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ABSTRACT  

A Hydrograph-based Prediction of Meander Migration. (May 2006) 

Wei Wang, B.S., Tongji University, Shanghai, China; 

M.S., Tongji University, Shanghai, China 

Chair of Advisory Committee: Dr. Jean-Louis Briaud 

 

Meander migration is a process in which water flow erodes soil on one bank and 

deposits it on the opposite bank creating a gradual shift of the bank line over time. For 

bridges crossing such a river, the soil foundation of the abutments may be eroded away 

before the designed lifetime is reached. For highways parallel to and close to such a 

river, the whole road may be eaten away. This problem is costing millions of dollars to 

TxDOT in protection of affected bridges and highway embankments. This research is 

aimed at developing a methodology which will predict the possible migration of a 

meander considering the design life of bridges crossing it and highways parallel to it. 

The approaches we use are experimental tests, numerical simulation, modeling of 

migration, risk analysis, and development of a computer program.  

Experimental tests can simulate river flow in a controlled environment. 

Influential parameters can be chosen, adjusted, and varied systematically to quantify 

their influence on the problem. The role of numerical simulation is to model the flow 

field and the stress field at the soil-water interface. Migration modeling is intended to 

integrate the results of experimental tests and numerical simulations and to develop a 

model which can make predictions. The Hyperbolic Model is used and its two major 

components Mmax equation and τmax equation are developed. Uncertainties in the 

parameters used for prediction make deterministic prediction less meaningful. Risk 

analysis is used to make the prediction based on a probabilistic approach. Hand 

calculation is too laborious to apply these procedures. Thus the development of a user 

friendly computer program is needed to automate the calculations.  

Experiments performed show that the Hyperbolic Model matches the test data 

well and is suitable for the prediction of meander migration. Based on analysis of shear 
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stress data from numerical simulation, the τmax equation was derived for the Hyperbolic 

Model. Extensive work on the simplification of river geometry produced a working 

solution. The geometry of river channels can be automatically simplified into arcs and 

straight lines. Future hydrograph is critical to risk analysis. Tens of thousands of 

hydrographs bearing the same statistical characteristics as in history can be generated. 

The final product that can be directly used, the MEANDER program, consists of 11,600 

lines of code in C++ and 2,500 lines of code in Matlab, not including the part of risk 

analysis. The computer program is ready for practice engineers to make predictions 

based on the findings of this research. 
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CHAPTER I 

INTRODUCTION TO AND FUNDAMENTAL CONCEPTS OF  

MEANDER MIGRATION 

1.1 INTRODUCTION 

Meander migration is a process in which water flow erodes soil on one bank and 

deposits it on the opposite bank. Therefore, a gradual shift of bank line occurs over time. 

Bank erosion undermines bridge piers and abutments, scours the foundations of parallel 

highways, and causes loss of useful land. Figure 1.1 is a typical meandering river with 

two bridges running across it. The white area at the bends was once part of the main 

channel but is now part of the bank. At the site of the bridges, the river migrates towards 

downright side in the picture.  Countermeasure is needed to retard the migration. 

 
 
 

 

Figure 1.1 A meandering river (courtesy of Dr. Jean-Louis Briaud) 

                                                 
  The format of this dissertation follows the Journal of Geotechnical and Environmental Engineering. 
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 Figure 1.2 shows the satellite picture of a section of the Mississippi River from 

Helena, Arkansas to Newport, Mississippi. The convoluted channel and parallel traces 

demonstrate a wild history of this river. In some places, the river migrated more than a 

kilometer in less than 200 years. The average migration rate is 0.016 width/year (Larsen, 

1995). 

 
 
 

 

Figure 1.2 Satellite picture of a section of Mississippi River (maps.google.com) 

 
 
 

The bridges crossing meandering rivers are often endangered due to the loss of 

pier or abutment foundations. This problem is costing millions of dollars to TxDOT 

(Texas Department of Transportation) in protection of affected bridges and highway 
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embankments. One recent meander migration threat (FM 787 at the Trinity River, Figure 

1.3) has required a 0.3 M$ emergency countermeasure and a 5.6 M$ replacement bridge. 

In order to avoid costly countermeasures for new bridges, TxDOT sponsored the 

project “Develop Guidance for Soils properties-based Prediction of Meander Migration.” 

The research is being conducted at Texas A&M University, College Station. The author 

is a member of the team. The purpose of this project is to develop a methodology which 

can be used to do site-specific predictions of meander migration. Then the piers and 

abutments of new bridges can be constructed away from risky locations. 

 
 
 

 

Figure 1.3 Trinity River at Highway 787 (Briaud et al. 2001) 
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1.2 FUNDAMENTAL CONCEPTS ABOUT MEANDER MIGRATION 

1.2.1 Channel pattern and stability 

Meander migration occurs as a response to natural or man-made disturbances of 

the fluvial system. Meander migration and related processes cause problems such as 

bridge scour, scour of highway foundations, and loss of land. In order to predict changes 

in channel morphology, location, and behavior, it is important to understand the relative 

stability of a channel which is revealed by its patterns. 

1.2.1.1 Channel classification 

Alluvial channels are dynamic systems subject to changes of different types and 

highly variable rates. Alluvial channel movements are the cumulative result of a 

combination of climatic, geological, topographic, hydrologic, and human disturbance 

factors. There are basically three types of channel patterns: straight, meandering, and 

braided. Rivers with different patterns behave differently, and their other morphologic 

characteristics are different. Therefore, pattern identification should be the first step 

toward evaluation of river stability and the identification of potential river hazards. 

Brice (1975) developed a descriptive classification of channel patterns for 

alluvial rivers. He selected the following channel properties as being important for 

classification: the degree of sinuosity, braiding and anabranching, and the character of 

meandering, braided and anabranched streams (Figure 1.4). 

Brice and Blodgett (1978) classified streams according to Figure 1.5, which is 

based on stream properties observable on aerial photographs and in the field. Figure 1.5 

is intended to facilitate the assessment of streams for engineering purposes, with 

particular regard to lateral stability.  

In Figure 1.6, sinuosity is the ratio of channel length to valley length or the ratio 

of thalweg length to valley length. Based on sinuosity, a channel can be classified as: 

Straight: <1.05 

Sinuous: 1.05~1.25 
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Meandering: >1.25 

It has been found that there is no definite relation between degree of sinuosity and lateral 

stability. 

 
 
 

 
Figure 1.4 Channel pattern classification devised by Brice (Brice, 1975) 
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Figure 1.5 Stream properties for classification and stability assessment (Brice and Blodgett, 1978) 
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Shen, et al. (1981) presented five basic patterns (Figure 1.6) that will aid  

highway engineers in establishing the relative stability of the channel and in identifying 

some hazards that affect bridge stability. Figure 1.6 is more meaningful than a purely 

descriptive classification of channels because it is based on cause and effect relations, 

and it illustrates the differences to be expected when the type of sediment load, flow 

velocity, and stream power differ among rivers. 

 
 
 

 
Figure 1.6 Channel classification showing stability and types of hazards encountered with each 

pattern (Shen et al., 1981) 

 
 
 
  In Figure 1.6 there is a difference between sediment load, bed load, and total load: 

• suspended load: amount of sediment being moved by a stream; 
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• bed load: sediment that is transported by rolling, sliding, or skipping along the 

bed or very close to it; considered to be within the bed layer; 

• total load: the sum of suspended load and bed load. 

1.2.1.2 Lane relation 

Richardson et al. (1990) proposed an interrelation among stream form, sinuosity, 

and slope as shown in Figure 1.7. The interrelation shows when the slope is smaller than 

a certain value, the channel can only be of meandering form; when the slope is larger 

than a certain value, the channel can only be of braided form. In between the two values 

are a combination of meandering and braided forms. 

 
 
 

 
Figure 1.7 Interrelation between stream form and  slope (Richardson et al. 1990) 

 
 
 

Lane (1957) developed quantitative relations among stream form with sandbed, 

channel bed slope S0, and mean discharge Q shown as follows and in Figure 1.8: 

Meandering: S0Q0.25<=0.0007 

Transition: S0Q0.25=0.0007~0.0041 
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Braided: S0Q0.25>=0.0041 

While Leopold and Wolman (1960) proposed the following relations: 

Meandering: S0Q0.44<=0.0125 

Braided: S0Q0.44>=0.0125 

 
 
 

 
Figure 1.8 Interrelation between stream form, channel bed slope, and mean discharge (after Lane 

1957) 

 
 

 

1.2.2 Meander migration 

The hazards contributing to meander migration and the types of meander 

migration are described here. 
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1.2.2.1 Bank erosion 

It has been observed in flume tests and in real rivers that bank erosion occurs by 

either a grain-by-grain movement or by mass movement (slumping or toppling). The 

following factors can cause mass failure: undercutting of the toe of the bank, steepening 

of the slope, surcharging the bank by construction or dumping, or seepage forces and 

pore water pressures related to increased water movement through bank sediment. The 

bank erosion with non-cohesive materials usually involves the following processes as 

shown in Figure 1.9. 

 
 
 

 
Figure 1.9 Bank erosion process (Nagata et al., 2000) 

 
 
 

1. Bed scouring at the side bank; 

2. Bank collapse due to instability of the scoured bank; 

3. Deposition of the collapsed bank materials at the front of the bank; 

4. Transportation of the deposited materials. 

The removal of bank materials on one side is often accompanied by the deposition of 

the materials on the opposite bank. The shift of the river channel occurs as a result. If 
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both banks erode at the same cross-section, the channel widens. This may lead to 

aggradation. According to a survey of various state highway engineers (Brice and 

Blodgett 1978), bank erosion is rated as a major stream-related hazard. 

Aerial photograph is useful for identifying bank erosion and soil deposition. The 

white area near the toe of a bend often indicates a fair amount quantity of deposition. 

The soil mainly comes from the nearest upstream bend. The technique to quantitatively 

evaluate the amount of bank shift by using aerial photographs is called photogrammetry. 

This technique is widely used to build case histories. 

1.2.2.2 Meander growth and shift 

Meander growth involves a change in the dimensions of a meander. Meander 

amplitude and width increase as a meander enlarges. At the same time the radius of 

curvature of the bend will increase. Meander shift involves the displacement of the 

meander in a downstream direction. It happens but it is rare that some parts of the bend 

can actually shift upstream. Figure 1.10 presents the various modes of meander loop 

behavior. 

 

 
A. Extension, B. Translation, C. Rotation, D. Conversion to a Compound loop, E. Neck Cutoff by Closure, 

F. Diagonal Cutoff by Chute, G. Neck Cutoff by Chute 
Figure 1.10 Modes of meander loop behavior (Brice, 1975) 
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1.2.2.3 Cutoffs 

A cutoff is a new and relatively short channel formed across the neck of a 

meander bend. This drastically reduces the length of the stream in that reach and 

significantly steepens its gradient. The neck cutoff has the greatest effects on the channel. 

Another type of cutoff is the chute cutoff, which forms by cutting across a portion of the 

point bar. The chute cutoff generally forms in recently deposited alluvium, whereas the 

neck cutoff forms both in recent alluvium and in older consolidated alluvium or even in 

weak bedrock. 

The consequence of both types is that the river is steepened abruptly at the point 

of the cutoff. This can lead to scour at that location and a propagation of the scour in an 

upstream direction. In the downstream direction, the gradient of the channel is not 

changed below the site of the cutoff, and therefore the increased sediment load caused by 

upstream scour will usually be deposited at the site of the cutoff or below it, forming a 

large bar.  

It is easy to identify the location of a cutoff by examining a sequence of aerial 

photographs. When the neck of a meander is getting closer and closer at a certain rate, a 

cutoff is likely to occur. 

1.2.2.4 Avulsion 

Avulsion is the abrupt change of the course of a river. A channel is abandoned 

and a new one formed as the water and sediment take a new course across the flood plain, 

alluvial fan, or alluvial plain. A meander cutoff is a type of avulsion because of 

relatively rapid change in the course of a river during a short period of time. However, 

avulsion, as defined here, involves a major change of channel position below the point of 

avulsion. 

A new channel forms below the point of avulsion. If the channel avulses into an 

existing, smaller channel, a large increase in discharge and sediment load will result, and 

the bridges downstream of this channel will be inadequate and presumably destroyed. A 

bridge on the abandoned channel below the site of avulsion will appear to be 

significantly overdesigned. If, through avulsion, the river takes a shorter course to the 
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sea, the gradient will become steeper, and scour above the point of avulsion is certain 

unless a bedrock control prevents upstream degradation. A bridge located above the 

point of avulsion will still span the channel, but it may be subjected to degradation and 

nickpoint migration.  

1.3 FACTORS AFFECTING MEANDER MIGRATION 

 Meander migration is an interactive process between flow and soil. The condition 

of flow and properties of soil are major factors affecting meander migration. Any factors 

that affect flow condition and soil properties affect meander migration as a result. A lot 

of investigation and research have been done to identify influential factors. A relatively 

complete list was made by previous TxDOT project (Briaud et al., 2001b): 

• Soil properties (soil erosion function) 

• Flow condition (discharge, velocity, water depth) 

• Meander geometry (width, depth, radius of curvature, sinuosity) 

• Stream pattern (straight, meandering, braided) 

• Free surface slope 

• Channel roughness (Manning’s “n”, friction factor “f”) 

• Sediment load 

• Vegetation 

• Debris Problem 

• Channel relocation 

• Human activities on the floodplain of river  

 The geometry of meander channel is believed to influence flow condition to a 

large extent. Flow, soil, and geometry are considered as the most important factors 

affecting meander migration and are studied in detail in this research. 

 Geometry of real rivers is often very complicated. In order to reduce the 

complexity to an acceptable level but with sufficient precision, channel bends are treated 

as arcs. Figure 1.11 defines the parameters needed to describe the geometry. 
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Figure 1.11 Geometry parameters for meanders (after Briaud et al., 2001b) 
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CHAPTER II 

EXISTING KNOWLEDGE OF MEANDER MIGRATION 

2.1 GENERAL APPROACHES 

The existing approaches to predict meander migration make use of geometry, 

water, and soil parameters in various ways. These approaches can be divided into three 

categories: those using time-sequence maps and extrapolation (Briaud et al. 2001b; 

Lagasse et al. 2004b), those using empirical equations (Keady and Priest 1977; Nanson 

and Hickin 1983), and those using fundamental modeling (Nagata et al. 2000; Duan et 

al. 2001).  

With the time-sequence maps and extrapolation approach, meander migration is 

predicted by accumulating topographic maps and aerial photographs of the riverbanks at 

various dates in the past, measuring the migration rate from those maps, and 

extrapolating into the future. These maps and aerial photographs can be obtained from 

local libraries, or from web sites such as http://mac.usgs.gov/mac/, 

http://terraserver.microsoft.com, and http://earth.google.com/. The advantages of this 

approach are that it is relatively simple and is based on full-scale observations at the site. 

The drawbacks are the limited availability of maps and photographs, and the assumption 

that future flow and soil conditions will be the same as in the past. Departments of 

Transportation commonly use this method. 

With the empirical approach, a database of observed meander migrations and 

associated parameters is assembled, most influential parameters are selected, a 

regression is performed, and an equation is proposed. The advantages of this approach 

are that it is simple and is based on full scale observed data. The drawbacks are that the 

equation may not include all the essential parameters influencing the process, and that 

the applicability of the equation is limited by the extent of the database both in terms of 

quantity of data and geographical area. This approach is also quite common. 

A fundamental modeling approach consists of modeling the erosion process at 

the water-soil interface and projecting it into time by using future hydrographs (daily 
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discharge versus time). This approach has the advantage of simulating the real 

phenomenon on a site-specific basis. It has the drawback of being more complicated 

because it requires the site-specific measurement of soil properties and the selection of 

future hydrographs. A fundamental modeling approach can also be based on establishing 

and solving constitutive equations such as conservation of mass (flow and sediment). 

This approach has the advantage of modeling erosion at the particle level. So far there is 

still a big gap between the computer model and the reality. This approach is not 

discussed here. 

2.2 SELECTED EMPIRICAL METHODS 

2.2.1 Keady, D. M., and Priest, M. S. (1977) 

The rate of downstream migration is considered as a function of the free surface 

slope of the river, the meander amplitude, and the specific weight of water, expressed by 

the following formula: 

)(s
gA
V φ=  

Where, 

V (ft/yr): Migration rate, 

g (ft/sec2): Acceleration of gravity, 

A (ft): Meander amplitude, 

s: Free surface slope, 

φ: A function of s. 

The graph presented in Figure 2.1 is based on data from the Red River in 

Arkansas, and Louisiana, from the Red Deer River in Alberta, Canada and from other 

rivers, as shown in Table 2.1. The points corresponding to the case histories in the 

previous study (Briaud et al. 2001b) are also plotted on the graph.  

Free surface slope is very close to channel bed slope which is determined by the 

slope of the terrain. Water flows to a lower place. Slope of the terrain provides potential 

energy to keep water flowing and determines how fast water flows. The authors 
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correctly identified the importance of channel slope. But channel slope is not the only 

factor affecting flow condition. Rainfall is another important factor influencing flow 

condition. Usually a large portion of total migration distance occurs during the few big 

floods. Soil properties are another important issue ignored by the authors. Different 

rivers neither have the same precipitation nor have the same soil properties. There is not 

enough evidence to prove that the exceptional data point from Red River, Arkansas was 

caused by a free surface slope of 1.5×10-4. The data points from previous study don’t fit 

the proposed trend either. 

 
 
 

Table 2.1 Data used by Keady and Priest (1977) 

Identification 
Velocity of 
Migration 

(ft/yr) 

Meander Amplitude 
(ft) Slope 

Mississippi R (LA) 60 13,000 .0000436 
Mississippi R (MS) 111 11,000 .0000588 
Mississippi R (TN) 225 13,200 .0000777 

Red R (ARK) 350 2,900 .000132 
Pearl R (LA) 20 1,050 .000200 
Red Deer R 

(Canada) 
20 1,200 .000275 

Tombigdee R (MS) 13 800 .000421 
Buffalo R (MS) 17 1,560 .000689 
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Figure 2.1 Graph for determining rate of meander migration (Keady and Priest, 1977; Briaud, 

2001b) 

 
 
 

2.2.2 Hooke, J. M. (1980) 

The author proposed that the erosion rate is most closely related to catchment 

area (as a surrogate of discharge and width). Rates of bank erosion were determined 

from field measurements and historical maps for 11 streams in Devon, England. Then 

the rates of bank erosion were compared with worldwide published rates in 43 streams. 

The equation was derived through multiple regression analysis using the 54 data points 

and resulted in very high rates of bank erosion. The equation was then modified with the 

same data from 11 streams in Devon, England and 43 streams from literature, given as 

follows: 

Y= 0.05 A0.5 

Where, 

             Y (m/year): bank erosion rate 

             A (km2): catchment area 
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Figure 2.2 shows the data and regression for Hooke’s equation. The data points 

resulting from previous study were added to this figure.  

 
 
 

 
Figure 2.2 Relation between catchment area and migration rate (Hooke, 1980; Briaud et al., 2001c) 

 
 
 
 The catchment area for a reach of a river is an area whose runoff all goes to that 

reach. Rainfall is an importance source of river flow. For the same amount of rainfall, 

the larger the catchment area is, the larger the flow rate is. For the same river, it is 

reasonable to assume that the migration rate of different reaches is related to their 

catchment area. For different rivers it might not be a good idea to relate migration rate to 

catchment area only and disregard different precipitation levels. Rivers having the same 

catchment area might have quite different flow rate due to different precipitations. Soil 

properties are also ignored here. Although both axes in Figure 2.2 are in logarithmic 

scale, there is still a big scatter. The data from previous study are far from the fitted line. 
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2.2.3 Brice, J. C. (1982)  

Brice (1982) proposed that the rate of bank retreat increases with increasing 

channel width.  

Y = 0.01×B 

Where, 

            Y (m/yr): Mean erosion rate  

             B (m): Channel width 

Brice data consisted of 43 data points from four different stream types 

(equiwidth, wide bend, braided point bar, braided) as shown in Figure 2.3. The data 

points for previous study were added to Figure 2.3. There are several points for each site 

because there are several periods of observations for each site. 

This formula is beautiful regarding its simplicity. But it is too simple that it is 

below the bar.  The author only related migration rate to channel width. Almost all the 

important factors are missing in this formula. Figure 2.3 shows the value 0.01 is 

meaningful for only a few points in the data set. The migration rate is normally not 

constant along a river or over time. The ratio of migration rate to channel width is not a 

constant either. The average ratio of migration rate to channel width can roughly predict 

the amount of migration within a short period of time for the same river with no 

guarantee of precision. It is not likely that a universal formula like the author proposed 

can be applied to all rivers. 

2.2.4 Nanson G. C., and Hickin, E. J. (1983) 

Nanson and Hickin described that the ratio of radius of curvature of a bend (Rc) 

to channel width (W) influences the lateral migration rate of a meandering river. The 

relationship between channel migration rate (MR) and the ratio of radius of curvature to 

channel width for the Beatton River, Canada and other rivers is shown in Figure 2.4.  

The Normalized migration rate (MR/W) is highest when the ratio of radius of curvature 

to channel width (Rc/W) is about 3. The data points from previous study were added to 



 21

the figure. Their data (Nanson and Hickin 1983) conform, approximately, to the 

following relation: 

 

 

 
Figure 2.3 The relationship between migration rate and channel width (Brice, 1982; Briaud et al., 

2001b) 
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Where: 

           MR (m/year): Mean erosion rate 

           W(m): Channel width 

           Rc(m): Radius of curvature 
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Figure 2.4 The relationship between  migration rate and geometry (Nanson and Hickin, 1983; 

Briaud et al., 2001b) 

 

 

 This relationship between migration rate and geometry was widely cited in 

literature. But the scatter in data doesn’t necessarily lead to the relationship the authors 

proposed. Together with the data provided by previous project, the data points spread 

almost all over the graph. With the same data, different persons may come up with 

completely different relationships. Geometry is only one factor affecting meander 

migration. Other important factors such as velocity and soil properties were ignored in 

the authors’ conclusion. This study described the relation between migration rate and 

geometry qualitatively rather than quantitatively. 

2.2.5 Odgaard, A. J. (1987) 

Odgaard solved constitutive equations by assuming that the rate of bank erosion 

is proportional to the difference between the near-bank depth-averaged mean velocity 



 23

and the reach-averaged mean velocity at bank full discharge. The resulted equation 

indicates that the erosion rate is correlated with channel characteristics such as width, 

depth, curvature, bend angle of channel centerline, channel slope, friction factor, and 

degree of vegetation on the banks. The predictions using this equation agreed well with 

data measured by using historical records (air photos, maps, and stream flow records), 

field measurements, and soil analysis in East Nishnabotna River and Des Moines River 

in Iowa. 

1/ 2 (1 )
2

−= +
c c

b bv u E F
r r

 

Where, 

          v (m/yr): the average rate of erosion 

  u (m/s): reach-average mean velocity 
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          e: erosion constant 

           α: 1.27 

           θ: Shields’ parameter, 0.06 

           m: friction parameter 

           κ: Karman’s constant, 0.40 
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           φ: bend angle 

       β: angle from cross over to first outer bank erosion occurrence 
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                     dc: centerline flow depth 

In the calculations, two variables were assumed for this study: the friction factor 

(m) was taken as 3 and particle Froude number (
cDF ) as 10 (Odgaard, 1987). In 

addition, the erosion constant was taken as 7104.6 −×=e and 7104.4 −×=e for the case 

of light or no vegetation and dense vegetation on outer bank, respectively. 

This method considers flow (u), soil (e), and geometry (b/rc). If the right erosion 

constant is picked, the predicted migration rate is close to the measured one. Although 

soil erodibility is a fundamental property of soil, it is treated as an empirical coefficient 

here. An e value can be chosen based on existing records. But there is no guarantee that 

the value will work for a true prediction case. Soil erodibility can be obtained by using 

EFA (Erosion Function Appratus) to test the erosion function of soil (Briaud et al. 

2001a). It is worthwhile to study how to replace erosion constant e here with EFA 

function.  

The above method was a simplified version of a more complex solution 

developed by the same author (Odgaard 1986). A modified version came out soon 

(Odgaard 1989a). But unfortunately the answer was very sensitive to some parameters. 

In the example given in another article (Odgaard 1989b), the calculated migration rate of 

a hypothetical river is 11 m/yr. If the flux factor B is changed from 6 to 4.8, the 

migration rate will be -17 m/yr. If B=4.9, the migration rate will be 16 m/yr. If the factor 

f is changed from 0.08 to 0.07, the migration rate will be -12.1 m/yr. So this method is 

not good for practical use. 

2.2.6 Lagasse, P. F., Spitz, W. J., Zevenbergen, L. W., and Zachmann, D. W. (2004a, 

2004b) 

This group conducted the NCHRP research Project 24-16. The principal product 

of this research was a stand-alone handbook for predicting stream meander migration 

using aerial photographs and maps. The handbook deals with the problem of incremental 

channel shift and provides a methodology for predicting the rate and extent of lateral 

channel shifting and down valley migration of meanders. The methodology is basically 
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the approach mentioned above of using time-sequence maps and extrapolation. First 

circles for a bend at two different times are fitted. Then the location of the center and the 

magnitude of the radius are linearly extrapolated. The direction of new migration 

increment can also be extrapolated based on the directions of two previous increments. 

The process is described by Figure 2.5 through Figure 2.7 and the equations that follow. 

A program named “The Data Logger and Channel Migration Predictor” was developed 

to assist this process. It was an ArcView extension and was written in Visual Basic for 

Application (VBA) for ArcView.  

 

 

 

 
Figure 2.5 Banklines and circles drawn along outer bankline positions for a hypothetical channel in 

3 different years (Lagasse et al., 2004b) 
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Figure 2.6 Diagram defining the outer bank radius of curvature in Years 1, 2, and 3 (Rc1, Rc2, and 

Rc3) and the amount (DA and DB) and direction (θA and θB) of migration of bend centroid during 

Periods A and B (Lagasse et al., 2004b) 

 

 

 

 
Figure 2.7 Predicted position and radius of curvature of the circle that defines the outer bank of the 

hypothetical channel in Year 4 (Lagasse, et al., 2004b) 
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 Briaud et al. (2001b, Figure 2.8) have applied this time sequence and 

extrapolation method and have showed some of its limitations. A constant migration rate 

is assumed in the extrapolation, which can be valid only when the flow condition of the 

predicted period is the same as historical record, the soil doesn’t change and the 

predicted period is short. The reality showed that the ideal situations like these rarely 

happen. A big flood can completely change the migration trend this method is supposed 

to predict. Even under the same flow condition, a change in soil can also turn the trend to 

a different direction. This method is good in the sense that it gives a quick first hand 

estimation. But a more reliable method is needed to give better predictions. 

 

 

 
Figure 2.8 Definition of the time sequence maps and extrapolation method (Briaud et al., 2001b) 
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A way to estimate extension and translation migration based on statistical data 

was also provided. Figure 2.9 shows the cumulative probability of normalized extension 

migration (migration/width) of a certain type of river reaching a certain quantity. For 

example, for meanders of the type of Brice C Sites, the probability of the normalized 

migration reaching 0.02 or less is 79%. Figure 2.10 is for translation migration. In this 

way, migration can be estimated with a certain level of confidence when historic records 

are not available. 

 

 

 
Figure 2.9 Cumulative percentage of extension migration (Lagasse et al., 2004b) 
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Figure 2.10 Cumulative percentage of translation migration (Lagasse et al., 2004b) 

 

 

2.2.7 Hudson, P. F., and Richard, H. K. (2000) 

 The authors examined the channel migration and meander-bend morphology for 

the lower Mississippi River between 1877 and 1924, prior to channel cutoffs, 

revetments, and change in sediment regime. Average migration rate was 45.2 m/yr in the 

upper alluvial valley but increased to 59.1 m/yr in the lower alluvial valley. The highest 

migration rate occurred when the ratio of radius of curvature to channel width was 

between 1.0 and 2.0. No prediction method was proposed. 

2.3 SELECTED NUMERICAL METHODS 

 Numerical simulation belongs to the category of fundamental modeling. In some 

cases empirical equations are also used. A numerical simulation method normally 

contains these three components: modeling of flow field, modeling of sediment 

transport, and modeling of bank erosion. The calculation of flow field and sediment 
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transport is an important field in Hydraulic Engineering. Bank erosion is an interaction 

of water and soil, while the study of soil properties is a subject of Geotechnical 

Engineering. Attacking this problem requires multi-disciplinary efforts including 

expertise in both Hydraulic Engineering and Geotechnical Engineering. The following 

review is an attempt to cover the development in numerical simulation from a 

geotechnical engineer’s point of view. It is encouraged to refer to the original articles for 

more details in Hydraulic Engineering. 

2.3.1 Ikeda, S. et al. (1981), and Parker, G. et al (1982) 

 Although the authors didn’t propose a method for predicting meander migration, 

they developed a theory explaining the formation of meanders. The alternate-bar 

instability has been identified as the cause of meander migration. Bend instability in 

sinuous channels is different from the instability of alternate bars in straight channels. 

Two mechanisms work at the same characteristic wavelengths. An expansion technique 

involving the Stokes expansion for water waves is developed to perform a nonlinear 

stability analysis, which explains the skewing and fattening and shows the lateral and 

downstream migration rates is proportional to the bend amplitude. 

2.3.2 Blondeaux, P., and Seminara, G. (1985) 

 The authors developed and applied a 2D model of flow and bed topography in 

sinuous channels with erodible boundaries in order to study the mechanism of meander 

initiation. A “resonance” phenomenon undiscovered by Ikeda (1981) was detected when 

the values of relevant parameters fall within a certain range. It was proposed that the 

resonance controls the bend growth and is connected with bar instability. Comparison 

with experimental observations showed that resonance is associated with meander 

formation. 

2.3.3 Pizzuto, J. E. (1990) 

 The author developed a 2D numerical model to predict the distribution of 

boundary shear stress, cross-channel sediment transport rates and the evolution of the 

bed topography. Equilibrium values of dimensionless depth increases with the decrease 
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of the slope. With the progress of the computation, flat bed and a curved bank will be 

developed. 

2.3.4 Darby, S. E. et al. (1994, 1996a, 1996b, 2002) 

 Darby and Thorne (1994, 1996a) solved the governing equations of flow 

continuity, flow resistance, conservation of flow momentum, sediment transport, bank 

stability and conservation of sediment mass. A physically-based 2D numerical model 

was developed to simulate channel widening. Comparison was made with a 13.5 Km 

reach of the South Fork of the Forked Deer River, in west Tennessee (Darby and Thorne 

1996b). Qualitative agreements were observed and quantitative prediction was not 

reliable. 

 A numerical model was developed and tested for river morphology for cohesive 

erodible banks (Darby et al. 2002).The model couples a 2D depth-averaged model of 

flow and bed topography with a mechanistic model of bank erosion. Deposition and 

removal of failed bank material were simulated. The authors also solved the governing 

conservation equations in a moving boundary fitted coordinate system. Model 

performance was encouraging in regard to agreements between simulations results and 

data from two flume tests and a real river. 

2.3.5 Mosselman, E. (1998) 

 The proposed prediction method consists of a 2D depth-averaged flow model and 

a bank erosion model. The prediction method is applied to a reach of the meandering 

gravel-bed River Ohre in the former state of Czechoslovakia. A poor agreement is 

observed. It is claimed that the inclusion of a 3D flow model, a sediment transport model 

will improve the prediction results. 

2.3.6 Nagata, N., Hosoda, T., Muramoto, Y. (2000) 

 The authors presented a numerical model that can be used for investigating both 

bed-deformation and bankline shifting in 2D plan form. The governing equations are 

composed of 2D continuity and momentum balance equations in a moving boundary 

fitted-coordinate system. The authors developed a sediment transport model that 
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included the theory of non-equilibrium sediment transport proposed by Nakagawa and 

Tsujimoto (1980). An intermittent bank erosion model proposed by Hasegawa (1981) 

was used, which means only the continuity of the volume of sediment during the process 

of bank slide. 

 

 

 
Figure 2.11 Temporal changes in plan forms (Nagata et al., 2000) 
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Figure 2.12 Temporal changes in cross-sectional profiles for Run 2 (Nagata et al., 2000) 

 

 

 Verification was done on a laboratory experiment which was conducted in a 10 

m long, 1 m wide, 0.2 m deep steel flume. All of the initial plan forms of the meandering 

channel were set as a sine-generated curve with 2 m linear wavelength. A constant 

discharge of 1.98 l/s was maintained at the inlet, which had a mean flow depth of 3.0 cm 

and a valley slope of 1/300. The sediment was uniform with a diameter of 1.42 mm. 

Sediment was fed manually during the experiment. Figure 2.11 shows the observed and 

calculated plan forms for runs 1 to 3. Good agreements between calculation and test 

were achieved. A comparison between observed and calculated cross-sectional profiles 

is shown in Figure 2.12. The same trend can be seen in calculation. 

2.3.7 Sun, T. et al. (1996, 2001a, 2001b) 

 The linear theory of Johannesson and Parker (1989) was used to develop a 2D 

computer model for meandering rivers that couples water flow, bed topography, the 

sorting of sediments with different grain sizes. The model for bed load sediment 
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transport and sorting came from the theory of Parker and Andrews (1985). Simulation 

results showed that curvature-related instabilities is a primary factor affecting the initial 

growth of meandering rivers and the alternate bars have little impact on the initial 

development of meander loops. 

2.3.8 Duan, J. G. et al. (2001, 2005a, 2005b) 

 Duan et al. (2001) developed a numerical-empirical model called Enhanced 

CCHE2D (EnCCHE2D) to simulate alluvial channel migration phenomena. EnCCHE2D 

model is capable of predicting quasi-3D flow field and shear stress distribution on the 

bed. The process of sediment transport and meander migration were predicted based on 

these quasi-3D flow solutions. The advance or retreat of bank is calculated by 

considering not only the hydraulic erosion of bank surface and toe, but also the mass 

balance of sediment flux in the near-bank zone. 

 The flow field was initially obtained by the 2D depth-averaged hydrodynamic 

model, CCHE2D. A set of empirical functions were then used to transform the flow and 

the bed shear stress field into quasi-3D ones. Details are explained in Duan’s publication 

(1998). 

 Sediment consists of bed load and suspended load. Meyer-Peter and Muller 

(1948)’s formula for bed load sediment transport was used. The primitive definition 

indicates the volumetric sediment transport rate per unit width and length is equal to the 

integration of the product of velocity and concentration along flow depth. The original 

formula of Rouse (1938) was adopted for calculating sediment concentration profile. 

Van Rijn’s formula (1989) was found to give the best results in computing reference 

concentration. 

 Basal erosion and bank failure occur in the process of bank erosion. Basal 

erosion that caused by flow induced shear stress on the submerged part of bank surface 

was calculated. Bank failure was studied at a later time (Duan, 2005b). The bank erosion 

rate is determined by the flow and sediment transport fluxes near the bank not just the 

excessive velocity. After some improvements were made, this prediction model was 

used to simulate the inception of channel meandering (Duan and Julien 2005a). 
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Figure 2.13 Simulation of meandering channel widening due to bank erosion (Duan et al., 2001) 

 

 

 Verification was done on the same experiment as the previous section (Nagata et 

al. 1997). Figure 2.13 is a simulation result which shows the channel widens and bars 

and pools are formed. Since flow field and bed profile measurements are not available, it 

is not possible to compare simulated flow field and bed configurations with experimental 

data. Good agreements were observed in the comparison of simulated bank lines with 

those measured, as shown in Figure 2.14. 
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Figure 2.14 Comparison of experimental and simulated results (Duan et al., 2001) 

 

 

 The authors demonstrated that the model is capable of predicting the alternate 

bars in a straight reach of channel, and simulating the initiation process of a meandering 

channel.  No quantitative comparison of the formation of bed form was made due to lack 

of data. The application of the model is still at the stage of experimental test. 

2.3.9 Chen, H.-C. (2002) 

 The author used a Reynolds-Averaged Navier-Stokes (RANS) method together 

with a scour rate equation to calculate scour around simplex piers. Unsteady RANS 

equations were solved in a general curvilinear coordinate system. The same method is 

used to calculate maximum shear stress for the prediction of meander migration. The 

shear stress is used by the author of this dissertation. 
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2.3.10 Olsen, N. R. B. (2003) 

 Olsen developed a 3D CFD model which was based on the finite volume method 

using an unstructured grid with dominantly hexahedral cells. The k-ε model was used to 

predict turbulence. The sediment transport was computed as bed load in addition to 

solving the convection-diffusion equation for suspended sediment transport. The CFD 

model computes the erosion as a function of the sediment transport formulas and the 

computed 3D flow field. 

 Verification was done on a laboratory experiment conducted by another 

researcher. Figure 2.15 displays how a straight channel developed into a meandering 

channel in the simulation. No comparison with the test results was made. 

 

 

 
Figure 2.15 Simulated meandering process of laboratory case (Olsen, 2003) 

 

 

2.3.11 Abad, J. D., Garcia, M. H. (2004) 

 A simplified river model was introduced for predicting river morphodynamics 

processes, including river migration. The methodology consists of components such as 
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designing stream restoration, linear and nonlinear analyses, and a planform migration 

model. The mean annual flood discharge was used for the verification of a real river. 

Partial agreement was observed. This method can be classified as a quasi-2D model. 

2.3.12 Rodriguez, J. F., Bombardelli, F. A., Garcia, M. H., Frothingham, K. M., 

Rhoads, B. L., and Abad, J. D. (2004) 

 High resolution models were developed to simulate flow field. Two models are 

included: a depth-averaged model with secondary flow correction, and a fully 3D 

Computational Fluid Dynamics (CFD) model. Comparison with field data showed a 

successful simulation of the main flow features. 

2.3.13 Jang, C.-L., Shimizu, Y. (2005) 

 In this article, the flow field was modeled by using the cubic interpolated 

pseudoparticle method. Secondary flow was considered in the sediment transport 

equation for the streamline and transverse transport to assess bed and bank evolution 

over time.  In the 2D simulation, bank erosion occurs when the cross-sectional slope of 

the banks is larger than the submerged angle of repose. The model can reproduce the 

phenomena such as bar growth, and channel widening etc. It can also reproduce the 

features of braided rivers. Good agreements with laboratory experiments were observed. 

2.3.14 Comments 

 Numerical simulation can simulate the flow field, sediment transport, and erosion 

process that happen in nature. This is a fundamental approach to reproduce the 

phenomena and make predictions. Due to the complexity of the natural governing 

processes, significant simplifications were introduced in the early stage of attacking this 

problem (Ikeda et al. 1981; Parker et al. 1982; Kitanidis and Kennedy 1984; Blondeaux 

and Seminara 1985; Odgaard 1989a). Including what are introduced above, several 

recent studies consider both bed deformation and bank-line shifting (Kovacs and Parker 

1994; Nagata et al. 1996; Howard 1996; Duan et al. 1997, 2005a, 2005b; Mosselman, E. 

1998; Sun, T. 2001a, 2001b; Darby, S. E. 2002; Abad and Garcia, 2004; Jang and 

Shimizu 2005). Most models have a limitation that the channel widening effect is not 
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taken into account. Darby and Thorne (1994, 1996a, b) and Pizzuto (1990) developed 

models to address this problem. The effect of downstream and upstream influence in 

river meandering was tackled by Zolezzi and Seminara (2001a, b). 

The effectiveness of the numerical simulation results highly relies on the 

soundness of the models. The reliable modeling of each of the phenomena presents a 

challenge to researchers of Hydraulic Engineering. A review of the selected three cases 

indicates there is still a long way to go before numerical simulation can be practically 

used to predict the migration of real rivers. 

 Among the above three cases, Nagata and Duan’s methods can verify the bank 

movements of the flume tests quantitatively.  Nagata’s simulation of bed-deformation 

has the same trend as that of the tests. No quantitative verification is seen in Olsen’s 

article. For all the three cases, no verification was done on a real river. Darby et al. 

(2002) did a verification for his model on a reach of Goodwin Creek, Mississippi. Good 

agreements were reported. Even for the presented good quantitative agreements between 

simulation and test or field data, there should exist a significant amount of manual 

adjustment of involved parameters. Not being able to consider a hydrograph is another 

weakness of the numerical methods because rainfall induced flood is the major cause of 

bank erosion. 

2.4 SRICOS-EFA METHOD (Briaud et al. 2003) 

From the literature review we know that the major factors that affect meander 

migration are soil, water, and geometry. The factors of water and geometry have been 

well addressed in the literature. But the factor of soil is often treated as an empirical soil 

erodobility coefficient. The topic of this research is “Develop guidance for soils 

properties-based prediction of meander migration”. Soils are given extreme importance 

and soil erodobility is treated as a fundamental property. Previous scour research 

projects (Briaud et al. 2003) conducted at Texas A&M University provided a good 

knowledge about soil erodobility. The model used to predict scour depth of bridge piers 

will be adapted for the prediction of meander migration. 
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2.4.1 Erosion Function Apparatus (EFA)  

Soil erosion is an interactive process between soil and water occurring at the 

interface of soil and water. As velocity increases, the shear stress τ imposed by the water 

on the soil particles becomes large enough to overcome the bonding force. For coarse 

grained soils erosion occurs by rolling and sliding of particles. Fine grained soils may 

erode particle by particle but electromagnetic and electrostatic forces play an important 

role (Briaud et al. 2001a). The threshold shear stress at which the erosion is initiated is 

called critical shear stress τc. 

EFA was invented by Jean-Louis Briaud at Texas A&M University in 1991 (US 

Patent No. US6260409B1 July 17, 2001). Figure 2.16 shows the conceptual diagram and 

test section of the machine. Soil sample sit in an ASTM standard Shelby tube with a 76.2 

mm outside diameter (ASTM 1999a). A motor pushes the sample until it protrudes by 

1mm. The protruded soil erodes under flows of velocity varying from 0.lm/s to 6m/s. 

The procedure for EFA test is as follows: 

1. Place the sample in the EFA, fill the pipe with water, and wait one hour. 

2. Set the velocity to 0.3 m/s. 

3. Push the soil 1 mm into the flow. 

4. Record how much time it takes for the 1 mm soil to be eroded. 

5. When the 1 mm of soils is eroded or after 1 hour of flow, whichever comes first, 

increase the velocity to 0.6 m/s and bring the soil back to a 1 mm protrusion. 

6. Repeat step 4. 

7. Next, repeat steps 5 and 6 for velocities equal to 1 m/s, 1.5 m/s, 2 m/s, 3 m/s, 4.5 

m/s, and 6 m/s. 
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Figure 2.16 EFA: (a) Conceptual diagram; (b) Photograph of test section (Briaud et al., 2001a) 

 

 

Direct test result is an erosion rate z  versus velocity curve. Erosion rate is the 

height of the soil eroded divided by the time taken. Shear stress cannot be measured 

directly and needs to be solved in an indirect manner. 

Shear stress at the soil-water interface is caused by the flow and the magnitude is 

related to the roughness of soil surface. The pressure difference between point 2 and 3 is 

caused by the friction across the sample. By drawing a free body diagram, the shear 

stress can be calculated with reference to the pressure difference. But the pressure head 

difference is small and fluctuates. It was found that the best way to calculate shear stress 

is to use the Moody Chart (Moody 1944, Figure 2.17). The shear stress τ is: 

21 f v
8

τ = ρ  

Where, 
τ: Shear stress on the wall 

f: Friction factor obtained from the Moody Chart 

ρ: Mass density of water (1000kg/m3) 

v: Mean flow velocity in the pipe 

 

m
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On the Moody Chart, Re is Reynolds number; μ is dynamic viscosity of water; 

/ν = μ ρ  is kinematic viscosity of water (10-6 m2/s at 20 °C); and D is pipe diameter. For 

non-circular shape, D=4A/P where A=cross-sectional flow area; P=wetted perimeter. 

