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ABSTRACT 
 

Analytical Modeling of a Fracture-Injection/Falloff Sequence and the 

Development of a Refracture-Candidate Diagnostic Test. (May 2006)  

David Paul Craig, B.S., Texas Tech University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Thomas A. Blasingame 

 
 
Fracture-injection/falloff sequences are routinely used as pre-frac well tests to estimate reservoir pressure 

and transmissibility, but the current interpretation methods are limited to analyzing specific and very small 

portions of the pressure falloff data. To remove the current limitations, new analytical fracture-

injection/falloff models are developed that account for fracture propagation, fracture closure, and after 

fracture closure diffusion. A fracture-injection/falloff differs from a conventional injection/falloff 

sequence in that pressure during the injection is sufficient to initiate and propagate a hydraulic fracture. By 

considering fracture propagation as time-dependent storage, three new models are presented for a fracture-

injection/falloff sequence in a well in an infinite slab reservoir with a single vertical fracture created 

during the injection and with variable fracture and wellbore storage as follows: 

• Equivalent propagating-fracture and before-fracture-closure storage with constant after-fracture-

closure storage. 

• Time-dependent propagating-fracture storage, constant before-closure storage, and constant after-

closure storage. 

• Time-dependent propagating-fracture storage, constant before-closure storage with linear flow 

from the fracture, and constant wellbore storage and skin with after-closure radial flow. 

When a fracture-injection can be considered as occurring instantaneously, limiting-case solutions of the 

new fracture-injection/falloff models suggest the observed pressure difference can be integrated to 

generate an equivalent pressure difference if the rate were constant. Consequently, a fracture-

injection/falloff sequence can be analyzed with constant-rate, variable-storage type curves. 

The new fracture-injection/falloff theory is also extended to allow for a fracture-injection in a reservoir 

containing an existing conductive hydraulic fracture. The new multiple-fracture fracture-injection/falloff 

model forms the basis of a new refracture-candidate diagnostic test that uses characteristic variable-storage 

behavior to qualitatively diagnose a pre-existing fracture retaining residual width and to determine if a pre-

existing fracture is damaged. A quantitative analysis methodology is also proposed that uses a new 

pressure-transient solution for a well in an infinite-slab reservoir producing through multiple arbitrarily-

oriented finite- or infinite-conductivity fractures. 
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CHAPTER I 

INTRODUCTION – REFRACTURE-CANDIDATE DIAGNOSTIC 

1.1 Introduction 
Oil and gas wells often contain potentially productive layers bypassed either intentionally or inadvertently 

during an original completion.  Subsequent refracturing programs designed to identify underperforming 

wells and recomplete bypassed layers have sometimes been unsuccessful in part because the programs 

tend to focus on commingled well performance and well restimulation potential without thoroughly 

investigating individual layer properties and the refracturing potential of individual layers. Perhaps the 

most significant impediment for investigating layer properties is a lack of representative and cost-effective 

diagnostics that can be used to determine layer permeability, reservoir pressure, and to quantify the 

effectiveness of previous stimulation treatments. 

Fracture-injection/falloff tests, which differ from conventional injection/falloff tests in that a fracture is 

propagated during the injection, are asserted to be a valid refracture-candidate diagnostic. The assertion is 

proved using new mathematical models and analytical solutions for a fracture-injection/falloff sequence in 

an infinite slab reservoir with and without a pre-existing hydraulic fracture. 

A special case of interest is a fracture-injection/falloff test with an injection time short relative to the 

reservoir response. When the finite time of a fracture injection can be considered instantaneous, slug-test 

analysis methods can be applied to the falloff data. The preferred slug-test analysis method "converts" 

variable-rate pressure falloff data to equivalent constant-rate pressure data by integration of the recorded 

pressure difference with respect to time. After conversion, model-based (type curve) analysis is possible 

with new constant-rate variable-storage drawdown type curves that account for fracture closure and after-

closure diffusion. 

With a new solution for multiple arbitrarily-oriented uniform-flux, infinite-conductivity, or finite-

conductivity hydraulic fractures, the fracture-injection/falloff test theory is extended to the case with a pre-

existing hydraulic fracture. Consequently, a fracture-injection/falloff sequence with the injection time 

short relative to the reservoir response can be used as a refracture-candidate diagnostic to qualitatively 

determine the existence of a pre-existing fracture that retains residual width and to determine if a pre-

existing fracture is damaged. Provided sufficient pressure falloff data are recorded, the new refracture-

candidate diagnostic test can also provide estimates of fracture conductivity, fracture half length, reservoir 

permeability, and average reservoir pressure. 

___________________________ 

This dissertation follows the style and format of SPE Journal. 
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1.2 Refracturing 

Howard and Fast1 note that between 1947, when hydraulic fracturing was introduced to the industry, and 

1970, there were about 500,000 recorded fracturing treatments. Of the half million treatments, an 

estimated 35% were refracture treatments to further enhance well production. Between 1970 and 1996, a 

modest number of case histories appear in the literature describing refracturing programs in both oil,2-7 

gas,8-11 and gas-storage reservoirs,12 but the number of wells with refracture treatments in each case is on 

the order of 100 or less. 

Reeves13 in a 1996 study to identify the technology barriers and potential benefit of restimulation 

concluded that only 450 to 550 refracture treatments are pumped per year in the United States. Examples 

of gas reservoirs with refracturing programs originating since 1996 include the Barnett shale of North 

Texas,14 the Codell formation in the Denver-Julesburg basin,15-16 and the Vicksburg in South Texas.17 

1.2.1 Fracture Reorientation, Fracture Remediation, and Fracturing Bypassed Layers. Restimulation 

following a primary fracturing treatment takes several forms. For example, a premature screenout can 

result in a very short effective fracture haf-length, a damaged fracture face, and a plugged proppant pack. 

If the cause of a screenout is known or inferred from the treatment records, a refracture treatment is 

sometimes performed immediately after correcting the problem to obtain the desired fracture half-length 

and conductivity.18 Alternatively, a damaging fluid system, for example, a system that does not degrade 

following a treatment, might allow a fracturing treatment to be pumped as designed, but it can also either 

plug the proppant pack or significantly reduce fracture conductivity.  With a damaging fluid system, the 

impact can be immediate, that is, a well may not flow back, or the production profile might show the 

effects of slow fracture clean up over time.19 Alternatively, formation fines migration or proppant crushing 

can damage fracture conductivity over time. With proppant-pack damage, a remedial chemical stimulation 

treatment is sometimes effective, or with severe fracture conductivity damage, a refracture treatment can 

be required.18 The current Vicksburg refracturing program in South Texas is an example of a fracture 

remediation project that attempts to identify refracture-candidates based on unsuccessful primary fracture 

treatments or suspected proppant-pack damage. 17 

Refracturing programs in the Barnett14 shale and Codell15-16 are believed to be successful because of 

secondary fracture azimuth reorientation. Ebel and Mack20 theorized that the directions of maximum and 

minimum stress change with production. Consequently, a refracture treatment pumped after significant 

production can initiate and propagate in a different plane than the primary fracture treatment. A definitive 

study of fracture reorientation was presented by Wright et al.21 Wright et al. used tiltmeter interpretations 

to demonstrate that the fractures propagated during a 1993 refracturing program in the Lost Hills 

Diatomite reoriented to a plane different than the original 1990 tiltmeter-mapped primary hydraulic 

fractures.21 In a subsequent study, Wright et al.22 and Wright and Conant23 demonstrated using tiltmeter 
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interpretations that the fractures from refracture treatments in the Van Austin Chalk oil field in Texas 

reoriented by as much as 56° from the original fracture azimuth. A field experiment in the Barnett shale 

using tiltmeters during the original fracture treatment and subsequent refracture treatment, also clearly 

demonstrated hydraulic fracture reorientation.24 

Multilayer completions with hydraulic fractures can contain layers bypassed intentionally to pursue higher 

grade pay and layers bypassed inadvertently because of ineffective fracture treatment diversion. For 

example, an average of 26 sands are targeted for fracturing in a typical Piceance basin Mesaverde low 

permeability gas well using three to five fracturing treatments with perforation-friction controlled 

diversion (limited entry). Esphahanian and Storhaug25 in a study of 13 Piceance basin production logs, 

found that after fracturing, 28% of the targeted sands produced less than 10 Mcf/D. A similar production 

log study in the Jonah field in Wyoming, where each well can contain 30 to 40 low permeability gas sands 

targeted for fracturing, found that after completion 35% to 40% of the sands where not significantly 

contributing to production.26 In some cases the noncontributing sands may have been successfully fracture 

stimulated, but either the reservoir quality is extremely poor or the fracture was damaged by subsequent 

uphole completion operations.26 In other cases, the fracturing diversion technique failed, and the sands 

were inadvertently bypassed. 

Identifying bypassed layers is sometimes possible with near-wellbore radioactive tracing, far-field 

tiltmeter fracture imaging, or microseismic fracture imaging.27 Radioactive tracing adds radioactive 

isotopes to the fracturing fluid during a treatment, and after the treatment uses spectral gamma ray logging 

to determine the location of the radioactive material. Radioactive tracing is a near-wellbore diagnostic that 

can help determine if a sand targeted for fracturing was inadvertently bypassed. Figs. 1.1 and 1.2 contain 

a post-frac spectral gamma ray log presentation (Tracerscan) from a Mesaverde well with 20 sands 

targeted for fracturing during three fracturing treatments using limited-entry diversion. Fig. 1.1 shows little 

or no radioactive material adjacent to perforations at 4,112 ft, 4,420 ft, and 4,468 ft. Similarly, Fig. 1.2 

shows no radioactivity measured adjacent to the perforations at 4,984 ft, 5,014 ft, and 5,212 ft. In 

summary, the near-wellbore image shown in Figs 1.1 and 1.2 suggest that six of the 20 sands, or 30%, 

were not effectively stimulated or were bypassed entirely. In a study of fracturing treatments in the 

Almond, Cotton Valley, Delaware, and Red Fork using radioactive tracers and spectral gamma ray 

logging, Fisher et al.28 concluded that between 10% and 33% of layers targeted for fracturing were 

unstimulated after completion. 

Far-field fracturing imaging methods,27 including tiltmeters and microseismic monitoring, can also help 

determine if targeted sands were bypassed, but the resolution of far-field imaging is not sufficient to 

definitively identify bypassed layers without other corroborative evidence like production logs or pressure 

transient tests of individual layers. Tiltmeters can be either surface or downhole deployed, and measure the  
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Fig. 1.1—Multilayer Tracerscan log suggesting perforations at 4112-, 4420-, and 4468 ft were 
ineffectively stimulated or completely bypassed during the completion. 
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Fig. 1.2—Multilayer Tracerscan log suggesting perforations at 4984-, 5014-, and 5212 ft were 
ineffectively stimulated or completely bypassed during the completion. 
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minute distortion of the earth during a fracturing treatment.27 An array of tiltmeters in or adjacent to the 

treatment well can be used to infer the far field fracture geometry—azimuth, length, and height—based on 

relatively simple models of fracture growth.27  

Microseimsic fracturing imaging uses an array of geophones or accelerometers in the treatment well or an 

offset well to measure the acoustic energy transmitted from the slippage of microfractures and fissures 

adjacent to a propagating fracture. The slippage creates seismic events that form an "envelope" around the 

propagating fracture, and by mapping the location of each seismic event, the fracture azimuth, length and 

height can be inferred.27 Fig. 1.3 is a composite microseismic image of two limited-entry fracturing stages 

from a multilayer completion with a total of 10 layers targeted for fracturing. The targeted layers are 

denoted by the crosshatched shading, and the microseismic events recorded (solid circles) are shown in the 

fracture plane. Fracture geometry is inferred by distribution of the seismic events in the fracture plane. It's 

noteworthy that virtually all of the seismic events were confined to five layers, and that the other five 

layers contained few if any of the recorded seismic events.  A lack of seismic events in the five layers 

strongly suggests the layers were bypassed or ineffectively stimulated by the limited-entry fracture 

treaments.  

Radioactive tracing and far-field fracture imaging are extremely beneficial when developing a refracture 

program to identify and stimulate bypassed layers; however, the vast majority of wells drilled and 

completed have no tracing or imaging. 

1.2.2 Refracture-Candidate Selection. Howard and Fast1 proposed refracture-candidate selection criteria 

for oil wells in 1970 that focused on either identifying wells that responded favorably to an initial 

treatment but experienced rapid production decline or wells with intentionally bypassed pay that could be 

targeted during refracturing. They concluded wells that responded favorably during an initial fracture 

treatment would respond favorably to refracturing, or as phrased by Reese et al.,29 "good wells make good 

refracture candidates." In 1978, however, Crowell and Jennings,30 reported only limited success had been 

observed following refracturing treatments in low permeability gas wells. More than twenty years later, 

Kuuskraa et al.31 noted that identifying refracture-candidate wells is "challenging," and suggested that 

refracture-candidate selection should include production data analysis to identify suspected 

underperforming wells, well test analysis to validate the production data analysis, fracture modeling, and a 

thorough well records review to find potential problems during the original completion. 

Other refracture-candidate selection methods have been suggested over the years.  Hower and Decker32 

identified recompletion candidates in multilayer gas reservoirs by interpreting linear trends in a graph 

of p z versus cumulative production. Fetkovich, et al.33 demonstrated that a graph of p z versus 

cumulative production will be non-linear in layered, no crossflow reservoirs. Thus, Hower and Decker32  
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Fig. 1.3—Composite microseismic image of two limited-entry hydraulic fracturing treatments 
with the sands targeted for hydraulic fracturing shaded, a gamma ray log overlay, and 
microseismic events (solid circles) recorded along the fracture plane. 
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concluded a linear trend in a multilayer completion implied an ineffective completion with bypassed 

layers. 

A similar refracture candidate selection method was proposed by Fetkovich34 using production data 

analysis with Fetkovich type curves to identify layered no-crossflow behavior. Fetkovich34 recognized that 

selectively stimulating the lower permeability layers would add well productivity and reserves, and he 

reported that the low permeability layers were targeted for refracturing in wells with strong layered no-

crossflow behavior, which is indicated by a decline curve exponent approaching unity. McCoy, Reese, and 

Johnson,35 extended the work of Fetkovich and developed refracture-candidate selection guidelines for 

multilayer completions. The guidelines included a thorough review of well records—which the author's 

conclude is the most important step—production data analysis to identify layered no-crossflow behavior, 

production logs to identify nonproductive layers, and layer pressure transient testing to determine layer 

reservoir properties. 

In the 1990s a relatively new tool was introduced to help select refracture-candidates. An artificial neural 

network36-38 can be developed for refracture programs by "training" a neural-network with a set of input 

and output parameters. Training implies the neural-network develops a relationship between a given set of 

input and output parameters. After training, the neural-network is used as a predictive tool to indentify 

refracture candidates. Shelley37 notes a neural-network trained with public completion and production 

information is especially beneficial since it can rapidly screen refracture candidates before more detailed 

analysis—like thoroughly reviewing the well file, production data analysis, and well testing—is required. 

In summary, refracture-candidate selection methods in the late 1990s generally consisted of the following. 

• A thorough well record review to identify obvious problems or inadequacies of the initial fracturing 

treatment and to identify target layers intentionally bypassed during the original completion. 

• Production data analysis to identify well underperformance. Production data analysis can simply 

compare offset well production or can entail type-curve analysis and reservoir simulation. 

• Refracture-candidate diagnostics including well testing and production logs. 

1.2.3 Tight Gas Restimulation Study. Beginning in 1998, the Gas Research Institute (GRI), since 

renamed the Gas Technology Institute (GTI), embarked on a research and development project to evaluate 

methods for selecting refracture candidates, to identify the mechanisms for well "underperformance," and 

to test restimulation techniques.39-41 Three methods were used to evaluate well performance and fracture 

treatment effectiveness—production statistics, virtual intelligence using a neural network, and production 

type-curve analysis. 

Production statistics, or moving domain analysis as implemented on a computer,42-43 compares production 

indicators of each well with its offsets to identify well underperformance. By comparing a well's 



 9 

production with only the immediate offset well production, the variability of reservoir quality is 

minimized in the comparison. Virtual intelligence was utilized by training an artificial neural network with 

production, completion, and fracturing variables that included fracturing fluid type, breaker type, and 

breaker concentration. After training, the artificial neural network was used to identify restimulation-

candidate wells with relatively poor fracture treatment design or execution by comparing predicted and 

actual well performance.  The production type-curve analysis used in the restimulation study required 

history-matching well production using analytical type-curves developed specifically for single layer 

hydraulically fractured low permeability gas wells.44 Restimulation candidates were identified by a short 

effective fracture half-length, and the production increase potential of extending the effective fracture half-

length with a restimulation treatment.39 

An important guiding principle of the study was the "85/15" rule, which presumed that 85% of the 

incremental recovery from restimulation of all wells could be produced by only 15% of the wells.39 Using 

the 85/15 rule, the evalution methods were required to identify only the top 15% of the refracture 

candidates. Each evaluation method was anticipated to develop a list of candidates, and the overlap 

between lists would be the preferred restimulation candidates. Unfortunately, little overlap was observed,45 

and a detailed study of the top candidates from each list was required to develop a prioritized list of 

restimulation candidates. 

After a thorough evalution process, nine multilayer tight-gas wells were restimulated in the Frontier 

formation in Wyoming, the Mesaverde in Colorado, and the Cotton Valley in Texas. Eight of the nine 

restimulation treatments were refracture treatments with three refracture treatments in the Frontier, two in 

the Mesaverde, and three in the Cotton Valley. In the final report to GRI, Reeves45 reported that seven of 

the eight refracture treatments were economically successful—based on a refracture cost of less than 

$0.75/Mcf of incremental gas produced46—with 2.9 Bcf of incremental reserves attributed to the 

restimulation project at a cost of $0.26/Mcf. 

A new review of the well performance after four years of production following the refracture treatments 

reveals the program as a whole was successful, but the measure of success varied considerably by area and 

by formation. Figs. 1.4 through 1.6 contain graphs of gas production versus time for the Cotton Valley 

restimulation wells, which are the CGU 3-8T, CGU 10-7T, and CGU 15-8T, respectively. Each graph 

contains estimated incremental gas recovery since the refracture treatment along with a cost in dollars per 

Mcf of the incremental gas. Clearly the CGU 3-8T and CGU 10-7T can be considered economic successes 

with 0.67 Bcf of incremental gas produced at a cost of $0.30/Mcf, but the CGU 15-8T appears to be a 

failure with only 0.080 Bcf of incremental gas produced at a cost of $1.23/Mcf. Recognizing that an 

economic success depends on several factors, including gas price volatility and risk, the incremental gas 
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Fig. 1.4—Cotton Valley well CGU 3-8T production decline before and after the refracture 
treatment. Solid curve is the extrapolated production decline without a refracture 
treatment. 
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Fig. 1.5—Cotton Valley well CGU 10-7T production decline before and after the refracture 
treatment. Solid curve is the extrapolated production decline without a refracture 
treatment. 
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may be a better measure of success, and as such, the CGU 15-8T refracture treatment was unsuccessful 

with only 5% of the cumulative gas production attributed to the refracture treatment. 

Figs. 1.7 through 1.9 contain graphs of gas production versus time for the Frontier wells with refracture 

treatments, which are the GRBU 45-12, WSC 20-09D, and the GRBU 27-14, respectively. As observed 

with the Cotton Valley refracturing results, two of the three refracturing treatments were successful. The 

refracturing treatment in the GBU 45-12 added 0.30 Bcf of incremental production, and the refracturing 

treatment in the WSC 20-09D added 0.17 Bcf of incremental production, which corresponds to a cost of 

$0.45/Mcf for both wells. Conversely, the refracture treatment in the GRBU 27-14 shown in Fig. 1.9 was 

detrimental to well performance, and the treatment resulted in a loss of 0.10 Bcf. 

Figs. 1.10 and 1.11 contain graphs of gas production versus time for the RMV 55-20 and Langstaff #1 

Mesaverde wells. The refracture treatments resulted in incremental gas production of 0.09 Bcf and 

0.055 Bcf, respectively. However, the refracture treatment incremental gas production cost $0.85/Mcf, and 

the refracture treatments are considered by the operator to be failures. 

Fig. 1.6—Cotton Valley well CGU 15-8T production decline before and after the refracture 
treatment. Solid curve is the extrapolated production decline without a refracture 
treatment. 
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Fig. 1.7—Frontier well GRBU 45-12 production decline before and after the refracture treatment. 
Solid curve is the extrapolated production decline without a refracture treatment. 
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Fig. 1.8—Frontier well WSC 20-09D production decline before and after the refracture treatment. 
Solid curve is the extrapolated production decline without a refracture treatment. 
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Fig. 1.9—Frontier well GRBU 27-14 production decline before and after the refracture treatment. 
Solid curve is the extrapolated production decline without a refracture treatment. 
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Fig. 1.10—Mesaverde well RMV 55-20 production decline before and after the refracture treatment. 
Solid curve is the extrapolated production decline without a refracture treatment. 

60000

45000

30000

15000

0

G
as

 P
ro

du
ct

io
n,

 M
sc

f/M
on

th
 

1209060300

Time, Month

 Gas Production
 Pre-Refrac Extrapolated Decline Curve

Incremental Refrac Gas Production Estimate
0.09 Bcf ($0.81/Mcf)

Refrac



 14 

After 4 years of production, it appears that four of eight refracture treatments can be considered successful 

based on the refracture cost and incremental gas production.  Of the other four wells with a refracture 

treatment, one is a failure that resulted in a loss of 0.10 Bcf of reserves, and the other three are economic 

failures based on the original Reeves and Wolhart46 $0.75/Mcf refracture treatment cost per incremental 

gas production economic threshold. It's also noteworthy that the incremental gas production attributed to 

the successful refracture treatments was on the order of 20% of the well cumulative production, while the 

incremental gas production from the unsuccessful refracture treatments was less than 5% of the well's 

cumulative gas production. 

Two common characteristics of every well in the refracture program is that each produced from multiple 

layers, and the original fracturing program consisted of some limited-entry fracture treatments.39-40 If, as 

previously suggested, limited-entry fracture treatments ineffectively stimulate or inadvertently bypass on 

the order of 30% of the targeted layers, then why wasn't the restimulation program more successful? 

One possible explanation is that the approach adopted during the restimulation study was to evaluate the 

restimulation potential of each well. All three restimulation candidate evaluation methods—production 

statistics, virtual intelligence using artificial neural networks, and production type-curve analysis—were 

Fig. 1.11—Mesaverde well Langstaff #1 production decline before and after the refracture 
treatment. Solid curve is the extrapolated production decline without a refracture 
treatment. 
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developed to evaluate well performance as opposed to identifying bypassed layers that could be at or near 

virgin reservoir pressure. While recognizing the importance of evaluating layer properties and targeting 

specific layers or groups of layers for restimulation, a lack of cost-effective diagnostic tests for use in 

wells producing from multiple layers hindered any attempt to identify specific underperforming layers in 

the multilayer completions.39-41 Additionally, once the refracture wells were identified, the refracture 

treatments were designed to restimulate the well as opposed to identifying and stimulating isolated 

individual layers. Mechanical isolation and refracturing in stages were preferred in some cases, but 

isolation was not allowed either because of operator concerns or project economic constraints.47 As a last 

resort, ball sealers were used periodically throughout several treatments to ensure some fluid diversion, 

and refracture treatments with radioactive tracing confirmed some diversion was obtained.47  

1.3 Refracture-Candidate Diagnostic Tests 

A refracture-candidate diagnostic test should be used prior to a refracture treatment to complete the 

following objectives. 

• Determine if a pre-existing fracture retaining residual width exists. 

• Determine if a pre-existing fracture is damaged. 

• Determine pre-existing fracture effective half-length and conductivity 

• Determine reservoir permeability and average reservoir pressure. 

When the diagnostic test objectives are achieved, the benefits of refracturing can be easily evaluated, and 

the incremental production from a refracture treatment can be predicted. 

Quantitative conventional pressure-transient testing, which includes drawdown, drawdown/buildup, or 

injection/falloff tests at a pressure less than the fracture propagation pressure, can be used to achieve the 

objectives of a refracture-candidate diagnostic test. However, conventional pressure-transient tests are best 

suited for evaluating a single layer. For wells producing from multiple low permeability layers, multilayer 

pressure-transient tests have been published,48 but in practice, determining layer flow rates for test 

interpretation from multiple layers is problematic—especially with upwards of 20 layers producing.49 In 

general, a cost-effective quantitative diagnostic test does not exist for low permeability wells producing 

from multiple layers. 

Diagnostic testing in low permeability multilayer wells has been attempted, and Hopkins et al.50 describe 

several diagnostic techniques used in a Devonian shale well to diagnose the existence of a pre-existing 

fracture(s) in multiple targeted layers over a 727 ft interval. The diagnostic tests included isolation flow 

tests, wellbore communication tests, nitrogen injection/falloff tests, and conventional drawdown/buildup 

tests. 
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As described by Hopkins et al.,50 the refracture-candidate well was originally completed in four layers—

the Cleveland, Upper Huron, Middle Huron, and Lower Huron—distributed across a 727 ft gross interval 

with a single limited-entry fracture treatment. Isolation flow tests were used to quantify the post-frac 

production of each isolated layer, and the tests determined insignificant flow from the Cleveland and 

Middle Huron layers. Wellbore communication tests were used to determine if a hydraulic fracture 

connected layers outside of the wellbore. The communication tests established that only the Middle and 

Lower Huron were communicating beyond the wellbore, which for well testing purposes, effectively 

reduced the four layer completion to a three layer case. 

Three nitrogen injection/falloff tests were completed in the Cleveland, Upper Huron, and Middle/Lower 

Huron layers. During the test, nitrogen was injected at a pressure less than the fracture propagation 

pressure, and the pressure falloff during the shut-in period was recorded for one hour. Nitrogen 

injection/falloff tests suggested a propped hydraulic fracture existed in the Middle/Lower Huron but not in 

the the Cleveland or Upper Huron. Consequently, the limited-entry fracture treatment effectively 

stimulated only 50% of the targeted layers. Three pressure buildup tests were completed in Cleveland, 

Upper Huron, and Middle/Lower Huron, and a finite-difference simulator was used to history-match the 

nitrogen injection-falloff and pressure buildup tests. Well testing interpretations revealed an infinite-

conductivity fracture with a fracture half length of 80 feet had been placed in the poorest quality reservoir 

rock in the wellbore. Additionally, reservoir simulation suggested gas recovery could be increased by 29% 

by placing infinite-conductivity fractures in the Cleveland and Upper Huron layers, which are the best 

quality reservoir rock.50 

The post-frac diagnostic program described by Hopkins et al.50 was very thorough and addressed the 

objectives of a refracture-candidate diagnostic. However, the diagnostic program was also expensive and 

time consuming for a relatively simple four layer case. Many refracture candidates in low permeability gas 

wells contain stacked lenticular sands with between 20 to 40 layers which need to be evaluated in a timely 

and cost effective manner. 

Other more cost effective but qualitative refracture-candidate diagnostic tests have been reported. 

Hopkins, et al.51 also suggested an annulus injection test to qualitatively identify a pre-existing fracture in 

the Antrim shale. The annulus injection test requires slowly injecting water into a targeted layer until the 

observed pressure approaches the fracture initiation or propagation pressure of the formation. The injected 

volume is the "fillup" volume, and a large fillup volume suggests a high conductivity fracture exists. When 

the objective of a refracture treatment(s) is to stimulate bypassed layers, a qualitative determination of a 

pre-existing fracture may be the only diagnostic test required, that is, if a fracture exists, a refracture 

treatment may be deemed unnecessary. 
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As part of the recent GRI restimulation project,45 Huang et al.52 suggested a quasi-quantitative pressure 

transient test interpretation method as a refracture-candidate diagnostic. The "short shut-in test 

interpretation method" is designed to provide only an indication of pre-existing fracture effectiveness. The 

method uses log-log type curve reference points—the end of wellbore storage, the beginning of 

pseudolinear flow, the end of pseudolinear flow, and the beginning of pseudoradial flow—and the known 

relationships between pressure and system properties at those points to provide upper and lower limits of 

permeability and effective fracture half length. Huang et al.52 provide a simulated example that 

unfortunately requires 25 hours of shut-in data to bracket fracture half length to within 10% of the known 

value and to bracket permeability to within a two order-of-magnitude range. 

