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ABSTRACT 

Catalytic Studies of Supported Pd-Au Catalysts. (May 2006) 

Praveenkumar Boopalachandran, B.Tech., University of Madras; 

M.S., Texas A&M University – Commerce 

Chair of Advisory Committee: Dr. D. Wayne Goodman 

 

Although Pd-Au high-surface area catalysts are used in industry to improve 

activity and selectivity, a thorough understanding of the nature of these enhancements is 

lacking. A molecular-level understanding of catalytic reactions under actual reaction 

conditions is the ultimate goal. This thesis is mainly focused on the application of Pd-Au 

supported catalysts for vinyl acetate synthesis and CO oxidation reactions using high-

surface area catalysts.  We have attempted to improve the conventional Pd-Au based 

catalyst by synthesizing novel acetate-based and polymer-based catalysts. The 

corresponding catalytic reactivity and selectivity were measured and compared to 

conventional Pd-Au based catalyst systems. Subsequent characterization was performed 

using characterization techniques, such as, X-ray diffraction (XRD) and transmission 

electron microscopy (TEM). 

From our bimetallic catalytic studies, it was evident that the addition of Au to Pd 

leads to increased reactivity and selectivity. This surface modification is an important 

factor in the altered reaction kinetics for vinyl acetate (VA) synthesis and CO oxidation 

reactions. Promoted and unpromoted Pd-Au/SiO2/K+ catalyst were used for VA synthesis 

and the effect of pre-adsorbed O2, acetic acid and the role of oxygen were explored.   
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The VA reaction rate of novel acetate-based Pd-Au/SiO2 catalyst was 3.5 times 

higher than conventional Pd-Au catalysts.  Also, 100% selectivity was obtained for 

acetate-based Pd-Au/SiO2 at 130 oC and the VA formation rate was comparable to that of 

conventional Pd-Au catalysts. Therefore, the acetate-based Pd-Au/SiO2 catalyst seems 

very promising and can be explored further. Also, Pd(1):Au(4)/SiO2 catalysts 

demonstrate 100% CO conversion at much lower temperatures (90 oC) compared with 

other Pd-Au based catalysts. Furthermore, we were successful in obtaining sufficient CO 

oxidation activity with increased metal loading (5 wt%) and these catalysts did not 

deactivate under above-ambient reaction temperature conditions, which make 1:4 Pd-

Au/SiO2 catalyst a good candidate for further exploration in CO oxidation reactions. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

v

 

ACKNOWLEDGEMENTS 

 

 It is a pleasure to thank many people who made this thesis possible. I thank 

Dr.Wayne Goodman, my research advisor, for his continuous guidance, inspiration and 

enthusiasm. He manages to strike the perfect balance between providing direction and 

encouraging independence. I also like to thank the other committee members: Dr. 

Raymond E. Schaak, Dr. Michael P. Rosynek and Dr. Daniel F. Shantz for their advice. I 

deeply appreciate Julie Wilson and Mrs. Amy Liu for their kindness during the time of 

this research. I would like to thank Dheeraj Kumar and Dr. Mingshu Chen for their 

collaboration, friendship and help with solving numerous problems that I have 

encountered in/out of the laboratory. Also, thanks to Rob Cable for synthesizing acetate-

based catalysts. I am grateful to many people in the Department of Chemistry who have 

assisted me in the course of this work.  I am forever indebted to my parents for their 

understanding, endless patience and encouragement when it was required. Finally, I thank 

God for giving me the confidence and the blessings during this research.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

vi

 

TABLE OF CONTENTS 
 

    Page 
 
INTRODUCTION…………………………………………………………………….   1 
  
  Bimetallic Supported Catalysts………………………………………………. 2 
  Ensemble Effect and Ligand Effect……………………………………. .  2 
  Pd-Au Bimetallic Supported Catalysts…………………………………. 3 
  Vinyl Acetate (VA) Synthesis………………………………………....... 7  
  CO Oxidation……………………………….....……............................... 20 
 
EXPERIMENTAL……………………………………………………………………  23 
 
 Catalyst Preparation…………………………………………………………..  23  
 Experimental Setup…………………………………………………………...  25 
  Gas Chromatography (GC)…………………………………..................  27 
  Thermal Conductance Detector (TCD)…………………........................  29 
  Flame Ionization Detector (FID)……………….....................................  29 
  Methanizer……………………………………........................................ 32 
 Characterization Techniques………………………………………………….  34 
  X-Ray Diffraction (XRD)……………………………............................. 34 
  Transmission Electron Microscopy (TEM)………………...................... 36 
 Calculations of the Reaction Rates and Selectivities......................................... 38 
 
RESULTS AND DISCUSSION……………………………………………………… 40 
 
 Unpromoted Pd-Au/SiO2 Catalyst……………………………………………. 40 
  VA Synthesis……………………………………………......................... 40 
   VA Formation Rate and Selectivity Measurement……..................... 40 
   VA Formation Rate as a Function of Pd-Au Ratio…………............. 46 
  CO Oxidation …………………………………………………………...   48 
   CO Conversion as a Function of Pd-Au Ratio.................................... 48 
 Promoted Pd-Au/SiO2/K+

 Catalyst..................................................................... 50 
  VA Synthesis.............................................................................................  53 
   VA Formation Rate and Selectivity Measurement ............................ 53  
   Effect of Pre-Treatment...................................................................... 56 
   Induction Period Measurement........................................................... 56 
   Effect of Pre-Adsorbed Oxygen.........................................................  59 
   Effect of Pre-Adsorbed Acetic Acid................................................... 61 
   Role of Oxygen................................................................................... 63 
 Acetate-Based Pd-Au Catalyst............................................................................ 67 
 
       
     
 



 

 

vii

 

                                       
 Page  

  
  VA Synthesis..........................................................................................   70 
   VA Formation Rate and Selectivity Measurement...........................   70 
   Temperature Effects..........................................................................   75 
  CO Oxidation..........................................................................................   78  
 Polymer-Based Pd-Au Catalyst........................................................................  80 
  VA Synthesis...........................................................................................  80                               
  CO Oxidation...........................................................................................  84 
     
SUMMARY..................................................................................................................  86 
 
REFERENCES.............................................................................................................. 87 
 
VITA.............................................................................................................................. 90 
 
             
 
 
 
 
   
 
  
    
 
 
 
 
   
 
  
 
 
  
 
 
 
   
              
 
 
 

 
 



 

 

viii

 

LIST OF FIGURES 
 
FIGURE              Page 

 
 
1          XRD data for Pd/SiO2 catalyst; A) freshly reduced; B) after VA reaction  
            (Ref. [8])…………………………………………………….........................       4 

2 Surface concentration of various Pd-Au alloys on Mo(110) measured  
 by LEISS compared to the bulk concentration 
 (Ref. [7])……………………………………………………….....................       6 

3  TPD of C2D4 with 2.0 L C2D4 exposure at 90 K on 1.0 ML Pd/SiO2,   
0.2 ML Au/1.0 ML Pd/SiO2; and 1.0 ML Au/1.0 ML Pd/SiO2 (Ref. [23])…       9 

 
4 TPD spectra of CO: (a) with 1.0 L exposure at 90 K on pure SiO2;  
 (b) 1.0  ML Pd/SiO2; (c) 1.0 ML Au/SiO2; 1.0 ML Pd/1.0 ML 
 Au/SiO2; and (e) 1.0 ML Au/1.0 ML Pd/SiO2  
 (Ref. [23])………………………………………………………...................       11 

5 VA formation rates as a function of Pd coverage on Au (100) and Au (111) 
 (Ref. [27]).......................................................................................................       13 
 

6 IRAS spectra for CO adsorption on Pd/Au(100) and Pd/Au(111) surface 
  at 100 K showing the presence (300 K anneal) and absence  
 (600 K anneal) of contiguous Pd sites. The Pd/Au(100) and Pd/Au(111) 
 surface were prepared by depositing 4 ML of Pd at 100 K, then annealed  
 to 300  K and 600 K, respectively (Ref. [27])................................................        14 

7   The overall energy diagram for vinyl acetate synthesis.  VAM denotes  
 vinyl acetatemonomer, Ac acetate, Et ethylene, AA acetic acid,  
 (a) adsorbed species, and (g) gas phase species  
 (adapted from Ref. 20])……………………………………………………...       16 
 

8 Schematic for VA synthesis from acetic acid and ethylene.  
 The optimized distance between the two active centers for the  
 coupling of surface ethylenic and acetate species to form VA is  
 estimated to be 3.3 Å. With lateral displacement, coupling of an  
 ethylenic and acetate species on a Pd monomer pair is possible on 
  Au(100) but impossible on Au(111) (Ref.  [27])..........................................        18 

 

 
 



 

 

ix

 

FIGURE              Page 
 
9 Schematic of the synthesis of Pd-Au catalysts using wet impregnation   
 method………………………………………………………………………       24 

10 Experimental setup of micro fixed-bed reactor and accessories……………       26 

11          Block diagram of gas chromatograph (GC) units………………………..         28 

12        Wheatstone bridge configuration of thermal conductivity detector   
            (Ref. [39])………………………………………………………..................        30 

13 The schematic for the operation of flame ionization detector (Ref. [40])…         31 

14        The schematic of stand-alone methanizer accessory with FID……………..       33 

15 Principle of X-ray diffraction…………………………………………….....       35 

16 Working principle of transmission electron microscopy (TEM)……..…..          37 

17 XRD data for Pd-Au/SiO2 catalyst after reduction at 673 K in  
 20 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 for 
 30 min………………………………………………………………………        41 

18 TEM micrograph of Pd-Au/SiO2 catalyst after reduction at 673 K 
  in 20 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 

  for 30 min......................................................................................................       42 

19 Pd-Au cluster distribution of Pd-Au/SiO2 catalyst after reduction at  
 673 K in 20 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min  
 H2 for 30 min..................................................................................................       43 

20 Reaction rate of Pd-Au/SiO2 catalyst in the synthesis of vinyl acetate: 
 feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total 
            flow rate, 60 ml/min at 423 K……………………………………………....       44 

21 Selectivity of Pd-Au/SiO2 catalyst in the synthesis of vinyl acetate:  
 feed gas, pC2H = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total  
 flow rate, 60 ml/min at 423 K……………………………………..…...……      45 

