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ABSTRACT 

The Effect of Irregular Fiber Distribution and Error in Assumed Transverse Fiber CTE 

on Thermally Induced Fiber/matrix Interfacial Stresses. (May 2005) 

Seung-Don Zu, B.S, Hankook Aviation University, Korea 

Chair of Advisory Committee: Dr. John D. Whitcomb 

 

Thermally induced interfacial stress states between fiber and matrix at cryogenic 

temperature were studied using three-dimensional finite element based micromechanics. 

Mismatch of the coefficient of thermal expansion between fiber and matrix, and 

mismatch of coefficient of thermal expansion between plies with different fiber 

orientation were considered. In order to approximate irregular fiber distributions and to 

model irregular fiber arrangements, various types of unit cells, which can represent non-

uniformity, were constructed and from the results the worst case of fiber distributions 

that can have serious stress states were suggested. Since it is difficult to measure the 

fiber transverse coefficient of thermal expansion at the micro scale, there is an 

uncertainty problem for stress analysis. In order to investigate the effect of error in 

assumed fiber transverse coefficient of thermal expansion on thermally induced 

interfacial stresses, systematic studies were carried out. In this paper, the effect of 

measurement errors on the local stress states will be studied. Also, in order to determine 

fiber transverse CTE values from lamina properties, a back calculation method is used 

for various composite systems. 
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1. INTRODUCTION 
 

1.1. Background and motivation 

One of the most critical issues in space vehicle technology is to reduce the cost 

of space vehicle. One way of reducing costs is to manufacture reusable light weight 

space vehicles. In order to achieve this, NASA researchers have tried to manufacture 

single-state-to-orbit (SSTO) reusable launch vehicles (RLVs) where the total payload of 

the vehicle is reduced by fabricating it from composite materials. Composite materials 

have been used for aircraft manufacture because of their high stiffness and light weight. 

The advantages of composite materials should make them widely used in the space 

vehicle industry. For reusability, the choice of RLV propellant was liquid hydrogen fuel 

instead of sold propellant, and its fuel tank must be made of composite materials instead 

of metallic materials to reduce the total weight of the RLV.  

Liquid hydrogen ( 2LH ) fuel tanks are the single largest structural component of 

an RLV. So the design of light weight fuel tanks is critical for reducing the cost of space 

access. Carbon fiber reinforced polymer (CFRP) composite tanks have been proposed to 

reduce the weight of the RLV [1]. It is known that CFRP composite fuel tanks can 

reduce vehicle weight by 40% [2]. It seemed that CFRP composites were very suitable 

for fuel tanks of RLV because of its light weight. However, during its test, the liquid 

hydrogen fuel tanks showed serious problems. 

 

This thesis follows the style and format of Composite: Part A: Applied Science and Manufacturing.  



 

 

2

 

NASA’s researchers found out that microcracks caused by combined thermal 

and mechanical loadings lead to failure of the fuel tank. Since the RLV uses liquid 

hydrogen and liquid oxygen for propulsion, the fuel needs to be stored at a cryogenic 

temperature around 20K [3]. When the RLV re-enters the atmosphere with empty tanks, 

the fuel tank reaches around 400K [3]. Since composite materials are composed of 

anisotropic layers oriented in different directions, each layer may have a different 

coefficient of thermal expansion (CTE), and the CTE mismatch of the layers will cause 

thermal stresses in the laminate. Also since the CTE values of the fiber and matrix are 

different, additional thermal stress due to the mismatch of CTE between fiber and matrix 

will arise. These thermal stresses produce high strain energy that is relieved when 

microcracks form. If the microcracks connect to form a leakage path, the small 

molecules of liquid hydrogen can pass through the laminate [3]. According to the final 

report regarding the X-33 [4], it is known that most composite materials will form 

microcracks at cryogenic temperature due to large transverse thermal stresses, large ply 

stresses, and low transverse matrix strength. 

 

1.2. Literature review 

The purpose of this literature review is to provide sufficient background 

information for this research and to identify the difference between our work and what 

the others have done. Extensive research about many aspects of the interfacial stress 

states between fiber and matrix have been done by many researchers. Various materials 

for reinforcements and matrix have been used, various loading conditions and situations 
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have been considered, and several kinds of fiber distribution assumptions have been 

considered. Before the literature survey is started, it is needed to organize these various 

works done by many researchers in order to explain them efficiently.  

The methods that other researchers have used for micromechanics will be 

investigated. There are three methods; analytical method, experimental method, and 

numerical methods such as Boundary Element Method (BEM) and Finite Element 

Method (FEM). 

In 2003, F. Paris [5] employed the BEM for a square array model that permits 

the development of contact zone between the debonded surfaces of the fiber and the 

matrix, and their results have been checked experimentally by means of the performance 

of a series of two dimensional loading tests. 

Kouris et al. in 1991 [6] modeled two inhomogeneities that sustain an 

eigenstrain loading, and solved the plane strain problem analytically. They considered 

two circular inhomogeneities embedded in an infinite elastic region. In 1996, George [7] 

used the Mori-Tanaka method to derive stress concentration factors and determine the 

interfacial stress fields for coated and uncoated fiber. In 2001, H. S Choi et al. [8] used 

the boundary element method for a hexagonal array model. They compared their 

numerical results with the elastic solution of a three-phase cylindrical model. 

It seems that the Finite Element method is more popular than the other method 

for micromechanics. Many researchers [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 

22, 23, 24, 25] have used FEM to determine the interfacial stress states. 
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In 1991, David E. Bowles [9] obtained the interfacial stresses caused by 

different CTE values of fiber and matrix due to thermal loading and macro level stresses 

due to laminate effects for fibers arranged in a perfect square array case. His results 

indicate that matrix stresses varied with laminate orientation and circumferential position 

around the fiber. He also found that the fiber thermal-elastic properties of fibers have a 

minimal effect on the overall magnitudes of thermally induced stresses. 

In 1991, H. Zhu et al. [10] investigated radial matrix cracking and interface 

failure for transverse loading of a hexagonal array fiber composite. They modeled the 

interphase by a layer of radial and circumferential spring elements, adopting a tensile 

stress criterion for initiation of matrix cracking, and employed a strain-energy density 

criterion for interphase failure.  

B. F. Sorensne and R. Talreja [11] in 1993 investigated interfacial stresses for 

square and hexagonal periodic unit cells, when composites are in cool-down process. 

They studied the effect of distance between fibers on interfacial stresses, while the 

distance of fibers is closed. They used the maximum stress criterion to determine initial 

failure. They tried to explain the failure initiation by using the maximum stress criterion. 

In 1994 N. Chander [12] studied thermally induced residual stresses for two 

classes of composites, metal matrix composite Ti-6Al-4V/SCS-6 and intermetallic 

matrix composite Ti-24A-11Nb/SCS-6. By studying regular rectangular and diagonal 

arrays, they found that stress distributions, the magnitude, and the location of maximum 

stress depend on fiber arrangements. 
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In 1996, George and Michal [7] proposed initial failure maps for ceramic and 

metal matrix composite laminates for coated and uncoated fibers and proposed the initial 

failure maps which were constructed for several symmetric laminates and composite 

systems loaded by uniform membrane stresses. 

In 1997, A. Thiounet et al. [25] studied that the debonding phenomena between 

fiber and matrix of a long fiber Sic/Ti metal matrix composites. Their work was carried 

out both with and without consideration of the manufacturing residual stresses. They 

used a quadratic form criterion proposed by Wisnom [13] to predict interface failure, but 

they assumed the value of interface strength. 

B. Feldler [14] in 2001 used FEA to calculate interfacial stress fields and 

determined the initial matrix failure in CFRP under static transverse tensile load. 

Considering the effect of neighboring fibers, they modeled a hexagonal unit cell, and 

made plots of stress distributions as a function of the arc distance. They insisted that the 

Von Mises criterion is not suitable to predict the initial matrix failure in fiber-reinforced 

composites. They obtained interfacial strength of the composite by experimental test in 

2002 [15]. 

In 2001, H. S Choi  et al. [8] used the boundary element method for a hexagonal 

array model to study the effects of changes in interphase stiffness, cooling temperatures, 

fiber volumes, and loads on stress distributions in the interphase and the load-

displacement behaviors of silicon carbide/aluminum composite lamina, while the silicon 

carbide/aluminum composite with hexagonal fiber array and thermal stresses are 
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subjected to monotonically increasing transverse tensile loads. They compared their 

numerical results with elastic solution of a three-phase cylindrical model. 

In 2002 W. Ding [16] studied factors affecting transverse properties of the 

composites, such as thermal residual stresses caused by cooling from the composite 

processing temperatures, fiber/matrix interface conditions, fiber volume fractions, fiber 

spacing, and test temperature. They employed a hexagonal fiber packing model with a 

weak fiber/matrix interfacial strength to predict the transverse tensile behavior of the Ti-

6-4/SM1140 composite. 

Wen et al. [17] in 2002 obtained the effective lamina properties for a quarter 

square unit cell and interfacial stress fields for longitudinal and transverse tensile load 

and combined tensile and thermal load. They also calculated strain energy release rate 

for various degrees of fiber/matrix debonding under transverse tension, thermal and 

combined loading conditions. They finally predicted the loss in stiffness due to the 

aforementioned load. 

In 2004, M. M Agbdam [18] developed three-dimensional FEM to study effects 

of thermal residual stress, fiber coating and interface bonding on the transverse behavior 

of a unidirectional Sic/Ti-6Al-4V metal composite. He used two different failure 

criterion, which accounted for normal and shear stresses across the interfaces, to predict 

the failure of the fiber/coating and coating/matrix interfaces. 
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1.3. Objectives of this study 

Various methods have been used by many researchers to investigate interfacial 

stress states that can cause interfacial debonding. The majority of these researches are 

related to periodic fiber distribution. However, since actual composites have randomly 

distributed fiber arrangements, these perfect regular arrangement assumptions have 

limitations to predict exact phenomena of real composites because the interfacial stresses 

are affected by the location of neighboring fibers. Also some researchers performed 

randomly distributed fiber cases. However, even though analysis of random cases for 

certain composites is performed, the same fiber arrangement cases can not be expected 

for different composites. The objective of this thesis is to approximate irregularity of 

fiber distributions and model irregular fiber arrangements, and find out the characteristic 

of thermally induced interfacial stresses. The worst case of fiber distributions that can 

have serious stress states will be investigated by extensive parametric studies.  

