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ABSTRACT

On the Cohomology of Joins of Operator Algebras. (May 2004)

Ali-Amir Husain, B.Sc., University of Alberta;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Carl M. Pearcy
Dr. Roger R. Smith

Let A be an abelian von Neumann algebra acting on a Hilbert space H. Then

Mn(A) is a Hilbert C∗-module over A⊗C1n. C∗-modules were originally defined and

studied by Kaplansky and we outline the foundations of the theory and particular

properties of Mn(A). Furthermore, we prove a structure theorem for ultraweakly

closed submodules of Mn(A), using techniques from the theory of type I finite von

Neumann algebras.

By analogy with the classical join in topology, the join A∗B for operator algebras

A and B acting on Hilbert spaces H and K, respectively, was defined by Gilfeather

and Smith. Assuming that K is finite dimensional, Gilfeather and Smith calculated

the Hochschild cohomology groups for A ∗ B with coefficients in L(Cn ⊕K).

We assume that A is a maximal abelian von Neumann algebra acting on H, A

is a subalgebra of A⊗L(K), and B is an ultraweakly closed subalgebra of Mn(A)

containing A ⊗ C1n. In this new context, we redefine the join A ∗ B and generalize

the calculations of Gilfeather and Smith to multilinear maps on A ∗ B with values in

A⊗L(Cn ⊕K). We then calculate Hm(A ∗ B,A⊗L(Cn ⊕K)), for all m ≥ 0.
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CHAPTER I

INTRODUCTION

Homology theory has its origins in the study of topological spaces. A sequence of

modules {Cn}∞n=0 and module homomorphisms ∂ : Cn+1 → Cn such that ∂2 = 0,

called a chain complex, is assigned to a topological space in such a way that if two

topological spaces are isomorphic, then the homologies of their corresponding chain

complexes are as well. In the 1940s, Cartan, Eilenberg, Mac Lane, et al. began

to study properties of chain complexes independently of any underlying topological

space. The resulting theory can be applied to a variety of mathematical objects in

the same way that it is used to study topological spaces.

Hochschild [16, 17, 18] applied homological techniques to the study of an asso-

ciative algebra A over a field. He constructed a cochain complex whose constituent

modules are the sets of multilinear maps from A to a bimodule M over A. Its coho-

mology groups are called the Hochschild cohomology groups of A with coefficients in

M , denoted Hn(A,M).

Hochschild’s theory was adapted by Johnson [21], Kadison, and Ringrose [22, 23],

in the early 1970s, to examine a Banach algebra A acting continuously on a Banach

space M . However, to accommodate the topological structure of A and M , the

new theory was based on the subcomplex of continuous or, equivalently, bounded

multilinear maps.

Given topological spaces X and Y , their join, X ∗ Y , is the space obtained

from X × I × Y , where I is the unit interval in R, by making the identifications

(x, 0, y) ∼ (x′, 0, y) and (x, 1, y) ∼ (x, 1, y′). Gilfeather and Smith [14] investigated

The journal model is American Journal of Mathematics.
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an analogue for operator algebras and calculated its cohomology. Given operator

algebras A and B acting on Hilbert spaces H and K respectively, their join A∗B was

defined as

A ∗ B =





B 0

U A


 : A ∈ A, U ∈ L(K,H), B ∈ B




in L(K⊕H). When K is finite dimensional, they were able to express the cohomology

of the join in terms of the cohomologies of A and B through the formula

Hm(A ∗ B,L(K ⊕H)) ∼=
m−1⊕
k=0

Hk(A,L(H)) ⊗ Hm−k−1(B,L(K)).

Although Gilfeather and Smith demonstrated that a formula for the cohomology of

the join of two arbitrary operator algebras A and B in terms of the cohomologies of

A and B alone is not possible, we extend their formula to a new class of operator

algebras.

Let A be an abelian von Neumann algebra acting on H and let Mn(A) be the

algebra of matrices with entries from A. Suppose A is a norm closed subalgebra of

A⊗L(K) and B is an norm closed subalgebra of Mn(A). We define the join of A and

B to be subalgebra A ∗ B of A⊗L(Cn ⊕K) given by

A ∗ B =





B 0

U A


 : A ∈ A, U ∈ A ⊗∗ L(Cn,K), B ∈ B


 .

Note that the definitions coincide when A = C.

Matrix subalgebras of Mn(A) are a natural infinite-dimensional analogue to the

subalgebras of Mn(C) studied by Gilfeather and Smith and we calculate the coho-

mology groups of the join in this new setting.
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CHAPTER II

NOTATION AND PRELIMINARIES

Before proving the main results of this dissertation, we will define the basic termi-

nology, establish notation, and recall some of the fundamental elements of functional

analysis and the theory of operator algebras that will be used throughout. Unless

otherwise stated, all vector spaces will be assumed to be over the complex numbers.

Since duality will play an important role in the sequel, we begin by reviewing

some basic definitions and theorems regarding the weak* topology.

A. The Weak* Topology

Let X be a normed space. For every x ∈ X, let x̂ ∈ X∗∗ be defined by x̂ : f 7→ f(x).

Recall that the map x 7→ x̂ is an isometric linear embedding of X into X∗∗, by the

Hahn-Banach theorem, called the canonical embedding. We say that X reflexive, if

this embedding is surjective. Note that X may be isometrically isomorphic to X∗∗

without being reflexive [19].

Every subspace Y∗ of X∗ induces a topology on X which we will denote σ(X,Y∗).

In particular, the topology induced on X∗ by the image of X in X∗∗ under the canonical

embedding is called the weak* topology and X∗ with its weak* topology is denoted

(X∗, w∗). The property of the weak* topology that is most frequently useful is a

consequence of Tychonov’s theorem in topology.

Theorem 2.1 (Alaoglu). Let X be a normed space. Then the unit ball of X∗ is

weak* compact.

Although weak* convergent nets need not be bounded in norm, the next theorem

[5, Theorem 5.12.1] often allows us to assume that our nets are bounded.
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Theorem 2.2 (Krein-S̆mulian). If X is a Banach space and A is a convex subset

of X∗ such that A ∩ { f ∈ X∗ : ||f || ≤ r } is weak* closed for every r > 0, then A is

weak* closed.

The weak* topology is neither metrizable nor first countable, in general. How-

ever, when X is a separable normed space, the unit ball X∗
1 of X∗ is metrizable and,

furthermore, we have the following theorem [4, Theorem 2.3].

Theorem 2.3. Let X and Y be Banach spaces and let X be separable. A linear

mapping S : (X∗, w∗) → (Y∗, w∗) is continuous if and only if whenever a sequence

{ϕn}∞n=1 converges to 0 in (X∗, w∗), then {Tϕn}∞n=1 converges to 0 in (Y∗, w∗).

B. Algebras and Involutions

An algebra A is a vector space with an associative bilinear multiplication. We will

assume that all algebras have a multiplicative unit 1A such that ‖1A‖ = 1. If an

algebra B is contained in A and has the same unit as A, we call B a subalgebra of

A. A linear subspace I of A is called a left ideal of A, if AI ⊆ I, for every A ∈ A.

We define right ideals similarly and if I is both a left and right ideal of A, it is called

a two-sided ideal or simply an ideal of A. A proper left ideal M is called maximal,

if whenever it is contained in another proper left ideal I, then M = I. By Zorn’s

lemma, every proper left ideal is contained in a maximal left ideal.

An involution on an algebra A is a conjugate linear map ∗ : A → A such that

a∗∗ = a, for all a ∈ A and (ab)∗ = b∗a∗, for all a, b ∈ A. An algebra A with an

involution is called a ∗-algebra, but we shall encounter other classes of algebras in

the sequel. An algebra A with a complete, submultiplicative norm such that ‖1‖ = 1

is called a Banach algebra. If there exists an isometric involution on A, then we call

A a Banach ∗-algebra and if, additionally, its norm satisfies ||aa∗|| = ||a||2, for every
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a ∈ A, A is called a C∗-algebra.

In a Banach algebra A, we define the spectrum of a ∈ A, denoted σ(a), to be the

set of all λ ∈ C such that λ−a is not invertible. The spectrum is always a non-empty

compact set and when A is finite dimensional, σ(a) is the set of eigenvalues of a.

The spectral radius r(a) is defined by r(a) = supλ∈σ(a) |λ|. Note that (λ − a)−1 =∑∞
n=0 an/λn+1, for |λ| > ‖a‖, so that r(a) ≤ ‖a‖. Furthermore, the spectral radius

formula r(a) = limn→∞ ‖an‖1/n [28, Theorem 1.2.7] implies that if A is a C∗-algebra

and ‖ · ‖′ is another C∗-norm on A, then ‖ · ‖′ = ‖ · ‖. We say that C∗-algebras have

uniqueness of norm.

We distinguish several subsets of a C∗-algebra A related to its involution. We

call a ∈ A normal, if aa∗ = a∗a, an isometry, if a∗a = 1, a co-isometry, if aa∗ = 1,

and an element a that is both an isometry and a co-isometry is called unitary. We say

that a is self-adjoint, if a = a∗ and, similarly, a subset S of A is called self-adjoint, if

S∗ = { a∗ : a ∈ S } = S. Finally, a ∈ A is called positive if a = x∗x, for some x ∈ A.

Every positive element a ∈ A has a unique positive square root denoted a1/2.

Given an arbitrary a ∈ A, however, we let |a| denote the square root of a∗a. The set

of positive elements of A+ is closed and forms a positive cone in A, which means that

a + b ∈ A+ and λa ∈ A+, for all a, b ∈ A+ and λ ≥ 0. We use A+ to define a partial

order ≤ on the set of all self-adjoint elements Asa by writing a ≤ b, if a, b ∈ Asa and

b − a ≥ 0.

A bounded linear map Φ between Banach algebras A and B is called a homomor-

phism if Φ(ab) = Φ(a)Φ(b) for all a, b ∈ A and Φ(1) = 1. If A and B are ∗-algebras

and Φ(a∗) = Φ(a)∗ for all a ∈ A, we say that Φ is a ∗-homomorphism. We call a

bijective homomorphism an isomorphism. If Φ : A → B is an isomorphism, then

A and B are said to be isomorphic, denoted A ∼= B. In particular, if A and B are

C∗-algebras, then injective ∗-homomorphisms are isometric [28, Theorem 3.1.5].
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Let A be an abelian Banach algebra. A linear functional f ∈ A∗ satisfying

f(ab) = f(a)f(b) for all a, b ∈ A is called a multiplicative functional. The set of

multiplicative functionals Ω forms a weak* compact subset of A∗. Since f 7→ ker f is

a bijection from Ω to the set of maximal ideals in A, Ω is also called the maximal ideal

space of A. We denote the C∗-algebra of continuous, complex-valued functions on Ω

by C(Ω). The Gelfand transformation Γ : A → C(Ω) defined by Γ(a) = â : f 7→ f(a)

is a contractive homomorphism. When A is a C∗-algebra, the Gelfand-Naimark

theorem [11, Theorem 4.29]asserts that the Gelfand transformation is an isometric

∗-isomorphism.

C. Bounded Operators on Banach Spaces

Let X and Y be Banach spaces. The space of bounded linear operators from X to

Y will be denoted L(X,Y). When X = Y, we abbreviate L(X,Y) by L(X) and we

will abbreviate the notation for other spaces of operators similarly. Unless otherwise

specified, L(X,Y) will be endowed with its usual norm topology.

The closed subspace of compact operators and the subspace of finite rank oper-

ators in L(X,Y) will be denoted C(X,Y) and F(X,Y), respectively. The finite rank

operators are linearly spanned by the operators of rank one and F(X,Y) ∼= Y ⊗ X∗,

where ⊗ denotes the algebraic tensor product. Hence, we let y ⊗ φ denote the rank

one operator x 7→ φ(x)y, where x ∈ X, y ∈ Y, and φ ∈ X∗. In particular, C(X) and

F(X) are ideals in L(X), the algebra of bounded linear operators on X, and F(X) is

contained in every non-zero ideal of L(X).

The space of m× n matrices with entries in L(X,Y) is denoted Mm,n(L(X,Y)).

We consider matrices in Mm,n(L(X,Y)) to be linear operators from n copies of X

to m copies of Y and endow Mm,n(L(X,Y)) with the corresponding operator norm.
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Note that Mm,n(L(X,Y)) ∼= L(X,Y) ⊗ Mm,n(C). We let {Eij}n
i,j=1 denote the set of

canonical matrix units in Mm,n(C) and identify A = (Aij)
n
i,j=1 with

∑n
i,j=1 Aij ⊗ Eij.

D. Tensor Products of Banach Spaces

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y) be Banach spaces. There are several norms on their

algebraic tensor product X ⊗ Y such that X ⊗ Y is a dense linear submanifold of a

Banach space Z. A norm ‖ · ‖α on X ⊗ Y that satisfies ‖x ⊗ y‖α = ‖x‖X‖y‖Y, for

all x ∈ X and y ∈ Y, is called a cross norm. The largest of the cross norms [32,

Proposition 2.1] on X ⊗ Y is defined by

‖z‖π = inf

{
n∑

i=1

‖xi‖X‖yi‖Y : x1, . . . , xn ∈ X, y1, . . . , yn ∈ Y, z =
n∑

i=1

xi ⊗ yi

}

and called the projective tensor norm on X⊗Y. The completion of (X⊗Y, ‖ · ‖π) is

denoted X ⊗̂π Y and called the projective tensor product of X and Y. The projective

tensor product has several important properties. We begin by describing the property

from which its name is derived.

A bounded operator T : X → Z between Banach spaces is called a quotient

map, if T is surjective and ‖z‖Z = inf{ ‖x‖X : x ∈ X, Tx = z }, for all z ∈ Z.

In this case, T factors through the canonical projection π : X → X/ ker(T ) and

X/ ker(T ) ∼= Z isometrically. Let S : W → Y and T : X → Z be quotient maps.

Then there exists a unique bounded operator S ⊗̂π T ∈ L(W ⊗̂π X,Y ⊗̂π Z) such that

(S ⊗̂π T )(w ⊗ x) = (Sw) ⊗ (Tx), for all w ∈ W and x ∈ X. Furthermore, S ⊗̂π T is

also a quotient map [32, Proposition 2.5] — that is, the projective tensor product of

quotient maps is a quotient map.

A bilinear operator S : X × Y → Z is said to be bounded, if there exists M > 0

such that ‖S(x, y)‖Z ≤ M‖x‖X‖y‖Y, for all x ∈ X and y ∈ Y. The set of all
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bounded bilinear operators S : X × Y → Z is denoted B(X × Y,Z) and, with the

norm defined by ‖S‖ = inf{ ‖S(x, y)‖Z : x ∈ X1, y ∈ Y1 }, it is a Banach space.

If π : X × Y → X ⊗̂π Y is the canonical bilinear map (x, y) 7→ x ⊗ y, then there

is an isometric isomorphism ϕ : B(X × Y,Z) → L(X ⊗̂π Y,Z) making the following

diagram commute [32, Theorem 2.9].

X × Y
π //

S
²²

X ⊗̂π Y

ϕ(S)
yysssssssssss

Z

An element of X ⊗ Y may also be identified with a bounded bilinear form on

X∗×Y∗ [32, Proposition 1.2] by letting (x⊗y)(f, g) = f(x)g(y), for all x ∈ X, y ∈ Y.

From this perspective, there is a canonical cross norm on X ⊗ Y defined by

‖z‖ε = sup

{∣∣∣∣∣
n∑

i=1

f(xi)g(yi)

∣∣∣∣∣ : f ∈ X∗
1, g ∈ Y∗

1

}
,

for all z =
∑n

i=1 xi ⊗ yi ∈ X ⊗ Y, called the injective tensor norm on X ⊗ Y. The

completion of (X⊗Y, ‖ · ‖ε) is denoted X ⊗̂ε Y and called the injective tensor product

of X and Y. Its name arises from the fact that if E and F are arbitrary closed

subspaces of X and Y, respectively, then E ⊗̂ε F embeds isometrically into X ⊗̂ε Y as

a closed subspace.

E. Bounded Operators on Hilbert Spaces

We denote Hilbert spaces by H and K and define an inner product on their direct

sum H ⊕ K by 〈(h, k), (h′, k′)〉 = 〈h, h′〉 + 〈k, k′〉, for all h, h′ ∈ H and k, k′ ∈ K.

Similarly, we define an inner product on the algebraic tensor product H0 of H and K

by 〈h ⊗ k, h′ ⊗ k′〉 = 〈h, h′〉〈k, k′〉, for all h, h′ ∈ H and k, k′ ∈ K. The completion of

H0 with respect to this inner product will be denoted H⊗K.
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For every operator T ∈ L(H,K), there is a unique operator T ∗ ∈ L(K,H), called

the adjoint of T , that is defined by the equation 〈Tx, y〉 = 〈x, T ∗y〉, for every x ∈ H

and y ∈ K. Observe that the adjoint in L(H) is an involution that makes L(H) a

C∗-algebra.

The positive and unitary elements of a C∗-algebra provide analogues to positive

real numbers and complex numbers of modulus one, respectively. In particular, a

unitary operator is an isometry and we define T ∈ L(H) to be a partial isometry, if

T is an isometry when restricted to the orthogonal complement of its kernel, ker(T ).

