA
QB

a

b

CB

Fig. 1. Schematics for the preparation of two-mode photon states. The atom, initially

in level |a〉, passes through a classical field CA, cavity A with quantized field

QA, classical field CB, and finally cavity B with quantized field QB.



8

in vacuum state, i.e., the initial atom-cavity states is |00〉 |a〉. Here |00〉 represents 0

photon in cavity A and 0 photon in cavity B.

It then follows from Eqs. (3) and (4) that the atom-field state after the atom

passes through the sequence of classical and cavity fields, as shown in Fig. 1, is given

by

|ψQB〉 = UQ(τqB)UC(τcB)UQ(τqA)UC(τcA) |ψ0〉

= (fa[(cadaea − cbe
∗
b) |00〉 − cadbe

∗
b |10〉]) ⊗ |a〉 + ((cadaeb + cbea) |00〉

+(cadaeafb − cbe
∗
bfb) |01〉 + cadbea |10〉 − cadbe

∗
bfb |11〉) ⊗ |b〉

(2.5)

where we use the simplified notations ca = cos(|r| τcA) = |ca|, cb = −ie−iθAsin(|r| τcA) =

−ie−iθA |cb|, and τcA is the time of the atom to pass through the first classical field

with θA being the phase factor of the classical field. Similarly da = cos(|g| τqA) = |da|,
db = −ie−iφAsin(|g| τqA) = −ie−iφA |db|, and τqA is the time for the atom to pass

through this first cavity, with φA being the phase factor of the quantum field. Also

ea = cos(|r| τcB) = |ea|, eb = −ie−iθBsin(|r| τcB) = −ie−iθB |eb|, fa = cos(|g| τqB) =

|fa|, fb = −ie−iφBsin(|g| τqB) = −ie−iφB |fb|, and τcB and τqB are the times for the

atom to pass through the second classical field and cavity B. As before θB and φB

are the phase factor for the classical field and field inside cavity B.

If we make a measurement on the atom after its passage through cavity B and
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the atom is found to be in the ground state, then the cavity field reduces to

|ψ〉 = [(cadaeb + cbea) |00〉 + (cadaeafb − cbe
∗
bfb) |01〉 + cadbea |10〉

−cadbe
∗
bfb |11〉]/

√
N

= [(−ie−iθB)(|cadaeb| + |cbea| e−i(θA−θB)) |00〉

+(−ie−iφB)(|cadaeafb| − |cbebfb| e−i(θA−θB))) |01〉 + (−ie−iφA) |cadbea| |10〉

+(−ie−i(φA+φB−θB)) |cadbebfb| |11〉]/
√

N. (2.6)

On comparing with Eq. (2.1), we have

c00 = (−ie−iθB)(|cadaeb| + |cbea| e−i(θA−θB))/
√

N,

c01 = (−ie−iφB)(|cadaeafb| − |cbebfb| e−i(θA−θB))/
√

N,

c10 = (−ie−iφA) |cadbea| /
√

N,

c11 = (−ie−i(φA+φB−θB)) |cadbebfb| /
√

N.

(2.7)

Here c00, c01, c10, c11 are the normalized amplitudes of the corresponding photon states

and N = |cadaeb + cbea|2 + |cadbea|2 + |cadaeafb − cbe
∗
bfb|2 + |cadbe

∗
bfb|2 is the normal-

ization factor.

The controlling parameters are the interaction times τcA, τqA, τcB and τqB. An

arbitrary set of amplitudes c00, c01, c10, and c11 can be obtained by an appropriate

choice of these interaction times corresponding to a choice of ca, da, ea, and fa. The

amplitudes cij (i,j=0 or 1) are constrained by the condition 0 ≤ |cij| ≤ 1. Also

we have 0 ≤ |ca|, |da|, |ea|, |fa| ≤ 1. We would now like to address the question

whether suitable interaction times and the phases can be found for any arbitrary set

of amplitudes cij.

In general, we can find numerically a suitable choice of interaction times and
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phases to generate any arbitrary state of the form (2.1). For example, the choice

θA − θB = 0 can lead to the generation of any state of the form (2.1) with unit

probability apart from a phase as discussed below. Our emphasis here is to give

analytic expressions for the interaction parameters.

We consider two special cases (θA − θB = π/2 and θA − θB = 0) in the following.

It is clear from Eq. (2.7) that, for these choices of θA − θB, we cover all possible set

of amplitudes cij except for a phase, i.e., the phase factor associated with the state

|1, 1〉 is not independent. A quantum phase gate with an arbitrary phase shift can

lead to an independent phase for the state |1, 1〉. We shall not address the question

of the generation of such a phase gate here.

1. θA − θB = π/2

It follows from Eq. (2.7) that

x1 = (|cadaeb|2 + |cbea|2)/N

x2 = (|cadaeafb|2 + |cbebfb)|2 /N

x3 = |cadbea|2 /N

x4 = |cadbebfb|2 /N,

(2.8)

where x1 = |c00|2, x2 = |c01|2, x3 = |c10|2, and x4 = |c11|2. These equations can be

solved for the interaction times (or equivalently for ca, da, ea and fa).

We can rewrite Eqs. (2.8) as

xi = yi/N (2.9)

for i = 1 − 4. Here the normalization constant N = y1 + y2 + y3 + y4. A solution of
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Eq. (2.9) is given by

yi = Pxi, (2.10)

where P is a constant. Thus Eq.(2.8) reduces to

y1 = |ca|2|da|2(1 − |ea|2) + |ea|2(1 − |ca|2)

y2 = (|ca|2|da|2|ea|2 + (1 − |ca|2)(1 − |ea|2))(1 − |fa|2)

y3 = |ca|2(1 − |da|2)|ea|2

y4 = |ca|2(1 − |da|2)(1 − |ea|2)(1 − |fa|2).

(2.11)

By solving this equation we can get a solution of Eq. (2.8). It is clear from the

definition of P that P = N = y1 + y2 + y3 + y4 is the probability for the atom being

in the ground state.

The solution of Eq. (8) together with the definition of xi is given by

|ca|2 = (Px3x
2
2 − P 2x1x3x

2
2 − Px1x2x4 + P 2x2

1x2x4 + Px3x2x4 + P 2x2
3x2x4

−x2
4 + Px1x

2
4 + 2Px3x

2
4 − P 2x1x3x

2
4)

/[(x2 + x4)(Px3x2 − x4 + Px1x4 + 2Px3x4)]

|da|2 = (Px3x
2
2 − P 2x1x3x

2
2 − P 2x2

3x
2
2 − Px1x2x4 + P 2x2

1x2x4 + Px3x2x4

−P 2x2
3x2x4 − Px1x

2
4 + P 2x2

1x
2
4 + P 2x1x3x

2
4)/(Px3x

2
2 − P 2x1x3x

2
2

−Px1x2x4 + P 2x2
1x2x4 + Px3x2x4 + P 2x2

3x2x4

−x2
4 + Px1x

2
4 + 2Px3x

2
4 − P 2x1x3x

2
4)

|ea|2 = x3(Px2 + Px4)/(Px3x2 + x4 − Px1x4)

|fa|2 = (−1 + P )/(−1 + Px1 + Px2).

(2.12)
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Here 0 < P ≤ 1 with P = 1 corresponding to a deterministic preparation of the

desired state. There are infinite number of solutions of Eq. (9) corresponding to

different values of P but we would like to get a solution with maximum allowed value

of P = 1.

However for P=1, We can not find the solution for |ca|2, |da|2, |ea|2, |fa|2 in the

range between 0 and 1 for xi (i = 1, 2, 3, 4) being also in the range 0 and 1 under

following conditions.

(a) First we show that the solution (9) is not allowed when x1 = 0 and x2x3x4 �= 0.

Under these conditions, we obtain

|ca|2 = 1 +
x2x4(1 − x3)

2

x3x2
2 − x2x4 + 3x3x2x4 − x2

4 + 2x3x2
4

(2.13)

In order for 0 ≤ |ca|2 ≤ 1, the denominator in the second term of Eq. (2.13) must

be < 0 when x2x4 �= 0. Thus the numerator of |ca|2 in Eq. (9) should also be < 0

when x1 = 0. Now the numerator of |ca|2 is equal to the denominator of |da|2 in Eq.

(9). Therefore the numerator of |da|2 in Eq. (9) will also be < 0 when x1 = 0, i.e.,

x3x
2
2 − x2

3x
2
2 + x3x2x4 − x2

3x2x4 < 0. This gives x3 > 1, which is not possible.

(b) Next we show that the solution (9) is not allowed when x2 = 0 and x1x3x4 �= 0.

It follows from Eq.(9) that, under these conditions,

|ca|2 = 1 +
x1x3

1 − x1 + 2x3

(2.14)

Now if x1x3x4 �= 0, we have |ca|2 > 1 for p=1 and therefore there is no allowed

solution.

(c) It is also obvious that if x1, x2, x3, x4 make the denominators in |ca|2 or |da|2 =

0 (thus leading to pole points in four dimensional space generated by x1, x2, x3, x4)
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then those states are not available. For P=1 if reasonable solutions of Eq. (9) could

be found numerically then x1, x2, x3, x4 are not near pole points. We note that the

denominator of |ea|2 �= 0 as x4 is always greater than x1x4. Also the denominator

of |fa|2 = 0 only when P = 1 and x1 + x2 = 0, so that x3 = x4 = 0 which have

trivial solutions. In summary, when x1, x2, x3, x4 are near the pole points, we obtain

|ca|2 or |da|2 < 0 or > 1 when P=1. These are therefore not possible states when

θA − θB = π/2.

We next study the case θA − θB = 0 and find out now we can get reasonable

solutions for |ca|2, |da|2, |ea|2, |fa|2 in the range between 0 and 1 for 0 ≤ xi ≤ 1 (i =

1, 2, 3, 4) under conditions we talked above which we can not get suitable solutions

when we choose θA − θB = π/2.

2. θA − θB = 0

It follows from Eq.(2.7) that

x1 = ||cadaeb| + |cbea||2 /N

x2 = ||cadaeafb| − |cbebfb||2 /N

x3 = |cadbea|2 /N

x4 = |cadbebfb|2 /N.

(2.15)

A general analytic solution of |ca|2, |da|2, |ea|2, and |fa|2 in terms of xi (i = 1 − 4) is

difficult. We have however seen numerically that any arbitrary state (apart from a

phase in Eq. (2.7) can be generated when θA − θB = 0 with unit probability. Here

we discuss some special cases where analytic results are obtained.



14

(i) For x1 = 0 and x2x3x4 �= 0 we have

0 = |ca|2|da|2(1 − |ea|2) − |ea|2(1 − |ca|2)

Px2 = (1 − |ca|2)(1 − |fa|2)/(1 − |ea|2)

Px3 = |ca|2(1 − |da|2)|ea|2

Px4 = |ca|2(1 − |da|2)(1 − |ea|2)(1 − |fa|2)

(2.16)

These equations can be solved and the resulting expressions for the interaction pa-

rameters are

|ca|2 = (x2
4 + x2

2x3P + 3x2x3x4P − x2x
2
3x4P

2)/[(x2 + x4)(x4 + x2x3P )]

|da|2 = (x2
2x3P + x2x3x4P − x2

2x
2
3P

2 − x2x
2
3x4P

2)

/(x2
4 + x2

2x3P + 3x2x3x4P − x2x
2
3x4P

2)

|ea|2 =
1

x2 + x4

[
−x4 + x3x4P +

1

(x2 + x4)(x4 + x2x3P )
(x2x

2
4 + x3

4 + x3
2x3P

+4x2
2x3x4P + 3x2x3x

2
4P − x2

2x
2
3x4P

2 − x2x
2
3x

2
4P

2)
]

|fa|2 = 1 − x2P − x4P

{
1 − 1

x2 + x4

[−x4 + x3x4P

+
1

(x2 + x4)(x4 + x2x3P )
(x2x

2
4 + x3

4 + x3
2x3P + 4x2

2x3x4P

+3x2x3x
2
4P − x2

2x
2
3x4P

2 − x2x
2
3x

2
4P

2)
]}−1

(2.17)

where, as before, P is the probability for the atom to be finally in the ground state.

