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ABSTRACT

Online Regulation of Low Order Systems under Bounded Control. (December 2003)

Sumit Arora,

B.E., Delhi College of Engineering, India

Chair of Advisory Committee: Dr. Suhada Jayasuriya

Time-optimal solutions provide us with the fastest means to regulate a system

in presence of input constraints. This advantage of time-optimal control solutions

is offset by the fact that their real-time implementation involves computationally

intensive iterative techniques. Moreover, time-optimal controls depend on the initial

state and have to be recalculated for even the slightest perturbation. Clearly time-

optimal controls are not good candidates for online regulation. Consequently, the

search for alternatives to time-optimal solutions is a very active area of research.

The work described here is inspired by the simplicity of optimal-aim concept.

The “optimal-aim strategies” provide online regulation in presence of bounded inputs

with minimal computational effort. These are based purely on state-space geometry

of the plant and are inherently adaptive in nature. Optimal-aim techniques involve

aiming of trajectory derivative (or the state velocity vector) so as to approach the

equilibrium state in the best possible manner.

This thesis documents the efforts to develop an online regulation algorithm for

systems with input constraints. Through a number of hypotheses focussed on trying

to reproduce the exact time-optimal solution, the difficulty associated with this task

is demonstrated.

A modification of optimal-aim concept is employed to develop a novel regulation
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algorithm. In this algorithm, aim directions are chosen in a special manner to generate

the time-optimal control approximately. The control scheme thus developed is shown

to be globally stabilizing for systems having eigenvalues in the CLHP (closed left half-

plane). It is expected that this method or its modifications can be extended to higher

dimensional systems as a part of future research. An alternative control algorithm

involving a simple state-space aiming concept is also developed and discussed.
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25 Superposition of the x and ẋ spaces. . . . . . . . . . . . . . . . . 48

26 System trajectory, α = 1. . . . . . . . . . . . . . . . . . . . . . . 49

27 Control input, α = 1. . . . . . . . . . . . . . . . . . . . . . . . . 50

28 System trajectory, α = 15. . . . . . . . . . . . . . . . . . . . . . . 50

29 Control input, α = 15. . . . . . . . . . . . . . . . . . . . . . . . . 51

30 System trajectory with initial state [7 − 7]T . . . . . . . . . . . 52

31 System trajectory with initial state [−10 12]T . . . . . . . . . . . 52

32 Control input with initial state [7 − 7]T . . . . . . . . . . . . . . 53

33 Control input with initial state [−10 12]T . . . . . . . . . . . . . 53

34 State trajectory with the modified algorithm . . . . . . . . . . . 58

35 Control input with the modified algorithm . . . . . . . . . . . . . 59

36 State trajectory, α = 6 . . . . . . . . . . . . . . . . . . . . . . . . 60

37 Control input, α = 6 . . . . . . . . . . . . . . . . . . . . . . . . . 61

38 State trajectory, α = 20 . . . . . . . . . . . . . . . . . . . . . . . 61

39 Control input, α = 20 . . . . . . . . . . . . . . . . . . . . . . . . 62

40 State trajectory of a harmonic oscillator. . . . . . . . . . . . . . . 63



xi

FIGURE Page

41 Control input for a harmonic oscillator. . . . . . . . . . . . . . . 63

42 State trajectory of a ‘two time constant equation’. . . . . . . . . 64

43 Control input for a ‘two time constant equation’. . . . . . . . . . 65



1

CHAPTER I

INTRODUCTION

We are dependent on numerous dynamic systems in our daily lives. We encounter

them everywhere, be it in the form of automobiles, aeroplanes, refrigerators or air

conditioners. As we grow more dependent on these modern conveniences, we expect

higher standards of performance and reliability. The increased expectations translate

into more stringent performance and quality specifications for the engineers who de-

sign, build and/or operate these systems. This in turn means that all components of

these systems have to perform in the expected manner.

Control systems are required to ensure satisfactory performance from dynamic

systems. “The successful operation of a system under changing conditions often

requires a control system” [1]. We can observe control systems in action all around

us. For example, a car in automatic cruise control mode is an example of a control

system that maintains a constant speed. When cruise control mode is engaged, a

control system takes over the operation of the automobile. It gathers data from its

sensors about speed, steering wheel position etc. and compares it against the desired

set point speed. Depending on the result of this comparison, control system decides

whether to increase or decrease the amount of fuel entering the engine. The control

system may also decide to quit cruise control mode altogether in cases brakes are

applied suddenly or the steering wheel is rotated by an appreciable amount. Figure

1 depicts the schematic of a typical control system with the dynamical system (or

plant) being controlled and the controller. Control systems may be utilized to satisfy

a wide variety of requirements. Common control system design specifications could

The journal model is IEEE Transactions on Automatic Control.
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SYSTEM
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Noise, n

+

+

Fig. 1. A typical feedback control system

be a combination of or any of the following:

1. system stabilization,

2. negate the effect of noise and disturbances in the system output,

3. ensure satisfactory operation by preventing large rise times and overshoots,

4. maintain output variable at a desired reference value (regulation) or force output

variable to follow a preset path (reference tracking),

5. and, adapt itself and the system, to unpredictable changes in environment or

the system structure.

Reference tracking is one of the primary objectives of control systems. Consider the

system shown in Figure 1. Say, both output and reference signal are functions of time

denoted by y(t) and r(t) respectively. If the controller causes the output to follow

reference signal or

y(t) = r(t),

then the controller is said to be performing reference tracking. If on the other hand,

the controller drives the output to an equilibrium state σ and maintains it there
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thereafter, reference tracking will imply

lim
t→∞

y(t) = σ.

This is more commonly known as regulation. Tracking or regulation is performed via

appropriate control inputs. The controller receives information about the error e and

utilizes it to calculate the control input u.

Control systems incorporate actuators to apply the computed input to the sys-

tem. Often control effort, as calculated by control algorithm, may exceed the capacity

of actuator(s). In such cases the actuators operate at their limits. It results in limited

control action on the part of control system and this situation is known as actuator

saturation. Actuator bandwidth limitations and the onset of nonlinearities are other

reasons for constrained inputs (or bounded controls) apart from actuator saturation.1

A. Effects of actuator saturation

Bounded controls can lead to undesirable effects on control system performance and

stability. Some of them are:

• Actuator saturation may destabilize control systems through a decrease in feed-

back gain.

• Severe performance degradation may occur when integrators are used in a linear

compensator. After actuator saturation occurs the error signal is continuously

integrated, by the integrators present in the loop, leading to reset-windup. This

drives up the control effort requirements from the compensator even though

instantaneous error is small, leading to serious problems like large overshoots

1The terms “actuator saturation”, “constrained inputs” and “bounded controls”
are used interchangeably in the same context in this work.
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and very long settling times [2].

• Another serious problem with actuator saturation in a multi-variable relates to

control directions. Actuator saturation may alter the direction of the control

input vector. Consider a system with two actuators corresponding to two inputs

u1 ∈ [−1, 1] and u2 ∈ [−1, 1]. In such a case the maximum input from either

actuator is +1 and minimum input is −1, so any inputs with magnitudes outside

this range will cause actuator saturation. Suppose the control signal at any time

is u = {2.5, 1.2} then the saturated signal will be us = {1, 1}, which causes the

control input direction to be altered. Figure 2 shows the effect of saturation on

different control vectors in the two-dimensional control space [2]. Area enclosed

1u

2u

1

1

-1

-1

u′
1u′

2u′

u′′
1u′′2u′′

Fig. 2. Effect of actuator saturation on control directions

by dotted lines in Figure 2 depicts the operating region for the actuator discussed

above. Control vectors u′
1 and u′

2 both have magnitudes greater than 1 in both

u1 and u2 directions, so both are mapped to the vector u′ = [1, 1], whereas

u′′
1 and u′′

2 have magnitude greater than 1 only in the u1 direction, they are
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both mapped to the vector u′′ with their magnitude in u2 direction remaining

unchanged.

So, actuator saturation is generally not desirable in control system design practice.

