
 
 

THE USE OF GIS AND REMOTELY SENSED DATA IN PREDICTING THE 

OCCURRENCE OF TWO ENDANGERED AVIAN SPECIES IN CENTRAL TEXAS 

 

 

A Thesis 

by 

TIFFANY CUMMINS 

 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  
 

MASTER OF SCIENCE 

 

 

 

 
May 2006 

 
 

 

Major Subject: Wildlife and Fisheries Sciences



 

THE USE OF GIS AND REMOTELY SENSED DATA IN PREDICTING THE 
OCCURRENCE OF TWO ENDANGERED AVIAN SPECIES IN CENTRAL TEXAS 

 

 

A Thesis 

by 

TIFFANY CUMMINS 

 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  
 

MASTER OF SCIENCE 

 
 

 
Approved by:  

Chair of Committee,     R. Neal Wilkins 
Committee Members,   R. Douglas Slack 
                                      Fred Smeins 
Head of Department     Delbert M. Gatlin III 
 

 

 
May 2006 

 
Major Subject: Wildlife and Fisheries Sciences 



iii 

ABSTRACT 
 
 

The Use of GIS and Remotely Sensed Data in Predicting the Occurrence of Two 

Endangered Avian Species in Central Texas.  (May 2006) 

Tiffany Cummins, B.S., Western Kentucky University 

Chair of Advisory Committee:  Dr. R. Neal Wilkins 
 
 
 

 Over the last 50 to 150 years there has been widespread conversion of 

grassland to shrubland throughout the western United States.  A major management 

concern on the Edwards Plateau is the encroachment of Ashe Juniper (Juniperus 

ashei).  To facilitate brush management programs, I investigated relationships of two 

endangered species, the black-capped vireo (Vireo atricapillus) and the golden-cheeked 

warbler (Dendroica chrysoparia), with their habitats at the landscape level.  GIS 

(Geographic Information Systems) and remotely sensed data, such as Landsat 

imagery, DEMs (Digital Elevation Maps), and DOQQs (Digital Ortho Quarter Quads) 

were used to evaluate vegetative and geomorphic features within both 100m- and 

400m-radius areas surrounding occupied and (assumed) unoccupied sites.  Stepwise-

logistic regression was used to develop probability models for each species within a 

catchment and was then applied to the entire Leon River Watershed and evaluated for 

accuracy.  Golden-cheeked warblers were identified in areas with mean juniper cover 

greater than 70%, mean departure from North (aspect), and maximum slope.  For 

black-capped vireos, mean shrub cover, mean departure from North, and mean slope 

were important in habitat selection.  Variables at the 400m spatial scale best identified 

areas of probable occurrence for both species, indicating that features of landscape 

surrounding a territory may play an important role in habitat selection. 
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INTRODUCTION 

Woody Species Encroachment on the Edwards Plateau, Texas 

 Over the last 50 to 150 years, there has been widespread conversion of 

grassland to shrubland throughout the western United States (Wilcox 2002, Rollins 

2000, Diamond et al. 1995, Smeins et al. 1997, Archer 1989, Archer et al. 1988).  

According to Smeins et al. (1997) the primary mechanisms behind this shift are the 

decrease in fire frequency due to climate change, fire suppression, and an increase in 

herbivory by livestock, both in numbers and in intensity of use.  In central Texas, Ashe 

juniper (Juniperus ashei), redberry juniper (Juniperus pinchotii), and mesquite (Prosopis 

glandulosa) have been the primary source of increased shrub cover (Archer et al. 1988, 

McPherson et al. 1988, Fowler and Dunlap 1986, Burkhardt et al. 1976). 

Historically, the Edwards Plateau of Central Texas was a fire-maintained 

savanna with live oak (Quercus virginiana) as the primary woody species (Fowler and 

Dunlap 1986, Gould 1962). As settlement occurred, fire suppression and intensive 

grazing increased, providing favorable conditions for invasion of woody species in the 

region, particularly J. ashei (Fuhlendorf, et al. 1997, Fowler and Dunlap 1986).  A 1993 

US Department of Agriculture report estimated that 8.6 million acres of land in Texas 

was dominated by J. ashei (Sullivan 1993).  Although there appears to be an increase 

in the volume of juniper as a whole, Van Auken (1993) notes that mature juniper is 

lacking and suggests past cutting and fire as possible causes.  Smeins et al. (1997) 

explain that between the 1880’s and 1950’s, following the settlement of Texas, mature 

juniper stands were removed in large quantities for development.  When it grew back, it 

returned as second and third growth juniper whose bushy multi-stem structure differs  

This thesis follows the style of The American Naturalist. 
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greatly from the tall, single stem, more open bottom structure of mature primary growth 

juniper. This translates to a landscape with dense stands of shrubby, clumped immature 

and second growth juniper.  This  poses a problem as such stands of juniper provide 

little to no benefit for many species of important wildlife or livestock (Hamilton 2000, 

Lyons et al. 1998, Rollins and Armstrong 1997, Sullivan 1993) and decreases 

herbaceous and woody species diversity (Yager and Smeins 1999, Lyons et al. 1998, 

Fuhlendorf et al. 1997) . Instead, most species prefer landscapes comprised of a 

mosaic of woody cover and open areas (Juarez 2005, Hamilton 2000, Rollins and 

Armstrong 1997, Sullivan 1993).  

Ashe juniper is a fire sensitive, phreatophytic species which due to its drought 

tolerance has a competitive advantage on dry, eroded, and nutrient poor sites (Sullivan 

1993).  In the Edwards Aquifer recharge area of Texas and many other locations 

throughout the southwestern United States spreading juniper communities may be 

contributing to reduced groundwater recharge and springflow (Wilcox 2002, Wu et al. 

2001, Thurow 2000).  Juniper’s high capacity for interception of moisture and the fact 

that the deep rooted junipers are often found in regions with shallow soil and permeable 

parent material supports this concern (Blomquist 1990, Wilcox 2002, Wu et al. 2001).  It 

is believed that juniper eradication in areas where the soil is deeper and forage higher 

have less effect on stream flow than areas with more shallow soil, like the Edwards 

Plateau (Wu et al. 2001).  They found that brush management on areas with shallow 

soil and high water yield resulted in twice the increased water yield than sites with 

deeper soil and higher forge density. 

The Edwards Plateau is described by Gould (1962) as “well drained”, with 

shallow soils underlain by limestone, caliche, or granite and is situated above the 
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Edwards Aquifer which is the primary water source for both San Antonio and Austin, TX 

(Wilcox 2002, Smeins et al. 1997).  San Antonio is the tenth largest city in the US and 

the only major city that gets its entire water supply from a single source.  As such, brush 

management programs are currently being implemented to manage this important water 

resource.  These brush management programs are aimed at increased water yield. 

Such management could be beneficial to livestock, forage production, and the 

enhancement of wildlife habitat (Hamilton 2000). Species likely to benefit from this 

management include game species such as the white-tailed deer (Odocoileus 

virginianus) (Hamilton 2000, Rollins 2000), northern bobwhite quail (Colinus 

virginianus), and the wild turkey (Meleagris gallopavo) (Rollins 2000) as well as non-

game species including both the black-capped vireo (Vireo atricapillus) (Grzybowski et 

al. 1994) and the golden-cheeked warbler (Dendroica chrysoparia) (Rollins and 

Armstrong 1997).  

 Avifauna  

 Many Neotropical bird species have attracted attention recently due to 

population decreases throughout their ranges (Holmes and Sherry 2001, Dowling 

1996).  A Neotropical migrant bird, as defined by Partners in Flight (PIF), is a species 

that breeds primarily in the United States or Canada’s temperate zone and winters 

primarily in the tropics (Faaborg 2002).  Such avifaunal declines have been 

documented in both fragmented (Faaborg 2002, Dowling 1996, Donovan et al. 1995) 

and unfragmented habitats (Faaborg 2002, Holmes and Sherry 2001) since 1966 

(Partners in Flight 2001b, Donovan et al. 1995).  

Within the Edwards Plateau and Oaks and Prairies Physiographic regions of 

central Texas there are several high priority Neotropical species including the golden-
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cheeked warbler (GCWA), black-capped vireo (BCVI), Bell’s vireo (Vireo bellii), and the 

painted bunting (Passerina ciris) (Partners in Flight 2001a).  All four of these species as 

well as the northern bobwhite, which is a permanent resident, are classified by PIF as 

possessing a level 5 population trend (PT) with breeding habitat threats ranking from 

moderate to severe.  A level 5 PT is defined as a population that has exhibited a 

decrease of at least 50% in the last 30 years (Partners in Flight 2001b).  Multiple 

sources have been cited as possible factors in the population declines of these four 

species.  Possible factors include loss of habitat due to fragmentation in both their 

breeding and wintering grounds as a result of agriculture and urban spread, increased 

brood parasitism (particularly by the brown-headed cowbird, Molothrus ater), decreased 

pairing success (Faaborg 2002, Holmes and Sherry 2001, Penhollow and Stauffer 

2000, Brennan 1999, Lowther et al. 1999, Hopp et al. 1995, and Brown 1993) and loss 

of grasslands resulting from woody encroachment (Partners in Flight 2001a). 

Brown-headed cowbirds pose a threat for over 200 avian species (Barber and 

Martin 1997, Lowther 1993) of which 144 species have been recorded as raising 

cowbird young oftentimes in place of their own. Many of these parasitized species are 

Neotropical migrants (Robinson et al. 1993). The Bell’s vireo was ranked the 15th most 

parasitized species by the brown-headed cowbird (Lowther 1993) and is recorded by 

Brown (1993) in a California study to have had between one third and one half its nests 

parasitized.  Cowbirds are also known threats for the black-capped vireo and the 

golden-cheeked warbler. Hayden et al. (2000) report that parasitism rates of black-

capped vireo on Fort Hood, Texas, were at 90.9% before the brown-headed cowbird 

removal program was implemented in 1988 and have since dropped to 12.6%.  A study 

done at Fort Hood between 1991and 1997 estimated the parasitism rate at 29.9% 
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(Barber and Martin 1997).  During this same period, 1991-1997, Jetté et al. 1998 found 

8.6% of the golden-cheeked warbler nests were parasitized, and cowbirds are the only 

known species to parasitize golden-cheeked warbler nests (Ladd and Gass 1999).  Two 

other studies, one in Kendall Co. (1962-1964) and the other in Travis Co. (1993-1995) 

found parasitism rates at 68% and 14%, respectively (Ladd and Gass 1999). 

Two Neotropical migrant species, the golden-cheeked warbler and the black-

capped vireo have been designated by the U.S. Fish and Wildlife Service as 

Endangered (U.S. Fish and Wildlife Service 1987, 1990).  Both are species that breed 

primarily throughout central Texas (Campbell 1995) and have recovery plans that 

include the implementation of land management strategies aimed at reducing habitat 

loss and increasing suitable habitat availability on both public and private lands (U. S. 

Fish and Wildlife Service 1991, 1992).  These management methods included 

controlled burns, application of chemical poisons, grazing management, as well as 

mechanical removal of encroaching juniper. In order to judge which management 

method should be applied to an area, it is necessary to identify and understand habitat 

features that are important for effective management of endangered species 

(Grzybowski et al. 1994).  This is particularly true when the species are subject to rapid 

changes of their habitat, as are both the golden-cheeked warbler and the black-capped 

vireo.  For both species, a rapid decrease in suitable nesting habitat will result in a 

decrease in successful nesting and fledging of young (Grzybowski et al. 1994). With an 

average lifespan of five years (Campbell 1995), a decrease in successful nesting and 

fledging will result in a rapid decrease in population numbers.  

Historically, the black-capped vireo bred from north central Mexico through 

central Kansas (Graber 1961).  Presently, this species is known to breed only from the 

 



6 

SW Tamaulipas in Mexico through central Texas, particularly the Edwards Plateau, and 

into 2 counties in central Oklahoma (Farquhar and González 2005, Campbell 1995).  

The Texas population is distributed through the oak (Quercus spp.)-cedar (Juniperus 

spp.) woodlands of the Hill Country and Balcones Escarpment of the Edwards Plateau 

(Graber 1961).  In Eastern Edwards Plateau, breeding habitat is patchy, deciduous 

woody cover subject to periodic fire, and mixed with little to no juniper (Grzybowski et al. 

1994). It is also important that the vegetation cover reach the ground as the birds nest 

only 1-6 feet above the ground (Campbell 1995).  Overgrazing, drought, and fire 

suppression in these areas result in reduced black-capped vireo habitat (Campbell 

1995, Graber 1961). Brown-headed cowbird parasitism is a factor thought to influence 

population declines.  Unlike many other bird species, black-capped vireos abandon 

parasitized nests instead of just removing the cowbirds eggs.  