Using this weaker notion of an isometry, we obtain a decomposition of bounded

linear operators [28, Theorem 2.3.4] that is analogous to the polar decomposition of

a complex number and is frequently useful.

Theorem 2.4 (Polar Decomposition). Let T ∈ L(H). There exists a unique

partial isometry U such that T = U |T | and ker(U) = ker(T ). Furthermore, U ∗T =

|T |.

In addition to the norm topology on L(H), there are other locally convex topolo-

gies on L(H) that are important. A net of operators {Tα}α∈I in L(H) is said to

converge to T in the strong operator topology (SOT) if ||Tαx − Tx|| → 0 for every

x ∈ H and {Tα}α∈I is said to converge to T in the weak operator topology (WOT)

if 〈Tαx, y〉 → 〈Tx, y〉 for all x, y ∈ H. It is clear that every norm convergent net or

sequence is SOT convergent and every SOT convergent net, by the Cauchy-Schwartz

inequality, is WOT convergent. Although the strong and weak operator topologies

do not coincide, in general, a convex subset of L(H) is SOT closed if and only if it is

WOT closed [28, Theorem 4.2.7].

For every set of operators S in L(H), we define the commutant of S, denoted

S ′, to be the set of all operators commuting with S. The commutant of S is a WOT
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closed subalgebra of L(H) and S is contained in S ′′ = (S ′)′.

A subalgebra A of L(H) is said to have a separating vector x ∈ H if Ax = 0

implies that A = 0, for all A ∈ A, and x ∈ H is called a cyclic vector for A if

Ax = {Ax : A ∈ A} is norm dense in H. A cyclic vector x ∈ H for A is a separating

vector for A′. Indeed, if B ∈ A′ and Bx = 0, then BAx = ABx = 0, for all A ∈ A

and, hence, B = 0.

We call a WOT closed ∗-subalgebra of L(H) a von Neumann algebra. There are

two fundamental theorems in the theory of von Neumann algebras that we state for

reference. The first is called the double commutant theorem and was discovered by

von Neumann [40].

Theorem 2.5 (The Double Commutant Theorem). Let A be a ∗-subalgebra of

L(H). Then A′′ is the WOT closure of A. In particular, A is a von Neumann algebra

if and only if A = A′′.

The WOT closure of a C∗-subalgebra A of L(H) is apparently a von Neumann

algebra. The next theorem, called the Kaplansky density theorem [25, Theorem 1],

provides additional information about the way that A is embedded in its WOT clo-

sure.

Theorem 2.6 (The Kaplansky Density Theorem). Let A be a C∗-subalgebra of

L(H) and B its WOT closure. Then the unit ball A1 of A is WOT dense in the unit

ball B1 of B and the self-adjoint elements of A1 are WOT dense in the self-adjoint

elements of B1.

A bounded linear map Φ between C∗-algebras A and B is called positive if Φ(a) ≥

0, for all a ≥ 0. In this case, Φ is called normal if A and B are von Neumann algebras

and for every increasing net of positive elements {xα}α∈A in A with supremum x,

Φ(x) = supα∈A Φ(xα). The image of a normal ∗-homomorphism is a von Neumann
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algebra and every normal map is continuous with respect to the ultraweak topology

[10], which we will describe presently.

F. The Ultraweak Topology on L(H)

Let {eα}α∈I be an orthonormal basis for H and T ∈ L(H). We define the trace of T ,

denoted tr(T ), to be

tr(T ) =
∑
α∈I

〈Teα, eα〉.

The trace of T need not be finite, but is independent of the choice of orthonormal

basis and allows us to define, for 1 ≤ p ≤ ∞, a collection of ideals

Cp(H) = {T ∈ L(H) : tr(|T |p) < ∞},

called the Schatten p-classes, all of which are contained in C(H). When endowed with

the norm || · ||p : T 7→
(
tr(|T |p)

)1/p
, Cp(H) is a Banach ∗-algebra and if T ∈ C1(H)

and 1 ≤ p < q < ∞, then ||T || ≤ ||T ||q ≤ ||T ||p [2, Proposition 1.1].

Of particular importance is C1(H), called the algebra of trace-class operators.

When restricted to C1(H), the trace is linear and if T ∈ C1(H) and S ∈ L(H), then

tr(ST ) = tr(TS) and |tr(ST )| ≤ ||S||||T ||1. We regard C1(H) as a subspace of C(H)∗

by mapping T ∈ C1(H) to the bounded linear functional S 7→ tr(ST ) and, similarly,

L(H) can be viewed as a subspace of C1(H)∗ by mapping S ∈ L(H) to T 7→ tr(ST ).

Both maps are isometric isomorphisms [28, Theorems 4.2.1 and 4.2.3]of Banach spaces

and we identify C1(H) and L(H) with the dual spaces of C(H) and C1(H), respectively.

The weak* topology induced by C1(H) on L(H) is often called the σ-weak or

ultraweak topology. A net {Sα}α∈J in L(H) converges ultraweakly to an operator

S ∈ L(H) precisely when tr(SαT ) → tr(ST ), for every T ∈ C1(H). Since tr((h ⊗

k)T ) = 〈Th, k〉, for all h, k ∈ H, every ultraweakly convergent net is WOT convergent.
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Furthermore, the WOT is Hausdorff, and, by Alaoglu’s theorem, the unit ball of L(H),

denoted L(H)1, is ultraweakly compact. Hence, the identity map from L(H)1 with

the ultraweak topology to L(H)1 with the WOT is a homeomorphism and the relative

ultraweak and weak operator topologies coincide on bounded sets.

The Schatten p-classes are seen as non-commutative analogues of the `p spaces. If

T ∈ Cp(H) and {λn}∞n=0 is the set of eigenvalues of |T |, then ||T ||p =
(∑∞

n=0 |λn|p
)1/p

.

Furthermore, in light of the relationships between dual spaces already discussed and

the inclusions F(H) ⊆ Cp(H) ⊆ C(H), 1 ≤ p < ∞, we may regard F(H), C(H), and

L(H) as analogues of c00, c0, and `∞, respectively.

G. States and Representations

A representation of a C∗-algebra A on a Hilbert space H is a ∗-homomorphism

π : A → L(H). An injective representation π is called faithful and if π(A)′ = C, π

is called irreducible. A representation π is cyclic if π(A) has a cyclic vector and π is

non-degenerate if π(A)H is dense in H. All irreducible and cyclic representations are

clearly non-degenerate.

We call a linear functional ρ ∈ A∗ positive, if ρ(a) ≥ 0, for all a ∈ A+, or,

equivalently, ρ(1) = ‖ρ‖. A positive functional of norm one is called a state and

the set of states in A∗ is called the state space of A, denoted S(A). If π is a cyclic

representation of A on H and x ∈ H is a unit cyclic vector, then ρ : a 7→ 〈π(a)x, x〉

is a state on A. Conversely, for every state τ ∈ S(A), there is an associated cyclic

representation πτ that is produced by the following method attributed to Gelfand,

Naimark, and Segal [13, 34] and called the GNS construction.

Following the presentation of Murphy [28], we begin by defining a positive

sesquilinear form on A by 〈a, b〉 = τ(b∗a) and let Nτ = { a ∈ A : τ(a∗a) = 0 }.
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Since τ(b∗a∗ab) ≤ ‖a∗a‖τ(b∗b) [28, Theorem 3.3.7], Nτ is a closed left ideal of A and

we may define an inner product on A/Nτ by 〈a+Nτ , b+Nτ 〉 = τ(b∗a). Let Hτ denote

the completion of A/Nτ .

For all a ∈ A, let ϕ(a) be the linear map on A/Nτ defined by ϕ(a)(b + Nτ ) =

ab + Nτ . Then

‖ϕ(a)(b + Nτ )‖2 = τ(b∗a∗ab) ≤ ‖a∗a‖τ(b∗b) = ‖a‖2‖b + Nτ‖2

and we may extend ϕ(a) continuously to πτ (a) on Hτ . The resulting map πτ : A →

L(Hτ ) is a representation of A on Hτ . Observe that xτ = 1 + Nτ is a cyclic vector

for πτ and τ(a) = 〈πτ (a)xτ , xτ 〉, for all a ∈ A. We call πτ the GNS representation

associated with τ .

Now consider the category C of pairs (π,M(π)), where π : A → L(H) is a

representation and M(π) is the WOT closure of π(A) in L(H). A morphism between

objects (π,M(π)) and (ρ,M(ρ)) of C is an ultraweakly continuous ∗-homomorphism

ρ̃ such that the following diagram commutes.

A π //

ρ

²²

M(π)

ρ̃
zzuuuuuuuuu

M(ρ)

Let π =
⊕

τ∈S(A) πτ be the direct sum of the GNS representations of A. Then

(π,M(π)) is a universally repelling object in C [39, Theorem 3.2.4]. Since universal

objects are uniquely determined, we call π the universal representation of A and call

M(π) the universal enveloping von Neumann algebra of A. For every 0 6= a ∈ A,

there exists τ ∈ S(A) such that τ(a∗a) = ‖a∗a‖ [28, Theorem 3.3.6], so πτ (a) 6= 0

and, consequently, the universal representation of every C∗-algebra is faithful. Fur-

thermore, there is a correspondence between the states on π(A) and S(A). Given a
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state ρ on π(A), τ = ρπ is a state on A and τ(a) = 〈πτ (a)1 + Nτ , 1 + Nτ 〉 = ρπ(a).

Consequently, every state on π(A) is a vector state.

The ultraweak closure of a ∗-subalgebra of L(H) is equal to its WOT closure

[10]. In particular, if π is the universal representation of a C∗-algebra A, then π(A) is

ultraweakly dense in its universal enveloping von Neumann algebra M(π) and every

representation of A can be extended to a unique normal representation of M(π) [9].

More precisely, we have the following theorem.

Proposition 2.7. Let A be a C∗-algebra, let π be its universal representation, and

let M(π) be the universal enveloping von Neumann algebra of A. Then for every

representation ρ : A → L(H) of A there is a unique normal representation ρ̃ :

M(π) → L(H) such that ρ̃(π(x)) = ρ(x), for all x ∈ A. Furthermore, ρ̃(M(π)) is

the ultraweak closure of ρ(A).

H. Continuous Hochschild Cohomology

Let A be a Banach algebra, and let M be a Banach space that is a bimodule over

A. If the left module action (A,m) 7→ Am and right module action (m,A) 7→ mA

are bounded, then M is called a Banach bimodule over A. In this case, we define

L0(A,M) to be M and let Ln(A,M) denote the space of all bounded n-linear maps,

f : A × · · · × A → M , for n > 0. Elements of Ln(A,M) are called n-cochains. The

coboundary maps ∂n : Ln(A,M) → Ln+1(A,M), often abbreviated ∂ , are defined by

(∂nf)(a1, . . . , an+1) =a1f(a2, . . . , an+1)

+
n∑

i=1

(−1)if(a1, . . . , ai−1, aiai+1, ai+2, . . . , an+1)

+ (−1)n+1f(a1, . . . , an)an+1.
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We define the subspace of n-coboundaries Bn(A,M) to be the image of ∂n−1 and the

subspace of n-cocycles Zn(A,M) to be the kernel of ∂n. Since ∂2 = 0, every cobound-

ary is also a cocycle and we define the Hochschild cohomology groups of A with coef-

ficients in M , denoted Hn(A,M), to be the quotient spaces Zn(A,M)/Bn(A,M).

A Banach bimodule M over A is said to be a dual bimodule over A, if M is

isometrically isomorphic to the dual space of a Banach space M∗ and the maps m 7→

Am and m 7→ mA on M are weak* continuous for every A ∈ A. If, additionally,

A is a subalgebra of L(H) and the maps A 7→ Am and A 7→ mA from A to M are

ultraweak to weak* continuous, then M is called a dual normal bimodule over A. We

then say that ρ ∈ Ln(A,M) is normal, if it is ultraweak to weak* continuous in each

variable and denote the subspace of normal cochains by Ln
w(A,M). Normal cocycles

Zn
w(A,M) and normal coboundaries Bn

w(A,M) are defined as above and because the

boundary of a normal cochain is a normal cocycle, we may similarly define the normal

cohomology groups, Hn
w(A,M).

Let M be a dual Banach bimodule over a Banach algebra A. Johnson [21] ob-

served that Ln(A,M) is isometrically isomorphic to the dual space of A⊗̂π · · · ⊗̂π A⊗̂π M∗,

where M∗ is the predual of M , there are n copies of A, and the duality is defined by

〈a1 ⊗ · · · ⊗ an ⊗ m∗, ξ〉 = 〈m∗, ξ(a1, . . . , an)〉

for all a1, . . . an ∈ A, m∗ ∈ M∗, and ξ ∈ Ln(A,M). There are two important dual

bimodule actions [20] of A on Ln(A,M). The first is given by

(a0ξ)(a1, . . . , an) =a0ξ(a1, . . . , an)

(ξa0)(a1, . . . , an) =
n−1∑
i=0

(−1)jξ(a0, a1, . . . , aj−1, ajaj+1, aj+2, . . . , an)

+ (−1)nξ(a0, a1, . . . , an−1)an

(2.1)



16

for all a0, . . . , an ∈ A and ξ ∈ Ln(A,M), and there is a canonical isometric linear

isomorphism in : Ln(A,Lp(A,M)) → Ln+p(A,M) defined by (inξ)(a1, . . . , an+p) =

ξ(a1, . . . , an)(an+1, . . . , an+p), for all a1, . . . , an+p ∈ A and n, p ≥ 0. Note that

in+1(∂ξ) = ∂(inξ) and, hence, Hn(A,Lp(A,M)) ∼= Hn+p(A,M) [16, Theorem 3.1].

Another dual bimodule action [20] of A on Ln(A,M) may be defined by

(a0ξ)(a1, . . . , an) = ξ(a1, . . . , ana0)

(ξa0)(a1, . . . , an) = ξ(a1, . . . , an)a0

for all a0, . . . , an ∈ A. Then M may be replaced by Lp(A,M), where p > 0, with the

action defined in (2.1). Since in is weak* bicontinuous, for all n ≥ 0, this new dual

bimodule structure of Ln(A,Lp(A,M)) may be transferred onto Ln+p(A,M) and, in

this case, the bimodule operations are

(a0ξ)(a1, . . . , an+p) = ξ(a1, . . . , ana0, an+1, . . . , an+p)

(ξa0)(a1, . . . , an+p)

=ξ(a1, . . . , an, a0an+1, . . . , an+p)

+

p−1∑
i=1

(−1)jξ(a1, . . . , an, a0, an+1, . . . , an+j−1, an+jan+j+1, an+j+2, . . . , an+p)

+ (−1)pξ(a1, . . . , an, a0, an+1, . . . , an+p−1)an+p

for all a0, . . . , an+p ∈ A and ξ ∈ Ln+p(A,M).

Each of the dual bimodule structures on Ln(A,M) defined above plays a valuable

role in the proofs of the averaging theorems contained in the sequel.
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CHAPTER III

SUBMODULES OF MATRIX ALGEBRAS

We begin by proving some important facts about submodules of Mn(A) over A⊗ 1n,

where A is an abelian von Neumann algebra, that will be useful in our cohomology

calculations.

A. Orthogonal Complements in Matrix Algebras

Within the class of Banach spaces, Lindenstrauss and Tzafriri [27] characterized

Hilbert spaces by the property that every closed subspace has a closed complement. A

generalization of a Hilbert space called a C∗-module can be obtained by replacing the

scalar inner product with an inner product having values in an abelian C∗-algebra.

C∗-modules were first studied by Kaplansky [26] who defined them in the following

manner.

Definition 3.1. Let A be an abelian C∗-algebra and let M be a left module over A.

We call a function 〈· , ·〉 : M × M → A an inner product on M , if it satisfies

(i) 〈x, x〉 ≥ 0 for all x ∈ M and 〈x, x〉 = 0 implies x = 0,

(ii) 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ M ,

(iii) 〈ax + y, z〉 = a〈x, z〉 + 〈y, z〉 for all a ∈ A and x, y, z ∈ M .

An inner product defines a norm ||| · ||| on M by |||x|||2 = ||〈x, x〉||. When ||| · ||| is

complete, we call M a C∗-module over A.

Let A be an abelian von Neumann algebra acting on H and let Ω be the maximal

ideal space of A. We then consider Mn(A) ∼= A ⊗ Mn(C) to be a von Neumann

algebra acting on H⊗ C
n and let Φ : Mn(A) → A be the sum of the diagonal entries
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of a matrix in Mn(A). We define an A-valued inner product on Mn(A) × Mn(A) by

〈A,B〉 = Φ(B∗A). Our most important examples of C∗-modules will be submodules

of Mn(A). We now establish some facts about Mn(A) and the inner product we have

defined.

Lemma 3.1. Let C(Ω,Mn(C)) be the algebra of continuous matrix valued functions

on Ω with the supremum norm ‖A‖∞ = supω∈Ω ‖A(ω)‖ and involution A∗ = (a∗
ji)

n
i,j=1,

where A = (aij)
n
i,j=1 ∈ C(Ω,Mn(C)) and ‖ · ‖ denotes the operator norm on Mn(C).

Then Mn(A) is ∗-isomorphic to C(Ω,Mn(C)) as a C∗-algebra.