(ii) For x2 = 0 andx1x3x4 �= 0, we can see from Eq. (2.15) that if x4 �= 0 then
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|fb|2 �= 0. We have:

Px1 = (1 − |ca|2)/|ea|2

0 = |cadaea|2 − (1 − |ca|2)(1 − |ea|2)

Px3 = |ca|2(1 − |da|2)|ea|2

Px4 = |ca|2(1 − |da|2)(1 − |ea|2)(1 − |fa|2)

(2.18)

A solution of these equations is given by

|ca|2 = (1 − x1P − x1x3P
2)/(1 − x1P )

|da|2 = x1P (1 − x1P − x3P )/(1 − x1P − x1x3P
2)

|ea|2 = x3P/(1 − x1P )

|fa|2 = (1 − P )/(1 − P + x4P )

(2.19)

We can then see that, when x1 = 0 or x2 = 0 and P = 1, there is always a

solution to satisfy 0 ≤ x1, x2, x3, x4 ≤ 1 which means we can always make those

states available.

(iii)Numerically we can also get reasonable solution for |ca|2, |da|2, |ea|2, |fa|2 in

the range between 0 and 1 for 0 ≤ xi ≤ 1 (i = 1, 2, 3, 4) when x1, x2, x3, x4 are near

pole points and p=1.
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B. Generation of arbitrary two-qubit entangled atomic

states

In this section we present a method to generate arbitrary entangled two-atom states

based on the dipole-dipole interaction between the atoms, which gives rise to a col-

lective state system. The key idea then is to subsequently apply driving fields to

transitions in the collective state system of the two atoms. By carefully controlling

the interaction times and phases of the classical driving fields, arbitrary entangled

states between the two atoms can be created. Our model system consists of two

nearby two-level atoms. Due to the small distance, dipole-dipole interactions gives

rise to a collective state system. First, we introduce our model system, and then

proceed to discuss how to address each of the transitions in this collective state sys-

tem with classical fields individually. The Hamiltonian describing N two-level atoms

interacting with the vacuum field can be written as [78, 79]:

Ĥ =
N∑

i=1

�ωiS
z
i +

∑
ks

�ωk(â
†
ksâks +

1

2
)

− i�
∑
ks

N∑
i=1

[gks(�ri) S+
i âks − h.c.] . (2.20)

Each atom consists of upper level |ai〉 and lower level |bi〉 with energy difference �ωi

(i ∈ {1 . . . N}). The single-atom operators are defined as Sz
i = (|ai〉 〈ai| − |bi〉 〈bi|)/2,

S+
i = |ai〉 〈bi| and S−

i = |bi〉 〈ai|. âks is the annihilation operator of the vacuum field

mode ks with gks as coupling constant. Using the master equation approach, the time

evolution of the reduced density operator ρ̂ for the atoms alone can be written as

∂

∂t
ρ̂ =

1

i�
[Ĥaa, ρ̂] − 1

2

N∑
i,j=1

Γij

(
ρ̂S+

i S−
j

+S+
i S−

j ρ̂ − 2S−
j ρ̂S+

i

)
. (2.21)
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Here, Γij =
√

ΓiΓjF (k0rij), where Γi is the spontaneous decay rate of atom i. F (k0rij)

is a function of the relative position of two atoms i, j at positions �ri and �rj, respec-

tively, with �rij = �ri−�rj, rij = |�ri−�rj| and r̄ij = �rij/rij, k0 = ω0

c
, and ω0 = (ωi+ωj)/c.

Γij also depends on the unit vectors µ̄ = µ̄i = µ̄j of the individual atomic dipole mo-

ments, which in the following are assumed to be equal.

The coherent evolution is governed by the Hamiltonian

Ĥaa = �

N∑
i=1

ωiS
z
i + �

∑
i�=j

Ωdd
ij S+

i S−
j . (2.22)

The second part in Eq. (2.22) is the dipole-dipole interaction between the atoms,

where Ωdd
ij is the dipole-dipole coupling constant given by

Ωdd
ij =

3

4

√
ΓiΓj

(
− [

1 − (µ̄.r̄ij)
2
] cos(k0rij)

k0rij

+
[
1 − 3(µ̄.r̄ij)

2
] [

sin(k0rij)

(k0rij)2
+

cos(k0rij)

(k0rij)3

])
. (2.23)

Assuming k0rij � 1, we have Γij ≈ √
ΓiΓj and Ωdd

ij ≈ (3
√

ΓiΓj)/(4(k0rij)
3)[1 −

3(µ̄.r̄ij)
2], such that Ωdd

ij 
 Γij will be satisfied. Thus, in the following, we neglect

the spontaneous decay of the system states.

We now focus on two interacting two-level atoms with ground states |b1〉, |b2〉
and excited states |a1〉, |a2〉. The resonance frequencies of the two atoms are ω1 and

ω2. In the absence of dipole-dipole interaction and driving fields, the state space of

the two-atom system is spanned by four product states:

|b1b2〉 , |b1a2〉 , |a1b2〉 , |a1a2〉 . (2.24)

The corresponding eigenenergies are given by Eb1b2 = −�ω0, Ea1b2 = −�∆, Eb1a2 =

�∆, Ea1a2 = �ω0, where ω0 = 1
2
(ω1 + ω2) and ∆ = 1

2
(ω2 − ω1). We can rewrite the

two-atom interaction Hamiltonian in the matrix form (in the basis of Eq. (2.47)),
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1

2

3

4

12Ω
13Ω

34Ω
24Ω

Fig. 2. Level scheme of the collective state system of two dipole-dipole interacting

atoms. Such a quantum system can be described as a four-level system |1〉,
|2〉, |3〉 and |4〉 in closed-loop configuration. Ω12, Ω13, Ω24 and Ω34 are Rabi

frequencies for each of the transitions. An implementation of the individual

addressing is discussed in the text.

assuming the dipole-dipole coupling constants to be same, i.e., Ωdd
12 = Ωdd

21 =: Ω, and

the two atoms to be nonidentical (∆ �= 0). It follows, on diagonalizing the matrix,

that the eigenstates of this system are:

|1〉 = |b1b2〉 , (2.25a)

|2〉 =
1√
2

(α1 |a1b2〉 − α2 |b1a2〉) , (2.25b)

|3〉 =
1√
2

(α2 |a1b2〉 + α1 |b1a2〉) , (2.25c)

|4〉 = |a1a2〉 . (2.25d)

Here, α1 = (1+∆/
√

∆2 + Ω2)1/2, α2 = (1−∆/
√

∆2 + Ω2)1/2, and corresponding

eigenenergies are:E1 = −�ω0, E2 = −�
√

∆2 + Ω2, E3 = �
√

∆2 + Ω2, E4 = �ω0.

The eigenstates Eq. (2.49) are the collective states of two interacting atoms. In

this representation, the two-atom system behaves as a closed-loop single four-level

system (see Fig. 2). The splitting between the two intermediate levels increases with

the coupling constant Ω or the frequency difference 2∆ between the transitions of the

two atoms.



19

Next, we discuss how to address the four transitions between the collective states

Eq. (2.49) individually, i.e., how to add four driving fields labeled with Rabi frequen-

cies of Ω12, Ω24, Ω34 and Ω13 separately. To distinguish between Ω12 and Ω24 (or

between Ω34 and Ω13) is possible due to the different transition frequencies, but dis-

tinguishing Ω12 and Ω34 (or Ω24 and Ω13) requires more effort. One way to achieve the

individual addressing is as follows: We align the two dipole moments of the atoms e.g.

using a static magnetic or electric field. Possible energy shifts to the system states

can be included by a redefinition of ω0 and ∆. Then, the driving fields are applied

to the two atoms. The classical field can be two classical fields driving each atom

individually at same time or one field with a gradient in space. From the definition

of the Rabi frequency we have:

Ω12 =
�E

�
· 〈2| (�µ1 + �µ2) |1〉

= α1
�E(�r1) · �µ1ab − α2

�E(�r2) · �µ2ab , (2.26)

where �µ1, �µ2 are dipole moment operators for atom 1 and 2 and �µ1ab, �µ2ab are matrix

elements of the dipole moment for atom 1 and 2 given by �µ1ab = 〈a1| �µ1 |b1〉, �µ2ab =

〈a2| �µ2 |b2〉. Similarly, we have

Ω34 =
�E

�
· 〈4| ( �µ1 + �µ2) |3〉

= α1
�E(�r1) · �µ1ab + α2

�E(�r2) · �µ2ab . (2.27)

When the driving field satisfies α1
�E(�r1)·�µ1ab = α2

�E(�r2)·�µ2ab, one obtains Ω12 = 0, but

Ω34 �= 0. Thus the driving field selectively drives the |3〉 ↔ |4〉 transition only. On the

other hand, if we choose the driving field such that α1
�E(�r1) · �µ1ab = −α2

�E(�r2) · �µ2ab,

then Ω34 = 0, but Ω12 �= 0, and the other transition is driven. An analogous scheme is

possible for the transitions |1〉 ↔ |3〉 and |2〉 ↔ |4〉. Thus each of the four transitions
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can be addressed separately.

Our main goal is to propose a scheme for the generation of an arbitrary super-

position of the atomic states, i.e.,

|ψ〉 = cb1b2 |b1b2〉 + cb1a2 |b1a2〉

+ca1b2 |a1b2〉 + ca1a2 |a1a2〉 , (2.28)

where cb1b2 , cb1a2 , ca1b2 and ca1a2 are arbitrary complex amplitudes of the corresponding

states, which satisfy the normalization condition

|cb1b2|2 + |cb1a2 |2 + |ca1b2|2 + |ca1a2|2 = 1 . (2.29)

We now show how, by subsequently driving transitions |1〉 ↔ |2〉, |2〉 ↔ |4〉 and

|3〉 ↔ |4〉 with tailored classical fields, we can generate an arbitrary two qubit atomic

state of the form Eq. (2.51). First, we note that the state Eq. (2.51) in the bare basis

Eq. (2.47) is equivalent to

|ψ〉 = c1 |1〉 + c2 |2〉 + c3 |3〉 + c4 |4〉 (2.30)

in the dipole-dipole interaction basis (see Eq. (2.49)) with

c1 = cb1b2 , (2.31a)

c2 =
1√
2

(−α2cb1a2 + α1ca1b2) , (2.31b)

c3 =
1√
2

(α1cb1a2 + α2ca1b2) , (2.31c)

c4 = ca1a2 . (2.31d)

It is well known that one can obtain an arbitrary superposition state of a single two-

level atom by using a pulsed driving field between the two levels. This motivates

us to apply similar techniques to obtain an arbitrary superposition state of the four



21

collective states by applying classical fields between the four levels. Consider a two-

state system {|i〉, |j〉}, labeled by subindices ij. The interaction Hamiltonian of this

system with a classical field is [19]

Vij = −�Ωij |j〉 〈i| + h.c. . (2.32)

The time evolution operator in the basis of levels |i〉 and |j〉 can be written as [19]:

U
(k)
C =

⎛
⎜⎝ cos(|Ωij| tk) −ieiΦksin(|Ωij| tk)

−ie−iΦksin(|Ωij| tk) cos(|Ωij| tk)

⎞
⎟⎠ . (2.33)

In the following, we apply these two-level time evolutions to the transitions ij ∈
{12, 24, 34}, where k labels the step in the sequence of applied driving fields.

The generation of arbitrary two-atom states involves three steps. Initially, the

two atoms assumed to be in the ground state |1〉. In the first step, a driving field is

applied between the levels |1〉 and |2〉 for a duration t1 with coupling Ω12 = |Ω12| eiΦ1 .

The interaction Hamiltonian is V12 and the time evolution operator is U
(1)
C . After

time t1 the system states is:

|ψ(t1)〉 = c1(t1) |1〉 + c2(t1) |2〉 , (2.34)

where the state amplitudes are given by

c1(t1) = cos(|Ω12| t1) , (2.35)

c2(t1) = −ieiΦ1+iν1t1 sin(|Ω12| t1) , (2.36)

with ν1 = (E2 − E1)/�. The overall phase factor exp[i/� E1t1] is omitted here. We

choose the interaction time t1 such that cos(|Ω12| t1) = c1. The phase Φ1 will be

chosen in the final step. The system state at the end of the first step can then be
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written as

|ψ(t1)〉 = c1 |1〉 + c2(t1) |2〉 . (2.37)

In next step the driving field between |2〉 and |4〉 is turned on for a duration t2

with coupling strength Ω24 = |Ω24| exp[iΦ2]. As before, the interaction Hamiltonian

can be written as V24 and the time evolution operator is U
(2)
C . At the end of the pulse

duration t2, the system has evolved to

|ψ(t2)〉 = c1 |1〉 + c2(t2) |2〉 + c4(t2) |4〉 , (2.38)

where

c2(t2) = cos(|Ω24| t2)eiν1t2 c2(t1)

= −i cos(|Ω24| t2) sin(|Ω12| t1)

×ei(ν1(t1+t2)+Φ1) , (2.39)

c4(t2) = −i ei(ν1+ν2)t2+iΦ2 sin(|Ω24| t2) c2(t1)

= − sin(|Ω24| t2) sin(|Ω12| t1)

×ei(ν1t1+(ν1+ν2)t2+Φ1+Φ2) , (2.40)

and ν2 = (E4 − E2)/�. The overall phase factor exp[iE1t2/�] is omitted as before.

