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ABSTRACT

Multi-Resolution Methods for High Fidelity Modeling and Control Allocation in

Large-Scale Dynamical Systems. (May 2006)

Puneet Singla, B.Tech, Indian Institute of Technology, Kanpur, India;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. John L. Junkins

This dissertation introduces novel methods for solving highly challenging model-

ing and control problems, motivated by advanced aerospace systems. Adaptable, ro-

bust and computationally efficient, multi-resolution approximation algorithms based

on Radial Basis Function Network and Global-Local Orthogonal Mapping approaches

are developed to address various problems associated with the design of large scale

dynamical systems. The main feature of the Radial Basis Function Network approach

is the unique direction dependent scaling and rotation of the radial basis function via

a novel Directed Connectivity Graph approach. The learning of shaping and rota-

tion parameters for the Radial Basis Functions led to a broadly useful approximation

approach that leads to global approximations capable of good local approximation

for many moderate dimensioned applications. However, even with these refinements,

many applications with many high frequency local input/output variations and a

high dimensional input space remain a challenge and motivate us to investigate an

entirely new approach. The Global-Local Orthogonal Mapping method is based upon

a novel averaging process that allows construction of a piecewise continuous global

family of local least-squares approximations, while retaining the freedom to vary in

a general way the resolution (e.g., degrees of freedom) of the local approximations.

These approximation methodologies are compatible with a wide variety of disciplines

such as continuous function approximation, dynamic system modeling, nonlinear sig-
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nal processing and time series prediction. Further, related methods are developed

for the modeling of dynamical systems nominally described by nonlinear differential

equations and to solve for static and dynamic response of Distributed Parameter Sys-

tems in an efficient manner. Finally, a hierarchical control allocation algorithm is

presented to solve the control allocation problem for highly over-actuated systems

that might arise with the development of embedded systems. The control allocation

algorithm makes use of the concept of distribution functions to keep in check the

“curse of dimensionality”. The studies in the dissertation focus on demonstrating,

through analysis, simulation, and design, the applicability and feasibility of these ap-

proximation algorithms to a variety of examples. The results from these studies are

of direct utility in addressing the “curse of dimensionality” and frequent redundancy

of neural network approximation.
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CHAPTER I

INTRODUCTION

In all branches of engineering, various system processes are generally characterized

by mathematical models. Controller design, optimization, fault detection, and many

other advanced engineering techniques are based upon mathematical models of var-

ious system processes. The accuracy of the mathematical models directly effect the

accuracy of the system design and/or control. As a consequence, there is a great

demand for the development of advanced modeling algorithms that can adequately

represent the system behavior. However, different system processes have their own

unique characteristics which they do not share with other structurally different sys-

tems. Obviously the mathematical structure of engineering models are very diverse,

they can be simple algebraic models, may involve differential, integral or difference

equations, and it may be a hybrid of these. Further, many different factors, like in-

tended use of the model, problem dimensionality, quality of the measurement data,

offline or online learning etc., can result in ad-hoc decisions leading to an unappro-

priate model architecture. All these issues make system modeling a challenging task

and motivates us to seek more general and universal modeling methods that can be

applied to a wide class of structurally different systems.

Over the past few decades, Artificial Neural Networks (ANNs) have emerged as

a powerful set of tools in pattern classification, time series analysis, signal processing,

dynamical system modeling and control. The popularity of the ANN can be attributed

to the fact that these network models are frequently able to learn behavior when

traditional modeling is very difficult to generalize. Typically, a neural network consists

This dissertation follows the style of IEEE Transactions on Automatic Control.
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of several computational nodes called perceptrons arranged in layers. The number

of hidden nodes essentially determines the degrees of freedom of the non-parametric

model. A small number of hidden units may not be enough to capture a given system’s

complex input-output mapping and alternately a large number of hidden units may

overfit the data and may not generalize the behavior. Beside this, it is also natural to

ask “How many hidden layers are required to model the input-output mapping?”. The

answer to this question in a general sense is provided by Kolmogorov’s theorem [1]

(later modified by other researchers [2]); according to which any continuous function

from an input subspace to an appropriate output subspace can be approximated by

a two layer neural network. However, the optimal number of hidden units depends

upon many factors, like the ability of the chosen basis functions to approximate the

given systems behavior, the number of data points, the signal to noise ratio, and the

complexity of the learning algorithms. While ANNs are frequently described using

network architecture terminology and diagrams, the reality is that the ANNs results

in a set of parametric interpolation functions representing the input-output behavior.

Different learning algorithms are proposed in the literature [3–7] that utilize two-

layered neural networks with sigmoid functions as activation functions for system

modeling purposes. However, the traditional ANN learning algorithms have serious

short-comings, including:

1. Abstraction: the estimated weights do not have physical significance.

2. Interpolation versus Extrapolation: How do we know when a given estimated

model is sufficiently well-supported such that the network has converged (lo-

cally or globally), and has utilized sufficiently dense and accurate measurements

neighboring the desired evaluation point?

3. Issues Affecting Practical Convergence: A priori learning versus on-line adapta-
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tion? Actually, when the ANN architecture is fixed a priori, then the family of

solvable problems is implicitly constrained, that means the architecture of the

network should be learned, not merely weights adjusted, to ensure efficient and

accurate modeling of the particular system behavior.

4. Uncertainty in Prediction: There is no exiting methodology that satisfactory

captures the uncertainty in the prediction of the system behavior.

In short, the learning methods described in the literature for neural networks seek to

minimize the error between network output and observations globally based upon the

assumption that all the parameters of the network can be optimized simultaneously.

However, the global nature of the distortions can lead to globally optimal network

parameters which may minimize the approximation error on the training set but

might not be robust when tested on some new data points, or more importantly, used

for prediction. The variability of a particular nonlinear system may be particularly

non-uniform in space and time; some regions may be highly irregular and others

may be smooth and linear. Furthermore, for the case that the neural network is

itself nonlinear, the issue of sub-optimal convergence to local minima must also be

considered. As a consequence, it is improbable that a globally nonlinear input-output

mapping parameterization can be guessed a priori that represents such phenomena

accurately and efficiently.

An alternative to global learning is local learning [8, 9] based upon a divide and

conquer strategy. The local learning algorithms involve estimation of network para-

meters using the observations in the local neighborhood of the operating point. Local

learning lead naturally to localized adaptation of the approximation degree of free-

dom to represent the variations actually present. A potential downside of employing

local approximation methods is that they may be computationally expensive as we
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need to solve the optimization problem in each local neighborhood. Obviously, we

also have to face the possible discrepancies between adjacent and overlapping local

approximations.

If one considers the problem of approximating surfaces in a general n-dimensional

space then thousands of evaluation points are required and this can be the one of the

main reason for the relatively small emphasis by mathematicians and engineers to pur-

sue local approximation methods for discrete data approximation. In last two decades,

the method of Moving Least Squares (MLS) [9–11] has emerged as a powerful local

learning algorithm. The main drawback of the moving least squares approximation is

that it is valid only in some neighborhood of one evaluation point and may introduce

systematic error due to neglected interaction between different local models. Further,

in MLS approximation basis functions used to obtain different local approximation

can not be independent from each other without introducing discontinuity across the

boundary of different local regions. Basically, a main challenge is the lack of rigor-

ous methods to merge different independent local approximations to obtain a desired

order globally continuous approximation.

Another major challenge in nonlinear approximation theory and its applications

is high dimensionality. The performance of various traditionally used modeling algo-

rithms decreases drastically as the dimension of the system increases. Also, the ease

with which a mathematical model can be used in various post-processing computa-

tions such as controller design may determine the suitability of an approximation

method for a particular problem at hand. For example, the use of a traditional

ANN for dynamic system identification typically leads to a non-affine control prob-

lem due to their inherent nonlinear and complex structure, which is not desirable for

controller design purposes. In summary, factors like approximation accuracy, total

number of parameters required to express the mathematical model, the computation
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time to compute various parameters of the model, complexity of the mathematical

model and efficiency of the learning algorithm play crucial roles in determining the

performance of a particular approximation method. Finally, while the successes have

been many with existing modeling techniques, the drawbacks of various fixed archi-

tecture implementations, essentially, have created the demand for improved, adaptive

modeling techniques that base adaptation on monitoring the “health” of the overall

behavior input-output models and learning algorithms.

Our aim in this dissertation is to come up with novel network model structures

which minimize the approximation error in a robust manner, while considering the

above mentioned points. This dissertation is being written with following six main

objectives:

1. The first and the most important objective is to present an adaptable, robust

and computationally efficient, multi-resolution based approximation algorithm

which takes care of local and as well as global complexity of the problem.

2. The second objective is to develop a novel approach to merge different local

and global approximations that guarantees a prescribed degree of piecewise

continuity, while keeping the “curse of dimensionality” in check.

3. The third objective is to present a new adaptive learning algorithm to adjust

in real time the various parameters of the unknown mathematical model while

keeping the number of unknowns to be minimum.

4. The fourth objective is to set down a theoretical approximation framework

including all assumptions to help understand the advantages, the drawbacks

and the areas of applications of the new algorithms.

5. The fifth objective is to compare new approximation algorithms with some ex-
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isting approximation algorithms while considering various benchmark problems

in open literature.

6. The last but not the least objective is to assess the reliability and limitations of

the newly established approximation methods by considering various academic

and engineering problems where traditional methods either fail or perform very

poorly.

To achieve the above objectives and document the results, the dissertation is

structured in six chapters.

Chapter II introduces a novel approach to adaptive approximation using radial

basis functions. The approach introduces direction dependent scaling, shaping and

rotation of the most generic Gaussian radial basis function for maximal trend sensing

with minimal parameter representations for input output approximation. It is shown

that shaping and rotation of each of the radial basis functions helps in reducing the

total number of function units required to approximate any given input-output data,

while greatly improving accuracy. While this novel radial basis function approach is

a global method, the local optimization of the basis function leads to enhanced local

convergence.

In Chapter III, a Global-Local Orthogonal MAPping (GLO-MAP) algorithm is

introduced which is based upon a novel averaging process to determine a piecewise

continuous global family of local least squares approximations while retaining the

freedom to vary in a general way the resolution (e.g., degrees of freedom) of the

local approximations. Also, the issues of model complexity, ill-conditioning of local

least square approximations and curse of dimensionality are discussed in detail. The

several ideas, discussed in this chapter, lay the foundation for rest of the dissertation,

however; the numerical studies in this chapter just serve the purpose of demonstrating
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the approximation capabilities of the GLO-MAP algorithm. Due to this reason, the

reader can skip “Illustrative Engineering Applications” section in this chapter without

any loss of continuity.

In Chapter IV, we make a transition from discussing numerical results of Chapter

III to numerical analysis. In earlier chapters simulation results are used to validate

the GLO-MAP algorithm, however, in this chapter, we discuss multi-resolution ap-

proximation capability and various other properties of the GLO-MAP algorithm from

an analytical perspective.

Chapter V deals with the modeling of dynamical systems nominally described by

nonlinear differential equations. A robust system identification algorithm is presented

which makes combined use of existing linear system identification algorithms, such

as the Eigensystem Realization Algorithm (ERA) or the Observer/Kalman IDentifi-

cation (OKID), and a GLO-MAP based Artificial Neural Network (ANN). Being a

combination of the ERA and the GLO-MAP algorithms, the resulting algorithm not

only has the nonlinear approximation capability of ANN but also has model reduction

capability of algorithms like Proper Orthogonal Decomposition (POD), in a setting

where the system may be highly nonlinear.

In chapter VI, attention is focused on the use of the Galerkin discretization

process and the GLO-MAP algorithm to solve for static and dynamic response of

Distributed Parameter Systems (DPS) in an efficient manner. Two new meshless

methods have been proposed based upon the GLO-MAP averaging process to solve

for dynamics of DPS in an efficient way.

Finally, in Chapter VII, we consider the control allocation problem for a highly

over-actuated systems which can arise with the development of embedded systems.

Such an envisioned system can have quite a large number of actuators (∼ 106) which

collectively produce the required control effort. While these systems are at present
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futuristic, the advent of nano technology leads to a class of envisioned systems with

multi-functional sensing and actuation engineered into materials at the micro and

smaller length scales. The high dimensionality of the control distribution problem

poses some challenges that are outside the reach of modern and classical control

formulations. A recursive control distribution approach is discussed which makes use

of adaptive distribution functions that can distribute control commands while the

entire formulation remains compatible with real time computing.
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CHAPTER II

DIRECTION DEPENDENT LEARNING APPROACH FOR RADIAL BASIS

FUNCTION NETWORKS

A. Introduction

Radial Basis Function Networks (RBFN) are two-layer neural networks that approx-

imate an unknown nonlinear function underlying given input-output data, as the

weighted sum of a set of radial basis functions:

f(x) =
h∑

i=1

wiφi(‖x− µi‖) = wTΦ(x,µ1, · · · ,µh) (2.1)

where, x ∈ Rn is an input vector, Φ is a vector of h radial basis functions with

µi ∈ Rn as the center of ith radial basis function and w is a vector of h linear weights

or amplitudes. The two layers in an RBFN perform different tasks. The hidden layer

with the radial basis function performs a non-linear transformation of the input space

into a high dimensional hidden space whereas the outer layer of weights performs the

linear regression of the function parameterized by this hidden space to achieve the

desired approximation. The linear transformation, of Eq. (2.1) of a set of nonlinear

basis functions is summarized in Cover’s theorem [3] as follows,

Cover’s Theorem. A complex pattern classification problem or input/output problem

cast in a high-dimensional space is more likely to be approximately linearly separable

than in a low-dimensional space.

Cover’s theorem provides a theoretical motivation for using linear combination of

a large number of nonlinear functions to approximate irregular phenomena. According

to Cover and Kolmogorov’s theorems [2, 3], Multilayered Neural Networks (MLNN)

and RBFN can serve as “Universal Approximators” but in actuality, they offer no
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guarantee on “accuracy in practice” for a reasonable dimensionality. While MLNN

performs a global and distributed approximation at the expense of high parametric

dimensionality, RBFN gives a global approximation but with locally dominant basis

functions.

In recent literature [4, 12–14], various choices for radial basis functions are dis-

cussed. The Gaussian function is most widely used because, among other reasons, the

arguments are the space of inputs and the associated parameters correlate to the local

features and therefore all of the network parameters have physical and heuristic inter-

pretations. These heuristic local interpretations lead directly to approximations that

generate good starting estimates from local measurement data. The use of Gaussian

functions to approximate given input-output data can be theoretically supported us-

ing the following nice characteristic of the Dirac-Delta function:

δ(f) =

∞∫

−∞

δ0(x)f(x)dx = f(0) (2.2)

In other words, we can think of the above as “f ∗ δ → f”, where “∗” denotes the

convolution operator. Strictly speaking δ(x) is not a function but is a distribution [15].

Further, according to the following Lemma, such “localized bumps” can be well-

approximated by Gaussian functions (illustrated in Fig. 1.):

Lemma 1. Let φ(x) = 1√
2π

e−
x2

2 and φ(σ)(x) = 1
σ
φ(x

σ
). If Cb(R) denotes the set of

continuous, bounded functions over R), then

∀f ∈ Cb(R), lim
σ→0

φ(σ) ∗ f(x) = δ(f) (2.3)

Proof. Let us consider, |f(x)− φ(σ) ∗ f(x)|. Now using the fact that
∫

φ(σ)(x)dx = 1
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and the definition of convolution, we have:

|f(x)− φ(σ) ∗ f(x)| = |
∫

φ(σ)(y)f(x)dy −
∫

φ(σ)(y) ∗ f(x− y)dy|

≤
∫
|φ(σ)(y)||f(x)− f(x− y)|dy

Since f is a continuous function, for any given ε > 0, there is an η > 0 such that if

|y| < η then |f(x)− f(x− y)| < ε. This yields the estimate

|f(x)− φ(σ) ∗ f(x)| ≤ ε

∫

|y|<η

|φ(σ)(y)|dy + 2fmax

∫

|y|≥η

|φ(σ)(y)|dy

Further, let us compute

∫

|y|≥η

|φ(σ)(y)|dy =
1

σ

∫

|y|≥η

|φ(
y

σ
)|dy =

∫

|u|≥ η
σ

|φ(u)|du

Now, this last term tends to 0 as σ tends to 0 since η > 0. Further, as f is a bounded

continuous function, |f(x)−φ(σ) ∗ f(x)| < ε as σ → 0 and thus we obtain our desired

result as ε can be chosen as small as we wish.

So, theoretically, we can approximate any bounded continuous function with

an infinite sum of Gaussian functions but practically, this may lead to very high

dimensioned estimation problem. That said, one can always truncate this infinite

sum to some finite number and learn the number of terms required along with other

parameters of the Gaussian functions to minimize an appropriate approximation error

norm i.e.

inf
p

{
‖f −

h∑
i=1

wiφi(x,p)‖
}

(2.4)

where, p is a vector of following free network parameters needed to construct an

RBFN:

1. Number of RBFs, h
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Fig. 1. Illustration of function approximation by localized bumps and RBF.

2. The centers of RBFs, µi

3. The spread of RBFs ( σi in case of Gaussian function)

4. The linear weights between hidden layer and the output layer, wi

Recently, Narcowich et al. [16] have found sobolev bounds on approximation error

using RBF’s as interpolates. More discussion on the approximation characteristics of

RBF networks can be found in Refs [2, 3, 15,17–19].

In this chapter, we seek to construct an adaptable, intelligent network that is

designed such that it seeks to update/learn some or all of the above mentioned pa-

rameters. To learn various network parameters, different learning algorithms have

been suggested in the literature [4–7,12,13,20–22]. Further, adaptation of the archi-

tecture of an RBF network, as suggested in Refs. [5, 7, 12, 13, 21, 23], has lead to a

new class of approximators suitable for multi-resolution modeling applications. While

the adaptive nature of these algorithms aids in improving the resolution, it does not
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necessarily help in the reduction of the number of basis functions required. For all

available adaptive RBF networks, the network size can grow indefinitely if high ac-

curacy is sought, due to the fact that the choice of the (fixed) basis function’s shape

and initial distribution over the input space may bear no correlation to the function

to be represented. One important root difficulty for most of the methods in the ex-

isting literature lies in the fact that the basis functions are chosen to be circular (i.e.

width of basis function is assumed to be same along each direction) and thus many

neighboring circular functions of various sizes must ultimately add and subtract to

approximate accurately even moderately non-circular features. In other words, the

existing literature provides no consistent means for adaptive reshaping, scaling and

rotation of non-circular basis functions to learn from current and past data points.

The high degree of redundancy and lack of adaptive reshaping and scaling of RBF’s

are felt to be serious disadvantages of existing algorithms and provides the motivation

for this chapter.

The objectives of this chapter are threefold. First, means for reshaping and

rotation of Gaussian function are introduced to learn the local shape and orientation

of the function measured by a given data set. The orientation of each radial basis

function is parameterized through a rotation parameter vector, the magnitude of

which for the two and three dimensional cases can be shown to be equal to the tangent

of the half angle of the principal rotation angle [24]. The principal rotation vector

defines the orientation of the principal axes of the quadratic coefficient function of the

Gaussian RBF through parameterization of the direction cosine matrix. The shape

is captured by solving independently for the principal axis scale factors. We mention

that qualitatively, considering a sharp ridge or canyon feature in an input-output map,

we can expect the principal axes of the local basis functions to approximately align

along and perpendicular to the ridge. Secondly, an “intelligent” adaptation scheme is
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proposed that learns the optimal shape and orientation of the basis functions, along

with tuning of the centers and widths to enlarge the size of a single basis function as

appropriate to approximate as much of the data possible. Thirdly, we modify existing

learning algorithms to incorporate the concept of rotation and re-shaping of the basis

functions to enhance their performance. This objective is achieved by modifying a

conventional Modified Resource Allocating Network (MRAN) [12] learning algorithm.

The rest of the chapter is structured as follows: In the next section, the notion

of rotation and shape optimization of a Gaussian function in the general case is intro-

duced. Next, a novel learning algorithm is presented to learn the rotation parameters

along with the parameters that characterize a regular RBFN. A modification to the

MRAN algorithm is introduced to incorporate rotation of the Gaussian basis func-

tions and finally, the results from various numerical studies are presented to illustrate

the efficacy of the algorithm presented in this chapter.

B. Direction Dependent Approach

In Ref. [25], we introduce the concept of rotation of generally non-circular radial basis

functions. Our approach of representing the rotation is motivated through develop-

ments in rigid body rotational kinematics [24]. The development is novel because

we believe this represents the first application of the rotation ideas to the function

approximation problem. We seek the optimal center location as well as rotation and

shape for the Gaussian basis functions to expand coverage and approximately cap-

ture non-circular local behavior, thereby reducing the total number of basis functions

required for learning. We mention that this approach can lead to most dramatic

improvements when sharp “ridges” or “canyons” exist in the input-output map.

We propose adoption of the following most general n-dimensional Gaussian func-
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tion:

Φi(x, µi, σi, qi) = exp{−1

2
(x− µi)

TR−1
i (x− µi)} (2.5)

Where, R ∈ Rn×n is a fully populated symmetric positive definite matrix instead of a

diagonal one as in the case of the conventional Gaussian function representation used

in various existing learning algorithms. The assumption of a diagonal R matrix is

valid if the variation of output with xj is uncoupled to xk i.e. if different components of

input vector are independent. In this case, the generalized Gaussian function reduces

to the product of n independent Gaussian functions. However, if the parameters

are not independent, there are terms in the resulting output that depend on off-

diagonal terms of the matrix, R. So it becomes useful to learn the off-diagonal terms

of the matrix R for more accurate results (the local basis functions size, shape and

orientation can be tailored adaptively to approximate the local behavior).

Now, using spectral decomposition the matrix R−1 can be written as a product

of orthogonal matrices and a diagonal matrix:

R−1
i = CT (qi)S(σi)C(qi) (2.6)

Where S is a diagonal matrix containing the eigenvalues, σik of the matrix Ri which

dictates the spread of the Gaussian function Φi and C(qi) is an n × n orthogonal

rotation matrix consisting of eigenvectors of R−1. Now, it is easy to see that contour

plots corresponding to a constant value of a generalized Gaussian function, Φi are

hyperellipsoids in x-space, given by following equation:

(x− µi)
TR−1

i (x− µi) = c2 (a constant) (2.7)

Further, substituting for Eq. (2.6) in Eq. (2.7), we get an equation for an another
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hyperellipsoid in a rotated coordinate system, yi = C(x− µ).

[C(qi)(x− µi)]
T S(σi) [C(qi)(x− µi)] = yT

i S(σi)yi = c2 (a constant) (2.8)

From Eq. (2.8), we conclude that the orthogonal matrix, C represents the rotation of

the basis function, Φi. Since the eigenvectors of the matrix R point in the direction

of extreme principal axes of the data set, it naturally follows that learning the opti-

mum rotation matrix, C (whose columns are the eigenvectors of R) is most helpful

in maximal local trend sensing. Though C(qi) is an n× n square matrix, we require

only n(n− 1)/2 parameters to describe it’s most general variation due to the orthog-

onality constraint (CTC = I). So, in addition to the parameters that characterize a

regular RBFN, we now have to account for the additional parameters characterizing

the orthogonal rotation matrix making a total of (n + 2)(n + 1)/2 parameters for a

minimal parameter description of the most general Gaussian function for an n input

single output system. We will find that the apparent increase in the number of pa-

rameters is not usually a cause for concern because the total number of generalized

Gaussian functions required for the representation typically reduces greatly, thereby

bringing down the total number of parameters along with them. Also, we will see that

the increased accuracy with a reduced number of RBFs provides a powerful heuristic

argument for this approach. For each RBFN, we require the following parameters:

1. n parameters for the centers of the Gaussian functions i.e. µ.

2. n parameters for the spread (shape) of the Gaussian functions i.e. σ.

3. n(n− 1)/2 parameters for rotation of the principal axis of the Gaussian func-

tions.

4. Weight wi scaling φi(.)’s contribution to the output.
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To enforce the positive definiteness and symmetry constraint of matrix R, we propose

following three different parameterizations for the covariance matrix, R.

1. To enforce the orthogonality constraint of the rotation matrix, C, the following

result in matrix theory that is widely used in rotational kinematics namely, the

Cayley Transformation [24] is proposed:

Cayley Transformation. If C ∈ Rn×n is any proper orthogonal matrix and

Q ∈ Rn×n is a skew-symmetric matrix then the following transformations hold:

(a) Forward Transformations

i. C = (I−Q)(I + Q)−1

ii. C = (I + Q)−1(I−Q)

(b) Inverse Transformations

i. Q = (I−C)(I + C)−1

ii. Q = (I + C)−1(I−C)

Remarkably, the forward and inverse transformations are identical. Since any

arbitrary proper orthogonal matrix C (or skew-symmetric matrix Q) can be

substituted into the above written transformations, the Cayley Transformations

can be used to parameterize the entire O(n) rotational group by skew symmetric

matrices. The number of distinct elements in Q is precisely n(n− 1)/2, so this

is a minimal parameter representation. The forward transformation is always

well behaved, however the inverse transformation encounters a difficulty only

near the 180◦ rotation where det (I + C) → 0. Thus Q is a unique function of

C except at 180◦ rotation and C is always a unique function of Q. Thus as per

the Cayley transformation, we can parameterize the orthogonal matrix C(qi)
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in Eq. (2.6) as:

C(qi) = (I + Qi)
−1(I−Qi) (2.9)

where, qi is a vector of n(n− 1)/2 distinct elements of a skew symmetric matrix

Qi i.e. Qi = −QT
i . Note qi → 0 for C = I and −∞ ≤ qi ≤ ∞ where qi → ±∞

corresponds to a 180◦ rotation about any axis. Although using the Cayley

transformation, the orthogonality constraint on the matrix C can be implicitly

guaranteed, one still needs to check for the positive definiteness of R by requiring

σi > 0.

2. We also introduce the following alternate minimal parameter representation of

positive definite matrices that is motivated by the definition of a correlation

matrix normally encountered in the theory of statistics.

Additive Decomposition. Let R ∈ Rn×n be a symmetric positive definite

matrix then R−1 is also symmetric and positive definite and can be written as

a sum of a diagonal matrix and a symmetric matrix:

R−1
k = Γk +

n∑
i=1

n∑
j=1

eie
T
j qkij

(2.10)

where ei is an n × 1 vector with only the ith element equal to one and rest of

them zeros and Γk is a diagonal matrix given by:

Γk =
1

σ2
k

I (2.11)



19

subject to following constraints:

qkij
= qkji

(2.12)

σk > 0 (2.13)

qkii
> 0 (2.14)

−1 <
qkij

(σk+qkii
)(σk+qkjj

)
< 1 (2.15)

It is worthwhile to mention that qkij
6= 0 generates the stretching and rotation of

the Gaussian function. If qkij
= 0 then we obviously obtain the circular Gaussian

function. It is mentioned that even though the learning of the matrix, R is

greatly simplified by this parameterization, one needs to impose the constraints

defined in Eqs. (2.12)-(2.15) during the parameter learning process.

3. To explicitly enforce the positive definiteness and symmetry of the covariance

matrix, R one could alternatively use the Cholesky decomposition [24]

Cholesky Decomposition. Let R ∈ Rn×n be a symmetric positive definite

matrix then R−1 is also symmetric and positive definite and can be factored

into a lower triangular matrix times its transpose such that:

R−1 = LLT (2.16)

where, L is an lower triangular matrix given by following expression:

L =




l11 0 0 · · · 0

l21 l22 0 0 0

...
...

...
. . .

...

ln1 ln2 ln3 · · · lnn




Notes: The Cholesky upper triangular matrix, LT , is also known as the matrix
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square root of positive definite matrix, R−1. There are n + n(n−1)
2

distinct

elements in L, so Eq. (2.16) is a minimal parameter representation of R.

The Cholesky decomposition-based parameterization of the matrix R is computation-

ally more attractive than the other two parameterizations because the symmetry and

positive definiteness properties of R−1 are explicitly enforced in this case to get rid

of any kind of constraints. However, to our knowledge, the use of any of the three

above parameterizations for aiding parameter updating in radial basis function net-

work approximation applications is an innovation introduced in this dissertation. We

have experimented with all three approaches and studies to date favor the Cholesky

decomposition mainly because of programming convenience. Preliminary studies in-

dicate a significant reduction in the number of basis functions required to accurately

model unknown functional behavior of the actual input output data. In the subse-

quent sections, we report a novel learning algorithm and a modified version of the

MRAN algorithm to learn this extended set of parameters, we also report the results

of applications to five benchmark problems and comparison with existing algorithms.

C. Directed Connectivity Graph

A common main feature of the proposed learning algorithms is a judicious starting

choice for the location of the RBFs via a Directed Connectivity Graph (DCG) ap-

proach which allows a priori adaptive sizing of the network for off-line learning and

zeroth order network pruning. Because the Gaussian RBFN is a nonlnear representa-

tion, we know that finding the global minimum of approximation error is challenging;

for this reason, means to initiate learning with a good approximation is very impor-

tant. Direction dependent scaling and rotation of basis functions are initialized for

maximal local trend sensing with minimal parameter representations and adaptation
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of the network parameters is implemented to account for on-line tuning.

The first step towards obtaining a zeroth order off-line model is the judicious

selection of a set of basis functions and their center locations, followed by proper

initialization of the shape and orientation parameters. This exercise is the focus of

this section.

To choose the locations for the RBF centers, we make use of following Lemma

that essentially states that “the center of a Gaussian function is an extremum point”.

Lemma 2. Let Φ(x) : Rn → R represents a Gaussian function i.e. Φ(x) =

exp
(
− (x− µ)T R−1 (x− µ)

)
then x = µ is the only extremum point of Φ(x) i.e.

dΦ
dx
|x=µ = 0. Further, x = µ is the global maximum of Φ

Proof. This Lemma is pretty obvious, but formally we see the gradient of Φ is

dΦ

dx
= exp

(
− (x− µ)T R−1 (x− µ)

)
R−1(x− µ) (2.17)

Now, since R−1 is a positive definite symmetric covariance matrix, from equation

(2.17), it is clear that dΦ
dx

= 0 iff x = µ. Further, it is easy to check that

d log Φ

dx
= −R−1(x− µ) (2.18)

∇2 log Φ(x) = −R−1 (2.19)

Since d log Φ
dx

|x=µ = 0 and∇2 log Φ(x) < 0 we conclude that x = µ is the only maximum

point of log Φ. Since log is a monotonically increasing function of (x − µ), so the

center of the Gaussian function, µ is also a global maximum point of the Gaussian

function.

Thus, from the above-mentioned Lemma, all the interior extremum points of

the given surface data should naturally be the first choice for location of Gaussian

functions with the R matrix determined to first order by the covariance of the data
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confined in a judicious local mask around a particular extremum point. Therefore, the

first step of the learning algorithm for an RBFN should be to find the extremum points

of a given input-output map. It should be noticed that as the functional expression

for the input-output map is unknown, to find the extremum points from discrete

surface data, we need to check the necessary condition that first derivative of the

unknown input-output map should be zero at each and every data point. We mention

that the process of checking this condition at every data point is very tedious and

computationally expensive. Note it is nt difficult to test for relative extrema of

adjacent function values by direct comparison. Hence, we list the following Lemma 3

that provides an efficient way to find the extremum points of the given input-output

map.

Lemma 3. Let f : X → R be a continuous function, where X is a paracompact space

with U = {Uα}α∈A as an open covering i.e. X ⊂ ∪α∈AUα. If S denotes the set of

all extremum points of f then there exists a refinement, V = {Vβ}β∈B, of the open

covering U , such that S ⊆ W, where W is the set of the relative maxima and minima

of f in open sets Vα.

Proof. The proof of this lemma follows from the fact that the input space X is a

paracompact space because it allows us to refine any open cover U = {Uα}α∈A of

X . Let U = {Uα}α∈A be the open cover of the input space X . Further, assume that

xmaxα and xminα define the maximum and minimum values of f in each open set Uα

respectively and W is the set of all such points i.e. card(W) = 2card(A). Now,

we know that the set of all local maximum and minimum points of any function is

the same as the set S, of extremum points of that function. Further, without loss

of generality we can assume that the set, W , of all local maxima and minima of the

function in each open set, Uα, is a subset of S because if it is not, then we can refine
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the open cover U further until this is true.

According to the above Lemma 3, for mesh sizes less than a particular value, the

set S, of the extremum points of the unknown input-output map f , should be subset

of the set W , consisting of the relative maxima and minima of the data points in each

grid element. Now, the set S, can be extracted from set W by checking the necessary

condition that first derivative of f should be zero at extremum points. This way

one need only approximate the first derivative of the unknown map at 2M points,

where M , is the total number of elements in which data has been divided. It should

be noticed that M is generally much smaller than the total number of data points

available to approximate the unknown input-output map.

Further, to choose the centers from the set S, we construct directed graphs M
and N of all the relative maxima sorted in descending order and all the relative

minima sorted in ascending order respectively. We then choose the points in M and

N as candidates for Gaussian function centers with the extreme function value as the

corresponding starting weight of the Gaussian functions. The centers at the points in

M and N are introduced recursively until some convergence criteria is satisfied. The

initial value of each local covariance matrix R is computed from statistical covariance

of the data in a local mask around the chosen center. Now, using all the input

data, we adapt the parameters of the chosen Gaussian functions and check the error

residuals for the estimation error. If the error residuals do not satisfy a predefined

bound, we choose the next set of points in the directed graphs M and N as center

locations for additional Gaussian RBFs and repeat the whole process. The network

only grows in dimensionality when error residuals can not be made sufficiently small,

and thus the increased dimensionality grows only incrementally with the introduction

of a judiciously shaped and located basis function. The initial location parameters
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are simply the starting estimates for the learning algorithm; we show below that the

combination of introducing basis functions sequentially and estimating their shape

and location from local data to be highly effective.

1. Estimation Algorithm

The heart of any learning algorithm for RBFN is an estimation algorithm to adapt ini-

tially defined network parameters so that approximation errors are reduced to smaller

than some specified tolerance. Broadly speaking, none of the nonlinear optimization

algorithms available guarantee the global optimum will be achieved. Estimation al-

gorithms based on the least squares criteria are the most widely used methods for

estimation of the constant parameter vector from a set of redundant observations.

According to the least square criteria, the optimum parameter value is obtained by

minimizing the sum of squares of the vertical offsets (“Residuals”) between the ob-

served and computed approximations. In general, for nonlinear problems, successive

corrections are made based upon local Taylor series approximations. Further, any

estimation algorithm generally falls into the category of a Batch Estimator or a Se-

quential Estimator, depending upon the way in which observation data is processed.

A batch estimator processes a usually large “batch” of data taken from a fixed span

of the independent variable (usually time) to estimate the optimum parameter vec-

tor while a sequential estimator is based upon a recursive algorithm, which updates

the parameter vector in a recursive manner after receipt of each observation. Due

to their recursive nature, sequential estimators are preferred for real time estimation

problems, however, batch estimators are usually preferable for offline learning.

To adapt the various parameters of the RBFN as defined in the previous sec-

tion, we use an extended Kalman filter [26] for on-line learning while the Levenberg-

Marquardt [27,28] batch least squares algorithm is used for off-line learning. Kalman
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filtering is a modern (1960) development in the field of estimation [29, 30] though

it has its roots as far back as in Gauss’ work in the 1800’s. In the present study,

the algebraic version of the Kalman filter is used, since our model does not involve

differential equations. On other hand, the Levenberg-Marquardt estimator, being the

combination of method of steepest descent and method of differential correction, is a

powerful batch estimator tool in the field of nonlinear least squares [29]. We men-

tion that both the algorithms are very attractive for the problem at hand and details

of both the algorithms can be found in Ref. [29]. Further, for some problems, the

Kalman filter is attractive as a means to update the off-line a priori learned network

parameters in real time whenever new measurements are available. The implementa-

tion equations for the extended Kalman filter or “Kalman-Schmidt filter” are given

in Table I. To learn the different parameters of the RBFN using any estimation algo-

rithm, the sensitivity (Jacobian) matrix H needs be computed. Since the covariance

update is based upon an assumption of linearity, it is typically useful to impose a

lower bound on the eigenvalues of P+
k to keep the Kalman filter from becoming “too

optimistic” and rejecting new measurements. The various partial derivatives required

to synthesize the sensitivity matrix are outlined in subsequent subsections for all three

parameterizations described in section B:

2. Cayley Transformation

In this case, the sensitivity matrix, H, can be defined as follows:

H =
∂f(x, µ, σ,q)

∂Θ
(2.20)
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Table I. Kalman-Schmidt filter.

Measurement Model

ỹ = h(xk) + νk

with

E(νk) = 0

E(ν lν
T
k ) = Rkδ(l − k)

Update

Kk = P−
k HT

k (HkP
−
k HT

k + Rk)
−1

x̂+
k = x̂−k + Kk(ỹ −Hkx̂

−
k )

P+
k = (I−KkH)P−

k

where

Hk =
∂h(xk)

∂x
|
x=x̂−

k



27

where, f(x,µ, σ,q) =
∑N

i=1 wiΦi(µi,σi, qi) and Θ is a N × (n+1)(n+2)
2

vector given

by:

Θ =

{
w1 µ1 σ1 q1 · · · wN µN σN qN

}
(2.21)

Here, q is a n(n− 1)/2 vector used to parameterize the rank deficient skew-symmetric

matrix Q in Eq. (2.9).

Qij = 0, i = j (2.22)

= qk i < j

where, k = ‖i− j‖ if i = 1 and k = ‖i− j‖ + ‖i− 1− n‖ for i > 1. Notice that the

lower triangular part of Q can be formed using the skew-symmetry property of Q.

The partial derivatives required for the computation of the sensitivity matrix, H are

obtained using Eqs. (2.5), (2.6) and (2.9), as follows:

∂f

∂wk

= φk (2.23)

∂f

∂µk

=
[
wkφkR

−1
k (x− µk)

]T
(2.24)

∂f

∂σki

= wkφk
y2

i

σ3
ki

,yi = Ck(x− µk), i = 1 . . . n (2.25)

∂f

∂qkl

= −wk

2
φk

[
(x− µk)

T ∂CT
k

∂qkl

SkCk(x− µk) + (x− µk)
TCT

k Sk
∂Ck

∂qkl

(x− µk)

]
,

l = 1 . . . n(n− 1)/2 (2.26)

Further, the partial
∂CT

k

∂qkl

in Eq. (2.26) can be computed by substituting for C from

Eq. (2.9):

∂Ck

∂qkl

=
∂

∂qkl

(I + Qk)
−1 (I−Qk) + (I + Qk)

−1 ∂

∂qkl

(I−Qk) (2.27)
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Making use of the fact that (I + Q)−1 (I + Q) = I, we get:

∂

∂qkl

(I + Qk)
−1 = − (I + Qk)

−1 ∂Qk

∂qkl

(I + Qk)
−1 (2.28)

substitution of Eq. (2.28) in Eq. (2.27) gives:

∂Ck

∂qkl

= − (I + Qk)
−1 ∂Qk

∂qkl

(I + Qk)
−1 (I−Qk)− (I + Qk)

−1 ∂Qk

∂qkl

(2.29)

Now, Eqs. (2.23)-(2.26) constitute the sensitivity matrix H for the Extended Kalman

Filter. We mention that although Eq. (2.6) provides a minimal parameterization of

the matrix R, we need to make sure that the scaling parameters denoted by σi are

always greater than zero. So in case of any violation of this constraint, we need to

invoke the parameter projection method to project inadmissible parameters onto the

boundary of the set they belong to, thereby ensuring that the matrix R remains

symmetric and positive definite at all times. Further, based on our experience with

this parameterization, it is highly nonlinear in nature and sometimes causes unreliable

convergence of the estimation algorithm. We found that this difficulty is alleviated

by considering the two alternate representations, discussed earlier. We summarize

the sensitivity matrices for these alternate parameterizations in the next subsections.

3. Additive Decomposition of the “Covariance” Matrix, R

Using the additive decomposition for the Ri matrix in Eq. (2.5) the different partial

derivatives required for synthesizing the sensitivity matrix H can be computed. We

define following parameter vector Θ

Θ =

{
w1 µ1 σ1 q1 · · · wN µN σN qN

}
(2.30)
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The required partials with respect tot he elements of Θ are then given as follows:

∂f

∂wk

= φk (2.31)

∂f

∂µk

=
[
wkφkP

−1
k (x− µk)

]T
(2.32)

∂f

∂σki

= wkφk

(xi − µki
)2

σ3
ki

, i = 1 . . . n (2.33)

∂f

∂qkl

= −wkφk(xi − µki
)T (xj − µkj

), l = 1 . . . n(n + 1)\2, i, j = 1 . . . n.(2.34)

Thus, Eqs. (2.31)-(2.34) constitute the sensitivity matrix H. It is to be mentioned

that even though the synthesis of the sensitivity matrix is greatly simplified, one needs

to check the constraint satisfaction defined in Eqs. (2.12)-(2.15) at every update. In

case these constraints are violated, we once again invoke the parameter projection

method to project the parameters normal to the constraint surface to nearest point on

the set they belong to, thereby ensuring that the covariance matrix remains symmetric

and positive definite at all times.

4. Cholesky Decomposition of “Covariance” Matrix, R

Like in previous two cases, once again the sensitivity matrix, H, can be computed by

defining the parameter vector, Θ, as:

Θ =

{
w1 µ1 l1 · · · wn µn ln

}
(2.35)

where, li is the vector of elements parameterizing the lower triangular matrix, L.