Proof. First note that C(Ω,Mn(C)) ∼= C(Ω) ⊗ Mn(C) algebraically, by identifying

A = (aij)
n
i,j=1 ∈ C(Ω,Mn(C)) with

∑n
i,j=1 aij ⊗Eij, where {Eij}n

i,j=1 are the canonical

matrix units in Mn(C). Then, by choosing appropriate unit vectors in C
n, we obtain

|akl(ω)| = ‖akl(ω) ⊗ Ekl‖ ≤ ‖(aij(ω))n
i,j=1‖ ≤

n∑
i,j=1

‖aij(ω) ⊗ Eij‖ =
n∑

i,j=1

|aij(ω)|,

for all 1 ≤ k, l ≤ n and ω ∈ Ω, so the completeness of C(Ω) with respect to the supre-

mum norm implies the same for C(Ω,Mn(C)). Furthermore, because the operator

norm is a C∗-norm on Mn(C) ,

‖A∗A‖∞ = sup
ω∈Ω

‖A∗(ω)A(ω)‖ = sup
ω∈Ω

‖A(ω)‖2 =

(
sup
ω∈Ω

‖A(ω)‖
)2

= ‖A‖2
∞,

for all A ∈ C(Ω,Mn(C)), and we conclude that C(Ω,Mn(C)) is a C∗-algebra.

Recall that the Gelfand transformation Γ : A → C(Ω) is a ∗-isomorphism. Con-

sequently, Γ ⊗ 1n : Mn(A) → C(Ω,Mn(C)) defined by (Γ ⊗ 1n)(A) = (Γaij)
n
i,j=1, for
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all A = (aij)
n
i,j=1 ∈ Mn(A), is bijective,

(Γ ⊗ 1n)(AB) = (Γ ⊗ 1n)

(
n∑

k=1

aikbkj

)n

i,j=1

=

(
n∑

k=1

ΓaikΓbkj

)n

i,j=1

= (Γ ⊗ 1n)(A)(Γ ⊗ 1n)(B)

for all A = (aij)
n
i,j=1, B = (bij)

n
i,j=1 ∈ Mn(A), and (Γ ⊗ 1n)(A∗) = (Γa∗

ji)
n
i,j=1 =

((Γaji)
∗)n

i,j=1 = ((Γ ⊗ 1n)(A))∗, for all A = (aij)
n
i,j=1 ∈ Mn(A). Therefore, Γ ⊗ 1n is a

∗-isomorphism between C∗-algebras.

The identification made in Lemma 3.1 allows us to relate the operator norm on

Mn(A) to the norm ||| · ||| induced by the inner product we have defined.

Lemma 3.2. The operator norm and ||| · ||| are equivalent on Mn(A).

Proof. Since the operator norm and ||| · ||| are equivalent on Mn(C) [5, Theorem 3.3.1],

there are constants α, β > 0 such that α||A|| ≤ |||A||| ≤ β||A||, for all A ∈ Mn(C). If

Γ : A → C(Ω) is the Gelfand transformation, then Γ ⊗ 1n : Mn(A) → C(Ω,Mn(C)) is

a ∗-isomorphism between C∗-algebras. In particular, Γ and Γ⊗ 1n are isometric. For
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all A = (aij)
n
i,j=1 ∈ Mn(A),

α||A|| = α||(Γ ⊗ 1n)(aij)
n
i,j=1||∞

= sup
ω∈Ω

α||(Γaij(ω))n
i,j=1||

≤ sup
ω∈Ω

|||(Γaij(ω))n
i,j=1|||

= sup
ω∈Ω

(
n∑

i,j=1

(Γa∗
ij)(ω)(Γaij)(ω)

)1/2

= sup
ω∈Ω

(
Γ

( n∑
i,j=1

a∗
ijaij

)
(ω)

)1/2

=

(
sup
ω∈Ω

Γ

( n∑
i,j=1

a∗
ijaij

)
(ω)

)1/2

=

∥∥∥∥∥Γ

( n∑
i,j=1

a∗
ijaij

)∥∥∥∥∥
1/2

∞

=

∥∥∥∥∥
n∑

i,j=1

a∗
ijaij

∥∥∥∥∥
1/2

= |||A|||

and, similarly, |||A||| ≤ β||A||.

Suppose M is a norm closed submodule of Mn(A) over A ⊗ 1n. Since M is

complete with respect to the operator norm on Mn(A), it is also complete with respect

to ||| · ||| and, consequently, M is a C∗-module over A ⊗ 1n. Kaplansky realized,

however, that the structure of a C∗-module was insufficient to mimic all of the main

characteristics of a Hilbert space. He studied a class of C∗-modules having properties

analogous to the SOT.

Definition 3.2. Let A be a commutative von Neumann algebra. We say that M is a

W ∗-module over A if it is a C∗-module over A and has the following two properties:
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(i) If {eα}α∈I is a family of pairwise orthogonal projections in A with supremum e

and x is an element of M such that eαx = 0, for all α ∈ I, then ex = 0.

(ii) If {eα}α∈I is a family of pairwise orthogonal projections in A with supremum 1

and {xα} is a bounded subset of M , then there exists an element x in M such

that eαxα = eαx, for all α ∈ I.

A W ∗-submodule of M is a norm closed submodule N of M which is also a W ∗-module

over A.

Lemma 3.3. Let M be an ultraweakly closed submodule of Mn(A) over A⊗1n. Then

M is a W ∗-module over A ⊗ 1n.

Proof. Suppose that x ∈ M and {eα}α∈I is a family of pairwise orthogonal projections

in A⊗ 1n with supremum e such that eαx = 0, for all α ∈ I. Let F be the collection

of all finite subsets of I, partially ordered by inclusion, and let SF =
∑

α∈F eα ≤ e,

for all F ∈ F . Then {SF}F∈F is a bounded increasing net in A ⊗ 1n and converges

in the SOT to its least upper bound e [28, Theorem 4.1.1]. Since SF x = 0, for all

F ∈ F , and {SF x}F∈F converges to ex in the SOT, ex = 0.

Now let {fβ}β∈J be a family of pairwise orthogonal projections in A ⊗ 1n with

supremum 1 = 1A ⊗ 1n and let {yβ}β∈J be a bounded set in M . First assume that

yβ ≥ 0, for all β ∈ J , and B is a uniform bound for {yβ}β∈J . Let G be the collection

of all finite subsets of J , partially ordered by inclusion, and let

TG =
∑
β∈G

fβyβ =
∑
β∈G

fβyβfβ ≤ B1,

for all G ∈ G. Then {TG}G∈G is a bounded increasing net in M and converges in the

SOT to its least upper bound y. Since the ultraweak topology and the WOT coincide

on bounded sets and the SOT is stronger than the WOT, {TG}G∈G also converges

ultraweakly to y. Because M is ultraweakly closed, y ∈ M . Furthermore, given
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β0 ∈ J , then for all G ∈ G containing {β0}, fβ0TG = fβ0yβ0 and, hence, fβ0y = fβ0yβ0

as required.

For an arbitrary bounded collection of elements S = {yβ}β∈J ⊆ M , we consider

the collections of the real and imaginary parts of each element in S, denoted Re(S) and

Im(S), respectively. Since S is uniformly bounded, we may assume that every element

of Re(S) and Im(S) is positive, by adding a multiple of the identity, if necessary. Then

there are self-adjoint elements Re(y), Im(y) ∈ Mn(A) such that fβRe(y) = fβRe(yβ)

and fβIm(y) = fβIm(yβ), for all β ∈ J . Because y = Re(y) + iIm(y) is a limit of

elements of M in the ultraweak topology, we conclude that y ∈ M .

Definition 3.3. Let M be a W ∗-module over A. We say that x and y are orthogonal,

if 〈x, y〉 = 0. The orthogonal complement R⊥ of a subset R of M is the set of all

x ∈ M such that 〈x,R〉 = 0.

A sequence or net of matrices in Mn(L(H)) is norm convergent entrywise if

and only if it norm convergent in Mn(L(H)). Convergence is equivalent to entry-

wise convergence in all of the weaker topologies on Mn(L(H)), as well, and a simple

consequence is stated as the next lemma.

Lemma 3.4. Let S be a subset of Mn(A). Then S⊥ is an ultraweakly closed submodule

of Mn(A) over A ⊗ 1n.

Proof. From the definition of an inner product, it is clear that S⊥ is a submodule of

Mn(A) over A⊗1n. Suppose that A = (aij)
n
i,j=1 ∈ S and {Bα}α∈I is a net of matrices

in S⊥ converging ultraweakly to B = (bij)
n
i,j=1 ∈ Mn(A). Let Bα = (bα

ij)
n
i,j=1, for all

α ∈ I. Then bα
ij → bij ultraweakly, for all 1 ≤ i, j ≤ n, and

〈B,A〉 =
n∑

i,j=1

a∗
jibji =

n∑
i,j=1

a∗
ji lim

α∈I
bα
ji = lim

α∈I

n∑
i,j=1

a∗
jib

α
ji = lim

α∈I
〈Bα, A〉 = 0,

so that B ∈ S⊥.
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Kaplansky [26, Theorem 3] proved that, as in a Hilbert space, a W ∗-module can

be decomposed into a sum of any W ∗-submodule and its orthogonal complement.

Theorem 3.5. Let M be a W ∗-module over A, let N be a W ∗-submodule of M , and

let N⊥ be the orthogonal complement of N . Then M = N ⊕ N⊥.

A mapping F : M → A is called a linear functional, if F is linear and homoge-

neous with respect to A. In this case, we say that F is bounded, if F is continuous

with respect to the norm ||| · ||| induced by the inner product on M . Continuing the

analogy with Hilbert space, Kaplansky [26, Theorem 5] showed that bounded linear

functionals on M can be identified with elements of M .

Theorem 3.6. Let F : M → A be a bounded linear functional. Then there exists a

unique element y ∈ M such that F (x) = 〈x, y〉, for all x ∈ M .

By combining Lemma 3.3 and Theorem 3.6, we show that the projection of a

W ∗-submodule M of Mn(A) onto M is continuous and M is homeomorphic to the

quotient Mn(A)/M⊥. Both facts, however, are consequences of the next proposition.

Proposition 3.7. Let M be an ultraweakly closed submodule of Mn(A) over A ⊗ 1n

and let F be an ultraweakly closed subset of M . Then F + M⊥ is ultraweakly closed.

Proof. Let Fkl : Mn(A) → A be the linear functional defined by a = (aij)
n
i,j=1 7→ akl,

for all 1 ≤ k, l ≤ n. Then Fkl is ultraweakly continuous and, by Lemma 3.2, Fkl is

bounded. By Theorem 3.6, there exists bkl ∈ M such that Fkl(a) = 〈a, bkl〉, for all

a ∈ M and 1 ≤ k, l ≤ n, since M is a W ∗-module over A ⊗ 1n.

Suppose that {fα +m⊥
α}α∈I is a net in F +M⊥, where fα ∈ F and m⊥

α ∈ M⊥, for

all α ∈ I, and suppose fα + m⊥
α → x ∈ Mn(A). By Theorem 3.5, there exist m ∈ M

and m⊥ ∈ M⊥ such that x = m + m⊥. Then

Fkl(fα) = 〈fα, bkl〉 = 〈fα + m⊥
α , bkl〉 → 〈x, bkl〉 = 〈m + m⊥, bkl〉 = 〈m, bkl〉 = Fkl(m),
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for all 1 ≤ k, l ≤ n, so fα → m ultraweakly. Since F is ultraweakly closed, m ∈ F

and x ∈ F + M⊥.

Corollary 3.8. Let M be an ultraweakly closed submodule of Mn(A) over A ⊗ 1n.

Then the projection E : Mn(A) → M is continuous with respect to the ultraweak

topology.

Proof. Let F be ultraweakly closed in M . Then E−1(F ) = F + M⊥ is ultraweakly

closed.

Corollary 3.9. Let M be an ultraweakly closed submodule of Mn(A) over A ⊗ 1n.

Then the restriction of the quotient map π : Mn(A) → Mn(A)/M⊥ to M is an

homeomorphism with respect to the ultraweak topology.

Proof. Let β denote the restriction of π to M . By Theorem 3.5, β is bijective and if

F is ultraweakly closed in M , then π−1(β(F )) = F + M⊥ is ultraweakly closed. We

conclude that β is a closed map and a homeomorphism.

B. Ultraweakly Closed Submodules

The maximal ideal space Ω of an abelian von Neumann algebra A is compact and

extremally disconnected [39, Theorem 3.1.18], or Stonian. In particular, the closure

of every open subset G of Ω is compact and open. This additional structure allows

us to establish some properties of submodules of Mn(A) that are analogous to those

of scalar matrices.

Stone [36, Theorem 17] proved that the algebra of real valued continuous func-

tions CR(Ω) on Ω is a boundedly complete lattice — that is to say, every uniformly

bounded subset of CR(Ω) has a least upper bound in CR(Ω). The following lemma is a

consequence that was first noted by Deckard and Pearcy [7, Lemma 2.1] for complex
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valued functions on Ω. By Lemma 3.1, the Gelfand transformation Γ : A → C(Ω) al-

lows us to identify Mn(A) with C(Ω,Mn(C)), the algebra of continuous matrix valued

functions on Ω, and, henceforth, we tacitly use this fact.

Lemma 3.10. Let M be an ultraweakly closed submodule of Mn(A) over A ⊗ 1n.

Suppose that G = {Gi}i∈I is a collection of pairwise disjoint compact open subsets of

Ω, and S = {Ai}i∈I ⊆ M is a uniformly bounded collection of functions on Ω. Then

there is a function A ∈ M such that A(ω) = Ai(ω), for all ω ∈ Gi and i ∈ I.

Proof. Let χi be the characteristic function of Gi and let pi = (Γ⊗1n)−1(χi⊗1n), for

all i ∈ I. Then {pi}i∈I is a pairwise orthogonal family of projections in A⊗1n. We may

assume, without loss of generality, that the supremum p of {pi}i∈I is 1. Otherwise,

we add 1− p to the collection and let the corresponding function be identically zero.

By Lemma 3.3, there exists A ∈ M such that piA = piAi and, hence, A(ω) = Ai(ω),

for all i ∈ I and ω ∈ Gi.

Using the notation in the proof of Lemma 3.10, let p be the least upper bound

of {pi}i∈I and let A ∈ Mn(A) and B ∈ Mn(A) satisfy the conclusion of the lemma.

Then pA = pB and we let
∑

i∈I piAi denote pA. In particular, for the matrix A

constructed in the proof of Lemma 3.10, A = pA.

Although an arbitrary submodule of Mn(A) is not free over A ⊗ C1n, we now

show that, given an ultraweakly closed submodule M of Mn(A) over A ⊗ 1n, we can

decompose M into a finite direct sum of free modules. We say that a free module is

of finite type over A ⊗ C1n, if it has a finite basis over A ⊗ C1n.

Theorem 3.11. Let M be an ultraweakly closed submodule of Mn(A) over A ⊗ 1n.

Then there are a finite number of pairwise disjoint open subsets {Ok}t
k=0 of Ω such

that Ω =
⋃t

k=0 O−
k and if χk is the characteristic function of O−

k and pk = χk ⊗ 1n,
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then Mk = pkM is a free module of finite type over C(O−
k ), for all 0 ≤ k ≤ t.

Furthermore, M ∼=
⊕t

k=0 Mk.

Proof. If M = {0}, the statement is trivial, so we assume that M 6= {0}. Since

M(ω) = {A(ω) : A ∈ M } is a subspace of Mn(C), for all ω ∈ Ω, M(ω) is finite

dimensional. We let d(ω) denote the dimension of M(ω) and let d0 = supω∈Ω d(ω).

Observe that 0 < d0 ≤ n2.

Now define O0 = {ω ∈ Ω : d(ω) = d0 }. Given ω0 ∈ O0, there is a set of functions

{Ak}d0
i=1 ⊆ M such that {Ak(ω0)}d0

k=1 is a basis for M(ω0) over C and ‖Ak(ω0)‖ < 1,

for all 1 ≤ k ≤ d0. By appending rows together, for example, we may also consider

{Ak}d0
k=1 to be continuous functions taking values in C

n2
. Then the set of functions

{Ak}d0
k=1 forms a n2×d0 matrix C having a d0×d0 submatrix D such that |D(ω0)| 6= 0.

Since the determinant of D is continuous, there exists a compact open neighbourhood

U0 of ω0 such that |D(ω)| 6= 0 and ‖Ak(ω)‖ ≤ 1, for all ω ∈ U0 and 1 ≤ k ≤ d0.

Consequently, {Ak(ω)}d0
k=1 is a linearly independent set in Mn(C), for all ω ∈ U0, and,

for every B ∈ M , there are unique scalar valued functions {fk}d0
k=1 on U0 such that

B(ω) =
∑d0

k=1 fk(ω)Ak(ω), for all ω ∈ U0. Cramer’s rule implies that {fk}d0
k=1 ⊆ C(U0)

and we conclude, in particular, that O0 is an open subset of Ω.