Finally, a field between |4〉 and |3〉 is applied for the duration t3 with Rabi

frequency Ω34 = |Ω34| exp[iΦ3]. The interaction Hamiltonian can be written as V34

and the time evolution operator is U
(3)
C . The atomic system evolves to the state

|ψ(t3)〉 = c1 |1〉 + c2(t3) |2〉 + c4(t3) |4〉 + c3(t3) |3〉 , (2.41)

where

c2(t3) = −i cos(|Ω24| t2) sin(|Ω12| t1)ei(Φ1+ν1(t1+t2+t3)) ,
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with overall phase factor exp[i/�E1t3] omitted. We can see that by choosing the

interaction time t2 in the second step and the phase Φ1 in the first step appropriately,

we can obtain c2(t3) = c2. The amplitude of state |4〉 then is

c4(t3) = cos(|Ω34| t3) ei(ν1+ν2)t3c4(t2)

= − cos(|Ω34| t3) sin(|Ω24| t2) sin(|Ω12| t1)

×ei[(ν1+ν2)(t2+t3)+ν1t1+Φ1+Φ2] (2.42)

and, by choosing interaction time t3 and Φ2 appropriately, c4(t3) = c4 can be satisfied.

With these parameter choices, the amplitude of state |3〉 becomes

c3(t3) = −ieiν3t3+iΦ3 sin(|Ω34| t3)c4(t2)

= i sin(|Ω34| t3) sin(|Ω24| t2) sin(|Ω12| t1)

×ei[ν1t1+(ν1+ν2)t2+ν3t3+Φ1+Φ2−Φ3] , (2.43)

where ν3 = (E3 −E1)/�. Upon simplification of the above expression, it follows that

|c3(t3)| = |c3| automatically. By choosing a suitable phase Φ3, the system state be-

comes the desired state given in Eq. (2.30), which is equivalent to the state Eq. (2.51).

We now proceed to give a concrete example of our scheme. Assume that we want

to create a two-atoms state of the form

|ψ〉 =
1

2
[|b1b2〉 + eiθ1 |b1a2〉 + eiθ2 |a1b2〉 + eiθ3 |a1a2〉] , (2.44)

and that the two atoms satisfy ∆/Ω = 3/4. In the collective state basis, the desired

state takes form:

|ψ〉 =
1

2

[
|1〉 +

√
1

5

(−eiθ1 + 2eiθ2
) |2〉

+

√
1

5

(
2eiθ1 + eiθ2

) |3〉 + eiθ3 |4〉
]

. (2.45)



24

As before, we start from atomic ground states |1〉 and apply a classical field between

states |1〉 and |2〉 with condition cos(|Ω12| t1) = 1
2
. The system state becomes

|ψ(t1)〉 =
1

2
|1〉 − iei(Φ1+ν1t1)

√
3

4
|2〉 . (2.46)

Next, a driving field of duration t2 is applied between |2〉 and |4〉 with the condition:

cos(|Ω24| t2) =
√

1/3 − 4/15 cos(θ2 − θ1). Finally, transition |4〉 ↔ |3〉 is driven for

time t3 with the condition that cos(|Ω34| t3) = (2 + 4/5 cos(θ2 − θ1))
−1/2. The phases

of the coupling fields should be chosen as Φ1 = −ν1(t1 + t2 + t3) + θ1 + β1 − π
2
, under

the condition cos(β1) = (−1 + 2 cos(θ2 − θ1))/(5 − 4 cos(θ2 − θ1)). The second field

phase is chosen such that Φ2 = θ3 − Φ1 − ν2(t2 + t3). The last phase is taken as

Φ3 = −θ1 + θ3 − β2 + (ν3 − ν2)t3 where β2 satisfies cos(β2) = (2 + cos(θ2 − θ1))/(5 +

4 cos(θ2 − θ1)). Then the final system state is the desired state Eq. (2.45), which is

identical to Eq. (2.44) in the bare basis. The time evolution of the four system state

populations is shown in Fig. 3, where for simplify we choose θ1 = θ3 = 0, θ2 = π
2

and

Ω12 = Ω24 = Ω34 = Ω. The phases and the interaction times are chosen as discussed

above. From Fig. 3 we can see that starting from initial state |1〉, after step by step

turning on the three driving fields, the final populations of all four basis states ends

up at the same value 1/4 as desired.

It is not difficult to see that the method introduced above can be applied for

any initial state. It should be noted, however, that spontaneous decay is assumed to

be weak as compared to the interactions between the atoms and the driving fields

in our discussion, that is, the state preparation is assumed to be fast enough such

that the effect of spontaneous emission will be small. The scheme can also make use

of off-resonant driving fields, and is well-suited for other two-level quantum systems

such as two spin-1/2 particles, where the driving fields are radio frequency fields.

In this paper we consider only the resonance driving for one particular transition
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Fig. 3. Schematics for the Population dynamics of the four levels. Solid line is state

|1〉, dotted line is state |2〉, dash-dotted line line is state |4〉, and dashed line is

state |3〉. For simplicity, we chose θ1 = θ3 = 0, θ2 = π
2

and coupling constants

Ω12 = Ω24 = Ω34 = Ω.

between two level in each step. In practice, the spectrum of the driving field is

broadened due to the finite interaction-time for each the transition, and the non-

resonant effect exists for particular transition. The longer the interaction time is, the

sharper the spectrum of the driving field is, and the weaker the non-resonant effect

becomes. The detailed discussion is more complex and will appear in another paper.

In addition, if the transition frequency between|1〉 and |2〉 (or between|3〉 and |4〉) is

far away from that for the levels |2〉 and |4〉 (or |1〉 and |3〉), we will see that, due to

large detuning the non-resonant effect to the other transition will be neglected as we

drive on a particular transition.

C. Arbitrary entangled states for two-spin system

Here we will show a method to generate arbitrary two qubit entangled spin states

based on interaction between spin and radio frequency pulses in a two-spin systems.

The weak interaction between the two spins leads to that the system of two spin

behaves as a single four-level system with four eigenstates. We can get arbitrary
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entangled two-spin states in those four states basis by adding the radio frequency

pulses step by step with controlled times and phases.

Let us consider two interacting spin atoms, spin I with gyro-magnetic ratio γI

and spin S with gyro-magnetic ratio γs. The directions of spins will be decided by

a static magnetic field of magnitude B0 and initially they are at rest and interact

weakly with each other via a scalar coupling AI · S, where A is coupling constant.

The direction of the static magnetic field is defined as Z axis. In the absence of the

weak interaction between spins, the bare state basis of the two-spin system is spanned

by four product states:

|↓↓〉 = |1〉 , |↓↑〉 = |2〉 , |↑↓〉 = |3〉 , |↑↑〉 = |4〉 , (2.47)

where first term of up or down arrow denotes spin states of spin S and second term

denotes states of spin I.

In this paper our goal is the generation of the state.

|ψ〉 = c1 |1〉 + c2 |2〉 + c3 |3〉 + c4 |4〉 , (2.48)

where the coefficient c1 is real number, and the coefficients c2, c3 and c4 are arbitrary

complex amplitudes of corresponding states, and satisfy the following normalization

condition

|c1|2 + |c2|2 + |c3|2 + |c4|2 = 1. (2.49)

When we consider the weak interaction between the two spins, the Hamiltonian

of this system takes the form[27]:

Ĥspin = �γsB0SZ + �γIB0IZ + A�I · S. (2.50)

The static magnetic field B0 will be strong enough so that only ASZIZ term is dom-
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inant from the spin-spin coupling, thus Hamiltonian takes form:

Ĥspin = �γsB0SZ + �γIB0IZ + A�SZIZ , (2.51)

The states |1〉, |2〉, |3〉 and |4〉 are eigenstats for Hamiltonian (2.51), eigenenergies

for each corresponding basis are:

E1 = −�B0(γs + γI)

2
+

A

4
, (2.52a)

E2 = −�B0(γs − γI)

2
− A

4
, (2.52b)

E3 = −�B0(γI − γs)

2
− A

4
, (2.52c)

E4 =
�B0(γs + γI)

2
+

A

4
. (2.52d)

After considering the weak interaction between the two spins, the two-spin system

behaves as a closed-loop single four-level system with the ground state |1〉, the upper

state |4〉, and two intermediate states |2〉 and |3〉. The Hamiltonian can be written

as Ĥspin =
∑4

i=1 Ei |i〉 〈i|. Now we consider the four level system interaction(as show

in Fig. 4). Ω12, Ω13, Ω24 and Ω34 are corresponding interaction coupling constant

between spin and four radio frequency pulses with |Ωij| = γI,SBij where Bij are

amplitudes of radio frequency pulses added between level i and j.

From Eq.(2.52) and Fig. 4, we can see that energy level separation between level

|1〉 and |2〉, |2〉 and |4〉, |3〉 and |4〉, |1〉 and |3〉 are different from each others. So it is

possible to distinguish the four added radio frequency pulses between four levels. It is

obvious that we can obtain an arbitrary superposition state of a single two-level atom

using a driving field pulse between the two levels. We will see in the following that

this method in one qubit case will be used sequentially in three steps and desired two

qubits entangled state in Eq.(2.48) will be produced by controlling times and phases
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Fig. 4. (a)Two spin S and I without interaction. Each have a spin up and spin down

eigenstates. (b)Schematics for the two spins with weak interaction coupled by

four radio frequency. Such quantum system can be described as a four-level

system in closed-loop configuration. |1〉, |2〉, |3〉 and |4〉 are four eigenstates.

Ω12, Ω13, Ω24 and Ω34 are corresponding interaction coupling constant between

spin and four radio frequency pulses.

of those radio frequency pulses between four levels.

Let’s first review an atom with two-level {|i〉, |j〉} interacting resonantly with

a classical field. The Hamiltonian of this system takes the following form in the

interaction picture [19].

Vij = −�Ωij |j〉 〈i| + h.c. . (2.53)

Solving Schrödinger equation i� ∂
∂t

ψI(t) = VijψI(t), we can get the state vector ψI(t)

in the interaction picture,

ψI(tk) = U
(k)
C ψI(0). (2.54)

Where U
(k)
C is the time evolution operator in the basis of levels |i〉 and |j〉, U

(k)
C can

be written as:
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U
(k)
C =

⎛
⎜⎝ cos(|Ωij| tk) −ieiΦksin(|Ωij| tk)

−ie−iΦksin(|Ωij| tk) cos(|Ωij| tk)

⎞
⎟⎠ . (2.55)

where Ωij = |Ωij| eiΦk , and tk is interaction period. In the following discussion the

index ij and k will be chosen as ij = 12, 24, 34 and k = 1, 2, 3 for three driving steps

respectively.

The generation of arbitrary two-qubit spin state in Eq.(2.52) consists of three

steps, driving radio frequency pulses labeled as Ω12 Ω24 and Ω34 with constant ampli-

tudes will be added sequentially to the system, first radio frequency pulse Ω12 will be

turned on for time t1, second radio frequency pulse Ω24 will be turned on for time t2

and finally Ω34 will be turned on for time t3. After final step state in Eq.(2.52) will be

generated by controlling the interaction time and the phases of the radio frequency

pulses.

In first step we prepare spin state initially as |1〉, then we turn on the radio

frequency pulse between |1〉 and |2〉 for time t1 with coupling Ω12 = |Ω12| eiΦ1 , the

interaction Hamiltonian is V12 and the time evolution operator is U
(1)
C as introduced

above, after time t1 the system states then evolves as:

|ψ(t1)〉I = cI1(t1) |1〉 + cI2(t1) |2〉 ,

with

cI1(t1) = cos(|Ω12| t1),

cI2(t1) = −ieiΦ1 sin(|Ω12| t1).

Thus the system state in Schrödinger picture will be written as:
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|ψ(t1)〉 = c1(t1) |1〉 + c2(t1) |2〉 , (2.56)

with

c1(t1) = e−iE1t1/�cI1(t1)

= e−iE1t1/� cos(|Ω12| t1),

c2(t1) = e−iE2t1/�cI2(t1)

= −ieiΦ1−iE2t1/� sin(|Ω12| t1).

Interaction time t1 will be chosen such that cos(|Ω12| t1) = c1, and the phase term Φ1

will satisfy the condition which can be seen in the final step.