30

Carrying out the algebra the required partials can be computed as:

∂f

∂wk

= φk (2.36)

∂f

∂µk

=
[
wkφkR

−1
k (x− µk)

]T
(2.37)

∂f

∂lkl

= −wk

2
φk

[
(x− µk)

T

(
∂Lk

∂lkl

LT
k + Lk

∂LT
k

∂lkl

)
(x− µk)

]
,

l = 1 . . . n(n− 1)\2 (2.38)

Further, Lk can be written as:

Lk =
n∑

i=1

n∑
j=i

eiejLkij
(2.39)

Therefore, ∂Lk

∂lkl

can be computed as:

∂Lk

∂lkl

=
n∑

i=1

n∑
j=i

eiej (2.40)

Thus, Eqs. (2.36)-(2.38) constitute the sensitivity matrix H. It is to be mentioned

that unlike the Cayley transformation and the Additive decomposition, Cholesky de-

composition guarantees the symmetry and positive definiteness of matrix, R, without

any additional constraints and so is more attractive for learning the matrix, R.

It should be noted that although these partial derivatives are computed to syn-

thesize the sensitivity matrix for the extended Kalman filter they are required in any

case, even if a different parameter estimation algorithm is used (the computation of

these sensitivity partials is inevitable).

Finally, the steps for implementing the Directed Connectivity Graph Learning Algo-

rithm are summarized as follows:

Step 1 Find the interior extremum points i.e. global maximum and minimum of the

given input-output data.
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Step 2 Grid the given input space, X ∈ Rn using hypercubes of length l.

Step 3 Find the relative maximum and minimum of given input-output data on the

grid points in the region covered by each hypercube.

Step 4 Make a directed graph of all maximum and minimum points sorted in de-

scending and ascending order respectively. Denote the directed graph of maxi-

mum points and minimum points by M and N .

Step 5 Choose first point from graphsM andN , denoted by xM and xN repectively,

as candidates for Gaussian center and respective function values as the initial

weight estimate of those Gaussian functions because at the center, the Gaussian

function response is 1.

Step 6 Approximate the initial covariance matrix estimate, R, directly from the sta-

tistical covariance matrix using the observations in a local mask around points

xM and xN .

Step 7 Parameterize the covariance matrix, R, using one of the three parameteriza-

tions defined in section B.

Step 8 Use the Extended Kalman filter (Table I) or the Levenberg-Marquardt al-

gorithm to refine the parameters of the network using the given input-output

data.

Step 9 On each iteration, use parameter projection to enforce parametric constraints,

if any, depending upon the covariance matrix decomposition.

Step 10 Check the estimation error residuals. If they do not satisfy the prescribed

accuracy tolerance then choose the next point in the directed graphs M and N
as the Gaussian center and restart at step 5.
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The grid generation in step 2 is computationally costly, unless careful attention

is paid to efficiency. To grid the input space X ∈ Rn, in a computationally efficient

way, we designate a unique cell number to each input point in N th decimal system,

depending upon its coordinates in Rn. Here, N = max{N1, N2, · · · , Nn} and Ni

denotes the number of cells required along ith direction. The pseudo-code for the grid

generation is given below:

Psuedo-code for grid generation

for ct = 1 : n

xlower(ct) = min(inputdata(:, ct))

xupper(ct) = max(inputdata(:, ct))

end

deltax=(xupper-xlower)/N

for ct = 1 : Npoints

cellnum(ct) = ceil((inputdata(ct, :)− xlower)./deltax)

cellIndex(ct) = getindex(cellnum(ct))

end

The relative maxima and minima in each cell are calculated by using all the data

points with the same cell number. Though this process of finding the centers and

evaluating the local covariance followed by the function evaluation with adaptation

and learning seems computationally extensive, it helps in reducing the total number

of Gaussian functions and therefore keeps the “curse of dimensionality” in check.

Further, the rotation parameters and shape optimization of the Gaussian functions

enables us to approximate the local function behavior with improved accuracy. Since

we use the Kalman filter to refine the parameters of the RBF network, the selection of

starting estimates for the centers can be made off-line with some training data and the
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same algorithm can be invoked online as new measurements are processed to adapt the

parameters from the off-line (a priori) network. Obviously, we can choose to constrain

any subset of the network parameters, if necessary, to implicitly obtain a sub-optimal

approximation but with reduce dimensionality. Any new Gaussian centers can be

added to the existing network, these can be introduced based upon the statistical

information of the approximation errors. Additional localization and reduction in the

computational burden can be achieved by exploiting the local dominance near a given

point by adjusting only a small subset of locally dominant RBFN parameters.

D. Modified Minimal Resource Allocating Algorithm (MMRAN)

In this section, we illustrate how the rotation parameters can be incorporated into

existing RBF learning algorithms as well as the attractive consequences, by modifying

the popular Minimal Resource Allocating Network (MRAN). To show the effectiveness

of this modification, we include the rotation parameters also as adaptable parameters

while keeping the same center selection and pruning strategy as in the conventional

MRAN. For sake of completion, we give a brief introduction to MRAN and the reader

should refer to Ref. [12] for more details (note that, MRAN is generally accepted as

a significant improvement of the Resource Allocating Network (RAN) of Platt [5]).

It adopts the basic idea of adaptively “growing” the number of radial basis functions

where needed to null local errors, and also includes a “pruning strategy” to eliminate

little-needed radial basis functions (those with weights smaller than some tolerance),

with the overall goal of finding a minimal RBF network. RAN allocates new units

as well as adjusts the network parameters to reflect the complexity of function be-

ing approximated. The problem of allocating RBF functions sequentially was stated

as follows in Ref. [7]: Given the prior approximation fn−1 and the new observation
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(xn, yn), how do we combine these two information sets to obtain the posterior ap-

proximation fn? The optimal approximation for fn is to add an impulse function at

xn to fn−1 which compensates for the difference in the estimated response and the

actual response.

fn(x) = fn−1(x) + δn(yn − fn−1(xn)) (2.41)

This will ensure that the existing features of a prior network are maintained and error

for the new added unit is zero. But such a solution lacks smoothness of the underlying

function. We might anticipate that this approach is also prone to error when the new

measurement contains measurement errors. Therefore, we use Gaussian functions

centered at xn instead of an impulse function to get a smooth approximation.

φn(x) = exp(− 1

σ2
n

‖x− xn‖2) (2.42)

Let the number of hidden units required to approximate fn−1 be h then we can write:

fn(x) =
h∑

i=1

wiφi(x) + (yn − fn−1(xn))φn(x)

=
h+1∑
i=1

wiφi(x) (2.43)

Therefore the parameters associated with the new hidden unit are given as follows:

wh+1 = yn − fn−1(xn) (2.44)

µh+1 = xn (2.45)

σh+1 = σn (2.46)

Heuristically, the estimated width of new Gaussian function, σn, is chosen in MRAN

to be proportional to the shortest distance between xn and the existing centers i.e.

σn = κ‖xn − µnearest‖ (2.47)
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κ should be chosen judiciously to account for the amount of overlap between different

Gaussian functions.

The main difficulty with this kind of approach is that we may go on adding new

hidden units that contribute little to the final estimate. Therefore, a new hidden unit

is actually added to existing network only if it satisfies following criteria [5]:

‖xi − µnearest‖ > ε (2.48)

‖ei‖ = ‖yi − f(xi)‖ > emin (2.49)

erms
i =

√√√√
i∑

j=i−(Nw−1)

‖ej‖2

Nw

> ermin
(2.50)

Eq. (2.48) ensures that a new RBF node is added if it is sufficiently far from all the

existing nodes. If the inequality of Eq. (2.49) is satisfied, then the approximation

error using existing nodes meet the error specification and no new node is added.

Eq. (2.50) takes care of noise in the observations by checking the sum squared error

for past Nw observations. ε, emin and ermin
are different thresholds which should be

chosen appropriately to achieve desired accuracy.

If the above-mentioned criteria are not met, then the following network parame-

ters are updated using the gradient descent approach or extended Kalman filter as

suggested by Sundararajan [12].

Θ =

{
w1 µT

1 σ1 · · · wh µT
h σh

}
(2.51)

Note, the advantages of MRAN over other learning algorithms can be summarized as

follows.

• It is inherently sequential in nature and therefore can be used recursively in

real-time to update the estimated model



36

• The network architecture itself is adapted in contrast to adjusting weights in

a fixed architecture network. The ability of the network to capture the input-

output behavior typically improves as more measurements are available.

The adaptive architecture feature and the inherent recursive structure of the

learning algorithm makes this approach ideal for multi-resolution modeling [7,23,31].

While the methodology is very effective in some cases, it still suffers from the drawback

of potential explosion in the number of basis functions utilized to approximate the

functional behavior. A primary reason, we believe, for this is because the basis

functions are traditionally chosen to be circular, though in some cases, the widths of

the basis functions are adapted. While varying the width (sharpness) of the RBFs

aids in improving the resolution, it still may not sufficiently help in the reduction of

the number of basis functions required because many circular shaped basis functions

are required to approximate sharp non-circular features.

To generalize the adaptation in the present study, we augment the parameter

vector with a rotation parameter vector, q and different spread parameters, σik as

described in section B.

Θ =

{
w1 µT

1 σ1 q · · · wh µT
h σh q

}
(2.52)

Whenever a new node or Gaussian function is added to the MMRAN network, the

corresponding rotation parameters are first set to zero and the spread parameters

along different directions are assumed to be equal i.e. initially, the Gaussian functions

are assumed to be circular.

The last step of the MRAN algorithm is the pruning strategy as proposed in

Ref. [12]. The basic idea of the pruning strategy is to prune those nodes that con-

tribute less than a predetermined number, δ, for Sw consecutive observations. Finally,
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the modified MRAN algorithm (MMRAN) can be summarized as follow:

Step 1 Compute the RBF network output using following equation:

y =
h∑

i=1

wiΦi(x,Θ) (2.53)

Φi(x,Θ) = exp

(
−1

2
(x− µi)

TR−1(x− µi)

)
(2.54)

Step 2 Compute different error criteria as defined in Eqs. (2.48)-(2.49).

Step 3 If all the error criteria hold then create a new RBF center with different

network parameters assigned according to the following:

wh+1 = ei (2.55)

µh+1 = xi (2.56)

σh+1k
= κ‖xi − µnearest‖, ∀k = 1, 2, · · · , n (2.57)

q = 0 (2.58)

Step 4 If all criterion for adding a new node to the network are not met, then update

different parameters of the network using an EKF, as described in section 1.

Step 5 Remove those nodes of the RBF network that contribute negligibly to the

output of the network for a certain number of consecutive observations.

E. Numerical Simulations and Results

The advantages of rotation and re-shaping the Gaussian basis functions are evaluated

by implementing the DCG and modified MRAN algorithm using a variety of test ex-

amples in the areas of function approximation, chaotic time series prediction and

dynamical system identification problems. Most of the test case examples are either
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taken from the open literature or from the recently set up data modeling benchmark

group [32] by IEEE Neural Network Council. In this section, we provide a com-

prehensive comparison of DCG and modified MRAN algorithm with various other

conventional learning algorithms. At same time, these results also, demonstrate that

the inclusion of rotation and re-shaping parameters significantly enhances the perfor-

mance of the MRAN algorithm, for all five test problems.

1. Test Example 1: Function Approximation

The first Test Example for the function approximation is constructed by using the

following analytic surface function [33].

f(x1, x2) =
10

(x2 − x2
1)

2 + (1− x1)2 + 1
+

5

(x2 − 8)2 + (5− x1)2 + 1

+
5

(x2 − 8)2 + (8− x1)2 + 1
(2.59)

Figs. 2(a) and 2(b) show the true surface and contour plots of the above functional

expression respectively. According to our experience, this particular function has

many important features including the sharp ridge that is very difficult to learn ac-

curately with existing function approximation algorithms, with a reasonable number

of nodes. To approximate the function given by Eq. (3.52), a training data set is

generated by taking 10, 000 uniform random sampling in the interval [0-10] × [0-10]

in the X1-X2 space while test data consists of 5, 000 other uniform samples of the

interval [0-10]× [0-10].

To show the effectiveness of the rotation of Gaussian basis functions, we first use

the standard MRAN algorithm without the rotation parameters, as discussed in Ref.

[12]. Since the performance of MRAN algorithm depends upon the choice of various

tuning parameters, several simulations were performed for various values of the tuning
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Fig. 2. True surface and contour plots for test example 1.

Table II. Various tuning parameters for MRAN and modified MRAN algorithms.

Algori-

thm

εmax εmin γ emin ermin
κ p0 R Nw Sw δ

Std.

MRAN

3 1 0.66 0.002 0.0015 0.45 10−1 10−5 200 500 0.005

Mod.-

MRAN

3 1.65 0.66 0.002 0.0015 0.45 10−1 10−5 200 500 0.005
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Table III. Comparative results for test example 1.

Algorithm Mean Error Std. Devi-

ation (σ)

Max. Error Number of

Network

Parameters

Std. MRAN 32× 10−4 0.1811 2.0542 280

Modified MRAN 6.02× 10−4 0.0603 0.7380 232

DCG 5.14× 10−4 0.0515 0.5475 144

parameters before selecting the tuning parameters (given in Table II) which gives us

a suitably small approximation error. Figs. 3(a) and 3(b) show the approximation

error for the training data set and the evolution of the number of centers with number

of data points. From these figures, it is clear that approximation errors are quite high

even for the training data set, even though the number of Gaussian functions settled

down to 70 approximately after 3000 data points. Further, Figs. 3(c) and 3(d) show

the approximated test surface and contours plots respectively, whereas Figs 3(e) and

3(f) show the percentage error surface and error contour plots corresponding to test

data respectively. From these figures, it is apparent that approximation errors are

pretty large (≈ 15%) along the knife edge of the sharp ridge line while they are

< 1% in other regions. Actually, this is also the reason for the high value of the
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standard deviation of the approximation error for MRAN in Table III, the errors

along the sharp ridge dominate the statistics. The failure of MRAN type learning

algorithms in this case can be attributed directly to the inability of the prescribed

circular Gaussian basis function to approximate the sharp ridge efficiently.

Further, to show the effectiveness of the shape and rotation parameters, we

modify the MRAN algorithm, as discussed in section D, by simply including the shape

and rotation parameters also as adaptable while keeping the same center selection

and pruning strategy. The modified MRAN algorithm is trained and tested with

the same training data sets that we used for the original algorithm. In this case

too, a judicious selection of various tuning parameter is made by performing a few

different preliminary simulations and selecting final tuning parameters (given in Table

II) which give us a near-minimum approximation error. Figs. 4(a) and 4(b) show the

approximation error for the training data set and the evolution of number of centers

with the number of data points. From these figures, it is clear that by learning the

rotation parameters, the approximation errors for the training data set is reduced by

an almost order of magnitude whereas the number of Gaussian functions is reduced

by half. It should be noted, however, that ∼ 50% reduction in number of Gaussian

functions corresponds to only a 17% reduction in the number of network parameters

to be learned. Figs. 4(c) and 4(d) show the approximated surface and contours plots

respectively whereas Figs 4(e) and 4(f) show the percentage error surface and error

contour plots respectively. As suspected, the approximation errors are significantly

reduced (≈ 5%) along the knife edge of the sharp ridge line while they are still < 1%

in other regions. From Table III, it is apparent that the mean and standard deviation

of the approximation errors are also reduced very significantly.

Finally, the DCG algorithm, proposed in section C, is used to approximate the

analytical function given by Eq. (3.52). As mentioned in section C, we first divide
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Fig. 3. MRAN approximation results for test example 1.
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the whole input region into a total of 16 square regions (4 × 4 cells); this decision

was our first trial, better results might be obtained by tuning. Then we generated a

directed connectivity graph of the local maxima and minima in each sub-region that

finally lead to locating and shaping the 24 radial basis functions that, after parameter

optimization gave approximation errors less than 5%. This whole procedure is illus-

trated in Fig. 5. The DCG algorithm is also trained and tested with the same data

sets that we use for the MRAN algorithm training and testing. Figs. 6(a) and 6(b)

show the estimated surface and contour plots respectively for the test data. From

these figures, it is clear that we are able to learn the analytical function given in

Eq. (3.52) very well. In Fig. 6(b) the circular (◦) and asterisk (∗) marks denote the

initial and final positions (after learning process is over) of the Gaussian centers. As

expected, initially the center locations cover the global and local extremum points of

the surface and finally some of those centers, shape and rotation parameters move a

significantly. The optimum location, shape, and orientation of those functions along

the sharp ridge are critical to learn the surface accurately with a small number of

basis functions. Figs. 6(c) and 6(d) show the error surface and error contour plots

for the DCG approximated function. From Fig. 6(c), it is clear that approximation

errors are less than 5% whereas from Fig. 6(d) it is clear that even though we have

approximated the sharp surface very well, the largest approximation errors are still

confined to the vicinity of the ridge. Clearly, we can continue introducing local func-

tions along the ridge until the residual errors are declared small enough. Already,

however, advantages relative to competing methods are quite evident (the smallest

approximation error and the fewest number of network parameters).

For comparison sake, the mean approximation error, standard deviation of ap-

proximation error and total number of network parameters learned are listed in Table

III for MRAN (with and without rotation parameters) and DCG algorithms. From
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Fig. 5. Illustration of center selection in the DCG network.
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these numbers, it is very clear that the mean approximation error and standard de-

viation decreases by factors from three to five if we include the rotation and shape

parameters. Further, this reduction is also accompanied by a considerable decrease

in number of learned parameters required to define the RBFN network in each case.

It is noted that this very substantial improvement in performance of the modified

MRAN algorithm over the standard MRAN can be attributed directly to the inclu-

sion of shape and rotation parameters, because the other parameter selections and

learning criteria for the modified MRAN algorithm are held the same as for the orig-

inal MRAN algorithm. Although, there is not much difference between the modified

MRAN and DCG algorithm results, in terms of accuracy, in the case of the DCG

algorithm, a total of only 144 network parameters are required to be learned as com-

pared to 232 in case of the modified MRAN. This 33% decrease in number of network

parameters to be learned in the case of the DCG can be attributed to the judicious

selection of centers, using the graph of maxima and minima, and the avoidance of

local convergence to sub-optimal values of the RBF parameters. It is anticipated

that persistent optimization and pruning of the modified MRAN may lead to results

comparable to the DCG results. In essence DCG provides more nearly the global

optimal location, shape and orientation parameters for the Gaussian basis functions

to start the modified MRAN algorithm.

2. Test Example 2: 3 Input- 1 Output Continuous Function Approximation

In this section, the effectiveness of the shape and rotation parameters is shown by

comparing the modified MRAN and DCG algorithms with the Dependence Identifica-

tion (DI) algorithm [34]. The DI algorithm bears resemblance to the boolean network

construction algorithms and it transforms the network training problem into a set of

quadratic optimization problems that are solved by a number of linear equations.
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The particular test example considered here is borrowed from Ref. [34] and involves

the approximation of a highly nonlinear function given by following equation:

y =
1

10
(ex1 + x2x3 cos(x1x2) + x1x3) (2.60)

Here, x1 ∈ [0, 1] and x2, x3 ∈ [−2, 2]. We mention that in Ref. [12], Sundarajan et

al. compared MRAN algorithm with DI algorithm. Like in Ref. [12, 34], the input

vector for MMRAN and DCG is x =

{
x1 x2 x3

}T

and the training data set for

network learning is generated by taking 2000 uniformly distributed random values of

the input vector and calculating the associated value of y according to Eq. (2.60).

The several tuning parameters for the MMRAN algorithm are given in Table IV.

Table IV. Various tuning parameters for modified MRAN algorithm for test example

2.

Algorithm εmax εmin γ emin ermin
κ p0 q0 Nw Sw δ

MMRAN 3 0.3 0.97 0.002 0.12 0.70 1 10−1 102 2000 10−4

Fig. 7(a) shows the growth of the modified MRAN network. In case of the DCG

network, the whole input space is divided into 2× 2× 2 grid so giving us a freedom

to choose the connectivity graph of 16 centers. However, finally we settled down to

a total 4 basis functions to have mean training data set errors of the order of 10−3.

Further, Fig. 7 shows the result of testing the modified MRAN and DCG network

with the input vector x set to following three parameterized functions of t as described
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Fig. 7. Simulation results for test example 2.
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in Ref. [12, 34].

Test Case 1

x1(t) = t

x2(t) = 1.61

x3(t) =





8t− 2 0 ≤ t < 1
2

−8t + 6 1
2
≤ t < 1

(2.61)

Test Case 2

x1(t) = t

x2(t) =





8t− 2 0 ≤ t < 1
2

−8t + 6 1
2
≤ t < 1

x3(t) = step(t)− 2step(t− 0.25) + 2step(t− 0.5)− · · ·

(2.62)

Test Case 3

x1(t) = t

x2(t) = step(t)− 2step(t− 0.25) + 2step(t− 0.5)− · · ·
x3(t) = 2 sin(4πt)

(2.63)

(2.64)

As in Ref. [12, 34], in all 3 test cases t takes on 100 evenly spaced values in the [0, 1]

interval. In Table V, comparative results are shown in terms of percentage squared

error for each test case and set of network parameters. The performance numbers

for MRAN and DI algorithms are taken from Ref. [12]. From this Table and Fig.

7, it is clear that modified MRAN and DCG achieve smaller approximation error

with a smaller number of network parameters. Once again, the effectiveness of the

shape and rotation parameters is clear from the performance difference between the

standard MRAN and the modified MRAN algorithms, although the advantage is not
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as dramatic as in the first example.

Table V. Comparative results for 3-input, 1-output nonlinear function case.

Algorithm Network Ar-

chitecture

Squared Percent-

age Error for all

Testing Sets

Number of

Network

Parameters

Modified MRAN 3-4-1 0.0265 40

DCG 3-4-1 0.0237 40

Std. MRAN 3-9-1 0.0274 45

DI 4-280-1 0.0295 1400

3. Test Example 3: Dynamical System Identification

In this section, a nonlinear system identification problem is considered to test the

effectiveness of the shape and rotation parameters. The nonlinear dynamical system

is described by the following equation and is borrowed from Refs. [12,35]

yn+1 =
1.5yn

1 + y2
n

+ 0.3 cos yn + 1.2un (2.65)
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The particular system considered here was originally proposed by Tan et al. in Ref.

[35]. In Ref. [35], a recursive RBF structure (with fixed 42 neurons and one width

value (0.6391)) is used to identify the discrete-time dynamical system given by Eq.

(2.65). Further, in Ref. [12] the standard MRAN algorithm is employed to predict the

value of y(n + 1) with 11 hidden units. It should be noticed that while the number

of hidden units was reduced by a factor of three, the total number of parameters (44

in case of MRAN) to be learned was increased by 2 as compared to total number of

parameters learned in Ref. [35].

Like in the previous test examples, to show the effectiveness of the shape and

rotation parameters, we first use the modified MRAN algorithm to identify the par-

ticular discrete-time system. Like in Refs. [12, 35], the RBF network is trained by

taking 200 uniformly distributed random samples of input signals, un, between −2

and 2. The network input vector, x, is assumed to consist of yn−1, and un, i.e.

x =

{
yn−1 un

}
(2.66)

To test the learned RBF network, test data is generated by exciting the nonlinear

system by a sequence of periodic inputs [12,35]:

u(n) =





sin(2πn/250) 0 < n ≤ 500

0.8 sin(2πn/250) + 0.2 sin(2πn/25) n > 500
(2.67)

The different tuning parameters for the modified MRAN algorithms are given in

Table VI. Fig. 8(a) shows the actual system excitation, the RBF network output

learned by modified MRAN algorithm with shape and rotation parameters and the

approximation error. Fig. 8(b) shows the plot of the evolution of RBF network

with number of data points. From, these plots, we can conclude that number of

hidden units required to identify the discrete-time system accurately reduces to 7
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Table VI. Various tuning parameters for modified MRAN algorithm for test example

3.

Algorithm εmax εmin γ emin ermin
κ p0 R Nw Sw δ

MMRAN 3 1 0.6 0.04 0.4 0.50 1 10−2 25 200 10−4

from 11 if we introduce shape and rotation optimization of the Gaussian functions in

the standard MRAN algorithm. However, in terms of the total number of learning

parameters there is a reduction of only 2 parameters when we include the shape and

rotation parameters in the MRAN algorithm.

Finally, the Directed Connectivity Graph Learning Algorithm is used to learn

the unknown nonlinear behavior of the system described by Eq. (2.65). For approx-

imation purposes, the input space is divided into 2 × 2 grid giving us a freedom to

choose a maximum 8 radial basis functions. However, the final network structure re-

quires only 6 neurons to have approximation errors less than 5%. Fig. 8(c) shows the

plot of training data set approximation error with 6 basis functions while Fig. 8(d)

shows the actual system excitation for test data, the RBF network output learned

by the DCG algorithm and the approximation error. From these plots, we conclude

that the DCG algorithm is by far the most advantageous since it requires only 6

Gaussian centers to learn the behavior of the system accurately as compared to 42

and 11 Gaussian centers used in Refs. [35] and [12] respectively. In terms of the total

number of learning parameters, the DCG algorithm is also preferable. For DCG, we

need to learn only 6 × 6 = 36 parameters as compared to 42 and 44 parameters for
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MMRAN and MRAN respectively. This result, once again reiterates our observation

that the better performance of DCG and MMRAN algorithm can be attributed to

the adaptive shape and rotation learning of the Gaussian functions as well as the

judicious choice of initial centers (in case of DCG). It is obvious we have achieved

(i) more accurate convergence (ii) fewer basis functions, and (iii) fewer network pa-

rameters, and, importantly, we have a systematic method for obtaining the starting

estimates.

4. Test Example 4: Chaotic Time Series Prediction Problem

The effectiveness of shape and rotation parameters has also been tested with the

chaotic time series generated by Mackey-Glass time delay differential equation [36]:

ds(t)

dt
= −βs(t) + α

s(t− τ)

1 + s10(t− τ)
(2.68)

This equation is extensively studied in Refs. [5,12,37,38] for its chaotic behavior and

is listed as one of the benchmark problems at IEEE Neural Network Council web-

site [32]. To compare directly to the previous studies [5,12,37,38], we choose the same

parameter values: α = 0.2, β = 0.1, τ = 17 and s(0) = 1.2. Further, to generate

the training and testing data set, the time series Eq. (2.68) is integrated by using

the fourth-order Runge-Kutta method to find the numerical solution. This data set

can be found in the file mgdata.dat belonging to the FUZZY LOGIC TOOLBOX OF

MATLAB 7 and at IEEE Neural Network Council web-site [32].

Once again, to study the effectiveness of introducing shape and rotation para-

meters only, we used modified MRAN algorithm and DCG algorithm to perform a

short-term prediction of this chaotic time series. We predict the value of s(t + 6)

from the current value s(t) and the past values s(t− 6), s(t− 12) and s(t− 18). Like

in previous studies [5, 12, 37, 38], the first 500 data-set values are used for network
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Fig. 9. Simulation results for test example 4.
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Table VII. Various tuning parameters for modified MRAN algorithm for test example

4.

Algorithm εmax εmin γ emin ermin
κ p0 R Nw Sw δ

MMRAN 2 0.5 0.66 10−5 10−4 0.27 1 10−1 102 103 10−4

training while the remaining 500 values are used for testing purposes. The different

tuning parameters for the modified MRAN algorithm are given in Table VII. For

the DCG approximation purposes, the input space is divided into 2× 2× 2× 2 grid

giving us freedom to choose a maximum of 32 radial basis functions. However, the

final network structure required only 4 neurons to achieve approximation errors less

than 5%. We mention that due to the availability of a small number of training data

set examples, we used the Levenberg-Marquardt [29] algorithm to efficiently optimize

the DCG network.

Fig. 9(a) shows the MMRAN network growth with the number of training data

set examples while Figs. 9(b) and 9(c) show the plots for approximated test data

and approximation test data error respectively. From these plots, we can conclude

that the MMRAN algorithm requires only 6 Gaussian centers to learn the behavior of

the system accurately as compared to 29 and 81 Gaussian centers used in Refs. [12]

and [5] respectively. In terms of the total number of learning parameters, the MMRAN

algorithm is also preferable as compared to the MRAN and the RAN algorithms. For

the MMRAN algorithm, we need to learn only 6×15 = 90 parameters as compared to

174 parameters required for the MRAN algorithm. In the case of the DCG algorithm,
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the number of Gaussian centers required was reduced even further to only 4 while

the total number of learned parameters reduced to 60 as compared to 90 in case of

the MMRAN algorithm and 174 for the standard MRAN algorithm. In Ref. [38],

Table IX compares the various algorithms presented in the literature in terms of

their root mean squared error (RMSE) for this particular problem. Here, in Table

VIII, we present comparative results for MMRAN, DCG and five other algorithms.

The direct comparison of MRAN and MMRAN results reveals the fact that inclusion

of the shape and rotation parameters greatly enhance the approximation accuracy

while significantly reducing the number of parameters required to define the RBF

network for a particular algorithm. It should be also noted that both the DCG and

MMRAN algorithm performed very well as compared to all other algorithms for this

particular example, in terms of both smallness of the RMS error and the number of

free network parameters.

5. Test Example 5: Benchmark Against the On-line Structural Adaptive Hybrid

Learning (ONSAHL) Algorithm

In this section, we present a comparison of the MMRAN and DCG algorithms with

the On-line Structural Adaptive Hybrid Learning (ONSAHL) learning algorithm on a

nonlinear system identification problem from Ref. [21]. The ONSAHL algorithm uses

a Direct Linear Feedthrough Radial Basis Function (DLF-RBF) network and an error

sensitive cluster algorithm to determine automatically the number of RBF neurons,

and to adapt their center positions, their widths and the output layer weights. This

algorithm, however, does not include shape and rotation parameters. The nonlinear

dynamical system is described by following difference equation and is borrowed from
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Table VIII. Comparative results for Mackey-Glass chaotic time series prediction prob-

lem.

Algorithm Network Ar-

chitecture

RMS

Error

Number of

Network

Parameters

MRAN 4-29-1 0.035 174

Modified MRAN 4-6-1 0.0164 90

DCG 4-4-1 0.004 60

Genetic Algorithm

+ Fuzzy Logic [38]

9× 9× 9× 9 0.0379 6633

Pomares 2000 [39] 3× 3× 3× 3 0.0058 101

Pomares 2003 [38] 4-14-1 0.0045 84

Pomares 2003 [38] 4-20-1 0.0029 120
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Table IX. Various tuning parameters for modified MRAN algorithm for test example

5.

Algorithm εmax εmin γ emin ermin
κ p0 q0 R Nw Sw δ

MMRAN 2 0.9 0.99 10−2 10−2 0.7 1 0 1 500 5000 10−4

Ref. [21].

y(n) =
29

40
sin

(
16u(n− 1) + 8y(n− 1)

3 + 4u(n− 1)2 + 4y(n− 1)2

)
+

2

10
(u(n− 1) + y(n− 1)) + ε(n)

(2.69)

Like in Ref. [21] ε(n) denotes a Gaussian white noise sequence with zero mean and

a variance of 0.0093. A random signal uniformly distributed in the interval [−1, 1] is

used for the excitation u(n) in the system of Eq. (2.69). The network input vector x

is assumed to consist of y(n − 1) and u(n − 1) while network output vector consists

of y(n). Eq. (2.69) is simulated with zero initial conditions to generate response data

for 10, 000 integer time steps. Out of these 10, 000 data points, the first 5000 are used

for training purpose while the remaining 5000 points are used for testing purpose.

Fig. 10(a) shows the plot of true test data.

In this case, several MRAN tuning parameters are given in Table IX. For DCG

approximation purposes, the input space is divided into 2 × 2 grid giving us a free-

dom to choose maximum 8 radial basis functions. However, final network structure

consists of only 6 neurons to have approximation errors less than 5%. For comparison
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purposes, we also use the same error criteria as defined in Ref. [21].

Id(n) =
1

50

49∑
j=0

|y(n− j)− ŷ(n− j)| (2.70)

Fig. 10(b) shows the plot of MMRAN network growth with the number of train-

ing data points while Figs. 10(c) and 10(d) shows the plot of absolute approximation

error and incremental Id(n) respectively. In Ref. [12], standard MRAN algorithm

is employed for system identification purposes using 11 neurons while the ONSAHL

algorithm is employed using 23 neurons. From the results presented in Ref. [12], it

is clear that MRAN uses a smaller number of neurons as compared to the ONSAHL

algorithm to accurately represent the given dynamical system. From Fig. 10(b), it

is clear that number of neurons required to identify the discrete-time system accu-

rately further reduces to 7 from 11 if shape and rotation adaptation of the Gaussian

RBF is incorporated in MRAN algorithm. However, in terms of the total number

of learning parameters there is a reduction of only 2 parameters if we include the

shape and rotation parameters in the MRAN algorithm. From these plots, we can

also conclude that the DCG algorithm requires only 6 Gaussian centers to learn the

behavior of the system accurately as compared to 23 and 11 Gaussian centers used

in Refs. [21] and [12] respectively. In terms of the total number of learning para-

meters, the DCG algorithm is again preferable. For DCG, we need to learn only 36

parameters as compared to 42 and 44 parameters for MMRAN and MRAN respec-

tively. Finally, Table X summarizes the comparison results in terms of approximation

error and number of free network parameters. These results, once again reiterates

our observation and support the conclusion that the better performance of the DCG

and MMRAN algorithms can be attributed to the inclusion of shape and rotation

optimization of Gaussian functions as well as the optimization of their centers and
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Fig. 10. Simulation results for test example 5.
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Table X. Comparative results for test example 5.

Algorithm Network Ar-

chitecture

Mean Id(n) Number of

Network

Parameters

Modified MRAN 2-7-1 0.0260 42

DCG 2-6-1 0.0209 36

Std. MRAN 2-11-1 0.0489 44

ONSAHL 2-23-1 0.0539 115

spreads. These dramatic advantages, taken with the previous four problems results

provide compelling evidence for the merits of the shape and rotation optimization of

the Gaussian basis functions as well as a directed connectivity graph algorithm to

initialize estimates for these parameters.

F. Concluding Remarks

A direction dependent RBFN learning algorithm has been developed to obtain a min-

imal RBF network. New approaches are introduced and tested on variety of examples
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from a variety of disciplines such as continuous function approximation, dynamic sys-

tem modeling and system identification, nonlinear signal processing and time series

prediction. In all of these diverse test problems, the proposed two algorithms are

found to produce more compact RBF networks with the same or smaller errors as

compared to many existing methods. The results are of direct utility in addressing the

“curse of dimensionality” and frequent redundancy of neural network approximation.

The results presented in this chapter serve to illustrate the usefulness of shape

and rotation optimization of the Gaussian basis functions as well as a directed con-

nectivity graph algorithm to initialize estimates for these parameters. The shape and

rotation optimization of the Gaussian functions not only helps us in approximating

the complex surfaces better but also helps in greatly reducing the numbers of hidden

units. We believe that the concept of shape and rotation optimization can be in-

corporated into many existing learning algorithms to very significantly enhance their

performance without much difficulty. This fact was illustrated by our modification

of a conventional MRAN learning algorithm. However, much research is required to

extend and optimize the methodology for general multi-resolution approximations in

high dimensional spaces. Finally, we mention that proving the minimality of RBF

network (using any learning algorithm for that matter) is an open problem in the field

of approximation theory and the word “minimal” in the chapter only signifies that,

we have sought a minimum parameter representation and no more compact network

apparently exists in the literature for all the test problems and the test data consid-

ered in this chapter. Finally, we fully appreciate the truth that results from any test

are difficult to extrapolate, however, testing the new algorithm on five benchmark

problems and providing comparisons to the most obvious five competing algorithms

does provide compelling evidence and a basis for optimism.
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CHAPTER III

GLOBAL LOCAL ORTHOGONAL POLYNOMIAL MAPPING (GLO-MAP) IN

N-DIMENSIONS: APPLICATIONS TO INPUT-OUTPUT APPROXIMATION

A. Introduction

In the previous chapter, we have shown that the learning of shape and orientation

parameters of a basis function significantly improves the approximation capability of

a Gaussian basis function. This intuitively comfortable fact was illustrated by consid-

ering a variety of examples from a variety of disciplines such as continuous function

approximation, dynamic system modeling and system identification, nonlinear signal

processing and time series prediction. Although, the RBF learning algorithms, pre-

sented in Chapter II, are shown to work very well for different test examples, there

remains several issues about the complexity and convergence of the RBF model. Also,

use of RBF networks for dynamic system identification problem generally leads to a

non-affine control problem due to their inherent nonlinear and complex structure,

which is not desirable for controller design purposes. Besides this, the various net-

work parameters which describe a RBF network appear nonlinearly in final network

structure and necessitate the use of a nonlinear estimation algorithm to find the best

estimates of these parameters from input-output data. The nonlinear RBF model

is global, this has both advantages and disadvantages, but ultimately for very high

dimensioned problems, it is likely defeated by the curse of high dimensionality (com-

putation burden and convergence difficulties, mainly). Although successes have been

many, the computational cost associated with learning these parameters and the con-

vergence of nonlinear estimation algorithm remain obstacles that limits applicability

to problems of low to moderate dimensionality.
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In this chapter, we seek to design an efficient and robust modeling algorithm

that can be utilized for a large number of different engineering applications while

considering the above mentioned disadvantages of the best existing methods. A key

motivation underlying these developments is to establish a more general, rigorous and

computationally attractive way to construct a family of local approximations. The

main idea discussed is a weighting function technique [40,41] that generates a global

family of overlapping preliminary approximations whose centroids of validity lie on

at the vertices of an N -dimensional pseudo-grid. These preliminary approximations

are constructed so that each represents accurately the behavior in a local sub-domain

centered on a typical vertex in the grid. These sub-domains, where the preliminary

approximations are valid, generally overlap and the overlapping approximations are

averaged over the overlapped volume to determine final local approximations. A novel

averaging method is presented that ensures these final approximations are globally

piecewise continuous with adjacent approximations determined in an analogous av-

eraging process, to some prescribed order of partial differentiation. The continuity

conditions are enforced by using a unique set of weighting functions in the averaging

process, without constraining the preliminary approximations being averaged. The

weight functions are designed to guarantee the global continuity conditions while re-

taining near complete freedom on the selection of the generating local approximations.

Further, it is shown that if the preliminary local approximations are chosen as lin-

ear combinations of a set of basis functions orthogonal with respect to the weight

functions, then many advantages can be realized in terms of model complexity, com-

putational cost and conditioning of the approximation problem. Construction of a

new set of orthogonal polynomials, and several properties of these functions are novel

results presented in this chapter. Finally, several applications from various diverse

fields are considered to show the approximation capability of the proposed algorithm.
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Fig. 11. Approximation of irregular functions in two dimensions.

The chapter is organized as follows. First, we introduce and illustrate the ba-

sic ideas underlying the proposed algorithm, followed by systematic development of

the algorithm. Finally, the proposed approach is validated by considering different

engineering applications. In Chapter IV, we provide a strong set of theoretical jus-

tification that proves the probabilistic truth that the GLO-MAP process is unbiased

and the covariance of the averaged approximations are smaller than the generating

approximations.

B. Basic Ideas

To motivate the results in this chapter, consider Fig. 11. Here we have 64, 000 noisy

measurements of a irregular function F (x, y). These happen to be stereo ray inter-

section measurements from correlation of stereo images of topography near Ft. Sill,
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Oklahoma [42]; however, they could be measurements of any complicated, irregular

function for which a single global algebraic expression would likely be intractable.

Suppose that it is desired to obtain a smooth, least square approximation of this

function, perhaps with additional constraints imposed (e.g., in this case, the stereo

correlation measurement process fails reliably over water, so the large spurious noise

spikes over lakes Latonka and Elmer Thomas, where reliable stereo correlation is not

possible, but can be replaced by a constraint that the lake surface be a known ele-

vation). In lieu of a single global and necessarily complicated function, it is desired

to represent the function using a family of simpler local approximations. Such local

approximations would be much more attractive basis for local analysis. Alternatively,

one may think of the local approximations as Taylor series approximations (each eval-

uated at a local expansion point on a grid), or as any local approximations obtained

from local measurements. However, if the local approximations are introduced with-

out taking particular care, they will virtually certainly disagree in the value estimated

for F (x, y) and the derivatives thereof at any arbitrary point, although the discrep-

ancies may be small. In other words, global continuity is not assured, unless we

introduce methodology to guarantee the desired continuity properties. These chal-

lenges are compounded in higher dimensions, if usual local approximation approaches

are used. It is desired to determine a piecewise continuous global family of local least

squares approximations, while having freedom to vary the nature (e.g., mathematical

basis functions and degrees of freedom) of the local approximations to reflect possi-

bly large variations in the roughness of F (x, y). While we are introducing the ideas

in the setting of a data-fitting problem in a two dimensional space, the results are

shown later in this dissertation to be of much broader utility, and to generalize fully

to approximation in an N dimensional space, including opening a door to a flexible

new method for solving high dimensional partial differential equations.
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Fig. 12. Qualitative representation of the averaging process in two dimensions.
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With reference to Fig. 12, we summarize some features of the weighting function

approach to approximation in two dimensions. We prove these qualitative statements

later in this chapter and in Chapter IV. From Fig. 12, we introduce several quali-

tative observations: Notice the attractive properties of the weight functions: At any

of the four vertices, we see the weight function (associated with the function whose

centroid of validity is a given vertex) is unity, while the other three weight functions

are zero at that vertex. Notice further that the weight functions have a qualitative

bell shape, but fair into a square base, the zero contour being the boundary opposite

(e.g., 2-3-4) to the vertex (e.g., point 1) where the weight has a unit value. We will

show that the four overlapping weight functions constitute a partition of unity, they

add to unity everywhere in the overlapping unit region (which guarantees an unbiased

approximation). Furthermore, notice that along any boundary, only the two weight

functions associated with the two approximations centered at the end points of that

boundary are non-zero along that boundary, while the other two weight functions

are zero (the partial derivatives of the other two weight functions are also along this

boundaries). These continuity arguments on the averaged approximation of the func-

tion can be extended readily to corresponding properties on their partial derivatives:

The averaged approximation osculate in value and partial derivatives with the four

preliminary approximations at their corresponding vertices, and the function and both

partial derivatives along any boundary are a weighted average of the corresponding

two functions associated with the end point of that boundary. Collectively, these

observations lead to rigorous piecewise continuity of the averaged approximations,

while leaving the user free to choose any preliminary local approximations desired

or needed. These qualitative observations will be developed systematically in the

subsequent sections and extended rigorously to approximation with arbitrary order

continuity in an N dimensional space.
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C. Approximation in 1-, 2- and N - Dimensions Using Weighting Functions

The essential ideas can be introduced rigorously in a one-dimensional piecewise ap-

proximation problem. The notations are developed for the one-dimensional prob-

lem such that the generalization is most straightforward. With reference to Fig.