 

 



 

 

x

 

 
FIGURE              Page 
 

22 VA formation rates as a function of Pd-Au ratios in the synthesis of  
 vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa,   
 rest N2; total flow rate, 60 ml/min at 423 K………………………….……...      47 
 

23 CO conversion as a function of temperature for different Pd-Au ratios:  
 feed gas, pCO2 = 2.0 kPa, pO2 = 1.0 kPa, rest N2; catalyst sample:  
 50 mg……………………………………………………………..………….      49 

24 XRD data of Pd-Au/SiO2/K+ catalyst after reduction at 673 K in 20   
 ml/min O2(10%)/N2, 30 min, then 573 K in 20 ml/min H2 for  
 30 min………………………………………………………………………...     51 
 
25 TEM micrograph of Pd-Au/SiO2/K+ catalyst after reduction at 673 K  
            in 20 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 for  
  30 min……………………………………………………………………...         52 
 
26 Reaction rates (▪: Pd-Au/SiO2, •: Pd-Au/SiO2/K+) in the synthesis of  
 vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa,   
 rest N2; total flow rate, 60 ml/min at 423 K……………………………......         54 
 

27 VA selectivities (▪: Pd-Au/SiO2, •: Pd-Au/SiO2/K+) in the synthesis of   
 vinyl  acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa,   
 rest N2; total  flow rate, 60 ml/min at 423 K……………………………....        55 
 
28 Reaction rates of Pd-Au/SiO2/K+ catalyst with (▪) and without (•) pre-  
 treatment in the synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pO2   

 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total flow rate, 60 ml/min at 423 K…..        57 
 
29 Induction period measurement of Pd-Au/SiO2/K+ catalyst in the  
 synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa,  
 pAcOH = 2.0 kPa, rest N2; total flow rate, 60 ml/min at 423 K………………        58 

30 Reaction rates of Pd-Au/SiO2/K+ catalyst in the presence (•) and  
 absence (▪) of  pre-adsorbed oxygen in the synthesis of vinyl acetate:  
 feed gas,pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2;  
            total flow rate, 60 ml/min at 423 K…………………………………………        60 

31 VA formation rates as a function of pre-adsorbed acetic acid (AA) in the   
 synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa,  
  pAcOH = 2.0 kPa, rest N2; total flow rate, 60 Nml/min at 423 K…………….        62 



 

 

xi

 

FIGURE              Page 
 

32 IRAS of acetic acid dosed at 200 K on oxygen pre-covered 4 ML    
 Pd/Au(100) annealed at 600 K.................…………………..........................      64 
 
33 TPD of acetic acid dosed at 200 K on oxygen pre-covered 4 ML Pd-  
 Au(100) annealed at 600 K ...............………………………........................       65 
 
34 Reaction rate of Pd-Au/SiO2/K+ catalyst as a function of oxygen  
 coverage in the synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa,  
 pAcOH = 2.0 kPa, rest N2; total flow rate, 60 Nml/min at 423 K……………..      66 

35 XRD data for acetate-based Pd-Au/SiO2 catalyst after reduction at  
 673 K in 20 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min 
 H2 for 30 min...................................................................................................      68 

36 TEM micrograph of acetate-based Pd-Au/SiO2 catalyst after reduction 
 at 673 K in 20 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min   
 H2 for 30 min...................................................................................................      69 
 
37 Reaction rates (▪: acetate-based Pd-Au/SiO2) in the synthesis of vinyl  
 acetate: feed gas, pC2H4 =7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2;  
 total flow rate, 60 ml/min at 423 K………………………………………….      71 

38 VA selectivities (▪: acetate-based Pd-Au/SiO2) in the synthesis of vinyl 
  acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; 
  total flow rate, 60 ml/min at 423 K…………………………………………      72 

39 Reaction rates (▪: Pd-Au/SiO2, •: Pd-Au/SiO2/K+, ▲: acetate-based  
 Pd-Au/SiO2) in the synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa,  
 pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; 
 total flow rate, 60 ml/min at 423 …………………………………………...       73 

40 VA selectivities (▪: Pd-Au/SiO2, •: Pd-Au/SiO2/K+, ▲: acetate-based  
 Pd-Au/SiO2) in the synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa,  
 pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total flow rate, 
 60 ml/min at 423 K………………………………………………………….      74 

41 Reaction rates of acetate-based Pd-Au/SiO2 catalyst as a function of   
 temperature (▪: 130 oC, •: 150 oC, ▲: 170 oC) in the synthesis of vinyl   
 acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa,    
 rest N2; total flow rate, 60 ml/min at 423 K…………………………………     76 
 

 



 

 

xii

 

FIGURE              Page 
 
42 VA selectivities of acetate-based Pd-Au/SiO2 catalyst as a function of   
 temperature (▪: 130 oC, •: 150 oC, ▲: 170 oC): feed gas, pC2H4 = 7.5 kPa,    
 pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total flow rate, 60 N ml/min at   
 423 K…………………………………………………………………….......       77 
 
43 Conversion of CO as a function of temperature for acetate-based 
 Pd-Au catalyst: feed gas, pCO2 = 2.0 kPa, pO2 = 1.0 kPa, rest N2;  
 catalyst sample: 50 mg……………………………………………………....       79 

44 XRD data for polymer-based Pd-Au/SiO2 catalyst after reduction at  
 673 K in 20 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 

 for 30  min.......................................................................................................      81 

45 TEM micrograph of polymer-based Pd-Au/SiO2 catalyst after reduction 
 at 673 K in 20 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2  
 for 30 min........................................................................................................       82 

46 Reaction rate of polymer-based Pd-Au/SiO2 catalyst in the synthesis of 
 vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa,  
 rest N2; total flow rate, 60 ml/min at 423 K…………………………………       83  

47 Conversion of CO as a function of temperature for polymer-based  
 Pd-Au catalyst:feed gas, pCO2  = 2 kPa, pO2 = 1.0 kPa, rest N2; catalyst 
  sample: 50 mg……………………………………………………………….       85 



 

 

1

 

INTRODUCTION 

Catalysis finds application in various fields, such as fuel cells, oil refining, 

chemical processing, exhaust systems, etc. The fundamental concept of heterogeneous 

catalysis is that the catalytic substance has a prominent catalytic activity at the surface 

which is termed as the active site of the catalyst [1, 2]. Typically most industrial catalysts 

are nanometer-scale metal particles with many active centers supported on inert, porous 

metal oxide substrates [2]. Metal oxides such as silica, alumina and magnesia are the 

most widely used supports [1, 2]. The main purpose of the support is to disperse and 

stabilize the active centers, while the support itself usually is catalytically inactive [2]. 

These supported catalysts are often referred to as high-surface area catalysts. 

A catalyst cannot change the ultimate equilibrium determined by thermodynamics 

but it can change the kinetics of the chemical reaction [1, 2, 3]. The preparation methods, 

the composition of the active metals and the conditions employed govern the behavior of 

the catalysts which is described in global terms of activity, selectivity and deactivation.  

Activity is expressed in units of amount of product made in the reactor per unit time and 

per unit of reactor volume [2]. The selectivity is a measure of the extent to which it 

accelerates the reaction to form one or more of the desired products that are usually 

intermediates, instead of those formed by reaction to the overall state of lowest free 

energy [1, 2]. Activity and selectivity usually varies with pressure, temperature, reactant 

composition, extent of conversion, as well as, with the nature of the catalyst [2]. On the 

other hand, a catalyst may deactivate for a wide variety of factors such as poisoning, 
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fouling and sintering [1, 2]. The best performance of a heterogeneous catalyst is achieved  

by varying the preparation procedures, the operating conditions and the catalysts 

constituents. The catalyst constituents vary from monometallic to multi metallic systems, 

and typically contain promoters, poisons, etc.  Bimetallic supported catalysts have 

attracted major attention because of their enhanced catalytic activity and selectivity 

compared to monometallic supported catalysts [3, 4, 5, 6].  

 

Bimetallic Supported Catalysts 

Bimetallic catalysts have many applications in the areas of corrosion science, 

catalysis and electrochemistry [1, 2]. Research efforts are concentrated in understanding 

correlations of catalytic activity and selectivity with electronic, structural, and 

physicochemical properties of these catalyst systems. Understanding the enhancement of 

activities and/or selectivities of bimetallic catalysts remains a significant research 

challenge.  

 

Ensemble Effect and Ligand Effect 

The changes in the physical and chemical properties of the catalysts due to the 

addition of a second metal component is usually discussed in terms of “ensemble effects” 

and “ligand effects”. The “ensemble effect” refers to the factors where certain number of 

atoms in a particular geometry are required to facilitate a particular catalytic process [7]. 

On the other hand, “ligand effects” describes the modification resulting from the addition 

of one metal to a second metal leading to the formation of heteronuclear metal-metal 
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bonds involving charge transfer between the metals [7]. These theories are well accepted 

to explain the catalytic activity and selectivity in supported bimetallic catalyst systems. 

 

Pd-Au Bimetallic Supported Catalysts 

Palladium (Pd) is a well known catalyst for many reactions which are of industrial 

and environmental importance [7]. A major drawback of using Pd-only catalysts is the 

formation of carbides, i.e. PdCx, as shown in the Fig. 1 [8]. In case of vinyl acetate 

synthesis [8] using Pd(1 wt%)/SiO2 and Pd(5 wt%)/SiO2  the reaction rate dropped to 

35% and 50% of its initial rate, respectively [8]. It was seen that the interstitial carbon in 

Pd may significantly alter the bulk and surface structure of Pd and can lead to catalytic 

deactivation in reactions involving hydrocarbons. 

 On the other hand, Au catalysts although traditionally considered inert, have 

received great attention due to the surprisingly high catalytic activity exhibited in CO 

oxidation and epoxidation of propylene reactions [7, 9, 10]. An important requisite in 

achieving good catalytic activity using gold is the nanoscale synthesis of supported gold 

by various complicated preparation techniques. Many studies reveal that the addition of 

gold to palladium catalysts has pronounced catalytic effect [3, 6]. It is plausible that the 

electronic and geometric properties are tuned by the addition of Au with highly optimized 

sites [3, 6, 11]. Also, model catalytic studies have shown that Pd and Au are completely 

miscible as solid solutions and that there is only a 4% lattice mismatch between Pd(111) 

and Au(111) [7].  
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Fig. 1. XRD data for Pd/SiO2 catalyst; A) freshly reduced; B) after VA reaction (Ref. [8]). 
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Surface composition is a key element in understanding the role of alloying in Pd-

Au bimetallic catalysts [11, 12]. The surface properties of heterogeneous catalysts show 

numerous unique properties that are significantly different than the bulk catalyst structure. 