But, it is not always easy or cost effective to find actuators with high enough operating

range and bandwidth so as to avoid saturation. As a result, the hunt for better

methods to deal with bounded controls continues to be an area of active research.

B. Dealing with bounded controls

An appreciable amount of research in the last few decades has sought to characterize,

formulate and find solutions to the bounded control problem for different classes of

dynamical systems. Some well-known facts about systems with constrained inputs

can be summarized as:

• Only linear stabilizable systems with having no open-loop unstable modes can

be globally asymptotically stabilized by a bounded control [3].

• In general, nonlinear control laws are required to stabilize linear systems subject

to input saturation [4],[5].

• If the constraint set contains the origin in its interior and a stabilizing control

exists, there also exists a domain of attraction to the origin where no constraints

violations occur [6].

In designing control systems with actuator saturation, following broad approaches

have been followed [7],[8]:

• The first approach focuses on preventing adverse effects of actuator saturation

on the system. This leads to a two-step design methodology. First step involves
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synthesizing controllers, without taking saturation into account, to satisfy the

control requirements, while the second step involves some sort of anti-windup

scheme. Bulk of the research in this area is conducted on open-loop stable sys-

tems. These methods allow actuator saturation and therefore introduce nonlin-

earity in the closed loop system.

• The second approach is more concerned with stability issues in presence of con-

trol signal constraints. The goal is to design controllers that are either globally

stabilizing, or locally stabilizing for a known region. All null-controllable linear

systems can be globally stabilized using smooth constrained control laws. For

systems that are not null-controllable, or for systems having non-globally sta-

bilizing control laws, knowledge of closed-loop stability regions for the control

law is of paramount importance.

• Often control systems are designed that have actuator saturations incorporated

a priori into control design. Such techniques generally allow actuators to satu-

rate and may involve switching or bang-bang controllers.

Asymptotically null-controllable systems constitute an important class of sys-

tems. As stated above, these systems can be globally stabilized using bounded inputs

and smooth control laws. A system

ẋ = Ax + Bu (1.1)

is said to be asymptotically null-controllable if it satisfies the following two conditions

[9]:

1. the matrix A has no eigenvalues with positive real parts, and

2. the pair (A, B) is stabilizable or all uncontrollable modes of the system described
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by Equation (1.1) have strictly negative parts.

In general the ‘null-controllable region’ of a system (also known as the ‘controllable

set’ or the ‘reachable set’) is defined to be the set of all states that can be steered to

the origin in a time T ∈ (0,∞). For systems with constrained inputs that are not

asymptotically null-controllable, the knowledge of null-controllable regions is a great

aid in determining the appropriate regulation scheme.

This thesis documents the development of an algorithm that can perform reg-

ulation in linear systems with input constraints and lends itself easily to online im-

plementation. A new control scheme distinct from existing techniques is proposed.

It involves a modification of the “optimal-aim strategy” [10] and approximates time-

optimal control solution [11] for regulation.

C. Thesis organization

The layout of this thesis is as follows. Chapter II describes in brief the Optimal-

aim concept, the concept of normal systems and Pontryagin’s minimum principle

based time-optimal control problem and solution thereof. Later part of chapter II

explains in detail the motivation for this research. Chapter III describes the efforts

to reproduce the time-optimal control solution in real-time. The efforts leading up

to the development of the algorithm in final form, associated results and proofs and

some other related formulations are described in chapter IV . Results and related

analysis are presented in chapter V. The final chapter lists the conclusions derived

from the work and suggestions for future research.



8

CHAPTER II

BACKGROUND

The bounded control problem has been tackled in a number of different ways by

different researchers. Of these, two techniques viz.

1. Optimal control solutions (from Pontryagin’s minimum principle), and

2. Optimal-aim strategies

were investigated in detail. Optimal control theory provides us with the minimum

time control for regulation in systems with actuator saturation. The optimal-aim

concept provides us with a regulation method that can be easily implemented in real-

time. It was postulated that minimum time control (or time-optimal control) may be

generated from optimal-aim technique by selecting the aim directions in some special

way. These techniques are described in the following sections.

A. Time-optimal control

In the presence of constrained input signals, time-optimal control solutions based

on Pontryagin’s minimum principle provide the fastest regulation. Time-optimal

control solutions are determined by solving a “Two-point Boundary Value Problem”

(TPBVP). A general time-optimal regulator problem for LTI continuous systems and

its solution are described next [11].

Given the system

ẋ(t) = g(x, u, t) = f(x(t)) + Bu(t), (2.1)

where x ∈ R
n, u(t) ∈ Ω = {ω ∈ R

m|ωj ∈ [ωjmin, ωjmax]} and j = 1, · · · , m. Assume

that the system given by Equation (2.1) is completely controllable. Then, given that
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at some initial time t0, the initial state of the system is x(t0) = x0. Find the control

u∗ that transfers the system in Equation (2.1) from x0 to the origin in minimum time.

To determine the solution to the above problem using Pontryagin’s minimum

principle we consider a cost functional,

J =

tf∫

t0

L(x, u, t)dt. (2.2)

All the states lying on a time-optimal trajectory and the corresponding input sequence

necessarily minimize the cost function as defined in Equation (2.2). For the time-

optimal problem the integrand L(x, u, t) = 1, since the total time, (tf − t0) is to be

minimized. The Hamiltonian for the problem is

H(x, u, t) = L(x, u, t) +
〈

p(t), g(x, u, t)
〉

= 1 +
〈

p(t), ẋ(t)
〉

. (2.3)

The variable p ∈ R
n is the Lagrange multiplier vector for this optimization problem,

and is also known as the costate vector. Initial and final conditions are denoted by x0

and xf (= 0). Following equations relate the state x(t) and costate p(t) vectors [11]:

ẋ(t) =
∂H(x(t), p(t), u(t), t)

∂p
(2.4)

and

ṗ(t) = −
∂H(x(t), p(t), u(t), t)

∂x
. (2.5)

Equation (2.4) is an alternative way of expressing Equation (2.1).

This formulation results in a Two-point Boundary Value Problem (TPBVP).

Minimization of cost function J or the Hamiltonian H over a function space yields

the time-optimal solution.

The next section describes ‘normal systems’. Time-optimal solutions for this

class of systems are much simpler than those for other systems.
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1. Normal systems

Consider a system

ẋ = Ax + Bu,

where x ∈ <n, u ∈ <m. Also, say B =









↑ ↑ ↑

b1 b2 · · · bm

↓ ↓ ↓









, where b1, b2 · · · etc. are

column vectors of B [11].

Let us compute the controllability matrices G1 through Gm defined as:

G1 =
[
b1 Ab1 A2b1 · · · An−1b1

]

G2 =
[
b2 Ab2 A2b2 · · · An−1b2

]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Gm =
[
bm Abm A2bm · · · An−1bm

]
.

(2.6)

Then, if all of these controllability matrices are nonsingular, the system is said to be

normal. In other words, normality implies controllability with respect to each com-

ponent of the control vector u.

Some general characteristics of time-optimal control solutions are [11]:

• Time-optimal trajectory depends on initial state.

• Time optimal control exists for all initial states in R
n when the origin is the

final state (for systems with stable modes).

• For a given initial state x0, the time-optimal control solution exists if and only

if x0 lies within the null-controllable region [12].

• It is bang-bang, unique (for normal systems) and has at most (n − 1) control
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switchings.

• It minimizes the Hamiltonian. The optimal solutions give global minima, sat-

isfying ∂H
∂u

= 0 at all points on the optimal trajectory.

• The time-optimal solution, in addition to satisfying ∂H
∂u

= 0, also satisfies H = 0

at all points on the trajectory.

As an illustrative example, the time-optimal control problem for a system having

two time constants and no zeros, along with the solution is presented next.