While not used specifically as a refracture-candidate diagnostic test, nitrogen slug tests have been used 

effectively as a prefracture diagnostic test in low permeability reservoirs.49,53 Jochen et al.49 describe the 

nitrogen injection test as a short, small volume injection of nitrogen at a pressure less than the fracture 

initiation and propagation pressure followed by an extended pressure falloff period. A nitrogen slug test is 

unlike the nitrogen injection/falloff test used by Hopkins et al.50 in that the injection period is short and 

can be considered instantaneous. A nitrogen slug test is analyzed using slug-test type curves and by history 

matching the injection and falloff pressure with a finite-difference simulator.49 

Since 1998, fracture-injection/falloff tests have been routinely utilized as a prefracture diagnostic to 

estimate formation permeability and average reservoir pressure.54 Fracture-injection/falloff tests differ 

from nitrogen slug tests in that the pressure during the injection is greater than the fracture initiation and 

propagation pressure. A fracture-injection/falloff test typically requires a low rate, small volume injection 

of treated water followed by an extended shut-in period, and the permeability to the mobile reservoir fluid 

and the average reservoir pressure are interpreted from the pressure decline. 

The test methods or test programs described are not cost-effective and capable of achieving the objectives 

of a refracture-candidate diagnostic in a well completed in multiple layers. The annulus injection test is 

qualitative. The short shut-in time buildup test interpretation method is quasi-quantitative, but the tests 

require too much time for multilayer testing. Nitrogen slug tests and fracture-injection/falloff tests have 

only been used as prefracture diagnostics. Only Hopkins' et al.50 refracture-candidate diagnostic program 

has proven successful in achieving the refracture-candidate diagnostic objectives in a well completed in 

multiple layers, but the program is time consuming and may be impractical for low permeability stacked, 

lenticular gas reservoirs. 

1.4 Research Objectives 

A fracture-injection/falloff test with the time of injection short relative to the reservoir response is asserted 

to be a viable refracture-candidate diagnostic test. The research objectives documented in this dissertation 

include the following. 
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• Extend fracture-injection/falloff interpretation methodology to account for pressure-dependent 

reservoir fluid properties by formulating before-closure pressure transient analysis in terms of 

adjusted pseudopressure and adjusted pseudotime. 

• Demonstrate that the pressure difference observed during the falloff of a fracture-injection/falloff 

sequence in a layer with or without an existing conductive hydraulic fracture and with the reservoir 

response short relative to the time of injection can be converted to an equivalent pressure difference 

if the sandface rate were constant. 

• Demonstrate that in a layer without a pre-existing conductive hydraulic fracture, a quantitative 

determination of reservoir transmissibility is possible by matching equivalent constant-rate pressure 

from the falloff of a fracture-injection/falloff sequence with a variable-storage constant-rate 

drawdown log-log type curve. 

• Demonstrate that a pre-existing hydraulic fracture retaining residual width can be diagnosed from 

the variable storage behavior exhibited by the equivalent constant-rate pressure difference observed 

during the falloff of a fracture-injection/falloff sequence. 

• Demonstrate that a quantitative determination of primary and secondary fracture half-length, 

primary and secondary fracture conductivity, and reservoir transmissibility are possible by 

matching equivalent constant-rate pressure recorded during the falloff of a fracture-injection/falloff 

sequence with a variable-storage constant-rate drawdown log-log type curve developed a well 

producing from multiple arbitrarily-oriented uniform-flux, infinite-conductivity, or finite-

conductivity fractures in an infinite-slab reservoir. 

• Develop a complete refracture-candidate fracture-injection/falloff test methodology to diagnose the 

following. 

 The existence of a conductive hydraulic fracture. 

 The choked-fracture skin damage of an existing conductive hydraulic fracture. 

 The effective primary fracture half-length and primary fracture conductivity of an existing 

conductive hydraulic fracture. 

 The average reservoir pressure and reservoir transmissibility. 

1.5 Dissertation Summary 

Chapter II reviews existing slug-test and fracture-injection/falloff test solutions and interpretation methods 

that were derived assuming a slightly compressible fluid. A new formulation and interpretation method are 

presented for before-closure pressure transient analysis of a fracture-injection/falloff sequence when the 

reservoir fluid is compressible. As shown in Appendix A, the formulation is derived in terms of adjusted 

pseudovariables to account for reservoir fluid compressibility. 
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Chapter III presents new analytical variable-storage pressure-transient solutions for a constant-rate 

drawdown in a well producing from an infinite slab reservoir containing a single dilated vertical fracture 

with the initial reservoir pressure above the minimum insitu or closure stress and with fracture storage and 

wellbore storage as follows: 

• Constant before fracture closure and constant after fracture closure storage. 

• Constant before- and constant after-closure storage with fracture-face and choked-fracture skin. 

• Fracture flow during closure with constant before-closure storage and radial flow after closure with 

constant wellbore storage and skin.  

Additionally, a new fracture-injection/falloff model accounting for fracture creation, fracture closure, and 

diffusion after closure is also presented. Limiting-case solutions of the new model are used to demonstrate 

when a finite injection time can be considered as occurring instantaneously – which allows the pressure 

difference recorded during the falloff to be transformed to an equivalent pressure difference if the rate 

were constant. By considering fracture propagation as time-dependent storage, three new models are 

presented for a fracture-injection/falloff sequence for a well in an infinite slab reservoir with a single 

vertical fracture created during an injection with fracture and wellbore storage as follows: 

• Equivalent propagating-fracture storage and before-closure storage with constant after-closure 

storage. 

• Time-dependent propagating-fracture storage, constant before-closure storage, and constant after-

closure storage. 

• Time-dependent propagating-fracture storage and before-closure storage with linear flow from the 

fracture before closure and after-closure radial flow with constant wellbore storage and skin. 

Limiting-case solutions of the fracture-injection/falloff models are also presented to demonstrate when a 

fracture-injection can be considered as occurring instantaneously and the equivalent constant-rate pressure 

difference can be calculated from the observed pressure during the falloff of a fracture-injection/falloff 

sequence for quantitative type-curve analysis. 

In Chapter IV the new fracture-injection/falloff model developed in Chapter III is extended to a case with 

a pre-existing hydraulic fracture. Ideally, a refracture-candidate diagnostic should identify a pre-existing 

hydraulic fracture and allow for estimation of existing fracture half-length, fracture conductivity, average 

reservoir pressure, and permeability. 

An ancillary development required for the fracture-injection/falloff model with a pre-existing fracture is 

the derivation of a new semianalytical pressure-transient solution for a constant-rate drawdown in a well 

producing from an infinite slab reservoir through multiple arbitrarily-oriented uniform-flux, infinite-

conductivity, or finite-conductivity fractures. The new pressure-transient solution is illustrated by 

preparing a log-log type curve for a constant-rate drawdown in a well producing from an infinite-slab 
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reservoir through a cruciform fracture with constant storage. Additionally, a variable-storage case is 

presented for a constant-rate drawdown through a cruciform fracture in an infinite slab reservoir where the 

intial reservoir pressure is in excess of the closure stress of the secondary fracture, and during the 

drawdown, the secondary fracture closes – which creates a case of decreasing storage during the 

drawdown. 

A new refracture-candidate fracture-injection/falloff solution is also presented with time-dependent 

propagating secondary fracture storage, constant before-closure primary and secondary fracture storage, 

and constant after-closure storage. Limiting-case solutions of the refracture-candidate fracture-

injection/falloff model are also presented to demonstrate when a fracture-injection can be considered as 

occurring instantaneously and the equivalent constant-rate pressure difference can be calculated from the 

pressure observed during the falloff and used for quantitative type-curve analysis. 

The new single- and multiple-fracture pressure-transient solutions combined with the new fracture-

injection/falloff models provide the theoretical basis of a new refracture-candidate diagnostic test method. 

Chapter V presents the new refracture-candidate diagnostic test and analysis methodology that can be used 

to rapidly identify a pre-existing hydraulic fracture. Field examples are provided to illustrate the 

interpretation of a fracture-injection/falloff sequence for the following cases. 

• No pre-existing hydraulic fracture with pseudoradial flow observed. 

• No pre-existing hydraulic fracture with pseudolinear flow observed. 

• A pre-existing conductive hydraulic fracture with choked-fracture skin damage. 

Chapter VI itemizes the new pressure-transient solutions and fracture-injection/falloff models developed 

within the dissertation. Additionally, areas for additional research are recommended for numerically 

validating the new pressure-transient solutions and fracture-injection/falloff models; for examining 

complex fracture patterns and different multiple fracture configurations beyond the cruciform and oblique 

fracture scenarios presented; and for developing a pressure-transient solution for a well producing from 

multiple fractures in a bounded reservoir. 
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CHAPTER II 

SLUG-TEST AND FRACTURE-INJECTION/FALLOFF TEST ANALYSIS 

2.1 Introduction 

An injection/falloff sequence requires injecting a fluid (liquid or gas) at a pressure less than the pressure 

required to initiate and propagate a hydraulic fracture followed by an extended shut-in (falloff) period.  

When the injection period is relatively short, an injection/falloff test is referred to as an impulse test,55 but 

when the finite injection period is very short relative to the reservoir response, the injection can be 

considered as occurring instantaneously, and the test is referred to as a slug test.56 

A fracture-injection/falloff test sequence requires injecting a fluid (liquid or gas) at a pressure greater than 

the pressure required to initiate and propagate a hydraulic fracture. Consequently, a fracture is created 

during the injection, and as the pressure declines during the shut-in period, the created fracture closes, and 

the pressure continues to decline after closure. The before fracture closure (before-closure) pressure falloff 

can be analyzed with before-closure pressure transient analysis,57-59 and the after fracture closure (after-

closure) falloff can be analyzed using an impulse-fracture technique presented by Gu, et al.,60 and 

Abousleiman, et al.61 

Chapter II reviews existing slug test and fracture-injection/falloff analysis methods, and contains a 

discussion of the limitation of existing interpretation methods. Pressure and time and adjusted 

pseudopressure and adjusted pseudotime formulations are reviewed for slug tests, and pressure and time 

formulations are presented for before-closure pressure transient analysis and after-closure analysis for 

fracture-injection/falloff tests. A new formulation in terms of adjusted pseudovariables is also presented 

for before-closure pressure transient analysis of a fracture-injection/falloff sequence when the reservoir 

fluid is compressible. All equations are derived and shown in Darcy units. 

2.2 Slug-Test Solution 

In the present context, injection/falloff sequences are restricted to relatively small volume, short duration 

injections followed by a lengthy falloff period. A general injection/falloff solution can be derived using a 

technique described by Correa and Ramey62-64 that requires writing a material balance equation valid at all 

times during the injection/falloff test using the Heaviside unit-step function. The Correa and Ramey62-64 

derivation technique is used repeatedly throughout the dissertation. 

Assume a slightly compressible fluid fills the wellbore and is injected at a constant surface rate. A mass 

balance during an injection is written as 

Storage

r

mm outin d wqB q B Vr r w dt
ρ

ρ ρ− = , ................................................................................................................. (2.1) 
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where q is the surface injection rate, B is the formation volume factor at surface injection conditions, ρ is 

the fluid density at surface injection conditions, qr is the flow rate into the reservoir, Br is the formation 

volume factor at reservoir conditions, ρr is the density of the reservoir fluid, ρw is the injected fluid density 

at average wellbore conditions, and Vw is the wellbore volume. 

The derivative with respect to time of the wellbore fluid density is written using the chain rule as 

1d d dp dpw w w wcw w wdt dp dt dtw w

ρ ρ
ρ ρ

ρ
= = , .......................................................................................... (2.2) 

where cw is the isothermal wellbore fluid compressibility. The material balance equation can now be 

written as 

r
dpwqB q B c Vr r w w w dt

ρ ρ ρ− = , ........................................................................................................ (2.3) 

or assuming a constant density, ρ = ρw = ρr, and a constant formation volume factor, B = Br, the material 

balance equation during the injection is written as 

( )1 dpwq q c Vr w wB dt
= − . .................................................................................................................... (2.4) 

The dimensionless wellbore pressure for the injection/falloff sequence is written as 

( )
( )

0

p t pw D ip twsD D p pi

−
=

−
, ................................................................................................................... (2.5) 

where pi is the initial reservoir pressure and p0 is an arbitrary reference pressure. For an injection slug test 

the wellbore pressure is increased to a pressure, pw0, at time zero, and the dimensionless wellbore pressure 

at time zero is written as 

0(0)
0

p pw ipwsD p pi

−
=

−
. ........................................................................................................................... (2.6) 

Generally for a slug test, the pressure at time zero, pw0, is set equal to p0, and the dimensionless wellbore 

pressure at time zero is unity, pwsD(0) = 1. For an injection test without an instantaneous change in 

wellbore pressure, p0 is arbitrary provided p0 ≠ pi.  

Define dimensionless time as 

2
r

kttD
c rt wφμ

= , .................................................................................................................................... (2.7) 

where k is the permeability, φ is the porosity (fraction), μr is the reservoir fluid viscosity, ct is the total 

compressibility, and rw is the wellbore radius. The dimensionless reservoir flow rate is defined as 

2 ( )0
r rq BrqsD kh p pi

μ
π

=
−

, ....................................................................................................................... (2.8) 

and the dimensionless well flow rate is defined as 
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2 ( )0

qBqwsD kh p pi

μ
π

=
−

. ..................................................................................................................... (2.9) 

With the dimensionless variables, the material balance equation during an injection is written as 

22

dpC wsDq qsD wsD dtc hr Dt wπφ
= − , ....................................................................................................... (2.10) 

where the wellbore storage coefficient is written as 

C c Vw w= . ........................................................................................................................................ (2.11) 

Define a dimensionless wellbore storage coefficient as 

22

CCD
c hrt wπφ

= , ................................................................................................................................ (2.12) 

and the dimensionless material balance equation during an injection is written as 

dpwsDq q CsD wsD D dtD
= − . ................................................................................................................. (2.13) 

During the falloff portion of the test, qwsD = 0, and the pressure falloff dimensionless material balance 

equation is written as 

dpwsDq CsD D dtD
= − . ........................................................................................................................... (2.14) 

The Heaviside unit-step function,62 is defined as 

0 ,
1 ,

t a
Ua t a

<⎧
= ⎨ >⎩

, .......................................................................................................................... (2.15) 

and following the technique of Correa and Ramey,62-64 a material balance equation valid at all times for an 

injection/falloff sequence with constant wellbore storage is written as 

( )1 ( ) ( )
dp dpwsD wsDq U q C U CsD t wsD D t De D e Ddt dtD D

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
. .......................................................... (2.16) 

where (te)D is the dimensionless time at the end of the injection.  The material balance equation can be 

expanded, simplified, and written as 

( )
dpwsDq q U q CsD wsD t wsD De D dtD

= − − . ......................................................................................... (2.17) 

The Laplace transform of the material balance equation62 is written as 

( ) (0)
q q s twsD wsD e Dq e C sp psD D wsD wsDs s

− ⎡ ⎤= − − −⎣ ⎦ , ................................................................. (2.18) 

where s is the Laplace transform variable. A solution is developed by applying the superposition 

principle,65 which is written as 
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( )
( )

0

tD dp tD D Dp q dwsD sD D DdtD

τ
τ τ

⌠
⎮
⎮⎮
⌡

−
= , ........................................................................................ (2.19) 

where pD is the dimensionless reservoir pressure solution for a constant-rate injection with dimensionless 

pressure defined as 

2 ( ( ) )

r r r

kh p t pw ipD q B
π

μ
−

= . ................................................................................................................. (2.20) 

The initial condition requires a constant initial pressure, pD(tD) = 0, and with the initial condition, the 

Laplace transform of the superposition integral is written as 

pwsDp q sp qwsD sD D sD spD
= ⇔ = . ............................................................................................... (2.21) 

Combining the transformed material balance equation and superposition integral results in 

( ) ( )21 (0)s te Dp s C p q p q p e p C spwsD D D wsD D wsD D wsD D D
−+ = − + . ........................................... (2.22) 

The Laplace domain dimensionless pressure solution for a well produced at a constant rate with wellbore 

storage is written as 

21

pDpwD
s C pD D

=
+

, ......................................................................................................................... (2.23) 

and the Laplace domain injection/falloff solution is written as 

( ) (0)s te Dp q p q p e p C spwsD wsD wD wsD wD wsD D wD
−= − + . .......................................................... (2.24) 

Inverting the Laplace domain solution results in the time domain injection/falloff solution written as 

( )
( ) ( ) ( ( ) ) (0)

dp twD Dp t q p t p t t p CwsD D wsD wD D wD D e D wsD D dtD
⎡ ⎤= − − +⎣ ⎦ . .................................... (2.25) 

The injection/falloff solution is applicable to both an impulse test and a slug test, that is, in the limit as the 

dimensionless injection time approaches zero, (te)D → 0, the injection/falloff solution reduces to the slug 

test solution defined by Ramey and Agarwal66 and written as 

( )
( ) (0)

dp twD Dp t p CwsD D wsD D dtD
= . ................................................................................................ (2.26) 

The slug test solution is written in a general form in that the dimensionless reservoir pressure solution can 

be any radial flow solution—infinite-acting, infinite-acting with skin, dual-porosity infinite-acting, etc. 

The solution is also analogous to the slug-test solution in a reservoir containing a hydraulic fracture, which 

is written as 

( )
( ) (0)

dp twD LfDp t p CwsD LfD wsD LfD dtLfD
= , ....................................................................................... (2.27) 

where the dimensionless time for a well with a hydraulic fracture is defined as 
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2
r

kttLfD
c Lt fφμ

= , ............................................................................................................................. (2.28) 

and Lf is the fracture half-length. The dimensionless wellbore storage coefficient for a well containing a 

hydraulic fracture is defined as67  

22

CCLfD
c hLt fπφ

= . ............................................................................................................................ (2.29) 

With a hydraulic fracture, the dimensionless reservoir pressure solution is written in the Laplace domain as 

21

p fDpwD
s C pLfD fD

=
+

, ..................................................................................................................... (2.30) 

where pfD is any fractured-well solution—infinite-acting reservoir with an infinite-conductivity fracture, 

infinite-acting reservoir with a finite-conductivity fracture, dual-porosity infinite-acting reservoir with a 

finite-conductivity fracture, etc.67 

Ramey et al.56 recommend analyzing a slug test with a special type curve, which is a semi-log graph of the 

dimensionless wellbore pressure versus tD/CD. Fig. 2.1 contains slug-test type curves for a radial infinite-

acting reservoir with skin. The cylindrical-source reservoir solution with skin, S, is written in the Laplace 

domain as65 

( )
( )

0

1

1 wDK r s SpsD s ssK s
= + , .................................................................................................................. (2.31) 

where K0 and K1 are the modified Bessel functions of order zero and one, respectively. The cylindrical-

source solution is used with the slug-test solution to generate the type curves in Fig. 2.1. The slug-test 

solution is evaluated in the Laplace domain and numerically inverted to the time domain with the Stehfest 

algorithm.68  

Slug-test analysis with the Ramey et al.56 method to determine transmissibility requires calculating a 

dimensionless pressure plotting function for an injection defined as 

0

( )w i
i

p t p
pwsD p p

−
=

−
, ........................................................................................................................... (2.32) 

or for a production slug test, defined as 

0

( )i w
i

p p t
pwsD p p

−
=

−
, ........................................................................................................................... (2.33) 

where pi, is the initial reservoir pressure, pw(t), is the observed wellbore pressure, and p0, is the wellbore 

pressure at the instant a pressure difference is applied (time zero). The slug-test plotting function is 

calculated for all observed points during the shut-in period and graphed versus shut-in time, ∆t, on semi-

log slug-test type curves. Transmissibility is calculated from a time match point, which is written as 
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2

D D

MP

t Ckh C
tμ π

⎡ ⎤= ⎢ ⎥Δ⎣ ⎦
, ....................................................................................................................... (2.34) 

and the skin is calculated using the definition of the dimensionless storage coefficient and the type-curve 

match written as 

2
2 21 ln

2
S t w

D MP

c hr
S C e

C
πφ⎛ ⎞⎡ ⎤

⎡ ⎤⎜ ⎟⎢ ⎥= ⎢ ⎥⎣ ⎦⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
. ................................................................................................... (2.35) 

Peres et al.69 published an alternative slug-test interpretation method by recognizing that the slug-test 

solution written as 

( )
( ) (0)

dp twD Dp t p CwsD D wsD D dtD
= , ................................................................................................ (2.36) 

can be integrated and written as 

0
1( ) ( )
(0)

Dtp t p dwD D wsD D Dp CwsD D
τ τ= ∫ , ................................................................................... (2.37) 

where τD, is a variable of integration.  Peres et al.69 also noted that the well testing pressure derivative 

could be written as 
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Fig. 2.1—Slug-test type curve for an infinite-slab reservoir with skin.56 
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(ln )
wD wD D

D wsD
D D D

dp dp t
t p

d t dt C
= = , ................................................................................................... (2.38) 

Consequently, the dimensionless pressure observed during a variable-rate slug-test can be converted to an 

equivalent dimensionless pressure if the rate were constant and plotted on conventional constant-rate 

drawdown log-log type curves. Fig. 2.2 is a log-log graph of dimensionless wellbore pressure and pressure 

derivative versus tD/CD. The dimensionless pressure was generated by integrating the slug-test type curves 

in Fig. 2.1 and dividing by the dimensionless wellbore storage coefficient, and the dimensionless pressure 

derivative was calculated by multiplying the slug-test type curve dimensionless pressure by tD/CD. Both 

the pressure and pressure derivative curves in Fig. 2.2 reproduce type curves for a constant-rate drawdown 

in a radial infinite-acting reservoir with wellbore storage and skin exactly; thus, conventional log-log 

constant-rate drawdown type curves can be used to analyze slug-test data. 

With the definition of dimensionless time, dimesionless wellbore-storage coefficient, and the 

dimensionless slug-test plotting function, the integral equation for equivalent constant-rate dimensionless 

pressure can be written as 

Fig. 2.2—Constant-rate drawdown type curves for a radial infinite-slab reservoir with wellbore 
storage and skin generated from the slug-test type curves shown in Fig. 2.1. 
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[ ] [ ]00

2( ) ( )
(0)

t
w i

i

khp t p p dwD D p C p pwsD

π τ τ
μ

⎛ ⎞
= −⎜ ⎟⎜ ⎟−⎝ ⎠

∫ , .................................................................... (2.39) 

which suggests that a log-log graph of the integral of the pressure difference, pw(t) - pi, versus time during 

a slug test will overlay a constant-rate drawdown pressure log-log type curve. The pressure derivative can 

also be written as 

[ ] [ ]
0

2 ( )
(ln ) (0)

wD
w i

D i

dp kh t p t p
d t p C p pwsD

π
μ

⎛ ⎞
= −⎜ ⎟⎜ ⎟−⎝ ⎠

, ....................................................................... (2.40) 

and a graph of the product of time and the pressure difference will overlay a constant-rate drawdown log-

log derivative type curve. 

Transmissibility is calculated from a pressure type curve match point as 

[ ]
[ ]

0

0

(0) ( / )
2 ( )

i D
t

w i MP

p C p p p t Ckh wsD wD D

p p dμ π τ τ

⎡ ⎤
⎛ ⎞− ⎢ ⎥= ⎜ ⎟ ⎢ ⎥⎜ ⎟
⎝ ⎠ −⎢ ⎥⎣ ⎦∫

, .......................................................................... (2.41) 

and the skin can be calculated from the matching type curve as 

2
2 21 ln

2
S t w

D MP

c hr
S C e

C
πφ⎛ ⎞⎛ ⎞

⎡ ⎤⎜ ⎟⎜ ⎟= ⎢ ⎥⎣ ⎦ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. .................................................................................................. (2.42) 

The slug-test analysis method of Peres et al.69 is general and can be applied for other reservoir systems—

dual porosity, infinite-conductivity hydraulic fracture, finite-conductivity fracture, etc. For example, a slug 

test in a reservoir with an infinite conductivity fracture is analyzed as before by preparing a log-log graph 

of the integrated pressure difference and the product of shut-in time and the pressure difference versus the 

shut-in time. The slug-test data can be matched to a Barker-Ramey70 type curve where the transmissibility 

is calculated from Eq. 2.41 assuming fracture storage is negligibly small relative to wellbore storage and if 

the reservoir is infinite acting.  

When fracture storage is significant, fracture half-length must be known to calculate the storage 

coefficient and transmissibility, but fracture half-length cannot be determined from the slug-test analysis 

method. However, if transmissibility is known from a previous well test, the fracture half-length can be 

calculated from a slug-test using the pressure-curve match, (CLfD)MP, and the definition of the 

dimensionless storage coefficient as  

2 LfD MP

CL f c h Ctπφ
=

⎡ ⎤⎣ ⎦

. ................................................................................................................. (2.43) 

When the reservoir fluid is compressible, Xiao and Reynolds71 suggested that log-log constant-rate 

drawdown type curves developed for a slightly compressible fluid can be used for slug-test analysis if the 
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slug-test pressure and time are transformed to pseudopressure and pseudotime, or for convenience, 

adjusted pseudopressure and adjusted pseudotime. 

Lee and Holditch72 previously demonstrated that the governing differential equation for a reservoir 

containing a compressible fluid can be effectively linearized by the writing in terms of pseudopressure and 

pseudotime, and Meunier et al.73 extended the concept by normalizing the transforms, which results in 

adjusted pseudopressure and adjusted pseudotime. With adjusted pseudovariables, flow solutions 

developed for a reservoir with slightly compressible fluid can be used directly in a reservoir containing a 

compressible fluid. 