Let F be the collection of all families of pairwise disjoint compact open subsets

of O0, such that for all Gα = {Gi}i∈Iα ∈ F , there is a set of matrix valued functions

{Aα
k}d0

k=1 ⊆ M supported on Gα =
(⋃

i∈Iα
Gi

)−
such that ‖Aα

k‖ ≤ 1, for all 1 ≤

k ≤ d0, and, for all B ∈ M , there are unique functions {fα
k }d0

k=1 ⊆ C(Gα) such that

B(ω) =
∑d0

k=1 fα
k (ω)Aα

k (ω), for all ω ∈ Gα. Then F is not empty and we define a

partial order on F by writing Gα ≤ Gα′ if Gα ⊆ Gα′ and Aα
k (ω) = Aα′

k (ω), for all

ω ∈ Gα ∩ Gα′ and 1 ≤ k ≤ d0. If C = {Gγ}γ∈Γ is a chain in F , then, by Lemma 3.10,

G =
⋃

γ∈Γ Gγ is an upper bound for C in F . By Zorn’s lemma, there exists a maximal
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element G0 = {Gi}i∈I0 ∈ F .

Let G0 =
(⋃

i∈I0
Gi

)−
and assume, to obtain a contradiction, that Σ = O0 \ G0

is not empty. Since Σ is an open subset of Ω, given σ0 ∈ Σ, there is a compact open

neighbourhood V0 ⊆ Σ of σ0 and a set of matrix valued functions {Ek}d0
k=1 ⊆ M

supported on V0 such that ‖Ek‖ ≤ 1, for all 1 ≤ k ≤ d0, and, for all B ∈ M , there

exist unique functions {gk}d0
k=1 ⊆ C(V0) such that B(ω) =

∑d0

k=1 gk(ω)Ek(ω), for all

ω ∈ V0. This contradicts the maximality of G0. Therefore, O0 ⊆ G0 and since the

inclusion O−
0 ⊇ G0 is obvious, O−

0 = G0.

Now replace Ω with Ω′ = Ω \ O−
0 . Then Ω′ is a compact open subset of Ω and

let d1 = supω∈Ω′ d(ω) < d0. If d1 = 0, then we are done. Otherwise, let O1 = {ω ∈

Ω′ : d(ω) = d1 } and we construct a set of matrix valued functions {A1
k}d1

k=1 ⊆ M

supported on O−
1 such that ‖A1

k‖ ≤ 1, for 1 ≤ k ≤ d1, and, for all B ∈ M , there

are unique functions {f1
k}d1

k=1 ⊆ C(O−
1 ) such that B(ω) =

∑d1

k=1 f 1
k (ω)A1

k(ω), for all

ω ∈ O−
1 . We continue in this manner until we have pairwise disjoint open subsets

{Ok}t
k=0 of Ω such that Ω =

⋃t
k=0 O−

k =
(⋃t

k=0 Ok

)−
, d(ω) = dk when ω ∈ Ok, for

all 0 ≤ k ≤ t, and 0 ≤ dt < · · · < d1 < d0 ≤ n2. Furthermore, for all 0 ≤ k ≤ t,

we construct a set of dk matrix valued functions {Ak
m}dk

m=1 supported on O−
k such

that ‖Ak
m‖ ≤ 1, for all 1 ≤ m ≤ dk, and, for all B ∈ M , there are unique functions

{fk
m}dk

m=1 ∈ C(O−
k ) such that B(ω) =

∑dk

m=1 fk
m(ω)Ak

m(ω), for all ω ∈ O−
k . Hence,

if χk is the characteristic function of O−
k , pk = χk ⊗ 1n, and Mk = pkM , for all

0 ≤ k ≤ t, then M ∼=
⊕t

k=0 Mk and Mk is a free module of finite type over C(O−
k ),

for all 0 ≤ k ≤ t.

Suppose that M and N are ultraweakly closed submodules of Mn(A) over A⊗1n

and N ⊆ M . The algorithm in the proof of Theorem 3.11 may be iterated to construct

open sets that decompose Ω for both M and N . More precisely, we have the following
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corollary.

Corollary 3.12. Let M and N be ultraweakly closed submodules of Mn(A) over A⊗1n

such that N ⊆ M . Then there are a finite number of pairwise disjoint open subsets

{Ok}t
k=0 of Ω such that Ω =

⋃t
k=0 O−

k and if χk is the characteristic function of O−
k

and pk = χk ⊗ 1n, then Mk = pkM and Nk = pkN are free modules of finite type over

C(O−
k ). Furthermore, there is a finite basis for Mk over C(O−

k ) containing a basis for

Nk, for all 0 ≤ k ≤ t.

Proof. By using the decomposition of Theorem 3.11 for N , we may assume that N

is a free module of finite type over A ⊗ 1n and there exists an open set O that is

dense in Ω such that dim N(ω) = m > 0, for all ω ∈ O. We fix a basis {Ak}m
k=1 for

N over A ⊗ 1n and, using the technique in the proof of Theorem 3.11, we obtain a

finite number of pairwise disjoint open subsets {Ok}t
k=0 of O such that Ω =

⋃t
k=0 O−

k

and if χk is the characteristic function of O−
k and pk = χk ⊗ 1n, for all 0 ≤ k ≤ t,

then Mk = pkM is a free module of finite type over C(O−
k ), for all 0 ≤ k ≤ t. Since

{Ak(ω)}m
k=1 is linearly independent, for all ω ∈ Ok, we may extend {Ak}m

k=1 to a basis

for Mk over C(O−
k ), for every 0 ≤ k < t.

Remark 3.13. Note that N need not be ultraweakly closed for the proof of Corollary

3.12 to be valid. It suffices that there exist a set of pairwise orthogonal projections

{χi}k
i=1 in C(Ω) such that

∑k
i=1 χi = 1 and, for all 1 ≤ i ≤ k, (χi ⊗ 1n)N has a basis

{Aij}`i
j=1 over C(Ω−

i ), where Ωi is open, Ω−
i is the range of χi, and {Aij(ω)}`i

i=1 is

linearly independent over C, for all ω ∈ Ωi. Of course, when N is ultraweakly closed,

the proof of Theorem 3.11 shows that these conditions are satisfied.

In later calculations it will not be possible to satisfy the conditions of Corollary

3.12, but we will be able to satisfy the weaker conditions of Remark 3.13. Conse-

quently, we will need to know what linear independence over A ⊗ C1n implies about
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pointwise linear independence. We use a technique developed by Deckard and Pearcy

[8] to solve systems of linear equations in Stonian spaces.

Lemma 3.14. Let Λ be a Stonian space and let A = (aij) ∈ Mm,n(C(Λ)). Suppose

that D is dense in Λ and, for all λ ∈ D, there is a non-trivial solution to the system

of linear equations 


a11(λ) · · · a1n(λ)

...
. . .

...

am1(λ) · · · amn(λ)







x1

...

xn


 = 0.

Then there exists a set of functions {fi}n
i=1 in C(Λ), not all of which are identically

zero, such that
∑n

j=1 fiaij = 0, for all 1 ≤ i ≤ m.

Proof. Let r(λ) be the rank of A(λ), for all λ ∈ Λ, and let d0 = supλ∈Λ r(λ). Assume,

without loss of generality, that d0 > 0 and choose λ0 ∈ Λ such that r(λ0) = d0. Then

there exists a d0 × d0 submatrix S = (sij) of A such that det(S(λ0)) 6= 0 and, for

notational convenience, we assume that sij = aij, for all 1 ≤ i, j ≤ d0. Since the

determinant is continuous, there exists an open neighbourhood U0 of λ0 such that

det(S(λ)) 6= 0, for all λ ∈ U0.

Now let λ1 ∈ D ∩ U0 and let U1 be a compact open neighbourhood of λ1 in U0

with characteristic function χ1. By assumption, there exist scalars {µi}n
i=1, not all

of which are zero, such that
∑n

j=1 µjaij(λ1) = 0, for all 1 ≤ i ≤ m. In particular,

d0 < n and we define fi = µiχ1, for all d0 + 1 ≤ i ≤ n. Then, by Cramer’s

rule, there exists a unique set of functions {fi}d0
i=1 in C(Λ) such that fi = fiχ1 and∑d0

j=1 fjsij +
∑n

j=d0+1 fjaij = 0, for all 1 ≤ i ≤ d0. Because the rank of S(λ) is

maximal, for all λ ∈ U1,
∑n

j=1 fjaij = 0, for all 1 ≤ i ≤ m. Finally, as fi(λ1) = µi,

for all 1 ≤ i ≤ n, the proof is complete.

As stated, Lemma 3.14 is applicable in a variety of situations, but we are only
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concerned with the following one.

Theorem 3.15. Let {Ai}k
i=1 be a linearly independent subset of Mn(A) over A⊗C1n

and let O be the set of all points ω ∈ Ω such that {Ai(ω)}k
i=1 is linearly independent

over C. Then O is open and dense in Ω.

Proof. We may consider {Ai}k
i=1 to be the columns of a n2 × k matrix A with entries

in C(Ω). For every ω0 ∈ O, there exists a k × k submatrix S of A such that the rank

of S(ω0) = k. Then det(S(ω)) 6= 0 in an open neighbourhood of ω0. Hence, O is

open and it remains to show that O is dense in Ω.

Let Λ = Ω \O− and assume, to obtain a contradiction, that Λ is not empty. For

all ω ∈ Λ, observe that the columns of A(ω) are linearly dependent and, therefore,

ker(A(ω)) 6= {0}. Then, by Lemma 3.14, there exists a set of functions {fi}k
i=1

in C(Ω), not all of which are identically zero, such that
∑k

i=1(fi ⊗ 1n)Ai = 0, a

contradiction.
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CHAPTER IV

AVERAGING TECHNIQUES IN COHOMOLOGY

In calculations involving continuous cocycles, it is often useful to replace a given

cocycle ρ ∈ Zn(A,M) with an equivalent one that vanishes whenever one of its

arguments is in a closed subalgebra B of A. This is referred to as averaging in the

theory of continuous cohomology.

A. Averaging over Amenable Algebras

Let G be a locally compact group. There exists a unique left-invariant regular Borel

measure µ on G called its Haar measure. When G is compact and µ(G) = 1, we

call φ(f) =
∫

G
f dµ, where f ∈ L∞(G), the average of f over G. In the absence of

compactness, however, there is a weaker notion of averaging attributed to M. Day [6].

Definition 4.1. Let G be a locally compact group. A state φ ∈ L∞(G)∗, also known

as a mean on L∞(G), is called left-invariant if φ(δs ∗ f) = φ(f), where f ∈ L∞(G),

s ∈ G, and (δs ∗ f)(t) = f(s−1t) for all t ∈ G. We say that G is amenable if there

exists a left-invariant mean on L∞(G).

Amenable locally compact groups were characterized by Johnson and Ringrose

[21, Theorem 2.5] in the following theorem.

Theorem 4.1. Let G be a locally compact group. Then G is amenable if and only if

H1(L1(G),M) = 0, whenever M is a dual Banach bimodule over L1(G).

Johnson used Theorem 4.1 to extend the notion of amenability to Banach alge-

bras. A Banach algebra A is called amenable, if H1(A,M) = 0 whenever M is a

dual Banach bimodule over A. Johnson, Kadison, and Ringrose [20, Theorem 4.1]



32

proved that a continuous cocycle ρ ∈ Zn(A,M) can be averaged over an amenable

subalgebra.

Theorem 4.2. Let A be a Banach algebra, let M be a dual Banach bimodule over

A, and let B be a closed amenable subalgebra of A. Suppose ρ ∈ Ln(A,M) and

∂ρ vanishes whenever any of its entries is in B. Then there exists ξ ∈ Ln−1(A,M)

such that ρ + ∂ξ vanishes whenever any of its entries lies in B and, in particular,

∂ρ = ∂(ρ + ∂ξ).

A locally compact group G is amenable if and only if there is a left-invariant

mean on Cb(G), the algebra of bounded continuous complex-valued functions on G

[31, Theorem 1.1.9]. We can also extend the definition of amenability to arbitrary

topological groups by calling G amenable, if there is a left-invariant mean on Cb(G).

When a C∗-algebra B is the norm closed linear span of a group of unitary operators G

in L(H) that is amenable with respect to the norm topology, Kadison and Ringrose

[23, Theorem 3.3] showed that B is an amenable Banach algebra.

As noted above, all compact groups are amenable, but the unitary group of a

C∗-algebra B is not compact in the norm topology unless B is finite dimensional. The

abelian groups form another important class of amenable groups. In applications, it

is always possible to average over an abelian C∗-algebra because abelian groups are

amenable with respect to the discrete topology [31, Examples 1.1.5].

The next proposition [29, Lemma 4.1] is a consequence of the definition of the

coboundary map ∂ for Hochschild cohomology and is valid in a broad context.

Proposition 4.3. Let A be an algebra, let B be a subalgebra of A, and let M be a

bimodule over A. If ρ ∈ Zn(A,M) vanishes whenever one its arguments lies in B,

then, for all a1, . . . , an ∈ A and b ∈ B,

(i) ρ(ba1, a2, . . . , an) = bρ(a1, . . . , an),
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(ii) ρ(a1, . . . , ak−1, akb, ak+1, . . . , an) = ρ(a1, . . . , ak, bak+1, ak+2 . . . , an), 1 ≤ k < n,

(iii) ρ(a1, . . . , an−1, anb) = ρ(a1, , . . . , an)b.

Suppose ρ ∈ Zn(A,M) vanishes whenever any of its first 1 ≤ ` < n arguments

lies in a subalgebra B of A. Then ρ satisfies conditions (i) and (ii), for all 1 ≤ k < `,

of Proposition 4.3 and is called `-multimodular with respect to B. If ` = n, then ρ is

simply called multimodular with respect to B. Evidently, when A is a Banach algebra

and M is a dual Banach bimodule over A, Theorem 4.2 provides a sufficient condition

for ρ ∈ Zn(A,M) to be replaced with ζ ∈ Zn(A,M) within the same equivalence

class of Hn(A,M) that is multimodular with respect to a closed amenable subalgebra

B of A.

Let A be a subalgebra of L(H), let M be a dual Banach bimodule over A, and

let B be an abelian C∗-subalgebra of the center of A. Apparently, if ξ ∈ Ln(A,M)

is multimodular with respect to B, then ∂ξ is also multimodular. We let {Ln(A,M :

B), ∂n}n≥0 denote the subcomplex of {Ln(A,M), ∂n}n≥0 consisting of multimodular

maps and use similar notation for coboundaries, cocycles and homology groups. In

this case, the scalar field C may be replaced by B in our cohomology calculations.

More generally, Sinclair and Smith [35, Theorem 3.2.7] showed that if B is a C∗-

subalgebra of A with an amenable unitary group, then it suffices to consider the

multimodular complex.

Theorem 4.4. Let A be a subalgebra of L(H), let M be a dual Banach bimodule

over A, and let B be C∗-subalgebra of A with an amenable unitary group. Then

Hn(A,M :B) ∼= Hn(A,M), for all n ≥ 0.

Every finite group of unitary operators G is amenable and, although Theorem

4.2 does not have a direct analogue for normal cocycles, the technique used in its
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proof is applicable when G is finite. More precisely, the following proposition is true

[20, Lemma 5.3].

Proposition 4.5. Let A be an operator algebra, let B be a C∗-subalgebra of A, and

let G be a finite group of unitary operators in the center of A which linearly generate

a C∗-algebra D. Suppose M is a dual normal module over A and ρ ∈ Zn
w(A,M)

vanishes whenever any of its arguments lie in B. Then there exists ξ ∈ Ln−1
w (A,M)

such that ρ + ∂ξ vanishes whenever any of its arguments is in B or D.

B. Averaging in Normal Cohomology

Averaging a normal cocycle over an amenable algebra proves to be a far greater

challenge than averaging for continuous cocycles. Theorem 4.2 applies to normal

cocycles, but the new cocycle may not be normal. However, for von Neumann al-

gebras, Johnson, Kadison, and Ringrose [20] proved an analogue of Theorem 4.2 for

normal cocycles. An essential element in its proof, is an extension theorem for normal

multilinear maps.

A Banach space X is said to be weakly sequentially complete, if every weakly

Cauchy sequence converges. Grothendieck [15, Théorème 6] showed that any bounded

linear map on C(K), where K is a compact Hausdorff space, to a weakly sequen-

tially complete Banach space is weakly compact. Akemann [1, Theorem 2.8] applied

Grothendieck’s result in proving the following theorem.

Theorem 4.6. Let X be a Banach space such that X∗ is weakly sequentially complete

and let A∗ be the predual of a von Neumann algebra A. Then every bounded linear

map T : X → A∗ is weakly compact.

Examples of operator algebras having a weakly sequentially complete dual space

abound. As an illustration, following the presentation of Brown, Chevreau, and
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Pearcy [4], we describe a large class of ultraweakly closed operator algebras, called

dual algebras, all of which are generated by a single operator and have a weakly

sequentially complete dual space.

Example 4.2. An operator T ∈ L(H) is called a contraction, if ‖T‖ ≤ 1 and, in this

case, T is called completely non-unitary, if its restriction to any non-zero reducing

subspace is not unitary. For every contraction T , there exists a unique closed subspace

S of H such that S is reducing for T , the restriction of T to S is unitary, and the

restriction of T to S⊥ is completely non-unitary [37, Theorem 1.3.2].