The fiber transverse CTE values were measured by experimental tests [26], and 

the scattered measurement values for the average fiber CTE value were noted. The 

scattered test results cause an uncertainty problem for fiber transverse CTE. For this 

work, systematic studies will be carried out to understand the effect of CTE variation. In 

this paper, using the known range of measurement values, it will be investigated how 

much the scattered measurement errors will make different results for effective 

properties of composite and local stresses. Also, in order to determine fiber transverse 

CTE values by numerical approach, a back calculation method is used for various 

composite systems.  
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2. INTERFACIAL STRESS 
 

2.1. Interfacial stresses 

A composite material consists of a combination of two or more constituents, in 

which the individual components retain their separate identities. The term composite 

often implies that the physical properties are improved since the main interest 

technologically is in obtaining materials with superior physical (usually mechanical) 

properties to those of the composite's component materials. The interface in a composite 

material can be defined as a surface that forms a boundary between two constituents 

such as fiber and matrix. When a composite material is subjected to thermal loads, local 

stresses develop within the composite due to mismatch between the coefficients of 

thermal expansion (CTE). The local stresses caused at the interface are called as 

interfacial stresses. Figure 2.1 defines the interfacial stress components in a cylindrical 

coordinate system.  

 

 

Figure 2.1. Interfacial stress components 
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2.2. Microcrack failure mechanism at interface 

In this section, possible damage modes which can be caused at the micro level 

are described. The four schematic microcrack illustrations of cracks initiating from the 

interface are shown in Figure 2.2. Based on the maximum stress criterion, the radial 

stress rrσ  will cause opening mode, the shear stress θσ r  will cause a torsional sliding 

mode, another shear stress rzσ  will cause an axial sliding mode, and the tangential stress 

θθσ  will cause circumferential matrix crack mode. Also it is possible that a combination 

of the stress components can cause microcracks. 

 

 

 

Figure 2.2. Opening and sliding modes 
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2-3. Failure scenario  

It is known that fiber-matrix debonding running circumferentially caused by the 

radial and shear stresses is the first step of failure at micromechanical level, because of 

the poor interface bonding [5]. After these cracks have grown to a certain length, they 

are linked to each other by a matrix crack caused by tangential stress. Finally, these 

microcracks, which are caused locally, are connected and transverse matrix cracks 

(TMC) are formed. This TMC reduces the stiffness of the composite and the load 

carrying capacity in the transverse direction. When these TMCs and delaminations 

between layers are connected, damage networks form. Figure 2.3 shows the initiation of 

fiber/matrix debonding and their growth.   

 

 

                      

 

 

 

Figure 2.3. Microcrack initiation and growing scenario 
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2.4. Interface strength 

For a homogeneous material, if applied stresses are higher than the critical 

strength of the material, it is said that the material has failed, and the critical strength can 

be measured by experimental tests. However, if the scale of interest is micro level 

having interface consisting of two different materials, the failure problem becomes very 

difficult, because of the difficulty for measuring interface strengths in micro level. It is 

known that the interface strengths are less than those of the composite constituents [14]. 

When considering that the tensile strength of 977-2 epoxy resin is 77Mpa, it can be 

assumed that the interface strength between IM7 carbon fiber and 977-2 epoxy resin is 

less than 77Mpa. Unfortunately the interfacial strengths of the IM7/977-2 composite are 

not known yet. Since the interfacial strength of carbon epoxy HTA/# 113 composite, 

whose thermal-elastic properties are similar with the IM7/977-2, were obtained by 

Fiedler et al. [14], the interfacial strength of the IM7/977-2 will be assumed to predict 

the interfacial failure problem for this work.  

 

2.5. Failure criterion 

Once the interface strengths are defined and interfacial stresses are obtained, an 

applicable interface failure criterion will be needed to determine failure possibility. 

Many criteria have been proposed. The simplest criterion is the maximum stress criterion, 

i.e., crack initiates when the maximum value of the tensile stress normal to the crack 

plane reaches a critical value. Li and Wisnom [13] proposed the following criterion, 
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2

1rrr

S S
θσσ  

+ = 
 

 (2.1) 

where rrσ  and rθσ  are the interfacial radial and shear stress, respectively and S  is the 

interface tensile strength. This failure criterion was used for a simple SiC/Ti system 

without coating. They denoted that this criterion is an empirical equation with no 

rigorous theoretical basis. Li and Wisnom proposed another criterion based on the 

maximum principle stress for coated fiber later. The failure criterion can be expressed as, 

 
2

2

2 2
rr rr

rS θθ θθ
θ

σ σ σ σ σ+ − = + + 
 

 (2.2) 

where rrσ , rθσ , and θθσ  are the interfacial radial, shear stress, and hoop stresses, 

respectively and S  is the interface tensile strength. Other criterion, e.g. Von Mises 

criterion and strain energy density criterion were used by many researchers to determine 

interfacial failure. Unfortunately there is no universally accepted criterion for fiber 

debonding. In this study, the maximum stress criterion will be assumed to control the 

crack initiation. 

 

2.6. Composite systems 

2.6.1. Material properties of fiber and matrix 

 
Carbon/epoxy IM7/977-2 composite system, which is used for the LH2 fuel tank, 

is studied for this research. The thermal-elastic material properties of each constituent 

are noted in Table 2.1. In order to apply the maximum stress criterion for predicting 
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interfacial failure, interfacial strengths of the IM7/977-2 are assumed. Carbon epoxy 

HTA/#113, whose thermal-elastic properties are similar with the IM7/977-2, were 

obtained by Fiedler et al. [14]. The material properties and interfacial strengths of carbon 

epoxy HTA/#113 are also presented in Table 2.1. Since the IM7/977-2 and HTA/#113 

have similar thermal-elastic properties of each constituent, it is assumed that the 

interfacial tensile strength of the IM7/977-2 is 64 MPa, and the interfacial shear strength 

is 33 MPa. 

 
Table 2.1. Material properties of IM7/977-2 [19, 26] and HTA/#113 [15] 

 IM7 
carbon fiber

977-2 
epoxy 

HTA 
carbon fiber 

#113 
epoxy 

11E (GPa) 263.7 3.32 235 3.9 
22 33,E E (GPa) 19.0 3.32 19.1 3.9 

12 13,ν ν  0.2 0.35 0.28 0.39 
23ν  0.35 0.35 0.33 0.39 

12 13,G G (GPa) 27.6 1.23 24 1.45 
23G (GPa) 6.89 1.23 7.2 1.45 

)/10( 6
11 C−×α  -0.4 57.6 0.4 57 

6
22 33, ( 10 / )Cα α −×  5.63 57.6 10 57 

Tensile Strength (MPa) 2850 77 NA 95.5 
Shear Strength (MPa) NA 86.9 NA 71 

 Interface Interface 
Interfacial tensile Strength 

(MPa) 64 (assumed) 64 

Interfacial Shear Strength 
(MPa) 33 (assumed) 33 

NA: Not available 
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2.6.2. Laminate description 

The liquid hydrogen tank is a honeycomb composite sandwich structure 

consisting of an outer facesheet, honeycomb core, and inner facesheet shown in the 

Figure 2.4 [4]. The outer facesheet is a 7-ply, IM7/977-2 laminate (0.034 in. thick) with 

stacking sequence T[65/0/-65/90/-65/0/65] . The core is a honeycomb Korex 3/16 -3.0 

(1.5 in. thick). The inner facesheet is a 13-ply, IM7/977-2 laminate (0.066 in. thick) with 

stacking sequence 3 3 3 T[45/90 /-45/0 /-45/90 /45] . 

 

 

 

Outer Facesheet: 0.034 in. thick(7 plies) 

 

Honeycomb Core: 1.5 in 

 

 

 

Inner Facesheet: 0.066 in. thick(13 plies) 

 

 

Figure 2.4. Segment of sandwich structure of X-33 fuel tank 
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3. METHODOLOGY 
 

3.1. Introduction 

When a fuel tank of the X-33 is subjected to cryogenic temperature, the 

composite material of the tank induces two kinds of thermal stresses. One is caused by 

the mismatch of CTE between fiber and matrix, and the other is caused by the mismatch 

of CTE of plies with different fiber orientations described in Figure 3.1. The macro level 

loading caused by the mismatch of CTE of plies with different fiber orientations will be 

called indirect mechanical loading caused by laminate effect in this study. Since there 

exist the macro (or ply) level stress due to laminate effects, these macro level stresses 

and strains will affect the interfacial stress fields. Figure 3.2 describes the study 

processes. For the micro level analysis, three-dimensional finite element methods are 

employed to estimate the effective thermal-elastic properties in Figure 3.2 (a). For the 

second step, macro level analysis is studied to obtain thermal stresses and strains caused 

by different CTE values of each layer by using Classical Laminate Plate Theory (CLPT) 

in Figure 3.2 (b).  

 

           

 

 

 
 
a ) Differently oriented                    b) Different CTEs of each ply                  c) Thermally induced          

   fiber of each ply                                                                                            stresses in each ply 
 

Figure 3.1. Mechanism of thermally induced indirect mechanical loading 

T∆ T∆
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For the third step, FEM is employed again to determine the interfacial stress states 

between fiber and matrix in Figure 3.2 (c). 

 

 

                         

                                                           (a) Micro level analysis:  Effective thermal-elastic properties                 
         

                                         

 
         

  
 
 
     

(b) Macro level analysis: Ply stresses and strains for each ply 
 

 

 

 

 
(c) Micro level analysis: Interfacial stresses       

 

 

 

Figure 3.2. Three Steps to obtain thermally induced interfacial stress states 

 

3.2. Micro level analysis 

3.2.1. Representative volume element (RVE) 

A unidirectional fiber reinforced composite has randomly distributed fibers in 

matrix over the cross section perpendicular to the fibers. It is not easy to model the 

composite behavior with the real constituent geometry. Therefore, it is often assumed 
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that the fibers are uniformly distributed in a periodic pattern for purpose of analysis. This 

step of defining a periodic pattern is to select the smallest repeating area. Common 

packing patterns are square array and hexagonal array in Figure 3.3 (a) and (b). These 

perfectly periodic arrangements have been used for micromechanics. However, these 

perfect regular assumptions have limitation to predict exact phenomena of real 

composites. In order to approximate irregularly distributed fiber arrangements, the unit 

cells c), d), e), f), g), and h) in Figure 3.3 are constructed for extended studies of 

randomly distributed fiber arrangements. These types of unit cells are called large 

pattern array in this study. These large pattern arrays contain several fibers, and are 

repeated periodically, but they will more represent irregularly distributed fiber arrays 

than perfect array unit cells such as square and hexagonal unit cells. The large pattern c), 

d), e), and f)will be used for studying the effect of matrix rich zones on interfacial 

stresses, and the large pattern g) and h) will be used for studying the effect of low fiber 

volume fraction areas and high fiber volume fraction areas on averaged stresses and 

interfacial stresses in section 4.  