Of the 613 bird species reported in Texas, the golden-cheeked warbler is the 

only endemic nesting bird (Ladd and Gass 1999) and it breeds exclusively in the cedar 

breaks of the Edwards Plateau (Campbell 1995, Vidal et al. 1994, Kroll 1980).  The 

large contiguous blocks of mature juniper-oak woodlands that served as breeding 

habitat in the past have declined. Kroll (1980) explains that they are dependent upon 

mature juniper trees (generally greater than 40 years old) for nesting and as well as on 

oaks for forage.  The decline of the golden-cheeked warbler populations is believed to 

be, in part, the result of habitat reduction and fragmentation of golden-cheeked warbler 

nesting habitat (U. S. Fish and Wildlife Service 1992, Campbell 1995, Beardmore 

1994).  Overbrowsing by white-tailed deer, goats, and exotic wildlife species, on 

seedling oaks and other deciduous trees which are important to warbler habitat 

(Campbell 1995) as well as clearing of mature juniper trees (Ladd and Gass 1999) are 
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contributing to the decrease in both current and future suitable habitat.  Another 

possible factor is brood parasitism by the brown-headed cowbird (Jetté et al. 1998).  

Habitat Modeling 

 Ecosystems are three-dimensional segments of the earth where life forms and 

environment meet (Cleland et al. 1997). A primary ecological question is: why does a 

species occur in one place but not another (Caughley and Sinclair 1994)?  The study of 

relationships between a species and its environment is a common theme of much 

ecological research; however, today it is moving to the forefront of conservation and 

planning (Seoane et al 2004). A common approach to understanding a bird’s 

relationship to its habitat is to examine the local vegetation found in the patches 

surrounding individuals of that species (Penhollow and Stauffer 2000). However, 

evidence suggests that birds are also impacted by the landscape surrounding their own 

patch (Dearborn and Sanchez 2001, Penhollow and Stauffer 2000, Rolstad et al 2000).   

The wildlife-habitat relationship system and the habitat suitability index 

developed by the United States Fish and Wildlife Service were among the first habitat 

models used to predict wildlife presence.  However, these models were based on 

literature reviews and did not pertain to well-defined populations (Dettmers and Bart 

1999).  They were not based on statistical models, and many were not field-tested, or 

they performed poorly when tested.   

The use of Geographic Information Systems (GIS) and remote sensing 

technologies in the field of wildlife management has grown in the last decade (Allen 

1994).  Models developed using GIS and data derived by remote sensing can be 

effective tools for conservation planning and management, as well as reducing land use 
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conflicts and development costs (Wu and Smeins 2000).  The use of GIS in field 

ornithology is encouraged by Shaw and Atkinson (1990) to reduce labor.  

Studies such as that by Debinski et al. (1999), which use habitat categories from 

GIS and remotely sensed data to relate various habitats to species distributions and 

Dettmers and Bart (1999) which developed a model based on presence data for nine 

songbirds and used it to predict the amount of good habitat and its spatial distribution., 

demonstrate the versatility of such data.  Another study by Mitchell et al. (2001), 

predicted the distribution of birds based on combined micro-habitat and landscape 

models.  They found that “coarse landscape (large scale) characteristics are most 

important to migratory bird species that are limited in the number of habitats that they 

can use for breeding”.  These studies and our knowledge of black-capped vireo and 

golden-cheeked warbler declining breeding habitats suggests that both species make 

good candidates for a GIS habitat assessment model developed. 

The use of remote sensing data and the growing need to assess vegetation 

spatial patterns and predict response to restoration or sustainable management has 

also become more important in recent years (Dymond and Johnson 2002).  Remotely 

sensed data provide some advantages over data collected in the field, as it is often 

lower cost for a larger area, can be imported directly into a GIS system for analysis, and 

can easily be used to monitor change in an area over time (Mack et al. 1997).  The 

various forms of available remotely sensed data provide information that is 

multidimensional.  Horizontal, vertical, multi-spectral, and in some cases multi-temporal 

data can be derived from remotely sensed data (Innes and Koch 1998). Edwards et al. 

(1996) state that “as conservation efforts begin placing greater emphasis on landscape 

scales, there is a need to make better use of site- and species-specific habitat relation 
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models in predicting broad-scale spatial distributions”, the scale dimensionality provided 

by remote sensing provides a means to better reach that goal.   

Remote sensing data does have its limitations and drawbacks; for example, the 

spatial and temporal scales of interest may not be easily resolved from available data 

but many species distribution models have been successfully derived using this type of 

data (Mack et al. 1997).  Franklin and Steadman (1991) used GIS and remote sensing 

data to map habitat for Polynesian birds on Cook Islands. In addition, Knick and 

Rotenberry (1995) used Landsat data to evaluate landscape characteristics of 

fragmented shrub steppe on passerine birds. Further, Thompson and Klassen (1980) 

used Landsat to map caribou habitat in Canada, while Edwards et al. (1996) used 

Landsat to evaluate habitat relation models for terrestrial vertebrates.  The lowest 

omission and commission errors, thus highest accuracy, were exhibited by the bird 

(1.86%, 7.51%, 90.63%) and mammal (4.92%, 11.50%, 83.58%) habitat relation models 

(Edwards et al. 1996). 

Various species respond differently, and to varying degrees, to habitat 

disturbances due to differences in habitat requirements (Riitters et al. 1997). As 

Dearborn and Sanchez (2001) stated, “proper management of endangered species 

requires an understanding of habitat use at a variety of spatial scales”.  They further 

claimed that defining “suitable habitat” for birds requires recognition of habitat selection 

at a hierarchical scale which was supported by Penhollow and Stauffer (2000).  Rolstad 

et al. (2000) used this approach to evaluate habitat selection as a hierarchical spatial 

process for the green woodpecker (Picus viridis).  Thus, when investigating avian-

habitat relationships and building habitat suitability maps it has been shown to be 

important to consider multiple spatial scales.  
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Scale is defined by Maurer (2002: 125-126) as “the resolution at which patterns 

are measured, perceived, or represented”.  Species distribution results from “decisions” 

by an animal on a hierarchical series at varying spatial scales (Penhollow and Stauffer 

2000).  Thus it is important when managing a species to understand habitat use at 

varying spatial scales, particularly when working with endangered species (Dearborn 

and Sanchez  2001).  Scale can be both fine and coarse, either spatial or temporal and 

the importance of a variable can vary in influence depending on scale (Gillespie and 

Walter 2001).  Therefore it is important to use data that are relevant to the time and 

place you are researching and understand the limitations of each data set (Wiens 2002: 

746-747).  Landscape ecology emphasizes broad scale temporal and spatial 

arrangements within ecosystems (Saveraid et at. 2001).   At all scales it is important to 

remember the roles of both biotic and abiotic factors and their interactions that can 

potentially impact habitat selection (Heglund 2002, Turner et al. 2001).   

Habitat models have been used to determine habitat suitability, distribution, and 

abundance (Aspinall and Veitor 1993).  These models, built using biotic and abiotic 

variables, have been useful tools for land managers, allowing them to test the effects of 

a treatment on a population when the pre-treatment population structure is determined 

(Wu and Smeins 2000).   

Biotic factors such as vegetation have been used as a source of potential 

predictors because they generally provide a more direct link with reproductive success; 

however, topographic and climatic maps are easier to obtain, in some cases are easier 

to work with, and do not need to be updated as frequently (Seoane et al 2004).   Abiotic 

factors include climate, elevation, aspect, slope, and the curvature of the land - i.e. 
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slope shape, concave or convex (Seoane et al. 2004, Turner et al. 2001, Butler and 

Goetz 1986).   

Butler and Goetz (1986) discussed the impact that abiotic factors can have on 

vegetation, soil temperature, and air movement.  Slope gradient influences infiltration 

rates, runoff, nutrients, and sedimentation processes which can impact vegetation 

development.  Concave landscapes are moister and yield higher biomass than convex 

landscapes which tend to have sparser vegetation cover.  Turner et al. (2001) 

discussed how (in the northern hemisphere) south-facing slopes receive more radiation 

than north-facing slopes.  They also discussed how the shape of the landscape can 

influence the movement of wind and water, i.e. dispersal pathways, for wind blown 

seeds and in some cases even animals.  Landform can also influence the frequency 

and spatial pattern of natural disturbances such as fire.  Some examples of how 

topographic features such as aspect or slope can influence a species can be seen in a 

study done by Weiss et al. (1988) that found that “topographic diversity on several 

scales is a prime indicator of habitat quality for this butterfly (Euphydryas editha)”.  They 

found that larvae developed into pupae earlier on warmer slopes and the availability of 

direct sunlight can be limiting to their survival.  Seoane et al. (2004) found that although 

the predictive ability of the topo-climatic models was not as high as the vegetation 

models or the vegetation /topo-climatic models, they could be used to build a predictive 

avian habitat model.  The lack of predictive power was found to be related to the higher 

number of potential predictors available for the vegetation and vegetation /topo-climatic 

models. 
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Remote Sensing 

Remotely sensed data, such as LandSat and Light Dectection and Ranging data 

(LiDar), can be used to derive some of the biotic and abiotic factors used in habitat 

modeling.  Remotely sensed data can be classified using either traditional or sub-pixel 

classifications.  The primary difference between traditional classifications and sub-pixel 

classifications is the process that is used to develop a signature.  Traditional 

classifications develop a signature by averaging the spectra of all pixels within a training 

set.  The resulting signatures contain contributions to the signature from all materials 

present within all training pixels.  They do not account for the “strength” of a pixel.  In 

contrast, sub-pixel classification derives its signature from a component that is common 

throughout the training pixels. It produces a more “pure” material of interest (MOI) 

signature (Applied Analysis Incorporated 2003).  Also, the sub-pixel classification allows 

the user to develop a signature for a MOI that is transferable between scenes. 

All land cover types absorb specific portions of the electromagnetic spectrum 

giving it a distinguishable “signature” of electromagnetic radiation.  The sub-pixel 

classification allows for the variability between like objects within the signature 

developed for each MOI.  Some variability can also be caused by other materials 

present that may also be common therefore it is important to validate a subset of the 

predictions from the first signature development run.  Pixels are predicted as accurate, 

over predicting percent cover, predicting the MOI cover were none was present, or not 

predicting occurrence were the MOI was present.  This knowledge allows users to 

return to the input parameters and create a “tighter” signature for an MOI through 

identifying and eliminating variability within the signature introduced by non-target 

materials and false predictions (Applied Analysis Incorporated 2003). 
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Objectives 

My primary goal was to determine factors related to GCWA (golden-cheeked 

warbler) and BCVI (black-capped vireo) occurrence during the breeding season; and 

then to develop some preliminary models for predicting site occupancy.  The specific 

objectives were to (1) determine the predictive ability of remotely sensed topographic 

and vegetative variables in identifying habitats occupied by GCWA and BCVI at multiple 

spatial scales, (2) develop a series of alternative models to serve as candidates for 

predicting species occurrence across an area larger than that from which the original 

models were derived, (3) identify a “best model” by estimating the accuracy rates of all 

candidate models. 
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STUDY AREA 

The broad geographic area of interest was the Leon River watershed as it 

traverses Coryell and Hamilton Counties in central Texas (Figure 1).  This area includes 

3 natural ecological regions: Lampasas Cut Plains, Grand Prairie and Western 

Crosstimbers (Texas Parks and Wildlife 2001).  Elevation ranges from 183 to 549m 

(The Texas State Historical Association 2001).  Ecological sites include steep adobe, 

low stoney hill, loamy bottomland, and clay loam (National Cartography and Geospatial 

Center 2002).  The most intensive field work for this project occurred in the Coryell 

Creek sub-watershed which encompasses 22,027 ha of Coryell County and ranges 

from 183 to 455m in elevation (Coryell County Profile 2005).   

The average maximum temperatures in July, 2004 for Hamilton and Coryell 

Counties were, 33.1°C and 32.2°C with the average minimum temperature in February, 

2004 at -0.33°C and 1.55°C respectively (National Oceanic and Atmospheric 

Administration 2004).  Average annual rainfall for this area ranges from 75cm to 81cm 

(The Texas State Historical Association 2001).  Precipitation during the 2 years of this 

work was 139cm and 123 cm in 2004; and 67cm and 80cm in 2003 in Coryell and 

Hamilton Counties, respectively (National Oceanic and Atmospheric Administration 

2004). 