2. Time-optimal control of a ‘two time constant system’

This section illustrates a typical time-optimal control problem and its solution pro-

cedure. Consider the system [11]

y(s)

u(s)
= G(s) =

1

(s − λ1)(s − λ2)
, (2.7)

where λ1, λ2 ∈ < and λ1 6= λ2 > 0. This transfer function has two real poles. A

state-space realization of this system is:

ẋ =






λ1 0

0 λ2




 x +






λ1

λ2




 u, (2.8)

where x =






x1

x2




. The control input is constrained as u ∈ [−1, 1]. The goal is to

transfer the above system from a given initial state at t = 0 to the origin in the

shortest possible time.

Since the system has two stable modes and is normal, the time-optimal control

exists, is unique and it minimizes the Hamiltonian. The Hamiltonian for the system
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is

H(x, u, t) = 1 + 〈p(t), ẋ(t)〉

= 1 + λ1x1(t)p1(t) + λ2x2(t)p2(t) + u(t) {λ1p1(t) + λ2p2(t)} .

(2.9)

Only the input u can be varied freely in Equation (2.9), so the H-minimal control is

given by

u(t) = −sign {λ1p1(t) + λ2p2(t)} = ±1. (2.10)

From Equation (2.5), the costate equations are

ṗ1(t) = −
∂H

∂x1(t)
= −λ1p1(t), (2.11)

and

ṗ2(t) = −
∂H

∂x2(t)
= −λ2p2(t). (2.12)

If the correct initial values of the costate variables p(t) =






p1(t)

p2(t)




 are known, the

state and costate equations can be solved and the input u(t) determined. Suppose,

the initial values of the costates are p1(0) = π1 and p2(0) = π2, then from Equations

(2.11) and (2.12): p1(t) = π1e
−λ1t, p2(t) = π2e

−λ2t.

The relations can be obtained for the control sequence u(t) and the state x(t) as

functions of time t. The solution is analytical, closed form and control sequences are

bang-bang. From the solution to above problem the time-optimal control sequence

is an element of the set [{+1}, {−1}, ({+1}, {−1}) , ({−1}, {+1})]. One of the four

alternatives will apply depending on initial state x0.

Figures 3 and 4 show the time-optimal trajectory and the control for a two time

constant system, the time constants being λ1 = −0.01 and λ2 = −0.03, from initial



13

0 5 10 15 20 25
−6

−4

−2

0

2

4

6

Fig. 3. Time-optimal trajectory of a two time constant system.
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Fig. 4. Time-optimal input profile of a two time constant system.



14

state x =






25

5




 to the origin. Bang-bang nature of control solution is obvious from

the plot. The control sequence in this case is ({+1}, {−1}).

B. Optimal-aim concept

Optimal-aim concept was developed for performing regulation in transient nonlinear

power systems. An optimal-aim strategy is a “control strategy based on the optimal

constrained aim of trajectory derivatives in state space” [10]. This technique can

provide online implementations for regulating systems having constrained input sets.

Major desirable characteristics of the optimal-aim control strategy are [13],[14],[15]:

• It is a search scheme based on finite-dimensional optimization.

• Online implementation is possible even for unstable systems.

This strategy seeks to drive a system so that at each state on the resulting state space

trajectory the corresponding trajectory derivative (or state velocity vector) points

toward an equilibrium state as best as possible (by utilizing all available control

effort). As a result of this, the system moves toward a condition of stability.

The basis for this concept is the fact that the direction of trajectory derivative

at any state of a continuous-time system depends explicitly on instantaneous value

of applied control. Input constraints will restrict trajectory derivatives to exist only

in certain directions and in general it is not possible to point the derivative vector

directly in direction of equilibrium states. So, control is applied so as to make the

state velocity vector point toward equilibrium state in some optimal fashion. This is

the optimal-aim condition.
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Consider the system defined by the state equation

ẋ(t) = f(x(t)) + Bu(t), (2.13)

where state vector x(t) ∈ R
n, the control input constrained as u(t) ∈ Ω where Ω =

{ω ∈ R
m|ωj ∈ [ωjmin, ωjmax]}, j = 1, ···, m, σc is the equilibrium state, with f(σc) = 0.

Figure 5 describes the state space geometry of optimal-aim concept. If x(t) is current

Target State, Cσ

Current State, )(tx

Derivative vector, ( )x t+
�

Set of terminal states for the
Derivative vector, ( ( ))x tΛ

Reference Vector, ( ( ))x tρ( , )θ δ ρ

State Trajectory

δ

Fig. 5. The optimal aim geometry.

state vector at time t and σc the equilibrium state, there will exist:

Λ(x(t)) the constraint set consisting of points on which tip of the derivative

vector ẋ(t+) will be constrained to terminate.

ρ(x(t)) the reference vector that emanates from current state and points

at the equilibrium state σc.

δ an arbitrary vector emanating from current state x(t) and terminating

in set Λ(x(t)).

θ(δ, ρ) angle between vector δ and the target direction vector ρ(x(t)).
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Referring to Figure 5, the optimal-aim condition can be described as choosing

an input so that state velocity vector ẋ(t+) is oriented along reference vector ρ. If

that is not possible then the input that achieves this in the best possible manner

is chosen. We can see that trajectory derivative ẋ(t+) will point optimally toward

equilibrium state σc when δ is oriented so that θ is minimized and |δ| is maximized.

In case θmin > π
2
, we need to minimize |δ| in that direction to point ẋ(t+) along ρ in

the best possible manner. This procedure is formalized below.

Optimal-aim technique seeks to determine the control input so that derivative

vector ẋ(t+) satisfies two conditions:

1. Minimizes the angle θ over the set Λ(x(t)).

2. Either maximizes or minimizes the Euclidean norm ‖ẋ‖ over the set Λ(x(t))

depending on whether θ is an acute or an obtuse angle.

Implementation of this technique consists of application of following three steps re-

cursively:

1. Observing or estimating the system state x(t) at time.

2. Computing the value of control u(t) through real parameter optimization, to

satisfy the two objectives stated above.

3. Apply the constant magnitude of the computed control to the actual system for

a time interval ∆t.

The optimal-aim conditions are satisfied only at discrete states (at a finite num-

ber of closely spaced states along the trajectory). Control input is recalculated at

each of these states to satisfy the optimal-aim condition. For trajectory segments be-

tween these discrete states control input remains constant and optimal-aim conditions
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Optimal-aim
State trajectory
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δ
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1( ( ))x tρ

θ

θ

θ

( ( ))nx tρ

Fig. 6. State trajectory of a system evolving via optimal-aim strategy.

are satisfied only approximately. Figure 6 explains how the trajectory evolves with

optimal-aim strategy in effect. The figure also shows optimal-aim variables defined

at discrete points along the trajectory. Say, the initial state is x0, then optimal-aim

technique involves determining a reference vector ρ that minimizes θ and utilizing the

corresponding input for system evolution. This will cause the system to move along

the trajectory to a new state x1, where the process will be repeated. This continues

till the system reaches equilibrium state.

C. Implementation issues: Time-optimal controls vs. Optimal-aim methods

A time-optimal control solution is very desirable, as it requires the minimum amount

of time for convergence to the equilibrium state. Although, analytical expression of

the control sequence from optimal control theory is extremely useful, following factors
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restrict application of time-optimal solutions for online regulation of more complex

systems:

• Tedious solution procedure to solve the TPBVP, even for simple linear systems.

• Determination of the exact initial values of Lagrange multipliers (or costates)

essential for the correct solution.

• Correct control sequence and the switching times have to be known in advance.

• Time-optimal solution corresponding to two close but distinct initial conditions

can be significantly different.

Consequently, it is desirable to have alternatives to the cumbersome solution of

TPBVP for regulation. Ideally, the alternative method should be amenable to online

implementation and provide reasonably fast convergence. Many techniques have been

explored to implement time-optimal solutions online. Optimal-aim strategies are

good candidates for methods that approximate the time-optimal solution because of

following characteristics:

• Calculations require very little memory and time.

• Implementation is based on closed-loop, online operations depending on current

state alone.

• Control implementation is inherently adaptive in nature.