In second step we add the radio frequency pulse between |2〉 and |4〉 for time

t2 with coupling Ω24 = |Ω24| eiΦ2 . The initial state vector is described by Eq.(2.56).

Simillar to the first step the interaction Hamiltonian will be written as V24 and the

time evolution operator is U
(2)
C which gives the system states in interaction picture

after time t2 as:

|ψ(t2)〉I = c1(t1) |1〉 + cI2(t2) |2〉 + cI4(t2) |4〉

with

cI2(t2) = cos(|Ω24| t2)c2(t1),

cI4(t2) = −ieiΦ2 sin(|Ω24| t2)c2(t1),

and the state vector in Schrödinger picture can be written as:

|ψ(t2)〉 = c1(t2) |1〉 + c2(t2) |2〉 + c4(t2) |4〉 (2.57)
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with

c1(t2) = e−iE1t2/�c1(t1)

= e−iE1(t1+t2)/�c1,

c2(t2) = e−iE2t2/�cI2(t2)

= −ieiΦ1−iE2(t1+t2)/� sin(|Ω12| t1) cos(|Ω24| t2),

c4(t2) = e−iE4t2/�cI4(t2)

= −eiΦ1+iΦ2−iE2t1/�−iE4t2/� sin(|Ω12| t1) sin(|Ω24| t2).

We can choose the interaction time t2 such that sin(|Ω12| t1) cos(|Ω24| t2) = |c2|, and

the phase Φ2 will be determined later.

In last step the radio frequency pulse between |4〉 and |3〉 will be turned on for

time t3 with Ω34 = |Ω34| eiΦ3 . The interaction Hamiltonian now will be written as

V34 and the time evolution operator will be U
(3)
C . In this step the initial system state

vector is represented by Eq. (2.57), and the final system states (in interaction picture)

evolves to:

|ψ(t3)〉I = c1(t2) |1〉 + c2(t2) |2〉 + cI4(t3) |4〉 + cI3(t3) |3〉

with

cI4(t3) = cos(|Ω34| t3)c4(t2),

cI3(t3) = −ieiΦ3 sin(|Ω34| t3)c4(t2).

Then we can get the final state vector in Schrödinger picture:

|ψ(t3)〉 = c1(t3) |1〉 + c2(t3) |2〉 + c4(t3) |4〉 + c3(t3) |3〉 , (2.58)

and the amplitudes of corresponding eigenstates, c1(t3), c2(t3), c3(t3) and c4(t3) can
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be obtained.

c1(t3) = e−iE1t3/�c1(t2)

= e−iE1(t1+t2+t3)/�c1,

c2(t3) = e−iE2t3/�c2(t2)

= −ieiΦ1−iE2(t1+t2+t3)/�|c2|,

c4(t3) = e−iE4t3/�cI4(t2)

= − sin(|Ω12| t1) sin(|Ω24| t2) cos(|Ω34| t3)

×eiΦ1+iΦ2−iE2t1/�−iE4t2/�−−iE4t3/�,

c3(t3) = e−iE3t3/�cI3(t3)

= i sin(|Ω12| t1) sin(|Ω24| t2) sin(|Ω34| t3)

×eiΦ1+iΦ2+iΦ3−iE2t1/�−iE4t2/�−iE3t3/�.

Choosing suitable interaction time t3, the equation sin(|Ω12| t1) sin(|Ω24| t2) cos(|Ω34| t3) =

|c4| can be satisfied. At the same time, we have |c3(t3)| = |c3| from the normalization

condition Eq. (2.49). In the following one can see that the system state vector

Eq. (2.58) will become the desired state with form of Eq (2.48) by choosing suitable

phases Φ1, Φ2 and Φ3.

Neglecting the common phase factor exp[−iE1(t1 + t2 + t3)/�] in Eq.(2.58), the

state vector can be rewritten as

|ψ(t3)〉 = c′1 |1〉 + c′2 |2〉 + c′3 |3〉 + c′4 |4〉 , (2.59)
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and the coefficients c′1, c′2, c′3 and c′4 can be obtained as following:

c′1 = c1, (2.60a)

c′2 = −iei[Φ1−ν1(t1+t2+t3)]|c2|, (2.60b)

c′3 = ±iei[Φ1+Φ2+Φ3−ν1t1−(ν1+ν2)t2−ν3t3]|c3|, (2.60c)

c′4 = −ei[Φ1+Φ2−ν1t1−(ν1+ν2)(t2+t3)]|c4|, (2.60d)

where ν1 = (E2 − E1)/�, ν2 = (E4 − E2)/�,and ν3 = (E3 − E1)/�. sign(+) and

sign(-) in Eq. (2.60c) are related to P = sin(|Ω12| t1) sin(|Ω24| t2) sin(|Ω34| t3) > 0 and

P < 0, respectively. Supposing the complex coefficients c2, c3 and c4 in Eq.(2.48)

take the form of c2 = |c2| eiθ1 , c3 = |c3| eiθ2 , c4 = |c4| eiθ3 , we can choose the phase

terms Φ1, Φ2 and Φ3 such that θ1 = Φ1 − ν1(t1 + t2 + t3) − π/2, θ2 = Φ1 + Φ2 +

Φ3 − ν1t1 − (ν1 + ν2)t2 − ν3t3 ± π/2 (sign(+) for P > 0 and sign(-) for P < 0),and

θ3 = Φ1 + Φ2 − ν1t1 − (ν1 + ν2)(t2 + t3) − π.Thus the Eq.(2.59) takes the same form

of the Eq.(2.48).

In summary, to get state of Eq (2.48) the choice of the time period and phase

term for each step will satisfy:

cos(|Ω12| t1) = c1 , (2.61a)

cos(|Ω24| t2) =
|c2|

sin(|Ω12| t1) , (2.61b)

cos(|Ω34| t3) =
|c4|

sin(|Ω24| t2)sin(|Ω12| t1) , (2.61c)

Φ1 = θ1 + ν1(t1 + t2 + t3) +
π

2
, (2.61d)

Φ2 = θ3 − θ1 + ν2(t2 + t3) +
π

2
, (2.61e)

Φ3 = θ2 − θ3 + (ν3 − ν1 − ν2)t3 ± π

2
, (2.61f)
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where sign(+) is for P > 0 and sign(-) is for P < 0.

To illustrate the theory clearly next we give an example. If we want to create

two spins state:

|ψ〉 =
1

4
|1〉 +

1

2
ei π

2 |2〉 +
3

4
eiπ |3〉 +

√
2

4
ei 3π

2 |4〉 (2.62)

We start from spin state |1〉 and turn on the radio frequency pulse between |1〉
and |2〉 with condition cos(|Ω12| t1) = 1

4
. The system state becomes:

|ψ(t1)〉 =
1

4
|1〉 − iei(Φ1−ν1t1)

√
15

16
|2〉 (2.63)

Then the radio frequency pulse between |2〉 and |4〉 with coupling Ω24 = |Ω24| eiΦ2

was turn on for time t2 which satisfy cos(|Ω24| t2) =
√

4
15

, we get the system state:

|ψ(t2)〉 =
1

4
|1〉 − i

1

2
ei[Φ1−ν1(t1+t2)] |2〉

−
√

11

16
ei[Φ1+Φ2−ν1(t1+t2))−ν2t2] |4〉 (2.64)

For the last step, we turn on only the radio frequency pulse between |4〉 and |3〉
with coupling Ω34 = |Ω34| eiΦ3 for time t3 on the condition that cos(|Ω34| t3) =

√
2
11

,

if only we choose phase term in each step such that: Φ1 = ν1(t1 + t2 + t3) + π,

Φ2 = ν2(t2 + t3) + 3π/2, and Φ3 = (ν3 − ν1 − ν2)t3 + π, it can be seen that the final

system state is the desired state Eq (2.48). In Fig. 5 we give evolution of four system

state population in detail, where for simplify we choose Ω12 = Ω24 = Ω34 = Ω. Phase

terms of coupling and interaction time between each radio frequency pulse and spin

are chosen as discussed earlier.

From Fig. 5 we can see that starting from initial state |1〉 after step by step

turning on three radio frequency pulses between corresponding levels, the final pop-
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Fig. 5. Schematics for the Population dynamics of the four levels. Solid line is state

|1〉, dot line is state |2〉, dash dot line line is state |4〉 and dash line is state |3〉.
For convenient we choose all the coupling constant Ω12 = Ω24 = Ω34 = Ω.

ulations of four basis end up as desired. Probability of state |1〉 at Ωt = 0 is 1, at

Ωt = 1.32 it drops to 0.06 and keep this value till the end of preparation. For state

|2〉 the probability rises from 0 to 0.94 between Ωt = 0 and Ωt = 1.32 and drops

to 0.25 at Ωt = 2.35, after that time the population will not change. There is no

population on state |4〉 till time Ωt = 1.32, after that the probability increases to 0.69

at Ωt = 2.35 and decreases to 0.13 at Ωt = 3.48 and not change after this time. The

last state |3〉 will appear at Ωt = 2.35 and probability increases to 0.56 at Ωt = 3.48

which is the end time of state preparation.

We also plots the phases change in state coefficient during the time evolution. We

choose ν1 = 50Ω, ν2 = 100Ω and ν3 = 25Ω. From Fig. 6 we can see by controlling the

phase of radio frequency pulses, the phase requirements in desired state are satisfied.

We restrict the phase value between 0 and 2π. θ1 will oscillate from 0 to 2π with

period T1 = 1/ν1 = 1/(50Ω) during preparation time(from Ωt = 0 to Ωt = 3.48) and

end up at value θ1 = π
2

which is desired value. Similarly final value θ2 is desired value

π and θ3 is 3π
2

. There are no value before Ωt = 2.35 for θ2 and no value for θ3 before

Ωt = 1.32. The oscillation period of θ2 is T2 = 1/ν3 = 1/(25Ω) between Ωt = 2.35
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Fig. 6. Schematics for the Phase change in the coefficients of states |2〉, |3〉 and |4〉.
Solid line is for θ1, dash dot line is state for θ2, dot line line is for θ3. We choose

ν1 = 50Ω, ν2 = 100Ω and ν3 = 25Ω
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and Ωt = 3.48. The oscillation period of θ3 is T3 = 1/(ν1 + ν2) = 1/(150Ω) between

Ωt = 1.32 and Ωt = 3.48 which is much smaller than T1 and T2.
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CHAPTER III

CAVITY QED BASED QUANTUM WALK

In this chapter, we present a study of the properties of quantum walks in one di-

mension using cavity QED method. We consider a possible experimental scheme to

implement a quantum walk via an interaction between photons and a special two-

level atom inside a high-Q cavity. We are interested in a random walk such that the

displacement of the particle making the walk corresponds to the number of photons

inside the cavity. As photon numbers are always positive, our quantum walk takes

place on a straight line with an integer lattice but restricted to a half space, i.e., it

can not go to negative range. The particle starts at one of those lattice points at

some initial time and at each time step it moves to the left or the right lattice point

with equal probability. A one-dimensional classical random walk can be described as

follows. A particle starts at an initial position. The decision to move to the left or

right is made by flipping a coin. If the outcome is ’heads’ the particle moves to the

right and if the outcome is ’tails’, the particle moves to the left. It is well known that

the probability of being at a given position remains maximum at the initial position.

For large number of steps, the distribution is given by a Gaussian. The results for

quantum walk are qualitatively different. The basic difference comes from the fact

that, in a quantum walk, we consider the probability amplitudes for the displacement

instead of probabilities. As a consequence there is quantum interference between

the probability amplitudes at different locations. One interesting feature is that the

probability for location at the initial location is no longer maximum.

In the case of the quantum walk, the particle moves to the left or right according

to the outcome of the flip of a ‘quantum coin’ as determined by the chirality [36]. At

any point of the lattice the particle has either ‘left’ or ‘right’ chirality. The chirality
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undergoes a rotation (a unitary transformation called ‘Hadamard transformation’)

according to

|L〉 −→ 1√
2
(|L〉 + |R〉)

|R〉 −→ 1√
2
(|L〉 − |R〉) (3.1)

The particle then moves to the adjacent lattice point according to its final chirality

state, i.e.,

|ψL(n, t)〉 −→ |ψL(n − 1, t)〉

|ψR(n, t)〉 −→ |ψR(n + 1, t)〉

(3.2)

Here |ψL(n, t)〉 and |ψR(n, t)〉 are the wave functions of the particle at position ‘n’ at

time step ‘t’ with ‘left’ or ‘right’ chirality. A simulation of such a quantum walk is

presented in Fig. 7. We plot the probabilities PL,n and PR,n which are the probabilities

with the left and right chiralities, respectively, for the particle at positions n after

t = 100 steps. Initially the particle is located at n=0 and will move to the left.