Woody vegetation includes live oak, Ashe juniper (Fowler and Dunlap 1986), red 

oak (Quercus rubra), pecan (Carya illinoensis), shin oak (Quercus sinuata), spanish oak 

(Quercus texana), post oak (Quercus stellata), and mesquite (Prosopis glandulosa), 

Texas persimmon (Diospyros texana) (The Texas State Historical Association 2001).  
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Figure 1. Study area and the Coryell Creek sub-watershed catchment within the Leon 
River Watershed. Hamilton and Coryell County are boldly outlined. Shown are both 
survey sites used for model building and model validation. 
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METHODS 

Sample Site Selection 

The area of interest for collecting bird site-occupancy data is the Coryell Creek 

sub-watershed.   Most of the area is private farm and ranch land; survey locations were 

somewhat constrained by access to private lands.   County appraisal records were used 

to construct a list of landowner contacts in the area.  Using aerial photography, and on-

the-ground validation, I reduced the pool of candidate properties by eliminating 

consideration of those not dominated by native rangelands.  Sites were distributed 

among the remaining properties depending upon a combination of access rights and 

approximate spatial distribution across the area of interest.  Once properties were 

selected and access confirmed, survey points were established across the property.  

Beginning at an arbitrary point, survey sites were systematically spaced. The goal was 

to sample sites representing the full range of available habitats.   

Two independent datasets of survey points were collected for this study, one 

throughout the Leon River Watershed, and one within the Coryell Creek sub-watershed.  

The purpose of this was twofold. First, this was done to provide both a model building 

dataset and a model testing dataset.  Second, we wanted to test the accuracy of a 

model whose data were collected within a subset of the study area when applied across 

the larger study area.  A total of 400 survey points was placed throughout the Coryell 

Creek sub-watershed spaced at a minimum distance of 200m (Figure 2).   Three-

hundred and seventy-six survey points were collected within the Leon River Watershed, 

spaced at a minimum distance of 400m.  The larger spacing within the Leon River 

Watershed was chosen to allow the model to be tested across the larger study area.   
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Survey Protocol 

Species selected for survey included two focal species, the golden-cheeked 

warbler (GCWA) and the black-capped vireo (BCVI).  Also included were northern 

bobwhites, brown-headed cowbirds, white-eyed vireos, bells vireos, and painted 

buntings. Surveys were conducted from mid-March until the end of May.  Surveys 

started 15 minutes before sunrise and concluded by 1100 hours due to Bolisinger’s 

(2000) observations that golden-cheeked warblers start singing 20 minutes before 

sunrise and do most of their singing during dawn hours.  To reduce variability due to 

weather, surveys were not conducted under rainy or high-wind conditions. A fixed-

radius (100 m radius) point count, following Hutto et al. (1986), was conducted at each 

site.  Each site was surveyed for 12 minutes (hereafter referred to as a survey period).  

Survey periods were broken up into 3 segments: the first segment consisted of a 

6 minute auditory survey, the second segment was comprised of a 1 minute golden-

cheeked warbler playback followed by a 2 minute auditory survey and the third segment 

was comprised of a 1 minute black-capped vireo playback followed by another 2 minute 

auditory survey. Playbacks were played on MP3 players attached to portable speakers. 

Individual birds heard or seen within a 100m radius were recorded and distance from 

the observer to the bird estimated.  Each site was visited three times, once early in the 

breeding season, the mid-season, and late season.  A site was classified as occupied if 

the bird was detected during any survey visit (Siegel et al. 2001).  Presence or 

(assumed) absence data for all surveyed species were placed in a table containing the 

geographic coordinates for each point.  

Survey data collected in 2003 using the same techniques described above were 

used to validate model reliability for use across a broader landscape.  These data 
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consist of 376 survey points spread throughout Hamilton and Coryell Counties at a 

minimum distance of 400m (Figure 3).  This is hereafter referred to as the Leon River 

Watershed data. 

Vegetation Surveys 

 Vegetation surveys were conducted at 161 sites throughout the Coryell Creek 

sub-watershed.  Each site was broken into 4 quadrants using 4 cardinal directions as 

the X and Y-axis for 15m in each direction.  Percent cover by category within each 

quadrant was visually estimated and placed into 6 categories that correspond with 

Landsat data output, and 2 categories of woody less than 1.5m. These are juniper, live 

oak, post oak, spanish oak, deciduous and shrub, juniper less than 1.5m and non-

juniper woody cover less than 1.5m, and dead growth.  Percent cover was first recorded 

as proportion occupied by woody cover versus open ground, then subsequently broken 

down into the 8 categories.  Within each quadrant, ground cover was also estimated.  

Ground cover categories consist of prickly pear, herbaceous, bare, and rock.  Average 

percent cover type at each point was calculated by averaging the values each category 

from all 4 quadrants (Appendix A).  
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Figure 2. Locations of avian survey sites throughout the Coryell Creek sub-
watershed.   
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Figure 3. Locations of avian survey sites throughout the Leon River Watershed.  
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Image Classification 

ERDAS Imagine ® software is a program used to analyze remotely sensed data.  

It was developed by Leica Geosystems specifically to analyze imagery.  ERDAS 

Imagine software was used to perform a sub-pixel analysis of the Landsat TM imagery 

used in the development of the predictive occupancy models.  The selected image was 

acquired on July 19, 2003 (Center for Space Research, 2003). 

Imagery was collected on a clear day with minimal cloud coverage during the leaf-on 

phase of plant growth.  Imagery from four possible dates was analyzed post 

classification to determine which image provided the most accurate data based upon 

ground validation.  

 The sub-pixel classifier within ERDAS Imagine performs a supervised, non-

parametric spectral detection and quantification for a specific material of interest (MOI) 

at a sub-pixel, or 30m x 30m, level.  This allows the user to determine the percentage of 

the MOI within a pixel, from 20% to 100% using a spectral signature (Applied Analysis 

Incorporated 2003).  This process allows the user to discriminate between multiple 

MOIs within a mixed pixel (a pixel that contains more than one signature). 

The sub-pixel analysis was used in place of the traditional supervised 

classification or unsupervised classification due to its ability to break down a mixed pixel 

into components and its transferable signature (Appendix B).  A non-rectified image 

(one that has had objects within the 2-D image adjusted so that the relative distance 

between them is equal to the real distance on the 3-D curvature of the earth’s surface) 

was used for the classification to avoid “warping” pixels prior to analysis.  The image 

was classified separately for each individual MOI (material of interest); these were 
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juniper, live oak, spanish oak, post oak, deciduous, and shrub. The categories were 

selected to best approximate the majority of wooody vegetation found on the ground.   

To develop a signature for each MOI, the following steps were taken.  First, an 

area of interest was developed using pixels that are known to contain the target MOI, 

these are referred to as training pixels.  The Global Positioning System (GPS) was used 

to locate specific areas to determine the approximate percent coverage for each target 

MOI thus allowing us to develop a spectral classification separate of the wildlife data 

(Aspinall and Veitor 1993).  The corresponding pixels for these areas were located and 

used to develop training pixels.  Automatic signature derivation, which takes all training 

pixels for a specific MOI and evaluates them for a common composition of spectral 

measurements (i.e. absorption and reflectance values), was used to produce the initial 

MOI signatures.  Fifty new locations were selected, downloaded to GPS, and field 

validated to account for variability within the signature.  This yielded a signature useful 

for the final analyses of the Landsat imagery for each MOI. 

Multiple classifications were run for each MOI on the selected image by varying 

spectral criteria, i.e. acceptable standard error. All classification runs were compared to 

ground data and evaluated using linear regression. The strongest (most accurate) run 

for each MOI was then selected and used for all further data analyses requiring 

vegetation variables.  
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Once image classification was complete and classification runs selected, all 

vegetation layers were exported to ArcMap 8.0. Spatial Analyst rastor calculator was 

used to develop masks (a layer showing presence/absence at each pixel) for all 

vegetation layers.  The resulting layers were areas of >20%, >50%, >70%, and >90% 

cover by each MOI at both the 100m and 400m radius.  

GIS Database 

 Various GIS layers (described below) were used in the development of 

models1.  ArcMap 8.0 was used for analysis except for when required extensions were 

only available for ArcView 3.3.  Digital elevation models (DEMs) were downloaded from 

the TNRIS website (U.S Geological Survey, 2004). All DEMs were at a 30m x 30m 

resolution.  ArcToolbox 8.3 was used to project them and convert them into ESRI grids.  

The 3-D Spatial Analyst extension, surface analyst option was used to generate percent 

slopes with a Z-factor of 1 and a 30 cell output.  The Spatial Analyst rastor calculator 

was then used to convert the each grid output to a shapefile. Once shapefiles were 

completed for all necessary DEM quadrats, the new shapefiles were imported into 

ArcToolbox projection wizards and put in the proper projection. Finally, all DEM 

shapefiles were merged using the Geoprocessing wizard.  

                                                 
1 All GIS data was projected into WGS Nad 83 zone 14. 
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The DEMs and the 3-D Spatial Analyst extension, surface analyst option were 

then used to develop an aspect layer for the area.  Northings and Eastings were then 

calculated from the aspect layer using the Spatial Analyst rastor calculator and the 

following formulas: 

Northings 1: CON ([aspect] <= 180, [aspect], 0) 

Northings 2: CON ([aspect] >180, 360 - [aspect], 0) 

Northings: SUM (Northings1 + Northings2) 

Eastings1: CON ([aspect] = -1, [aspect], 0) 

Eastings2: CON ([aspect] >= 0 & [aspect] <= 90, 90 - [aspect], 0) 

Eastings3: CON ([aspect] > 90 & [aspect] <= 180, [aspect] – 90, 0) 

Eastings4: CON ([aspect] >180 & [aspect] <= 270, [aspect] – 90, 0) 

Eastings5: CON ([aspect] >270 & [aspect] <= 360, 360 - [aspect] + 90, 0) 

Eastings: SUM (Eastings1 + Eastings2 + Eastings3 +Eastings4+ Eastings5) 

The DEMs were then imported into Surfer 8.0 to develop both plan curvature 

and profile curvature maps using the Grid Calculator.  These maps were then converted 

into an ArcView grid using the surfer extension 2.8.  

Finally, The ecological site shapefile was acquired from the Soil Survey 

Geographic database (SSURGO) hosted by the Natural Resource Conservation 

Service (NRCS) of the US Department of Agriculture (National Cartography and 

Geospatial Center 2002).  These data were used since they contain the highest level of 

detail published by the National Cooperative Soil Survey.  The file was published in Fort 

Worth, Texas, by the NRCS and was last updated on January 31, 2002.  The map is in 

a 7.5 minute quadrangle format and includes detailed, field verified data.  
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Once all layers were completed they were imported into ArcMap along with both 

the Coryell Creek data and the Leon River data.  Zonal statistics were then performed 

upon each data set respectively using both a 100m and a 400m radius buffer.  These 

distances were used to address the findings of Magness et al (2005), which suggested 

that golden-cheeked warbler occurrence is more reliably predicted at a larger (400m 

radius) landscape scale when compared to fine scale 100m radius findings by Juarez 

(2005).  The soils data at each landscape scale were converted into percent cover.  The 

7 most frequent ecological sites were used in this study. 

Model Development and Verification 

Mann-Whitney-U tests were used to test for differences in habitat variables 

according to known occupancy.  Variables, for both the 100m and 400m spatial scales, 

were individually evaluated at the species level using univariate logistic regression (LR).  

Stepwise logistic regression was then used to screen variables, and multiple logistic 

regression applied to relate independent variables to known occupancy and develop a 

series of alternative models for predicting occupancy.   Models were developed using 

the Coryell Creek data and then tested for reliability across the Leon River Watershed 

using a separate dataset. 

Variables with a p-value >0.15 were eliminated.  At each spatial scale, remaining 

variables (p < 0.15) were then evaluated using the Spearman’s rank correlation 

coefficient (rs) where |rs| >0.15 was considered significant.  All possible variable 

combinations for both spatial scales were then evaluated using backwards-stepwise LR.  

Likelihood ratio statistic (Field 2000) was used to determine the removal of variables 

with the p-value set at 0.10 for removal and 0.05 for entry.  Models were then evaluated 

using ROC (Receiver Operating Characteristic curve) and McFadden’s Rho-square 
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values, with the top five models for both species at each landscape scale selected for 

validation (Hosemer and Lameshow 2000).  When possible, similar models were used 

at both landscape scales.  Model intercept and variable coefficients were recorded.  