Recall that a material balance during an injection/falloff is written as 

r
dpwqB q B c Vr r w w w dt

ρ ρ ρ− = . ...................................................................................................... (2.44) 

Following the definitions of Xiao and Reynolds71 and assuming the wellbore and reservoir fluid are 

compressible, the wellbore storage, cwVw, can alternatively be written as 

0
0

0 0

( )i gw w
gw w

i gw

c p
c V c Vw w c

μμ
μ μ

= , ..................................................................................................... (2.45) 

where cgw0 is the bottomhole fluid compressibility at time zero, μ0 is the bottomhole fluid viscosity at time 

zero, μ0 is the bottomhole fluid viscosity at initial reservoir pressure, and cgw(pw) is the bottomhole fluid 

compressibility as a function of pressure. An adjusted storage coefficient can be defined as 

0
0a gw w

i
C c V

μ
μ

= , ............................................................................................................................. (2.46) 

and the material balance equation can be written as 

0 0

( )i gw w
r a

gw

c p dpwqB q B Cr r w c dt

μ
ρ ρ ρ

μ
− = . ...................................................................................... (2.47) 

Adjusted pseudopressure is defined as 

0

p
a

re

z pdpp
p z
μ

μ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

⌠
⎮
⌡

, ..................................................................................................................... (2.48) 

where the subscript ' 're denotes a reference pressure, which Xiao and Reynolds define as the initial 

reservoir pressure, and adjusted pseudotime is defined as 

0
( )

t
a t re

w t

dtt c
c

μ
μ

= ⌠
⎮
⌡

, ....................................................................................................................... (2.49) 

where the reference pressure defined by Xiao and Reynolds is the pressure at the instant a differential is 

applied, p0. With the adjusted pseudovariables, and assuming ct ≈ cgw, the material balance equation can be 

written as 
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r a
ai w

dpp z awqB q B Cr r w z p dt
ρ ρ ρ

⎛ ⎞⎛ ⎞− = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. .................................................................................... (2.50) 

The dimensionless adjusted pseudopressure is defined as 

0(0)
0

p paw aipawsD p pa ai

−
=

−
, ................................................................................................................... (2.51) 

and dimensionless adjusted pseudotime is defined as 

2
a

i

kt
taD

c rti wφμ
= . ................................................................................................................................ (2.52) 

With dimsionless adjusted pseudovariables, the material balance equation can be written as 

0
2

2 ( )

2
a ai a

r
i aDi w ti w

dpkh p p Cp z awDqB q Br r w z p dtc hr

π
ρ ρ ρ

μ πφ

−⎛ ⎞⎛ ⎞− = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. ......................................... (2.53) 

Gas formation volume factor is defined as 

sc
sc sc sc

pV zTB
V p z T

= = , ....................................................................................................................... (2.54) 

where the subscript 'sc' denotes standard conditions, and gas density can be written as 

m Mp
V zRT

ρ = = , .................................................................................................................................. (2.55) 

where m is the mass and M is the molecular weight of the gas. With the definition of gas formation volume 

factor, the ratio of gas formation volume factor at bottomhole and initial conditions can be written as  

w i w w
i i w i

B p z T
B z p T

= , .............................................................................................................................. (2.56) 

and with the definition of gas density, the ratio of gas density at reservoir and surface conditions is written 

as 

r
r

B
B

ρ
ρ

= , .......................................................................................................................................... (2.57) 

 or at wellbore and surface conditions written as 

w
w

B
B

ρ
ρ

= . ........................................................................................................................................ (2.58) 

With the definitions of gas formation volume factor and gas density, the material balance equation can be 

written as 

0
2

2 ( )

2
a ai a i

r
i i w aDti w

dpkh p p C T awDq q
B T dtc hr

π
μ πφ

−
− = . .......................................................................... (2.59) 

Defining the dimensionless adjusted wellbore injection rate as 
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2 ( )0
i iqB

qawsD kh p pa ai

μ
π

=
−

, ............................................................................................................ (2.60) 

the dimensionless adjusted reservoir injection rate as 

2 ( )0
r i iq B

qasD kh p pa ai

μ
π

=
−

, ............................................................................................................... (2.61) 

and defining the dimensionless adjusted storage coefficient as 

22
a i

aD
wti w

C T
C

Tc hrπφ
= , ...................................................................................................................... (2.62) 

the dimensionless material balance equation is written in terms of adjusted pseudovariables as 
dpawsDq q CasD awsD aD dtaD

= − . .......................................................................................................... (2.63) 

Since the material balance equation in terms of adjusted pseudovariables is identical to the material 

balance equation for a slightly compressible fluid, the slug-test solution is of the same form and written as 

( )
( ) (0)

dp tawD aDp t p CawsD D awsD aD dtaD
= , ....................................................................................... (2.64) 

where the Laplace domain reservoir solution is written as 

21

paDpawD
s C paD aD

=
+

. .................................................................................................................... (2.65) 

The radial diffusivity equation for a compressible fluid is written as 

1 gcp p p pr
r r z r k z t

φ

μ
⎛ ⎞∂ ∂ ∂

=⎜ ⎟∂ ∂ ∂⎝ ⎠
, ................................................................................................................ (2.66) 

which is written in terms of dimensionless adjusted pseudovariables as71-73 

1 aD aD
D D

D D D aD

p p
r

r r r t
α

⎛ ⎞∂ ∂∂
=⎜ ⎟∂ ∂ ∂⎝ ⎠

, .......................................................................................................... (2.67) 

where Dα is written as 

0( )

( ) ( )
g g

D
g i g w

c c

c c

μ μ
α

μ μ
= . ........................................................................................................................ (2.68) 

When αD ≈ 1, which is often the case for slug tests,71 the diffusivity equation written in terms of adjusted 

pseudovariables is of the same form as that for a slightly compressible fluid. Consequently, the 

dimensionless pressure solutions are the same, paD = pD, and log-log type curves developed for a slightly 

compressible fluid can be used to analyze slug tests with compressible fluids when plotted in terms of 

adjusted pseudopressure and adjusted pseudotime. 

In terms of adjusted pseudovariables, transmissibility is calculated from a pressure type curve match point 

as 
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or from the time match point as 
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and the skin can be calculated from the matching type curve as 
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The reference conditions in the adjusted pseudopressure and adjusted pseudotime definitions are arbitrary 

and different forms of the solution can be derived by simply changing the normalizing reference 

conditions. 

2.3 Injection/Falloff Testing At Pressures Greater Than Fracture Initiation Pressure 

Injection/falloff tests at pressures greater than the fracture initiation pressure will propagate a hydraulic 

fracture and are referred to as fracture-injection/falloff tests to distinguish them from injection/falloff tests 

at pressures less than the fracture initiation pressure.  Fracture-injection/falloff tests are essentially 

breakdown or minifrac treatments where the pressure decline is recorded during a shut-in period.  

The pressure decline following a diagnostic fracture-injection/falloff test is analyzed using three methods 

that result in pore pressure and permeability estimates and a qualitative leakoff-type identification.57-61,74  

The before fracture closure pressure decline is analyzed using G-function derivative analysis74 to identify 

the leakoff type and before-closure pressure transient analysis to estimate permeability and fracture face 

resistance.57-59 After fracture closure, transmissibility and average reservoir pressure can be estimated 

during the pseudoradial flow regime using after-closure analysis.60-61 Each method is relatively new and 

can be used independently; however, combining all three methods into a single cohesive interpretation 

scheme provides a series of checks to ensure reasonable pore pressure and permeability estimates are 

obtained. 

2.3.1 G-Function Derivative Analysis. Classical minifrac analysis using the G-function was first 

described by Nolte.75 The Carter76 equation for fluid leakoff velocity, νL, is written as 

L
L

C
v

t
= , .......................................................................................................................................... (2.72) 

where CL is a constant leakoff coefficient.  Multiplying by leakoff area, AL, and integrating from 0 to t, 

results in  
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which after integration is written as 

2L L L pV C A t S= + , ....................................................................................................................... (2.74) 

where Sp is a constant of integration called the "spurt loss coefficient."  

For any differential surface element, dA, of a fracture that is exposed to fracturing fluid at time τN, the 

leakoff rate is written as 

L
L

N

C
V A t

t τ
∂ = ∂ ∂

−
. ....................................................................................................................... (2.75) 

The leakoff volume at the end of pumping through two fracture faces of one fracture wing is found by 

integrating the leakoff rate from 0 to Ae for each fracture face and integrating over each differential 

element from τN to te, that is,   

0
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e e
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A t
L

Le
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C
V A t

tτ τ
= ∂ ∂

−

⌠ ⌠
⎮ ⎮⎮ ⌡⌡

, ....................................................................................................... (2.76) 

where the subscript 'e' denotes the end of pumping. 

Nolte pressure-decline analysis assumes fracture growth during an injection is modeled by a power law 

relationship77 

ND DNA tα= , ........................................................................................................................................ (2.77) 

where AD is the dimensionless fracture area of one face of one fracture wing, AD = A(t)/Ae, tDN is the 

dimensionless time defined by Nolte, tDN = t/te, and αN is the fracture growth exponent, which lies between 

½ and 1.  With the dimensionless variables, and defining τND by 

1 NN
ND D

n
A

t
ατ

τ = = , ........................................................................................................................ (2.78) 

the leakoff volume at the end of pumping can be written as 

1
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. .................................................................... (2.79) 

Defining the dimensionless loss-volume function at the end of the injection, g0(α), as 

1
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−

⌠ ⌠
⎮ ⎮⎮⎮

⌡⌡
, .............................................................................. (2.80) 

then 
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The definition of the dimensionless loss-volume function can be integrated analytically and the result 

written as77 
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where [ ]Γ ⋅  is the Euler gamma function. 

Nolte75 assumes a constant fracture area during the shut-in period prior to fracture closure, which allows 

the dimensionless loss-volume function to be defined beyond the end of an injection.  Defining the Nolte 

dimensionless shut-in time as 

e
DN

e

t t
t

t
−
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then an analogous derivation begins with the leakoff-volume integral written as 
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With dimensionless variables, the leakoff-volume integral is written as 
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The dimensionless loss-volume function at any shut-in time after the injection is defined as 
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which has a closed-form solution written as78 
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where the hypergeometric function is defined as79 
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Nolte80 observed that a material balance of one fracture wing during closure can be written as 

ˆ
( , ) fdV dwfq t A Ae edt dt
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where ˆ fw is the average fracture width and Ae is the area of one fracture face.  Average fracture width can 

also be related to fracture net pressure by 

( )ˆ w c n
f

f f

p p p
w

S S
−

= = , .................................................................................................................... (2.90) 

where pw is the wellbore pressure, pc is the fracture closure stress, and pn is the fracture net pressure.  

Fracture stiffness, Sf, is defined as the reciprocal of fracture compliance and is written for the three 

common two-dimensional fracture models as80 

2

1 Vertical Plane Strain - PKN

2 1 Horizontal Plane Strain - GDK
2

3 Radial
32

f

f
f

f

h

ES
L

R

π

π

⎧
⎪
⎪
⎪
′ ⎪

= ⎨
⎪
⎪
⎪
⎪
⎩

. ....................................................................... (2.91) 

Assuming fracture compliance is constant, the material balance can be written as 

f e n
f

dV A dp
dt S dt

− = − , .......................................................................................................................... (2.92) 

and with definition of the leakoff volume at the end of pumping (Eq. 2.79), the material balance is written 

as 
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which can be integrated from the end of pumping to some later time during the shut-in and written as 
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With the definition of the loss-volume function, the net pressure difference can also be written as 

[ ]02 ( , ) ( )n L f e D N Np C S t g t gα αΔ = Δ − . .................................................................................... (2.95) 

Nolte defines the dimensionless difference function, i.e., the G-function, as75 

[ ]0
4( , ) ( , ) ( )D N D N NG t g t gα α α
π

Δ = Δ − . ...................................................................................... (2.96) 

With the G-function definition, the net pressure difference can be written as 
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Provided a reservoir is homogeneous and the fracture area is constant during a shut-in period, a graph of 

pressure versus the G-function will fall along a straight line before fracture closure, and the leakoff 

coefficient is proportional to the slope of the straight line.  Fracture closure is interpreted as the point that 

the pressure data begin to deviate from the straight line. 

Castillo81 observed that pressure decline data on a G-function plot will not fall along a straight line in a 

reservoir exhibiting pressure-dependent leakoff.  Pressure-dependent leakoff, which can be indicative of 

naturally fractured reservoirs, can be identified by a Cartesian graph of the pressure derivative, dpw/dG, 

versus the G-function.  A constant pressure derivative before fracture closure indicates a homogeneous-

acting reservoir, but a continuously changing pressure derivative can indicate pressure-dependent leakoff. 

A comprehensive G-function graphical technique for qualitatively identifying the leakoff type was 

presented by Barree and Mukherjee.74 G-function derivative analysis uses graphs of pressure, the pressure 

derivative, and a "superposition" derivative, Gdpw/dG, versus the G-function to identify the leakoff type 

and provide a definitive indication of hydraulic fracture closure. 

The leakoff type is identified using the characteristic shape of the pressure-derivative and superposition-

derivative curves.  Fig. 2.3 contains the G-function derivative graphs for four common leakoff types 

observed in low permeability “hard rock” sandstones.82 The four common leakoff types in "hard rock" 

sandstone reservoirs are normal, pressure-dependent leakoff from dilated fractures/fissures, fracture-height 

recession during shut-in, and fracture-tip extension during shut-in.74 

Normal leakoff behavior occurs when fracture area is constant during shut-in and leakoff is through a 

homogeneous rock matrix. With G-function derivative analysis, normal leakoff is indicated by a constant 

derivative and when the superposition derivative data fall along a straight line that passes through the 

origin.  Fracture closure is identified when the superposition derivative data deviate downward from the 

straight line. 

Pressure-dependent leakoff from dilated fractures/fissures is indicated by a characteristic "hump" in the 

superposition derivative that lies above a straight line drawn from the origin and through the normal 

leakoff data.  The fissure opening pressure is identified at the end of the hump when the superposition 

derivative data begin to fall along the straight line, and fracture closure is identified when the 

superposition derivative data deviate downward from the straight line. 
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Fracture-height recession during shut-in is indicated when the superposition derivative data fall below a 

straight line drawn from the origin through the normal leakoff data.  Fracture height recession is also 

indicated by a concave down pressure curve and an increasing pressure derivative.  Hydraulic fracture 

closure is identified when the superposition derivative data deviate downward from a straight line drawn 

through the normal leakoff data. 

Fracture-tip extension during shut-in occurs when the fracture continues to grow after the end of the 

injection. Tip extension is indicated when the superposition derivative data lie along a straight line that 
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extrapolates above the origin. 

2.3.2 Before-Closure Pressure Transient Analysis. The pressure decline following a fracture-

injection/falloff test can be divided into two distinct regions: before-fracture closure and after-fracture 

closure.  Before-closure pressure transient analysis uses pressure transient methods to determine 

permeability from the before-fracture closure decline data. Mayerhofer and Economides57 divide the 

pressure gradient between an open, infinite-conductivity fracture and the reservoir into four components 

written as 

( ) ( ) ( ) ( ) ( )r cake piz fizp t p t p t p t p tΔ = Δ + Δ + Δ + Δ . ............................................................................ (2.98) 

The pressure drop in the polymer invaded zone, Δppiz(t), and the filtrate invaded zone, Δpfiz(t), are assumed 

to be negligibly small; thus, the pressure gradient consists of a reservoir component, Δpr(t), and a pressure 

drop across the filtercake, Δpcake(t), which is analogous to Cinco-Ley and Samaniego's fracture-face skin83 

defined as 

1
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f fs
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⎢ ⎥⎣ ⎦
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where bfs is the damage zone width and kfs is the damage zone permeability.  Mayerhofer and 

Economides57 account for variable fracture-face skin by defining resistance as 

( )
( ) fs

fs
fs

b t
R t

k
= , .............................................................................................................................. (2.100) 

and dimensionless resistance by58 
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D
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R t tR t
R t
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where R0 is the reference filtercake resistance at the end of the injection.57 

With the definition of resistance and dimensionless resistance, variable fracture-face resistance is written 

as 

0 0( ) ( )
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fsD D
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f f f

bkR R t kR R t
S
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ππ π
= − ≈ . ....................................................................................... (2.102) 

The pressure drop in the reservoir is modeled with the early-time vertical fracture infinite-conductivity 

solution, which in dimensionless form is written as84 

( )fD LfDp t tπ= , .......................................................................................................................... (2.103) 

where 
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2LfD
t f

ktt
c Lφμ
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and 

2q q= . .......................................................................................................................................... (2.106) 

Solving for the pressure difference, Δp(tj) = pr(tj) – pi, the early-time infinite-conductivity fracture solution 

can be written as 

2 ( )
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π φ
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The pressure gradient at the end of pumping, Δp(te), is obtained by applying the principle of superposition 

to account for the variable leakoff rates and fracture area during propagation.  Note that qℓ = 0 at t0 = 0, 

and using superposition, 
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where 'ne' denotes the time index at the end of the injection. Similarly, the pressure drop from fracture-

face resistance is written as 
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or 
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Mayerhofer and Economides57 note that the rate-dependent skin is a steady-state pressure drop that is a 

function of the "current" leakoff rate and written as 
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The pressure difference at the end of the injection is written as 

( ) ( ) ( )e r e cake ep t p t p tΔ = Δ + Δ , ....................................................................................................... (2.112) 

or 
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The pressure difference during the shut-in period is calculated by subtracting the pressure drop during the 

injection from the superposition of all pressure solutions corresponding to each leakoff rate from the 

beginning of the injection.  The pressure difference is written as 
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Provided an estimate for the leakoff rate from one fracture wing, qℓ, is available, Eq. 2.114 models the 

pressure decline following a fracture-injection/falloff test before hydraulic fracture closure.  The before-

closure leakoff rate can be written as 
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During fracture propagation, the leakoff rate is bound between upper and lower limits as demonstrated by 

Nolte.80 The leakoff rate is written as  
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Eqs. 2.114 through 2.116 can be used to simulate and history-match a before-closure pressure decline 

following a fracture-injection/falloff test. 

Valkó and Economides59 modified the method by writing the reservoir pressure drop as 
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and evaluating the dimensionless pressure function, pfD, with respect to the fracture length, (Lf)n, at time tn 

as opposed to some other time tj corresponding to (A)j. Valkó and Economides59 also assume that the first 

ne + 1 leakoff rates are equal; thus 
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( )  Constant, 1 1iq i ne= ≤ ≤ + , ................................................................................................... (2.118) 

where ne is the index corresponding to the end of the injection.  The pressure gradient at a time tn during 

the pressure decline can now be written as 
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which can also be written as 

[ ]2 1 1

1 1
3

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

j fD n LfD e ne fD n ne LfD
nf n i

j j fD n j LfD
j ne

q p t q q p t t
Bp t p
kh q q p t t
μ

π

+ + +

− −
= +

⎡ ⎤⎡ ⎤ ⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥− =
⎢ ⎥⎡ ⎤ ⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦

∑
  

0 ( ) ( )
2 D n n

B R
R q

A
μ

+ . ............................................................................................ (2.120) 

With dimensions, the pressure difference is written as 
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A graphical method for estimating the permeability and fracture-face resistance from the pressure decline 

following a diagnostic fracture-injection/falloff test has been developed from Eqs. 2.114 and 2.121.57-59 

Appendix A contains a new derivation of before-closure pressure-transient analysis in terms of adjusted 

pseudovariables, and demonstrates the development of the "specialized" Cartesian graph for determining 

permeability and fracture-face resistance. Table A-2 contains the specialized graph plotting functions in 

terms of pressure and time and adjusted pseudopressure and time. Additionally, Table A-3 contains the 

plotting functions in terms of pressure and time and adjusted pseudopressure and adjusted pseudotime for 

the specialized graph. 

2.3.3 Before-Closure Pressure Transient Analysis in Dual-Porosity Reservoirs. Ehlig-Economides, 

Fan, and Economides85 formulated the Mayerhofer and Economides57 model for dual-porosity reservoirs 

using Cinco-Ley and Meng's86 early-time solution for flow from an infinite conductivity fracture written as 
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where for dual-porosity reservoirs, 
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and 
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The early-time infinite-conductivity solution can be written as 

LfD LfDp tω πω= , ........................................................................................................................ (2.125) 

which with the definitions of dimensionless pressure and dimensionless time for a dual porosity reservoir 

can be written as 
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The reservoir pressure difference for a single porosity reservoir (Eq. 2.107) differs from the dual porosity 

reservoir pressure difference by the permeability, k, and the product of storativity ratio and bulk fracture 

permeability, ωkfb. The fracture face pressure difference, Δpcake, remains as defined in Eq. 2.111, and after 

applying the superposition principle, the pressure gradient at can be written as 
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where the leakoff rate during closure is defined by Eq. 2.116, and the leakoff rate during the injection is 

defined by85 
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In a dual-porosity reservoir, therefore, before-closure pressure-transient analysis using the specialized 

Cartesian graph results in an estimate of fracture-face resistance and the product ωkfb. Current methods 

only allow the product to be calculated, and estimating fracture storativity or bulk-fracture permeability 

requires additional testing.  Additionally, the Ehlig-Economides, Fan, and Economides85 model does not 

account for deformation during the injection, that is, the method assumes the fracture network does not 

dilate and contract during a fracture-injection/falloff test.  Intuition suggests otherwise, and G-function 

derivative analysis confirms natural fracture dilation/contraction is common.54    

2.4 After-Closure Analysis 

Concurrent with the development of before-closure analysis, Gu et al.60 and Abousleiman et al.61 

examined the pressure decline after fracture closure and presented after-closure analysis theory.  

Abousleiman et al.61 assume that a homogeneous reservoir with impervious bounding layers is penetrated 

completely by the wellbore, and assume that an injection induces a hydraulic fracture across the entire 

formation thickness.  Additionally, they assume that the effect of hydraulic fracturing on the reservoir 

pressure can be modeled by fluid sources distributed along the fracture trajectory with the magnitude of 

each fluid source proportional to the fracturing fluid leakoff rate at that position during the injection. 

Abousleiman, et al.61 state that the pressure response of a unit volume injection from a distribution of 

instantaneous point sources can be written as 
2 2[( ) ( ) ] 4( , , ) ( , , )

4
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kht
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The fracture trajectory is along the x-axis with the fracture extending from –Le ≤ x ≤ Le. Additionally, since 

the fracture is closed, the fracture width is zero, and y' = 0.  The exposure time of a point, x', during the 

injection along the fracture trajectory lies between τa(x') ≤ t' ≤ τd(x'), and assuming a variable leakoff rate, 

and using the principle of superposition, the pressure response can be integrated and written as 
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As a mathematical convenience, the reference time in Eq. 2.130 can be adjusted to the closure time by 

defining61 

0 ( ) ( ) ( )d ax x xτ τ τ′ ′ ′= − , ................................................................................................................. (2.131) 

1( ) ( )at x t xτ′ ′= − , ........................................................................................................................... (2.132) 

and 

ac ct t tΔ = − . ................................................................................................................................... (2.133) 

Assuming the fracture is symmetric about the wellbore, then Eq. 2.130 can be written as 
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where 
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The large-time asymptotic solution is developed by recognizing that as t → ∞, t1 ≈ Δtac, and Δtac  ≈ t1 – τ; 

thus, the exponential term in Eq. 2.134 tends to one, that is, 
2
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At closure, the volume injected into one fracture wing, Vinj, can be written as 
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and the large-time asymptotic solution is written as 
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Eq. 2.139 suggests a Cartesian graph of pw versus 1/Δtac during pseudoradial flow will result in a straight 

line with transmissibility, 

4
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Vkh
mμ π
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where macpr is the slope of the line.  A log-log graph of pw – pi versus 1/Δtac will have a unit slope, and a 

log-log graph of the pressure derivative, 
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will also have a unit slope and overlay the pressure curve during pseudoradial flow.  The implication of 

the model is that after "sufficient" time, the pressure behavior of the reservoir is not influenced by the 

fracture propagation or the final fracture dimensions created by the injection.  

Nolte87 also describes the after-closure pressure behavior during the pseudolinear flow period.  Nolte states 

that the pressure behavior of a finite-length fracture subject to constant pressure leakoff and zero flux after 

closure or the pressure behavior of an incremental-length of a propagating fracture within the linear-flow 

regime can be written as 
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Eq. 2.142 suggests that a log-log graph of pw – pi versus FL
2(Δtac, tc) and a log-log graph of the pressure 

derivative versus FL
2(Δtac, tc) will have a ½ slope during pseudolinear flow, but the two curves will be 

offset by a factor of 2.  A straight line drawn through the pseudolinear flow data on a Cartesian graph of pw 

versus FL(Δtac, tc) will have a slope equal to 

acpl L
t

m C
k c
πμ
φ
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2.5 Discussion of Existing Injection/Falloff and Fracture-Injection/Falloff Test Analysis Methods 

Injection/falloff test interpretation, including both impulse and slug tests, is fundamentally limited88 by the 

requirement that average reservoir pressure must be known accurately to calculate transmissibility from 

the falloff data. Additionally, field implementation of a slug-test requires a finite time of injection, but the 

analysis method assumes an injection is instantaneous. Butler89 notes that an injection can be considered 

instantaneous when the time of injection is short relative to the reservoir response. However, quantitative 

guidelines for when an injection can be considered as occurring instantaneously are not available.  

Injection/falloff test theory used to analyze slug-test data also assumes that the pressure during an injection 

must remain below the fracture propagation pressure and assumes that if a fracture exists, it was created 

prior to the injection. Thus, when a fracture is initiated during an injection, the assumptions of existing 

slug-test solutions are violated.49 

Like an injection/falloff test, a fracture-injection/falloff test analysis requires an accurate average reservoir 

pressure to calculate transmissibility from the falloff data. Current before-closure models for fracture-

injection/falloff tests are also highly idealized, and field tests routinely deviate from ideal behavior.  For 

example, Craig et al.54 have shown that only 15% of 994 tests analyzed in Rocky Mountain basins 

exhibited idealized "normal" leakoff behavior.  Additionally, before-closure pressure-transient analysis 

fails to adequately model the pressure decline with nonideal leakoff behavior.  For example, pressure-

dependent leakoff can be indicative of a naturally fractured or dual-porosity reservoir, and although Ehlig-

Economides et al.85 formulated before-closure pressure-transient analysis for dual-porosity reservoirs, 

field examples demonstrate that the model fails when natural fractures deform (dilate and contract) during 

an injection/falloff test.82 

With existing models, only specific and small portions of the pressure decline during a fracture-

injection/falloff test sequence can be analyzed. Before-closure data, which can extend from a few seconds 

to several hours, can be analyzed, and after-closure data can be analyzed provided pseudoradial flow is 

observed. However, in a low permeability reservoir or when a relatively long fracture is created during the 
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injection, an extended shut-in period—hours or possibly days—are required to observe pseudoradial flow. 

A quantitative transmissibility estimate from the remaining pressure falloff data, which represents the vast 

majority of the recorded pressure decline, is not possible with existing models. 

A new fracture-injection/falloff model accounting for fracture creation, fracture closure, and afer-closure 

diffusion is presented in Chapter III. Although the new model still requires an accurate estimate of 

reservoir pressure to calculate transmissibility from the pressure falloff data, the new model removes other 

before- and after-closure analysis limitations. Specifically, the new model can be used to demonstrate 

when a finite injection time can be considered as occurring instantaneously – which based on limiting-case 

solutions, allows the pressure difference recorded during the falloff to be transformed to an equivalent 

constant-rate pressure difference and analyzed using quantitative type-curve analysis.  Consequently, all 

data recorded during a fracture-injection falloff test is used to construct a type-curve match to estimate 

transmissibility. 



 

 

47 

CHAPTER III 

MODELING A FRACTURE-INJECTION/FALLOFF TEST IN A RESERVOIR 

WITHOUT A PRE-EXISTING FRACTURE 

3.1 Introduction 
When the injection time of a fracture-injection/falloff test is short relative to the reservoir response, the 

injection can be considered as occurring instantaneously, and slug-test analysis methods can be applied to 

the falloff data as though the created fracture were pre-existing. 

The preferred slug-test analysis method converts variable-rate pressure falloff data to an equivalent 

constant-rate pressure difference by integration of the recorded pressure difference with respect to time. 

After conversion, constant-rate drawdown type curves are used for quantitative type-curve analysis. 

However, during the falloff period the created fracture closes, which creates a variable storage problem 

that requires new constant-rate drawdown solutions for type-curve matching. 

Chapter III presents analytical constant-rate drawdown solutions for a well in an infinite slab reservoir 

containing a single dilated vertical fracture with the initial reservoir pressure above the minimum insitu or 

closure stress and with fracture storage and wellbore storage as follows: 

• Constant before- and constant after-closure fracture and wellbore storage. 

• Constant before- and constant after-closure fracture and wellbore storage with fracture-face and 

choked-fracture skin. 

• Fracture flow during closure with constant before-closure fracture and wellbore storage and radial 

flow after closure with constant wellbore storage and skin.  

A new fracture-injection/falloff model accounting for fracture creation, fracture closure, and after-closure 

diffusion is also presented to demonstrate when slug-test analysis methods are applicable. By considering 

fracture propagation as time-dependent storage, three new models are presented for a fracture-

injection/falloff sequence for a well in an infinite slab reservoir with a single vertical fracture created 

during an injection with fracture and wellbore storage as follows: 

• Equivalent propagating-fracture storage and before-closure storage with constant after-closure 

storage. 

• Time-dependent propagating-fracture storage, constant before-closure storage, and constant after-

closure storage. 