Assume that T is a completely non-unitary contraction acting on a separable

Hilbert space and let AT be the dual algebra generated by T . By the Sz.-Nagy-Foiaş

functional calculus [4, Theorem 3.2], there is a homomorphism ϕ : H∞(T) → AT ,

where T is the unit circle and H∞(T) is the algebra of essentially bounded functions f

in L2(T) such that 〈f(t), e−int〉 = 0, for all n ∈ N. For all f ∈ H∞(T), ‖ϕ(f)‖ ≤ ‖f‖∞

and we write ϕ(f) = f(T ).

Let A∞(D) be the algebra of bounded holomorphic functions on the open unit

disc D. By taking pointwise radial limits, there is an isometric algebra isomorphism of

A∞(D) onto H∞(T) [30, Theorem 17.10] and we denote the radial limit of h ∈ A∞(D)

by h̃. Suppose that σ(T ) is sufficiently large so that ‖h‖∞ = supλ∈σ(T )∩D
|h(λ)|, for

all h ∈ A∞(D). Because h(λ) ∈ σ(h̃(T )), for all λ ∈ σ(T ) ∩ D [12, Corollary 3.1], we

have

‖h̃‖∞ = ‖h‖∞ = sup
λ∈σ(T )∩D

|h(λ)| ≤ ‖h̃(T )‖ ≤ ‖h̃‖∞

and AT is isometrically isomorphic to H∞(T). Since H∞(T)∗ is weakly sequentially

complete [3, Corollary 5.4], A∗
T is also weakly sequentially complete.

When A is a C∗-algebra, A∗∗ is isomorphic, as a Banach space, to its universal en-

veloping von Neumann algebra [38, Theorem 1]. Since the predual of a von Neumann
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algebra is weakly sequentially complete [33, Proposition 1], A∗ is weakly sequentially

complete. Johnson, Kadison, and Ringrose [20, Theorem 2.3] used Theorem 4.6 to

extend multilinear maps on C∗-algebras.

Theorem 4.7. Let A1, . . . ,An be C∗-algebras acting on Hilbert spaces H1, . . . ,Hn,

respectively, let M be the dual space of a Banach space M∗, and let ρ : A1 × · · · ×

An → M be a bounded multilinear map that is separately ultraweak-weak* continuous.

Then ρ extends uniquely, without increase of norm, to a separately ultraweak-weak*

continuous map ρ̄ : A−
1 × · · · ×A−

n → M on the product of the closures of A1, . . . ,An

in the ultraweak topology.

Another key element required for averaging in normal cohomology is a theorem

[24, Theorem 10.1.12] that relates an arbitrary representation of a C∗-algebra to its

universal representation.

Theorem 4.8. Let Φ be a representation of a C∗-algebra A and π be its universal

representation. Then there is a projection P in the center of M(π) and an ultraweakly

continuous ∗-isomorphism α : M(π)P → M(Φ) such that Φ(a) = α(π(a)P ), for all

a ∈ A.

The conclusions of Theorem 4.8 are best summarized by the following commu-

tative diagram.

π(A) // π(A)P //

α

²²

M(π)P

α

²²

A

π

OO

Φ // Φ(A) // M(Φ)P

Suppose M is a von Neumann algebra, B is a C∗-subalgebra of M generated

by an amenable unitary group, and N is a dual normal module over M. Using

Proposition 4.5, Theorem 4.7, and Theorem 4.8, Johnson, Kadison, and Ringrose [20,

Lemma 5.4] proved that if ρ ∈ Zn(M, N) vanishes whenever any of its arguments
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lies in B, then there exists ξ ∈ Ln−1(M, N) such that ρ+∂ξ is a normal cocycle that

vanishes whenever any of its arguments is in B. Additionally [20, Lemma 5.5], they

proved that if ∂ξ ∈ Bn(M, N) is a normal cocycle, then there exists η ∈ Ln−1
w (M, N)

such that ∂ξ = ∂η. The combination of these results with Theorem 4.2 yields an

averaging theorem for normal cohomology.

Theorem 4.9. Let M be a von Neumann algebra, let B be a C∗-subalgebra of M

generated by an amenable unitary group, and let N be a dual normal module over M.

Then, for all ρ ∈ Zn
w(M, N), there exists ξ ∈ Ln−1

w (M, N) such that ρ + ∂ξ vanishes

whenever any of its arguments lies in B.
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CHAPTER V

MULTILINEAR MAPS ON JOINS

Having established some preliminary results, we follow Gilfeather and Smith [14] and

begin by investigating the structure of the multilinear maps we shall encounter in the

sequel.

A. The Structure of Multilinear Maps

For every pair of operators S ∈ L(H) and T ∈ L(K), there is a unique bounded

operator S ⊗ T ∈ L(H⊗K) such that (S ⊗ T )(h ⊗ k) = Sh ⊗ Tk, for all h ∈ H and

k ∈ K, and ‖S ⊗ T‖ = ‖S‖‖T‖ [28, Lemma 6.3.2]. Given subalgebras A and B of

L(H) and L(K), respectively, we regard their algebraic tensor product A ⊗ B as a

subalgebra of L(H ⊗ K). Its norm closure is denoted A ⊗∗ B and called the spatial

tensor product of A and B. Furthermore, when A and B are von Neumann algebras,

the von Neumann algebra generated by A ⊗ B is denoted A⊗B and called the von

Neumann algebra tensor product of A and B. In this case, the commutation theorem

for tensor products [39, Theorem 4.5.9] states that (A⊗B)′ = A′ ⊗B′ and the double

commutant theorem furnishes a description of A⊗L(K) in terms of matrices.

Lemma 5.1. Let A be a von Neumann algebra acting on H and let S ∈ A⊗L(K).

If {fτ}τ∈T is an orthonormal basis for K and S = (sτµ)τµ∈T is the matrix of S with

respect to {fτ}τ∈T , then sµτ ∈ A, for all τ, µ ∈ T .

Proof. Since A′ ⊗ C1K ⊆ (A⊗L(K))′, xsτµ = sτµx, for all x ∈ A′ and τ, µ ∈ T .

Then, by the double commutant theorem, sτµ ∈ A′′ = A.

Definition 5.1. Let A be an abelian von Neumann algebra acting on H, let A be

a norm closed subalgebra of A⊗L(K), and let B be a norm closed subalgebra of
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Mn(A). The join of A and B is the subalgebra of A⊗L(Cn ⊕K) defined by

A ∗ B =





B 0

U A


 : A ∈ A, U ∈ A ⊗∗ L(Cn,K), B ∈ B


 .

Note that our definition of the join differs from the definition used by Gilfeather and

Smith [14]. However, the two definitions coincide when A = C.

Example 5.2. Let A be the abelian von Neumann algebra whose maximal ideal space

consists of two points and let A be a proper subalgebra of M2(C). Then A ⊗ A ∼=

A⊕A is always an algebra whose linear dimension is even. On the other hand, if D2

and T2 denote the subalgebras of diagonal and upper triangular matrices in M2(C),

respectively, then D2 ⊕ T2 is a proper subalgebra of A ⊗ M2(C) ∼= M2(C) ⊕ M2(C)

of odd linear dimension. Evidently, there are subalgebras of A ⊗ M2(C) that are not

unitarily equivalent to A ⊗A, for some proper subalgebra A of M2(C).

Notation 5.3. It will become necessary to distinguish between elements of the tensor

product of Hilbert spaces and rank one operators between Hilbert spaces. Suppose

that h0 ∈ H and k0 ∈ K. Then h0 ⊗ k0 denotes a vector in H⊗K, while k0 ⊗̌h0 will

denote the rank one operator defined by h 7→ 〈h, h0〉k0, for all h ∈ H.

For the remainder of this chapter, A will denote an maximal abelian von Neu-

mann algebra acting on H, A will denote a norm closed subalgebra of A⊗L(K),

and B will denote an ultraweakly closed subalgebra of Mn(A) containing A ⊗ C1n.

Furthermore, suppose that B0 ∈ B, U0 ∈ A ⊗∗ L(Cn,K), and A0 ∈ A. Then X0 will

denote the fixed element of A∗B defined by X0 =
(

B0 0
U0 A0

)
and when U0 = 0, we shall

also write X0 = B0 ⊕ A0.

Since A ∗ B contains an abelian subalgebra (A ⊗ C1n) ⊕ C1A, if m ≥ 1 and

ρ ∈ Zm(A ∗ B,A⊗L(Cn ⊕ K)), we may apply Theorem 4.2 to obtain an equivalent
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cocycle ζ that vanishes whenever any of its arguments belongs to (A ⊗ C1n) ⊕ C1A.

In particular, ζ is multimodular with respect to (A ⊗ C1n) ⊕ C1A. From now on,

we assume that every cocycle on A ∗ B with coefficients in A⊗L(Cn ⊕ K) vanishes

whenever any of its entries is in (A ⊗ C1n) ⊕ C1A and the following decomposition,

due to Gilfeather and Smith [14, Proposition 2.4], is a direct consequence.

Proposition 5.2. Let ρ ∈ Zm(A ∗ B,A⊗L(Cn ⊕K)). Then ρ is of the form

(5.1) ρ(X1, . . . , Xm) =
 β(B1, . . . Bm) 0∑m

j=1 σj(A1, . . . , Am−j, Um−j+1, Bm−j+2, . . . , Bm) α(A1, . . . , Am)


 ,

where Xj ∈ A∗B and σj is a bounded m-linear mapping with values in the ultraweak

closure (A ⊗ L(Cn,K))− of A ⊗ L(Cn,K), for all 1 ≤ j ≤ m. Furthermore, α ∈

Zm(A,A⊗L(K)) and β ∈ Zm(B,Mn(A)).

Note that the multilinear maps appearing in (5.1) inherit the multimodularity of

ρ. In particular, for all a ∈ A and 1 ≤ j ≤ m, we have

(5.2) σj(A1, . . . , Am−j, (a ⊗ 1K)Um−j+1, Bm−j+2, . . . , Bm)

= σj(A1, . . . , Am−j, Um−j+1(a ⊗ 1n), Bm−j+2, . . . , Bm)

= σj(A1, . . . , Am−j, Um−j+1, (a ⊗ 1n)Bm−j+2, . . . , Bm)

= σj(A1, . . . , Am−j, Um−j+1, Bm−j+2(a ⊗ 1n), . . . , Bm)

= σj(A1, . . . , Am−j, Um−j+1, Bm−j+2, . . . , Bm)(a ⊗ 1n)

= (a ⊗ 1K)σj(A1, . . . , Am−j, Um−j+1, Bm−j+2, . . . , Bm)

and β is homogeneous with respect to A ⊗ C1n.

The multilinear maps appearing in the (2, 1) entry of (5.1) may be further de-

composed. Our decomposition is similar to that obtained by Gilfeather and Smith
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[14, Lemma 2.1] and, although the proof is substantially the same, it is included for

completeness.

Lemma 5.3. Let γ : A×· · ·×A×A⊗∗L(Cn,K)×B×· · ·×B → (A⊗L(Cn,K))− be

a bounded m-linear function satisfying (5.2), where A occurs m − r − 1 times and B

occurs r times. Then γ is equal to a finite sum of m-linear functions of the following

forms:

(i) (A1, . . . , Am−1, Um) 7→ φ(A1, . . . , Am−1)UmT , where φ : A×· · ·×A → A⊗L(K)

is a bounded (m − 1)-linear map and T ∈ Mn(A), for r = 0.

(ii) (A1, . . . , Am−r−1, Um−r, Bm−r+1, . . . , Bm) 7→ φUm−rψ, where φ : A× · · · × A →

A⊗L(K) is a bounded (m − r − 1)-linear map and ψ : B × · · · × B → Mn(A)

is a bounded r-linear map that is homogeneous with respect to A ⊗ C1n, for

0 < r < m − 1.

(iii) (U1, B2, . . . , Bm) 7→ SU1ψ(B2, . . . , Bm), where S ∈ A⊗L(K) and ψ : B × · · · ×

B → Mn(A) is a bounded (m − 1)-linear map that is homogeneous with respect

to A ⊗ C1n, for r = m − 1.

Proof. The proof of (ii) contains all of the essential elements of the argument and we

omit the others.

By Theorem 3.5, B is complemented in Mn(A) and we may, therefore, assume

that B = Mn(A). Let {Eij}n
i,j=1 denote the canonical matrix units for Mn(C) and

{ej}n
j=1 be the canonical basis for C

n. We use boldface to denote multi-indices i =

(i1, . . . ir) and j = (j1, . . . jr). Define multilinear functions ψijpq : Mn(A) × · · · ×

Mn(A) → Mn(A) by

ψijpq(1H ⊗ Es1t1 , . . . , 1H ⊗ Esrtr) =




1H ⊗ Epq if s = i and t = j

0 otherwise
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and extend ψijpq linearly to Mn(A). Now define φijpq : A× · · · × A → L(H⊗K) by

φijpq(A1, . . . , Am−r−1)(h ⊗ k)

= γ(A1, . . . , Am−r−1, 1H ⊗ (k ⊗̌ ep), Ei1j1 , . . . , Eirjr)(h ⊗ eq).

Since A is maximal, A = A′ [11, Proposition 4.62] and γ takes values in (A ⊗

L(Cn,K))−. By the commutation theorem, φijpq(A1, . . . , Am−r−1) ∈ (A ⊗ C1K)′ =

A⊗L(K). Then, for all a ∈ A, h ∈ H, k ∈ K, and 1 ≤ s, t ≤ n, (5.2) implies

(5.3)∑
ijpq

φijpq(A1, . . . , Am−r−1)(a ⊗ (k ⊗̌ es))ψijpq(1H ⊗ Eg1l1 , . . . , 1H ⊗ Egrlr)(h ⊗ et)

=
∑
pq

φglpq(A1, . . . , Am−r−1)(a ⊗ (k ⊗̌ es))(1H ⊗ Epq)(h ⊗ et)

=
∑

p

φglpt(A1, . . . , Am−r−1)(a ⊗ (k ⊗̌ es))(h ⊗ ep)

= φglst(A1, . . . , Am−r−1)(a ⊗ 1K)(h ⊗ k)

= γ(A1, . . . , Am−r−1, 1H ⊗ (k ⊗̌ es), Eg1l1 , . . . , Egrlr)(a ⊗ 1n)(h ⊗ et)

= γ(A1, . . . , Am−r−1, a ⊗ (k ⊗̌ es), Eg1l1 , . . . , Egrlr)(h ⊗ et).

By linearity, (5.3) holds for all Um−r ∈ A⊗L(Cn,K), B1, . . . , Br ∈ B, and x ∈ H⊗C
n.

Finally, since γ is bounded, (5.3) must also be true for Um−r ∈ A ⊗∗ L(Cn,K).

In our subsequent calculations, it is valuable to know when the sums appearing in

Lemma 5.3 are equal to zero. The statement of the next lemma, while resembling [14,

Lemma 2.2], is adapted to the present situation. However, its proof requires additional

work to accomodate the case where both H and K are infinite dimensional.

Lemma 5.4. Let 0 ≤ r ≤ m and p ∈ N. Suppose φi : A × · · · × A → A⊗L(K) is

a (m − r − 1)-linear map and ψi : B × · · · × B → Mn(A) is a r-linear map, for all
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1 ≤ i ≤ p. If {ψi}p
i=1 is linearly independent with respect to A ⊗ C1n and

p∑
i=1

φi(A1, . . . , Am−r−1)Uψi(B1, . . . , Br) = 0,

for all A1, . . . , Am−r−1 ∈ A, U ∈ A ⊗∗ L(Cn,K), and B1, . . . , Br ∈ B, then φi = 0,

for all 1 ≤ i ≤ p. A similar statement is true if {φi}p
i=1 is linearly independent with

respect to A ⊗ C1K.

Proof. We begin with the case where m = 1 and r = 0. Recall that a 0-linear map

taking values in a Banach bimodule M is a fixed element of M . Let φi = Si ∈

A⊗L(K) and ψi = Ti ∈ Mn(A), for all 1 ≤ i ≤ p, and fix an orthonormal basis

{fτ}τ∈T for K.

Every A ∈ A⊗L(K) has a matrix (aτµ)τ,µ∈T with respect to {fτ}τ∈T and, by

Lemma 5.1, aτµ ∈ A, for all τ, µ ∈ T . In particular, we let Si = (si
τµ)τ,µ∈T , for all

1 ≤ i ≤ p. Then, for all h1, h2 ∈ H, τ, µ ∈ T , and 1 ≤ s, t ≤ n, we have

(1H ⊗ (et ⊗̌ fµ))S∗
i (h2 ⊗ fτ ) =

∑
ν∈T

(1H ⊗ (et ⊗̌ fµ))((si
τν)

∗h2 ⊗ fν)

= (si
τµ)∗h2 ⊗ et

= ((si
τµ)∗ ⊗ 1n)(h2 ⊗ et),

for all 1 ≤ i ≤ p, and, consequently

p∑
i=1

〈(si
τµ ⊗ 1n)Ti(h1 ⊗ es), h2 ⊗ et〉 =

p∑
i=1

〈Ti(h1 ⊗ es), ((s
i
τµ)∗ ⊗ 1n)(h2 ⊗ et)〉

=

p∑
i=1

〈Ti(h1 ⊗ es), (1H ⊗ (et ⊗̌ fµ))S∗
i (h2 ⊗ fτ )〉

=

p∑
i=1

〈Si(1H ⊗ (fµ ⊗̌ et))Ti(h1 ⊗ es), h2 ⊗ fτ 〉

=0.