The top five models for each species were then applied to the Leon River 

Watershed data to assess predictive capabilities using the following equation:  

 e[Intercept + (coefficient α * variable α) + (coefficient β * variable β) + etc... 

P = ----------------------------------------------------------------------- 
            1 + e[Intercept + (coefficient α * variable α) + (coefficient β * variable β) + etc... 

 

 Alternate thresholds for determining “occupancy” were then evaluated in an 

effort to minimize the proportion of false negative results (Pearce and Ferrier 2005). 
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RESULTS 

Bird Abundance 

 A total of 2,400 individuals of 7 selected species were detected within Coryell 

Creek sub-watershed at 372 of the 400 survey sites (Table 1).  At the majority of the 

sites (70.3%), more than one species was detected.  The two most abundant observed 

species were the brown-headed cowbird (n = 1,518) and the painted bunting (n = 487).  

The least common species were the bell’s vireo (n = 2) and the black-capped vireo (n = 

35).  The most widespread species was the painted bunting which occupied 73.8% of 

the sites, and the least widespread was the bell’s vireo at 0.5% of the sites.   Golden-

crowned warblers were observed at 130, or 32.5 %, of the sites. 

Species Co-occurrence 

 Analysis of co-occurrence revealed two significant associations between four of 

the seven species (Table 2).  However, both detected associations were relatively 

inconsistent. Golden-cheeked warblers and northern bobwhites showed a negative 

association (Cramer’s V = -0.124; p≤ 0.05); golden-cheeked warblers were 93.0% more 

likely to occur at a site where northern bobwhites were absent.  A positive association 

was found between the brown-headed cowbird and the northern bobwhite (Cramer’s V 

= 0.105; p≤ 0.05).  

Ground Vegetation 

 Ten categories of mean foliage cover were recorded at 161 survey sites 

within Coryell Creek sub-watershed (Table 3).  Cover categories include, Ashe juniper, 

live oak, spanish oak, post oak, deciduous (non-oak), shrub, hardwoods < 1.5 m,  ashe 

juniper < 1.5 m, dead cover, prickly pear, overall woody cover, and overall open area.  
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Table 1.  Number of individuals detected, number of sites occupied by species, and percent 
occupancy at 400 survey sites following 3 survey visits, in the Coryell Creek sub-watershed, 
Texas. A site was considered occupied if a species was found at the location at least one out 
of three visits.  
 

Common 
Name 

 
Species 

 
 
 
Scientific Name Codea # Indiv. 

# Sites 
Occupied 

% 
Occupied 

 
Northern bobwhite  Colinus virginianus NOBO 68 52 13.0 
 
White-eyed vireo  Vireo griseus WEVI 78 68 17.3 
 
Bell's vireo  Vireo bellii BEVI 2 2 0.5 
 
Black-capped 
vireo  Vireo atricapillus BCVI 35 27 6.8 
 
Golden-cheeked 
warbler  Dendroica chrysoparia GCWA 212 130 32.5 
 
Painted bunting  Passerina ciris PABU 487 295 73.8 
 
Brown-headed 
cowbird  Molothrus ater BHCO 1518 231 57.8 
a Species codes for birds as found in the North American Bird Banding Manual (Gustafson et 
al. 1997). 
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Table 2.  Species co-occurrence expressed as percent of sites occupied by species B out of 
all sites occupied by species A, and Cramer’s values (V) of association between (significant 
only) species pairs, in the Coryell Creek sub-watershed,Texas.   

 
 %, (V)      
 Species B      

Species A 
 

NOBO 
13.0a

WEVI 
17.3 

BEVI 
0.5 

BCVI 
6.8 

GCWA 
32.5 

PABU 
73.8 

BHCO 
57.8 

 
Northern 
bobwhite 
(NOBO) 

__ 19.2 1.9 3.8 17.3** 
(-0.124) 76.9 71.2** 

(0.105) 

 
White-eyed 

vireo 
(WEVI) 

14.7 __ 0 4.4 33.8 73.8 55.9 

 
Bell’s vireo 

(BEVI) 
50.0 0 __ 0 50.0 100.0 100.0 

 
Black-capped 

vireo 
(BCVI) 

7.4 11.1 0 __ 40.7 74.1 66.7 

 
Golden-
cheeked 
warbler 
(GCWA) 

15.9** 
(-0.124) 17.7 0.8 8.5 __ 72.3 60.0 

 
Painted 
bunting 
(PABU) 

13.6 16.9 0.7 6.8 31.9 __ 59.7 

 
Brown-
headed 
cowbird 
(BHCO) 

16.0** 
(0.105) 16.5 0.9 7.8 33.8 76.2 __ 

a Percent occupancy, the expected value, from 378 survey sites (12 minute count only). 
b Significant at **P ≤ 0.05 for χ 2 test of association. 
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Table 3. All vegetation categories used to evaluate avian species preference and Landsat 
imagery. 

Category Common Species Scientific Names* 
Juniper Cover ashe juniper Juniperus ashei 
Live Oak texas live oak Quercus virginiana 
Spanish Oak spanish oak (texas oak) Quercus texana 
Post Oak post oak Quercus stellata 

Deciduous pecan, Texas ash, american 
elm, cedar elm 

Carya illinoiensis, Fraxinus texensis,Ulmus 
americana, Ulmus crassifoilia 

Shrub flame-leaf sumac, honey 
mesquite, eastern redbud  

Rhus copallina, Prosopis glandulosa, Cercis 
canadensis 

Juniper < 1.5 m ashe juniper Juniperus ashei 

Deciduous < 1.5 m pecan, Texas ash, american 
elm, cedar elm 

Carya illinoiensis, Fraxinus texensis,Ulmus 
americana, Ulmus crassifoilia 

Dead n/a n/a 
Woody Coverage All woody species All woody species 
Open  n/a n/a 
Prickly Pear prickly pear Opuntia spp. 
Herbaceous grasses, forbes, etc. Poaceae, Ranunculaceae, etc… 
Bare n/a n/a 
Rock n/a n/a 

* As named in Shinners & Mahler’s Flora of North Central Taxes (Diggs et al. 1999) 
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At the 161 sites where vegetation measurements were taken, average wooded 

cover was 65.4% and average open area was 34.6%.  The most commonly 

encountered woody cover >1.5 m was Ashe juniper, with the mean cover value of 

35.5%.  The next most common woody coverage was deciduous with a mean cover 

value of 12.0%.  Other woody species >1.5 m accounted for 21.2% mean cover at the 

vegetation survey sites.  

Sites occupied by northern bobwhites and white-eyed vireos had significantly 

more Spanish oak than those where the species was not detected; however, in all 

cases cover was < 16.0% (Table 4).  White-eyed vireos and Bell’s vireo both 

demonstrated a significant association with areas with dead woody vegetation.  Sites 

occupied by painted buntings had significantly less live oak and prickly pear coverage 

than sites where the species was not detected, but all values were < 7.0%.  Black-

capped vireos were found at sites with more post oak, while golden-cheeked warblers 

were found at sites with more Ashe juniper, Spanish oak, post oak, and general overall 

woody cover (Table 5). However, areas where golden-cheeked warblers were found 

had less live oak and prickly pear; and were negatively associated with areas containing 

larger patches of bare ground and open canopy (Table 6). 
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Table 4.  Mean % foliar cover by woody plant group composition for bird species occupancy, from 
161 sites in the Coryell Creek sub-watershed, Coryell County, Texas. 

 Northern bobwhite White-eyed vireo Bell’s vireo 

 Occupied 
(n = 16) 

Unoccupied 
(n = 145) 

Occupied 
(n = 23) 

Unoccupied 
(n = 138) 

Occupied 
(n = 1) 

Unoccupied 
(n = 160) 

Woody group x  SE x  SE x  SE x  SE x  SE x  SE 
 
Ashe juniper 
 

38.0 5.5 35.3 2.2 35.9 6.0 35.5 2.2 31.0 --b 35.6 2.1 

 
Live oak 
 

3.1 1.7 4.2 0.7 4.2 1.7 4.1 0.1 2.5 -- 4.1 0.7 

 
Spanish oak 
 

14.6 4.1 6.0*a 0.9 15.2 4.0 5.4* 0.8 11.1 -- 6.8 1.0 

 
Post oak 
 

4.2 1.8 2.9 0.6 2.2 1.2 3.2 0.6 11.1 -- 3.0 0.6 

 
Deciduous  
 

10.0 2.5 12.5 1.1 10.1 2.4 12.6 1.1 10.1 -- 12.2 1.0 

 
Shrubs 
 

8.2 3.4 7.1 1.0 4.4 1.3 7.7 1.1 37.0 -- 7.0 0.9 

 
All hardwood 
(<1.5m in 
height) 
 

11.7 1.3 9.9 0.3 9.2 0.5 10.2 0.4 13.6 -- 10.0 0.3 

 
Ashe juniper 
(<1.5m in 
height) 
 

9.8 0.7 8.8 0.4 8.0 0.8 9.1 0.4 7.5 -- 9.0 0.3 

Overall 
woody cover 69.7 6.4 64.9 2.2 67.2 6.2 65.1 2.2 55.0 -- 65.5 2.1 

Overall open 
area 30.2 6.4 35.1 2.2 32.8 6.2 34.8 2.2 45.0 -- 34.5 2.1 

Dead cover 7.5 3.3 5.3 0.7 10.0 2.7 4.8** 0.6 28.4 -- 5.4* 0.7 

Prickly pear 
cover 6.6 2.4 4.7 0.7 4.2 1.8 5.0 0.7 0 -- 4.9 0.7 

a Significant at * P ≤ 0.01 when comparing occupied versus unoccupied sites (Mann-Whitney tests). 
b Sample size too small for SE calculation 
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Table 4.  (continued) 

 Painted Bunting Brown-headed Cowbird 

 Occupied 
(n = 108) 

Unoccupied 
(n = 53) 

Occupied 
(n = 96) 

Unoccupied 
(n = 65) 

Woody group x  SE x  SE x  SE x  SE 
 
Ashe juniper 
 

37.7 2.5 31.1 3.6 35.5 2.7 35.6 3.2 

 
Live oak 
 

2.9 0.6 6.5***a 1.5 4.1 0.8 4.1 1.0 

 
Spanish oak 
 

7.9 1.3 4.7 1.1 7.2 1.4 6.3 1.3 

 
Post oak 
 

3.1 0.7 2.9 0.9 2.4 0.6 4.0 1.1 

 
Deciduous  
 

11.0 1.1 14.7 2.1 11.8 1.2 12.8 1.8 

 
Shrubs 
 

7.13 1.2 7.38 1.7 8.1 1.4 6.0 1.2 

 
All hardwoods 
(<1.5 m in height) 
 

9.9 0.4 10.3 0.5 10.3 0.4 9.7 0.4 

 
Ashe juniper  
(<1.5 m in height) 
 

9.4 0.4 8.0 0.5 9.2 0.5 8.5 0.4 

Overall woody 
cover 64.4 2.5 67.4 3.8 64.8 2.7 66.3 3.4 

Overall open area 35.6 2.5 32.4 3.8 35.3 2.7 33.5 3.4 

 Dead cover 6.2 0.9 4.2 10.0 5.4 0.9 5.7 1.1 

Prickly pear cover 5.7 0.9 3.1** 10.0 4.5 0.8 5.3 1.1 

a Significant at *P ≤ 0.10, **P ≤ 0.05, or ***P ≤ 0.01 when comparing occupied versus 
unoccupied sites (Mann-Whitney tests). 
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Table 5.  Mean % foliar cover by woody plant group composition for black-capped vireo and golden-
cheeked warbler occupancy, from 400 sites in the Coryell Creek sub-watershed, Coryell County, 
Texas. 