13, we discuss the one-dimensional problem. An arbitrary set of knots (vertices)
{

1X, 2X, · · · , KX, · · ·} are introduced at a uniform distance h apart; a non- di-

mensionalization of x is introduced as a local coordinate −1 ≤ Ix
∆
= (X− IX)/h ≤ 1;

centered on the I th vertex X = IX. The local weighted average approximation is

introduced as

F̄I(X) = w(Ix)FI(X) + w(I+1x)FI+1(X), for 0 ≤I x < 1 (3.1)

where the weighting functions w(x) used to average (blend) the two adjacent prelimi-

nary local approximations {FI(X), FI+1(X)} are as yet un-specified. We prefer that

the preliminary approximations {F1(X), F2(X), · · · , FK(X), · · · } be left completely

arbitrary, so long as they are smooth and represent the local behavior of F (X) well.

As developed in Reference [43], the weight function can be selected to guarantee that

the averaged approximation F̄ (X) osculates with FI(X) in value and first derivative

as X → IX, and likewise F̄ (X) osculates with FI+1(X) in value and first derivative

as X → I+1X. Notice that the shifted weight functions add to unity, as they must

for an unbiased estimate, e.g., w(Ix) + w(Ix − 1) = 1, or w(Ix − 1) = 1 − w(Ix)

Observe that I+1x = Ix − 1, so if 0 ≤ Ix ≤ 1, −1 ≤ I+1x = Ix − 1 ≤ 0. Notice

also the first derivative of the average of Eq. (3.1) at an arbitrary point is

dF̄I(X)

dx
= w(Ix)

dFI(X)

dx
+ w(I+1x)

dFI+1(X)

dx
+

dw(Ix)

dx
FI(X) +

dw(I+1x)

dx
FI+1(X)

(3.2)
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Thus the requirement that the weighted average approximation (3.1) form a contin-

uous global valid model leads to following boundary conditions on yet to be defined

weighting functions:

at x = 0 :





w(0) = 1

dw(x)
dx

∣∣∣
x=0

= 0
, at x = 1 :





w(1) = 0

dw(x)
dx

∣∣∣
x=1

= 0
(3.3)

With these boundary conditions, the first term of Eq. (3.1) reduces to FI(X) as Ix →
0 and likewise, only the first term of Eq. (3.2) contributes as Ix → 0. Analogous

osculation arguments hold at the right end of the interval. In general the requirement

that the weighted average approximation in Eq. (3.1) form an mth-order continuous

globally valid model and additional requirement of unbiased approximation leads to

the following boundary value problem that uniquely defines the necessary weighting

functions:

1. The first derivative of the weighting function must have an mth-order osculation

with w(0) = 1 at the centroid of its respective local approximation.

w(0) = 1

dkw
dxk |x=0 = 0 k = 0, 1, · · · ,m

(3.4)

2. The weighting function must have an (m + 1)th-order zero at the centroid of its

neighboring local approximation.

w(1) = 0

dkw
dxk |x=1 = 0 k = 0, 1, · · · ,m

(3.5)

3. The sum of two neighboring weighting functions must be unity over the entire

closed interval between their corresponding adjacent local functional approxi-
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mations.

w(Ix) + w(Ix− 1) = 1 ∀ x, −1 ≤ x ≤ 1 (3.6)

It should be noted that the first two boundary conditions are sufficient to ensure that

the global function reduces exactly to the local approximations at their centroids, not

only in their value but in their first m partial derivatives. If weighting function is

assumed to be polynomial in an independent variable, x, then adopting the procedure

listed in Ref. [44] and summarized in Appendix A, the lowest order weight function

(for m = 1) can be shown to be simply:

w(x) =





1− x2(3 + 2x), − 1 ≤ x < 0

1− x2(3− 2x), 0 ≤ x ≤ 1





= 1− x2(3− 2|x|) (3.7)

These are the functions plotted in Fig. 13. It should be noted that the weight function

given by Eq. (3.7) is a non-negative continuous functions defined on a locally compact

subset of approximation space. To be more precise, the weight functions obtained

by solving the boundary value problem have following properties which result in a

meshless approximation and interpolation algorithm.

1. The domain of weight function, w is a compact space.

2. w(x) > 0, ∀ x ∈ (−1, 1).

3. w(x) = 0, |x| ≥ 1.

4. w(x) is a monotonically decreasing function of x, ∀ x ∈ (−1, 1).

In the event that discrete measurements of F (X) are available, the prelimi-

nary approximations {F1(X), F2(X), · · · , FK(X), · · · } are fit to data subsets in

the ∆X = ±h regions centered on

{
1X 2X · · · KX · · ·

}
. It is evident that

the final approximation on each interval is the average of overlapping weighted least



74

�

�

�� �� �� ��

� � �

� �� � � � � � � � � �� �

� � �
� � � � � � � � � �

−
− −= +

� �
�
� �

�� �
�
� �−

� ����������� �������� ������������������ � �
� � � �

− +

�� �
�
� �+

� � � � �� �� � �
� � � � �= − ≤

�� �
�

� � +�� �
�

� � + � �
�

� �

� ����������� ���������� �������������� � �
� � � �

− +

� � �

�� � � � � � � � � �� �

� � �
� � � � � � � � � �

+
+= +

Fig. 13. Weighting function approximation of a one-dimensional function.
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square approximations, fit to shifted data lying within ±h of the vertices. For equally

precise measurements of F (X), the least square process should use the same weight

functions of Eq. (3.3). If the measurements are made with unequal expected preci-

sion, then the statistically justified weights should be scaled using the weights of Eq.

(3.7). Note the qualitative justification: “If one least square fit is good, the average

of two should be better.” In Chapter IV, we prove the probabilistic veracity of this

qualitative observation. Observe that simply through choosing the judicious weight

functions of Eq. (3.7) we are guaranteed global piecewise continuity for all possible

continuous local approximations {F1(X), F2(X), · · · , FK(X), · · · }. One retains the

freedom to vary the degree of the local approximations, as needed, to fit the local

behavior of F (X), and rely upon the weight functions to enforce continuity.

A most important characteristic of the weighting function averaging process is

that it generalizes fully to N dimension without as severe a ‘curse of dimensionality’

that accompanies generalizations of virtually all known analysis methods to higher

dimensions. The generalization to 2-Dimensions is amazingly straightforward. In-

troduce notation for the local approximations {F11(X1, X2), · · · , FI1I2(X1, X2), · · · }
constructed such that they are valid over (2h)× (2h) regions centered on the vertices

{( 1X1,
1X2), (

1X1,
2X2), · · · , ( I1X1,

I2X2), · · · }. Given four contiguous vertices:

( I1X1,
I2+1X2 = I2X2 + h) ( I1+1X1 = I1X1 + h, I2+1X2 = I2X2 + h)

( I1X1,
I2X2) ( I1+1X1 = I1X1 + h, I2X2)

(3.8)

The corresponding four preliminary approximations are valid in the (2h)×(2h) regions

centered at the contiguous four nodes are denoted:

FI1,I2+1(X1, X2) FI1+1,I2+1(X1, X2)

FI1,I2(X1, X2) FI1+1,I2(X1, X2)
(3.9)
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Fig. 14. Weighting function w0,0(x1, x2) for two-dimensional approximation.
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The final averaged approximation valid within the h× h region bounded by the

four vertices of Eq. (3.8) is given by

F̄I1,I2(X1, X2) =
1∑

i1=0

1∑
i2=0

wi1,i2(
I1+i1x1,

I2+i2 x2)FI1+i1,I2+i2(X1, X2) (3.10)

where, it can be verified that choosing the weight functions as the product of one

dimensional weight functions as

wi1,i2(
I1+i1x1,

I2+i2 x2) = w( I1+i1x1)w( I2+i2x2) (3.11)

then these functions are a partition of unity that satisfy

1∑
i1=0

1∑
i2=0

wi1i2(
I1+i1x1,

I2+i2 xN) = 1 (3.12)

to give an un-biased average. Note that if we use a common origin (the lower left

vertex) for all four weight functions, then the one centered on the origin (for m = 1)

is (see Fig. 14):

w0,0(x1, x2) = [1− x2
1(3∓ 2x1)][1− x2

2(3∓ 2x2)]

the minus (plus) sign is for xi > 0 (xi < 0) or

≡ [1− x2
1(3− 2|x1|)][1− x2

2(3− 2|x2|)] (3.13)

The remaining three weight functions are simply obtained by translating this function

to the other three vertices as:

w1,0(x1, x2) = w0,0(x1 − 1, x2)

w0,1(x1, x2) = w0,0(x1, x2 − 1)

w1,1(x1, x2) = w0,0(x1 − 1, x2 − 1)

(3.14)

These four overlapping weight functions are shown in Fig. 15. The central unit

square of Fig. 15 is the focus of this figure, it is the region in which the final averaged
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approximation of Eq. (3.10) is valid. The process can be shifted by one unit cell in

any direction and continuity arguments will lead to the conclusion that the adjacent

final averaged approximations match in value and both partial derivatives along their

common boundaries.

We see the weight function of Fig. 12, from Refs. [43, 44] is obtained to within

the obvious notation changes. The reason for adopting the above notations is that

the generalization to N -dimensions follows easily from the above pattern.

The N -dimensional generalization of Eqs. (3.10) and (3.11) are:

F̄I1,··· ,IN
(X1, · · · , XN) =

1∑
i1=0

1∑
i2=0

. . .

1∑
iN=0

(
wi1,··· ,iN (I1+i1x1, · · · ,IN+iN xN)

FI1+i1,··· ,IN+iN (X1, · · · , XN)) (3.15)

and

wi1,i2,··· ,iN ( I1+i1x1, · · · ,IN+iN xN) =
N∏

i=1

w( Ii+iixi) (3.16)

1∑
i1=0

1∑
i2=0

· · ·
1∑

iN=0

wi1,··· ,iN ( I1+i1x1, · · · ,IN+iN xN) = 1 (3.17)

The partition of unity constraint of Eq. (3.17) is required for an unbiased average in

Eq. (3.15). Further, it can be verified that the unbiased average requirement of Eq.

(3.17) is satisfied everywhere in the hypercube where averaged final approximation

F̄I1··· ,IN
(X1, · · · , XN) of Eq. (3.15) is valid.

The above approximation approach, and minor variations of it, has been used in

a wide variety of modeling problems, including mathematical modeling of topography,

the earth’s gravity field, the focal plane distortions of star cameras, modeling the in-

put/output behavior of a synthetic jet actuators, and many other problems in approx-

imation theory, geophysics, engineering, and applied science [see Refs. [8, 40, 43–48]].

We note that that it is relatively straightforward to accommodate non-uniform meshes
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Fig. 15. Four contiguous, overlapping weighting functions for two-dimensional approx-

imation.
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but this case is not addressed in the present chapter to avoid notional complexity.

While the weighting function approach has much in common with finite element meth-

ods, notice the distinction: Whereas conventional FEM methods interpolate nodal

values of some distributed quantity into the continuous domain of the finite elements,

this weighting function approach instead averages overlapping local approximations in

such a way that piecewise continuity is achieved, with the user free to choose the local

approximations. The degree of the local approximations can be adaptively modified

to enhance convergence. Finally, it must be pointed out that one major drawback of

the conventional FEM based approach is the generation of a mesh for higher dimen-

sional spaces. However, the use of specially designed weighting functions results in a

meshless techniques to alleviate some of the problems related to generating meshes

for high dimensioned systems.

The weight functions given above [e.g., Eqs. (3.7), (3.16)] guarantee first order

continuity. The generalized weight functions that guarantee arbitrary order continuity

are given in Table XI. Only the weight function centered at the origin is tabulated,

the other 2N − 1 weight functions are obtained by simply shifting the function using

the origin translations to the other 2N − 1 vertices of the hypercube, analogous to

Eqs. (3.14), e.g., using the 2N − 1 origin translations:

{(0, 0, 0, . . . , 0, 0, 1), (0, 0, 0, . . . , 0, 1, 0), . . . (1, 1, 1, . . . , 1, 1, 1)} (3.18)

The weight functions for the first three orders of continuity, for one and two dimen-

sional approximation, are shown in Figs. 16 and 17, respectively.
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Table XI. Weight functions for higher order continuity.

order of

piecewise

continuity

Weight Function:

w0,0,··· .0(x1, x2, · · · , xN) =
N∏

i=1

w(xi)

w(x), for all x ∈ {−1 ≤ x ≤ 1}, y
∆
= |x|

0 w(x) = 1− y

1 w(x) = 1− y2(3− 2y)

2 w(x) = 1− y3(10− 15y + 6y2)

3 w(x) = 1− y4(35− 84y + 70y2 − 20y3)

...
...

m w(x) = 1−ym+1





(2m+1)!(−1)m

(m!)2

m∑
k=0

(−1)k

2m−k+1




m

k


ym−r
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Fig. 16. 1-D weighting functions for various degrees of piecewise continuity.
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Fig. 17. 2-D weighting functions for various degrees of piecewise continuity.
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D. Orthogonal Approximation in 1-, 2- and N-Dimensional Spaces

In previous section, we discussed a novel weighting function interpolation and approx-

imation technique to blend arbitrary smooth overlapping local functional approxima-

tions. The weight functions are designed to guarantee the global continuity condi-

tions while retaining near complete freedom on the selection of the generating local

approximations. Of course the key to success of the proposed method depends upon

the approximation capability of the local functions. There are infinitely many ways

to specify good preliminary local approximations averaged in Eq. (3.15). However,

guided by Weierstrass approximation theorem [49–52], we know one fundamental and

attractive choice is polynomial basis functions to approximate continuous functions

on a compact space, to within an approximation error ε.

F (X) =
∑

i

aiφi(X) + ε = aTΦ(X) + ε (3.19)

where, Φ(.) is an infinite dimensional vector of linearly independent polynomial func-

tions and a is a vector of Fourier coefficients corresponding to polynomial functions.

However, according to the following theorem, the continuous function, F (.) can be

approximated by a set of orthogonal polynomials with a countable number of terms,

instead of infinite terms.

Theorem 1. Every nontrivial inner-product space has an orthonormal polynomial

basis and further if {φi} is such an orthonormal basis then at most a countable number

of Fourier coefficients, < F, φi > are non-zero. More generally, Φ(.) is any complete

set of basis functions.

Proof. Let us define a set Sn = {i ∈ I : | < F, φi > | > 1/n}. Here, I denotes an

uncountable index set and should not be confused with the set of integers. Note, to

prove this theorem, one just need to show that Sn is a finite set. Now, if f =
∑

j∈Sn
<
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F, φj > φj is the orthogonal projection of F onto the subspace, U = span[φj : j ∈ Sn]

then by the Pythagorean Law:

‖F‖2 = ‖(F − f) + f‖2 = ‖F − f‖2 + ‖f‖2 ≥ ‖f‖2 =
∑
j∈Sn

‖ < F, φj > φj‖2.

As φi is an element of the orthonormal basis, i.e., ‖φi‖ = 1, the above expression

reduces to

‖F‖2 ≥
∑
j∈Sn

| < F, φj > |2 ≥
∑
j∈Sn

1/n2 = card(Sn)/n2.

Now, as ‖F‖ < ∞ hence card(Sn) < ∞, i.e., Sn is a finite set.

Therefore, this theorem motivates one to choose Φ(.) as a finite dimensional

vector of orthogonal polynomials. Besides this, the practical consequences of using

orthogonal basis functions are enormous. Fourier coefficients of each preliminary

approximations can be efficiently computed from ratios of inner-products, avoiding

any matrix inversion. Furthermore, Fourier coefficients corresponding to each basis

function are independent of each other and so inclusion of new basis function in basis

vector does not require us to re-solve for previously computed Fourier coefficients. In

this section, we illustrate the procedure of computing the preliminary approximations

by using orthogonal basis functions.

1. One Dimensional Case

Consider the approximation of a one variable function F (X). Suppose we are using

the weighting function method as illustrated in Fig. 13. The preliminary approxi-

mations , while arbitrary, in particular could be chosen to minimize the least square

criterion

J =
1

2

1∫

−1

w(x)[F (X)− FI(X)]2dx (3.20)
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Furthermore, we consider the case that FI(X) is a linear combination of a any pre-

scribed set of linearly independent basis functions {φ0(x), φ1(x), · · · , φn(x)} as

FI(X) =
n∑

i=0

aiφi(x); X = IX + hx (3.21)

The least square criterion, making use of Eq. (3.20) can be written as

J = J0 − cT a +
1

2
aT Ma (3.22)

where

J0 =
1

2

1∫

−1

w(x)F 2(x)dx ≡ 1

2
< F (x), F (x) > (3.23)

cT =

{
1∫
−1

w(x)F (x)φ0(x)dx
1∫
−1

w(x)F (x)φ1(x)dx · · ·
1∫
−1

w(x)F (x)φn(x)dx

}

≡
{

< F (x), φ0(x) > < F (x), φ1(x) > · · · < F (x), φn(x) >

}
(3.24)

M =




µ00 µ01 · · · µ0n

µ01 µ11 · · · µ1n

...
...

. . .
...

µ0n µ1n · · · µnn




= MT (3.25)

a ≡
{

a0 a1 · · · an

}T

; µij =< φi, φj >≡
1∫

−1

w(x)φi(x)φj(x)dx (3.26)

Observe that minimization of Eq.(3.22) gives the optimum (minimum integral

least square fit error) coefficients as

a = M−1c (3.27)

While Eq. (3.27) holds for an arbitrary set of linearly independent basis functions,
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for the special case that the basis functions satisfy the orthogonality condition

< φi(x), φj(x) >≡
1∫

−1

w(x)φi(x)φj(x)dx = kiδij, ki
∆
= µii =

1∫

−1

w(x)φ2
i (x)dx, (3.28)

the least square solution of Eq. (3.27), as a consequence of the diagonal M matrix,

simplifies to the simple uncoupled result to compute the Fourier coefficients:

ai =
< F (x), φi(x) >

ki

, i = 1, 2, · · · , n (3.29)

Thus, if we can construct basis functions orthogonal with respect to the particular

weight functions of Table XI, we enjoy the usual advantages that flow from approxi-

mation of orthogonal functions but now in a global/local approximation setting. We

consider the special case of m = 1; the construction of the corresponding orthogo-

nal basis functions requires the Gramm-Schmidt process. Using the methods of the

Appendix B, it can be verified that the basis functions given in Table XII satisfy

the orthogonality conditions of Eq. (3.28). Note that cn in Table XII is determined

so that φn(x) satisfies the normalization, |φn(±1)| = 1. The first four orthogonal

functions are plotted in Fig. 18.

2. Two Dimensional Case

Consider the approximation of a two variable function F (X1, X2). The typical pre-

liminary local approximations FIJ(X1, X2), while arbitrary, in particular could be

chosen to minimize the least square criterion

J =
1

2

1∫

−1

1∫

−1

w(x1, x2)[F (X1, X2)− FIJ(X1, X2)]
2dx1dx2 (3.30)

Furthermore, we consider the case that FIJ(X1, X2) is chosen as a linear combination

of a prescribed set of linearly independent basis functions {φij(x)}; i = 1, 2, ...n; j =



88

Table XII. One dimensional basis functions orthogonal with respect to the weight func-

tion (x) = 1− x2(3− 2|x|).
degree Basis Functions,

φj(x)

0 1

1 x

2 (−2 + 15x2)/13

3 (− 9x + 28 x3)/19

...
...

n φn(x) = 1
cn

[
xn −

n−1∑
j=0

<xn,φj(x)>

<φj(x),φj(x)>
φj(x)

]
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Fig. 18. One dimensional orthogonal basis functions.
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1, 2, ...n. as

FIJ(X1, X2) =
n∑

i=0

n∑
j=0

aijφij(x1, x2); X1 = IX1 + hx1, X2 = JX2 + hx2 (3.31)

In particular, consider the multiplicative structure for the weight function

w(x1, x2) = [1− x2
1(3− 2|x1|)][1− x2

2(3− 2|x2|] (3.32)

and the corresponding two dimensional basis functions

φij(x1, x2) = φi(x1)φj(x2) (3.33)

where we choose the one-dimensional basis functions φi(x) from Table XII that are

orthogonal with respect to w(x) = 1 − x2(3 − 2|x|). Introducing the inner product

notation:

< α(x1, x2), β(x1, x2) >
∆
=

1∫

−1

1∫

−1

w(ξ1, ξ2)α(ξ1, ξ2)β(ξ1, ξ2)dξ1dξ2 (3.34)

As a consequence of the orthogonality φi(x) from Table XII , the choice of Eqs.

(3.32), (3.33) and the definition of Eq. (3.34), it is evident that the functions of Eqs.

(3.32) are orthogonal, because

< φij(x1, x2), φlm(x1, x2) >
∆
=

1∫

−1

1∫

−1

w(ξ1)w(ξ2)φij(ξ1, ξ2), φlm(ξ1, ξ2)dξ1dξ2

=

1∫

−1

w(ξ1)φi(ξ1)φl(ξ1)dξ1

︸ ︷︷ ︸
kiδil

1∫

−1

w(ξ2)φj(ξ2)φm(ξ2)dξ2

︸ ︷︷ ︸
kjδjm

= kiδilkjδjm (3.35)

As a consequence of orthogonality, it follows that the Fourier coefficients for
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Fig. 19. Two dimensional orthogonal basis functions.

two-dimensional approximations are:

aij =
< φij(x1, x2), F (X1, X2) >

< φij(x1, x2), φij(x1, x2) >
=

< φij(x1, x2), F (X1, X2) >

kikj

(3.36)

The first five sets (degrees zero through four) of the two dimensional orthogonal

polynomials of Eq. (3.33) are shown in Fig. 19.
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3. N - Dimensional Case

Consider the approximation of a function F (X1, X2, · · · , XN) of N variables. The

preliminary local approximations FI1···IN
F (X1, X2, · · · , XN), while arbitrary, in par-

ticular could be chosen to minimize the least square criterion

J =
1

2

1∫

−1

1∫

−1

· · ·
1∫

−1

w(x1, · · · , xN)[F (X1, · · · , XN)− FI1···IN
(X1, · · · , XN)]2dx1 · · · dxN

(3.37)

Furthermore, we consider the case that FI1···IN
F (X1, X2, · · · , XN) is chosen as a linear

combination of a prescribed set of linearly independent basis functions

{φi1···iN (x1, · · · , xN)} as

FI1···IN
(X1, · · · , XN) =

n∑
i1=0

· · ·
n∑

iN=0

ai1···iN φi1···iN (x1, · · · , xN) (3.38)

where, the transformation from the local non-dimensional coordinates (x1, · · · , xN)

to the global coordinates (X1, · · · , XN) is:

X1 = I1X1 + hx1, · · · , XN = IN XN + hxN (3.39)

In particular, consider the continued product structure for the weight function

w(x1, · · · , xN) = [1−x2
1(3−2|x1|)] · · · [1−x2

N(3−2|xN |] =
N

Π
i=0

[1−x2
i (3−2|xi|)] (3.40)

and similarly for the basis functions

φi1···iN (x1, · · · , xN) =
N

Π
i=0

φi(xi) (3.41)

where we choose the one-dimensional basis functions φi(x) from Table XII that are

orthogonal with respect to w(x) = 1− x2(3− 2|x|).
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Introducing the inner product notation:

< α(x1, · · · , xN), β(x1, · · · , xN) >
∆
=

1∫

−1

. . .

1∫

−1

w(ξ1, · · · , ξN)α(ξ1, · · · , ξN)β(ξ1, · · · , ξN)dξ1 · · · dξN (3.42)

As a consequence of the orthogonality φi(x) from Table XII , the choice of Eqs. (3.37),

(3.40), and (3.41) it is evident that the N -dimensional functions of Eqs. (3.38) are

orthogonal, because

< φi1···iN (x1, · · · xN), φj1···jN
(x1, · · · xN) >

=

1∫

−1

. . .

1∫

−1

(w(ξ1) . . . w(ξN)φi1···iN (ξ1, · · · , ξN)φj1···jN
(ξ1, · · · , ξN)) dξ1 · · · dξN

= [ki1ki2 · · · kiN ][δi1j1δi2j2 · · · δiN jN
] (3.43)

As a consequence of orthogonality, it follows that the least square amplitudes are the

Fourier coefficients,

ai1···iN =
< φi1···iN (x1, · · · , xN), F (X1, , · · · , XN) >

N∏
j=1

kj

(3.44)

Remarkably, the weight functions, basis functions, and orthogonality conditions for N-

dimensional approximation are generated directly from the one dimensional results.

Furthermore, we arrive at a computationally efficient piecewise continuous approxi-

mation in N dimensions with the added benefits that the local approximations are

linear combinations of basis functions orthogonal to the same weight function used

in averaging the overlapping approximations. Clearly, the first order piecewise con-

tinuity implicit in the above developments is “promoted” from first to mth order

continuity by simply choosing the appropriate weight function from Table XI.
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E. Algorithm Implementation

In this section, the step by step implementation of the Global-Local Orthogonal Map-

ping (GLO-MAP) algorithm is discussed. Attention here is upon the hyper surface

approximation when unevenly spaced discrete measured data are available whereas

the above developments are for the case of continuous measurements. The main steps

of the GLO-MAP algorithm are as follows:

1. Choose a set of sequential neighboring points, IX, arbitrary in number and

location. These points serve as the centroids of validity for the local functional

approximation, FI . The density and location of these points depends upon

numerous factors like location and density of available measurement data and

desired degree of approximation.

2. Choose set of basis functions based on computational efficiency or a priori knowl-

edge of the nature of the given input-output data to approximate F (X) in local

neighborhood of a centroid of validity, IX. The local neighborhood of a cen-

troid is defined in a such a way that the number of measurement points in local

neighborhood are at least equal to the number of basis functions used to ap-

proximate local behavior in that particular local domain. Generally, the sizing

of the local neighborhood is dictated by the support or domain of the weight

functions discussed in section C. One attractive choice for the basis functions is

the orthogonal polynomial basis functions as discussed in the previous section.

3. Determine the Fourier coefficients corresponding to each local approximation.

For the approximation of a given continuous functional form or from dense

discretely measurable functions, the Fourier coefficients can be computed by

numerically evaluating the integral expression in Eq. (3.44) using standard
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numerical integration algorithms [53]. In case of the GLO-MAP algorithm the

numerical integration procedure can be summarized as below:

(a) Determine Gaussian quadrature points, XG, in unit hypercube.

(b) For each quadrature point, determine the measurement points Xi, for

which weight function has non-zero value.

(c) Determine function value at quadrature point, F (XG) can be taken as a

weighted average of function value at Xi.

F (XG) =
1∑

i w(Xi)

∑
i

F (Xi)w(Xi) (3.45)

(d) Evaluate the numerical integral in Eq. (3.44)

It should be noted that Gaussian quadrature points are the same for each local

approximation and can be pre-computed. However, the numerical evaluation of

integral expression of several variables, over regions with dimension greater than

one, is not easy. As a rule of thumb, the number of function evaluations needed

to sample an N -dimensional space increases as the N th power of the number

needed to do a one-dimensional integral, resulting in increased computational

cost associated with numerical integration proportion to the N th power. To

avoid these difficulties, one can construct the orthogonal basis functions which

satisfies exactly the discrete orthogonality condition, using the hypergeometric

difference equation and the procedure given in Ref. [54]

Discrete Orthogonality Condition:
∑

i

φn(Xi)w(Xi)φm(Xi) = k2
mnδmn (3.46)

However, the major drawback of constructing discrete orthogonal polynomials

is that their functional form changes for each local approximation depending

upon the number of measurements available in each local neighborhood. In
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future work, we anticipate that we will develop procedures for constructing dis-

crete orthogonal polynomials using the weight functions derived in this chapter.

More generally, and especially for a general not-necessarily dense set of discrete

measurements, conventional SVD or linear least squares algorithms can be em-

ployed to construct the local approximations. It should be noted that the free-

dom to select local approximations affords a new level of flexibility in numerical

methods for the class of problems under consideration.

4. The final step of the GLO-MAP algorithm is the use of weighting functions to

merge the local approximations into a single mth order continuous functional

model. This is accomplished by using the weight functions listed in Table XI

and Eqs. (3.15)-(3.17). Note, this step is the most important feature of the

GLO-MAP algorithm as it reduces the systematic error introduced due to the

neglected interaction between different local models by blending overlapping

local approximations into a global one.

Note, as usual, that the size h of the local neighborhood is an important factor which

affects the overall accuracy and computational cost of the GLO-MAP algorithm. To

find the optimal value of this parameter, analogous to mesh refinement in the FEM

method, one can construct a multi-resolution algorithm which iteratively refines the

local neighborhoods until introduction of more local neighborhoods does not bring

any improvement in the learning of input-output mapping. The major steps involved

in this algorithm are depicted in Fig. 20.

1. Sequential Version of the GLO-MAP Algorithm

There are many engineering application problems which needs to be solved in an iter-

ative manner in real-time by successively approximating the input-output data. Many
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Fig. 20. Flowchart for the GLO-MAP based multi-resolution algorithm.
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recursive approximation algorithms are presented in the literature but the Kalman

filter [29] is one of the most widely used and powerful tools for recursive estimation

problems. We note that the Kalman filter algorithm is very attractive for the problem

at hand as it can also be used to update off-line a priori learned GLO-MAP network

parameters in real time whenever new measurements are available. However, the

main challenge associated with the use of the Kalman filter in the GLO-MAP al-

gorithm is the dynamic state vector i.e. the components of state vector of Kalman

filter changes with every measurement data depending upon the location of measure-

ment data relative to centroids of validity of local approximations. Actually, the total

number of unknowns for the GLO-MAP network is Mn coefficients of different local

approximations. Here, n is the number of basis functions associated with each local

approximation and M is the total number of these local approximations. However,

when a new measurement is available, we just need to update 2Nn unknowns de-

pending upon the location of measurement data since only the neighboring 2N local

approximations (associated with the 2N vertices of the hypercube containing the new

measurement)will have non-zero contribution in final global map obtained by merg-

ing different local approximations using Eq. (3.15). The main steps involved in the

implementation of sequential version of the GLO-MAP algorithm are as follows:

1. Depending upon prior knowledge of the input space, choose a set of sequential

points, IX, which serve as the centroids of validity for the local functional

approximations, FI . The density and location of these points depend upon

numerous factors like location and density of available measurement data and

desired degree of approximation.

2. Choose a set of basis functions (preferably orthogonal functions) to approximate

F (X) in the local neighborhood of a centroid of validity, IX. Initialize the
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coefficients of each basis functions to be zero and associated covariance matrix

(PG) to be identity times a large number.

3. Given a new measurement data point, (X, F (X)), find the neighboring 2N cen-

troids such that weight function associated with these 2N centroids have non-

zero value at the measurement point.

(a) Include the coefficients of the basis functions associated with these cen-

troids in the local algebraic Kalman filter state vector, denoted by x. Let

xG denote the global super-set of coefficients and M be a selection matrix

consisting of zeros and ones that satisfies x = MxG.

(b) Extract rows and columns of PG corresponding to the coefficients associ-

ated with these 2N centroids and denote them by P−
k = MPGMT .

4. Use the following equations to compute the local Kalman gain and update state

vector, x, and the associated covariance matrix, P.

x+
k = x−k + K(F (X)−Φ(.)x−k ) (3.47)

P+
k = (I−KΦ(.))P−

k (3.48)

K = P−
k Φ(.)T (Φ(X)P−

k Φ(.)T + Rk)
−1 (3.49)

where, superscript − and + denote the value of variables before and after updat-

ing various unknown using given measurement data respectively. Subscript k

denotes the centroid number associated with the kth approximation and varies

from 1 to 2N . Further, matrix Φ and R are given by following equations:

Φk =

[
φ1(Xk) · · · φN(Xk)

]
(3.50)

Rk = σw(Xk) (3.51)
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where, Xk denotes the local coordinates of measurement point assuming origin

at kth neighboring centroid and σ denotes the variance of the measurement data.

5. Update rows and columns of the global covariance matrix, PG and coefficients

associated with each local approximation.

6. Once the value of PG is less than a pre-specified tolerance, use appropriate

weighting functions to merge various local approximations into a single mth

order continuous functional model. This is accomplished by using the weight

functions listed in Table XI and Eqs. (3.15)-(3.17), centered at the 2N vertices

of the local volume containing the point x.

F. Illustrative Engineering Applications

The approximation algorithm presented in this chapter has been tested on a vari-

ety of engineering applications. In this section, we present four sets of results from

these studies: (i) an analytical test case for function approximation, (ii) a dynamical

System identification from wind tunnel testing of synthetic jet actuation wing, (iii)

a vibrating Space Based Radar (SBR) antenna surface approximation, and (iv) an

approximation of the “pork-chop” surface for a family of Lambert’s problem solution.

1. Function Approximation

The test case for the analytical function approximation is constructed by using the

following surface [33].

f(X1, X2) =
10

(X2 −X2
1 )2 + (1−X1)2 + 1

+
5

(X2 − 8)2 + (5−X1)2 + 1

+
5

(X2 − 8)2 + (8−X1)2 + 1
(3.52)
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Figs. 21(a) and 21(b) show the true surface and contour plots for the function given by

Eq. (3.52). According to our experience, this particular function has many important

features such as sharp ridge line that is very difficult to learn with existing function

approximation algorithms with reasonable number of nodes.

To approximate the function given in Eq. (3.52), the whole input region is

divided into a set of finite element cells, defined with cartesian coordinates, X1 and

X2. Therefore, 10× 10 modeling region can be divided into different number of cells

depending upon cell length. For example, the whole input region can be modeled by

a total of 16 cells of dimension 1.2766× 1.2766 or by a total of 576 cells of dimension

0.4082×0.4082. Further, to obtain preliminary approximations for a particular cell, as

described in section D, two test cases are considered. In first test case, the continuous

functional expression given by Eq. (3.52) is used to obtain the coefficients of the

preliminary local approximations while in second test case a discrete measurement

data is used to compute preliminary approximations. The discrete measurement data

set is generated by taking 100 random samples over the interval [0-10, 0-10] for both

X1 and X2, giving total 104 measurements.

The local approximation of analytical function f̂(x1, x2), for a particular cell is

modeled by orthogonal polynomials of the form:

f̂(x1, x2) =
∑

i

∑
j

aijφi(x1, x2)φj(x1, x2), i + j ≤ 2 (3.53)

The orthogonal functions (listed in table XII), φi and φj, are chosen in such a way

that the degree of f̂(x1, x2) is always less than or equal to 2. Further, x1 and x2

denote the local cell coordinates defined as below:

x1 = 2(X1 −X1m)/X1cell
x2 = 2(X2 −X2m)/X2cell

(3.54)
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Fig. 21. Test surface and contour plots of Eq. (3.52)

where, (X1m , X2m) and X1cell
× X2cell

represent the centroid and dimensions of a

particular cell respectively.

Since φi and φj are chosen to be orthogonal polynomial functions therefore,

unknown coefficients aij can be determined from Eq. (3.36). Due to complex na-

ture of the function in Eq. (3.52), the various integral expressions in Eq. (3.36)

are computed by numerical integration as explained in section E. The total num-

ber of Gauss quadrature points required for numerical integration are decided by

checking the orthogonality condition of Eq. (3.35) i.e. < φij(x1, x2), φkl(x1, x2) >

6= kiδikkjδjl. Fig. 22(a) shows the plot of orthogonalization error, defined as || <

φij(x1, x2), φkl(x1, x2) > − kiδikkjδjl||, versus number of Gauss quadrature points in

a particular cell. As expected, the orthogonalization error decreases quickly as the

number of quadrature points inside a particular cell increases. To generate this plot,

we decided to use a total of 100 (10 in each direction) quadrature points.

Now, in the first test case, the analytical expression given by Eq. (3.52) is used
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Fig. 22. Error Analysis.

to obtain the integrand values at different quadrature points while in second case the

integrand values were obtained by weighting average procedure as discussed in section

E. As discussed earlier, the approximation error depends upon the grid size, therefore,

it was decided to study the Root Mean Square (RMS) approximation error as a

function of cell size for a fixed order of polynomials. Fig. 22(b) shows the plot of root

mean square approximation error versus cell size for both the test cases. As expected,

the root mean square error decreases for both the test cases as cell size decreases. Due

to the fact that as cell size decreases, the local behavior of the unknown function can

be approximated more accurately and first order weighting function interpolation

becomes more accurate. Further, it is also apparent from this figure that the RMS

error for the first test case is less than the second test case. This is because in second

test case the integrand values are obtained by interpolating the available measurement

values in the local neighborhood of a particular quadrature point while in first test

case the analytical function expression is used to compute numerical integrals. It
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Fig. 23. The GLO-MAP approximation results for analytical function of Eq. (3.52)



105

should be also noted that the approximation accuracy for either test case is bounded

by the orthogonalization error which in this case is O(10−5). These results provide a

basis for optimism regarding the practical utility of this approach.

Finally, Figs. 23(a) and 23(b) show surface and contour plots of the approximated

surface whereas Figs. 23(c) and 23(d) shows plots of the approximation error surface

and the error contours respectively. Not surprising - the largest errors occur along the

knife edge of the sharp ridge - experimentation indicted we can reduce the maximum

error to any tolerance dictated by the feature sharpness and data spacing. These

results corresponds to a total of 625 cells. From these figures, it is clear that we

are able to learn the analytical function given in Eq.(3.52) very well with worst case

relative approximation errors less than 2%. Of course, it is evident using dense

measurements along with either a smaller h or higher degree local approximations,

we can make the errors as small as desired.

We also mention that for any standard interpolation algorithm to represent the

surface data shown in Fig. 21(a), the interpolation matrix consists of n2 real numbers

or n(n + 1)/2 real numbers. For example, if radial basis functions are used, we require

O(n3) Floating Point Operations (FLOPs) to solve the associated system of equations.

For a surface with 104 data points, one needs O(1012) FLOPs, which is obviously

impractical for many practical purposes. Further for any global representation, one

needs to worry about the possible rank deficiency of the large interpolation matrix

to solve the system of equations. However, the GLO-MAP algorithm, proposed here,

greatly reduces the overall number of basis functions, requires no large matrix inverse,

improves the surface approximation accuracy, and provides a feasible path to achieve

any desired precision by appropriate refinements. We now consider a diverse set of

applications to obtain further insight.
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2. Synthetic Jet Actuator Modeling

There is a significant thrust in aerospace industry to develop advanced technologies

that would enable adaptive, intelligent, shape controllable micro and macro struc-

tures, for advanced aircraft and space systems. These designs involve precise control

of the shape of the structures with micro and macro level manipulations (actuation).

Synthetic jet actuators [55] (SJA) represent an alternative to reconfigurable wings

that adaptively shapes the flow field and pressure field around a fixed wing and are

one of such devices being researched for active flow control that enable enhanced

performance of conventional aerodynamic surfaces at high angles of attack and these

technologies may lead to full replacement of hinged control surfaces thereby achieving

hingeless control. Active flow control can be achieved by embedding sensors and ac-

tuators at micro scales on an aerodynamic structure. The desired force and moment

profiles are achieved by impinging a jet of air to alter the flowfield using these ac-

tuators and thereby creating a desired pressure distribution over the structure. The

distinguishing feature of synthetic jet actuation modeling problem is that the rela-

tionship between input and output variables is poorly modeled and is nonlinear in

nature. Further, un-steady flow effects make it impossible to capture the physics fully

from static experiments. The issue at hand is to derive comprehensive mathemat-

ical models that capture the input output behavior of SJA so that one can derive

automatic control laws that can command desired lift and moment profiles. While

the conventional modeling approaches evolve to handle these problems, one can pur-

sue non parametric, multi-resolution, adaptive input/output modeling approaches to

capture macro static and dynamic models directly from experiments. However, the

large data sets need to be replaced by a consistent multi-dimensioned approximation,

consistent with the accuracy of the measurement. In this section, we show the appli-
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Fig. 24. Hingeless control-dedicated experimental setup for synthetic jet actuation

wing.

cation of the GLO-MAP algorithm to learn the mapping between the synthetic jet

actuation parameters (frequency, direction, etc. for each actuator) and the result-

ing aerodynamic lift, drag, and moment. These results show the effectiveness of the

GLO-MAP algorithm presented in this chapter to learn the nonlinear input-output

mapping for the synthetic jet actuation wing.

a. Experimental Set up

A Hingeless-Control-Dedicated experimental setup has been developed. As part of

the initial effort, a stand-alone control unit has been developed that controls all of
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the wing’s and SJA’s parameters and variables. The setup is installed in the 3′ × 4′

wind tunnel of the Texas A&M Aerospace Engineering Department (Fig. 24). The

test wing profile for the dynamic pitch test of the synthetic jet actuator is a NACA

0015 airfoil. This shape was chosen due to the ease with which the wing could be

manufactured and the available interior space for accommodating the synthetic jet

actuator (SJA).