We now introduce a cavity QED scheme for the implementation of the quantum

walk discussed above. The proposed scheme is based on the interaction of an atom

with an array of classical and quantum radiation fields. However, before describing

our scheme, we define certain operations that can be carried out in the atom-field

interaction.

(a) First we consider the resonant interaction of a two-level atom with a classical

field. The unitary operator corresponding to this interaction is given by [19]

UC(θ, ϕ) =

⎛
⎜⎝ cos(θ) −ieiϕsin(θ)

−ie−iϕsin(θ) cos(θ)

⎞
⎟⎠ , (3.3)



40

0 20 40 60 80 100
n

0.02

0.04

0.06

0.08

0.1

0.12

0.14

nRP ,

nLP ,

Fig. 7. The probabilities PL,n and PR,n are plotted versus n. At initial time the

particle is located at the position n0 = 0 and moving direction is left. Total

number of steps is t = 100.

where θ = Ωτ with Ω being the Rabi frequency and τ is the interaction time, and ϕ

is the phase of the driving field.

(b) Secondly we consider the interaction of a two-level atom with the quantized

field inside cavity and we discuss how a shift of the photon number state can take place

via chirping. We assume that the detuning between the atomic transition frequency

ωab and the cavity resonance frequency ν is time dependent (See Fig. 8). The atom-

field interaction in the dipole and the rotating-wave-approximation is described by

the following Hamiltonian:

H0 = �ν |a〉 〈a| + �νa†a +

�δ(t) |a〉 〈a| + �g(|a〉 〈b| a + a† |b〉 〈a|)

(3.4)

where δ(t) = ωab−ν is the atom-field detuning. The Hamiltonian can be diagonalized
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Fig. 8. Schematics of a two-level atom interacting with the radiation field. The energy

levels |a〉 and |b〉 of the atom are detuned from the radiation field of frequency

ν by an amount δ = ωab − ν.

and the atom-field dressed states are given by

|+〉 = cosθn |a〉 |n〉 − sinθn |b〉 |n + 1〉

|−〉 = sinθn |a〉 |n〉 + cosθn |b〉 |n + 1〉 . (3.5)

The corresponding energy eigenvalues are

E+n = �((n + 1)ν + ωab) − �

2
(
√

δ2 + 4g2(n + 1) + δ)

E−n = �(nν) +
�

2
(
√

δ2 + 4g2(n + 1) + δ) (3.6)

Here

sinθn =

√
δ2 + 4g2(n + 1) + δ√

(
√

δ2 + 4g2(n + 1) + δ)2 + 4g2(n + 1)
,

cosθn =
2g
√

n + 1√
(
√

δ2 + 4g2(n + 1) + δ)2 + 4g2(n + 1)

We now consider the situation when the atom is initially in state |b〉 and there are

n photon in the cavity. If the atom-field detuning is initially (at t = ti) such that
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δ = −|δ| with |δ| >> 2g
√

n + 1, then we are in |+〉 state. Next the detuning is

chirped slowly such that, at t = tf (with |ti − tf | >> 2g
√

n + 1), we have δ = +|δ|.
The atom is then transferred to the |b〉 with n + 1 photons. Thus the net result of

frequency chirping is that

|a〉 |n〉 → − |b〉 |n + 1〉 .

It is not difficult to see that, under the same circumstances, the atom-field state |b〉 |n〉
evolves to |a〉 |n − 1〉. Thus we can describe an operator S such that

S : |a〉 |n〉 −→ − |b〉 |n + 1〉

S : |b〉 |n〉 −→ |a〉 |n − 1〉

It may be noted that this transformation takes place regardless of the number of

photons n inside the cavity.

Generally from Eq. 3.5 we can make evolution: |a〉 |n〉 −→ (−α2+β2) |b〉 |n + 1〉+
(2αβ) |a〉 |n〉 and |b〉 |n + 1〉 −→ (α2 − β2) |a〉 |n〉 + (2αβ) |b〉 |n + 1〉 if detuning is

changed from δ = − |δ| at t = ti to δ = |δ| at t = tf adiabatically, where α =

cosθn|δ=−|δ| and β = sinθn|δ=−|δ| and |δ| is the largest detuning value. The condition

to use adiabatic passage approach is T = |ti − tf | >> g
√

n+1
δ(2ωab−3δ)

if chirping process

follows relation :δ = 2 |δ| t
T
− |δ|, It can be seen that if g

δ
is small enough then

it is not necessary to wait a long interaction time T for adiabatic process to be

completed. While in simulation we choose g
|δ|=0.01 which makes evolution almost

same as operation S since here α = cosθn| g
δ
=−0.01 ≈ 1 and β = sinθn| g

δ
=−0.01 ≈ 0.

Now we are ready to discuss the implementation of a quantum walk based only

on the operations UC(θ, ϕ) and S.

We consider the passage of a two-level atom through a cavity. The initial state
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of the atom can be the ground state |b〉 or the excited state |a〉 and the cavity is in

the photon number state |n0〉. We now show that each step of the quantum walk

corresponds to a sequence of the operations UC(π/2,−π/2)SUC(π/4,−π/2). Thus

for each step, we need two interactions with the classical fields supplemented by an

time-dependent interaction with the quantized cavity field.

The atomic states |b〉 and |a〉 correspond to ’left’ and ’right’ chirality states

needed in quantum walks. The photon number states in the cavity represent particle

positions. The changing of the photon number corresponds to a particle moving

forward or backward. As pointed out earlier, the photon number is non-negative.

Therefore our study concerns only half space in quantum walks, i.e., the particle is

restricted in non-negative range.

We start the first step of quantum walk with Hadamard transformation of chi-

rality states |a〉 and |b〉. This step can be simply carried out via interaction between

classical field and the two-level atom system. The unitary classical evolution matrix

is given as:

UC(π/4,−π/2) =
1√
2

⎛
⎜⎝ 1 −1

1 1

⎞
⎟⎠ (3.7)

The atomic states |a〉 and |b〉 evolve to

|a〉 −→ 1√
2
(|a〉 + |b〉)

|b〉 −→ 1√
2
(|b〉 − |a〉) (3.8)

Please note that there is a slight difference between Eq. (3.8) and Eq. (B) but it does

not affect the final result of quantum walks.

In the second step, we change the photon states according to the following pre-

scription: Photon numbers increase by one if the atom is in state |a〉 and decrease by
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one if atom is in state |b〉 without changing the atom states, i.e.,

|b〉 |n〉 −→ |b〉 |n − 1〉

|a〉 |n〉 −→ |a〉 |n + 1〉

(3.9)

This step can not be accomplished through a simple Jaynes-Cummings type

interaction. Instead we consider a two-step process. In the first step we use a fre-

quency chirping method represented by S as discussed in (b) above. The result is

S : |a〉 |n〉 −→ − |b〉 |n + 1〉 and S:|b〉 |n〉 −→ |a〉 |n − 1〉
Next we use classical evolution (Eq. (3.3)) with θ = π/2 and ϕ = −π/2, i.e.,

UC(π/2,−π/2) =

⎛
⎜⎝ 0 −1

1 0

⎞
⎟⎠ (3.10)

to make -|b〉 |n + 1〉 −→ |a〉 |n + 1〉 and |a〉 |n − 1〉 −→ |b〉 |n − 1〉. Thus finally we

have

|a〉 |n〉 −→ − |b〉 |n + 1〉 −→ |a〉 |n + 1〉

|b〉 |n〉 −→ |a〉 |n − 1〉 −→ |b〉 |n − 1〉 if n > 0

|b〉 |0〉 −→ |b〉 |0〉 −→ |a〉 |0〉 if n = 0. (3.11)

The operation of the first and the second steps, i.e., UC(π/2,−π/2)SUC(π/4,−π/2)

completes the description of one step of the quantum walk. Repeating these steps

again and again we can make quantum walks.

The immediate question arises as to how we can control the classical evolution

as well as the time-dependent evolution for chirping during the passage of atom

through the cavity. We propose the atomic levels |a〉 and |b〉 to be magnetic sublevels
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coupled through appropriately polarized light. The interactions can then be controlled

via application of time dependent magnetic field such that the interaction times for

the implementation of the UC(θ, ϕ) transformation and the time dependence of the

detuning ∆ for the chirping is controlled.
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Fig. 9. The probabilities Pa,n and Pb,n are plotted versus n. These plots show the

photon numbers after 200 time steps, the initial photon number is n0 = 0.

In Fig. 9-11, we present results of our simulation. We choose initial states to be

|b〉 |n0〉. For each figure, we give the value of the initial photon numbers n0 and the

total number of time steps. In these figures Pa,n and Pb,n represent the probabilities

for the atom to be in state |a〉 and |b〉, respectively, with n photons inside the cavity.

In Fig. 9 we choose n0=0 and time step=200. The quantum walks in our system

can not go to negative range (n ≥ 0). The maximum probability of photon states

therefore lies in the range n = 0 to n = 200. For a larger number of quantum steps,

the maximum probability of photon states moves away from n = 0 as shown in Fig.

3.

In Fig. 10 we chose n0=100 and the number of time steps to be equal to 100 as

well. The quantum walks can now take place on both sides of n = 100. The shape
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Fig. 10. The probabilities Pa,n and Pb,n are plotted versus n. Here we set the initial

photon number n0=100, and the number of steps are 100.

of the probability is not symmetrical and is dependent on the initial atomic state.

This is one of the important differences between classical random walk and quantum

walk. The maximum probability of photon states lies on the left side of n = 100 for

the initial state |b〉.
In Fig. 11, we consider the case of n0 = 100 and the number of time steps t=200.

Quantum walk with one barrier has been studied By Bach et al.[39]. Here the wave

will move from n0 = 100 to the right and left as Fig. 4, but this time the left going

wave will reach n = 0 and then bounce back to n > 0. An interference between the

left going and right going walks leads a complex behavior between n = 0 to n = 100.

Since at present it is impossible to have pure photon number state for large

photon number, in Fig. 11, we choose initial photon states to be coherent state and

give final result of quantum walk.

For initial field state as coherent stateα, |α〉 = e−|α|2/2
∑∞

n
αn√
n!
|n〉 where α is

a complex number and |α|2 = 〈n〉 is average photon number, in Fig. 12 we choose

average photon number=100. We make quantum walk as before for different Fock
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Fig. 11. The probabilities Pa,n and Pb,n are plotted versus n. Here initial photon

number is n0=100 and total number of time steps are 200.

state separately and combine their distribution together to get final result of photon

distribution for different atom levels in quantum walk. Comparing with Fig.4 we can

see the sharp peak and dip will disappear because initial state is a mixed state in

Fock space and there are also distribution of odd photon number state as Fig.11, the

reason is there are distributions of odd photon state in initial field this time.

Since classical characters of coherent states are so obvious then it is possible to

do experiment to test this kind of coherent state quantum walk.

Decoherence induced by losses through the cavity mirrors will affect our quantum

walk because the photon number inside the cavity will change as time goes on, so in

our study it is assumed that mirror is lossless.



48

0 50 100 150 200
n

0.02
0.04
0.06
0.08
0.1
0.12
0.14

α,bP
nbP ,

naP ,

Fig. 12. Diagram of Pan and Pbn verse n, here we set initial photon number as coherent

state |α〉 and |α|2 = 〈n〉 = 100, and give the probability distributions in state

|a〉 or in state |b〉 for different photon numbers after time step t=100
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CHAPTER IV

PROPERTIES OF CLASSICAL AND QUANTUM TELEPORTATION

A. Quantum teleportation of an arbitrary superposition of atomic Dicke states

First we introduce quantum teleportation of an arbitrary superposition of atomic

Dicke states. we consider a departure from the usual teleportation scenario in two

ways. First, following an interesting recent suggestion [80], the entanglement resource

necessary for teleportation is not introduced as shared particles between Alice and

Bob, but rather comes about from a detection made by Alice of the joint state of both

parties following independent preparation stages. Second, and central to the present

paper, the state that is to be teleported is itself an arbitrary entangled state of many

particles, constituting the most general transfer of quantum information between the

two parties.

However, we note that photons have an intrinsic advantage in that they are

better suited for communication over long distances. Cavity QED methods offer an

ideal coupling between atoms and photons in a controlled setting [19]. Based on

such methods, we can achieve quantum teleportation of entangled states in multiple

cavities, as well as arbitrary superpositions of Fock states in a single cavity.