For the micro level analysis step, perfect square and hexagonal array unit cells, 

and large pattern unit cells are used to estimate the effective thermal-elastic. The basic 

assumptions regarding geometry, material properties, and loading conditions are 

presented below. 
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a) Perfect hexagonal array            b) Perfect square array 

 

 

 

 

 

 

c) Large pattern 1                   d) Large pattern 2                   e) Large pattern 3 

 

 

 

 

 

 

 

          f) Large pattern 4               g) Large pattern 5                     h) Large pattern 6 

 

Figure 3.3. Various unit cells 
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1. The fibers are circular in cross-section and continuous, straight, and infinitely 

long in the longitudinal direction. 

2. The fibers are arranged in periodic patterns. 

3. The fibers are homogeneous, linearly elastic and transversely isotropic. 

4. The matrix is homogeneous, linearly elastic and isotropic. 

5. The fiber and matrix are perfectly bonded at the interface. 

6. The temperature is uniform throughout the body. 

7. The mechanical loadings are applied at infinity. 

 
3.2.2. Periodic unit cells and boundary conditions 

Once periodicity pattern is defined, the boundary conditions for the unit cell 

should be constructed. For two kinds of basic unit cells such as square and hexagonal 

arrangements in Figure 3.4, their correct boundary conditions are presented below [27, 

28]. Note that the origins of coordinate system are located in the center of the unit cells. 

  

a) Square unit cell                                    b) Hexagonal unit cell 

 

Figure 3.4. Square and hexagonal unit cells 
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Boundary conditions for the square unit cell  
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Boundary conditions for the hexagonal Array 
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3.2.3. Calculating effective thermal-elastic composite properties 

The determination of effective thermal-elastic properties of a composite using 

three-dimensional finite element analysis requires the determination of volume averaged 

stresses and strains under the appropriate periodic boundary conditions. The stresses and 

strains are averaged over the volume of the RVE. The effective stiffness tensor *
ijklC  and 

coefficient of thermal expansion tensor *
klα  of the composite are calculated from the 

tensor relation 
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 * *( )ij ijkl kl kl
V V

dV C T dVσ ε α= − ∆∫ ∫  (3.8) 

where ijσ  are the stresses, klε  are the strains, and T∆  is the difference in temperature. 

Since stiffness, stress, and strain are symmetric, Equation (3.8) can be expressed in 

contracted (Voigt) notation as 
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 (3.9) 

The brackets denote the volume average, 1 dV
V

< • >= •∫ , where V  is the 

volume of representative volume element. The effective thermal-elastic properties are 

calculated by applying a specified average strain or unit temperature for each direction 

(with all other strains set to zero) [28]. For example, if 11ε〈 〉  for one of the independent 

boundary condition equations is specified and all other average strains, and T∆  are set 

to zero, then equation (3.9) yields 
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 (3.10) 

If 1ε〈 〉  is a unit strain, the following can be obtained, 

 * * *
11 11 12 22 12 33, ,C C Cσ σ σ= 〈 〉 = 〈 〉 = 〈 〉  (3.11) 

 
Using this method, the following 6 6×  stiffness matrix can be obtained. 
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 (3.12) 

From equation (3.12), the effective stiffness matrix *
ijC  can be obtained, and the 

effective thermal-elastic properties can be calculated from its compliance matrix.  

 * 1 *
ij ijC S− =  (3.13) 

It can be expressed in terms of engineering constants. 
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(3.14) 

From the relationships, the effective elastic properties are obtained. 
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In order to obtain the effective CTE, a temperature difference is applied and the 

effective CTE can be obtained by dividing the average strains by the temperature 

difference. This can be expressed in the equation  

 

*
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2 22
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/
/
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α ε
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 (3.16) 

where *
iα  are the effective coefficients of thermal expansion, klε< >  are the volume 

averaged strains, and T∆  is the temperature difference.  
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The finite element meshes, consisting of 20 node solid elements, are generated 

by using ANSYS and the stress analysis is conducted with a in-house program called 

ALPHA to solve the field equations for periodic unit cells. 

Table 3.1 shows the effective thermal-elastic properties for perfect square and 

hexagonal unit cells. 

 

Table 3.1. The effective thermal-elastic properties (60% fiber volume fraction) 
 IM7 

carbon fiber 
977-2 
epoxy 

Effective 
Properties 
(square) 

Effective 
Properties 

(hexagonal) 
11E  (GPa) 263.7 3.32 159.6 159.5 

22 33,E E (GPa) 19.0 3.32 9.43 8.48 
12 13,ν ν  0.2 0.35 0.2526 0.2535 

23ν  0.35 0.35 0.382 0.439 
12 13,G G (GPa) 27.6 1.23 4.47 4.24 

23G (GPa) 6.89 1.23 2.57 2.926 
)/10( 6

11 C−×α  -0.4 57.6 0.159 0.15 
6

22 33, ( 10 / )Cα α −×  5.63 57.6 30.83 31.3 
 

3.3. Macro level analysis  

For thermal loading, stresses are induced at ply level due to expansion or 

contraction and constraining effects of adjacent plies that prevent a free expansion or 

contraction. The thermally induced stresses in ply level are obtained using Classical 

Laminate Plate Theory [29]. For the inner and outer facesheets, two laminate composites 

are modeled. In order to represent a cryogenic environment, thermal loading of -300 C  

is applied to the laminate models and the ply stresses and strains of each layer in ply 
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level are calculated. For the laminated composite in Figure 3.5, a laminate X-Y-Z 

coordinate system is taken. 

 

 

 

 

Figure 3.5. Laminate composite 

 

 

 

1, 2: Material coordinate 
X, Y: Laminate or arbitrary coordinate 

 

Figure 3.6. Coordinate systems 
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As in Figure 3.6, two sets of coordinate systems are depicted. The 1-2 coordinate 

system corresponds to the material directions for a lamina, while the X-Y coordinates 

are arbitrary and related to the 1-2 coordinates through a rotation about the axis out of 

the plane of the figure. The angle θ  is defined as the rotation angle between the arbitrary 

X-Y system and the 1-2 material system.  

For the macro level analysis step, the above two laminated composites are 

constructed and the ply stresses and strains thermally induced in the laminates are 

obtained. They are transformed to the material coordinate system. Table 3.2 and 3.3 

show the ply stresses and strains in the material coordinate system for each layer of outer 

face sheet and inner face sheet. For the lamina properties, perfect hexagonal unit cell is 

used in these tables. 

 

 

Table 3.2. The ply stresses and strains of each layer of inner facesheet in the material 
coordinate system. 

Ply 1σ ( MPa) 2σ ( MPa) 12σ ( MPa) 1ε  2ε  12ε  

65  -52.2 71.5 1.98 -0.000486 -0.000877 0.0004665
0  -131.2 74.7 0 -0.000986 -0.000377 0 

-65  -52.2 71.5 -1.98 -0.000486 -0.000877 -0.000467
90  -35 70.8 0 -0.000377 -0.000986 0 
-65  -52.2 71.5 -1.98 -0.000486 -0.000877 -0.000467
0  -131.2 74.7 0 -0.000986 -0.000377 0 
65  -52.2 71.5 1.98 -0.000486 -0.000877 0.0004665
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Table 3.3. The ply stresses and strains of each layer of outer facesheet in the material 
coordinate system. 

Ply 1σ ( MPa) 2σ ( MPa) 12σ ( MPa) 1ε  2ε  12ε  
45  -83.3 72.7 2.6 -0.000683 -0.000683 0.0006055
90  -35.5 70.8 0 -0.00038 -0.000986 0 
90  -35.5 70.8 0 -0.00038 -0.000986 0 
90  -35.5 70.8 0 -0.00038 -0.000986 0 
-45  -83.3 72.7 -2.6 -0.000683 -0.000683 -0.000606
0  -131.1 74.6 0 -0.000986 -0.00038 0 
0  -131.1 74.6 0 -0.000986 -0.00038 0 
0  -131.1 74.6 0 -0.000986 -0.00038 0 

-45  -83.3 72.7 -2.6 -0.000683 -0.000683 -0.000606
90  -35.5 70.8 0 -0.00038 -0.000986 0 
90  -35.5 70.8 0 -0.00038 -0.000986 0 
90  -35.5 70.8 0 -0.00038 -0.000986 0 
45  -83.3 72.7 2.6 -0.000683 -0.000683 0.0006055

1: fiber direction 
2: direction perpendicular to fibers 

 

The 65±  layers of inner facesheet and 45± layers of outer facesheet have in-

plane shear stresses, but the magnitudes are so small that interfacial stresses caused by 

the in-plane shear stresses can be neglected. Since 0  layers of both laminate composites 

have the maximum ply stresses 1σ , and 2σ , these 0  layers might have the highest 

possibility of macro level and micro level failure. These amounts of ply stresses of 0  

layers are applied to the unit cell with thermal loading to investigate the effect of ply 

level stresses on interfacial stress fields. For this work, no extra mechanical load is 

considered. Therefore only the effect of thermal loading on interfacial failure between 

fiber and matrix will be studied.  
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3.4. Interfacial stress state analysis 

After the effective thermal-elastic properties and macro level ply stresses and 

strains are obtained, one more micro level analysis is conducted using FEM. The ply 

stresses and thermal loading are applied to the unit cells, and the interfacial stress 

components are obtained in Cartesian coordinate system. These stresses are transformed 

to the cylindrical coordinate system to form the radial, shear, and tangential stresses. As 

in Figure 3.7, two sets of coordinate systems are depicted. The transformation equation 

is as follows, 

 { } { }{ } { }cylindrical Cartesian TT Tσ σ=  (3.17) 

 
The transformation tensor is defined as the followings 

 { }
1 0 0
0 cos sin
0 sin cos

T θ θ
θ θ

 
 =  
 − 

 (3.18) 

 
From the above relation, the interfacial stresses in cylindrical coordinate system can be 

obtained as following, 
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 ` (3.19) 

As a result, 
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The continuous stress components, rrσ  and rθσ  are obtained by averaging 

values at Gauss points surrounding the given nodes in fiber and matrix parts, and the 

discontinuous stress component θθσ  is obtained by averaging from Gauss points in the 

only matrix parts.  

 

 

Figure 3.7. Cartesian and cylindrical coordinate systems 
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4. RESULTS AND DISCUSSION 
 

4.1. Introduction 

In this section, the effect of irregular fiber distribution and effect of the errors in 

assumed fiber transverse CTE values on thermally induced fiber/matrix interfacial 

stresses are presented. 