Experimental evidence [47, 55] suggests that a SJA, mounted such that its jet

exit tangentially to the surface, has minimal effect on the global wing aerodynamics

at low to moderate angles of attack. The primary effect of the jet is at high angles

of attack when separation is present over the upper wing surface. In this case, the

increased mixing associated with the action of a synthetic jet, delays or suppresses

flow separation. As such, the effect of the actuator is in the non-linear post stall

domain. To learn this nonlinear nature of SJA experiments were conducted with

the control-dedicated setup shown in Fig. 24. The wing Angle of Attack (AOA) is

controlled by the following reference signal.

1. Oscillation type: sinusoidal Oscillation magnitude: 12.5◦.

2. Oscillation offset (mean AOA): 12.5◦

3. Oscillation frequency: from 0.2Hz to 20Hz.

In other words, the AOA of airfoil is forced to oscillate from 0◦ to 25◦ at a given

frequency (see Fig. 25). The experimental data collected were the time histories of

the pressure distribution on the wing surface (at 32 locations). The data was also

integrated to generate the time histories of the lift coefficient and the pitching moment

coefficient. Data was collected with the SJA on and with the SJA off (i.e. with and

without active flow control). All the experimental data were taken for 5 sec at a 100

Hz sampling rate.



109

0 1000 2000 3000 4000 5000
−10

−5

0

5

10

15

20

25

30

Sample Number

A
ng

le
 o

f A
tta

ck
 (

de
g.

)

(a) Angle of attack variation without
SJA.

0 1000 2000 3000 4000 5000
−10

−5

0

5

10

15

20

25

30

Sample Number

A
ng

le
 o

f A
tta

ck
 (

de
g.

)

(b) Angle of attack variation with sja ac-
tuation frequency of 60 Hz.

Fig. 25. Angle of attack variation.

The experiments described above were performed at a free-stream velocity of

25m/sec. From the surface pressure measurements, the lift and pitching moment

coefficients were calculated via integration. As the unknown SJA model is known

to be dynamic in nature so SJA wing lift force and pitching moment coefficients are

modeled by first order system i.e. they are assumed to be function of current and

previous time states (angle of attack).

CL(tk) = CL(αtk , CL(tk−1)) (3.55)

CM(tk) = CM(αtk , CM(tk−1)) (3.56)

In this case, the moment and lift data is grided based upon the time interval as

described in the previous section. To approximate the dynamics in a particular time
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Fig. 26. Lift force approximation results.
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interval the orthogonal functions, φij, listed in table XII are used.

CL(tk) =
∑

i

∑
j

aijφi(α(tk))φj(CL(tk−1)), i + j ≤ 2

CM(tk) =
∑

i

∑
j

aijφi(α(tk))φj(CM(tk−1)), i + j ≤ 2 (3.57)

Figs. 26(a) and 26(b) show the measured and approximated lift coefficient for

zero and 60 Hz jet actuation frequency respectively with time interval size of 25.

Figs. 26(c) and 26(d) show the corresponding approximation error plots. From these

figures, it is clear that we are able to learn the nonlinear relationship between lift

coefficient and angle of attack with and without SJA on.

Similarly, Figs. 27(a) and 27(b) show the measured and GLO-MAP approxi-

mated pitching moment coefficient for zero and 60 Hz jet actuation frequency respec-

tively. Figs. 27(c) and 27(d) show the corresponding approximation error plots. From

these figures, it is clear that we are able to learn the nonlinear relationship between

moment coefficient and angle of attack (with and without SJA being turned on) very

well within experimental accuracy.

3. Space Based Radar (SBR) Antenna Shape Approximation

Space Based Radar systems envisioned for the future may be a constellation of large

spacecraft that provide persistent real-time information of ground activities through

the identification and tracking of moving targets, high-resolution synthetic aperture

radar imaging, and collection of high-resolution terrain information. The accuracy

of the information obtain from SBR systems depend upon many parameters like the

geometric shape of the antenna, permittivities of the media through which radar wave

is traveling, etc. Therefore the characteristics of the scattered wave received by the

SBR antenna for a given frequency depend on the surface and geometric parameters
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(a) NASTRAN SBR antenna model
consists of 7 panels

(b) Close-up of one panel

Fig. 28. NASTRAN model of SBR antenna.

of the radar. Therefore, to apply necessary corrections for scattering of radar waves,

the precise knowledge of the instantaneous SBR antenna shape becomes a necessity.

However, excitation of flexible dynamics mode by frequent pointing maneuvers makes

shape estimation difficult. While a variety of surface models can be employed to model

the instantaneous shape, we consider the case that the surface is measured at discrete

points using a metrology sensor system and a smooth least square approximation is

desired. The objective of this section is to evaluate the GLO-MAP methodology,

developed in this chapter, as a candidate approach to estimate the real time SBR

antenna shape.

For simulation purposes, the SBR antenna dynamics is modeled in NASTRAN [56].

The antenna model consists of total 7 panels as shown in Fig. 28. To construct the

shape of antenna it is assumed that measurements of 50 points are available along

a given cross section with the help of some vision sensor. Further, such 40 cross

section measurements are assumed to be available along the length of the antenna at
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a particular time with a sampling frequency of 10Hz. Thus 2000 measurements are

available every 0.1 seconds. Further, true measurements are corrupted by Gaussian

white noise of standard deviation of 1cm. To make the shape estimation problem

more interesting, the shape of antenna is assumed to vary with respect to both in

spatial coordinates and time. NASTRAN is used to generate mass, M, and stiffness,

K, matrices for the antenna structure and coordinate transformation matrix, T, to

transform the modal coordinates to physical coordinates i.e. deflections along each

axis.

Modal Equations: Mη̈ + Kη = 0 (3.58)

Transformation to Physical Coordinates: y = Tη (3.59)

where, η and y represent modal and physical coordinates respectively. First, 10

modes are considered to generate the measurement data. Further, the NASTRAN

generated FEM model with 6000 degrees of freedom was simulated in MATLAB [57]

environment to generate the true measurement data for 20 seconds at 10Hz frequency.

To approximate the SBR antenna shape at a particular time, the measurement

data is modeled using a total of 64 finite element cells 4 along each cartesian coordi-

nates, X, Y and Z. Now, a continuous approximation, of SBR antenna shape, for a

particular cell is generated via a least-square procedure as listed in section D.

The SBR antenna shape at time t for a particular cell is modeled by orthogonal

polynomials (given in Table XII) of antenna shape at time t0:

x̂(t) =
∑

i

∑
j

∑

k

aijkφi(x(t0))φj(y(t0))φk(z(t0)), i + j + k ≤ 2 (3.60)

ŷ(t) =
∑

l

∑
m

∑
n

almnφl(x(t0))φm(y(t0))φn(z(t0)), l + m + n ≤ 2 (3.61)

(3.62)
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It should be noticed that, x, y, and z denote the non-dimensional local cell coordinates

defined below:

x = 2(X −Xm)/Xcell y = 2(Y − Ym)/Ycell z = 2(Z − Zm)/Zcell (3.63)

where, (Xm, Ym, Zm) and Xcell×Ycell×Zcell represent the centroid and dimensions of

a particular cell respectively. To recursively learn the local approximations at each

measurement time, vision sensor measurements are processed sequentially. Initially,

all Fourier coefficients are assumed to be zero and the corresponding covariance matrix

initialized to 106 times identity matrix.

Further, the true antenna shape is simulated by considering 80 points along each

cross-section and 80 such cross-sections thus giving rise to total 6400 test points at

each time instant. The first order weighting function is used to blend adjacent local

approximations. Fig. 29 shows the plot of RMS approximation error at each time

instant. While, Fig. 30 shows the contour plots for instantaneous antenna shape.

From these figures, it is clear that mean RMS approximation error for X and Y

coordinate are even less than half a percent at all time intervals. Therefore, we can

conclude that we are able to learn the SBR antenna shape precisely even in presence

of measurement errors. Finally, we mention that, the simulated antenna shape is just

representative and may be a poor approximation of the actual flexible dynamics. In

Ref. [58], we use the GLO-MAP algorithm to approximate the flexible body dynamics

instead of modeling just the instantaneous shape measurements.

4. Porkchop Plots Approximation for Mission to Near Earth Objects (NEOs)

Near-Earth Objects (NEOs) are asteroids, comets and large meteoroids whose orbit

intersects Earth’s orbit and which may therefore pose a collision danger to Earth. In

terms of orbital elements, NEOs are heavenly bodies with their perihelion distance
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less than 1.3AU 1 [59]. Further, NEOs are divided into different groups depending

upon many factors like their orbit size and closest approach to Earth. Out of many

near Earth objects there is immense interest in visiting near Earth asteroids due to

their size and proximity. There are total 701 known near Earth asteroids which are

supposed to make threatening close approach (0.05AU) to Earth [59]. Therefore,

information on their structural and chemical compositions is important to make in-

telligent choices in case of Earth threatening trajectory. In the last one decade, many

space missions (NEAR, Deep Impact, STARDUST, MUSES etc.) were launched to

study various near Earth Objects. For any interplanetary mission design, developing

porkchop plots is the most important thing to do. As name suggested porkchop plots

are porkchop-shaped contour plots that display trade space of launch and arrival dates

and helps mission designer to find minimum energy transfer between two planetary

objects. Actually, the porkchop plot represents a family of numerical solutions to the

two point boundary value problem known as Lambert’s problem [60]. The solution

to Lambert’s problem gives us a pair of launch and arrival dates that represents a

single, unique interplanetary trajectory. So porkchop plots are generated by solving

the Lambert problem for the Earth to NEO transfer over the range of launch and

arrival dates. Later porkchop plots are used to identify a small region of launch and

arrival dates with minimum energy requirements.

There are many algorithms listed in the literature to solve the classic Lambert’s

problem using the two-body model. [60, 61]. However, for a mission to near Earth

object, one should obtain a solution to the generalized, perturbed Lambert’s prob-

lem using general n-body model. This solution is generally based on the use of pre

determined reference orbits, by using the two-body model as the first guess and defin-

11AU ≈ 150 million KM
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ing the effect of other bodies as perturbation to these reference orbits. Due to high

sensitivity of the perturbed solution to the first guess (reference orbits obtained by

using two-body model) one needs to solve and store many reference orbits for different

values of position vectors of targeting bodies and time of flight. Further, to obtain

perturbed solution accurately using these reference orbits as first guess, it is desired

to represent these reference orbits as a function of departure date and time of flight.

The objective of this section is to apply the GLO-MAP methodology to approximate

the porkchop plots for a mission from Earth to asteroid 2003-Y N107.

Asteroid 2003-Y N107 is a quasi-moon of the Earth in a neighboring solar orbit

with time period of 362.264 days and made its closest approach to Earth (0.03 AU)

in June 2005 [59]. To obtain the porkchop plots for this specific mission, first we

solve the Lambert’s problem using two-body model. The details of the solution to

Lambert’s problem are beyond the scope of this dissertation and can be found in

Refs. [60,61].

The Lambert algorithm was used to iteratively solve for the initial launch ve-

locity at a prescribed departure date to reach a target asteroid at a prescribed date.

By sweeping the departure and arrival dates, the Lambert algorithm can generate

a dense family of solutions. The converged departure and arrival data set can be

displayed in “porkchop” surface plots to be used in mission analysis. Approximat-

ing these surfaces enables interpolation of points between the Lambert algorithm

points. To approximate the porkchop plots, the measurement data (departure and

arrival velocities) are generated by solving the Lambert’s problem considering launch

window between January 2007 and January 2008 with the interval of 1 day. Fur-

ther, the Time of Flight (TOF) is varied between 120-365 days giving rise to total

365 × 246 = 89790 measurement points for approximation purposes. We should

mention that to solve Lambert’s problem, the ephemeris data for Earth and asteroid
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Fig. 31. True departure and arrival ∆V∞ plots for a mission to the asteroid

2003-Y N107.
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Fig. 32. Approximated departure and arrival ∆V∞ plots for a mission to the asteroid

2003-Y N107.
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Fig. 33. Departure ∆V∞ approximation results.
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Fig. 34. Arrival ∆V∞ approximation results.
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2003-Y N107 is obtained from NASA’s near Earth object program site [59]. Figs.

31(a) and 31(b) show the porkchop plots for departure and arrival velocities respec-

tively whereas Figs. 31(c) and 31(d) show the corresponding surface plots. It should

be mentioned that sharp peaks in solution makes the problem of approximating these

solutions extremely difficult. To obtain better approximation accuracy, we use coarse

grid (25 × 25) in the region where departure and arrival velocity profile is compar-

atively smooth i.e. 220 ≤ TOF ≤ 300 days and relatively finer grid (20 × 20) in

the region where we have sharp peaks i.e. TOF < 220 days and TOF > 300 days.

Further, to approximate the measurement data in each grid cell the orthogonal basis

functions (listed in Table XII) up to quadratic terms in TOF and departure date are

used. To compute the value of approximated departure and arrival velocity for given

departure date and TOF, we use first order weighting function to blend different lo-

cal approximations. Figs. 32(a) and 32(b) show the approximated porkchop plots for

departure and arrival velocities respectively whereas Figs. 31(c) and 31(d) show the

corresponding approximated surface plots. Further, Figs. 33 and 34 show the plots

of error contours for departure and arrival velocity for different values of TOF. From

these figures, we can conclude that we are able to approximate the porkchop plots

for this particular mission with worst case errors less than 0.05km/sec.

Finally, we also mention that to store the GLO-MAP approximation, one just

need 8.(625 + 2.400) = 11400 real numbers as compared to 3 × 89790 = 269370

real number for original measurement data. So the use of the GLO-MAP algorithm

reduces the storage space by a order of magnitude less in this particular case. Be-

side this, it should be noted that the GLO-MAP algorithm allows us to obtain the

porkchop plots at any desired resolution without negotiating with approximation ac-

curacy.
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G. Concluding Remarks

We have presented a general methodology for input/output mapping in N dimensions.

The method averages overlapping local preliminary approximations whose centroids

of validity lie at the vertices of a user specified, generally non-uniform, N dimensional

grid. The averaging makes use of a special class of weight functions that guarantee

a prescribed degree of piecewise continuity and osculation with the preliminary ap-

proximations at their centroids of validity. The preliminary approximations can be

chosen arbitrarily to take advantage of prior knowledge of a particular problem. Al-

ternatively, the preliminary approximations can be chosen as linear combinations of

any complete set of linearly independent basis functions. A particularly attractive

choice is shown to be polynomial basis functions that are orthogonal with respect to

the weight functions of the averaging process. We constructed these new orthogonal

polynomials using a Gramm-Schmidt process. The result is an new method for or-

thogonal function local approximation with an associated averaging process giving a

global piecewise continuous approximation. Further, the new approach is tested on

several examples from a variety of disciplines such as continuous function approxima-

tion, dynamic system modeling and system identification. The results are of direct

utility in addressing the “curse of dimensionality” and frequent redundancy of neural

network approximation. The broad generality of the method, together with a number

of examples presented provides a strong basis for optimism for the importance and

practical utility of these ideas.
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CHAPTER IV

MULTI-RESOLUTION ALGORITHM

A. Introduction

A key question regarding the proper selection of an approximation algorithm is “How

irregular is the input-output map?” A global best fit of the input-output map should

be sufficient if the slope of the input-output map is smooth globally without large local

variations in the space-time frequency context. In the presence of irregular localized

features, a multi-resolution based learning algorithm may be required to take care

of local and as well as global complexity of the input-output map. In the previous

chapter, we have advocated the use of the GLO-MAP algorithm for input-output data

approximation and have claimed (without any proof) that the GLO-MAP algorithm is

a multi-resolution approximation algorithm. However, we still need to clarify “What

do we mean by a multi-resolution algorithm?” Further, in the preceding chapter,

we advocated the use of orthogonal polynomial basis functions to obtain preliminary

local approximations in the GLO-MAP algorithm. However, the issues regarding the

approximation capabilities of orthogonal polynomials and the conditions under which

the whole GLO-MAP process converges, need to be addressed more formally.

In this chapter, our main aim is to address these issues rather broadly and prove

that the GLO-MAP algorithm qualifies as a multi-resolution algorithm. In addition,

some results are presented that provide insight on the approximation ability and

other probabilistic properties of the GLO-MAP approximation. Finally, an adaptive,

hybrid multi-resolution approximation algorithm is presented based on the RBFN

and the GLO-MAP learning algorithms. The particular approximation algorithm

uses the RBFN for global approximation and the GLO-MAP algorithm to locally
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refine the global models obtained by RBFN while maintaining global continuity and

computational efficiency.

The structure of this chapter is as follows: in the next section, a formal defin-

ition of a multi-resolution approximation is given followed by the discussion on the

multi-resolution attributes of the GLO-MAP approximation. Next, an error analysis

for the GLO-MAP algorithm is presented and finally, an adaptive, multi-resolution

approximation algorithm comprising of the RBFN and the GLO-MAP algorithm is

discussed for general input-output mapping.

B. Multi-Resolution Learning Algorithm

As name suggests, multi-resolution approximation can be defined as a mathemati-

cal process of hierarchically decomposing the input-output approximation to capture

both macroscopic and microscopic features of the system behavior.

The unknown function underlying any given input-output data can be considered

as consisting of high frequency local input/output variation details superimposed

on the comparatively low frequency smooth background. More than two levels of

granularity (resolution) will be required in a general setting. The term “resolution”

can be defined as the scale to measure the details of the input-output data that can

not be discerned. At a given resolution, the input-output data is approximated by

ignoring all variations below that scale. As name suggests, the term multi-resolution

refers to the simultaneous presence of different resolutions [62]. Therefore, multi-

resolution approximation can be defined as a mathematical process of hierarchically

decomposing the input-output approximation. At each stage, finer details are added

to the coarser description, providing a successively better approximation to the input-

output data. Eventually when the resolution goes to infinity, we would expect to
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approach the exact smooth function underlying any given input-output data. The

term “multi-resolution” enjoys wide popular use in the wavelet analysis as wavelets

allow a function to be described in terms of a coarse overall shape, plus details that

range from broad to narrow [63]. Similarly, we can view the space of functions that

are square integrable as composed of a sequence of subspaces Wk and Vj , such that

the approximation at resolution level j is in Vj and the higher frequency details

are in Wk. This brings us to the following formal definition of the multi-resolution

approximation:

Multi-Resolution Approximation. A sequence {Vj}j∈Z of closed subspaces is a

multi-resolution approximation if the following 6 properties are satisfied:

1. ∀j ∈ Z, Vj ⊂ Vj+1

2. lim
j→−∞

Vj = ∩∞−∞Vj = {0}

3. lim
j→∞

Vj = (∪∞−∞Vj) = L2(R)

4. ∀j ∈ Z, f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1

5. ∀ (k) ∈ Z, f(t) ∈ V0 ⇔ f(t− k) ∈ V0

6. There exists a function θ(t), called the scaling function, such that {θ(t− k)} is

an orthonormal basis of V0.

where, Z denotes an index set for resolution index j, ∩∞−∞Vj denotes the intersection

of all possible subspaces Vj and (∪∞−∞Vj) represents the closure of the union of all

possible subspaces Vj.

According to the above definition of Multi-Resolution Approximation (MRA),

the starting point for the MRA analysis is the decomposition of function space, V0

into a sequence of subspaces, Vj. Now, the first condition implies that the subspace
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Vj be contained in all the higher subspaces. Literally, it means that information

contained at level j must be included in the information at a higher resolution which

is a reasonable requirement. The second condition corresponds to the fact that as

resolution gets coarser and coarser, the approximation becomes more crude, and in

the limit j → −∞, we should get a constant function which can only be a zero

function due to square integrable constraint. The third condition is the opposite of

the second condition and states that as the resolution is increased, more details are

included in the approximation and in the limit j →∞, we should get back the entire

space L2(R). The fourth condition is equivalent to scale or dilation invariance of

space Vj while fifth condition corresponds to translation and dilation invariance. The

sixth and final condition guarantees the existence of a orthonormal basis for Vj. Note,

if θ(t− k) form an orthonormal basis for V0 then by scale and translation invariance

θjk = 2
j
2 θ(2jt− k) forms an orthonormal basis for Vj [62, 63].

Based upon the definition of the Multi-Resolution Approximation, it is easy to

conclude that the GLO-MAP orthogonal polynomial forms a multi-resolution analy-

sis. To prove it formally, we state the following proposition:

Proposition 1. Let V0 be the space consist of all functions φn(t) that are orthogonal

polynomials used in the GLO-MAP approximation of degree at most n valid over

interval [k − 1, k + 1] with n − 1 continuous derivatives for n > 0 i.e. φn(t) ∈ Cn.

Further, assume that Vj is the space of orthogonal polynomials of the GLO-MAP

approximation over the interval
[

k−1
2j , k+1

2j

]
. Now, our claim is that this collection of

spaces forms a multi-resolution approximation of the square integrable function space,

L2(R).

Proof. From the definition of Vj, it is easy to see that as j increases Vj grows and

in the limit j → ∞, Vj → L2(R). Similarly, as j decreases subspace Vj shrinks in
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size and in the limit j → −∞, Vj shrinks to zero. Also, V0 ⊂ V1 because if φn(t)

is a polynomial of degree n over the interval [k − 1, k + 1] then φn(2t) is clearly a

polynomial of degree n over the interval [k−1
2

, k+1
2

]. Similarly Vj ⊂ Vj+1, ∀j. Further,

condition 5 follows from the fact that dilation of a polynomial of degree n is also a

polynomial of degree n. Note, if we choose θn(t) = φn(t) then there is no doubt that

that translates of θn(t) forms a basis for V0 which may not be orthogonal. However,

following the procedure listed in Refs. [64,65], one can also find the orthogonal basis

θn(t)

From the Proposition 1, we can conclude that the GLO-MAP approximation

algorithm is indeed a multi-resolution approximation algorithm. We mention that

the subspaces Vj form a nested sequence that provides successively better approxima-

tions to L2(R). Further, the scaling function, θ(t) generates all the orthogonal basis

functions for each space Vj(t). Note that the Fourier transform of θ(t) leads to the

corresponding orthogonal basis functions in the frequency domain.

The multi-resolution analysis is an important property to have for any approxi-

mation algorithm. Whether one is compressing satellite images, trying to solve PDE’s,

modeling an irregular function, there is broad interest in multi-resolution analysis.

The Finite Element Methods (FEM), Spline approximations and Wavelets are most

commonly used multi-resolution algorithms. Although, the general strategy of all the

multi-resolution algorithms is similar but due to some additional properties specific

to each algorithm, some algorithms are more suited for some specific applications.

For example, the wavelets are more suited for image processing and the FEM are

generally accepted as being more effective for solving PDE’s. These approximation

methodologies are shown to be compatible with a wide variety of disciplines such as

continuous function approximation, dynamic system modeling, time series prediction,
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and, image processing. The multi-resolution properties of these algorithm have led to

broadly useful approximation approaches that have good local approximation prop-

erties for any given input-output data. However, it is not possible to form conformity,

i.e., inter-element continuity without having independent local approximations. The

GLO-MAP algorithm, however, offers rigorous means to construct piecewise global

approximations out of any given system of local approximation without sacrificing

the approximation properties. In fact, as is shown subsequently in this chapter, the

final GLO-MAP approximations are unbiased approximations that are generally su-

perior (smaller variance) to the generating local approximations. In addition, the

GLO-MAP algorithm offers an easy way to include any a priori and analytical infor-

mation available about the unknown input-output mapping. Another prominent issue

with various multi-resolution algorithms is their generalization to high dimensional

input space. For example, the FEM and the wavelet algorithms are applicable only

to moderate dimensional problems (generally, 2 or 3 dimension). In Chapter III, the

GLO-MAP algorithm is extended rigorously for approximation with arbitrary order

continuity in a general N dimensional space. In summary, the freedom to vary in

a general way the resolution (e.g., degrees of freedom) of the local approximations

and the generalizations to an N dimensional space are the unique characteristics of

the GLO-MAP algorithm which distinguish it from other multi-resolution algorithms.

These truths are established in the present chapter and are consistent with the nu-

merical studies throughout this dissertation.

C. Choice of Basis Function and Approximation Error

The central difficulty in learning any given input-output data lies in choosing ap-

propriate basis functions. There are infinitely many choices for the basis functions
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such as polynomials, trigonometric functions, radial basis functions etc. Against the

backdrop of these choices, Stone-Weierstrass theorem gives one of the most remark-

able results in the field of approximation theory, stating that there exists a sequence

of polynomials that converge uniformly to any prescribed continuous function on a

compact interval. This theorem was first stated by Weierstrass for polynomial ap-

proximations in 1-D spaces [49] and was, later modified by Stone to generalize it for

polynomial approximation in compact 2-D spaces [50–52]. For a general compact

space, this theorem can be generalized to N -dimensions as follows [66]:

Stone-Weierstrass Approximation Theorem. Let X be a compact Hausdorff

space and C[X] be a space of continuous functions on X. Then the set of polynomials

in N variables form a dense set in C[X].

As a consequence of this theorem, we can approximate any continuous function

on a compact interval with polynomial series having a sufficient number of terms.

We mention that this theorem is the main theoretical justification behind using poly-

nomial basis functions for preliminary approximations over compact interval defined

by the support of specially designed weight functions in the GLO-MAP algorithm.

Besides many advantages (like numerical conditioning and computational cost, as

discussed in Chapter III) of using orthogonal polynomials for preliminary approxima-

tions, one very important property of the approximation of a continuous function f

on a compact interval [a, b] by orthogonal polynomials is that approximation errors

vanishes in at least n+1 points of (a, b), where, n is the degree of the approximation.

We formally state and prove this property as follows:

Theorem 2. Let {φi} be a set of orthogonal polynomials with respect to weight func-

tion, w, over compact interval [a, b]. Where, subscript i denotes the degree of the

polynomial. Let f̂ denote the least square approximation of a continuous function f
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using orthogonal polynomials φi:

f̂ =
n∑

i=0

aiφi (4.1)

Then f − f̂ changes sign or vanish identically at least n + 1 times in open interval

(a, b).

Proof. The proof of this theorem follows from the most important characteristic of

the least square approximation according to which residual error, e = f − f̂ , of the

least square solution is orthogonal to the range space spanned by basis functions {φi}.
Now, to prove that e must change sign at least n + 1 times in (a, b), we first show

that e must change sign at least once and then we prove the rest by contradiction

arguments.

Note, as e is orthogonal to φ0 = 1, therefore, 〈e, 1〉 = 0. Thus, if e 6= 0, then it is

obvious that e must change sign at least once in (a, b). Now, assume that e changes

sign fewer than n + 1 times and x1 < x2 < · · · < xm be the points where, e changes

sign. In each interval (a, x1), (x1, x2), · · · , (xk, b), e does not changes sign but has

opposite signs in the neighboring intervals. As a consequence of this, we can define a

polynomial function, P (x) =
m∏

i=1

(x− xi), of degree m with following condition:

〈e(x), P (x)〉 6= 0 (4.2)

However, P (x) being a polynomial of degree m < n can be written as a linear com-

bination of φ0, φ1, · · · , φn and is therefore orthogonal to e i.e. 〈e(x), P (x)〉 = 0. This

is a contradiction of Eq. (4.2) and therefore, e must change sign at least n + 1 times

in the interval (a, b)

As a consequence of this theorem, if we use orthogonal polynomials for pre-

liminary approximations of the GLO-MAP algorithm, then they must interpolate a
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continuous functions exactly (e = 0) at n+1 points in the local domain. Note, the key

point of the proof of Theorem 2 lies in the fact that residual error e is orthogonal to

the range space spanned by basis functions {φi}. Now, we state the following Lemma

according to which the residual error of the GLO-MAP process, even after carrying

out the averaging process, is orthogonal to the range space spanned by orthogonal

basis functions φi(x).

Lemma 4. Let {φi} be a set of orthogonal polynomials used in the GLO-MAP algo-

rithm with respect to the weight function, w, over interval [−1, 1]. Where, subscript i

denotes the degree of the polynomial. Let f̂ denote the GLO-MAP approximation of

a continuous function f over the interval [a, b]

f̂ =
m∑

i=1

wif̂i (4.3)

where, m is the total number of local approximations, f̂i is the local least square

approximation in the ith interval and wi is the specially designed GLO-MAP weight

function associated with the ith interval. Now, if we define residual error e = f − f̂

then e is orthogonal to the range space spanned by the basis functions φi under the

norm induced by
m∑

i=1

wi(x) = 1.

Proof. Note, as each local approximation f̂i denotes the least square approximation

over ith interval, therefore, the following holds:

xiu∫

xil

(f(x)− f̂i(x, xi))wi(x, xi)φj(x)dx =

b∫

a

(f(x)− f̂i(x, xi))wi(x, xi)φj(x)dx = 0,

j = 1, 2, · · · , n (4.4)

where, xil and xiu denote the lower and upper limits of the ith local interval. Now,
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let us consider the residual error over the whole interval [a, b]

b∫

a

(f(x)− f̂(x))φj(x)dx =

b∫

a

f(x)φj(x)dx−
m∑

i=1

b∫

a

wi(x, xi)f̂i(x, xi)φj(x)dx,

j = 1, 2, · · · , n (4.5)

Further, from Eqs. (4.4) and (4.5), we have:

b∫

a

(f(x)− f̂)φjdx =

b∫

a

f(x)φj(x)dx−
m∑

i=1

b∫

a

wi(x, xi)f(x)φj(x)dx,

j = 1, 2, · · · , n (4.6)

Now, as the GLO-MAP weight functions satisfy the partition of unity paradigm,

therefore, Eq. 4.6 reduces to

b∫

a

(f(x)− f̂)φjdx =

b∫

a

f(x)φj(x)dx−
b∫

a

f(x)φj(x)dx = 0, j = 1, 2, · · · , n (4.7)

Hence, the GLO-MAP residual error e is orthogonal to range space spanned by the

basis functions φi.

Although, we have shown that the GLO-MAP residual error e is orthogonal to

the range space spanned by the basis functions φi but Theorem 2 does not hold for

the final GLO-MAP approximation. This is due to the fact that the orthogonality

condition of the basis functions and orthogonality of the residual error, e to the

range space are not induced by same norm. Also, obviously, the final GLO-MAP

approximation polynomials are of higher degree than the generating polynomials,

since the weight functions themselves are of degree m + 2 where m is the degree of

piecewise continuity desired.

We have discussed earlier that according to the Stone-Weierstrass theorem, we

can approximate any continuous functions over a compact interval with infinite poly-
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nomial series. However, it is intractable in a practical applications to approximate a

function with an infinite term polynomial series because such a problem will have far

too many parameters to determine from limited number of observations. According

to Theorem 1 in Chapter III, the Fourier coefficients converge to zeros as the number

of orthogonal polynomial functions approaches infinity. In other words, one needs

only a countable number of orthogonal basis functions to approximate a bounded

continuous function to a prescribed resolution. Practically, we can use a finite se-

ries polynomial to locally approximate any given continuous function, as discussed in

Chapter III. To account for the errors introduced due to the truncation of infinite

series polynomial, we state following theorem which basically gives us a bound for

approximation error using any (up to) degree n polynomial basis functions.

Theorem 3. Let f be an n+1 times differentiable function over the compact interval

[a, b] i.e. f ∈ Cn+1[a, b] and f̂ denotes the approximation of the unknown function

f using a complete set of polynomial basis functions up to degree n. Further, let

xi, i = 0, 1, 2, · · · , n are n + 1 interpolation points in the compact interval [a, b] then

we have the following approximation error equation:

e , f(x)− f̂(x) = (x− x0)(x− x1) · · · (x− xn)
fn+1(ξ(x))

(n + 1)!
(4.8)

where, ξ(x) = ξ(x0, x1, · · · , xn)

Proof. First, note that if x = xi, i = 0, 1, 2, · · · , n then the error expression of Eq.

(4.8) is trivial. Therefore, we assume that x 6= xi and define following function

F (t) , f(t)− f̂(t)− f(x)− f̂(x)

(x− x0)(x− x1) · · · (x− xn)
(t− x0)(t− x1) · · · (t− xn) (4.9)

Now, it is apparent that F has n + 2 zeros, namely, x0, x1, · · · , xn, x. Now, according

to Rolle’s theorem [66] F n+1 has at least one zero, ξ = ξ(x, x0, x1, · · · , xn). This
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implies that

F n+1(ξ(x)) = fn+1(ξ(x))− f̂n+1(ξ(x))− f(x)− f̂(x)

(x− x0)(x− x1) · · · (x− xn)
(n + 1)! = 0

and hence we prove that e(x) = (x−x0)(x−x1)···(x−xn)
(n+1)!

fn+1(ξ(x))

Note, in the case of the interpolation problem, the definition of xi, i = 1, 2, · · · , n

is straightforward and in the case of the Least-Square approximation, Theorem 2 guar-

antees the existence of these points, if one uses orthogonal basis functions. Further, if

fn+1(.) is bounded by a number M , then Eq. (4.8) can be replaced by the following

inequality:

e(x) ≤ (b− a)n+1

(n + 1)!
M (4.10)

From the above Eq. (4.10), it is clear that when n →∞, e(x) → 0.

Further, we state following theorem to have a measure of net approximation error

after merging different local approximations using the GLO-MAP algorithm.

Theorem 4. Let f be a continuous function over N-dimensional space Ω ⊂ RN . Let

{wi} be a set of specially designed GLO-MAP weight functions with compact support

Ωi satisfying

1. {Ωi} is an open cover for Ω.

2.
∑
i

wi = 1 on Ω.

3. ‖wi‖∞ ≤ 1.

4. ‖∇wi‖∞ ≤ 1
hi

.

where, hi denotes the size of the ith sub-domain Ωi. Assume that f̂i denotes the
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approximation of f on sub-domain Ωi such that

‖f − f̂i‖L2(Ωi) ≤ e1i
(4.11)

‖∇(f − f̂i)‖L2(Ωi) ≤ e2i
(4.12)

Then the GLO-MAP approximation f̂ =
∑
i

wif̂i satisfies following error bounds:

‖f − f̂‖L2(Ω) ≤ 2
N
2

(∑
i

e2
1i

) 1
2

(4.13)

‖∇(f − f̂)‖L2(Ω) ≤ 2
N+1

2

(∑
i

e2
1i

h2
i

+
∑

i

e2
2i

) 1
2

(4.14)

Proof. Since the weight functions wi form a partition of unity over Ω, we have

f = 1.f =
∑

i

wif (4.15)

Substituting for f from Eq. (4.15) in Eq. (4.13), we get

‖f − f̂‖2
L2(Ω) = ‖

∑
i

wi(f − f̂i)‖2
L2(Ω) (4.16)

Since, at any point x ∈ Ω only 2N local approximations overlap, the summation terms

in Eq. (4.16) also contain at most 2N terms for any x ∈ Ω. Thus, we have:

‖f − f̂‖2
L2(Ω) ≤ 2N

∑
i

‖wi(f − f̂i)‖2
L2(Ω) (4.17)

Further, making use of the fact that the support of weight function wi is Ωi, we have

‖f − f̂‖2
L2(Ω) ≤ 2N

∑
i

‖wi(f − f̂i)‖2
L2(Ω)

≤ 2N
∑

i

‖wi(f − f̂i)‖2
L2(Ω)i

≤ 2N
∑

i

1.e2
1i

= 2N
∑

i

e2
1i

(4.18)
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This proves the estimates of Eq. (4.13). To show the estimates of Eq. (4.14), let us

consider ‖∇(f − f̂)‖2
L2(Ω)

‖∇(f − f̂)‖2
L2(Ω) = ‖∇(f − f̂i)‖2

L2(Ω)

≤ ‖∇
∑

i

wi(f − f̂i)‖2
L2(Ω)

≤ 2‖
∑

i

∇wi(f − f̂i)‖2
L2(Ω) + 2‖

∑
i

wi∇(f − f̂i)‖2
L2(Ω)

≤ 2N+1
∑

i

‖∇wi(f − f̂i)‖2
L2(Ωi)

+ 2N+1
∑

i

‖wi∇(f − f̂i)‖2
L2(Ωi)

≤ 2N+1
∑

i

(
1

h2
i

e2
1i

+ e2
2i

)

which proves the theorem.

We mention that the local approximation error bounds of Eqs. (4.11) and (4.12)

are given by the Theorem 3. Although Theorem 4 quantifies the approximation error

of the GLO-MAP algorithm, it does not provide any information about the effect

of the measurement error on the net approximation error. To quantify the effect

of measurement error on the net approximation error, an alternative, probabilistic

approach is presented in the next section.

1. Probabilistic Analysis of the GLO-MAP Algorithm

In estimating unknown parameters from a statistical model, one is interested in how

the estimates deviate from the true value of the parameter. The deviations generally

come from two sources.

1. Random Error: The source of this error is the random noise present in mea-

surement data.

2. Bias or Systematic Error: Bias is the difference between the average value of

the estimates from the true value.
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The difference between the estimation algorithm bias error and the random error

is that the estimate bias can typically be reduced by increasing the measurement

data size while the random error can not be reduced arbitrarily. In this section, we

quantify these errors for the GLO-MAP algorithm using a statistical approach and

discuss some other statistical properties of the GLO-MAP algorithm.

To quantify the effect of discretization and measurement error, let us consider a

collection of m data points (xi, ỹi) which are to be approximated by polynomial basis

functions, φi(x), i = 1, 2, · · · , n.

ỹ = Ha + ν (4.19)

where, ỹ is a m × 1 vector of measurement points ỹi, H is a m × n matrix with

Hij = φj(xi) and a is a n × 1 vector of Fourier coefficients. Further, ν represents

the measurement error modeled by the zero mean Gaussian white noise process with

error covariance matrix, R.

To find the least square estimates of the Fourier coefficient vector â, we define

following loss function:

J =
1

2
(ỹ −Ha)TWR−1(ỹ −Ha) (4.20)

where, W is a m × m positive-definite weight matrix. Now, carrying out the least

square procedure as listed in Ref. [29], we get the following equation for â

â =
(
HTWR−1H

)−1
HTWR−1ỹ (4.21)

If basis functions φi are assumed to be orthogonal relative to the weight function

w(x) over the range of x, then following equation holds:

∫

V

φi(x)φj(x)w(x)dV = kijδij (4.22)
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We mention that in case of the GLO-MAP preliminary approximations, V denotes

the volume of N -D hypercube. If we weight measurement points in accordance with

the weight function w(xi), then the weight matrix W is given by

W = diag(w(x1), w(x2), · · · , w(xm)) (4.23)

Further, if measurement error covariance matrix is also assumed to be a scalar times

identity matrix R = σ2Im×m then,

Ŵ , WR−1 = diag

(
w(x1)

σ2
,
w(x2)

σ2
, · · · ,

w(xm)

σ2

)
(4.24)

Further, if measurement data points are independent and randomly selected through-

out the range of x, then as the number of data points increases, A ,
(
HTWR−1H

)

approaches a diagonal matrix due to the orthogonality condition of Eq. (4.22)

Akl = lim
m→∞

(
m∑

i=1

w(xi)

σ2
φk(xi)φl(xi)

)
=

∫

V

w(x)

σ2
φk(x)φl(x)dV (4.25)

=
kkl

σ2
δkl ≈ 1

σ2

m∑
i=1

w(xi)φk(xi)φl(xi)δkl (4.26)

If orthogonality of the basis functions is maintained then the diagonal structure of

the matrix A results in following uncoupled equations for Fourier coefficients:

aj =
1

kjj

m∑
i=1

w(xi)φj(xi)ỹi (4.27)

Note, if one uses Eq. (4.21) to compute the Fourier coefficient vector then total

O(n3m) floating point operations are required while only O(m) floating point op-

erations are required to compute the Fourier coefficients vector using Eq. (4.27).

However, in case of discrete data the orthogonality condition of Eq. (4.22) is merely

true and in that case the Fourier coefficient vector can be evaluated by assuming
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matrix A to be a diagonal matrix:

aj =
1

m∑
i=1

w(xi)φ2
j(xi)

m∑
i=1

w(xi)φj(xi)ỹi (4.28)

Note, even in this case, one needs O(mn) floating point operations to evaluate the

Fourier coefficients which is far less than that are required if one uses Eq. (4.21)

for non-orthogonal basis functions. Finally, we mention that the continuous or-

thogonal basis functions φi(.) do not generally satisfy the discrete orthogonality

condition in case of discrete data set and results in a fully populated A matrix

rather than a diagonal one. Fig. 35 shows the plot of orthogonalization error, e =

(‖A−1− [
m∑

i=1

w(xi)φ
2
j(xi)]

−1‖) versus number of data points, m for the continuous case

orthogonal basis functions of Table XII up to degree 2. From this figure, it is clear

that A is generally a diagonally dominant matrix and the assumption of a diagonal

A matrix in Eq. (4.28) is valid with a good accuracy as the number of measurements

increase. Now, using Eq. (4.21), it is straightforward to show that A−1 denotes the

Fourier coefficients error covariance matrix, Paa, given by the following equation:

Paaij
=

σ2

kij

δij ≈ σ2

[
m∑

k=1

w(xi)φi(xk)φj(xk)δij

]−1

(4.29)

Paa is a diagonally dominant matrix and may be approximated without computing

the more expansive least square approximation. Further, the measurement estimate

error covariance matrix, Pyy, can be written as:

Pyy = E[(y − ŷ)(y − ŷT )] = HPaaH
T (4.30)

Note, Pyy and Paa denote measurement estimate and Fourier coefficient error covari-

ance matrices, respectively, for any local approximation of the GLO-MAP algorithm.

Further, in this chapter, we use subscript l to denote error covariance matrices for
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the lth local approximation.