For a rectangular cross section pipe, D=2ab/(a+b), where a and b are dimensions of the 

sides of the rectangle. ε is the average height of roughness elements. It is taken as 

(1/2)D50 where D50 is the mean particle diameter for the soil. ε/D is a measure of relative 

roughness. 

Figure 2.18 is the result of a test on a clean coarse sand (D50=3.375 mm). The 

critical shear stress for this soil is τc=3 N/m2. 

 

 

 

 
Figure 2.17 The Moody Chart (Munson et al., 1990) 
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Figure 2.18 Erosion curve for coarse sand (Briaud et al. 2001a) 

 

 

A lot of experiments have been done to establish relationships between erosion 

function and common soil properties that can be easily obtained in a regular soils lab. 

The erosion function is a non-linear relationship between erosion rate z  and shear stress 

τ which requires a lot of parameters to do curve fitting. Critical shear stress τc and initial 

slope of the curve Si are two of the parameters involved. In order to find the correlation 

between erodibility and soil parameters, one would try to find the correlation between τc, 

Si and soil parameters. For coarse grained soils, τc is proportional to D50. For Fine 

grained soil, there is no such correlation existing. Experimental data also show weak 

correlation between τc, Si and soil properties such as undrained shear strength, plasticity 

index, and percentage passing #200 sieve etc. So it is not realistic to obtain erodibility 

from common soil properties. A direct measurement with the EFA for a specific site is 

favored. 

2.4.2 SRICOS-EFA method 

FHWA hydraulic circular HEC-18 recommended an equation for calculating 

maximum scour depth in sand.  The erosion mechanism for clay is quite different from 

sand. Therefore Briaud et al. (1999) developed a method called SRICOS which stands 

for Scour Rate in Cohesive Soils. It deals with pier scour in cohesive soils under 

constant velocity. With varying velocity and multiple soil layers taken into account, the 
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method is extended to SRICOS-EFA method. This method has been successfully applied 

in bridge scour projects. The computer program is free for download at 

http://ceprofs.tamu.edu/briaud/sricos-efa.htm.  

2.3.2.1. Maximum shear stress τmax 

At the soil-water interface, the flow is tangential to the soil surface. The shear 

stress imposed by the flowing water affects the erosion process. The water velocity in a 

river is in the range of 0.1 to 3 m/s, while river bed shear stress ranges from 1 to 50 N/m2 

and increases with the square of water velocity. Equations for the shear stress of flat 

river bed have been developed. As for the case of a circular pier, numerical simulation 

was performed to analyze the shear stress around it. The shear stress goes down with the 

increase of scour depth until it reaches the critical shear stress τc and the erosion stops. 

Figure 2.19 shows how shear stress decreases with scour depth at a scour hole. The 

maximum shear stress τmax occurs at soil surface when the scour of the pier initiates. 

Extensive numerical simulation led to the following equation for τmax: 

2
max

1 10.094 ( )
log 10

= −τ ρ
e

V
R

 

Where, 

ρ: Mass density of water (1000 kg/m3) 

V: Mean flow velocity (m/s) 

Re: =VD/ν, Reynolds number 

D: Pier diameter (m) 

ν: Kinematic viscosity of water (m2/s) 



 45

 
Figure 2.19 Variation of shear stress at bottom of scour hole as function of depth of scour hole 

(Briaud et al., 1999) 

 

 

2.3.2.2. Maximum scour depth zmax 

Numerous flume tests have been conducted to study the scour around piers. It has 

been observed that the erosion stops under a constant velocity when a maximum scour 

depth is reached. Figure 2.20 shows how scour depth changes with time in a flume test. 

Several types of curves were used to fit the data. Hyperbola curve was found to be the 

best. The equation is as the following: 

max

1=
+

i

tz t
z z
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Where, iz  is the initial slope of the z versus t curve and zmax is the asymptotic value of 

the hyperbola curve which stands for the final scour depth at ∞=t . Based on flume test 

data, the correlation between zmax and various parameters was studied. The most well 

behaved relationship was found to be between zmax and Reynolds number Re: 
0.635

max ( ) 0.18= ez mm R  

The definition of Re is the same as the one in the τmax equation. This relationship is good 

for both sand and clay which is also confirmed by making a comparison with HEC-18 

equation. Water depth was varied in the flume tests but it had very little influence. The 

most important factors are the mean flow velocity V and the pier diameter D. 

 

 

 
Figure 2.20 Scour depth versus time curve (Briaud et al., 1999) 

 

 

2.3.2.3. Procedure of SRICOS-EFA method 

Given constant flow and uniform soil, iz  and zmax can be calculated. With these two 

parameters ready, a scour depth z versus time t curve can be obtained. Detailed SRICOS 

method consists of: 
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1. Collecting Shelby tube samples near the bridge pier, 

2. Testing them in the EFA (Figure 2.16) to obtain the erosion rate z  (mm/hr) 

versus hydraulic shear stress τ  (N/m²) curve,  

3. Calculating the maximum hydraulic shear stress maxτ  around the pier before 

scour starts, 

4. Reading the initial erosion rate iz  (mm/hr) corresponding to maxτ  on the z  vs. τ  

curve, 

5. Calculating the maximum depth of scour zmax, 

6. Constructing the scour depth z versus time t curve using a hyperbolic model,   

7. Reading the scour depth corresponding to the duration of the flood on the z vs. t 

curve. 

 In real world, the flow velocity in a river changes from hour to hour and from 

day to day. Within a short period of time, the flow can be treated as constant and the 

SRICOS method can be applied. The hydrographs downloaded from USGS website are a 

history of daily average flows. For this case the short period time with constant flow is 

one day and each day may have a different z versus t curve. Looking at the scour hole on 

a certain day, one can see that it has two properties: one is existing scour depth z0 and 

the other is the z versus t curve ( iz , zmax) of that day. These two properties determine 

how much erosion will be caused by that day’s flow. The accumulation of the influence 

of each day’s flow can be done in this way. To calculate the scour depth zΔ caused by a 

constant flow of time tΔ , two cases must be considered as shown in Figure 2.21. In case 

1, existing scour depth z0 is less than zmax, where the erosion starts from the point 

corresponding to z0 at time te and continues for time tΔ . At the end of time tΔ , the total 

scour depth is z0+ zΔ . te is called equivalent time which is the time would be needed for 

the current flow to cause the same amount of scour depth as the accumulated scour depth 

caused by all previous flows. In case 2, existing scour depth z0 is larger than zmax, which 

means the flow is not able to cause any additional erosion. There is no meaning for te 

here. If z0<zmax, the expression for equivalent time te is: 
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The scour depth increment caused by the constant flow of time period tΔ  is: 

0

max

1
+ Δ

Δ = −
+ Δ

+

e

e

i

t tz zt t
z z

 

If a hydrograph has 10,000 flow data, the calculation will be repeated for 10,000 times. 

The computer program SRICOS-EFA can do all the computation and output the scour 

depth z versus time t curve. 

 

 

 
Figure 2.21 Accumulation of scour depth: (1) Additional erosion occurs; (2) No additional erosion 

occurs 
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CHAPTER III 

RESEARCH OBJECTIVES AND METHODOLOGY 

3.1 RESEARCH OBJECTIVES 

 This research is aimed at working on these issues: 

1. Apply a soil erosion model to the prediction of meander migration. 

2. Based on the model, study the elements affecting meander migration: geometry, 

soil and water. 

3. Conduct risk analysis so that the prediction of meander migration can be made on 

a probabilistic approach. 

4. Develop a program to assemble all the work of the team members and deliver the 

program as a final product to the sponsor. 

3.2 METHODOLOGY 

 The literature shows a variety of solutions to this tough problem. However none 

of them gives satisfactory result. This research tries to apply a good methodology and 

provide a better solution. The methodology consists of:  

1. Flume test;  

2. EFA test;  

3. Numerical simulation;  

4. Fundamental modeling;  

5. Risk analysis;  

6. Development of the MEANDER program.  

 All the work is done by a team of six. For the work that is done by other team 

members, the contributors will be mentioned explicitly. 

3.2.1 Flume test 

It is well know that physical model tests are important in understanding and 

solving hydraulic problems in rivers. In contrast to numerous uncontrollable variables 

and parameters, and sometime the unpredictable nature of field data, physical model 
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tests are performed under a well-controlled environment so that essential parameters can 

be chosen, adjusted, and varied systematically to quantify their influence on the problem. 

Not only do flume tests directly give physical insight on meander migration, they also 

counter the worry about the correctness of usually simplified theories as well as the 

inevitable errors due to spatial and temporal discretizations in numerical simulations.  

In the flume test, these parameters will be studied systematically: soil properties, 

channel geometry, and velocity. Fine sand and clay will be used as bank material. The 

ratio of radius of curvature of a bend to channel width is treated as the geometry 

parameter. Cross sectional average velocity is measured and analyzed. A reference case 

is set. Each test varies only one parameter from the reference case.  

The first set of flume tests were done in the old Hydro Lab. Later tests were 

moved to the new Coastal Engineering Lab. The author is responsible for the preparation 

of the setup in the old Hydro Lab and running the first 13 flume tests.  

3.2.2 EFA test 

A big advantage of this study is that EFA (Briaud et al. 1999, 2001a) is used to 

test the erodibility of soils at specific sites, which is a fundamental approach to model 

soil erosion behavior. The obtained erosion curves are fundamental properties of the soil. 

With the application of this test, it is more likely to do accurate modeling of soils. The 

EFA tests were done by Jun Wang from Pier Scour team. 

3.2.3 Numerical simulation 

The flow field of a meandering channel is a transient 3-D free surface flow with 

strong secondary flow and a moving streambed boundary. Computation of such complex 

flow will require a more advanced numerical model than that of a steady flow with fixed 

boundaries. Analyses for this purpose can generate maximum shear stress as a function 

of the major factors affecting meander migration. In this study, it is proposed to employ 

an existing state-of-the-art Reynolds-Averaged Navier-Stokes (RANS) code in 

conjunction with a flexible chimera domain decomposition technique for accurate and 
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efficient prediction of stream migration problems. This part is done by Prof. Hamn-

Ching Chen. 

3.2.4 Modeling of prediction 

Many available modeling approaches consist of a velocity model and a bank 

erosion model. In verifying these models, the calculated velocities, instead of the 

recorded hydrograph are used. These methods don’t consider that floods contribute to 

most part of meander migration and rainfall is the most important reason for floods. This 

research proposes the application of Hyperbolic Model which assumes the migration rate 

gradually reduces to zero when the major factors are kept constant. A hydrograph can be 

applied so that the true migration process can be simulated. This model was developed 

years ago and has been successfully applied in Pier Scour project. The expression is: 

max

1=
+&

i

tM t
M M

 

Where, iM&  is the initial migration rate, obtained from EFA curve of the soil based on 

τmax. Mmax is the maximum migration distance under a certain condition. Both τmax and 

Mmax can be expressed as functions of the following parameters: 

τmax, Mmax=f(φ, θ, R, W, y, v(t), { }− τ&Z ) 

Where, 

φ: Bend angle defined by the two inflection points of a bend; 

θ: Location angle, from the first inflection point to the point of 

interest; 

R: Radius of curvature of the bend. Use the radius of the fitted 

circle; 

W: Channel width. Use width from aerial photos; 

y: Water depth. Calculate from hydrograph Q vs. t, knowing 

cross section and using HECRAS; 

v(t): Average velocity of a certain period of time.; 
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{ }− τ&Z : EFA curve, erosion rate versus shear stress. 

The numerical simulation was done by Prof. Hamn-Ching Chen. The τmax 

equation was developed by the author of this dissertation based on the shear stress data 

from numerical simulation. The equation for Mmax will be developed from flume tests by 

Po-Hung Yeh and Namgyu Park (Park, 2006; Yeh, 2006). 

Like developing the equations for τmax and Mmax, calculation of geometry 

parameters R, φ, θ is another critical issue. The idea of geometry study is to write a 

program to simplify a curvy channel into circles and straight lines. Circles are chosen to 

represent the bend shape due to its simplicity and good match in most situations. The 

fitting process needs to be done automatically because it will be repeated thousands of 

times when a hydrograph is applied. Geometry study is a major task of this research. 

3.2.5 Risk analysis 

Due to the many uncertainties in the factors affecting meander migration, 

deterministic prediction is not very meaningful. Prediction in a probabilistic manner is a 

more appropriate approach. Like what we know in weather broadcasting, the occurrence 

of a certain event is associated with a probability. The engineers are allowed to choose a 

predicted migration distance based on a chosen confidence level. 

The most uncertain factor is what level of discharge a river will experience on a 

day in the future. It is reasonable to assume that the statistical properties of future flow 

are the same as the past. New future hydrographs can be generated based on these 

statistical properties. Each future hydrograph produces a different location for the future 

river. If tens of thousands of future hydrographs are applied, a 2-D distribution of the 

locations of the future river can be obtained. Thus an engineer can tell the probability of 

the river reaching this line and further is approximately 10%. 

The author is responsible for generating future hydrographs and calculating the 

new location of the channel corresponding to each hydrograph. Namgyu Park (2006) 

will make probabilistic predictions based on the new locations of the channel. 
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3.2.6 Develop the MEANDER program 

To apply the methods developed in this research, it’s impossible for practice 

engineers to calculate migration distance by hand. A user friendly computer program is 

necessary to assemble the products of all team members. The program includes the 

following components: 

1. Geometry study. This is a major effort for this program. The user can read in the 

coordinates of a river. The program automatically fits circles to each bend of the 

river. Radii of curvature and bend angles are returned accordingly. If a 

hydrograph is applied, the automatic fitting process is repeated for each time step. 

2. Input of soil properties. The EFA curves are input here. 

3. Input of water data. The following information goes here: discharge vs. velocity 

curve, discharge vs. water depth curve, existing hydrograph. The user can choose 

to do risk analysis. Then the risk analysis period, a hydrograph or Q100, Q500 

(100/500 year flood) are needed. 

4. Implementation of Hyperbolic Model. With the above information and the 

equations for τmax and Mmax ready, Hyperbolic Model is implemented. The code 

for risk analysis is also here. This process goes on behind the user interface. 

5. Input Plots. This part graphically checks whether the input data look correct. 

6. Output Plots. The migrated channels for a single hydrograph or risk analysis are 

presented here. 

 The program was written in Matlab and Visual C++. Matlab compiler was used 

so that the two parts can be integrated together.  
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CHAPTER IV 

FLUME TEST 

In the Pier Scour project (Briaud et al. 2003) around 100 flume tests were 

conducted. The data shed light on the process and mechanism of the scour of bridge 

piers. It wouldn’t have been possible to develop the SRICOS-EFA method without 

flume tests showing the trend, providing basis for the hypothesis of hyperbolic model, 

and furnishing data for the verification of the model. Just as flume test was important to 

the pier scour problem, it also plays a critical role in the prediction of meander migration. 

In the flume tests for Meander Project, the factors of soil, flow, and geometry were 

controlled and varied to study their influence on migration rate. 

Dozens of flume tests have been conducted at two labs of Texas A&M University. 

One was the old Hydro Lab where the test section was 9.0 meters by 1.5 meters. The 

other one was the new Coastal Engineering Lab on west campus where the test section 

was 27 meters by 13 meters, 25 times larger than the old one. The author prepared the 

setup and conducted the first 13 flume tests in the old Hydro Lab. So only this part will 

be described in detail. 

4.1 EXPERIMENTAL SETUP 

The setup in the old Hydro Lab consisted of these parts: flume, false bottom, soil 

tank, water circulation system, and data measurement equipments, as shown in Figure 

4.1. The flume was 1.5-meter wide and 3.0-meter deep. At the end of the flume was a 

reservoir of 3.9 meters in depth. In order to keep the setup of flume test for Pier Scour 

Project for possible future use, only 16.6 meters of the flume was allocated for this test.
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Figure 4.1 Experimental setup for flume test in the Old Hydro Lab 
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The function of false bottom was to reduce turbulence before water flowed into 

model channel and to avoid a sudden change of channel cross section on the entry and 

exit. The upstream false bottom had a ramp of 0.6 meters in length followed by a 2.0-

meter long transitional channel with varying cross section. The wooden channel 

connecting the transitional channel with the soil tank was also 2.0 meters long and had 

the same cross section as the sand channel (Figure 4.2). The tiny pool preceding it held 

water flowing from water tank 3.0 meters above. The strong turbulence in the pool was 

reduced on the transitional channel and finally almost disappeared before it reached the 

soil tank. The downstream false bottom had a 2.0-meter long channel of the same cross 

section as the model channel. A weir was attached to the end to control water level. 

 

 

 
Figure 4.2 Upstream false bottom 

 

 

The soil tank lay between the upstream false bottom and downstream false 

bottom. It was 9.0 meters long, 1.5 meters wide and 0.3 meters in depth. About 4.0 cubic 

meters of mortar sand was used to fill the tank. Channels of predetermined geometry 

were carved in the sand. Figure 4.3 shows a channel in preparation. Due to the limitation 

of space, the margin between the apex of a bend and the wall was only 0.25 meters. The 

test had to stop when the wall was reached. This situation was greatly improved when 
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the test was moved to the new Coastal Engineering Lab where the margin was about 1.4 

meters. 

 

 

 
Figure 4.3 Carving the channel 

 

 

Water circulation system consisted of a pump, a water tank, piping system, a 

channel, and a reservoir. The pump and the water tank were on the ground floor, while 

the soil tank was 3.0 meters below. Water was pumped from the reservoir into the tank 

and then flowed down to the channel. The reservoir was both the start and end point of 

the circulation. Diverting pipe was installed to get rid of extra pumping capacity. The 

water tank had a volume of 2.0 m3 (525 gallons).  Three pipes were connected to the 

tank, including the overflowing pipe which was about 2/3 of the tank’s height and kept 

water level at its top end. Several valves worked with the diverting pipe and overflowing 

pipe to adjust the flow. The 3-meter free drop provided enough momentum for the water 

to flow through the soil tank at required velocity. 
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Figure 4.4 A finished channel 

 

 

Figure 4.4 shows a prepared channel ready for water flow. Data measurements 

during the test included: the flow rate and flow velocity in the channel, the locations of 

the original and migrated channel banks, water depth, and cross sectional profile of 

water flow. The flow meter from the old EFA was used to measure the flow rate in the 

pipe. Before using the flow meter, a calibration was conducted. 

A carriage across the two walls of the flume ran back and forth over the test 

section. Acoustic Doppler Velocimeter (ADV), a computer, and a digital camera were 

installed on the carriage.  

4.2 MEASUREMENT OF VELOCITY AND GEOMETRY CHANGE 

Three methods have been used to measure flow velocity in the channel: 1. ADV 

(Figure 4.5); 2. Paper tracer (also called paper boat); 3. With flow rate given, measuring 

the area of the cross sectional profile of the flow. ADV can accurately measure the 

velocity at a certain point. But when water depth is less than 5 cm, noise becomes 

dominant, as can be seen in Figure 4.6 and Figure 4.7. This method was abandoned due 

to frequent occurrence of shallow water depth. Method 2 was to drop a piece of tiny 

paper scrap on water surface and measure its traveling speed. The result well matched 

visual observation of the flow. What was measured was mostly the maximum velocity of 
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the surface flow. This data showed a gradual change of velocity along the channel. The 

largest difference could be 10 cm/s. Cross sectional average velocity didn’t fluctuate that 

much along the channel. In real rivers, what can be obtained is also cross sectional 

average velocity. For these reasons, method 3 was preferred over method 2. 

 

 

 

U 

V 
    Flow Particle  

Response Distance 

        50mm 

 
Figure 4.5 Diagram of a 2D ADV (Li, 2002) 
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Figure 4.6 Sample ADV data from flume test 9 in the old Hydro Lab (Vx) 
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Figure 4.7 Sample ADV data from flume test 9 in the old Hydro Lab (Vy) 

 

 

Point Gauge (Li 2002) is a useful tool for measuring water depth with high 

precision. It is basically a circuit consisting of a stiff rod with wire attached and a needle 

probe fixed to one end, conductive wire, voltmeter, water and soil. The wire is tied to a 

tiny steel block which is placed on the ground. When the probe touches water surface, a 

circuit is formed. When the probe touches soil surface, water is bypassed in the circuit 

since soil has much larger conductivity. These changes are clearly shown on the 

voltmeter. Location of the needle probe can be recorded at the moment when the 

voltmeter reading changes. This equipment was frequently used in the Pier Scour Project 

and was also used in this flume test. A high precision measurement can be achieved for 

clay. It also produces a good result for sand for which the change in voltmeter reading is 

not as obvious as that for clay. When the flow is clear, a ruler can also measure water 

depth with a lower precision. Compared to a ruler, the point gauge needs a lot of manual 

adjustment which is time consuming. In measuring the cross section profile of the flow, 

one measurement was done every 5 cm across the channel. Due to the large amount of 

time a point gauge would need, a ruler was used instead. 
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A point gauge was very useful in measuring the slope of water surface and 

channel bed. The carriage holding the point gauge slid along two horizontal tracks on the 

ground (Appendix B). The tracks were not level by themselves. A level surface needed 

to be established as a reference plane. Before a test started, the channel was filled with 

static water the surface of which was treated as the reference plane. When the probe 

touched the water surface, what was measured could be considered as nominal vertical 

distance between a point on the track and the reference plane. To get the exact distance, 

the height of the carriage should be added. The nominal vertical distances of all the 

stations indicated how much the tracks were above or below a certain level plane at 

different points. If each station had the same nominal vertical distance, the tracks were 

on a level plane. Any point gauge reading relative to the tracks could be made relative to 

a level plane by subtracting corresponding nominal distance. Figure 4.8 shows the slope 

of water surface and channel bed at different times of the 11th flume test. Elevation 0.0 

was the reference level plane. The lines above reference plane were free water surfaces. 

The lines below were channel beds. 
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Figure 4.8 Measurement of the slope of water surface and channel bend 
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Photogrammetry is the technique of obtaining 2-D/3-D geometric information 

about physical objects by processing and taking measurements on photographic images. 

This technique was proposed for measuring the location of migrated banks. The idea was 

to obtain coordinates of the banks by analyzing digital pictures which were original 

records of the migrating channel at certain stages. A lot of efforts had been input into 

developing and applying this technique. Two major issues about this technique were: 

correction of distortion of pictures and automatic identification of boundaries. Distortion 

occurs when the camera doesn’t shoot perpendicular to the object surface, or the lighting 

is bad, or the atmosphere is not uniform, or the lens is defect. Lane et al. (2001) provided 

a solution to this problem. This error could be ignored in this test due to the high 

resolution and the way of shooting pictures. But automatic identification was a challenge. 

A free program from the internet called WinDIG can identify clear boundaries on raster 

images. In these flume tests, water was mostly clear. Sometimes it is even hard to tell the 

water soil interface with bare eyes, not mention relying on WinDIG to do the job. Figure 

4.9 is a typical case for which WinDIG cannot automatically identify the boundaries. 

Taking and analyzing pictures took more time than manual measurement with a tape 

measure. But the future of photogrammetry technique is promising when the boundaries 

can be made more distinguishable on site and more automation can be incorporated into 

the analyzing process. With a tape measure, normally one point was measured every 20 

cm along the reference wall. More points were inserted where there was a sudden change 

in geometry. 
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Figure 4.9 A picture for applying photogrammetry technique 

 

 

4.3 CALIBRATION OF THE FLOW METER 

The flow meter used in this test consisted of a flow sensor and a flow transmitter 

(Figure 4.10). The flow sensor was inserted into a 3-inch PVC pipe and the transmitter 

converted mechanical signal into electric signal. A digital voltmeter was connected with 

the transmitter to read the output voltage. A calibration curve relating voltage to flow 

rate was needed. The available commercial service on campus was for 4-inch pipe and 

the price was not very reasonable. It was decided that the calibration should be done in 

the lab with the original piping system.  

A calibration slot was installed between the pump and the water tank to hold the 

flow sensor (Figure 4.1). Flow rate was adjusted by tuning the diverting gate valve. A 

certain amount of water was pumped and flowed through the flow meter into the water 

tank. The voltmeter reading was taken every 5 seconds until the overflowing pipe started 

to receive water. Accurate measurement of the amount of water in the tank was critical 

to the calibration. Two methods were applied and four measurements were done to 

ensure accuracy. First method was to let tap water from the university water supply flow 

into the water tank where constant flow rate was assumed. The second method was to 

pump water out of the water tank to fill two buckets alternatively and count how many 



 

 

64

buckets of water there were. One measurement was discarded due to the big difference 

from other three. The results are shown in Table 4.1. The volume divided by the time 

needed to pump it was the average flow rate the flow meter experienced. 

 

 

                     
Figure 4.10 Flow meter: (a) Flow sensor; (b) Flow transmitter (source: www.dataindustrial.com) 

 

 
Table 4.1 Calibration of the flow meter 

 Tap water → Water Tank 
Water Tank → Buckets 

20226 ml/bucket, D=28.5 cm 

1st measurement 
t=58’38”,Q=485.5 ml/s (7.7GPM) 

vol=1708.7 liters (451.45 gallons) 

73 buckets+3.5 cm deep 

vol=1172.2 liters (Discarded) 

2nd 

measurement 

t=47’30”, Q=612.53 ml/s (9.7GPM) 

vol=1745.7 liters (461.2 gallons) 

84 buckets+9.0 cm deep 

vol=1704.7 liters (450.4 gallons) 

 

 

Figure 4.11 shows the voltage versus time curves for several flow rates. V0 

indicated the diverting valve was fully closed which meant the flow going through the 

(a)  (b) 
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flow meter was the largest. V5.5 meant the diverting valve was turned open by 5.5 

rounds. V12 indicated the diverting valve was fully open which meant the flow going 

through the flow meter was the smallest. The pumping capacity of the pump was 

considered as stable. The flow going through the flow was adjusted by the diverting 

valve. During the first minute, the voltmeter reading fluctuated a lot. This was because 

the pipe was not full yet and there existed some turbulence. The pipe coming into the 

water tank ended at 2/3 of the depth from the top. When the pipe opening was 

submerged in water, the rising water level started to reduce pumping capacity, which 

explained why the voltage steadily went down. For most flow rates, two measurements 

were taken and the results were very close. Although the voltage and the flow rate 

changed during the calibration, an average voltage can be reasonably used due to the 

linearity of the change. Twelve flow rates were calibrated and the calibration curve is 

shown in Figure 4.12. 
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Figure 4.11 Calibration of the flow meter--voltage versus time curve 
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Figure 4.12 Calibration of the flow meter--calibration curve 

 

 

The wooden channel on the false bottom had a fixed cross section. The velocity 

can be measured by using an ADV or a paper boat. With the area of cross section and 

flow velocity available, a flow rate was calculated which was used to verify the 

calibration curve. Table 4.2 shows a maximum difference of only 5.0% for this 

comparison.  
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Table 4.2 Verification of the calibration of flow meter 
Test 10                                 1GPM= 0.06309 liter/sec 1 liter/s= 15.850 GPM

Flow Rate by Flow Meter = 51.6 GPM = 3.255 Liter/Sec
Station -2 -1 0 Average
t2 Water Depth on False Bottom(cm) 9.0 8.8 8.1 8.6
t2 Section Area (m2) 0.0189 0.0181 0.0157 0.0175
t2 Velocity by Calculation (cm/s) 17.3 18.0 20.7 18.6
t2 Velocity by Paperboat (cm/s) 3.4 54.2 5.0
t3 Water Depth on False Bottom(cm) 8.9 8.5 8.2 8.5
t3 Section Area (m2) 0.0185 0.0171 0.0160 0.0172
t3 Velocity by Calculation (cm/s) 17.6 19.1 20.3 18.9
t3 Velocity by Paperboat (cm/s) 3.3 52.0 0.8
t4 Water Depth on False Bottom(cm) 8.8 8.5 8.3 8.5
t4 Section Area (m2) 0.01813 0.01707 0.016381 0.0172
t4 Velocity by Calculation (cm/s) 18.0 19.1 19.9 18.9
t4 Velocity by Paperboat (cm/s) 3.2 50.7 -1.8
Note:
1. Station -2, -1, 0 are located on upstream wooden channel; -2 means 2 meters in front of the soil tank;
2. Section Area: Cross sectional area of the flow;
3. Velocity by Calculation: The flow rate measured by the flow meter divided by Section Area;
4. Q=V*A: V=Velocity by Paperboat; A=Average of the Section Area of station -2, -1, 0.

Q=V*A
(liter/Sec)

Q=V*A
(GPM)

Difference
(%)

19.5

19.1

18.6

 
 

4.4 TEST PROCEDURE 

 After several flume tests have been run, a test procedure was developed for easy 

follow-up.  

 The procedure for the preparations is as follows: 

1. Refill sand, saturate the sand and level it; 

2. Submerge sand in water and measure with point gauge the elevation of the two 

tracks relative to the static water surface; 

3. Dewater the sand; 

4. Build the channel according to predetermined geometry; 

5. Use point gauge to measure the elevation of riverbed; If the riverbed is not level, 

reshape it; 

6. Prime the pump with water. 

 What follows is the procedure for initial measurement before the test: 

1. Use a tape measure to measure initial bank edges; 

2. Fill the channel with water and use point gauge to measure the elevation of the 

static water surface; 
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3. Take pictures of the channel; 

4. Open the valve and start the test; 

5. Adjust weir height. 

 The procedure for regular measurements when the test is running is as follows: 

1. Take pictures; 

2. Use a tape measure to measure the location of soil-water interface on the bank; 

3. Use point gauge to measure the slope of water surface; 

4. Use an ADV and/or a paper boat to measure velocity in soil tank; 

5. Use a paper boat to measure velocity in upstream and downstream wooden 

channels; 

6. Use a tape measure or a better tool to measure water depth; 

7. Use a tape measure or a better tool to measure the profile of cross sections every 

one meter. For each measurement, velocity at that station can be obtained. 

 The procedure for data reduction is as follows: 

1. Process images when it is desired. Input data of shifting bank into AutoCAD; 

Data should be input as soon as a measurement is done. If irregular migration 

occurs, caution should be taken about possible cause. Makeup measurement 

needs to be done if the situation requires. 

2. Input data of velocity, water surface elevation, and water depth etc. into Excel; 

3. Draw profile of water surface and channel bed elevation. Draw charts of velocity 

distribution along the channel. 

4. Mark migration direction and quantity in AutoCAD; calculate migration rate M&  

for each time interval; 

5. Calculate radius of curvature R for different bank edges using a MATLAB 

program and a AutoCAD VBA program; 

6. Measure water surface width W in AutoCAD and calculate R/W; 

7. Calculate Froude numbers Fr; 

8. Draw relation curves among M& , v, R/W, y, Fr; 
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4.5 SAMPLE TEST OUTPUT 

 The outcome of first a few tests was welcomed with eagerness and surprise. It 

hadn’t been expected that it would be so hard to maintain constant velocity throughout 

the channel. In fact, the velocity varied from upstream to downstream and from 

beginning to end. What the tester did was to control the amount of change so that the 

average velocity was representative of the whole flow condition. 

The flume tests run by the author were only part of the complete plan. The 

findings showed some characteristics of the test and provided information for future 

improvement. Better results have been obtained from tests conducted in the new Coastal 

Engineering Lab and will be described in detail in Namgyu Park and Po-Hung Yeh’s 

theses. 

Figure 4.13 shows the geometry change occurred in the 7th flume test. The test 

was stopped when the wall was reached. It can be seen that migration distance increased 

when it got closer to the exit. One explanation was that secondary flow became larger 

and larger along the channel. At the end of soil tank, the channel sharply widened. At the 

interface of soil channel and wooden channel, two materials with quite different strength 

were put together. A phenomenon similar to “stress concentration” occurred here. 

Erosion started first at the interface and worsened with time going. This part was 

strengthened later to reduce erosion. Graphs of all of the author’s flume tests in the old 

Hydro Lab are shown in Appendix A. Pictures of these tests are shown in Appeneix B. 
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Figure 4.13 Result of flume test 7 
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CHAPTER V 

THE APPLICATION OF SRICOS-EFA METHOD IN THE PREDICTION OF 

MEANDER MIGRATION 

The process of meander migration was far more complicated than pier scour so 

that the researchers didn’t consider the application of SRICOS-EFA method until 

consistent decreasing migration rate was observed in flume tests. Some data from the 

field also showed that there existed a maximum migration. It is worthwhile to explore 

the possibilities of applying the SRICOS-EFA method in the prediction of meander 

migration. The verification and parametric study done later on proved the application to 

be successful. 

5.1 THE EXISTENCE OF MAXIMUM MIGRATION Mmax 

It has been observed that in most flume tests the erosion rate becomes smaller 

and smaller and comes close to zero in the end, as shown in Figure 5.1. The migration M 

versus time t curve looks like a hyperbola. Two parameters can determine a hyperbolic 

curve. Curve fitting was performed to determine these two parameters for test data. The 

format of the hyperbolic equation was transformed so that a hyperbolic fitting was 

converted into a linear fitting, shown as follows: 

i max

i max

tM = 1 t+
M M

tM =
a + bt

t = a + bt
M

1 1M = M =
a b

,

&

&

 

Parameters a and b were obtained by doing least square fitting on a series of data 

points (M, t) from flume tests. The curve fitting process is shown in Table 5.1 and Figure 

5.1. “Difference” on the table is relative difference between the original and fitted 
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migration expressed as (Moriginal-Mfit)/Moriginal. It can be seen from this table the original 

data and fitted curves are very close. 

 

 
Table 5.1 Fitting hyperbolic curves for flume test data 

Test 7:  51.6 GPM  R/W=4
a b

0.7632 0.0595

t0 0 0 0
t1 4.2 4.13 1.0 4.1 0.4%
t2 14.2 8.69 1.6 8.8 1.6%
t3 22.8 11.02 2.1 10.8 -2.4%
t4 37.8 12.47 3.0 12.5 0.6%

Mmax (cm)= 16.8

Test 8:  51.6GPM R/W=8
a b

0.5528 0.0573

t0 0 0 0
t1 5.6 8.21 0.7 6.4 -21.9%
t2 15.2 10.14 1.5 10.7 5.3%
t3 24.6 11.22 2.2 12.5 11.7%
t4 50.9 15.15 3.4 14.7 -3.2%

Mmax (cm)= 17.5

Test 9:  26GPM R/W=4
a b

3.1396 0.0854

t0 0 0 0
t1 10.3 3.23 3.2 2.6 -20.7%
t2 20 3.85 5.2 4.1 7.2%
t3 32.8 4.86 6.7 5.5 13.6%
t4 43 6.17 7.0 6.3 2.3%
t5 66 7.95 8.3 7.5 -5.4%

Mmax (cm)= 11.7

Hyperbola
(cm)

Difference
(%)

t
(No.)

Time
(hours)

Migration
(cm)

t/M
(hour/cm)

Hyperbola
(cm)

Difference
(%)

T9-1R 0.3 (cm/hour)

t
(No.)

Time
(hours)

Migration
(cm)

t/M
(hour/cm)

Hyperbola
(cm)

Difference
(%)

T8-1R 1.8 (cm/hour)

t
(No.)

Time
(hours)

Migration
(cm)

t/M
(hour/cm)

T7-1R 1.3 (cm/hour)=iM&

=iM&

=iM&
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Figure 5.1 Fitting hyperbolic curves for flume test data 

 

 

Data from the field also shows similar trend. Table 5.2 and Figure 5.2 show the original 

data and curve fitting process for Des Moines River. 

 

 
Table 5.2 Fitting hyperbolic curve for Des Moines River 

a b
0.0603 0.0009

t0 0 0 0
t1 3 57 0.05 47.6 -16.5%
t2 19 243 0.08 245.5 1.0%
t3 30 314 0.10 343.6 9.4%
t4 43 421 0.10 434.3
t5 58 514 0.11 515.6 0.3%
t6 70 558 0.13 567.7
t7 80 639 0.13 604.7
t8 87 660 0.13 627.7 -4.9%

t0=1880, t8=1967 Mmax (m)= 1111.1

16.6 (m/year)

Hyperbola
(m)

Difference
(%)

t
(No.)

Time
(Year)

Migration
(m)

t/M
(year/m)

=iM&
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Figure 5.2 Fitting hyperbolic curve for Des Moines River 

 

5.2 DEVELOPING EQUATIONS FOR Mmax 

In the Pier Scour project, the equation for maximum scour depth zmax was 

developed from flume test data. A bunch of parameters were involved with the 

development of zmax. But it was found that the most important one is Reynolds number. 

Reynolds number is a function of velocity and pier diameter. The same type of work is 

also being done for the prediction of meander migration but with much more complexity. 

Po-Hung Yeh is developing Mmax equations for sand. Namgyu Park will develop Mmax 

equations for clay. The final equations can be found in their Ph.D. dissertations 

respectively which are supposed to come out in 2006.  

A set of preliminary Mmax equations for sand has been developed by Po-Hung 

Yeh based on regression of flume test data. Further improvement is still underway. The 

general form can be expressed as: 

max ( , , , )= φ θ
M Rf Fr
W W

 

Where, 

Mmax: Maximum migration distance; 

W: Average channel width; 

R: Radius of curvature of the channel; 

φ: Bend angle; 
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θ: Location angle starting from inflection point to the 

point of interest; 

Fr: =
gy
v , Froude number; 

v: Velocity of flow; 

g: Acceleration of gravity; 

y: Water depth. 

5.3 DEVELOPING EQUATIONS FOR τmax 

Before explaining maximum shear stress τmax, it is important to explain critical 

shear stress τc. Critical shear stress is a stress level at which soil starts to erode. Below 

this shear stress soil particles are not moved by water, above this shear stress soil 

particles are moved away and a certain erosion rate is established. The velocity that 

produces critical shear stress is called critical velocity. A method to test critical velocity 

is to observe soil erosion condition under different velocity in a flume. The velocity that 

causes soil start to erode is critical velocity. This method is good for sand. For clay, the 

erosion is hardly noticeable since the particle size is so tiny. In EFA test, critical shear 

stress is defined as corresponding to a standardized erosion rate of 1 mm/hr. If shear 

stress is smaller than critical shear stress, it is considered no erosion occurs. 

In Pier Scour project, maximum shear stress τmax is the maximum shear stress 

that occurs on soil-water interface when erosion starts (Chen, H.-C., 2002). With erosion 

progressing, scour depth increases gradually and shear stress decreases accordingly until 

it reaches critical shear stress τc. Since it is not convenient to measure shear stress on the 

interface, numerical simulation is needed to develop the τmax equation. Numerical 

simulation can be considered as a computer version of “flume test”. A variety of 

parameters can be chosen and varied at small steps. Many more cases can be conducted 

than in actual flume tests. For pier scour, data reduction showed that the most influential 

factors that affect τmax are velocity and Reynolds number. 



 

 

76

The same concept and procedure can be applied to the prediction of meander 

migration. The maximum shear stress corresponds to a certain flow condition, soil 

property, and channel geometry. Numerical simulation calculates the maximum shear 

stress along the channel under different flow and geometry conditions. The influence of 

these factors on maximum shear stress is quantitatively analyzed and an empirical 

formula is thus developed. 

 

 

 
Figure 5.3 R/W=4 φ=120° 

 

 

Figure 5.3 shows the geometry of a typical model channel in which R/W=4, 

φ=120°. There are seven bends between two straight segments. The bend angle for the 

first one and the last one is only 60°. By varying these parameters, a number of cases 

have been simulated numerically.  

 Figure 5.4 is the result of a simulation case where R/W=4 and φ=180°. The shear 

stress near the inlet is very high since the inflow is assumed to be uniform without 

boundary layer. The shear stress on the first and last bend is quite different from that on 

the bends in the middle. This is because they are close to the inlet or the exit and the 

bends in the middle are least affected by boundary conditions. The left bank and the 

right bank have the same shear stress distribution except that there is a phase difference 

of φ angle. Shear stress distribution on a bend occurs almost periodically. τmax on the 

graph is the maximum shear stress on the cross section of a bank. τavg is depth average 

shear stress. Both τmax and τavg take similar shape.  The line segments corresponding to 

θ/φ=[0 1] indicate the location of occurrence of a shear stress on a bend. θ denotes the 

relative location of a point on the bend. It is the angle between the inflection point and 
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the point of interest. When θ=0, it indicates the inflection point. When θ=φ/2, it indicates 

the middle point of the bend. It is observed from Figure 5.4 and other graphs, the peaks 

of τmax and τavg curves often occur at a location close to θ/φ=1. A peak means the 

maximum τmax of a bend, also called τmax_max. 
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Figure 5.4 Simulated shear stress along a channel 

 

 

 The multiple regression involves variables v, R/W, φ, and θ. From dimensional 

analysis and past experience, it can be reasonably assumed that the non-dimensionalized 

shear stress τ/(ρv2) is independent of velocity. So the term τ/(ρv2) is a function of R/W,  

φ and θ. When the influence of one parameter is being studied, others are kept constant. 

The whole regression process can be divided into these steps: 

1. Find the relationship between τmax_max and R/W, τmax_max/(ρv2)=f1(R/W); 

2. Find the relationship between τmax_max and φ, τmax_max/(ρv2)=f2(φ); 
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3. Find the relationship between the relative location of occurrence of τmax_max and 

R/W, θmax/φ=f3(R/W); 

4. Find the relationship between the relative location of occurrence of τmax_max and φ, 

θmax/φ=f4(φ); 

5. Fit the shear stress distribution of a bend, τmax/(ρv2)=f5(θ/φ, θmax/φ); 

6. Get the final equation: τmax/(ρv2)=f1(R/W)× f2(φ)× f5(θ/φ, f3× f4). 

 Figure 5.5 shows the relationship between τmax_max and R/W at a constant φ angle 

of 180° and a velocity of 0.2 m/s. A curve fitting was done for the maximum shear stress. 

When R/W ≥ 2, the fitted and the original curves are very close. When R/W<2, the fitted 

curve is far off the original data. As a matter of fact, geometry of R/W<2 doesn’t often 

happen in nature. The expression of the fitted curve is: 

max_ max
12

1( )
400( )

τ
= =

ρ
Rf Rv W

W

 

 Figure 5.6 shows the relationship between τmax_max and φ angle at a constant 

radius to width ratio of 4 and a velocity of 0.2 m/s. A parabolic curve can be fitted to the 

data. Since the difference between the maximum and minimum τmax_max values is about 

25%, a straight line was used instead. So τmax_max was treated as independent of φ. The 

expression of function f2 is: f2(φ)=1.  
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Non-dimensionalized shear stress vs. R/W
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Figure 5.5 Influence of R/W 
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Figure 5.6 Influence of φ angle 
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The shear stress distribution of one bend mostly has similar shapes when the 

influential factors change. It is possible and desirable to find an analytical curve which 

fits the distribution well. Based on comparison of different type of analytical curves, the 

probability density function (PDF) of extreme value distribution is found to be a good 

match for the calculated shear stress. The expression is: 
( )( ) ( )1( , )

−µ
σ

−µ
−σ= µ σ =

σ

xx
ey f x e e  

Where, µ is the location parameter and σ is the scale parameter. The indicator of relative 

location on the bend is x=θ/φ. When x=µ, y reaches maximum value. σ determines the 

maximum value and the degree of spreading of the curve. Figure 5.7 displays an 

example of extreme value distribution with µ=1, and σ=0.37.  
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Figure 5.7 Extreme value distribution 
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 Theoretically σ should also be a function of R/W and φ angle. When σ=0.37 the 

maximum value is close to 1 and the degree of spreading is similar to most cases of 

shear stress distribution. A constant value of σ=0.37 is used for the purpose of simplicity 

while necessary precision is maintained. Figure 5.8 shows the calculated shear stress and 

fitted curves. A good fitting can be observed. The shear stress distribution equation can 

be expressed as: 
( )( ) ( )max

5

max

1( , )

0.37, ,

−µ
σ

−µ
−σθθ

=
φ φ σ

θ θ
σ = µ = =

φ φ
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ef e e
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Figure 5.8 Simulated shear stress and fitted curves 
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 Next step is to determine the location parameter µ which is a function of R/W 

and φ angle. The influence of R/W on location parameter µ is shown in Figure 5.9. 