Model catalytic studies have shown that the surface concentration of Pd-Au alloy differs 

from the corresponding bulk concentration [7, 13, 14, 15]. Fig. 2 [7] shows the phase 

diagram of surface versus bulk plotted as a function of Pd-Au ratio. The studies were 

carried out using Pd-Au alloys on Mo(110) and the surface concentrations were measured 

using low energy ion scattering spectroscopy (LEISS) [7]. It was observed that the 

surface concentration of Au ranges from 40% to 96% while the bulk concentration of Au 

varies from 10% to 90%. This compositional variation in the concentration is generally 

attributed to the difference in surface free energies between Pd and Au [7, 13]. The 

surface free energy of palladium is 2.043 J/m2, which is higher than the surface free 

energy of gold (1.626 J/m2) [7]. In order to minimize the surface free energy, gold 

segregates to the surface. These results suggest that the surface composition can be 

controlled by altering Pd-Au concentration.  

Therefore, it is possible to synthesize Pd-Au supported catalysts with controlled 

surface ratio by altering the bulk metal ratio, and potentially leading to a better 

understanding of the relationships between catalytic activity/selectivity, and surface 

structure. This is particularly relevant to vinyl acetate synthesis using supported Pd-Au 

catalysts. 
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Fig. 2. Surface concentration of various Pd-Au alloys on Mo(110) measured by LEISS       
compared to the bulk concentration (Ref. [7 ]). 
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Vinyl Acetate (VA) Synthesis 

           VA was first produced in 1912 as a by product in the synthesis of ethylidene 

diacetate. VA is an important monomer for the synthesis of polyvinyl alcohol and 

polyvinyl acetate, and is also used in the production of paints [2]. Two commercial 

processes for the VA synthesis are a liquid process with a homogeneous palladium-

containing catalyst (PdCl2 and CuCl2) and a vapor phase process with a heterogeneous 

palladium-containing catalyst [16]. The liquid phase process was converted to a vapor 

phase process, which accounts for more than 75% of the currently available capacity of 

VA production. The annual production of VA in USA is about 3.65 billion pounds [2].  

The conventional vapor phase process involves passing 4:1 acetylene-to-acetic acid 

mixture over a catalyst bed made of zinc acetate-saturated activated carbon between 180 

oC-200 oC [17, 18].  Another commercial manufacturing process of vinyl acetate involves 

the reaction between acetaldehyde and acetic anhydride. Furthermore, VA can also be 

synthesized by reacting vinyl chloride with sodium acetate in solution at 50 oC-75 oC [17, 

18]. Currently, the synthesis of VA is carried out via the gas phase acetoxylation of 

ethylene over various palladium-based catalysts as the vapor phase addition of acetic acid 

to acetylene on a Zn/C catalyst is more expensive [19].  

 The ideal reaction pathway is given by [19, 20, 21, 22] 

    C2H4 + CH3COOH +1/2O2  C2H3OOCCH3 + H2O                                          (1)   

Possible side reactions are given by 

      C2H4(CxHy) + O2  CO2(CO) + H2O                                                                  (2) 

CH3COOH + O2  CO2(CO) + H2O                                                                   (3) 

C2H3OOCH3  CO2(CO) + H2O                                                                         (4) 
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From equations (2)-(4), it is evident that VA selectivity is a key issue for the gas 

phase acetoxylation of ethylene reaction. It was observed that the activation energy 

obtained for the reaction of ethylene with oxygen for CO2 formation was almost identical 

in the presence and in the absence of acetic acid suggesting that CO2 is mainly derived 

from ethylene [3, 6]. Furthermore, the selectivity of vinyl acetate formation increases 

with an increase in the ratio of acetic acid to ethylene [3, 6].  

Studying the reaction kinetics between monometallic and bimetallic catalyst 

systems can lead to the understanding of the catalytic activity and selectivity. The 

kinetics of VA using model catalytic systems such as Pd(100) catalyst have been shown 

to be comparable to the results obtained using supported Pd catalysts [6].  Based on these 

results, it is assumed that the structure of the active sites on a silica supported Pd and Pd-

Au alloy clusters is similar to that of silica supported Pd and Pd-Au high surface area 

catalysts.   

 In a model catalytic study, to probe the surface structure of the Pd-Au alloy 

clusters as well as their catalytic reactivity, a TPD study of deuterated ethylene (C2D4) 

adsorption and dehydrogenation on the silica-supported Pd and Pd-Au alloy clusters was 

carried out [23]. 2.0 L of C2D4 was dosed on 1.0 ML Pd/SiO2, 0.2 ML Au/1.0 ML 

Pd/SiO2 and 1.0 ML Au/1.0 ML Pd/SiO2 surface at 90 K. Fig. 3 [23] shows a broad 

feature with a desorption temperature peak maximum at 250 K, assigned to contributions 

from π-bonded and di-σ bonded C2D4. With 0.2 ML Au deposition to 1.0 ML Pd/SiO2 

clusters and annealing, a significant loss of C2D4 desorption intensity was observed. 

Furthermore, with 1.0 ML Au deposition to 1.0 ML Pd/SiO2 clusters and annealing, a 

significant further loss of C2D4 desorption intensity was observed with the desorption  
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peak maximum shift to 215 K. These results indicate that ethylene binds less strongly on  

Pd-Au cluster surface compared to Pd cluster surface. The addition of Au to Pd clusters  

 leads to attenuation of the stronger di-σ bonded C2D4  which may further decompose into 

carbon species on the surface thus blocking and poisoning the surface active sites [20, 

21, 22, 23, 24, 25, 26].  

 In another study, CO was used as a probe molecule to characterize the surface 

adsorption sites [23].  1.0 L of CO was dosed on bare silica, 1.0 ML Pd/SiO2, 1.0 ML 

Au/SiO2, 1.0 ML Pd/1.0 ML Au/SiO2 and 1.0 ML Au/1.0 ML Pd/SiO2 surface at 90 K 

and annealed to 800 K. Fig. 4 [23], in a TPD study of CO on bare SiO2, a broad feature 

centered at 135 K was observed from CO adsorbed on the SiO2 support. For CO TPD on 

1.0 ML Pd/SiO2, additional features centered at 465, 320, and 250 K were observed. 

The feature at 465 K is assigned to CO adsorbed on Pd three-fold hollow sites;  

features at 250 and 320 K are assigned to CO adsorbed on atop Pd sites, and the 

desorption feature between 320 and 465 K are assigned to CO on Pd bridging site. 

With 1.0 ML Pd deposition to 1.0 ML Au/SiO2 clusters and annealing, a significant loss 

of CO desorption intensity was observed. Furthermore, with 1.0 ML Au deposition to 1.0 

ML Pd/SiO2 clusters and annealing, a significant loss of CO desorption intensity was 

observed. As CO is a by-product in VA synthesis reaction, the strong adsorption of CO 

on Pd may poison the active surface site. The addition of Au to Pd clusters leads to 

attenuation of the strong adsorption of CO on Pd sites thus increasing the reactivity.  
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Fig. 4. TPD spectra of CO: (a) with 1.0 L exposure at 90 K on pure SiO2; (b) 1.0 ML 
 Pd/SiO2; (c) 1.0 ML Au/SiO2; 1.0 ML Pd/1.0 ML Au/SiO2; and (e) 1.0 ML 
 Au/1.0 ML Pd/SiO2 (Ref. [23]). 
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 Furthermore, to investigate the promotional effect of Au in a Pd-Au alloy catalyst, 

acetoxylation of ethylene to vinyl acetate was used as a probe reaction [27]. These 

experiments were carried out on Pd/Au(100) and Pd/Au(111) at 453 K. VA formation 

rises to a maximum rate as the Pd coverage is lowered to approximately 0.1 monolayer, 

then decreases sharply with a further decrease in the Pd coverage below 0.1 ML, as 

shown in Fig. 5[27] . It is evident that the VA formation rate for Pd/Au(100) are 

significantly higher than for Pd/Au(111) over the entire Pd coverage. The increased rate 

was attributed to the formation of Pd monomers in these catalyst systems. Furthermore, 

CO was used as a probe molecule on Pd/Au(100) and Pd/Au(111) surfaces at 100 K 

followed by an anneal, and the corresponding infrared absorption reflection spectroscopy 

(IRAS) were obtained as shown in Fig. 6[27] . Intense CO features between 1900 to  

2000 cm-1 corresponding to CO adsorption on two-fold bridging and/or three-fold hollow 

sites were observed for multilayer Pd on Au(100) and Au(111). Upon annealing these 

catalysts to 600 K or higher, the CO features in the IRAS data corresponding to atop sites 

between 2125~2080 cm-1 increase significantly. These results demonstrate that 

continuous surface Pd ensembles are broken up upon annealing to form isolated Pd sites. 
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Fig. 5.  VA formation rates as a function of Pd coverage on Au (100) and Au (111) 
 (Ref. [27]). 
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Fig. 6. IRAS spectra for CO adsorption on Pd/Au(100) and Pd/Au(111) surface at 
100 K showing the presence (300 K anneal) and absence (600 K anneal) of 
contiguous Pd sites. The Pd/Au(100) and Pd/Au(111) surface were prepared 
by depositing 4 ML of Pd at 100 K, then annealed to 300 K and 600 K, 
respectively (Ref. [27]). 
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 Recently, Neurock and co-workers [20] used density functional theory (DFT) 

calculations to propose elementary steps representative of the vinyl acetate monomer 

synthesis. Seven elementary steps are suggested: oxygen addition (5), dissociative 

adsorption of acetic acid (6), ethylene adsorption (7), ethylene insertion (8), β-C-H bond 

scission (9), VAM desorption (10), and associative desorption of water (11) 

 1/2O2 (g)  O (a)                                                                                                (5) 

O (a) + CH3COOH (g)    CH3COO (a) + OH (a)                                             (6) 

CH3COO (a) + OH (a) + C2H4 (g)  CH3COO (a) + OH (a) + C2H4 (g)           (7) 

CH3COO (a) + OH (a) + C2H4 (g)  CH3COO C2H4  (a) + OH (a)                    (8) 

CH3COO C2H4 + OH (a)  CH3COO C2H3 (a) + OH (a) + H (a)                      (9) 

CH3COO C2H3 (a) + OH (a) + H (a)  CH3COO C2H3 (g) + OH (a) + H (a)  (10) 

 OH (a) + H (a)  H2O (g)                                                                                   (11) 

 The overall energy diagram for each step of the cycle is shown in Fig. 7 [20]. 