The state-space geometry of systems forms the basis of our expectation to ap-

proximate time-optimal control by modifying optimal-aim techniques. Optimal-aim

techniques are based on state-space geometry and utilize the concept of aiming direc-

tion ρ(x(t)) and trajectory derivative ẋ(t+) (refer Figure 5) to calculate appropriate
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control input for regulation. The Hamiltonian construction in optimal control theory

has obvious geometrical interpretations too. The Hamiltonian for the time-optimal

problem is defined as

H = 1 +
〈

p(x, t), ẋ(x, u, t)
〉

. (2.14)

Since, the Hamiltonian is an explicit function of the trajectory derivative ẋ, there

exists a clear relation between geometry of the system and its Hamiltonian. It is

postulated that a modified optimal-aim technique can generate the time-optimal tra-

jectory, if aim directions can be chosen in a special manner.

Adaptation of optimal-aim concept to generate an approximate time-optimal so-

lution will enable online implementation, without requiring the solution of a TPBVP.

Also, this would ideally incorporate desirable characteristics of both techniques. To

develop such an algorithm is the ultimate purpose of this research.
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CHAPTER III

ATTEMPTS TO REPRODUCE EXACT TIME-OPTIMAL CONTROLS ONLINE

There have been many attempts to determine the time-optimal controls for systems

and implement them in real-time [16],[17],[18]. Generally, these techniques are itera-

tive in nature and require significant computational resources. Our endeavors try to

avoid excessive computations.

Development of the required control algorithm involves establishing some as-

sumptions and developing alternative control algorithms based on them. Application

of these algorithms on the system, and subsequent simulation results provide an es-

timate of how closely a time-optimal solution is approximated.

This chapter illustrates some such assumptions and corresponding control schemes.

Different control schemes thus developed, are applied to a double integrator system

and computer simulations are carried out for validation. Since the double integrator

has a simple time-optimal regulation solution, different control schemes are simulated

and tested for their ability to successfully regulate the double integrator. Results and

conclusions from simulations and implications of extending the algorithms to higher

order or more complex systems are discussed.

Before describing the attempts to generate the time-optimal solutions online, we

will explore the potential of state-space aiming methods to generate control solutions

to meet different specifications. For example, the development of a globally stabilizing

control via aiming is described in the next section.

A. Aiming in the presence of bounded controls

As shown by the optimal-aim concept, aiming techniques in state-space can prove to

be faster, simpler and computationally lighter than the mathematically more elabo-
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rate control algorithms. In this section we intend to utilize state-space aiming and

explore the versatility of aiming techniques.

1. Null-controllable systems

Let us consider a general linear stable system

ẋ = Ax + Bu,

in the controllable canonical form. The state-space aiming formulation will involve

an ‘aim direction’ and an ‘aim state’. Let, ρ be the aim direction. By definition,

xCurrent state,

ρAim direction,
βAim state,

x�Trajectory derivative,

Fig. 7. Aiming solution geometry.

we want to point the trajectory derivative ẋ in the aim direction ρ, so we seek to

maximize the projection of trajectory derivative in the aim direction. In other words,
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we try to maximize the inner product 〈ẋ, ρ〉. Clearly,

〈ẋ, ρ〉 = (Ax + Bu)T ρ

= xT AT ρ + uT BT ρ.

(3.1)

In Equation (3.1), only the input u can be affected, so to maximize 〈ẋ, ρ〉, we select

uT
m = sign

[

BT ρ
]

. (3.2)

Equation (3.2) is the control law from the aiming strategy.

Next, we will employ the Lyapunov’s theory to determine the stabilizing input

for the same system. Let, the Lyapunov function be V = xT Px. If matrix P be the

positive definite solution of the Lyapunov matrix equation

(
AT P + PA

)
= −Q, (3.3)

where Q is any positive definite matrix. For system stability:

dV (t)

dt
= V̇ < 0.

It follows that,

V̇ = ẋT Px + xT P ẋ

= (xT AT + uT BT )Px + xT P (Ax + Bu)

= xT (AT P + PA)x
︸ ︷︷ ︸

<0

+2xT PBu.

(3.4)

To ensure V̇ < 0, we need to determine u so that 2xT PBu < 0. Suppose, x ∈ <n

and u ∈ [−1, 1]. The stabilizing input can be selected as

uT
s = −sign

[

BT Px
]

. (3.5)
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This result is easily generalized to higher order systems.

For aiming control to be stabilizing, us = um. From Equations 3.5 and 3.2 we

get

ρ = −Px. (3.6)

Equation (3.6) provides us with a condition on aim direction ρ. Let the aim state be

β. Then, by the definitions of aim direction and aim state (Figure 7)

ρ = β − x

=⇒

β = x + ρ

= x + (−Px)

= (I − P )x.

(3.7)

From Equations (3.6) and (3.7), regulation via state-space aiming concept will

involve

1. Selection of a positive semi-definite matrix Q.

2. Solution of Laypunov’s equation to determine the matrix P .

3. Computation of aim state β = (I − P )x.

4. Computation of aim direction ρ = β − x and the stabilizing input uT =

sign
[
BT ρ

]
.

5. Application of the input u for a predetermined time interval T . The quantities

x, β and hence, u will change after this time.

6. Repeat steps 3 through 5.
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Results: Figures 8 and 9 show the result of applying the above control algorithm on

the system:

ẋ =






−0.1 0

0 −0.3




 x +






−0.05

0.15




 u, (3.8)

with Q =






13 5

1 17




 and P =






65 12.5

2.5 28.33




.

0 5 10 15
−15

−10

−5

0

Fig. 8. State trajectory with aiming solution

2. Unstable systems

Consider a general linear unstable system

ẋ = Ax + Bu,

in the controllable canonical form. Since, the bounded input will definitely not be

sufficient to stabilize the system, let us assume full state feedback for stabilization

and adjust it so that it remains within the input bounds. The control law proposed
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Fig. 9. Control input with aiming solution

is

u = Kx + u∗, (3.9)

where u is the input to the system, u∗ is the quantity to adjust for input constraints

and K is the gain matrix for state feedback chosen to stabilize the nominal. The

system equation can now be modified to

ẋ = (A + BK)x + Bu∗. (3.10)

If u and u be the control bounds, with u < u, then

u ≤ (u = Kx + u∗) ≤ u, (3.11)

everywhere on the eventual state trajectory. From Equation (3.11), the bounds on u∗

are u∗ = u − Kx and u∗ = u − Kx. We can see that if K be held constant, then the

value of u∗ will depend only on the state x.
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Let us perform Lyapunov stability analysis on the above formulation. Let, the

Lyapunov function be V = xT Px. The matrix P is the positive semi-definite solution

of the Lyapunov matrix equation

(A + BK)T P + P (A + BK) = −Q, (3.12)

where Q is any positive semi-definite matrix. To ensure system stability

dV (t)

dt
< 0.

Since,

V̇ = ẋT Px + xT P ẋ

= (xT (A + BK)T + (u∗)T BT )Px + xT P ((A + BK)x + Bu∗)

= xT ((A + BK)T P + P (A + BK))x
︸ ︷︷ ︸

<0

+2xT PBu∗,

(3.13)

to ensure V̇ ≤ 0, and hence the Lyapunov stability of the modified system, we need to

determine u∗ so that 2xT PBu∗ ≤ 0. Suppose, x ∈ <n and u ∈ [−1, 1]. The stabilizing

input can be computed as

u∗
s = −sign

[

BT Px
]

, (3.14)

such that u∗
s ∈ [u∗, u∗]. Three cases will arise:

1. u∗ < 0 and u∗ < 0.

2. u∗ < 0 and u∗ > 0.

3. u∗ > 0 and u∗ > 0.

In addition to the above cases we also have to account for the sign of the quantity

BT Px, to determine the stabilizing control. The following selection table for stabi-

lizing control can be generated using the above information:
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Case BT Px < 0 BT Px > 0

1 u∗
s = u∗ ⊗ u∗

s = u∗

2 u∗
s = u∗ u∗

s = u∗

3 u∗
s = u∗ u∗

s = u∗ ⊗

⊗ - No stabilizing control inputs exist in these cases. This is the best that we can do

as actuator saturation limits our choice.