• Time-dependent propagating-fracture storage and before-closure storage with linear flow from the 

fracture before closure and after-closure radial flow with constant wellbore storage and skin. 
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Limiting-case solutions of the fracture-injection/falloff models and numerical evaluations are also 

presented to demonstrate when a fracture-injection can be considered as occurring instantaneously and 

slug-test analysis methods can be applied to the falloff data for quantitative type-curve analysis. 

3.2 Constant-Rate Drawdown Solutions With Variable Fracture Storage 
Constant-rate drawdown solutions for a well in an infinite slab reservoir containing a single dilated 

vertical fracture with the initial reservoir pressure above the minimum in-situ or closure stress and with 

variable fracture and wellbore storage are derived in Appendix B.  The drawdown solutions assume the 

reservoir and fracture are initially at a constant uniform pressure sufficient to keep the fracture open, but as 

the pressure declines during the drawdown, the fracture closes.  Consequently, the new pressure-transient 

solution accounts for variable storage before- and after-closure during a constant-rate drawdown. 

3.2.1 Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage. Correa 

and Ramey62-64 solved a changing storage problem by using the unit-step function written as 

0 ,
( )

1 ,a
t a

U U t a
t a
<⎧

= − = ⎨ >⎩
, ................................................................................................................ (3.1) 

and writing a material balance equation valid at all times during a drawdown.  During a variable storage 

drawdown in a well with a closing fracture, the before-closure dimensionless material balance equation is 

written as 

dpwDq q CD wD bcD dtLfD
= − , .................................................................................................................... (3.2) 

where the dimensionless sandface flow rate is defined as 

qqD qt
= , ............................................................................................................................................ (3.3) 

with q being the sandface flow rate and qt being the well production rate.  Dimensionless pressure is 

defined as 

2 ( ( ))kh p p ti wpwD qB
π

μ
−

= , ................................................................................................................. (3.4) 

and dimensionless time is defined as 

2
kttLfD
c Lt fφμ

= . ................................................................................................................................. (3.5) 

A dimensionless before-closure storage coefficient is defined as 

22

CbcCbcD
c hLt fπφ

= , .............................................................................................................................. (3.6) 

where the before-closure storage coefficient is written as 
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2 2
dV fC c V c Vbc w w f f dpw

= + + , ........................................................................................................ (3.7) 

and Vf is the volume of one wing a fracture symmetrical about the wellbore. 

An after-closure storage coefficient is written as 

2C c V c Vac w w f fr= + , ......................................................................................................................... (3.8) 

where Vfr is the residual volume of one fracture wing, and the dimensionless after-closure storage 

coefficient is written as 

22

CacCacD
c hLt fπφ

= . .............................................................................................................................. (3.9) 

In terms of dimensionless variables, the after-closure material balance equation is written as 

dpwDq q CD wD acD dtLfD
= − . .................................................................................................................. (3.10) 

Using the technique of Correa and Ramey,62-64 a dimensionless material balance equation valid at all times 

during the drawdown is written as 

1 ( ) ( )
dp dpwD wDq U q C U q CD t wD bcD t wD acDc LfD c LfDdt dtLfD LfD

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟= − − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
, ................................... (3.11) 

where (tc)LfD is the dimensionless fracture closure time. 

A detailed derivation is contained in Appendix B, but in general the drawdown solution is developed by 

first transforming the material balance equation to the Laplace domain. Since the governing differential 

equations and boundary conditions are linear, the superposition principle can be applied by transforming 

the superposition integral to the Laplace domain and combining with the transformed material balance 

equation.  After algebraic manipulation, the solution is obtained by inverting back to the time domain. 

Thus, for a well in an infinite slab reservoir with an open fracture supported by initial reservoir pressure 

that closes during the drawdown with constant before- and after-closure storage, the solution is written as 

( )
( ) ( ) ( ) ( ) ( )0

tc LfDp t p t C C p t p dwcD LfD acD LfD bcD acD acD LfD D wcD D Dτ τ τ⌠⎮
⌡

′ ′= − − − , ................... (3.12) 

where pwcD denotes that the pressure solution is for a constant rate and pacD is the dimensionless pressure 

solution for a constant-rate drawdown with constant after-closure storage, which is written in the Laplace 

domain as 

21

p fDpacD
s C pacD fD

=
+

, ................................................................................................................... (3.13) 

and pfD is the reservoir solution for a single vertical infinite- or finite-conductivity fracture.  
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3.2.2 Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage With 

Fracture-Face and Choked-Fracture Skin. Fracture volume before closure is greater than the residual 

fracture volume after closure, Vf > Vfr, and the change in fracture volume with respect to pressure is 

positive. Thus before-closure storage, when a fracture is open and closing, is greater than after-closure 

storage, which is written as 

dV fc V c Vf f f frdpw
+ > . ..................................................................................................................... (3.14) 

Consequently, decreasing storage should be expected during a constant-rate drawdown with a closing 

fracture as has been demonstrated for a closing waterflood-induced fracture during a falloff period by 

Koning and Niko,90 Koning,91 and van den Hoek.92-93 

Can storage appear to increase during a constant-rate drawdown with a closing fracture? Spivey and Lee94 

describe a variable wellbore storage model for reservoirs with natural fractures of limited extent in 

communication with the wellbore.  The variable storage model includes a natural fracture storage 

coefficient and natural fracture skin affecting communication with the reservoir, and a wellbore storage 

coefficient and a completion skin affecting communication between the natural fractures and the wellbore. 

The Spivey and Lee radial model with natural fractures of limited extent in communication with the 

wellbore demonstrates that storage can appear to increase when the completion skin is greater than zero. 

The concept of Spivey and Lee94 is easily extended to a constant-rate drawdown for a well with a vertical 

hydraulic fracture by incorporating fracture-face and choked fracture skin as described by Cinco-Ley and 

Samaniego.83 The problem is formulated by first considering only wellbore storage and writing a 

dimensionless material balance equation as 

dpwDq q CD wD D dtLfD
= − , ..................................................................................................................... (3.15) 

where CD is the dimensionless wellbore storage coefficient written as 

22

CCD
c hLt fπφ

= , ............................................................................................................................... (3.16) 

and C is the wellbore storage coefficient defined as 

C c Vw w= . .......................................................................................................................................... (3.17) 

The dimensionless material balance equation is combined with the superposition integral in the Laplace 

domain, and the wellbore solution is written as 

( )
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, .............................................................................................. (3.18) 
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where (Sfs)ch is the choked fracture skin and pwfD is the dimensionless pressure solution outside of the 

wellbore in the fracture.  The solution outside of the wellbore accounts for variable fracture storage and is 

formulated by writing a before-closure dimensionless material balance equation as 

dpwfDq q CD wD fbcD dtLfD
= − , ............................................................................................................... (3.19) 

where the dimensionless before-closure fracture storage is written as 

22

C fbcC fbcD
c hLt fπφ

= , .......................................................................................................................... (3.20) 

and the before-closure fracture storage coefficient is written as 

2 2
dV fC c Vfbc f f dpw

= + . ................................................................................................................. (3.21) 

The after-closure dimensionless material balance equation is written as 

dpwfDq q CD wD facD dtLfD
= − , ............................................................................................................... (3.22) 

where the dimensionless after-closure fracture storage is written as 

22

C facC fbcD
c hLt fπφ

= , .......................................................................................................................... (3.23) 

and the after-closure fracture storage coefficient is written as 

2C c Vfac f fr= . ................................................................................................................................. (3.24) 

A dimensionless material balance equation written for flow outside of the wellbore in the fracture that is 

valid at all times during the drawdown is written as 

1 ( ) ( )
dp dpwfD wfDq U q C U q CD t wD fbcD t wD facDc LfD c LfDdt dtLfD LfD

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟= − − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
. ............................. (3.25) 

The drawdown solution outside of the wellbore in the fracture for a well in an infinite slab reservoir with 

an open fracture supported by initial reservoir pressure that closes during the drawdown with constant 

before- and after-closure storage is written as 
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⌡

′ ′= − − − , .............. (3.26) 

where pfacD is the dimensionless pressure solution in the fracture for a constant-rate drawdown with 

constant storage, which is written in the Laplace domain as 

1 ( )

sp SfD fsp facD
s sC sp SfacD fD fs

+
=

⎡ ⎤+ +⎣ ⎦

, ................................................................................................ (3.27) 

and pfD is the reservoir solution for a single vertical fracture and Sfs is the fracture-face skin. 
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The Laplace-domain drawdown solution outside of the wellbore in the fracture is written as 

( )
( ) ( )

0

t stc LfD LfDp p C C sp e p t dtwfD facD fbcD facD facD wfD LfD LfD
⌠
⎮⎮
⌡

−
′= − − . ................................. (3.28) 

3.2.3 Constant-Rate Drawdown With Constant Before-Closure Storage, Constant After-Closure 

Wellbore Storage, and After-Closure Radial Flow With Skin. When an open hydraulic fracture closes 

completely with little or no retained conductivity, the production can no longer be regarded as flowing 

from the fracture alone and the system can effectively convert to radial flow. The before-closure 

dimensionless material balance equation remains the same and is written as 

dpwDq q CfD wD bcD dtLfD
= − , ................................................................................................................ (3.29) 

where qfD denotes the flow rate is at the fracture sandface. With complete closure, the after-closure storage 

does not include the fracture volume and a material balance equation is written as 

dpwDq q CrD wD D dtLfD
= − , .................................................................................................................... (3.30) 

where qrD is the sandface flow rate of a radial system. 

A drawdown solution can be developed using the unit-step function and writing the dimensionless 

wellbore pressure as a sum of superposition integrals reflecting flow from the fracture before closure and 

from a radial system after closure. The dimensionless wellbore pressure is written as 

( )
( ) 1 ( )

0

( )
( ) ( )

0

tLfD dp tfD LfD Dq U dfD D t Dc LfD dtLfD
pwD tLfD dp tsD LfD Dq U drD D t Dc LfD dtLfD

τ
τ τ

τ
τ τ

⌠
⎮
⎮
⎮
⌡

⌠
⎮
⎮
⎮
⌡

⎡ ⎤−⎡ ⎤⎢ ⎥−⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥= ⎢ ⎥
−⎢ ⎥

+⎢ ⎥
⎢ ⎥⎣ ⎦

, ........................................................ (3.31) 

where pfD is the dimensionless reservoir solution for a well with a fixed-length fracture, and the 

dimensionless reservoir solution for a radial system with skin effect is written as 

( ) ( )p t p t SsD LfD rD LfD= + , .......................................................................................................... (3.32) 

and prD is the dimensionless radial flow reservoir solution and S is the skin effect. Note that dimensionless 

time is defined in terms fracture half-length; thus, fracture half-length is the characteristic length used in 

the dimensionless radius definition, rwD = rw/Lf, and radial solution. 

After converting the material balance equations and the superposition integrals to the Laplace domain, 

simplifying, and inverting back to the time domain, a drawdown solution for a well with an open fracture 

that closes during the drawdown with constant after-closure wellbore storage and after-closure radial flow 

is written as 
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( ) ( ) ( )

( ) ( ) ( )( )

( )
( ) ( )0

p t p t t p t tfD LfD fD LfD c LfD sD LfD c LfD
tLfDp t C p t p dwcD LfD acD sD LfD D wcD D Dtc LfD
tc LfDC p t p dbcD fD LfD D wcD D D

τ τ τ

τ τ τ

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤⎡ ⎤ ⎡ ⎤− − + −⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥′ ′= − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′− −⎣ ⎦

. .................................... (3.33) 

3.3 Constant-Rate Drawdown Numerical Solutions With Variable Fracture Storage 

3.3.1 Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage. The 

solution for a constant-rate drawdown in an infinite slab reservoir producing through a finite- or infinite-

conductivity fracture with constant before- and after-closure storage is written as 

( )
( ) ( ) ( ) ( ) ( )0

tc LfDp t p t C C p t p dwcD LfD acD LfD bcD acD acD LfD D wcD D Dτ τ τ⌠⎮
⌡

′ ′= − − − . ................... (3.34) 

After integrating-by-parts, the solution is written as 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )0

p t C C p t t p tacD LfD bcD acD acD LfD c LfD wcD c LfD
p twcD LfD tc LfDC C p p t dbcD acD wcD D acD LfD D Dτ τ τ⌠⎮

⌡

⎡ ⎤⎡ ⎤ ⎡ ⎤′+ − −⎣ ⎦ ⎣ ⎦⎢ ⎥
= ⎢ ⎥
⎢ ⎥′′− − −⎣ ⎦

, .................... (3.35) 

and after discretizing the integral term, a numerical approximation is written as 

( ) ( ) ( ) ( ) ( )

( ) ( ) 1
( ) ( ) 1

( )
( ) ( )( ) 1 2
( ) ( )1 2

p t C C p t t p tacD LfD n bcD acD acD LfD n LfD j wcD LfD j

p t p twcD LfD i wcD LfD i
t tLfD i LfD i

p twcD LfD n p t p tC C wcD LfD i wcD LfD ibcD acD
t tLfD i LfD i

⎡ ⎤ ⎡ ⎤′+ − −⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞− −⎢⎜ ⎟
⎜ ⎟−⎢ −⎝ ⎠⎢=
⎢ ⎛ ⎞−− − − −⎢ ⎜ ⎟−
⎜ ⎟⎢ −− −⎝ ⎠⎣

1

( ) ( ) )1

j

i

p t tacD LfD n LfD i

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎥⎢ ⎥⎢ ⎥⎥⎢ ⎥⎢ ⎥⎥⎢ ⎥⎢ ⎥⎥∑⎢ ⎥⎢ ⎥⎥⎢ ⎥= ⎢ ⎥⎥⎢ ⎥⎦⎢ ⎥⎢ ⎥⎢ ⎥⎡ ⎤⎢ ⎥× − −⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

, .......... (3.36) 

where j is the time index at closure. Note that for n ≤ j, pacD[(tLfD)n – (tLfD)j] = 0.  

A drawdown in an infinite slab reservoir producing through an infinite-conductivity fracture with constant 

before-closure storage and decreasing after-closure storage is illustrated in Fig. 3.1, which is a log-log 

graph of dimensionless pressure versus dimensionless time for CbcD = 10, CacD = 1, and (tc)LfD = {10-5, 10-4, 

10-3, 10-2}. A drawdown in an infinite slab reservoir producing through an infinite-conductivity fracture 

with constant before-closure storage and increasing after-closure storage is illustrated in Fig. 3.2 with 

CbcD = 1, CacD = 10, and (tc)LfD = {10-5, 10-4, 10-3, 10-2}.  
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Fig. 3.1—Constant-rate drawdown in a reservoir with an open fracture with constant before-closure 
storage, decreasing constant after-closure storage, and variable dimensionless closure 
time. 

 

Fig. 3.2—Constant-rate drawdown in a reservoir with an open fracture with constant before-closure 
storage, increasing constant after-closure storage, and variable dimensionless closure time.
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3.3.2 Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage With 

Fracture-Face and Choked-Fracture Skin. The dimensionless pressure outside of the wellbore in the 

fracture for a constant-rate drawdown with constant before-closure storage, after-closure storage, and 

fracture-face skin is written in the time domain as 

( )
( ) ( ) ( ) ( ) ( )0

tc LfDp t p t C C p t p dwfD LfD facD LfD fbcD facD facD LfD D wfD D Dτ τ τ⌠⎮
⌡

′ ′= − − − , .............. (3.37) 

which is descretized as 

( ) ( ) ( ) ( ) ( )

( ) ( ) 1
( ) ( ) 1

( )
( ) ( )( ) 1 2
( ) ( )1 2

p t C C p t t p tfacD LfD n fbcD facD facD LfD n LfD j wfD LfD j

p t p twfD LfD i wfD LfD i
t tLfD i LfD i

p twfD LfD n p t p tC C wfD LfD i wfD LfD ifbcD facD
t tLfD i LfD i

⎡ ⎤ ⎡ ⎤′+ − −⎣ ⎦ ⎣ ⎦

⎡⎛ ⎞− −⎢⎜ ⎟
⎜ ⎟− −⎝ ⎠=
⎛ ⎞−− − − −⎜ ⎟−
⎜ ⎟−− −⎝ ⎠⎣

1

( ) ( ) )1

j

i

p t tfacD LfD n LfD i

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎤⎢ ⎥⎢ ⎥⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥∑⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎦⎢ ⎥⎢ ⎥⎢ ⎥⎡ ⎤⎢ ⎥× − −⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦ . .... (3.38) 

The dimensionless pressure outside of the wellbore in the fracture is written in the Laplace domain as 

( )
( ) ( )

0

t stc LfD LfDp p C C sp e p t dtwfD facD fbcD facD facD wfD LfD LfD
⌠
⎮⎮
⌡

−
′= − − , ................................. (3.39) 

and after integrating-by-parts is written as 

( )
1 ( ) ( )

( )2( ) ( )
0

s tc LfDC C se p tfbcD facD wfD c LfD
p pwfD facD t stc LfD LfDC C s e p t dtfbcD facD wfD LfD LfD

⌠
⎮⎮
⌡

−⎡ ⎤⎡ ⎤− −⎢ ⎥⎣ ⎦
⎢ ⎥=

−⎢ ⎥
− −⎢ ⎥
⎣ ⎦

. ..................................... (3.40) 

The Laplace domain wellbore pressure solution with wellbore storage and choked-fracture skin is written 

as 

( )

1 ( )

sp SwfD fs chpwD
s sC sp SD wfD fs ch

+
=

⎡ ⎤⎡ ⎤+ +⎢ ⎥⎣ ⎦⎣ ⎦

. .............................................................................................. (3.41) 

Before fracture closure, the dimensionless pressure in the fracture outside of the wellbore is simply a 

function of before-closure fracture storage and fracture-face skin and can be written in the Laplace domain 

as 

1

sp SfD fspwfD
s sC sp SfbcD fD fs

+
=

⎡ ⎤⎡ ⎤+ +⎢ ⎥⎣ ⎦⎣ ⎦

. ................................................................................................. (3.42) 

The before-closure dimensionless wellbore pressure accounting for fracture-face skin, before-closure 

storage, choked-fracture skin, and wellbore storage is solved by numerically inverting68 the Laplace 

domain solution, Eqs. 3.41 and 3.42. 
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After fracture closure, the dimensionless wellbore pressure solution is obtained by evaluating the time-

domain descretized solution for the dimensionless pressure outside of the wellbore and in the fracture, 

Eq. 3.38, at each time (tLfD)n. With the time-domain dimensionless pressure outside of the wellbore in the 

fracture known, the Laplace domain solution, Eq. 3.40, can be evaluated numerically and combined with 

the Laplace domain wellbore solution, Eq. 3.41, and numerically inverted to the time domain.68   

Fig. 3.3 compares log-log graphs of dimensionless pressure versus dimensionless time for two cases. The 

first case is a constant-rate drawdown in an infinite slab reservoir producing through an infinite-

conductivity fracture with constant before-closure storage, CbcD = 10, decreasing constant after-closure 

storage, CacD = 1, and a dimensionless closure time of (tc)LfD = 10-3. The second case includes wellbore 

storage, CD = 0.5, before-closure fracture storage, CfbcD = 9.5, after-closure fracture storage, CfacD = 0.5, no 

fracture-face or choked fracture skin, and a dimensionless closure time of (tc)LfD = 10-3.  

Fig. 3.3—Comparison of constant-rate drawdown numerical solutions formulated with and 
without fracture-face and choked-fracture skin. 
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With precise numerical evaluation, the two curves should overlay.  However, the two curves during the 

transition from before- to after-closure storage separate at closure and converge over a log cycle. The 

separation is attributed to error in the numerical approximation of the integral in Eq. 3.40 and numerical 

inversion.68 The integral was evaluated using 2-point (Trapezoid) and 4-point (Simpson’s 3/8 Rule) 

approximations with near identical numerical inversion results. 

Cases illustrating the effects of fracture-face and choked-fracture skin for CD = 1, CfbcD = 10, CacD = 9, and 

(tc)LfD = 10-3 are shown in Figs. 3.4, 3.5, 3.6. Fig. 3.4 shows a log-log graph of dimensionless pressure 

versus dimensionless time for variable fracture-face skin, Sfs = {0, 0.5, 1},and no choked-fracture skin, 

(Sfs)ch = 0.  

Fig. 3.5 contains a log-log graph of dimensionless pressure versus dimensionless time for no fracture-face 

skin, Sfs = 0, and variable choked-fracture skin, (Sfs)ch = {0.05, 1, 5}. Fig. 3.5 clearly demonstrates that 

storage appears to increase during a constant-rate drawdown in a well with a closing fracture and choked-

fracture skin. 

Fig. 3.4—Constant-rate drawdown in an infinite-slab reservoir with constant before- and decreasing 
constant after-closure storage with variable fracture-face and no choked-fracture skin. 
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Fig. 3.5—Constant-rate drawdown in an infinite-slab reservoir with constant before- and decreasing 
constant after-closure storage with no fracture-face and variable choked-fracture skin. 

Fig. 3.6—Constant-rate drawdown in an infinite-slab reservoir with constant before- and decreasing 
constant after-closure storage with fracture-face and choked-fracture skin. 
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Fig. 3.6 contains a log-log graph of dimensionless pressure versus dimensionless time for fracture-face 

skin of Sfs = 1 and variable choked-fracture skin, (Sfs)ch = {1, 3, 5}.  Fig. 3.6 also illustrates storage 

appearing to increase during a constant-rate drawdown in a well with a closing fracture with choked-

fracture and fracture-face skin. 

3.3.3 Constant-Rate Drawdown With Constant Before-Closure Storage, Constant After-Closure 

Wellbore Storage, and After-Closure Radial Flow With Skin. The constant-rate drawdown solution for 

a well with an open fracture that closes during the drawdown with fracture flow and fracture storage 

before closure and radial flow with wellbore storage and skin after closure is written as 

( ) ( ) ( )

( ) ( )0
( ) ( )

( ) ( )0
( )

( ) ( )0

p t p t t p t tfD LfD fD LfD c LfD sD LfD c LfD
tLfDC p p t dacD wcD D sD LfD D D

p twcD LfD tc LfDC p p t dacD wcD D sD LfD D D
tc LfDC p p t dbcD wcD D fD LfD D D

τ τ τ

τ τ τ

τ τ τ

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤⎡ ⎤ ⎡ ⎤− − + −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′− −
⎢ ⎥= ⎢ ⎥
⎢ ⎥′ ′− −
⎢ ⎥
⎢

′ ′− −⎢⎣ ⎦
⎥
⎥

. .................................... (3.43) 

After integrating-by-parts, the solution is written as 

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )0
( )

( ) ( )0

p t p t t p t tfD LfD fD LfD c LfD sD LfD c LfD

C p t t C p t t p tacD sD LfD c LfD bcD fD LfD c LfD wcD c LfD
tLfDp t C p p t dwcD LfD acD wcD D sD LfD D D
tc LfDC p p t dacD wcD D sD LfD D D

τ τ τ

τ τ τ

⌠⎮
⌡

⎡ ⎤ ⎡ ⎤− − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤′− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

′′= − −

′′− −

( )
( ) ( )0

tc LfDC p p t dbcD wcD D fD LfD D Dτ τ τ

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥′′− −⎢ ⎥⎣ ⎦

, ........ (3.44) 

and after discretizing the integrals, a numerical approximation is written as 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 1
( ) ( ) 1( ) ( )

(

( )

p t p t t p t tfD LfD n fD LfD n LfD ne sD LfD n LfD ne

C p t t p t p tacD sD LfD n LfD ne wcD LfD ne wcD LfD ne
t tLfD ne LfD neC p t tbcD fD LfD n LfD ne

pwcD

CacD
p twcD LfD n

⎡ ⎤ ⎡ ⎤− − + −⎣ ⎦ ⎣ ⎦
⎛ ⎞⎡ ⎤− ⎛ ⎞− −⎣ ⎦⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟−⎡ ⎤ −− −⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

−

=

) ( ) 1
( ) ( ) 1

( ) ( )1 2
1 ( ) ( )1 2

( ) ( ) )1

( ) ( ) 1
(

t p tLfD i wcD LfD i
t tLfD i LfD i

n
p t p twcD LfD i wcD LfD i

i t tLfD i LfD i

p t tsD LfD n LfD i

p t p twcD LfD i wcD LfD i
tLfD

⎡ ⎤⎡ ⎤⎛ ⎞− −⎢ ⎥⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥−⎢ ⎥−⎝ ⎠⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎛ ⎞−∑ − −⎢ ⎥⎢ ⎥⎜ ⎟−= ⎢ ⎥⎜ ⎟⎢ ⎥−− −⎝ ⎠⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤× − −⎢ ⎥⎣ ⎦⎣ ⎦

− −

+

( )

) ( ) 1

( ) ( )1 2
1 ( ) ( )1 2

( ) ( ) ) ( ) ( ) )1 1

ti LfD i
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p t p twcD LfD i wcD LfD i
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Fig. 3.7 is a log-log graph of dimensionless pressure versus dimensionless time for before-closure fracture 

flow with constant before-closure storage, CbcD = 10, and constant after-closure wellbore storage, CD = 1 

with radial flow and no skin, S = 0. Before closure, the reservoir produces through an infinite-conductivity 

fracture, which is modeled in the Laplace domain as95 

[ ] [ ]1 (1 0.732) (1 0.732)
0 00 02

u up K z dz K z dzfD s u
⌠ ⌠
⌡ ⌡
⎡ ⎤+ −= +⎢ ⎥
⎣ ⎦

, ....................................................... (3.46) 

where K0 is the modified Bessel function of order zero and u = sf(s).  For a single-porosity reservoir, 

f(s) = 1, and for dual-porosity reservoir with pseudosteady-state interporosity flow, f(s) is written as96 

(1 )( )
(1 )

sf s
s

λ ω ω
λ ω
+ −

=
+ −

, ....................................................................................................................... (3.47) 

for transient interporosity flow with slab matrix blocks,97-98 

(1 ) 3(1 )( ) tanh
3

sf s
s

λ ω ωω
λ

− −
= + , ............................................................................................. (3.48) 

and for transient interporosity flow with spherical matrix blocks,97-98 

15(1 ) 15(1 )( ) coth 1
5

s sf s
s
λ ω ωω

λ λ
⎡ ⎤− −

= + −⎢ ⎥
⎣ ⎦

. ........................................................................... (3.49) 

The after-closure radial flow reservoir solution is calculated with the cylindrical-source solution with skin, 

S, which is written in the Laplace domain as65 
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( )
( )

0

1

1 wDK r s SpsD s ssK s
= + , .................................................................................................................. (3.50) 

where K1 is the modified Bessel function of order one. 

Dimensionless pressure and pressure derivative curves are presented for rwD = {0.10, 0.010, 0.001} and a 

dimensionless fracture closure time, (tc)LfD, of 0.10, which is clearly indicated by the rapid change in the 

derivative and dimensionless pressure values after closure.  Fig. 3.8 is a log-log graph of dimensionless 

pressure versus dimensionless time for CbcD = 10, CD = 9, (tc)LfD  = 0.10, rwD = 0.005, and variable after-

closure skin.  In both Figs. 3.7 and 3.8, the dimensionless pressure and pressure derivative curves after 

fracture closure have the distinctive shape of conventional drawdown type curves for an infinite-acting 

well with radial flow, wellbore storage, and skin. 