These authors suggest that ethylene insertion and C-H bond activation are the most 

highly endothermic paths. C-H scission is much more favorable in the presence of 

adjacent oxygen species that readily accepts a proton; the presence of oxygen enhances 

the stability of the acetate species by 12 kJ/mol. These results are in good agreement with 

the experimental observations indicating the yield for the deprotonation of acetic acid to 

the adsorbed acetate can be increased significantly by enhancing the Bronsted basicity of 

the surface with chemisorbed oxygen [20]. 
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Fig. 7. The overall energy diagram for vinyl acetate synthesis.  VAM denotes vinyl 

acetatemonomer, Ac acetate, Et ethylene, AA acetic acid, (a) adsorbed species, 
and (g) gas phase species (adapted from Ref. [20]). 
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 The reaction mechanism for VA synthesis remain uncertain, however two 

pathways have been proposed in the literature [12]: (i) adsorption and subsequent 

activation of ethylene to form vinyl acetate species that then couples with a coadsorbed 

acetate species to form VA; and (ii) adsorbed ethylene reacts with an adsorbed acetate 

nucleophile to form an ethyl-like-intermediate which then undergoes β-H elimination to 

form VA. Both mechanisms assume that the coupling of surface ethylene species and 

acetate to form VA is the rate-limiting step. Fig. 8 [27] shows the schematic 

representation of the coupling reaction between surface ethylene and acetate species 

facilitated by a Pd-monomer pair. based on the bond lengths of the parent reactant 

molecules, the optimum distance between two active sites to couple the reacting species 

is approximately 3.40 Å. The nearest spacing between two neighboring Pd monomers is 

4.08 Å on the Pd/Au(100) alloy surface.   
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Fig. 8. Schematic for VA synthesis from acetic acid and ethylene. The optimized 

distance between the two active centers for the coupling of surface ethylenic 
and acetate species to form VA is estimated to be 3.3 Å. With lateral 
displacement, coupling of an ethylenic and acetate species on a Pd monomer 
pair is possible on Au(100) but impossible on Au(111) (Ref.  [27]). 
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This distance is acceptably close for coupling of the adsorbed surface species. On 

the other hand, on Pd/Au(111) alloy surface, the nearest distance between two 

neighboring Pd monomers is 4.99 Å, a distance much greater than the optimum distance, 

3.40 Å. As a consequence, Pd/Au(100) alloy surface shows a much higher rate for VA 

synthesis than that of Pd/Au(111). Therefore, these results imply that larger Pd ensembles 

containing contiguous Pd atoms are indeed much less efficient than a properly spaced 

pair of Pd monomers. 

 The aim of the present study is to investigate the effect of the gold on palladium 

catalysts in the synthesis of VA by the gas phase acetoxylation of ethylene. The choice of 

Au as a second metal is dictated by its enhanced activity.  By adopting wet impregnation 

technique, a series of silica supported Pd-Au catalysts with different Pd-Au ratios were 

synthesized. Also, we have made significant attempts to improve the Pd-Au based 

catalyst and compare the reaction rate and selectivity with the conventional catalysts. 

 

 

 

 

 

 

 

 

 

 



 

 

20

 

CO Oxidation 

The important applications for CO oxidation include fuel cells, gas sensing, 

chemical processing, exhaust systems for pollution control and air purification systems 

[28, 29, 30, 31, 32, 33, 34, 35, 36].  The CO oxidation reaction is  

       CO+1/2O2 CO2                                                                                                      (12) 

It is well known that gold is the least reactive metal and has been regarded as 

inactive as a heterogeneous catalyst [9, 28, 29, 30].  The low chemical activity of gold is 

due to the filled 5d shell and relatively high value of first ionization potential, with the 

result that gold catalysts has poor chemisorption properties [31]. However, when gold is 

deposited as ultra-fine particles on metal oxide supports, its catalytic activity increases 

drastically [32]. The interest in the use of gold in heterogeneous catalysis has recently 

increased on the basis of experimental evidences of its surprisingly high activity in the 

low temperature oxidation of CO [4]. These results contrast earlier studies showing that 

gold surfaces were inactive towards adsorption of O2 gas at 300 K [4]. In this aspect, the 

support plays a major role in the catalytic behavior of this metal.  

The catalyst supported on active oxides exhibit superior activity and is attributed 

to their ability to donate reactive oxygen.  Most likely oxide vacancies are formed near to 

the gold-support interface offering a new site for oxygen adsorption [4]. These sites are 

abundant in the proximity of the gold particles due to the Schottky junction between gold 

and the n-type semiconducting oxides [4]. Therefore, these sites along the perimeter of 

gold-support interface would be favored for the reaction between CO adsorbed on Au and 

the oxygen adsorbed on the support. For these classes of supported catalysts, the 
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dependence of the activity on the gold particle size is not critical. However, the pre-

treatment conditions of the catalysts have great influence on the final activity.  

On the other hand, gold catalysts supported on inert oxide supports need to be 

prepared in a highly dispersed state. For these systems, oxygen activation is expected to 

occur directly on the gold particles [4]. An enhanced activity may rise from the geometric 

effects associated with defect sites such as kinks, steps and edges, or from electronic 

effects arisen from the variations in the density of states of small gold particles. 

To synthesize highly dispersed gold catalysts; various methods have been used, 

including deposition-precipitation, coprecipitation and chemical vapor deposition [9, 34]. 

Conventional impregnation methods were considered to be ineffective as the particle size 

of gold was larger than 30 nm, a size shown to be inactive for CO oxidation [9, 33, 34, 35, 

36].  The major problem encountered in using highly dispersed gold for CO oxidation is 

the marked dependence of the activity on the gold particle size [32, 36].  Precise cluster 

size distributions are of great importance for the reactivity of such supported clusters [30]. 

Furthermore, nano-gold particles have the tendency to deactivate under above-ambient 

reaction temperature conditions [36]. The reason for this failure is the sensitivity of the 

catalyst surface to pre-treatment and to reaction conditions. The use of bimetallic 

catalysts can be a way to limit such dependence, by increasing the resistance to particle 

sintering. Furthermore, recent studies have shown superior activities of supported alloyed 

Pd-Au catalysts in different types of reaction such as in the hydrodechlorination of 

chlorofluorocarbons (CFCs), in the hydrodesulphurization reaction and in the direct 

peroxide formation from H2-O2 mixtures.          
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 CO oxidation is purported to occur exclusively on Pd in a Pd-rich alloy surface in 

Pd-Au catalysts since Au/SiO2 shows no reactivity [35].  In a study of electrochemical 

oxidation of CO, it has been suggested that CO oxidation occurs on Pd-Au alloy surface 

by the following steps [6, 37] 

Pd + CO  Pd-CO         (13) 

Pd + O  Pd-O         (14) 

Pd-O + Au  Pd + Au-O        (15) 

Pd-O + Pd-CO  2Pd + CO2         (16) 

Au-O + Pd-CO  Au + Pd + CO2        (17) 

From equations (13)-(17), it is evident that the migration of Oad from Pd to Au is 

an important step in this reaction, which accounts for higher CO conversion compared to 

Au/SiO2.  

 The aim of the present study is to investigate the effect of the palladium on gold 

catalysts in the oxidation of CO by O2. The choice of Pd as a second metal is dictated by 

its well recognized activity in this type of reaction. Using a wet impregnation technique, a 

series of silica supported Pd-Au catalysts with different Pd-Au ratios were synthesized. 

Silica was used as a support because of its inert character, allowing us to investigate the 

reciprocal effects of the two metals without the interference from metal-support 

interaction. Also, we have made significant attempts to improve the Pd-Au based catalyst 

and compare CO conversion as a function of temperature with conventional catalysts. 
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EXPERIMENTAL 

Catalyst Preparation 

Some of the common methods employed to synthesize supported catalysts include 

incipient wetness method, ion exchange, spreading and wetting and deposition-

precipitation method [2].  In our current study, incipient wetness method was used to 

synthesize supported Pd(1.0 wt%)-Au(0.5 wt%)/SiO2 and Pd(1.0 wt%)-Au(0.5 wt%)-

K(2.5 wt%)/SiO2 catalysts. As shown in Fig. 9 high surface area SiO2 (Aldrich No. 7631-

86-9) with a surface area of 600 m2/gm, a particle size of 230-400 mesh, and a pore 

volume of 1.1 ml/g was used as a catalyst support. A Pd2+ solution and Au solution was 

prepared by dissolving Pd(NO3)2 and HAuCl4 (C.P., commercial source) into demonized 

water. The precursor solutions were then added to equal volume of SiO2 support for the 

synthesis of Pd-Au/SiO2 catalyst.  In addition, potassium acetate solution was added to 

the precursor impregnated support for the synthesis of Pd-Au/SiO2/K+ catalyst.  

Na2SiO3.9H2O was added rapidly to these impregnated catalysts and was allowed to dry 

for 4 hours in a covered beaker. The precursor was dried extensively under vacuum at 

393 K prior to use.  The procedure for the incipient wetness method is described in detail 

elsewhere [38].  