θmax/φ indicates relative location of the peak values. “tao_max” denotes the original data. 

For the original data, when there is a plateau or there are several peak values of similar 

magnitude on the same bend, the location of the peak value of the average shear stress 

curve is chosen. Curve fitting is a type of simplification. The fitted curve will stand for 

the actual data in the prediction of meander migration. The relative location of the peak 

values of fitted curves is of greater interest. The relationship between this relative 

location and R/W is indicated by “Fitted” in Figure 5.9. The θmax/φ value corresponds to 

the peak of the extreme value distribution in Figure 5.8. A straight line is fitted with an 

R2=0.9156. The expression for the location parameter is: 

max
3 ( ) 0.047( ) 1.05θ

µ = = = − +
φ

R Rf
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Figure 5.9 Influence of R/W on location parameter 
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 Figure 5.10 shows the relationship between θmax/φ and φ angle. The curve for the 

original data (“tao_max”) is obtained with the same method as shown in Figure 5.9. The 

relative location for the peaks of the fitted extreme value distribution changes very little 

when φ angle is less than 120°. When φ angle is larger than or equal to 120°, it doesn’t 

change at all. Thus the location parameter is considered as independent of  φ angle. The 

expression of function f4 is f4(φ)=1. 
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Figure 5.10 Influence of φ angle on location parameter 

 

 

 In numerical simulation, the bank is considered as perfectly smooth. To account 

for the roughness in reality, a constant coefficient of c1=8 is used. It was also found a 

geometry dependent coefficient c2 will improve the prediction. Both c1 and c2 are 

determined by verification study. Details are discussed in Chapter IX. 

The last step is to combine the individual relationships and develop unified 

equation for τmax/(ρv2) as a function of R/W, φ and θ. The combined form is: 

max
1 2 5 3 42 ( ) ( ) ( , )τ θ

= × φ × ×
ρ φ

Rf f f f f
v W

 

By plugging in corresponding equations and the final equation is expressed as: 
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The regression is done on a limited number of simulation cases. A systematic matrix will 

generate maximum shear stress under all possible combination of conditions. Extreme 

value distribution is a good match for the shear stress distributions. In some cases the 

difference between the original data and the fitted curve is quite big. A better fitting is 

desired. In general this is the first version of τmax equation. Further improvement might 

be done in the near future. 

5.4 APPLICATION OF THE SRICOS-EFA METHOD 

When the equations for Mmax, τmax are ready, SRICOS-EFA method can be 

applied with reference to the steps implemented in Pier Scour project. The major 

difference in the implementation is that for pier scour velocity is the only changing 

parameter, whereas for meander migration changing parameters also include channel 

geometry and water depth. If the velocity is constant, there is only one scour depth z 

versus time t curve for the prediction of pier scour. Scour depth after a certain time can 

be calculated in one step. For the prediction of meander migration even though velocity 

is constant, the geometry and possibly water depth change with time. These parameters 

need to be updated after each time step. A long time constant velocity needs to be 

divided into a number of time steps. The migration distance of each step is accumulated 

which is similar to using a hydrograph. 

A channel curve is simplified into circles and straight lines for easy analysis. The 

bends and the parts with reasonably large curvature are fitted with circles. The rest are 
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treated as line segments. There might be tens of thousands of time steps for one 

hydrograph. Manual fitting would make a practical solution not possible. A huge amount 

of efforts have been put into developing automatic fitting techniques and a computer 

program. The program can’t give perfect solutions to all cases but it can give reasonable 

solutions to many cases. 

Water depth changes with discharge or velocity. Even there exists field data for 

water depth, it may be for only one location. The prediction literally needs the water 

depth of each time step for each point on the channel. It would be too complicated to 

obtain all the true field data. Assumptions are made to simplify the problem. The cross 

section of the channel is assumed to be trapezoidal and remain the same in the migration 

process. The average velocity is treated as being the same throughout the channel. With 

these assumptions, the discharge or velocity versus water depth curve can be developed 

by running HEC-RAS. Then all the needed water depth can be provided numerically. 

Aerial photographs are the source of channel geometry. A hardcopy photograph 

can be converted into a raster image file by a scanner. WinDIG, the free program 

mentioned before, can digitize the raster images and obtain coordinates of the rive banks. 

  With all these issues being addressed, the implementation of the Hyperbolic Model can 

be carried out based on the procedure described below, which is also an adapted version 

of the SRICOS-EFA method: 

1. Collect Shelby tube samples near the bends of interest (sampling direction should 

be perpendicular to the surface of bank slope); 

2. Test them in the EFA to obtain the erosion rate M&  (mm/hr) versus hydraulic 

shear stress τ  (N/m²) curve; 

3. Prepare hydrograph and coordinates of channel curves; 

4. Choose a time step ti; 

5. Fit circles and calculating R, φ, and θ; 

6. Choose a point on the channel Pj; 

7. Calculate Mmax and τmax; 
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8. Read the initial erosion rate iM&  (mm/hr) corresponding to maxτ  on the M&  vs. τ  

curve; 

9. Construct the migration distance M versus time t curve using a hyperbolic model; 

10. Calculate equivalent time te; 

11. Calculate incremental migration distance of this point for this time step; 

12. Calculate the accumulated migration distance and go to step 6 for next point; 

13. Go to step 4 for next time step when the calculation of the last point is finished; 

14. Prepare graphic output after the last time step. 
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CHAPTER VI 

GEOMETRY STUDY 

 The purpose of geometry study is to automatically simplify a curvy channel into 

circles and straight lines. The geometry of a river plays an important role on its 

migration. Circles are chosen to represent the bend shape due to its simplicity and its 

claimed effectiveness in literature. The fitting process needs to be done automatically 

because the fitting process will be repeated thousands of times when a hydrograph is 

applied. The geometry study consists of these steps:  

1. Develop a method to fit a circle for a given group of points;  

2. Calculate radius of curvature of each point on the curve;  

3. Identify bends for which circles should be fitted;  

4. Find the best fit circle at a certain bend;  

5. Calculate bend angle. 

6.1 FIT A CIRCLE FOR A GIVEN GROUP OF POINTS 

6.1.1 A traditional method 

The equation of a circle is: 
2 2 2

c c(x x ) (y y ) R− + − =                                             (6.1) 

To fit a circle for n given points, a traditional least square method would tend to 

minimize one of the following error terms: 
n

* 2
1 i

i 1
E (R R )

=

= −∑                                                (6.2) 

n
*

2 i
i 1

E R R
=

= −∑                                                  (6.3) 

n
2 *2

3 i
i 1

E R R
=

= −∑                                                (6.4) 

In these terms, xc, yc, R* are unknowns and 2 2
i i c i cR (x x ) (y y )= − + − . To achieve the 

minimum value of an error term, the following equations must be solved: 
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Error tern E1 gives the simplest form among the three, as shown in what follows: 
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                       (6.6) 

Since there are three unknowns and three equations, these equations are 

theoretically solvable. This method is called a direct solution (Moura and Kitney 1991). 

The advantage of this method is that it is straightforward. The disadvantage is that it is 

not easy to obtain a solution and the computation is time consuming. 

6.1.2 Apply the optimization toolbox of Matlab 

The search of the best circle can also be treated as an optimization problem. The 

target is to find a circle which gives minimum error. The object function can be any one 

of Equation from (6.2) to (6.4). Equation (6.2) was proved to be the most efficient. The 

optimization toolbox of Matlab has a good solution. Function x = fminunc(fun, 

x0,options) was used to find a minimum of an unconstrained multivariable function “fun” 

whose variables were valid in the range of (-∞, +∞). x0 here indicates the coordinates of 

the starting point for searching the center of the circle. No searching range needs to be 

specified. Function x = fmincon(fun,x0,A,b,Aeq,Beq,lb,ub) was used to find a minimum 

of a constrained multivariable function “fun”. x0 has the same meaning as above. The 

ranges or constraints of the variables (lb=lower boundary, ub=upper boundary) need to be 

set which also consist a searching range. Very precise solutions have been given by these 

two functions. They can also fit a very large circle to a group of points in a straight line, 

as shown in Figure 6.1. Straight line segments are not unusual in river banks. It is not 
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surprising that a regular program would collapse in trying to fit a circle to a straight line. 

Matlab can handle this problem very well. The difference between the solutions of these 

two functions is tiny. The advantage of this approach is Matlab is widely available and no 

complicated programming is needed. However, it is not fast enough. These functions 

were used until a much better method was found. 
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Figure 6.1 Using Matlab to fit a circle for a straight line 

 

 

6.1.3 Linear least square fitting 

Rewrite the equation of a circle Eqn. (6.1) in this form: 
2 2 2 2 2

c c c c2x x 2y y R x y x y+ + − − = +                              (6.7) 

Let a=2xc, b=2yc, 2 2 2
c cc R x y= − − , z=x2+y2, the equation can be simplified as: 

ax+by+c=z                                                       (6.8) 

Plug in the coordinates of the n given points: 
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1 1 1

2 2 2
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ax by c z
ax by c z

ax by c z
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⎪ + + ≈⎪
⎨
⎪
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MMMMMMMMMMMMMMMMMMMMMM
                                              (6.9) 

There are three unknowns and n equations. This is a typical linear least square or 

linear optimization problem. The equations can be expressed in a matrix form: 

1 1 1

2 2 2

n n n

x y 1 z
a

x y 1 z
b
c

x y 1 z

⎡ ⎤ ⎧ ⎫
⎧ ⎫⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎢ ⎥ ≈⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎪ ⎪⎣ ⎦ ⎩ ⎭

M M M M
, or                                    (6.10) 

XA≈Z                                                        (6.11) 

The sign “≈” indicates it is not an exact linear equation set but an optimization 

problem. A typical way to solve this problem is firstly time the transpose of matrix X to 

the left side of XA and Z. Then XTX is a 3 by 3 matrix, and XTZ is a 3 by 1 vector. Thus 

A={a, b, c}T can be solved: 

T

T

a
X ZA b
X X

c

⎧ ⎫
⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎩ ⎭

                                                (6.12) 

Once we solve for a, b, c, we can get xc=a/2, yc=b/2, 2 2R c (a b ) / 4= + + . This 

method is used in the program. 

A straightforward way to solve this linear optimization problem is to explicitly 

express the error terms and to find the minimum sum square. 

1 1 1 1

2 2 2 2

n n n n

ax by c z e
ax by c z e

ax by c z e

+ + = +⎧
⎪ + + = +⎪
⎨
⎪
⎪ + + = +⎩

MMMMMMMMMMMMMMMMMMMMMMMMMMM
, or                                            (6.13) 

e=XA-Z= T
1 2 n[e ,e , e ]L                                                 (6.14) 

T denotes matrix transpose operation. The sum square of the error terms is expressed as: 
n n

2 2
i i i i

i 1 i 1
E e (ax by c z )

= =

= = + + −∑ ∑                                       (6.15) 
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Parameters a, b and c will be obtained by solving equations E E E0, 0, 0
a b c

∂ ∂ ∂
= = =

∂ ∂ ∂
. A 

simpler solution can be achieved by applying Gauss’s principal of least squares which 

states that the parameters A = [a b c]T that make term (6.15) reach minimum value can 

also make this term reach minimum value: 

J= 1
2

eTe                                                          (6.16) 

Substituting Equation (6.14) for e into Equation (6.16) yields: 

J = J(A) = 1
2

(ATXT(XA)-2ZTXA+ZTZ)                                  (6.17) 

In Equation (6.17), ZTXA= (ZTXA)T =ATXTZ, because they are scalars. If there exist the 

required parameters A = [a b c]T, these requirements need to be satisfied: 

1. Necessary condition 

T T
A

J
a
JJ X XA X Z 0
b
J
c

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥
∂⎢ ⎥∇ = = − =⎢ ⎥∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

                                  (6.18) 

2. Sufficient condition 
2

2 T
A T

JJ X X
A A
∂

∇ = =
∂ ∂

 must be positive definite              (6.19) 

AJ∇  is the Jacobian and 2
AJ∇  is the Hessian. Any matrix B which satisfies 

 zTBz ≥ 0                                                          (6.20) 

for all z ≠ 0 is called positive semi-definite. Let h = Xz be a column vector. It can be 

easily obtained the scalar h2 = hTh = zTXTXz ≥ 0. So XTX is always positive semi-

definite. It becomes positive definite when its n column vectors are independent which is 

not satisfied here. This explains why circles can’t be fit for some cases, say points are on 

a straight line. 

From the necessary condition, we can obtain the solution 

A = (XTX)-1XTZ                                                            (6.21) 
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which is exactly the same as solution (6.12). The above clearly shows the correctness of 

the simply but efficient method used in the program and also explains why the method 

fails for some cases. When condition like this occurs, the program was designed to report 

error and go on the next fitting. 

In deriving the equations listed above, the following matrix calculus 

differentiation rules (Crassidis and Junkins, 2004) were used: 

(Ax) A
x
∂

=
∂

                                                                       (6.22) 

T T(a Ab) ab
A
∂

=
∂

                                                                 (6.23) 

T T T(a A b) ba
A
∂

=
∂

                                                               (6.24) 

T T T T(Ax b) C(Dx e) A C(Dx e) D C (Ax b)
x
∂

+ + = + + +
∂

   (6.25) 

T T(x Cx) (C C )x
x
∂

= +
∂

                                                     (6.26) 

6.2 CALCULATE RADIUS OF CURVATURE OF EACH POINT ON A CURVE 

6.2.1 Obtaining coordinates of the banks 

The channel curves come from digitized aerial photos and maps. Coordinates are 

obtained by using the free program WinDIG to digitize the scanned photos and maps. 

These scanned files are the best clue one can get about the geometry of the channel. The 

user is encouraged to capture detailed geometry feature retained on the electronic image 

files. The spacing of the digitized points is often uneven and the curves are not smooth. A 

zigzag can have a big impact on the curvature of the points around it which may cause 

fluctuation of curvature in that region. This problem is partially solved by evenly 

distributing the points. Figure 6.2 shows the smoothing effect.  

The principal of distribution is to maintain a constant total length of the original 

line segments between two adjacent new points. First calculate total length (L0) of the 

original curve. Then determine the number of segments (N) the original curve will be 

divided into. Start from the first point and travel along the original curve. Stop at distance 
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L0/N and record the coordinates of this point which is the second point of the new curve. 

Then travel a distance of L0/N again and the third point will be obtained. Repeat this 

procedure until the end of the original curve. Since L0/N is the length along the original 

curve and may be the summation of several segments, it is not the spacing of the new 

curve in normal cases. 
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Figure 6.2 Comparison between original curve and smoothed curve 

 

 

6.2.2 Equations 

For continuous curve, the equations for radius of curvature and curvature are: 

2 3

2 3

(1 y ' ) 1 y"R ,c
y" R (1 y ' )

+
= = =

+
                                     (6.27) 

Where, 

R: Radius of curvature 

c: Curvature 

y: Ordinate of the curve 
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y ' : dy
dx

 

y":
2

2

d y
dx

 

In civil engineering, when the deflection of a structural element is very small, y '  

is close to zero. Thus radius of curvature and curvature can be reasonably approximated 

as: 

1 1R ,c y"
y" R

= = =                                                  (6.28) 

For a bank curve consisting of discrete points, these simplified equations do not 

apply because the first derivative y '  can’t be ignored and sometimes may reach infinity.  

6.2.3 Curve fitting and important parameters 

The discrete points can be fitted with an analytical curve whose curvature is 

treated as that of the corresponding points. A long river bank can be fitted with one high 

order parabolic curve. The fitting error can be small and an analytical expression of 

curvature is available for the whole curve. Figure 6.3 shows an initial bank of flume test 8 

and two fitted parabolic curves of 5th and 7th orders. It is obvious that the higher the order 

is, the closer the fitting will be. However, if the order is higher than 7, the improvement 

in closeness is hardly noticeable. This can also be seen in Figure 6.4 which shows how 

the average fitting error goes down with the increase of fitting order. But the decreasing 

trend almost stops after order 7. 
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Figure 6.3 Comparison of parabolic fittings of different orders 
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Figure 6.4 Comparison of errors of polynomial fitting of different orders 
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The idea of using one analytical expression to describe a long channel is tempting. 

If this goal was achieved, most geometric features of a curve would have been obtained 

and the task of geometry study can be considered as completed. Figure 6.5 displays a 

troublesome picture which may turn down this hope. Several orders of parabolic fittings 

were done to a perfect arc. Although the closeness increases with the order, the 

fluctuation of radius of curvature increases with the order too. According to the graph, 

quadratic fitting (2nd order) gives the most stable and closest result. More data points are 

needed for a high order parabolic fitting than a quadratic fitting. It means quadratic fitting 

focuses more on local curvature which is more suitable to a point in the middle. When the 

channel curve is not a single-value function of x coordinate, it has to be broken into 

several segments in order to be fitted with parabolic curves.  Since what is needed is 

curvature of each point and high order parabolic fitting doesn’t provide good result, 

quadratic fitting is chosen for the calculation. 
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Figure 6.5 Comparison of Rs of different fitting orders 
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A single point alone doesn’t have curvature. Its curvature is determined by a 

segment that is extended from the point in both directions by a certain length (from point 

A to point B in Figure 6.2). A quadratic curve is fitted to this chosen segment. The 

curvature of the corresponding point on the fitted curve is treated as that of the point of 

interest. This process is repeated for each point on the bank. 

Before fitting a quadratic curve, two parameters need to be determined. The first 

one is the spacing used to distribute the points. The other one is the length of the curve 

segment for which a quadratic curve is to be fitted, called segment length. The curvature 

of a river is often related to its average width. These parameters are non-dimensionalized 

by river width, which can make them independent of a certain case. The spacing 

coefficient (spacing/width) and segment length coefficient (segment length/width) are 

therefore used. 

With spacing and segment length ready, the number of points “m” contained in 

that segment is determined accordingly. If m is not an odd number, use m+1 in the 

program.  One segment is defined for each point with (m-1)/2 points to the left and (m-

1)/2 points to the right. For the first and last (m-1)/2 points, this fitting cannot be carried 

out. Normally there is a straight segment at the beginning and in the end. The nearest 

available radius of curvature can be reasonably assigned to these points. Then each point 

has a radius of curvature and a curve of the ratio of radius of curvature to channel width 

(R/W) versus channel lengthwise distance can be drawn. 

It can be imagined that large spacing in redistribution can cause the curve to lose 

local curvature, while very small spacing hasn’t been found to cause any problem except 

that it takes more computing time. In cases where an optimum spacing can not be 

determined, it would be on the conservative side to pick a small number. In here, 0.1 

times of width (0.1W) is suggested if no experience is available. 

Segment length directly affects the quality of the calculated curvature. If it is too 

short, local curvature dominates, which is sometimes drastically different from the 

curvature of a reasonably larger range. If it is too long, global curvature dominates and 

some local curvature may be lost. Then the radius of curvature of an inflection point 

might be only several times larger than that of other points, although theoretically it 

should be infinity. From the discussion followed we’ll see that the major function of R/W 
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vs. Channel Length curve is to help identify the approximate range of a bend. A good 

choice of segment length should make the bends stand out on the R/W curve. 

The case of Guadalupe River, Texas is used for demonstration. The coordinates of 

a section of the river is processed by using the procedures described above. The 

corresponding average river width is 37.7 meters. As it can be seen in Figure 6.6, when 

segment length is too short (1.1W), it is hard to tell where the bends are. Figure 6.7 is the 

result of using an appropriate segment length 4.0W. Figure 6.8 shows when segment 

length is very long (12.1W) the R/W vs. Channel Length curve is much smoother and 

flatter. But the individual bends are still recognizable. Comparing Figure 6.7 with the 

original bank geometry shown in the last figure of this chapter, it can be observed that 

each significant bend is represented by an arc-shaped curve segment of different size. 

Therefore, a relatively large segment length can be chosen when not enough knowledge 

is available for making a decision. In here, 4.0W is suggested. 

In these figures, MBL stands for minimum bend length which means only when 

the identified bend is longer than MBL will it be considered as a bend. 

 

 

 
Figure 6.6 R/W vs. Channel length, segment length=1.1W 
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Figure 6.7 R/W vs. Channel length, segment length=4.0W 

 

 

 
Figure 6.8 R/W vs. Channel length, segment length=12.1W 
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6.3 IDENTIFY BENDS FOR WHICH CIRCLES WILL BE FITTED 

It is so easy for human eyes to tell whether a curve segment is curvy or straight. A 

computer can’t “see” things this way. Mathematical features about the curve need to be 

discovered and criteria need to be developed for the computer to make a judgment based 

on its simple logic.  

 The R/W vs. Channel Length curve shows clear features which are related to the 

bends on the original bank. It is desired to fit circles for those bends. The choice of the 

portion of a bend for fitting the circle is critical. Before pinpointing the exact segments 

for fitting those circles, the approximate ranges of the bell-shaped curves need to be 

identified first. Three methods are tried. 

6.3.1 Manual method with AutoCAD 

The user directly specifies the region of a bend in AutoCAD. In the early stage of 

developing this method, it was thought the bank needed to be fitted with circles only once 

in the beginning. Later the research team decided to do curve fitting for each time step to 

take into account the importance of geometry. This method was abandoned because the 

work needs to be repeated thousands of times for a long hydrograph. A human being is 

not capable of this. 

6.3.2 Criterion line method 

 This method was recommended by Professor Hamn-Ching Chen. The R vs. length 

curve for an arc is a horizontal line. When a bend on a bank can be reasonably fitted with 

a circle, its radius of curvature vs. length curve is smooth and of bell shape. The closer 

the bend is to an arc, the closer the bell-shaped curve is to a horizontal line. Therefore, if 

a curve segment is found to be of bell shape facing up or down, it most likely corresponds 

to an obvious bend on the river bank.  
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Figure 6.9 A case showing sensitivity of criterion lines 

 

 

 This method uses three criterion lines (six symmetric lines as a matter of fact) to 

identify the bell-shaped segments on the R/W vs. length curve. The curve segment in 

Figure 6.9 indicates a bend to be identified. As shown in Figure 6.10, six lines of 

R/W=±3, ±5, ±8 were drawn on the graph. In the first loop, all continuous segments 

between R/W=0 and R/W=±3 were identified. These segments should be of bell shape 

and indicate the existence of bends. These segments were marked so that they will not be 

looked at again in the next loop. In the second loop, the continuous segments left between 

R/W=0 and R/W=±5 were identified. This procedure was repeated for R/W=±8. For each 

loop there might be new bends identified. The outcome is sometimes very sensitive to the 

choice of these criterion lines. Figure 6.9 shows a tiny change in the criterion line could 

lead to quite different result. What is shown is the R/W vs. length curve of a well 

behaved bend. But the criterion line of R/W=-2 divides it into two arcs, which would 

cause a problem. If R/W=-2.2, this problem can be avoided. So far no method has been 

developed to decide on the appropriate numbers. In order to guarantee the inclusion of 



 102

the desired boundary, the range should be extended by a certain percentage of the bend 

length. 

 

 

 
Figure 6.10 Criterion line method 

 

 

6.3.3 Second derivative method 

This method identifies the bends by using the curve d2R/ds2 vs. channel length, as 

shown in Figure 6.11. A continuous segment very close to x axis is considered as a bend. 

The logic behind this method is that for each bend, the R vs. channel length curve 

segment is of parabolic shape (bell shape). In parabolic equation y=ax2+bx+c, ‘a’ value is 

extremely small for these curves. So d2R/ds2 value is close to zero. The range obtained 

this way also needs to be extended. When two bends of different radius are right next to 

each other, this method will fail because there is almost no change in d2R/ds2 at the 

intersection point. 
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Figure 6.11 The second derivative of R vs. channel length 

 

 

6.3.4 Change of sign method 

 The initial channel of flume tests consists of tangent perfect arcs, while the 

migrated channels can be fitted with tangent arcs. On the R/W versus channel length 

curve, large values occur once or twice around the inflection point. The change of sign 

can clearly indicate the separation of bends. This method is applicable only when the 

bends are tangent to each other. 

All methods can produce good results for the purpose of this step. Criterion line 

method is suggested for its efficiency. 

The identified range is a two-point boundary. A circle can be fitted to these 

points. But there is no guarantee that this circle fits the bend best. Further work is needed 

to pick the best one. 
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6.4 AT A CERTAIN BEND FIND THE BEST FIT CIRCLE 

6.4.1 Producing a set of circles for making a choice 

For a certain bend, dozens of circles can be fitted by using different curve 

segments. Among them, only one or a few circles really fit the bend. Any of these good 

circles is called the best fit circle. The arc segment of a best fit circle is supposed to 

ideally represent the geometry of the bend. To achieve this goal, one should be able to 

know which circle is the best before asking the computer to make the same decision. Due 

to the indistinct boundaries of the bend, there is not such an easy formula ready that can 

tell which circle is the best. To see is to believe. Before a sound criterion is established, 

human vision provides the only judgment that whether a fitting is good or not. The 

criteria to be developed will match the visual judgment so that a computer can come up 

with the same or very close result. It is possible that different people tell different best 

circles. But normal people give surprisingly close if not the same estimation about the 

global closeness between a fitted circle and the original bend.  

In Figure 6.12, four out of many circles for that bend were picked for comparison. 

Circle (a) is a very close fitting regarding the segment used. But only a portion of the 

bend is used for fitting. It doesn’t reflect the global geometry feature of the bend. Circle 

(d) reflects more global feature but the closeness is not good. Circle (b) and (c) maintain 

a good balance between bend coverage and closeness. The two circles are so close that it 

is hard to tell which one is better than the other. Since they are identified by using human 

vision, any one of these two can be called the visually best circle. 
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Figure 6.12 Visual comparison of fittings 

 

 

Figure 6.13 is the R/W vs. length curve for the bend shown in Figure 6.12. It 

helps explain how the set of circles for the bend were obtained. Point A and B were 

identified by Criterion Line Method. Then they were extended in both directions by a 

certain percentage of curve length AB and R/W shouldn’t be larger than 10. Thus point A 

was extended to the region from C to E in which the first correct boundary point was 

                                 (a)      (b) 
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supposed to fall. The second correct boundary point would fall in the region from D to F. 

Next step was to pick one point from each region and fit a circle. There are 15 points 

from C to E and 14 points from D to F. So there are 15×14=210 circles which must 

include the best fit circle. The R/W vs. length curve is almost symmetric to the vertical 

line passing the lowest point, which indicates the bend can also be symmetric to the point 

corresponding to the lowest point in Figure 6.13. In the process of producing the set of 

circles, it is reasonable to pick approximately symmetric points. By starting from point C 

and D and moving up one point on each side one time, only 15 circles were produced. 

The computing time was thus greatly shortened without compromising the precision. 
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Figure 6.13 Extension of bend boundaries 

 

 

Finding the best fit circle is the ultimate goal of geometry study. The challenge is 

how to numerically describe the visually best circles so that they can be identified by a 

computer. Several methods have been developed for this goal. 
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6.4.2 Least square error method 

The first method is to make a judgment based on least square error. The most 

common error term is: 

* 2( )−
= ∑ iR R

ER
n

                                               (6.29) 

R*: Radius of the fitted circle; 

Ri: 
Distance between the center of the fitted circle and 

point i on the bend; 

n: 
Number of points used to fit the circle, also a 

measure of bend angle. 

This error term always tends to pick up the shortest possible segment, very likely 

segments of three points. A circle like the one in Figure 6.12(a) or smaller ones is very 

likely to be selected. An ideal circle should have a small error (high degree of closeness) 

and a large n value (for accommodating global geometric feature of the bend). The 

smaller the error is and the larger n value is, the better the circle will be. However, there 

is a trade off between small error and large n value. That is to say if n value is increased, 

the error will go up accordingly. The degree of closeness should be well balanced against 

n value so that a good circle can be produced. Equation (6.29) is not a well balanced 

expression, where too much weight is given to error value. By considering giving some 

weight to n, this error term is generated: 

* 2( )
α

−
= ∑ iR R

ER
n

, α>1                                     (6.30) 

If this error term works, there is an optimum α value associated with each bend and it 

may vary with bends. Unfortunately, in many cases no α value is available that could 

produce a best fit circle. 

6.4.3 Criterion line method 

The second method is to use the criterion lines. As described in previous section, 

three well placed criterion lines can help identify most of the bends. In some cases good 

circles can be fitted to the identified bends. The good results normally come from trial 
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and error. A criterion line good for this river may not be suitable for the next river or for 

the next migrated river. Right now there is no way to calculate the right criterion lines for 

a river. If this method has to be used, the criterion lines are chosen based on experience 

and applied to migrated channels. A popular R/W range is from 3 to 8. 

6.4.4 Second derivative method 

The third method is to apply the d2R/ds2 vs. channel length curve to identify the 

exact boundaries. Similar as the Criterion Line Method, this method can identify both 

region of the bend and the boundaries for best fit circle. In Figure 6.11, the second 

derivative of R is close to x axis for a bend. At the two ends of the bend, the second 

derivative doesn’t change gradually. There is a sudden jump. The turning points here 

happen to be the boundary points that are looked for. The way to find these segments is 

the same as using criterion lines. But the criterion lines here have fixed values which are 

good for most rivers. Two criterion lines are set with d2R/ds2=0.3 and d2R/ds2=0.8. This 

method works well for the case shown in Figure 6.11. The inherent drawbacks would 

make it fail for other cases. When the channel curve is not so smooth, there is a lot of 

fluctuation in d2R/ds2 which causes the result unreliable. When two bends of different 

radius are next to each other or are very close, the method can hardly tell which is which. 

6.4.5 Balanced method 

The fourth method is to balance least error against bend angle with a numerical 

expression. The expression is: 

* 2

*1

( )
1 /=

−
α = +

ϕ

∑
n

i
i

R R
b R

n
                                       (6.31) 

Where, 

α: Target term. 

φ: Bend angle. 

b: Empirical coefficient. 

Ri: The distance between point i and the center. 

R*: Radius of the fitted circle 
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n: Number of points used to fit the circle 

α is a combination of the bend angle term and the term of fitting error. The larger the 

bend angle is, the smaller α is; the smaller the fitting error is, the smaller α is. The circle 

with the smallest α will be treated by Equation (6.31) as the best circle and it can be 

called the numerically best circle. The coefficient b plays a critical role in balancing bend 

angle and fitting error. A good choice of b would make the numerically best circle the 

same or very close to the visually best circle. 

Figure 6.14  are graphs for the relationship between α value and R. Different b 

values make the minimum α value to occur at different R. According to visual 

observation of Figure 6.12 and additional graphs, there are several best fitting circles. The 

range of radius is from 61 to 64. The b values that can make minimum α value to fall in 

this range are the values being looked for. For this bend, b=30 and b=50 make this 

happen. If Equation (6.31) does work at some bends, the best b value will differ from 

bend to bend. So far no other properties of the bend have been associated with the best b 

values. The determination of b is empirical at this stage. It was found b=100 gives a 

relatively good result for many cases. In Figure 6.14, b=100 produces a result of R=54 

(R/W=54/37.7=1.4). The ideal R/W is 62/37.7=1.6. The difference in R/W ratio is (1.6-

1.4)/1.6=12.5%. 

For some bends, either term of α or α itself has more than one values 

corresponding to a single R. Although this makes it hard to find the minimum value, the 

outcome is not bad. This situation can be avoided by using the ordinal number of the 

circles as abscissa. Further work still needs to be done to optimize the solution. An 

application of this method on the Guadalupe River is shown in Figure 6.15. 
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Figure 6.14 The influence of parameter b 

 

 

 
Figure 6.15 Same b coefficient applied to all bends 
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6.5 CALCULATE BEND ANGLE 

When the best fit circle is available, the bend angle can be calculated based on the 

two boundary points and the center of the circle. In some cases, the bend angle calculated 

based on the two straight lines connected with the bend looks more appropriate. The 

former method was used in the program. 
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CHAPTER VII 

FUTURE HYDROGRAPHS 

7.1 INTRODUCTION 

Compared to using the flow obtained by numerical simulation in other research 

efforts, the application of hydrograph in the prediction of meander migration is a 

significant advantage of this research, where the influence of each single daily flow is 

accounted for and summed up. The prediction is always about the future locations of a 

river. But the flow causing that change hasn’t occurred yet. So a future hydrograph 

needs to be generated based on existing hydrograph data. Will the predicted hydrograph 

stand for the flow conditions that will happen? It’s hard to tell. What can be reasonably 

assumed is that the hydrograph for the next 100 years has the same or similar statistic 

properties as the existing 100-year hydrograph. Based on this idea, a method is proposed 

to generate statistically equal future hydrographs. Dr. Paolo D’odorico provided helpful 

advices to this work. 
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Figure 7.1 Hydrograph of Guadalupe River Gauge Station 08176500 
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7.2 THE DISTRIBUTION OF DAILY DISCHARGE 

In order to extract the statistical properties of an existing hydrograph, the type of 

distribution of the hydrograph should be determined first. It has been observed that a 

hydrograph mostly follows lognormal distribution. Figure 7.1 is the hydrograph of 

Guadalupe River gauge station 08176500 at Victoria, TX from 12-1-1934 to 9-30-2002. 

Figure 7.2 is the probability density function (PDF) of the original data and fitted 

distribution. Figure 7.3 is the cumulative density function (CDF) of the original data and 

fitted distribution. These curves show the daily discharge data can be roughly considered 

as a lognormally distributed random variable.  
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Figure 7.2 PDF of original data and fitted distribution – Guadalupe River 
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Figure 7.3 CDF of original data and fitted distribution – Guadalupe River 

 

 

Figure 7.4 is the hydrograph from Potomac River near Washington D.C. Little 

Falls Pump Station, USGS gage number 01646500. In order to consider the discharge 

through Woodrow Wilson Bridge not far downstream, the original flow rate was timed 

by 1.03. The recorded daily flow is from March 1, 1930 to September 30, 2003. Figure 

7.5 and Figure 7.6 demonstrate that lognormal distribution fits these data better than the 

Guadalupe River. 
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Figure 7.4 Hydrograph of Woodrow Wilson Bridge 
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Figure 7.5 PDF of original and fitted distribution 
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Figure 7.6 CDF of original data and fitted distribution 

 

 

Assume Y is a normal random variable. Then Q=eY has a lognormal distribution. 

The probability density function of Q, the flow rate, is: 

( )
2

2
(ln )

21,
2

− −µ
σµ σ =

σ π

q

f q e
q

                                    (7.1) 

Where σµ,  are the mean and standard deviation of Y, the normal random variable.  Let 

m, s be the mean and standard deviation of Q, the lognormal random variable. The 

following formulas can be derived: 
2

2
σ

µ+
=m e                                                         (7.2) 

2
2

2 1
σ

µ+ σ= −s e e                                                    (7.3) 
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m

                                              (7.5) 

The lognormal fitting is performed by using Matlab version 7.0.1. The fitted means and 

standard deviations of the normal random variable Y and lognormal random variable Q 

for both cases are listed in Table 7.1. For a confidence level of 99%, the ranges of these 

two parameters for Guadalupe River are: 

Yµ ∈[3.399  3.432], Yσ ∈ [0.982  1.008]. 

The ranges for Woodrow Wilson Bridge are: 

Yµ ∈[5.214  5.248], Yσ ∈ [1.049  1.073]. 

This shows the fitting criteria are well met. Table 7.1 has a detailed comparison of the 

mean and standard deviation of the original data and fitted distribution for these two 

cases. 

 

 
Table 7.1 Comparison of statistical parameters (Unit: m3/s) 

Guadalupe River Woodrow Wilson Bridge 
 

Original Data Fitted Distribution Original Data Fitted Distribution 

Yµ  3.087 3.415 5.244 5.231 

Yσ  1.358 0.996 1.057 1.061 

mQ 55.1 49.9 331.330 328.255 

sQ 127.2 65.1 475.347 473.746 

 

 

Yµ  and Yσ are the mean and standard deviation for the normal variate Y. mQ and sQ are 

the mean and standard deviation for the lognormal variate Q. mQ and sQ for the original 
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data are calculated by using standard formulas. Yµ  and Yσ for the original data are 

calculated by using Formulas (7.4) and (7.5). The difference of standard deviation sQ for 

Guadalupe River is about 50%, for Woodrow Wilson Bridge is about 0.3%. The 

hydrograph of Woodrow Wilson Bridge is closer to a lognormal distribution. The fitted 

parameters for Guadalupe River should be used with caution. The fitting results show 

not all hydrographs are in well-behaved lognormal distribution. The fitting is not perfect 

but in general the statistical features are close to the original data. The compromise in 

perfection is compensated by the simplicity of the process. In the MEANDER program, 

mQ and sQ for the original data are used to generate future hydrographs. 

7.3 DEFINITION OF THE 100/500-YEAR FLOOD 

The term “100-year flood” is somewhat misleading. Many people mistakenly 

think it is a description of the flood that occurs once in every 100 years. Instead, it 

describes a flood elevation that has a 1-percent chance of being equaled or exceeded in 

one year. Therefore, “500-year flood” is a flood elevation that has a 0.2-percent (1/500) 

chance of being equaled or exceeded in one year. To calculate the probability for a 100-

year flood to be equaled or exceeded within a certain period of time, say N years, this 

formula can be used: 

11 (1 )
100

= − − Np                                                   (7.6) 

1(1 )
100

− is the probability for a 100-year flood not to occur in one year. 1(1 )
100

− N is the 

probability for a 100-year flood not to occur in N year. So 11 (1 )
100

= − − Np  is the 

probability for a 100-year flood to be equaled or exceeded in N years. The design life of 

a new bridge is about 75 years during which the probability for a 100-year flood to occur 

is p=52.9%. If N=100 years, p=63.4%. 

What’s the probability for a 100-year flood to be equaled or exceeded in one day? 

Assume one year has 365 days. Let px denote the unknown. This problem can be solved 

by using Equation (7.6). The probability for the flood to be equaled or exceeded in one 
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day is px. The probability for a 100-year flood to be equaled or exceeded in 365 days 

( one year) is 1/100. The equation can be written as: 

3651 1 (1 )
100

= − − xp                                                  (7.7) 

The solution is 1 1
100 363.2

= ×xp , very close to 1 1
100 365

× . The probability for a 500-

year flood to occur in one day is 1 1
500 364.6

= ×xp , very close to 1 1
500 365

× . With this 

comparison in mind, the approximate values can be used. 

7.4 COMPUTE DISCHARGE DISTRIBUTION BASED ON 100/500-YEAR 

FLOOD 

If an existing hydrograph is given, the distribution of daily discharge can be 

obtained by two methods. One is to do a lognormal fitting and obtain the parameters of 

mean and standard deviation. The other one is to calculate the mean and standard 

deviation of the hydrograph with the assumption that it follows a lognormal distribution. 

The latter is used for simplicity and reasonable precision.  

In some other cases a hydrograph is not available and only 100-year flood and 

500-year flood are provided. The lognormal distribution ( σµ, ) needs to be solved based 

on this information. The two corresponding probabilities of exceedance for a 100-year 

flood and a 500-year flood have been given in the previous section. For the CDF 

equation of an analytical lognormal distribution, there are two unknowns and two 

equations. So the unknowns can be solved as shown below. 

The CDF of Q can be expressed as: 
2
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          (7.8) 

The term erf indicates error function. Definition of error function and inverse error 

function is as follows: 
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2

0

2( ) ( )−= = ⋅⋅⋅ −∞ < < +∞
π ∫

x ty erf x e dt x                        (7.9) 

( ) 1, ( ) 1−∞ = − ∞ =erf erf                                    (7.10) 

The inverse error function is: 

( ) ( 1 1)= ⋅⋅⋅ − < <x erfinv y y                                  (7.11) 

Thus the cumulative distribution function of a lognormal distribution can be written as: 

ln(2 1)
2
−µ

− =
σ

qerfinv P                                     (7.12) 

There are two applications for this formula. 1. Given the distribution ( σµ, ) and 

the probabilities, 1 1P (Q q )≤ , and 2 2P (Q q )≤ , the corresponding discharges q1 and q2 can 

be found. This can be used to find Q100 and Q500 which will be discussed in the next 

section. 2. Given two points (q1, P1), (q2, P2) on the CDF curve, the lognormal 

distribution ( σµ, ) can be solved. Here (Q100, P100), (Q500, P500) are given. The data of the 

distribution are daily average discharge. The CDF curve based on this data tells the 

probability for a certain level of discharge not to be exceeded in one day. It makes more 

sense to use the probability for a 100-year flood (500-year flood) to occur in one day in 

stead of one year. So in the above equations: 100
1 1P 1

100 365
= − × , 500

1 1P 1
500 365

= − × . 

Define: 

100
100 100

ln 2 (2 1) 4.03417−µ
= = × − =

σ
Qu erfinv P                     (7.13) 

Likewise,  

500
500 500

ln 2 (2 1) 4.39733−µ
= = × − =

σ
Qu erfinv P                    (7.14) 

The inverse error function can be solved by using any pertinent numeric recipe or 

Matlab. 

500

500 100 100

1 ln( )σ =
−

Q
u u Q

                                   (7.15) 
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100 100ln( )µ = − ⋅σQ u                                       (7.16) 

Once the mean and standard deviation of the normal variate Y are obtained, the 

lognormal random variable is determined to be Q=eY. 

7.5 THE DETERMINATION OF 100/500-YEAR FLOOD 

100-year flood and 500-year flood reflect the risk level a river experiences. The 

determination can be based on an existing hydrograph which contains sufficient data. 

The more data is available, the more accurate the result will be. 

Continuous PDF and CDF curves for a hydrograph can be drawn as shown in 

Figure 7.2 and Figure 7.3. The probability of exceedance curve, which is also called 

survivor function, is obtained by subtracting CDF from 1, as shown in Figure 7.7. A 

point (Q, PQ) means the probability for discharge Q to be equaled or exceeded during a 

unit of time is PQ. The unit of time is the duration of a single Q value. If Q is daily 

average discharge, the unit of time is one day. The probability for a 100-year flood to be 

equaled or exceeded in one day is 1/(100×365) and the probability for a 500-year flood 

to be equaled or exceeded in one day is 1/(500×365). On an ideal daily flow probability 

of exceedance curve, the corresponding discharges Q100, Q500 are what to be sought.  

A probability of exceedance curve can come from a hydrograph and can also be 

determined by a given distribution (µ, σ). Lognormal fitting generates µ and σ. The 

original data also has µ and σ which are normally different from the fitted results. Figure 

7.7 shows these three probability of exceedance curves of Guadalupe River. Any point 

on the curve of the original denotes a concept of percentile rather than probability since 

everything has happened. The other two curves predict the probability for the occurrence 

of a certain event. Thus two sets of 100/500-year flood can be obtained and compared. 

For the hydrograph of Guadalupe River gage station 08176500, if the fitted 

distribution is used, the 100-year flood and 500-year flood are found to be: 

Q100 = 1692 m3/s, Q500 = 2429 m3/s. 

If the lognormal distribution based on the original µ and σ is used, the 100-year flood 

and 500-year flood are: 



 

 

122

Q’100 = 5251 m3/s, Q’500=8601 m3/s. 
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Figure 7.7 Probability of exceedance curves - Guadalupe River 

 

 

The maximum recorded discharge is 8693 m3/s. According to the fitted curve, the 

probability for this flow to be equaled or exceeded is 6.8×10-9= 1 1
400,782 365

×  which is 

a 400,782-year flood. According to the distribution based on the original µ and σ, the 

probability for the maximum recorded discharge to be equaled or exceeded is 5.3×10-6 

= 1 1
518 365

×  which is a 518-year flood. It can be seen in Figure 7.7 the curve based on 

the original µ and σ fits the data record much better when the discharge is larger than 

200 m3/s. Its Q100 and Q500 are more reasonable.  
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Figure 7.8 Probability of exceedance curves – Woodrow Wilson Bridge 

 

 

 For the case of Guadalupe River the method of using fitted distribution 

drastically underestimates high risk floods, which makes this method undesirable. On the 

hydrograph plot, the maximum flood is a single spike with a magnitude much larger than 

other peak floods. Spikes like this are critical in estimating 100/500-year flood of the 

river but are of tiny importance to the fitting process which equally treats each daily flow. 