Since interfacial stress states are affected by the location of neighboring fibers, if 

characteristics of the stress distribution patterns are known, the interfacial stresses of 

irregular fiber distribution can be predicted. As in Figure 4.1, typically two perfectly 

periodic arrangements have been used for studying interfacial stress analysis by many 

researchers. However, even though the two unit cells have the same volume fraction, 

their interfacial stresses have different patterns, because the fiber arrangements are 

different. For example, Figure 4.2 and 4.3 show the interfacial stress states for square 

and hexagonal unit cells under thermal loading of 300 C−  in a lamina. While the square 

array unit cell has the maximum radial stress at 45  point, the hexagonal unit cell has the 

maximum radial stress at 30  and 90 points. For two unit cell types, the locations of 

maximum stress values are not only different, but also the magnitudes of stresses are 

different. Like this, characteristics of interfacial stress patterns, which are affected by 

locations of neighboring fiber, will by studied from the perfect arrangement cases, and 

for extended studies, various large patterns, which can more represent irregularly 

distributed fiber arrangements as shown Figure 3.3, will be studied. Finally, the worst 

fiber arrangement case, which has the highest possibility of fiber/matrix debonding, will 

be suggested in this study. 
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4.2. Study of perfectly regular fiber arrangement cases 

In this section, the interfacial stress states for perfect arrangements like square 

and hexagonal unit cells in Figure 4.1, and 4.2 are studied. As mentioned in the previous 

section 3.2.3, the effective thermal-elastic properties are obtained, and ply level ply 

stresses and strains are calculated by using CLPT for the given thermal loading condition. 

The interfacial stresses induced by thermal loading and indirect mechanical loading are 

presented. The complete solutions can be obtained by principle of superposition. 

 

 

 

              

 

                                                         

Square unit cell                                                   Hexagonal unit cell 

 

Figure 4.1. Perfect periodic arrangement unit cells 
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4.2.1. Interfacial stress states induced by thermal loading in a lamina 

Thermal loading of 300 C−  is applied to the unit cells with the periodic 

boundary conditions for two perfect periodic unit cells. The interfacial radial, shear, and 

tangential stresses are plotted below in Figure 4.2, and 4.3. The fiber volume fractions 

for both cases are 60%. 

 

 

 

Figure 4.2. Interfacial stress states of square array induced by thermal loading in a 

lamina 

 
Table 4.1. Interfacial stresses induced by thermal of square array unit cell 

  Radial Stress Tangential Stress
Max. Value P2 P2 
Min. Value P1, P3 P1, P3 
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Figure 4.3. Interfacial stress states of hexagonal array induced by thermal loading in a 

lamina 

 

Table 4.2. Interfacial stress states induced by thermal of hexagonal array unit cell  
  Radial Stress Tangential Stress

Max. Value P2, P4 P2, P4 
Min. Value P1, P3 P1, P3 

 

Radial stress 

For hexagonal and square array cases, the maximum radial stresses induced by 

thermal loading occur at the points where the amounts of matrix are rich, as in Table 4.1, 

and 4.2. The points P2 in Figure 4.2 and P2 and P4 in Figure 4.3 are located near matrix-

rich zones, and the radial stresses at the points have the maximum values. The intensity 
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of maximum radial stress depends on the amount of matrix-rich zone. For both cases, 

they have the same volume fraction, but their maximum radial stresses are different. 

While the hexagonal array has 6 neighboring fibers, the square array has 4 neighboring 

fibers (the diagonal fiber does not affect the reference fiber, because the distance is too 

far). Therefore the thermally induced stresses of the hexagonal unit cell are more 

distributed to the neighboring fibers than those of the square unit cell. In other words, 

matrix parts of hexagonal array are distributed more sparsely than those of square array. 

On the other hand, the matrix zones of square array are concentrated at 4 areas, while the 

matrix zones of hexagonal array are concentrated at 6 areas. For the hexagonal array 

case, the maximum radial stresses are compressive along the interface because of small 

matrix-rich zone, but for square array case, the maximum radial stresses become tensile 

because of large matrix-rich zone. It is concluded that the maximum radial stresses occur 

at the matrix-rich areas, and if there are enough matrix-rich zone near the fibers, the 

point near matrix-rich zones of the fiber has a tensile radial stress, and this tensile radial 

stresses will cause fiber/matrix debonding.  

Shear stress: The shear stresses induced by thermal loading vanish at the line of 

symmetry for both cases. Also at the line of symmetry, the radial stresses become 

maximum and minimum. The maximum absolute values of shear stresses occur at the 

middle point between points where shear stresses become zero. 

Tangential stress: The variations of tangential stresses induced by thermal 

loading are similar to those of radial stresses. 
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4.2.2 Interfacial stress states induced by ply stresses (indirect mechanical loading) 

in laminate 

In this section, the effect of indirect mechanical loading is studied. For indirect 

mechanical loading, ply level ply stresses or strains of laminate composites, which are 

obtained in section 3.3, are applied to the unit cells. The ply level stresses of 0  layer, 

that has the maximum ply stresses, are considered for this study [Table 3.2, and 3.3]. 

For the two different periodic unit cells, the interfacial stress states show similar 

patterns under indirect mechanical loading, as shown in Figure 4.4, and 4.5, while the 

cases of only thermal loading resulted in different interfacial stress states for the two unit 

cells. It indicates that the interfacial stress pattern for indirect mechanical loading is not 

as sensitive to the fiber distributions as the thermal loading cases. Table 4.3 and 4.4 

show the locations where have the maximum and minimum values for two models. 
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Figure 4.4. Interfacial stress states induced by indirect mechanical loadings of square 

unit cell 

 
Table 4.3. Interfacial stresses induced by ply stresses of square array unit cell 

  Radial Stress Tangential Stress
Max. Value P1 P1 
Min. Value P3 P3 
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Figure 4.5. Interfacial stress states induced by indirect mechanical loadings of hexagonal 

unit cell 

 

Table 4.4. Interfacial stresses induced by ply stresses of hexagonal array unit cell 
  Radial Stress Tangential Stress

Max. Value P1 P1 
Min. Value P3 P3 
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θ

 

                                                             neighboring fiber 

                                                           

                     reference fiber          

 

 

 

loading direction          Point which has the maximum radial and                               
                       tangential stresses                                     

 

Figure 4.6. The relationship between interfacial stresses and loading direction 

 

Radial stress: The intensity of the maximum radial and tangential stresses induced by 

transverse loading depends on the distance to neighboring fibers and the angle between 

the loading direction and the lines connecting to reference fiber with the neighboring 

fibers, as shown in Figure 4.6. When the angle is small ( 0 means parallel neighboring 

fiber case), the radial and tangential stresses of the point are increased, i.e. when the 

neighboring fiber is located in the same direction with the transverse loading, the 0  

point of the reference fiber has the maximum radial and tangential stresses. At the 

0 points, both unit cells have about 120MPa tensile radial stresses. When the 

magnitudes of the interfacial stresses and interfacial strength are considered, fiber/matrix 

debonding can be caused for the periodic unit cell cases, based on the maximum stress 

criterion. 
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Shear stress: The shear stresses induced by transverse loading vanish at 0  and 

90 , and they have the maximum absolute values near 30 . Since the shear stress states 

for both fiber arrangement cases are almost identical, effect of fiber distributions on 

interfacial shear stresses are small. 

Tangential stress: The tendency of tangential stresses induced by thermal loading 

is similar to those of radial stresses. 

 

4.2.3 Interfacial stress states induced by combined loadings 

The complete interfacial stresses for the combined loading conditions can be 

obtained by superposition of the two independent loading conditions. In order to 

compare the difference between only thermal, only indirect mechanical, and complete 

loading cases, the following results are presented in Figure 4.7, and 4.8. 

Radial stress: Figure 4.7 a) and 4.8 a) show the radial stress states for square and 

hexagonal fiber arrays. While the radial stress induced by only the thermal loadings are 

partially tensile (square case) or compressive (hexagonal case), the radial stress induced 

by only the indirect mechanical loadings are mostly high tensile and with higher 

magnitude throughout the area. For both cases, the interfaces between about 0  and 60  

have high tensile radial stresses because of high tensile radial stresses induced by 

indirect mechanical loading. However, the interface of square array has lower radial 

stresses than the assumed interfacial strength 64MPa . On the other hand, interface 

between 0  and 20  of hexagonal array has higher radial stresses than the assumed 

interfacial strength 64MPa . Therefore, based on the maximum stress criterion, the 
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interfaces between 0  and 20  of hexagonal array have possibility of fiber/matrix 

debonding. 

Shear stress: Figure 4.7 b) and 4.8 b) show the shear stress states. The absolute 

values of shear stress for combined loading condition occur near 70 in the square unit 

cell and 50  in the hexagonal unit cell. In some areas, the combined absolute values of 

shear stresses are decreased but in other areas, the values are higher because of 

superposition. The general tendency of combined shear stresses follows the mechanical 

loading, but the peak vales and their locations are shifted because of the shear stresses 

caused by the thermal loading. If the interfacial shear strength is assumed as 33MPa , the 

square array will have possibility of torsional sliding mode between 40  and 80 , and 

the hexagonal array will have possibility of torsional sliding mode between 20  and 60 , 

based on the maximum criterion. 

Tangential normal stress: While the effect of indirect mechanical loadings are 

dominant on the radial and shear stresses, the effect of thermal stress is more dominant 

on the tangential stresses than indirect mechanical loading. Figure 4.7 c) and 4.8 c) show 

the tangential stress states. Since the tangential stresses induced by thermal and indirect 

mechanical loadings are tensile, the superposition values have high tensile tangential 

stresses. Therefore, when the tensile strength of matrix is considered 77MPa, the square 

array will have matrix cracks between 0  and 60 , and the hexagonal array will have 

matrix cracks between 0  and 45 , based on the maximum stress criterion. 
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a) Radial stresses 

 

b) Shear stresses 

Figure 4.7. Interfacial stress states induced by combined loadings of square unit cell 
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c) Tangential stresses 

Figure 4.7. Continued 

 

 

a) Radial stresses 

Figure 4.8. Interfacial stress states induced by combined loadings of hexagonal unit cell 
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b) Shear stresses 

 

c) Tangential stresses 

 

Figure 4.8. Continued 
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4.2.4 Effect of each component of ply stresses on the interfacial stresses 

             In section 4.2.2, the effect of ply stresses on interfacial stress states was studied. 

For the work, the longitudinal ply stress 1σ  and transverse ply stress 2σ  obtained in 

section 3.2.2 were applied to the unit cells. In this section, the ply stresses, 1σ  and 2σ  

are applied to the hexagonal unit cell respectively to compare the effect of each ply 

stress component on interfacial stresses. The results are presented in Figure 4.9. The 

results show that the interfacial stresses induced by only longitudinal ply stress 1σ  are 

very small compared to those induced by only 2σ . Therefore, the effect of transverse ply 

stress 2σ  is more significant than those of longitudinal ply stress 1σ  on the interfacial 

stress states. 
 