 On the other hand, to synthesize acetate based Pd-Au/SiO2, Pd2+ solution was 

dissolved in tetraethyleneglycol (TEG), 0.1M in HCl, by stirring. Then HAuCl4*3H2O 

was added in the correct stoichiometric ratio. The solution was stirred under Ar for ~1 

hour, and then a solution of sodium acetate in TEG was added dropwise while stirring 

under Ar. The solution was heated to reflux for 1.5 hr, and then allowed to cool to room 

temp. The product was isolated by centrifugation and washed with EtOH. Similarly,  
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Fig. 9. Schematic of the synthesis of Pd-Au catalysts using wet impregnation method. 
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polymer-based catalyst was synthesized using polyvinylpyrrolidone (PVP) polymer 

instead of sodium acetate in the preparation procedure. N2, C2H4, O2(10%)/N2, and air 

(Messer MG Industries) were purified with gas filters (Chrompack) to remove trace 

amounts of water, oxygen, and hydrocarbon. Partial pressures of AcOH were maintained 

by bubbling N2 through a AcOH (Aldrich C.P.) bath at a preset and regulated temperature.  

 
Experimental Setup 

One of the most common ways to carry out a heterogeneous catalyzed gas phase 

reaction is by passing reactants over a fixed solid phase catalyst. The arrangement of the 

fixed catalyst is generally called a fixed-bed and the respective reactor is called a fixed-

bed reactor [2]. The chemical transformation occurs in a flow reactor through which the 

gaseous reacting species pass. Atoms on the surface of the catalyst may form chemical 

bonds (chemisorption) and/or physical bonds (physisorption) with atoms in impinging 

molecules (reactants). If existing bonds in the impinging molecule break, the process is 

known as "dissociative chemisorption". The chemisorbed species are mobile on the 

surface and may bond to other particles, thus leading to new molecules, which eventually 

leave the surface (desorb) as the desired reaction products. The reason for the continued 

catalytic activity is that the metal atoms are also mobile along with adsorbed reactants on 

the metal surface.  

 In our study, VA synthesis oxidation was carried out using a micro-fixed bed 

reactor and the experimental setup is shown in Fig. 10. Similarly, CO oxidation was also 

carried out using a similar experimental setup. The catalytic reactor is a quartz tube with 

0.8 cm inner diameter and a catalyst bed of approximately 1- 2 cm in length. The catalyst  

 



 

 

26

 

 
 
 
 
 
 
 

O2

N2

G

G

G
R

3 way

SL
GC

Vent

H2

6 port
valve

Methanizer

Reactor
3 way
3 way

MFC

FIDVA
(main product)

AcOH

C2H4

Similar setup was used for CO oxidation

VA synthesis:
C2H4 (7.5 kPa) 
O2 (1.0 kPa)  
CH3COOH (2.0 kPa) 
at 423 K, rest N2
Catalyst sample: 100 mg 

CO = 2.0 kPa, O2 = 1.0 kPa, 
rest N2; catalyst sample: 50 mg

 
 

 

 

 

Fig. 10. Experimental setup of micro fixed-bed reactor and accessories. 
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bed was packed with supported Pd-Au catalyst for VA synthesis and CO oxidation 

reactions. Mass flow controllers were used to control the gas flow rate. The reactor 

temperature was regulated using an micromega temperature controller (CN77000 series) 

and products were analyzed by a HP 5890 GC online gas chromatograph connected to a 

computing integrator (HP 3393 A).  Helium was used as a chemically inert carrier gas.  

Associated with the gas supply are pressure regulators, gauges, and mass flow meters. 

 

Gas Chromatography (GC) 

Chromatographic separation involves the use of stationary phase and a mobile 

phase. Components of a mixture carried by the mobile phase in the column are 

differentially attracted by the stationary phase, and thus, move through the stationary 

phase at different rates and are analyzed by the detectors. The block diagram for the GC 

unit is shown in Fig. 11. HaySep-R (100/120 mesh) and Porapak-R (80/100 mesh) 

columns were used to achieve the necessary chromatographic separation.  The HaySep-R 

column with a flame ionization detector (FID) and was used to detect VA and acetic acid. 

A Porapak-R column connected to a thermal conductance detector (TCD) was used to 

detect CO and CO2. In addition, a methanizer was used to detect very small 

concentrations of CO and CO2 in the VA synthesis reaction. 
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Fig. 11. Block diagram of gas chromatograph (GC) units  
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Thermal Conductance Detector (TCD) 

TCD is commonly used for fixed gas analyses that include O2, N2, CO, CO2, H2S  

and NO. The detector consists of four electrically heated tungsten-rhenium filaments in a 

Wheatstone bridge configuration as shown in Fig. 12 [39]. The carrier gas flows across 

the filaments, removing heat at a constant rate. Two of the filaments are exposed only to 

carrier gas (reference), and two are exposed to the carrier/sample flow. When a sample 

molecule with lower thermal conductivity than the carrier gas exits the column and flows 

across the two sample filaments, the temperature of the filaments increases. This 

temperature increase unbalances the Wheatstone bridge and generates a peak as sample 

molecules transit through the detector [39]. In our experiment, helium was used as the 

carrier gas as it has very high thermal conductivity.  The flow rate was maintained at 30 

ml/min. A TCD was used to detect CO and CO2 for CO oxidation experiments. 

 

Flame Ionization Detector (FID) 

 The schematic for the operation of FID is shown in Fig. 13 [40]. A FID detector 

employs a mixture of hydrogen and air as the combustion gas and burnt as a small jet 

situated inside a cylindrical electrode [40]. A potential of a few hundred volts, is applied 

between the sample jet and the electrode. Upon combustion of a carbon containing 

sample mixture in the jet, electron/ion pairs that are formed are collected at the jet and 

cylindrical electrode. During the process of oxidation, oxidized or partially oxidized 

fragments of the sample mixture are formed in the flame and the electrons are generated 

by thermionic  
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Fig. 12. Wheatstone bridge configuration of thermal conductivity detector  
 (Ref. [39]). 
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Fig. 13. The schematic for the operation of flame ionization detector (Ref. [40]). 
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emission. The background current generated by the ions/electrons from the hydrogen 

flame is very small compared to the current from a known carbon containing sample 

mixture.  The current is amplified and fed to the computing recorder. In our experiments, 

the flow rate of hydrogen was maintained at 20 ml/min.  The flow rate of helium was 

maintained at 30 ml/min. 

 

Methanizer 

 The schematic for the operation of methanizer is shown in Fig. 14. The 

methanizer accessory enables any GC equipped with a FID to detect low levels of CO 

and CO2. The methanizer requires hydrogen for operation and employs a nickel catalyst 

powder.  And during analysis, the methanizer is heated to 380 oC. Helium (carrier gas) 

mixed with hydrogen passes through the methanizer to convert CO and CO2 to methane. 

The retention times of CO and CO2 remain unchanged as the conversion of CO and CO2 

to methane occurs after the sample has passed through the column. On the other hand, 

hydrocarbons pass through the column unaffected. In our experiments, the flow rate of 

hydrogen was maintained at 20 ml/min. 
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Fig. 14. The schematic of stand-alone methanizer accessory with FID. 
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Characterization Techniques 

X-Ray Diffraction (XRD) 

 XRD is a standard tool for the identification and characterization of 

heterogeneous catalysts. The working principle of X-ray diffraction is shown in Fig. 15 

[2]. To understand the principle, let us consider an X-ray beam incident on parallel planes 

P1 and P2, separated by an interplanar spacing d. The two parallel incident rays, A and B 

are at an angle (θ) with respect to these planes. A reflected beam of maximum intensity 

will result if the waves are in phase, represented by A’ and B’. The difference in 

pathlength between A to A’ and B to B’ must be an integral number of wavelengths (λ). 

We can express this relationship by Bragg’s law [8, 10]: 

 2d sin θ = n λ                                                                                                      (18) 

where d is the spacing defined by the indices and determined by the geometry of the unit 

cell.  Applying Bragg’s law, the particle size of the palladium was calculated from the 

line broadening of the most intense reflections using the Scherrer formula [8, 10],  

D = kλ / ∆ cos θ                                  (19)  

where λ is the wavelength of the X-rays, k is  Scherrer constant, θ is the Bragg angle of 

the peak maximum, and ∆ is the full width at half-maximum (FWHM). In our study, the 

catalyst was characterized using a Brucker D8 diffractometer employing Cu-Kα radiation. 

The scanning angle range was 30 to 50o in 0.4 steps.  
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Fig. 15. Principle of X-ray diffraction (adapted from Ref. [2]).  
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Transmission Electron Microscopy (TEM) 

In TEM, a thin specimen is irradiated with an electron beam of uniform current 

density as shown in the Fig. 16 [2]. Electrons are emitted from the electron gun and 

illuminate the specimen through a two or three stage condenser lens system. The 

objective lens forms a diffraction pattern of the specimen. The electron intensity 

distribution behind the specimen is magnified with a three or four stage lens system and 

viewed on a fluorescent screen. The image can be recorded by direct exposure of an 

image plate by a CCD camera. Since the wavelength of electrons is much smaller than 

that of light, the optimal resolution attainable for TEM images is many orders of 

magnitude higher than that from a light microscope. Thus, TEM images can reveal the 

finest details of internal structure - in some cases as small as individual atoms [11]. In our 

study, Pd-Au catalyst was ultrasonically dispersed in an ethanol solvent and then dried 

over a carbon grid. The catalyst was imaged using a Jeol 2010 microscope. 250-300 

particles were measured to obtain the average particle-size distribution. 
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Fig. 16. Working principle of transmission electron microscopy  
(adapted from Ref. [2]). . 
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Calculations of the Reaction Rates and Selectivities 

C2H4 conversion, 
42HCX = (

42HCp -
in,HC 42

p /
out,HC 42

p  ), was calculated from the 

CO2 concentration at the reactor exit: 

242 COHCX
→

,    =
   p

 p 0.5

in ,HC

out ,CO

42

2
                                                                                                 (20)                        

 Under differential flow conditions the mass-normalized reaction rates 
42HCr can be 

calculated directly from the average C2H4 partial  pressure 
42HC p ,  at the entrance and exit 

of the reactor, normalized to the atmospheric pressure p0, the metal mass in the catalyst 

bed, mMe, and the total molar flow rate Vtot, 

42HCr =, 

   mp
 V X  p

Me0

totHCHC 4242
   (mol s-1 gMe

-1)                                                      (21) 

Consequently, 

242 COHCr →
= 

   mp

 V X  p

Me0

totCOHCHC
24242 →′  (mol s-1 gMe

-1)                                         (22) 

 

The VA formation rate is expressed as  

VA→42HCr = 
   mp

 VX  p

Me0

totVAHCHC 4242 →′                                (23) 

while 

VAHC 42
X

→
 =   

in,HC

outVA,

42
p

  p
                                                                                       (24) 

 

 



 

 

39

 

It should be noted that 
242 COHCr →
 only reflects the conversion rate of C2H4 to CO2. 