 Black-capped Vireo Golden-cheeked warbler 

 Occupied 
(n =14 ) 

Unoccupied 
(n = 147) 

Occupied 
(n = 58) 

Unoccupied 
(n = 103) 

Woody group x  SE x  SE x  SE x  SE 
 
Ashe juniper 
 

31.5 8.2 35.9 2.1 41.3 3.3 32.2** 2.5 

 
Live oak 
 

2.3 1.2 4.3 0.7 2.7 0.9 4.9* 0.9 

 
Spanish oak 
 

5.9 2.7 6.9 1.0 9.8 1.9 5.2*** 1.0 

 
Post oak 
 

7.0 3.4 2.6**a 0.5 3.6 0.9 2.7*** 0.7 

 
Deciduous  
 

10.0 3.1 12.4 1.1 13.5 1.7 11.5 1.2 

 
Shrubs 
 

12.0 4.3 6.8* 1.0 6.8 1.5 7.4 1.2 

 
All hardwoods 
(<1.5m in height) 

10.7 0.8 10.0 3.3 10.8 0.5 9.6 0.4 

 
Ashe juniper  
(<1.5m in height) 
 

9.5 0.3 8.9 0.4 9.6 0.5 8.6* 0.4 

Overall woody 
cover 62.2 8.2 65.7 2.2 74.8 3.2 60.1*** 2.6 

Overall open 
area 37.9 8.2 34.3 2.2 25.3 3.2 39.8*** 2.6 

Dead cover 3.2 1.6 5.7 0.7 5.9 1.1 5.3 0.8 
Prickly pear 
cover 4.9 1.7 4.8 0.7 2.8 0.8 6.0** 0.9 
a Significant at *P ≤ 0.10, **P ≤ 0.05, or ***P ≤ 0.01 when comparing occupied versus unoccupied sites 
(Mann-Whitney tests). 
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Table 6.  Mean % ground cover for the black-capped vireo and golden-cheeked 
warbler for 131 occupied sites and unoccupied sites in the Coryell Creek sub-
watershed, Coryell County, Texas. 

 Black-capped vireoa Golden-cheeked warbler 
 Occupied 

(n =11 ) 
Unoccupied 

(n = 120) 
Occupied 
(n = 38) 

Unoccupied 
(n = 93) 

Ground cover x  SE x  SE x  SE x  SE 
 
Bare ground 
 

48.0 6.5 52.9 2.1 44.2 3.8 55.9***a 2.3 

 
Rock 
 

7.5 4.1 14.8 2.1 21.3 4.5 11.2* 2.0 

 
Herbaceous 
 

30.8 5.5 23.0 1.7 21.7 3.1 24.5 1.9 

a Comparison of occupied sites versus unoccupied sites (Mann-Whitney U-test). 
Significant at *P ≤ 0.10, **P ≤ 0.05, or ***P ≤ 0.01 
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Landsat Image Classification 

Linear regression was used to identify the best of each Landsat imagery 

classification for each category. Ground measurements for juniper cover were 

regressed against imagery measurements for mean juniper cover values at the 100m 

spatial scale to test predictive accuracy of each run. Juniper run 16 (R2= 0.40, F-ratio= 

102.71, P  <0.001) was selected to be used for model building.  This method was then 

applied to evaluate the ability of the imagery to identify shrub2.  Imagery run SH28 (R2= 

0.04, F-ratio= 6.458, P= 0.01) was selected for determining shrub cover within the 

models.  

Model Development 

Summary statistics for all 24 vegetation variables and 22 geomorphic variables 

within the Coryell Creek sub-watershed were calculated for black-capped vireo 

(Appendix D, Appendix E) and golden-cheeked warblers (Appendix F, Appendix G) at 

both spatial scales (100m and 400m).  Using univariate LR, 32 golden-cheeked 

warblers variables (Appendix C) and 16 black-capped vireo variables (Table 7) were 

found to be significant (p ≤0.15) at the 100m scale. Of the golden-cheeked warblers 

variables at this scale, 21 (65.6%) were vegetation variables and 11 (34.4%) were 

geomorphic variables. For black-capped vireos, 10 (62.5%) were vegetation variables 

and six (37.5) were geomorphic variables.  

                                                 
2 Four other vegetation correlations (live oak, spanish oak, post oak, and deciduous) were 
calculated for other cover types, however, none were used in the final models. 
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At the 400m spatial scale, 27 golden-cheeked warblers variables (Table 8) and 

15 black-capped vireo variables were significant (Table 9). At this scale, 19 (70.4%) of 

the golden-cheeked warblers variables were vegetation and 8 (29.6%) were 

geomorphic while 11 (73.3%) of the black-capped vireo variables were vegetation and 

four (26.7%) were geomorphic.  

Once multi-collinearity was tested for all variables at both scales backwards 

step-wise selection was used upon all combinations of non-correlated variables.  These 

combinations of variables (model) ranged from 2-4 variables.  Once completed, the top 

five models were selected based upon ROC and rho-square values for both species at 

the 100m (Table 10) and the 400m (Table 11) spatial scales.  The ROC scores tell 

usindicate the probability of accurately discriminating between an occupied site versus 

an unoccupied site. Nine variables comprised all 10 GCWA models with juniper cover 

greater than 70%, mean departure from north, and maximum slope found in models at 

both spatial scales (Figure 4).   
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Table 7. BCVI significant (p ≤ 0.15) variables determined using 
univariate logistic regression at the 100m spatial scale. 

Rank Variable P-value Coefficient (B) Rho-Sq ROC

1 PROF_MIN 0.01 -179.49 0.03 0.66
2 ASNO_MEAN 0.01 -0.02 0.04 0.65
3 LO70 0.01 0.06 0.04 0.63
4 ASNO_MIN 0.04 -0.02 0.03 0.62
5 SLOPE_MAX 0.12 0.06 0.01 0.62
6 ASNO_MAX 0.02 -0.01 0.03 0.62
7 SHR50 0.03 0.05 0.02 0.61
8 SLOPE_MEAN 0.06 0.12 0.02 0.61
9 SHR20 0.06 0.04 0.02 0.59
10 SHR70 0.09 0.04 0.01 0.59
11 JUN90 0.12 0.02 0.01 0.56
12 LO50 0.08 0.03 0.02 0.56
13 LO20 0.12 0.02 0.01 0.56
14 LO90 0.07 0.17 0.01 0.54
15 SO70 0.12 0.04 0.01 0.54
16 SHR90 0.09 0.09 0.01 0.49
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Table 8. GCWA significant (p ≤ 0.15) variables determined using univariate 
logistic regression at the 400m spatial scale. 

Rank Variable P-value Coefficient (B) Rho-Sq ROC 
1 JUN90 < 0.001 0.152 0.185 0.78 
2 DEC70 < 0.001 0.075 0.150 0.78 
3 DEC20 < 0.001 0.071 0.157 0.78 
4 DEC50 < 0.001 0.070 0.156 0.78 
5 JUN70 < 0.001 0.078 0.169 0.77 
6 PO70 < 0.001 0.143 0.139 0.77 
7 PO50 < 0.001 0.118 0.118 0.75 
8 JUN50 < 0.001 0.064 0.144 0.74 
9 PO20 < 0.001 0.102 0.103 0.73 

10 JUN20 < 0.001 0.061 0.130 0.73 
11 SO50 < 0.001 -0.195 0.112 0.73 
12 SO20 < 0.001 -0.153 0.100 0.72 
13 LO90 < 0.001 1.375 0.074 0.70 
14 SO70 < 0.001 -0.246 0.069 0.69 
15 SLOPE_MAX < 0.001 0.071 0.028 0.62 
16 ASNO_MEAN < 0.001 -0.020 0.030 0.61 
17 SLOPE_MEAN 0.010 0.179 0.013 0.61 
18 LB 0.003 1.620 0.018 0.61 
19 PROF_MIN 0.003 -117.336 0.018 0.59 
20 LO50 0.029 -0.048 0.010 0.57 
21 LO20 0.045 -0.039 0.008 0.56 
22 ASEA_MEAN 0.052 -0.010 0.008 0.56 
23 SHR90 0.133 0.157 0.004 0.56 
24 PO90 0.037 1.450 0.009 0.55 
25 LS 0.139 -0.722 0.004 0.54 
26 SHR20 0.078 -0.050 0.006 0.54 

27 CL 0.132 -8.509 0.007 0.53 
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Table 9. BCVI significant (p ≤ 0.15) variables determined using univariate 
logistic regression at the 400m spatial scale. 

Rank Variable P-Value Coefficient (B) Rho-Sq ROC 
1 SHR90 0.021 0.420 0.026 0.67 
2 ASNO_MEAN 0.006 -0.031 0.044 0.66 
3 JUN20 0.005 0.037 0.043 0.65 
4 PO20 0.014 0.055 0.029 0.65 
5 SLOPE_MEAN 0.033 0.248 0.022 0.64 
6 JUN50 0.008 0.034 0.037 0.64 
7 PO70 0.007 0.069 0.035 0.634 
8 PO50 0.010 0.061 0.032 0.64 
9 DEC20 0.015 0.031 0.030 0.63 

10 JUN70 0.010 0.036 0.035 0.63 
11 JUN90 0.007 0.060 0.035 0.63 
12 DEC50 0.015 0.030 0.029 0.62 
13 DEC70 0.027 0.029 0.024 0.62 
14 SA 0.129 1.279 0.013 0.59 
15 PLAN_MEAN 0.133 0.026 0.010 0.58 

  

 



 

Table 10: Coryell Creek sub-watershed logistic regression models for predicting avian species in central Texas 
using 100m radius variables.   
    Variables       
  Vegetation Geomorphic    

Species ID 
JUN 
70a

JUN 
50 

SHR
70 

SHR
50 

SHR
20 

Aspect 
(N)b

 
 

Slope 
(Mean)

 
Slope 
(Max)

 
Profile 

Curvature 

 
Plan 

Curvature k* ROC
Rho- 
Sq 

GCWA 1 +    -- --     3 0.78 0.17 
 2 +     --     2 0.77 0.16 
 3 +          1 0.75 0.14 
 4  +  +       2 0.76 0.14 
 5      --  +  + 3 0.64 0.04 
BCVI 1    +  --   --  3 0.72 0.09 
 2      --     1 0.65 0.04 
 3         --  1 0.65 0.03 
 4   +    +    2 0.64 0.04 
 5    +       1 0.61 0.02 
a Mean area covered by Juniper with canopy value > 70%. 
b Mean departure from North (0-180°) 
*k represents the number of parameters within each model. 
Notes: Negative and positive signs indicate variable coefficient occurrence and value within the model.  

 

 

 

 



 

 

Table 11: Coryell Creek sub-watershed logistic regression models for predicting avian species in central Texas using 400m 
radius variables.   

    Variables 
  Vegetation Geomorphic  

Species ID 
 JUN 
  90a

 JUN 
  70 

 JUN 
  20 

 SHR 
  90 

Aspect 
 (N)b

 
 Slope 
(Mean) 

 Slope 
 (Max ) 

 
   Profile 
Curvature 

 
Plan 

Curvature k ROC 
 Rho- 
  Sq 

GCWA 1 +       --  2 0.80   0.20 
 2     +   --   --  3 0.78   0.18 
 3     +       +   2 0.78   0.18 
 4     +        1 0.77   0.16 
 5     +   --     2 0.77   0.17 

BCVI 1       +  +    2 0.71   0.07 
 2    + --     2 0.75   0.10 
 3    + -- +    3 0.75   0.11 
 4    + --    -- 3 0.78   0.11 
 5      +  --    -- 3 0.72   0.09 
a Mean area covered by Juniper with canopy value > 90%. 
b Mean departure from North (0-180°) 
Notes: Negative and positive signs indicate variable coefficient occurrence and value within the model. k represents the    

r of parameters within each model. numbe
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The top five 100m and 400m GCWA models are in Figure 6 and Figure 7, respectively.  

Eight variables comprised all 10 black-capped vireo models with mean slope and mean 

departure from north used at both scales (Figure 7).  For both species at both spatial 

scales, the ratio of significant vegetation variables to geomorphic variables is 

approximately 2:1. The top five 100m and 400m black-capped vireo models are in Figure 

10 and Figure11, respectively.  

All top models were evaluated using independent survey sites 

(presence/absence) and varied thresholds ranging from 0.50 to 0.25. A lower threshold 

value allows a site to be predicted as positive at a lower level of probability.  This allows 

for increases in true positives (TP) but resulted in a decrease in the ROC values at both 

the 100m (Table 12) and the 400m (Table 13) scale (Pearce and Ferrier 2000).  For 

model building at the 100m spatial scale, the highest GCWA values were ROC = 0.78 

with a rho-square = 0.171.  At this spatial scale, the highest black-capped vireo values 

were ROC = 0.71 with a rho-squared of 0.094.  At the 400m spatial scale, the highest 

GCWA values were ROC = 0.80 with a rho-square = 0.204 and the highest black-

capped vireo were ROC = 0.78 with a rho-square of 0.111. The validated model GCWA 

100m ROC values (threshold = 0 .5) range from 0.827 to 0.851 and the black-capped 

vireo 100m ROC values range from 0.926 to 0.944. At 400m, the validated model 

GCWA ROC values (threshold =0 .5) range from 0.78 to 0.86 and the black-capped 

vireo 100m ROC values range from 0.93 to 0.94.  