Now, according to the GLO-MAP procedure listed in Chapter III, different lo-

cal approximations are merged together using specially designed weight functions to

obtain a desired order piecewise continuous global estimates:

ŷ(x) =
M∑

l=1

w(x,xl)ŷl(xl) (4.31)

where, M is the total number of local approximations and ŷl = φTal denotes lth local

approximation obtained by the least-square process. So, Eq. (4.31) can be re-written

as:

ŷ(x) =
M∑

l=1

w(x,xl)a
T
l φ(x,xl) =

M∑

l=1

āT
l φ(.) (4.32)

= ΦT ā (4.33)

where,

Φ = {φ(x,x1), · · · ,φ(x,xM)}T (4.34)

ā = {ā1, ā2, · · · , āM}T (4.35)

Now, using the linear error propagation theory, we can write:

PyyG
= ΦTPāāΦ (4.36)
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where, PyyG
denotes the global measurement estimate error covariance matrix and

Pāā = WPaaG
W , with

W =




w(x,x1)In×n

. . .

w(x,xM)In×n




(4.37)

PaaG
=




Paa1

. . .

PaaM




(4.38)

Note, W is a diagonal matrix with all entries less than or equal to one. As a con-

sequence of this, Pāā can be regarded as a contraction mapping of PaaG
i.e. we can

write:

‖Pāā‖ ≤ PaaG
(4.39)

Further, let us define global measurement error covariance matrix, Pyy without the

averaging process of the GLO-MAP algorithm:

Pyy = ΦTPāāΦ (4.40)

Now, from Eqs. (4.36), (4.39) and (4.40), we can conclude that

‖PyyG
‖ ≤ ‖Pyy‖ (4.41)

Note, Eq. (4.41) provides a quantitative justification for qualitative observation made

earlier in Chapter III: “If one least square fit is good, the average of two should be

better.”

Finally, let us take expected value of Eq. (4.31)

E[ŷ(x)] = E[
M∑

l=1

w(x,xl)ŷl(xl)] (4.42)
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As local approximations yl(xl) are obtained by carrying out the least-square process,

therefore, as a consequence of un-biased property of the least square estimator, we

have:

E[ŷl(xl)] = y(x) (4.43)

Now, substitution of Eq. (4.43) in Eq. (4.42) leads to the following equation for the

expected value of the GLO-MAP approximation:

E[ŷ(x)] =
M∑

l=1

w(x,xl)E[ŷl(x)] (4.44)

=
M∑

l=1

w(x,xl)y(x) (4.45)

Now, making use of the fact that weight functions w(x,xl) forms partition of unity

i.e.
M∑
l=1

w(x,xl) = 1, we get:

E[ŷ(x)] =
M∑

l=1

w(x,xl)y(x) = y(x) (4.46)

which proves that the GLO-MAP algorithm is a un-biased estimator which is an im-

portant property to have as in practice, unbiased estimators are rare. This truth,

together with the covariance result of Eq. (4.41) provide a strong probabilistic jus-

tification of the GLO-MAP algorithm, to augment the attractive localization and

piecewise continuity features.

D. Adaptive Multi-Resolution Algorithm

In this section, we present an efficient multi-resolution learning algorithm to approx-

imate a general unknown input-output map. The main steps involved in formulating

this multiresolution learning algorithm are described as follows:

1. Given input-output data, find a simple global model which captures the global
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complexity at least in a coarse manner.

2. Refine the global model learned in the previous step until the desired approxi-

mation accuracy is achieved. To refine the global model we can introduce the

local models based upon some heuristic without altering the global model.

3. To add these local models, use “model mismatch heuristic” i.e. add local models

in the region where current model errors are more than desired accuracy.

4. Select the basis functions to describe the local models and learn their parameters

using weighted statistics of local training data.

5. If the approximation errors are still large then either change the local basis

functions or introduce more local models.

This whole process is repeated until introduction of more local models do not bring

any improvement in the learning of input-output mapping.

To learn the global model, we use a two layer ANN with RBF activation functions

(discussed in greater detail in Chapter II). The main feature of the proposed learning

algorithm for the RBF based ANN is the judicious choice for locating and shaping

the RBFs via a Directed Connectivity Graph approach. This approach allows a

priori adaptive sizing of the network and zeroth order network pruning. In addition,

it provides direction dependent scaling and rotation of basis functions for maximal

trend sensing and minimal parameter representations. Adaptation of the network

parameters is done to account for online tuning, given additional measurements. To

gain high resolution, the input-output data is further represented by using a family of

simpler local approximations, in addition to the global RBF approximation. This is

done, because the RBF approach may be defeated by the curse of dimensionality if a

highly irregular, high dimensioned system is to be approximated with high precision.
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The most important step in implementing the multi-resolution algorithm is to learn

the local models without altering the global approximation of the input-output map.

Therefore, to learn local models, we propose the use of the GLO-MAP algorithm.

The main feature of the GLO-MAP process is a weighting function technique that

locally averages a family of overlapping preliminary approximations as corrections

to a given global model and having a complete freedom on choosing preliminary

local approximations. We introduce local models based upon the statistics of the

global approximation residuals map. The regions where statistical measures of the

errors (e.g. mean and standard variation) are larger than prescribed tolerances, the

GLO-MAP process can be used to reduce approximation errors to achieve the desired

resolution. To get an idea of the statistical error, the error analysis presented in the

previous section can be used.

E. Numerical Results

To show the effectiveness of the proposed multi-resolution algorithm, we consider the

problem of focal plane calibration of a vision sensor.

1. Calibration of Vision Sensors

Vision based sensors have found immense applications not only in aerospace industry

but manufacturing inspection and assembly. Star tracker cameras and vision based

sensors are primarily used to determine a spacecraft’s attitude and position. However,

no sensor is perfect !. In order to achieve high precision information from these

sensors, those systematic effects which tend to introduce error in the information must

be accounted for. These effects can include lens distortion and instrument aging. A

lot of learning algorithms have been presented in literature to learn the focal plane
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distortion map. A detailed overview of calibration of CCD cameras (digital cameras)

can be found in Refs. [67, 68]. These papers provide a description of the various

distortion mechanisms, and review means for which these distortion mechanisms can

be accounted.

The first step in the calibration process is to hypothesize an observation model

for the vision sensor. This is usually based on the physical insight regarding the

particular sensor. For camera like sensors, the following collinearity equations are

used to model the projection from object space to image space as a function of the

attitude of the object:

xi = −f
C11rxi

+ C12ryi
+ C13rzi

C31rxi
+ C32ryi

+ C33rzi

+ x0, i = 1, 2, · · · , N (4.47)

yi = −f
C21rxi

+ C22ryi
+ C23rzi

C31rxi
+ C32ryi

+ C33rzi

+ y0, i = 1, 2, · · · , N (4.48)

where, Cij are the unknown elements of attitude matrix C associated to the orienta-

tion of the image plane with respect to some reference plane, f is known focal length,

(xi, yi) are the known image space measurements for the ith line of sight, (rxi
, ryi

, rzi
)

are the known object space direction components of the ith line of sight and N is

the total number of measurements. x0 and y0 refers to the principal point offset.

Generally, the focal plane calibration process is divided into two major parts:

1. Calibration of principal point offset (x0, y0) and focal length (f).

2. Calibration of the non-ideal focal plane image distortions due to all other effects

(lens distortions, misalignment, detector alignment, etc.).

The implicit pin-hole camera model is not exact so we need to find the best effective

estimates of principal point offset (x0, y0) and focal length (f). However, the principal

point offset is obviously correlated with the inertial pointing of the boresight. In our

earlier work [30, 48], we proposed the “attitude independent” approach (essentially,
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based upon interstar angle measurements) to eliminate this difficulty. While this ap-

proach leads to reduced observability of (x0, y0), we find redundant measurement are

sufficient to determine good estimates for (x0, y0) and f . Beside this, we need one at-

titude independent algorithm to identify the objects in the image plane. In Ref. [69],

we presented a non-dimensional star identification algorithm for spacecraft attitude

determination problem using star camera to identify the stars without any attitude

knowledge. For any focal plane calibration algorithm to work, the un-calibrated sen-

sor’s errors must be sufficiently small so that the non-dimensional star identification

algorithm works reliably. After the first calibration is achieved, our studies indicate

that any of the several star identification algorithms work reliably. While the “how

to get started” issue is important, we choose not to add to this discussion in this

dissertation, and implicitly assume that the Eqs. (4.47) and (4.48) are sufficiently

precise with the initial estimates of (x0, y0) and f . In this chapter, we only demon-

strate the application of multi-resolution approximation procedure discussed in the

previous section to learn higher order image distortion effects.

2. Simulation and Results

To demonstrate the effectiveness of the multi-resolution learning algorithm, an 8◦×8◦

Field of View (FOV) star camera is simulated by using the pinhole camera model

dictated by Eqs. (4.47) and (4.48) with principal point offset of x0 = 0.75mm and

y0 = 0.25mm. The focal length of the star camera is assumed to be 64.2964mm.

For simulation purposes, the spacecraft is assumed to be in a low Earth orbit

tumbling with following angular velocity about the sensor axis aligned to z-axis of

the spacecraft body frame.

ω = { ω0sin(ω0t) ω0cos(ω0t) ω0 }, ω0 = 10−3rad/sec (4.49)
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Assuming star camera frequency to be 1Hz, the star data is generated for 2hr motion

of the spacecraft.

The true lens distortion is assumed to be given by following models [68]

Φ =

{
r r2 r3 r4

}
; δx = xΦTa & δy = yΦTb (4.50)

where,

r =
√

x2 + y2 (4.51)

To learn the distortion map, we need some measure of the measurement error that

can be used to model the focal plane distortion map. Further, this model of the

distortion map can be used to correct measurements. The best estimate of attitude

and cataloged vectors are “run through” Eqs. (4.47) and (4.48) to predict δxi, δyi,

the differences from measurements. Initially, the attitude, (Cij), in Eqs. (4.47) and

(4.48) was perturbed (not only by measurement errors, but also by calibration errors)

because no distortion calibration has been applied on the first pass. We mention

that after the first approximate calibration, δx and δy estimated distortions should

be added to correct the measured xi, yi in Eqs. (4.47) and (4.48) before forming line

of sight vectors that are used to estimate the attitude matrix C. In Ref. [48], we have

shown how the second order calibration perturbations of C gets reduced as δx, δy gets

better. We mention that the reason for the convergence of calibration process is that

the moderate sized calibration errors perturb the “rigid body” attitude estimate, but

the residual errors in measurements minus the prediction of Eqs. (4.47) and (4.48)

still have most of the high order distortion effects. For simulation purposes, the net

attitude error due to residual calibration and sensor noise is sought to be 10µrad or

smaller.

Fig. 36 shows the surface plot of true distortion map given by Eq. (4.50) with
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Fig. 36. True distortion map.

following value of a:

a =

{
5e− 04 −5.0e− 04 8e− 04 −8.0e− 04

}T

(4.52)

From this figure, it is clear that distortion surface amounts to calibration errors of the

order of 10−3 radians. We seek to reduce these errors to the order of 10µ radians by

using the multi-resolution algorithm discussed in the previous section. In next section

we present the global approximation result using the DCG algorithm as discussed in
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chapter II followed by local approximation (based upon “model mismatch heuristic”)

results using the GLO-MAP algorithm.

3. DCG Approximation Result

In this section, we present the global approximation result for the distortion map

shown in Fig. 36 using the DCG algorithm as discussed in Chapter II. To approximate

the distortion map given by Eq. (4.50), the input region is divided into a total of 4

square regions (2 in each direction). Then according to the procedure listed in Chapter

II, we generate a directed connectivity graph of the local maxima and minima in each

sub-region that finally add up to 8 radial basis functions to have approximation errors

of the order of O(10−3).

Fig. 37 shows the approximation error for the training set. From this figure, it is

clear that the DCG learned RBF network is able to approximate the distortion map

with a very good accuracy using only 8 radial basis functions. The DCG algorithm

is tested upon uniformly distributed points in the focal plane. Fig. 38(a) shows

the approximated distortion map learned by the DCG algorithm whereas Fig. 38(b)

shows the approximation error surface. From these results, it is clear that although

the DCG approach has done a good job in learning the shape of the distortion map

and reducing the errors by about one order of magnitude, the approximated map still

has some large amplitude errors.

4. Local Approximation Results

In the previous section, we presented the global approximation results for the distor-

tion map given by Eq. (4.50). In this section, we present the results which show how

the multi-resolution based learning algorithm improves the global approximation.

From the results presented in the previous section, it is clear that with only a
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set.
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Fig. 38. Global approximation results using the DCG algorithm for the test data set.

global DCG based RBFN approximation, we are able to learn the distortion map

with an accuracy of the order of O(10−3). To achieve the desired accuracy of the

order of O(10−5), we invoke the multi-resolution GLO-MAP algorithm to correct the

approximation error surfaces from the DCG algorithm.

Fig. 39(a) shows the DCG approximation error surface corrected by the GLO-

MAP algorithm whereas Fig. 39(b) show the net approximation error surfaces. From

these figures, it is clear that with the help of local approximation using the GLO-

MAP algorithm, we can further reduce the global approximation errors by two orders

of magnitude. We mention that for the GLO-MAP process, we also have 2 × 2 grid

so we have a total of 4 local approximations.

From these results, we can conclude that the multi-resolution based local ap-

proximation helps us in having a flexible and adaptive calibration process that does

not rely on simply guessing a distortion map.
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Fig. 39. Multi-resolution approximation results.

F. Concluding Remarks

In this chapter we have made a transition from discussing numerical results of Chapter

III to numerical analysis. In earlier chapters simulation results are used to validate the

GLO-MAP algorithm, however, in this chapter, we have discussed multi-resolution

approximation capability and various other properties of the GLO-MAP algorithm in

detail. We have shown that GLO-MAP residual errors are orthogonal to the range

space spanned by basis function φi. Beside this, approximation error bounds are

computed for continuous function approximation followed by the discussion on the

discretization issue. The freedom to vary in a general way the resolution (e.g., degrees

of freedom) of the local approximations, un-biased estimates, and generalization to

an N dimensional space are some of the prominent characteristics of the GLO-MAP

algorithm. Finally, an efficient adaptive learning algorithm is developed which not

only has the global approximation capability of the ANN but also has the multi-
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resolution capability of the GLO-MAP algorithm. Computational experiments are

conducted to evaluate the utility of the developed multi-resolution algorithm and

simulation results does provide compelling evidence and a basis for optimism.
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CHAPTER V

ROBUST NONLINEAR SYSTEM IDENTIFICATION ALGORITHMS USING AN

ORTHOGONAL POLYNOMIAL NETWORK

A. Introduction

System IDentification (SysID) is the term associated with the estimation and vali-

dation of mathematical models of physical phenomena from measured input-output

data. SysID is a most fundamental step in virtually all disciplines of science and

engineering. Dynamical system models are used for the design and analysis of com-

plex technical systems. Various classical and modern controller design techniques,

such as the Linear Quadratic Regulator (LQR), and Lyapunov controller require a

dynamical model between the control variables and the system output. Of course

dynamical models can frequently be constructed from first principles, but it is also of

vital importance that they can be approximated directly from measurements.

In the last five decades, mathematical system identification theory has evolved

into a powerful scientific tool of wide applicability. However, the most mature part

of the theory deals with linear systems using well established techniques of linear

algebra and the theory of ordinary differential or difference equations. In contrast to

this, the nonlinear system identification problem is still treated mostly on a system

by system basis. In this chapter, our main interest is to present a general nonlinear

system identification technique that can be applied for large flexible space structures.

This chapter is written with four main objectives. The first and most important

objective is to present a novel robust nonlinear system identification method using

the GLO-MAP algorithm. The second objective of this chapter is to present adaptive

learning algorithms to adjust in real time the parameters of the GLO-MAP model.
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The learning algorithm proposed in this chapter is inspired by recent developments

in adaptive control [70, 71]. The third objective of this chapter is to compare the

proposed algorithm with some existing identification algorithms like the Eigensystem

Realization Algorithm [72] (ERA) considering applications involving modeling of large

flexible space structures. The fourth and final objective of this chapter is to set down

a theoretical framework including all assumptions, that guarantee the stability of the

algorithm. Because these theoretical results have very few companion results in the

existing nonlinear system identification theory, special care is taken to clearly state

all the assumptions and develop theoretical conditions for stability.

The structure of this chapter is as follows: first the system identification problem

is introduced followed by a brief review of some existing system identification algo-

rithms. We give special attention to the Eigensystem Realization Algorithm (ERA)

because of its broad utility and numerical robustness for linear and near linear sys-

tems. Then, two different robust system identification algorithms are introduced

using the GLO-MAP algorithm [41], discussed in Chapter III. Finally, the proposed

algorithms are validated and compared by simulating test cases concerned with large

space structure applications.

B. Problem Statement and Background

Let us consider a nonlinear system described by the following differential and algebraic

equations:

ẋ(t) = f (x(t),u(t)) (5.1)

y(t) = g (x(t),u(t)) (5.2)



160

where x ∈ Rn and u ∈ Rp represent state and control vectors respectively, and

y ∈ Rm represents a vector of system outputs at time t. The discrete equivalent of

this system is the following nonlinear difference equations:

xk = fd (xk−1,uk−1) (5.3)

yk = gd (xk,uk) (5.4)

Now, if the functions, f(.), g(.), fd(.) and gd(.) are unknown, then the system identi-

fication problem can be formally stated as follows:

Definition of the System Identification Problem. Identify a mathematical model

which when subject to the actual input vector, u, an output estimate ŷ is produced

which approximates the actual system output, y, such that

‖y − ŷ‖ ≤ ε (5.5)

Here, ‖.‖ : Rm → R represents a suitable norm on the system output space, Y,

and ε dictates the desired accuracy of the system identification problem. In other

words, the system identification problem corresponds to finding a model whose out-

puts are as close as desired to the true system outputs when the same input is applied

to both. Therefore, the system identification problem can also be regarded as the iden-

tification of a continuous map from system input space to system output space [73].

Consequently the problem of approximating a continuous functional arises in the sys-

tem identification problem. The output at any given time is considered as a function

of the input signal, which is a function of time. Implicitly, we hope the input-output

data approximated is sufficiently rich that the model will be accurate and useful for

other purposes such as controlling the system.

Various system identification algorithms are described in the literature for input-
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output mapping [31, 73–78]. The main computational tool employed by these algo-

rithms is the process of Least Squares Estimation (LSE) frequently implemented using

the Singular Value Decomposition (SVD). The LSE method along with SVD result

in numerical robustness under very weak assumptions on the persistency of excita-

tion of the inputs. In the past few decades, Artificial Neural Networks (ANNs) have

emerged as a powerful set of tools in the areas of pattern classification, time series

analysis, signal processing, dynamical system modeling and control. The emergence

of the ANN can be attributed to the fact that these network models are frequently

able to learn behavior when traditional modeling is very difficult to generalize. How-

ever, the optimal number of hidden units, perceptrons, depends upon many factors,

like the ability of the chosen basis functions to approximate the given system’s be-

havior, the number of data points, the signal to noise ratio, the complexity of the

learning algorithms, etc. Narendra et al. [73,75] have proposed different models that

utilize two-layered neural networks with sigmoid functions as activation functions for

system identification. In those papers, the output signal at any time is considered a

function of finitely many samples of the input and output signals. The different ANN

parameters are estimated using a back-propagation algorithm [3]. A key issue arises

because if one fixes the architecture and activation functions, a given ANN’s ability to

approximate a given system’s behavior can be deduced only after the learning process

is over. Adaptation of the network architecture, not simply adjusting weights, has

emerged as the key to convergence reliability and accuracy.

In Chapter II, an adaptive RBFN architecture making use of the Directed Con-

nectivity Graph (DCG) algorithm is introduced and used for many system identifica-

tion problems. It has been shown that the adaptive nature of the network improves

significantly the performance of the algorithm in terms of accuracy and number of

free network parameters, in comparison to many traditional algorithms. However, like
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other traditional ANN algorithms, the DCG algorithm also treats the system identi-

fication problem as the identification of a continuous map from system input space to

system output space. As a consequence of this, the performance of these algorithms

decreases drastically as the dimension of the system output vector increases. To make

this point more clear, consider a problem of active control of a flexible space structure.

To derive a control law, a model of the system dynamics from the control variable,

u(t) to the system output, y(t) is desired. Generally, the system output vector con-

sists of surface distortion measurements at various spatial points, O(103) which are

measured by sensors like strain gauges, stereo vision systems, LIDAR, etc. Therefore,

if one seeks a dynamic continuous map between the system output and input vectors

then the dimension of such a map can be as large as number of measurements, i.e.,

O(103). However, the dimension of the hidden states corresponding to the true system

corresponds to the number of dynamic structural modes of interest which are typically

on the order of 10 to 30. So, a system identification algorithm is desired that can

approximate the system output well, while keeping the dimension of dynamic map as

low as possible. To deal with this problem, various model reduction techniques are

often adopted [79] for approximating high order dynamic models by simpler, lower

order models. The most popular method for model reduction is Proper Orthogonal

Decomposition (POD) [79], also known as the Principal Component Analysis (PCA).

However, in model reduction, one would like to preserve properties of the original

model, such as stability and physically important dynamical mode shapes. However,

as POD uses second-order statistics for model reduction, it sometimes de-emphasizes

infrequent events which can be dynamically very important.

In the next section, two novel nonlinear system identification algorithms are intro-

duced which make use of the classical Eigensystem Realization Algorithm (ERA) [72]

and the recently developed Global-Local Orthogonal Polynomial Mapping (GLO-
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MAP) [41] network to deal with the issues of nonlinearity and high dimensioned

output vector in an efficient manner.

C. Novel System Identification Algorithm

In the previous section, issues concerning the inability of various system identification

algorithms to handle the “curse of dimensionality” are discussed. Here, two novel

system identification algorithms are presented which not only has the approximation

ability of the ANN but also has the model reduction ability of algorithms like POD.

The basic idea of both the proposed algorithms is to split the identification

process into two steps: linear system identification followed by the nonlinear system

identification process. The linear system identification process not only helps in

designing an estimator to estimate hidden dynamic states from the measurement

data, but also gives an approximate dimension for the reduced order dynamical model

for the hidden state vector. It implicitly defines a transformed state space that is

physically motivated to capture the best linear representation of the system input-

output behavior. We elect to retain this linear transformation, as the starting point

for a perturbation to account for the nonlinear departure from this best linear model.

The use of the linear system system to establish a desired order state space model

is an attractive feature of the new algorithms which also helps in dealing with the

“curse of dimensionality”.

The first step of both algorithms is to identify a linear dynamical system from

the time history of input-output data. Referring to Figs. 40 and 41, let the best

linear model (“realization”) be written as:

ẋl = Alxl + Blu (5.6)

yl = Clxl + Dlu (5.7)
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Here, xl ∈ Rn is a hidden state vector corresponding to the best linear approxima-

tion of given input-output data. While Al, Bl, Cl, Dl are not unique, the underlying

input-output map is, and the Al, Bl, Cl, Dl realization from the ERA can be ro-

bustly computed, including the dimension n of the state space. The accuracy of the

output vector, yl, in approximating the true system output data, y, depends upon

the nonlinearities involved. Further, two different sequential algorithms are proposed

to apply the correction to the best identified linear system.

1. In the first approach, the linear state dynamical model of Eq. (5.6) is perturbed

by a nonlinear term to learn the difference between the linear propagated state

vector, xl, and the best estimate of state vector, xb.

˙̂x = Alx̂ + B̂u + g(x̂) (5.8)

ŷ = Clx̂ + Dlu (5.9)

Here, g(x̂) is a vector of unknown nonlinearities which can be learned by conven-

tional ANN methods. Notice we have made g depend on x̂, the same reduced

order state vector that resulted from the best fitting linear system. To find

the best estimates of the hidden dynamic state vector, xb, from given system

output data, y, an efficient estimator such as an algebraic Kalman filter can

be designed using measurement model of Eq. (5.9). The main steps of this

algorithm are illustrated in Fig. 40 and we denote this approach by short form

SysID 1. For the purpose of this chapter, g(.) represents the system nonlineari-

ties not captured by the linear model and are modeled by using the GLO-MAP

process of Chapter III. Note, the performance of this approach depends upon

the dimensionality of the hidden state vector x and the frequency at which

hidden state vector estimates can be obtained.
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2. In the second approach, we propose the design of a Kalman filter using the best

known linear model followed by the nonlinear transformation of the estimated

output data to compensate for their deviation from true output data y.

ŷl = Clx̂l + Dlu (5.10)

ŷ = ŷl + h(xp) (5.11)

Here, x̂l represents the state output of linear Kalman filter. Note, the design of

Kalman filter helps us in reducing the propagation error arising due to system

nonlinearities if output data y is available at a reasonable frequency. Further,

h(.) represents the system nonlinearities not captured by the linear model and

can be modeled by traditional ANN algorithms. To keep the dimensionality

of the nonlinear transformation h(.) to be low, we introduce a new variable

xp. The dummy variable xp can be regarded as a physical variable associated

with the problem in hand not necessarily be same as hidden state vector xl.

For example, in case of the modeling of flexible space structure, the system

output vector consists of surface distortion measurements at various spatial

points, therefore, the dummy variable xp can consist of cartesian coordinates

(x, y, z). In other words, the surface distortions can be modeled as a function

of cartesian coordinates. We find, in many problems, a physically motivated

low-dimensioned xp can be chosen which leads to an accurate nonlinear input-

output map. The overall architecture of this algorithm is illustrated in Fig. 41.

For the purpose of this chapter, h(.) is modeled by using the GLO-MAP process

of Chapter III and short form SysID 2 is used to describe this approach. Note,

the performance of this approach depends upon the number of measurement

points available to learn h(.) and the frequency at which measurement data is
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available.

We mention that, ideally, a combination of both the approaches is desired for effi-

cient and accurate modeling of the dynamical systems. However, the use of the first

approach is recommended if the dimensionality of the hidden state vector xl is low

because as the dimensionality of the hidden state vector xl increases the number of

terms required to model g(.) increases exponentially. Further, the use of the second

approach is highly desirable for the modeling of flexible space structure when the

number of participating modes are large in number O(10-30). We mention that the

system-identification problem as stated in this section does not deal with the issue of

uniqueness of the mathematical model. This issue can not be dealt with theoretically

in general for nonlinear system, but this criticism is not unique for our approach. We

find that this theoretical deficiency is usually not an obstacle to practical progress;

we note that the main practical objective of the system identification process is the

generation of workable mathematical model for technical analysis. Finally, the con-

vergence of both the algorithms is an important issue but will be studied later in this

chapter after discussing each step in detail.

1. Linear System Identification

As discussed in the previous section, linear system identification plays an important

role in the success of both the nonlinear system identification algorithms. The linear

system identification process not only helps in designing an estimator to estimate

hidden dynamic states from sensor noise corrupted measurement data, but also gives

a desired order dynamical model for the hidden state vector. A large class of linear

system identification methods [76–78] are addressed in the literature to estimate hid-

den state variables along with the dynamical model from given input-output data.
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Fig. 40. Overall architecture of the first proposed system identification algorithm.
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Fig. 41. Overall architecture of the second proposed system identification algorithm.
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However, we believe the ERA and the Observer/Kalman filter IDentification (OKID)

algorithms [72,78] are among the most popular for the dynamic system modeling and

have been successfully used in various system identification problems for structural

analysis. The first realization, i.e., ERA, has been found to be particularly robust and

useful for structural dynamic systems where one is interested in identifying the dom-

inate mode, eigenvalues, and modal shapes; these may be identified directly by this

approach. The ability to identify only the modes actually participating in the mea-

sured behavior of the system helps in dramatically reducing the order of the system

and thus implicitly dealing with the “curse of dimensionality”. The ERA algorithm is

recommended for the linear system identification module in both the algorithms(see

Figs. 40 and 41), however, any other linear system identification algorithm can be

used instead of the ERA. In this section, the main steps of the ERA algorithm are

briefly discussed and more details can be found in Ref. [72].

1. The first step of the ERA method is to form the Hankel matrix from the mea-

surement outputs Y(tk), according to the following expression.

Hrs(k − 1) =




Y(k) Y(k + t1) · · · Y(k + ts−1)

Y(j1 + k) Y(j1 + k + t1) · · · Y(j1 + k + ts−1)

...
...

...

Y(jr + k) Y(jr + k + t1) · · · Y(jr + k + ts−1)




(5.12)

Further, it can be easily shown that the Hankel matrix expression generalizes

to the following factored expression:

Hrs(k) = VrA
kWs (5.13)
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where Vr is the observability matrix given by following expression

Vr =




C

CAj1

...

CAjr−1




(5.14)

whereas Ws is a controllability or disturbability matrix, given by following

equations depending upon the control input.

Impulse Response (IR): Ws =

[
B At1B · · · Ats−1B

]
(5.15)

Initial State Response (ISR): Ws =

[
B At1X0 · · · Ats−1X0

]
(5.16)

2. In the second step, a matrix H] is desired such that following is true:

WsH
]Vr = In (5.17)

A general solution for H] is found by the Singular Value Decomposition (SVD)

of Hrs(0) = PDQT :

H] = QD−1PT (5.18)

3. Finally, after some algebraic manipulations, the following relationship for Y(k+

1) is obtained:

Y(k + 1) = ET
p PD1/2

︸ ︷︷ ︸
[
D−1/2PTHrs(1)QD−1/2

]k

︸ ︷︷ ︸D1/2QTEm︸ ︷︷ ︸ (5.19)

where, ET
k =

[
Ik Ok · · · Ok

]
. Comparing this relationship with Eqs.

(5.15) and (5.16), the following expressions for matrices A, B and C are ob-

tained for the case of Impulse Response (IR) and Initial State Response (ISR),
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respectively:

IR: A = D−1/2PTHrs(1)QD−1/2 B = D1/2QTEm C = ET
p PD1/2

ISR: A = D−1/2PTHrs(1)QD−1/2 X0 = D1/2QTEm C = ET
p PD1/2

Now, let the estimated state matrix A be of order n and have a complete set

of linearly independent eigenvectors (ψ1, ψ2, · · · , ψn) with corresponding eigenvalues

(λ1, λ2, · · · , λn) which are not necessarily distinct. Define Λ as the diagonal matrix

of eigenvalues and Ψ as the matrix whose columns are the eigenvectors. Then the

minimum state-realization can be transformed to a minimum modal-realization. The

diagonal matrix Λ contains the information about modal damping rates and damped

natural frequencies, which are simply the real and imaginary parts of the eigenval-

ues, after transformation from discrete to continuous-time domain via Λc = ln(Λ)/δt.

The columns of the matrix Ψ−1B define the initial modal amplitudes, or information

that indicates how effective a particular input is at exciting each mode. The columns

of the matrix C define the transformation from modal coordinates to the physical

coordinates, i.e., system outputs.

2. State Variable Estimation

The hidden state variable estimation is an important step in both the system iden-

tification algorithms given the input-output data and the best learned linear system.

Among various estimation algorithm listed in the literature, the Kalman filter [26] is

the most widely used for dynamical state identification.

Kalman filtering is a modern (since 1960) development in the field of estima-

tion [29, 30] although it has its roots as far back as in Gauss’ work in the 1800’s.

The only qualitative difference between the Kalman filter and the sequential version
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of the Gaussian least squares is that the Kalman filter uses a dynamical model of

the plant to propagate the state estimates and the corresponding error covariance

matrix between two sets of measurements. In this section, Kalman filter algorithm

is described to find the best estimate of the hidden state variable, x̂b for proposed

nonlinear system identification algorithms.

The various steps involved in the estimation of hidden state variables using

Kalman filter are listed as:

1. Propagation: This step involves the propagation of the estimated hidden state

variable x̂ and its corresponding state error covariance matrix Px using the best

known dynamical system and the corresponding Ricatti equation:

˙̂x = Ax̂ + Bu + Gw (5.20)

Ṗx = PxA + ATPx + GQG (5.21)

Here, w represent the process noise vector modeled as Gaussian white noise

with known covariance matrix Q. It should be mentioned that Eq. (5.20)

represents the best known differential equation for the evolution of hidden state

variable x. Eqs. (5.6) and (5.8) are used for hidden state propagation in system

identification approaches, SysID 2 and SysID 1, respectively.

2. Update: Given the measurement vector, ỹ, at any time, t, the algebraic rela-

tionship between the state vector x and the system output vector y is used to

update the propagated estimates of the unknown hidden state vector x− and

the corresponding error covariance matrix P−
x :

ỹ = Hx + Du + ν (5.22)

where ν denotes the measurement noise vector modeled as Gaussian white noise
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with known covariance matrix R. The following expression can be derived for

the state vector estimates using the least square criteria described in Ref. [29]:

K = P−
x HT

(
HP−

x HT + R
)−1

x̂ = x̂− + K (ỹ − ŷ)

Px = (I−KH)P−
x

The main assumption in using the above expression is complete observability of the

state vector x from Eq. (5.22). In other words, to estimate x using Eq. (5.22),

the matrix H should have its rank equal to the dimension of x i.e. n. It should be

mentioned that Eq. (5.7) is used as a counterpart to Eq. (5.22) for both the system

identification algorithms described in Section C.

D. Nonlinear System Identification Algorithm

In previous sections, we have introduced two nonlinear system identification algo-

rithms. However, we have not discussed, in detail, the procedure to learn the nonlin-

ear terms in both the algorithms. In this section, first, an adaptive learning algorithm

is described to update the linear dynamic model using the hidden state estimates as

measurements in case of SysID 1 followed by the description of the learning algorithm

for SysID 2.

1. Learning Algorithm for SysID 1

The learning algorithm for SysID 1 is based upon the recently developed GLO-MAP

network and uses Lyapunov’s stability theorem [80] to determine the update laws for

different parameters of the GLO-MAP network.

Consider the perturbed linear dynamic model, where g(x) is a vector of nonlinear
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terms.

ẋ = Alx + Bu + g(x) (5.23)

y = Clx + Dlu (5.24)

Here, Al ∈ Rn×n is a known hurwitz matrix and B ∈ Rn×p is a control effectiveness

matrix. It should be noted that the matrix Al is chosen in such a way that it captures

the modal frequencies of the interest and can be obtained by the ERA or any other

linear system identification algorithm as described in section C.

The time history estimates of the hidden state vector x can be obtained by using

the procedure described in section C, so the system identification problem can be

re-defined as:

System Identification Problem. Given the time history estimates of the state

vector x(t) and control variable, u(t), find estimates of the unknown nonlinearity

vector g(.) and control effectiveness matrix B.

Further, if g(.) is assumed to be a continuous function in x then according to

Weierstrass approximation theorem [49,50], g(.) can be approximated arbitrarily close

by any set of complete functions, including a polynomial series.

g(x) = CTΦ(x) + ε (5.25)

where, Φ(.) is an infinite dimensional vector of polynomial functions, C is a matrix of

Fourier coefficients corresponding to polynomial functions, and ε denotes the residual

approximation error. However, as a consequence of Theorem 1, Φ(.) can be chosen

as a finite dimensional vector of orthogonal polynomials. Therefore, C ∈ RN×n is a

matrix of Fourier coefficients corresponding to these orthogonal polynomial functions.
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Now, substituting Eq. (6.16) in Eq. (5.23) yields:

ẋ(t) = Alx(t) + Bu(t) + CTΦ(x) + ε (5.26)

But the Fourier coefficient matrix C is unknown so we write an estimate equation

˙̂x(t) = Alx̂(t) + B̂u(t) + ĈTΦ(x) (5.27)

Let us define e(t) = x(t)− x̂(t), which leads to the following expression:

ė(t) = Ale + (B− B̂)u(t) + (C− Ĉ)TΦ(x) + ε (5.28)

= Ale + B̃u(t) + C̃TΦ(x) + ε (5.29)

Now, to find adaptation laws for the unknown parameters, we consider the following

Lyapunov function:

V =
1

2
eTPe +

1

2
Tr(B̃Γ1B̃

T ) +
1

2
Tr(C̃T Γ2C̃) (5.30)

where, P is a positive definite symmetric matrix. Now taking the time derivative of

V leads to the following equation:

V̇ =
1

2
eT

(
PAl + AT

l P
)

︸ ︷︷ ︸
−Q

e + eTP
(
B̃u(t) + C̃TΦ(x) + ε

)
+ Tr

(
B̃Γ1

˙̃BT
)

+Tr
(
C̃T Γ2

˙̃C
)

(5.31)

= −1

2
eTQe + Tr

(
B̃

[
Γ1

˙̃BT + ueTP
])

+ Tr
(
C̃T

[
Γ2

˙̃C + Φ(x)eTP
])

+eTPε (5.32)

Note, here Q ∈ Rn×n is a positive definite matrix which satisfies the following alge-

braic Ricatti equation

PAl + AT
l P = −Q (5.33)
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Now, if following adaptation laws are chosen for B̃ and C̃,

˙̃BT = − ˙̂
BT = −Γ−1

1 ueTP (5.34)

˙̃C = − ˙̂
C = −Γ−1

2 Φ(x)eTP (5.35)

then V̇ reduces to:

V̇ = −1

2
eTQe + εTPe (5.36)

⇒ V̇ ≤ −1

2
|λmin(Q)|‖e‖2 + ‖ε‖‖P‖‖e‖ (5.37)

Note:

• When ε = 0, i.e., there are no approximation errors, we have following expression

for V̇ :

V̇ = −1

2
eTQe ≤ 0 (5.38)

Now, the convergence of tracking residual e follows from the assumption that

e ∈ L∞, i.e., both x and x̂ are bounded signals. Further, from the integral

of V̇ , it can be easily shown that e ∈ L2 ∩ L∞ and therefore, from Barbalat’s

Lemma [70] e → 0 as t →∞, which in turn leads to B̃ → 0 and C̃ → 0 based

on Eqs. (5.34) and (5.35). We mention that although B̃ and C̃ approaches 0

but their convergence to corresponding true values is not guaranteed without

the satisfaction of the persistence of excitation condition [70].

• For a given level of the tracking errors e, we can only conclude bounded stability,

as long as the approximation error ε satisfies the following bound:

‖ε‖ ≤ |λmin(Q)|‖e‖
2‖P‖ = εub (5.39)

The above inequality gives us a upper bound on the approximation error ε to

guarantee the bounded stability of system identification error e. Recall that,
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Theorem 3 provides us a lower bound on approximation errors which can be used

to find the conservative estimate on the number of polynomial basis functions

required to approximate g(.) so that Eq. (5.39) is satisfied. However, if the

inequality in Eq. (5.39) is violated then B̂ and Ĉ may drift to infinity with

time. To accommodate these one can set upper bounds B and C on ‖B̂‖ and

‖Ĉ‖, respectively. Thus the modified adaptation laws are:

˙̃BT =




−Γ−1

1 ueTP, if ‖B̂‖ ≤ B
0, otherwise

(5.40)

˙̃C =




−Γ−1

2 Φ(x)eTP, if ‖Ĉ‖ ≤ C
0, otherwise

(5.41)

According to the above modified update laws V̇ is always negative semi-definite

and stability arguments are same as in case of ε = 0. However, in the case

where the bound in Eq. (5.39) is violated, the estimates of B̂, Ĉ and e may

increase as V̇ > 0 but all the quantities are still bounded due to the adaptation

law in Eqs. (5.40) and (5.41).

It should be noticed that Eq. (5.39) reiterates the importance of accurate approx-

imation of nonlinear function g(.). According to Stone-Weierstrass’s approximation

theorem as N → ∞, that the approximation error ε → 0 over a compact Hausdroff

space. However, in practice this is not possible as these adaptation laws are based

upon the assumption that all the parameters of the network can be optimized simul-

taneously. The global nature of the continuous map, g(.), can lead to globally-optimal

network parameters which adequately minimize the approximation error but not to

desired level. An alternative to global learning is local learning using local weight

functions. The local learning algorithms involve estimation of network parameters
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using the observations in the local neighborhood of the operating point. Generally,

the sizing of the local neighborhood is dictated by the support or domain of the

weight functions. In Chapter III, an approximation method is presented that enables

a piecewise continuous approximation in a n-dimensional space using orthogonal poly-

nomials and specially designed weight functions for overlapping the approximations

in contiguous overlapping local regions to obtain the desired order of global conti-

nuity. Further, in Chapter IV, we have shown that the introduction of local models

and averaging of different local approximations improves the approximation accuracy

for a continuous map. In the next section, those results will be extended for the

dynamical system identification case so that the approximation error ε can be signif-

icantly reduced. The adaptive nature of this approximation approach can essentially

guarantee a small ε, if low noise measurement density in space and time is available.

a. Adaption Law Derivation Using The GLO-MAP Network

As discussed in Chapter III, the main idea of the GLO-MAP algorithm is a weighting

function technique that generates a global family of overlapping preliminary approx-

imations whose centroids of validity lie on the vertices of an n-dimensional grid, with

vertices separated by a uniform step h. These preliminary approximations are con-

structed so they represent the behavior in local hypercubes with a volume (2h)n

centered on a typical vertex in the grid. A novel averaging process is developed in

Ref. [41, 43] to determine a piecewise continuous global family of local least squares

approximations, while having the freedom to vary the nature (e.g., degrees of free-

dom) of the local approximations. The continuity conditions are enforced by using a

unique set of weighting functions in the averaging process. The weight functions are

designed to guarantee the global continuity conditions while retaining near complete

freedom on the selection of the generating local approximations.
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In Fig. 12, several qualitative observations regarding the weighting function ap-

proach are illustrated. One critical attractive property of the weight functions is that

they add to unity everywhere in the overlapping unit region, i.e., they form a parti-

tion of unity. Notice further that the weight functions have a qualitative bell shape,

but fairing into a square base, the zero contour being the boundary opposite (e.g.,

2-3-4) to the vertex (e.g., point 1) where the weight has a unit value. Furthermore,

notice that along any boundary, only the two weight functions associated with the

two approximations centered at the end points of that boundary are non-zero along

that boundary, while the other two weight functions are zero (the partial derivatives

of the other two weight functions are also zero along this boundaries). These continu-

ity arguments on the averaged approximation of the function can be extended readily

to corresponding properties on their partial derivatives: The averaged approximation

osculate in value and partial derivatives with the four preliminary approximations at

their corresponding vertices, and the function and both partial derivatives along any

boundary are a weighted average of the corresponding two functions associated with

the end point of that boundary and their partial derivatives are likewise an average of

the partial derivatives of the functions at the end point of that boundary. Collectively,

these observations lead to rigorous piecewise continuity of the averaged approxima-

tions, while leaving the user free to choose any Chapter III, these qualitative obser-

vations are developed systematically and extended rigorously to approximation with

arbitrary order continuity in an n dimensional space. In general, the final approx-

imation in any hypercube is obtained by averaging 2n overlapping approximations

centered at the vertices of that local hypercube.