44

Since {Ti}p
i=1 is linearly independent with respect to A⊗C1n, si

τµ = 0, for all 1 ≤ i ≤ p

and τ, µ ∈ T , and, therefore, Si = 0, for all 1 ≤ i ≤ p.

If m > 1 and 0 ≤ r < m, we fix A1, . . . , Am−r−1 ∈ A and let the matrix of

φi(A1, . . . , Am−r−1) with respect to {fτ}τ∈T be (si
τµ)τ,µ∈T , for all 1 ≤ i ≤ p. The

preceding calculation shows that

p∑
i=1

〈(si
τµ ⊗ 1n)ψi(B1, . . . , Br)(h1 ⊗ es), h2 ⊗ et〉 = 0,

for all τ, µ ∈ T , h1, h2 ∈ H, 1 ≤ s, t ≤ n, and B1, . . . , Br ∈ B. Because {ψi}p
i=1 are

linearly independent over A ⊗ C1n, we conclude that φi(A1, . . . , Am−r−1) = 0, for all

1 ≤ i ≤ p. Since A1, . . . , Am−r−1 ∈ A were arbitrary, φi = 0, for all 1 ≤ i ≤ p, and

the proof is complete.

Note that the proof of Lemma 5.4 does not require that A be maximal. In certain

calculations, we shall replace A by a von Neumann subalgebra of A. More precisely,

the following lemma will be applicable.

Lemma 5.5. Let 0 ≤ r ≤ m, let t ∈ N, and let p ∈ A be a projection. Suppose

φi : A×· · ·×A → A⊗L(K) is a (m−r−1)-linear map and ψi : B×· · ·×B → Mn(A)

is a r-linear map, for all 1 ≤ i ≤ t. If {ψi}t
i=1 is linearly independent with respect to

(p ⊗ 1n)(A ⊗ C1n) and

t∑
i=1

φi(A1, . . . , Am−r−1)Uψi(B1, . . . , Br) = 0,

for all A1, . . . , Am−r−1 ∈ A, U ∈ A⊗∗L(Cn,K), and B1, . . . , Br ∈ B, then (p⊗1K)φi =

0, for all 1 ≤ i ≤ t. A similar statement is true if {φi}t
i=1 is linearly independent

with respect to (p ⊗ 1K)(A ⊗ C1K).

By Proposition 5.2 and Lemma 5.3, every ρ ∈ Zm(A ∗ B,A⊗L(Cn ⊕ K)) is a
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linear combination of maps of the form

(5.4)

ρ(X1, . . . , Xm) =


 β(B1, . . . , Bm) 0

φ(A1, . . . Am−r−1)Um−rψ(Bm−r+1, . . . , Bm) α(A1, . . . , Am)


 ,

where 0 ≤ r < m and X1, . . . , Xm ∈ A ∗ B. The coboundaries of the constituent

elements of ρ were calculated separately by Gilfeather and Smith [14] and recorded

in a table that we reproduce for the sake of reference. Each coboundary in Table I is

evaluated at X1, . . . , Xm+1 ∈ A ∗ B.

Table I. Cochains and Their Coboundaries

ρ ∂ρ
β(B1, . . . , Bm) 0

0 0





(∂β)(B1, . . . , Bm+1) 0

U1β(B2, . . . , Bm+1) 0





 0 0

φUm−rψ 0





 0 0

(∂φ)Um−r+1ψ + (−1)m−r+1φUm−r(∂ψ) 0





0 0

0 α(A1, . . . , Am)





 0 0

(−1)m+1α(A1, . . . , Am)Um+1 ∂α




We now demonstrate that every cocycle in Zn(A∗B,A⊗L(Cn⊕K)) is equivalent

to a cocycle with zeros on the diagonal.

Proposition 5.6. Let ρ ∈ Zm(A ∗ B,A⊗L(Cn ⊕ K)). Then there is an equivalent

cocycle ζ ∈ Zm(A ∗ B,A⊗L(Cn ⊕K)) of the form

(5.5) ζ(X1, . . . , Xm) =


 0 0∑m

j=1 γj(A1, . . . , Am−j, Um−j+1, Bm−j+2, . . . , Bm) 0


 ,
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where X1, . . . , Xm ∈ A ∗ B. Furthermore, γj satisfies (5.2), for all 1 ≤ j ≤ m.

Proof. We begin by applying Proposition 5.2 to ρ and, using the notation in (5.1), we

evaluate (∂ρ)(X1, . . . , Xm+1), where Xj ∈ A∗B and Bj = 0, for all 1 ≤ j ≤ m+1. By

Lemma 5.3, we may assume that σ1(A1, . . . , Am−1, Um) =
∑`

i=1 φi(A1, . . . , Am−1)Umψi,

where φi : A×· · ·×A → A⊗L(K) and ψi ∈ Mn(A), for all 1 ≤ i ≤ `. Then, applying

Table I, the (2,1) entry of (∂ρ)(X1, . . . , Xm+1) is

(5.6)
∑̀
i=1

(∂φi)(A1, . . . , Am)Um+1ψi + (−1)m+1α(A1, . . . , Am)Um+1(1H ⊗ 1n) = 0.

Now let N be the ultraweakly closed submodule of Mn(A) over A⊗C1n generated

by 1H⊗1n and {ψi}`
i=1. By Theorem 3.11, there exist pairwise orthogonal projections

{pj}t
j=1 such that

∑t
j=1 pj = 1H and (pj ⊗ 1n)N is a free module of finite type over

(pj ⊗ 1n)(A ⊗ C1n), for all 1 ≤ j ≤ t.

Choose j0 such that 1 ≤ j0 ≤ t and multiply (5.6) on the right by (pj0 ⊗ 1n).

We may assume, by redefining {φi}`
i=1, if necessary, that {(pj0 ⊗ 1n)ψi}`

i=1 is a basis

for (pj0 ⊗ 1n)N over (pj0 ⊗ 1n)(A ⊗ C1n) and ψ1 = pj0 ⊗ 1n. Then, by Lemma

5.5, (pj0 ⊗ 1K)(∂φ1 + (−1)m+1α) = 0. Since j0 was arbitrary, we conclude that

∂φ1 + (−1)m+1α = 0.

Hence, if we let ξ =
(

0 0
0 (−1)m+1φ1

)
and replace ρ with η = ρ + ∂ξ, then η is an

equivalent cocycle to ρ for which α = 0. By Table I, η retains the form of (5.1)

and the maps in the (2,1) entry of η satisfy (5.2). A similar calculation allows us to

replace η with an equivalent cocycle ζ having the same form as (5.1) and such that

α = β = 0.
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B. The First Cohomology Groups of A ∗ B

Notation 5.4. Having chosen B to be a algebra of matrices with entries in A rather

than C necessitates corresponding changes to the various coefficient spaces involved

in our calculations. In particular, all multilinear maps on A ∗ B will take values

in A⊗L(Cn ⊕ K), all multilinear maps on A will take values in A⊗L(K), and all

multilinear maps on B will take values in Mn(A). The coefficient spaces will be

omitted from future notation, for brevity.

These new coefficient spaces are all bimodules over A and type I von Neumann

algebras whose respective centers are ∗-isomorphic to A. For example, Mn(A) is a

bimodule over A, if the module action is defined as

a · A = (a ⊗ 1n)A = A(a ⊗ 1n) = A · a,

for all a ∈ A and A ∈ Mn(A). Similarly, the spaces of m-linear maps Lm(B) and

cohomology groups Hm(B) become bimodules over A, if we let

(a · ρ)(B1, . . . , Bm) = (a ⊗ 1n)(ρ(B1, . . . , Bm))

= (ρ(B1, . . . , Bm))(a ⊗ 1n)

= (ρ · a)(B1, . . . , Bm),

for all a ∈ A, ρ ∈ Lm(B), and B1, . . . , Bm ∈ B. This action is well defined on Hm(B),

because a · (∂ρ) = ∂(a · ρ), for all a ∈ A and ρ ∈ Lm(B).

We shall express the cohomology groups of A ∗ B as the tensor product of A-

bimodules which will be denoted ⊗A in contrast to the tensor product of complex

vector spaces which we continue to denote by ⊗.

The results of the previous section demonstrate that cocycles on A ∗ B taking

values in A⊗L(Cn ⊕ K) have a particularly simple form. We use it to determine
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the cohomology groups of A ∗ B. While our calculations are based upon those of

Gilfeather and Smith [14], in general, additional work is required.

Theorem 5.7. H0(A ∗ B) = A ⊗ (1n ⊕ 1K) ∼= A.

Proof. Since A∗B contains the abelian algebra (A⊗C1n)⊕C1A, every Y ∈ H0(A∗B)

must have the form Y = T ⊕ S, where T ∈ Mn(A) and S ∈ A⊗L(K). Let {ej}n
j=1

be the canonical basis for C
n, let {fµ}µ∈M be an orthonormal basis for K, and let

X ∈ A ∗ B, where A = B = 0, k ∈ K, x ∈ C
n, and U = 1H ⊗ (k ⊗̌ x). Then

XY − Y X =


 0 0

(1H ⊗ (k ⊗̌x))T − S(1H ⊗ (k ⊗̌x)) 0


 = 0.

Let T = (tij)
n
i,j=1 be the matrix of T with respect to {ej}n

j=1 and let S = (sτµ)τ,µ∈M

be the matrix of S with respect to {fµ}µ∈M . In component form, the (2,1) entry of

XY becomes

〈(1H ⊗ (fµ ⊗̌ ei))T (h1 ⊗ ej), h2 ⊗ fτ 〉 = 〈tijh1 ⊗ fµ, h2 ⊗ fτ 〉

= δτµ〈tijh1, h2〉,

for all h1, h2 ∈ H, τ, µ ∈ M , and 1 ≤ i, j ≤ n, while the (2,1) entry of Y X is

〈S(1H ⊗ (fµ ⊗̌ ei))(h1 ⊗ ej), h2 ⊗ fτ 〉 = δij

∑
ν∈M

〈sνµh1 ⊗ fν , h2 ⊗ fτ 〉

= δij〈sτµh1, h2〉.

Apparently, if i 6= j (respectively, τ 6= µ), then tij = 0 (respectively, sµτ = 0). On the

other hand, when i = j and τ = µ, tii = sµµ = a ∈ A, for all 1 ≤ i ≤ n and µ ∈ M .

Thus, T = a ⊗ 1n, S = a ⊗ 1K, and Y = a ⊗ (1n ⊕ 1K).

A cocycle ρ ∈ Z1(A ∗ B) is known as a derivation, because the cocycle equation

reads ρ(X1X2) = X1ρ(X2) + ρ(X1)X2, for all X1, X2 ∈ A ∗ B. In every equivalence
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class of H1(A ∗ B), we now show that there is a derivation defined by an element of

Z0(A) ⊗A Z0(B).

Lemma 5.8. Every derivation ρ ∈ Z1(A ∗ B) is equivalent to one of the form

(5.7) ρ(X) =


 0 0∑p

i=1 SiUTi 0


 ,

where X ∈ A ∗ B, S1, . . . , Sp ∈ Z0(A), and T1, . . . , Tp ∈ Z0(B).

Proof. By Proposition 5.6 and Lemma 5.3, we may assume, for all X ∈ A ∗ B, that

ρ(X) =


 0 0∑p

i=1 SiUTi 0


 ,

where S1, . . . , Sp ∈ A⊗L(K) and T1, . . . , Tp ∈ Mn(A). It only remains to show that

S1, . . . , Sp ∈ A′, and T1, . . . , Tp ∈ B′.

Assume that both B′ and (B′)⊥ are free modules of finite type over A⊗C1n and

assume there exists 1 ≤ s < p such that {Ti}s
i=1 (respectively {Ti}p

i=s+1) is a basis for

B′ (respectively (B′)⊥) over A ⊗ C1n. Clearly, ∂Ti = 0, for all 1 ≤ i ≤ s. Suppose

that
∑p

i=s+1(ai ⊗ 1n)∂Ti = 0, where ai ⊗ 1n ∈ A ⊗ C1n, for all s + 1 ≤ i ≤ p. Since

A ⊗ C1n ⊆ Mn(A)′, we have

p∑
i=s+1

(ai ⊗ 1n)∂Ti = ∂

(
p∑

i=s+1

(ai ⊗ 1n)Ti

)
= 0,

so
∑p

i=s+1(ai ⊗ 1n)Ti ∈ B′ ∩ (B′)⊥. Then
∑p

i=s+1(ai ⊗ 1n)Ti = 0 and the linear

independence of {Ti}p
i=s+1 implies that ai ⊗ 1n = 0, for all s + 1 ≤ i ≤ p. Hence,

{∂Ti}p
i=s+1 is a linearly independent set over A ⊗ C1n.

We now calculate the coboundary equation for ρ. For all X1, X2 ∈ A ∗ B, the
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(2,1) entry of (∂ρ)(X1, X2) is

(5.8)
s∑

i=1

(∂Si)(A1)U2Ti +

p∑
i=s+1

(∂Si)(A1)U2Ti +

p∑
i=s+1

SiU1(∂Ti)(B2) = 0,

by Table I. In particular, if U2 = 0, then
∑p

i=s+1 SiU1(∂Ti)(B2) = 0 and Lemma 5.4

implies that Si = 0, for all s+1 ≤ i ≤ p. Since (5.8) now reduces to
∑s

i=1(∂Si)(A1)U2Ti =

0, another application of Lemma 5.4 demonstrates that ∂Si = 0 — that is, Si ∈ A′,

for all 1 ≤ i ≤ s.

In general, both B′ and (B′)⊥ are ultraweakly closed submodules of Mn(A) over

A⊗C1n. By Corollary 3.12, there is the set of pairwise orthogonal projections {pi}t
i=0

in A such that
∑t

i=0 pi = 1H and both (pi ⊗1n)B′ and (pi ⊗1n)(B′)⊥ are free modules

of finite type over (pi ⊗ 1n)(A ⊗ C1n), for all 0 ≤ i ≤ t. Hence, we may assume

that {Ti}p
i=1 generates Mn(A) over A ⊗ C1n and, for all 0 ≤ j ≤ t, there exist

1 ≤ r(j) ≤ s(j) ≤ p such that {(pj ⊗ 1n)Ti}r(j)
i=1 (respectively {(pj ⊗ 1n)Ti}p

i=s(j)+1)

is a basis for (pj ⊗ 1n)B′ (respectively (pj ⊗ 1n)(B′)⊥) over (pj ⊗ 1n)(A ⊗ C1n) and

(pj ⊗ 1n)Ti = 0, for all r(j) + 1 ≤ i ≤ s(j).

Now choose j0 such that 0 ≤ j0 ≤ t. Multiply the (2, 1) entry of the coboundary

equation on the right by pj0 ⊗ 1n to obtain
r(j0)∑

i=1

(∂Si)(A1)U2Ti +

p∑
i=s(j0)+1

(∂Si)(A1)U2Ti +

p∑
i=s(j0)+1

SiU1(∂Ti)(B2)


 (pj0⊗1n) = 0.

Then, by Lemma 5.5, the preceding calculations prove that (pj0 ⊗ 1K)Si ∈ A′, for all

1 ≤ i ≤ r(j0), and, moreover, (pj0 ⊗ 1K)Si = 0, for all s(j0) + 1 ≤ i ≤ p. Since

p∑
i=1

SiU(pj0 ⊗ 1n)Ti =

r(j0)∑
i=1

SiU(pj0 ⊗ 1n)Ti

and U =
∑t

i=0 U(pi ⊗ 1n), for all U ∈ A ⊗∗ L(Cn,K), we may replace Si with

Si − (pj0 ⊗ 1K)Si, for all r(j0) + 1 ≤ i ≤ s(j0), without changing ρ(X). Because j0
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was arbitrary, we conclude that Si ∈ A′ and Ti ∈ B′, for all 1 ≤ i ≤ p.

Lemma 5.8 defines a surjective map from Z0(A)⊗AZ0(B) onto H1(A∗B). The

majority of the work in the proof of the next theorem is in calculating the kernel of

this map.

Theorem 5.9. H1(A ∗ B) ∼= H0(A)/(A ⊗ C1K) ⊗A H0(B)/(A ⊗ C1n).

Proof. It is clear, by Table I, that any linear map ρ ∈ L1(A ∗ B) of the form (5.7) is

a derivation on A ∗ B. We define a A-bilinear map φ : Z0(A) ⊕ Z0(B) → Z1(A ∗ B)

by

φ(S, T )(X) =


 0 0

SUT 0


 ,

for all (S, T ) ∈ Z0(A)⊕Z0(B) and X ∈ A∗B. If π : Z0(A)⊕Z0(B) → Z0(A)⊗AZ0(B)

is the canonical map, then, by the universal property of the tensor product, there

exists a unique A-linear map φ̃ : Z0(A)⊗AZ0(B) → Z1(A∗B) making the following

diagram commute.

Z0(A) ⊕Z0(B)
π //

φ

²²

Z0(A) ⊗A Z0(B)

φ̃uukkkkkkkkkkkkkk

Z1(A ∗ B)

Let π̃ : Z1(A ∗ B) → H1(A ∗ B) be the canonical projection and let ψ = π̃ ◦ φ̃. By

Lemma 5.8, ψ is surjective and we now calculate its kernel.