 

Fig. 3.7—Constant-rate drawdown in an infinite-slab reservoir with fracture flow before closure, 
constant before-closure storage, and radial flow after closure with wellbore storage and 
skin—variable dimensionless wellbore radius.
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Fig. 3.8—Constant-rate drawdown in an infinite-slab reservoir with fracture flow before closure, 
constant before-closure storage, and radial flow after closure with wellbore storage and 
skin—variable skin. 
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Fig. 3.9—Constant-rate drawdown in an infinite-slab reservoir with fracture flow before closure, 
constant before-closure storage, and radial flow after closure with wellbore storage and 
skin—variable dimensionless wellbore radius and approximation with rwD =1. 
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Fig. 3.9 is a log-log graph of dimensionless pressure versus dimensionless time for CbcD = 10, CD = 9, 

(tc)LfD  = 0.10, S = 0, and rwD = {0.10, 0.010, 0.001}. From well test analysis, an effective wellbore radius 

is approximated as99 

Sr r eweD D
−= . .................................................................................................................................. (3.51) 

Let rD = 1 and for an effective dimensionless wellbore radius, rweD, of 0.10, 0.010, and 0.001, the skin 

calculated from Eq. 3.46 is 2.303, 4.605 and 6.91, respectively.  Fig. 3.9 also shows the dimensionless 

pressure and pressure derivative curves generated with rD = 1 and S = {2.303, 4.905, 6.91}, which 

overlays the curves generated with rwD = {0.10, 0.010, 0.001} and S = 0. Fig. 3.9 demonstrates that when 

"true" skin damage is negligible, the dimensionless pressure curves can be generated with rD = 1 and a 

skin factor determined by 

ln( )S rwD= − . .................................................................................................................................... (3.52) 

Since the dimensionless radius is defined in terms of fracture half length, rwD = rw/Lf, Fig. 3.9 also suggests 

that the skin determined from a type-curve match can be used to calculate rwD using Eq. 3.52 and fracture 

half length, Lf.  

3.4 Fracture-Injection/Falloff Solutions 
Current fracture-injection/falloff analysis methods57-61 are based on limiting-case models of specific and 

small portions of the pressure response during the falloff.  Fig. 3.10 is a graph of pressure versus time for a 

typical field fracture-injection/falloff test in a moderate permeability gas reservoir.  The injection consisted 

of 60.5 bbl of 2% KCl water pumped at an average rate of 6.20 bbl/min over an injection period of 9.8 

minutes, and the falloff period was recorded for approximately 3.5 hours. Before-closure pressure-

transient analysis57-59 for determining permeability and fracture-face resistance is applicable to the pressure 

data recored before hydraulic fracture closure, which for the data from the field test in Fig. 3.10 consists of 

only the first 5 minutes of shut-in data. 

Permeability and reservoir pressure can be determined using after-closure analysis60-61 provided 

pseudoradial flow is observed after fracture closure, but observing pseudoradial flow can require an 

excessive shut-in time. Fig. 3.11, for example, is a graph of pressure versus time for the field example, but 

the shut-in pressure data are extrapolated from 3.5 hr to 60 hr, which corresponds to the calculated 

beginning of pseudoradial flow. 

With only before-closure and after-closure analysis methods available, only the data in those specific flow 

regimes can be analyzed, and the vast majority of the shut-in data cannot be analyzed quantitatively. 

Analyzing the entire pressure falloff dataset requires a new model that accounts for fracture creation, 

fracture closure, and after-closure pressure diffusion. 
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Fig. 3.10—A typical fracture-injection/falloff sequence in a moderate-permability gas reservoir. 

Fig. 3.11—Pressure extrapolated to beginning of pseudoradial flow. 
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3.4.1 Solution Accounting for a Dilating Fracture, Before-Closure Storage, and After-Closure 

Storage. Consider a fracture-injection/falloff test with the entire fracture length developed instantaneously 

when the injection begins.  The injection is at a pressure in excess of the minimum in-situ stress, and 

fracture volume changes are a function of fracture width, which is a function of pressure during the 

injection and before-closure pressure falloff. Fracture dilation is modeled as time-dependent storage in the 

dimensionless pressure solution development, which is derived in detail in Appendix C. 

During a constant-rate injection with a constant fracture length, the fracture volume of one wing is written 

as 

ˆ ˆ( ( )) ( ( ))V h L w p t A w p tf f f f w f f w= = . ............................................................................................. (3.53) 

The average fracture width, ˆ ( ( )),w p tf w is a function of net pressure, pn = pw(t) – pc, and written as75,80 

( )
ˆ

p p t pn w cw f S Sf f

−
= = , .................................................................................................................. (3.54) 

where Sf is the fracture "stiffness" and pc is the fracture closure stress. Fracture stiffness, or the inverse of 

fracture compliance, is defined by the elastic energy or "strain energy" created by an open fracture in a 

rock assuming linear elastic theory is applicable.  Table 3.1 contains the fracture stiffness definitions for 

three common 2D fracture models.80,100 In Table 3.1, E' is the plane-strain modulus, Rf is the fracture 

radius of a radial fracture, and hf is the gross fracture height. 

Table 3.1—Fracture stiffness for common two-dimensional fracture models.80,100 

Radial 

 

Perkins-Kern-Nordgren 

Vertical Plane Strain 

Geertsma-deKlerk 

Horizontal Plane Strain 

3( )
16

ES f RAD R f

π ′
=  2( ) ES f PKN h fπ

′
=  ( ) ES f GDK L fπ

′
=  

The derivative of average fracture width with respect to pressure is written as 

ˆ 1dw f
dp Sw f

= . ...................................................................................................................................... (3.55) 

A propagating-fracture storage coefficient is defined as 

( ( ))
2 ( ( )) 2

dV p tf wC c V c V p tpf w w f f w dpw
= + + , ............................................................................. (3.56) 

and a dilating-fracture storage coefficient can be written as 
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( )2 1
AfC c V c pfd w w f nS f

= + + . ..................................................................................................... (3.57) 

Typically, cfpn(t)  1,90-93,101 and the dilating-fracture storage coefficient can be written as 

2
AfC c Vfd w w S f

= + . ....................................................................................................................... (3.58) 

The dimensionless dilating-fracture storage coefficient can be written as 

22

C fdC fdD
c hLt fπφ

= , ......................................................................................................................... (3.59) 

and the dimensionless material balance equation during a fracture injection with a dilating fixed-length 

fracture is written as 

dpwDq q CD wD fdD dtLfD
= − , .................................................................................................................. (3.60) 

where dimensionless wellbore pressure for a fracture-injection falloff is defined as 

( )
( )

0

p t pw LfD ip twsD LfD p pi

−
=

−
, ........................................................................................................... (3.61) 

where pi is the initial reservoir pressure and p0 is an arbitrary reference pressure. At time zero, the wellbore 

pressure is increased to the “opening” pressure, pw0, which is generally set equal to p0, and the 

dimensionless wellbore pressure at time zero is written as 

0(0)
0

p pw ipwsD p pi

−
=

−
. ......................................................................................................................... (3.62) 

In the material balance equation, dimensionless sandface flow rate is written as 

2 ( )0

q BsfqD kh p pi

μ

π
=

−
, ....................................................................................................................... (3.63) 

and the dimensionless well flow rate is defined as 

2 ( )0

q BwqwD kh p pi

μ
π

=
−

. .................................................................................................................... (3.64) 

Following the injection, the falloff portion of the test begins, and a dimensionless before-closure material 

balance is written as 

dpwsDq CD bcD dtLfD
= − , ......................................................................................................................... (3.65) 

where the dimensionless before-closure storage coefficient is written as 
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22

CbcCbcD
c hLt fπφ

= , ......................................................................................................................... (3.66) 

and the before-closure storage coefficient is equivalent to the dilating-fracture storage coefficient and 

written as 

2
AfC c V Cbc w w fdS f

= + = . ............................................................................................................. (3.67) 

After fracture closure a constant after-closure storage coefficient is written as 

2C c V c Vac w w f fr= + , ....................................................................................................................... (3.68) 

where Vfr is the residual fracture volume at closure.  In some cases, no residual volume will remain after-

closure, and Cac = cwVw. The dimensionless after-closure wellbore storage coefficient is written as 

22

CacCacD
c hLt fπφ

= , ............................................................................................................................ (3.69) 

and the after-closure pressure falloff dimensionless material balance equation is written as 

dpwsDq CD acD dtLfD
= − . ......................................................................................................................... (3.70) 

Following the method of Correa and Ramey,62-64 and as shown in Appendix C, the dimensionless pressure 

solution for a fracture-injection/falloff with a dilating fracture during the injection and a constant 

dimensionless after-closure storage coefficient is written as 

( ) ( ( ) ) (0) ( )
( ) ( )

( ) ( ) ( )0

q p t p t t p C p twD acD LfD acD LfD e LfD wsD acD acD LfD
p twsD LfD tc LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

⎡ ⎤⎡ ⎤ ′− − +⎣ ⎦⎢ ⎥
= ⎢ ⎥
⎢ ⎥′ ′− − −⎣ ⎦

, ............... (3.71) 

where the Laplace domain dimensionless fracture solution for a well produced at a constant rate with 

constant after-closure storage is written as 

21

p fDpacD
s C pacD fD

=
+

, ................................................................................................................... (3.72) 

and the dimensionless reservoir pressure solution is for a fixed-length finite- or infinite-conductivity  

fracture.  

3.4.2 Solution Accounting for a Propagating Fracture, Constant Before-Closure Storage, and 

Constant After-Closure Storage. A new fracture-injection/falloff model accounting for fracture 

propagation, closure, and after-closure diffusion is developed that includes a time-dependent storage term 

during fracture extension in addition to a constant before-closure storage coefficient and a constant after-

closure storage coefficient.  A dimensionless material balance equation applicable during the injection and 

fracture creation is derived in Appendix C and is written as 
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( ( ))
dpwDq q C p tsD wsD pfD wD LfD dtLfD

= − . ........................................................................................... (3.73) 

Utilizing the superposition principle to develop a dimensionless pressure solution requires that the 

dimensionless propagating fracture storage coefficient be written as a function of time only.  The storage 

coefficient can be written as a function of time by incorporating a power model for fracture growth.75,77 

Power-model fracture propagation is written as 

( )( )
( )

Nh L tA t tf
A t h L tf e f f e

α⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
. .............................................................................................................. (3.74) 

With power-model propagation, fracture volume as a function of time is written as 

( ( ) )
ˆ( ( )) ( ) ( )

Np t p tw cV p t h L t w t h Lf w f f f f S tf e

α⎛ ⎞−
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
, ................................................................... (3.75) 

and the derivative with respect to wellbore pressure is written as 

( ( )) NdV p t h L tf w f f
dp S tw f e

α⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. ........................................................................................................... (3.76) 

A propagating-fracture storage coefficient is written as 

( ( ))
( ( )) 2 ( ( )) 2

dV p tf wC p t c V c V p tpf w w w f f w dpw
= + + , ................................................................. (3.77) 

which with power-model fracture propagation can be written as 

( )( ( )) 2 1
Nh L tf fC p t c V c ppf w w w f nS tf e

α⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
. ...................................................................... (3.78) 

As previously noted, cfpn(t)  1, 90-93,101 and the propagating-fracture storage coefficient is written as a 

function of dimensionless time only as  

( ) 2
( )

NA tf LfDC t c Vpf LfD w w S tf e LfD

α⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

, .................................................................................... (3.79) 

and the dimensionless propagating-fracture storage coefficient is written as a function of time only as 

( )
( )

22

C tpf LfDC tpfD LfD
c hLt fπφ

= . ............................................................................................................. (3.80) 

The material balance equation during the injection of a fracture-injection/falloff can now be written as 

( )
dpwDq q C tsD wsD pfD LfD dtLfD

= − , ..................................................................................................... (3.81) 
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and a material balance equation valid at all times for a fracture-injection/falloff test with a propagating 

fracture, constant before-closure storage, and constant after-closure storage is written as 

( )( )

( )( )

( )

dpwsDq U q C twsD t wsD pfD LfDe LfD dtLfD
dpwsDq U C t CsD t pfD LfD bcDe LfD dtLfD

dpwsDU C Ct bcD acDc LfD dtLfD

⎡ ⎤
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤= + −⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤+ −⎣ ⎦⎢ ⎥⎣ ⎦

. ...................................................................... (3.82) 

Developing a solution requires an approach similar to the dilated fracture case, but with the fracture half-

length increasing during the injection, a dimensionless pressure solution is required for both a propagating 

and fixed-length fracture half-length.  The dimensionless material balance equation can be split into 

injection and falloff parts by writing as 

q q qsD pfD fD= + , ............................................................................................................................ (3.83) 

where the dimensionless material balance equation describing the injection, but valid for all time, is 

written as 

1 ( )( )
dpwsDq U q C tpfD t wsD pfD LfDe LfD dtLfD

⎛ ⎞⎛ ⎞⎜ ⎟= − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, ....................................................................... (3.84) 

and the dimensionless material balance equation valid for all time and desribing the falloff is written as 

( )( ) ( )
dp dpwsD wsDq U C C U CfD t bcD acD t bcDc LfD e LfDdt dtLfD LfD

= − − . ..................................................... (3.85) 

A dimensionless pressure solution is derived in Appendix C for a propagating fracture, ppfD(tLfD), and the 

propagating-fracture solution for a single vertical fracture is written as 

( ) ( )
( )

( ) ( )
prfD LfD LfD e LfD

LfD
fD LfD LfD e LfD

p t t t
p tpfD p t t t

<⎧⎪= ⎨ >⎪⎩
, ..................................................................................... (3.86) 

or using the unit-step function written as 

( )( ) ( )( ) 1 ( ) ( )e LfD e LfDLfD t prfD LfD t fD LfDp t U p t U p tpfD = − + . ............................................................ (3.87) 

A quasi-static solution during fracture propagation is written in the Laplace domain as 

[ ] [ ]
( )(1 0.732) ( )(1 0.732)1 1

0 00 0( ) 2
LfD LfD

LfD

uL t uL tfD fDp K z dz K z dzprfD L t s ufD
⌠ ⌠
⌡ ⌡

⎡ ⎤+ −
⎢ ⎥= +
⎢ ⎥⎣ ⎦

, ... (3.88) 

where the dimensionless fracture half-length is defined as 

( )
( ) ( )

1 ( )

N
LfD

e LfD
LfD e LfD

e LfD

t
t tLfDL t tfD
t tLfD

α⎧⎛ ⎞⎪⎜ ⎟ <⎪⎜ ⎟= ⎨⎝ ⎠⎪
≥⎪⎩

, .................................................................................... (3.89) 
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Appendix C describes the development of the quasi-static solution.  

The reservoir solution with a constant fracture half length, pfD(tLfD), results when tLfD ≥ (te)LfD or when the 

fracture-growth exponent is set equal to zero, αN = 0. The two different reservoir models can be 

superposed102 to develop a dimensionless wellbore pressure solution by writing the superposition integrals 

as 

( ) ( )
( ) ( )

0 0

t tLfD LfDdp t dp tpfD LfD D fD LfD Dp q d q dwsD pfD D D fD D Ddt dtLfD LfD

τ τ
τ τ τ τ

⌠ ⌠
⎮ ⎮
⎮ ⎮
⎮ ⎮
⌡ ⌡

− −
= + . ............... (3.90) 

The solution for a fracture-injection/falloff with a propagating fracture with constant before- and after-

closure storage is developed in the Laplace domain, and after inverting to the time domain is written as 

( )

( ) ( ( ) )

( ) ( )0
( )

( ) ( ) ( ) ( )0
( )

( ) ( )0

( )

q p t p t twsD pfD LfD pfD LfD e LfD
tLfDC p t p dacD fD LfD D wsD D D

te LfDp t p t C p dwsD LfD pfD LfD D pfD D wsD D D
te LfDC p t p dbcD fD LfD D wsD D D

C C p t pbcD acD fD LfD D ws

τ τ τ

τ τ τ τ

τ τ τ

τ

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤− −⎣ ⎦

′ ′− −

′ ′= − −

′ ′+ −

′ ′− − −
( )

( )0
tc LfD dD D Dτ τ⌠⎮

⌡

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. .................................... (3.91) 

3.4.3 Solution Accounting for a Propagating Fracture, Before-Closure Storage, Constant After-

Closure Storage, and After-Closure Radial Flow. All solutions presented thus far assume flow at the 

sandface is through a hydraulic fracture, but after fracture closure with little or no fracture conductivity 

remaining, the effect of the induced fracture can be negligible and the reservoir should be modeled as a 

radial system. While the material balance for all time for a case with a propagating fracture, constant 

before-closure storage, and constant after-closure storage is unchanged, the pressure solution requires the 

introduction of a radial reservoir flow model after fracture closure.  The dimensionless wellbore pressure 

is the sum of superposition integrals for each reservoir model and is written as 

3
( )

01

tLfDp q p t dwsD D D LfD D Dj jj
τ τ⌠

⎮
⌡

′= −∑
=

, ................................................................................... (3.92) 

or expanded and written as 

( )0

( )0

( )0

tLfD q p t dpfD pfD LfD D D
tLfDp q p t dwsD fD fD LfD D D
tLfD q p t drD sD LfD D D

τ τ

τ τ

τ τ

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤
′ −⎢ ⎥

⎢ ⎥
⎢ ⎥′= + −⎢ ⎥
⎢ ⎥
⎢ ⎥′+ −⎢ ⎥
⎣ ⎦

, .................................................................................... (3.93) 
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where qrD is the after-closure dimensionless flow rate for the radial system and the radial flow pressure 

solution with skin, ,psD is written as 

( ) ( )p t p t SsD LfD rD LfD= + . .............................................................................................................. (3.94) 

Note that dimensionless time is defined in terms of the fracture half-length; thus, fracture half-length is the 

characteristic length used in the dimensionless radius definition and radial solution.  

A solution is obtained by transforming the dimensionless wellbore pressure equation to the Laplace 

domain and combining with the dimensionless flow rate equations valid for each flow model. The 

dimensionless flow rate equation for the fracture injection (propagation model) is written as 

1 ( )( )
dpwsDq U q C tpfD t wsD pfD LfDe LfD dtLfD

⎛ ⎞⎛ ⎞⎜ ⎟= − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, ....................................................................... (3.95) 

and the flow rate equation for a fixed-length closing fracture is written as 

( ) ( )
dpwsDq U U CfD t t bcDe LfD c LfD dtLfD

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

. .................................................................................. (3.96) 

The dimensionless after-closure radial flow rate is written as 

( )
dpwsDq U CrD t Dc LfD dtLfD

= − , ............................................................................................................ (3.97) 

where the dimensionless after-closure wellbore storage coefficient is defined as 

22

c Vw wCD
c hLt fπφ

= . ............................................................................................................................... (3.98) 

After transforming to the Laplace domain, simplifying, and inverting to the time domain, the 

dimensionless wellbore pressure solution for a fracture-injection/falloff test with a propagating fracture 

during the injection, constant before-closure storage, constant after-closure wellbore storage, and after-

closure radial flow with skin is written as 

( ) ( ( ) )

( ) ( )0
( )

( ) ( ) ( )0
( )

( ) ( )0
( )

( ) ( )0

q p t p t twsD pfD LfD pfD LfD e LfD
tLfDC p t p dD sD LfD D wsD D D

te LfD p t C p dpfD LfD D pfD D wsD D D
pwsD te LfDC p t p dbcD fD LfD D wsD D D

tc LfC p t p dD sD LfD D wsD D D

τ τ τ

τ τ τ τ

τ τ τ

τ τ τ

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤− −⎣ ⎦

′ ′− −

′ ′− −
=

′ ′+ −

′ ′+ −

( )
( ) ( )0

D

tc LfDC p t p dbcD fD LfD D wsD D Dτ τ τ

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′− −⎢ ⎥⎣ ⎦

. ..................................................... (3.99) 
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3.5 Fracture-Injection/Falloff Limiting Solutions 

3.5.1 Limiting-Case Solutions With a Dilating Fracture, Before-Closure Storage, and After-Closure 

Storage. The dimensionless wellbore pressure solution for a fracture-injection/falloff with a dilating 

fracture during the injection, constant before-closure storage, and constant after-closure storage is written 

as 

( ) ( ( ) ) (0) ( )
( ) ( )

( ) ( ) ( )0

q p t p t t p C p twD acD LfD acD LfD e LfD wsD acD acD LfD
p twsD LfD tc LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

⎡ ⎤⎡ ⎤ ′− − +⎣ ⎦⎢ ⎥
= ⎢ ⎥
⎢ ⎥′ ′− − −⎣ ⎦

, ............. (3.100) 

where the Laplace domain dimensionless fracture solution for a well produced at a constant rate with 

constant after-closure storage is written as 

21

p fDpacD
s C pacD fD

=
+

. ................................................................................................................. (3.101) 

Consider a limiting case where tLfD > (te)LfD such that pacD(tLfD)-pacD(tLfD-(te)LfD) ≈ 0, and the dimensionless 

wellbore pressure solution can be written as 

(0) ( )
( ) ( )

( ) ( ) ( )0

p C p twsD acD acD LfD
p t twsD LfD c LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

′⎡ ⎤
⎢ ⎥= ⎢ ⎥

′ ′− − −⎢ ⎥⎣ ⎦

. .................................. (3.102) 

When CbcD = CacD, the solution reduces to 

( ) (0) ( )p t p C p twsD LfD wsD acD acD LfD′= , ...................................................................................... (3.103) 

which is the slug-test solution for a hydraulically fractured well with constant storage as defined by 

Rushing et al.67 

When CbcD ≠ CacD and tLfD < (tc)LfD, the dimensionless wellbore pressure solution can be written as 

(0) ( )
( )

( ) ( ) ( )0

p C p twsD acD acD LfD
p t twsD LfD LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

′⎡ ⎤
⎢ ⎥= ⎢ ⎥

′ ′− − −⎢ ⎥⎣ ⎦

, ....................................... (3.104) 

which after transforming to the Laplace domain is written as 

( )
(0)

( ) (0)

p C spwsD acD acD
pwsD C C sp sp pbcD acD acD wsD wsD

⎡ ⎤
⎢ ⎥=

⎡ ⎤− − −⎢ ⎥⎣ ⎦⎣ ⎦
. ................................................................. (3.105) 

After expanding the terms and simplifying, the solution can be written as 

2
(0)

1 ( )

pacDp p C swsD wsD bcD
s C C pbcD acD acD

⎛ ⎞
⎜ ⎟=
⎜ ⎟+ −⎝ ⎠

, .................................................................... (3.106) 

but with the Laplace domain dimensionless fracture solution for a well produced at a constant rate with 

constant after-closure storage given in Eq. 3.101, the pressure solution can be simplified and written as 
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2(0)
1

p fDp p C swsD wsD bcD
s C pbcD fD

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟+⎝ ⎠

. ..................................................................................... (3.107) 

Define a Laplace domain dimensionless fracture solution for a well produced at a constant rate with 

constant before-closure storage as 

21

p fDpbcD
s C pbcD fD

=
+

, ................................................................................................................. (3.108) 

and the before-closure limiting-case dimensionless wellbore pressure solution is written in the Laplace 

domain as 

(0)p p C spwsD wsD bcD bcD= . .......................................................................................................... (3.109) 

After inverting to the time domain, the solution is written as 

( ) (0) ( )p t p C p twsD LfD wsD bcD bcD LfD′= , ...................................................................................... (3.110) 

which is the slug-test solution for a hydraulically fractured well with constant before-closure storage. 

When CbcD ≠ CacD and tLfD  (tc)LfD > (te)LfD, the dimensionless wellbore pressure solution can be written as 

(0) ( )
( ) ( )

( ) ( ) ( )0

p C p twsD acD acD LfD
p t twsD LfD c LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

′⎡ ⎤
⎢ ⎥= ⎢ ⎥

′ ′− − −⎢ ⎥⎣ ⎦

, .................................. (3.111) 

but with tLfD  (tc)LfD, p'acD(tLfD – τD) ≈ p'acD(tLfD), and the pressure solution can be written as 

( )
(0) ( )

( )
( ) ( ) ( ) (0)

p C p twsD acD acD LfD
p twsD LfD C C p t p t pbcD acD acD LfD wsD c LfD wsD

′⎡ ⎤
⎢ ⎥= ⎢ ⎥⎡ ⎤′− − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

. ................................... (3.112) 

After expanding the terms and simplifying, the dimensionless wellbore pressure solution can be written as 

( )( ) (0) ( ) ( ) ( )p t p C p t C C p twsD LfD wsD bcD wsD c LfD bcD acD acD LfD⎡ ⎤ ′= − −⎢ ⎥⎣ ⎦
, ............................... (3.113) 

which is a slug-test solution for a hydraulically fractured well with variable storage – constant before-

closure storage and constant after-closure storage. 

3.5.2 Limiting-Case Solutions With a Propagating Fracture, Before-Closure Storage, and After-

Closure Storage. The dimensionless wellbore pressure solution for a fracture-injection/falloff with a 

propagating fracture during the injection, constant before-closure storage, and constant after-closure 

storage is written as 
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( )

( ) ( ( ) )

( ) ( )0
( )

( ) ( ) ( ) ( )0
( )

( ) ( )0

( )

q p t p t twsD pfD LfD pfD LfD e LfD
tLfDC p t p dacD fD LfD D wsD D D

te LfDp t p t C p dwsD LfD pfD LfD D pfD D wsD D D
te LfDC p t p dbcD fD LfD D wsD D D

C C p t pbcD acD fD LfD D ws

τ τ τ

τ τ τ τ

τ τ τ

τ

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤− −⎣ ⎦

′ ′− −

′ ′= − −

′ ′+ −

′ ′− − −
( )

( )0
tc LfD dD D Dτ τ⌠⎮

⌡

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, .................................. (3.114) 

which can also be written as 

( )

( ) ( ( ) )

( ) ( )0
( ) ( )

( ) ( ) ( ) ( )
0

( )
( ) ( )0

q p t p t twsD pfD LfD pfD LfD e LfD
tLfDC p t p dacD fD LfD D wsD D D

p twsD LfD te LfD C p t C p t p dbcD fD LfD D pfD D pfD LfD D wsD D D

tc LfDC C p t p dbcD acD fD LfD D wsD D D

τ τ τ

τ τ τ τ τ

τ τ τ

⌠⎮
⌡

⌠
⎮
⌡

⌠⎮
⌡

⎡ ⎤− −⎣ ⎦

′ ′− −
=

⎡ ⎤′ ′ ′+ − − −⎣ ⎦

′ ′− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. (3.115) 

When the fracture is pre-existing or the fracture half-length is created instantaneously, CbcD = CfD(tLfD), and 

when tLfD  (te)LfD, the dimensionless wellbore pressure solution reduces to 

( )

(0)
( ) ( )

( ) ( )0

p C pwsD acD acD
p t twsD LfD c LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

′⎡ ⎤
⎢ ⎥= ⎢ ⎥′ ′− − −⎢ ⎥⎣ ⎦

, ................................ (3.116) 

which leads to the same limiting-case solutions as existed for a fracture-injection/falloff with a dilating 

fracture, constant before-closure storage, and constant after-closure storage. 