The rate at which ethylene converts to CO2 is equal to half the CO2 formation rate. In the 

present study all CO2 formation rates are expressed as 
2CO

r . 

In the absence of AcOH, 
42HCr should be equal to 

242 COHCr →
 and 0.5

CO2
r , consistent 

with only ethylene combustion occurring; in the synthesis of VA. 

Furthermore, the selectivity S to CO2 formation is expressed as the fraction of 

C2H4 consumed for CO2 formation vs the total amount of C2H4 consumed, is shown 

S = 
out,HCin ,HC

out ,CO

4242

2

p-  p

 p 0.5
    =   

42

242

HC

COHC

r

r
→        (25) 

Finally, all the mass-based reaction rates were converted into turn over 

frequencies, s-1 (TOF), according to 

rTOF = 
D

Mr Memassbased  (s-1)         (26) 

Mme and D represent the metal atom weight and dispersion of active metal, respectively. 
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RESULTS AND DISCUSSION 

Unpromoted Pd-Au/SiO2 Catalyst 

Prior to use, Pd-Au/SiO2 catalyst was pretreated and VA synthesis was carried out 

using C2H4 (7.5 kPa) and O2 (1.0 kPa) bubbled through CH3COOH (2.0 kPa) at 413 K 

with the remainder being nitrogen.  The weight of the catalyst was 100 mg and the 

reaction time was approximately 400-600 min. 

XRD patterns were obtained for the freshly reduced catalysts as shown in Fig. 17. 

XRD reveals two diffraction features at Bragg angles of 40.2 and 46.2o, corresponding to 

polycrystalline Pd(111) and Pd(200), respectively. Using Eq. 19, the particle size for the 

catalysts was determined to be 4.0 nm. A TEM image was obtained for this catalyst and 

is shown in Fig. 18. Approximately 250 particles were measured to obtain the average 

particle-size of 4-5 nm as shown in Fig. 19, which is comparable to XRD results. The 

corresponding dispersion (29%) was calculated and was used to find the rate of VA 

formation expressed as a turn over frequency (TOF) or as the number of VA molecules 

produced per surface active site per second. 

 

VA Synthesis 

VA Formation Rate and Selectivity Measurement 

VA synthesis was carried out using Pd-Au/SiO2 catalysts and the corresponding 

rates and selectivities were determined. From Fig. 20 it is evident that the initial reaction 

rates of Pd-Au/SiO2 catalyst are higher during the first 15 min of the reaction and then the 

rate reduced. The reaction rate attenuated approximately 3 times its initial rate as is  
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Fig. 17. XRD data for Pd-Au/SiO2 catalyst after reduction at 673 K in 20 ml/min  
 O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 for 30 min. 
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Fig. 18. TEM micrograph of Pd-Au/SiO2 catalyst after reduction at 673 K in 20 
ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 for 30 min. 
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Fig. 19. Pd-Au cluster distribution of Pd-Au/SiO2 catalyst after reduction at 673 K in 

20 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 for 30 min. 
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Fig. 20. Reaction rate of Pd-Au/SiO2 catalyst in the synthesis of vinyl acetate: feed gas, 
 pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total flow rate, 60 
 Nml/min at 423 K. 
 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

45

 

 
 
 
 
 
 
 
 
 
 

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500 600
Time (min)

VA
 S

el
ec

tiv
ity

 (%
)

VA Selectivity

 
 
 
 

Fig. 21.  Selectivity of Pd-Au/SiO2 catalyst in the synthesis of vinyl acetate: feed gas,  
 pC2H = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total flow rate, 60  
 Nml/min at 423 K. 
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evident between 450-500 min. Therefore Pd-Au/SiO2 catalyst is unstable over a period of 

8 hours. On the other hand, the selectivity is approximately 83% as shown in the Fig. 21, 

in agreement with the previous reports [6]. Therefore, a key improvement in the stability 

in terms of reaction rate of Pd-Au catalyst is an important step in the current VA 

synthesis studies.  

 

VA Formation Rate as a Function of Pd-Au Ratio 

In our study, various Pd-Au atomic ratios such as Pd (1): Au (1), Pd (1): Au (4), 

Pd (4): Au (1), Pd (9): Au (1), Pd (1): Au (9), Pd (19): Au (1) and Pd (1): Au (19) were 

synthesized on a silica support.  VA synthesis was carried out using these catalysts and 

the corresponding reaction rates were measured. From Fig. 22 it is evident that 1: 1 and 

4:1 Pd-Au have the higher reaction rates compared to other Pd-Au catalysts. The 4:1 Pd-

Au has a higher initial rate than the 1: 1 Pd-Au catalyst but the stability was relatively 

low. On the other hand, the induction period of the 1: 1 Pd-Au catalyst is higher (~50 

min) compared to the 4:1 Pd-Au catalyst. As the Pd concentration is increased the 

reaction rate is reduced as it is evident from the results for the 9:1 and 19:1 Pd-Au 

catalysts. Also, as the Au concentration is increased (very low Pd concentration) 

reduction of the reaction rate is evident from the results for the 1: 4 and 1:19 Pd-Au 

catalysts. These results match very well the literature results [27] implicating, as the Pd 

concentration increases, there to be a depletion of isolated Pd sites (more Pd dimers), and 

a corresponding decrease in the VA reaction rate. On the other hand, if Pd concentration  
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Fig. 22.  VA formation rates as a function of Pd-Au ratios in the synthesis of vinyl 
acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total 
flow rate, 60 Nml/min at 423 K. 
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is reduced then Au predominantly covers the surface reducing the VA reaction rate as 

shown in model systems (Pd<0.07 ML) [27].  Therefore, 1: 1 Pd-Au has the optimum Pd 

concentration on the surface to produce the higher VA rate followed by 4:1 Pd-Au. 

Furthermore, 1:1 Pd-Au refers to the bulk concentration of the catalyst. With surface 

composition of Au ranging from 40% to 96%, this is plausible since a 1:1 Pd-Au has 

approximately 80% of gold on the surface and isolates Pd sites [7].  These results 

therefore support isolated Pd sites being catalytically active for VA synthesis.  

 

CO Oxidation 

CO Conversion as a Function of Pd-Au Ratio 

In this study, we have successfully synthesized supported Pd-Au catalysts with 

different Pd:Au atomic ratio using incipient wetness methods, then used these catalysts 

for CO oxidation experiments. The metal loading (5 wt %) was increased to obtain 

sufficient CO oxidation activity with increased particle sizes.  From Fig. 23 it is evident 

that a supported 1:4 Pd-Au catalyst yields 100% CO conversion at a relatively lower 

temperature (90 oC) compared to other Pd-Au ratios. As the palladium concentration 

increases, CO conversion is reduced as is evident from 2:3, 1:1, 4:1 and 9:1 Pd-Au 

catalysts. Also, as the Au concentration is increased (very low Pd concentration) the 

reaction rate is reduced as it is evident from 1: 9 Pd-Au catalyst. These results suggest 

that enhanced catalytic activity can be obtained for an optimum Pd concentration on the  
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Fig. 23. CO conversion as a function of temperature for different Pd-Au ratios: feed 

gas, pCO2 = 2 kPa, pO2 = 1.0 kPa, rest N2; catalyst sample: 50 mg. 
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catalyst surface. Furthermore, these CO oxidation results are similar to the results 

obtained for VA synthesis by altering the Pd-Au ratio, indicating that isolated Pd sites 

could be catalytically active for CO oxidation reactions [27].   

 

Promoted Pd-Au/SiO2/K+ Catalyst 

 The addition of electropositive and/or electronegative elements to a supported 

metal catalyst promotes significant change in the reactivity and selectivity of the catalyst 

[4, 41, 42, 43, 44].  The addition of potassium acetate to Pd-Au catalyst on supported 

catalyst has shown a significant enhancement in the catalytic stability [19]. The 

promoting influence of potassium acetate was assigned to its ability to aid retention of 

acetic acid in the liquid layer under reaction conditions [19]. Furthermore, vinyl acetate 

was not formed with the catalyst impregnated with potassium anions such as potassium 

chloride. Also, the addition of electronegative impurities, such as, sulfur, to certain metal 

catalysts has shown a decrease in the reactivity and selectivity of the catalyst [37].   

 In our current research, the effect of adding potassium acetate to the catalyst to 

improve the catalyst stability and reactivity was studied. XRD pattern was obtained for 

freshly reduced catalyst as shown in Fig. 24.  XRD reveals two diffraction features at 

Bragg angles of 40.2 and 46.2o, corresponding to polycrystalline Pd(111) and Pd(200),  

respectively. Using Eq. 19, the particle size for the catalysts was determined to be 5 nm. 

TEM data were obtained for this catalyst; one such image is shown in Fig. 25. 

Approximately 250 particles were measured to obtain the average particle-size of 4.5-5.5 

nm, which is comparable to XRD results. We employed a similar particle distribution 

graph technique to obtain the particle as shown for Pd-Au/SiO2 catalyst.  
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Fig. 24. XRD data of Pd-Au/SiO2/K+ catalyst after reduction at 673 K in 20   
 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 for 30 min. 
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Fig. 25. TEM micrograph of Pd-Au/SiO2/K+ catalyst after reduction at 673 K in 20  
 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 for 30 min. 
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 The corresponding dispersion was calculated as 29%, which was used to calculate 

VA formation rate. 

 

VA Synthesis 

VA Formation Rate and Selectivity Measurement 

VA reaction rates and selectivities were measured and compared with unpromoted 

Pd-Au/SiO2 catalyst. From Fig. 26 it is evident that the reaction rate of the promoted Pd-

Au/SiO2/K+ catalyst is approximately 40% higher than the unpromoted Pd-Au/SiO2 

catalyst. In addition, the promoted catalyst was more stable than the unpromoted catalyst. 

On the other hand, the unpromoted Pd-Au/SiO2 catalyst was more selective by 5% than 

the Pd-Au/SiO2/K+ catalyst as shown in Fig. 27. Therefore, addition of promoter 

(potassium) improves the catalyst stability and reaction rate of the catalyst. 