 

a) Interfacial stresses due to ply stress 1σ  

 

Figure 4.9. Effect of ply stresses 1σ  and 2σ  on the interfacial stress states 
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b) Interfacial stresses due to ply stress 2σ  

 

Figure 4.9. Continued 

 

 

4.3. Study of large pattern arrangement cases 

4.3.1. Introduction 

In section 4.2, the interfacial stress states of perfectly regular fiber arrangement 

like square and hexagonal arrays have been studied, and from the results, it was found 

that interfacial stresses of fibers located near matrix rich zones increased for thermal 

loading, and if laminate effect is added to interfacial stresses, the interfacial stresses are 

increased very highly. In this section, our interesting will be expended for large pattern 
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cases which can represent more irregularly distributed fiber arrangement described in 

section 3.2.1 to study the effect of matrix-rich zones. 

  

4.3.2. Effect of matrix-rich zones on interfacial stress fields 

 In order to investigate the effect of matrix-rich zones on interfacial stress fields, 

the following unit cell is constructed in Figure 4.10. For this unit cell, one fiber is missed 

regularly. Thermal loading of 300 C−  is applied to the unit cell, and interfacial stresses 

of the fiber, which has the coordinate system, are obtained. Figure 4.11 shows the 

difference of interfacial stress fields between perfectly regular hexagonal case and one 

fiber missed case in the center. 

 

  

 

Figure 4.10. Unit cell having matrix-rich zone in center (one fiber missed case) 
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a) Radial stresses 

 

b) Shear stresses 

Figure 4.11. Interfacial stress fields of perfectly regular unit cell and one fiber missed 

unit cell  
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c) Tangential stresses 

 

Figure 4.11. Continued   

 

As in Figure 4.10 a), the unit cell, which is missing one fiber, has tensile radial 

stresses between 0  and 25 , while the radial stress of perfect hexagonal unit cell is 

compressive through the all interface. It is considered that the matrix-rich zones cause 

the tensile radial stresses, and as a result, the radial stresses of the fiber near matrix-rich 

zone are increased. The radial stress is not only increased, but also the tangential and 

shear stresses are increased in some areas.  If mechanical loadings are added to these 

increased interfacial stresses, fibers near matrix-rich zones will have more critical 

debonding possibility. Table 4.5 shows the amount of increased stress compared with 

hexagonal unit cell cases. 
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Table 4.5. Comparing one fiber missed cases with hexagonal case 
  Hexagonal case One fiber missed case 

Radial All compressive Partially tensile from 0 to 25  
(near matrix-rich zone) 

Shear Maximum 10MPa  Maximum 40MPa  

Tangential Maximum 70MPa  Maximum 90MPa   
(near matrix-rich zone) 

 

H. S. Choi et al. [8] in 2001 and W. Ding et al. [16] in 2002 obtained the 

interfacial stress fields of perfect hexagonal unit cell for cooling process and found that 

radial stresses are compressive induced at the interface, and insisted that these thermal 

stresses are beneficial to the transverse strength. There results can be right partially, if 

fibers can be distributed perfectly and regularly. However, perfectly distributed fiber 

arrangement can not be expected in real situation, and there is always the possibility of 

matrix-rich zones in real composite. From this study, it is concluded that if there is 

matrix-rich zones, thermally induced interfacial stresses of fibers located near matrix-

rich zones will have tensile interfacial stresses and these tensile interfacial stresses are 

harmful to the transverse strength. 

Figure 4.12 shows the interfacial stress states of hexagonal unit cell and one fiber 

missed unit cell, when the laminate effect is considered. Basically both of them show 

high tensile radial stresses in some interfaces, and these higher tensile radial stresses can 

cause fiber/matrix debonding in the interfaces. However, one fiber missed case has 

higher tensile stress in some interface, especially from 0  to 30 and from 150  to 180 .  

In addition, one fiber missed case has higher shear stresses than those of perfect 

hexagonal case. It is a notable result that a fiber located near matrix-rich zones will be 
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more likely to experience for fiber/matrix debonding or microcracks than fibers in a 

regularly distributed arrangement. 

 

 

 

 

 

Figure 4.12. Interfacial stress states due to laminate effect of hexagonal and one fiber 

missed unit cell 

 

 

 Since the large pattern unit cell in Figure 4.10 has other fibers located away from 

the matrix-rich zone, interfacial stresses of these fibers should be studied. Figure 4.13 

shows the interfacial stress states of the other fibers. As shown in Figure 4.13, the fibers 
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away from the matrix-rich zone have lower interfacial stresses than the fibers located 

near the matrix-rich zone. Hence these fibers are less likely to debond. 

 

 

 

 

a) Outer fiber 1 

 

Figure 4.13. Interfacial stress states of one fiber missed unit cell  

 



 

 

53

 

 

b) Outer fiber 2 

 

c) Outer fiber 3 

Figure 4.13. Continued 
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4.3.3. Effect of spacing of matrix-rich zones on interfacial stress fields 

In this section, the effect of size of matrix-rich zones on interfacial stress fields is 

studied. As in Figure 4.14, two kinds of fiber distribution patterns are assumed. Case (a) 

and (b) have the same amount of matrix pocket zone in the center of unit cells, and the 

matrix-rich zones are surrounded by fiber wall. The matrix-rich zones of case (b) are 

placed more sparsely than those of case (a). Thermal loadings of 300 C−  are applied to 

the both cases, and interfacial stresses for the reference fibers having coordinates are 

obtained. Since the reference fibers are located near at matrix-rich zones, the difference 

of their interfacial stresses will tell the effect of spacing of matrix-rich zones. 

 

 

 

                                       

 

a) One fiber missed unit cell #1               b) One fiber missed unit cell #2 

Figure 4.14. Unit cells that are missing one fiber in center 
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Figure 4.15 shows the difference of interfacial stress fields between two cases. 

As in Figure 4.15, there is not much difference for two cases. Therefore, it is concluded 

that the effect of spacing between matrix-rich zones on interfacial stresses is not 

significant.  

 

 

 

Figure 4.15. Interfacial stress state of one fiber missed unit cells 

 

 

4.3.4. Effect of size of matrix-rich zones on interfacial stress fields 

Figure 4.16 shows the unit cells have the same size, but have different size of 

matrix pockets. Since Figure 4.16 a) is missing 6 fibers in center, and Figure 4.16 b) is 

missing 1 fiber compared with perfect hexagonal unit cell, Figure 4.16 a) has larger 
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matrix pocket than that of Figure 4.16 b). Figure 4.17 shows the results for two unit cells 

under thermal loadings of 300 C− .   

  

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

a) 6 fibers missed unit cell           b) 1 fibers missed unit cell 

 

Figure 4.16. Unit cells that are having different quantity of matrix  

 

The interfacial stresses of the two fibers which have the coordinate systems in 

Figure 4.16a) and b) are compared, and the results are presented in Figure 4.17. As in 

Figure 4.17, the radial stresses of the fiber near matrix-rich zone (from 0  to 25 ) of a) 
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shows values similar to those for b), but the other circumferential interface of a) between 

25  and 180  shows lower radial stresses than those of b). It is likely that the larger 

amount of matrix pocket causes higher radial stresses for fibers located near the matrix 

pocket, but decreases radial stresses of the other circumferential interface of the fiber. 

For shear stress, the larger amount of matrix pocket of a) increase higher shear stresses 

than those of b). However, larger amount of matrix pocket decrease the tangential 

stresses. 

 

 

 

Figure 4.17. Interfacial stress states of 6 fiber missed and 1 fiber missed unit cells 
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4.3.5. Effect of low and high volume fraction areas 

In section 3.3, it was assumed that one layer has uniformly averaged ply stresses. 

For example, as in Table 3.2 and 3.3, it is assumed that the ply stresses 1 131.1σ = −  

MPa and 2 74.6σ =  MPa are uniformly distributed through the 0  layer. However, since 

real composites have randomly distributed fiber arrangement, there can exist high fiber 

volume fraction zones or low fiber volume fraction zones, as shown in Figure 4.18, ply 

stresses will vary. In order to investigate this, large periodic unit cells can be extended to 

contain high volume fraction zones and low volume fraction zones. In this section, the 

effect of high volume fraction zones and low volume fraction zones on ply stress and 

interfacial stress fields are studied. In order to represent high volume fraction zones and 

low volume fraction zones, the unit cells can be constructed in Figure 4.19. 

 

 

 
 

Figure 4.18. High volume fraction zones and low volume fraction zones 
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                                                       Vf=65% 

 

Vf=30% 

 

 

 

 

Figure 4.19. Unit cells to represent high and low volume fraction zones 

 

As in Figure 4.19, the center area has only 10 fibers, while the other each area 

has 19 fibers. Therefore, the center area can be considered a low volume fraction zone, 

and the other areas can be considered high volume fraction zones. Since the volume 

fraction of the unit cell of the center area is 30%, and the volume fraction of the unit cell 

of the other areas is 65% described in Figure 4.19, the total volume fraction of entire unit 

cell is 60%. In order to study the effect of volume fraction zones and low volume 

fraction zones on stress fields of each area, the following four step processes are 

considered:  

1st step: As in Figure 4.20 a), the effective thermal-elastic properties are 

calculated from two unit cells.  
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2nd step: Using the effective properties of the two unit cells, the total effective 

thermal-elastic properties are calculated for the entire areas in Figure 4.20 b). 

3rd step: Using the total effective properties, laminates, which are shown in 

section 3.3.2, are constructed and thermal loading is applied to the laminates. Using 

CLPT code, ply stresses of the each layer are obtained in Figure 4.20 c).  

4th step: The ply stresses are applied to the first homogenization stage, and 

average stresses of the each area are obtained in Figure 4.20 d).  

                     

a) 1st step: Effective properties of each area   b) 2nd step: Effective properties of total area                           

                                                              

             c) 3rd step: ply level stresses              d) 4th step: averaged stresses of each area 

 

Figure 4.20. Four step processes  
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As a result, the unit cell in Figure 4.20 b) has the same ply level stresses as 

1 131.1σ = − MPa and 2 74.6σ = MPa with the layer of 0 mentioned in section 3.2.2. 

However, the each area of the unit cell has different stresses. Figure 4.21 denotes the 

average stresses of each area. As in Figure 4.21, the low volume area has larger 2σ  and 

smaller 1σ  than the other areas. It is already studied in section 4.2.4 that 2σ  is more 

significant than 1σ  for damage of interface. Therefore the low volume fraction area will 

be more critical for composite damage. Also since it is known that the tensile strength of 

matrix is 77MPa, the first failure will be initiated at the low volume fraction zones. 

 

 

Figure 4.21. Non-uniformly distributed ply stresses 
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In order to study the effect of ply stresses of low volume fraction area on 

interfacial stresses, the ply stresses of low volume fraction area are applied to unit cell 

having 30% volume fraction, and the results are compared with interfacial stresses of 

perfectly periodic 60% volume fraction case in Figure 4.22. As in Figure 4.22, 30% 

volume fraction unit cell in low volume fraction area has higher interfacial stresses. 

Therefore, it can be considered that fibers located in low volume fraction areas will be 

more dangerous for fiber/matrix debonding than perfectly regular fibers. 