Consider the integral term containing propagating-fracture storage, which is written as 

( )
( ) ( ) ( ) ( )

0
te LfDI C p t C p t p dbcD fD LfD D pfD D pfD LfD D wsD D Dτ τ τ τ τ⌠

⎮
⌡

⎡ ⎤′ ′ ′= − − −⎣ ⎦
. ....................... (3.117) 

When tLfD  (te)LfD, the propagating-fracture solution derivative can be written as 

( ) ( )p t p tpfD LfD D pfD LfDτ′ ′− ≅ , ..................................................................................................... (3.118) 

and the fracture solution derivative can also be approximated as 

( ) ( )p t p tfD LfD D fD LfDτ′ ′− ≅ . ........................................................................................................ (3.119) 

The definition of the dimensionless propagating-fracture solution states that when tLfD > (te)LfD, the 

propagating-fracture and fracture solution are equal, and p'pfD(tLfD) = p'fD(tLfD). Consequently, the integral 

term containing the propagating-fracture storage for tLfD  (te)LfD can be written as 

( )
( ) ( ) ( )

0
te LfDI p t C C p dfD LfD bcD pfD D wsD D Dτ τ τ⌠

⎮
⌡

⎡ ⎤′ ′= −⎣ ⎦
, .......................................................... (3.120) 
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and the dimensionless wellbore pressure solution can be written as 

( )

( )
( ) ( ) ( )

0

( ) ( ) ( )0
( )

( ) ( )0

LfD
te LfDp t C C p dfD bcD pfD D wsD D D

tLfDp t C p t p dwsD LfD acD fD LfD D wsD D D
tc LfDC C p t p dbcD acD fD LfD D wsD D D

τ τ τ

τ τ τ

τ τ τ

⌠
⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤⎡ ⎤′ ′−⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥

′ ′= − −⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′− − −⎢ ⎥
⎢ ⎥⎣ ⎦

. .................................. (3.121) 

The before-closure storage coefficient is by definition always greater than the propagating-fracture storage 

coefficient, and the difference of the two coefficients cannot be zero unless the fracture half-length is 

created instantaneously.  However, the difference is also relatively small when compared to CbcD or CacD, 

and when the dimensionless time of injection is short and tLfD > (te)LfD, the integral term containing the 

propagating-fracture storage coefficient becomes negligibly small, which is written as 

( )

( )
( ) ( ) ( )

0

( ) ( )0
( )

( ) ( )0

LfD
te LfDp t C C p dfD bcD pfD D wsD D D

tLfDC p t p dacD fD LfD D wsD D D
tc LfDC C p t p dbcD acD fD LfD D wsD D D

τ τ τ

τ τ τ

τ τ τ

⌠
⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤′ ′−⎣ ⎦

′ ′− −

′ ′− − −

. ......................... (3.122) 

Thus, with a short dimensionless time of injection and (te)LfD  tLfD < (tc)LfD, the limiting-case before-

closure dimensionless wellbore pressure solution can be written as 

( )

( ) ( )0( )
( )

( ) ( )0

tLfDC p t p dacD fD LfD D wsD D D
p twsD LfD tc LfDC C p t p dbcD acD fD LfD D wsD D D

τ τ τ

τ τ τ

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤
′ ′− −⎢ ⎥

= ⎢ ⎥
⎢ ⎥′ ′− − −⎢ ⎥⎣ ⎦

, .................................. (3.123) 

which after simplifying in the Laplace domain and inverting back to the time domain can be written as 

( )

(0) ( )
( ) ( )

( ) ( )0

LfDp C p twsD acD acD
p t twsD LfD c LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

′⎡ ⎤
⎢ ⎥= ⎢ ⎥′ ′− − −⎢ ⎥⎣ ⎦

. ................................ (3.124) 

When tLfD < (tc)LfD, the dimensionless wellbore pressure solution can be written as 

(0) ( )
( )

( ) ( ) ( )0

p C p twsD acD acD LfD
p t twsD LfD LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

′⎡ ⎤
⎢ ⎥= ⎢ ⎥

′ ′− − −⎢ ⎥⎣ ⎦

, ....................................... (3.125) 

and as previously shown, the solution can be simplified in the Laplace domain and inverted back to the 

time domain to obtain the before-closure limiting-case dimensionless wellbore pressure solution written as 

( ) (0) ( )p t p C p twsD LfD wsD bcD bcD LfD′= , ...................................................................................... (3.126) 

which is the slug test solution for a hydraulically fractured well with constant before-closure storage. 
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When the dimensionless time of injection is short and tLfD  (tc)LfD > (te)LfD, the fracture solution derivative 

can be approximated as 

( ) ( )p t p tfD LfD D fD LfDτ′ ′− ≅ , ........................................................................................................ (3.127) 

and the dimensionless wellbore pressure solution can be written as 

(0) ( )
( ) ( )

( ) ( ) ( )0

p C p twsD acD acD LfD
p t twsD LfD c LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

′⎡ ⎤
⎢ ⎥= ⎢ ⎥

′ ′− − −⎢ ⎥⎣ ⎦

, .................................. (3.128) 

but with tLfD  (tc)LfD, p'acD(tLfD – τD) ≈ p'acD(tLfD), and the dimensionless wellbore pressure solution can be 

written as 

( )
(0) ( )

( )
( ) ( ) ( ) (0)

p C p twsD acD acD LfD
p twsD LfD C C p t p t pbcD acD acD LfD wsD c LfD wsD

′⎡ ⎤
⎢ ⎥=
⎢ ⎥⎡ ⎤′− − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

. ................................... (3.129) 

After expanding the terms and simplifying, the dimensionless wellbore pressure solution is written as 

( )( ) (0) ( ) ( ) ( )p t p C p t C C p twsD LfD wsD bcD wsD c LfD bcD acD acD LfD⎡ ⎤ ′= − −⎢ ⎥⎣ ⎦
, ............................... (3.130) 

which is also a slug-test solution and the same as the dimensionless wellbore pressure solution for a 

fracture-injection/falloff with a dilating fracture, constant before-closure storage, and constant after-

closure storage. 

3.5.3 Limiting-Case Solutions With a Propagating Fracture, Before-Closure Storage, Constant 

After-Closure Storage, and After-Closure Radial Flow. The dimensionless wellbore pressure solution 

for a fracture-injection/falloff with a propagating fracture during the injection, constant before-closure 

storage, constant after-closure wellbore storage, and after-closure radial flow with skin is written as 

( ) ( ( ) )
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τ τ τ
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⌡
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⎢ ⎥
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⎢ ⎥
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′− −⎢ ⎥⎣ ⎦

. ................................................... (3.131) 

Consider a case with tLfD > (te)LfD, pacD(tLfD) – pacD(tLfD – (te)LfD) ≈ 0, and with a short dimensionless time of 

injection such that the dimensionless wellbore pressure solution can be written as 
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( )
( ) ( )0

( ) ( ) ( )0
( )

( ) ( )0

tc LfDC p t p dD sD LfD D wsD D D
tLfDp t C p t p dwsD LfD D sD LfD D wsD D D

tc LfDC p t p dbcD fD LfD D wsD D D

τ τ τ

τ τ τ

τ τ τ

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤
′ ′+ −⎢ ⎥

⎢ ⎥
⎢ ⎥′ ′= − −⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′− −⎢ ⎥
⎣ ⎦

. ................................................. (3.132) 

When (te)LfD  tLfD < (tc)LfD, the dimensionless wellbore pressure solution can be written as 

( ) ( ) ( )0
tLfDp t C p t p dwsD LfD bcD fD LfD D wsD D Dτ τ τ⌠⎮

⌡
′ ′= − − , .......................................................... (3.133) 

which can transformed to the Laplace domain, simplified, and inverted back to the time domain as 

( ) (0) ( )p t p C p twsD LfD wsD bcD bcD LfD′= . ...................................................................................... (3.134) 

When the dimensionless time of injection is short and tLfD  (tc)LfD > (te)LfD, the fracture solution derivative 

can be approximated as 

( ) ( )p t p tfD LfD D fD LfDτ′ ′− ≅ , ........................................................................................................ (3.135) 

and the radial-flow solution derivative is similarly approximated as 

( ) ( )p t p tsD LfD D sD LfDτ′ ′− ≅ , ......................................................................................................... (3.136) 

which allows the dimensionless wellbore pressure solution to be written as 

( ) ( )

( ) ( )

( ) ( ) 0

( ) ( ) ( )0

( ) ( ) 0

C p t p t pD sD LfD wsD c LfD wsD

tLfDp t C p t p dwsD LfD D sD LfD D wsD D D

C p t p t pbcD fD LfD wsD c LfD wsD

τ τ τ⌠⎮
⌡

⎡ ⎤⎡ ⎤′+ −⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥′ ′= − −⎢ ⎥
⎢ ⎥⎡ ⎤′− −⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

. ................................................... (3.137) 

After transforming the solution to the Laplace domain, simplifying, and inverting back to the time domain, 

the dimensionless wellbore pressure solution is written as 

( ) ( )
(0) ( )

( )
( ) (0) ( ) ( )

p C p twsD D sacD LfD
p twsD LfD p t p C p t C p twsD c LfD wsD bcD facD LfD D sacD LfD

′⎡ ⎤
⎢ ⎥= ⎢ ⎥⎡ ⎤ ′ ′− − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

. ................ (3.138) 

where the radial flow solution with skin and constant after-closure wellbore storage is written in the 

Laplace domain as 

21

psDpsacD
s C pD sD

=
+

, ................................................................................................................... (3.139) 

and a hybrid fracture-flow solution with constant storage is written in the Laplace domain as 

21

p fDp facD
s C pD sD

=
+

. ................................................................................................................... (3.140) 
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As dimensionless time becomes large, the influence of wellbore storage on the dimensioless pressure 

diminishes such that psacD(tLfD) ≈ psD(tLfD), pfacD(tLfD) ≈ pfD(tLfD). Additionally, the derivative of the solutions 

at large dimensionless times are equal, which allows the dimensionless wellbore pressure solution to be 

written as  

( ) ( )
(0) ( )

( )
( ) ( ) (0)

p C p twsD D sacD LfD
p twsD LfD C C p t p t pbcD D sacD LfD wsD c LfD wsD

′⎡ ⎤
⎢ ⎥=
⎢ ⎥⎡ ⎤′− − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

. ................................... (3.141) 

After expanding the terms and simplifying, the dimensionless wellbore pressure solution is written as 

( )( ) (0) ( ) ( ) ( )p t p C p t C C p twsD LfD wsD bcD wsD c LfD bcD D sacD LfD⎡ ⎤ ′= − −⎢ ⎥⎣ ⎦
, ................................. (3.142) 

which is also a slug-test solution. 

3.5.4 Limiting-Case Solutions With a Large Dimensionless Time of Injection. All previous limiting-

case solutions have assumed the dimensionless time of injection is small, but in many cases, for example, 

a pressure falloff test with waterflood-induced fractures, the dimensionless time of injection can be quite 

large.  Consider a fracture-injection/falloff with a dilating fracture during the injection, constant before-

closure storage, and constant after-closure storage.  The dimensionless wellbore pressure solution is 

written as 

( ) ( ( ) ) (0) ( )
( ) ( )

( ) ( ) ( )0

q p t p t t p C p twD acD LfD acD LfD e LfD wsD acD acD LfD
p twsD LfD tc LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

⎡ ⎤⎡ ⎤ ′− − +⎣ ⎦⎢ ⎥
= ⎢ ⎥
⎢ ⎥′ ′− − −⎣ ⎦

. ............. (3.143) 

With a large dimensionless time of injection and tLfD  (tc)LfD, p'acD(tLfD – τD) ≈ p'acD(tLfD) and the solution 

can be written as 

( )
( ) ( ( ) ) (0) ( )

( )
( ) (0) ( ) ( )

q p t p t t p C p twD acD LfD acD LfD e LfD wsD acD acD LfD
p twsD LfD

p t p C C p twsD c LfD wsD bcD acD acD LfD

⎡ ⎤⎡ ⎤ ′− − +⎣ ⎦⎢ ⎥= ⎢ ⎥⎡ ⎤ ′− − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

. ............. (3.144) 

Following the logic of Correa and Ramey,62 a long-time approximation for the dimensionless wellbore 

pressure is developed by recognizing that as dimensionless time increases, the effect of after-closure 

storage becomes minimal and pfacD(tLfD) ≈ pfD(tLfD). A long-time approximation for the dimensionless 

fracture-flow solution is written as84 

( )1( ) ln 2.80907
2

p t tfD LfD LfD= + , .................................................................................................. (3.145) 

with a derivative with respect to time defined as 

1( )
2

p tfD LfD tLfD
′ = . ........................................................................................................................ (3.146) 
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With the fracture-flow solution, derivative, and as dimensionless time increases, the terms containing 

storage tend to zero, and the dimensionless wellbore pressure solution can be written as 

( ) ln
2 ( )

tq LfDwDp twsD LfD t tLfD e LfD

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

, ......................................................................................... (3.147) 

which is equivalent to the traditional long-time solution for a pressure buildup with the dimensionless time 

of production, (tp)LfD, used in place of the dimensionless time of injection, (te)LfD. 

3.6 Numerical Evaluation of a Fracture-Injection/Falloff Analytical Solution 
Numerical evaluations of a fracture-injection/falloff solution are provided to quantify a "small" 

dimensionless time of injection and to establish when the time of a fracture-injection can be considered 

short relative to the reservoir response.  

The dimensionless wellbore pressure solution for a fracture-injection/falloff with a dilating fracture during 

the injection, constant before-closure storage, and constant after-closure storage is written as 

( ) ( ( ) ) (0) ( )
( ) ( )

( ) ( ) ( )0

q p t p t t p C p twD acD LfD acD LfD e LfD wsD acD acD LfD
p twsD LfD tc LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

⎡ ⎤⎡ ⎤ ′− − +⎣ ⎦⎢ ⎥
= ⎢ ⎥
⎢ ⎥′ ′− − −⎣ ⎦

. ............. (3.148) 

After integrating-by-parts the solution is written as 

( ) ( ( ) ) (0) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( )0

q p t p t t p C p twD acD LfD acD LfD e LfD wsD acD acD LfD

p t C C p t p t twsD LfD bcD acD wsD c LfD acD LfD c LfD
tc LfDC C p p t dbcD acD wsD D acD LfD D Dτ τ τ

⎡ ⎤⎡ ⎤ ′− − +⎢ ⎥⎣ ⎦
⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥′= + − −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥

′′⎢ ⎥− − −∫⎣ ⎦

, ............. (3.149) 

and a discretized form of the solution can be written with pwsD(0) = 1 as 

( ) ( ) ( )

( )

( ) ( ) 1( ) ( ) ( )
( ) ( ) 1

( ) ( ) ( )

( )

wD LfD ne

LfD ne

q p t p t tacD LfD n acD LfD n
C p tacD acD LfD n

p t p twsD LfD ne wsD LfD neC C p t tbcD acD acD LfD nt tLfD ne LfD ne

p t p t p twsD LfD n wsD LfD i wsD LfD i

C CbcD acD

⎡ ⎤⎡ ⎤− −⎢ ⎥⎣ ⎦⎣ ⎦
′+

⎛ ⎞− − ⎡ ⎤⎜ ⎟+ − −⎣ ⎦⎜ ⎟− −⎝ ⎠

= − −

− −

1
( ) ( ) 1

( ) ( )1 2
1 ( ) ( )1 2

( ) ( ) )1

t tLfD i LfD i
ne

p t p twsD LfD i wsD LfD i
i t tLfD i LfD i

p t tacD LfD n LfD i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤⎛ ⎞⎢ ⎥⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥−⎢ ⎥⎢ ⎥−⎝ ⎠⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎛ ⎞−⎢ ⎥∑ − −⎢ ⎥⎢ ⎥⎜ ⎟−⎢ ⎥= ⎢ ⎥⎜ ⎟⎢ ⎥−⎢ ⎥− −⎝ ⎠⎣ ⎦⎢ ⎥⎢ ⎥⎢ ⎥⎡ ⎤⎢ ⎥× − −⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

, (3.150) 

where the subscript 'ne' corresponds to the time index at the end of the injection. 
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Consider a case where CbcD = CacD, which allows the dimensionless wellbore pressure solution to be 

written with pwsD(0) = 1 as 

( ) ( ) ( ( ) ) ( )p t q p t p t t C p twsD LfD wD bcD LfD bcD LfD e LfD bcD bcD LfD⎡ ⎤ ′= − − +⎣ ⎦
. .............................. (3.151) 

When the injection term is negligibly small, the dimensionless wellbore pressure solution reverts to a 

fractured-well slug-test solution.  The magnitude of the slug-test term is a strong function of the the 

dimensionless before-closure storage coefficient, and as the storage coefficient decreases, the 

dimensionless time of injection must also decrease for the injection term to be negligibly small.  Recall the 

dimensionless before-closure storage coefficient is written as 

22

CbcCbcD
c hLt fπφ

= , ....................................................................................................................... (3.152) 

and the before-closure storage coefficient is defined as 

2
AfC c Vbc w w S f

= + . ...................................................................................................................... (3.153) 

Since the definition of the dimensionless before-closure storage coefficient is defined in terms of the 

fracture half-length, the coefficient decreases as the fracture length increases. Alternatively, if the wellbore 

storage term is assumed to be negligibly small and assuming the dilating fracture is modeled by a 

horizontal plane strain condition, the fracture stiffness (Table 3.1) is defined as 

ES f L fπ
′

= , .................................................................................................................................... (3.154) 

and the dimensionless before-closure storage coefficient can be written as 

1CbcD c Etφ
=

′
, ............................................................................................................................... (3.155) 

which suggests a small dimensionless before-closure storage coeffficent for "hard" rock, i.e., E' ≈ 106 psi 

and a somewhat larger coefficient for softer rock. A reasonable range for the before-closure storage 

coefficient is written as 

0.001 0.10CbcD≤ ≤ . ..................................................................................................................... (3.156) 

The after-closure storage coefficient is defined as  

0fC c V c Vac w w f= + , ................................................................................................................... (3.157) 

and is generally smaller.  If closure is complete, Vf0 = 0, with wellbore storage being negligibly small, the 

dimensionless after-closure storage coefficient is zero, CacD = 0. Therefore, a reasonable range of the 

dimensionless after-closure storage coefficient is written as 

0 .C CacD bcD≤ ≤ . ........................................................................................................................ (3.158) 
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A series of numerical evaluations were completed assuming CbcD = CacD = CLfD, which models an 

injection/falloff sequence in a well with a vertical hydraulic fracture created instantaneously during the 

injection or with a pre-existing fracture. Fig. 3.12 is a semilog graph of dimensionless wellbore pressure 

versus dimensionless time and shows that the dimensionless wellbore pressure for a slug-test [(te)LfD = 0] 

with CLfD = 0.001 and for three injection/falloff sequences with qwD = 100 and (te)LfD = {10-4, 10-5, 10-6}. 

All injection/falloff sequences shown in Fig. 3.12 result in dimensionless wellbore pressure deviation from 

the slug-test solution with the smallest deviation observed for the shortest dimensionless time of injection, 

(te)LfD = 10-6. Similarly, semilog graphs shown in Figs. 3.13 and 3.14 illustrate the deviation of the 

dimensionless wellbore pressure during an injection/falloff sequence from a slug test solution for 

CLfD = 0.01 and CLfD = 0.10, respectively. Collectively, Figs. 3.12 through 3.14 illustrate that the 

dimensionless wellbore pressure deviation from a slug test solution is reduced as the dimensionless time of 

injection becomes smaller and as the storage coefficient increases. 

Semilog graphs of dimensionless wellbore pressure versus dimensionless time are also shown for 

injection/falloff sequences with qwD = 10 in Figs. 3.15 through 3.17. The smaller dimensionless injection 

rate results in less deviation of the dimensionless wellbore pressure from the slug-test solution when 

compared to equivalent dimensionless injection times in Figs. 3.12 through 3.14. 

Fig. 3.12—Comparison of a slug-test solution for CLfD = 0.001 with the dimensionless wellbore 
pressure from an injection/falloff sequence with qwD = 100 and (te)LfD = {10-4, 10-5, 10-6}. 
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Fig. 3.13—Comparison of a slug-test solution for CLfD = 0.01 with the dimensionless wellbore 
pressure from an injection/falloff sequence with qwD = 100 and (te)LfD = {10-4, 10-5, 10-6}. 

2.00

1.50

1.00

0.50

0.00

 D
im

en
si

on
le

ss
 P

re
ss

ur
e,

 p
w

sD

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Dimensionless Time, tLfD

 CLfD = 0.01 & (te)LfD = 0

 CLfD = 0.01, (te)LfD = 10-6, & qwD = 100

 CLfD = 0.01, (te)LfD = 10-5, & qwD = 100

 CLfD = 0.01, (te)LfD = 10-4, & qwD = 100

2.00

1.50

1.00

0.50

0.00

 D
im

en
si

on
le

ss
 P

re
ss

ur
e,

 p
w

sD

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Dimensionless Time, tLfD

 CLfD = 0.10 & (te)LfD = 0

 CLfD = 0.10, (te)LfD = 10-6, & qwD = 100

 CLfD = 0.10, (te)LfD = 10-5, & qwD = 100

 CLfD = 0.10, (te)LfD = 10-4, & qwD = 100

Fig. 3.14—Comparison of a slug-test solution for CLfD = 0.10 with the dimensionless wellbore 
pressure from an injection/falloff sequence with qwD = 100 and (te)LfD = {10-4, 10-5, 10-6}. 
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Fig. 3.15—Comparison of a slug-test solution for CLfD = 0.001 with the dimensionless wellbore 
pressure from an injection/falloff sequence with qwD = 10 and (te)LfD = {10-4, 10-5, 10-6}. 
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Fig. 3.16—Comparison of a slug-test solution for CLfD = 0.01 with the dimensionless wellbore 
pressure from an injection/falloff sequence with qwD = 10 and (te)LfD = {10-4, 10-5, 10-6}. 
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The numerical evaluations graphically shown in Figs. 3.12 through 3.17 clearly suggest that as fracture 

half-length increases, the time of injection must decrease to minimize the deviation between the 

dimensionless wellbore pressure during an injection/falloff sequence and a slug-test solution. However, 

the evaluations do not suggest a definitive rule for when an injection/falloff sequence can be modeled as a 

slug test. It appears that a dimensionless injection time on the order of 10-5 with qwD < 100 is a reasonable 

rule of thumb that will result in minimal deviation from the slug-test solution. 

Fig. 3.18 shows a semilog graph of dimensionless wellbore pressure versus dimensionless time for a 

variable-storage dilating-fracture injection/falloff sequence with CbcD = 0.01, CacD = 0.005, qwD = 10, 

(te)LfD = {0, 10-5}, and (tc)LfD = {2(10)-5, 2(10)-4}.  Recall that Fig. 3.16 demonstrated the dimensionless 

wellbore pressure from a fracture-injection/falloff sequence with CLfD = 0.01, qwD = 10, and (te)LfD = 10-5 

would show very little deviation from the constant-storage slug-test solution with (te)LfD = 0. Similarly, 

Fig. 3.18 demonstrates minimal deviation is observed between the dimensionless wellbore pressure 

calculated using the new variable-storage fracture-injection/falloff model and the variable-storage slug-test 

solutions that result when (te)LfD = 0. 
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Fig. 3.17—Comparison of a slug-test solution for CLfD = 0.10 with the dimensionless wellbore 
pressure from an injection/falloff sequence with qwD = 10 and (te)LfD = {10-4, 10-5, 10-6}. 
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Fig. 3.18—Comparison of a dilating fracture slug-test solution for CbcD = 0.01, CacD = 0.005, and 
(tc)LfD = {2(10)-5, 2(10)-4} with the dimensionless wellbore pressure from a fracture-
injection/falloff sequence with qwD = 10, (te)LfD = 10-5, and (tc)LfD = {2(10)-5, 2(10)-4}. 
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CHAPTER IV 

MODELING A FRACTURE-INJECTION/FALLOFF TEST IN A RESERVOIR 

WITH A PRE-EXISTING FRACTURE 

4.1 Introduction 

A fracture-injection/falloff sequence in a well containing a pre-existing conductive fracture will either 

dilate the existing fracture or induce a secondary fracture(s). When the injection time of a fracture-

injection/falloff sequence in a reservoir with a pre-existing conductive fracture is short relative to the 

reservoir response, the injection can be considered as occurring instantaneously, and the variable-rate 

pressure falloff data can be converted to an equivalent constant-rate pressure difference by integration of 

the recorded pressure difference with respect to time. After conversion, constant-rate drawdown type 

curves are used for quantitative type-curve analysis. However, during the falloff the dilated or induced 

secondary fracture(s) contract to closure, which results in variable storage and requires new constant-rate 

drawdown solutions for type-curve matching. 

In Chapter III, the new analytical pressure-transient solutions for a fracture-injection/falloff sequence used 

the infinite-slab reservoir solution for production through a single vertical finite- or infinite-conductivity 

fracture. However, a fracture-injection/falloff sequence in a reservoir with a pre-existing fracture that also 

induces and propagates a secondary vertical fracture, requires a new pressure-transient solution for 

production through multiple arbitrarily-oriented finite- or infinite-conductivity fractures in an infinite-slab 

reservoir. 

Chapter IV presents new analytical pressure-transient solutions for a well in an infinite-slab reservoir 

producing throught multiple uniform-flux, infinite-conductivity, or finite-conductivity arbitrarily-oriented 

vertical fractures. The multiple-fracture reservoir solution is then used in the development of a new 

analytical pressure-transient solution for a constant-rate drawdown in a well in an infinite-slab reservoir 

containing two arbitrarily-oriented vertical fractures with the initial reservoir pressure above the minimum 

insitu or closure stress of the secondary fracture and with constant storage before- and constant storage 

after secondary fracture closure. 

Chapter IV also presents a new fracture-injection/falloff model for a well with a pre-existing conductive 

fracture that accounts for primary fracture dilation, secondary fracture creation, multiple fracture closures, 

and after-closure diffusion. Limiting-case solutions of the fracture-injection/falloff model with constant 

primary fracture volume and secondary fracture creation are also presented to demonstrate when a 

fracture-injection/falloff sequence in a well with a pre-existing conductive fracture can be considered as 

occurring instantaneously and slug-test analysis methods can be applied to the falloff data for quantitative 

type-curve analysis. 
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4.2 Multiple Arbitrarily-Oriented Vertical Fracture Pressure Transient Solution 

The new pressure-transient solutions for a well producing through multiple arbitrarily-oriented uniform-

flux or infinite-conductivity vertical fractures in an infinite slab reservoir are derived in Appendix D, and 

the new pressure-transient solution for a well producing through multiple arbitrarily-oriented finite-

conductivity vertical fractures is derived in Appendix E. All new solutions allow for variable fracture 

half-length and an arbitrary angle between each hydraulic fracture. The finite-conductivity multiple-

fracture solution also allows for constant conductivity within each fracture, but conductivity can vary 

among fractures.  

4.2.1 Uniform Flux. Multiple fracture pressure-transient solutions require writing a general uniform-flux 

solution for a single vertical fracture at any arbitrary angle, which as developed in Appendix D and 

written in the Laplace domain for a fracture rotated by an angle fθ from a point (rD, θr) as 

( ) ( )21 2 2cos sin02 r r

L fDqDp K u r r dD D f D fL sfD L fD

θ θ α θ θ α
⌠
⎮
⎮
⎮⎮
⌡

⎡ ⎤
⎡ ⎤⎢ ⎥= − − + −⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦−

, ........................ (4.1) 

where dimensionless variables are defined as 

2 kh ppD q
π

μ
Δ

= , ................................................................................................................................... (4.2) 

c

L fL fD L
= , ......................................................................................................................................... (4.3) 

qqD qt
= , ............................................................................................................................................. (4.4) 

( )u sf s= , ............................................................................................................................................ (4.5) 

2 2
D D Dr x y= + , .................................................................................................................................. (4.6) 

cosD D rx r θ= , .................................................................................................................................... (4.7) 

sinD D ry r θ= , .................................................................................................................................... (4.8) 

Lc is the characteristic length, θf is the angle between the fracture and the xD-axis, (rD, θr) are the polar 

coordinates of a point (xD, yD), and (α, θf) are the polar coordinates of a point along the fracture.103  

For a single-porosity reservoir, f(s) = 1, and for dual-porosity reservoir with pseudosteady-state 

interporosity flow, f(s) is written as96 

(1 )( )
(1 )

sf s
s

λ ω ω
λ ω
+ −

=
+ −

, .......................................................................................................................... (4.9) 

for transient interporosity flow with slab matrix blocks,97-98 
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(1 ) 3(1 )( ) tanh
3

sf s
s

λ ω ωω
λ

− −
= + ,.............................................................................................. (4.10) 

and for transient interporosity flow with spherical matrix blocks, 97-98 

15(1 ) 15(1 )( ) coth 1
5

s sf s
s
λ ω ωω

λ λ
⎡ ⎤− −

= + −⎢ ⎥
⎣ ⎦

. ........................................................................... (4.11) 

For a well containing nf fractures connected at the wellbore, the total flow rate from the well assuming all 

production is through the fractures is written as 

1
1

fn

iD
i

q
=

=∑ , ......................................................................................................................................... (4.12) 

where qiD is the dimensionless flow rate for the ith-fracture defined as 

1
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i i

iD nw
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q q
q

q
q
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= =

∑

, ............................................................................................................................ (4.13) 

and qi is the flow rate from the ith-fracture. 