If the plant is not null-controllable, the aiming approach involves full state feed-

back for favorable pole-placement, this shifts the allowable control set Ω by an amount

Kx. This causes Ω become asymmetric with respect to the control u = 0, and as a

result we cannot always determine the stabilizing input according to Equation (3.14).

Results: We choose an unstable two time constant system for observing the behavior

under the above control scheme:

ẋ =






0.1 0

0 0.3




 x +






−0.1

−0.3




 u. (3.15)

Then, we perform arbitrary pole-placement at the poles






−0.1 + 0.2i

−0.1 − 0.2i




 via full-

state feedback. The feedback gain being K =

[

−4 3.333

]

, with Q =






13 2

1 8




 and

P =






360 563

558 966




. Figures 10 and 11 show the results for the initial state






0.7

0.7




.

Figures 12 and 13 show the results for the initial state






0.75

0.75




.
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Fig. 10. State trajectory with aiming solution, initial state [0.7 0.7].
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Fig. 11. Control input with aiming solution, initial state [0.7 0.7].
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Fig. 12. State trajectory with aiming solution, initial state [0.75 0.75].
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Fig. 13. Control input with aiming solution, initial state [0.75 0.75].
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Thus we have seen that aiming methods are capable of generating globally asymp-

totically stabilizing controls in null-controllable systems provided the aiming direction

is chosen in a special way (Equation (3.6)). This aiming solution is not successful in

stabilizing marginally stable or unstable systems.

B. Time-optimal solution for double integrator

The time-optimal solution for a double integrator system is reproduced here for ref-

erence. State equation for a double integrator system is

ẋ =






0 1

0 0




 x +






0

1




 u =






x2

u




 , (3.16)

where x =






x1

x2




. The control input u(t) ∈ Ω = {ω ∈ R; ω ∈ [−1, 1]}. The goal is to

determine a control sequence that transfers the system from an initial state x0 to the

origin in minimum time.

The Hamiltonian for this problem is given by

H = 1 + x2(t)p1(t) + u(t)p2(t). (3.17)

Therefore, H-minimal control is

u(t) = −sgn{p2(t)} = ±1. (3.18)

Costate equations for the system are

ṗ1(t) = −
∂H

∂x1

= 0, (3.19)
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No switching

Switching takes place when
0)(2 =tp

Fig. 14. The four possible modes for the evolution of the costate vector, p(t).

and

ṗ2(t) = −
∂H

∂x2

= −p1(t). (3.20)

If initial values of costates are: p1(0) = π1, p2(0) = π2




or p(0) = π =






π1

π2









,

then the values of costates at any time can be given by p1(t) = π1(constant) and

p2(t) = π2 − π1t. The plot of p2(t) w.r.t. time is a straight line. Four possible shapes

of p2(t) and the corresponding shapes of H-minimal control are shown in Figure 14.

From this we can conclude that time-optimal control for a double integrator

is piecewise constant and can switch at most, once, as the system is normal. So,

{[+1], [−1], [+1,−1], [−1, +1]} is the set containing all possible optimal control se-

quences. Figures 15 and 16 show the time-optimal solution with initial state






+5

−5




.
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Fig. 15. Time-optimal trajectory of a double integrator.
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Fig. 16. Time-optimal control for a double integrator.
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Seven alternative hypotheses are presented here along with accompanying as-

sumptions and the derived control schemes. First five focus on reproducing the exact

time-optimal control by estimating the values of costate variables corresponding to

the initial state. The latter two hypotheses are related to the geometry of the system

and do not attempt to reproduce the time-optimal solution.

Following facts relating to time-optimal solutions aid in the development of hy-

potheses 1 through 5:

• Ω = [−1, 1] is assumed to be the set containing all possible values of control u.

• Time-optimal control sequences are essentially bang-bang and the actuators

always operate under saturation at either one of the extreme limits. Gener-

ally, the control solutions sought by following hypotheses will assume saturated

actuators at all times i.e. u = −1 or u = 1.

• A time-optimal solution satisfies H = 0, at all points on the trajectory. As

H = 1 + 〈p, ẋ〉, we must ensure 1 + 〈p, ẋ〉 = 0 or 〈p, ẋ〉 = −1, in the search

for costate p. Numerical calculations may not be able to make the dot product

exactly equal to −1. So, we try to make the dot product as close to −1 as

possible.

C. Hypothesis 1:

The time-optimal solution of a double integrator is straightforward once initial values

of costate variables are known. This hypothesis relates initial state to initial values

of costates in a straightforward way.

If x(0) =






x1(0)

x2(0)




 is the initial state. π1 and π2 are the initial values of the

costates computed as π1 = x1(0)
|x(0)|

and π2 = x2(0)
|x(0)|

.
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Control scheme corresponding to the above hypothesis is described by following

sequence of steps:

1. Select a time step T over which applied input will remain constant.

2. Compute the initial values of costates from the initial state: π1 = x1(0)
|x(0)|

and

π2 = x2(0)
|x(0)|

.

3. The control input to be selected should always minimize the Hamiltonian. After

costate variables are computed, we calculate two trajectory derivatives corre-

sponding to extremities of the control set Ω. Since our search space is affine,

we just have to investigate the extremities of the allowable control set Ω for

the minimum. Here the extremities are u1 = −1 and u2 = 1. Corresponding

values of trajectory derivatives are ẋ(1) = Ax + B(−1) and ẋ(2) = Ax + B(1)

respectively.

4. Calculate Hamiltonian values corresponding to both trajectory derivatives:

H(1) = 1 + 〈π, ẋ(1)〉 and H(2) = 1 + 〈π, ẋ(2)〉.

5. Next, we determine the quantity
{

min
(
|H(1)|, |H(2)|

) }

, or the minimum of two

Hamiltonian values.

6. Select u1 as the input if
{

min
(
|H(1)|, |H(2)|

) }

= H(1), or

u2 as input if
{

min
(
|H(1)|, |H(2)|

) }

= H(2).

7. Use the selected input to let the system evolve for one time step T .

8. Calculate new values of costate variables using the previous values from Equa-

tions (3.19) and (3.20).

9. Repeat steps 3 through 8 till the state converges to the origin.
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Fig. 17. System trajectory.

Validity of this hypothesis can be determined by applying the control algorithm to the

double integrator. Simulation results are presented below for the initial state






−10

+5




.

Figure 17 shows the state-space trajectory for the system under this control algorithm.

Control input and the Hamiltonian for above trajectory are shown in Figures 18 and

19, respectively.

No convergence is exhibited by the system. Moreover, Figure 17 shows that

the value of the Hamiltonian differs from 0 all along the state trajectory. Hence,

hypothesis 1 does not result in a time-optimal control. We need to seek alternatives

to this algorithm.

D. Hypothesis 2:

Initial values of costate variables (π1, π2) are independent of each other. Instead of

trying to relate the initial state and initial costate vectors, we can attempt to guess
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Fig. 18. Control input.
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Fig. 19. Hamiltonian along the state trajectory.
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the values of costate variables for this problem. For a simple system, such as the

double integrator, we can confirm the accuracy of our guess by using simulations and

observing if regulation is achieved.

A search in the two-dimensional space (π1, π2) can be carried out to determine

correct initial values of costate variables (p1(0), p2(0)) = (π1, π2).

We can perform the search along the circumference of a unit circle in (π1, π2)

plane. Different orientation angles ϕ will have different components of π along the

coordinate axes and will adjust for the relative magnitude of initial costates. Scaling

will regulate the absolute magnitude of initial costates.

1π

2π

0ϕ

1r =

Search direction for initial
value of Lagrange multipliers
or costate vector

1ϕ2ϕ
( )0

21,ππ

( )2
21,ππ ( )1

21,ππ

1 2( , ) (cos ,sin )i
i iπ π ϕ ϕ=

Fig. 20. Search for initial costates along the circumference of a unit circle in π1, π2

space.