This explains why good results were not produced by this method. 

If the fitted distribution is used for the hydrograph of Woodrow Wilson Bridge, 

the 100-year flood and 500-year flood are found to be: 

Q100 = 13513 m3/s, Q500 = 19865 m3/s. 

If the lognormal distribution based on the original µ and σ is used, the 100-year flood 

and 500-year flood are: 

Q’100 = 13487 m3/s, Q’500=19799 m3/s. 
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The maximum recorded discharge is 12425 m3/s. According to the fitted 

distribution, the probability for this flow to occur is 3.826×10-5= 1 1
71.6 365

× . If the 

distribution based on the original µ and σ is considered, the probability for this flow to 

occur is 3.801×10-5= 1 1
72.1 365

× . The closeness of this comparison can also be seen in 

Figure 7.8. These two curves almost overlap and they well fit the original data. This 

shows this hydrograph strictly follows lognormal distribution. 

 It can be seen from above, the fitted distribution works well only when the 

original data is a well-behaved lognormal distribution. The lognormal distribution based 

on the original µ and σ is always better than the fitted one regarding the prediction of 

high risk floods. When a hydrograph is given, it is reasonable to treat it as a lognormal 

distribution with the same mean and standard deviation as the original data. 

7.6 RANDOM NUMBER GENERATION 

 With the analytical lognormal distribution function ready, the extraction of the 

statistical properties of the original data is finished. The next step is to produce future 

hydrographs by using random number generation (RNG) technique. 

 The generation of lognormal random numbers can be a sampling process done on 

a CDF curve of a lognormal distribution. First generate uniformly distributed random 

numbers in the range of 0 to 1. Then apply these uniform random numbers to the y axis 

(cumulative probability) of the CDF curve and the corresponding x values (discharge) 

are the random numbers to be found. An analytical solution can be obtained from 

Equation (7.12). Given µ, σ, P, solve for q. This method directly solves the lognormal 

CDF function and can be easily understood. The drawback is that an inverse error 

function needs to be solved for each random number which makes it not efficient even 

with high performance computers. Alternatives have been developed to generate random 

numbers for normal distribution Y. Lognormal random numbers are simply eY, 
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e=2.71828. The following is a description of the methods used in this research for 

generating uniform random numbers and normal random numbers. 

The linear congruential generators are most commonly used for generating 

random numbers of uniform distribution. The form is: 

Xn = a * xn-1 + b mod M, n=1, 2, 3…, given x0. 

“mod M” means the right hand side is first divided by M, then is replaced by the 

remainder. Let a=351, b=42, M=100, x1=81. A series of random numbers can be 

obtained: 81, 73, 65, 57, 49, 41, 33, 25, 17, 9, 1, 93, 85, 77, 69, 61, 53, 45, 37, 29, 21, 13, 

5, 97, 89, 81···.The random numbers start to repeat at a certain point. These numbers are 

in the range of [0 100]. To obtain random numbers in a given range, transformation is 

needed. For example, divide each of the random numbers by M=100, the resulted 

random numbers will be in the range of [0 1]. Parameters a, b, and M determines the 

characteristics of the random number generator. The choice of x0 determines the 

particular sequence of random numbers that is generated. In the MEANDER program, 

the values used are: a=663608941, b=0, M=232. 

Normal random number generators are mostly based on Box-Muller 

transformation. Box-Muller transformation transforms a two-dimensional continuous 

uniform distribution into a two-dimensional bivariate normal distribution. If x1 and x2 are 

uniformly and independently distributed between 0 and 1, then z1 and z2 as defined 

below have a normal distribution with mean µ=0 and variance σ2=1. Detailed 

information can be found at http://mathworld.wolfram.com/Box-

MullerTransformation.html.  

1 1 22 ln cos(2 )z x xπ= −                                           (7.17) 

2 1 22 ln sin(2 )z x xπ= −                                            (7.18) 

Given two uniform variates generated by the uniform random number generator, two 

normal variates can be obtained. Free implementation code in C or Fortran language can 

be found on the Internet. 

 For the two random number generators (RNG) introduced here, the C RNG 

(RNG written in C language) is better than the one that directly solves lognormal CDF. 
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Matlab also has a lognormal random number generator which applies the cutting edge 

technique in this field. It is used as a benchmark to test the reliability of other two 

random number generators. Table 7.2 compares the results of 4 runs of these random 

number generators. The maximum difference for µQ and σQ between C RNG and Matlab 

RNG are only 2.45% and 4.57% respectively. C RNG is used in the program to avoid 

calling Matlab code. 

7.7 RISK ANALYSIS 

Tens of thousands of hydrographs can be generated based on the computer 

capacity and the user’s needs. The more hydrographs are used, the more reliable the risk 

analysis will be. For each hydrograph, a final location of the river is calculated. 

Probabilistic predictions are performed based on the thousands of possible river 

locations. A program is to be written by Namgyu Park which can tell something like in 

75 years, the probability for the river to reach a certain line and further is 10%. 

 

 
Table 7.2 Comparison of random number generators 

Result Error Result Error Result Error Result Error
µY 4.9894 0.20% 4.998 0.04% 4.9908 0.18% 4.9919 0.16%
σY 0.9998 0.02% 1.0012 0.12% 1.0027 0.27% 0.9991 0.09%
µQ 241.3 2.43% 245.1 2.43% 242.5 0.82% 241.7 1.02%
σQ 312.6 4.11% 319.3 0.66% 308.8 4.57% 303.3 1.17%
µY 4.9994 -0.01% 5.0117 0.23% 5.002 0.04% 4.976 -0.48%
σY 0.9958 -0.42% 1.0047 0.47% 1.0036 0.36% 0.9954 -0.46%
µQ 244.5 -1.96% 249.2 1.44% 244.9 -1.11% 236.5 -3.04%
σQ 332.8 0.28% 321.4 -4.95% 310.4 -2.74% 311.7 4.22%
µY 5.0011 0.02% 5.0009 0.02% 5.0101 0.20% 4.9851 0.30%
σY 1.0011 0.11% 1.0049 0.49% 1.0061 0.61% 1.0024 0.24%
µQ 247.3 251.2 244.5 244.2
σQ 326.0 317.2 295.3 306.9

Notes:
1.

2. Input µY=5, σY=1; Result is the µY, σY, µQ, σQ of generated random numbers;
3. Q=eY, Q is the flow, Y is the normally distributed variate.
4. 10,000 random numbers are generated.
5. In "Solve CDF RNG", the most current µQ, σQ from Matlab RNG are used to calculate
the error term for µQ, σQ, not the values listed in this table.

C RNG

Matlab
RNG

Run 1 Run 2

Solve CDF
RNG

Run 3 Run 4Methods Items

MTRNGQMTRNGQCRNGQerrorQ

InputYInputYRNGYerrorY

/)(
/)(

−−−−

−−−−

µµ−µ=µ

µµ−µ=µ
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CHAPTER VIII  

THE MEANDER PROGRAM 

8.1 INTRODUCTION 

The MEANDER computer program implements all the methods developed by 

the team and is to be presented to practice engineers to predict meander migration. It 

consists of two major components: graphic user interface (GUI) and numerical 

implementation. The graphic user interface was adapted from that of SRICOS-EFA 

program the GUI of which was written by Jinming Xu. In SRICOS-EFA program, the 

GUI takes user input and forms a source data file. Then a FORTRAN program reads the 

data file, does the computation and generates output data file. The GUI reads the output 

file and shows the result graphically. The MEANDER program does all the things in a 

more efficient way. The GUI and the implementation of the model are written in C++ 

and are seamlessly linked together. The part of geometry study and graphic output are 

written in Matlab. Matlab program is compiled and linked to the C++ program so that 

one executable is made out of different parts. Transferring data from one module to 

another is not through hard drive but through much faster computer memory. 

Implementation of the model is the kernel of the MEANDER program. Each member of 

the team has contributed to different parts of the progress. The program is a most 

important product ready for practical use. 

In this chapter a general view of the MEANDER program is given regarding 

graphic user interface, some programming techniques, and implemented modules. The 

part of Risk Analysis is being implemented by Namgyu Park which will be addressed in 

detail in his dissertation. These items will be introduced in order: 

• Input and output user interfaces 

• Mixed language programming—C++ and Matlab 

• Overview of the whole program 

o Implementation of Geometry Study 

o Implementation of the Hyperbolic Model 
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8.2 GRAPHIC USER INTERFACE (GUI) 

Graphic user interface is indispensable to modern computer program. A lot of 

resources have been invested on the development of the GUI of SRICOS-EFA. The 

engine of this code is reused with some moderate modifications and additions. A 

consistent appearance is maintained and programming time is reduced. Figure 8.1 is the 

main interface of the MEANDER program which has a similar look to that of the 

SRICOS-EFA. All the user interfaces and functions can be accessed either through the 

menu or the buttons. The user buttons from left to right correspond to these interfaces: 

Units, Geometry input, Soil input, Water input, Table input, Plot input, Run function, 

Plot output. 

 

 

 
Figure 8.1 The main interface of the MEANDER program 
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 Figure 8.2 shows the unit input dialogue. It allows the user to choose a unit 

system for the computation. There are two unit systems: metric system and US 

Customary System (English system). The user should be consistent in the units being 

used. If metric units are chosen, all the input data are implied to have metric units and 

output is the same. There is an exception for English units. That is that the EFA curve is 

always in metric units. 

 
 

 
Figure 8.2 Choose a unit 

 
 

 
Figure 8.3 Digitize river banks with WinDIG program 
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Figure 8.4 is the Geometry Input dialog. The data for geometry study is entered 

here. The user needs to input average river width and the path of coordinate file. 

Coordinate files can be obtained by digitizing river images with WinDIG program, as 

shown in Figure 8.3. The channel curve will be drawn immediately after the coordinate 

file is loaded. The given default values for the parameters are based on experience. 

Adjustments are needed for certain cases. If the “Fit Circles” button is clicked, circles 

will be fitted and drawn on the dialog. A better version of figures is shown in two new 

windows. One is the original channel and fitted circles as shown in Figure 8.5. The other 

is the R/W versus channel lengthwise distance curve as shown in Figure 8.6. These two 

graphs are drawn by compiled Matlab code which has a lot of advantages over graphs 

drawn by C++ code. Besides excellent quality of figures, the user can zoom and pan the 

graph. It can be exported to any format of raster image or vector image. The coordinates 

of any point can be displayed at the user’s choice.  

Before curve fitting is done, the center line or bank of the river is evenly divided 

into many segments. Spacing is the distance between two adjacent points. Spacing 

Coefficient is the ratio of spacing to the river width. A default value of 0.2 is given. 

Reducing the spacing coefficient will smooth the R/W vs. channel length curve. But the 

computation time will increase as a result.  

If Segment length is the length used to calculate the radius of curvature of the 

middle point (length AB in Figure 6.2). Segment Length Coefficient is the ratio of 

segment length to the river width. It is recommended to use 5. If the segment length 

coefficient is too small, the bends may not be distinguishable on the R/W versus channel 

length curve. If this value is increased, the bends will become more obvious but the 

computation time will become longer. 

When the length of an identified bend is shorter than a certain value, no circle 

will be fitted. This value is called minimum bend length. Minimum Bend Length 

Coefficient is the ratio of minimum bend length to the river width. A value of 2 is 

suggested here. The smaller the value is, the more circles will be generated. If the value 

is too large, many significant bends will be excluded. 
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Another way to eliminate an identified bend with small curvature is to calculate 

the average distance from a point on the bend to the baseline which connects the first 

and last point of the bend. If this average distance is smaller than a certain limit, it will 

be treated as a straight line. The limit is called Straightness Limit. If a value of 0 is given, 

this parameter will be ignored. If the user wants to eliminate some unwanted circles, a 

number around 5 can be picked. The final desired value can be determined by trial and 

error. 

It’s nice to show channel lengthwise distance on the channel. Then the user needs 

to specify Tick Spacing. There is a detailed explanation for Criterion Line and Fitting 

Method in the chapter of Geometry Study. The given default values come from 

experience and may not apply to other cases. The values of the criterion line 1 to 3 

should be in ascendance order, or it will be ignored. X0 and Y0 on the dialogue are the 

coordinates of the point for which a migration versus time curve will be drawn. It is 

chosen by the user on the graph of fitted circles as shown in the third circle of Figure 8.5. 

If default settings don’t produce good fitting results, the user can first adjust 

criterion lines based on Figure 8.6. On the R/W versus channel length curve, a well 

behaved bend appears to be a plateau or a parabolic curve with its vertex close to the 

horizontal axis (R/W=0). The criterion lines should be adjusted in such a way that the 

segment between a criterion line and the horizontal axis is longer than the minimum 

bend length. 

Further adjustments that can improve fitting quality include reducing spacing and 

increasing segment length. Smaller spacing leads to longer computation time, but the 

R/W versus channel length curve becomes smoother. Increasing segment length has the 

same effect and can effectively reduce sudden jumps on the curve. A very small bend 

could be better fitted as a part in a larger bend. Setting a reasonable minimum bend 

length coefficient will help the fitting of the larger bend. Perfect straight lines are rare in 

river channels, however, not all segments with a curvature is good to be fitted with a 

circle. Choosing a straightness limit can help eliminate the segments that have a 

reasonable curvature but look straight. 
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Figure 8.4 Geometry input 
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Figure 8.5 Original channel and fitted circles for the center line of flume test 15 
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Figure 8.6 R/W versus channel lengthwise distance for the center line of flume test 15 

 

 

 Figure 8.7 is the soil data input interface. The first item is critical shear stress 

which corresponds to a scour rate of 1 mm/hour. The number of points on an EFA curve 

needs to be specified so that enough space will be allocated on the table. Conventionally, 

scour rate is in metric unit. When looking up a scour rate based on shear stress, linear 

interpolation is used. Data shown on the dialogue is for the sand used in the new Coastal 

Engineering Laboratory. 
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Figure 8.7 Soil data input 

 

 

 The interface for entering flow conditions is shown in Figure 8.8. The flow can 

be in discharge or velocity. For doing a prediction, three types of analyses are available: 

constant flow, hydrograph and risk analysis. The hydrograph used here can be a file 

directly downloaded from USGS website www.usgs.gov or an edited single column data 

file. Each row in a hydrograph has the average flow during one time step which is 

specified in the dialog and is normally one day (24 hours). Risk analysis takes as input 

either a hydrograph or a 100-year and 500-year flood. Both choices can be used to 

calculate the risk level a river underwent during a certain period of time in history. It is 

assumed that the river will be at the same risk level during the predicted period in the 

future. The Velocity versus Water depth table is used to find the water depth 

corresponding to a velocity. If the input is discharge the Discharge versus Velocity table 

and Discharge versus Water depth table are required. All these tables are obtained from 

HEC-RAS simulation. 
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Figure 8.8 Water data input 

 

 

 Figure 8.9 is a dialogue showing previously entered data in a tabular format for 

easy check. If a mistake is found, the user can go back to make corrections. Figure 8.10 

provides an easier way to check the correctness of the data. Abnormal data can be easily 

identified on a graph. After the data is entered and checked, the computation process can 

be started. Upon hitting the “Run” button, the program starts the prediction process. 
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Figure 8.9 Input tables 

 

 

 
Figure 8.10 Input plots 
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Figure 8.11 Output table 

 

 

Figure 8.11 is the output table that shows the coordinates of the initial channel 

and the final channel. Accumulated migration distance of each point is on the last 

column. 

The Output Plots dialog Figure 8.12 contains four buttons: Center Line or One 

Bank, Both Banks, Risk Analysis, and M vs. t for one point. All these functions were 

realized in Matlab. The first button is for showing the migrated channel of each step for 

the center line or a bank. The second button is to show initial banks, predicted final 

banks and measured final banks if data is available. 

The trace of a migrating process is shown in Figure 8.13. The black dash line is 

the initial center line. Figure 8.14 shows a comparison between predicted and measured 

final banks. The Center Line Method mentioned in the title will be discussed in detail in 

the next section. Risk Analysis is being implemented by Namgyu Park in Matlab. It is 

integrated together under the same interface. For details please refer to Namgyu Park’s 

Ph.D. dissertation which is likely to come out in 2006. 
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Figure 8.12 Output plots dialogue 
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Figure 8.13 Trace of a migrating center line 
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Figure 8.14 Predicted and measured banks by using Center Line Method 

 

 

  The migration process of an important point is of great interest. The coordinate 

of this point is entered on the Geometry Input dialogue. The user can obtain the 

coordinate of a point by clicking the “Data Cursor” button of Matlab figure and then 

clicking on the point of interest in any one of Figure 8.5, Figure 8.13, or Figure 8.14. On 

the Output Plot dialogue, the user first chooses the right unit for time by clicking 

appropriate radio button. Then hit the “M vs. t for One Point” button. A curve like 

Figure 8.15 will pop up. The location of the chosen point is indicated by a tiny circle in 

Figure 8.14. At this stage, if the Migration vs. Time curve is needed for another point, 

the calculation has to be done all over again. 
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Figure 8.15 Migration versus time plot for a certain point 

 

 

8.3 CENTER LINE METHOD VERSUS BANK METHOD 

The initial channel of all flume tests has a well defined center line. The geometry 

of a center line is referred as that of the channel because of its constant radius to width 

ratio for all bends. It’s natural to use the center line to represent the channel and to do the 

prediction of migration. However the model doesn’t have any difficulty in predicting the 

migration of a single bank. Two approaches are thus available to the user. To distinguish 

one from the other, when the center line is used it is called Center Line Method. The 

other method is called Bank Method. 
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For Center Line Method river width has to be assumed as constant since the 

equations can’t predict change of river width. Channel widening is a common 

phenomenon in flume test. The migration of a bend often goes beyond its two inflection 

points. The migration of a point on a center line is considered as the superposition of the 

migration vectors of two corresponding bank points. In calculation, a point on the center 

line can have two or more than two migration vectors. One is caused by the bend it is on. 

The others can be caused by the bend preceding it or after it. The advantage of this 

method is it can simulate Flume Test 11 (also called Stolpa Experiment by the team) in 

which a straight channel can migrate into a sinusoidal channel. The disadvantage of this 

method is that sometimes superposition can cause a false appearance of the state that the 

maximum migration is almost reached. The truth might be the difference of the 

magnitude of two large opposite migration vectors is small. If two consecutive bends are 

too close, the migrations at the two sides of the inflection point are of opposition 

direction which causes the transition part more and more distorted from a perfect arc. 

Thus the effectiveness of curve fitting goes down with the increase of migration. 

Another reason that makes this method unfavorable to practice engineers is that it is very 

hard to obtain the center line of a real river. Figure 8.13 shows the trace of predicted 

center lines coming from an acceptable application of Center Line Method. The 

predicted banks in Figure 8.14 were obtained by offsetting corresponding center line by 

a half channel width in both directions. 

Bank Method only calculates migration of outer bends. The calculation for one 

bank is normally done on every other bend of the bank. The influence of an outer bend 

usually doesn’t go beyond adjacent inner bends. Superposition is not likely to occur for 

this method. Figure 8.16 shows migrated banks at each time step. Figure 8.17 is a 

simplified version of Figure 8.16 where only banks of the last time step are kept and 

highlighted. For the left bank in Figure 8.16, the first, third and fifth bends are 

considered as active cause of migration. Migration of the second and fourth bend is 

passively caused by the outer bends next to them. For the right bank in Figure 8.16, the 

second, fourth bends are considered as active cause of migration. Migration of the first, 
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third and fifth bends is passively caused by the second or fourth bend. Migration of a 

channel is the result of migration of both banks and not of an imaginary center line. This 

method simulates migration phenomenon that really happens in experimental tests and in 

real rivers. The widening effect can be verified or predicted as shown in Figure 8.17. 

Without superposition to occur, the calculation can produce more stable results. The 

disadvantage of this method is that two times of computation time is needed to do a 

complete prediction. 

The development of the Mmax equation is a multiple regression process. The 

migration of the outer bank and the geometry of the initial center line are used for 

developing the Mmax equation. Since the migration of an outer bank can be treated as that 

of the corresponding center line, the Mmax equation is the right one for Center Line 

Method. In preparing the geometry for a flume test, a bank is obtained by offsetting the 

center line by half the channel width. The left bank, center line and the right bank of a 

bend share the same center but have different radius. The difference from one to the next 

is half the channel width. Figure 8.18 shows the geometry of the left bank of flume test 

15 which can be compared to Figure 8.5 for the center line of the same test. For ideal 

situation, the radius of outer banks is 3.5 and the radius of inner banks is 2.5. The fitting 

is not perfect but is very close. To apply the same Mmax equation for outer banks, the 

radius to width ratio should be subtracted by 0.5. The inner banks can be ignored which 

have no active migration. 
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Figure 8.16 Trace of migrating banks 
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Figure 8.17 Predicted and measured banks by using Bank Method 

 

8.4 MIXED LANGUAGE PROGRAMMING—C++ AND MATLAB 

 This program could have been written completely in Matlab. Then the Graphic 

User Interface (GUI) code from SRICOS-EFA could not be used and a new GUI had to 

be written in Matlab. It could also have been written completely in C++. Then the code 

for Geometry Study which had been written in Matlab could not be used. The 

advantages of Matlab such as strong functionality in graphic output, debugging, and 
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numerous built-in numerical recipes, etc. wouldn’t be utilized. For the MEANDER 

program, the GUI is in C++ with the application Microsoft Foundation Class (MFC). 

The implementation of the Hyperbolic Model is in regular C++. The implementation of 

Geometry Study, Risk Analysis, and graphic output are in Matlab. The program 

development environment is Visual C++ 6.0 and Matlab 7.0.4 (service pack 2). 
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Figure 8.18 Original channel and fitted circles for the left bank of flume test 15 

 

 

 The integration of Matlab with C++ is not like routine C++ programming or 

Matlab programming. A good understanding of both languages is extremely helpful. 

Lots of time was also spent on solving abnormal problems due to incomplete 

documentation of Matlab on this issue. Matlab Compiler is an independent module 

which differs from version to version. The functionality and documentation are also 

progressing. It’s worthwhile to give an explanation from a user’s point of view so that 

later programmers can compile complicated Matlab programs more smoothly. 

 Matlab is a type of interpreting language. Unlike compiling languages like C, 

C++ or FORTRAN, it is executed line by line on running and has a lower efficiency. 
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Matlab file has an extension of “m”, also called “M-file”. M-files cannot run without 

Matlab environment. Matlab Compiler takes M-files as input and generates 

redistributable, stand-alone applications or software components. The resulting 

applications can be independent of Matlab environment. The latest version (Version 4, 

going with Matlab 7.0.4) of Matlab Compiler can support all functionalities of Matlab. 

The Matlab Compiler can generate these kinds of applications or components: 

1. Stand-alone applications; 

2. C and C++ shared libraries (dynamically linked libraries, or DLLs, on Microsoft 

Windows); 

3. Excel add-ins and Com objects. 

 C++ shared libraries are generated for the MEANDER program. Besides 

generating the DLL files, The Matlab Compiler also produces an interface function 

which passes on the input data for the Matlab program and returns the results. A special 

data type class mwArray was created to do this job. The programmer first converts C++ 

variables into mwArray type and then converts the results in mwArray type back into 

C++ type. This process is often written as an user-defined C++ interface function. This 

function can be called and shared as a regular C++ function. The following is an 

example from the MEANDER program which calls the compiled Matlab program to fit 

circles. The sentences following double slash “//” are comments. 
// Excerpted from GeoRndUI.cpp.  
// Interface between Visual C++ & the DLL compiled from Matlab. 
// Count the times this function is called.  
// For the 1st time a special initialization function should be called. 
static int init=0;  // local static variable. 
double ArcIdxDbl[nMaxArc][2]; // Receive data from Matlab 
int GeoInterface(double (*xy_in)[2], int* nNum, double *Arg,\ 

double (*xyRF)[4], int (*ArcIdx)[2]) 
// xy_in, coordinates of the channel; nNum[0], number of points 
// Arg, an array containing parameters needed for fitting circles. 
// xyRF, coordinates, radii, bend angle(fei) of the fitted arcs 
// ArcIdx, boundary indices of the bends 
// Avoid matrix transpose here. Do it inside Matlab code. 
{ 
 if(init==0) // The 1st time to call this function. 
 { 
 if(!mclInitializeApplication(NULL,0) || !libGeoRndInitialize()) 
   return -1; 
 else 
  init++; 
 } 
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 int i,j,nPt=nNum[0],nArc,errCode; 
 double nNumDbl[3]; 
 CString erMsg,erPlace; 
 // Create a 2-row nPt-column Matlab array. Default: mxREAL 
 mwArray mw_xy(2,nPt,mxDOUBLE_CLASS,mxREAL); 
 // Since the size is fixed, it can be static. 
 static mwArray mw_arg(nArgSize,1,mxDOUBLE_CLASS,mxREAL);  
 // Corresponds to the names with prefix “mw_”. 
 mwArray mw_xyRF,mw_ArcIdx,mw_nNum;   
 // SetData treats the input C array as the ONE-D array it is in 
physical memory.  
 // Then assigns the 1-D array to mwArray element by element 
according to the defined dimensions and Matlab convention. 
 try 
 {// Assign values of C++ variables to mwArray type variables. 

mw_xy.SetData((double*)xy_in,nPt*2); 
  mw_arg.SetData(Arg,nArgSize); 
 } 
 catch (const mwException& e) 
 { 
  erMsg=e.what(); 
  erPlace="\nError in mwArray.SetData(...)."; 
  erMsg+=erPlace; 
  throw erMsg; 
  return -1; 
 } 
 try 
 { 
 // 2 input arguments: mw_xy,mw_arg; 

// 4 output arguments: mw_xyRF,mw_ArcIdx,mw_nNum,mw_xy. 
 AutoFit_Run_InVC(4,mw_xyRF,mw_ArcIdx,mw_nNum,mw_xy,mw_xy,mw_arg);
 } 
      catch (const mwException& e) 
      { 
          erMsg=e.what(); 
     erPlace="\nError in autofit_run_invc(...)."; 
     erMsg+=erPlace; 
     throw erMsg; 
          return -1; 
      } 
 
 // Transfer values from mwArray type to C/C++ type. 

mw_nNum.GetData((double*)nNumDbl,4); 
 for(i=0;i<4;i++) 
  nNum[i]=(int)nNumDbl[i]; 
 nPt=nNum[0]; 
 nArc=nNum[1]; 
 errCode=nNum[3]; 
 
 // Refer to CGeometry::OnFitCircles(...) 
 if(errCode!=-2 && errCode<=0)  
  return -1; 
 // Arg[10]: if 0, don't EvenlyDivide the curve, if otherwise, 
divide it. 
 if(fabs(Arg[10])>1e-3) 
 { 
//  nPt=mw_nPt(1,1); 
  mw_xy.GetData((double*)xy_in,nPt*2); 
 } 
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// nArc=mw_nNums(2,1); // or (1,2), neither one works with 
nNums=zeros(2,1) stated in the m code. 
 
 mw_ArcIdx.GetData((double*)ArcIdxDbl,nArc*2); 
 mw_xyRF.GetData((double*)xyRF,nArc*4); 
 
 for(i=0;i<nArc;i++)   
  for(j=0;j<2;j++) // "-1" make it from 1-based to 0-based. 
   ArcIdx[i][j]=(int)ArcIdxDbl[i][j]-1;  
 return 0; 
} 
 Conversion of data from one type to the other is the major task of this function. 

For a scalar or a vector, the conversion is straightforward. For a 2-D or 3-D array, 

caution should be taken because C/C++ and Matlab store multiple-dimensional array 

differently. In physical memory a multiple-dimensional array is stored in a column of 

continuous memory cells. There are two methods to map the 1-D physical index to the 

multiple-dimensional array index at computer language level. The first method is to store 

data from row to row, as what C/C++ does. The other is to store data from column to 

column, which is used by Matlab. Class mwArray has a method SetData to read data 

from a C/C++ variable and pass it to a mwArray variable. The data is read from a single 

column physical memory. Then the Matlab mapping method is used to assign it to an 

array of Matlab type. A 3-D array of dimensions M×N×L in C/C++ will be converted 

into a 3-D array of dimensions L×N×M in Matlab. However their storage in the physical 

memory is of the same order. The GetData method of class mwArray also uses the 

Matlab mapping method to assign data from a Matlab array to a physical memory which 

is for a C/C++ variable. 

 It is helpful to list a step by step procedure explaining the process of integration. 

Assume Matlab 7 and Visual C++ 6 are installed. The main MFC project is in folder 

“Z:\_WW\MEANDER\”. The subproject in VC++ 6 for compiled Matlab program is 

called GeoRndPrj which is in folder “Z:\_WW\MEANDER\GeoRndPrj\”. 

 If it’s the first time to compile Matlab program, run the command mbuild -setup 

in Matlab command window first and choose appropriate C compiler. In here VC++ 6 is 

used. Then follow the steps listed below. 

1. Change Matlab work directory to the folder holding the m files. If a file named 

"mccpath" exists, delete it. 
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2. Run this command: mcc -W cpplib:libGeoRnd -T link:lib AutoFit_Run_InVC.m 

mLognrnd.m SolveCDF.m -v -d “M:\_WW\Meander\GeoRndPrj”. Words in 

italic characters are names decided by the user. “-v” means verbose which 

outputs intermediate results in detail. “-d” switch sends output files to the folder 

after it. 

3. Add a static library project to MFC application (MEANDER), GeoRndPrj in here. 

If “-d” option is not used in step 2, copy generated files libGeoRnd.* to folder 

“.\MEANDER\GeoRndPrj\”. 

4. Copy/Move libGeoRnd.ctf and libGeoRnd.dll to folder “.\MEANDER\”. 

5. Add two files to the subproject “GeoRndPrj”. They are "libGeoRnd.lib" and 

"<Matlab Root>\extern\lib\win32\microsoft\msvc60\mclmcrrt.lib". Build 

subproject “GeoRndPrj” and GeorndPrj.lib will be generated. 

6. Add GeoRndPrj.lib to MEANDER project. In VC++ 6 environment, add 

"<Matlab Root>\extern\include\" to INCLUDE folder and add "<Matlab 

Root>\extern\WIN32\MICROSOFT\MSVC60" to LIBRARY folder. 

7. Build MEANDER project. The linking process will be done automatically. 

8.5 AN OVERVIEW OF THE IMPLEMENTATION OF THE PROGRAM 

 All the methods have been introduced in previous chapters. The implementation 

is a description of the same idea in computer languages. A flow chart is an overview of 

the computer code. About 14,000 lines of code has been written and checked line by line 

over a long period of time. It is not realistic to introduce the code by going through all 

the lines. Flow charts help introduce important modules, steps and their functionalities in 

natural language. Figure 8.19 is the flow chart of the entire MEANDER program.  
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Figure 8.19 Flow chart of the MEANDER program 
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 Figure 8.19 gives a good idea about what the project is about and what the 

program can do. To further understand how a specific task is implemented, a more 

detailed flow chart is needed. Figure 8.20 is the flow chart of Geometry Study. 
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Figure 8.20 Flow chart of Geometry Study 



 151

 Figure 8.21 also explains the task of Geometry Study but from a different 

perspective of view. The task is outlined in a problem-solving manner. The major 

difficulties of certain steps are briefly described. 
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Figure 8.21 Essential procedures for Geometry Study 
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Figure 8.22 Flow chart of the implementation of the Hyperbolic Model 

 

 

 The code that applies the Hyperbolic Model is based on Figure 8.22. The shaded 

item “One Hydrograph” is a sub-function whose flow chart is Figure 8.23. Function 

OneHydrograph( ) calculates the migration caused by each time step of a hydrograph 

and comes up with an accumulated distance. 
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Figure 8.23 Flow chart of function OneHydrograph 

 

 
 The shaded item “One Flow” in Figure 8.23 is a sub-function of function 

OneHydrograph( ).  
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 “One Flow” calculates the migration of the whole channel caused by the flow of 

one time step. The flow chart of function OneFlow( ) is shown in Figure 8.24. 
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Figure 8.24 Flow chart of function OneFlow 
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CHAPTER IX  

VERIFICATION AND PARAMETRIC STUDY 

Although a tremendous amount of time has been spent on developing the 

program, it is useless unless it performs as it was expected to. Only when the program is 

a faithful implementation of the model can the results from the program be used to 

evaluate the model. Verification of flume tests is the first step to prove the soundness of 

the program and the model. The verification process is also a process of testing the 

program and adjusting the model so that a better match of prediction with measured data 

can be achieved. Due to the lack of soil data from the field, verification on real rivers 

was done only for the Brazos River at State Highway 105 (Texas) with hypothetical soil 

properties. A more detailed verification on real cases will be done later on. The flume 

test on clay is underway on the second floor of the old Hydro Lab. The model 

incorporating clay test results will better reflect the behavior of real rivers. At this stage 

verification is done for flume tests on sand.  

A parametric study is a comprehensive test of the performance of the program 

and the model. Important parameters are varied and the effects are observed. The 

relations between migration and some influential factors should appeal to common sense. 

If not, something may be wrong and further research needs to be done. If it works well, a 

parametric study can predict migration behavior for a river with any combination of 

major factors, for which flume test is not capable of.  

9.1 VERIFICATION OF FLUME TESTS 

 Eighteen flume tests have been done in the new Coastal Engineering Laboratory 

as shown in Table 9.1. Test 1 can be considered as a preliminary test from which some 

good parameters were obtained for later tests. Test 5 was a repeatability test of Test 2. 

Some tests have obvious straightening effects which add difficulty to data reduction and 

verification. In the process of developing Mmax equation, the data of 10 flume tests were 

used due to good correlation and easiness in data reduction. For each test used, migration 

of the second bend was analyzed. Initial geometry and initial average velocity were used 
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and treated as constant. A detailed explanation of the process will be provided in Po-

Hung Yeh and Namgyu Park’s doctoral dissertations. 

 A comparison between the predicted and measured banks is done for most of the 

flume tests. Center Line Method and Bank Method produce close results when both of 

them are applicable. There are some cases for which Bank Method works well but 

Center Line Method cannot make reasonable predictions due to large migration. For the 

examples listed in this chapter, the Center Line Method is used only for Test 11. The 

Bank Method is used for the other cases. 

 

 
Table 9.1 Flume tests done in the Coastal Engineering Lab  

(Park, 2006; Yeh, 2006) 

 - revised in July 21, 2004
Bend Flowrate Test Remark Used for
Angle (GPM) No Mmax
120˚ 1 No
180˚ 6 Yes
220˚ 7 Yes

8 4 Yes
6 18 Extra Test Yes
4 2 Reference No
4 5 Repeatability Yes
3 16 Extra Test Yes
2 3 Straightening Yes
4 14 20cm/s Yes
2 13 20cm/s No
1 12 Straightening No

260 15 Yes
278 17 redo Test 15 Yes

2 65˚ 178 8 Straightening No
n/a n/a 226 9 Brazos River No
n/a n/a 226 10 Brazos River No
n/a n/a 257 11 Stolpa Experiment No

TEST MATRIX IN THE NEW LAB (Sand)

4

65˚

226

226

4 120˚ 4

R/W

120˚ 2 185

 
 

 

 The definition of a bend in a channel is shown in Figure 9.1. In flume tests, two 

adjacent bends are tangent to each other at the beginning of a test. An inflection point 
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separates two bends. Bend 1 is the first bend from the upstream. Flow direction is from 

left to right if not otherwise indicated. Left Bank is defined as the bank at the left hand 

side when a person faces downstream. The one at the right hand side is defined as the 

Right Bank. 
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Figure 9.1 Verification of Flume Test 1 R/W=4, φ=120°, v=0.25m/s 
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Figure 9.2 Verification of Flume Test 1 with migrated banks at each time step 
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 There are two ways to present prediction results. One is shown in Figure 9.1 

which shows the initial banks, initial center line and the predicted banks after the 

duration of the test. Final measured banks are superimposed for comparison. Besides 

what Figure 9.1 shows, Figure 9.2 includes migrated bank at each time step. It provides 

more information about the predicted migration process. But sometimes the process is 

only represented by a black block. Figure 9.1 is more focused on comparing the 

predicted channel with the measured one. This type of presentation is used in this 

chapter for clarity. All the measured banks come from flume tests conducted by Namgyu 

Park and Po-Hung Yeh. 

It can be seen from Figure 9.1, the maximum migration of Bend 2, 3, and 4 is not 

well matched. The match is good around inflection points. The measured migration 

tends to increase from one bend to the next along the channel, while the predicted 

migration is periodic. So the difference between measured and predicted migration also 

increases along the channel. Compared to Flume Test 15 the initial velocity of Flume 

Test 1 is 0.02 m/s smaller, but the measured migration is much larger. Since this is the 

first test in the new Coastal Engineering Lab, testers’ lack of experience with the new 

environment may have accounted for the discrepancy. The data of this test was not used 

for developing the Mmax Equation. 
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Figure 9.3 Verification of Flume Test 2 R/W=4, φ=65°, v=0.25 m/s 
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Figure 9.4 Verification of Flume Test 3 R/W=2, φ=65°, v=0.25 m/s 

 

 

 The phenomenon that migration increases along the bends is most obvious in 

Flume Test 2 as shown in Figure 9.3. Secondary flow makes significant contribution to 

scour and sediment transport. The development and increase of secondary flow along the 

channel can be a partial cause for this phenomenon. The flow condition at the exit is far 

different from any that of any part in the middle. The change in material from soil to 

wood at exit contributes to this problem to some degree. Free fall of water at the exit 

makes the velocity much larger than normal condition. Faster erosion at a certain spot 

leads to irregular bank shape which in turn leads to turbulence. Turbulence can cause 

extreme erosion. This kind of situation rarely happens in real rivers and is not accounted 

for in the prediction model. 

 Figure 9.4 shows the verification for Flume Test 3. For rivers with small R/W the 

channel tends to straighten up. In this case, the original curvy banks became almost 

straight at the end of the test. The model heavily relies on curve fitting which cannot be 

effectively done on curves with small or zero curvature. A fair match is still achieved for 

this case. If radius to width ratio decreases to one, the performance of the program will 

suffer. The good news is that geometry like this is rarely seen in real rivers. 
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Figure 9.5 Verification of Flume Test 4 with small τmax R/W=8, φ=65°, v=0.24 m/s 
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Figure 9.6 Verification of Flume Test 4 with large τmax R/W=8, φ=65°, v=0.24 m/s 

 

 

 In developing the τmax equation, magnitude is scaled up by a factor of c1=8 to 

account for roughness of the bank. This, however, does not help for two flume test cases. 

Figure 9.5 indicates a bad match for Flume Test 4, compared to Figure 9.6. Figure 9.7 

shows another bad match for the last bend of Flume Test 9. A large radius to width ratio 

is a common characteristic of these two cases. In Flume Test 4, R/W=8. In Flume Test 9 

the last bend has a radius to width ratio of 9.1 as shown in Figure 9.9. It suggests that the 

scale factor should be a function of radius to width ratio. The following equation is 

proposed: 
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Figure 9.6 and Figure 9.8 show the improvement after applying this new factor. 
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Figure 9.7 Verification of Flume Test 9 with small τmax, v=0.25 m/s 

 

 

0 5 10 15 20 25
−1

0

1

2

3

4

5

6

7

8

X

Y

Bank Method −−Flume Test 9 Brazos River f=1.5 Migrated Channel

Initial center line
Initial banks
Predicted final banks
Measured final banks (Park, 2006; Yeh, 2006)

 
Figure 9.8 Verification of Flume Test 9 with large τmax, v=0.25 m/s 
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Figure 9.9 Flume Test 9, fitted circles of the left bank 
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Figure 9.10 Verification of Flume Test 5 R/W=4, φ=65°, v=0.27 m/s 
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 Figure 9.10 is the verification of Flume Test 5 which is a repeatability test of 

Flume Test 2. Due to the experience accumulated from previous tests, the flow condition 

at the exit was better controlled. As a result, migration at the exit became smaller than 

before. 
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Figure 9.11 Verification of Flume Test 6 R/W=4, φ=180°, v=0.24 m/s 
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Figure 9.12 Verification of Flume Test 7 R/W=4, φ=220°, v=0.24 m/s 
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Figure 9.11 and Figure 9.12 show the two largest flume tests. The two peak 

migrations that were observable at the second bend of both tests were missed by the 

prediction. Po-Hung Yeh is developing a better version of Mmax equation to solve this 

problem. Detailed explanation will be seen in his doctoral dissertation. The double-peak 

phenomenon does not appear on the third bend which compound the complexity of 

migration problem. The current method has a good match for the third bend. 
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Figure 9.13 Verification of Flume Test 8 R/W=2, φ=65°, v=0.19 m/s 

 

 

 Flume Test 8 as shown in Figure 9.13 has the same geometry as Flume Test 3 but 

has a smaller velocity.  The straightening effect is still obvious but less severe. The 

prediction partially matches the measured data. 

 The purpose of Flume Test 11 (Figure 9.14) was to see whether a straight 

channel can develop into a meander. The test was a success. A meandering channel with 

periodic geometry was formed in the end. The wave length was almost constant, 7 

meters. Since there is only one bend at the entry for each bank, the Bank Method does 

not work here. By applying the model on the center line, the straight channel turns into a 

sinusoidal channel with a wavelength of about 7 meters. There is a phase lag of half 

period from the measured data. 
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Figure 9.14 Verification of Flume Test 11, v=0.30 m/s 
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Figure 9.15 Verification of Flume Test 13 R/W=2, φ=120°, v=0.20 m/s 

 

 

 Flume Test 13 is also a case of small radius to width ratio. Due to large φ angle, 

the straightening effect is not so obvious. As can be seen in Figure 9.15, large migration 

at the exit still existed. The prediction for the first several bends is satisfactory.  
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Figure 9.16 Verification of Flume Test 14 R/W=4, φ=120°, v=0.20 m/s 

 

 

 Figure 9.16 is the verification of Flume Test 14 which has the same geometry as 

Flume Test 1, 15 and 17. The difference is in velocity. The prediction missed the 

maximum migration of the bends. A good match occurs when the ratio of location angle 

to bend angle ( φθ / ) is in the range of 0.7 to 1.0. Flume Test 15 has a larger velocity 

than Flume Test 14. Figure 9.17 displays a better prediction result for this case. Flume 

Test 16 is another case of small radius to width ratio. A phenomenon similar to Flume 

Test 3 can be seen in Figure 9.18. Flume Test 17 as shown in Figure 9.19 has the largest 

initial velocity of all the flume tests. For the third bend the prediction almost overlaps 

the measured data. The second bend was slightly overpredicted. 
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Figure 9.17 Verification of Flume Test 15 R/W=4, φ=120°, v=0.27 m/s 
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Figure 9.18 Verification of Flume Test 16 R/W=3, φ=65°, v=0.25 m/s 
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Figure 9.19 Verification of Flume Test 17 R/W=4, φ=120°, v=0.32 m/s 

 

 

 Flume Test 18 is the last experimental test on sand. Figure 9.20 shows a good 

match of the prediction with measured data. 

 The prediction matches the measured data reasonably well for all the listed cases. 

However, the good matches are not done in one step. It is an interactive process of 

testing and modifying the program and the model. The prediction model was proposed 

based on observation of the test data. Matching the test data step by step is a gradual 

process of debugging the program and improving the model until an overall good match 

is made. Verification of flume tests is only the first step. The program can be used only 

after verification with real rivers. 
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Figure 9.20 Verification of Flume Test 18 R/W=6, φ=65°, v=0.26 m/s 

 

 

9.2 PRELIMINARY VERIFICATION OF THE CASE OF THE BRAZOS 

RIVER 

 The Brazos River runs 840 miles across Texas to its mouth on the Gulf of 

Mexico. It is the longest river in Texas and the one with the largest discharge. The 

migration of this river at bridge site SH105 near Navasota has previously been studied 

(Briaud, et al. 2001a, 2001b). Figure 9.21 shows the location of the river at different 

times. The migration from 1910 to 1958 at the crossing of the bridge contrasts to what 

the model would predict. Two periods were selected for verification: 1958 to 1981 and 

1981 to 1993.  