For all fractures intersecting the wellbore, the wellbore pressure is the same and written as 

( ) , 1, 2,  ,  LfD wD fp p n= =A A … . .............................................................................................. (4.14) 

The uniform-flux dimensionless pressure solution is obtained by superposing all fractures102 and written in 

the Laplace domain as 
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Defining the normalized fracture length as 

, 1, 2, , 
1

L fi i ni fL f
δ = = … , ......................................................................................................... (4.16) 

and assuming the fracture height is the same for all fractures, allows the dimensionless flow rate to be 

written as 
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q
q

q
δ

δ
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= =

∑

. ............................................................................................................................ (4.17) 

With the definition of dimensionless flow rate, the uniform-flux multiple arbitrarily-oriented vertical 

fracture pressure-transient solution is written in the Laplace domain as 
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Fig. 4.1 shows a log-log graph of dimensionless pressure versus dimensionless time for a cruciform 

uniform-flux vertical fracture. The inset graphics in Fig. 4.1 illustrate a cruciform fracture with primary 

fracture half length, Lf1D, and the secondary fracture half length is defined by the ratio of secondary to 

primary fracture half length, δL = Lf2D/Lf1D, where in Fig. 4.1, δL = {0, 0.001, 0.01, 0.1, 1}. As shown in 

Appendix D, the cruciform-fracture uniform-flux solution is equivalent to the single-fracture uniform-flux 

solution, δL = 0, when the primary and secondary fracture half-lengths are the same δL = 1. For small 

dimensionless times and as δL approaches zero, the dimensionless pressure for a cruciform-fracture 

approaches twice the dimensionless pressure of a single uniform-flux fracture, but as dimensionless time 

increases, all solutions for δL ≤ 1converge to the single-fracture uniform-flux solution. 

 

Fig. 4.1—Cruciform uniform-flux vertical fracture pressure transient solution for δL = 0.001, 0.01, 
0.1, and 1. 
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4.2.2 Infinite Conductivity. For a single vertical fracture, an approximate infinite-conductivity solution is 

obtained by evaluating the uniform-flux solution at an equivalent average pressure point, 

(xD = 0.732, yD = 0). However, the equivalent average pressure point is dependent on the system geometry 

and must be determined numerically for each multi-fracture system.104 

Kuchuk et al.104 encountered a similar problem when deriving the infinite-conductivity solution for 

horizontal wells and elected to use the pressure-averaging technique proposed by Wilkinson and 

Hammond.105 The pressure-averaging technique approximates the infinite-conductivity horizontal well 

solution by averaging the pressure along the flowpath using the uniform-flux solution, which according to 

Wilkinson and Hammond approaches the exact solution as a horizontal wellbore radius tends to zero. 

As shown in Appendix D, a pressure-averaging approximate infinite-conductivity solution is written as a 

system of equations with the dimensionless pressure in Laplace space for the ℓth-fracture written as 
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and the dimensionless flow rate for all fractures in Laplace space written as 

1

1fn

jD
j

q
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The system of equations is formed by recognizing that for infinite-conductivity fractures, the Laplace 

domain dimensionless pressure in each fracture is the same, which is written as 

n n n n
1 2( ) ( ) ... ( ) fLfD LfD LfD n LfDp p p p= = = = , ........................................................................................ (4.21) 

and the system of equations can be written as 
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where 
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A semianalytical multiple arbitrarily-oriented infinite-conductivity fracture solution can also be developed 

in the Laplace domain without resorting to the pressure-averaging technique. If flux is not uniform along 
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the fracture(s), a Laplace domain dimensionless pressure for a fracture ℓ at an arbitrary angle, θℓ, 

accounting for the effect of a fracture(s) i at angle θi is written as 
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1( ) ( ) ( , ) cos sin
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where i,ℓ = 1, 2,…, nf. Note that (qD)i = qi/qwi, where qwi is the flow rate from the ith-fracture and (LfD)i = 

Lfi/Lfi = 1. If a point (riD, θi) is restricted to a point along the ith-fracture axis, then the reference and 

fracture axis are the same and the Laplace domain dimensionless pressure is written as 

( ) ( )
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Assuming each fracture is homogeneous and symmetric, that is, ( ) ( , ) ( ) ( , ),D i D iq s q sα α= −  the Laplace 

domain dimensionless pressure for an arbitrarily-oriented infinite-conductivity fracture ℓ in an isotropic 

reservoir accounting for the effects of an infinite-conductivity fracture i is written as 
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A semianalytical solution for the multiple infinite-conductivity fractures is obtained by dividing each 

fracture into nfs equal segments of length, ˆ / ,iD fiD fsx L nΔ = and assuming constant flux in each segment.  

Although the number of segments in each fracture is the same, the segment length can be different for 

each fracture, ˆ ˆ .iD jDx xΔ ≠ Δ  With the discretization, the Laplace domain dimensionless pressure for an 

arbitrarily-oriented infinite-conductivity fracture ℓ in an isotropic reservoir accounting for the effects of an 

infinite-conductivity fracture i is written as 
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The multiple infinite-conductivity fracture solution considering permeability anisotropy in an infinite slab 

reservoir is developed by defining the dimensionless distance variables as95 

D
c x

x kx
L k
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D
c y

y ky
L k
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and 

x yk k k= . ....................................................................................................................................... (4.30) 

The dimensionless variables rescale the anisotropic reservoir to an equivalent isotropic system.  As a result 

of the rescaling, the dimensionless fracture half-length changes and must be redefined as106 

2 2cos sinfi
fiD f f
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where the angle of the fracture with respect to the rescaled xD-axis is written as 
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When θf = 0 or θf =  π/2, the angle does not rescale and θ'f = θf .  

With the redefined dimensionless variables and after fracture discretization the Laplace domain 

dimensionless pressure for an arbitrarily-oriented infinite-conductivity fracture ℓ in an anisotropic 

reservoir accounting for the effects of an infinite-conductivity fracture i is written as 
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A semianalytical solution accounting for multiple arbitrarily-oriented infinite-conductivity fractures in an 

anisotropic reservoir is written in the Laplace domain using superposition as 
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 with the Laplace domain dimensionless flow rate for a single fracture defined by 

1

1ˆ ( )
fsn

iD D im
m

x q
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and the Laplace domain dimensionless total flow rate for nf fractures defined by 
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For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as 

1 2( ) ( ) ( ) ( )
fsD i D i D i D ij j j np p p p= = == = = =A A A A… , ............................................................... (4.37) 

and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the 

Laplace domain as 

 1 2( ) ( ) ( ) fwD wD wD nf L Dp p p p= = = =… . ................................................................................. (4.38) 

With each fracture divided into nfs equal length uniform-flux segments, Eqs. 4.34 through 4.38 describe a 

system of nf(nfs + nf + 1) + 1 equations and nf(nfs + nf + 1) + 1 unknowns. The system of equations forms 

the Laplace domain solution for a well with multiple arbitrarily-oriented infinite-conductivity fractures in 

an infinite-slab anisotropic reservoir. The system is solved in the Laplace domain and inverted to the time 

domain to obtain the pressure-transient solution as described in Appendix D.  

Fig. 4.2 shows a log-log graph of the dimensionless pressure and dimensionless pressure derivative versus 

dimensionless time for a cruciform fracture with δL = 1. The solutions were generated using the 

semianalytical multiple-fracture infinite-conductivity solution, the pressure-averaging infinite-conductivity 

solution, and the uniform-flux solution. Several interesting features are noted. First, unlike a single-

fracture solution,84 the infinite-conductivity and uniform-flux solutions are not equivalent at dimensionless 

times as small as 10-6, but the solutions converge as dimensionless time increases.  Second, the 

semianalytical and pressure-averaging multiple-fracture infinite-conductivity solutions overlay at small 

dimensionless times, but the solutions diverge significantly at intermediate dimensionless times. Third, as 

pseudoradial flow develops, tLfD ≥ 3, the semianalytical and pressure-averaging infinite-conducitivity 

solutions converge again. Similar comparisons are shown in Appendix D for a cruciform infinite-

conductivity fracture with δL = ¾, ½, and ¼. 

Following the ideas of Raghavan et al.102 for comparing the pressure-transient solutions of a horizontal 

well intercepted by a single or multiple fractures, Fig. 4.3 shows a log-log graph of the product of (1 + δL) 

and dimensionless pressure versus dimensionless time for a cruciform infinite-conductivity fracture with 

δL  = 0, ¼, ½, ¾, and 1.   At early times, the cruciform-fracture solutions overlay the single-fracture 

solution, but as interference occurs, the multiple fracture solutions diverge from the single-fracture 

solution.  The divergence occurs at a earlier time for a shorter secondary fracture half length, and the 

dimensionless time when divergence begins, which corresponds to the beginning of interference, also 

corresponds to the divergence of the semianalytical infinite-conductivity and pressure-averaging infinite-

conductivity solutions shown in Fig 4.2. 
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Fig. 4.2—A comparison of a pressure-averaging infinite-conductivity solution, the uniform-flux 
solution, and the semianalytical infinite-conductivity solution for a cruciform fracture 
with δL = 1. 
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Consequently, the pressure-averaging infinite-conductivity solution is not a good approximation of the 

cruciform semianalytical infinite-conductivity fracture solution when interference between the fractures is 

observed at intermediate dimensionless times. However, the pressure-averaging infinite-conductivity 

solution is a good approximation at very small dimensionless times and as pseudoradial flow develops.  

For example, the pressure-averaging infinite-conductivity solution can be used during fracture propagation 

in the numerical implementation of a fracture-injection/falloff model in a reservoir containing a constant-

volume pre-existing conductive fracture with a secondary fracture induced and propagated during the 

injection. 

4.2.3 Finite Conductivity. The development of a multiple finite-conductivity vertical fracture solution 

requires writing a general solution for a single finite-conductivity vertical fracture at any arbitrary angle, θ, 

from the xD-axis.  The multiple-fracture solution is then derived following the approach of Cinco-Ley 

et al.107 for a single-fracture finite-conductivity fracture and of Cinco-Ley and Meng86 for a single finite-

conductivity fracture in a dual-porosity reservoir. The complete semianalytical multiple finite-conductivity 

vertical fracture solution is derived in Appendix E. 

A finite-conductivity solution requires coupling reservoir and fracture-flow components, and the solution 

assumes the following for each fracture: 

• The fracture is modeled as a homogeneous slab porous medium with fracture half-length, Lf, 

fracture width, wf, and fully penetrating across the entire reservoir thickness, h.    

• Fluid flow into the fracture is along the fracture length and no flow enters through the fracture tips. 

• Fluid flow in the fracture is incompressible and steady by virtue of the limited pore volume of the 

fracture relative to the reservoir. 

• The fracture centerline is aligned with the ˆDx axis which is rotated by an angle, θ, from the xD axis. 

Cinco-Ley et al.107 show that the Laplace domain pressure distribution in a single finite-conductivity 

fracture is written as 

ˆ
0 0

ˆ
ˆ( ) ( , ) ( , )Dx xD

fD D D D
fD fD

x
p s p x s q x s dx dx

sC C
π π ′

′′ ′′ ′− = − ∫ ∫ . ........................................................ (4.39) 

where ˆ( , )D Dp x s is a reservoir solution and the dimensionless fracture conductivity is defined as, 

f f
fD

f

k w
C

kL
= , .................................................................................................................................. (4.40) 

After discretizing the the reservoir and fracture flow component as shown in Appendix E, a 

semianalytical Laplace domain multiple arbitrarily-oriented finite-conductivity fracture solution in an 

anisotropic infinite-slab reservoir is written as 
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for i,ℓ = 1, 2, …, nf and j,m = 1, 2, …, nfs.  

The Laplace domain dimensionless flow rate for a single fracture is defined by 

1

1ˆ ( )
fsn

iD D im
m

x q
s=

′Δ =∑ , ....................................................................................................................... (4.42) 

and the Laplace domain dimensionless total flow rate from nf fractures is defined by 

1

1fn

iD
i

q
s=

=∑ , ....................................................................................................................................... (4.43) 

For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as 

1 2( ) ( ) ( ) ( )
fsD i D i D i D ij j j np p p p= = == = = =A A A A… , ............................................................... (4.44) 

and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the 

Laplace domain as 

 1 2( ) ( ) ( )wD wD wD nf LfDp p p p= = = =… . ................................................................................... (4.45) 

For each fracture divided into nfs equal length uniform-flux segments, Eqs. 4.41 through 4.45 describe a 

system of nf(nfs + nf + 1) + 1 equations and nf(nfs + nf + 1) + 1 unknowns. Solving the system of equations 

requires writing an equation for each fracture segment, which is demonstrated in Appendix E. As was 

noted for the semianalytical multiple infinite-conductivity fracture solution, the system of equations are 

solved in the Laplace domain and then inverted to the time domain to obtain the dimensionless pressure. 
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Fig. 4.4 shows a log-log graph of dimensionless pressure and dimensionless pressure derivative versus 

dimensionless time for a cruciform fracture where the angle between the fractures is π/2. In Fig. 4.4, 

δL = 1, and the inset graphic illustrates a cruciform fracture with primary fracture conductivity, Cf1D, and 

the secondary fracture conductivity is defined by the ratio of secondary to primary fracture conductivity, 

δC = Cf2D / Cf1D where in Fig. 4.4, δC = 1.  

In addition to allowing each fracture to have a different half length and conductivity, the multiple fracture 

solution also allows for an arbitrary angle between fractures. Fig. 4.5 shows log-log type curves for equal 

primary and secondary fracture half length, δL = 1 and equal primary and secondary conductivity, δC = 1, 

where Cf1D = 100π. The type curves illustrate the effects of decreasing the angle between the fractures as 

shown by type curves for θf2 = π/2, π/4, and π/8. 
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Fig. 4.4—Cruciform fracture log-log type curve with variable conductivity, δL = 1 and δC = 1. 



 98 

4.3 Multiple Vertical Fracture Constant-Rate Drawdown Pressure Transient Solution With 

Variable Fracture Storage 

Two scenarios can be considered for a constant-rate drawdown of a well in an infinite slab reservoir 

containing multiple vertical fractures with the initial reservoir pressure above the minimum in-situ or 

closure stress. First, isotropic stress results in all fractures dilating and closing simultaneously as the 

pressure declines below the closure stress. Second, an anisotropic stress condition results in a different 

closure stress for each fracture and different closure times for each open vertical fracture. However, not all 

fractures are required to be open in an anisotropic stress case since the initial reservoir pressure must be 

greater than the closure stress of each open fracture that subsequently closes during a drawdown. 

The drawdown solution presented assumes an anisotropic stress condition with the reservoir and two 

fractures initially at a constant uniform pressure sufficient to keep the secondary fracture open, but the 

intial reservoir pressure is insufficient to dilate the primary fracture. As the pressure declines during the 

drawdown, the secondary fracture closes. The anisotropic stress scenario selected for modeling is based on 

field data indicating secondary hydraulic fracture reorientation.20-24 Reorientation occurs during 

refracturing because production from the primary fracture depletes the pore volume adjacent to the 

fracture. As the pore volume is depleted, the pressure and in-situ stress are reduced. Consequently, the 
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original reservoir stress condition is altered and the direction of minimum insitu stress will change. A 

subsequent fracture treatment in a well with altered stress will propagate a fracture(s) in a plane different 

than the primary fracture. Other isotropic or anisotropic stress scenarios can be modeled with a similar 

approach, but are not developed in Chapter IV. 

The derivation for a constant-rate drawdown for a well in an infinite-acting slab reservoir with multiple 

vertical hydraulic fractures and the initial reservoir pressure above the closure stress of the secondary 

fracture but below the closure stress of the primary fracture is identical to the constant-rate drawdown with 

constant before- and after-closure storage for a well with a single vertical fracture derived in Appendix B. 

However, the nomenclature changes somewhat to reflect the new multiple fracture storage coefficient 

definitions and the reservoir solution accounting for multiple hydraulic fractures. The solution is written as 

( )
( ) ( ) ( ) ( ) ( )0

tc LfDp t p t C C p t p dwcD LfD LfacD LfD LfbcD LfacD LfacD LfD D wcD D Dτ τ τ⌠⎮
⌡

′ ′= − − − , ....... (4.46) 

where pLfacD is the dimensionless pressure solution for a constant-rate drawdown in a well producing from 

multiple finite- or infinite conductivity vertical fractures with constant after-closure storage, which is 

written in the Laplace domain as 

21

pLfDpLfacD
s C pLfacD LfD

=
+

, ........................................................................................................... (4.47) 

and pLfD is the Laplace domain reservoir solution for production from multiple arbitrarily-oriented finite- 

or infinite-conductivity fractures. 

The dimensionless before-closure storage is defined as 

22 1

CLfbcCLfbcD
c hLt fπφ

= , ....................................................................................................................... (4.48) 

and the before-closure storage coefficient is written as 

2

22 21
f

AfC c V c VLfbc w w f f S
= + + . ................................................................................................. (4.49) 

The before-closure storage coefficient consists of constant wellbore storage, cwVw, constant primary 

fracture storage, 2cf1Vf1, and constant secondary fracture storage where Af2 is the area of one wing of the 

secondary fracture and Sf2 is the secondary fracture stiffness, which is defined for a single fracture in 

Appendix B. 

The dimensionless after-closure storage is defined as 

22 1

CLfacCLfacD
c hLt fπφ

= , ....................................................................................................................... (4.50) 



 100 

where the dimensionless after-closure storage is defined as 

22 ( )1 fC c V c V VLfac w w f f= + + . .................................................................................................. (4.51) 

4.3.1 Numerical Evaluation of a Multiple Vertical Fracture Constant-Rate Drawdown Pressure 

Transient Solution With Variable Fracture Storage. The constant-rate drawdown solution for a well in 

an infinite-acting slab reservoir with multiple vertical hydraulic fractures and the initial reservoir pressure 

above the closure stress of the secondary fracture but below the closure stress of the primary fracture is 

written as 

( )
( ) ( ) ( ) ( ) ( )0

tc LfDp t p t C C p t p dwcD LfD LfacD LfD LfbcD LfacD LfacD LfD D wcD D Dτ τ τ⌠⎮
⌡

′ ′= − − − . ....... (4.52) 

After integrating-by-parts, the solution is written as 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )0

p t C C p t t p tLfacD LfD LfbcD LfacD acD LfD c LfD wcD c LfD
p twcD LfD tc LfDC C p p t dLfbcD LfacD wcD D LfacD LfD D Dτ τ τ⌠⎮

⌡

⎡ ⎤⎡ ⎤ ⎡ ⎤′+ − −⎣ ⎦ ⎣ ⎦⎢ ⎥
= ⎢ ⎥
⎢ ⎥′′− − −⎣ ⎦

, .......... (4.53) 

and after discretizing the integral term, a numerical approximation is written as 

( ) ( ) ( ) ( ) ( )

( ) ( ) 1
( ) ( ) 1

( )
( ) ( )( ) 1 2
( ) ( )1 2

p t C C p t t p tLfacD LfD n LfbcD LfacD LfacD LfD n LfD j wcD LfD j

p t p twcD LfD i wcD LfD i
t tLfD i LfD i

p twcD LfD n p t p tC C wcD LfD i wcD LfD iLfbcD LfacD
t tLfD i LfD i

⎡ ⎤ ⎡ ⎤′+ − −⎣ ⎦ ⎣ ⎦

⎛ ⎞− −⎜ ⎟
⎜ ⎟− −⎝ ⎠=
⎛ ⎞−− − − −⎜−
⎜ −− −⎝

1

( ) ( ) )1

j

i

p t tLfacD LfD n LfD i

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥∑⎢ ⎥⎢ ⎥⎢ ⎥⎟⎢ ⎥= ⎢ ⎥⎟⎢ ⎥⎢ ⎥⎠⎣ ⎦⎢ ⎥⎢ ⎥⎢ ⎥⎡ ⎤⎢ ⎥× − −⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

          

............................................................................................................................................................ (4.54) 

where j is the time index at closure. Note that for n ≤ j, pLfacD[(tLfD)n - (tLfD)j] = 0.  

Fig. 4.6 shows a log-log graph of dimensionless pressure and dimensionless pressure derivative versus 

dimensionless time for a cruciform fracture where the angle between two infinite-conductivity fractures is 

π/2 and the before- and after-closure storage is constant, CLfbcD = CLfbcD = {0.005,0.010}. Similarly, 

Fig. 4.7 shows a log-log constant-rate drawdown type curve for an infinite-conductivity cruciform fracture 

with CLfbcD = 0.010, CLfacD = 0.005, and (tc)LfD = 10-4. Note that the variable storage solution overlays the 

constant storage type curve before and after closure. 

The semianalytical multiple arbitrarily-oriented infinite-conductivity fracture solution with constant 

storage is "expensive" to evaluate in terms of computer time. For example, the constant storage evaluation 

for CLfbcD = 0.010 – with the solution programmed in Mathematica 5.2 – required 27 hours of CPU time to 

calculate 200 data points across 9 log cycles. However, if the constant storage solution is expensive, the 

variable storage solution is exorbitant. The 50 data points across 5 log cycles shown in Fig. 4.7 required 

168 hours (seven days) of CPU time. 
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Obviously, more efficient algorithms and custom software will improve the CPU time required to evaluate 

either the constant or variable storage solutions, but with the variable storage solution overlaying the 

constant storage solution before- and after-closure, it may not necessary to calculate the variable storage 

solution for routine type curve matching. Matching observed variable-storage data to constant-storage type 

curves and ignoring the transition from one curve to another should be sufficient in most cases. 

4.4 Fracture-Injection/Falloff Solution With a Pre-Existing Fracture 

Several scenarios can occur during a fracture-injection/falloff sequence in a well with a pre-existing 

hydraulic fracture.  If the local stress field has not been altered by production, an existing fracture can 

dilate during the injection and close as the pressure declines below the closure stress during the falloff. 

However, if the local stress field has been altered, the existing fracture may dilate during the injection with 

a new fracture induced and propagated in an adjacent plane. Alternatively, the injection may induce a new 

fracture in a plane other than the pre-existing fracture, but the pressure during the injection is insufficient 

to dilate the pre-existing fracture. 

When a pre-existing fracture dilates during an injection and closes during the falloff without inducing an 

additional fracture, a fracture-injection/falloff sequence is modeled as shown in Chapter III with fracture 

length considered to be created instantaneously.  When a new fracture is induced in a plane other than the 

existing fracture without pre-existing fracture dilation, the propagating- and existing-fracture 

dimensionless storage coefficient is defined as 

( ( ))
22 1

C p tpLf wCpLf D
c hLt fπφ

= , .................................................................................................................... (4.55) 

where the propagating- and existing-fracture storage coefficient is defined as 

( ( ))2( ( ))( ( )) 2 21 2
dV p tf wV V p tC p t c V c f f wpLf w w w f dpw

+⎡ ⎤= + +⎣ ⎦ . ............................................ (4.56) 

Assuming as shown in Appendix C that a power model can be used for fracture propagation; assuming 

cfpn2 << 1; and assuming linear-elastic fracture mechanics are applicable; the propagating- and existing-

fracture storage coefficient is written as 

2( ) 2 21 ( )2

A tf LfDC t c V c VpLf LfD w w f f S tf e LfD

α⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

, ................................................................... (4.57) 

which is not a function of pressure and allows the superposition principle to be used to develop a fracture-

injection/falloff solution in a well with a pre-existing fracture. 
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During the falloff, the induced fracture closes, and the before-closure storage coefficient is the same as 

previously defined for a closing secondary fracture during a drawdown in a reservoir with multiple 

fractures. The before-secondary fracture closure storage coefficient is written as 

2

22 21
f

AfC c V c VLfbc w w f f S
= + + . ................................................................................................. (4.58) 

Similarly, the after-closure storage coefficient is written as 

22 ( )1 fC c V c V VLfac w w f f= + + . .................................................................................................. (4.59) 

The model for a fracture-injection/falloff sequence in a well with a constant-volume pre-existing vertical 

fracture that induces a secondary fracture is a simple modification of the fracture-injection/falloff model 

without an existing fracture developed in Appendix C. However, the nomenclature and storage coefficient 

definitions change somewhat to reflect the new propagating- and existing fracture storage coefficient 

definition, and the reservoir solution changes to account for multiple hydraulic fractures. The solution is 

written as 

( )

( ) ( ( ) )

( )
( ) ( ) ( )0

( )
( ) ( ) ( )0

( )
( ) ( )0

q p t p t twsD pLfD LfD pLfD LfD e LfD
te LfD p t C p dpLfD LfD D pLfD D wsD D D

te LfDp t C p t p dwsD LfD LfbcD LfD LfD D wsD D D
tc LfDC C p t p dLfbcD LfacD LfD LfD D wsD D D

CLfacD

τ τ τ τ

τ τ τ

τ τ τ

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤− −⎣ ⎦

′ ′− −

′ ′= + −

′ ′− − −

− ( ) ( )0
tLfD p t p dLfD LfD D wsD D Dτ τ τ⌠⎮

⌡

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

′ ′−⎢ ⎥⎣ ⎦

, ............................ (4.60) 

where ppLfD is the propagating-fracture solution with multiple constant-length fractures and a single 

induced fracture, and pLfD is the multiple arbitrarily-oriented finite- or infinite-conductivity fracture 

solution. 

With secondary fracture propagation, the before-closure limiting-case solution for (te)LfD << tLfD < (tc)LfD is 

written as 

( ) (0) ( )p t p C p twsD LfD wsD LfbcD LfbcD LfD′= , ............................................................................. (4.61) 

where pLfbcD is the dimensionless pressure solution for a constant-rate drawdown in a well producing from 

multiple fractures with constant before-closure storage, which is written in the Laplace domain as 

21

pLfDpLfbcD
s C pLfbcD LfD

=
+

, ........................................................................................................ (4.62) 

and pLfD is the Laplace domain reservoir solution for production from multiple arbitrarily-oriented finite- 

or infinite-conductivity fractures. 
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The after-closure limiting-case solution with secondary fracture propagation when 

tLfD >> (tc)LfD >> (te)LfD is written as 

( )( ) (0) ( ) ( ) ( )p t p C p t C C p twsD LfD wsD LfbcD wsD c LfD LfbcD LfacD LfacD LfD⎡ ⎤ ′= − −⎢ ⎥⎣ ⎦
 ......... (4.63) 

where pLfacD is the dimensionless pressure solution for a constant-rate drawdown in a well producing from 

multiple fractures with constant after-closure storage, which is written in the Laplace domain as 

21

pLfDpLfbcD
s C pLfacD LfD

=
+

. ........................................................................................................ (4.64) 

The limiting-case solutions are slug-test solutions, which suggest that a fracture-injection/falloff sequence 

in a well with a pre-existing fracture and a secondary fracture induced during an injection can be analyzed 

as a slug test provided the injection time is short relative to the reservoir response. 

A fracture-injection/falloff model is more complicated when existing fractures dilate and a new fracture is 

induced during an injection. For example, during an injection, an induced fracture will begin to propagate 

in the direction of maximum stress. When the injection pressure exceeds the closure stress in the existing 

fractures, the existing fractures will begin to dilate. During the falloff, multiple closure times will be 

observed as the pressure declines below the closure stress of each dilated existing fracture and the induced 

fracture. A fracture-injection/falloff model developed using the unit-step function must account for each 

fracture opening and closing through the use of multiple storage coefficients and fracture closure times. 