Recall that every ξ ∈ B1(A ∗ B) is spacially implemented by an operator Y ∈

A⊗L(Cn ⊕ K) — that is, ξ(X) = XY − Y X, for all X ∈ A ∗ B. If, additionally,

ξ ∈ φ̃(Z0(A)⊗A Z0(B)), then ξ vanishes on B ⊕A, so Y must be of the form T ⊕ S,
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where T ∈ Z0(B) and S ∈ Z0(A). Then

ξ(X) =


 0 0

UT − SU 0


 ,

for all X ∈ A∗B, and ξ = φ̃(1A⊗AT−S⊗A1B). Thus, φ̃(Z0(A)⊗AZ0(B))∩B1(A∗B) ⊆

φ̃(Z0(A)⊗A1B +1A⊗AZ0(B)). Since Table I implies the other inclusion, we conclude

that φ̃(Z0(A) ⊗A Z0(B)) ∩ B1(A ∗ B) = φ̃(Z0(A) ⊗A 1B + 1A ⊗A Z0(B)).

Now suppose that D ∈ ker(φ̃) and D =
∑`

i=1 Si ⊗A Ti, where Si ∈ Z0(A) and

Ti ∈ Z0(B), for all 1 ≤ i ≤ `. By Theorem 3.11, there exist pairwise orthogonal

projections {pj}t
j=0 in A such that

∑t
j=0 pj = 1 and (pj ⊗ 1n)Z0(B) is a free module

of finite type over (pj ⊗ 1n)(A ⊗ C1n), for all 0 ≤ j ≤ t. Consequently, we may

assume that {Ti}`
i=1 generates Z0(B) over A ⊗ C1n and there exist {kj}t+1

j=0 such

that 0 = k0 ≤ · · · ≤ kt+1 = ` and {Ti}kj+1

i=kj+1 is a basis for (pj ⊗ 1n)Z0(B) over

(pj ⊗ 1n)(A ⊗ C1n), for all 0 ≤ j ≤ t. Since

φ̃(D)


 0 0

U(pj ⊗ 1n) 0


 =


 0 0∑kj+1

i=kj+1 SiUTi 0


 = 0,

for all 0 ≤ j ≤ t and U ∈ A ⊗∗ L(Cn,K), Lemma 5.5 implies that (pj ⊗ 1K)Si = 0,

for all kj + 1 ≤ i ≤ kj+1 and 0 ≤ j ≤ t. Thus, φ̃ is injective and because φ̃(ker(ψ)) =

φ̃(Z0(A) ⊗A Z0(B)) ∩ B1(A ∗ B), ker(ψ) = Z0(A) ⊗A 1B + 1A ⊗A Z0(B).

We let π̂ : Z0(A) ⊗A Z0(B) → Z0(A) ⊗A Z0(B)/ ker(ψ) denote the canonical

projection. By the first isomorphism theorem in algebra, there is an isomorphism

ψ̂ : (Z0(A)⊗AZ0(B))/ ker(ψ) → H1(A∗B) making the following diagram commute.

Z0(A) ⊗A Z0(B)

ψ

²²

π̂ // Z0(A) ⊗A Z0(B)/ ker(ψ)

ψ̂ttiiiiiiiiiiiiiiiii

H1(A ∗ B)
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We use the universal property of the tensor product to define linear maps ω :

Z0(A) ⊗A Z0(B) → Z0(A)/(A ⊗ C1K) ⊗A Z0(B)/(A ⊗ C1n) and σ : Z0(A)/(A ⊗

C1K) ⊗A Z0(B)/(A ⊗ C1n) → (Z0(A) ⊗A Z0(B))/ ker(ψ) by a ⊗A b 7→ (a + A ⊗

C1K) ⊗A (b + A ⊗ C1n) and (a + A ⊗ C1K) ⊗A (b + A ⊗ C1n) 7→ (a ⊗A b) + ker(ψ),

respectively. Note that σ ◦ ω = π̂ and our diagram then reads

Z0(A) ⊗A Z0(B)
ω //

ψ

²²

(Z0(A)/A ⊗ C1K) ⊗A (Z0(B)/A ⊗ C1n)

σ

²²

H1(A ∗ B) Z0(A) ⊗A Z0(B)/ ker(ψ)
ψ̂

oo

We complete the proof by showing σ is an isomorphism. Since σ is clearly linear

and surjective, it only remains to show that σ is injective. Suppose σy = 0 for some

y ∈ Z0(A)/(A ⊗ C1K) ⊗A Z0(B)/(A ⊗ C1n). Because ω is surjective, there exists

x ∈ Z0(A) ⊗A Z0(B) such that ωx = y. Now π̂x = (σ ◦ ω)x = 0, so x ∈ ker(ψ) =

Z0(A) ⊗A 1B + 1A ⊗A Z0(B) ⊆ ker(ω). Then y = ωx = 0.

There are several key elements in the calculation of H1(A∗B) that are important

to note. Observe that Z0(B) = B′ is complemented in L0(B) = Mn(A). Additionally,

there is a set of pairwise orthogonal projections {pi}t
i=1 in A⊗C1n such that

∑t
i=1 pi =

1H and both (pi ⊗ 1n)B′ and (pi ⊗ 1n)(B′)⊥ are free modules of finite type over

(pi ⊗ 1n)(A ⊗ C1n), for all 1 ≤ i ≤ t. Before proceeding with the calculations of the

higher cohomology groups, we must establish that Zm(B) is complemented in Lm(B),

for m ≥ 1.

C. Multilinear Maps on B

By Theorem 3.11, there exists a set of pairwise orthogonal projections {pi}t
i=1 in

A such that
∑t

i=1 pi = 1H and Bi = (pi ⊗ 1n)B is a free module of finite type over
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(pi⊗1n)(A⊗C1n), for all 1 ≤ i ≤ t. We fix a basis {Bi
j}`i

j=1 for Bi over (pi⊗1n)(A⊗C1n)

that is annihilated by 1− pi ⊗ 1n and commence our study of multilinear maps on B.

We may only consider maps in Lm(B,Mn(A) : A), by Theorem 4.4, and we will

identify Lm(B,Mn(A) : A) with sums of multilinear arrays with entries from Mn(A).

For all `,m ≥ 1, the space of m-dimensional arrays A = (Ai1,...,im)`
i1,...im=1 with entries

from Mn(A) will be denoted A`,m(Mn(A)) and we define A`,0(Mn(A)) to be Mn(A).

We identify A`,m(Mn(A)) with the von Neumann algebra
⊕`m

i=1 Mn(A) of `m copies of

Mn(A). Then there is a canonical norm topology on A`,m(Mn(A)) and convergence

is entrywise in the operator norm on Mn(A). Furthermore, the weak* topology on

Mn(A) imposes a weak* topology on A`,m(Mn(A)) and weak* convergence is also

entrywise.

Recall that Lm(B) is the dual space of B ⊗̂π · · · ⊗̂π B ⊗̂π Mn(A)∗, where there are

m copies of B and Mn(A)∗ is the predual of Mn(A). The duality is defined by

〈B1 ⊗ · · · ⊗ Bm ⊗ A, ρ〉 = 〈A, ρ(B1, . . . , Bm)〉,

for all B1, . . . , Bm ∈ B and A ∈ Mn(A)∗, and Lm(B,Mn(A) : A) is weak* closed. We

shall revisit the theory of C∗-modules where the weak* topology plays an important

role.

Lemma 5.10. There is a correspondence Lm(Bi,Mn(piA) : A) ∼= A`i,m(Mn(piA)),

for all m > 0 and 1 ≤ i ≤ t, that is homogeneous with respect to A⊗C1n and a weak*

homeomorphism.

Proof. Let 1 ≤ i0 ≤ t be fixed and let ρ ∈ Lm(Bi0 ,Mn(pi0A) : A). Define Aρ
i1,...,im

=

ρ(Bi0
i1

, . . . , Bi0
im

), for all 1 ≤ i1, . . . , im ≤ `i0 , and let Aρ = (Aρ
i1,...,im

)
`i0
i1,...,im=1. The

mapping ϕi0 : Lm(Bi0 ,Mn(pi0A) : A) → A`i0
,m(Mn(pi0A)) defined by ρ 7→ Aρ is an
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isomorphism of Banach spaces that is homogeneous with respect to A⊗C1n. Because

〈Bi0
i1
⊗ · · · ⊗ Bi0

im
⊗ A∗, ρ〉 = 〈A∗, ρ(Bi0

i1
, . . . , Bi0

im
)〉 = 〈A∗, A

ρ
i1,...,im

〉,

for all 1 ≤ i1, . . . , im ≤ `i0 and A∗ ∈ Mn(A)∗, it is evident that ϕi0 is weak* continuous.

Then ϕi0 is a weak* homeomorphism [4, Theorem 2.7].

As with the Hilbert spaces on which they are modelled, the direct sum of C∗-

modules {Mi}p
i=1 over A is also a C∗-module over A. The inner product is defined

as the sum of the inner products of the components and, hence, norm convergence in⊕p
i=1 Mi is equivalent to convergence in each component. In particular, A`,m(Mn(A))

is a direct sum of C∗-modules and, by Lemma 3.2, the operator norm on A`,m(Mn(A))

is equivalent to the norm induced by its inner product. The theorems of Chapter III

remain valid for submodules of A`,m(Mn(A)) and we use these theorems to calculate

the remaining cohomology groups of the join.

D. The Higher Cohomology Groups of A ∗ B

As in the previous sections, it will often suffice to consider the case where p is a

projection in A and (p⊗1n)B is a free module of finite type over (p⊗1n)(A⊗C1n). We

may also assume that various weak* closed modules of multilinear maps on (p⊗1n)B

are free over (p ⊗ 1n)(A ⊗ C1n) of finite type. This is possible because only a finite

number of steps are involved in the calculation of any particular cohomology group

and we may refine a given partition of 1H at each step in such a way that every

module involved in our calculation is a free module of finite type.

Notation 5.5. By Theorem 4.4, the cohomology of B is determined by the cochains

that are homogeneous with respect to A ⊗ C1n. Furthermore, by Proposition 5.3,

the multilinear maps on B that will appear in the calculation of Hm(A ∗ B) are also
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homogeneous with respect to A ⊗ C1n. It will suffice, therefore, to consider cochains

in Lm(B,Mn(A) : A) and we let Lm(B) = Lm(B,Mn(A) : A). Analogous notation

will be used for cocycles, coboundaries, and cohomology groups.

Apply Theorem 3.11 to B to obtain a set of pairwise orthogonal projections

{pi}t
i=1 in A such that

∑t
i=1 pi = 1H and Bi = (pi ⊗ 1n)B is a free module of finite

type over (pi ⊗ 1n)(A⊗C1n), for all 1 ≤ i ≤ t. We let Lm(Bi) = Lm(Bi,Mn(piA) : A)

and we identify Lm(Bi) with (pi⊗1n)Lm(B), for all 1 ≤ i ≤ t. Observe that Lm(B) ∼=⊕t
i=1 Lm(Bi).

Now let 1 ≤ i0 ≤ t be fixed. Following the procedure of Gilfeather and Smith

[14], we define a sequence of bases for Lm(Bi0), for all m ≥ 0.

It is clear from the definition of the coboundary map that Zm(Bi0) is a weak*

closed submodule of Lm(Bi0), for all m ≥ 0. By Lemma 5.10, we identify Lm(Bi0)

with a W ∗-module of arrays with entries in pi0A. Then, by Theorem 3.5, Zm(Bi0)

has a weak* closed complement Zm(Bi0)
⊥ in Lm(Bi0). We assume that both Zm(Bi0)

and Zm(Bi0)
⊥ are free modules of finite type over (pi0 ⊗ 1n)(A⊗C1n), for all m ≥ 0,

as discussed above. For m = 0, let {ψi0
0,2,j} be a basis for Z0(Bi0) such that ψi0

0,2,1 =

pi0 ⊗ 1n and let {ψi0
0,3,j} be a basis for Z0(Bi0)

⊥. If ψi0
1,1,j = ∂ψi0

0,3,j, for all j, then

{ψi0
1,1,j} is a basis for B1(Bi0) over (pi0 ⊗ 1n)(A⊗C1n). By Remark 3.13 and Theorem

3.15, there is a linearly independent set {ψi0
1,2,j} in Z1(Bi0) such that {ψi0

1,1,j}∪{ψi0
1,2,j}

is a basis for Z1(Bi0). Similarly, for all m ≥ 1, we construct bases for Zm(Bi0)
⊥ and

Zm+1(Bi0).

Having obtained bases for Bm(Bi), Zm(Bi), and Zm(Bi)
⊥, for all m ≥ 0 and

1 ≤ i ≤ t, we combine them to form generating sets for Bm(B), Zm(B), and Zm(B)⊥.

For all 1 ≤ ` ≤ 3, m ≥ 0, and for all j, let ψi
m,`,j = 0 when ψi

m,`,j has not been

defined already and let ψm,`,j =
∑t

i=1 ψi
m,`,j. Note, in particular, that ψ0,2,1 = 1B.
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With generating sets of this form in hand, we may further simplify the cocycle in

Proposition 5.6. Our decomposition is the same as that of Gilfeather and Smith [14,

Proposition 4.2] and is the analogue of Lemma 5.8, for m ≥ 2.

Lemma 5.11. Let ρ ∈ Zm(A ∗ B) and m ≥ 1. Then there is an equivalent cocycle

of the form

(5.9) ζ(X1, . . . , Xm) =


 0 0∑m−1

i=0

∑
j φi,2,jUm−iψi,2,j 0


 ,

where φi,2,j ∈ Zm−i−1(A), for all 0 ≤ i ≤ m − 1 and all j. Moreover, φ0,2,1 = 0 and

(ps ⊗ 1K)φi,2,j = 0, whenever (ps ⊗ 1n)ψi,2,j = 0, for all 1 ≤ s ≤ t.

Proof. By Proposition 5.3 and Proposition 5.6, every cocycle in Zm(A ∗ B) is equiv-

alent to a cocycle of the form

ρ(X1, . . . , Xm) =


 0 0∑m−1

i=0

∑3
k=1

∑
j φi,k,jUm−iψi,k,j 0


 ,

where φi,k,j ∈ Lm−i−1(A), for all i, j, k. We may assume, without loss of generality,

that (ps ⊗ 1K)φi,k,j = 0, whenever (ps ⊗ 1n)ψi,k,j = 0, for all 1 ≤ s ≤ t. By Table I,

the (2, 1) entry of (∂ρ)(X1, . . . , Xm+1) is

(5.10)
∑
i,k,j

∂φi,k,jUm−i+1ψi,k,j +
∑
i,j

(−1)m−i+1φi,3,jUm−iψi+1,1,j = 0.

First let 1 ≤ s0 ≤ t, multiply (5.10) by (ps0⊗1n) on the right, and let Um−i+1 = 0,

for all 0 ≤ i ≤ m − 1. Then we have

∑
j

φm−1,3,jU1ψm,1,j(ps0 ⊗ 1n) = 0

and, by Lemma 5.5, (ps0 ⊗ 1K)φm−1,3,j = 0, for all j. Similarly, if 1 ≤ i0 ≤ m− 1 and
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Um−i+1 = 0, for all i 6= i0, then

∑
k,j

∂φi0,k,jUm−i0+1ψ
s0
i0,k,j +

∑
j

(−1)m−i0φi0−1,3,jUm−i0+1ψ
s0
i0,1,j = 0.

By Lemma 5.5, (ps0 ⊗ 1K)∂φi0,2,j = 0, (ps0 ⊗ 1K)∂φi0,3,j = 0 and (ps0 ⊗ 1K)(∂φi0,1,j +

(−1)m−i0φi0−1,3,j) = 0, for all j. Finally, if Um−i = 0, for all 0 ≤ i ≤ m − 1, then

(5.10) becomes ∑
j,k

∂φ0,k,jUm+1ψ0,k,j(ps0 ⊗ 1n) = 0.

and, by Lemma 5.5, (ps0 ⊗ 1K)∂φ0,k,j = 0, for all j, k = 2, and k = 3. Since s0 was

arbitrary, we have the following relations.

(i) φi,2,j ∈ Zm−i−1(A), for all 0 ≤ i ≤ m − 1 and all j.

(ii) φi,3,j ∈ Zm−i−1(A), for all 0 ≤ i ≤ m − 1 and all j.

(iii) ∂φi,1,j = (−1)m−i+1φi−1,3,j, for all 1 ≤ i ≤ m − 1 and all j.

(iv) φm−1,3,j = 0, for all j.

The non-zero terms involving φi,1,j and φi,3,j may be subtracted from ρ by adding

a coboundary, because (iii) and Table I imply that

∂


 0 0

(−1)m−i+1φi,1,jUm−iψi−1,3,j 0




=


 0 0

(−1)m−i+1∂φi,1,jUm−i+1ψi−1,3,j 0


 +


 0 0

φi,1,jUm−i∂ψi−1,3,j 0




=


 0 0

φi−1,3,jUm−i+1ψi−1,3,j 0


 +


 0 0

φi,1,jUm−iψi,1,j 0


 ,

for all 1 ≤ i ≤ m − 1 and all j. Hence, if we let ξi,j = (−1)m−i
(

0 0
φi,1,jUm−iψi−1,3,j 0

)
,

then ζ = ρ +
∑

i,j ∂ξi,j has the required form.
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Now suppose that φ0,2,1 6= 0 and let η = (−1)m+1
(

0 0
0 φ0,2,1

)
. Then, since ∂φ0,2,1 =

0 and ψ0,2,1 = 1B, Table I shows that ζ + ∂η satisfies all of the conditions in the

statement of the lemma.