 In the current study, we have explored the effect of pre-adsorbed O2, pre-adsorbed 

acetic acid and the role of O2, which will be important in understanding the rate and 

selectivity of VA synthesis.  
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Fig. 26.  Reaction rates (▪: Pd-Au/SiO2, •: Pd-Au/SiO2/K+) in the synthesis of vinyl 
 acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; 
 total flow rate, 60 Nml/min at 423 K. 
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Fig. 27.  VA selectivities (▪: Pd-Au/SiO2, •: Pd-Au/SiO2/K+) in the synthesis of vinyl 
 acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total 
 flow rate, 60 Nml/min at 423 K. 
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Effect of Pre-Treatment 

Pre-treatment is an effective way to activate the catalyst and the procedure 

adopted is oxidizing the catalyst followed by reducing it at a lower temperature. In our 

current study, the catalyst was pre-treated using 10% O2/N2 mixture at 673 K for 30 min 

with a flow rate of 20 ml/min followed by reduction in 100% H2 at 573 K. VA synthesis 

was carried out using pre-treated and un-pretreated  Pd-Au/SiO2/K+ catalysts. From Fig. 

28 it is evident that the reaction rate of the pre-treated catalyst is approximately 2.5 times 

higher than the un-pretreated catalyst. Furthermore, the pre-treated catalyst was stable for 

more than 9 hours. Therefore, in all our studies, the catalyst was pre-treated before use.  

 

Induction Period Measurement 

 Induction period refers to the initial slow phase of a catalytic reaction which later 

accelerates. An induction period is observed in these catalytic systems before steady-state 

concentration of the reactants is reached. Identification of the induction period is a key 

issue to thoroughly understand the catalytic reaction process. In our experiment, we have 

successfully measured the induction period of the Pd-Au/SiO2/K+ catalyst. VA synthesis 

was carried out using a pre-treated Pd-Au/SiO2/K+ catalyst. From Fig. 29 it is evident that 

the reaction rate is maximum at a time equal to 15 min and then the reaction rate is 

reduced by 25% as is evident between 100-400 min. Also, the reaction rate was lower 

initially (before 15 min) as is evident between 7-14 min. Therefore, these results suggest 

that Pd-Au/SiO2/K+ has a low induction period (~15 min), which makes it very efficient 

for VA synthesis.  
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Fig. 28.  Reaction rates of Pd-Au/SiO2/K+ catalyst with (▪) and without (•) pre-
treatment  in the synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 
kPa, pAcOH = 2.0 kPa, rest N2; total flow rate, 60 ml/min at 423 K. 
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Fig. 29.  Induction period measurement of Pd-Au/SiO2/K+ catalyst in the synthesis of 
 vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; 
 total flow rate, 60 Nml/min at 423 K. 
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Therefore, in all our VA synthesis studies, the first reaction rate measurement was made 

within 15 minutes of the reaction time. 

 

Effect of Pre-Adsorbed Oxygen 

This study explores the effect of pre-adsorbed oxygen on the VA formation rate 

of the catalyst.  It was observed that the coadsorption of oxygen with acetate essentially 

eliminated the acetic acid catemers on the Pd [20]. In addition, surface oxygen was found 

to stabilize acetate binding and inhibit acetate decomposition kinetics. Bond order 

conservation principles suggest that the most favorable interaction between surface 

oxygen and acetate would be one in which two adsorbates are one surface Pd-Pd bond 

removed from one-another. Therefore, this should give rise to enhanced acetate 

adsorption. On the other hand, similar rate constants were obtained for VA synthesis 

reactions using monometallic model Pd (111) catalysts surface in the presence and 

absence of pre-adsorbed oxygen [45, 46]. 

 In our experiment, the reaction rate was explored in the presence and absence of 

pre-adsorbed oxygen using a Pd-Au/SiO2/K+ catalyst. Pre-covered oxygen surface was 

prepared by passing oxygen through the pre-treated catalyst for 30 min under reaction 

conditions. From Fig. 30 it is evident that the VA rates are similar in the presence and 

absence of pre-adsorbed oxygen as is evident between 15-400 min.  Therefore pre- 

adsorbed oxygen does not have an effect in VA formation rate, which agrees well with 

the literature results [45, 46].  
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Fig. 30.  Reaction rates of Pd-Au/SiO2/K+ catalyst in the presence (•) and absence (▪) of 
 pre-adsorbed oxygen in the synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa, 
 pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total flow rate, 60 Nml/min at 423 K. 
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Effect of Pre-Adsorbed Acetic Acid 

 It is believed that VA catalysts are covered by a liquid-like film of acetic acid and 

water equivalent to approximately three molecular layers [47, 48]. As mentioned earlier, 

potassium acetate promotes the retention of acetic acid in the liquid layer [19]. Therefore, 

VA synthesis was carried out as a function of pre-adsorbed acetic acid. In our experiment, 

pre-adsorbed acetic acid surface was prepared by bubbling nitrogen through acetic acid 

over a Pd-Au/SiO2/K+catalyst surface for 30, 60 and 120 min under reaction conditions. 

The corresponding reaction rates of this catalyst are compared with a freshly reduced Pd-

Au/SiO2/K+ catalyst as shown in Fig. 31. The freshly reduced catalyst had higher reaction 

rate compared with catalyst pre-adsorbed with acetic acid. These results strongly imply 

that pre-adsorbed acetic acid does not have an effect in increasing the reaction rate. 

Furthermore, the VA reaction rate decreased as the pre-adsorbed acetic acid time was 

increased. 
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Fig. 31. VA formation rates as a function of pre-adsorbed acetic acid (AA) in the 
 synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 
 kPa, rest N2; total flow rate, 60 Nml/min at 423 K. 
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Role of Oxygen 

It is known that atomic oxygen can induce acetic acid adsorption on metal 

surfaces [49, 50, 51]. The corresponding stoichiometric equation is given by  

2CH3COOH + O (a)  2CH3COO (a) + H2O                                                  (27) 

It is evident that pre-adsorbed oxygen does not play any other major role in the VA 

synthesis reaction except in activating the acetic acid by abstracting an H-atom [4]. It was  

also shown by XRD studies that no vinyl acetate is formed on a Pd black catalyst in the 

absence of oxygen [19].  IR results also suggest that oxygen is responsible for the  

formation of bidentate acetic acid, and thereby, facilitates palladium acetate formation 

during VA synthesis reaction.  Fig. 32 shows the IRAS of acetic acid on oxygen-covered 

4 ML Pd/Au alloy surface annealed at 600 K. Without oxygen, a relatively small IR 

feature of acetic acid is observed. However, in the presence of oxygen, IRAS data show 

two stretching features at 1710 and 1415 cm-1 which are assigned to monodentate and 

bidentate species adsorbed on Pd surface. Furthermore, TPD results (Fig. 33) show that 

the monodentate species is desorbed at lower temperature (235 K). On the other hand, the 

bidentate species desorbs at higher temperature (295 K).  

 Our results also support the argument that oxygen is an important species in 

activating acetic acid during VA synthesis.  In our experiment, VA synthesis was carried 

out using a Pd-Au/SiO2/K+ catalyst and oxygen was pulsed during the synthesis. It is 

evident that VA is produced during the first 200 minutes of the reaction in the presence of 

oxygen as shown in Fig. 34. The VA rate is reduced to zero when the flow of oxygen was 

stopped as is evident between 200-300 min. 
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Fig. 32. IRAS of acetic acid dosed at 200 K on oxygen pre-covered 4 ML Pd/Au(100) 
 annealed at 600 K. 
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Fig. 33.  TPD of acetic acid dosed at 200 K on oxygen pre-covered 4 ML Pd-Au(100) 
 annealed at 600 K. 
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Fig. 34. Reaction rate of Pd-Au/SiO2/K+ catalyst as a function of oxygen coverage in 
the  synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pAcOH = 2.0 kPa, rest 
N2; total flow rate, 60 Nml/min at 423 K. 
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VA production increased to the initial rate when the oxygen is introduced again 

confirming that O2 is an important species in activating acetic acid by H-abstraction [19]. 

 

Acetate-Based Pd-Au Catalyst 

Although acetoxylation of ethylene to VA on a Pd-Au/SiO2 catalyst promoted 

with potassium acetate is a well established industrial reaction, the existing catalysts can 

be improved with respect to activity and selectivity.   

In VA synthesis, KOAc is used as the promoter to increase VA formation rate. As 

mentioned, the promoting influence of acetate has been correlated with its ability to 

promote retention of acetic acid in the liquid layer under reaction conditions [47].  Also, 

acetate enables the formation of palladium acetate dimers which are the active species for 

VA synthesis [41].  The reaction pathway is given by [41]: 

 2Pd3(OAc)6 + 6AcO-  3[Pd2(OAc)6]2-                                                                    (28) 
 

Furthermore, the influence of the acetate anion of various metals have been well 

studied [19]. Na+ metal ion combined with acetate ion increase the VA reaction rate on 

Pd black catalyst [19]. In our current study, VA synthesis was carried out using acetate-

based Pd-Au/SiO2 catalysts, synthesized using a novel centrifuge technique described 

above.  The corresponding reaction rates and selectivity were then measured.  XRD 

patterns were obtained for freshly reduced catalysts as shown in Fig. 35. XRD reveals 

two diffraction features at Bragg angles of 40.2 and 46.2o, corresponding to 

polycrystalline Pd(111) and Pd(200), respectively. Using Eq. (19), the particle size for the 

catalysts was determined to be 18.5 nm. 
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Fig. 35. XRD data for acetate-based Pd-Au/SiO2 catalyst after reduction at 673 K in 20 
 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 for 30 min. 
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Fig. 36.  TEM micrograph of acetate-based Pd-Au/SiO2 catalyst after reduction at 673 
K in 20 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 for 30 min. 
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Also, TEM images were obtained for this catalyst, one of which is shown in Fig. 36. 250 

particles were measured to obtain the average particle-size of 19.5 nm, results 

comparable to those obtained by XRD.  