 Samples from field sites will be taken on a later date, therefore soil properties for 

this case are not available yet. Based on numerous EFA test results, an assumed EFA 

curve is shown in Figure 9.22. 
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Figure 9.21 Migration of the Brazos River (Park, 2001) 
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Figure 9.22 Assume EFA Curve for the verification of the Brazos River 
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Brazos River SH 105 Hydrograph (Gauge 08109000)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

6/29/1957 9/15/1965 12/2/1973 2/18/1982 5/7/1990
Time

Di
sc

ha
rg

e 
(m

3 /s
)

 
Figure 9.23 Hydrograph of the Brazos River SH105 1958-1993 (www.usgs.gov) 

 

 

 Figure 9.23 is the hydrograph of this site from 1958 to 1993. The file 

downloaded from USGS website contains data only up to September 30, 1993. The unit 

of discharge is converted from ft3/s to m3/s. Since velocity is used in the prediction, the 

curve relating discharge to velocity as shown in Figure 9.24 is needed. Figure 9.25 

indicates the relation between discharge and water depth. Both relations came from a 

HEC-RAS simulation. Given the cross section, the discharge, and other needed 

parameters of the river, HEC-RAS can calculate the velocity, water depth, and water 

surface elevation. Soil and water data is ready. Geometry data is obtained by digitizing 

the graph in Figure 9.22. It is time to proceed to the step of prediction. 

 After 8400 steps of calculation, a predicted channel of 1981 was obtained as 

shown in Figure 9.26 with the dash line. The second bend where the bridge passes has 

been reinforced. The migration of this part during the 23 years is almost negligible in 

regard to possible measurement errors. The first bend’s migration is mainly in a 
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downstream direction while the predicted migration is mostly in radial direction. 

Predicted migration distance is very close to that of the measured for the selected point. 
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Figure 9.24 Discharge vs. velocity (Park, 2001) 
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Figure 9.25 Discharge vs. water depth (Park, 2001) 
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Figure 9.26 The Brazos River SH105 1958-1981 measured vs. predicted 
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Figure 9.27 The Brazos River SH105 1958-1981 predicted migration vs. time 



 

 

174

 The predicted migration versus time curve for a selected point on the left bank is 

shown in Figure 9.27. The rate of migration is in accordance with the hydrograph. A 

large discharge on a certain day leads to a large migration distance for that day. A small 

discharge can only cause a small jump on the curve. If the discharge is small enough to 

where the velocity is below critical velocity, no migration will occur. In this case it 

appears as a horizontal line segment on the curve. 

 

 

−1600 −1400 −1200 −1000 −800 −600 −400 −200 0 200

−800

−700

−600

−500

−400

−300

−200

−100

X

Y

Brazos River 1981−1993 Migrated Channel

Initial banks
Predicted final banks
Measured final banks

 
Figure 9.28  The Brazos River SH105 1981-1993 measured vs. predicted 

 

 

 The measured channel of 1993 is not available and the hydrograph for the period 

of 1993 to 1995 is not available either. The prediction therefore can only be made 

through 1993. The comparison is made between the predicted channel of 1993 and the 

measured channel of 1995. It can be reasonably assumed the migration that occurred 

from 1993 to 1995 is small enough that the measured channel of 1995 can be used to 

judge the accuracy of the prediction. Figure 9.28 shows a wonderful match for the first 

bend. The second bend is still overpredicted due to reinforcement of the bank. The 

prediction takes 4382 steps. Figure 9.29 is the migration versus time curve for a selected 
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point on the left bank. The effect of a hydrograph is more obvious in this figure. The 

plateaus indicate numerous small discharges in the hydrograph. 
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Figure 9.29 The Brazos River SH105 1981-1993 predicted migration vs. time 

 

 

9.3 PARAMETRIC STUDY 

 The first step in a parametric study is to choose influential parameters and to 

decide on a reference case. The parameters chosen include the following: the ratio of 

radius of curvature to river width (R/W), bend angle (φ°), velocity (V), duration of the 
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flow (t), and the slope of the assumed EFA curve (Si). The reference case is numbered 

Case 1 and has the combination: R/W=4, φ=180°, V=1.5 m/s, t=360 days, Si=1.25 

mm/hour/Pa. A list of cases is generated by varying only one parameter from the 

reference case. Thus the influence of a single parameter on the migration can be studied. 

Table 9.2 shows all the cases in groups where each group has only one changing 

parameter. The maximum value of migration at time t for the fourth bend of the left bank 

is also listed. 
 

 
Table 9.2 Matrix of parametric study for the Brazos River SH105 

Case
 No. R/W φ (°) V(m/s) t (days) EFA Slope

(mm/hr/Pa)
Mt_max

(m)
Note

2 4 60 1.5 360 1.25 32.29
3 4 120 1.5 360 1.25 31.97
1 4 180 1.5 360 1.25 23.41
4 4 240 1.5 360 1.25 16.56
5 4 270 1.5 360 1.25 10.79
6 1 180 1.5 360 1.25 19.21
7 2 180 1.5 360 1.25 27.91
1 4 180 1.5 360 1.25 23.41
8 6 180 1.5 360 1.25 19.77
9 8 180 1.5 360 1.25 17.95
10 10 180 1.5 360 1.25 14.36
11 4 180 1.5 90 1.25 13.38
12 4 180 1.5 180 1.25 18.99
1 4 180 1.5 360 1.25 23.41
13 4 180 1.5 720 1.25 27.53
14 4 180 1.5 1440 1.25 29.66
15 4 180 1.5 2880 1.25 30.85
16 4 180 1.5 360 0.125 7.07
17 4 180 1.5 360 0.625 18.98
1 4 180 1.5 360 1.25 23.41
18 4 180 1.5 360 2.5 27.54
19 4 180 1.5 360 12.5 30.98
20 4 180 0.66 360 1.25 0.16
21 4 180 0.7 360 1.25 2.52
22 4 180 0.8 360 1.25 7.31
23 4 180 0.9 360 1.25 11.09
24 4 180 1 360 1.25 14.16
25 4 180 1.2 360 1.25 18.83
1 4 180 1.5 360 1.25 23.41
26 4 180 2 360 1.25 30.41
27 4 180 3 360 1.25 39.19

Note:
1. Critical shear stress is τc=2 N/m2, Froude number is Fr=0.3;
2. Mt_max is the maximum value of migration at time t for the 4th bend of the left bank;
3. River width is 40 meters.

Vary slope 
of EFA 
curve

Vary V

Matrix of Parametric Study

Vary φ

Vary R/W

Vary t
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 The planar migration of the reference case is shown in Figure 9.30. Figure 9.31 is 

the migration versus time curve for a point on the 4th bend of the left bank. The same 

plots for other cases are omitted here. Due to the limitations associated with the Bank 

Method, an inner bank either moves inward or does not move at all. An outer bank will 

move outward. So the predicted channel widens. The migration versus time curve 

indicates that the predicted channel is still quite far from Mmax at the end of 360 days. 
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Figure 9.30 Parametric study reference case, migration of channel 
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Figure 9.31 Parametric study reference case, migration vs. time  
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M360_max vs. R/W
φ=180°, V=1.5m/s, t=360 days, Si=1.25 mm/hr/Pa 
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Figure 9.32 Parametric study  migration versus R/W 

 
 

 The important parameters are isolated and studied one by one. Their influence on 

migration distance is shown respectively in Figure 9.32 to Figure 9.36. Figure 9.32 

shows how migration distance can be affected by radius to width ratio. The curve takes 

the same shape as the one proposed by Nanson and Hickin (1983). Here the maximum 

value is reached at R/W=2, while Nanson and Hickin suggested R/W=2.5. The peak will 

occur at a different R/W value if other parameters like φ or V is changed. 
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Figure 9.33 Parametric study  migration versus bend angle 
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 Figure 9.33 demonstrates the relationship between migration distance and bend 

angle predicted by this model. When the bend angle is larger than 120 degrees, 

migration distance decreases with the increase of bend angle. This phenomenon has been 

observed in flume tests. When the bend angle increases the channel length increases. The 

slope of the channel bed decreases accordingly and the flow slows down as a result. 

Field data is needed to prove that the relation shown in Figure 9.33 actually happens in 

real rivers. Further work needs to be done on this issue. 
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Figure 9.34 Parametric study  migration versus slope of EFA curve 

 

 

 The topic of this research project is “Soil Properties-Based Prediction of 

Meander Migration Rate.” A focus on soil properties is the major difference between 

this research and others. The prediction model takes into account the factor of soil 

properties. Due to the cost and time associated with experimentation, only sand and clay 

are used in flume tests. A large variety of soil properties can be applied in a parametric 
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study. Wit this study the slope of EFA curve is varied from 0.125 mm/hour/Pa to 12.5 

mm/hour/Pa. The effect can be seen in Figure 9.34. The larger the slope the more 

erodible the soil is. First, migration distance increases sharply with the increase of 

erodibility. Then migration becomes less sensitive to soil erodibility. This is because the 

maximum migration is almost reached. 
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Figure 9.35 Parametric study  migration versus velocity 

 

 

 Velocity of flow is a direct cause of soil erosion. A velocity vector can be 

decomposed into two perpendicular components: longitudinal flow and secondary flow. 

Secondary flow plays an important role in the erosion process and is responsible for 

transporting sediment from one bank to the other. The effect of longitudinal flow in 

eroding soil can be directly observed in flume tests. The velocity of secondary flow is in 

proportion to that of longitudinal flow. Due to the difficulties in data acquisition of flow 

field, only average velocity in the longitudinal direction is measured in flume test on 
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sand. This data has proved to be very useful in the prediction. Figure 9.35 shows how a 

change in longitudinal velocity can cause a change in migration distance. The 

intersection of the curve and horizontal axis is the critical velocity Vc, which is 0.66 m/s 

here. If velocity is less than Vc, no migration will occur. 

 Figure 9.36 shows how the channel migrates with time in a hyperbolic shape. At 

the end of eight years the channel will come close to maximum migration. 
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Figure 9.36 Parametric study  migration versus time 

 

 

9.4 CONCLUSION 

The Mmax equation comes from the data of these flume tests and the τmax equation 

is obtained by fitting numerical simulation data. Mmax equation and τmax equation are the 

two major components of the Hyperbolic Model. Verification was done for 16 out of 18 

flume tests on sand in the new Coastal Engineering Laboratory. The closeness of the 

prediction to the measured data verifies the effectiveness of both the Hyperbolic Model 
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and the Mmax and τmax equations. The validity of the implementation of the whole 

methodology as well as the validity of the MEANDER program is proved.  

Eventually the model will be used to predict the migration of real rivers. The 

verification of the Brazos River case is a further proof to the applicability of the model 

and the program in the real world. At this stage, flume tests cannot produce soil erosion 

at one bank, sediment transport to the other side, and sediment deposition on the other 

bank. In flume tests, the channel always widens. As a result the prediction model inherits 

the same limitation. However, practice engineers are more concerned about which part 

of the bank will be eroded than which part of the bank will be filled with deposition. 

In conclusion, the results of parametric study comply with the behavior of 

meander migration that has been observed. This demonstrates that the model can deal 

with not only individual cases but also rivers of all types. 
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CHAPTER X  

CONCLUSIONS AND RECOMMENDATIONS 

10.1 CONCLUSIONS 

10.1.1 Introduction 

 The problem of meander migration has been troubling mankind for centuries. 

The erosion of banks endangers bridge abutments and highway foundations. The shifting 

of the channels causes loss of land and problems to navigation. Meandering rivers can be 

classified into three categories: single-thread channel with various sinuosity, braided 

channels, and anabranching channels. The most influential factors affecting meander 

migration are found to be: soil, water, and geometry of the channel. 

10.1.2 Existing knowledge about meander migration 

 The solutions to the problem of meander migration proposed by numerous 

researchers can be classified into three categories: time sequence extrapolation, 

empirical equations, and fundamental modeling. Existing empirical equations consider 

only one or at most two of the most influential factors. Some equations are so simple that 

they are below the bar. The numerical methods involve solutions to the constitutive 

equations, development of sediment transport model and bank erosion model. None of 

the method can deal with changing water level and a hydrograph. The consideration of 

soil erosion was oversimplified. 

10.1.3 Research objectives and methodology 

 Our approach can be considered as a combination of empirical equations and 

fundamental modeling. The flume test allows the team to study the influential factors 

respectively. EFA test describes erodibility as a fundamental property of soil which 

distinguishes this research from all others found in the literature. It was found that the 

Hyperbolic Model matches the migration process in flume tests and in real rivers. 

Predicting meander migration based on a hydrograph has never been done before. It is 

another key feature of this research. If written in a report, the whole methodology could 
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be hundreds of pages long. If the application of the methodology was done by manual 

labor, it would take months of time to do one prediction. But the MEANDER computer 

program assembles everything together and presents the model to practice engineers 

with user friendly graphic interface. 

10.1.4 Flume test 

 The author conducted the first 13 flume tests in the old Hydro Lab. The 

preparation of the experimental setup includes purchasing the piping system and sand, 

designing false bottom, moving sand, calibration of the flow meter, and making 

measuring tools. A new flume test started at the end of previous one. The first step was 

to level the sand and dig a channel according to predetermined geometry. Measurements 

followed the start of a test. Bank migration was measured with a tape measure. Water 

depth was measured with point gauge and a ruler. Cross section profile was measured 

about every one meter along the channel. A paper boat was once used to measure surface 

velocity. The migration status of each time step was also recorded in digital photos. The 

results first indicated the possible existence of maximum migration. Due to the limitation 

of flume size, the tests of a much larger scale in the new Coastal Engineering Laboratory 

proved to be more valuable. 

10.1.5 The application of the SRICOS-EFA method 

 The decreasing migration rate observed in flume tests led to the idea of applying 

the Hyperbolic Model. Maximum migration Mmax and initial migration rate iM&  are the 

two major components of this model. The derivation of the Mmax equation was based on 

flume test data (Details will be discussed in Po-Hung Yeh and Namgyu Park’s doctoral 

dissertations which will likely come out in 2006). Erosion rate Z&  on the EFA curve is 

treated as migration rate M& . The erosion rate corresponding to maximum shear stress 

τmax is called iM& . A similar matrix like that of the flume test was set up for numerical 

simulation. The maximum shear stress τmax along the banks was calculated and plotted. 

The curve of extreme value distribution was chosen to fit the distribution of τmax along a 



 185

bend. Multiple regression was done to determine τmax as a function of other parameters. 

τmax equation was generated by combining all these functions together. With the 

equations for Mmax and τmax ready, the Hyperbolic Model for the prediction of meander 

migration is realized. 

10.1.6 Geometry study 

 It was a challenge to have a computer to reduce complicated channel geometry 

into a form with acceptable complexity. Arcs and straight lines were chosen to represent 

actual channel geometry. Fitting circles and identifying the best fit circle are the core of 

geometry study. The first step is to calculate radius of curvature for each point on the 

bank and plot it versus channel lengthwise distance. Points on a bend normally have a 

small radius of curvature. The points with radii of curvature smaller than a certain value 

are roughly identified as a bend. Each of the two boundary points of the bend is extended 

in both directions into a segment. Each time one point is chosen from each segment. A 

circle is fitted to these two points and the points in between. In this way, a bunch of 

circles are produced which should include the best fit circle. The best fit circle tends to 

have more points but less fitting error at the same time. A method is developed to 

balance these two contradictory criteria. It is not perfect, but it works well for many 

cases. 

10.1.7 Future hydrographs 

 Doing a prediction based on a hydrograph has little practical meaning except for 

verification purposes, because the hydrograph for the predicted period does not yet exist. 

The hydrograph for the future needs to be generated based on equivalent risk level of the 

existing hydrograph. It has been proved that a hydrograph reasonably follows a 

lognormal distribution. Based on its mean and standard deviation, a random number 

generator can generate tens of thousands of hydrographs of any desired length which 

also follows lognormal distribution and have the same mean and standard deviation. One 

hundred year flood Q100 and five hundred year flood Q500 are also a measure of risk level 
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that has existed in history. The mean and standard deviation can be analytically solved 

from Q100 and Q500. Thus the same random number generator can be used again. 

10.1.8 The MEANDER program 

 So far the MEANDER program has consisted of these main modules: graphic 

user interface (GUI), generation of future hydrographs in C++ and Matlab, geometry 

study in Matlab, implementation of hyperbolic model in C++ and Matlab, graphic output 

in Matlab. The module of risk analysis will be added by Namgyu Park. As far as 

programming technique is concerned, the MEANDER program requires skills in C++ 

language, Microsoft Foundation Class (MFC), Matlab, and a technique to integrate 

Matlab with C++. The result of all these is a user friendly input interface and powerful 

graphic output. Once getting familiar with the program, the user can virtually make use 

of all the findings the team has made. 

10.1.9 Verification and parametric study 

 Verification was done one by one for most of the flume tests in the Coastal 

Engineering Lab. It is not realistic to have a prediction matching test data at each point. 

Good matches have been achieved for at least 40% of the bend length. A positive 

verification of Brazos River case demonstrates the program’s applicability to real rivers. 

Reasonable relationships between migration distance and influential parameters were 

reproduced in parametric study, which further proves the reliability of the program and 

the prediction model. 

10.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

 The team can deliver a practical and useful product at this stage. When the 

project finishes in 2006 a better result will be achieved. However hard the team works, 

there are things the team cannot do due to the limit of budget and time. These things 

would become recommendations for future research. 

 The realization of the importance of channel bed slope came from analysis of the 

failure of the first flume test done in 2002 where gravel of d50=3mm was used and no 
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erosion occurred. Although initial velocity contributes to the momentum of flow, slope 

of channel bed plays a critical role, as can be seen in real rivers. It works the same way 

in flume tests. During a flume test the velocity gradually goes down. This is partially 

because eroded sand from the bank accumulates in the channel and reduces the initial 

slope. If the slope is increased, a larger magnitude and smaller variation of velocity are 

more likely to be achieved. 

 In real rivers, soil erodes on one bank and deposits on the opposite bank. So the 

whole channel migrates. But in flume tests, the deposition on the opposite bank is so 

little that only widening effect can be observed. Soil eroded from one bank can hardly 

travel to the opposite bank. In designing the flume test, velocity is scaled down from that 

of real rivers but not the soil particle size. The ratio of soil particle size to flow velocity 

is much larger in flume test than in real rivers. Moderately increasing the velocity will 

help sediment travel farther. Soil loss plays a role in the widening effect. For the flume 

tests in the old Hydro Lab, the author observed a pile of sand behind the exit (Appendix 

B). The larger the velocity the more sand will be lost. If the lost sand can be fed at the 

entry, a balance of sediment can be maintained. If a balance between sediment supply 

and sediment loss can be maintained, it is more likely to reproduce what happens in 

nature (Parker and Wilcock 1993; Friedkin, 1945). 

 The shear stress provided by numerical simulation appears to be periodic from 

one bend to the next, however, the measured migration distance increases along the 

channel. Developing secondary flow can partially account for this phenomenon. It is 

recommended to measure how the secondary flow changes from bend to bend. At the 

exit, there is a free fall of water and a sudden change of material from soil to wood. 

Excessive erosion often occurs here and moves upstream. Eliminating the free fall 

(Figure B.20) and strengthening banks close to the exit will help create a normal flow 

condition in this area. 

 Although the velocity varies from entry to exit and changes from the beginning 

to the end and the geometry is different for each time step, only the initial average 

velocity and initial geometry are used to develop Mmax equation. It is a good 
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approximation since test data does not follow the Hyperbolic Model perfectly. The 

change of velocity in time leaves some room for improving the Mmax-based prediction. 

The migration should be linked to instantaneous velocity and geometry instead of initial 

velocity and geometry. At this stage, it is hard to analyze the effect of changing velocity 

and geometry on migration based the Hyperbolic Model. Future researchers may 

develop a method that can make full use of the measured data. 

 When the Hyperbolic Model is being used, at any time step a point has two 

properties, existing migration distance and a migration versus time curve which is 

determined by instantaneous soil, water and geometry properties. The existing migration 

distance positions the point on the right location on the migration versus time curve. 

Then the program moves the point one time step forward along the curve. Since the 

existing migration distance is accumulated from time zero, if the calculation starts at an 

earlier time, the existing migration distance will be larger and the calculated migration 

for the current step will be smaller. A hypothetical case can better explain this limitation. 

Assume the change of geometry, soil, and flow properties at three different times is so 

small that the M versus t curves are very similar. Two predictions are made to predict the 

location of a point at time t3, as shown in Figure 10.1. The first prediction starts from t1 

and the predicted migration distance at time t2 is M1, and at time t3 is M2. The second 

prediction starts from t2. At time t2, the existence migration distance for prediction 1 is 

M1 and it follows curve 1; the existence migration distance for prediction 2 is zero and it 

follows curve 2. The new location indicated by prediction 2 is M3. There is a difference 

of M3-M2. 
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Figure 10.1 Start the prediction from different times 

 

 

 The migration versus time curve should correspond to a constant geometry. But 

the reality is that geometry changes with time. These limitations pose a challenge to a 

wider application of the Hyperbolic Model. An alternative will be ignoring what 

happened in history and use instantaneous properties only. Ιnstead of using Mmax 

and  τmax, future researchers may want to develop and use migration rate M& as a function 

of instantaneous soil, water and geometry properties. 

 The distribution of maximum shear stress τmax generated by numerical simulation 

approximately follows extreme value distribution which is like a skewed Gaussian 

distribution in shape. The location of the maximum τmax along a bend is normally close 

to that of maximum migration distance. The numerical simulation is partially verified by 

flume test. It is desirable to run more numerical simulation cases to discover the 

behavior of some cases that haven’t been run in flume tests. 

 Geometry study is a major task of this project and is very time-consuming.  

Although a working solution has been produced, a better solution would be extremely 

helpful. In computer science this problem can be classified into the category of computer 

vision or pattern recognition. The solution to a much more complicated problem, Optical 

Character Recognition (OCR), is already out there. Handwriting recognition program for 

some complex characters like Chinese has been in the market for some time. After the 

user trains the program for a while it will recognize a non-regular style of handwriting. 

The training process is called computer learning. It should be much easier to recognize 
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arcs and straight lines than to recognize handwriting in Chinese. If the project budget 

allows, it would be better to subcontract this task to related experts in computer science. 

 A large amount of time was saved by adapting the engine of the GUI of 

SRICOS-EFA program for the MEANDER program. The most difficult parts of the GUI 

include tabular data input and graphic data output. The former programmer might have 

spent months of time writing the code. But a commercial tabular data input module costs 

only about $150 without mentioning the difference in quality of code. Graphic data 

output module is also available, however, Matlab is a better choice for the demanding 

requirement of the MEANDER project and it is free to the client. Matlab is well known 

for its power of graphic output. With a good understanding of the Matlab Compiler, a 

programmer can make full use of this software to reduce programming work. 
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APPENDIX A 

FLUME TESTS CONDUCTED BY THE AUTHOR IN THE OLD HYDRO LAB 

Table A.1 List of flume tests done by the author in the old Hydro Lab 

Test No. R/W Bend Angle Flow Rate (GPM) 

1 4 65° 51.6 

2 4 65° 51.6 

3 8 45.6° 80.0 

4 8 45.6° 51.6 

5 2 93.1° 51.6 

6 1 136° 51.6 

7 4 65° 51.6 

8 8 45.6° 51.6 

9 4 65° 26 

10 4 65° 51.6 

11 4 65° 64.8 

12 2 65° 51.6 

13 4 65° 50 
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APPENDIX B 

A GALLERY OF PICTURES OF FLUME TESTS IN THE OLD HYDRO LAB 

 

 

 
Figure B.1 Flume Test 2 at final stage, looking downstream 

 

 

 
Figure B.2 Lost sand of Flume Test 2 
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Figure B.3 Wall is reached in Flume Test 3 

 

 

 
Figure B.4 Smooth transition at the exit of Flume Test 3 
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Figure B.5 Flume Test 4 at final stage, looking downstream 

 

 

 
Figure B.6 Flume Test 4 at final stage, looking upstream 
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Figure B.7 A section of Flume Test 5 at final stage 

 

 

 
Figure B.8 Flume Test 5 at final stage, looking upstream 
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Figure B.9 Lost sand of Flume Test 5 

 

 

 
Figure B.10 The exit of Flume Test 5 
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Figure B.11 Flume Test 6 is running, looking downstream 

 

 

 
Figure B.12 Flume Test 6 at final stage, looking downstream 
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Figure B.13 Lost sand of Flume Test 6 

 

 

 
Figure B.14 Flume Test 7 at final stage, looking upstream 
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Figure B.15 Flume Test 8 at final stage, looking downstream 

 

 

 
Figure B.16 Flume Test 9 at final stage, looking upstream 
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Figure B.17 Flume Test 10 is running, looking upstream 

 

 

 
Figure B.18 Flume Test 10 at final stage, looking upstream 
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Figure B.19 Flow transition at the exit of Flume Test 10 

 

 

 
Figure B.20 Smooth flow transition at the exit of Flume Test 10 
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Figure B.21 Flume Test 11 with reinforcement at entry, looking downstream 

 

 

 
Figure B.22 Flume Test 11 is running, looking upstream 
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Figure B.23 The end of Flume Test 12, looking downstream 

 

 

 
Figure B.24 Flume Test 13 is running, looking downstream 
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APPENDIX C 

SOURCE CODE OF THE COMPUTER PROGRAM 

C.1 COMPUTER CODE WRITTEN IN MATLAB FOR GEOMETRY STUDY 

AND GRAPHIC OUTPUT 

Table C.1 Dependency report of computer code for fitting circles 

M Files Children
(Called Functions)

Parents
(Calling Functions)

ChannelLen
EvenlyDivide
AutoFit_R
AutoFit_R_Comb
AutoFit_RbySign
ChannelLen
Rad_Cur_Curve
slope
findBendByCrtLine
sortIdx
plotCirRvsLen
fitcirlin
removeSmallBend
AutoFit_R
plotCirRvsLen
ChannelLen
fitcirlin
removeSmallBend
shrinkArray
ChannelLen
Rad_Cur_Curve
slope
AutoFit_R
findBendByCrtLine
fitcirlin
removeSmallBend
plotCirRvsLen

AutoFit_Run_InVC
AutoFit_R
AutoFit_R_Comb
AutoFit_RbySign

EvenlyDivide ChannelLen AutoFit_Run_InVC
AutoFit_R
AutoFit_RbySign
AutoFit_R
AutoFit_R_Comb
AutoFit_RbySign

AutoFit_Run_InVC

ChannelLen

findBendByCrtLine straight_chk

fitcirlin

AutoFit_Run_InVC

AutoFit_R

AutoFit_R_Comb

AutoFit_RbySign

AutoFit_Run_InVC

AutoFit_Run_InVC
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Table C.1 Continued 

M Files
Children

(Called Functions)
Parents

(Calling Functions)
Fixed_Spacing_Divide ChannelLen plotCirRvsLen
PlotCircle plotCirRvsLen

PlotCircle
Fixed_Spacing_Divide
ChannelLen
Rad_Cur_Curve
fitcirlin
Rad_Cur_Curve

AutoFit_R
AutoFit_RbySign
plotCirRvsLen

Rad_Cur_Sec rot_xy Rad_Cur_Curve
AutoFit_R
AutoFit_R_Comb
AutoFit_RbySign

rot_xy Rad_Cur_Sec
shrinkArray AutoFit_R_Comb

AutoFit_R
AutoFit_RbySign

sortIdx AutoFit_R
straight_chk findBendByCrtLine

plotCirRvsLen

removeSmallBend

AutoFit_R
AutoFit_R_Comb
AutoFit_RbySign

Rad_Cur_Sec

Rad_Cur_Cir

slope

Rad_Cur_Curve

 
Table C.2 Dependency report of code for graphic output and utilities 

M Files
Children

(Called Functions)
Parents

(Calling Functions)
GenRiverCoord
GenRiverCoord_360deg
GetAngle
mergeVectors
offsetCurve PlotRiverCenOffset
PlotChenSimulationData PlotChen_evDist
PlotChen_evDist PlotChenSimulationData
plotMgrtForOneFlow
PlotMvsT
PlotRiver1Curve read2Col3ColFile PlotRiver2Banks

PlotRiver1Curve
read2Col3ColFile
PlotRiverCenOffset
PlotRiver2Banks
offsetCurve
read2Col3ColFile

ReadMeanderCoord
PlotRiver1Curve
PlotRiver2Banks
PlotRiverCenOffset

read2Col3ColFile

PlotRiverCenOffset

PlotRiver2Banks PlotRiverBanks_Main

PlotRiverBanks_Main
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Index of Matlab Functions 

function [xyRF,ArcIdx,nRet,curve]=AutoFit_Run_InVC(curve,arg) ................. 225 

function [xyRF,ArcIdx,RoW]=AutoFit_R(xx,yy,m,arg,noxyRF,RoW0,bLast) ... 227 

function [xyRF,ArcIdx,ArcIdx2]=AutoFit_R_Comb(xx,yy,m,arg) ........................ 230 

function ar2=shrinkArray(ar,n) ........................................................................................... 233 

function [xyRF,ArcIdx]=AutoFit_RbySign(xx,yy,m,arg) ......................................... 234 
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function [xyRF,ArcIdx,nRet,curve]=AutoFit_Run_InVC(curve,arg) 
% [xyRF,ArcIdx,sita,nArc]=AutoFit_Run_InVC(Curve,arg) 
% 'curve' passed from Cpp has 2 rows, nPt columns;passed from 
AutoFit_Run, 
% it has nPt rows and 2 columns, transpose it. 
% If the row number of 'curve' is not 2, transpose it. 
% xyRF(1:ArcNum,1:4): xc,yc,Rc,Fei for a fitted bend. 
% ArcIdx:stores the starting and ending point number of a curve section 
% for which a circle is fitted. 
% nArc: the number of circles fitted. 
% ERROR CODE: 
% nRet(4)==0:  m>nPt/2,  
% nRet(4)==-1: AutoFit_R(...) didn't produce any circle. 
% nRet(4)==-2: In AutoFit_R_Comb(...), >=1 circle(s) is eaten by 
preceding 
% circle(s). Criterion line needs to be adjusted. Program can continue. 
 
global nMaxArc; 
nMaxArc=50; 
nRet=zeros(10,1); 
nPt=length(curve); % What if the curve has many elements not assigned a 
number? 
  
% Make curve 2 rows, nPt columns--as passed in by VC. 
nRow=size(curve,1); 
if nRow>2  % When called by AutoFit_Run(...), curve has nPt rows, 2 
columns 
    curve=curve'; 
end 
  
%Output test XY data before evenly dividing the curve.  
if abs(arg(19))>1e-5  % If arg(19)!=0, do it. 
    fn0=num2str(arg(21)); 
    fn=['c:\temp\BankCoord_StepNo_' fn0 '.txt']; 
    fid=fopen(fn,'wt'); 
    fprintf(fid,'%10d %10.3f %10.3f\n',[[1:nPt]' curve']'); 
    fclose(fid); 
end 
  
if arg(17)<=0   % Redistribute the points by spacingCoef. 
    %width=37.7;  %width=37.7;  %for Guadalupe.dat let width=1, not 
circle is fit,? 
    %width=104;   % width=104 for Brazos river. 
    width=arg(1); 
    spacingCoef=arg(2); % spacing=spacingCoef*width 
    SameNum=false;      % if 'true', use the same number as user input. 
Then it will override spacingCoef. 
    if spacingCoef<=0 
        SameNum=true; 
    end 
    [len,totalLen]=ChannelLen(curve(1,:),curve(2,:)); 
    segLenCoef=arg(4);     % for which a quadratic line will be fitted. 
  
    % Calculate nSpacing & m. 
    if SameNum==false 
        spacing=spacingCoef*width; 
        nSpacing=ceil(totalLen/spacing); 
        m=round(segLenCoef/spacingCoef)+1; 
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    %Use same number of points as input. Recalculate 
spacing,spacingCoef,m. 
    else        % SameNum==true 
        nSpacing=nPt-1;  % # of spacing 
        segLen=segLenCoef*width; 
        spacing=totalLen/nSpacing; 
        m=round(segLen/spacing)+1; 
    end 
else       % Redistribute the points by a fixed number of spacing. 
    nSpacing=arg(17)-1; 
    m=arg(18); 
end 
  
if m>nSpacing/3.0 
    xyRF=0; 
    ArcIdx=0;   
    nRet(4)=0;  % ERROR CODE 0.  
    return; 
end 
  
if abs(arg(11))>1e-5  % if arg(11)!=0, EvenlyDivide(Redistribute) it. 
    [xx, yy]=EvenlyDivide(curve(1,:), curve(2,:), nSpacing);  
    nPt=length(xx); 
    curve=[xx;yy]; 
end 
  
%arg(10): determine which function to use. 
if abs(arg(10)-1)<1e-5  % if arg(10)==1 
    [xyRF,ArcIdx]=AutoFit_R(curve(1,:), curve(2,:),m,arg); 
elseif abs(arg(10)-2)<1e-5 % if arg(10)==2 
    [xyRF,ArcIdx]=AutoFit_R_Comb(curve(1,:), curve(2,:),m,arg); 
elseif abs(arg(10)-3)<1e-5 
    [xyRF,ArcIdx]=AutoFit_RbySign(curve(1,:), curve(2,:),m,arg); 
else 
end 
  
% Check Error Code 
[n1,n2]=size(xyRF); 
if (n1==1 && n2==1) || (n1==0 || n2==0) 
    nArc=0; 
elseif n1>=1 && n2>=1 
     nArc=n1; 
else 
end 
nRet(4)=ArcIdx(nArc+1,1); 
  
% arg(16), if 0, AutoFit_Run_InVC(...) is NOT called by VC; otherwise, 
it's called VC. 
% Transpose the matrix so that this work is not needed to be done in VC. 
if abs(arg(16))>1e-4  % AutoFit_Run_InVC(...) is called by VC 
    xyRF=xyRF'; 
    ArcIdx=ArcIdx'; 
end 
  
nRet(1)=nPt; % Possibly to be used for the migrated channel. 
nSpacing=nPt-1. 
nRet(2)=nArc;% It stores ArcNum only and >=0. 
nRet(3)=m;   % Possibly to be used for the migrated channel. 
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function [xyRF,ArcIdx,RoW]=AutoFit_R(xx,yy,m,arg,noxyRF,RoW0,bLast) 
  
% [xyRF,ArcIdx]=AutoFit_R(xx,yy,m,arg,noxyRF,RoW0,bLast) 
% xyRF(1:ArcNum,1:4): xc,yc,Rc,Fei for a fitted bend.  
% Space for ArcIdx is allocated in findBendByCrtLine() and resized to 
ArcIdx(1:ArcNum+1,1:2). 
% Fei is ignored here and calculated in VC. 
% In calling functions, ArcNum is determined by xyRF. 
% Walking from the 1st point to the last point: 
% Rc>0(y">0) if the center is to the left side of the channel; 
% Rc<0(y"<0) if the center is to the right side. 
% ArcIdx(ArcNum+1,2): the indices of two boundary points of a bend 
% Element ArcIdx(ArcNum+1,1) carries Error Code. 
% noxyRF, if true, don't calculate xyRF&sita. And xyRF=ArcNum. 
% Leave the calculation of m outside of this function, or parallel 
% functions will need the same code for calculating m. 
% width, average width of the channel, used to calculate R/W for 
function findBendByCrtLine() 
% In AutoFit_Cur(), curve W/R vs. Len is used; here R(R/W) vs. Len is 
used. 
% minBenLen: a segment will be fitted with a circle only if its length 
is larger than minBenLen 
% RoW0: When called by AutoFit_RbySign(), (xx,yy) may be a segment of 
the 
% whole channel. Pass along corresponding R/W. 
% bLast: if true this segment contains the last point of the whole bank. 
for findBendByCrtLine() 
% If R goes up or down monotonously && bLast==true, treat it as a bend. 
Default: true 
  
%global nMaxArc;% len; 
if nargin<=4 
    noxyRF=false;  % if true, don't calculate xyRF&sita 
end 
if nargin<=6, bLast=true; end 
  
width=arg(1); 
lmt(1:3)=arg(7:9); 
%minBendLen=arg(3)*width; 
minBendLen=[];  % or 0. Remove small bend length later. 
distAvgLmt=arg(5); 
  
Norder=2;      % Default is 2. 
rotflag='Y';   % Default is 'N'(No). 
nPt=length(xx);   % total number of points 
%hlfm=floor(m/2); 
  
len=ChannelLen(xx,yy);  %len obtained here will be used. 
if nargin<=5 
    RoW=Rad_Cur_Curve(xx,yy,m,Norder,rotflag); % Radius of curvature 
    RoW=RoW./width;  % R/W 
else 
    RoW=RoW0; 
end 
slp=slope(len,RoW,3); 
  
%Apply the 1st criterion line, pick sections below and intersect the 
criterion line 
%n1=hlfm; n2=nPt-hlfm; % Are the first and last hlfm points harmful? 
n1=1;n2=nPt;  % try to remove hlfm and consider all points 
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[ArcNum,ArcIdx]=findBendByCrtLine(xx(n1:n2),yy(n1:n2),RoW(n1:n2), ... 
len(n1:n2)-len(n1),slp(n1:n2),lmt(1),minBendLen,distAvgLmt,bLast);  
  
% Loops to pick sections below criteria lines.  
% Intersection is not required. 
for kk=2:3 
    ArcNumOfPrevFit=ArcNum;    % Number of arcs obtained from previous 
criterion lines. 
    for jj=1:ArcNumOfPrevFit+1 %ArcNumofPrevFit can be zero. 
        if jj==1               %First pick up curve segments between 
those that have been fitted with circles 
            %first=hlfm; 
            first=1; 
            if ArcNumOfPrevFit==0 
                %last=nPt-hlfm; 
                last=nPt; 
            else 
                last=ArcIdx(jj,1)-1; 
            end 
        elseif jj==ArcNumOfPrevFit+1  % when ArcNumOfPrevFit=0, both 
"if" and "elseif" hold, only "if" will be executed! 
            first=ArcIdx(jj-1,2)+1; 
            %last=nPt-hlfm; 
            last=nPt; 
        else 
            first=ArcIdx(jj-1,2)+1; 
            last=ArcIdx(jj,1)-1; 
        end 
        if last-first<3, continue; end 
        if bLast 
            if last<nPt, bLast=false; end 
        end 
  
        [AN2,AI2]=findBendByCrtLine(xx(first:last),yy(first:last), ... 
RoW(first:last),len(first:last)-len(first),slp(first:last),lmt(kk), ... 
minBendLen,distAvgLmt,bLast);  
        for N=1:AN2  %AN2 is ArcNum2; AI2 is ArcIdx2 
            AI2(N,:)=AI2(N,:)+first-1; 
        end 
  
        tmp=ArcNum; 
        ArcNum=ArcNum+AN2; % Append newly fitted circles. 
        ArcIdx(tmp+1:ArcNum,1:2)=AI2(1:AN2,1:2); 
    end 
    if ArcNum>0  % If ArcNum==0, a 0-by-2 matrix will be returned. 
        ArcIdx=sortIdx(ArcIdx,ArcNum); % The dimension of ArcIdx is not 
changed. 
    end 
end 
  
if ArcNum==0 
    xyRF=0; 
    ArcIdx=-1; % ERROR CODE -1, AutoFit_R(...) doesn't produce any 
circle. 
    if arg(12)>=1 
        arg(12)=2;  % Plot R/W vs Len only 
        plotCirRvsLen(xx,yy,m,xyRF,ArcIdx,arg); 
    end 
    return; 
end 
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ArcIdx=ArcIdx(1:ArcNum+1,:); % Shrink the array and reserve a slot for 
Error Code. 
xyRF=zeros(ArcNum,4); 
ArcIdx(ArcNum+1,1)=ArcNum;  % Error Code, normal situation. 
  
for kk=1:ArcNum   % Calculate radii of the circles. 
    idx1=ArcIdx(kk,1); idx2=ArcIdx(kk,2); 
    if noxyRF==false 
        xyR=fitcirlin(xx(idx1:idx2),yy(idx1:idx2)); 
    else 
        xyR=[0 0 1];  % The sign of R is needed for AutoFit_R_Comb(...) 
    end 
    bendLen=len(idx2)-len(idx1); 
  
    % fei,sita are also calculated in C code. Here if for showing fei 
together with R. 
    fei=bendLen/xyR(3)*180/pi; 
%    fei=GetAngle(xx(idx1:idx2),yy(idx1:idx2),xyR); % Only the exact 
fei angle is calculated.     
  
    idx=floor((idx1+idx2)/2); % Assign signs(+/-) to R. By default it 
is +. 
    if RoW(idx)<0, xyR(3)=-xyR(3); end 
    xyRF(kk,:)=[xyR fei]; 
end 
  
[xyRF,ArcIdx]=removeSmallBend(xyRF,ArcIdx,len,arg); 
  
bPlot=arg(12); 
if bPlot>0 
    plotCirRvsLen(xx,yy,m,xyRF,ArcIdx,arg); 
end 
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function [xyRF,ArcIdx,ArcIdx2]=AutoFit_R_Comb(xx,yy,m,arg) 
  
% [xyRF,ArcIdx,ArcIdx2]=AutoFit_R_Comb(xx,yy,m,arg) 
% First run AutoFit_R() to identify bends 
% Then give a range for starting point and ending point and find the 
% best circle based on a combination of ArcLength and miu, std 
% ArcIdx(ArcNum,2): The actual boundary obtained 
% ArcIdx2(ArcNum,4): The range searched; 2&3 inner; 1&4 outer. 
% The number of circles will keep the same or go down. 
% ArcIdx(ArcNum+1,1) is Error Code. If ErrorCode==-2, ArcIdx(ArcNum+1,2) 
% is the # of circles eaten by preceding circles. 
  
bHist=false;  % Plot histogram of term1 & term2 
bPlot=false;  % Plot term1,term2 and sum for each bend 
%byR=true;    % alpha method, bPlot, x axis is R 
byR=false;  % true: x axis is Ri(1:n), Ri is the radii of circles 
searched in order 
          % Ri normally goes up but may go up and down 
          % false: x axis is the ordinal No. of circles searched, [1:n] 
  
% ext=0.40; % The range of the starting and ending point is +(-)ext  
% *(length of the identified bend) 
ext=arg(14); 
tn=length(xx); 
  
bPlotCirR=arg(12); 
arg(12)=-1; % If <0, don't plot any curve. 
            % If =1, plot original channel and circles only. 
            % If =2, also plot curve R vs. Len. 
noxyRF=true; 
% xyRF0 tells the signs of the radii. 
% ArcIdx has ArcNum rows. 
[xyRF0,ArcIdx,RoW]=AutoFit_R(xx,yy,m,arg,noxyRF);  
arg(12)=bPlotCirR; 
  
nDim=size(xyRF0); 
if nDim(1,1)==1 && nDim(1,2)==1 % ArcNum==0 
    xyRF=0;                 % AutoFit_R(...) didn't produce any circle. 
    if arg(12)>=1 
        arg(12)=2; % Plot R/W vs Len only 
        plotCirRvsLen(xx,yy,m,xyRF,ArcIdx,arg); 
    end 
    return; 
end 
 
ArcNum=nDim(1,1); 
% Index of the circles eaten by the preceding circle. 
missingCirIdx=zeros(ArcNum-1,1);  
nMissingCir=0; 
 
cLen=ChannelLen(xx,yy); % channel length, 1-D array 
  
xyRF=zeros(ArcNum,4);   % dynamic memory allocation, how to avoid this? 
ArcIdx2=zeros(ArcNum,4); 
for i=1:ArcNum 
    len=ArcIdx(i,2)-ArcIdx(i,1); 
    ext2=floor(ext*len); 
    ArcIdx2(i,1)=floor(ArcIdx(i,1)-1.4*ext2); 
    ArcIdx2(i,2)=ArcIdx(i,1)+ext2; 
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    ArcIdx2(i,3)=ArcIdx(i,2)-ext2; 
    ArcIdx2(i,4)=floor(ArcIdx(i,2)+1.4*ext2); 
  