Having defined, in essence, a surjective map from
⊕m−1

i=0 Z i(A) ⊗A Zm−i−1(B)

onto Hm(A ∗ B), we now calculate its kernel.

Lemma 5.12. Let ρ ∈ Zm+1(A ∗ B), let m ≥ 1, and suppose that ρ has the form

specified in Lemma 5.11. Then ρ ∈ Bm+1(A ∗ B) if and only if φm,2,j ∈ A ⊗ C1K and

φi,2,j ∈ Bm−i(A), for all 0 ≤ i ≤ m − 1 and all j.

Proof. Suppose, for all 0 ≤ i ≤ m−1 and all j, φm,2,j = aj⊗1K and φi,2,j = ∂ξi,j, where

aj ∈ A and ξi,j ∈ Lm−i−1(A). Then ρ =
∑

j ∂
(

(aj⊗1n)ψm,2,j 0
0 0

)
+

∑
i,j ∂

(
0 0

ξi,jUm−iψi,2,j 0

)
.

Conversely, suppose that ρ = ∂ξ, where ξ ∈ Lm(A∗B). By Theorem 4.2, we may

assume that ξ vanishes whenever any of its entries is in (A ⊗ C1n) ⊕ C1A. Although

it is stated for cocycles, Proposition 5.2 applies to ξ in a weaker form. Combining its

decomposition with Lemma 5.3, we assume that

ξ(X1, . . . Xm) =


 β(B1, . . . , Bm) 0∑m−1

i=0

∑3
k=1

∑
j ξi,k,jUm−iψi,k,j α(A1, . . . , Am)


 ,

where α ∈ Lm(A), β ∈ Lm(B), and ξi,k,j ∈ Lm−i−1(A), for all i, j, k. We also assume

that (ps ⊗ 1K)ξi,k,j = 0, whenever (ps ⊗ 1n)ψi,k,j = 0, for all 1 ≤ s ≤ t. Since ∂ξ = ρ,

Table I implies that α ∈ Zm(A), β ∈ Zm(B), and

(5.11)
∑
i,k,j

∂ξi,k,jUm−i+1ψi,k,j + (−1)m+1αUm+11B + 1AU1β =
∑
i,j

φi,2,jUm−i+1ψi,2,j.

First let β =
∑

j(βj ⊗ 1n)ψm,2,j, where βj ∈ A, for all j. The coefficients {βj}

are unique, if we insist that psβj = 0, whenever (ps ⊗ 1n)ψm,2,j = 0, for all 1 ≤ s ≤ t.

We repeat the procedure in the proof of Lemma 5.11. Let 1 ≤ s0 ≤ t, multiply (5.11)
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on the right by ps0 ⊗ 1n, and let Ui = 0, for all 2 ≤ i ≤ m + 1. Then (5.11) reads

∑
j

(βj ⊗ 1K)U1ψm,2,j(ps0 ⊗ 1n) =
∑

j

φm,2,jU1ψm,2,j(ps0 ⊗ 1n).

By Lemma 5.5, (ps0⊗1K)φm,2,j = (ps0⊗1K)(βj⊗1K), for all j. Next let 1 ≤ i0 ≤ m−1

and let Um−i+1 = 0, for all i 6= i0. We obtain

∑
k,j

∂ξi0,k,jUm−i0+1ψi0,k,j(ps0 ⊗ 1n) =
∑

j

φi0,2,jUm−i0+1ψi0,2,j(ps0 ⊗ 1n)

and Lemma 5.5 implies that, for all j, (ps0 ⊗ 1K)∂ξi0,1,j = 0, (ps0 ⊗ 1K)∂ξi0,3,j = 0,

and (ps0 ⊗ 1K)φi0,2,j = (ps0 ⊗ 1K)∂ξi0,2,j. Finally, let Ui = 0, for all 1 ≤ i ≤ m, and

then (5.11) becomes

∑
k,j

∂ξ0,k,jUm+1ψ
s0
0,k,j + (−1)m+1αUm+1(ps0 ⊗ 1n) =

∑
j

φ0,2,jUm+1ψ
s0
0,2,j.

Recall that ψs0
0,2,1 = ps0 ⊗ 1n and φ0,2,1 = 0. Hence, by Lemma 5.5, (ps0 ⊗ 1K)(∂ξ0,2,1 +

(−1)m+1α) = 0, (ps0⊗1K)φ0,2,j = (ps0⊗1K)∂ξ0,2,j, for all j ≥ 2, and (ps0⊗1K)∂ξ0,3,j =

0, for all j. Because s0 was arbitrary, the following relations hold.

(i) φm,2,j ∈ A ⊗ C1K, for all j.

(ii) ∂ξi,1,j = 0, for all 1 ≤ i ≤ m − 1 and all j.

(iii) ∂ξi,3,j = 0, for all 0 ≤ i ≤ m − 1 and all j.

(iv) ∂ξ0,2,1 + (−1)m+1α = 0 and φ0,2,j = ∂ξ0,2,j, for all j ≥ 2.

(v) φi,2,j = ∂ξi,2,j, for all 1 ≤ i ≤ m − 1 and all j.

Since (i), (iv), and (v) are precisely the conditions in the statement of the lemma,

the proof is complete.

The calculation of Hm(A∗B) is now a formality, as a large majority of the work

is contained in Lemma 5.11 and Lemma 5.12.
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Theorem 5.13. For all m ≥ 2,

Hm(A ∗ B) ∼= Hm−1(A) ⊗A H0(B)/(A ⊗ C1n) ⊕ H0(A)/(A ⊗ C1K) ⊗A Hm−1(B)

m−2⊕
i=1

Hm−i−1(A) ⊗A H i(B).

Proof. Observe that B′ = Z0(B) is a W ∗-module over A ⊗ C1n and A ⊗ C1n is a

W ∗-submodule of B′. By Theorem 3.5, B′/(A ⊗ C1n) ∼= (A ⊗ C1n)⊥ and we may

choose {ψ0,2,j}j≥2 such that {ψ0,2,j}j≥2 generates (A ⊗ C1n)⊥ linearly over A ⊗ C1n.

Define a linear mapping γ0 : Zm−1(A)⊗A (A⊗C1n)⊥ → Hm(A∗B) by γ0(φ0 ⊗A

ψ0)(X1, . . . , Xm) =
(

0 0
φ0Umψ0 0

)
and let π0 : Zm−1(A) ⊗A (A ⊗ C1n)⊥ → Zm−1(A) ⊗A

(A ⊗ C1n)⊥/ ker(γ0) be the canonical projection. Then, by the first isomorphism

theorem, there is a unique injective map γ̃0 making the following diagram commute.

(5.12) Zm−1(A) ⊗A (A ⊗ C1n)⊥
π0 //

γ0

²²

Zm−1(A) ⊗A (A ⊗ C1n)⊥/ ker(γ0)

γ̃0ssggggggggggggggggggggggg

Hm(A ∗ B)

Since, by Lemma 5.12, ker(γ0) = Bm−1(A) ⊗A (A ⊗ C1n)⊥, we may define σ0 :

Hm−1(A) ⊗A (A ⊗ C1n)⊥ → Zm−1(A) ⊗A (A ⊗ C1n)⊥/ ker(γ0) by σ0(φ0 ⊗A ψ0) =

(φ0 ⊗A ψ0) + ker(γ0). If τ0 : Zm−1(A) ⊗A (A ⊗ C1n)⊥ → Hm−1(A) ⊗A (A ⊗ C1n)⊥ is

the canonical map, then σ0 ◦ τ0 = π0 and (5.12) becomes

Zm−1(A) ⊗A (A ⊗ C1n)⊥
τ0 //

γ0

²²

Hm−1(A) ⊗A (A ⊗ C1n)⊥

σ0

²²

Hm(A ∗ B) Zm−1(A) ⊗A (A ⊗ C1n)⊥/ ker(γ0)γ̃0

oo

We now show that σ0 is an isomorphism. Since σ0 is obviously linear and

surjective, it remains to show that σ0 is injective. Suppose σ0y = 0. Because

τ0 is surjective, there exists x ∈ Zm−1(A) ⊗A (A ⊗ C1n)⊥ such that τ0x = y.
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Then γ0x = (γ̃0 ◦ σ0)y = 0, so x ∈ ker(γ0) = Bm−1(A) ⊗A (A ⊗ C1n)⊥. Hence,

y = τ0x = 0 and we note, in particular, the existence of an injective mapping

Γ0 : Hm−1(A) ⊗A (Z0(B)/A ⊗ C1n) → Hm(A ∗ B) having the same image as γ0.

Suppose that 1 ≤ i0 ≤ m − 2. We define a linear mapping γi0 : Zm−i0−1(A) ⊗A

Z i0(B) → Hm(A ∗ B) by γi0(φi0 ⊗A ψi0)(X1, . . . , Xm) =
(

0 0
φi0

Um−i0
ψi0

0

)
and let πi0 :

Zm−i0−1(A)⊗AZ i0(B) → Zm−i0−1(A)⊗AZ i0(B)/ ker(γi0) be the canonical projection.

Then there exists a unique injective map γ̃i0 making the following diagram commute,

by the first isomorphism theorem.

(5.13) Zm−i0−1(A) ⊗A Z i0(B)
πi0 //

γi0

²²

Zm−i0−1(A) ⊗A Z i0(B)/ ker(γi0)

γ̃i0ssggggggggggggggggggggg

Hm(A ∗ B)

Observe that Z i0(B) ∼= Bi0(B) ⊕ Mi0 , where Mi0 is the linear span of {ψi0,2,j}

over A ⊗ C1n. By Table I, Zm−i0−1(A) ⊗A Bi0(B) ⊆ ker(γi0) and, by Lemma

5.12, (Zm−i0−1(A) ⊗A Mi0) ∩ ker(γi0) = Bm−i0−1(A) ⊗A Mi0 . Therefore, ker(γi0) =

Zm−i0−1(A) ⊗A Bi0(B) ⊕ Bm−i0−1(A) ⊗A Mi0 .

Let τi0 : Zm−i0−1(A) ⊗A Z i0(B) → Hm−i0−1(A) ⊗A H i0(B) be the quotient map

and let σi0 : Hm−i0−1(A)⊗A H i0(B) → Zm−i0−1(A)⊗AZ i0(B)/ ker(γi0) be defined by

σi0 : (φi0 ⊗A ψi0) = (φi0 ⊗A ψi0) + ker(γi0). Then σi0 ◦ τi0 = πi0 and (5.13) now reads

Zm−i0−1(A) ⊗A Z i0(B)
τi0 //

γi0

²²

Hm−i0−1(A) ⊗A H i0(B)

σi0

²²

Hm(A ∗ B) Zm−i0−1(A) ⊗A Z i0(B)/ ker(γi0)γ̃i0

oo

The same diagram chase used for σ0 shows that σi0 is an isomorphism and, hence,

Γi0 = γ̃i0 ◦ σi0 is an injective map with the same image as γi0 .

Now let γm−1 : Z0(A) ⊗A Zm−1(B) → Hm(A ∗ B) be defined by γm−1(φm−1 ⊗A

ψm−1)(X1, . . . , Xm) =
(

0 0
φm−1U1ψm−1 0

)
. If Mm−1 is the linear span of {ψm−1,2,j} over
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A ⊗ C1n, then Zm−1(B) ∼= Bm−1(B) ⊕ Mm−1. By Table I, Z0(A) ⊗A Bm−1(B) ⊆

ker(γm−1) and, by Lemma 5.12, (Z0(A)⊗AMm−1)∩ker(γm−1) = (A⊗C1K)⊗AMm−1.

Hence, ker(γm−1) = Z0(A) ⊗A Bm−1(B) ⊕ (A ⊗ C1K) ⊗A Mm−1.

Let πm−1 : Z0(A)⊗AZm−1(B) → Z0(A)⊗AZm−1(B)/ ker(γm−1) be the canonical

projection. Then, by the first isomorphism theorem, there exists a unique injective

linear map γ̃m−1 making the following diagram commute.

(5.14) Z0(A) ⊗A Zm−1(B)
πm−1

//

γm−1

²²

Z0(A) ⊗A Zm−1(B)/ ker(γm−1)

γ̃m−1sshhhhhhhhhhhhhhhhhhhh

Hm(A ∗ B)

We factor πm−1 through (Z0(A)/A⊗C1K)⊗A Hm−1(B) by defining τm−1 : Z0(A)⊗A

Zm−1(B) → (Z0(A)/A⊗C1K)⊗AHm−1(B) as the quotient map and σm−1 : (Z0(A)/A⊗

C1K)⊗AHm−1(B) → Z0(A)⊗AZm−1(B)/ ker(γm−1) by σ(φm−1⊗Aψm−1) = (φm−1⊗A

ψm−1) + ker(γm−1). Then (5.14) becomes

Z0(A) ⊗A Zm−1(B)
τm−1

//

γm−1

²²

(Z0(A)/A ⊗ C1K) ⊗A Hm−1(B)

σm−1

²²

Hm(A ∗ B) Z0(A) ⊗A Zm−1(B)/ ker(γm−1)γ̃0

oo

The same argument as for σ0 shows that σm−1 is an isomorphism and we have an

injective map Γm−1 = γ̃m−1 ◦ σm−1 with the same image as γm−1.

To complete the proof, let Γ =
⊕m−1

i=0 Γi. By Lemma 5.11, Γ is surjective and,

since Γ is clearly injective, Γ is an isomorphism.
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CHAPTER VI

CONCLUSION

Let A be an abelian von Neumann algebra acting on a Hilbert space H. An ul-

traweakly closed submodule M of Mn(A) over A ⊗ C1n exhibits properties that are

similar to a subspace of Mn(C). Kaplansky [26] showed that M is complemented

in Mn(A) and that every bounded linear functional on M is defined by an element

of M . We demonstrate in Theorem 3.11 that there are a finite number of pairwise

orthogonal projections {pi}s
i=0 in A such that

∑s
i=0 pi = 1H and (pi ⊗ 1n)M is a free

module of finite type over (pi ⊗ 1n)(A ⊗ C1n), for all 0 ≤ i ≤ t. Furthermore, if N is

an ultraweakly closed submodule of M , we prove that there exists a finite number of

pairwise orthogonal projections {qi}t
i=0 such that

∑t
i=0 qi = 1H and both (qi ⊗ 1n)M

and (qi⊗1n)N are free modules of finite type over (qi⊗1n)(A⊗C1n), for all 0 ≤ i ≤ t.

In particular, there is a finite basis for (qi ⊗ 1n)M containing a basis for (qi ⊗ 1n)N

over (qi ⊗ 1n)(A ⊗ C1n), for all 0 ≤ i ≤ t.

We let A be a maximal abelian subalgebra of L(H), let A be a norm closed

subalgebra of A⊗L(K), and let B be an ultraweakly closed subalgebra of Mn(A)

containing A ⊗ C1n. We defined the join of A and B as

A ∗ B =





B 0

U A


 : A ∈ A, U ∈ A ⊗∗ L(Cn,K), B ∈ B


 .

Using techniques developed by Gilfeather and Smith [14] and our results on sub-

modules of Mn(A), we were able to decompose ρ ∈ Zm(A ∗ B,A⊗L(Cn ⊕ K)) into

products of linear maps on A, operators in A ⊗∗ L(Cn,K), and linear maps on B.

This decomposition was successively refined until a particularly simple form for ρ

was attained. We then established necessary and sufficient conditions for a cocycle of
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this form to be a coboundary. Finally, we calculated Hm(A ∗ B,A⊗L(Cn ⊕K)), for

all m ≥ 0, in terms of Hk(A,A⊗L(K)) and Hk(B,Mn(A)) and thereby generalized

the theorem of Gilfeather and Smith [14, Theorem 4.1] to infinite dimensional matrix

algebras.
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[37] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space,

American Elsevier, New York, 1970.

[38] Z. Takeda, Conjugate spaces of operator algebras, Proc. Japan Acad. 30 (1954),

90–95.

[39] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, 2002.

[40] J. von Neumann, Zur Algebra der Funcktionaloperationen und Theorie der nor-

malen Operatoren, Math. Ann. 102 (1930), 370–427.



70

VITA

My name is Ali-Amir Husain. I was born on August 10, 1973 in Rourkela, India,

although shortly thereafter I was relocated to Alberta, Canada. I attended high

school in Edmonton, Alberta, and graduated with an International Baccalaureate

diploma from Ross Sheppard High School in June, 1991. In the fall, I began my

undergraduate studies at the University of Alberta. I graduated with a Bachelor of

Science with Honors in Mathematics with First Class Honors in June, 1995. Later

that year, I started my graduate work at Texas A&M University in College Station,

Texas. I earned a Master of Science in Mathematics in May, 1998 and continued

my graduate studies at Texas A&M, where I received my Ph.D. in May, 2004. My

doctoral research has been done under the advisement of Carl Pearcy and Roger

Smith. My e-mail address is husain@math.tamu.edu and I can be reached by mail

at the Department of Mathematics, Texas A&M University, College Station, TX,

77843-3368.