To illustrate this approach let us first assume n = 2 and g(x1, x2) : R2 → R2 is a

continuous function which can be approximated by the GLO-MAP process according
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to the following equation:

g(x1, x2) = w0,0(x
I1
1 , xI2

2 )gI1,I2(x1, x2) + w0,1(x
I1
1 , xI2+1

2 )gI1,I2+1(x1, x2) + · · ·

w1,0(x
I1+1
1 , xI2

2 )gI1+1,I2(x1, x2) + w1,1(x
I1+1
1 , xI2+1

2 )gI1+1,I2+1(x1, x2)

=

[
gI1,I2(.) · · · gI1+1,I2+1(.)

]

︸ ︷︷ ︸
F2×4





w0,0(x
I1
1 , xI2

2 )

w0,1(x
I1
1 , xI2+1

2 )

w1,0(x
I1+1
1 , xI2

2 )

w1,1(x
I1+1
1 , xI2+1

2 )





︸ ︷︷ ︸
W4×1

(5.42)

where xI
i =

xi−XI
i

h
is a local coordinate and XI

i denotes grid point coordinates. Also,

the weight function are chosen such that these functions form a partition of unity so

that they satisfy:
1∑

i1=0

1∑
i2=0

wi1i2(
I1+i1x1,

I2+i2 xN) = 1 (5.43)

Further, the local approximations, fI1,I2(x1, x2), can be approximated by a set of

orthogonal basis functions, Φ as follows:

gI1,I2(x1, x2) = cI1,I2φ(xI1
1 , xI2

2 ) (5.44)

Now, making use of Eq. (5.44) the matrix F in Eq. (5.42) can be rewritten as:

F =

[
cI1,I2 · · · cI1+1,I2+1

]

︸ ︷︷ ︸
C2×4N



φ(xI1
1 , xI2

2 ) ON×1 · · · ON×1

ON×1 φ(xI1
1 , xI2+1

2 ) ON×1
...

... ON×1 φ(xI1+1
1 , xI2

2 ) ON×1

ON×1 ON×1 ON×1 φ(xI1+1
1 , xI2+1

2 )




︸ ︷︷ ︸
Φ(.)4N×4

(5.45)
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So, Eq. (5.42) reduces to:

g(x1, x2) = CΦ(.)W (5.46)

Now, using the approximation for g(.) given by Eq. (5.46), Eq. (5.23) reduces to:

ẋ(t) = Alx(t) + Bu(t) + CΦ(.)W︸ ︷︷ ︸
Ψ(.)

+ε (5.47)

Once again, the Fourier coefficient matrix C and control effectiveness matrix B are

unknown and one can write:

˙̂x(t) = Alx̂(t) + B̂u(t) + ĈΨ(.) (5.48)

Let us define e(t) = x(t)− x̂(t) and time derivative of e(t) can be written as:

ė(t) = Ale + (B− B̂)u(t) + (C− Ĉ)Ψ(.) + ε (5.49)

= Ale + B̃u(t) + C̃Ψ(.) + ε (5.50)

Now to find adaptation laws for unknown parameters, let us consider following Lya-

punov function:

V =
1

2
eTPe +

1

2
Tr(B̃Γ1B̃

T ) +
1

2
Tr(C̃Γ2C̃

T ) (5.51)

where, P is a positive definite symmetric matrix. Now taking time derivative of V

leads to following Eq.:

V̇ =
1

2
eT

(
PAl + AT

l P
)

︸ ︷︷ ︸
−Q

e + eTP
(
B̃u(t) + C̃Ψ(.) + ε

)
+ Tr

(
B̃Γ1

˙̃BT
)

+Tr
(
C̃Γ2

˙̃CT
)

= −1

2
eTQe + Tr

(
B̃

[
Γ1

˙̃BT + ueTP
])

+ Tr
(
C̃

[
Γ2

˙̃CT + Ψ(.)eTP
])

+eTPε (5.52)
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Therefore, if following adaptation laws are chosen for B̃ and C̃,

˙̃BT = −Γ−1
1 ueTP (5.53)

˙̃CT = −Γ−1
2 Ψ(x)eTP (5.54)

then V̇ reduces to:

V̇ = −1

2
eTQe + εTPe (5.55)

⇒ V̇ ≤ −1

2
|λmin(Q)|||e||2 + ‖ε‖‖P‖‖e‖ (5.56)

Therefore, V̇ is negative definite if ‖ε‖ ≤ |λmin(Q)|‖e‖
2‖P‖ . The bounded stability of the

tracking residual e follows from the same arguments as outlined in the last section.

The adaptation laws presented in this chapter do not guarantee the convergence

of the unknown control effectiveness matrices B and Fourier coefficients C to their true

values but ensure that the parameter estimation errors are bounded. The convergence

of unknown parameters to their true value can only be guaranteed by satisfying the

persistence of excitation conditions [70].

The generalization of Eq. (5.42) is:

g(X1, · · · , XN) =
1∑

i1=0

1∑
i2=0

. . .

1∑
iN=0

(
wi1,··· ,iN (I1+i1x1, · · · ,IN+iN xN)

gI1+i1,··· ,IN+iN (X1, · · · , XN)) (5.57)

However, the expression for the adaptation laws for the Fourier coefficients and control

effectiveness matrix remains same except that now matrix C in Eq. (5.54) consists

of the coefficients of 2n neighboring approximations depending upon the value of x.

Finally, we mention that the state vector, x is generally unknown so the best

available estimates of state vector, x̂ are used as state measurements. These estimates

can be obtained by using the Kalman filter algorithm along with the best known
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linear system, as discussed in section C. The convergence of the nonlinear system

identification algorithm, SysID 1 can be proved under reasonable set of assumptions,

which are captured in the following theorem:

Theorem 5. If the linear system described by Eqs. (5.6) and (5.7) is fully observable

and tuning parameters P and Q are chosen in such a way that V̇ described by Eq.

(5.55) is negative definite then ‖ŷ − y‖ → ‖Cl(ε1 + elb)‖. Where, ε1 represents the

hidden state estimation accuracy and elb = 2 ‖ε‖‖P‖
|λmin(Q)| .

Proof. The observability of the identified linear dynamic system guarantees that the

hidden state x can be detected from the given output y. In other words, the Kalman

filter estimate x̂b can be obtained in such a way that

‖x− x̂b‖ = ε1 (5.58)

Now, we just need to show that x̂ asymptotically converges to x̂b. Eq. (5.55) tells us

the important qualitative truth: if the system can be modeled as we have modeled

it in Eq. (5.47), then asymptotic convergence is assured. However, in presence of

modeling errors the tracking errors will converge to the following value, as discussed

in the previous section:

||e|| → 2
‖ε‖‖P‖
|λmin(Q)| = elb (5.59)

This means that state identification error e is always bounded by elb which further

implies that

‖y − ŷ‖ = ‖Cl(x− x̂)‖

= ‖Cl(x− x̂b︸ ︷︷ ︸
ε1

+x̂b − x̂)‖

→ ‖Cl(ε1 + elb)‖
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The above theorem gives us the lower bound for the system identification errors

which can be reduced to a desired tolerance by the judicious selection of various

tuning parameters.

2. Learning Algorithm for SysID 2

In the previous section, we have described the learning algorithm for the nonlinear

system identification algorithm, SysID 1. The performance of the SysID 1 depends

upon the dimensionality of the hidden state vector x. As the dimensionality of state

vector x increases the number of terms required to approximate nonlinear function

g(.) in Eq. (5.23) increases exponentially. For example, total 6 basis functions are

required for second order approximation of g(.) in 2-D while the same number shoots

to 66 for 10-D state vector. In case of the GLO-MAP approximation this number

can rise even more depending upon the number of local approximations involved.

This unexpected increase in number of parameters makes SysID 1 undesirable for

the identification of structural mechanics systems where the number of participating

modes runs to 10-20.

In section C, we have described an alternate approach (SysID 2) to tackle the

issue of dimensionality of the state vector x. The overall architecture of the system

identification algorithm, SysID 2, is depicted in Fig. 41. Once again, the basic idea

of SysID 2 is to split the system identification process into linear and nonlinear iden-

tification processes. The linear system identification process is same as in the case of

SysID 1 and the main difference lies in the nonlinear identification process. In SysID

1, the linear dynamical model is perturbed by nonlinear term g(.) to compensate for

error arising due to system nonlinearities whereas in SysID 2 the nonlinear transfor-

mation of best estimates of output vector is suggested to compensate for unknown

system nonlinearity effects.
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Consider the perturbed linear dynamical model, where h(xp) is a vector of non-

linear terms.

˙̂x = Alx + Bu (5.60)

y = ŷl + h(xp) (5.61)

with

ŷl = Clx̂ + Dlu (5.62)

Here, Al ∈ Rn×n is a known Hurwitz matrix and B ∈ Rn×p is a control effectiveness

matrix. Once again, we mention that the matrix Al is chosen in such a way that it

captures the modal frequencies of the interest and can be obtained by the ERA or

any other linear system identification algorithm as described in section C. The vector

xp ∈ Rs is a dummy variable which can be chosen as a physical variable associated

with the problem in hand not necessarily be same as hidden state vector xl. For

example, in case of the modeling of flexible space structure, the system output vector

consists of surface distortion measurements at various spatial points, therefore, the

dummy variable xp can consist of cartesian coordinates (x, y, z). In other words, the

surface distortions can be modeled as a function of cartesian coordinates.

The time history estimates of the estimated linear output vector ŷl can be ob-

tained by using the procedure described in section C, so the system identification

problem can be re-defined as:

System Identification Problem. Given the time history estimates of the state

vector x(t) and control variable, u(t), find estimates of the unknown nonlinearity

vector h(.).

Now, due to obvious reasons, discussed in Chapters III and IV, we use the GLO-
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MAP algorithm to approximate h(.):

h(X1, · · · , Xs) =
1∑

i1=0

1∑
i2=0

. . .

1∑
is=0

(
wi1,··· ,is(

I1+i1x1, · · · ,Is+is xs)

hI1+i1,··· ,Is+is(X1, · · · , Xs)) (5.63)

where xI
i =

xi−XI
i

h
is a local coordinate and XI

i denotes grid point coordinates. Also,

the weight function are chosen such that these functions are a partition of unity so

that they satisfy:

1∑
i1=0

1∑
i2=0

. . .

1∑
is=0

wi1,··· ,is(
I1+i1x1, · · · ,Is+is xs) = 1 (5.64)

Further, the local approximations, hI1+i1,··· ,Is+is(.), can be approximated by a set of

orthogonal basis functions, Φ as discussed in Chapter III.

Finally, we mention that the convergence of SysID 2 follows form the guaran-

teed convergence of Kalman filter and the GLO-MAP algorithm. Further, the system

identification error can be reduced to a desired tolerance by the judicious selection of

number of local approximations and degree of basis functions for each local approxi-

mation.

E. Numerical Simulation

The proposed nonlinear system identification algorithms are tested on a variety of

test cases mainly concerned with large space structures. In this section, some results

from these studies are presented.

1. Dynamic System Identification of Large Space Antenna

Space Based Radar (SBR) systems envisioned for the future may be a constellation

of spacecraft that provide persistent real-time radar images of the Earth environment
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through the identification and tracking of moving targets, high-resolution synthetic

aperture radar imaging, and collection of high-resolution terrain information. The

accuracy of the information obtained from the SBR system depend upon many para-

meters like the geometric shape of the antenna, permittivities of the media through

which radar wave is traveling, etc. and our ability to compensate in real-time implic-

itly depends on the accuracy of system identification. Therefore the characteristics of

the scattered wave received by the SBR antenna for a given frequency depend on the

surface and geometric parameters of the radar. To apply necessary corrections for

scattering of radar waves, the precise knowledge of the SBR antenna becomes a ne-

cessity. However, the transient excitation of the flexible dynamics mode necessitated

by the need to slew the antenna makes the shape estimation problem more difficult.

While a variety of surface models can be employed to model the instantaneous shape,

we consider the case that the surface is measured at discrete points and a dynamical

model for shape estimation is desired. The objective of this section is to apply the

system identification methodologies, developed in this chapter, to estimate the real

time SBR antenna shape using only the discrete time measurements of the antenna

surface.

For simulation purposes the SBR antenna geometry is modeled in NASTRAN [56].

The antenna model consists of total 7 panels as shown in Fig. 42. Each panel is as-

sumed to be 100m long in length and 200× 250m2 in area. It is assumed that shape

deflections measurements are available at uniformly distributed 1500 spatial points at

each time instant. NASTRAN is used to generate mass, M, and stiffness, K, matrices

for the antenna structure and coordinate transformation matrix, T, to transform the
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modal coordinates to physical coordinates i.e. deflections along each axis.

Modal Equations: Mη̈ + Kη = 0 (5.65)

Transformation to Physical Coord.: y = Tη (5.66)

where, η and y represent modal and physical coordinates respectively. The order of

the FEM model was 1500× 3 = 4500. If one tries to use traditional ANN method to

find a continuous map between system output and input space then the order of such

a model will be equal to the order of FEM model i.e. 4500 (which is not desirable in

terms of computational efficiency!) However, order reduction methods can be used to

reduce the dimension of the model state space to 10-30. These equations, augmented

with artificial damping and nonlinearities, are simulated using the MATLAB [57]

environment to generate the measurement data for 50 seconds at 10Hz frequency.

For the purpose of this chapter, radial basis functions are used to simulate artificial

nonlinearity with random magnitude and center.

(a) NASTRAN SBR antenna model
consists of 7 panels

(b) Close-up of one panel

Fig. 42. NASTRAN model of the SBR antenna.
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To test the effectiveness of both the system identification algorithm, we consider

two test cases. In the first test case, the measurement data is generated by exciting

first two modes while in the second test case, first five modes are excited to generate

measurement data. Now, according to the procedure listed in section C, first, the

ERA algorithm is used to generate linear dynamic model for the SBR antenna model.

As expected, the ERA system gives us 4th and 10th order linear dynamic model for

first and second test case, respectively. Finally, the nonlinear system identification

algorithms are used to refine the linear model learned by the ERA algorithm.

Fig. 43(a) shows some of the true simulated measurements for various points

on the antenna surface corresponding to the first test case and Fig. 43(b) shows the

relative output error plots corresponding to the ERA identified model. We mention

that relative output error ey is defined as below:

ey =
‖yTrue − yEst‖

‖yTrue‖ (5.67)

From these plots, it is clear that although ERA is able to capture the 2 modes of

interest, there is significant error in estimating the true nonlinear output.

To model the effects of nonlinearities involved in the true dynamic model, the

SysID-1 algorithm is employed according to the procedure listed in section a. Only

one element is used to grid the estimated modal data according to Eq. (3.15) giving

rise to total 16 local approximations. The orthogonal polynomial functions used to

model the nonlinear function, g(.) are listed in Table XII.

gI1(xl) = CTΦ(xl) (5.68)

where, xl ∈ R4 consists of the ERA identified modal coordinates. We mention that

vector Φ consists of only second and higher order terms in xl to have the same linear

dynamics as identified by the ERA algorithm. Therefore, Φ ∈ R10 and C is a 4× 10
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matrix of unknown Fourier coefficients. As total 16 local approximations are used to

identify nonlinear function g(.), therefore, total 16× 10 = 160 Fourier coefficients are

required to be estimated. Initially, C is assumed to be a zero matrix and is adapted

by using Eq. (5.54). Fig. 43(c) shows the adaptation plot of some of the Fourier

coefficients.

In case of the SysID 2 algorithm, the unknown nonlinear function h(.) is approx-

imated by the GLO-MAP algorithm and dummy variable xp is assumed to consist of

cartesian coordinates (x, y, z). To approximate the SBR antenna shape at a particu-

lar time, the measurement data is modeled using a total of 64 finite element cells 4

along each cartesian coordinates, X, Y and Z. Now, a continuous approximation, of

SBR antenna shape, for a particular cell is generated via a least-square procedure as

listed in Chapter III

x̂(xl, yl, zl, t) =
∑

i

∑
j

∑

k

aijkφi(xl)φj(yl)φk(zl), i + j + k ≤ 2 (5.69)

ŷ(xl, yl, zl, t) =
∑

l

∑
m

∑
n

blmnφl(xl)φm(yl)φn(zl), l + m + n ≤ 2 (5.70)

ẑ(xl, yl, zl, t) =
∑

p

∑
q

∑
r

cpqrφl(xl)φm(yl)φn(zl), l + m + n ≤ 2 (5.71)

Here, (xl, yl, zl) denote the local cartesian coordinates of a point predicted by using

linear system identified by ERA algorithm. To learn the local approximations at

each time, vision sensor measurements are processed sequentially. Initially, all Fourier

coefficients are assumed to be zero and the corresponding covariance matrix initialized

to 106 times identity matrix.

Fig. 43(d) shows the relative output error plots for both the system identification

algorithms. From these plots, it is clear that the use of nonlinear system identification

algorithm reduces the estimation error by at least two orders of magnitude.

Further, Fig. 44(a) shows some of the true simulated measurements for various
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points on the antenna surface corresponding to the second test case and Fig. 44(b)

shows the relative output error plots corresponding to the ERA identified model.

From these plots, once again it is clear that although ERA is able to capture all 5

modes of interest, there is significant error in estimating the true nonlinear output.

As the dimension of linear state vector is 10, therefore, one needs total 210×55 =

56, 320 Fourier coefficients to learn the nonlinear function g(.) using only one grid

element. This high increase in number of Fourier coefficients makes the use of SysID

1 highly inefficient. Therefore, in the second test case, only SysID 2 algorithm is used

to refine the linear model learned by the ERA algorithm. Once again, the unknown

nonlinear function h(.) is approximated by the GLO-MAP algorithm and dummy

variable xp is assumed to consist of cartesian coordinates (x, y, z). To approximate

the SBR antenna shape at a particular time, the measurement data is modeled using

a total of 64 finite element cells 4 along each cartesian coordinates, X, Y and Z.

Fig. 44(c) shows the relative output error plots for the SysID 2 system identifi-

cation algorithms. Once again, the use of nonlinear system identification algorithm

reduces the estimation error by at least two order of magnitude.

For the sake of simulations, it is implicitly assumed that actual surface defor-

mation is sufficiently smooth and relatively sparse set of measurements can provide

support for the needed surface estimates. Of course, validating this assumption will

be crucial in real applications and we did not attempt this. Finally, we mention that

the simulation results present in this section provides a basis for optimism regarding

the utility of both the algorithm. However, the effect of measurement data frequency

and sensor noise needs to be considered before making strong conclusion about the

utility of these algorithms.
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F. Concluding Remarks

A general methodology for non-linear system identification is presented in this chap-

ter. The method splits the nonlinear system identification process into two parts:

1)Linear system identification using ERA and 2) Nonlinear system identification us-

ing the GLO-MAP. We use the ERA - determined linear system state variable trans-

formation to reduce nonlinear system state space dimensionality. We have found this

to work well in the examples we have studied but there is no theoretical guarantee

that this approach to order reduction for a general nonlinear system will give the best

order reduction. The GLO-MAP algorithm is used to learn the nonlinear correction

term in hidden state dynamical model and nonlinear transformation of measurement

data for SysID 1 and SysID 2, respectively. A particularly attractive choice to model

the nonlinear term is shown to be polynomial basis functions that are orthogonal with

respect to the weight functions of the averaging process of the GLO-MAP algorithm.

The adaption laws for different parameters of the GLO-MAP network are derived

by using Lyapunov’s analysis in case of the SysID 1. The convergence of both the

algorithms is supported by a thorough analysis and demonstrated in the numerical

study. The broad generality of the method, together with simulation results provide a

strong basis for optimism for the practical importance of these ideas. However, there

remains an issue of uniqueness of the learned mathematical model, but again, we do

not believe these open theoretical questions limit the usefulness of this approach for

most engineering problems. We simply point out that proceeding with caution in the

absence of theoretical justification is a necessary leap of faith until more theoretical

progress can be made.
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CHAPTER VI

MESHLESS FINITE ELEMENT METHODS

A. Introduction

The classical Finite Element Method (FEM) is a very promising approach to find the

solution of Partial Differential Equations (PDE). In the classical FEM, the approx-

imate solution to PDE is obtained by the discretization of the spatial domain into

volume/area elements. The local approximations for each element are obtained by the

use of polynomial basis functions which interpolate the solution and satisfy additional

constraints like exact interpolation at nodal points and inter-element continuity con-

ditions. Generally, the polynomial degree p is fixed which is dictated by the element

type and the number of nodal points per element. The success of classical FEM de-

pends upon the approximation ability of the polynomial basis functions and further

improvement in the approximated solution can be achieved only by refining the mesh

size, h. In most of the cases the degree of these basis functions is less than or equal

to 2. For example, in case of the triangular mesh with three nodes per element one

can only use degree one polynomials for interpolation to satisfy necessary continuity

requirements. Further, in some problems the use of non-polynomial basis functions

may be desirable to achieve better accuracy. For example, in case of the Helmholtz

equation, the solution is known to be highly oscillatory in nature and therefore, it

may be desirable to use non-polynomial basis functions to approximate the exact

solution. However, even though the analytical knowledge about local behavior of ex-

act solution is available there are no convenient means to incorporate this knowledge

in the conventional FEM solution. Also, the reliance of the conventional FEM on

a mesh is not well suited to problems involving discontinuities and moving domain.
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Generally, to deal with moving domains and discontinuities in the conventional FEM

methods, the original mesh is regenerated in each step of the evolution so that mesh

lines are in accordance with moving domain and discontinuity. However, this strategy

of re-meshing at each stage can introduce numerous difficulties such as the need to

project the solution between meshes in successive stages of the problem, complexity

in the computer program and not to mention the computational burden associated

with a large number of re-meshing.

The main objective of the meshless methods is to construct the PDE solution

entirely in terms of nodes in the absence of element connectivity. In the meshless

FEM, nodal points can be added easily to the part of the domain where the solution

is (expected to be) poor. In addition, since meshless methods use a non-element inter-

polation technique and a functional basis, therefore, the solution and its derivatives

may be found directly where they are needed without interpolation errors. This makes

the meshless FEM more flexible than the conventional FEM and a powerful tool to

solve large classes of problems which are very awkward with mesh based conventional

FEM.

Although the meshless methods are greatly developed recently, the research ef-

forts in this field have a long history [44,81]. The main proposals which follow mesh-

less FEM concepts are the Smoothed Particle Hydrodynamics Method (SPH), [81],

the Element Free Galerkin Method (EFGM) [82],the Reproducing Kernel Particle

(RKP) method [83], the Meshless Petrov Galerkin (MLPG) method [84], the Parti-

tion of Unity Finite Element Method (PUFEM) [85] and the hp-cloud method [86].

An overview of various meshless methods can be found in Ref. [87]. Most of these

methods except the PUFEM make use of the Moving Least Squares Approximation

(MLSA) technique to find the expression for different local approximations. For the

MLSA based approach, the local shape functions are constructed with the help of
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methods from data fitting followed by the Galerkin discretization process to set up a

linear system of equations. Finally, these systems of equations are solved for the so-

lution value at specified nodal points. We mention that although successes have been

many by using the MLSA based meshless methods but there are many drawbacks of

such an approach not to mention the computational cost associated with these meth-

ods. Alternative to the MLSA is a partition of unity approach where the Galerkin

discretization process is directly used to find the local shape function instead of using

some data fitting process followed by the Galerkin discretization. The main advan-

tage of the PUFEM over the MLSA approach is that the PUFEM approach results

in a continuous approximation of the exact solution while the MLSA just provides

the solution value at specified nodal points and interpolation process is required to

obtain the solution value at any point other than the specified nodal points.

A common feature of all meshless methods is a weight function which is used to

define the domain of integration for a particular node. The specially designed weight

functions are positive functions with compact support which dictates the domain of

integration for a particular nodal point. We mention that the domain of integration

defines the local region over which local weak form associated with particular node

is valid and it is analogous to the element space in the conventional FEM. The most

commonly used sub-domains are circular, rectangular or elliptical in shape. Depend-

ing upon the input argument to weight functions different shapes can be achieved for

domain of integration. For example, in Fig. 45(a), a rectangular shape is obtained by

tensor product of 1-D weight functions while in Fig. 45(b) circular shape is obtained

by selecting the input argument of the 1-D weight function to be radial distance of

the point from origin or nodal point in question. In case of the PUFEM, these weight

functions needs to satisfy extra constraint of partition of unity. Notice that the GLO-

MAP weight functions (Table XI) are positive functions with compact support and
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Fig. 45. Different shapes for domain of integration.

form a partition of unity. As a consequence of this, they can be used in various

meshless methods. The main advantage of using the GLO-MAP weight functions is

that they are polynomial in nature (whereas most PUFEM weight function are not

simple polynomials) and further if one use the polynomial functions orthogonal to the

GLO-MAP weight function to locally approximate the solution, then many numerical

integrals can be evaluated accurately and easily.

In this chapter, attention is focused on the use of the GLO-MAP algorithm

along with the Galerkin discretization process to solve PDEs in an efficient manner.

Modifications of the standard MLPG and PUFEM methods are proposed using the

GLO-MAP algorithm. We mention that the novel averaging process of the GLO-MAP

algorithm differentiate it advantageously from their conventional counterparts.

The structure of this chapter is as follows: first, the MLSA based Meshless Petrov

Galerkin method is described followed by the modification of this method using the

GLO-MAP algorithm. Next, the use of the GLO-MAP algorithm is described in
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context with the PUFEM approach. Finally, numerical studies are performed to

compare the performance of various algorithms proposed in this chapter.

B. MLPG-Moving Least Square Based Approach

In this section the main characteristics of the Meshless Petrov Galerkin (MLPG)

algorithm are discussed and one should refer to Refs. [84,88] for more detail discussion

on this method.

Let us consider following linear PDE to be solved over global domain Ω with

boundary Γ

Lu = f (6.1)

and following boundary conditions

u = ū on Γu (6.2)

∇u.n̂ = q̄ on Γq (6.3)

where L is the general differential operator, u is the unknown function to be solved

and f is the forcing term. Further, Γu and Γq are parts of the global boundary Γ where

Dirichlet and Neumann boundary conditions are imposed, respectively. Finally, n̂ is

the outward normal vector.

Like in any FEM method, we approximate the unknown function u as û and

write a generalized local weak form of Eq. (6.1) over a local sub-domain Ωx:

∫

Ωx

[Lû− f ]vxdΩ + α

∫

Γxu

[û− ū]vxdΓ + β

∫

Γxq

[q − q̄]vxdΓ = 0 (6.4)

where, vx is the test function associated with nodal point x and has a compact support

Ωx ⊂ Ω also known as the domain of integration associated with nodal point x as

shown in Fig. 46. The choice of the test function vx determines the shape and size
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of the local domain Ωx. Further, Γxu and Γxq are the boundary parts of the sub-

domain Ωx over which Dirichlet and Neumann boundary conditions are imposed i.e.

Γxu = Γx ∩ Γu and Γxq = Γx ∩ Γq. α and β are penalty parameters used to impose

the Dirichlet and Neumann boundary conditions, respectively.

The approximation û of the unknown function, u, can be written as:

û(x) =
N∑

i=1

ψi(x)ûi (6.5)

where N is the total number of nodal points used to discretize the domain Ω, ûi is the

solution value at the ith nodal point and ψi(.) is the shape function associated with

the ith nodal point with compact support Ωi. The support Ωi of the shape function

ψi is known as the domain of definition in the literature [84] and is shown in Fig. 46.

Finally, the substitution of Eq. (6.5) in Eq. (6.4) leads to the following set of linear

equations in unknown variables ûi:

Kû = f (6.6)

where, K and f are given as:

Kij =

∫

Ωx

Lψj(x)vxj
dΩ + α

∫

Γxu

ψj(x)vxi
dΓ + β

∫

Γxq

∇ψj(x)vxi
dΓ (6.7)

fi =

∫

Ωx

fvxi
dΩ + α

∫

Γxu

ūvxi
dΓ + β

∫

Γxq

q̄vxi
dΓ (6.8)

To obtain the expression for the shape function ψi(.), the Moving Least Square

(MLS) fitting algorithm is adopted which is also known as the local regression algo-

rithm in the literature. The moving least square approximation uh of the unknown

function u is written as:

uh(x) = φT (x)a(x) (6.9)
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where, φ ∈ Rm is a vector of the complete set of basis functions φi and a ∈ Rm is

a vector of corresponding Fourier coefficients ai which are function of x instead of

being constant as in the conventional Gaussian least square approach. Furthermore,

a set of nodal points {xi}i=1,··· ,M are considered in the neighborhood ΩM of x and

the coefficient vector a(x) is obtained by minimizing the mean square error.

J =
M∑
i=1

wi(x,xi)
(
φT (xi)a(x)− uh

i

)2
(6.10)

Here, uh
i is the value of unknown function u at points xi for which we want to solve.

wi is a weight function associated with ith node such that wi(x,xi) > 0. Beside

positivity the weight function wi also satisfies following properties:

1. The domain Ωi of weight function wi is a compact sub-space of Ω.

2. wi is a monotonically decreasing function in x.

3. As x → 0, wi → δ.

According to the definition of weight function wi, the domain of definition, Ωm, of a

point x is defined as collection of points for which wi(x,xi) ≥ 0, i = 1, 2, · · · ,M . In

other words, ΩM can be defined as union of sub-domains, Ωi i.e. ΩM =
M⋃
i=1

Ωi

Generally, a Gaussian weight function of the following form is used:

wi(x) =





e−(‖x−xi‖/c)2−e−(ri/c)2

1−e−(ri/c)2
, ‖x− xi‖ ≤ ri

0, ‖x− xi‖ > ri

(6.11)

where ri and c are parameters which dictate the size of domain of definition, Ωm. As

another possibility, a spline weight function is used for the MLS approximation in
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Ref. [84].

wi(x) =





1− 6
(

di

ri

)2

+ 8
(

di

ri

)3

− 3
(

di

ri

)4

, di = ‖x− xi‖ ≤ ri

0, di > ri

(6.12)

The first order optimality condition for the loss function of Eq. (6.10) results in the

following set of linear equations for a(x)

a(x) = (ΦTW(x)Φ︸ ︷︷ ︸
A(x)

)−1ΦTW(x)uh (6.13)

where uh ∈ RM is a vector with entries uh
i and the matrices Φ and W are given by

Φij = φj(xi) (6.14)

Wij = wi(x)δij (6.15)

The necessary condition for the MLS solution to exist is that the rank of the matrix

Φ should be at least m. As a consequence of this the domain of definition ΩM should

consist of at least m nodal points. Now, the MLS approximated solution uh can also

be expressed as:

uh(x) =
n∑

i=1

ψi(x)ui (6.16)

where the shape function ψi is given by

ψi(x) =





m∑
i=1

φj(x)(A−1(x)ΦW(x))ji wi(x) > 0

0 wi(x) = 0

(6.17)

Note that the shape function ψi(x) vanishes at the nodal points where weight function

wi(x) = 0. The continuity of the shape function ψ(.) depends upon the continuity

of the weight function wi and basis functions φ(.). Generally, the basis functions

are chosen as mth order polynomial functions in x, however, one has the freedom to
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choose any set of basis functions depending upon the problem in hand. Note, for

m = 1, the shape function ψ(x) is given by the following expression and are known

as the Shepard function:

ψi(x) =
wi(x)

M∑
i=1

wi(x)

(6.18)

So the continuity of the Shepard function depends solely upon the continuity of the

weight functions. In Table XI of Chapter III, weight functions are listed that guaran-

tee arbitrary order continuity and satisfy all requirements of the MLS weight function.

The weight functions for first four orders of continuity and their first derivatives, for

2-D approximations, are shown in Figs. 47, 48 and 49, respectively. The main advan-

tage of using the GLO-MAP weight functions is that they are polynomial in nature

and further if one use the polynomial functions orthogonal to the GLO-MAP weight

function (Table XII) then the shape function can be evaluated accurately and easily.

1. Poisson Equation

To illustrate the whole procedure of the MLPG approach, we consider Poisson equa-

tion in 2-D space.

∇2u = f in Ω (6.19)

u = ū on Γu (6.20)

u,n = q̄ on Γq (6.21)

where ∇(.) = [ ∂
∂x2 + ∂

∂y2 ](.) is the Laplace operator and n is the direction normal to

the boundary of the domain. Analogous to Eq. (6.4), we write a generalized local



205

−1

0

1

−1

0

1
0

0.5

1

x

 

y

w
0

(a) w0(x, y) = w0(x)× w0(y)

−1

0

1

−1

0

1
0

0.5

1

x

 

y

w
1

(b) w1(x, y) = w1(x)× w1(y)

−1

0

1

−1

0

1
0

0.5

1

x

 

y

w
2

(c) w2(x, y) = w2(x)× w2(y)

−1

0

1

−1

0

1
0

0.5

1

x

 

y

w
3

(d) w3(x, y) = w3(x)× w3(y)

Fig. 47. Weight functions for first four order of continuity.



206

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

x

 

y

dw
0/d

x

(a) ∂w0(x,y)
∂x

−1
0

1 −1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

y

 

x

dw
1/d

x

(b) ∂w1(x,y)
∂x

−1
0

1

−1
0

1
−2

−1

0

1

2

x

 

y

dw
2/d

x

(c) ∂w2(x,y)
∂x

−1
0

1
−1

0
1

−3

−2

−1

0

1

2

3

x

 

y

dw
3/d

x

(d) ∂w3(x,y)
∂x

Fig. 48. First derivative of weight functions w.r.t. x for first four order of continuity.



207

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

x

 

y

dw
0/d

y

(a) ∂w0(x,y)
∂y

−1
0

1 −1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

y

 

x

dw
1/d

y

(b) ∂w1(x,y)
∂y

−1
0

1

−1
0

1
−2

−1

0

1

2

x

 

y

dw
2/d

y

(c) ∂w2(x,y)
∂y

−1
0

1 −1
0

1−3

−2

−1

0

1

2

3

y

 

x

dw
3/d

y

(d) ∂w3(x,y)
∂y

Fig. 49. First derivative of weight functions w.r.t. y for first four order of continuity.



208

weak form of for the Poisson Equation over local sub-domain Ωx as:

∫

Ωs

(∇2û− f)vxdΩ− α

∫

Γxu

(û− ū)vxdΓ = 0 (6.22)

where û is the trial function, vx is the test function associated with nodal point

x and Γxu is a part of the boundary Γu. Note that second term in Eq. (6.22) is

introduced to impose the essential boundary condition. According to Eq. (6.22),

trial function should be at least twice differentiable i.e. û ∈ C2 while the test function

vx should be a continuous function i.e. vx ∈ C0. However, using the fact that

(∇2û)vx = (û,iv)x,i − û,ivx,i and the divergence theorem, we can re-write Eq. (6.26)

such that both trial function and test function are at least once differentiable i.e.

vx, û ∈ C1.

∫

∂Ωx

û,inivxdΓ−
∫

Ωx

(û,ivx,i + fvx)dΩ− α

∫

Γxu

(û− ū)vxdΓ = 0 (6.23)

Here, ∂Ωx is the boundary of Ωx which can be divided into three parts:

∂Ωx = Γxu + Γxq + ΓxI (6.24)

where, ΓxI is the part of boundary ∂Ωx which neither intersects Γu nor Γq. Also, if we

deliberately select a test function vx such that it vanishes over the boundary of sub-

domain Ωx then the first term of Eq. (6.23) evaluated over ΓxI can be simplified. This

can be easily accomplished by using the GLO-MAP weight function of Table XI as the

test function. As mentioned earlier, the domain of the test function vx determines the

domain Ωx over which various integral expressions of Eq. (6.23) should be evaluated.

Here, we choose sub-domain Ωx to be a square centered at nodal point x. As test

function vx should be at least C1, therefore, we choose test function to be the 2nd
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order GLO-MAP weight function as listed in Table XI.

vx(x, y) = w2(x)× w2(y)

=

[
1− x

h

3 (
10− 15

x

h
+ 6(

x

h
)2

)] [
1− y

h

3 (
10− 15

y

h
+ 6(

y

h
)2

)]
(6.25)

Here, h is one half of the side of the square domain Ωx. Now, using the fact that test

function vanishes over ΓxI the Eq. (6.23) reduces to

∫

Ωx

(û,ivx,i)dΩ + α

∫

Γxu

ûvxdΓ−
∫

Γxu

qvxdΓ =

∫

Γxq

q̄vxdΓ + α

∫

Γxu

ūvxdΓ−
∫

Ωx

fvxdΩ

(6.26)

To obtain the algebraic equations from Eq. (6.26), the MLS approximation of Eq.

(6.16) is used to approximate the trial function û. To find the expression for shape

function, ψ(.), we use the 2nd order GLO-MAP weight function, given by Eq. (6.25),

and, polynomial basis functions up to 2nd degree in both x and y. The polynomial

functions for the MLS approximation are designed to be orthogonal to the MLS weight

function and are shown in Fig. 50. Finally, Substitution of Eq. (6.16) into Eq. (6.26)

for all nodes leads to the following system of linear equations:

Ku = f (6.27)

where, the entries of the “stiffness” matrix K and the “load” vector, f are given as:

Kij =

∫

Ωx

ψj,kvx,k(x,xi)dΩ + α

∫

Γxu

ψjvx(x,xi)dΓ−
∫

Γxu

ψj,nvx(x,xi)dΓ (6.28)

fi =

∫

Γxq

q̄vx(x,xi)dΓ + α

∫

Γxu

ūvx(x,xi)dΓ−
∫

Ωx

fvx(x,xi)dΩ (6.29)

Note, theoretically, as long as the union of all local domains covers the global domain

i.e., ∪Ωs ⊃ Ω, the equilibrium equation and the boundary conditions will be satisfied

in the global domain and on its boundary, respectively. To ensure this, we choose

parameter h to be the minimum distance of nodal point x from all other nodal points.
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Fig. 50. Two-dimensional polynomial basis functions orthogonal to weight function

given by Eq. (6.25).
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Also, since we are using 2nd order polynomials for the MLS approximation, therefore,

we need to make sure that there are at least 6 nodal points in the domain of definition

ΩM associated with each nodal point. To ensure this, we choose the support of Ωi

to be 6h. The implementation of the MLPG method can be carried out according to

the following steps and is illustrated in Fig. 51:

1. Choose a finite number of nodes to discretize the global domain Ω and global

boundary Γ.

2. Determine the local sub-domain Ωx and its corresponding local boundary ∂Ωx

for each node.

3. Loop over all nodes located inside the global domain and at the global boundary

Γ

(a) Determine Gaussian quadrature points xQ in the domain of integration Ωx

and its boundary ∂Ωx.

(b) Loop over the quadrature points xQ in the sub-domain Ωx and on the local

boundary ∂Ωx

i. determine nodal points xi such that wi(xQ,xi) > 0

ii. using the MLS approximation for trial function evaluate numerical

integrals in Eqs. (6.28) and (6.29).

iii. assemble contributions to the linear system for all nodes in K and f .

(c) End loop over quadrature points

4. End node loop.

5. Solve the linear system for the fictitious nodal values ûi.
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To show the effectiveness of the method discussed in this section, we assume f = −1

in Eq. (6.19) and the following boundary conditions on a square domain of unit

length:

u(x, 1) = u(1, y) = 0 (6.30)

∂u

∂x
|(0,y) =

∂u

∂y
|(x,1) = 0 (6.31)

The exact analytical solution to this boundary value problem is given by the following

equation [89]:

u(x, y) =
1

2

[
(
1− y2

)
+ 4

∞∑
n=1

(−1)n cos αny cosh αnx

α3
n cosh αn

]
(6.32)

with

αn =
1

2
(2n− 1)π (6.33)

Fig. 52 shows the plots of true solution surface and various partial derivative of the

true solution. The different integrals appearing in Eqs. (6.28) and (6.29) are evaluated

numerically using the Gauss quadrature method. Regular meshes of different sizes

are considered to study the convergence and accuracy of the method. In all the cases

the computed solution is tested on a total of 2500 uniformly distributed points inside

unit square. Fig. 53 shows the plot of relative error e with respect to mesh-size(h)

for linear, quadratic and cubic basis functions.

e =

√
(u− û)2 + (∂u

∂x
− ∂û

∂x
)2 + (∂u

∂y
− ∂û

∂y
)2

√
u2 + ∂u

∂x

2
+ ∂u

∂y

2
(6.34)

As expected, the relative error decreases with decrease in mesh size and increase in

the order of basis functions. Also, it is clear that the MLPG converges as might be

expected to reasonably accurate results for the solution and its derivatives.
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2. Comments on The MLPG Algorithm

Although the MLS shape function used in the MLPG algorithm reproduce the true

solution at nodal points in accordance with the least square principle, however; there

are several significant drawbacks associated with this approach.

1. The first disadvantage of the MLPG approach is that for each point under

consideration a new linear system must be solved to find the value of the shape

functions ψi and hence the value of the approximated solution û. This is a

computationally burdensome task.