    % If the two adjacent bends are of opposite sign, divide at the 
inflection point. 
    if i<ArcNum && ArcIdx2(i,4)>ArcIdx(i+1,1) 
        if RoW(ArcIdx(i,2))*RoW(ArcIdx(i+1,1))<0 
            k=ArcIdx(i,2); 
            while RoW(k)*RoW(ArcIdx(i+1,1))<0 && k<=ArcIdx(i+1,1) 
                k=k+1; 
            end 
            ArcIdx2(i,4)=k-1; 
        end 
    end 
end 
  
if ArcIdx2(1,1)<1, ArcIdx2(1,1)=1; end 
if ArcIdx2(ArcNum,4)>tn, ArcIdx2(ArcNum,4)=tn; end 
  
ArcIdx=zeros(ArcNum+1,2); 
ArcIdx(ArcNum+1,1)=ArcNum;  % Error Code, normal situation. 
  
a=1;  
% Reducing b will lead to larger bend angle  
b=arg(15); % Important coefficient, balancing bend angle and fitting 
error 
%dist=zeros(500,1); 
if bPlot==true 
    term1=zeros(100,1); 
    term2=zeros(100,1); 
    Ri=zeros(100,1); 
end 
if bHist==true 
    term1Hist=zeros(1000,1); 
    term2Hist=zeros(1000,1); 
end 
nHist=0; 
  
for i=1:ArcNum 
%    beta=0;   % to find maximum value 
    beta=1e7; % to find minimum value 
    j=ArcIdx2(i,2)+1; 
    k=ArcIdx2(i,3)-1; 
    n=0; 
    nMinAlpha=0; 
    AI1=ArcIdx2(i,1); % 1st outer boundary. 
    AI4=ArcIdx2(i,4); % last outer boundary. 
    % At most one point on the already fitted bend will be used. 
    if i>1 && AI1<ArcIdx(i-1,2), AI1=ArcIdx(i-1,2); end % overlap check 
  
    while true 
        j=j-1;   % j goes from 1st inner boundary to 1st outer boundary. 
        k=k+1;   % k goes from 2nd inner boundary to 2nd outer boundary. 
        if j<AI1 && k>AI4, break; end 
        if j<AI1, j=AI1; end 
        if k>AI4, k=AI4; end   % This step is important. 
  
        n=n+1; nHist=nHist+1; 
        [xyR,fval]=fitcirlin(xx(j:k),yy(j:k));%fval is sum of squares. 
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        t1=a*(2*pi*xyR(3))/(cLen(k)-cLen(j));   % alpha 
        fval=sqrt(fval/(k-j+1)); 
        t2=b*(fval/xyR(3));         % alpha 
        if bPlot==true 
            term1(n)=t1; 
            term2(n)=t2; 
            Ri(n)=xyR(3); 
        end 
        if bHist==true 
            term1Hist(nHist)=t1; 
            term2Hist(nHist)=t2/b; 
        end 
 
        sum=t1+t2; 
%        if beta<sum        % Find maximum value 
        if beta>sum         % Find minimum value 
            beta=sum; 
            xyRF(i,1:3)=xyR; 
            ArcIdx(i,1)=j; ArcIdx(i,2)=k;%There should be overlap check. 
            nMinAlpha=n; 
        end 
    end 
    % Plot alpha(beta) vs. R(# of circles), term1 term2 sum 
    if bPlot==true 
        figure 
        if byR==true 
            plot(Ri(1:n),term1(1:n),'b*-',Ri(1:n),term2(1:n),'k.-', 
Ri(1:n),term1(1:n)+term2(1:n),'gd-') 
            hold on 
            
plot(Ri(nMinAlpha),term1(nMinAlpha)+term2(nMinAlpha),'ro','MarkerSize',
8) 
            xlabel('R','FontSize',15) 
        else  % by # of circles 
            Nv=[1:n]; 
            plot(Nv,term1(1:n),'b*-',Nv,term2(1:n),'k.-', Nv,  
term1(1:n)+term2(1:n),'gd-') 
            hold on 
            
plot(nMinAlpha,term1(nMinAlpha)+term2(nMinAlpha),'ro','MarkerSize',8) 
            xlabel('Ordinal Number of Circles','FontSize',15) 
        end 
        ylabel('Target Term','FontSize',15) 
        legend('1/\phi','b\times(Err/R)','Sum') 
        tstr=['Bend ' num2str(i) ' b=' num2str(b)]; 
        title(tstr,'FontSize',15) 
        grid on 
    end 
end 
  
if bHist==true 
    Hist1=shrinkArray(term1Hist,nHist); 
    Hist2=shrinkArray(term2Hist,nHist); 
    figure 
    hist(Hist1,50) 
    figure 
    hist(Hist2,50) 
end 
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for i=1:ArcNum 
    if xyRF0(i,3)<0, xyRF(i,3)=-xyRF(i,3);end 
end 
  
% Check whether a circle is eaten by the preceding circle. 
for i=1:ArcNum 
    if ArcIdx(i,1)==0 || ArcIdx(i,2)==0 
        nMissingCir=nMissingCir+1; 
        missingCirIdx(nMissingCir)=i; 
    end 
end 
  
% Error Code -2:A circle is eaten by the preceding circle in  
% AutoFit_R_Comb. A criterion line needs to be adjusted. 
if nMissingCir>0 
    xyRF1=zeros(ArcNum-nMissingCir,4); 
    ArcIdx1=zeros(ArcNum-nMissingCir+1,2); 
    idx=0; 
    for i=1:ArcNum  % Remove the circles eaten 
        if ArcIdx(i,1)~=0 && ArcIdx(i,2)~=0 
            idx=idx+1; 
            xyRF1(idx,:)=xyRF(i,:); 
            ArcIdx1(idx,:)=ArcIdx(i,:); 
        end 
    end 
    ArcNum=ArcNum-nMissingCir; 
    xyRF=xyRF1; 
    ArcIdx=ArcIdx1; 
    ArcIdx(ArcNum+1,1)=-2;          % Error Code 
    ArcIdx(ArcNum+1,2)=nMissingCir; % Number of circles eaten 
end 
  
% Calculate fei angle for showing it in fitted circles. 
for i=1:ArcNum 
    idx1=ArcIdx(i,1); idx2=ArcIdx(i,2); 
    fei=(cLen(idx2)-cLen(idx1))/abs(xyRF(i,3))*180/pi; 
    xyRF(i,4)=fei; 
end 
  
[xyRF,ArcIdx]=removeSmallBend(xyRF,ArcIdx,cLen,arg); 
  
if bPlotCirR>0 
    plotCirRvsLen(xx,yy,m,xyRF,ArcIdx,arg); 
end 
 
 
function ar2=shrinkArray(ar,n) 
  
% keep the first n elements of 1-D array ar 
len=length(ar); 
if len<=n 
    ar2=ar; 
    return 
end 
ar2=zeros(n,1); 
for i=1:n 
    ar2(i)=ar(i); 
end
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function [xyRF,ArcIdx]=AutoFit_RbySign(xx,yy,m,arg) 
 
% [xyRF,ArcIdx]=AutoFit_RbySign(xx,yy,m,arg) 
% Designed for flume test geometry whose bends share inflection points. 
% When the sign of R changes, it's considered a switch to next bend. 
% The first and last bend are identified by criterion lines. 
% This method is not good for a single 360-degree circle. 
global nMaxArc; 
ArcIdx=zeros(nMaxArc,2);%The whole dimension(nMaxArc*2)will be returned. 
  
width=arg(1); 
%lmt(1:3)=arg(7:9); 
minBendLen=arg(3)*width; 
distAvgLmt=arg(5); 
  
Norder=2;      % Default is 2. 
rotflag='Y';   % Default is 'N'(No). 
nPt=length(xx);   % total number of points 
  
len=ChannelLen(xx,yy);  %len obtained here will be used. 
RoW=Rad_Cur_Curve(xx,yy,m,Norder,rotflag); % Radius of curvature 
  
RoW=RoW./width;  % R/W 
slp=slope(len,RoW,3); 
  
% Use criterion lines to find the first bend. 
i=2; 
% If the curve is a perfect 360-degree circle, there is a problem here. 
while RoW(1)*RoW(i)>0 % It's possible RoW(i)<0 (or >0) for i=[1 nPt] 
    if i==nPt 
        disp('In AutoFit_RbySign(), RoW doesn''t change sign.') 
        break; 
    end 
    i=i+1; 
end % It's possible range identified here doesn't contain a bend. 
bPlot=arg(12); 
arg(12)=-1;   % Don't plot anything. 
bLast=false;  % This segment doesn't contain the last point of the bank. 
[xyR1,AI1]=AutoFit_R(xx(1:i),yy(1:i),m,arg,true,RoW(1:i),bLast); 
[n1,m1]=size(xyR1); 
if n1==1 && m1==1 % n1: # of bends identified. Most likely just 1 bend. 
    n1=0;  % No bend was identified. 
else 
    AI1(n1,2)=i; % Directly use inflection point as boundary point. 
end 
first=i; 
  
for j=1:n1, ArcIdx(j,:)=AI1(j,:); end 
  
i=nPt-1; 
while RoW(i)*RoW(nPt)>0 
    i=i-1; 
end 
  
[xyR2,AI2]=AutoFit_R(xx(i:nPt),yy(i:nPt),m,arg,true,RoW(i:nPt)); 
arg(12)=bPlot; % Restore original value. 
  
[n2,m2]=size(xyR2); 
if n2==1 && m2==1  % No circle was fitted. 
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    n2=0; 
else 
    AI2(1,1)=1+1; %If there are more than one, extend backward the 
boundary of the 1st one. 
end 
for k=1:n2, AI2(k,:)=AI2(k,:)+i-1; end 
last=i+1; 
  
% The point on which R changes sign is treated as shared boundary point. 
ArcNum=n1; 
i=first; 
maxLmt=max([arg(7) arg(8) arg(9)]); 
  
while i<last 
    j=i+1; 
    while RoW(i)*RoW(j)>0 
        j=j+1; 
    end 
    minBendLen=[]; % Ignore this criterion. For all bends?  
    [AN3,AI3]=findBendByCrtLine(xx(i:j),yy(i:j),RoW(i:j),len(i:j)-
len(i),... 
        slp(i:j),maxLmt,minBendLen,distAvgLmt,false); %arg(9) is the 
largest criterion line. 
%use maxLmt*20,so that straight line segments(R/W>1e4...)can be removed. 
% 20 may not be the best number. 
    if AN3>0 
        ArcNum=ArcNum+1; 
        ArcIdx(ArcNum,1)=i; 
        ArcIdx(ArcNum,2)=j;%AI3(AN3,2)+i-1;%If the two share an 
inflection point ArcIdx(ArcNum,2)=j. 
    end 
    i=j; 
end 
ArcIdx(ArcNum+1:ArcNum+n2,:)=AI2(1:n2,:); 
  
ArcNum=ArcNum+n2; 
ArcIdx(ArcNum+1,1)=ArcNum; 
ArcIdx=ArcIdx(1:ArcNum+1,:); 
xyRF=zeros(ArcNum,4); 
  
for kk=1:ArcNum   % Calculate radii of the circles. 
    idx1=ArcIdx(kk,1); idx2=ArcIdx(kk,2); 
    xyR=fitcirlin(xx(idx1:idx2),yy(idx1:idx2)); 
    bendLen=len(idx2)-len(idx1); 
    % fei,sita are also calculated in C code. Here if for showing fei 
together with R. 
    fei=bendLen/xyR(3)*180/pi;  
     
    idx=floor((idx1+idx2)/2); % Assign signs(+/-) to R. By default it 
is +. 
    if RoW(idx)<0, xyR(3)=-xyR(3); end 
    xyRF(kk,:)=[xyR fei]; 
end 
  
[xyRF,ArcIdx]=removeSmallBend(xyRF,ArcIdx,len,arg); 
bPlot=arg(12); 
if bPlot>0 
    plotCirRvsLen(xx,yy,m,xyRF,ArcIdx,arg); 
end 
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function [len, Total_Len]=ChannelLen(x,y) 
  
%  function [len,Total_Len]=ChannelLen(x,y) 
%  Given coordinates of a bank, calculate the curve length of a channel 
%  len is a vector. len(i) is corresponding to the i-th point. 
%  Total_Len is the total length of the curve. 
%  There is a C version of this function. 
  
n=length(x); 
len=zeros(n,1); 
for i=2:n % Avoid exponential function. 
    v=sqrt((x(i)-x(i-1))*(x(i)-x(i-1))+(y(i)-y(i-1))*(y(i)-y(i-1))); 
    len(i)=v+len(i-1); 
end 
Total_Len=len(n); 
 
function [x1,y1]=EvenlyDivide(x,y,n) 
  
% Evenly divide a curve descirbed by x,y into n segments 
% The length of each segment (total length of the channel)/n is 
measured 
% along the CURVE and is not the distance between adjacent two points 
of 
% x1,y1 which is a straight line distance. 
% x1,y1 have the same vector direction as x,y(row/column). 
% There are n+1 points for the result 
% If x is a row/column vector, the result is of the same direction. 
% There is a C version of this function 
tn=length(x); 
  
len=ChannelLen(x,y); %element: 1 to tn 
seclen=len(tn)/n; 
  
nRow=size(x,1); 
if nRow==tn 
    x1=zeros(n+1,1); y1=zeros(n+1,1); 
else 
    x1=zeros(1,n+1); y1=zeros(1,n+1); 
end 
  
x1(1)=x(1);    y1(1)=y(1); 
x1(n+1)=x(tn); y1(n+1)=y(tn); 
  
len_sum=0; 
for i=2:n    %From the 2nd point to the n-th point to be solved. 
    len_sum=len_sum+seclen; 
    for j=1:tn-1  %From the 1st point to the (tn-1)-th of the original 
curve. 
        if len_sum<len(j) 
            continue 
        end 
        if len_sum<len(j+1)  % len_sum belongs to [len(j) len(j+1)) 
            slope=(len_sum-len(j))/(len(j+1)-len(j)); 
            x1(i)=x(j)+(x(j+1)-x(j))*slope; 
            y1(i)=y(j)+(y(j+1)-y(j))*slope; 
            break 
        end 
    end 
end 
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function [ArcNum,ArcIdx]=findBendByCrtLine 
(xx,yy,RC,len,slp,lmt,minBendLen,distAvgLmt,bLast) 
  
% [ArcNum,ArcIdx]=findBendByCrtLine(xx,yy,RC,len,slp,lmt,minBendLen, 
distAvgLmt,bLast) 
% Identify bends by a criterion line. The portion of cruve RC vs.Length 
% between lmt and X axis is considered a bend. 
% xx,yy: coordinates of the section of interest, for straight_chk(...) 
% Here are the differences from previous version. 
% RC: R or R/W or d^2R/ds^2, with positive and negative values 
% len(1:length(xx)): length vector of the segment. 
% slp:slope, Make sure the identified segment doesn't go up/down 
monotonously 
% lmt: the criterion line, scalar 
% minBendLen: if the length of a curve segment is smaller than this, no 
% circle will be fit. 
% distAvgLmt: a measure of straightness, obtained from function 
straight_chk() 
% If the user don't want to use these two criteria, set 
minBendLen&distAvgLmt to <=0 
% bLast: if true this segment contains the last point of the whole bank. 
% If R goes up or down monotonously && bLast==true, treat it as a bend. 
If not present: true 
% Pass a lot of parameters so that they don't need to be calculated 
again. 
  
global nMaxArc; 
  
if isempty(minBendLen), minBendLen=0; end % Ignore this criterion. 
if isempty(distAvgLmt), distAvgLmt=0; end 
  
if nargin<=8, bLast=true; end % Default value for bLast. 
  
tn=length(xx); 
ArcIdx=zeros(nMaxArc,2); % The whole dimension(nMaxArc*2) will be 
returned. 
ArcNum=0; 
i=1; 
while i<=tn 
    if abs(RC(i))>lmt 
        i=i+1; 
        continue; 
    end 
    j=i;  i=i+1; 
    while i<=tn 
        if abs(RC(i))<=lmt && RC(i)*RC(j)>0  % When R changes sign, a 
bend ends 
            i=i+1;                           % For d^2R/dS^2, change of 
sign doesn't matter. 
            continue 
        end 
        break 
    end % To this step there must be RC(i)>lmt and RC(i-1)<=lmt. 
  
    if len(i-1)-len(j)<minBendLen || i-j<4 % at least 4 points below 
criterion line 
        continue 
    end 
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    sign=0; 
    for k=j+1:i-1  % Make sure the identified segment doesn't go 
up/down monotonously (*) 
        if slp(j)*slp(k)<0 
            sign=-1; 
            break 
        end 
    end 
    % If i-1==tn(the last point of the whole bank), ignore this rule 
(*). 
    % (1:tn) can be only a small segment of this bank, then... 
    if sign==0 && (i-1<tn || ~bLast),continue,end;  
     
    distAvg=straight_chk(xx(j:i-1),yy(j:i-1)); 
    if abs(distAvg)<distAvgLmt 
        continue 
    end 
  
    ArcNum=ArcNum+1; 
    ArcIdx(ArcNum,1)=j; ArcIdx(ArcNum,2)=i-1; 
End 
 
 
function [x0,fval,fval2]=fitcirlin(x,y) 
 
%Make the problem a linear least square one 
%General circle function: x^2+y^2-2ax-2by-c=0 
%or: 2ax+2by+c=x^2+y^2 
%xc=a, yc=b, r=sqrt(c+a^2+b^2) 
%x y can be row or column vectors 
%x0=[xc yc r], fval=sum(squares), fval2=sum(|R'-R|)/lenX 
%Construct over-determined equations ax=b. Solve (a'a)x=a'b 
  
lenX=size(x); 
if lenX(1)==1 % x,y are row vectors 
    x=x'; y=y'; 
    n=lenX(2); 
elseif lenX(2)==1  % x,y are column vectors 
    n=lenX(1); 
else 
    x0=[inf inf inf]; 
end 
a=[2*x 2*y ones(n,1)]; 
b=x.^2+y.^2; 
  
ap=a'; 
A=ap*a;  % a'*a doesn't work after compiling in R13. 
B=ap*b; 
  
coef=A\B; 
x0(1)=coef(1); x0(2)=coef(2); % x0 is a row vector by default. 
x0(3)=sqrt(x0(1)^2+x0(2)^2+coef(3)); 
if nargout==1 
    return 
end 
  
Rp=sqrt((x-x0(1)).^2+(y-x0(2)).^2); 
fval=sum((Rp-x0(3)).^2); 
if nargout<=2 
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    return 
end 
  
fval2=sum(abs(Rp-x0(3)))/lenX; 
er=fval2/x0(3); 
  
if x0(3)==-Inf 
    x0(3)=-1e7; 
elseif x0(3)==Inf 
    x0(3)=1e7; 
elseif er>0.2   % Even coef=A\B has a solution, if er is too large, 
consider the fit a failure 
    x0(3)=1e7*(x0(3)/abs(x0(3))); 
end 
 
 
function [x1,y1]=Fixed_Spacing_Divide(x,y,spacing) 
 
%Given a curve, evenly divide it according to a constant spacing. 
%Dividing points (x1,y1) will be returned. 
  
if spacing<=0 
    x1=x; 
    y1=y; 
    return; 
end 
  
tn=length(x); 
len=ChannelLen(x,y); %element: 1 to tn 
  
n=floor(len(tn)/spacing)+1; %number of points that will be used to 
divide the curve 
x1=zeros(n,1); y1=zeros(n,1); 
x1(1)=x(1); y1(1)=y(1); 
  
len_sum=0; 
for i=2:n 
    len_sum=len_sum+spacing; 
     
    for j=1:tn-1 
        if len_sum<len(j) 
            continue 
        end 
        if len_sum>len(j) & len_sum<len(j+1) 
            slope=(len_sum-len(j))/(len(j+1)-len(j)); 
            x1(i)=slope*(x(j+1)-x(j))+x(j); 
            y1(i)=slope*(y(j+1)-y(j))+y(j); 
        end 
    end 
end 
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function PlotCircle(xyRF,LineSpec) 
  
% xyRF can have 3 elements: [xc yc R] or 4 [xc yc R fei] 
% Given xc yc R (fei), plot the circle and show the radius (fei angle) 
  
if nargin==1 
    LineSpec=['k-']; 
end 
  
xc=xyRF(1); 
yc=xyRF(2); 
R=xyRF(3); 
fei=-500; 
if length(xyRF)==4 
    fei=xyRF(4); 
end 
  
sita=linspace(0,2*pi,121); 
x=R*cos(sita)+xc; 
y=R*sin(sita)+yc; 
hold on 
plot(x,y,LineSpec) 
  
if R<10 
    fmt='%3.1f'; 
else 
    fmt='%4.0f'; 
end 
rStr=['R=' num2str(R,fmt)]; 
if fei>-361 
    fStr=['\phi=' num2str(fei,'%3.0f') '\circ']; 
    Str={rStr,fStr}; 
else 
    Str=rStr; 
end 
  
hold on 
text(xc,yc,Str,'HorizontalAlignment','center') 
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function plotCirRvsLen(xx,yy,m,xyRF,ArcIdx,arg) 
 
% plotCirRvsLen.m, function version of Plot_Cir_RvsLen_Script.m 
% Can be called by AutoFit_Run(), AutoFit_R(), AutoFit_R_Comb() 
% xyRF has 4 columns, the last column is fei angle. 
  
bPlot=arg(12);  % If <=0, don't plot any curve and return, otherwise, 
plot curve R vs. Len. 
                % If =1, plot original channel and circles only. 
                % If =2, plot curve R vs. Len only. 
                % If =3, plot both. 
if bPlot<=0 
    return; 
end 
  
wid=arg(1); 
spacingCoef=arg(2); 
minBendLenCoef=arg(3); 
segLenCoef=arg(4); 
scrsz=get(0,'ScreenSize'); % Let the plot fill the whole screen 
  
timeStr=['Time step=' num2str(arg(20)) ' hour(s) ' 'Current step No.=' 
num2str(arg(21))]; 
str0=['# of points m=' num2str(m) ' Width=' num2str(wid) ' Spacing=' 
num2str(spacingCoef,2) 'W SegLen='... 
    num2str(segLenCoef,'%2.1f') 'W']; 
str=[str0 ' MBL=' num2str(minBendLenCoef,'%2.1f') 'W']; 
  
nPt=length(xx); 
if bPlot==1 || bPlot==3 
    ArcNum=size(xyRF,1); 
    % Identify two boundary points of each circle. 
    xbd=zeros(ArcNum*2,1);  
    ybd=zeros(ArcNum*2,1); 
  
    for i=1:ArcNum  % Find x, y coordinates of the boundaries 
        idx1=ArcIdx(i,1); idx2=ArcIdx(i,2); 
        xbd(2*i-1)=xx(idx1); xbd(2*i)=xx(idx2); 
        ybd(2*i-1)=yy(idx1); ybd(2*i)=yy(idx2); 
    end 
  
%********************************************************************** 
%plot the river bank, distance marker, the circles and their boundaries 
%********************************************************************** 
    figure('Position',scrsz); 
    % Plot different segments with different colors. 
    linSpec=cell(7,1); 
    linSpec(1)=cellstr('r--.'); 
    linSpec(2)=cellstr('g--.'); 
    linSpec(3)=cellstr('b--.'); 
    linSpec(4)=cellstr('c--.'); 
    linSpec(5)=cellstr('m--.'); 
    linSpec(6)=cellstr('y--.'); 
    linSpec(7)=cellstr('k--.'); 
  
    n2=nPt+1; 
    for i=1:ArcNum 
        n1=ArcIdx(i,1); n2=ArcIdx(i,2); 
        if i==1, start=1;  
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        else 
            start=ArcIdx(i-1,2); 
        end 
  
        if start<n1 
            plot(xx(start:n1),yy(start:n1),char(linSpec(7))) 
            hold on 
        end 
        num=rem(i,6); 
        if num==0, num=6; end 
        plot(xx(n1:n2),yy(n1:n2),char(linSpec(num))) 
        hold on 
    end 
    if n2<=nPt % if ArcNum==0, the clause will not be executed. 
        plot(xx(n2:nPt),yy(n2:nPt),char(linSpec(7))) 
    end 
  
    for i=1:ArcNum 
        PlotCircle(xyRF(i,1:4),'b-') % If it's 1:3, fei angle will not 
be shown. 
    end 
  
    hold on 
    plot(xbd,ybd,'*','MarkerSize',6) 
    axis equal 
    hold on 
  
    %plot distance for each marker 
    tickspacing=arg(6); 
    if tickspacing>0 
        [markX, markY]=Fixed_Spacing_Divide(xx,yy,tickspacing); 
        if tickspacing>0 
            plot(markX,markY,'o','MarkerSize',2.5) % Plot marker points 
        end 
        tickLabel=arg(13);  % If 0, don't plot marker point distance, 
otherwise, plot it. 
  
        if abs(tickLabel)>1e-5  % Not 0, show distance of the marker 
points. 
            leng=length(markX); 
            %txt=zeros(len,length(num2str(tickspacing))+3); 
            txt=cell(leng,1); 
            for i=1:leng 
            %    txt(1,:)=strcpy(txt(1,:),num2str(i*tickspacing)); 
                s=num2str((i-1)*tickspacing); 
                s=[' ' s];  % add a space before the number. It seems 
doesn't work. 
                txt(i)=cellstr(s); 
            end 
            text(markX,markY,txt,'FontSize',8) 
        end     
  
        vx=min(xx);  vy=min(yy)+tickspacing/2; 
        hold on 
        plot([vx vx+tickspacing],[vy vy],'LineWidth',2) 
        tickstr=sprintf('%d m',tickspacing); 
        text(vx,vy+tickspacing/10,tickstr) 
    end 
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    xlabel('X','FontSize',15) 
    ylabel('Y','FontSize',15) 
%    str='Original Channel and Fitted Circles'; 
    if arg(20)>0 
        tleStr={str,timeStr} 
    else 
        tleStr=str; 
    end 
    title(tleStr,'FontSize',13)%,'FontWeight','bold') 
%     grid on 
  
end 
  
%******************************************************************** 
%plot R/W vs. Len and criterion lines 
%******************************************************************** 
if bPlot~=2 && bPlot~=3 
    return; 
end 
len=ChannelLen(xx,yy); 
Norder=2; rotflag='Y'; 
R=Rad_Cur_Curve(xx,yy,m,Norder,rotflag);                                            
  
figure('Position',scrsz); 
plot([0 0.01],[0 0],'.b-','MarkerSize',6) % For generating legend. 
plot([0 0.01],[0 0],'r-.','LineWidth',1.4) 
  
plot(len,R./wid,'.b-','MarkerSize',6) 
hold on 
xLen=[0 len(nPt)];           % Plot criterion lines 
yR=[arg(7) arg(7);-arg(7) -arg(7);arg(8) arg(8);-arg(8) -arg(8);arg(9) 
arg(9);-arg(9) -arg(9)]; 
plot(xLen,yR,'r-.','LineWidth',1.4) 
grid on 
  
ylim([-20 20]) 
xlabel('Channel Lengthwise Distance','FontSize',15) 
ylabel('R / W','FontSize',15) 
legend('R / W','Criterion Lines') 
  
if bPlot==2  % When xyRF & ArcIdx are not available. 
    title(str,'FontSize',13) 
    return; 
end 
  
% lenbd & Rbd/Rcbd are for the boundaries on the R/W vs. Len curve. 
% lenbd:X, Rbd/Rcbd:Y 
lenbd=zeros(ArcNum*2,1);  % for R/W? 
% R radius of curvature, bd-boundary, for identifying points on R/W  
% vs. Len curve. 
Rbd=zeros(ArcNum*2,1);     
Rcbd=zeros(ArcNum*2,1);   % Rc radius of circle,  
  
for i=1:ArcNum  % Find x, y coordinates of the boundaries 
    idx1=ArcIdx(i,1); idx2=ArcIdx(i,2); 
    lenbd(2*i-1)=len(idx1);  
    lenbd(2*i)=len(idx2); % Find X coordinates on the R/W vs.Len curve 
     
    Rbd(2*i-1)=R(idx1);   
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    Rbd(2*i)=R(idx2);        % Rbd:  radius of curvature 
     
    Rcbd(2*i-1)=xyRF(i,3); 
    Rcbd(2*i)=Rcbd(2*i-1);   % Rcbd: radius of circles 
end 
  
plot(lenbd,Rbd./wid,'*r','MarkerSize',6) 
  
set(gca,'XMinorGrid','On') % Turns on X minor grid only. 
%   grid minor  % It turns on the minor grids for both X & Y. 
  
for j=1:ArcNum 
    hold on 
    plot(lenbd(2*j-1:2*j),Rcbd(2*j-1:2*j)./wid,'m-.') 
end 
  
if arg(20)>0 
    tleStr={str,timeStr} 
else 
    tleStr=str; 
end 
title(tleStr,'FontSize',13) 
 
 
function R=Rad_Cur_Cir(Curve,m,Norder,rotflag) 
  
% Calculate radius of curvature by fitting a circle for each segment as 
% opposed to Rad_Cur_Curve() which fits a parabolic line for each 
segment. 
% Use the result of Rad_Cur_Curve() to determine the sign of R and 
where no 
% circle can be fitted. 
  
if nargin<4 
    rotflag=''; 
end 
a=rem(m,2); %remainder of integer m. 
if a==0 
    m=m+1; 
end 
  
CurSize=length(Curve); %Number of points on the curve. 
if CurSize<=2 
    ErrorReport=['There is only 1 or 2 points on the cuve?'] 
%    Msgbox('There is only 1 or 2 points on the cuve?')     % Give it 
up for compiling purpose. 
end 
R=zeros(CurSize,1); 
  
hlfm=floor(m/2);     %m=2*hlfm+1 
idx1st=hlfm+1;       %First point to be evaluated. 
idxLst=CurSize-hlfm; %Last point to be evaluated. 
  
R=zeros(CurSize,1); 
index=hlfm+1; 
for i=idx1st:idxLst 
    Lbound=i-hlfm; Rbound=i+hlfm; 
    Section=Curve(Lbound:Rbound,:); 
    if i==idx1st 
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        Rt=fitcirlin(Section(:,1),Section(:,2)); 
        R(1:i)=Rt(3); 
    elseif i==idxLst 
        Rt=fitcirlin(Section(:,1),Section(:,2)); 
        R(i:CurSize)=Rt(3); 
    else 
        Rt=fitcirlin(Section(:,1),Section(:,2));  
        R(i)=Rt(3); 
    end 
end 
  
R1=Rad_Cur_Curve(Curve,m,Norder,rotflag); 
for i=1:CurSize 
    if R1(i)<0, R(i)=-R(i); end 
    if abs(R(i))>1e6, R(i)=R1(i); end  % If no circle can be fit, use 
that of Rad_Cur_Curve() 
end 
 
 
function R=Rad_Cur_Curve(xx, yy, m, Norder, rotflag) 
  
% R=Rad_Cur_Curve(xx,yy, m, Norder, rotflag) 
% xx,yy can be row/column vectors. 
% R, radius of each point, column vector 
% m: all fittings are done on m points. m is an odd number. If not, use 
m+1. 
% Default value for Norder is 2. 
% Fit MANY Norder-th order polynomial curves for a series of points 
%which are divided into many segments. One quadratic line is fitted for 
one segment. 
% The R value for the center point of each segment is kept. 
% Use moving quadratic fit. m points are fitted a time. 
% If 'rotflag' is present(='Y'), the coordinate system is required to 
be rotated. 
% If 'rotflag' is not present, no rotation will be performed. 
% X' axis is in the direction of linearly fitted line. Y' axis points 
to the positive direction of Y axis. 
% For the first m/2 and last m/2 points, the "R" of corresponding 
segments are used. 
  
if nargin<=4 
    rotflag=''; 
end 
if nargin<=3 
    Norder=2; 
end 
a=rem(m,2); %remainder of integer m. 
if a==0 
    m=m+1; 
end 
CurSize=length(xx); %Number of points on the curve. 
if CurSize<=2 
    ErrorReport=['There is only 1 or 2 points on the cuve?, --
Rad_Cur_Curve(...)'] 
%    Msgbox('There is only 1 or 2 points on the cuve?')     % Give it 
up for compiling purpose. 
end 
  
% hlfm=int16(m/2); %int16() cut everything after the decimal point. 
% No math operations except for sum are defined for int16 etc. 
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hlfm=floor(m/2);     %m=2*hlfm+1 
idx1st=hlfm+1;       %First point to be evaluated. 
idxLst=CurSize-hlfm; %Last point to be evaluated. 
  
R=zeros(CurSize,1); 
index=hlfm+1; 
for i=idx1st:idxLst 
    Lbound=i-hlfm; Rbound=i+hlfm; 
    x=xx(Lbound:Rbound); y=yy(Lbound:Rbound); 
    if i==idx1st 
        Rt=Rad_Cur_Sec(x, y, Norder, rotflag); 
        R(1:i)=Rt(1:i); 
    elseif i==idxLst 
        Rt=Rad_Cur_Sec(x, y, Norder, rotflag); 
        R(i:CurSize)=Rt(index:m); 
    else 
        R(i)=Rad_Cur_Sec(x, y, Norder, rotflag, index);  
    end 
end 
 
 
function R=Rad_Cur_Sec(x,y,n,rotflag,index) 
  
% R=Rad_Cur_Sec(x,y,n,rotflag,index) 
% Fit ONE n-th order polynomial curve and calculate radius of curvature 
for 
% a group of points. 
% x,y can be row/column vector. 
% If the 4th input argument 'index' is present, R of a certain point is 
% calculated(R is a scalar), or R for all points are calculated(R is a 
vector). 
% If 'rotflag' is not empty and ='Y', the coordinate system will be 
rotated. 
% Fit a line to these points. Then rotate x axis to this line. 
  
%x=section(:,1); y=section(:,2); %  To save memory, don't use it. 
% (nargin>=3) && (upper(rotflag)=='Y')  doesn't work  why? 
if (nargin>=4) & (upper(rotflag)=='Y') 
    translate='Y';  %If rotation is not required, no translation will 
be done. 
    %For quadratic fit, translation doesn't make a difference for R & 
Curvature. 
     
    [x,y]=rot_xy(x,y,[],translate); 
end     
  
a=polyfit(x,y,n); 
ap=polyder(a);    app=polyder(ap); 
yp=polyval(ap,x); ypp=polyval(app,x); 
  
if nargin==3 || nargin==4    %R for each point is required. 
    R=(1+yp.^2).^(1.5)./ypp; % What if ypp(i)==0, how to effectively 
find all of them out? 
elseif nargin==5 
    if ypp(index)==0 
        ypp(index)=1e-40; 
    end 
    R=(1+yp(index)^2)^(1.5)/ypp(index);   %Only one R referred by 
'index' is required. 
else  
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    ErrorReport=['The number of input arguments is wrong for function 
"Rad_Cur_Sec()"'] 
%   MsgBox('The number of input arguments is wrong for function 
"Rad_Cur_Sec()"') 
    %only when nargin==1 
End 
 
 
function [xyRF,ArcIdx]=removeSmallBend(xyRF,ArcIdx,len,arg) 
  
% Remove bends with small bend length or fei angle 
% Call this function after all possible bends are identified. 
  
RoWlarge=40; % If the fitted R/W of the last bend > RoWlarge, discard 
this bend. 
  
width=arg(1); 
ArcNum=size(xyRF,1); 
  
minBendLen=arg(3)*width; 
nSmallBend=0; 
smallBendIdx=zeros(ArcNum,1); 
for kk=1:ArcNum   % Identify bends with small fei or bend length 
    idx1=ArcIdx(kk,1); idx2=ArcIdx(kk,2); 
    bendLen=len(idx2)-len(idx1); 
  
    % Allow the last bend to have small length  
    if (bendLen<minBendLen || abs(xyRF(kk,4))<arg(22)) && kk<ArcNum  
        nSmallBend=nSmallBend+1; 
        smallBendIdx(nSmallBend)=kk; 
    end 
    if kk==ArcNum && xyRF(kk,3)/arg(1)>RoWlarge 
        nSmallBend=nSmallBend+1; 
        smallBendIdx(nSmallBend)=kk; 
    end 
%     if abs(xyRF(kk,4))<arg(22) && kk<ArcNum % Allow the last bend to 
have small fei angle 
%         nSmallFei=nSmallFei+1; 
%         smallFeiIdx(nSmallFei)=kk; 
%     end 
end 
if nSmallBend==0, return; end 
 
xyRF1=zeros(ArcNum-nSmallBend,4); 
ArcIdx1=zeros(ArcNum-nSmallBend+1,2); 
nLongBend=0; 
for i=1:ArcNum 
    small=false; 
    for j=1:nSmallBend 
        if i==smallBendIdx(j) 
            small=true; 
            break; 
        end 
    end 
    if ~small 
        nLongBend=nLongBend+1; 
        xyRF1(nLongBend,:)=xyRF(i,:); 
        ArcIdx1(nLongBend,:)=ArcIdx(i,:); 
    end 
end 
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ArcIdx1(nLongBend+1,:)=ArcIdx(ArcNum+1,:); 
ArcIdx1(nLongBend+1,1)=nLongBend; % New ArcNum 
  
xyRF=xyRF1; 
ArcIdx=ArcIdx1; 
 
 
function [x1,y1,sita1]=rot_xy(x,y,sita,translate) 
  
% [x1,y1]=rot_xy(x,y) 
% [x1,y1]=rot_xy(x,y,sita) 
% [x1,y1]=rot_xy(x,y,sita,translate) 
% [x1,y1,sita1]=rot_xy(...) 
%  If 'sita' is not present, fit a line to these points first, then 
rotate x axis to this line. 
%  The positive direction of the new X axis is from points of smaller 
number to larger number 
%  x y can be row or column vectors. If they are row vectors, 1-D 
transpose 
%  operation can be avoided. 
%  If 'sita' is present, this angle is used. And sita1=sita. 
%  x1 y1 are coordinates in this new coordinate system. Vector 
direction(row/column) is the same as x y. 
%  sita1, unit: radian, is the rotation angle of the axes (-pi pi]. 
%  sita, a scalar unit: radian (-pi pi], if specified, rotate axis 
system by this angle. 
%  translate, ='Y' translate origin to point(mean(x), mean(y)); ='N' or 
not present do nothing. 
  
len=length(x); 
  
if len==size(x,1) 
    rc='c'; x=x'; y=y';  %Make x y row vectors 
else 
    rc='r'; 
end 
  
if nargin==2 || (nargin>2 && isempty(sita)) % sita can be '[]'. 
%    ws=warning;    warning off    warning(ws); 
  
    %An important step. Rotate the axes first. 
    alpha=atan2(y(len)-y(1), x(len)-x(1));  % (-pi, pi] 
    RotMat=[cos(alpha) sin(alpha); -sin(alpha) cos(alpha)]; 
  
    xryr=RotMat*[x; y]; 
    xr=xryr(1,:); yr=xryr(2,:); 
    % polyfit(x,y,1) may produce unpredictable results when alpha==(+/-
)pi/2. 
    a=polyfit(xr,yr,1); 
    if a(1)==inf | a(1)==-inf  %If those points form an almost perfect 
vertical line. 
        sita=pi/2;             %The sign will be determined based on 
alpha 
        disp('A rare situation occurred in function rot_xy(). The 
fitted line segment is vertical after the 1st rotation') 
    else 
        sita=atan(a(1));    % [-pi/2 pi/2] Angle of the fitted line 
with respect to the rotated axes(by angle of alpha) 
    end 
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    sita=alpha+sita;   %The angle by which the original axes need to be 
rotated. 
end 
 
if nargin>3 && translate=='Y' 
    x0=mean(x);  %This is the origin of the new coordinate system. 
    y0=mean(y); 
else 
    x0=0; y0=0; 
end 
  
RotMat=[cos(sita) sin(sita);-sin(sita) cos(sita)]; %Rotation matrix 
xnyn=RotMat*[x-x0; y-y0];  %Rotate from original coordinates to new 
coordinates 
%The 1st row of xnyn is x vector 
  
if rc=='c' 
    x1=xnyn(1,:)'; y1=xnyn(2,:)'; 
else 
    x1=xnyn(1,:); y1=xnyn(2,:); 
end 
  
if nargout>2 
    sita1=sita; 
end 
 
 
function slp=slope(x,y,nPt) 
  
% slp=slope(x,y,nPt) 
% x,y are coordinates of the curve 
% nPt points will be used to calculate the slope in the middle. nPt>=2 
% Calculate slope for a curve given by x,y 
% First fit a line for nPt points, use the slope of this line. 
% If nPt is an odd number, the slope is for the point in the middle. 
% If nPt is an even number, the slope is for point No. nPt/2. 
  
  
tn=length(x);   % total number 
  
if mod(nPt,2)==1 
    oe=1;         % Odd or even number. Odd number. 
else 
    oe=0;         % Even number 
end 
  
slp=zeros(tn,1); 
nhlf=floor(nPt/2); 
for i=nhlf+oe:tn-nhlf 
    xv=x(i-(nhlf-(1-oe)):i+nhlf); 
    yv=y(i-(nhlf-(1-oe)):i+nhlf); 
    p=polyfit(xv,yv,1); 
    slp(i)=p(1); 
end 
  
for i=1:nhlf+oe-1 
    slp(i)=slp(nhlf+oe); 
end 
for i=tn-nhlf+1:tn 
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    slp(i)=slp(tn-nhlf); 
end 
 
 
function ArcIdx2=sortIdx(ArcIdx,n) 
  
% Sort ArcIdx so that the indices of point number are in ascending 
order. 
% n is the ArcNum 
% ArcIdx2 is of the same size of ArcIdx. 
% Don't shrink ArcIdx. Or it will be dynamically expanded in next loop 
of the calling function. 
% This function is called by AutoFit_R(). 
nRow=length(ArcIdx(:,1)); 
  
idx=zeros(n,1);   % Not necessarily efficient. 
ArcIdx2=zeros(nRow,2);   % Only the size of ArcIdx is wanted here. 
  
for i=1:n 
    idx(i)=i; 
end 
  
for i=1:n-1 
    for j=i:n 
        if ArcIdx(idx(j),1)<ArcIdx(idx(i),1) 
            v=idx(j); idx(j)=idx(i); idx(i)=v; 
        end 
    end 
end 
  
for k=1:n 
    ArcIdx2(k,:)=ArcIdx(idx(k),:); 
end 
 
 
function DistAvg=straight_chk(x,y) 
  
% DistAvg=straight_ckh(x,y) 
% to be called by AutoFit_2ndDerv(), findBendByCrtLine() 
% check how straight a curve segment is. 
% draw a line from the first point to the last point 
% rotate x axis to this line 
% get the summation of distance of each point to this line 
% if the point is below the line, the distance is <0 
  
len=length(x); 
alpha=atan2(y(len)-y(1), x(len)-x(1));  % (-pi, pi] 
RotMat=[cos(alpha) sin(alpha); -sin(alpha) cos(alpha)]; 
  
if len==size(x,1) 
    x=x';  % convert it to row vector 
    y=y'; 
end 
  
x0=(x(1)+x(len))/2; 
y0=(y(1)+y(len))/2; 
  
xryr=RotMat*[x-x0; y-y0]; 
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xr=xryr(1,:); yr=xryr(2,:); 
DistAvg=sum(yr)/len; 
 
 
function GenRiverCoord() 
  
% Given R, W, fei, # of bends, generate coordinates of center line, 
right and left banks 
% The first and last bends have a bend angle of fei/2. 
% The X axis(Y=0) passes through all inflection points 
  
caseNo=82; % Generate filenames for the 3 files: C##R_Initial.txt 
C##L_Initial.txt, C##C_Initial.txt 
sNo=num2str(caseNo); 
if caseNo<=9, sNo=['00' sNo]; 
elseif caseNo<=99, sNo=['0' sNo]; end 
  
myPath=['M:\_WW\Meander\Data\']; 
%myPath=['c:\temp\']; 
  
R=120; 
W=40; 
fei=180; % In degrees here 
nBend=7; 
RoW=R/W; 
spacingCoef=0.1;   % Use this to determine nPerBend. 
nPerBend=-100;     % # of segments on a bend. If nPerBend<=0, use 
spacingCoef, or use nPerBend. 
LoW=1;  % The straight line preceding and after the bends, length/width 
  
sRoWF=['_RoW' num2str(RoW) 'F' num2str(fei) 'B' num2str(nBend)]; 
fei=fei*pi/180; % convert fei to radians 
  
sRoWF=[]; % Remove this information, so that the file name can be 
easily handled in VC & PlotRiver 
fnR=['P' sNo 'R' sRoWF '_Initial.txt']; % P stands for parametric study 
fnC=['P' sNo 'C' sRoWF '_Initial.txt']; 
fnL=['P' sNo 'L' sRoWF '_Initial.txt']; 
fn={fnR;fnC;fnL}; 
  
if nPerBend<=0 
    spacing=spacingCoef*W; 
    nPerBend=round(R*fei/spacing); 
else 
    spacingCoef=R*fei/nPerBend/W; 
    spacing=spacingCoef*W; 
end 
if rem(nPerBend,2)==1  % Make it an even number 
    nPerBend=nPerBend+1; 
end 
straightNo=round(LoW/spacingCoef); % # of segments on the two straight 
line segments 
straightLen=straightNo*spacing; 
  
nPt=straightNo*2+(nBend-1)*nPerBend+1; 
xy=zeros(nPt,6);  % Right column 1&2; Center column 3&4; Left column 
5&6. 
  