 

 

 

 

 

Figure 4.22. Interfacial stresses of a fiber located in low volume fraction area 
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4.4. The worst fiber distribution case 

 Various parametric studies have been studied for interfacial stress states. From 

the results, it was found that ply stresses are concentrated in low fiber volume fraction 

areas, and these concentrated ply stresses produce high interfacial stresses of fibers 

located in low fiber volume fraction areas. The fiber/matrix debonding interfaces caused 

by radial and shear stresses, and micro matrixcrack areas caused by tangential stresses 

are depicted for 60% volume fraction fiber in perfect array and 30% volume fraction 

fiber in low fiber volume fraction areas in Figure 4.23. The failure areas are predicted 

based on the maximum stress criterion. As in Figure 4.23, 30% volume fraction fiber in 

low fiber volume fraction areas has more possibility of debondings and micro 

matrixcracks than the case of 60% volume fraction fiber in perfect array.  

Also it has been studied that existence of matrix-rich zones can increase 

interfacial stresses of fibers located near the matrix-rich zones. As shown in Figure 4.24 

a), the model can be also suggested for one of the worst fiber distribution cases which 

can have high possibility of fiber/matrix debonding and micro matrixcracks. The thermal 

loading and ply stresses are applied to the unit cell which has matrix pocket in the center 

region, and the interfacial stresses for the 4 fibers are presented in Figure 4.24 b), c), d), 

and e). When compared to the interfacial stresses of perfect hexagonal case in Figure 4.8, 

the 4 fibers have higher interfacial stresses. Figure 4.24 a) shows the possible areas of 

fiber/matrix debonding caused by radial and shear stresses and micro matrixcracks 

caused by tangential stresses for the unit cell. As in Figure 4.24, the fibers located near 
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matrix-rich zones have more possibility of debonding and micro matrixcracks than 

perfect hexagonal case. 

 

 

fiber/matrix debonding 

 

micro matrixcrack 

 

 

 

a) 60% Vf case in perfect hexagonal array 

 

fiber/matrix debonding 

micro matrixcrack 

 

 

 

 

 

 

b) 30% Vf case in low fiber volume fraction area 

Figure 4.23. Debonding and microcrack areas 
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a) 6 fiber missed unit cell 

Figure 4.24. Debonding and microcrack areas of 6 fiber missed large pattern unit cell 
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b) Interfacial stresses of fiber 1 

 

 

c) Interfacial stresses of fiber 2 

Figure 4.24. Continued  
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d) Interfacial stresses of fiber 3 

 

e) Interfacial stresses of fiber 4 

 

Figure 4.24. Continued  
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In order to investigate which fiber distribution is the worst case and determine 

ranking of stress level, interfacial stresses of 8 fibers for 5 fiber distribution patterns in 

Figure 4.25 are compared. 

 
 
 
                                                                                                                     
                                                                                                                    

 
                                                                                                              
 
   
 
 
 

3  4 
2 

1 

 
 
 
a)                        b)                      c)                    d)                               e)    

Figure 4.25. 8 fibers for 5 assumed fiber distributions 

a) Perfect square array (PS) 
b) Perfect hexagonal array (PH) 
c) Hexagonal array in low fiber volume fraction areas (HL) 
d) Hexagonal array in high fiber volume fraction areas (HH) 
e) Matrix-rich zones (M1, M2, M3, and M4) 
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The each interfacial stress component of 8 fibers are divided by the assumed 

interfacial normal strength, shear strength and matrix tensile strength respectively, and 

the highest value is ranked at the first in Table 4.6.  

 

Table 4.6. Ranking of interfacial stresses of 8 fibers caused by thermal loading of a 
laminate 

Ranking Fiber ( / S
rr rrσ σ )  Fiber ( / S

r rθ θσ σ ) Fiber ( / S
θθ θθσ σ )  

1 M2 (1.55) M1 (2.94) M2 (1.52) 
2 M1 (1.38) M2 (2.64) PH (1.51) 
3 HL (1.37) M3 (2.01) HL (1.48) 
4 M3 (1.26) HL (1.76) M4 (1.48) 
5 PH (1.21) PS (1.7) M3 (1.47) 
6 HH (1.14) PH (1.52) PS (1.47) 
7 M4 (0.91) HH (1.45) HH (1.44) 
8 PS (0.87) M4 (0.82) M1 (1.32) 

Sσ : Interfacial strength 
 

If / Sσ σ  is higher than 1, it means failure based on the maximum stress 

criterion. From the result, it is shown that number 2 fiber of case e) is ranked at the first 

for fiber/matrix debonding and micro matrixcrack, and at the second for torsional sliding 

failure. Also it is likely that number 1 and 3 of case e) have higher possibility of failure 

than the other arrays.  Therefore, it is concluded that case e), i.e. fiber distributions, 

which have matrix-rich zones, is the worst case for microcracks, and among of the fibers 

located near matrix-zones, number 2 fiber has the highest possible for microcracks. 

 While Table 4.6 shows about the ranking of interfacial stresses for thermal 

loading in a laminate, Table 4.7 and 4.8 show the ranking of interfacial stresses for 

thermal loading and mechanical loading in a lamina. If only thermal loading is 
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considered in a lamina, the number 2 fiber of case e) is ranked at the first for fiber/matrix 

debonding and micro matrixcrack, but for mechanical loading, the fiber is ranked very 

lowly, because matrix-rich zones are beneficial for mechanical loading to the strength, 

but harmful for thermal loading to the strength. As a result, for the combined loading 

condition, the number 2 fiber of case e) has the highest possibility of microcracks 

because of near matrix-rich zones. 

 
 
Table 4.7. Ranking of interfacial stresses of 8 fibers caused by thermal loading of 
unidirectional lamina  

Ranking Fiber ( / S
rr rrσ σ )  Fiber ( / S

r rθ θσ σ ) Fiber ( / S
θθ θθσ σ )  

1 M1 (0.42) M1 (2.42) HH (1.06) 
2 M3 (0.42) M3 (2.42) PS (1.04) 
3 PS (0.23) M2 (1.21) M1 (1.01) 
4 HH (0.07) M4 (1.21) M3 (1.01) 
5 M2 (0.04) PS(0.9) M2 (0.99) 
6 M4 (0.04) HH (0.45) M4(0.99) 
7 PH (-0.11) HP (0.3) PH (0.97) 
8 HL (-0.23) HL(0.15) HL (0.65) 

 
 
Table 4.8. Ranking of interfacial stresses of 8 fibers caused by mechanical loading of 
unidirectional lamina in transverse direction 

Ranking Fiber ( / S
rr rrσ σ )  Fiber ( / S

r rθ θσ σ )  Fiber ( / S
θθ θθσ σ )  

1 PS (2.27) HH (1.76) PS (0.94) 
2 PH (1.92) M2 (1.61) M3 (0.75) 
3 M4 (1.84) PH (1.52) M4 (0.73) 
4 M3 (1.83) M3 (1.45) PH (0.65) 
5 M2 (1.82) HL (1.42) M2 (0.61) 
6 HH (1.61) PS (1.36) HH (0.6) 
7 HL (1.56) M4 (1.27) HL (0.58) 
8 M1 (1.52) M1 (1.36) M1 (0.57) 
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4.5 Uncertainty of fiber transverse CTE 

4.5.1 Importance of fiber transverse CTE  

Since thermally induced stresses are due to the mismatch between coefficients 

of thermal expansion (CTE) of fiber and matrix, obtaining exact CTE values of fiber and 

matrix is very important. While CTE values of matrix are well known because the 

experimental tests of those are easy due to the macro level scale, very little data are 

available in the literature on transverse CTE of fiber. Measurement of fiber transverse 

CTE is very difficult because of the micro level scale of the test (The fiber diameter is 

5 ~ 20 mµ [26]). In addition, it is seen sometimes that the literatures have different CTE 

values for the same fiber. Especially the transverse CTE of fiber poses a problem on 

account of the small diameter of fiber. These difficulties cause measurement errors when 

experimental tests are conducted, and eventually these measurement errors could create 

significant errors when numerical analysis is performed at the macro and micro level.  

 

4.5.2 Range of fiber transverse CTE values 

Table 4.9 shows the different CTE values obtained experimentally for IM7 

carbon fiber. The fiber transverse CTE values are ranged from 64.4 10 / C−×  to 

610 10 / C−× , and the fiber longitudinal CTE values are ranged from 62.29 10 / C−− ×  to 

60.4 10 / C−− × . 
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Table 4.9. CTE values of IM7 carbon fiber in literatures 

 [Ref 26] [Ref 30] [Ref 31] [Ref 32] Range 
6( 10 / )f

L Cα −×  -0.4 -0.9 -2.29 -1.0 -2.29~-0.4 
6( 10 / )f

T Cα −×  4.4~6.6 7.2 9.2 10 4.4~10 
 

It will be considered that the fiber longitudinal CTE value is known fairly 

accurately because the fiber longitudinal CTE value can be obtained easily by 

experimental text, and the longitudinal CTE value does not affect significantly on stress 

fields, because of very small value compared to fiber transverse CTE, so the fixed value 

of 60.4 10 /C−− ×  for longitudinal CTE will be used for this study.  

 

Table 4.10. Variations of difference between fiber and matrix CTE values 

  
6( 10 / )f

T Cα −×  
 

Variation 
from 4.4 

 
6( 10 / )m f

T Cα α −− ×
 

 
Variation 
from 53.2 

[Ref 26] 4.4 - 53.2 - 
[Ref 26] 6.6 50% 51 4.1% 
[Ref 30] 7.2 63.6% 50.4 5.3% 
[Ref 31] 9.2 109.1% 48.4 9.0% 
[Ref 32] 10 127.3% 47.6 10.5% 

657.6 10 /m Cα −= ×  

 

Table 4.10 shows the variations of difference between fiber and matrix CTE 

values. The largest value of fiber transverse CTE has variation of 127.3% with the 

smallest value. This amount of variation may be very big. However, when considering 

that thermally induced stresses depend on the difference between fiber CTE and matrix 
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CTE ( )m f
Tα α− , the largest variation  of ( )m f

Tα α−  is only 10.5% compared to the 

smallest variation of ( )m f
Tα α− .  

 

4.5.3 Effect of errors in assumed fiber transverse CTE values on interfacial stresses 

in lamina 

In order to investigate the effect of uncertainty in the transverse CTE of the fiber 

in a lamina, a unit cell of 60% volume fraction is constructed for a lamina, and its 

interfacial stresses are investigated for the smallest and largest fiber transverse CTE 

values under thermal loading of -300 C .  