Search for initial costate vector has to be performed off-line through a number

of off-line trials. Figure 20 explains the search procedure. Different values of ϕ

will provide different pairs of initial costates. After a particular costate (π1, π2)
i is
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chosen, off-line simulations are carried out with u = ±1 to determine if H = 0 along

any one of the two trajectories thus generated. By selecting different values of initial

costates (for different values of ϕ) the correct values of initial costate are decided

using computer simulations. Correct values thus determined are used for the actual

system. Corresponding control algorithm is described as follows:

1. Select a new costate as shown in Figure 20.

2. Calculate the two trajectory derivatives corresponding to the extremities of

control set Ω. These are ẋ(1) = Ax + B(−1) and ẋ(2) = Ax + B(1).

3. Corresponding to these possible trajectory derivatives we calculate the Hamil-

tonian. H(1) = 1 + 〈p, ẋ(1)〉 and H(2) = 1 + 〈p, ẋ(2)〉

4. Next, we compute the min
(
|H(1)|, |H(2)|

)
.

5. Select the control that minimizes the Hamiltonian as input.

6. Using the selected input and let the system evolve for another time step.

7. Compute new values of costate variables.

8. Repeat steps 2 through 7 till convergence.

Figure 21 shows the simulations using results of the search process. These are

some plots generated by selecting different values of π1 and π2. Search for π1 and π2

for Figure 21 was performed manually, i.e., the search for correct values was guided

by visual observation of trajectory plots in each case. This can become tedious if

there is no prior idea of magnitude of the values.

This procedure seems to be very simple in principle but with nothing to simplify

the search process, it can prove to be very cumbersome to work with. Dimensionality
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This particular value of ϕ corresponding to this
plot will be selected and next the magnitude of
the vector would be varied to make H = 0.

Fig. 21. System trajectories for the system using different values of π1 and π2 from a

portion of the unit circle.

of the search space for a system depends on the order of the system. In case of

higher order systems the complexity of search space and hence time required will

increase unreasonably. This procedure is also computationally very intensive. For

these reasons, we need to further modify this algorithm to simplify the search process.
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E. Hypothesis 3:

Hypothesis 2 introduces the idea of estimating initial costate by performing a search in

<2. Hypothesis 3 seeks to reduce the size of the search space by utilizing geometrical

implications of the fact that magnitude of the Hamiltonian H is zero along the time-

optimal trajectory.

Hamiltonian H = 1 + 〈p, ẋ〉 = 0 at all points along the time-optimal trajectory.

From this we can infer that 〈p, ẋ〉 = −1. Now, a better guess for the initial values of

costates can be made since we know,






π1

π2




 lies in the half-space orthogonal to either

ẋ(0)(u=1) or ẋ(0)(u=−1) depending on the correct value of input to be applied.

This hypothesis if correct, will effectively reduce the search space from <2 to

S = S1

⋃
S2, where S1 =

{
v : 〈ẋ(0)(u=1), v〉 < 0

}
and S2 =

{
v : 〈ẋ(0)(u=−1), v〉 < 0

}
.

S represents a sector of the unit circle with scaling applied as appropriate. As for

that sector, we can carry out the search for costates as before, with control scheme

being similar to the one corresponding to hypothesis 2.

Figures 22 and 23 show actual initial costate values and the initial derivative

vectors plotted together for different initial states. These plots show how the initial

costates for the time-optimal control indeed lie in the half-space orthogonal to one of

the ẋ(1)(0) or ẋ(2)(0). The control algorithm is the same as that in the previous case.

For the double integrator, hypothesis 3 reduces the size of search space to half,

but we are still left with an appreciable portion of <2. We can strive to simplify the

search even further. Hypothesis 4 seeks to achieve this.
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Fig. 22. Geometry of costate vector and initial trajectory derivative I
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Fig. 23. Geometry of costate vector and initial trajectory derivative II
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F. Hypothesis 4:

The preceding hypotheses show that searching for both costates independently is

quite cumbersome. By invoking the Hamiltonian magnitude concept (H = 0), we can

simplify the two-dimensional search to a single dimension.

We have known that the Hamiltonian H = 1 + 〈p, ẋ〉 = 0 ⇒ 〈p, ẋ〉 = −1. This

fact can help us reduce the search space for






π1

π2




 even further. Recognizing that

once π1 is chosen, π2 can be calculated using the above relation. This will reduce the

2-dimensional search to a 1-dimensional search.

Now we only need to accurately select the value of one of the costate variables,

the value of the other costate is calculated by using the H = 0 condition.

The control algorithm consists of the following steps.

1. Assume a particular value of π1.

2. Calculate two extremal values for the trajectory derivative at the initial state

corresponding to inputs u = +1 and u = −1 due to the actuator saturations in

both directions. ẋ(1) = Ax + B(+1) and ẋ(2) = Ax + B(−1).

3. Compute the two alternative values of π2 by utilizing the Hamiltonian definition

H = 1 + π1x2 + π2u and substituting thus π2(i) =
−1−ẋ1(i)

ẋ2(i)
, i = 1, 2.

4. Using the two sets of possible initial costates {π1, π2(1)} and {π1, π2(2)}, off-line

simulation is carried out to observe which of the sets maintains the Hamiltonian

at zero, as required by the time-optimal solution.

5. Repeat steps 1 through 4 till the correct values for costate variables are selected.

6. The correct set of initial costates is then used for the regulation. The correct

trajectory will have the Hamiltonian maintained at zero at all points on it.
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The search space is thus reduced in dimension. But we still need to fix the value

of one of the costates to three or four places of decimal to reproduce the time-optimal

solution. After one of the costate variable has been guessed, we still need to know

which value of input to use to be able to calculate the correct value for the second

costate variable. This is acceptable for low order systems but will make the search

process immensely intractable for higher order systems. And then again it will involve

multiple off-line trials. Thus, this algorithm will not prove very suitable for online

implementation.

G. Hypothesis 5:

Reverse-time evolution is an extremely useful means to backtrack the system trajec-

tory from a known final state. In the regulation problem, final state is always the

origin. Therefore, any trajectory that terminates at the origin driven by either u = 1

or u = −1, is an optimal trajectory. If negative-time evolution is performed with

origin as initial state and input being either u = 1 or u = −1, a part or whole of

the optimal trajectory can be retraced, depending on whether switching is involved

or not.

Any reverse-time trajectory starting from the origin that is driven with u = 1 or

u = −1 as input, will always be along a time-optimal trajectory.

The correct time-optimal trajectory can be reconstructed by ensuring that reverse-

time trajectory from the origin and forward-time trajectory originating from initial

state meet each other. The off-line simulations will involve the following steps.

1. The system is simulated to evolve in negative time from the origin till the

estimated switching point position.

2. An initial value of input is estimated (either u(0) = −1 or u(0) = 1) the system
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is simulated to evolve in forward time from the initial state.

3. The time-optimal trajectory is the one in which both forward-time and reverse-

time curves just about meet each other before diverting from the exact time-

optimal solution.

4. Selecting the input corresponding to the plot with most promising trajectory.

5. Using the selected input to let the system evolve for another time step.

6. Repeat steps 1 through 5.

The reverse-time and forward-time
trajectories meet appropriately in this plot,
yielding the time optimal trajectory.

Reverse-time trajectory

Forward-time trajectory

Fig. 24. Various plots showing the search procedure.
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Figure 24 demonstrates how negative-time evolution may be utilized to determine

the correct time-optimal trajectory through a number of off-line simulations.

As in the previous algorithms, this involves off-line simulations and figuring out

the correct solution involves tedious observation as to where the two trajectories

(forward- and reverse-time) meet. Hence, this algorithm holds limited promise for

online implementation.

So far we have been trying to hypothesize methods to reproduce time-optimal

control by avoiding solution of TPBVP. This inevitably involves either exact knowl-

edge of costate variables or a number of off-line trials to determine them. Clearly,

these cannot be implemented in real-time. Chapter IV describes some other methods

that perform regulation with bounded inputs but not in a time-optimal manner.
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CHAPTER IV

ONLINE APPROXIMATE TIME-OPTIMAL CONTROLS

Control schemes described in chapter III involve off-line trials to pin-point the exact

values of costate variables. Such methods will prove to be abortive as they not only

require more time but also more computing resources. Moreover, the off-line trials

will have to be repeated for every distinct initial condition. With this realization, the

initial goal of reproducing the true time-optimal solution was modified to developing

an online control scheme that would approximate time-optimal solution. The approx-

imate solution might require more time for convergence than the exact time-optimal

control. This is acceptable as an online technique would dispense with off-line trials

and high computational overheads.