% Calculate coordinates of the centers 
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Xc=zeros(nBend,1); Yc=zeros(nBend,1); 
Xc(1)=straightLen; Yc(1)=R*cos(fei/2); 
for i=2:nBend 
    if rem(i,2)==0, Yc(i)=-Yc(1); 
    else, Yc(i)=Yc(1); end 
    Xc(i)=Xc(1)+2*R*sin(fei/2)*(i-1); 
end 
  
% Coordinates of the preceding straight line segments 
y1=Yc(1)-R; 
xlin=0:spacing:(straightLen-spacing); % Horizontal line 
xy(1:straightNo,1:2:5)=[xlin',xlin',xlin']; % The tangent point is not 
included here. 
xy(1:straightNo,2)=y1-W/2; 
xy(1:straightNo,4)=y1; 
xy(1:straightNo,6)=y1+W/2; 
  
% Range: sita=[0 fei]  
sita1=linspace(3*pi/2,3*pi/2+fei/2,nPerBend/2+1);     % The first bend 
with bend angle of fei/2 
sita2=linspace(pi/2+fei/2,pi/2-fei/2,nPerBend+1);     % The 2k-th bend 
(k=1,2,3,...) 
sita3=linspace(3*pi/2-fei/2,3*pi/2+fei/2,nPerBend+1); % The (2k+1)-th 
bend (k=1,2,3...) 
sita4=linspace(3*pi/2-fei/2,3*pi/2,nPerBend/2+1);     % The last bend 
with bend angle of fei/2 
sita={sita1';sita2';sita3';sita4'}; 
  
count=straightNo+1;    % 1st point of the 1st bend. It points to the 
current point. 
Roci=[R+W/2 R R-W/2];  % Radius of outer bank, center line, inner bank. 
for i=1:nBend 
    if i==1, nS=1;  % subscript for sita 
    elseif i==nBend, nS=4; 
    else,  nS=rem(i,2)+2; end 
  
    if i==1 || i==nBend, nInc=nPerBend/2; % # of segments on this bend. 
    else,  nInc=nPerBend; end 
     
    for j=1:3  % from right bank to center line to left bank 
        if rem(i,2)==1, nR=j;  % subscript for R, order is 1,2,3 
        else, nR=4-j; end      % order is 3,2,1 
  
        xy(count:count+nInc,(j-1)*2+1)=Roci(nR)*cos(sita{nS})+Xc(i); 
        xy(count:count+nInc,(j-1)*2+2)=Roci(nR)*sin(sita{nS})+Yc(i); 
    end  % The coordinates of the inflection points are calculated for 
two times. 
    count=count+nInc;   % Next inflection point 
end 
xlin=xy(count,1):spacing:xy(count,1)+(straightLen-spacing); 
xy(count+1:count+straightNo,1:2:5)=[xlin',xlin',xlin']; 
xy(count+1:count+straightNo,2)=y1-W/2; 
xy(count+1:count+straightNo,4)=y1; 
xy(count+1:count+straightNo,6)=y1+W/2; 
count=count+straightNo; % Total number of points. There should be 
count==nPt 
  
figure 
linespec=cell(3,1); 



 253

linespec(1)=cellstr('b-'); 
linespec(2)=cellstr('r-.'); 
linespec(3)=cellstr('b-'); 
for i=1:3 
    plot(xy(:,2*i-1),xy(:,2*i),linespec{i}); % linespec{i} or 
char(linespec(i)) 
    hold on 
end 
xlabel('X','FontSize',15) 
ylabel('Y','FontSize',15) 
title('Initial Geometry','FontSize',15) 
axis equal 
grid on 
  
for i=1:3 
    fullFN=[myPath fn{i}]; 
    fid=fopen(fullFN,'wt'); 
    xyout=[[1:count]',xy(:,2*i-1:2*i)]; 
    fprintf(fid,'%7d %10.4f %10.4f\n',xyout'); 
    fclose(fid); 
end 
 
 
function GenRiverCoord_360deg() 
  
% Follow Dr. Briaud's requirement, generate a bend of 360 degrees 
  
caseNo=6; % Generate filenames for the 3 files: C##R_Initial.txt 
C##L_Initial.txt, C##C_Initial.txt 
sNo=num2str(caseNo); 
if caseNo<=9, sNo=['00' sNo]; 
elseif caseNo<=99, sNo=['0' sNo]; end 
  
R=160; 
W=40; 
fei=360; % In degrees here 
nBend=1; 
RoW=R/W; 
spacingCoef=0.1;   % Use this to determine nPerBend. 
nPerBend=-100;     % # of segments on a bend. If nPerBend<=0, use 
spacingCoef, or use nPerBend. 
LoW=1;  % The straight line preceding and after the bends, length/width 
  
sRoWF=['_RoW' num2str(RoW) 'F' num2str(fei) 'B' num2str(nBend)]; 
fei=fei*pi/180; % convert fei to radians 
  
sRoWF=[]; % Remove this information, so that the file name can be 
easily handled in VC & PlotRiver 
fnR=['P' sNo 'R' sRoWF '_Initial.txt']; % P stands for parametric study 
fnC=['P' sNo 'C' sRoWF '_Initial.txt']; 
fnL=['P' sNo 'L' sRoWF '_Initial.txt']; 
fn={fnR;fnC;fnL}; 
  
if nPerBend<=0 
    spacing=spacingCoef*W; 
    nPerBend=round(R*fei/spacing); 
else 
    spacingCoef=R*fei/nPerBend/W; 
    spacing=spacingCoef*W; 
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end 
if rem(nPerBend,2)==1  % Make it an even number 
    nPerBend=nPerBend+1; 
end 
  
nPt=nPerBend+1; 
xy=zeros(nPt,6); 
Xc=0; Yc=0; 
  
Roci=[R+W/2 R R-W/2];  % Radius of outer bank, center line, inner bank. 
sita=linspace(pi/2+fei/2,pi/2-fei/2,nPerBend+1); 
  
for i=1:3 
    xy(:,2*i-1)=Roci(i)*cos(sita)+Xc; 
    xy(:,2*i)=Roci(i)*sin(sita)+Yc; 
end 
  
figure 
linespec=cell(3,1); 
linespec(1)=cellstr('b-'); 
linespec(2)=cellstr('r-.'); 
linespec(3)=cellstr('b-'); 
for i=1:3 
    plot(xy(:,2*i-1),xy(:,2*i),linespec{i}); % linespec{i} or 
char(linespec(i)) 
    hold on 
end 
axis equal 
grid on 
  
for i=1:3 
    fullFN=['M:\_WW\Meander\Data\' fn{i}]; 
    fid=fopen(fullFN,'wt'); 
    xyout=[[1:nPt]',xy(:,2*i-1:2*i)]; 
    fprintf(fid,'%7d %10.4f %10.4f\n',xyout'); 
    fclose(fid); 
end 
 
 
function [fei,sita]=GetAngle(x,y,xcyc) 
  
% function [fei,sita]=GetAngle(x,y,xcyc) 
% Calculate fei and sita angle in radian. 
% fei: angle formed by P1,center,P3 (P1 is the 1st point, P3 is the 
last) 
% sita: angle formed by P1 center P2 (P2 is any point in between) 
% x,y coordinates of that bend. % previously only three points. 
% Based on the center, the angle starts from the 1st point to the 2nd 
point. 
% P1(x(1),y(1)) P3(x(n),y(n)) (n=lengthx), are at the two ends 
% P2(x(2),y(2)) is the reference point for determining the fei angle 
direction and sita angle. 
% xcyc is the coordinate of the center 
% If the reference point overlaps an end point, negative fei and sita 
will be returned. 
  
TOL=1e-6; 
n=length(x); 
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a1=atan2(y(1)-xcyc(2),x(1)-xcyc(1));  % a1 range: [-pi pi] 
if a1<0 
    a1=a1+2*pi;    % Change angles to range [0 2*Pi] 
end 
  
a2=atan2(y(2)-xcyc(2),x(2)-xcyc(1));  % a2 is the reference point 
if a2<0, a2=a2+2*pi; end 
  
a3=atan2(y(n)-xcyc(2),x(n)-xcyc(1));  
if a3<0, a3=a3+2*pi; end 
  
if abs(a1-a2)<TOL || abs(a2-a3)<TOL 
    disp('Reference point overlaps an end point in function GetAngle()') 
    fei=-99; sita=-1; 
    return 
end 
  
if a1<a3 
    if a2>a1 && a2<a3 
        clkWise=false; 
    else 
        clkWise=true; 
    end 
else 
    if a2>a3 && a2<a1 
        clkWise=true; 
    else 
        clkWise=false; 
    end 
end 
  
if clkWise==true 
    fei=a1-a3; 
    if fei<0, fei=fei+2*pi; end 
else 
    fei=a3-a1; 
    if fei<0, fei=fei+2*pi; end 
end 
  
if nargout==2 
    for i=2:n-1 
        ai=atan2(y(i)-xcyc(2),x(i)-xcyc(1)); 
        if ai<0, ai=ai+2*pi; end 
        
        if clkWise==true 
            sita(i)=a1-ai; 
        else 
            sita(i)=ai-a1; 
        end 
         
        if sita(i)<0, sita(i)=sita(i)+2*pi; end 
    end 
    sita(1)=0; 
    sita(n)=fei; 
end 
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function ar3=mergeVectors(ar1,ar2) 
  
% ar3=mergeVectors(ar1,ar2) 
% Merge vector ar1 into ar2. Both ar1 & ar2 are in ascending order. 
% It would be more efficient to let length(ar1)<=length(ar2) 
% If ar1(i)==ar2(j), just keep one in ar3 
% length(ar3)<=length(ar1)+length(ar2) 
  
%ar1=[1 2 4 5 7 10 13 14 18]; 
%ar1=[1 2 14]; 
%ar2=[2 3 5 9 11 13]; 
  
n1=length(ar1); 
n2=length(ar2); 
ar3=zeros(n1+n2,1); 
  
count=0; 
j=1;  % It points to ar2 
for i=1:n1 % The elements of ar1 divide ar2 into several segments 
    k=j;   % k is the start point of the segment, j goes to the end. 
    if j>n2 % element ar1(i) is larger than the last element of ar2. 
        count=count+1; 
        ar3(count)=ar1(i); 
        continue; 
    end 
    while j<=n2 && ar1(i)>=ar2(j) 
        j=j+1;  
    end % if j=3, it's better to see j points to the end of element 2, 
the beginning of element 3. 
     
    for n=k:j-1 
        count=count+1; 
        ar3(count)=ar2(n); 
    end 
    if j==1 
        count=count+1; 
        ar3(count)=ar1(i); 
    end 
    if j>1 && ar1(i)~=ar2(j-1) % Then ar1(i)>ar2(j-1) 
        count=count+1; 
        ar3(count)=ar1(i); 
    end 
end 
  
for i=j:n2 
    count=count+1; 
    ar3(count)=ar2(i); 
end 
  
ar3=ar3(1:count); 
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function cur2=offsetCurve(cur1,dist) 
  
% offset a curve in both directions by dist 
% dist should be relatively small. 
% cur1 is a column vector 
% cur2(:,1:2) is the offset curve above the original 
% cur2(:,3:4) is the offset curve below the original 
% unlike what AutoCAD offset command does, m=3 points are used here to  
% determine the direction of middle point 
% Two offseted curves will be returned 
  
m=3; %# of points are used to determine the direction of the middle 
point 
nPt=length(cur1); 
cur2=zeros(nPt,4); 
if rem(m,2)==0, m=m+1; end 
hlfm=floor(m/2); 
for i=hlfm+1:nPt-hlfm 
    % when alpha==(+/-)pi/2, p(1) can be Inf or -7e-10, unpredictable. 
    p=polyfit(cur1(i-hlfm:i+hlfm,1),cur1(i-hlfm:i+hlfm,2),1); 
    k=-1/p(1); % p(1)==Inf => k=0; p(1)=0 => k=Inf 
    alpha=atan2(cur1(i+hlfm,2)-cur1(i-hlfm,2),cur1(i+hlfm,1)-cur1(i-
hlfm,1)); 
    if alpha==pi/2 || alpha==-pi/2 
        k=0; 
    end 
    dy=dist/sqrt(1+1/k^2); 
    if (alpha>=-pi && alpha<=-pi/2) || (alpha>=pi/2 && alpha<=pi) 
        dy=-dy; % The first-last point vector is in 2nd/3rd quadrant. 
    end 
  
    if alpha==-pi/2, dx=dist; 
    elseif alpha==pi/2, dx=-dist; 
    else, dx=1/k*dy; end 
     
    if i==hlfm+1 
        cur2(1:hlfm,1)=cur1(1:hlfm,1)+dx; % above -x 
        cur2(1:hlfm,2)=cur1(1:hlfm,2)+dy;     % above -y 
        cur2(1:hlfm,3)=cur1(1:hlfm,1)-dx; % below -x 
        cur2(1:hlfm,4)=cur1(1:hlfm,2)-dy;     % below -y 
    elseif i==nPt-hlfm 
        cur2(nPt-hlfm+1:nPt,1)=cur1(nPt-hlfm+1:nPt,1)+dx; 
        cur2(nPt-hlfm+1:nPt,2)=cur1(nPt-hlfm+1:nPt,2)+dy;         
        cur2(nPt-hlfm+1:nPt,3)=cur1(nPt-hlfm+1:nPt,1)-dx; 
        cur2(nPt-hlfm+1:nPt,4)=cur1(nPt-hlfm+1:nPt,2)-dy;                 
    end 
    cur2(i,1)=cur1(i,1)+dx; 
    cur2(i,2)=cur1(i,2)+dy; 
    cur2(i,3)=cur1(i,1)-dx; 
    cur2(i,4)=cur1(i,2)-dy; 
end 
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Script PlotChenSimulationData.m 
% Plot Dr. Chen's simulation data based on sita over fei 
% Works with ChenSimulationData.mat 
  
% 1st col, point # 
% 2nd col, x coordinate 
% 3rd col, channel lengthwise distance 
% 4th col, maximum shear stress at left bank 
% 5th col, maximum shear stress at right bank 
% 6th col, depth average shear stress at left bank 
% 7th col, depth average shear stress at right bank 
ar=r4f240(:,3:7); 
RoverW=4; 
fei=240; 
  
miu=0.8;    % For Extreme Value Distribution 
  
rou=1000;   % density of water 
v=0.2;      % velocity at entrance 
rouVs=rou*v^2; % rou v square, to non-dimensionalize tao. 
  
ar(:,2:5)=ar(:,2:5)/rouVs; 
  
sL=ar(:,1);  % Channel lengthwise distance 
ar(1,2:5)=0; % Shear stress is too large. 
  
n0=41; % First and last 41 points are on straight lines. 
  
nPt=length(ar); 
  
nArc=6; 
  
n1Arc=(nPt-n0*2+1)/nArc; 
  
n1Arc=round(n1Arc); 
  
maxS=max(ar(:,2)); 
  
ytmp=maxS/4; 
  
figure 
  
%subplot(2,1,1) 
% plot(ar(:,1),ar(:,2),'k-') % tao_max left bank 
% hold on 
% plot(ar(:,1),ar(:,4),'k-','LineWidth',1.5) %tao_avg, left bank 
% hold on 
plot(ar(:,1),ar(:,3),'r-') % tao_max right bank 
hold on 
plot(ar(:,1),ar(:,5),'k-','LineWidth',1.5) %tao_avg, right bank 
hold on 
  
xlabel('Channel lengthwise distance (m)','FontSize',15) 
%ylabel('Shear stress (N/m^2)','FontSize',15) 
ylabel('\tau/\rhov^2','FontSize',15) 
str=['R/W=',num2str(RoverW),' \phi=',num2str(fei),'\circ']; 
title(str,'FontSize',15) 
grid on 



 259

  
for i=1:2:nArc 
    n1=round(n0+n1Arc/2); 
    n2=n1+(i-1)*n1Arc; 
    n3=n1+i*n1Arc; 
    x1=sL(n2); 
    x2=sL(n3); 
  
    m1=round(n2-n1Arc/2); 
    m2=round(n3+n1Arc/2); 
    SoF=zeros(m2-m1+1,1); % It's in workspace and needs to be 
initialized. 
    for j=m1:1:m2 
        SoF(j-m1+1)=(j-n2)/(n3-n2); 
    end 
    f=1/400/RoverW*PlotChen_evDist(SoF,miu); % Non-dimensionalized 
shear stress 
     
    plot(sL(m1:m2),f,'b--') 
    hold on 
     
    plot([x1 x2],[ytmp ytmp],'b-.') 
    hold on 
    plot([x1 x1],[0 ytmp],'k:') 
    hold on 
    plot([x2 x2],[0 ytmp],'k:') 
    hold on 
  
end 
str=['Fitted',' \mu=',num2str(miu)]; 
%legend('\tau_m_a_x Left bank','\tau_a_v_g Left bank','\tau_m_a_xRight 
bank','\tau_a_v_gRight bank','\theta/\phi=[0 1]') 
%legend('\tau_m_a_x Left bank','\tau_a_v_g Left 
bank','Fitted','\theta/\phi=[0 1]') 
legend('\tau_m_a_x Right bank','\tau_a_v_g Right 
bank',str,'\theta/\phi=[0 1]') 
 
 
 
function f=PlotChen_evDist(x,miu) 
  
% Extreme value distribution 
  
sigma=0.37; 
  
x2=(x-miu)/sigma; 
  
f=1/sigma*exp(x2).*exp(-exp(x2)); 
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function plotMgrtForOneFlow 
(Mm1,M1dt,M0,M1idx,cXY,cLen,nArcIdx,nPt,nArc,tStep) 
  
% For C++ debug. Plot intermediate migration for C++ function OneFlow() 
% Variable names are the same as the ones in C++ function. 
% Mm1(nPt,nArc),Mmax; M1dt(nPt,nArc), 1-time 
migration;M1idx(2,nArc),index for Mm1 & M1dt 
% cXY(4,nMaxPt), coordinates of the channel before & after migration. 
% cLen(nPt), channel length 
% nPt, # of points on the curve. nArc, # of identified bends 
% tStep(1): time step in hours, tStep(2),current step No. 
  
rSign=-1;  % Make a mirror image about X axis. 
scrsz=get(0,'ScreenSize'); 
  
linSpec=cell(8,1);  % For Mmax 
linSpec(1)=cellstr('k--'); 
linSpec(2)=cellstr('k--'); 
linSpec(3)=cellstr('k--'); 
linSpec(4)=cellstr('k--'); 
linSpec(5)=cellstr('k--'); 
linSpec(6)=cellstr('k--'); 
linSpec(7)=cellstr('k--'); 
linSpec(8)=cellstr('k--'); 
  
linSpec2=cell(8,1); % For M1dt 
linSpec2(1)=cellstr('r-.'); 
linSpec2(2)=cellstr('r-.'); 
linSpec2(3)=cellstr('r-.'); 
linSpec2(4)=cellstr('r-.'); 
linSpec2(5)=cellstr('r-.'); 
linSpec2(6)=cellstr('r-.'); 
linSpec2(7)=cellstr('r-.'); 
linSpec2(8)=cellstr('k--'); 
  
timeStr=['Time step=' num2str(tStep(1)) ' hour(s) ' 'Current step No.=' 
num2str(tStep(2)) ' (1=Initial)']; 
  
figure('Position',scrsz) % Maximize the wondow 
% to produce the right legend 
plot([0 0.01],[0 0],'r-.') % Mmax 
hold on  
plot([0 0.01],[0 0],'k--') % M1dist 
hold on 
plot([0 0.01],[0 0],'k--','LineWidth',1.8) % Mcombined 
hold on 
plot([0 0.01],[0 0],'k-','LineWidth',1.8)  % Mtotal 
hold on 
plot([0 0.01],[0 0],'b*','MarkerSize',5)  % Arc boundary 
hold on 
set(gca,'XMinorGrid','On'); 
  
for i=1:nArc   % Plot Mmax 
    idx1=M1idx(1,i); % It's a transpose of the one in C++ 
    idx2=M1idx(2,i); 
    if idx1<=0 || idx2<=0, continue; end % If calculation is not done 
on a bend, this will happen. 
    nStyle=rem(i,7); 
    if nStyle==0, nStyle=7; end 
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    plot(cLen(idx1:idx2),rSign*Mm1(idx1:idx2,i),char(linSpec2(nStyle))) 
    hold on 
end 
  
for i=1:nArc+1 % Plot M1dt and accumulated migration for one flow 
    idx1=M1idx(1,i); 
    idx2=M1idx(2,i); 
    if idx1<=0 || idx2<=0, continue; end 
     
    nStyle=rem(i,7); 
    if nStyle==0, nStyle=7; end 
     
    if i==nArc+1  % It is the accumulated migration of this flow. 
        %idx1=1; idx2=nPt % already done in C++ code. 
        nStyle=8; 
    end  
    if i<nArc+1 
        
plot(cLen(idx1:idx2),rSign*M1dt(idx1:idx2,i),char(linSpec(nStyle))) 
    else 
        
plot(cLen(idx1:idx2),rSign*M1dt(idx1:idx2,i),char(linSpec(nStyle)),'Lin
eWidth',1.8) 
    end 
    hold on 
end 
  
% Plot total migration up to the end of this step. 
plot(cLen(1:nPt),rSign*M0(1:nPt),'k-','LineWidth',1.8) 
hold on 
  
mSize=[5 8 11];  %Marker Size 
for i=1:nArc   % Plot Arc boundaries 
    idx1=nArcIdx(1,i); 
    idx2=nArcIdx(2,i); 
    if idx1<=0 || idx2<=0, continue; end 
     
    x1=cLen(idx1); x2=cLen(idx2); 
    y1=rSign*M1dt(idx1,i); y2=rSign*M1dt(idx2,i); 
    sIdx=rem(i,3); 
    if sIdx==0, sIdx=3; end 
    plot([x1 x2],[y1 y2],'b*','MarkerSize',mSize(sIdx)) 
    hold on 
end 
  
xlabel('Channel Lengthwise Distance (m)','FontSize',14) 
ylabel('Migration (mm)','FontSize',14) 
s1=['Migration Output for Debug']; 
if tStep(1)>0 
    tleStr={s1,timeStr}; % title string 
else 
    tleStr=s1; 
end 
title(tleStr,'FontSize',14) 
legend('M_m_a_x','M_1_b_e_n_d','M_c_o_m_b_i_n_e_d','M_t_o_t_a_l', 
'Boundary') 
grid on 
ylim([-2000 2000]) % For parametric study where Mmax is about 4e5 mm 
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%********************************************************************** 
% Plot the initial channel, the channel before migration and the 
channel after migraiton 
figure('Position',scrsz) 
plot(cXY(1,1:nPt),cXY(2,1:nPt),'r--','LineWidth',1.5) 
hold on 
plot(cXY(3,1:nPt),cXY(4,1:nPt),'m-') 
hold on 
plot(cXY(5,1:nPt),cXY(6,1:nPt),'b--') 
  
xlabel('X','FontSize',14) 
ylabel('Y','FontSize',14) 
  
s1=['Original and Migrated Channel']; 
if tStep(1)>0 
    tleStr={s1,timeStr}; 
else 
    tleStr=s1; 
end 
title(tleStr,'FontSize',14) 
legend('Initial','Before migration','After migration') 
grid on 
axis equal 
 
 
function PlotMvsT(time,migration,xL,yL,sT) 
  
% Plot migration vs. time curve for one point. 
% time: x axis, time 
% xL: xlabel 
% sT: title 
  
scrsz=get(0,'ScreenSize'); 
  
testNo=str2num(sT); 
if ~isempty(testNo) 
    sT=['Flume Test ' sT ' Migration vs. Time']; 
else 
    sT=[sT ' Migration vs. Time']; 
end 
  
figure('Position',scrsz); % Maximize the window 
time=[0; time]; 
migration=[0; migration]; 
plot(time,migration,'b-') 
grid on 
  
xlabel(xL,'FontSize',12) 
ylabel(yL,'FontSize',12) 
title(sT,'FontSize',12) 
 
 
function PlotRiver1Curve(fn,sTitle,bMov,bOverlap) 
  
% Plot original channel and migrated channel in VC program 
% Plot only one curve, either center line or one bank 
% If required, superimpose the final measured curve(flume test, field 
data). 
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% The final measured center line is obtained by offsetting the banks by 
W/2. 
% bMov=0/1; 0: no movie will be shown. Otherwise 1, a movie will be 
shown. 
% sTitle is 'Prj Name' or flume test number; 
% '_RLRLC_IF.txt' contains measured coordinates for initial banks, 
final banks and center line. 
% File 'T01_RLRLC_IF.txt' has 6 columns. Col 1: X coordinates for 5 
other columns. 
% Col 2: Y-Right initial; Col 3: Y-Left initial; Col 4: Y-Right final; 
Col 5: Y-Left final 
% Col 6: Y-Center final, average of col 4 &5. 
% If '_RLRLC_IF.txt' is not available, 'R_Final.txt' or 'L_Final.txt' 
should be there. 
  
if nargin<=3, bOverlap=false; end 
  
% fn=['M:\_WW\MDemo_Flume\Data\TMP_15C_C.dat']; % This is for debugging. 
% sTitle=['15C']; 
% bOverlap=true; 
  
bMov=0; 
superimpose=true;  % Change it to false to disable debug code. 
scrsz=get(0,'ScreenSize'); % Let the plot fill the whole screen 
  
fid=fopen(fn,'rb'); 
nCur=fread(fid,1,'integer*4'); 
nPt=zeros(nCur,1); 
xy=cell(nCur,1); 
for i=1:nCur 
    nPt(i)=fread(fid,1,'integer*4'); 
    cur=fread(fid,nPt(i)*2,'real*8'); 
    xy{i}=reshape(cur,2,[]); 
end 
  
%The point specified on Geometry dialogue. If no specification was made, 
it is set to (0,0). 
out_XY=fread(fid,2,'real*8'); 
fclose(fid); 
  
% To superimpose the final center(bank) line on the graph. For 
comparison of prediction and test result 
% 
% sTitle comes from "Project Name:" of the main GUI of MEANDER 
% If simply a number is entered there, then it's treated as Flume Test 
No. 
% The final center line defined by Dr. Chen of this test will be 
superimposed  
% on the movie graph. A file with correct format like "T06C_Chen.txt" 
must be there. 
% The program will stop if either the file is not there or the format 
is not correct. 
% If a phrase like "Flume Test 15" is entered, don't plot the final 
center line. 
nT=length(sTitle); 
if nT>6,  
    disp('In PlotRiver1Curve(), Project name is not of the right 
format.') 
    return  
end % Longest: P123R or 123L 
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testNo=str2num(sTitle); 
if isempty(testNo) 
    sT1=sTitle(1:nT-1); % Test No. 
    sT2=upper(sTitle(nT));     % 'L' or 'R', can be in lower case. 
else 
    sT1=sTitle; 
    sT2='C'; 
end 
  
% Superimpose measured final center line/bank for flume test. 
% curveXY stores the measured center line or bank. 
testNo=str2num(sT1); 
b2Files=0; 
if length(testNo)>0 && superimpose==true 
    testNoStr=sT1; 
    if testNo<10, testNoStr=['0' testNoStr]; end 
    pathStr=fileparts(fn);  % Get the path of the executable. 
    switch sT2 
        case 'R' 
            fn1=[pathStr '\' 'T' testNoStr '_RLRLC_IF.txt']; 
            fn2=[pathStr '\' 'T' testNoStr 'R_Final.txt']; 
            fid1=fopen(fn1,'rt'); % To test whether '_RLRLC_IF.txt' is 
available 
            fid2=fopen(fn2,'rt'); % If not, use 'R_Final.txt' 
            if fid1~=-1, b2Files=b2Files+1; fclose(fid1); end 
            if fid2~=-1, b2Files=b2Files+2; fclose(fid2); end 
            if b2Files==0 
                disp('In PlotRiver1Curve(), measured data is not 
available.') 
                return 
            end 
            if b2Files>=1 && b2Files~=2  % '_RLRLC_IF.txt' is available 
                curveXY=dlmread(fn1); 
                curveXY=curveXY(:,1:3:4); 
            else          % Only 'R_Final.txt' is available, like 
Brazos River 
                curveXY=read2Col3ColFile(fn2); 
            end 
            sTitle=['Flume Test ' sTitle ' River Migrating with Final 
Right Bank']; 
        case 'C' 
            curveFN=['T' testNoStr 'C_Chen.txt']; 
            curveFN=[pathStr '\' curveFN]; % The files have to be in 
the folder ..\Data\ 
            sTitle=['Flume Test ' sTitle ' River Migrating']; 
%             curveXY=read2Col3ColFile(curveFN); 
%             curveXY=curveXY(:,2:3); 
        case 'L' 
            fn1=[pathStr '\' 'T' testNoStr '_RLRLC_IF.txt']; 
            fn2=[pathStr '\' 'T' testNoStr 'L_Final.txt']; 
            fid1=fopen(fn1,'rt'); 
            fid2=fopen(fn2,'rt'); 
            if fid1~=-1, b2Files=b2Files+1; fclose(fid1); end 
            if fid2~=-1, b2Files=b2Files+2; fclose(fid2); end 
            if b2Files==0 
                disp('In PlotRiver1Curve(), measured data is not 
available.') 
                return 
            end 
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            if b2Files>=1 && b2Files~=2  % '_RLRLC_IF.txt' is available 
                curveXY=dlmread(fn1); 
                curveXY=curveXY(:,1:4:5); 
            else          % Only 'L_Final.txt' is available, like 
Brazos River 
                curveXY=read2Col3ColFile(fn2); 
            end 
            sTitle=['Flume Test ' sTitle ' River Migrating with Final 
Left Bank']; 
        otherwise 
    end 
end 
%Plot the migrating channel in different colors 
lnSpec=cell(7,1); 
lnSpec(1)=cellstr('r-'); 
lnSpec(2)=cellstr('g-'); 
lnSpec(3)=cellstr('b-'); 
lnSpec(4)=cellstr('c-'); 
lnSpec(5)=cellstr('m-'); 
lnSpec(6)=cellstr('y-'); 
lnSpec(7)=cellstr('k-'); 
  
if bOverlap==false 
    figure('Position',scrsz); 
else 
    hold on 
end 
plot([0 0.01],[0 0],'r--','LineWidth',1.5) % Measured initial 
hold on 
plot([0 0.01],[0 0],'b-') % Predicted at each time step 
if sT2~='C' % Don't overlap Chen's final bank(offset the real one by 
W/2). 
    plot([0 0.01],[0 0],'b-','LineWidth',1.8) % Measured final 
    hold on 
end 
if bMov==0  % No movie, for Risk Analysis 
    plot(xy{1}(1,:),xy{1}(2,:),'r--','LineWidth',1.5) 
    hold on 
    for i=2:nCur 
        sNo=rem(i,7); 
        if sNo==0, sNo=7; end 
        plot(xy{i}(1,:),xy{i}(2,:),char(lnSpec(sNo))) 
        hold on 
    end 
%    grid on 
    axis equal 
    xlabel('X','FontSize',12) 
    ylabel('Y','FontSize',12) 
    title(sTitle,'FontSize',12) 
else      % Show a movie, Constant flow or one hydrograph 
    set(fig,'DoubleBuffer','on'); 
    mov=avifile('..\Migrating.avi','fps',1); 
    h=plot(xy{1}(1,:),xy{1}(2,:),'r--','LineWidth',1.5); 
    axis equal  % This one has to be here to show the movie correctly 
%    grid on 
    xlabel('X','FontSize',12) 
    ylabel('Y','FontSize',12) 
    title(sTitle,'FontSize',12) 
  
    set(h,'EraseMode','xor'); 
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    frame=getframe(gca); 
    mov = addframe(mov,frame); 
    hold on 
    for i=2:nCur 
        sNo=rem(i,7); 
        if sNo==0, sNo=7; end 
        h=plot(xy{i}(1,:),xy{i}(2,:),char(lnSpec(sNo))) 
        frame=getframe(gca); 
        mov = addframe(mov,frame); 
        hold on 
    end 
    mov=close(mov); 
end 
if length(testNo)>0 && superimpose==true && sT2~='C' 
    hold on 
    plot(curveXY(:,1),curveXY(:,2),'b-','LineWidth',1.8) 
end 
hold on  % The point for M vs. t curve or risk analysis. 
plot(out_XY(1),out_XY(2),'mo','MarkerSize',5) 
  
if bOverlap==false 
    if sT2~='C' 
        legend('Initial bank','Predicted banks','Measured final bank') 
    else 
        legend('Initial bank','Predicted banks') 
    end 
%     legend('boxoff') 
end 
  
if bOverlap==true % Overwrite previous title 
    sTitle=['Flume Test ' num2str(testNo) ' River Migrating']; 
    title(sTitle,'FontSize',12) 
end 
 
 
function PlotRiver2Banks(sT,fType,testNoStr) 
  
% function PlotRiver2Banks(sT,fType,testNoStr) 
% Called by PlotRiverBanks_Main(). 
% For Bank Method only. The calculated curve is a bank. 
% This function plot initial 2 banks and predicted & measured final 2 
banks 
% For center line method,predicted final 2 banks are obtained by 
offseting center line by W/2 
% For both-bank method, predicted final 2 banks are calculated. 
% sT{1} is the project name on SRICOSView dialogue for right bank 
% sT{2} is the project name on SRICOSView dialogue for left bank 
% File names of the data of both banks are generated here which is 
consistent with VC. 
% TMP_sTitle_R.dat is for the right bank; TMP_sTitle_L.dat is for the 
left bank. 
% Only when the results for both banks are present will the program 
work. 
% The user is responsible for providing up-to-date data. 
  
bCenAvail=true; % If initial center line is not available, it's false. 
Then don't plot it. 
%********************************************************************** 
% Generate file names of initial and measured final data files. 
datPath=['..\Data\']; 
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% datPath=['M:\_WW\Meander\Data\']; % For debugging 
% datPath=['M:\_WW\MDemo_Brazos\Data\']; 
if fType==1 % Flume test or real rivers (Measured final banks available) 
    fnCI=[datPath 'T' testNoStr 'C_Initial.txt']; % Center line, 
Initial file name 
    fnmF=[datPath 'T' testNoStr '_RLRLC_IF.txt']; % file name of 
'm'easured final banks 
    fnmFR=[datPath 'T' testNoStr 'R_Final.txt']; % If '_RLRLC_IF.txt' 
is not available, 
    fnmFL=[datPath 'T' testNoStr 'L_Final.txt']; % use these two files. 
elseif fType==2  % Parametric study (Measured data not available) 
    fnCI=[datPath 'P' testNoStr 'C_Initial.txt']; 
end 
  
%********************************************************************** 
% Determine how many bank's data is available. 
fnpFR=[datPath 'TMP_' sT{1} '_R.dat']; % file name of right bank, 
predicted Final 
fnpFL=[datPath 'TMP_' sT{2} '_L.dat']; % Actually contains migrated 
channel of each step. 
  
b2Banks=0; % Bit 1, Right bank; Bit 2 Left bank. If both banks are 
available, b2Banks=3. 
fidR=fopen(fnpFR,'rb'); 
fidL=fopen(fnpFL,'rb'); 
if fidR~=-1, b2Banks=b2Banks+1; end % Bit 1 
if fidL~=-1, b2Banks=b2Banks+2; end % Bit 2 
if b2Banks<3 
    disp('In PlotRiver2Banks(),at least one bank is not ready.') 
    return 
end 
  
% Read the initial and predicted final curves for the RIGHT bank. 
nCurR=fread(fidR,1,'integer*4'); 
xyRIpF=cell(2,1);   % Initial and predicted Final right bank 
count=0;    % xyRIpF{i} is a row major array. Row 1, X; Row 2, Y. 
for i=1:nCurR 
    nPt=fread(fidR,1,'integer*4'); 
    if i==1 || i==nCurR 
        count=count+1; 
        cur=fread(fidR,nPt*2,'real*8'); 
        xyRIpF{count}=reshape(cur,2,[]); % 1st row, X; 2nd row, Y. 
    else 
        fseek(fidR,nPt*2*8,'cof'); 
    end 
end 
%The point specified on Geometry dialogue. If no specification was made, 
it is set to (0,0). 
out_XYR=fread(fidR,2,'real*8'); 
fclose(fidR); 
  
% Read the initial and predicted final curves for the LEFT bank. 
nCurL=fread(fidL,1,'integer*4'); 
xyLIpF=cell(2,1);   % Initial and predicted Final left bank 
count=0; 
for i=1:nCurL 
    nPt=fread(fidL,1,'integer*4'); 
    if i==1 || i==nCurL 
        count=count+1; 
        cur=fread(fidL,nPt*2,'real*8'); 
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        xyLIpF{count}=reshape(cur,2,[]); % 1st row, X; 2nd row, Y. 
    else 
        fseek(fidL,nPt*2*8,'cof'); 
    end 
end 
out_XYL=fread(fidL,2,'real*8'); 
fclose(fidL); 
  
% Read the initial center line of this case. 
% xyCI is of 2 columns 
[xyCI,count,flag]=read2Col3ColFile(fnCI); % If flag==-1, it failed to 
read the file. 
if flag==-1 % The initial center line doesn't exist or can't be read. 
Just don't plot it. 
%    xyCI=[0 0]; 
    bCenAvail=false; 
end 
% For flume test read measured final banks. 
if fType==1  
    fidmF=fopen(fnmF,'rt'); 
    if fidmF~=-1 
        xymF=dlmread(fnmF);  % fnmF is like 'T11_RLRLC_IF.txt' 
        xymFR=xymF(:,[1,4]); % Col 1: X; Col 2: Y-Right initial; Col 3: 
Y-Left initial 
        xymFL=xymF(:,[1,5]); 
    else 
        xymFR=read2Col3ColFile(fnmFR); 
        xymFL=read2Col3ColFile(fnmFL); 
    end 
end 
  
%********************************************************************** 
% Plot initial and predicted final banks. Superimpose measured final 
banks. 
scrsz=get(0,'ScreenSize'); % Let the plot fill the whole screen 
figure('Position',scrsz) 
if bCenAvail==true  % If initial center line is available 
    plot([0 0.1],[0 0],'k-.','LineWidth',0.5) % Initial center line. 
For producing right legend. 
    hold on 
end 
plot([0 0.1],[0 0],'k-','LineWidth',0.5)  % Initial banks 
hold on  
plot([0 0.1],[0 0],'m--','LineWidth',1.5) % Predicted final banks 
hold on 
plot([0 0.1],[0 0],'b-','LineWidth',1.8)  % Predicted final banks 
hold on 
  
if bCenAvail 
    plot(xyCI(:,1),xyCI(:,2),'k-.','LineWidth',0.5) % Initial center 
line 
    hold on 
end 
plot(xyRIpF{1}(1,:),xyRIpF{1}(2,:),'k-','LineWidth',0.5) % Initial 
right bank 
hold on 
plot(xyLIpF{1}(1,:),xyLIpF{1}(2,:),'k-','LineWidth',0.5) % Initial left 
bank 
hold on 
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plot(xyRIpF{2}(1,:),xyRIpF{2}(2,:),'m--','LineWidth',1.5) % Final 
predicted right bank 
hold on 
plot(xyLIpF{2}(1,:),xyLIpF{2}(2,:),'m--','LineWidth',1.5) % Final 
predicted left bank 
hold on 
  
if fType==1  % Plot measured final banks for flume tests 
    plot(xymFR(:,1),xymFR(:,2),'b-','LineWidth',1.8) % Measured final 
right bank 
    hold on 
    plot(xymFL(:,1),xymFL(:,2),'b-','LineWidth',1.8) % Measured final 
left bank 
end 
  
hold on 
plot(out_XYR(1),out_XYR(2),'mo','MarkerSize',5) 
hold on 
plot(out_XYL(1),out_XYL(2),'mo','MarkerSize',5) 
axis equal 
xlabel('X','FontSize',12) 
ylabel('Y','FontSize',12) 
testNoStr=num2str(str2num(testNoStr)); % Remove prefix '0' 
if fType==1 
    sTitle=['Bank Method --Flume Test ' testNoStr ' Migrated Channel']; 
elseif fType==2 
    sTitle=['Bank Method --Parametric Study ' testNoStr ' Migrated 
Channel']; 
end 
title(sTitle,'FontSize',12) 
  
if fType==1 
    if bCenAvail 
        legend('Initial center line','Initial banks','Predicted final 
banks','Measured final banks') 
    else 
        legend('Initial banks','Predicted final banks','Measured final 
banks') 
    end 
elseif fType==2 
    legend('Initial center line','Initial banks','Predicted final 
banks') 
end 
%legend('boxoff') 
  
%********************************************************************** 
% Plot predicted left and right banks at each time step. Superimpose 
mesured final banks. 
bOverlap=false; 
bMov=0; 
PlotRiver1Curve(fnpFR,sT{1},bMov,bOverlap); 
bOverlap=true; 
PlotRiver1Curve(fnpFL,sT{2},bMov,bOverlap); 
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function PlotRiverBanks_Main(sTitle,width) 
  
% It calls either PlotRiver2Banks() or PlotRiverCenOffset() based on 
sTitle 
% If the calculated curve is a bank, call PlotRiver2Banks() 
% If the calculated curve is a center line, call PlotRiverCenOffset() 
% width is used for offseting center line by width/2 
  
% sTitle=['82L']; % Bank method: '2L' or '2R'; Center line method: '2C' 
% width=0.75;  
  
nT=length(sTitle); 
if nT>6,  
    disp('In PlotRiverBanks_Main(), Project name is not of the right 
format.') 
    return  
end % Longest: P123R 
  
if sTitle(1)>='0' && sTitle(1)<='9', fType=1;  % Flume Test 
elseif upper(sTitle(1))=='P', fType=2;         % Parametric study 
else 
    disp('In PlotRiverBanks_Main(),It''s neither a flume test nor a 
parametric study case.') 
    return; % Consider other cases like field verification later. 
end 
  
if fType==1 % Flume test 
    if nT<=3 
        testNo=str2num(sTitle); 
        if isempty(testNo) 
            sT1=sTitle(1:nT-1); % Test No. 
            sT2=upper(sTitle(nT));     % 'L' or 'R', can be in lower 
case. 
        else 
            sT1=sTitle; 
            sT2='C'; 
        end 
    else 
        disp('In PlotRiverBanks_Main(), fType=1 (flume test) but the 
title is longer than 3.') 
        return; 
    end 
    testNo=str2num(sT1); 
    testNoStr=sT1; 
    if testNo<10, testNoStr=['0' testNoStr]; end 
elseif fType==2  % Parametric study 
    if nT<=2, return; end 
    sT1=sTitle(2:nT-1); 
    sT2=upper(sTitle(nT)); 
    testNo=str2num(sT1); 
    if isempty(testNo) || (sT2~='R' && sT2~='L' && sT2~='C') 
        disp('In PlotRiverBanks_Main(), the case no of parametric study 
is wrong.') 
        disp('Or the suffix (R,L,C) is missing') 
        return; 
    end 
    testNoStr=sT1; 
    if testNo<10, testNoStr=['00' testNoStr]; 
    elseif testNo<100, testNoStr=['0' testNoStr]; end 
end 
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if sT2=='C' 
    PlotRiverCenOffset(sTitle,width,fType,testNoStr) 
elseif sT2=='R' || sT2=='L' 
    sT=cell(2,1); 
    sTitle=sTitle(1:nT-1); % Remove letter 'R' or 'L'. 
    sT{1}=[sTitle 'R']; 
    sT{2}=[sTitle 'L']; 
    PlotRiver2Banks(sT,fType,testNoStr) 
end 
 
 
function PlotRiverCenOffset(sTitle,width,fType,testNoStr) 
  
% function PlotRiverCenOffset(sTitle,width,fType,testNoStr) 
% Called by PlotRiverBanks_Main(sTitle,width). 
% For center line method only. 
% Final predicted center line is offset by W/2 to get predicted final 
banks. 
  