 

VA Synthesis 

VA Formation Rate and Selectivity Measurement 

In our study, we have made significant attempts to improve the Pd-Au based 

catalyst and compare the activity with the existing promoted and unpromoted Pd-Au/SiO2 

catalysts. VA synthesis was carried out using acetate-based Pd-Au/SiO2 and the 

corresponding VA activity measured, as shown in Fig. 37.  The selectivity was also 

measured, as shown in Fig. 38. Furthermore, the reaction rate and selectivity of acetate-

based Pd-Au/SiO2 was compared to that of conventional promoted and unpromoted Pd-

Au/SiO2 catalysts. From Fig. 39 it is evident that the reaction rate of acetate-based Pd-

Au/SiO2 is approximately 3.5 times higher than Pd-Au/SiO2 and Pd-Au/SiO2/K+ catalysts 

and is stable for a period of more than 8 hours. Unfortunately the selectivity of the 

acetate-based Pd-Au/SiO2 catalyst was lower than the Pd-Au/SiO2 and Pd-Au/SiO2/K+ 

catalysts (Fig. 40).  
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Fig. 37.  Reaction rates (▪: acetate-based Pd-Au/SiO2) in the synthesis of vinyl acetate: 
feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total flow 
rate, 60 ml/min at 423 K. 
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Fig. 38. VA selectivities (▪: acetate-based Pd-Au/SiO2)in the synthesis of vinyl acetate:  
 feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total flow  
 rate, 60 Nml/min at 423 K. 
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Fig. 39. Reaction rates (▪: Pd-Au/SiO2, •: Pd-Au/SiO2/K+, ▲: acetate-based Pd-
Au/SiO2) in the synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 
kPa, pAcOH = 2.0 kPa, rest N2; total flow rate, 60 ml/min at 423 K. 
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Fig. 40. VA selectivities (▪: Pd-Au/SiO2, •: Pd-Au/SiO2/K+, ▲: acetate-based Pd-
Au/SiO2) in the synthesis of vinyl acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 
kPa, pAcOH  = 2.0 kPa, rest N2; total flow rate, 60 ml/min at 423 K. 
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Temperature Effects 

 As mentioned earlier, the rate of the reaction increases with an increase in 

temperature, whereas the selectivity goes down. Therefore, these two indices of catalyst 

performance move in the opposite direction with temperature. In the present study, VA 

synthesis was carried out using acetate-based Pd-Au/SiO2 under different temperatures, 

130 oC, 150 oC and 170 oC. It is evident that the reaction rate of acetate-based Pd-

Au/SiO2 at 130 oC is approximately 3 times lower than the reaction rates at 150 oC and 

170 oC as shown in the Fig.41. However, the reaction rate of acetate-based catalyst at 130 

oC was comparable to the reaction rate of Pd-Au/SiO2 and Pd-Au/SiO2/K+ catalysts. On 

the other hand, the selectivity of acetate-based Pd-Au/SiO2 at 130 oC was 40% higher 

than the selectivities at 150 oC and 170 oC as shown in Fig. 42. The selectivity at 130 oC 

was observed to be 100% as is evident between 15-450 min. Therefore, the use of 

acetate-based Pd-Au/SiO2 seems very promising and should be explored further. 
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Fig. 41. Reaction rates of acetate-based Pd-Au/SiO2 catalyst as a function of 
temperature (▪: 130 oC, •: 150 oC, ▲: 170 oC) in the synthesis of vinyl acetate: 
feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total flow rate, 
60 Nml/min at  423 K. 
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Fig. 42. VA selectivities of acetate-based Pd-Au/SiO2 catalyst as a function of 
 temperature (▪: 130 oC, •: 150 oC, ▲: 170 oC): feed gas, pC2H4 = 7.5 kPa, pO2 = 
 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total flow rate, 60 N ml/min at 423 K. 
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CO Oxidation 

In the present study, unsupported acetate-based Pd-Au catalyst and supported 

acetate-based Pd-Au/SiO2 were used for CO oxidation studies. In the CO oxidation 

experiments, CO and O2 (1:2) were passed over the catalyst and the temperature was 

increased at 15 minute intervals in increments of 10 oC until 100% CO conversion was 

obtained.  The products were analyzed and 100% CO conversion was obtained at 160 oC 

for unsupported acetate-based Pd-Au catalyst. On the other hand, 100% CO conversion 

was obtained at 190 oC for supported acetate-based Pd-Au/SiO2 catalyst as shown in 

Fig.43. These CO oxidation results for unsupported acetate-based Pd-Au catalyst are 

comparable to the results obtained using conventional Pd-Au/SiO2 catalysts. These 

results strongly imply that oxide supports do play a significant role in the catalytic 

behavior of this metal. It was observed that Au catalysts on inert oxide supports need to 

be prepared in a highly dispersed state [4]. Also, CO is able to adsorb on small metallic 

gold particles compared to massive particles [4]. As mentioned, the particle size of 

acetate-based catalyst is 19-20 nm, which accounts for the lower CO conversion. 
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Fig. 43. Conversion of CO as a function of temperature for acetate-based Pd-Au 
catalyst: feed gas, pCO2 = 2 kPa, pO2 = 1.0 kPa, rest N2; catalyst sample: 50 mg. 
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Polymer-Based Pd-Au catalyst 

Polyvinylpyrrolidone (PVP) is a white, hygroscopic powder with a weak 

characteristic odor. In contrast with most polymers, PVP is readily soluble both in water 

and in a large number of organic solvents, such as alcohol, amines, acids and chlorinated 

hydrocarbons [52]. On the other hand, the polymer is insoluble in common esters, ethers, 

hydrocarbons, and ketones. The marked hygroscopicity of PVP and adhesion to different 

materials are characteristic properties of PVP. This property combined with outstanding 

film formation, high capacity for complex formation, good stabilizing and solubilizing 

capacity have made PVP one of the most frequently used specialty polymers. PVP is 

synthesized by free-radical polymerization of N-vinylpyrolindone in water or alcohols 

with a suitable initiator [52]. In the present study, we synthesized polymer-based catalyst 

by centrifuging PVP with Pd-Au precursor solutions and silica support at room 

temperature.  

 

VA Synthesis 

XRD patterns were obtained for freshly reduced catalysts as shown in Fig. 44.  

XRD reveals two diffraction features at Bragg angles of 40.2 and 46.2o, corresponding to 

polycrystalline Pd(111) and Pd(200) respectively. Using Eq. 19, the particle size for the 

catalysts was determined to be 20 nm.  TEM images were obtained for this catalyst, one 

of which is shown in Fig. 45. Approximately 300 particles were measured to obtain the 

average particle-size of 19 nm, which is comparable to the results obtained from XRD. 

VA synthesis was carried out using polymer-based Pd-Au/SiO2 catalyst and the  
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Fig. 44. XRD data for polymer-based Pd-Au/SiO2 catalyst after reduction at 673 K in 
20  ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 for 30 min. 
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Fig. 45. TEM micrograph of polymer-based Pd-Au/SiO2 catalyst after reduction at 673 
K in 20 ml/min O2 (10%)/N2, 30 min, then 573 K in 20 ml/min H2 for 30 min. 
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Fig. 46. Reaction rate of polymer-based Pd-Au/SiO2 catalyst in the synthesis of vinyl 
 acetate: feed gas, pC2H4 = 7.5 kPa, pO2 = 1.0 kPa, pAcOH = 2.0 kPa, rest N2; total 
 flow rate, 60 Nml/min at 423 K. 
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corresponding VA activity was measured.  From Fig. 46 it is evident that the reaction rate 

of polymer-based Pd-Au/SiO2  is lower (x 6) compared to acetate-based Pd-Au/SiO2 

catalysts. Furthermore, the reaction rate is also lower than conventional Pd-Au catalysts. 

 

CO Oxidation 

In our experiment, unsupported polymer-based Pd-Au catalyst and supported 

polymer-based Pd-Au/SiO2 were used for CO oxidation studies. CO and O2 (1:2) were 

passed over the catalyst and the temperature increased at 15 minute intervals in 

increments of 10 oC until 100% CO conversion was obtained.  The products were 

analyzed and 100% CO conversion was obtained at 160 oC for unsupported polymer-

based Pd-Au catalyst. On the other hand, 100% CO conversion was obtained at 210 oC 

for supported polymer-based Pd-Au/SiO2 catalyst as shown in Fig. 47. The CO 

conversion results using unsupported polymer-based Pd-Au/SiO2 were also comparable 

to conventional Pd-Au catalysts. The CO conversion results were identical for 

unsupported acetate-based and polymer based catalysts. Also, CO conversion decreased 

for supported polymer-based Pd-Au/SiO2 catalyst, strongly suggesting that the Pd-Au 

particles are likely highly dispersed.  
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Fig. 47.  Conversion of CO as a function of temperature for supported polymer-based 
Pd- Au/SiO2 catalyst: feed gas, pCO2 = 2.0 kPa, pO2 = 1.0 kPa, rest N2; catalyst 
sample:50 mg. 
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SUMMARY 

It is evident that the addition of Au to Pd leads to an increase in activity and 

selectivity. This surface modification is an important factor in the altered reaction 

kinetics for VA synthesis and CO oxidation reactions. Promoted and unpromoted Pd-

Au/SiO2/K+ catalyst were used for VA synthesis and the effect of pre-adsorbed O2, acetic 

acid and the role of oxygen were explored.  The VA reaction rate of novel acetate-based 

Pd-Au/SiO2 catalyst was 3.5 times higher than conventional Pd-Au catalysts.  Also, 100% 

selectivity was obtained for acetate-based Pd-Au/SiO2 at 130 oC and the VA formation 

rate was comparable to that of conventional Pd-Au/SiO2 and Pd-Au/SiO2/K+ catalysts. 

Therefore, acetate-based Pd-Au/SiO2 catalysts are very promising and should be explored 

further.  Pd(1):Au(4)/SiO2 catalysts demonstrate 100% CO conversion at much lower 

temperatures (90 oC) compared with other Pd-Au based catalysts. Furthermore, in the CO 

oxidation reactions, the metal loading was increased to 5 wt % in order to obtain 

sufficient CO oxidation activity with increased particle sizes. Finally, these catalysts did 

not deactivate under above-ambient reaction temperature conditions, which suggests that 

1:4 Pd-Au/SiO2 catalysts are good candidates for CO oxidation catalysts. 
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