In the present proposal, we take a different approach to scalable quantum telepor-

tation. Some past studies have used the joint detection of photon decays to establish

entanglement among distant atoms [81, 82]. In a novel application of this idea, Bose

et al. [80] show how to teleport an atomic state from one cavity to another by condi-

tional detection of a photon from both cavities. The main advantage of their scheme

is the use of photon decays themselves to establish entanglement between the cavities,

rather than the cumbersome task of coherently coupling a photon out of one cavity
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and feeding it into another cavity [83, 84].

We consider the use of multi-atom dark states for quantum state transfer and tele-

portation, where the desired inter-cavity entanglement is

+D

−D

ALICE

BOB

BS

Ω
� � �

g

| � �

| � �

| 	 �

Fig. 13. Setup for teleporting an arbitrary superposition of atomic Dicke states. Inset

shows the level configuration of each atom.

brought about by a sequence of conditional detections of photons leaking out of both

cavities. The main advantage of the proposed scheme is the ability to transfer multi-

qubit entangled states, namely superpositions of atomic Dicke states [85], which can

be engineered in a cavity by conditional detection methods, and have wide ranging

applications in quantum information science (see [86]).

Our scheme is shown in Fig. 13. Alice and Bob have an equal number of (iden-

tical) atoms trapped inside their cavities, and the atoms are well separated so that

any interaction between them can be neglected. The cavities are designed to be one

sided so that the direction of cavity leakage is known, and photons leaking out of the

cavities pass through a beam splitter BS and are detected by two 100 percent efficient

detectors D+ and D−, which we treat using the quantum jump formalism [19, 87].

In section 1, we discuss the two-atom case first, as it allows us to highlight the key

physics that goes into making each stage possible. We highlight the different control
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parameters that are unique to this protocol, and also briefly describe methods for

unitary post-processing of the teleported state to optimize the fidelity. In section 2,

we show that the protocol can be generalized to an arbitrary number of atoms, and

discuss the scaling of the success probability with the number of atoms. In section 3,

we discuss issues related to fidelity optimization and experimental feasibility of the

protocol, and extensions to other quantum information applications.

1. Two-atom teleportation

The atomic state in cavity A which Alice wants to teleport is assumed to be a (sym-

metric) Dicke-state superposition of the form

|ψ〉inA = CI
0 |cc〉A + CI

1

|bc〉A + |cb〉A√
2

+ CI
2 |bb〉A , (4.1)

where |a〉, |b〉 and |c〉 are the states of each Λ-type three-level atom (see Figure 1 inset).

States |cc〉 and |bb〉 represent both atoms in the same state, and (|bc〉+ |cb〉)/√2 is a

state with one atom in state |b〉 and one in state |c〉. The coefficients C I
0 , CI

1 , and CI
2

are arbitrary and satisfy
∣∣CI

0

∣∣2 +
∣∣CI

1

∣∣2 +
∣∣CI

2

∣∣2 = 1.

Our protocol is based on a mapping of the two-atom state in Eq. (4.1) to an

equivalent Fock state superposition of the cavity field consisting of 0, 1, or 2 pho-

tons. This is done using multi-atom dressed state adiabatic passage in the cavity in

the presence of a classical drive field, which has the ability to generate atom-field

entanglement. However, we have to be careful because while the adiabatic passage

is taking place, the photons can leak out and be detected. Conditional detection of

photons is necessary for our scheme because it leads to ‘quantum jumps’ that enables

the Dicke state transfer. Thus, before proceeding, we examine the quantum jump

formalism and how it applies in the multi-atom dark state picture.

In each cavity, the atoms are assumed to be simultaneously coupled to a time-
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dependent classical field, with Rabi frequency Ω(t), and a quantized cavity field mode

with coupling strength g. The interaction is governed by the Hamiltonian [19]

H = �Ω(t)(|a1〉 〈b1| + |b1〉 〈a1|)

+�g(|a1〉 〈c1| â + |c1〉 〈a1| â†) + (1 → 2), (4.2)

where 1 and 2 enumerate the atoms, and â† and â are photon creation and destruction

operators. Now, conditional on the absence of a click in the detectors, the effective

Hamiltonian governing the time evolution of the joint state is given by [88, 89]

Heff = H − iκâ†â. (4.3)

Here, κ is the decay rate of the field mode â, taken to be the same for both cavities.

Note that Heff is non-Hermitian due to the presence of the decay term. However,

we can still define an effective ‘interaction picture’ where the atom-field evolution is

described by the Hamiltonian

HI = exp(κâ†ât)H exp(−κâ†ât), (4.4)

and the corresponding state vector

|ΨI〉 = exp(κâ†ât)|Ψ〉. (4.5)

In this way, by switching between pictures, we can treat the atom-field coupling sepa-

rately from the decay of the field from the cavity. By numerically solving Schrödinger’s

equation, we have verified that Heff and HI describe identical evolutions of the state

in the respective pictures.

Finally, when detection events do occur, the quantum jump formalism associates

these with the action of photon annihilation operators. For the two detectors D± in
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our scheme (Figure 1), we have the linear transformations due to the beam splitter:

D̂+ = (tâA + râB); (4.6)

D̂− = (râA − tâB), (4.7)

where âA (âB) is the destruction operator for the field in cavity A (B), and r and t

are the (real) reflection and transmission coefficients for the beam splitter, such that

|r|2 + |t|2 = 1.

A key to our approach is the use of multi-atom dark states in each cavity (see,

for example, Ref. [90]). It is convenient to classify the states according to the total

number of excitations present. For zero excitation, we have both atoms in state |c〉
and field in vacuum:

|Ψdark
0 〉 = |cc〉|0〉. (4.8)

For one excitation, the manifold of states coupled by the Hamiltonian H (i.e. having

non-zero matrix elements) are |cc〉|1〉, |bc〉|0〉, |cb〉|0〉, |ac〉|0〉, and |ca〉|0〉. From these,

we can construct two states that are dark with respect to the couplings Ω and g for

each atom (i.e. zero-eigenvalue states of H):

|Ψdark
1 〉j ∝ |bj〉|0〉 − (Ω/g)|cj〉|1〉, (4.9)

for j = 1 or 2. The effects of cavity decay may be included in the interaction picture

(defined by HI) by replacing g with ge−κt. For two excitations, the manifold of

coupled states consists of |cc〉|2〉, |bc〉|1〉, |cb〉|1〉, |bb〉|0〉, |ba〉|0〉, |ab〉|0〉, and |aa〉|0〉,
which supports a two-atom dark state:

|Ψdark
2 〉 ∝ |bb〉|0〉 − [

√
2(Ω/g)](|bc〉 + |cb〉)|1〉/

√
2

+[(Ω/g)2/
√

2] |cc〉|2〉. (4.10)



54

In the preparation stage, Alice follows the above dark states, and by tuning Ω(t) to

go from Ω � g to Ω 
 g, achieves the following adiabatic transformations:

|cc〉A|0〉A → |cc〉A|0〉A, (4.11)

|bc〉A|0〉A → |cc〉A|1〉A, (4.12)

|cb〉A|0〉A → |cc〉A|1〉A, (4.13)

|bb〉A|0〉A → |cc〉A|2〉A, (4.14)

where in the last line, we have used the approximation that (Ω/g)2 
 2(Ω/g) since

Ω 
 g. In this way, she transfers her given atomic state in Eq. (4.1) to the corre-

sponding field state in time tp, resulting in the atom-field state

|Ψ〉A = (C0 |0〉A + C1 |1〉A + C2 |2〉A ) |cc〉A/
√

N1,

(4.15)

where, including the effects of cavity decay, we have

C0 = CI
0 , (4.16)

C1 = e−κtp
√

2CI
1 , (4.17)

C2 = e−2κtpCI
2 , (4.18)

and N1 = |C0|2 + |C1|2 + |C2|2 is for normalization.

At the same time, Bob places two atoms in his cavity B in the state |b〉, and by

tuning Ω(t), evolves his system from |bb〉B|0〉B to the two-atom dark state |Ψdark
2 〉 at

time t = tp:

|Ψ〉B = (D0 |bb〉B|0〉B + D1
|bc〉B + |cb〉B√

2
|1〉B

+D2 |cc〉B|2〉B)/
√

N2, (4.19)
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where D0 = 1, D1 = −√
2(Ω/g), D2 = (Ω/g)2/

√
2, and N2 = |D0|2 + |D1|2 + |D2|2.

Note that cavity decay does not affect the relative amplitudes of the dark state, as

this is always defined with respect to the original Hamiltonian H. However, and this

is the key trick, Bob can choose Ω(tp)/g to be of the form αe−κtp to complement the

decay in Alice’s cavity:

D0 = 1, (4.20)

D1 = −α
√

2e−κtp , (4.21)

D2 = (α2/
√

2)e−2κtp . (4.22)

To summarize, following independent preparations, the joint state of Alice’s and Bob’s

systems is

|Ψ〉inAB = |Ψ〉A ⊗ |Ψ〉B. (4.23)

In the detection stage, Alice waits for two (and only two) clicks on her detectors

from photons arriving from both cavities. The first click occurs at time t = t1 after

preparation, and the second click occurs at time t = t2 after preparation. The simul-

taneous detection process leaves the joint state of Alice and Bob in (see Appendix)

|Ψ〉out
AB ∝ D̂±e−κâ†â(t2−t1)D̂±e−κâ†ât1|Ψ〉A ⊗ |Ψ〉B

∝ |ψ〉out
B |cc〉A|0〉A|0〉B + e−κt2 [· · · ] , (4.24)

where the cumulative time decay e−κt2 damps out the non-zero, final photon number

contributions (denoted by the dots), and we are left in the long-time regime with the

following decoherence-free atomic state in Bob’s cavity:

|ψ〉out
B = (η0C

I
0 |cc〉B + η1C

I
1

|bc〉B + |cb〉B√
2

+η2C
I
2 |bb〉B )/

√
N3, (4.25)
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where N3 =
∣∣η0C

I
0

∣∣2 +
∣∣η1C

I
1

∣∣2 +
∣∣η2C

I
2

∣∣2, and the coefficients ηm are given in Figure 14

for the three detection scenarios. To complete the teleportation protocol, Alice needs

to inform Bob (by classical means) which detectors clicked, and Bob performs unitary

operations to his final state (see below) to make his final teleported state |ψ〉out
B look

as close as possible to the initial state |ψ〉inA .
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Fig. 14. Pre-factors for the different detection scenarios in the final teleported state

|ψ〉out
B for two atoms. r and t are the reflection and transmission coefficients

for the beam splitter, and α = (Ω/(ge−κtp) is the dark state parameter that

Bob chooses initially.

The raw fidelity of the protocol, F = |〈ψin|ψout〉|2, depends on both the state to

be teleported (the coefficients CI
m) and the detection scenario that is realized. If only

one of the Dicke states is present initially (CI
m = 1 for some m), then the fidelity is

automatically unity when the protocol succeeds (i.e. when two and only two clicks are

recorded). For the entire superposition, the fidelity depends on the post-processing of

the teleported state. That is, knowing the coefficients ηm in Figure 14 allows us to

choose an appropriate unitary transform (that depends on the detection scenario) to

maximize the fidelity after the protocol has ended. We emphasize that this does not

depend on the initial choice of α and r, as any detection scenario can be optimized

post-detection by subsequent unitary evolution of the teleported state |ψ〉out
B . The

free parameters α and r are chosen only to ensure that all the pre-factors ηm are

non-zero.

Thus, the probability of success of the teleportation protocol depends solely on
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the fact that we get two, and only two, clicks on both detectors. Note that the

possibilities include [cf. Eqs. (4.15), (4.19), and (4.23)] zero, one, or two photons

from each cavity, leading to 0-4 clicks in both detectors. We analyze the success

probability in more detail below.

2. Na-atom teleportation

To appreciate the scaling of the protocol, we discuss the generalization of our scheme

to an arbitrary number of atoms Na in each cavity. The interaction Hamiltonian in

Eq. (4.2) generalizes to

H =
Na∑
i=1

[�Ω(t)(|ai〉 〈bi| + |bi〉 〈ai|)

+�g (|ai〉 〈ci| â + |ci〉 〈ai| â†]. (4.26)

We use the notation |b⊗mc⊗Na−m〉 to denote a normalized, symmetric Dicke state

where m atoms are in the level b and Na−m atoms are in the level c [91]. From com-

binatorics, there are P (Na,m) = Na!/[(Na −m)!m!] terms constituting the entangled

state |b⊗mc⊗Na−m〉. The initial state to be teleported is assumed to be of the form

|ψ〉inA =
Na∑

m=0

CI
m |b⊗mc⊗Na−m〉A. (4.27)

Using adiabatic evolution in the presence of cavity decay, and utilizing dark states

composed of an arbitrary number of atoms in the cavity [cf. see Eq. (4.29) below],

Alice maps the unknown Na-atom state given above to the equivalent photon state

in time tp:

|Ψ〉A =
1√N1

(
Na∑
p=0

Cp |p〉A
)
|c⊗Na〉A, (4.28)
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where Cp = e−pκtp
√

P (Na, p)CI
p . Meanwhile, Bob prepares his cavity in the Na-atom

dark state

|Ψ〉B =
1√N2

Na∑
p=0

Dp |b⊗Na−pc⊗p〉B|p〉B, (4.29)

where Dp = e−pκtp(−α)p
√

P (Na, p)/p!, and we have used the same index p to denote

complementary atomic and photonic excitations in the dark state.