The 400m models consistently had higher ROC values.  The top two GCWA 

models were 400m model 2 and model 3.  The top two black-capped vireo models were 

400m model 4 and model 2.  When the top two ranking models for each species were 

compared on a pixel by pixel basis, the top two GCWA models demonstrate the most 
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variability.  Figure 10 shows a spatial representation of areas with highest probability 

difference.  The difference in probability prediction between GCWA models ranged up to 

0.475 while the top two black-capped vireo models differ by a maximum value of 0.028. 

The top model for golden-cheeked warblers and black-capped vireos, are shown in 

Figures 13 and 14 respectively.  

When model reliability is compared between species, the GCWA models 

consistently scored higher ROC values than the black-capped vireo model.  The top 

GCWA model (model 2, Figure 13) had an ROC score of 0.80 and McFaddin’s Rho-

square of 0.204 at the 0.5 threshold while the top black-capped vireo model (model 4, 

Figure 14) had an ROC score of only 0.71 and McFaddin’s Rho-square of 0.066 at the 

0.5 threshold. 
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Figure 4a. Comparison of key vegetation types overall average values at the 100m scale 
for all 400 Coryell Creek sub-watershed points where sites with GCWA present are 
compared to GCWA absence sites. 
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Figure 4b. Comparison of the slope values, GCWA present versus absent, of all 400 
Coryell Creek sub-watershed points at the 100m scale.
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Figure 4c. Comparison of the northing aspect values, GCWA present versus absent, of 
all 400 Coryell Creek sub-watershed points at the 100m scale. 
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Figure 4d. Comparison of the mean curvature values, GCWA present versus absent, of 
all 400 Coryell Creek sub-watershed points at the 100m scale. 
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Figure 5a. Comparison of key vegetation types overall average values at the 400m 
scale for all 400 Coryell Creek sub-watershed points where sites with GCWA present 
are compared to GCWA absence sites. 
 
 
 
5b   

SLOPE_ME
GCWA ABSENCE/PRESENCE

0

1

2

3

4

5

M
E

A
N

 S
LO

P
E

PRESENCE
ABSENCE

GCWA

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5b. Comparison of the slope values, GCWA present versus absent, of all 400 
Coryell Creek sub-watershed points at the 400m scale.   
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Figure 5c. Comparison of the mean curvature values, GCWA present versus absent, of 
all 400 Coryell Creek sub-watershed points at the 400m scale. 
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Figure 5d. Comparison of the northing aspect values, GCWA present versus absent, of 
all 400 Coryell Creek sub-watershed points at the 400m scale. 
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Model 3 GCWA Probability of Occurrence 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. The top five GCWA models at the 100m scale based on ROC and McFaddin’s 
Rho-square values. All models are subset to the Coryell Creek sub-watershed, Coryell 
County, Texas. Pixel values range from 0 to 100. 
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Model 1 Model 4 

Model 5 Model 2 

Model 3 GCWA Probability of Occurrence 

Rank          Probability 

Figure 7. The top five GCWA models at the 400m scale based on ROC and McFaddin’s 
Rho-square values. All models are subset to the Coryell Creek sub-watershed, Coryell 
County, Texas. Pixel values range from 0 to 100. 
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Figure 8a. Comparison of key vegetation types overall average values at the 100m 
scale for all 400 Coryell Creek sub-watershed points where sites with BCVI present are 
compared to BCVI absence sites. 
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Figure 8b. Comparison of the slope values, BCVI present versus absent, of all 400 
Coryell Creek sub-watershed points at the 100m scale. 
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Figure 8c. Comparison of the northing aspect values, BCVI present versus absent, of all 
400 Coryell Creek sub-watershed points at the 100m scale. 
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Figure 8d. Comparison of the mean curvature values, BCVI present versus absent, of 
all 400 Coryell Creek sub-watershed points at the 100m scale. 
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Figure 9a. Comparison of key vegetation types overall average values at the 400m 
scale for all 400 Coryell Creek sub-watershed points where sites with BCVI present are 
compared to BCVI absence sites. 
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Figure 9b. Comparison of the slope values, BCVI present versus absent, of all 400 
Coryell Creek sub-watershed points at the 400m scale. 
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Figure 9c. Comparison of the northing aspect values, BCVI present versus absent, of all 
400 Coryell Creek sub-watershed points at the 400m scale. 
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Figure 9d. Comparison of the mean curvature values, BCVI present versus absent, of 
all 400 Coryell Creek sub-watershed points at the 400m scale. 
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Model 2 Model 5 

Model 1 Model 4 

BCVI Probability of Occurrence 
Rank          Probability 

Model 3 

 
Figure 10. The top five BCVI models at the 100m scale based on ROC and McFaddin’s 
Rho-square values. All models are subset to the Coryell Creek sub-watershed, Coryell 
County, Texas. Pixel values range from 0 to 100.
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Figure 11. The top five BCVI models at the 400m scale based on ROC and McFaddin’s 
Rho-square values. All models are subset to the Coryell Creek sub-watershed, Coryell 
County, Texas. Pixel values range from 0 to 100.
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Table 12.  Results of model validation using a separate set of 376 locations in the Leon 
River Watershed, Hamilton and Coryell Counties, Texas.  True positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN) for all habitat models at the 100m scale 
are shown. Model thresholds represent varying levels of confidence in correctly identifying 
occupied sites.  
BCVI   GCWA     
Threshold Model  TP TN FN FP ROC * ThresholdModel TP TN FN FP ROC

0.50 1 0.00 0.99 1.00 0.01 0.94 0.50 1 0.35 0.90 0.65 0.10 0.83
0.45  0.00 0.99 1.00 0.01 0.93 0.45  0.37 0.92 0.63 0.08 0.84
0.40  0.00 0.99 1.00 0.01 0.93 0.40  0.42 0.85 0.58 0.15 0.79
0.35  0.05 0.99 0.95 0.01 0.93 0.35  0.56 0.81 0.44 0.19 0.78
0.30  0.05 0.97 0.95 0.03 0.92 0.30  0.63 0.77 0.37 0.23 0.75
0.25  0.05 0.96 0.95 0.04 0.91 0.25  0.75 0.69 0.25 0.31 0.70
0.50 2 0.00 1.00 1.00 0.00 0.94 0.50 2 0.37 0.93 0.63 0.07 0.85
0.45  0.00 1.00 1.00 0.00 0.94 0.45  0.42 0.91 0.58 0.09 0.85
0.40  0.00 1.00 1.00 0.00 0.94 0.40  0.46 0.84 0.54 0.16 0.79
0.35  0.00 1.00 1.00 0.00 0.94 0.35  0.52 0.80 0.48 0.20 0.76
0.30  0.00 1.00 1.00 0.00 0.94 0.30  0.67 0.74 0.33 0.26 0.73
0.25  0.00 1.00 1.00 0.00 0.94 0.25  0.77 0.67 0.23 0.33 0.68
0.50 3 0.00 1.00 1.00 0.00 0.94 0.50 3 0.35 0.93 0.65 0.07 0.85
0.45  0.00 1.00 1.00 0.00 0.94 0.45  0.44 0.92 0.56 0.08 0.85
0.40  0.00 1.00 1.00 0.00 0.94 0.40  0.52 0.85 0.48 0.15 0.81
0.35  0.00 1.00 1.00 0.00 0.94 0.35  0.56 0.79 0.44 0.21 0.76
0.30  0.00 1.00 1.00 0.00 0.94 0.30  0.63 0.72 0.37 0.28 0.70
0.25  0.00 1.00 1.00 0.00 0.94 0.25  0.77 0.63 0.23 0.37 0.65
0.50 4 0.00 1.00 1.00 0.00 0.94 0.50 4 0.29 0.93 0.71 0.07 0.84
0.45  0.00 1.00 1.00 0.00 0.94 0.45  0.37 0.92 0.63 0.08 0.84
0.40  0.00 1.00 1.00 0.00 0.94 0.40  0.50 0.87 0.50 0.13 0.82
0.35  0.00 0.99 1.00 0.01 0.94 0.35  0.60 0.81 0.40 0.19 0.78
0.30  0.00 0.99 1.00 0.01 0.93 0.30  0.69 0.73 0.31 0.27 0.72
0.25  0.00 0.98 1.00 0.02 0.93 0.25  0.77 0.66 0.23 0.34 0.67
0.50 5 0.00 0.98 1.00 0.02 0.93 0.50 5 0.02 0.97 0.98 0.03 0.84
0.45  0.00 0.97 1.00 0.03 0.92 0.45  0.12 0.92 0.88 0.08 0.81
0.40  0.00 0.96 1.00 0.04 0.90 0.40  0.31 0.81 0.69 0.19 0.74
0.35  0.00 0.95 1.00 0.05 0.89 0.35  0.48 0.67 0.52 0.33 0.64
0.30  0.05 0.92 0.95 0.08 0.87 0.30  0.62 0.45 0.38 0.55 0.47
0.25   0.05 0.90 0.95 0.10 0.85 0.25   0.73 0.27 0.27 0.73 0.34

 
* BCVI ROC values are inflated by the number of correctly identified absent sites.  
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Table 13.  Results of model validation using a separate set of 376 locations in the Leon 
River Watershed, Hamilton and Coryell Counties, Texas.  True positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN) for all habitat models at the 
400m scale are shown. Model thresholds represent varying levels of confidence in 
correctly identifying occupied sites. 
BCVI GCWA 
Model  Threshold TP TN FN FP ROC*Model Threshold TP TN FN FP ROC

1 0.50 0.00 1.00 1.00 0.00 0.94 1 0.50 0.25 0.95 0.75 0.05 0.85
 0.45 0.00 1.00 1.00 0.00 0.94  0.45 0.29 0.93 0.71 0.07 0.84
 0.40 0.00 1.00 1.00 0.00 0.94  0.40 0.33 0.92 0.67 0.08 0.97
 0.35 0.05 1.00 0.95 0.00 0.95  0.35 0.38 0.90 0.62 0.10 0.83
 0.30 0.10 1.00 0.90 0.00 0.95  0.30 0.42 0.87 0.58 0.13 0.81
 0.25 0.14 0.98 0.86 0.02 0.94  0.25 0.54 0.85 0.46 0.15 0.80

2 0.50 0.10 0.99 0.90 0.01 0.94 2 0.50 0.33 0.94 0.67 0.06 0.85
 0.45 0.10 0.99 0.90 0.01 0.94  0.45 0.35 0.92 0.65 0.08 0.84
 0.40 0.14 0.98 0.86 0.02 0.93  0.40 0.38 0.89 0.62 0.11 0.82
 0.35 0.14 0.97 0.86 0.03 0.92  0.35 0.50 0.85 0.50 0.15 0.80
 0.30 0.14 0.96 0.86 0.04 0.91  0.30 0.60 0.80 0.40 0.20 0.77
 0.25 0.19 0.93 0.81 0.07 0.89  0.25 0.67 0.76 0.33 0.24 0.75

3 0.50 0.05 0.99 0.95 0.01 0.94 3 0.50 0.33 0.94 0.67 0.06 0.85
 0.45 0.05 0.99 0.95 0.01 0.93  0.45 0.35 0.92 0.65 0.08 0.84
 0.40 0.05 0.99 0.95 0.01 0.93  0.40 0.38 0.89 0.62 0.11 0.82
 0.35 0.10 0.98 0.90 0.02 0.93  0.35 0.50 0.85 0.50 0.15 0.80
 0.30 0.14 0.97 0.86 0.03 0.92  0.30 0.60 0.80 0.40 0.20 0.77
 0.25 0.14 0.96 0.86 0.04 0.91  0.25 0.67 0.76 0.33 0.24 0.75

4 0.50 0.10 0.99 0.90 0.01 0.94 4 0.50 0.33 0.95 0.67 0.05 0.86
 0.45 0.14 0.99 0.86 0.01 0.94  0.45 0.37 0.93 0.63 0.07 0.85
 0.40 0.14 0.98 0.86 0.02 0.93  0.40 0.46 0.90 0.54 0.10 0.84
 0.35 0.14 0.97 0.86 0.03 0.93  0.35 0.48 0.85 0.52 0.15 0.80
 0.30 0.14 0.95 0.86 0.05 0.91  0.30 0.58 0.80 0.42 0.20 0.77
 0.25 0.19 0.93 0.81 0.07 0.89  0.25 0.65 0.74 0.35 0.26 0.73

5 0.50 0.00 1.00 1.00 0.00 0.93 5 0.50 0.10 0.90 0.90 0.10 0.79
 0.45 0.00 1.00 1.00 0.00 0.93  0.45 0.10 0.87 0.90 0.13 0.76
 0.40 0.00 1.00 1.00 0.00 0.93  0.40 0.13 0.83 0.87 0.17 0.74
 0.35 0.00 1.00 1.00 0.00 0.93  0.35 0.15 0.79 0.85 0.21 0.70
 0.30 0.00 1.00 1.00 0.00 0.93  0.30 0.19 0.73 0.81 0.27 0.66
 0.25 0.00 1.00 1.00 0.00 0.93  0.25 0.29 0.69 0.71 0.31 0.63

 
* BCVI ROC values are inflated by the number of correctly identified absent sites.  
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GCWA Model 2 vs Model 3 
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Figure 12. These Coryell Creek sub-watershed maps indicate the difference between 
the two top post validation models (400m) for both GCWA and BCVI. Color ramp scales 
indicate degree of difference for each pixel between models. Note the different scales 
for each maps. 
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Figure 13. 400m GCWA model 2 showing probability of occurrence throughout 
Hamilton and Coryell Counties, Texas. Variables include ln mean juniper > 70%, 
minimum profile curvature, and ln mean departure from north (ROC = 0.795, Rho-
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Figure 14. 400m BCVI model 2 showing probability of occurrence throughout 
Hamilton and Coryell Counties, Texas. Variables include ln mean shrub cover > 90%, 
SIN plan curvature, and ln mean departure from north (ROC = 0.708, Rho-sq = 
0.066). 
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DISCUSSION 

It is important to note that the following discussion focuses on the variables that 

were identified to be the strongest non-correlated variables and most easily 

distinguishable at the resolution of my remotely sensed data.  The purpose of my study 

was to indicate if this technology could accurately predict occurrence for these species 

and to develop several ‘best’ non-correlated alternative models.  I do not discuss in 

depth all variables that were found to be important in predicting occurrence. Therefore, 

just because a variable is not mentioned in the context of selected models does not 

mean that it should be excluded as an important habitat requirement.   