This chapter describes some control schemes based on state-space geometry of the

plant. Hypotheses 6 and 7 are very similar to each other and involve minimization of

a scalar quantity. Later part of this chapter describes a state-space aiming technique

very similar to the optimal-aim methods.

A. Hypothesis 6:

Superpose the two <2 spaces corresponding to x and ẋ, and investigate the vector sum

(x+ ẋ). The sum (x+ ẋ) can be interpreted as a predictive measure of where the state

vector is going to terminate after the next integration step of the state equation.

The quantity (x + ẋ) is a predictive measure of the next integration step for a

unit time interval. (If x be the “displacement”, ẋ is the velocity and the quantity

(x+ ẋ) then is the displacement after a unit time interval.) Figure 25 clearly describes

the state-space geometry involved.

Intuitively, we can realize that, minimizing (x + ẋ) at every point along the tra-
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jectory, will move the state closer to the origin and eventually (x+ẋ) = 0. Minimizing

the norm of the displacement after a unit time interval, at a number of closely spaced

points along the state trajectory, using the available values of input, in effect should

bring the state closer to the origin as the system evolves. So we can write a tentative

control law for the control calculation as

u =

{

u
∣
∣
∣ min

Ω

∥
∥
∥x + ẋ

∥
∥
∥

}

. (4.1)

This method can be slightly modified by investigating the quantity (x + αẋ) instead

of (x + ẋ), yielding the following control law:

u =

{

u
∣
∣
∣ min

Ω

∥
∥
∥x + αẋ

∥
∥
∥

}

. (4.2)

Whereas, previously the prediction was for the unit time interval, we can change this

time interval to any value by increasing or decreasing the value of the parameter

α(> 0). In some cases this might give faster rate of convergence. This strategy seeks

to regulate the system but not by reproducing the time-optimal control solution. To

perform regulation the control strategy seeks to minimize the quantity ‖x + αẋ‖ at a

discrete number of points on the state-space trajectory of the system, over the input

set Ω, and involves the following steps.

1. The input range is discretized into a finite number of segments. For example,

Ω = [−1, 1] = {uj} = {−1.0,−0.9,−0.8 · · · 0 · · · 0.8, 0.9, 1.0}, j = 1, 2 · · · p,

where p is the number of segments of the input set after discretization.1

2. Select an appropriate value for α. It has been found by experience, the results

can be affected to an appreciable extent by varying the value of α.

1Instead of discretizing the input set Ω, we can also perform a mathematical
optimization of the quantity ‖x + ẋ‖ over this set. The optimization is a one-step
process and the minimizing input u∗ can be directly used in step 6.
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Fig. 25. Superposition of the x and ẋ spaces.

3. Select a constant time interval over which the input will stay constant and after

which the control will be recalculated according to the algorithm.

4. Calculate the allowable derivative vector set, using the current state value.

Ψ =
{
ẋ(j) : ẋ(j) = Ax + Buj

}
.

5. Compute the sets E = {e} =
{
x + αẋ(j)

}
, j = 1, 2 · · · p and En = {‖e‖} =

{
‖x + αẋ(j)‖

}
.

6. Determine the minimum value of ‖x + αẋ(j)‖ from the set En and select the

corresponding value of uj, as the input, u∗. This is the minimizing input.

7. Use the selected input to let the system evolve for another time step.

8. Repeat steps 4 through 7.
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This algorithm is advantageous over previous ones in the sense that it is com-

pletely online. The state-space trajectory described by the system under this control

technique does hold the promise of eventual regulation, with some modifications. This

modification is discussed in hypothesis 7.

The following results show the effect of changing the value of the parameter α

on the resulting trajectory. Figures 26 and 27 show results of applying the control

algorithm on the double integrator with α = 1. Figures 28 and 29 are the results

with α = 15. In all these cases the initial state is x(0) =






10

−5




.
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−1

−0.5

0

Fig. 26. System trajectory, α = 1.
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Fig. 27. Control input, α = 1.
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Fig. 28. System trajectory, α = 15.
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Fig. 29. Control input, α = 15.

Studying the effect of changing the initial state but keeping α constant is also

instructive. The following results are obtained by simulating the effect of controller

developed using hypothesis 6 on the double integrator system. The plots correspond

to two different initial states. The plots were generated with initial conditions x(0) =





7

−7




 and x(0) =






−10

12




, respectively. The value of the parameter α(=5) was

kept constant for both simulations.

In Figures 30 and 31, we can clearly observe that notwithstanding the initial

conditions, this algorithm will force the trajectory on similar (or symmetrical) paths.

Noticeably all these trajectories appear to be heading toward the origin till they reach

close to the horizontal axis. The control input plots (Figures 32 and 33) for these

cases also show similar behavior.

A notable fact in the results following from hypothesis 6 is that the control

signals never switch signs from positive to negative and vice versa. Also, the cost
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Fig. 30. System trajectory with initial state [7 − 7]T .
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Fig. 31. System trajectory with initial state [−10 12]T .



53

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 32. Control input with initial state [7 − 7]T .
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Fig. 33. Control input with initial state [−10 12]T .
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function ‖x + αẋ‖ is always positive. This can be a reason for the control u to not

switch signs. A modification of the cost function, so that it can take both negative

and positive values, should be able to rectify this characteristic. We can try many

different cost function alternatives that will take both positive and negative values.

One such cost function is simply the product of elements of the vector (x + αẋ). This

can be represented symbolically as
∏n

i=1 (xi + αẋi).

B. Hypothesis 7:

Now, the control scheme can be modified to incorporate the modified cost function.

The modified control algorithm will seek to minimize the quantity
∏n

i=1 (xi + αẋi)

at a discrete number of points on the state-space trajectory of the system, over the

input set Ω.

At any point on state trajectory, control input can be calculated as

u =

{

u
∣
∣
∣ min

Ω

[
n∏

i=1

(xi + αẋi)

]}

. (4.3)

The controller thus developed is independent of the initial state. It is found

that this control scheme successfully regulated not only the double integrator system,

but also any general second-order stable system. In the following section we shall

demonstrate the stabilizing nature of this control law.

1. Controller stability

Theorem: If in a system

ẋ = Ax + Bu, (4.4)
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where x ∈ <2, the pair (A, B) is controllable and A has no eigenvalues with positive

real parts, then the control law

u =

{

u
∣
∣
∣ min

Ω

[
2∏

i=1

(xi + αẋi)

]}

, (4.5)

globally asymptotically stabilizes the system.

Proof: Let A =






a11 a12

a21 a22




 and B =






b1

b2




. This system can be transformed into

a controllable canonical form using a similarity transformation T . We can always

find a similarity transformation T , provided that the system is controllable. Say, the

transformed state be q. Then, q = T−1x. The transformed system is expressed as:

q̇ = ACq + BCu. (4.6)

Here AC = TAT−1 =






0 1

a1 a2




 and BC = TB =






0

1




 =⇒ q̇ =






q2

a1q1 + a2q2 + u




.

The value of control input is (Equation (4.3))

u =

{

u
∣
∣
∣ min

Ω

[
2∏

i=1

(xi + αẋi)

]}

=

{

u
∣
∣
∣ min

Ω
[(q1 + αq̇1) (q2 + αq̇2)]

}

=

{

u
∣
∣
∣ min

Ω
[(q1 + αq2) (q2 + αa1q1 + αa2q2 + αu)]

}

=

{

u
∣
∣
∣ min

Ω

[
q1q2 (1 + α (a1 + αa2)) + αa1q

2
1 + α (1 + αa2) + αu (q1 + αq2)

]

}

=⇒

u = −sign (q1 + αq2) .