In the detection stage, Alice waits for Na clicks in the two detectors. Assuming

n clicks occur in D+ and Na − n clicks in D−, the teleported state becomes

|ψ(n)〉out

B =
1√N3

Na∑
m=0

η(n)
m CI

m|b⊗mc⊗Na−m〉B, (4.30)

where for detection scenario n, the pre-factor for C I
m is given by

η(n)
m =

min(m,n)∑
i=0

(−1)n−iαNa−m
√

m!P (Na,m)P (n, i)

×P (Na − n,m − i)rn+m−2i tNa−n−m+2i.

Successful teleportation of the superposition state occurs when there are exactly

Na photodetection events (for Na atoms). Assuming no clicks occur during the prepa-

ration stage (κtp << 1), this occurs with probability Psuc = (
∑

m |CmDNa−m|2) /N1N2,

or

Psuc(Na) =

∑Na

m=0[P (Na,m)]2αNa−m/(Na − m)!

2Na
∑Na

m=0 P (Na,m)αNa−m/(Na − m)!
(4.31)

A plot of this quantity is shown in Figure 15, which shows that the fall off with Na

is an inverse power law. This indicates that in principle, the success probability has

a polynomial scaling with the number of atoms.
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Fig. 15. The success probability of getting Na photodetection events as a function

of the number of atoms (solid line), fitted by the functional form C/Na
0.45

(dashed line) for some constant C. Unit detection efficiency is assumed.

3. Discussion

First, some remarks about fidelity. We note that optimizing the fidelity after the

protocol has ended defines a new problem that, to our knowledge, has not been

addressed before in the teleportation literature, namely one where the weighting pre-

factors η
(n)
m are known, but the coefficients CI

m of the initial state are unknown. That

is, the relative weights of the Dicke state superposition need to be equalized regardless

of their absolute amplitudes, a problem which can be posed only in a state-averaged

sense. We are currently addressing this issue. To give an example, consider the two-

atom case in our scheme where the final state is given by Eq. (4.25). By appropriate

choice of α and r, we can arrange the pre-factors to be such that η0 < η1 < η2

for all detection scenarios. To equalize these weights, we might try a two-qubit

rotation of states |bb〉 and |cc〉, which leaves the symmetric state (|bc〉 + |cb〉)/√2

unchanged. The optimal rotation angle is determined by averaging the fidelity over

all input coefficients CI
m. For this example, we find that the state-averaged fidelity

for the two-atom case can be increased to at least 0.96 for all detection scenarios.

Successive unitary operations, which will introduce more control parameters, will
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further optimize this figure. A similar approach can be taken for larger number of

atoms Na, where with more atoms, we have a larger permutation of unitary operations

at our disposal. Thus, the Na-scaling is not expected to constrain the optimization.

From the experimental standpoint, the fidelity will be degraded whenever the

relative amplitudes/phases of the different Dicke states are unknown, for example,

due to fluctuations in laser intensity, or asymmetry in the cavity coupling to different

atoms.

We believe that the technology for implementing the proposed scheme is within

reach of the current state-of-the-art for a small but significant number of atoms.

For example, laser cooling and trapping of individual atoms in a high-Q cavity has

recently become possible [92], and optical dipole traps have been demonstrated for a

deterministic number of atoms [93]. Furthermore, three-level adiabatic passage and

linear optics methods are well established experimentally. The principal constraint

on asymptotic scalability will be the efficiency of the detectors, which in practice will

cause the success probability to decrease exponentially. Another constraint is the

need for a photon number resolving detector, as we require the post-selection of the

experiment based on Na photodetection events. These issues are generic to quantum

information schemes based on linear optics, and are currently active areas of research.

B. Preservation of nonclassicality in the continuous-variable quantum teleportation

Then we discuss the preservation of nonclassicality in the continuous-variable quan-

tum teleportation. The question we address here is: Under what conditions on the

squeeze parameter r and the homodyne detection efficiency η, a nonclassical input

state would necessarily lose its nonclassical nature during the process of teleportation.

In this section, we first reformulate the protocol of quantum teleportation of
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continuous variables of an optical field in the density matirx form and establish the

relation between the P-functions of the input and output states. We then present

a condition involving r and η under which the P-function of the teleported state is

positive over the entire complex plane regardless of how nonclassical the input state

is.

In the protocol of quantum teleportation of continuous variables, the two-mode

squeezed state

ρ̂ab = cosh−2(r)e− tanh(r)â†b̂† |0〉 〈0| e− tanh(r)âb̂ (4.32)

is employed as the quantum channel. In Eq. (1), r is the squeezing parameter, â(â†)

and b̂(b̂†) are the annihilation (creation) operators for mode a which is sent to Alice

and mode b which is sent to Bob, respectively. In the representation of coherent

states, the input teleported state may be written as

ρ̂i =

∫
d2αPi(α)e−|α|2eαâ†

i |0〉 〈0| eα∗âi , (4.33)

where âi(â
†
i ) is the annihilation (creation) operator for the mode to be teleported and

Pi(α) is the P-representation of the input state.

Before teleportation, the density matrix of the entire system is

ρ̂t = ρ̂ab ⊗ ρ̂i. (4.34)

The protocol of teleportation of continuous variables is depicted in Figure 16. In

the first step, Alice uses a 50:50 ideal beam splitter to couple the input mode with

the entangled mode a. The beam splitter induces the unitary transformation

ĉ1 =
1√
2
(â + âi), (4.35)

ĉ2 =
1√
2
(â − âi), (4.36)
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Â B̂

ŝ d̂
2ĉ
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Fig. 16. Scheme for the quantum teleportation of continuous variables. Here HDxa

and HDPb
are homodyne detectors for measuring xa and pb and Axa,pb

is the

amplitude displacement device. The dashed blocks represent the fictitious

beam splitters with efficiency η

where ĉ1 and ĉ2 are the annihilation operators for two modes out of two ports of the

beam splitter. In terms of annihilation and creation operators for the modes out of

the beam splitter, the density matrix (3) can be rewritten as

ρ̂t = cosh−2(r)

∫
d2αP (α)e−|α|2

e
1√
2
[α(ĉ†1−ĉ†2)−tanh(r)b̂†(ĉ†1+ĉ†2)]

|0〉 〈0| e 1√
2
[α∗(ĉ1−ĉ2)−tanh(r)b̂(ĉ1+ĉ2)]

. (4.37)

In the next step, two homodyne detectors are employed to measure the real part

of the complex amplitude of the mode c1 and the imaginary part of the complex

amplitude of the mode c2. Here, we assume that the detectors are nonideal and have

the same amplitude efficiency
√

η. To incorporate the diminishing effects of nonideal

photodetection on the amplitudes of the fields into the above formula, we replace the
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bosonic annihilation operatros for the modes c1 and c2 by the operators

Â =
√

ηĉ1 +
√

1 − ηŝ, (4.38)

B̂ =
√

ηĉ2 +
√

1 − ηd̂. (4.39)

In order to keep Â(B̂) and Â†(B̂†) having the correct commutation relations for

the bosonic annihilation and creation operators, two vacuum modes described by

annihilation operators ŝ and d̂ are introduced [94, 95]. The transformations (7) and

(8) can be modeled by two fictitious beam splitters before the homodyne detectors,

as shown in the dashed bolcks of Figure 16. Upon the replacement,we have

ρ̂t = cosh−2(r)

∫
d2αP (α)e−|α|2

e
√

η
2
[α(ĉ†1−ĉ†2)−tanh(r)b̂†(ĉ†1+ĉ†2)]

Trv{e
√

1−η
2

[α(ŝ†−d̂†)−tanh(r)b̂†(ŝ†+d̂†)]

|0〉〈0| e
√

1−η
2

[α∗(ŝ−d̂)−tanh(r)b̂(ŝ+d̂)]}

e
√

η
2
[α∗(ĉ1−ĉ2)−tanh(r)b̂(ĉ1+ĉ2)], (4.40)

where Trv represents the trace over the vacuum modes. We complete the trace calcu-

lation in the representation spanned by common eigenstates of the phase quadratue

operators x̂s = (ŝ + ŝ†)/2 and p̂d = (d̂ − d̂†)/2i for the vacuum modes. The resulting

expresion of the field density operator is

ρ̂t = N
∫

d2αP (α)e−η|α|2

e
√

η
2
[α(ĉ†1−ĉ2

†)−tanh(r)b̂†(ĉ†1+ĉ†2)]

ρ̂the
√

η
2
[α∗(ĉ1−ĉ2)−tanh(r)b̂(ĉ1+ĉ2)], (4.41)
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where

ρ̂th =
∞∑

n=0

〈n〉n
(1 + 〈n〉)n+1

|n〉〈n|, (4.42)

〈n〉 =
1 − η tanh2(r)

1 − (1 − η) tanh2(r)
, (4.43)

N =
cosh−2(r)

1 − (1 − η) tanh2(r)
. (4.44)

We see that the non-unity efficiency of the homodyne detection corresponds to the

excitation of modes c1 and c2 from the thermal state instead of vacuum.

Alice now performs a measurement on the eigenvalues of the phase quadrature

operators x̂a = (ĉ1 + ĉ†1)/2 and p̂b = (ĉ2 − ĉ†2)/2i by use of the ideal homodyne

detectors. Once Alice obtained the result (xa, pb), the density matrix for the mode b

on the Bob’s side reduces to

ρ̂(xa, pb) = (
π

2
)−1N

∫
d2αP (α)e−η|α|2

e−2(x2
a+p2

b)+
√

2η[α(xa+ipb)+c.c)]

e
√

η[
√

ηα−√
2(xa−ipb)] tanh(r)b̂†

ρ̂the
√

η[
√

ηα∗−√
2(xa+ipb)] tanh(r)b̂ (4.45)

becuase of the quantum entanglement between the modes a and b. Alice then sends

Bob the measurement result through classical channels.

According to the measurement result, Bob performs the displacement transfor-

mation D(∆) with ∆ = −β
√

2(xa − ipb) on the mode b. Here β is a parameter to

be determined. In general, the parameter β should be properly chosen so that the

teleportation has the maximal fidelity.

The density matrix (14) is unnormalized. The measurement probability p(xa, pb)

for the result (xa, pb) is tr[ρ̂(xa, pb)]. On the average over the measurement results,
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the normanized density matrix for the mode b is given by

ρ̂b =

∫
dxadpbD

†(∆)ρ̂(xa, pb)D(∆)

= (
π

2
)−1N

∫
d2αP (α)∫

dxadpae
−[1−(1+〈n〉)η tanh2(r)]|√ηα−√

2(xa−ipb)|2

1

π〈n〉
∫

d2ξe−
1

〈n〉 |ξ−√
η〈n〉tanh(r)[

√
ηα−√

2(xa−ipb)]|2

D(X) |0〉〈0|D†(X), (4.46)

where X = ξ − ∆ +
√

η tanh(r)[
√

ηα −√
2(xa − ipb)].

We can find the P-representation corresponding to the density operator ρ̂b via

the relation [19]

Pb(γ) =
e|γ|

2

π2

∫
d2δ 〈−δ| ρ̂b |δ〉 e|δ|

2−δγ∗+δ∗γ.

(4.47)

It follows, on substituting for ρ̂b from Eq. (15) into Eq. (16) and computing the

integrals, that we have

Pb(γ) =
N

πC

∫
d2αPi(α)

exp{−D

C
[η|α|2 − β

√
η(αγ∗ + c.c.) + |γ|∗]},

(4.48)

where

C = 〈n〉(1 − β2) + (1 + 〈n〉)[β −√
η tanh(r)]2,

(4.49)

D = 1 − (1 + 〈n〉)η tanh2(r). (4.50)
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In Eq. (17), we choose β = 1/
√

η such that the fidelity of teleportation is maximal for

a given squeezing parameter r and the teleported state is exactly same as the input

state if r is infinite [70, 74], and the P-representation of the teleported field takes the

form

Pb(γ) =
1

πs

∫
d2αPi(α) exp(−|α − γ|2

s
), (4.51)

where

s = e−2r +
1 − η

η
. (4.52)

The relation (20) is the key result of this paper. We shall see that some important

conclusions can be induced from this result.