Golden-cheeked Warbler  

Important Landscape Features –  These results suggest that golden-cheeked warbler 

habitat occupancy can be predicted using a combination of factors.  Specifically, it is the 

combination of heavy juniper dominated woodland combined with landform that 

provides the best predictions of occupancy.  At sites occupied by golden-cheeked 

warblers mean juniper cover is approximately 1.5 times greater at both 100m and 400m 

spatial scales than at unoccupied sites. This supports Kroll’s (1980) and Beardmore’s 

(1994) findings that sites with higher juniper abundance were important in golden-

cheeked warbler occurrence.  My study provides important confirmation of the 

requirement of high density mature juniper for this species. 

Aspect and slope were also found to be important in predicting occurrence of 

this species. Average aspect was 15.6° and 8.5° less at occupied sites (100m and 

400m scales respectively) than unoccupied sites, showing that this species tends to 

occur on more northern facing slopes. Maximum slope was also greater on average in 

occupied sites with16.3% and 59.0% of the sites at the 100m and 400m scale having an 
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average maximum slope greater than 15.0 in contrast with 10.7% and 44.4% in 

unoccupied sites, demonstrating the trend often mentioned in habitat descriptions for 

this species (Campbell 1995, and Kroll 1980).  Curvature was also important, with plan 

curvature influencing habitat occupancy at the 100m scale and profile curvature at the 

400m scale.  Vegetation structure and composition of occupied and unoccupied areas 

for golden-cheeked warblers have been investigated in depth, but little research has 

been done to determine the importance of landform features. 

  

Spatial Scale -The strongest models were found to be comprised of 400m (50.2ha) 

variables.  The top model was comprised of variables that were applicable at both 

scales, heavy juniper cover (juniper cover > 70%), aspect (mean departure from North), 

and minimum profile curvature.  Landscape features up to six times the size of the 

upper range of their territory (20 acres or 8.1ha) or approximately 30 times the mean 

territory size of 1.7 ha as described by Campbell (1995) were found to be most 

significant.  These results support Magness’ (2005) findings that habitat occupancy by 

golden-cheeked warblers is impacted by the vegetation surrounding the territory, 

implying that when managing golden-cheeked warbler habitat it is important to consider 

the areas surrounding a territory, not just the territory itself. 

 

Model Assessment- A threshold value between 0.35-0.40 appears to offer the highest 

number of accurate predictions of occurrence while retaining at least an 80% accuracy 

rate for identifying unoccupied areas. Pearce and Ferrier (2005) reported that alternate 

thresholds should be used when working with models in order to try and minimize false 

negatives. Overall ROC value at the 0.50 threshold level for the top five models at each 
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spatial scale when applied to the landscape ranged from 0.79 to 0.86. This meets the 

requirements of an acceptable model by Hosmer and Lemeshow (2000:162) who 

consider a ROC score between 0.70 and 0.80 acceptable and anything higher than 0.80 

excellent.  These results suggest that the level of spectral resolution in Landsat imagery 

(30mx30m) provides useful information in identifying golden-cheeked warbler habitat at 

the landscape level.     

Black-capped Vireo 

Important Landscape Features – My results indicate that black-capped vireo occupancy 

is best identified using a combination of heavy shrub cover combined with landform 

features.  At sites occupied by black-capped vireos, shrub cover >70% is 1.3 times 

higher in occupied sites  than unoccupied (9.7% vs 7.2%) at the 100m scale and 1.1 

times greater (7.2% vs 7.0%)at the 400m scale.  This indicates that heavy shrub cover 

is important to black-capped vireos, supporting Grzybowski’s (1995) description that 

heavy shrub cover should be ≥ 35.0% in adult territories.  These findings suggest that 

when managing for this species, it is important to manage for areas with dense shrub 

cover. 

Aspect, slope and curvature were also useful in identifying areas of occupancy 

by this species.  Occupied sites averaged a northern aspect of 71.1 and 79.8 at the 

100m and 400m scales respectively while unoccupied sites averaged 90.7 and 91.8.  

These findings support that black-capped vireos tended to prefer the cooler, water 

shedding (convex slopes), tops of northern slopes, supporting research by Graber 

(1961) who found that shrub growth was highest on north and east facing slopes.  

Graber’s findings are important in that they imply that both topology of the land as well 

as vegetation cover are important factors when managing for this species.  Currently 
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little research has been done to investigate the relationship between black-capped 

vireos and landform features such as curvature. 

 

Spatial Scale - Black-capped vireos appear to be using landscape features up to 7.8 

times the size of the upper range of their territory (6.5ha) as described by Campbell 

(1995) or approximately 33.5 times the mean territory size of 1.5 ha as described in the 

recovery plan (Graber 1961). The strongest models were found to be comprised of 

400m (50.2ha) variables.  The top model was comprised of variable types that were 

applicable at both scales, mean shrub cover greater than 90%, mean departure from 

North, and mean plan curvature.  This is important because while much research has 

been done for this species at the micro-site scale (Farquhar and Gonzales 2005, Juarez 

2005, Grzybowski 1994) little research has been done at the landscape level. 

 

Model Assessment- A threshold value between 0.35-0.40 appears to offer the highest 

true positives while retaining at least an 80 percent true negative rate.  Overall ROC 

value at the 0.50 threshold level for the top five models at each spatial scale when 

applied to the landscape ranged from 0.93 to 0.94.  Hosmer and Lameshow (2000) 

state that a model with an ROC value ≥ 0.70 is a successful model; however these 

values are misleading.  Due to the small sample size for this species, the ROC values 

are inflated by the number of true negatives, not by true positives.  Just as a “true 

negative” might identify a site at which a bird was not located because there was none 

there, one can not be certain that in truth that location was not an areas at which a bird 

was not detected even when present (Browning et al. 2005).  This hinders the ability to 
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call a model that relies heavily on true negatives for a high predictive value a good 

model in the case of small sample size. 

 The overall findings suggest that golden-cheeked warblers are found on steep 

northerly slopes with heavy deciduous and mature juniper cover while black-capped 

vireos are found at the top transition areas of these same northerly slopes (Figure 15, 

Figure 16).  This could be due to the fact that in the northern hemisphere, north facing 

slopes tend to be cooler and more moist.  This could potentially affect the vegetation 

type, vegetation density, as well as overall temperature. This relationship is another 

area that needs further investigation.  
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Figure 15.  Profile curvature representation of findings from this study, indicating areas 
where golden-cheeked warblers and black-capped vireos are most likely to occupy. 
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Figure 16.    Plan curvature representation of findings from this study, indicating areas 
where golden-cheeked warblers and black-capped vireos are most likely to occupy. 
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CONCLUSIONS AND MANAGEMENT IMPLICATIONS 
 

Models developed using GIS and relationships derived from remotely sensed 

data can be effective tools for conservation planning and management, as well as 

reducing land use conflicts and development costs (Wu and Smeins 2000).  Models 

proposed by this research are preliminary models to be used for management 

purposes, but also to be improved upon with consideration of additional data.  As such, 

the models developed and the methods described in this research may yield 

applications beneficial to wildlife ecology and management.   

By using sub-pixel analysis to derive the spectral signatures and incorporating GIS 

variables from data readily accessible to the general public, the models developed 

within this study can be applied across species ranges that are comprised of similar 

vegetation and topographical features.  However, when using these models outside of 

their intended area, caution is suggested.  When using them in another area, these 

models should be used only as a preliminary starting point.  These models may also be 

compared to models developed in other areas of the range that differ in habitat 

availability with the end result of determining the variability of minimum habitat 

requirements across a species range. Finally, such models can enhance wildlife 

management efforts by identifying habitats likely to support a species, thus enabling a 

manager to effectively identify areas either timber removal or habitat management. 
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APPENDIX A 
 
 
 

Diagram of the vegetation surveys at each point. 
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APPENDIX C 
 

GCWA significant (p ≤ 0.15) variables determined using univariate 
logistic regression at the 100m spatial scale. 
Rank Variable P-value Coefficient (B) Rho-Sq ROC 

1 JUN90 < 0.001 0.073 0.138 0.76 
2 JUN70 < 0.001 0.042 0.138 0.75 
3 DEC70 < 0.001 0.038 0.109 0.74 
4 DEC50 < 0.001 0.034 0.106 0.73 
5 JUN50 < 0.001 0.035 0.120 0.73 
6 DEC20 < 0.001 0.034 0.103 0.73 
7 JUN20 < 0.001 0.033 0.102 0.71 
8 SO50 < 0.001 -0.083 0.074 0.71 
9 SO20 < 0.001 -0.071 0.070 0.70 

10 PO70 < 0.001 0.054 0.069 0.69 
11 S070 < 0.001 -0.102 0.051 0.67 
12 PO50 < 0.001 0.044 0.054 0.66 
13 PO20 < 0.001 0.037 0.042 0.64 
14 LO50 < 0.001 -0.040 0.032 0.63 
15 LO20 < 0.001 -0.036 0.031 0.62 
16 ASNO_MEAN < 0.001 -0.011 0.029 0.62 
17 ASNO_MIN < 0.001 -0.011 0.028 0.60 
18 SA 0.005 0.008 0.016 0.60 
19 SHR20 0.002 -0.042 0.022 0.60 
20 LO90 0.001 0.207 0.022 0.60 
21 SHR50 0.021 -0.031 0.011 0.57 
22 ASNO_MAX 0.021 -0.006 0.011 0.56 
23 S 0.025 -0.022 0.017 0.56 
24 SLOPE_MAX 0.043 0.042 0.008 0.56 
25 SHR70 0.114 -0.026 0.005 0.55 
26 CL 0.128 -0.075 0.008 0.55 
27 ASEA_MEAN 0.115 -0.004 0.005 0.54 
28 PLAN_MEAN 0.099 24.689 0.006 0.54 
29 LO70 < 0.001 -0.025 0.138 0.54 
30 PROF_MIN 0.137 -68.827 0.004 0.54 
31 SLOPE_MEAN 0.126 0.056 0.005 0.54 
32 DEC90 0.137 -0.344 0.009 0.52 
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APPENDIX D

Summary statistics for vegetation variables at both spatial scales. Variable statistics are 
only for landscapes where BCVI were present (n = 26). 
 Vegetation Coryell Creek   (100m)Coryell Creek  (400m) 

St. 
Dev.

St. 
Dev. 