 

 

Figure 4.26. Interfacial stress states for the smallest and largest fiber transverse CTE 

values in lamina 
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Figure 4.26 shows the interfacial stress distributions for the largest and smallest 

fiber CTE values. The results show that the radial, shear, and tangential stresses are not 

much different for the two CTE values. While the fiber transverse CTE values are 

changed from 4.4 610 / C−×  to 10 610 / C−×  with the variation of 127.3%, the 

differences in the interfacial stresses are relatively small (10.5%) compared to the large 

differences in the fiber transverse CTE values (Table 410). To explain these thermally 

induced interfacial stresses, the following composite cylindrical model in Figure 4.27 

and analytical solutions have been used [33]. 

 

 

 

 

 

 

Figure 4.27. Composite cylinder model 
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At the interface, the interfacial stresses can be expressed. 
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Regarding only thermal effect, the stress components are reduced following as 
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α α
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− + − ∆
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 (4.5) 

 

In the above equations, it is shown that the interfacial stresses depend on 

( )m fα α− . As in Table 4.8, the largest variation of ( )m fα α−  between fiber and matrix 

is only 10.5%, i.e. the large uncertainty of fiber transverse CTE values do not affect the 

interfacial stress states significantly, because the CTE difference ( )m fα α− between 

fiber and matrix is the main effect on the interfacial stress states. Even though interfacial 

stresses depend on volume fraction, variation of interfacial stresses for the smallest and 

largest fiber transverse CTE values does not depend on the volume fraction. Therefore, it 

is concluded that if variation of 10% stress difference can be considered not much 
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difference, even though fiber transverse CTE is not known exactly, the interfacial stress 

states in lamina can be obtained fairly accurately. 

 

4.5.4 Sensitivity of lamina CTE to change fiber volume fractions 

 It was studied that errors in assumed fiber transverse CTE values are not 

significant for interfacial stress states in a lamina, even though volume fraction is 

changed. In this section, how much the errors in assumed fiber transverse CTE values 

will affect effective lamina CTE values, when volume fraction is changed. In order to 

find out the effect of errors in assumed fiber transverse CTE values on the effective 

lamina transverse CTE values, the effective lamina transverse CTE values are obtained 

for the assumed fiber transverse CTE values, when its volume fractions are changed. The 

Figure 4.28 shows the variations of effective lamina transverse CTE values for assumed 

fiber transverse CTE values.  

 



 

 

77

 

 

Figure 4.28. Sensitivity of effective lamina transverse CTE to fiber volume fraction 

 

As in Figure 4.28, in low volume fractions, the variation of fiber transverse CTE 

values does not affect much the effective CTE significantly, but in high volume fractions, 

the effective CTE value for the assumed fiber transverse CTE values have much 

different results. Table 4.11 shows the variations of effective lamina transverse CTE 

values for 50%, 60%, and 65% volume fractions which are used typically in industry. 

While the lamina of 50% volume fraction has the variation of 8% for the smallest and 

largest fiber transverse CTE values, the lamina of 65% volume fraction has the 

difference of 14.4% for the two fiber transverse CTE values. Since lamina level 

properties become very important for macro level analysis, it is needed to investigate 
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that how much this amount of variation of effective lamina CTE value of 50%, 60% and 

65% volume fraction composite will affect results of macro level analysis.  

 

 

Table 4.11. Sensitivity of effective lamina transverse CTE to fiber volume fraction 

 Effective c
Tα   

50% 
Effective c

Tα   
60% 

Effective c
Tα   

65% 
when 64.4 10 /f

T Cα −= ×  637.6 10 / C−×  630.5 10 / C−×  627 10 / C−×  

when 610 10 /f
T Cα −= ×  640.6 10 / C−×  634.1 10 / C−×  630.9 10 / C−×

Variation 8% 11.8% 14.4% 
 
 

4.5.5 Effect of errors in assumed fiber transverse CTE values on ply stresses in 

laminate composite 

In order to investigate the effect of errors in assumed fiber transverse CTE values 

on laminate composites, [90 / 45 / 0]S±  laminate models are constructed for different 

volume fractions. When the thermal loading of 300 C−  is applied to the laminate 

composites, the ply stresses of each layer are obtained by CLPT. Using the CLPT code, 

the ply stresses of each layer are obtained in global coordinate system, and the ply 

stresses are transformed in material coordinate system. Table 4.12 shows the ply stresses 

of 0  layers of [90 / 45 / 0]S±  composite for different volume fractions, while the two 

smallest and largest fiber transverse CTE values are used. The negative values are the 

ply stress of longitudinal direction, and the positive values are the ply stress of transverse 

direction of the layer.  
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Table 4.12. Ply level stresses for smallest and largest fiber transverse CTE values in 
[90 / 45 / 0]S± composite 

 Ply stresses 
(MPa)  

Vf= 50% 

Ply stresses 
(MPa)  

Vf= 60% 

Ply stresses 
(MPa)  

Vf= 65% 

when 64.4 10 /f
T Cα −= ×  75.14∓  71.48∓  69.32∓  

when 610 10 /f
T Cα −= ×  81.22∓  80.15∓  79.62∓  

Increasing rate 8% 12% 15% 
 

While the fiber transverse CTE values are used from 64.4 10 /C−×  

to 610 10 /C−× , the laminate, which has 50% volume fraction, has 8.1% variation of the 

ply stress, and 65% volume fraction case has 14.9% variation of the ply stress. The 

Table 4.12 says that the uncertainty problem of errors in assumed fiber transverse CTE 

values will cause difficulty for predicting the ply stresses of laminate composite. As in 

Figure 4.24, it was already studied that high volume fraction composites have high 

variation of effective CTE values, while the fiber transverse CTE values are used from 

64.4 10 /C−×  to 610 10 /C−× . In the next section, the effect of these variations of ply 

stresses on interfacial stresses will be investigated in micro level. 

 

4.5.6 Effect of errors in assumed fiber transverse CTE values on interfacial stresses 

in laminate composite 

As in Table 4.12, the 50%, and 60%, and 65% volume fraction laminate 

composites have the ply stress variations of 8%, and 12%, and 15% respectively, when 

fiber transverse CTE values are changed from 64.4 10 /C−×  to 610 10 /C−× . These 
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amounts of ply stresses are applied to the each volume fraction unit cell with the thermal 

loading of 300 C− , and the interfacial stress states are studied for two fiber transverse 

CTE values. The Figure 4.29 shows that how much the interfacial stress states are 

different for two fiber transverse CTE value cases. The remarkable part is that when the 

fiber transverse CTE is changed from 64.4 10 /C−×  to 610 10 /C−×  , the radial stress of 

65% volume fraction case is increased by 24% at 0 position, while 50% volume fraction 

case has only 11% variation at the same position, as in Table 4.13. This result means that 

uncertainty of fiber transverse CTE causes the higher variation of interfacial stresses for 

higher volume fraction laminate composites. The 60% volume fraction case has 20% 

variation of interfacial stresses for two fiber transverse CTE values. It was already 

studied that the 60% volume fraction in a lamina has only around 10% variation for two 

fiber transverse CTE values. However, if the ply stresses caused by laminate effect are 

considered to the interfacial stress states, the error in assumed fiber transverse CTE 

values yield 20% variation of the radial stress. Therefore, it is concluded that the error in 

assumed fiber transverse CTE values make high errors for predicting interfacial stress 

states. 
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a) Interfacial stresses of 50% volume fraction 

 

b) Interfacial stresses of 60% volume fraction 

Figure 4.29. Interfacial stress states for assumed fiber transverse CTE values in a 

laminate 
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c) Interfacial stresses of 65% volume fraction 

 

Figure 4.29. Continued 

 

Table 4.13. Variation of radial stresses for fiber transverse CTE values 
 Radial stress 

at 0 point 
(MPa)  

Vf= 50% 

Radial stress 
at 0 point 

(MPa)  
Vf= 60% 

Radial stress 
at 0 point 

(MPa)  
Vf= 65% 

when 64.4 10 /f
T Cα −= ×  82 74.1 70.1 

when 610 10 /f
T Cα −= ×  91 89 87.1 

Increasing rate 11% 20% 24% 
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4.5.7 Effect of errors in assumed fiber transverse CTE values on interfacial stresses 

in high volume fraction area for laminate composite 

In the previous section, it was studied that high volume fraction composite will 

have high variation of interfacial stresses when considering uncertainty of fiber 

transverse CTE values. In this section, since real composite can have high volume 

fraction areas and low volume fraction areas, the effect of errors in assumed fiber 

transverse CTE values on interfacial stresses in these non-uniformly distributed areas for 

laminate composite will be studied. In order to find out the effect of variation of fiber 

transverse CTE value on interfacial stresses in these areas, the following model is 

constructed as shown in Figure 4.30. 

 

 

   Vf=57% 

 

Vf=80% 

 

 

 

 

 

Figure 4.30. Unit cells for low and high volume fraction areas 
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The center area has high volume fraction with 80% and the other areas have 

lower volume fraction with 57%, so the total volume fraction is 60%. Therefore, it can 

be assumed that the center area is high volume fraction zone. Two times FEM analysis 

are conducted. For the first analysis, 64.4 10 / C−×  is considered fiber transverse CTE 

value, and for the second analysis, 610 10 / C−×  is considered. The same process with 

Figure 4.15 is used for this analysis. 

As in Table 4.14, while fiber transverse CTE values are changed from 

64.4 10 / C−×  to 610 10 / C−× , the averaged ply stresses of entire areas is increased by 

12%.  This variation of 12% is the same value with the result of 60% volume fraction, 

which is considered perfect periodic array in the Table 4.12, because the volume fraction 

is the same. However, the averaged stresses of the high volume fraction zone in center 

area are increased to 18%, and the averaged ply stresses of the other areas, which are the 

low volume fraction zones, are decreased to 11%. When the fiber transverse CTE values 

are changed, the averaged ply stresses of high volume fraction zone is increased more 

highly, while the averaged ply stresses of other areas are decreased. It is concluded that 

uncertainty of fiber transverse CTE will cause difficulty in measuring exact average ply 

stress fields especially in fiber-rich zones. 
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Table 4.14 Average stresses of low and high volume fraction areas 
 Average ply 

stresses of total 
areas (MPa) 

Average ply 
stresses of low 
volume fraction 

areas 
(MPa) 

Average ply 
stresses of high 
volume fraction 

zone 
(MPa) 

when 64.4 10 /f
T Cα −= ×  71.2∓  73∓  60.5∓  

when 610 10 /f
T Cα −= ×  79.7∓  81∓  71.3∓  

Increasing rate 12% 11% 18% 
 

In order to investigate interfacial stress states of a fiber located in high volume 

fraction area, the average stresses of the high volume fraction area and thermal loading 

of 300 C−  are imposed to the 80% hexagonal unit cell, and its interfacial stresses are 

obtained. The Figure 4.31 shows the interfacial stress states having laminate effect for 

two fiber transverse CTE values. The remarkable result is that the radial stress is 

increased by 55% at 0  point. While the fiber transverse CTE of 64.4 10 / C−×  causes 

the radial stress of 36.9 MPa, the fiber transverse CTE of 610 10 / C−×  causes 57.4 MPa 

in high volume fraction area. In addition, if it is assumed that the interfacial normal 

strength is 64MPa (Table 2.1), the maximum stress criterion predicts that while the case, 

which uses the largest fiber transverse CTE, will be failure between 10  and 25 , the 

case, which uses the smallest fiber transverse CTE, will be still safe. Therefore, it is 

concluded that errors in assumed fiber transverse CTE values can mislead the prediction 

of failure possibility in high volume fraction areas. 
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64MPa (Interfacial Strength) 
 