(4.7)
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We will employ the Lyapunov’s stability theory to get conditions for stability [19],[20].

Lemma: Let V (x) be continuously differentiable and positive definite function defined

in <n, with the property that V (x) = 0 if and only if x = 0. Then

• If d[V (x)]
dt

is negative semi-definite on <n, the system is Lyapunov stable.

• If d[V (x)]
dt

is negative definite on <n, the system is asymptotically stable.

• If d[V (x)]
dt

is positive definite on <n, the system is unstable in both senses.

¤

Therefore, it will suffice for us to compute the input u such that d[V (x)]
dt

≤ 0 to ensure

Lyapunov stability. The system being considered is semi-stable so it satisfies the

matrix Lyapunov equation

(
AT

CP + PAC

)
≤ −Q. (4.8)

The matrix P is the positive semi-definite solution of the Lyapunov matrix equation

and Q is any positive semi-definite matrix. Suppose the Lyapunov function is V =

qT Pq, then

V̇ = q̇T Pq + qT P q̇

= (qT AT
C + uT BT

C)Pq + qT P (ACq + BCu)

= qT (AT
CP + PAC)q

︸ ︷︷ ︸

≤0

+2qT PBu.

(4.9)

Selecting P =






λ1 αλ2

αλ2 α2λ2




, λ1 > λ2 > 0, we get:
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2qT PBu =

[

q1 q2

]






λ1 αλ2

αλ2 α2λ2











0

1




 {−sign(q1 + αq2)}

= −αλ2 (q1 + αq2) {sign(q1 + αq2)}
︸ ︷︷ ︸

>0

=⇒

2qT PBu < 0

(4.10)

From Equations (4.9) and (4.10), V̇ < 0. Hence, global asymptotic stability proved.

As stated earlier, optimal-aim concept has been the inspiration behind the above

development. Although, this algorithm has no obvious optimal-aim interpretation, in

essence the control law is an aiming solution as it is based solely on the idea of directing

the trajectory derivative in a direction that minimizes the quantity
∏n

i=1 (xi + αẋi).

2. Cost function and MPC analogy

Hypotheses 6 and 7 are inherently online and do not depend on quantities that have

to be guessed. The corresponding control algorithms seeks to minimize the quantities

‖x + αẋ‖ or
∏n

i=1 (xi + αẋi), respectively, at a number of discrete points along the

trajectory over the input set. This can be likened to a moving horizon model predic-

tive control (MPC) technique [21],[22] with both control horizon and the prediction

horizon being equal to one time step T , and the norm ‖x + αẋ‖ (or
∏n

i=1 (xi + αẋi))

can be interpreted as a cost function for the optimization. This interpretation implies

that this algorithm might share some of the advantages of the MPC method.

Chapter V presents the results corresponding to above control schemes when

applied to different second order systems.
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CHAPTER V

RESULTS AND DISCUSSION

A. Results

The results corresponding to control scheme developed in chapter IV are presented

here. The results consist of plots of state-space trajectory and the control input when

this control scheme is applied to the plant.

Figures 34 and 35 show the plots resulting from application of this control

scheme to double integrator. The initial state is x(0) =






10

15




, and α = 2. In

recording these results, the control set Ω = [−1, 1], was discretized as Ω = {uj} =

{−1.0,−0.9,−0.8 · · · 0 · · · 0.8, 0.9, 1.0}. It is clear that the modified algorithm suc-
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Fig. 34. State trajectory with the modified algorithm

ceeds in regulating the system. The state trajectory and the control plots display

the switching behavior. The state trajectory also bears a close resemblance to the
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Fig. 35. Control input with the modified algorithm

time-optimal trajectory as well. In the control plot, we notice three distinct places

where the control switching took place. The high density of the control plot towards

the end denotes very rapid switching of the control input.
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We can observe the effect of changing α, in the following plots, the initial state

is the same as in the above figures. α = 6 for Figures 36 and 37. α = 20 for Figures

38 and 39. As is easily observed, α affects the results to a great extent and we cause

the system to converge slower or faster by varying the value of α. High values of α

require very fast input switching as the state approaches the origin and may not be

desirable for that reason.
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Fig. 36. State trajectory, α = 6
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Fig. 37. Control input, α = 6
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Fig. 38. State trajectory, α = 20
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Fig. 39. Control input, α = 20

As a proof of principle, we now apply the same to other second order systems

like the harmonic oscillator and the ‘two time constant equation’ [11]. The harmonic

oscillator is represented by the following equation:

ẋ =






0 2

−2 0




 x +






0

1




 u (5.1)

The simulation results for the harmonic oscillator are shown in Figures 40 and 41.
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Fig. 40. State trajectory of a harmonic oscillator.
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Fig. 41. Control input for a harmonic oscillator.
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Fig. 42. State trajectory of a ‘two time constant equation’.

The ‘two time constant equation’ [11] is represented as:

ẋ =






−1 0

0 −3




 x +






1

3




 u (5.2)

The state trajectory and the control input plots for the above are shown in Figures

42 and 43.
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Fig. 43. Control input for a ‘two time constant equation’.

B. Discussion

Hypotheses 1 through 5 focus on reproducing the exact time-optimal solution. In the

course of this development it has been observed that prior knowledge of the costate

variables is essential to reproduce the time-optimal solution. So, whereas our concern

was to avoid solving the TPBVP, the focus on reproducing the exact time-optimal

solution, and hence the dependence on costate variables made the TPBVP inevitable.

Thus, none of the algorithms corresponding to hypotheses 1 through 5 are online and

all involve off-line simulations to lock on to the correct values of costate variables.

Hypotheses 6 and 7 represent a departure from this focus on the exact time-

optimal solution, and result in fully online controllers. Simulation results of different

systems show that the control scheme of hypothesis 7 satisfies the regulation specifica-

tion. The control signal is saturated most of the time and displays switching behavior.

This is very close to the time-optimal solution. Hence, control scheme corresponding
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to hypothesis 7 is our desired algorithm. This algorithm is simple but very powerful

as it can globally stabilize not only asymptotically null-controllable systems but also

systems having marginally stable modes. Double integrator is a system having two

marginally stable modes and it is stabilized by this algorithm.

Most of the control input plots generated on applying this control scheme to

different systems show a marked tendency to switch very fast in certain regions. This

could be an issue for concern. Extremely fast switching in general is not desirable.

Most of the physical systems do not exhibit the fast response times that are apparently

required.

The proof of stability of this algorithm for second order systems is supplied,

but as the control law (Equation (4.3)) becomes highly nonlinear for higher order

systems, the stability properties of this algorithm with higher order systems are not

so straightforward to characterize.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This thesis describes the study of mainly second order systems having bounded inputs.

Aiming methods were investigated and shown to be capable of generating globally

asymptotically stabilizing online controls for null-controllable systems of any order,

through the selection of aim states in a special manner. This suggested that aiming

methods may prove to be good candidates for generating time-optimal controls online.

Initially the work was focussed on reproducing exact time-optimal solutions using

purely state-space geometric method, but this task was not accomplished. Problem

definition was then modified to generation of an online control scheme that approxi-

mates the time-optimal solution.

A novel regulation algorithm was developed for low order systems with inputs

constraints. It is essentially a modification of optimal-aim concept where aim direc-

tions are selected in a special way to generate time-optimal control approximately.

The resulting control scheme is totally online in implementation and globally sta-

bilizing for second order systems. This controller can have applications in the process

industry where systems operate at equilibrium states and regulators are required to

maintain equilibrium.

A. Future Work

One obvious direction the future work can explore is the successful application of the

control schemes developed here to unstable systems.

The research can be continued to extend the results to higher order systems.

The aiming solutions are apply to higher order systems as well but the stabilization

achieved by control scheme corresponding to hypothesis 7 is only restricted to second
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order systems.

The analogy of hypotheses 7 with model predictive control (MPC) was mentioned

in chapter V. This can be investigated further and may lead to contributions to both

MPC theory as well as regulators for low order plants.
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