%**********************************************************************
***** 
% Generate file names of initial and measured final data files. 
datPath=['..\Data\']; 
%datPath=['M:\_WW\MDemo_Flume\Data\']; % For debugging 
%datPath=['c:\temp\Meander\Data\']; 
if fType==1 % Flume test 
    fnRI=[datPath 'T' testNoStr 'R_Initial.txt']; 
    fnLI=[datPath 'T' testNoStr 'L_Initial.txt']; 
    fnmF=[datPath 'T' testNoStr '_RLRLC_IF.txt']; % file name of 
'm'easured final banks 
elseif fType==2  % Parametric study 
    fnRI=[datPath 'P' testNoStr 'R_Initial.txt']; 
    fnLI=[datPath 'P' testNoStr 'L_Initial.txt'];     
end 
  
% Read the files 
fnCpF=[datPath 'TMP_' sTitle '_C.dat']; 
fidC=fopen(fnCpF,'rb'); 
if fidC==-1 
    disp('In PlotRiverCenOffset(), can''t open simulation data.') 
    return 
end 
nCurC=fread(fidC,1,'integer*4'); 
xyCIpF=cell(2,1);   % Initial and predicted Final center line 
count=0; 
for i=1:nCurC 
    nPt=fread(fidC,1,'integer*4'); 
    if i==1 || i==nCurC 
        count=count+1; 
        cur=fread(fidC,nPt*2,'real*8'); 
        xyCIpF{count}=reshape(cur,2,[]); % 1st row, X; 2nd row, Y. 
    else 
        fseek(fidC,nPt*2*8,'cof'); 
    end 
end 
%The point specified on Geometry dialogue. If no specification was made, 
it is set to (0,0). 
out_XYC=fread(fidC,2,'real*8'); 
fclose(fidC); 
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% Offset predicted final center line to get predicted final banks 
xyOff=offsetCurve(xyCIpF{2}',width/2); % xyOff(:,1:4) 
  
% Read initial banks 
[xyRI,count,fid]=read2Col3ColFile(fnRI); % 2 columns 
[xyLI,count,fid]=read2Col3ColFile(fnLI); 
  
% For flume test read measured final banks. 
if fType==1 % Flume Test 
    xymF=dlmread(fnmF);  % fnmF is like 'T11_RLRLC_IF.txt' 
    xymF=xymF(:,[1,4,5]);  % Col 1: X; Col 2: Y-Right; Col 3: Y-Left 
end 
  
%**********************************************************************
****** 
% Plot the curves 
scrsz=get(0,'ScreenSize'); % Let the plot fill the whole screen 
figure('Position',scrsz) 
plot([0 0.1],[0 0],'k-.','LineWidth',0.5) %Center line, For producing 
right legend 
hold on 
plot([0 0.1],[0 0],'k-','LineWidth',0.5) %Initial banks 
hold on 
plot([0 0.1],[0 0],'m--','LineWidth',1.5) %Final banks by offsetting 
predicted final center line 
hold on 
plot([0 0.1],[0 0],'b-','LineWidth',1.8)  %Final measured banks 
hold on 
  
plot(xyCIpF{1}(1,:),xyCIpF{1}(2,:),'k-.','LineWidth',0.5) % Initial 
center line 
hold on 
plot(xyRI(:,1),xyRI(:,2),'k-','LineWidth',0.5)  % Initial right bank 
hold on 
plot(xyLI(:,1),xyLI(:,2),'k-','LineWidth',0.5)  % Initial left bank 
hold on 
plot(xyOff(:,1),xyOff(:,2),'m--','LineWidth',1.5) % Predicted final 
left bank. 
hold on 
plot(xyOff(:,3),xyOff(:,4),'m--','LineWidth',1.5) % Predicted final 
right bank. 
hold on 
  
if fType==1  % Plot measured final banks for flume tests 
    plot(xymF(:,1),xymF(:,2),'b-','LineWidth',1.8) % Measured final 
right bank 
    hold on 
    plot(xymF(:,1),xymF(:,3),'b-','LineWidth',1.8) % Measured final 
left bank 
end 
  
hold on 
plot(out_XYC(1),out_XYC(2),'mo','MarkerSize',5) 
axis equal 
  
xlabel('X','FontSize',12) 
ylabel('Y','FontSize',12) 
testNoStr=num2str(str2num(testNoStr)); % Remove prefix '0' 
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if fType==1 
    sTitle=['Center Line Method --Flume Test ' testNoStr ' Migrated 
Channel']; 
elseif fType==2 
    sTitle=['Center Line Method --Parametric Study ' testNoStr ' 
Migrated Channel']; 
end 
title(sTitle,'FontSize',12) 
  
if fType==1 
    legend('Initial center line','Initial banks','Predicted final 
banks','Measured final banks') 
elseif fType==2 
    legend('Initial center line','Initial banks','Predicted final 
banks') 
end 
%legend('boxoff') 
 
 
function [cur,count,fid]=read2Col3ColFile(fn) 
  
% The file can be of 2 column or 3 columns. Delimiter can be 
space,tab,or comma. 
% The last two columns will be read and returned in column major matrix 
% If failed, fid=-1. 
% An alternative is to use dlmread() and judge the # of columns. 
  
fid=fopen(fn,'rt');  %For the purpose of compiling. 
if fid==-1 
    cur=0; 
    count=0; 
    return 
end 
line1=fgetl(fid);  % fgets() will return two more characters. 
nComma=0; 
nC=length(line1); 
for i=1:nC 
    if line1(i)==',' 
        nComma=nComma+1; 
    end 
end 
nNum=0; 
i=1; 
while i<=nC 
    seeANum=false; % find a number 
    while (line1(i)>='0' && line1(i)<='9') || line1(i)=='.' || 
line1(i)=='-' || upper(line1(i))=='E' 
        i=i+1; 
        seeANum=true; 
        if i>nC, break; end 
    end 
    if seeANum,  
        nNum=nNum+1; 
    end 
    i=i+1; 
end 
  
if nComma==0 && nNum==2 
    fStr=['%g %g']; 
elseif nComma==0 && nNum==3 
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    fStr=['%*d %g %g']; 
elseif nComma==1 && nNum==2 
    fStr=['%g, %g']; 
elseif nComma==2 && nNum==3 
    fStr=['%*d, %g, %g']; 
else 
    fStr=['Comma number=' num2str(nComma) ' nNum=' num2str(nNum)]; 
    disp(fStr) 
    return 
end 
frewind(fid); 
[cur,count]=fscanf(fid,fStr,[2 inf]);   
cur=cur'; 
fclose(fid); 
 
function ReadMeanderCoord() 
  
fn='Z:\_WW\Meander\MeanderCoord.dat'; 
%fn='H:\Desktop\MeanderRun\MeanderCoord.dat'; 
%fn='C:\temp\MDemo\MeanderCoordRisk.dat'; 
fid=fopen(fn,'rb'); 
  
% num(1): # of points on the curve 
% num(2): # of curves 
nCur=fread(fid,1,'integer*4'); 
nPt=zeros(nCur,1); 
xy=cell(nCur,1); 
for i=1:nCur 
    nPt(i)=fread(fid,1,'integer*4'); 
    cur=fread(fid,nPt(i)*2,'real*8'); 
    xy{i}=reshape(cur,2,[]); 
end 
  
fclose(fid); 
  
figure 
plot(xy{1}(1,:),xy{1}(2,:),'r--','LineWidth',1.3) 
hold on 
for i=2:nCur 
    plot(xy{i}(1,:),xy{i}(2,:),'b-') 
    hold on 
end 
grid on 
axis equal 
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C.1 COMPUTER CODE WRITTEN IN C/C++ FOR IMPLEMENTING 

HYPERBOLIC MODEL (PARTIAL) 

 
// SRICOSDoc.cpp : implementation of the CSRICOSDoc class 
double CSRICOSDoc::Hyperbola(double M0,double Mmax,double MdotI,double 
t) 
 
// Implement the formula of hyperbolic model 
// Given an existing migration distance(scour depth) and Migration vs. 
Time curve, 
// calculate the new accumulated migration. 
// t, how long the situation(V, soil properties, R/W etc) of the new  
// hyperbolic curve lasts. Unit: hour. 
// Follow SRICOS-EFA, MdotI's unit is always mm/hr.  
// For metric units there MUST be M0 mm, Mmax mm, t hour. Migration in 
mm is returned 
// For English units, migration in foot is returned. 
// Called by OneVelocity(...) 
{ 
if(M0<0)  // If existing migration is a negative number, treat it as 0. 
 M0=0; 
if(M0>=Mmax || fabs(MdotI)<1e-6)  // If tao_max<tao_critical, let MdotI 
=0. No erosion. 
 return M0; 
if(!m_bSI)     // If English unit. Assume MdotI is always in mm/hr. 
 MdotI/=304.8;  // Convert from mm/hr to ft/hr,  
double te=1/MdotI/(1/M0-1/Mmax); 
return (te+t)/(1/MdotI+(te+t)/Mmax); 
} 

 
double CSRICOSDoc::CalMdotI(double v,double RoW,double SoF) 
// Use the tao_max formula for Meander Migration 
// RoW: R over W, SoF: sita over fei 
{ 
// unit dependent 
double taom,rou=1000; // rou, density of water, unit: kg/m^3 
 
double MdotI,miu,sig,ep,fSoF,f1,f2; 
 
if(!m_bSI) 
 rou=62.42796;  // density of water: lbf/ft^3 or pcf 
 
miu=-0.047*RoW+1.05; 
if(miu<0) 
 miu=0; 
sig=0.37; 
ep=exp((SoF-miu)/sig); 
fSoF=1/sig*ep*exp(-ep); 
 
taom=rou*v*v/(400*RoW)*fSoF; // tao_max here is too small 
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//f1=-30*v+15;  // Empirical coefficient. v=0.3, coef=9; v=0.2, coef=6. 
f1=8; 
if(RoW<=6) 
 f2=1; 
else 
 f2=0.25*RoW-0.5; // R/W=8, f2=1.5; R/W=6, f2=1. 
//  f2=0.5*RoW-2;    // R/W=8, f2=2; R/W=6, f2=1 
//  f2=0.4*RoW-1.4;   // R/W=8, f2=1.8; R/W=6 f2=1 
// f2=1.5;  // This one is for Flume Test 4, R/W=8 fei=65 
 
taom*=f1*f2; 
 
if(!m_bSI)   // Taomax, if metric N/m^2, if English psf 
 taom/=32.174;    // gc=32.174 lbm-ft/(lbf-s^2) 
 
if(taom<m_pSoil->m_dCriticalShearStress)  // if tao_max<tao_critical, 
no erosion occurs 
return 0.0; 
 
MdotI=Interp(m_pSoil->m_pLayer->m_dShearStress,m_pSoil->m_pLayer-
>m_dScourRate,\ 
 m_pSoil->m_pLayer->m_nPoints,taom,false); // Scour rate unit is 
mm/hr even for English units 
 
return MdotI; 
} 

 

void CSRICOSDoc::OnRun()  
// If English units are used, the bank coordinates must also be in foot. 
{ 
//Engine *ep;  // Try to use Matlab engine 
//ep=engOpen(NULL); 
 
// In the constructor of CGeometry, m_pdxy[0][0]=dLargeNum; 
if(fabs(m_pGeometry->m_pdxy[0][0]-dLargeNum)<1e-4) 
{ 
 AfxMessageBox("Please input the channel coordinates!\n"); 
 return; 
} 
else if(fabs(m_pGeometry->m_dWidth)<1e-2) 
{ 
 AfxMessageBox("Please input river width!\n"); 
 return; 
} 
 
m_pGeometry->RetrieveAssign(); 
 
// This file stores XY of migrated channels in binary format for 
Matlab.Suffix & extension will be added. 
// m_szOutFullFn=m_szInstallPath+m_szOutFn;  
// m_szOutFullFn="..\\Data\\"+m_szOutFn; 
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//On the View dialogue, if PeriodTo<=0, output one step specified by 
PeriodFrom 
//if PeriodTo>=1, output migration superposition graph for each step 
//For debug purpose 
if((int)m_dPeriodTo<=0) 
 nDebugStep=(int)m_dPeriodFrom; // borrow the space for temporary 
use,1-based. 
else 
 nDebugStep=nLargeInt+100; // disabled 
if(m_iPeriodUnit==0)  // for temporary use. No. 
{ 
 bIsBank=false;  // Unit: year, center line 
 isRightBank=0;  
 m_szOutFullFn="..\\Data\\TMP_"+m_szName+"_C"; 
} 
else if(m_iPeriodUnit==1) 
{ 
 bIsBank=true;  // Unit: Month 
 isRightBank=1;    // It is the right bank. 
 m_szOutFullFn="..\\Data\\TMP_"+m_szName+"_R"; 
} // Use "\\" instead of "/". "\\" becomes "\" when it is passed to 
Matlab. 
else if(m_iPeriodUnit==2) 
{ 
 bIsBank=true;  // Unit: Day 
 isRightBank=-1;   // It is the left bank. 
 m_szOutFullFn="..\\Data\\TMP_"+m_szName+"_L"; 
} 
 
m_nCurRun=1;   // Used for reporting the location of error. 
m_nTotalRun=1; // True for constant flow and one hydrograph 
// CString erMsg; 
 
double *Q=NULL,*X=NULL,*M0; // Allow this dynamic allocation. It occurs 
only once. 
double (*riskXY)[2]; 
 
int i,j,nEfDay=0,flg;   
m_nPt=m_pGeometry->m_nPt; 
// m_nP0=m_pGeometry->m_nP0;  // The matching process is done here. 
 
time_t sec1,sec2,dt; 
char stime[255],tStr[500]; // tStr is a temporary string. 
m_fitCirT=0; 
 
//If redistributed only once. m_nPt is a constant after that. 
memcpy(m_pdxy,m_pGeometry->m_pdxy,m_nPt*2*sizeof(double)); 
 
M0=m_dM0; 
for(i=0;i<nMaxPt;i++,*M0++=0.0);  // In the beginning, it's zero. 
         // Then it stores the accumulated migration distance of 
the latest step. 
 
if(m_pdM1p!=NULL) 
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 delete[] m_pdM1p; 
if(m_pdT1p!=NULL) 
 delete[] m_pdT1p; 
 
if(m_pWater->m_iConstant==0)  // Constant Q or V 
{ 
//m_pWater->m_dTimeStep!=24, this can occur only when flow is constant. 
double timeStep=m_pWater->m_dTimeStep/24; // timeStep unit is DAY,  
                                          // m_pWater->m_dTimeStep unit 
is in HOUR 
//count of the number of time steps 
//when m_pWater->m_dTime's unit is day 
if(m_pWater->m_iTimeUnit==0) 
 m_nTimeStep=int(m_pWater->m_dTime/timeStep); 
 
//when m_pWater->m_dTime's unit is hour 
else 
 m_nTimeStep=int(m_pWater->m_dTime/m_pWater->m_dTimeStep); 
 
Q=new double[m_nTimeStep]; 
m_pdM1p=new double[m_nTimeStep]; 
m_pdT1p=new double[m_nTimeStep]; 

//m_pdM1p[0]=0;  // Initial point, zero migration. // don't 
do this. 

  
 for(i=0;i<m_nTimeStep;i++) 
 { 
  Q[i]=m_pWater->m_dDischarge; 
  m_pdT1p[i]=i+1;  // time steps. unit: m_pWater->m_dTimeStep 
(hours) 
 } 
  
 time(&sec1); 
 OneHydrograph(m_dM0,Q,true); 
 time(&sec2); 
 
 dt=sec2-sec1; 
 sprintf(stime,"Constant flow, Step number=%d, Total time=%d 
sec\n\ 
  Time for fitting circles: %f sec\nTime for applying 
hyperbola model: %f sec"\ 
  ,m_nTimeStep,dt,m_fitCirT,dt-m_fitCirT); 
 AfxMessageBox(stime); 
} 
 
else if(m_pWater->m_iConstant==1)  // Hydrograph 
{ 
 int sign=m_InputPlots.ReadHydroFileOf2Types(m_pWater-
>m_strFileName,\ 
  m_pWater->m_dTimeStep,X,Q,m_nTimeStep); // Space for X,Q is 
allocated inside this function. 
 
//  Send data to Matlab,test, failed 
//mxArray *mxQ; 
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//mxQ=mxCreateDoubleMatrix(1,m_nTimeStep,mxREAL); 
//memcpy((char *)mxGetPr(mxQ), (char *)Q,m_nTimeStep*sizeof(double)); 
//engPutVariable(ep,"Q0",mxQ); 
  
 m_pdM1p=new double[m_nTimeStep]; 
 m_pdT1p=new double[m_nTimeStep]; 
 
 for(i=0;i<m_nTimeStep;i++) 
  m_pdT1p[i]=i+1;  // time steps. unit: m_pWater->m_dTimeStep 
(hours) 
 
 if(sign==0) // If the hydrograph file is USGS format, time step 
has to be 24 hours. 
  m_pWater->m_dTimeStep=24; 
 else if(sign==-1) // Failed to read the hydrograph file. 
  return; 
 time(&sec1); 
 nEfDay=OneHydrograph(m_dM0,Q,true); 
 time(&sec2); 
 
 dt=sec2-sec1; 
 sprintf(stime,"One Hydrograph, Number of total days=%d,Effective 
days=%d Time=%d sec\n",\ 
  m_nTimeStep,nEfDay,dt); 
 AfxMessageBox(stime); 
} 
 
else if(m_pWater->m_iConstant==2)  // Risk Analysis 
{ 
 double dMean,dStd; 
 double nrc[2]={0,1}; // for Matlab RNG only. 
 int flag,nRun=m_pWater->m_nRealization; 
 m_nTotalRun=nRun; 
 
 //Stores the # of points of the final migrated river for each run. 
 int *nPtR=new int[nRun+1]; // R---Risk, # of points for each 
channel. 
          // Code changed. The # of 
points is the same for each channel. 
 nPtR[0]=m_nPt; // Initial channel 
 
 flag=m_pWater->GetStatistics2(dMean,dStd);  // deal with 
hydrograph.txt first, 
 if(flag<0)   // Failed to read the hydrograph file. Error message 
given. 
  return; 
 
 m_nTimeStep=(long)(m_pWater->m_dPredictTime*1);  // 365 days/year 
should be (*365) 
 riskXY=new double[(nRun+1)*(int)(m_nPt*1.2)][2]; 
 // riskXY stores the final channel of each hydrograph. 
 // If the points are redistributed for each flow, the maximum 
number of points may be larger than nPt. 
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 // If the # of points is fixed for redistribution, it's better to 
use a 3-D array. 
 
 Q=new double[m_nTimeStep]; // Q/V of one generated hydrograph. 
 nrc[0]=m_nTimeStep; 
 
 // Assign initial channel to riskXY. 
 memcpy(riskXY,m_pdxy,m_nPt*2*sizeof(double)); 
 time(&sec1); 
 srand((unsigned int)sec1);// set seed only once for each risk 
analysis. for C RNG. 
 
 int nAcuPt=m_nPt;  // Accumulated # of points. 
 for(i=0;i<nRun;i++) 
 { 
  m_nCurRun=i+1; 
  lognRnd(Q,dMean,dStd,m_nTimeStep); // Pure C code 
  //CLognrnd(Q,dMean,dStd,nrc); // Compiled Matlab function 
   
  m_nPt=m_pGeometry->m_nPt; 
 
  M0=m_dM0; 
  for(j=0;j<nMaxPt;j++,*M0++=0);//This step is time consuming. 
 
  memcpy(m_pdxy,m_pGeometry->m_pdxy,m_nPt*2*sizeof(double)); 
  try  
  { 
   flg=OneHydrograph(m_dM0,Q,false);  

// Migrated curve is stored in m_pdxy 
   nEfDay+=flg; 
   if (flg<0)   // no circle was fitted. 
   { 
    sprintf(tStr,"Error in OneHydrograph. 
Hydrograph No. %d/%d; Step No. %d\n",i+1,nRun,m_nTimeStep); 
     AfxMessageBox(tStr); 
     return; 
    } 
   } 
   catch(CString erMsg) 
   { 
    sprintf(tStr,"\nError in OneHydrograph. 
Hydrograph No. %d/%d; Step No.  %d\n", i+1, nRun,  m_nTimeStep); 
    AfxMessageBox(erMsg+tStr); 
    return; 
  } 
  nPtR[i+1]=m_nPt;   

// m_nPt is the # of data points for this final migrated channel. 
 
  memcpy(riskXY+nAcuPt,m_pdxy,m_nPt*2*sizeof(double)); 
  nAcuPt+=m_nPt; 
 } 
 time(&sec2); 
 dt=sec2-sec1; 
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 sprintf(stime,"Runs=%d, Days in 1 run=%d, Days calculated=%d, 
Time=%d sec\n",\ 
  nRun,m_nTimeStep,nEfDay,dt); 
 AfxMessageBox(stime); 
 
int nt=nRun+1; // Total # of curves to be written to the file 
 m_szOutFullFn=m_szInstallPath+m_szOutFn+"Risk.dat"; 
 FILE *fp=fopen(m_szOutFullFn,"wb"); 
 if(fp==NULL) 
 { 
  AfxMessageBox("Can't open file:"+ m_szOutFullFn +"for risk 
analysis output"); 
  return; 
 } 
 nAcuPt=0; // Accumulated # of points 
 fwrite(&nt,sizeof(int),1,fp);      

// Total # of curves to be written to the file 
 int count1,count2; 
 for(i=0;i<nRun+1;i++) 
 { 
  try 
  { 
  count1=fwrite(nPtR+i,sizeof(int),1,fp); 
  count2=fwrite(riskXY+nAcuPt,sizeof(double),nPtR[i]*2,fp); 
// Each curve might have different # of points. 
  } 
  catch(CString erMsg) 
  { 
   sprintf(tStr,"\nFunction OnRun(), error in writing 
the file. Curve No.=%d\n",i+1); 
   AfxMessageBox(erMsg+tStr); 
   return; 
  } 
  nAcuPt+=nPtR[i]; 
 } 
 fwrite(&m_pGeometry->m_dX0,sizeof(double),1,fp); 
 fwrite(&m_pGeometry->m_dY0,sizeof(double),1,fp); 
 fclose(fp); 
} 
m_bRunSuccess=true;  
 
if(X!=NULL) 
 delete[] X; 
if(Q!=NULL) 
 delete[] Q; 
// if(riskXY!=NULL) 
//  delete[] riskXY; 
} 
 
int CSRICOSDoc::OneHydrograph(double *M0,double *Q,bool bOutput) 
// Used by MEANDER program only. 
// M0 stores existing migration distance. M0=m_dM0. 
// Q is the hydrograph 
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// if output==true, output intermediate result 
// m_nTimeStep is the length of the hydrograph. 
// No dynamic memory allocation inside this function. 
// It will be called thousands of times. 
// Before calling this function, allocate space for m_pdxy..., cal 
m_nTimeStep 
// After calling this function, release the memory. 
// If it succeeds, return 1; otherwise return 0. 
{  
 int nEfDay=0,m,nNum[5]; 
  
 double (*xyHolder)[2]; 
// m_nArc=m_pGeometry->m_nArc;  // not necessary 
  
 FILE *fp=NULL; 
 if(bOutput==true) 
 { 
  int nt=m_nTimeStep+1;  

// Total # of curves to be written to the file 
  m_szOutFullFn+=".dat"; 
  fp=fopen(m_szOutFullFn,"wb"); 
  if(fp==NULL) 
  { 
   AfxMessageBox("Can't open file"+m_szOutFullFn+"for 
writing coordinates of migrated channels."); 
   return 0; 
  } 
  // sizeof(int) should be 4. Use "integer*4" in Matlab 
  fwrite(&nt,sizeof(int),1,fp);     

// Total # of curves to be written to the file 
 }  
 
// m_pGeometry->m_dArg[11]=-1; //<0:plot nothing; 1: plot channel & 
circles 2: plot R/W 3: plot both 
//Initially, might be: m_dArg[11]=3 
//Move it inside the m_i loop 
 m=0;  // # of points for fitting a quadratic curve. 
  
 m_pGeometry->m_dArg[19]=m_pWater->m_dTimeStep;  

// For plotting titles of Matlab graphs 
  
 for(m_i=0;m_i<m_nTimeStep;m_i++)  

// global m_i, let OneFlow(..) know which flow it is. 
 { 
  nEfDay++;  // # of channels for which circles are fitted. 
   
//  if(m_i==nDebugStep-1 || nDebugStep>nLargeInt || 
((int)m_dPeriodFrom-1<=m_i && m_i<=(int)m_dPeriodTo-1)) 
  if(m_i==nDebugStep-1 || ((int)m_dPeriodFrom-1<=m_i && 
m_i<=(int)m_dPeriodTo-1)) 
   m_pGeometry->m_dArg[11]=3;   

// Plot fitted circles & R/W for debug 
  else 
   m_pGeometry->m_dArg[11]=-1; 
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  m_pGeometry->m_dArg[20]=m_i+1;  

// Current step,1=Initial. For plotting titles of Matlab graphs. 
   
  // Output XY coordinates for a specified step.  
  if(m_i==nDebugStep-1) 
 
   m_pGeometry->m_dArg[18]=1;  

// non-0, output bank coordinate file of this step. 
  else 
   m_pGeometry->m_dArg[17]=0;  

// 0, don't output XY file for this step. 
 
  try  
  { 
//   time_t sec1,sec2; 
            struct _timeb tBuf1,tBuf2; 
//   time(&sec1); 
            _ftime(&tBuf1); 
 
            if(m_i==0)  // For the first fitting, use spacingCoef, 
                m_pGeometry->m_dArg[16]=-1; 
            else  
            {   // For the rest, use fixed number of points. 
                m_pGeometry->m_dArg[16]=m_nPt; 
                m_pGeometry->m_dArg[17]=m; 
            } 
   m_pGeometry->m_dArg[20]=m_i+1; 
//Step No. 1-based. Matlab function uses it for file name&graph title. 
 
            nNum[0]=m_nPt; 
            GeoInterface(m_pdxy,nNum,m_pGeometry-
>m_dArg,m_dxyRF,m_nArcIdx); 
            m_nPt=nNum[0]; 
            m_nArc=nNum[1]; 
            m=nNum[2]; 
   if(m_i==0)  
// Find the # of the point for which M vs. t curve will be plotted. 
    m_nP0=m_pGeometry->matchPoint(m_pGeometry-
>m_dX0,m_pGeometry->m_dY0,m_pdxy,m_nPt); 
 
   if(bOutput==true && m_i==0)  
// Write the redistribution points to file as the original curve 
   { 
    fwrite(&m_nPt,sizeof(int),1,fp);  
// Total # of points on one bank 
    fwrite(m_pdxy,sizeof(double),m_nPt*2,fp);  
// The initial curve. count is for test only. 
   } 
 
            _ftime(&tBuf2); 
//   time(&sec2); 
//   m_fitCirT+=sec2-sec1; 
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            m_fitCirT+=(tBuf2.time+tBuf2.millitm/1000)-(tBuf1.time + 
tBuf1.millitm/1000); 
  } 
  catch(CString erMsg) 
  { 
   char progress[400];   

// Try to show progress in the main dialog. 
   sprintf(progress,"\nHydrograph No. %d of %d, Step No. 
%d of %d\n",m_nCurRun, m_nTotalRun,m_i+1,m_nTimeStep); 
   CString tip="\n\nIt is recommended to output the 
channel coordinates of this step.\n"; 
   AfxMessageBox(erMsg+tip+progress); 
   return -1;  // Stop the program 
  } 
  if(nNum[3]!=-2 && nNum[3]<=0) 
  { 
   char err[400]; 
   sprintf(err,"Error Code: %d.\n",nNum[3]); 
   AfxMessageBox("No circle was fitted."+CString(err)); 
   return -1; 
  } 
 
  m_pGeometry->ChannelLen(m_pdLen,m_pdxy,m_nPt);  

// for calculating fei,sita. 
   
  OneFlow(M0,Q[m_i],false,bOutput); 
  if(m_pWater->m_iConstant<=1)  

// This is only for constant flow and one hydrograph 
  { 
   m_pdM1p[m_i]=M0[m_nP0];  

// Trace the migration of point m_nP0 
   if(m_bSI)               // If English, foot 
    m_pdM1p[m_i]/=1000; // Change from mm to meter. 
  } 
  if(bOutput==true) 
  { 
   //Write the migrated bank to file 
   fwrite(&m_nPt,sizeof(int),1,fp); 
   fwrite(m_pdxyNew,sizeof(double),m_nPt*2,fp);  

// make it float later 
  } 
 
  xyHolder=m_pdxy;   

// Let m_pdxy point to m_pdxyNew and make it a bank to be moved 
  m_pdxy=m_pdxyNew;  // So m_pdxy also stores the final curve. 
  m_pdxyNew=xyHolder; 
 
  if(m_i==m_nTimeStep-1) 
   continue; 
 } 
 if(fp!=NULL) 
 { 
  fwrite(&m_pGeometry->m_dX0,sizeof(double),1,fp); 
  fwrite(&m_pGeometry->m_dY0,sizeof(double),1,fp); 
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  fclose(fp); 
 } 
 return nEfDay; 
} 

 

int CSRICOSDoc::OneFlow(double *M0, double Qi,bool bSkip,bool& bOut) 
// Given one flow(Qi or Vi), based on existing 
coordinates,RoverW,fei,sita,Fr 
// to calculate migrated channel. 
// M0[] stores existing migration distance and accumulates migration 
caused by this flow. 
// M0=m_dM0; 
// 
// Sign of migration: (for m_dMdist, m_dM1dist) 
// Walking from the 1st point to the last point: 
// Rc>0(y">0) if the center is to the left side of the channel; 
// Rc<0(y"<0) if the center is to the right side. 
// If the Rc of the bend is >0, the outward migration is >0, the inward 
migration is <0; 
// If the Rc of the bend is <0, the outward migration is <0, the inward 
migration is >0. 
// 
// If Rc>0, all the migration caused by this bend is >0 
// If Rc<0, all the migration caused by this bend is <0 
// 
// Rc>0, M0>0: center of the circle is to the left side of the channel, 
migration is to the right side. 
// Rc<0, M0<0: center of the circle is to the right side of the channel, 
migration is to the left side. 
// 
// bool bSkip: does the program try to skip this flow? 
// Default value for bSkip is false(zero is returned). 
// If bSkip==true, use this geometry to check whether the next flow can 
cause noticeable migration. 
// Only when no bend/point has noticeable migration will this flow be 
ignored. 
// Whenever a noticeable migration is observed, this function stops and 
returns 1. 
// 
// m_dMdist[], accumulated migration casued by the current bend and the 
bends in front of and after it. 
// m_dMdist[] is the accumulation of m_dM1dist. 
// m_dM1dist[], one time migration of the bend and the influced part in 
front of and after it. 
{ 
 int idx1,idx2,idxEnd,idx1st,j,k,m; 
// int nOnBendNo; // Point idxEnd is on this bend or the straight 
line after this bend. 
 int nEfB=0;//# of effective bends which have significant 
migration.If nEfB=0,this flow can be ignored. 
  
 double InflCoef=3.4; // Region of influence is assumed to be 
0=<sita/fei<=InflCoef, forward influence 
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 double InflCoef2;   
// backward influence, InflCoef2=sita/fei corresponds to Mmax/W=tiny 
 double tiny=0.0001;   
// Consider backward influence stops if Mmax/W<=tiny. 
  
 double *M,*M1,dM0,dM; 
 double vel,bendLen,sLen; 
 double depth;    
// meter, interpolated from the table on Water Dialogue, metric unit 
first 
 double A,miu,sigma,RoverW,fei,Fr; 
 double MdotI,Mmax,Macu;      
// Accumulated migration at the end of the day 
 double ptc[2],pt0[2],ptN[2];  
// center, point on curve, new position. 
 double eps=1e-4;   
// if(inc/Mmax>eps), consider noticeable migration occurs. 
 eps=m_pWater->m_dManCoef; 
 const static double gm=9.807,ge=32.174; 
// Acceleration of gravity g in Metric: m/s^2, g in English: ft/s^2 
 
#ifdef wwDEBUG // nMaxArc etc. are defined in GlobalConstVar.h 
 static double Mmt[1000],Mat[1000]; // for debug only, Mmt=Mmax, 
Mat=Maccumulated 
 static double Mm1[nMaxArc][nMaxPt]; // like M1dt, it stores Mmax 
 static double M1dt[nMaxArc][nMaxPt];  
// It stores m_dM1dist[] of each bend and m_dMdist[] 
// X axis is channel length 
 static double M1idx[nMaxArc][2]; 
// Index of m_dM1dist & Mm1 of each bend. Matlab accepts only double 
type 
 static double cXY[nMaxPt][6];    
//Coordinates of original channel and new channel.Original 0,1;New 2,3. 
 double tStep[2]; // tStep[0], time step in hours; tStep[0], 
current step number(1=initial channel) 
// Pass it to Matlab for the titles of the graphs. 
 tStep[0]=m_pWater->m_dTimeStep; 
 tStep[1]=m_i+1;  // Make it 1-based. 
#endif 
 
 M=m_dMdist; 
 M1=m_dM1dist; 
 for(j=0;j<nMaxPt;j++,*M++=0.0,*M1++=0.0); 
 
 if(Qi>=0)    // There is flow data for that day. 
 { 
  if(m_pWater->m_iInputData==0)   

// The input data is discharge, not velocity 
   vel=Interp(m_pWater->m_pDV,m_pWater->m_nPointDV,Qi); 
  else                 // It's a velocity hydrograph. 
   vel=Qi; 
 } 
 else          // When discharge is missing for the day, Q[i-1]<0 
  vel=Qi; 
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 if(m_pWater->m_iInputData==0) // The input data is discharge 
  depth=Interp(m_pWater->m_pDW,m_pWater->m_nPointDW,Qi); 
 else if(m_pWater->m_iInputData==1) // The input data is velocity 
  depth=Interp(m_pWater->m_pVW,m_pWater->m_nPointVW,Qi); 
  
 if(m_bSI) 
  Fr=vel/sqrt(gm*depth);  // Froude number, Metric units 
 else 
  Fr=vel/sqrt(ge*depth);  // English units 
       
 if(bSkip==false) 
  memcpy(m_pdxyNew,m_pdxy,m_nPt*2*sizeof(double)); 
//If migration occurs, change it, or keep old ones. 
 
    // Calculate migration bend by bend. 
 for(j=0;j<m_nArc;j++) 
    { 
  for(k=0;k<nMaxPt;m_dM1dist[k]=0,k++);  
// not necessary,for debug only 
 
  idx1=m_nArcIdx[j][0]; // Its index is already 0-based. 
        idx2=m_nArcIdx[j][1];  
  bendLen=m_pdLen[idx2]-m_pdLen[idx1]; 
 
        RoverW=fabs(m_dxyRF[j][2]/m_pGeometry->m_dWidth); 
        fei=m_dxyRF[j][3]; 
 
  if(bIsBank==true && m_dxyRF[j][2]*isRightBank<0)  
// Ignore inner bank. 
   continue; 
  if(bIsBank==true) //Reduce R/W by 0.5 since Po's equation 
is based on geometry of center line. 
   RoverW-=0.5; 
 
//  fei=bendLen/fabs(m_dxyRF[j][2])*180/3.1415926; 
   
//  if(bIsBank==true) 
   CalAmiuSigma_Po(A,miu,sigma,RoverW,fei,Fr); 
//  else 
//   CalAmiuSigma_Wei(A,miu,sigma,RoverW,fei,Fr); 
 
  idxEnd=idx1;   
// idxEnd corresponds to sita/fei=InflCoef. forward influence 
  // Calculate sita for the bend and the part it affects. 
  while ((sLen=m_pdLen[idxEnd]-
m_pdLen[idx1])<=InflCoef*bendLen && idxEnd<m_nPt) 
  { 
  
 m_dSita[idxEnd]=sLen/fabs(m_dxyRF[j][2])*180/3.1415926; 
   idxEnd++; 
  } 
  idxEnd--; 
   



 288

  InflCoef2=-sigma*sqrt(-2*log(tiny/A))+miu;   
// backward influence, natural log 
  //InflCoef2=0;  // for debug  // Derived from Mmax/W=tiny 
  idx1st=idx1;   // idx1st correspond to sita/fei=InflCoef2 
  if(InflCoef2<0) 
  { 
   while((sLen=m_pdLen[idx1st]-m_pdLen[idx1]) >= 
InflCoef2*bendLen && idx1st>=0) 
   { 
   
 m_dSita[idx1st]=sLen/fabs(m_dxyRF[j][2])*180/3.1415926; // sita<0 
    idx1st--; 
   } 
   idx1st++; 
  } 
 // Calculate the migration for the bend and the part it affects. 
  for(k=idx1st;k<=idxEnd;k++)  
  { 
   if(m_dxyRF[j][2]*M0[k]>0) 
    dM0=fabs(M0[k]);   
// Existing migration is in outward direction.  
   else 
    dM0=0; 
   Mmax=CalMmax_Regr(A,miu,sigma,m_dSita[k],fei); 
#ifdef wwDEBUG 
            Mmt[k]=Mmax; // Mmt: maximum, debug 
#endif 
   // Manually decrease MdotI, for debug 
   MdotI=CalMdotI(vel,RoverW,m_dSita[k]/fei);  

// Developed for MEANDER 
//   MdotI=CalMdotI(vel)/5;                      
// Equation for pier scour 
            Macu=Hyperbola(dM0,Mmax,MdotI,m_pWater->m_dTimeStep); 

//in mm 
#ifdef wwDEBUG 
   Mat[k]=Macu; // Mat: accumulated, debug 
#endif 
   m_dM1dist[k]=Macu-dM0; 

//It temporarily stores migration increment. 
  } 
   
  int rSign=1;  

// For debug output. It's the sign of the current arc. 
  if(m_dxyRF[j][2]<0)  
// If Rc<0, the sign of migration caused by this bend is defined as <0. 
  { 
   for(m=idx1st;m<=idxEnd;m_dM1dist[m]=-
m_dM1dist[m],m++); 
   rSign=-1; 
  } 
  // Accumulated migration INCREMENTS. 
  for(k=idx1st;k<=idxEnd;k++) 
   m_dMdist[k]+=m_dM1dist[k]; 
 



 289

#ifdef wwDEBUG 
  M1idx[j][0]=idx1st+1;   

// Make it 1-based so that Matlab can use it directly. 
  M1idx[j][1]=idxEnd+1; 
  for(k=idx1st;k<=idxEnd;k++) 
  { 
   Mm1[j][k]=Mmt[k]*rSign; 
   M1dt[j][k]=m_dM1dist[k]; 
  } 
#endif 
  idx1=-999; // for inserting a break point,debug 
    } 
#ifdef wwDEBUG 
 M1idx[m_nArc][0]=1;  

// Pass it to matlab, for plotting accumulated migration 
 M1idx[m_nArc][1]=m_nPt; 
 
 if(m_i==0) // To store the initial channel 
  for(j=0;j<m_nPt;j++)  

//It will be kept and will not be changed for all steps. 
   for(k=0;k<2;k++) 
    cXY[j][k]=m_pdxy[j][k]; 
 for(j=0;j<m_nPt;j++)  
 { 
  M1dt[m_nArc][j]=m_dMdist[j];  

// the accumulated migration caused by this flow 
  for(k=0;k<2;k++) 
   cXY[j][k+2]=m_pdxy[j][k];  

// First save the channel before migration 
 } 
#endif 
 // Move all the bends and the parts they affect. 
 for(j=0;j<m_nArc;j++) 
    { 
  if(j==0) 
   idx1=0; 
  else 
   idx1=m_nArcIdx[j][0]; // Its index is already 0-based. 
        if(j<m_nArc-1) 
   idx2=m_nArcIdx[j+1][0];  
  else 
   idx2=m_nPt;  
// For Stolpa's Experiment, 1st bend's influence overtakes 2nd bend's 
influence. 

//idx2=idxEnd+1; 
// +1,so that the last affected point on the curve will be accounted 
for. idxEnd is for the last bend, value not changed since last 
assignment. Assume previous bend's influence doesn't overrun this 
bend's influence. 
        ptc[0]=m_dxyRF[j][0]; 
        ptc[1]=m_dxyRF[j][1]; 
  for(k=idx1;k<idx2;k++)  
//Point No.idx2 is not to be included.Point with No.m_nPt doesn't exist. 
  { 
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   if(fabs(m_dMdist[k])<1e-6)  
// No migration occurred at this point. 

    continue; 
             if(bSkip==true && fabs(m_dMdist[k])/Mmax>eps)  

// One point has noticeable migration. 
   { 
    nEfB+=1; 
    return nEfB; // This flow cannot be ignored. 
   } 
   if(m_dxyRF[j][2]*m_dMdist[k]>0) 
    dM0=fabs(m_dMdist[k]); // Migrate outward  
   else 
    dM0=-fabs(m_dMdist[k]);// Migrate inward 
 
   if(m_bSI) 
                dM=dM0/1000;  // Change unit from mm to meter. 
   else 
    dM=dM0; 
            pt0[0]=m_pdxy[k][0]; 
            pt0[1]=m_pdxy[k][1]; 
            extend(ptc,pt0,dM,ptN); 
            m_pdxyNew[k][0]=ptN[0]; 
            m_pdxyNew[k][1]=ptN[1]; 
 
            M0[k]+=m_dMdist[k]; 
        } 
 } 
#ifdef wwDEBUG 
 for(j=0;j<m_nPt;j++) // Then save the channel after migration 
  for(k=0;k<2;k++) 
   cXY[j][k+4]=m_pdxyNew[j][k]; 
  
// if(m_i==nDebugStep-1 || nDebugStep>nLargeInt )   
// plot graphic output for debugging on demand. 
 try 
 { 
 if( m_i==nDebugStep-1 || ((int)m_dPeriodFrom-1<=m_i && 
m_i<=(int)m_dPeriodTo-1)) 
 
 cPlotMgrtForOneFlow(Mm1[0],M1dt[0],M0,M1idx[0],cXY[0],m_pdLen,m_n
ArcIdx,m_nPt,m_nArc,tStep); 
 } 
 catch(CString erMsg) 
 { 
  AfxMessageBox(erMsg); 
  return nEfB; 
 } 
#endif 
 
 return nEfB; 
} 
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