2. As mentioned earlier, the smoothness of the shape functions ψi and hence the

smoothness of the approximated solution û is directly related to the smoothness

of both the basis functions and the weight functions used in the MLS approxi-

mation. As a consequence of this the approximated solution û is continuous up

to an arbitrary order p over whole domain Ω if shape functions corresponding

to all he nodes are continuous up to same order p. This is possible if the same

set of basis functions is used in each local domain ΩM . In other words, the ba-

sis functions of ith local region can not be chosen independently from the basis

function of jth local region. So one can not increase the degree of approximation

in a particular local region arbitrarily to reduce the approximation errors to a

desired tolerance.

3. The shape functions ψi fails to have the selective property known as partition of

unity i.e.
∑
i

ψi = 1. Hence, ui does not have the interpretation of nodal value

of û.

uh(xi) 6= ui (6.35)

4. Even though the basis functions used to approximate u can be polynomial
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in nature, there is no guarantee that shape function φi will be polynomial in

nature which makes numerical integration more difficult than if all functions in

the integrands were polynomials.

C. Modification of The MLPG Algorithm Using The GLO-MAP Algorithm

In the previous section, we discussed in detail the MLPG algorithm to solve the

partial differential equations. One of the main disadvantage associated with MLPG

algorithm is that the basis functions used for the MLS approximation in the ith lo-

cal region can not be chosen independently from the basis functions used in another

local region without introducing discontinuity across the boundary of different local

regions. Basically, the main problem is the lack of rigorous tools to merge differ-

ent independent local approximations to obtain a desired order globally continuous

approximation. In Chapter III, the GLO-MAP algorithm is introduced whose main

attraction is a novel averaging process to determine a piecewise continuous global

family of local least squares approximations, while having the freedom to vary the

nature (e.g., degrees of freedom) of the local approximations. The continuity con-

ditions are enforced by using a unique set of weighting functions (See Appendix A)

in the averaging process. The weight functions are designed to guarantee the global

continuity conditions while retaining near complete freedom on the selection of the

generating local approximations. In this section, we propose a modification to the

conventional MLPG algorithm to make use of the GLO-MAP averaging process.

Like in the previous section, let us consider a linear PDE to be solved over global

domain Ω with boundary Γ

Lu = f (6.36)
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and following boundary conditions

u = ū on Γu (6.37)

∇u.n̂ = q̄ on Γq (6.38)

Once again, let us approximate the unknown function u as û and write a generalized

local weak form for Eq. (6.36) over a local sub-domain Ωx ⊂ Ω using test function

vx: ∫

Ωx

[Lû− f ]vxdΩ + α

∫

Γxu

[û− ū]vxdΓ + β

∫

Γxq

[q − q̄]vxdΓ = 0 (6.39)

Now, introducing shape functions ψi, we can write the approximation û of the un-

known function, u, as follows:

û(x) =
N∑

i=1

ψi(x)ûi (6.40)

where N is the total number of nodal points used to discretize the global domain Ω

and ûi is the solution value at the ith nodal point. Further, the substitution of Eq.

(6.40) in Eq. (6.39) leads to the following set of linear equations in unknown variables

ûi:

Kû = f (6.41)

where, K and f are given as:

Kij =

∫

Ωx

Lψj(x)vxj
dΩ + α

∫

Γxu

ψj(x)vxi
dΓ + β

∫

Γxq

∇ψj(x)vxi
dΓ (6.42)

fi =

∫

Ωx

fvxi
dΩ + α

∫

Γxu

ūvxi
dΓ + β

∫

Γxq

q̄vxi
dΓ (6.43)

Recall that in the previous section, we use the MLS based fitting algorithm to find

the expression for the shape function to be used in the MLPG algorithm. Like in the

MLPG algorithm, here also we use the least square criteria to find the value of a shape
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function. In case of the MLPG algorithm, one needs to solve for a new local approx-

imation whenever one needs to find the value of a shape function. Here, we propose

the concept of the GLO-MAP algorithm to keep the number of local approximations

in check and further, the use of the GLO-MAP algorithm allows us to introduce

higher order approximations in a particular region to decrease approximations error

to a desirable tolerance.

To approximate a unknown function u using the GLO-MAP algorithm, a set

of grid points {x̄i}i=1,··· ,NG
, uniformly distributed over global domain Ω, are intro-

duced. We mention that these grid points x̄i are different from the nodal points xi

on which we want to solve the given PDE. Each grid point is equipped with a set

of weight functions {wi(x)}i=1,··· ,NG
and local approximations {Fi(x)}i=1,··· ,NG

. These

local approximations are constructed so each represents the behavior in the hypercube

centered on a typical vertex in the grid. These hypercubes, where local approxima-

tions are valid, generally overlap and are averaged over the overlapped volume to

determine final approximations. The final weighted average approximation can be

written as:

û(x) =

NG∑
i=1

wi(x)Fi(x) (6.44)

where wi are the weighting functions used to average (blend) the 2n adjacent pre-

liminary local approximations and are listed in Table XI. The weight functions are

designed to guarantee the global continuity conditions while retaining near complete

freedom on the selection of the local approximations Fi. The local approximation

Fi(x) associated with grid point x̄i can be written as a linear combination of user-

defined basis functions φi:

Fi(x, x̄) = φT
i (x, x̄)ai(x̄) (6.45)
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Here, φ ∈ Rm is a vector of basis functions φi and a ∈ Rm is a vector of corresponding

Fourier coefficients. Note, unlike the MLS approximation the Fourier coefficient vector

a is not a function of x but it depends upon the location of grid point x̄. To solve for

the Fourier coefficient vector ai, the mean square error is minimized over the set of

nodal point lying inside the support, Ωw, of the weight function associated with ith

grid point.

J =
M∑

k=1

wi(xk, x̄i)
(
φT

i (xk, x̄i)ai(x̄)− uh
k

)2
(6.46)

Here, uh
k is the fictitious value of the unknown function u at xi for which we want to

solve. We mention that the support, Ωw, of the weight function wi(.) is a hypercube

centered at the ith grid point. The first order optimality condition for the loss function,

given by Eq. (6.46), results in a set of linear equations for the Fourier coefficient vector

ai

ai(x̄) = (ΦT
i WiΦi︸ ︷︷ ︸

A

)−1ΦT
i Wiu

h (6.47)

where, u ∈ Rm is a vector with entries uh
i and the matrices Φi and Wi are given by

Φijk
= φij(xk, x̄i) (6.48)

Wijk
= wi(xk, x̄i)δjk (6.49)

The necessary condition to solve for the Fourier coefficient vector a is that the rank

of the matrix Φ should be at least m. That means M ≥ m. Now, the approximated
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solution û can also be expressed as:

û(x) =

NG∑
i=1

wi(x, x̄i)Fi(x, x̄i) =

NG∑
i=1

wi(x, x̄i)φ
T
i (x, x̄i)ai (6.50)

=

NG∑
i=1

wi(x, x̄i)φ
T
i (x, x̄i)A

−1
i ΦT

i Wi(.)

︸ ︷︷ ︸
ψT

i

uh (6.51)

=
N∑

k=1

ψk(x)uk (6.52)

It should be noticed that the support of the shape function ψi associated with ith

nodal point xi is equal to the union of the domains of 2n weight functions which have

non-zero value at xi. Like the MLPG algorithm, the continuity of the approximated

solution û depends upon the continuity of the GLO-MAP weight functions wi and

basis functions φi. Further, the use of the weighting functions to blend different local

approximations allows us to use different basis functions in different local regions.

As a consequence of this, the shape function ψ and hence the approximated solution

û(x) are continuous over whole global domain Ω even though different order basis

functions are used to obtain different local approximations.

1. Poisson Equation

Once again, to illustrate the whole procedure, discussed in the previous section, we

consider the Poisson equation in the 2-D space.

∇2u = f in Ω (6.53)

u = ū on Γu (6.54)

u,n = q̄ on Γq (6.55)
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where ∇(.) = [ ∂
∂x2 + ∂

∂y2 ](.) is the Laplace operator and n is the direction normal to

the boundary of the domain. Adopting the procedure listed in the previous section

the symmetric weak form for Eq. (6.53) over local sub-domain Ωx can be written as:

∫

∂Ωx

û,inivxdΓ−
∫

Ωx

(û,ivx,i + fvx)dΩ− α

∫

Γxu

(û− ū)vxdΓ = 0 (6.56)

where, ∂Ωx is the boundary of the local sub-domain Ωx, û is the trial function,

approximated by the GLO-MAP process and vx is the test function with support

equal to the local sub-domain Ωx. Now, if we deliberately select a test function vx

such that it vanishes over the boundary of the sub-domain Ωx then the first term

of Eq. (6.56) can be simplified as discussed in the previous section and this can be

easily accomplished by using the GLO-MAP weight function of Table XI as the test

function. Once again, we choose test function to be the 2nd order GLO-MAP weight

function as listed in Table XI and sub-domain Ωx to be a square centered at nodal

point x.

vx(x, y) = w2(x)× w2(y)

=

[
1− x

h

3 (
10− 15

x

h
+ 6(

x

h
)2

)] [
1− y

h

3 (
10− 15

y

h
+ 6(

y

h
)2

)]
(6.57)

Here, h is one half of the length of the side of the square domain Ωx. Now, using the

fact that test function vanishes over the boundary of sub-domain Ωx the Eq. (6.56)

reduces to

∫

Ωx

(û,ivx,i)dΩ + α

∫

Γxu

ûvxdΓ−
∫

Γxu

qvxdΓ =

∫

Γxq

q̄vxdΓ + α

∫

Γxu

ūvxdΓ−
∫

Ωx

fvxdΩ

(6.58)

To obtain the algebraic equations from Eq. (6.58), the GLO-MAP approximation of

Eq. (6.40) is used to approximate the trial function û. To find the expression for the

shape function, ψ(.), we use the 2nd order GLO-MAP weight function and polynomial
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basis functions up to 2nd order in Eq. (6.52). Finally, Substitution of Eq. (6.52) into

Eq. (6.58) for all nodes leads to the following system of linear equations:

Ku = f (6.59)

where, the entries of the “stiffness” matrix K and the “load” vector, f are given as:

Kij =

∫

Ωx

ψj,k(x)vx,k(x,xi)dΩ + α

∫

Γxu

ψjvx(x,xi)dΓ−
∫

Γxu

ψj,nvx(x,xi)dΓ (6.60)

fi =

∫

Γxq

q̄vx(x,xi)dΓ + α

∫

Γxu

ūvx(x,xi)dΓ−
∫

Ωx

fvx(x,xi)dΩ (6.61)

Note, theoretically, as long as the union of all local domains covers the global domain

i.e., ∪Ωs ⊃ Ω, the equilibrium equation and the boundary conditions will be satisfied

in the global domain and on its boundary, respectively. To ensure this, we choose

parameter h to be equal to the minimum distance of nodal point x from all other

nodal points. Also, as we are using 2nd order polynomials for the MLS approximation,

therefore, we need to make sure that there are at least 6 nodal points in the domain

of definition ΩM associated with each nodal point. To ensure this, we choose grid

points to be h/2 distance apart. The implementation of the modified MLPG method

can be carried out according to the following routine and is illustrated in Fig. 54:

1. Choose a finite number of nodes to discretize the global domain Ω and global

boundary Γ.

2. Choose uniformly distributed grid points xgi
and assign a GLO-MAP weight

function with each grid point.

3. Determine the local sub-domain Ωx and its corresponding local boundary ∂Ωx

for each node.

4. Loop over all nodes located inside the global domain and at the global boundary



224

Γ

(a) Determine Gaussian quadrature points xQ in domain of integration Ωx and

its boundary ∂Ωx.

(b) Loop over quadrature points xQ in the sub-domain Ωx and on the local

boundary ∂Ωx

i. Determine 2n grid points xgi
such that wi(xQ,xgi

) > 0

ii. For each grid point xgi
find local approximation for trial function and

evaluate numerical integrals in Eqs. (6.60) and (6.61).

iii. assemble contributions to the linear system for all nodes in K and f .

(c) End loop over quadrature points

5. End node loop.

6. Solve the linear system for the fictitious nodal values ûi.

To consistent with the performance test for the MLPG algorithm, we choose f = −1

in Eq. (6.53) and the following boundary conditions on a square domain of unit

length:

u(x, 1) = u(1, y) = 0 (6.62)

∂u

∂x
|(0,y) =

∂u

∂y
|(x,1) = 0 (6.63)

The exact solution to this boundary value problem is given by Eq. (6.32) and the

surface plot for its various partial derivatives are shown in Fig. 52. The different

integrals appearing in Eqs. (6.60) and (6.61) are evaluated numerically using the

Gauss quadrature method. Uniformly distributed nodal points with different inter

nodal distances are considered to study the convergence and accuracy of the method.
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Fig. 54. Flow-chart for the modified MLPG algorithm.
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Beside this, the number of grid points also plays an important role in the convergence

of the modified MLPG algorithm. Ideally, one would suspect that keeping the number

of grid points constant and increasing the number of nodal points should increase the

approximation accuracy. However, in this case we encountered a singular stiffness

matrix if we increase the number of nodal points arbitrarily while keeping the number

of grid points to be constant. After experimenting with different grid sizes, it was

found that if we choose the number of grid points to be half the number of total

nodal points then we never encountered a singularity in the stiffness matrix. For this

particular case, this is also the minimum number of grid points required to find the

local approximations using quadratic basis functions. Like in the previous section,

the computed solution is tested on total 2500 uniformly distributed points inside unit

square. Fig. 55 shows the plot of relative error e, given by Eq. (6.34), with respect

to distance between nodal points (h) for quadratic basis functions. As expected,

the relative error decreases with decrease in nodal point distance h. As compared

to Fig. 53, the approximations error are comparable to the ones obtained with the

conventional MLPG algorithm.

Finally, we mention that although the issue of independent local approximation

can be solved very easily using the GLO-MAP algorithm but the modified MLPG

still suffers from other disadvantages of the MLPG algorithm, not to mention the

computational cost associated with computing local approximations. To deal with

other issues associated with the MLPG method we propose another algorithm which

is inspired by the PUFEM algorithm as discussed in Ref. [85]. The following algorithm

addresses all of the disadvantages mentioned above.
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D. Partition of Unity Finite Element Method

In the previous sections, we discussed the MLPG and the modified MLPG algorithms

to solve partial differential equations. In both the methods, the local shape functions

are constructed with the help of methods from data fitting and further, these shape

functions are used in a Galerkin discretization process to set up a linear system of

equations. Finally, these systems of equations need to be solved efficiently. Beside

solving the final system of linear equations, one also need to solve a new system of

linear algebraic equations to evaluate the shape function value at any point which

not only increases the computational cost but also restricts the accuracy that can be

achieved. In this section, we directly use the Galerkin discretization process to find

the local shape function instead of using some data fitting process followed by the

Galerkin discretization process.

The partition of unity viewpoint for the meshless FEM has been developed by

Babuška and Melenk [85]. The partition of unity is a mathematical paradigm in which

a domain Ω is covered by overlapping sub-domains Ωs each of which is associated with

a function fs which is non zero over Ωs and has the property that

∑
s

fs(x) = 1 (6.64)

We mention that the partition of unity condition, given by Eq. (6.64), is identical

to the zeroth order consistency condition for the functions fs(x), i.e. function fs(.)

can reproduce constant function exactly. For example, if the functions values and the

derivatives are given at the nodal points xi then one can choose the function

û(x) =
∑

i

fi(x)Ti(x) (6.65)

where Ti(.) are the Taylor polynomial of function u(x) centered about the nodal point
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xi and thus involve value of the function and its derivatives evelauated at the nodal

point xi. According to Eq. (6.65), there are two ways to improve the performance

of the approximation û(.): One is to improve the order of the consistency of the

shape functions fi(.); the other is directly to improve the consistency orders of the

polynomial Ti(.). The first one is difficult to achieve due to the partition of unity

constraint given by Eq. (6.64). Therefore, generally Shepard’ s function (f(x) =

fi(.)P
i

fi(.)
) is used as the zeroth order shape function and the polynomial functions for

the local approximation are chosen as:

Ti(x) =
m∑

j=1

φij(x)aij (6.66)

where aij are the Fourier coefficients corresponding to various polynomial basis func-

tions denoted by φij(.). Now, the approximated function for the method of partition

of unity can be written as:

û(x) =
N∑

i=1

m∑
j=1

fi(x)φij(x)aij (6.67)

Now, if Shepard’s function is used as the shape function as suggested in Ref. [85]

then the consistency in the above equation depends on the order of polynomial basis

functions φ(.). Further, note that the Shepard’s function provides the partition of

unity and hence the compact support for the local approximation. The coefficients

aij are the unknowns and can be found directly by using the Galerkin discretization

process instead of using a data fitting algorithm. Therefore, one needs at least m

test functions per node to obtain a sufficient number of equations to determine the

unknowns Fourier coefficients.

To illustrate the whole procedure, let us consider a general linear PDE given by

Eq. (6.36) for which a generalized local weak form over a local sub-domain Ωs ⊂ Ω
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can be written as:

∫

Ωs

[Lû− f ]vsdΩ + α

∫

Γsu

[û− ū]vsdΓ + β

∫

Γsq

[q − q̄]vsdΓ = 0 (6.68)

where, vs represents the test function for sub-domain Ωs and û is the approximated

solution for Eq. (6.36) which is valid over sub-domain Ωs. Further, substituting for

û from Eq. (6.67) in Eq. (6.68), we get:

∫

Ωs

[L
N∑

s=1

m∑
j=1

fs(x)φsj(x)asj − f ]vsdΩ + α

∫

Γsu

[
N∑

s=1

m∑
j=1

fs(x)φsj(x)asj − ū]vsdΓ

+ β

∫

Γsq

[q − q̄]vsdΓ = 0 (6.69)

To find unknown Fourier coefficients asj, we need at least m test functions per nodal

point. Now, choosing test functions to be same as the trial functions {fsφsi}m
i=1, we

get following set of algebraic equations for Fourier coefficients asi:

Ka = F (6.70)

where, a is a vector consisting of mN Fourier coefficients. Further, stiffness matrix

K and forcing vector F are given as:

Kij =

∫

Ωs

Lfi(x)Φi(x)fjΦj(x)dΩ + α

∫

Γsu

fi(x)Φi(x)fjΦj(x)dΓ

+β

∫

Γsq

∂fi(x)Φi(x)

∂n
fj(x)ΦjdΓ (6.71)

Fj =

∫

Ωs

ffjΦj(x)dΩ + α

∫

Γsu

ūfjΦj(x)dΓ + β

∫

Γsq

q̄fjΦj(x)dΓ (6.72)

where, Φ = {φs}1=iN is a vector consisting of basis functions for each sub-domain

Ωs. It should be noticed that in this case the dimension of the stiffness matrix K is

Nm×Nm which is m times the dimension of the stiffness matrix in case of the MLPG



231

algorithm. However, in case of the MLPG algorithm one needs to solve a new system

of linear equations to find m Fourier coefficients for each local approximation. Also,

in case of the MLPG algorithm, the computation of the solution and its derivative at

a point other than nodal point also involves the solution of a system of linear algebraic

equations whereas in case of the PUFEM approach there is no extra computational

burden associated with these calculations once one has solved Eq (6.70) for Fourier

coefficients.

We mention that the GLO-MAP weight functions are extremely attractive in the

PUFEM approach as they satisfy the partition of unity condition and have a compact

support as required here. Apparently the existence of these simple polynomial weight

functions has not heretofore been explored in the PUFEM literature. The main

advantage of using the GLO-MAP weight functions is that they are polynomial in

nature and further if one uses the polynomial functions orthogonal to the GLO-MAP

shape/weight function then many numerical integrals in Eqs. (6.71) and (6.72) can

be evaluated accurately and easily. Besides this, they also provide an automated path

to generate all of the higher order weight functions compatible with the partition of

unity constraint. Furthermore, they have been fully extended to n-dimensions, so this

also opens up a path to generalization of PUFEM methods to solve high dimensioned

PDEs, such as the Fokker-Planck equation [90].

1. Poisson Equation

To illustrate the PUFEM ideas, we again consider the Poisson’s equation in 2-D space:

∇2u = f in Ω (6.73)

u = ū on Γu (6.74)

u,n = q̄ on Γuq (6.75)
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where ∇(.) is the Laplace operator and n is the direction normal to the boundary of

the domain. As discussed earlier, after some algebraic manipulations and making use

of the divergence theorem, we get the following weak form equation from Eq. (6.73):

∫

∂Ωs

û,inivsdΓ−
∫

Ωs

(û,ivx,i + fvs)dΩ− α

∫

Γsu

(û− ū)vsdΓ = 0 (6.76)

where, ∂Ωs is the boundary of Ωs, û is the trial function, approximated by the GLO-

MAP process and vs is the test function with support equal to the local sub-domain

Ωs. Further, if we deliberately divide the boundary term ∂Ωs in three parts Γsu, Γsq

and ΓsI . where, Γsu and Γsq are the parts of global boundary on which Dirichlet and

Neumann boundary conditions are defined and ΓsI is the part of ∂Ωs which do not

intersect global boundary Γ. Now, if we deliberately select a test function vs such that

it vanishes over ΓsI then the first term of Eq. (6.76) can be simplified as discussed

previously in this Chapter. We mention that this can be easily accomplished by

using the GLO-MAP weight function of Table XI as the test function. Further, the

substitution of the Eq. (6.67) in Eq. (6.76) leads to the following system of linear

equations:

Ka = f (6.77)

where,

Kij =

∫

Ωs

((fjφ
T ),kvi,k)dΩ + α

∫

Γsu

(fjφ
T − (fjφ

T ),kn,k)vidΓ

−
∫

Ls

(fjφ
T ),kvidΓ (6.78)

fi =

∫

Γsq

q̄vidΓ + α

∫

Γsu

ūvidΓ−
∫

Ωs

fvidΩ (6.79)

where vi = fiφ is the test function associated with ith node. Note that, if one

uses the GLO-MAP weight functions as the partition of unity functions fi and the

corresponding set of orthogonal polynomials as basis functions φi then all integral
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terms in Eqs. (6.78) and (6.79) are polynomial in nature which can be evaluated

analytically without further approximation. The implementation of the PUFEM

method can be carried out according to the following routine

1. Choose a finite number of nodes to discretize the global domain Ω and global

boundary Γ.

2. Determine the local sub-domain Ωx and its corresponding local boundary ∂Ωx

for each node.

3. Assign partition of unity weight function wi(x,xi) and basis functions φi with

each node point xi

4. Loop over all nodes located inside the global domain and at the global boundary

Γ

(a) Determine Gaussian quadrature points xQ in domain of integration Ωx and

its boundary ∂Ωx.

(b) Loop over quadrature points xQ in the sub-domain Ωx and on the local

boundary ∂Ωx

i. Determine nodal points xk such that wi(xi,xk) > 0

ii. Evaluate numerical integrals in Eqs. (6.78) and (6.79).

iii. Assemble contributions to the linear system for all nodes in K and f .

(c) End loop over quadrature points

5. End node loop.

6. Solve the linear system for Fourier coefficients a.
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To show the effectiveness of the method discussed in this section, we assume f = −1

in Eq. (6.73) and the following boundary conditions on a square domain of unit

length:

u(x, 0) = u(0, y) = 0 (6.80)

∂u

∂x
|(1,y) =

∂u

∂y
|(x,L) = 0 (6.81)

The exact solution to this boundary value problem is given by Eq. (6.32) and the

plots of the true solution are shown in Fig. 52. The local approximations Ti are

approximated by using the zeroth order (m = 0) and the first order (m = 1) weight

functions listed in Table XI. Further, to study the approximation error convergence

with the order of basis functions we use linear, quadratic and cubic polynomials,

orthogonal to the zeroth and the first order weight functions, as basis functions.

The plot of these orthogonal polynomials are shown in Figs. 56 and 57. We also

consider uniformly distributed points with different inter nodal distance h to study

the convergence and accuracy of the method. In all the cases the computed solution

is tested on total 2500 uniformly distributed points inside unit square.

Figs. 58 and 59 show surface plots of the computed solution and its various

partial derivatives using zeroth and first order weight functions, respectively. From

these figures, it is clear that both zeroth and first order weight functions are able to

approximate the solution accurately. However, as expected in case of the zeroth order

weight function, the various partial derivative are discontinuous along the boundary

of a particular sub-domain Ωs (see Fig. 60) while the first order weight function merge

different local approximations to guarantee the continuity of solution and its various

first derivatives. Fig. 61 shows the plot of relative error (e) with respect to nodal

distance h. As expected, the relative error decreases with decrease in nodal point
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Fig. 56. Two-dimensional polynomial basis functions orthogonal to zeroth order weight

function.)
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Fig. 57. Two-dimensional polynomial basis functions orthogonal to first order weight

function.)
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Fig. 58. Computed solution to the Poisson’s equation using the zeroth order weight

function.
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Fig. 59. Computed solution to the Poisson’s equation using the first order weight func-

tion.
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distance h and increase in the order of basis functions. Further, comparing results of

Fig. 61 with those of Figs. 53 and 53 reveals that in case of the PUFEM algorithm,

we achieve even better convergence (one order of magnitude). This is also due the fact

that even though the inter nodal distance h is same for all three algorithms but the

local approximations in the case of the MLPG and the modified MLPG algorithms

are computed using nodal points in much larger domain to guarantee well conditioned

linear system of equation for each local approximation.

E. Concluding Remarks

In this chapter, three different meshless algorithms are discussed to solve PDEs in

an efficient manner. The successful implementation of all three meshless methods

depends upon following three main issues:

1. The implementation of the Dirichlet and Neumann boundary condition.

2. The approximation capability of the basis functions used for local approxima-

tions.

3. The conditioning of the particular stiffness matrix created by the Galerkin dis-

cretization process.

All three algorithm impose essential boundary conditions using penalty terms. Also,

all three algorithms allows the inclusion of a priori knowledge about the solution of the

PDE in hand by selecting appropriate basis functions for each local approximation.

However, in case of the MLPG algorithm one can not increase the order of the basis

functions in one particular local region to decrease the approximation errors to a

desirable tolerance. To take care of this problem, the conventional MLPG algorithm

is modified by using the GLO-MAP averaging process. However, for this modified
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algorithm, it was found that the condition number of the stiffness matrix is an issue for

some particular configuration of nodal points. To deal with the problems associated

with the MLPG and the modified MLPG algorithm, alternative PUFEM algorithms

are discussed. The main problem in the implementation of the PUFEM algorithm

lies in the selection of the appropriate partition of unity functions. The use of the

GLO-MAP weight function is proposed to automatically select the partition of unity

functions. The performance of all three algorithms is studied by considering the

classical Poisson’s equation. Numerical studies show that the new PUFEM algorithm

performs better than both the MLPG and the modified MLPG algorithms. Finally,

we mention that all three algorithms can, in principle, be extended to handle high

dimensioned partial differential equations. All three approaches will be affected to a

yet-to-be established degree by the “curse of dimensionality,” when high-dimensioned

problems are addressed. A more detailed study is required to generalize the algorithms

and study their relative merits for the solution of the high dimensioned PDEs.
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CHAPTER VII

CONTROL DISTRIBUTION FOR OVER ACTUATED SYSTEMS

A. Introduction

In this chapter, we consider the control distribution problem for highly over-actuated

systems which arises with the development of embedded actuation systems. Control

distribution is the term used for the control of over-actuated systems. In case of over

actuated systems, there is redundancy the total number of actuators to achieve desired

total control effort governing equations of motion of the system. For example, in the

F -16 aircraft thrust vectoring is used along with conventional control surfaces (aileron,

rudder and elevator) to produce six net control force and moment components in

accordance with the six degree of freedom equations of motion. Generally, there are

several ways to achieve the desired total control effort and control distribution is the

process of distributing the total control effort among individual actuators taking into

account constraints on individual actuator response and response rate.

In the last one decade there are significant advances in the fields of Micro Elec-

tro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS) and

nano bio systems. It is anticipated that advancements in these technologies together

will lead to the development of adaptive, intelligent and shape controllable struc-

tures for future aircraft and space systems. The design of such advanced system

involves control of the shape of the structures with highly redundant micro and nano

level manipulations (actuation). Actuators embedded in conventional structural ma-

terials at discrete or distributed locations can be used to achieve these objectives

by changing (“morphing”) surface shape. Currently existing smart structure actu-

ators are Shape Memory Alloys (SMAs), piezoelectric and electrostrictive ceramics,
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electro- and magneto-rheological fluids, Synthetic Jet Actuators (SJAs) and active

elastomers. Current research activities in nano technologies are aimed at engineer-

ing these functionalities into materials at molecular and atomic scales. Such systems

can have quite a large number of actuators (∼ 106) which collectively produce the

required control effort and lead to controller design problem in which the number

of control components may exceed the degrees of freedom of the system by several

order of magnitude. There is no doubt that with such massive redundancy in control

variables, one can achieve precise and fault-tolerant control. However, the main chal-

lenge lies in developing control approaches that scale efficiently with a large number

of control variables. Among the many practical challenges associated with the design

of redundant control variables are:

1. Actuator Models: The issue at hand is to derive comprehensive mathematical

models that capture the input output behavior of these actuator so that one

can derive automatic control laws that can command desired shape and behav-

ior changes. This mapping should also generate an envelope that bounds the

maximum reachable control inputs.

2. Dimensionality: Number of actuators vs Degree of Freedom (DoF)

3. Numerical Conditioning: Solving for large number of control variables (∼ 106)

using conventional methods generally lead to ill-conditioned numerical problem.

4. Computational Cost: The controller design must be compatible with near-real-

time computing, as ultimately required.

5. Sensing and communication requirements.

In Chapters II and III, non parametric, multi-resolution, adaptive input-output mod-

eling approaches are discussed to capture macro static and dynamic models directly
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from experiments which can be used, in principle, for these embedded systems. In

Ref. [47], we used the RBF based non-parametric mathematical model to learn the

mapping between the SJA parameters (synthetic jet frequency, amplitude, direction,

etc. for each SJA) and the resulting aerodynamic lift, drag, and moment. In this

chapter, our main interest is to present a general control distribution technique that

can be applied for very large scale dynamical systems. This chapter is being written

with three main objectives. The first and the most important objective is to present

a recursive control distribution approach using adaptive distribution functions to ad-

dress the issue of dimensionality and computational efficiency. The second objective

of this chapter is to establish insight on the implementation of the recursive algo-

rithm and learning different parameters of the distribution functions. The third and

final objective of this chapter is to compare the newly developed algorithm with some

existing algorithms in terms of computational efficiency and distribution accuracy.

The structure of chapter is as follows: first a problem statement for the control

distribution problem is introduced followed by a brief review of some existing control

distribution algorithms. Then, a novel recursive control distribution algorithm is

introduced and finally, the new algorithm is validated and compared by simulating

various test cases.

B. Problem Statement and Background

Let us consider a general dynamical system governed by following differential and

algebraic equations:

ẋ = f(x, t) + g(x)u (7.1)

y = h(x,u) (7.2)
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where, x ∈ Rn is the dynamical system state vector, u ∈ Rp is a vector of actuator

inputs and y ∈ Rm is a vector of system outputs measured by various sensors on

board. The control of dynamical system given by Eqs. (7.1) and (7.2) is defined

as follows: given a model of system dynamics and the desired state trajectory xd,

compute the appropriate control vector that will drive the system to the desired state

trajectory. Depending upon the relative size of system state, actuator input vectors,

and the controllability of the system, there are three possible outcomes to the control

problem:

1. Infinite number of solutions (p > n): pick the best one.

2. One unique solution (p = n).

3. No solution (p < n): find best approximate solution

In this chapter, we are interested in the first case when p > n i.e. over-actuated

systems. Conventional linear and nonlinear control methodologies are applicable for

only the second case when p = n and control problem is much more complicated for

over-actuated systems. To make use of recent advances in the conventional control

literature, generally the control problem for the over actuated system is divided into

two parts:

1. First, conventional control laws are designed specifying how much total physical

control (e.g. resultant forces and moments, also known more generally as virtual

control variable) effort is required. Equations of motions dictated by Newton’s

second law are used to derive these control laws and the total number of virtual

control variables is generally equal to the rigid body degree of freedoms.

2. In the second step, the total control effort is distributed among individual ac-

tuators taking into account various actuator constraints. Algebraic or dynamic
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Fig. 62. Control of highly over-actuated system.

models describing the relationship between actuator input and output are used

to find the set of actuator inputs that produce the resultant net virtual control.

To illustrate the procedure, let us consider the example of the control of an advanced

aircraft with thousands of actuators embedded in the aircraft wing. It is well known

fact that aircraft dynamics represents a 6 DoF rigid body and theoretically, one

requires 3 forces and 3 moments along yaw, pitch, roll axes to control the aircraft.

In the first step, these three forces and moments constitute the 6 dimensional virtual

control vector v which can be solved by using conventional control methodologies

and equation of motion governed by Newton’s second law of motion. In the second

step, the desired virtual control vector v is allocated among individual actuators to

find actual control variables like voltage input to each actuator; this assume that

the virtual control vector is physically possible, given the constraints on individual
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actuator inputs. This two step process for control of over-actuated system is shown

in Fig. 62. According to this two step control methodology the control distribution

problem can be defined as follows:

Control Distribution Problem. Given the desired profile for virtual/physical con-

trol vector v(t) ∈ Rq find true input vector u(t) ∈ Rp such that following is true:

g(u(t)) = v(t) (7.3)

u ≤ u ≤ ū (7.4)

u̇ ≤ u̇ ≤ ¯̇u (7.5)

where g(u(t)) represents the transformation from higher dimension space Rp to

lower dimension space Rq. Further, Eqs. (7.4) and (7.5) describes the position and

rate constraint on actuator response. It should be mentioned that for successful design

of the control distribution algorithm, the accurate knowledge of g(.) is very essential.

The input-output algorithms presented in Chapters II and III can be used to learn

the input-output mapping for various kind of actuators. In Ref. [47], we use the DCG

algorithm to learn the input-output mapping of synthetic jet actuator directly from

experiments. Generally, a linear model is desired between virtual control vector v and

true control vector u such that Eq. (7.3) can be replaced by the following equation:

Bu(t) = v(t) (7.6)

where B ∈ Rq×p is a matrix with rank q. In case of the linear control distribution

problem, the solution lies on the intersection of the hyper-surface Bu = v and position

control hyper-box defined by Eqs. (7.4) and (7.5). We mention that Eqs. (7.3) and

(7.6) are written with the assumption that actuator response is instantaneous i.e.

actuator dynamics is negligible which might not be true for many actuators. For



248

example, as discussed in Refs. [91] the actuator dynamics is certainly present in case

of SJAs. However, this assumption is valid to a degree of approximation, if the closed

loop system is designed to be substantially slower than the actuator dynamics.

In Ref [92], numerous advantages of dividing the control problem in two steps

have been discussed in detail. Practically, dividing the control problem in two steps

allows us to exploit individual actuators to their full level without degrading the

closed loop performance of the controller design in the first step. Further, actuator

constraints, saturation and failure can be handled more efficiently. If one actuator

saturates, and fails then another actuator may be used to make up the difference. In

another words, the reconfiguration of different actuators can be performed in the event

of an actuator failure, without redesigning the control law in first step. Another main

advantage is that actuator utilization can be optimized independently for specific

application in mind. For example, thrust vectoring can be used as auxiliary control

to obtain high maneuverability. Similarly, the use of trailing edge SJAs is preferable

at low Angle of Attack (AOA) while the leading edge SJAs are useful in case of flow

separation.

Many algorithms [92,93] have been suggested in the literature to solve the control

distribution problem for over actuated systems. The generalized inverse known as

the pseudo-inverse is frequently used method to compute the solution for control

distribution problem. Generalized inverse solution is obtained by minimizing 2-norm

of the true control vector u subject to constraint given by Eq. (7.6). In the absence

of any constraints on control variable u, the explicit generalized inverse solution is

given by the following equation:

u = BT (BBT )−1v (7.7)
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More computationally robust minimum norm solution can be computed using SVD

algorithms. In a more general approach, the following optimization problem is defined

to solve the control distribution problem:

Minimize : ‖u‖p (7.8)

subject to

Bu = v (7.9)

u ≤ u ≤ ū (7.10)

u̇ ≤ u̇ ≤ ¯̇u (7.11)

where, ‖u‖p is the p norm of vector u defined as follows:

‖u‖p =

(
p∑

i=1

|ui|p
) 1

p

(7.12)

Most commonly used norms are 1 and 2 norm. Although a variety of norm defi-

nitions can be used to solve the control distribution problem, the use of different

norms lead to different numerical methods to solve the problem and the suitability

of a given norm will be dictated by the viability of the algorithm and the physical

characteristics of the resulting control distribution problem. The use of 2-norm leads

to the quadratic optimization problem whereas the use of 1-norm or ∞-norm leads

to the linear programming problem. Generally, active set methods [94, 95], primal

and dual simplex methods [96, 97] and interior point optimization methods [98] are

used to solve linear and quadratic optimization problems. Active set methods solves

an optimization problem by partitioning inequality constraints into two sets: active

and inactive. The inactive constraints are ignored while solving the problem whereas

the active set constitutes the working set for the solution at any given step. Then,
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the problem is solved by moving on the surface defined by the working set. These

methods search for a solution along the edges and faces of the feasible set by solving

a sequence of equality-constrained quadratic programming problems. On other hand,

the conventional simplex method solves the optimization problem by searching from

vertex to vertex on the boundary of the feasible polyhedron, repeatedly increasing the

objective function until either an optimal solution is found, or it is established that

no solution exists. In principle, the time required might be an exponential function

of the number of variables, and this can happen in some contrived cases.

To deal with the problems associated with the simplex method, interior point op-

timization methods are used. Unlike the simplex method, interior point optimization

methods do not search for the solution from vertex to vertex, but search only through

the interior of the feasible region. In brief, active set and interior point methods differ

from the simplex method that the solution in this case need not to be on vertices of

the feasible set. Generally, active set methods are used to solve the quadratic opti-

mization problem while simplex method is mainly used to solve linear programming

problem. Quadratic optimization problems are more difficult to solve than linear

programming problem, because unlike the solution to linear programming problem,

the quadratic problem solution may use all variables of the problem. Therefore, the

2-norm solution tries to distribute the total control effort among all of the control

inputs whereas the 1-norm solution utilizes as few control variables as possible and

may lead to the saturation of many control variables. Finally, we mention that the

percentage of attainable control effort using the optimization problem solution can

be quite small, depending on a number of factors, including the number of control

variables and the definition of the norm used in the optimization problem [99]. Also,

most of these numerical methods can handle an unlimited number of variables and

constraints, subject to the availability of computer time, memory and numerical con-
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ditioning of the particular application. Practical experience tells us, however, that

solving a large scale optimization problem is not desirable for real-time problems.

For very large scale systems, the use of a hierarchical approach, known as daisy

chain [100], is discussed. The method of daisy chain uses the heuristic logic to divide

the p control inputs into P groups {u1,u2, · · · ,uP}. Initially, the control variable in

first (“primary”) group u1 are used i.e. B1u1 = v. If the primary control variables in

u1 satisfies all the constraints of Eqs. (7.4)-(7.6) then the distribution is successful.

Otherwise, the control variables in the secondary group u1 which violate constraints

of Eqs. (7.4) and (7.5) are saturated and control variables in group u2 are used to

provide the rest of the control effort i.e. control effort equal to the difference between

the total control effort v and the control effort produced by control variables in group

u1. This procedure is recursively repeated until desired control effort is produced

or all control variables are used. The main advantage of the daisy chain method is

that primary and secondary actuators can be expected to be used most frequently

and the higher control groups are used only when necessary. On other hand the

main disadvantage of this approach is that this procedure does not take into account

the actuator constraints directly and employs the simple heuristic of saturating the

actuators where they are commanded more control effort than their physical limit.

Generally, saturation of actuators is not desirable for many problems. Further, for

a very large scale system this approach is not desirable as the number of control

variables in each group and number of groups can be quite large for such systems and

make this algorithm computationally inefficient.

In Refs. [93, 101], different approaches to establish hierarchical algorithms are

explored for control allocation in a large scale distributed system. The hybrid algo-

rithm approach is based upon a divide and conquer method and works by breaking

a high-dimensional problem into a number of smaller problems that can either be re-
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duced in size or solved using optimization algorithms discussed earlier in this section.

The optimization algorithms can range from discrete optimal search to continuous

constrained optimization problem. The method discussed in Ref. [101] is tested for

control distribution problem among hundreds of actuators to control the translation

of a sheet of paper over a air-jet table. The optimal algorithm yields low errors but

the time required to compute the solution varies exponentially with the number of

actuators as standard optimization algorithms are used to find the discrete control

variables at various scales. Therefore, even though the hierarchical algorithm dis-

cussed in Refs. [93, 101] is shown to work for reasonably large scale problems, they

are not computationally efficient for very large scale problems where the number of

control variables can be in millions. For example, let us consider a problem of control

distribution among 106 actuators. In this case, even though one divides this highly

redundant actuation problem into 1000 small problems then also each small problem

has 1000 optimization variables to be solved for, which can be computationally very

inefficient. Here, we propose the use of distribution functions to reduce the number

of control variables by a order of magnitude. The main idea is to approximate the

feasible solution set by making use of continuous functions. These functions are de-

fined by a few parameters and spatially distribute the controls by interpolating the

inputs to each discrete actuator. However, if one uses a global set of distribution

functions then the number of distribution functions can be very high to have a rea-

sonable approximation of the feasible set. Therefore, a hierarchical approach is used

to improve the accuracy of the feasible set and as well as to deal with the issue of

high dimensionality.

In this chapter, our main focus is to design an efficient control distribution algo-

rithm to generate commands to a highly redundant system in real-time. To deal with

the issues of high dimensionality, a hierarchical approach is proposed which makes
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use of specially designed distribution functions for control distribution purposes. In

rest of this chapter, the concept of distribution functions and the detailed description

of the proposed hierarchical algorithm are discussed.