Variables 
Mean Min Max Mean Min Max Description 

JUN20 Ave. ashe juniper cover  
> 20% 52.3 25.1 6.3 91.4 49.6 16.5 18.3 85.2 

JUN50 Ave. ashe juniper cover  
> 50% 46.2 26.6 0.0 88.6 44.3 17.8 13.2 82.9 

JUN70 Ave. ashe juniper cover   
> 70% 33.6 24.2 0.0 85.7 33.9 17.0 6.4 70.4 

JUN90 Ave. ashe juniper cover  
> 90% 15.5 17.0 0.0 60.0 14.6 9.9 0.5 35.5 

LO20 Ave. live oak cover  > 20% 22.9 16.9 3.1 63.0 19.0 5.9 8.0 32.4 
LO50 Ave. live oak cover  > 50% 19.2 17.1 0.0 59.4 14.6 5.6 5.5 26.9 
LO70 Ave. live oak cover  > 70% 13.1 11.7 0.0 45.7 8.3 3.1 3.7 16.3 
LO90 Ave. live oak cover  > 90% 1.3 2.5 0.0 9.4 0.7 0.5 0.0 1.6 
DEC20 Ave. deciduous cover  

> 20% 34.0 23.4 0.0 82.4 34.9 17.0 8.2 67.7 
DEC50 Ave. deciduous cover  

> 50% 30.8 24.8 0.0 82.4 32.6 17.5 6.3 66.6 
DEC70 Ave. deciduous cover  

> 70% 24.4 23.3 0.0 82.4 24.6 15.6 1.4 55.0 
DEC90 Ave. deciduous cover   

> 90% 0.1 0.6 0.0 2.8 0.1 0.1 0.0 0.4 
PO20 Ave. post oak cover > 20% 17.0 13.7 0.0 54.1 18.4 8.6 6.3 42.8 
PO50 Ave. post oak cover > 50% 14.17 12.5 0.0 48.7 16.0 8.4 4.5 39.3 
PO70 Ave. post oak cover > 70% 10.0 11.9 0.0 46.0 13.0 8.2 2.3 33.0 
PO90 Ave. post oak cover > 90% 0.00 0.0 0.0 0.0 0.1 0.1 0.0 0.5 
SO20 Ave. spanish oak cover  

> 20% 14.8 13.1 0.0 54.3 13.8 6.3 3.2 24.0 
SO50 Ave. spanish oak cover  

> 50% 12.6 12.2 0.0 45.7 11.0 5.3 2.5 20.3 
SO70 Ave. spanish oak cover  

> 70% 8.0 8.9 0.0 34.3 6.9 3.6 1.4 14.1 
SO90 Ave. spanish oak cover  

> 90% 1.3 3.4 0.0 14.3 0.9 0.7 0.0 3.1 
SHR20 Ave. shrub cover >70% 16.4 11.3 3.1 56.3 13.3 3.4 6.9 18.8 
SHR50 Ave. shrub cover >50% 14.6 10.7 2.9 46.9 11.3 2.9 6.3 16.8 
SHR70 Ave. shrub cover >70% 9.7 8.3 0.0 28.1 7.2 2.3 3.6 12.8 
SHR90 Ave. shrub cover >90% 3.1 4.0 0.0 14.3 2.3 0.8 0.9 4.3 
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APPENDIX E

Summary statistics for geomorphic variables at both spatial scales. Variable statistics are 
only for landscapes where BCVI were present (n = 26). 
  Coryell Creek   (100m) Coryell Creek  (400m) 

St. 
Dev.

Geomorphic Variables 
  Mean Min Max Mean 

St. 
Dev. Min Max 

SLOPE_MAX Ave. maximum 
slope  16.67 10.71 4.49 3.02 20.81 5.51 8.74 28.49

5.13 SLOPE_MEAN Ave. mean slope 5.74 3.26 1.23 14.21 1.38 2.36 7.49 
0.04 SLOPE_MIN Ave. minimum slope 1.43 1.72 0.00 5.79 0.19 0.00 0.95

PROF_MAX Ave. maximum 
profile curvature 

 
0.07 0.05 0.02 0.27 0.01 0.00 0.00 0.01

PROF_MEAN Ave. mean profile 
curvature 0.00 0.01 -0.01 0.01 

 
0.00 0.00 0.00 0.00

PROF_MIN Ave. minimum 
profile curvature 

 
-0.08 0.04 -0.13 -0.01 -0.01 0.00 -0.01 0.00

PLAN_MAX Ave. maximum plan 
curvature 

 
0.00 0.00 0.00 0.01 14.02 33.10 0.06 95.00

PLAN_MEAN Ave. mean plan 
curvature 0.00 0.00 0.00 0.00 

 
4.81 12.58 0.00 47.73

PLAN_MIN Ave. minimum plan 
curvature 0.00 0.00 -0.01 0.00 

 
-0.14 0.09 -0.27 0.00

ASNO_MAX Ave. maximum 
departure from 
north 

 
 

132.10 44.53 29.74 180.00 180.00 0.00 180.00 180.00
ASNO_MEAN Ave. mean 

departure from 
north 

 
 

71.06 32.55 11.73 153.54 79.76 18.49 51.37 118.51
ASNO_MIN Ave. minimum 

departure from 
north 

 
 

16.54 31.01 0.00 108.43 0.00 0.00 0.00 0.00
ASEA_MAX Ave. maximum 

departure from east
 

147.55 39.15 67.38 180.00 179.16 4.28 158.20 180.00
ASEA_MEAN Ave. mean 

departure from east
 

86.60 40.50 35.87 172.96 77.51 17.37 48.14 119.61
ASEA_MIN Ave. minimum 

departure from east 0.00 26.70 40.17 0.00 153.43 0.00 0.00 0.00
CL Ave. cover of clay 

loam (%)  0.01 0.16 0.60 0.00 3.01 0.02 0.00 0.05
LB Ave. cover of loamy 

bottomland (%)  0.11 3.45 17.58 0.00 89.63 0.20 0.00 0.69
LS Ave. cover of low 

stoney hill (%)  0.24 38.32 37.25 0.00 100.00 0.22 0.02 0.90
S Ave. cover of 

shallow (%)  0.02 0.89 3.44 0.00 16.49 0.04 0.00 0.16
SC Ave. cover of stoney 

clay loam (%)  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
SA Ave. cover of low 

steep adobe (%)  
 

57.18 38.26 0.00 98.06 0.63 0.24 0.10 0.97
Other Ave. cover of all 

other ecological site
 

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.05
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APPENDIX F 
Summary statistics for vegetation variables at both spatial scales. Variable statistics are 
only for landscapes where GCWA were present (n = 129). 

  Coryell Creek  (100m) Coryell Creek  (400m)
St. 

Dev.
Vegetation 
Variables Description Mean Min Max Mean 

St. 
Dev. Min Max 

JUN_GR20 Ave. ashe juniper cover > 
20% 58.3 22.9 5.7 100.0 50.0 14.6 13.4 85.2 

JUN_GR50 Ave. ashe juniper cover > 
50% 54.5 23.5 2.9 100.0 45.7 15.0 10.5 82.9 

JUN_GR70 Ave. ashe juniper cover > 
70% 43.9 22.4 0.0 100.0 36.1 13.8 6.5 70.3 

JUN_GR90 Ave. ashe juniper cover > 
90% 19.5 14.8 0.0 80.6 15.8 8.3 1.3 41.6 

LO_GR20 Ave. live oak cover > 20% 15.4 11.4 0.0 57.1 18.0 5.0 7.0 32.4 
LO_GR50 Ave. live oak cover > 50% 11.8 10.5 0.0 51.4 14.0 4.5 4.8 26.3 
LO_GR70 Ave. live oak cover > 70% 7.5 6.8 0.0 34.3 8.2 2.8 2.3 15.8 
LO_GR90 Ave. live oak cover > 90% 1.2 2.0 0.0 9.4 0.8 0.5 0.0 2.3 
DEC_GR20 Ave. deciduous cover > 

20% 43.3 22.6 0.0 94.3 37.3 13.5 7.6 72.9 
DEC_GR50 Ave. deciduous cover > 

50% 41.4 22.9 0.0 94.3 35.1 13.8 6.1 71.3 
DEC_GR70 Ave. deciduous cover > 

70% 32.9 22.0 0.0 94.3 27.2 12.7 2.5 63.4 
DEC_GR90 Ave. deciduous cover > 

90% 0.0 0.5 0.0 5.4 0.1 0.2 0.0 1.3 
PO_GR20 Ave. post oak cover > 20% 20.6 14.6 0.0 68.8 18.8 8.1 2.1 43.9 
PO_GR50 Ave. post oak cover > 50% 18.8 13.9 0.0 65.7 16.5 7.5 1.8 40.2 
PO_GR70 Ave. post oak cover > 70% 16.1 13.3 0.0 65.6 13.5 7.1 1.1 36.7 
PO_GR90 Ave. post oak cover > 90% 0.1 0.5 0.0 3.1 0.1 0.2 0.0 0.7 
SO_GR20 Ave. spanish oak cover > 

20% 8.8 9.4 0.0 54.3 10.8 4.7 2.9 26.6 
SO_GR50 Ave. spanish oak cover > 

50% 6.6 8.0 0.0 45.7 8.4 3.8 2.1 22.0 
SO_GR70 Ave. spanish oak cover > 

70% 4.0 5.4 0.0 34.3 5.2 2.5 1.3 12.8 
SO_GR90 Ave. spanish oak cover > 

90% 0.7 1.8 0.0 14.3 0.7 0.5 0.0 3.1 
SHR20 Ave. shrub cover > 20% 11.1 7.8 0.0 38.2 12.2 2.9 5.4 20.0 
SHR50 Ave. shrub cover > 50% 9.5 7.7   0.0 35.3 10.3 2.8 3.6 16.1 
SHR70 Ave. shrub cover > 70% 6.6 6.5 0.0 26.5 6.7 2.2 1.4 12.7 
SHR90 Ave. shrub cover > 90% 2.0 3.2 0.0 14.3 1.9 1.0 0.0 5.0 
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APPENDIX G
Summary statistics for geomorphic variables at both spatial scales. Variable statistics are 
only for landscapes where GCWA were present (n = 129). 
  Coryell Creek  (100m) Coryell Creek  (400m
Geomorphic Variables St. 

Dev.
St. 

Dev.   Mean Min Max Mean Min Max 
SLOPE_MAX Ave. maximum slope 9.9 5.5 2.0 29.4 17.3 6.1 5.8 29.4
SLOPE_MEAN Ave. mean slope 5.0 3.1 0.7 16.1 4.8 1.4 1.2 7.8
SLOPE_MIN Ave. minimum slope 1.2 1.3 0.0 6.1 0.0 0.1 0.0 1.0
PROF_MAX Ave. maximum profile 

curvature 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0
PROF_MEAN Ave. mean profile 

curvature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PROF_MIN Ave. minimum profile 

curvature 0.0 0.0 -0.0 0.0 -0.0 0.0 -0.0 0.0
PLAN_MAX Ave. maximum plan 

curvature 0.1 0.1 0.0 0.4 6.5 23.2 0.0 95.0
PLAN_MEAN Ave. mean plan 

curvature 0.0 0.0 -0.0 0.0 2.5 9.9 -0.0 59.6
PLAN_MIN Ave. minimum plan 

curvature -0.1 0.1 -0.3 -0.0 0.2 1.8 -0.4 10.0
ASNO_MAX Ave. maximum 

departure from north 
180.

0 
180.

0 142.3 41.9 45.0 180.0 180.0 0.0 
ASNO_MEAN Ave. mean departure 

from north 
141.

5 79.0 38.2 18.2 169.6 85.2 19.5 51.3
ASNO_MIN Ave. minimum 

departure from north 21.9 32.9 0.0 135.0 0.1 1.2 0.0 14.0
ASEA_MAX Ave. maximum 

departure from east 136.4 42.7 45.0 180.0 179.6 2.9 
153.

4 
180.

0 
ASEA_MEAN Ave. mean departure 

from east 
135.

2 76.4 37.5 16.6 159.9 78.3 20.7 43.8
ASEA_MIN Ave. minimum 

departure from east 19.9 30.9 0.0 126.9 0.4 2.8 0.0 26.6
CL Ave. cover of clay 

loam (%) 0.5 1.9 0.0 12.0 0.0 0.0 0.0 0.1
LB Ave. cover of loamy 

bottomland (%) 6.0 17.0 0.0 96.8 0.2 0.2 0.0 0.8
LS Ave. cover of low 

stoney hill (%) 33.2 37.1 0.0 100.0 0.3 0.2 0.0 0.8
S Ave. cover of shallow 

(%) 1.6 9.8 0.0 100.0 0.0 0.0 0.0 0.3
SC Ave. cover of stoney 

clay loam (%) 
0
.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SA Ave. cover of low 
steep adobe (%) 58.8 37.4 0.0 100.0 0.5 0.3 0.0 1.0

Other Ave. cover of all other 
ecological site (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
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