For a given density matrix ρ̂, there are different representations such as P-, Q-

and Wigner-Weyl-representations, which are defined as [19]

P (γ) = tr[ρδ(γ∗ − b̂†)δ(γ − b̂)], (4.53)

Q(γ) = tr[ρδ(γ − b̂)δ(γ∗ − b̂†)], (4.54)

W (γ) =
1

π2

∫
d2βe−iβγ∗−iβ∗γtr[eiβb̂†+iβ∗b̂],

(4.55)

According to these definitions, we have the relations

Q(γ) =
1

π

∫
d2βe−|β−γ|2P (β), (4.56)

W (γ) =
2

π

∫
d2βe−2|β−γ|2P (β). (4.57)

It follows, on comparing Eqs. (25) and (26) with Eq. (20), we see that when s=1/2

or 1 the teleportation protocol changes the P-representation of the input state to the

Wigner-Weyl-representation or Q-representation. For the case of the ideal detection,

Caves and Wodkiewicz [76] showed that the Wigner function of the output state is
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the Q-function of the input state when s = 1/2 or e−2r > 1/2. We know that the Q-

representation is always non-negative definite. However, the positivity of the Wigner

function can not guarantee that the teleported states must be classical. Here,we

showed that when s=1 the P-representation of the teleported field is certainly positive

definite. Therefore, the teleported state must become classical no matter which kind

and how highly nonclassical the input state is when s > 1 or

η ≤ 1/(2 − e−2r). (4.58)

We also see that when η < 0.5 the teleported field is definitely classical even if

the squeezing parameter approaches infinity. Ralph et al [77] obtained the same

conclusion according to the condition that the variances of the phase-quadrature

amplitudes of the output state is larger than 1/2. Here, we derive the conclusion

based on the positivity of the P-function of the teleported state. We believe that our

discussion makes the conclusion more reliable.

In the current experiment of continuous-variable teleportation [22], noise reduc-

tion in either the sum or subtraction of quadrature-phase amplitudes of the modes

a and b can be more than 3 dB below vacuum noise. The corresponding squeezing

parameter r is around 0.35. For this degree of suqeezing, from (27), we obtain the

critical homodyne detection efficiency η = 0.67. Nonclassical properties of the input

state may be preserved in the teleported state only when the homodyne detection

efficiency η > 0.67. The efficiency of recent homodyne detection systems is around

90% [96]. Therefore, the preservation of nonclassicality may be realized in the current

continuous-variable teleportation.
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CHAPTER V

SUMMARY AND CONCLUSIONS

In conclusion, For entanglement generation we have shown three methods for prepar-

ing an arbitrary two-mode states. The first methods achieved by using atom-photon

interaction inside cavities. The resulting states can be obtained with unit probability.

We can extend this study to creating arbitrary two-mode N photons and multi-mode

N photon states. The second method is to prepare an arbitrary two-mode atomic

state in a system of two dipole-dipole interacting atoms. By applying a sequence of

three suitable driving field pulses, any superposition of the four possible atomic states

can be achieved. The last method is to prepare an arbitrary two-mode spin states via

weak interaction between two spin system and radio frequency. The special energy

levels in this system make two qubits entangled states generation problem be sim-

plified to one qubit entangled state generation. We can also use off resonance radio

frequency pulses to make desired states and this methods can be extend to other two-

level quantum system such as two atom system where radio frequency will be replaced

by driving field. We have also discussed a scheme for the implementation of quantum

walk in a cavity QED system. This system allows us to study the properties of quan-

tum walks in half space. For Quantum teleportation of an arbitrary superposition

of atomic Dicke states, we anticipate that the main elements of the proposed scheme

will be useful in a variety of quantum information applications beyond teleportation.

A key feature of the scheme is the multi-atom adiabatic passage that enables map-

ping of atomic Dicke-state entanglement to the photonic degrees of freedom. This

method should prove useful for large-scale transfer of entangled quantum information

between matter systems, a key requirement for distributed quantum computing. Fur-

thermore, it also suggests the possibility of entanglement transfer between unequal
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number of atoms in both cavities, leading to applications such as dense coding and

entanglement purification which can be fruitfully addressed with a mixed-state gener-

alization of our scheme. And finally, we have reformulated the teleportation protocol

for continuous variables of an optical field in the density matrix form explicitly in-

cluding the effciency of the homodyne detections and established the relation between

the P-functions of the input and teleported states. We show that in some cases the

teleportation protocol transfers the P-representation of the input state to either the

Wigner-Weyl-representation or Q-representation. The state-independent-condition

under which the teleported field must be classical is found.
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APPENDIX A

We give below the details of the calculation for the two-atom case below. After

preparation, Alice waits until she hears two (and only two) clicks at t = t1 and

t = t2, following which the state in cavity A is teleported to cavity B successfully.

For simplicity, the normalization factors are suppressed in Eqs. (A.1)-(A.7) below.

From Eqs. (4.15) and (4.19), at the end of the preparation stage (defined as

t = 0), we have

|Ψ〉inAB = |Ψ〉A ⊗ |Ψ〉B

= [C0D0|bb〉B|0〉A|0〉B + C1D0|bb〉B|1〉A|0〉B

+C2D0|bb〉B|2〉A|0〉B
+C0D1

|bc〉B + |cb〉B√
2

|0〉A|1〉B

+C1D1
|bc〉B + |cb〉B√

2
|1〉A|1〉B

+C2D1
|bc〉B + |cb〉B√

2
|2〉A|1〉B

+C0D2|cc〉B|0〉A|2〉B + C1D2|cc〉B|1〉A|2〉B
+C2D2|cc〉B|2〉A|2〉B]|cc〉A.

(A.1)

When t = t1, before Alice registers the first click, the joint state of Alice’s and

Bob’s systems has evolved conditional on no detector click, according to the evolution
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operator exp(−κâ†ât1) for photons in each cavity:

|Ψ(t1)〉 = [C0D0|bb〉B|0〉A|0〉B
+C1D0e

−κt1|bb〉B|1〉A|0〉B
+C2D0e

−2κt1|bb〉B|2〉A|0〉B
+C0D1e

−κt1
|bc〉B + |cb〉B√

2
|0〉A|1〉B

+C1D1e
−2κt1

|bc〉B + |cb〉B√
2

|1〉A|1〉B

+C2D1e
−3κt1

|bc〉B + |cb〉B√
2

|2〉A|1〉B
+C0D2e

−2κt1|cc〉B|0〉A|2〉B
+C1D2e

−3κt1|cc〉B|1〉A|2〉B
+C2D2e

−4κt1|cc〉B|2〉A|2〉B]|cc〉A. (A.2)

Then the first click occurs and the time evolution of the system state is interrupted

by a quantum jump at one of the two detectors D+ or D−. For the D+ detector, we
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find

D̂+|Ψ(t1)〉 = (taA + raB)|Ψ(t1)〉

= [C1D0te
−κt1|bb〉B|0〉A|0〉B

+
√

2C2D0te
−2κt1|bb〉B|1〉A|0〉B

+C0D1re
−κt1

|bc〉B + |cb〉B√
2

|0〉A|0〉B

+C1D1te
−2κt1

|bc〉B + |cb〉B√
2

|0〉A|1〉B

+C1D1re
−2κt1

|bc〉B + |cb〉B√
2

|1〉A|0〉B

+
√

2C2D1te
−3κt1

|bc〉B + |cb〉B√
2

|1〉A|1〉B

+C2D1re
−3κt1

|bc〉B + |cb〉B√
2

|2〉A|0〉B
+
√

2C0D2re
−2κt1 |cc〉B|0〉A|1〉B

+C1D2te
−3κt1|cc〉B|0〉A|2〉B

+
√

2C1D2re
−3κt1 |cc〉B|1〉A|1〉B

+
√

2C2D2te
−4κt1|cc〉B|1〉A|2〉B

+
√

2C2D2re
−4κt1 |cc〉B|2〉A|1〉B]|cc〉A,

≡ |Ψ+(t1)〉, (A.3)

while for D− we have an analogous result with t → r and r → −t. During the period

t2 − t1, no clicks occur again by definition and the above state evolves according to
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exp[−κâ†â(t2 − t1)]:

|Ψ+(t2)〉 = e−κt1 [C1D0t|bb〉B|0〉A|0〉B
+
√

2C2D0te
−κt2|bb〉B|1〉A|0〉B

+C0D1r
|bc〉B + |cb〉B√

2
|0〉A|0〉B

+C1D1te
−κt2

|bc〉B + |cb〉B√
2

|0〉A|1〉B

+C1D1re
−κt2

|bc〉B + |cb〉B√
2

|1〉A|0〉B

+
√

2C2D1te
−2κt2

|bc〉B + |cb〉B√
2

|1〉A|1〉B

+C2D1re
−2κt2

|bc〉B + |cb〉B√
2

|2〉A|0〉B
+
√

2C0D2re
−κt2 |cc〉B|0〉A|1〉B

+C1D2te
−2κt2|cc〉B|0〉A|2〉B

+
√

2C1D2re
−2κt2 |cc〉B|1〉A|1〉B

+
√

2C2D2te
−3κt2 |cc〉B|1〉A|2〉B

+
√

2C2D2re
−3κt2 |cc〉B|2〉A|1〉B]|cc〉A,

(A.4)
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with an analogous result for |Ψ−(t2)〉 with t → r and r → −t. Now the second click

occurs at t = t2. For the detection scenario D+D+, we find that the final state is:

D̂+|Ψ+(t2)〉 = (taA + raB)|Ψ+(t2)〉

=
√

2e−κt1−κt2 [(C0D2r
2|cc〉B

+
√

2C1D1tr
|bc〉B + |cb〉B√

2

+C2D0t
2|bb〉B)|0〉A|0〉B

+e−κt2(C1D2(2tr|cc〉B|0〉A|1〉B
+r2|cc〉B|1〉A|0〉B)

+C2D1(t
2|cc〉B|0〉A|1〉B

+2tr|cc〉B|1〉A|0〉B))

+e−2κt2C2D2(t
2|cc〉B|0〉A|2〉B

+2
√

2rt|cc〉B|1〉A|1〉B
+r2|cc〉B|2〉A|0〉B)].

(A.5)
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For the detection scenario D−D+ or D+D−, we find:

D̂−|Ψ+(t2)〉 = (raA − taB)|Ψ+(t2)〉

=
√

2e−κt1−κt2 [(−
√

2C0D2rt|cc〉B
+(−t2 + r2)C1D1

|bc〉B + |cb〉B√
2

+C2D0

√
2tr|bb〉B)|0〉A|0〉B

+e−κt2(C1D2((−t2 + r2)|cc〉B|0〉A|1〉B
−rt|cc〉B|1〉A|0〉B)

+C2D1(rt|cc〉B|0〉A|1〉B
+(−t2 + r2)|cc〉B|1〉A|0〉B))

+e−2κt2C2D2(t
2|cc〉B|0〉A|2〉B

+2
√

2rt|cc〉B|1〉A|1〉B
+r2|cc〉B|2〉A|0〉B)].

(A.6)
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Finally for the detection scenario D−D−, we find:

D̂−|Ψ−(t2)〉 = (raA − taB)|Ψ−(t2)〉

=
√

2e−κt1−κt2 [(C0D2t
2|cc〉B

−
√

2C1D1tr
|bc〉B + |cb〉B√

2

+C2D0r
2|bb〉B)|0〉A|0〉B

+e−κt2(C1D2(−2rt|cc〉B|0〉A|1〉B
+t2|cc〉B|1〉A|0〉B)

+C2D1(r
2|cc〉B|0〉A|1〉B

−2tr|cc〉B|1〉A|0〉B))

+e−2κt2C2D2(r
2|cc〉B|0〉A|2〉B

−2
√

2rt|cc〉B|1〉A|1〉B
+t2|cc〉B|2〉A|0〉B)].

(A.7)

In all cases, we can write the final atom-field state (upon two detection events) as in

Eqs. (4.24) and (4.25), where the pre-factors ηm given in Figure 14 may be read out

from the |0〉A|0〉B component of Eqs. (A.5-A.7), making the substitutions for Cp and

Dp in Eqs. (4.16-4.18) and (4.20-4.22).
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