 
 
 
 
 
 

 

 

 

Figure 4.31. Interfacial stresses of a fiber in high volume fraction area 

 
 
 
Table 4.15. Stress variationn for scattered fiber transverse CTE values 

 
Interfacial stress 

in lamina 
(Perfect array) 

Interfacial stress  
in laminate 

(Perfect array) 

Interfacial stress  
in laminate 

(Fiber-rich zones) 
Increasing rate 10.5% 20% 55% 
 

Table 4.15 summarizes the results of uncertainty of fiber transverse CTE. If a 

lamina, which is assumed with perfectly periodic fiber arrangement and 60% volume 

fraction, is subjected to the thermal loading, its interfacial stress states have around 10% 

error for two assumed fiber transverse CTE values. However, if laminate composite is 

considered, the interfacial stress states of the same volume fraction case show around 

20% error for two assumed fiber transverse CTE values, because the interfacial stresses 
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are affected by the ply stresses of laminate effect. If it is assumed that there can exist 

high volume fraction areas and laminate effect are considered, the radial stress at 0  of 

fibers located in high volume fraction areas show error of 55% for two assumed fiber 

transverse CTE values. Therefore, it is concluded that the uncertainty of fiber transverse 

CTE values will cause difficulty for micromechanical analysis. 

 

4.6. Prediction of fiber transverse CTE by Back calculation 

In section 3.2.4, if the thermal-elastic properties of fiber and matrix are known, 

the effective thermal-elastic properties of the composite consisting of these constituents 

can be obtained by micromechanics. However, since the fiber transverse CTE values are 

not obtained easily by experimental test, the effective lamina CTE values obtained by 

micromechanics have uncertainty problem. On the other hand, if laminar properties are 

known, back calculation can be performed to predict the fiber transverse CTE value. 

Figure 4.32 shows the algorithm for predicting the fiber transverse CTE of back 

calculation method. For this work, three composite cases are studied.  

 

Case 1): Carbon fiber/epoxy, HTA-12/#113 at 23  [14] 

Case 2): Carbon fiber/epoxy P75/ERL1962, Carbon fiber/epoxy P75/934, and Carbon 

fiber/cyanate ester P75/RS at 23  [34] 

Case 3): Carbon fiber/epoxy, IM7/977-3 at -196 , 23 , and 150  [26] 

 



 

 

88

 

 

 

Figure 4.32. Flowchart of back calculation for predicting the fiber transverse CTE 
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The thermal-elastic material properties of the composites and their constituent 

materials are presented in Appendix B. Table 4.16 shows the results of back calculations 

for each composite system. As in Table 4.13, the fiber transverse CTE value of  HTA-12 

obtained by back calculation have good agreement with the experimental result, but the 

fiber transverse CTE values of  P75 obtained by back calculation are little overestimated 

comparing with the experimental result.  

The results of IM7 carbon fiber CTE values obtained by back calculation do not 

have big discrepancy compared with the experimental test results, 5.63 6( 10 / )C−×  for   

-196 and 24  temperature cases. However, the back calculation result says that the IM7 

carbon fiber transverse CTE value should be -5.5 6( 10 / )C−×  for 149  temperature case 

to have the same lamina CTE value. There are two possible scenarios. 

 

1) At high temperature like 149 , the transverse CTE of IM7 fiber is -5.5 6( 10 / )C−× . 

However, it is almost impossible, because it is known that IM7 carbon fiber has positive 

CTE value at high temperature [26]. 

2) At high temperature like 149 , the laminar has microcrack or fiber matrix interface 

debonding. Therefore, it can be considered that large amount of CTE reduction are 

induced by high temperature. 
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Table 4.16. Results of back calculation for fiber transverse CTE values 
Fiber transverse CTE values 

6( 10 / )C−×  
 

Fiber 
 

Composite 
systems 

 
Temperature

Experimental Back calculation
HTA-12  HTA-12/#113 23  10 8.7 

P75/ERL1962 23  12.2 
P75/934 23  11.7 

 
P75  

P75/RS 23  

 
6.84 

9.8 
-196  4.2 
23  5 

 
IM7 

 
IM7/977-3 

150  

 
5.63 

-5.5 
 

Since experimental test of fibers is difficult due to the micro scale, it is not easy 

to believe test results sometimes. On the other hand, tests of laminar properties are easy 

compared to tests of fiber, because of macro level scale. Therefore, if there exists 

uncertainty of test results of fiber properties, these back calculation method can be one 

of alternative proposals. 
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5. CONCLUSION 

A 3-dimensional finite element method has been used to compute the effective 

thermal-elastic properties for carbon/epoxy IM7/977-2 composite, and Classical 

Laminate Theory was used to compute ply level stresses for  T[65/0/-65/90/-65/0/65]  

and 3 3 3 T[45/90 /-45/0 /-45/90 /45]  laminate composite under thermal loading of 300 C−  

for laminate composites. In order to investigate the effect of laminate effect on 

interfacial stress states, the ply level stresses were imposed to the micro unit cells with 

the thermal loading of 300 C− , and one more finite element method was used to obtain 

the interfacial stress fields of the laminate composites subjected to the thermal loading. 

To approximate irregularly distributed fiber arrangements, various unit cells, which can 

represent irregularity than perfect periodic arrays, were constructed and their interfacial 

stresses were studied. The interfacial stresses induced locally around a fiber showed 

significant dependence on the fiber distributions. For a lamina under the thermal loading, 

fibers located near matrix-rich zones showed high tensile radial and tangential stresses, 

while the radial stresses of perfect hexagonal arrangement case were compressive. These 

tensile interfacial stresses of fiber near matrix-rich zones will be harmful to transverse 

strength. Also it was found that concentrated ply stresses induced by thermal loading are 

concentrated in low fiber volume fraction areas, and these concentrated ply stresses 

produce higher interfacial stresses of fibers located in the low fiber volume fraction areas 

compared to perfectly periodic cases. Therefore, it is concluded that when irregularly 

distributed fiber arrangements are considered, fibers located near matrix-rich zones and 
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in low fiber volume fraction areas will have high possibility of fiber/matrix debonding 

and micro matrixcracks. 

In order to investigate the effect of uncertainty of fiber transverse CTE values on 

interfacial stresses, systematic studies were performed. While interfacial stress states of a 

perfectly distributed fiber of 60% volume fraction in a lamina have around 10.5% errors 

for two assumed fiber transverse CTE values, interfacial stress states of a fiber located in 

high volume fraction zones in a laminate are increased by around 55% errors for the two 

assumed fiber transverse CTE values. Therefore, if it is assumed that there can exist high 

volume fraction areas and laminate effect are considered, it is concluded that the 

uncertainty of fiber transverse CTE values will cause difficulty for micromechanical 

analysis. For alternative method to predict fiber transverse CTE values, back calculation 

method was tried. 
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APPENDIX A 

Periodic boundary conditions for the model of Figure 4.14 
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∂ ∂
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APPENDIX B 

 

Case 1): Carbon fiber/epoxy, HTA-12/#113 at room temperature [14] 

 HTA-12 resin #113 HTA-12/#113 
11E (GPa) 235 163 

22 33,E E (GPa) 19.1 
3.9 

8.36 
12 13,G G (GPa) 24 8.07 

23G (GPa) 7.2 
1.45 

2.527 

12 13,ν ν  0.28 0.32 

23ν  0.33 
0.39 

0.55 
)/10( 6

11 C−×α  -0.4  -0.1 
6

22 33, ( 10 / )Cα α −×  10 
57 

35 
B.1. Experimental lamina properties of fiber HTA-12, resin #113, and HTA-12/#113 (vf: 

60%) [14] 
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Case 2): Carbon fiber/epoxy P75/ERL1962, Carbon fiber/epoxy P75/934, and Carbon 

fiber/cyanate ester P75/RS at room temperature [34] 

 P75/ERL1962
Vf=52.3% 

P75/934 
Vf=65.7%

P75/RS3 
Vf=69% 

11E (GPa) 237 340 296 

22 33,E E (GPa) 6.23 6.96 6.65 

12 13,G G (GPa) 4.83 4.83 4.83 

12 13,ν ν  0.293 0.3 0.261 
)/10( 6

11 C−×α  -0.9 -1.17 -1.19 
6

22 33, ( 10 / )Cα α −× 37.8  30.1 28.3 
B.2. Material properties of P75/ERL1962, P75/934, and P75/RS3 composite systems at 
room temperature [34] 
 
 

 P75 ERL1962 934 RS3 
11E (GPa) 550 

22 33,E E (GPa) 9.52 
3.7 4.14 2.68 

12 13,G G (GPa) 6.9 

23G (GPa) 3.38 
1.37 1.59 0.99 

12 13,ν ν  0.2 

23ν  0.4 
0.35 0.4 0.35 

)/10( 6
11 C−×α  -1.35 

6
22 33, ( 10 / )Cα α −×  6.84 

43.6 50.5 56.8 

B.3. Material properties of P75, ERL1962, 934, and RS3 at room temperature [34] 
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Case 3): IM7/977-3 at -196 , 23 , and 150  

 

 At -196  At 23  At 150  
11E  182Gpa 180GPa 180GPa 

22 33,E E  11.7GPa 9.7GPa 6.9GPa 
23ν  0.33 0.33 0.35 
23G  9.2GPa 6.1GPa 5.5GPa 

)/10( 6
11 C−×α  0.18 0.18 0.18 

6
22 33, ( 10 / )Cα α −×  20.4 23.4 23.4 

B.4. Experimental lamina properties of IM7/977-3 (vf: 65%) [26] 

 
 IM7 

11E  263.7Gpa 
22 33,E E  19.0GPa 
12 13,ν ν  0.2 

23ν  0.35 
12 13,G G  27.6GPa 

23G  6.89GPa 
)/10( 6

11 C−×α  -0.4 
6

22 33, ( 10 / )Cα α −×  5.63 
B.5. Experimental lamina properties of IM7 
  

property temperature 

 -196  24  149  

E 7.86 3.45 2.48 

v 0.47 0.39 0.48 
6( 10 / )Cα −×  32.51 44.69 51.62 

B.6. Temperature dependent 977 epoxy properties 
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