C. Control Distribution Functions

In the previous section, a brief introduction to various control distribution algorithms

is given. Theoretically, each algorithm has the ability to handle an unlimited number

of control variables subject to the availability of time, processing power and memory.

However, in case of a very large scale distribution problem, most of these algorithms

fail to compute the solution given practical limitations on processing power, time and

memory. Basically, the main problem is the lack of a tool to reduce the dimensionality

of the problem to the desired order so that the given problem can be solved with

a modest computation burden, we introduce the idea of distribution functions to

approximate the control effort.

Let us consider a general problem of distributing virtual/physical control vector

v(t) ∈ Rq among true input vector u(t) ∈ Rp such that following is true:

Bu(t) = v(t) (7.13)

u ≤ u ≤ ū (7.14)

u̇ ≤ u̇ ≤ ¯̇u (7.15)

where, v(t) denotes the relevant physical forces which depend on actual displacement

and velocity error vectors and u(t) is a vector of actual control inputs. As mentioned

earlier, we neglect the actuator dynamics assuming that actuator dynamics is much

faster than the closed loop dynamics of the system under consideration. Further,

rate constraints given by Eq. (7.15) can be converted into position constraints by
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approximating u̇(t) by first order finite difference approach:

u̇ ≤ u(t)− u(t−)

∆t
≤ ¯̇u (7.16)

u̇∆t + u(t−) ≤ u(t) ≤ ¯̇u∆t + u(t−) (7.17)

where, t− = t − ∆t. As a consequence of this, the control distribution problem can

be considered with constraint on actuator response u(t) only.

ul(t) ≤ u(t) ≤ uu(t) (7.18)

where,

ul(t) = min (u, u̇∆t + u(t1)) (7.19)

uu(t) = max
(
ū, ¯̇u∆t + u(t1)

)
(7.20)

Now, the optimization problem to solve the control distribution problem can be re-

defined as follows:

min
Ω(t)

: ‖u‖p (7.21)

subject to

Bu(t) = v(t) (7.22)

ul(t) ≤ u(t) ≤ uu(t) (7.23)

where, Ω(t) denotes the set of feasible solutions and depends upon the total physi-

cal/virtual control effort v(t). Now, assuming that all actuators are spatially distrib-

uted over some surface and there exists a set of distribution functions φ(x) = {φi(x)}
such that

span(φ(x)) = Ω(t) (7.24)

where, x ∈ RM is a vector of spatial coordinates. We mention that generally M is
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equal to 2 or 3. As a consequence of Eq. (7.24), any feasible solution u(t) can be

approximated as a linear combination of distribution functions φi(x).

u(x, t) =
N∑

i=1

ai(t)φi(x) (7.25)

where a(t) ∈ RN is a vector consist of amplitudes of various distribution functions

φi ∈ RN . Now, the true control vector u can be written as:

u = Φ(x)a (7.26)

where,

Φ =




φ1(x1) φ2(x1) · · · φN(x1)

φ1(x2) φ2(x2) · · · φN(x2)

...
. . .

...

φ1(xp) φ2(xp) · · · φN(xp)




(7.27)

and, xi denotes the spatial coordinates for the ith control variable ui.

Further, substituting for u(t) from Eq. (7.26) in Eqs. (7.21)-(7.23), we get

following optimization problem for the amplitude vector a

min : ‖Φ(x)a‖p (7.28)

subject to

BΦ(x)a = H(x)a = v (7.29)

ul ≤ u ≤ uu (7.30)

It should be noticed that in this case one needs to solve for N -dimensional amplitude

vector a(t) as compared to the p-dimensional true control variable vector u(t) in case

of the optimization problem described by Eqs. (7.21)-(7.23). So the reduction in the
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dimensionality of the problem depends upon the relative values of p and N . A key

question regarding the selection of distribution functions φi(.) is “How irregular is the

feasible solution set Ω(t)?”. A globally valid set of distribution functions should be

sufficient if Ω(t) is well connected set and all feasible solutions are globally smooth.

However, if Ω(t) is a complicated set or in the presence of high frequency local features

in the feasible solution set, a more judicious selection of distribution functions will

be required. While the brute force approach of using infinitely many basis functions

is a theoretical possibility, it is intractable in a practical application because such

an optimizer will have far too many parameters to determine and will not give any

advantage in terms of dimensionality reduction. As discussed in Chapters II-IV, we

consider Radial Basis Functions (RBF) and global/local orthogonal polynomial basis

functions as possible candidates for control distribution functions.

1. Radial Basis Functions

As discussed in Chapter II, RBF are the basis functions whose response decreases

monotonically with the increase in radial distance from their center location and can

be confined to a local region around their center location µ. Among many choices

for the radial basis functions, the Gaussian function is the most widely used because,

among other reasons, the different parameters appearing in its description live in

the space of inputs and have physical and heuristic interpretations that allow good

starting estimates to be locally approximated. The most general Gaussian function

can be written as:

φi(‖x− µi‖,σi,qi) = exp{−1

2
(x− µi)

TR−1(σi,qi)(x− µi)} (7.31)

where, µi ∈ RM represents the center location of the Gaussian basis function φi

whereas R ∈ RM×M is a positive definite symmetric matrix which describes shape



257

and size of a Gaussian basis function. Now, substituting for φi(.) from Eq. (7.31) in

Eq. (7.26), we get:

u(x) =
N∑

i=1

φi(‖x− µi‖,σi,qi)ai (7.32)

Therefore, we need to solve for following parameters to use Gaussian basis functions

as control distribution functions:

1. M parameters for the centers of the Gaussian function i.e. µi.

2. M parameters for the spread (shape) of the Gaussian function i.e. σi.

3. n(n+1)
2

parameters for rotation of the principal axis of the Gaussian function i.e.

qi.

4. Amplitude ai of the Gaussian function φi.

The main problem with the use of the Gaussian functions as control distribution

functions is that, except the amplitude vector, the various other parameters appear

nonlinearly in Eq. (7.32) and necessitate the use of a nonlinear optimization algorithm

to solve for their optimal value. The use of nonlinear optimization algorithm may not

be desirable for many practical reasons. To simplify the problem, one can pre-define

“good choice” of the various parameters except the amplitude vector a whose optimal

value can be found by solving the simpler algebraic optimization problem defined by

Eqs. (7.28)-(7.30). The centers µi for various Gaussian basis functions can either

be distributed uniformly over the input space or they can be selected to make use

of some a-priori information about the grouping of actuators. Further, the spread

parameter vector σi can be chosen proportional to the shortest distance between µi

and the existing centers

σi = κ‖µi − µnearest‖ (7.33)



258

where κ is a user-defined parameter which accounts for the amount of overlap between

different Gaussian functions. The rotation parameter qi can be assumed to zero until

some information is available on the control distribution surface. In the limiting case

when κ → 0 the Gaussian basis function approaches a dirac-delta function and in

this particular case, one would like to choose as many basis functions as the number

of control variables i.e. p = N . As a consequence of this, we get back the original

optimization problem defined by Eqs. (7.28)-(7.30). Experience indicated that one

would like to choose the parameter κ such that two neighboring basis functions overlap

by at least 50%. Finally, one can iterate on the number of basis functions N depending

upon whether a feasible solution exist or not. This provides a good compromise

between “local dominance” and “trend sensing” of the RBF model. Initially, one

can choose small number of distribution functions distributed uniformly in spatial

coordinates xi and if a feasible solution is not found then one can keep on increasing

the number of basis functions until a feasible solution is obtained. The outline of the

control distribution algorithm using RBF function is shown in Fig. 63

2. Global/Local Orthogonal Basis Functions

In Chapter III, we introduced the idea of the Global/Local Orthogonal MAPping

(GLO-MAP) algorithm to approximate irregular surfaces. The same idea can be to

interpolate an irregular control distribution surface u(x, t) with all the global and local

advantages of the GLO-MAP approach to approximation. Introducing a set of grid

points {x̄i}Q
i=1 as approximation vertices having associated with weight function wi

and local approximations ψi(x, x̄i), we can approximate unknown control distribution

surface u(x, t) as follows:

u(x, t) =

Q∑
i=1

wi(x, x̄i)ψi(x, x̄i) (7.34)
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Fig. 63. Flow chart for the control distribution algorithm using RBF distribution func-

tions.
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where, wi(.) represents specially designed GLO-MAP weight function and local ap-

proximation ψi(.) can be written as a linear combination of N polynomial basis

functions φlj :

ψi(x, x̄) =
N∑

j=1

aij(t)φlj(x, x̄i) = φT
l (x, x̄i)ai (7.35)

where, φlj(.) can be chosen as the orthogonal polynomials of the GLO-MAP process.

Now, substitution of Eq. (7.35) in Eq. (7.34) leads to the following equation for the

feasible control distribution surface u(x, t):

u(x, t) = φ(x, x̄i)a(t) (7.36)

where φ(.) is a vector of various distribution functions and a is a vector of corre-

sponding amplitudes:

φ(x, x̄i) =

{
w1(x, x̄1)φl(x, x̄1) · · · wQ(x, x̄Q)φl(x, x̄Q)

}
(7.37)

a(t) =

{
a1(t) · · · aQ(t)

}
(7.38)

Now, making use of Eq. (7.37), the optimization problem to solve for total NQ

amplitude variables associated with various distribution functions can be defined as

follows:

min : ‖Φ(x, x̄i)a‖p (7.39)

subject to

Ha = v (7.40)

ul ≤ Φ(x, x̄i)a ≤ uu (7.41)
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where, H = BΦ(.) and Φ(.) ∈ Rp×NQ is given by the following equation:

Φ =




φ1(x1, x̄) φ2(x1, x̄) · · · φNQ(x1, x̄)

φ1(x2, x̄) φ2(x2, x̄) · · · φNQ(x2, x̄)

...
...

. . .
...

φ1(xp, x̄) φ2(xp, x̄) · · · φNQ(xp, x̄)




(7.42)

Depending upon the norm selected, the above algebraic optimization problem can be

easily solved for the finite dimensioned amplitude vector a and thereby affect the con-

trol distribution. So, the problem of finding p control variables has reduced to finding

the amplitudes of NQ distribution functions. Note that Q = 1 corresponds to the

problem of finding a global distribution surface while as Q increases the distribution

functions becomes more capable of approximating local features of the underlying

distribution surface u(x, t). Ideally, one would like to choose N and Q such that a

substantial dimensionality reduction results (NQ ¿ p). Initially, one can start with

a global distribution surface described by N distribution functions and if feasible so-

lution is not found to the optimization problem described by Eqs. (7.39)-(7.41) then

more local approximations can be introduced by increasing N until a feasible solution

is found. It should be mentioned that the GLO-MAP process provides a zeroth level

hierarchy in the control distribution and allows us to make distribution decisions at

various scales. The outline of the control distribution algorithm using GLO-MAP

process is shown in Fig. 64

Finally, it should be noticed that the success of both the algorithms depends

upon how well the basis functions span the feasible solution set Ω(t) and the perfor-

mance of both the algorithms is dictated by the total number of distribution functions

required to have a reasonable approximation of Ω(t). Although the iterative nature of

both the algorithms seeks a good approximation of the feasible solution set Ω(t) with
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a minimal number of distribution functions, there may remain cases when both the

algorithms fail to provide a feasible solution. We mention that the occasional failure

of distribution function approach can be attributed to the irregularity of the feasible

solution set which is sometime difficult to anticipate in high-dimensioned nonlinear

problems. In the next section, we describe a hierarchical control distribution approach

that makes use of these algorithms to deal with this occasional failure problem. The

hierarchical approach not only allows a multi-resolution approximation of the feasi-

ble solution set Ω(t) but it also provides a mechanism for parallelizing the control

distribution algorithms.

D. Hierarchical Control Distribution Algorithm

In the previous section, we introduced the concept of distribution functions to approx-

imate the feasible solution set Ω(t) and it is shown that how the use of distribution

functions improves the performance of the control distribution algorithm while keep-

ing in check the “curse of dimensionality”. However, the improvement in computa-

tional speed is generally accompanied by the degradation of the optimal solution due

to errors in approximating the feasible solution set. In many cases, this degradation

may not matter, especially until we get a feasible, sub-optimal solution. But, in some

cases these approximation errors can lead to a situation when distribution functions

fail to approximate the feasible solution set at all. This kind of failure may arise due

to the irregularity of the feasible solution set Ω(t). As discussed in Chapters III and

IV, decreasing the domain of validity of different distribution functions may lead to

the improvement in the approximation error and consequently, increase the region

of validity of the distribution function approach. In this section, we discuss hierar-

chical control distribution algorithm to improve the performance of the distribution
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function approximation of the feasible solution set Ω(t) with the goal of computing

the feasible solution, if it exists, with minimal computation. We mention that in the

worst case scenario the proposed algorithm requires as much resources as any other

conventional control distribution algorithm does.

The proposed hierarchical method decomposes the large scale control distribution

problem in to many regional control distribution problems to compromise the need for

real-time computation against optimality. We mention that the proposed algorithm

is inspired by the work of Fromherz et al. [101], Luntz et al. [93] and Jackson et

al. [102]. The main steps of the algorithms can be summarized as follows:

1. Group spatially distributed actuators to generate finite number (say, G) of small

scale (regional) subsets to take advantage of regionally correlated control input

distributions.

2. Combine the effects of the actuators in a particular group to form an “aggre-

gated” actuator which represents all the actuators of that group. The discrete

spatial coordinates associated with “aggregated” actuator can be taken as the

mean position (centroid) of various actuators it represents.

3. Distribute total control effort among G “aggregated” actuators. In another

words, assign responsibility to each “aggregated” actuator to produce total

control effort.

4. Solve the control distribution problem recursively with the help of adaptive

distribution functions in each subset.

In the previous section, we have already developed the procedure for step 4. However,

the main issues with this approach is the implementation of steps 1 and 2. Basically,

the problem is how to aggregate different actuators and then combine them to form
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an “aggregated” actuator. Like in Refs. [93,101,102], a simple hierarchy scheme will

involve the grouping of actuators on the basis of their spatial coordinates. If control

effectiveness for each actuator is same or is a function of spatial coordinates then

according to this approach, the actuators are grouped on the basis of their control

effectiveness. For example, if consider the example of SJA actuators distributed

spatially over the aircraft wing then their control effectiveness is the function of their

frequency and the spatial position of the actuators [91]. Further, this hierarchical

approach facilitates the use of distribution functions inside each subset to solve the

control distribution problem recursively.

Once the actuators are grouped together then the next step is to come up with

an “aggregated” effective actuator which conveys some averaged information about

the whole group. To form an “aggregated” actuator by combining various actuators

in a group, we need following information about the collective response of the whole

group:

1. First, the “aggregated” actuator needs to represent the response of all the ac-

tuators in a particular group in some average sense.

2. Secondly, the constraints on the “aggregated” actuator should contain the in-

formation about the constraints on each individual actuator.

3. Finally, the weighting factors for each “aggregated” actuator’s contribution to

the total physical control effort is required. These weights provide an oppor-

tunity to account heuristically for the capability of each group during control

distribution among each group (e.g., the type and number of actuators in each

group).

The first two sets of information are easy to obtain. Usually, the response of the

whole group is assumed to be the sum of the response of each individual actuators.
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Let ui = {u1, u2, · · · , ul} is a vector of the control responses of all the actuator in the

ith group then the combined/aggregated contribution of the ith group can be written

as:

vi = Biui (7.43)

where Bi is a aggregated control distribution (“influence”) matrix for ith actuator

group and consists of rows of the original B matrix.

Bi =

[
BT

1 BT
2 · · · BT

l

]
(7.44)

where Bi is the ith row of control distribution matrix B. Further, the constraints

on the aggregated group response can be found by taking the average value of the

constraints on each individual actuators. Let ūi and ui are vectors of upper and lower

limit on actuators in ith group. Now, the constraints on aggregated response can be

given as follows:

vi
l ≤ vi ≤ vi

u (7.45)

where,

vi
l = min

(
Biui,Biūi

)
(7.46)

vi
u = max

(
Biui,Biūi

)
(7.47)

Finally, third and the most important part is to find the appropriate weighting func-

tion to give proper weighage to the aggregated information of each group so that

the required physical control effort can be divided among each group. Generally,

weighting function is chosen as the inverse of number of actuators in that particular

group or depending upon the measure of controllability of the aggregated group. We

choose 2-norm of control distribution matrix as a measure of controllability for the

aggregated group.
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Further, let vG is a vector of aggregated responses of each group i.e. vG =

{v1,v2, · · · ,vG}. Now, the aggregated response vector vG can be solved by posing

following optimization problem:

min : ‖WvG‖p (7.48)

subject to

vG ≤ vG ≤ v̄G (7.49)

v =
G∑

i=1

vi (7.50)

where,

Wij = ‖Bi‖δij (7.51)

vG =

{
v1

l v2
l · · · vG

l

}
(7.52)

v̄G =

{
v1

u v2
u · · · vG

u

}
(7.53)

It should be noticed that a large weighting factor Wii causes the ith group to have a

greater role in meeting the total virtual force vector v. Further, depending upon the

definition of norm in Eq. (7.48), various numerical methods as discussed in the last

section can be used to find aggregated group contribution vector vG.

Once the total control effort is distributed among various groups then the follow-

ing optimization problem is solved using the distribution function method as discussed

in the previous section.

min : ‖ui‖p (7.54)
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subject to

ui ≤ ui ≤ ūi (7.55)

Biui = vi (7.56)

Now, we present a generic algorithm for hierarchical control allocation. The first ma-

jor step of this algorithm is the task of grouping of different actuators. The grouping

of actuators may be pre-determined or done in real time while solving the control

distribution problem. We use a hierarchical approach for the grouping of different

actuators depending upon their spatial coordinates. According to the hierarchical

grouping algorithm, first, there is only one group consisting of all the actuators and

the control distribution problem is solved by using the RBF or the global/local orthog-

onal polynomial distribution functions as discussed in section C. If a feasible solution

is not found for the control distribution problem, then the actuators are divided into

two groups. First, the required control effort is distributed among these two groups

by solving the optimization problem of Eqs. (7.48)-(7.50). If a feasible solution to

this optimization problem does not exist, then each group is further divided into two

sub-groups else within each group another optimization problem of Eqs. (7.54)-(7.56)

is solved to compute the response of each actuator. Further, if we fail to compute a

feasible solution in a particular group then that particular group is again divided into

two sub-groups. Also, if in a particular group the number of distribution functions N

exceeds the number of actuators contained in that group then the control distribution

problem for that particular group is solved for control variables instead of amplitudes

of distribution functions. This whole process is repeated recursively until a feasible

solution is found or all control variables are solved for simultaneously. The flowchart

for this hierarchical control distribution algorithm is shown in Fig. 65.
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Fig. 65. Flow chart for the hierarchical control distribution algorithm.
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We mention that for real-time implementation, one might need to compromise

between computational time and allocation errors. Also, based upon some previous

experience or knowledge of the system, the number of groups can be pre-determined

and “frozen” to save some computational time. The main advantage of this hierar-

chical approach is that the control distribution in each group is decoupled from the

distribution problem in other groups and thus this algorithm can be highly paral-

lelized to reduce the elapsed computation time required. Beside this, there are many

other advantages of this kind of hierarchical approach. First, the distributed nature

of the actuators can be fully exploited without having the dimensionality of the op-

timization problem approach infinity. Secondly, in case of actuator failures in one

particular group, the redistribution can be adaptively performed without affecting

the distribution in all groups. Finally, actuator utilization can be optimized inde-

pendently for specific applications and, in principle, changed adaptively, on-the-fly

e.g.: Leading edge actuation may be preferable at high Angle Of Attack (AOA) while

trailing edge actuation may be best for low AOA; with sufficient intelligence or rule-

based logic, adaptive algorithms may be able to automatically shift emphasis of the

control allocation in real time.

E. Numerical Results

The proposed control distribution algorithm is tested on a simulated control allocation

problem for a morphing wing embedded with millions of hypothetical actuators. In

this section, some results from these studies are presented.



271

1. Control Allocation For a Morphing Wing

There is a significant thrust in aerospace industry to develop advanced technologies

that would enable adaptive, intelligent, shape controllable micro and macro struc-

tures, for advanced aircraft and space systems. These designs involve precise control

of the shape of the structures with micro and macro level manipulations (actuation).

In pursuit of these objectives, a novel morphing wing is being designed and built

that can achieve an infinity of different configurations upon command. The morph-

ing wing represents an alternative technology that adaptively shapes the flow and

pressure fields over the wing by changing the curvature of the wing. This morph-

ing technology could lead to replacement of hinged control surfaces thereby achieving

hingeless control. This morphing of the wing can be achieved by embedding actuators

at micro scales of an aerodynamic structure. The desired force and moment profile

are achieved by generating moments using these actuators to deform the geometry

and thereby creating a desired flow and pressure distribution over the surface.

As part of initial effort, a first prototype of the morphing wing is built and

installed in the 3′×4′ wind tunnel of the Texas A&M Aerospace Engineering Depart-

ment (Fig. 66). The wing is built by using ABS plastic structure material supported

by telescopic tubes and the skin over the wing is made of silicone rubber elastomer

mixed with a small quantity of Carbon Nano-Tubes (CNT) to tailor the structure for

the desired stiffness in bending and torsion. While micro sensors are being developed,

we test the idea of morphing by twisting the wing at three cross-sections using elec-

tric motors. Various experiments were performed to get an idea of torque required to

morph the wing. Fig. 67 shows the plot of total three moments required to twist the

wing in one of these experiments. The future will bring some significant embedded

actuation capability, our goal here is to establish methods for distributing control for
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Fig. 66. Morphing wing experimental set-up.

such high-dimensioned problems.

To drive our simulation study, we assume that morphing wing has embedded

22, 500 micro torsional actuators to impose these three moments. We mention that

this is a hypothetical situation but provides us a good simulation platform to test the

control distribution algorithm developed in this chapter.

For simulation purposes, the control effectiveness of each actuator is defined by

scaling an electric motor model (currently used to twist morphing wing profile) by a

factor of 10−3.

Bi =

[
−3.7239 19.8465 15.6663

]
10−3 (7.57)

Further, each actuator is constrained to produce at max moment of 0.1 N -m in either
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Fig. 68. Control distribution results by dividing the actuators in 1 group.

direction.

To allocate required control moments among 22, 500 embedded actuators the

hierarchical algorithm (shown in Fig. 65) is used. First, the whole control effort is

assigned to all the actuators and response of each actuators in that regional group

is approximated by orthogonal polynomials of the GLO-MAP algorithm as discussed

in section C. Figs. 68(a) and 68(b) show the plots of a group allocation error and

net control distribution error, respectively. From, these plots it is clear that with

just one group of actuators control distribution function approach fails to compute

the feasible solution. According to the hierarchical control distribution algorithm, we

divide all actuators in 4 groups. Fig. 69(a) shows the plot of allocation error among

the four groups. From, this plot it is clear that the optimization problem of Eqs.

(7.48)-(7.50) is solved successfully. Now, within each group, we use the orthogonal

polynomial functions to distribute (interpolate) the control error among the actuators

contained in that particular group. Fig. 69(b) shows the plot of control distribution

error within each group. From this figure, it is clear that although results have
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Fig. 71. Control distribution results by dividing the actuators in 25 groups.
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improved from previous step, there are some instances when distribution function

approach fails to provide a solution. Similarly, Figs. 70(a) and 70(b) show the plot

of control distribution among 8 different groups of actuators and control distribution

error within each group. Once again, there is an improvement from previous step but

still there are some instances when control distribution algorithm fails to provide a

feasible solution. We repeat this process of dividing the actuators in groups recursively

and finally settle down to a total of 25 groups of actuators. Fig. 71(a) shows the plot of

control distribution error among 25 groups of actuators whereas Fig. 71(b) shows the

plot of control distribution error within each group. From these plots, we can conclude

that the hierarchical approach performed very well in allocating the total control effort

among all 22, 500 actuators. We mention that 25 groups of actuators are used at only

those time instances when we are not able to find the solution using less number of

groups. We also mention that the failure of the control distribution algorithm within

each group at some instant with less number of actuator groups can be attributed

to the irregular nature of the feasible solution set. To make this point clear, we
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solved the control distribution problem without using distribution functions in all 25

groups. Figs. 72 and 73 show the plot of control distribution surface for group 1 and

25 at a particular time instant with and without making use of distribution functions,

respectively. Note that the surfaces in Fig. 73 are highly irregular whereas surface in

Fig. 72 are very smooth. From these figures, it is clear that the solution obtained by

using distribution functions is not necessarily the optimal. However, it is the optimal

smooth solution using those particular distribution functions. Further, we mention

that we used only 6 distribution functions in all the groups and at all the levels. That

means, within each group we are solving for only 6 amplitudes of these distribution

functions. However, we need to solve for 22, 500/25 = 900 control variables if we

do not use distribution functions to approximate the feasible solutions set. Fig. 74

shows the plot of processor time required to solve the control distribution problem

with and without using distribution functions. In both methods, we use 25 groups

of actuators to divide the problem into many small scale problems. As expected, the

processor time decreases significantly (2 order of magnitude) if distribution functions

are used to approximate the feasible solutions set. Also, further decrease in processor

time is possible by parallelized implementation of the hierarchical approach. It is

important that this example is a basis for optimism, but obviously does not prove a

general trend.

Finally, we mention that all numerical simulations were performed using MAT-

LAB [57] environment on 1.5GHz Sony Vaio Notebook equipped with 768MB of

RAM and window XP operating system. Also, we would like to mention that all

optimization problems are solved using the SeDuMi [103, 104] optimization package

interfaced with by YALMIP [105]. SeDuMi stands for Self Dual Minimization and

has been proved to solve large scale optimization problems in an efficient manner and

YALMIP is a MATLAB toolbox for rapid prototyping of optimization problems.
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F. Concluding Remarks

A general hierarchical methodology for control distribution in highly redundant sys-

tem is presented in this chapter. The new method makes use of distribution func-

tions to approximate the feasible solution set and to keep in check the “curse of

dimensionality”. Due to the irregular nature of the feasible solutions set, it may be

difficult to approximate the feasible solution set with a chosen set of smooth dis-

tribution functions. However, the approximation errors can be improved by using

compactly supported distribution functions. To improve the performance of the dis-

tribution function approach a hierarchical approach is proposed which guarantees the

computation of the feasible solution, if it exists. The proposed hierarchical method

decomposes a large scale control distribution problem in to many small scale control

distribution problems to compromise the need for real-time computation against opti-

mality. The main advantage of the proposed hierarchical approach is the de-coupling

of many small scale problems from each other. As a consequence, the algorithm can

be highly parallelized to reduce the computation burden involved. The convergence

and accuracy of the proposed method are demonstrated by numerical studies. The

broad generality of the method, together with simulation results provides a strong ba-

sis for optimism for the importance and utility of these ideas. However, more testing

is required to reach stronger conclusions about the utility of this algorithm.
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CHAPTER VIII

CONCLUSIONS

In this dissertation, novel modeling and control methodologies are developed to ad-

dress various problems associated with the design of large scale dynamical systems.

This dissertation is addressed to solve challenging modeling and control problems, mo-

tivated by advanced aerospace systems. The main contribution of this dissertation is

the development of adaptable, robust and computationally efficient, multiresolution

approximation algorithms based on the Radial Basis Function (RBF) network and

the Global-Local Orthogonal MAPping (GLO-MAP) approaches. The main feature

of our RBF network approach is the unique direction dependent scaling and rotation

of RBF via a novel Directed Connectivity Graph approach. Our contributions have

led to a broadly useful approximation approach that leads to global approximations

capable of good local approximation for many moderate dimensioned applications.

However, many applications with many high frequency local input/output variations

and a high dimensional input space remain a challenge and motivate us to investigate

entirely new approach. The innovation for the GLO-MAP method is the develop-

ment of a novel averaging process to determine a piecewise continuous global family

of local least-squares approximations while retaining the freedom to vary in a general

way the resolution (e.g., degrees of freedom) of the local approximations. These ap-

proximation methodologies are compatible with a wide variety of disciplines such as

continuous function approximation, dynamic system modeling and system identifica-

tion, nonlinear signal processing and time series prediction.

Another contribution of this dissertation is the development of the GLO-MAP

based methods for the modeling of dynamical systems nominally described by nonlin-

ear differential equations and to solve for static and dynamic response of Distributed
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Parameter Systems (DPS) in an efficient manner. The main focus is on understanding

the process of producing dynamical models from the experimental data. We accept

that there might not exist simple formulas to accurately describe the experimental

data. Therefore, we adopt non-traditional modeling approaches, and accept that we

are looking for approximation of the experimental data. The new nonlinear system

approximation algorithms not only has the approximation ability of ANN but also

has model reduction ability of algorithms like POD/PCA. The main advantage of

the GLO-MAP based mesh-less FEM algorithms is that for dynamic calculations, the

GLO-MAP approximations can in principle be added or subtracted individually as

their corresponding weight functions can grow or shrink without disturbing the basis

functions. The main advantage of the GLO-MAP approximation method is that any

kind of prior knowledge (qualitative or geometrical) about the system can be incor-

porated in our approximation. For example, one can always prescribe the modes of

interest while doing system identification in Chapter V.

The generalized GLO-MAP approach can, in principle, handle any high dimen-

sioned systems. GLO-MAP is the first piecewise continuous approximation to allow

the full utilization of locally supported orthogonal function approximation. As things

currently stand, the demonstrated promise is there, the general code is not. In the

near future, the GLO-MAP based FEM code will be extended for multi-scale model-

ing in higher dimensions and to solve several classical problems including the Fokker

Plank Equation to generate response PDF and the Hamilton-Jacobi-Bellman equation

to compute optimal cost-to-go for a given dynamical system.

In addition, a hierarchical control allocation algorithm is presented which makes

use of the concept of distribution functions to keep in check the “curse of dimension-

ality” while solving the control allocation problem for highly over-actuated systems

that might arise with the development of embedded systems. The main advantage of
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the proposed hierarchical approach is the de-coupling of many small scale problems

from each other. As a consequence of that the algorithm can be highly parallelized

to reduce the computation burden involved.

Whereas the theoretical framework of this dissertation lies in fundamental re-

search in approximation theory, the motivation and applications of the methodology

have already been demonstrated for diverse problems, drawn from autonomous and

intelligent systems, flow control, spacecraft maneuvers, active materials/structures;

and thus we have already shown that the resulting methodology has broad appli-

cations. The studies in this dissertation focus on demonstrating, through analysis,

simulation, and design, the applicability and feasibility of several novel approximation

ideas to a variety of examples. The reliability and limitations of the newly established

approximation methods are assessed by considering various academic and engineering

problems where traditional methods either fail or perform very poorly. The results

from these studies are of direct utility in addressing the “curse of dimensionality”

and frequent redundancy of neural network approximation. Building upon the re-

sults of this work, there are many exciting directions to pursue. I plan to concentrate

on the design of nonparameteric/semiparametric hierarchical functional methods for

generalized input-output models derived from measurements. I further plan to fo-

cus on solving both low and high dimensioned dynamics that arise due to multi-scale

discretization/aggregation problems in representing large numbers of sensor and actu-

ators in embedded systems i.e. modeling of complete system of autonomous systems

(so-called systems of systems).
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[85] I. Babuška and J. Melenk, “The partition of unity finite element method,”

International Journal for Numerical Methods in Engineering, vol. 40, no. 4, pp.

727–758, Feb. 1997.

[86] A. Duarte and J. T. Oden, “Hp clouds - an h-p meshless method,” Numerical

Methods for Partial Differential Equations, vol. 12, no. 6, pp. 673–705, 1996.



295

[87] T. Belytschko, Y. Krogauz, D. Organ, M. Fleming, and P. Krysl, “Meshless

methods: An overview and recent developments,” University of Texas, Austin,

TX, Tech. Rep., May 1996.

[88] S. N. Atluri and S. Shen, The Meshless Local Petrov-Galerkin (MLPG) Method.

Encino, CA: Tech Science Press, 2002.

[89] J. N. Reddy, An Introduction to the Finite Element Method. New York, NY:

McGraw-Hill, Inc., 1993.

[90] M. Kumar, P. Singla, S. Chakravorty, and J. L. Junkins, “A multi-resolution

approach for steady state uncertainty determination in nonlinear dynamical

systems,” in 38th Southeastern Symposium on System Theory, Cookeville, TN,

5-7 Mar. 2006, accepted for Publication.

[91] A. Miller, L. Traub, O. Redeniotis, P. Singla, M. Tandale, and J. L. Junkins,

“Distributed hingeless flow control and rotary synthetic jet actuation,” in 42nd

AIAA Aerospace Sciences Meeting and Exhibit, no. AIAA-2004-224, Reno, NV,

Jan. 5-8 2004.

[92] O. Härkeg̊ard, “Backstepping and control allocation with applications to flight
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APPENDIX A

SOLUTION OF BOUNDARY VALUE PROBLEM FOR THE WEIGHTING

FUNCTION

The boundary value problem for obtaining an expression for the weighting function

can be summarized as follows:

1. The first derivative of the weighting function must have a desired mth-order

zero at the center (centroid of validity) of its respective local approximation.

w(0) = 1

dkw
dxk |x=0 = 0 k = 0, 1, · · · ,m

(A.1)

2. The weighting function must have an (m + 1)th-order zero at the center of its

neighboring local approximation.

w(1) = 0

dkw
dxk |x=1 = 0 k = 0, 1, · · · ,m

(A.2)

3. The sum of two neighboring weighting functions must be unity over the entire

closed interval between their corresponding adjacent local functional approxi-

mations.

w(Ix) + w(Ix− 1) = 1 ∀ x, −1 ≤ x ≤ 1 (A.3)

One family of solutions of this boundary value problem can be obtained by assuming

the following particular form for weighting function,

w(x) = 1− J(x) (A.4)
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where, J(x) is a polynomial in the independent variable whose first derivative is given

by following expression:

dJ(x)

dx
= Cxm(1− x)m (A.5)

It should be noted that this particular form for the weighting function is in accordance

with the fact that first m partial derivatives of the weighting function vanishes at end

points and w(0) = 1. Now the remaining boundary conditions on the weighting

function, w(x), will completely define the constants in Eq. (A.5).

J(1) = C

1∫

0

xm(1− x)mdx = 1 (A.6)

That means the appropriate value for constant, C, is given by:

C =




1∫

0

xm(1− x)mdx



−1

(A.7)

Now, using the fact that integral expression on the RHS is a Eulerian integral of the

first kind [106], the constant C is given by following expression:

C =
(2m + 1)!

(m!)2
(A.8)

The general form for weighting function can now be written as:

w(x) = 1− (2m + 1)!

(m!)2

x∫

0

xm(1− x)mdx (A.9)

Further, the binomial theorem allows us to expand the above integrand:

w(x) = 1− (2m + 1)!

(m!)2

x∫

0

m∑
n=0

xmxm−n(−1)ndx (A.10)

Now, integrating the above expression term by term yield the following expression
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for weighting function, w(x):

w(x) = 1−K

m∑
n=0

Anx
2m−n+1 (A.11)

where, K and An are given by following expressions:

K = (2m+1)!(−1)m

(m!)2
An = (−1)n mCn

2m−n+1
(A.12)

Finally, to obtain the expression for weighting function in interval [−1, 1] instead of

[0, 1] the absolute value of x is used as independent variable than x. The generalized

weight functions that guarantee arbitrary order continuity are given in Table XI.
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APPENDIX B

GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION

Let V be a finite dimensional inner product space spanned by basis vector functions

{w1, w2, · · · , wn}. According to the Gram-Schmidt Process an orthogonal set of basis

functions {φ1, φ2, · · · , φn} can be constructed from any basis functions {w1, w2, · · · , wn}
by following three steps:

1. Initially there is no constraining condition on the first basis element φ1 therefore

we can choose φ1 = w1.

2. The second basis vector, orthogonal to the first one, can be constructed by

satisfying the following condition:

〈φ2, φ1〉 = 0 (B.1)

Further, if we write:

φ2 = w2 − cφ1 (B.2)

then we can determine the following value of unknown scalar constant c by

substituting this expression for φ2 in orthogonality condition, given by equation

(B.1):

c =
〈w2, φ1〉
〈φ1, φ1〉 (B.3)

3. Continuing the procedure listed in step 2, we can write φk as:

φk = wk − c1φ1 − c2φ2 − · · · − ck−1φk−1 (B.4)

where, the unknown constants c1, c2, · · · , ck−1 can be determined by satisfying
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following orthogonality conditions:

〈φk, φj〉 = 0 For j = 1, 2, · · · , k − 1 (B.5)

Since, φ1, φ2, · · · , φk−1 are already orthogonal to each other therefore the scalar

constant cj can be written as:

cj =
〈wk, φj〉
〈φj, φj〉 (B.6)

Therefore, finally we have following general Gram-Schmidt formula for constructing

the orthogonal basis vectors φ1, φ2, · · · , φn:

φk = wk −
k−1∑
j=1

〈wk,φj〉
〈φj ,φj〉φj, For k = 1, 2, · · · , n (B.7)

To construct the orthogonal polynomials of degree ≤ n with respect to weight func-

tion, 1− x2(3− 2|x|) on closed interval [−1, 1], we need to apply the Gram-Schmidt

procedure to non-orthogonal monomial basis 1, x, x2, · · · , xn. First of all, we compute

the general expression for 〈xk, xl〉:

〈xk, xl〉 =

1∫

−1

xk+l(1− x2(3− 2|x|))dx =





2
k+l+1

− 6
k+l+3

+ 4
k+l+2

k + l is even

0 k + l is odd

(B.8)

According to this formula, monomials of odd degree are orthogonal to monomials

of even degree. Now, if p0(x), p1(x), · · · denote the resulting orthogonal polynomials

then we can begin the process of Gram-Schmidt orthogonalization by letting:

φ0(x) = 1 (B.9)

According to equation (B.7), the next orthogonal polynomial is

φ1(x) = x− 〈x, p0〉
〈p0, p0〉p0(x) = x (B.10)
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Further, recursively using the Gram-Schmidt formula given by equation (B.7), we

can generate the orthogonal polynomials given in Table XII, including the recursive

form given for φn(x). In appendix C, we describe an alternative recurrence relation

to generate these orthogonal polynomials.
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APPENDIX C

THREE TERM RECURRENCE RELATION TO GENERATE ORTHOGONAL

POLYNOMIALS

Let Vn be a finite dimensional inner product space spanned by orthogonal basis vector

functions {φ1, φ2, · · · , φn}, where φn represent a polynomial of degree n. Next, since

xφ(x) ∈ Vn+1, therefore, there exist numbers c0, c1, · · · , cn+1 such that following is

true:

xφn(x) =
n+1∑
i=0

ci,nφi(x) (C.1)

Since, φ0, φ1, · · · , φn are orthogonal to each other with respect to weight function

w(x), we see that

ck,n =
1

µ2
k

∫
xφn(x)φk(x)w(x)dx =

1

µ2
k

〈xvn, φk〉, k = 0, 1, · · · , n + 1 (C.2)

Where, 〈., .〉 denotes the inner product defined by weight function w(x) and µk =

〈φk, φk〉. Further, notice that for k ≤ n− 2, xvk(x) ∈ Vn−1 and hence, ck,n = 0, ∀0 ≤
k ≤ n− 2 and Eq. (C.1) reduces to:

xφn(x) = cn−1,nφn−1(x) + cn,nφn(x) + cn+1,nφn+1(x) (C.3)

Now, let us assume that an and bn are leading coefficients of basis function φn(x).

Hence, from Eq. (C.1), we get:

an = cn+1,nan+1, bn = cn,nan + cn+1,nbn+1 (C.4)

Also, substituting for k = n− 1 in Eq. (C.2), we get

cn−1,n =
1

µ2
n−1

〈xφn, φn−1〉 =
µ2

n

µ2
n−1

cn,n−1 (C.5)



305

Now, from Eqs. (C.4) and (C.5), we get:

cn+1,n =
an

an+1

, cn,n =
bn

an

− bn+1

an+1

, cn−1,n =
µ2

n

µ2
n−1

an−1

an

(C.6)

Now, substituting for various c′is from Eq. (C.6) in Eq. (C.3), we get following three

term recurrence relation:

xφn(x) =
an

an+1

φn+1(x) +

(
bn

an

− bn+1

an+1

)
φn(x) +

µ2
n

µ2
n−1

an−1

an

φn−1(x) (C.7)

Finally, From Eq. (C.7), it is clear that given a sequence of numbers {an} and {bn},
one can construct orthogonal polynomials to given weight function w(x). That means,

the orthogonal polynomial φn(x) is unique up to a normalizing factor. In appendix

D, we give a more detailed proof of this statement.
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APPENDIX D

UNIQUENESS OF ORTHOGONAL POLYNOMIALS

In this appendix, we prove that orthogonal polynomials which satisfy the orthogonality

condition of Eq. (3.28) are unique up to a normalizing factor.

Let {φi(x)} and {φ̄i(x)} are two sets of polynomials which satisfies the following

orthogonality condition:

〈φi(x), φj(x)〉 ≡
1∫

−1

w(x)φi(x)φj(x)dx = kiδij (D.1)

〈φ̄i(x), φ̄j(x)〉 ≡
1∫

−1

w(x)φ̄i(x)φ̄j(x)dx = k̄iδij (D.2)

Since, φ̄n(x) is a polynomial of degree n, therefore, we can write it as a linear combi-

nation of polynomials {φ0, φ1, · · · , φn} as:

φ̄n(x) =
n∑

i=1

ci,nφi(x) (D.3)

Note, by Eq. (D.1) ci,n = 0 for k < n and therefore, φ(x) and φ̄(x) should be

proportional to each other. However, if the leading coefficient of the polynomial

φn(x) is constrained to be one then it is apparent that φn(x) = φ̄n(x).
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