Consider a relatively simple case with a single existing fracture dilated and a single fracture induced 

during the injection. The dimensionless propagating- and existing-fracture storage coefficient is written as 

2( ) 2 21 ( )2

A tf LfDC t c V c VpLf LfD w w f f S tf e LfD

α⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

. ................................................................... (4.65) 

When the existing fracture begins to dilate, (td)LfD < tLfD ≤ (te)LfD, a new propagating- and dilating-fracture 

storage coefficient is defined as 

1 2( ) 2 2
( )1 2

A A tf f LfDC t c VpdLf LfD w w S S tf f e LfD

α⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

. .................................................................... (4.66) 

During the falloff when (te)LfD < tLfD ≤ (tc1)LfD, a primary-fracture before-closure storage coefficient is 

defined as 

1 2
( ) 21

1 2

A Af f
C t c VLfbc LfD w w S Sf f

⎡ ⎤
+= + ⎢ ⎥

⎢ ⎥⎣ ⎦
, ....................................................................................... (4.67) 

and a secondary-fracture before-closure storage coefficient is defined for (tc1)LfD < tLfD ≤ (tc2)LfD as 
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2

22 22 1
f

AfC c V c VLfbc w w f f S
= + + . ............................................................................................... (4.68) 

After primary- and secondary-fracture closure, tLfD > (tc2)LfD, the after-closure storage coefficient is defined 

as 

22 ( )1 fC c V c V VLfac w w f f= + + . .................................................................................................. (4.69) 

Following the derivation method described in Appendix C, a material balance equation is developed that 

is applicable at all times during the fracture-injection/falloff sequence, and using the unit-step function, a 

fracture-injection/falloff model for a well with an existing fracture dilated and a secondary fracture 

induced during the injection is written as 

( ) ( ( ) )

( )
( ) ( )( ) ( )

0
( )

( ) ( ) ( )0
(

( ) ( ) ( )1 0

q p t p t twsD pLfD LfD pLfD LfD e LfD
td LfD C Cp t p dpLfD D pdLfD DpLfD LfD D wsD D D
te LfD p t C p dpLfD LfD D pdLfD D wsD D D

tep t C p t p dwsD LfD Lfbc D LfD LfD D wsD D D

τ ττ τ τ

τ τ τ τ

τ τ τ

⌠
⎮
⌡
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⌡

⎡ ⎤− −⎣ ⎦

−⎡ ⎤′ ′− − ⎣ ⎦
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( )1 ( ) ( )1 2 0
( )2 ( ) ( )2 0

( ) ( )0
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⌠⎮
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

′ ′− − −⎢ ⎥
⎢ ⎥
⎢ ⎥

′ ′− − −⎢ ⎥
⎢ ⎥
⎢ ⎥

′ ′− −⎢ ⎥⎣ ⎦

. ........... (4.70) 

Similar to the propagating-fracture solution for a single vertical fracture described in Chapter III, the 

propagating-fracture solution, ppLfD(tLfD), with multiple constant-length fractures and a single induced 

fracture can be written as 

( )

( )

( )
( )

( )
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LfD t LfD e LfD

p t t
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, .................................................................................. (4.71) 

or using the unit-step function written as 

( )( ) ( ) ( ) ( )( ) 1 e LfD LfD e LfD LfDLfD t prLfD t t LfD tp t U p U ppLfD = − + . ......................................................... (4.72) 

The propagating-fracture solution with multiple constant-length fractures and a single induced fracture can 

be written in terms of the semianalytical multiple arbitrarily-oriented finite- or infinte-conductivity 

fracture solution by writing a quasi-static form as 
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for i,ℓ = 1, 2, …, nf  and j,m = 1, 2, …, nfs. The Laplace domain dimensionless flow rate for a single 

fracture is defined by 

1

1ˆ ( )
fsn

iD D im
m

x q
s=
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and the Laplace domain dimensionless total flow rate from nf fractures is defined by 

1

1fn

iD
i

q
s=

=∑ , ....................................................................................................................................... (4.75) 

For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as 

1 2( ) ( ) ( ) ( )
fsD i D i D i D ij j j np p p p= = == = = =A A A A… , ............................................................... (4.76) 

and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the 

Laplace domain as 

 1 2( ) ( ) ( )prLfD prLfD prLfD nf prLfDp p p p= = = =… . ................................................................... (4.77) 

Note that the propagating fracture half length changes during the injection, which can be modeled using a 

power model approximation and written as 
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where αiN is the fracture-growth exponent, which varies between ½ and 1 for low-and high-efficiency 

fracture growth, respectively, and where (te)LfD is the dimensionless time at the end of fracture 
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propagation. With L'fiD(tLfD) a function of dimensionless time, ˆ /( )iD fiD fsx L nLfDt′ ′Δ = and the dimensionless 

distances, ˆ[ ]iDx j′ and ˆ[ ( )] ,iDx LfD mt′ are also functions of dimensionless time. 

With infinite-conductivity fractures and a small dimensionless injection time, the pressure-averaging 

solution described in Section 4.2.2 can be used to numerically evaluate the solution provided the 

dimensionless injection time is on the order of 10-5. The computational difficulty of the semianalytical 

solution versus the relative speed and simplicity of the pressure-averaging solution makes the pressure-

averging solution the preferred solution at small dimensionless times. With a propagating fracture during 

the injection, the pressure-averaging solution can be written as 
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where 
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4.4.1 Limiting-Case Fracture-Injection/Falloff Solutions With a Dilating Pre-Existing Fracture, a 

Propagating Induced Fracture, Multiple Closures, and Constant After-Closure Storage. The 

dimensionless wellbore pressure solution for a fracture-injection/falloff with a dilating pre-existing 

fracture, a propagating induced fracture during the injection, multiple closure times, and constant after-

closure storage is written as 
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which can also be written as 
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Assume the secondary fracture half-length is created instantaneously such that CpLfD = CLfbc2D and 

CpdLfD = CLfbc1D. A limiting-case solution can be written as 
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Consider a case when (td)LfD < (te)LfD � tLfD < (tc1)LfD, which allows the solution to be written as 
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When the injection time is short, (te)LfD → 0, and recognizing that (te)LfD > (td)LfD, the solution can be 

written as 

( ) ( ) ( )1 0
tLfDp t C p t p dwsD LfD Lfbc D LfD LfD D wsD D Dτ τ τ⌠⎮

⌡
′ ′= − − , ..................................................... (4.85) 

which after transforming to the Laplace domain, simplifying, and inverting back to the time domain is 

written as 

( ) (0) ( )1 1p t p C p twsD LfD wsD Lfbc D Lfbc D LfD′= , ............................................................................... (4.86) 

where the Laplace domain dimensionless multiple-fracture solution for a well produced at a constant rate 

with constant primary-fracture before-closure storage is written in the Laplace domain as 
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Consequently, the limiting-case solution for an instantaneous injection, (te)LfD → 0, with 

(td)LfD < (te)LfD � tLfD < (tc1)LfD is a slug-test solution. 

Consider a case with an instantaneous injection, (te)LfD → 0, when (td)LfD < (te)LfD � (tc1)LfD � tLfD < (tc2)LfD, 

which allows the solution to be written as 
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After transforming to the Laplace domain, simplifying, and inverting back to the time domain, the 

limiting-case solution is written as 
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where the Laplace domain dimensionless multiple-fracture solution for a well produced at a constant rate 

with constant secondary-fracture before-closure storage is written in the Laplace domain as 
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Consequently, the limiting-case solution for an instantaneous injection, (te)LfD → 0, with 

(td)LfD < (te)LfD � (tc1)LfD � tLfD < (tc2)LfD is also a slug-test solution. 

Finally, consider the case of an instantaneous injection, (te)LfD → 0, when 

(td)LfD < (te)LfD � (tc1)LfD < (tc2)LfD � tLfD , which allows the solution to be written as 
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After transforming to the Laplace domain, simplifying, and inverting back to the time domain, the 

limiting-case solution is written as 
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where the Laplace domain dimensionless multiple-fracture solution for a well produced at a constant rate 

with constant after-closure storage is written in the Laplace domain as 

21

pLfDpLfacD
s C pLfacD LfD

=
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Consequently, the limiting-case solution for an instantaneous injection, (te)LfD → 0, with 

(td)LfD < (te)LfD � (tc1)LfD < (tc2)LfD � tLfD is also a slug-test solution. 

The limiting-case slug-test solutions are applicable provided that a fracture-injection can be considered to 

occur instantaneously. From the analytical solution, a fracture-injection with a dilating pre-existing 

fracture, a propagating induced fracture, multiple closure times, and constant after-closure storage can be 

considered to occur instantaneously when the inequality written as 
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holds for a finite, but short relative to the reservoir response, time of injection. 
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CHAPTER V 

A REFRACTURE-CANDIDATE DIAGNOSTIC AND EXAMPLE FIELD 

APPLICATIONS 

5.1 Introduction 

The new refracture-candidate diagnostic requires isolating a layer to be tested and completing a fracture-

injection/falloff sequence where the time of injection is short relative to the reservoir response. The new 

analytical pressure-transient solutions that were developed in Chapter III for cases without a pre-existing 

fracture and in Chapter IV for cases with a pre-existing fracture(s) suggest that with a short time of 

injection, the pressure difference recorded during the falloff period can be transformed to an equivalent 

pressure difference if the rate were constant, plotted, and matched to variable-storage, constant-rate 

drawdown type curves. The limiting-case solutions presented in Chapters III and IV also form the basis for 

quantitative interpretation of the observed pressure falloff recorded during the new refracture-candidate 

diagnostic test. 

The new refracture-candidate diagnostic is used prior to a refracture treatment to achieve the following 

objectives. 

• To determine if: 

 A fracture retaining residual width exists. 

 A pre-existing fracture is damaged. 

• To estimate: 

 Effective fracture half-length of a pre-existing fracture. 

 Fracture conductivity of a pre-existing fracture. 

 Reservoir transmissibility. 

 Average reservoir pressure. 

When the diagnostic objectives are achieved, the benefits of refracturing can be easily evaluated, and the 

incremental production from a refracture treatment can be predicted. 

Chapter V describes the new refracture-candidate diagnostic and the interpretation method for oil and gas 

reservoirs. With oil reservoirs—or liquid-filled reservoirs like water saturated coals—the analysis is 

performed in terms of pressure and time. With gas reservoirs—or a reservoir containing compressible fluid 

modeled as a real gas—the analysis is performed in terms of adjusted pseudopressure and adjusted 

pseudotime. A unique quantitative interpretation may not be possible when insufficient falloff data are 

recorded, but qualitative analysis of variable storage behavior is useful for identification of a pre-existing 
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fracture and flow regime identification is useful for selecting before- and after-closure data for specialized 

analysis. The focus of Chapter V is applications, and, as such, all equations in Chapter V are written in 

field units. 

Chapter V also contains field examples to illustrate the interpretation of a fracture-injection/falloff 

sequence for the following cases. 

• Without a pre-existing fracture: 

 Pseudoradial flow observed after closure. 

 Pseudolinear flow observed after closure. 

• With a pre-existing Fracture 

 A pre-existing conductive hydraulic fracture with choked-fracture skin damage. 

5.2 Refracture-Candidate Diagnostic Test 

The new refracture-candidate diagnostic test is a fracture-injection/falloff sequence where the time of 

injection is short relative to the reservoir response and where the pressure during the injection is sufficient 

to initiate, dilate, or propagate a fracture(s). The test was developed by recognizing that an existing 

fracture retaining residual width has associated storage, and a new induced fracture creates additional 

storage. Consequently, a fracture-injection/falloff test in a layer with a pre-existing fracture will exhibit 

variable storage during the pressure falloff, and the change in storage is observed at hydraulic fracture 

closure. In essence the test induces a fracture to rapidly identify a pre-existing fracture retaining residual 

width. 

Both qualitative and quantitative interpretations are possible provided sufficient pressure data are recorded 

during the falloff. Qualitative interpretation to identify a pre-existing fracture and pre-existing fracture 

damage requires determining hydraulic fracture closure using existing methods and characterizing the 

observed variable-storage behavior. Quantitative interpretation of transmissibility requires developing a 

type-curve match, or when sufficient data are recorded to observe the pseudoradial flow regime, the 

transmissibility can be calculated from the impulse solution.55,60-61 Initial reservoir pressure can also be 

estimated from the pressure observed during pseudoradial flow, and fracture half-length and fracture 

conductivity can estimated from the type-curve match.  

The new refracture-candidate diagnostic test requires the following. 

 Isolate a layer to be tested.  

 Inject liquid or gas at a pressure exceeding fracture initiation and propagation pressure. The 

injected volume should be roughly equivalent to the proppant-pack pore volume of an existing 

fracture if known or suspected to exist, but the injection time should be limited to a few minutes. 
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 Shut-in and record a pressure falloff period of several hours. A bottomhole gauge and bottomhole 

shut-in are preferable to minimize wellbore storage. 

Both qualitative and quantitative interpretation require the following steps: 

 Identify hydraulic fracture closure during the pressure falloff using existing methods.54,74 

 For a reservoir containing a slightly-compressible liquid, transform the recorded variable-rate 

pressure falloff data to an equivalent pressure difference if the rate were constant by integrating the 

pressure difference with respect to time, which is written in field units as 

( ) ( )0
et tI p p p dw iτ τ⌠⎮

⌡
+ Δ ⎡ ⎤Δ = −⎣ ⎦ , ............................................................................................. (5.1) 

where Δt = t – te, t [hr] is the time, te [hr] is the time at the end of the injection, pw [psi] is the 

observed wellbore pressure, and pi [hr] is the initial reservoir pressure. 

Calculate the well testing pressure derivative of the pressure observed during the falloff by 

evaluating the pressure derivative function written in field units as 

( ) [ ]( ) ( ) ( )
ln( ) e w i

e

dI pp t t p t p
t td
Δ′Δ = = + Δ −
+ Δ

. ............................................................................. (5.2) 

Prepare a log-log graph of I(Δp) versus te + Δt and Δp' versus te + Δt. 

 For a reservoir containing a compressible fluid (real gas), calculate adjusted pseudotime in field 

units as 

( )
( )0

t dtt ca t i ct w
μ

μ

⌠
⎮
⎮
⌡

= ,  ........................................................................................................... (5.3) 

where μ [cp] is the viscosity, ct [1/psi] is the total compressibility, the subscript i denotes the 

variables are evaluated at the initial reservoir pressure, and the subscript w denotes the variables 

are evaluated at the observed wellbore pressure. 

Calculate adjusted pseudopressure in field units as 

 
0

pz pdppa p zi

μ
μ

⌠
⎮
⎮
⌡

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, ............................................................................................................. (5.4) 

where z is the gas deviation factor. 

Transform the observed adjusted pseudopressure data to an equivalent adjusted pseudopressure 

difference if the rate were constant by integrating the adjusted pseudopressure difference with 

respect to time, which is written in field units as 

( )( )( ) ( )0
e a aa

t tI p p p daw aiτ τ⌠⎮
⌡

+ Δ ⎡ ⎤Δ = −⎣ ⎦ , ............................................................................ (5.5) 
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where Δta = ta – (te)a. 

Calculate the well testing adjusted pseudopressure derivative observed during the falloff by 

evaluating the derivative written in field units as 

( )
( )[ ]( )
( ) ( )

( )ln
a

e a aa aw a ai
e a a

dI p
t tp p t p

t td
Δ

′ + ΔΔ = = −
⎡ ⎤+ Δ⎣ ⎦

. ..................................................... (5.6) 

Prepare a log-log graph of I(Δpa) versus (te)a + Δta and Δp'a versus (te)a + Δta. 

5.2.1 Qualitative Analysis. A fracture-injection/falloff sequence in a reservoir either with or without a 

pre-existing fracture can result in variable storage behavior. In an ideal case without a pre-existing fracture 

prior to the injection and no wellbore storage, the fracture created during the injection will close 

completely during the falloff period. With complete closure, storage after closure goes to zero. 

Conversely, in an ideal case with a pre-existing fracture that retains residual width prior to the injection 

and no wellbore storage, a fracture induced by the injection, or existing fracture dilation as a result of the 

injection, will close during the falloff period. However, with complete closure of the induced- or dilated-

fracture, storage does not tend to zero because the pre-existing fracture retains residual width and remains 

open. 

Variable-storage behavior is illustrated in Figs. 5-1 through 5-3. Fig. 5-1 shows a log-log graph of 

dimensionless pressure and pressure derivative versus dimensionless time for a variable-storage 

drawdown. During the falloff of an ideal fracture-injection/falloff sequence in a reservoir without an 

existing fracture, the transformed equivalent constant-rate pressure difference and derivative fall along the 

curve corresponding to CbcD = 0.1. After complete fracture closure, the storage goes to zero, CacD = 0, 

which creates an abrupt increase in both the dimensionless pressure and the derivative. Van den Hoek92-93 

presented field data showing similar pressure and derivative changes observed during falloff testing of a 

well with a waterflood-induced fracture. 

Fig. 5-2 also shows a log-log graph of dimensionless pressure and pressure derivative versus 

dimensionless time for a variable-storage drawdown. However, Fig. 5-2 illustrates the falloff of an ideal 

fracture-injection/falloff sequence in a reservoir with an existing fracture. With an existing fracture, the 

storage after closure is greater than zero provided the existing fracture retains residual width. 

Consequently, the transformed equivalent constant-rate pressure difference and derivative would fall along 

the curve corresponding to CbcD = 0.1, and after fracture closure, the storage decreases, CacD = 0.05, which 

creates a more subtle increase in both the dimensionless pressure and the derivative. 

Fig. 5-3 illustrates a case with apparent increasing storage, and shows a log-log graph of dimensionless 

pressure and pressure derivative versus dimensionless time for a variable-storage drawdown with choked-

fracture skin. With a pre-existing fracture that is damaged at the wellbore, the storage appears to increase  
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Fig. 5.1—Variable storage drawdown type curve with closure at (tc)LfD = 0.0001, CbcD = 0.10, and 
CacD = 0. 
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because of the choked-fracture skin. The pressure and derivative curves in Fig. 5-3 were generated with 

before-closure fracture storage, CfbcD = 0.095, after-closure fracture storage, CfacD = 0.045, wellbore 

storage, CD = 0.005, choked-fracture skin, (Sfs)ch = 0.001, and fracture closure at (tc)LfD = 0.0001. 

Consequently, the transformed equivalent constant-rate pressure difference and derivative appear to 

decrease during and after fracture closure to the curve corresponding to CacD = 0.05.  

Provided the storage does not tend to zero, a change in the magnitude of storage at fracture closure 

suggests a fracture retaining residual width exists. When storage decreases to a constant value greater than 

zero, an existing fracture is nondamaged. Conversely, a damaged fracture, or a fracture exhibiting choked-

fracture skin, is indicated by apparent increase in the storage coefficient. 

In addition to identifying an existing fracture, qualitative analysis is useful for identifying the flow regimes 

observed during a fracture-injection/falloff sequence and for identifying the observed data to be used with 

quantitative special analysis, including traditional before- and after-closure methods.57-61 Fig. 5-4 shows a 

log-log graph of dimensionless pressure and pressure derivative versus dimensionless time for a variable-

storage drawdown with CbcD = 0.01, CacD = 0.009, and (tc)LfD = 10-5. 

The data observed during storage-dominated flow, which is indicated by the unit slope line, correspond to 

both wellbore and fracture storage. When fracture storage is much greater than wellbore storage and the 
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Fig. 5.3—Variable storage drawdown type curve with closure at (tc)LfD = 0.0001, CbcD = 0.095, 
CacD = 0.045, CD = 0.005, and choked-fracture skin, (Sfs)ch = 0.05. 
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data fall along a unit slope line, the fracture is open, and a change in storage indicates hydraulic fracture 

closure has been observed. However, in many field cases, wellbore storage will be much greater than 

fracture storage, and the transition from storage-dominated flow may not be a reliable indicator of fracture 

closure. For example, in Fig. 5-4, fracture closure occurs at (tc)LfD = 10-5, but storage-dominated flow 

continues for a period of time because of wellbore storage. 

Before-closure pressure-transient analysis57-59 is applicable to the storage-dominated flow data. When a 

shut-in period following a fracture-injection only extends to the end of or slightly beyond closure, the 

equivalent constant-rate pressure difference and derivative data will remain in storage-dominated flow 

during the entire pressure falloff. Consequently, before-closure pressure-transient analysis is the only 

quantitative interpretation method that can provide estimates of permeability and fracture-face resistance. 

Pseudolinear flow will be observed after closure when sufficient fracture half-length was created during 

the injection and provided the fracture after closure has essentially infinite conductivity. In very low-

permeability reservoirs, pseudolinear flow is often observed.54 Pseudolinear flow is indicated by a ½ slope 

of the pressure and derivative curves.  
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Fig. 5.4—Variable storage drawdown type curve with closure at (tc)LfD = 0.00001, CbcD = 0.01, and 
CacD = 0.009. 
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Pseudoradial flow can be observed when the shut-in period is sufficient, and pseudoradial flow is indicated 

by a constant pressure derivative function equal to ½ as shown in Fig. 5-4. When pseudoradial flow is 

indicated, after-closure analysis based on the impulse solution will provide an estimate of transmissibility, 

and with transmissibility known, a type-curve match point will provide an estimate of storage and the 

created fracture half-length. 

It is also noteworthy that with complete fracture closure, or when the created fracture half-length is very 

short, a log-log graph of equivalent constant-rate pressure difference and the pressure derivative will 

transition immediately from storage-dominated flow during fracture closure to radial flow. When radial 

flow is indicated immediately after closure, the equivalent constant-rate pressure and derivative data will 

fit on a radial flow with wellbore storage and skin type curve. Recall an analytical solution for the case 

was presented in Chapter III. 

5.2.2 Quantitative Analysis – Before-Closure Pressure-Transient Analysis. Quantitative analysis of a 

refracture-candidate diagnostic involves both type-curve matching and specialized analysis of data in 

specific flow regimes. Without a pre-existing fracture, specialized analysis includes before- and after-

closure methods. Before-closure pressure-transient analysis does not account for a pre-existing fracture, so 

when a pre-existing fracture is indicated by type-curve analysis, before-closure analysis is invalid. 

Before-closure pressure-transient analysis57-59 was described in Chapter II for reservoirs containing a 

slightly-compressible liquid, and Appendix A extends before-closure analysis to reservoirs containing 

compressible fluids by formulating in terms of adjusted pseudopressure and adjusted pseudotime. 

Table A-2 contains the equations formulated in pressure and time and adjusted pseudopressure and time, 

and Table A-3 contains the equations formulated in pressure and time and adjusted pseudopressure and 

adjusted pseudotime required for completing before-closure pressure-transient analysis. 

Completing before-closure analysis in a reservoir containing a slightly-compressible fluid requires the 

following. 

 Calculate the constant c1, which is written in field units as 

1
t

c
c
μ
φ

= , .................................................................................................................................. (5.7) 

and c2, which is written in field units as 

2
5.615

24 f L
t

c S w
c
μ
φ

= , ............................................................................................................. (5.8) 

where Sf [psi/ft] is the fracture "stiffness" and wL [ft] is the fracture lost width corresponding to 

fluid leak-off volume.59 Fracture stiffness, or the inverse of fracture compliance, is defined by the 

elastic energy or "strain energy" created by an open fracture in a rock assuming linear elastic 



 119 

theory is applicable.  Table 5-1 contains the fracture stiffness definitions for three common 2D 

fracture models.80,100 In field units, E' [psi] is the plane-strain modulus, Rf [ft] is the radius of a 

radial fracture, hf [ft] is the gross fracture height, and Lf [ft] is the fracture half length. 

  Table 5-1—Fracture stiffness for 2D fracture models.80,100 

Radial Perkins-Kern-Nordgren 

Vertical Plane Strain 

Geertsma-deKlerk 

Horizontal Plane Strain 

3( )
16

ES f RAD R f

π ′
=  2( ) ES f PKN h fπ

′
=  ( ) ES f GDK L fπ

′
=  

Estimating fracture stiffness using the 2D idealizations requires determining one fracture 

dimension consisting of fracture radius, fracture height, or fracture half-length. With a vertical 

plane strain assumption (PKN), fracture height is required for calculating stiffness. In most cases, 

fracture height is assumed based on lithology interpreted from log analysis. However, fracture-

imaging methods can also provide an estimate of fracture height when available.27 

Imaging methods may also be beneficial for estimating fracture half length or radius, but in most 

cases, a relatively simple fracture model is used. One method for determining fracture radius or 

half-length was described by Valkó and Economides59 and assumes no spurt loss, which is an 

instantaneous fluid loss as the fracturing fluid contacts "new" rock during fracture propagation.  

Without spurt loss and assuming ideal leakoff behavior, the pressure recorded during the before-

closure shut-in period will fall along a straight line on a graph of bottomhole pressure versus the 

dimensionless loss-volume function, g(Δt, αN), which was described in Chapter II. 

Assuming αN = 8/9 for a radial fracture, the radius can be calculated from the intercept, bN [psi], of 

a line drawn through the observed data, as59 

3(5.615)3
8 ( )

E VinjR f b pN c

′
=

−
, ...................................................................................................... (5.9) 

where Vinj [bbl] is the volume of fluid injected in one fracture wing, Vinj = Qt/2, and Qt [bbl] is the 

total volume injected. Assuming αN = 2/3 for a horizontal plane-strain (GDK) idealization, fracture 

half-length can be calculated as59 

(5.615)

( )

E VinjL f h b pf N cπ

′
=

−
. ........................................................................................................... (5.10) 
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With a characteristic fracture dimension determined for each 2D idealization, fracture lost width is 

estimated from the slope of a line, mN [psi], drawn through the observed data. For a vertical plane 

strain assumption, αN = 4/5, the fracture lost-width is written in field units as59 

0.7075(12)
( )

h fw mL NE

π
= −

′
, ................................................................................................. (5.11) 

and for a horizontal plane strain assumption, αN = 2/3, the fracture lost-width is written in field 

units as59 

1.478(12)
( )

L fw mL NE

π
= −

′
. ................................................................................................... (5.12) 

Assuming a radial fracture geometry, the fracture lost-width is written in field units as 

7.343(12)
( )

R fw mL NEπ
= −

′
. ..................................................................................................... (5.13) 

 Preparing the specialized graph for a reservoir containing a slightly-compressible fluid requires 

calculating the dimensionless plotting function, yn, for each timestep, n. The plotting function is 

written as 

( )p pw n iyn d t tn n ne

−
= , ................................................................................................................... (5.14) 

where (pw)n [psi] is the observed pressure at time index n, pi [psi] is the initial reservoir pressure, 

t [hr] is the time, the subscript 'ne' denotes the index corresponding to the end of pumping, the 

variable dn [psi/hr] is written as 

1

1

p pj jd j t tj j

−−
=

− −
, .................................................................................................................... (5.15) 

and j=n. 

 The dimesionless plotting function, xn, for each timestep is calculated as 

1 2
2 1

1 1 2
1 1

3

1 2
12 1 1

3 2
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⎢ ⎥⎡ ⎤⎢ ⎥⎛ ⎞+⎢ ⎥+ − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

. ........................................................... (5.16) 

 Prepare a Cartesian graph of the plotting functions, yn vs. xn, and draw a straight line through the 

data points. Fracture-face resistance, R0 [cp/ft] is calculated from the intercept of the straight line, 

bM,  as 
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5.615
0 (141.2)(24)

R r S t bp f ne Mπ
= , .............................................................................................. (5.17) 

where rp is the ratio of permeable to gross fracture height. Permeability is calculated in field units 

from the slope of a straight line, mM, drawn through the data points as 

22(141.2)(0.02878)(24) 1
5.615k r S mp f M

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

. ............................................................................... (5.18) 

In many cases, nonideal leakoff behavior will not result in a straight line on the specialized 

graph,82 and the cause and effect of nonideal leakoff behavior on the permeability estimate have 

been examined by Craig et al.82  

In a reservoir containing a compressible reservoir fluid that can be modeled as a real gas, before-closure 

pressure-transient analysis requires the following. 

 Calculate the constant cap1, which is written in field units as 

1
gicap cti

μ

φ
= , ......................................................................................................................... (5.19) 

where μgi [cp] is the gas viscosity at initial reservoir pressure and cti [1/psi] is the total 

compressibility at initial reservoir pressure.  

Calculate the constant cap2, which is written in field units as 

5.615
2 24

B giic S wap f L B ce ti

μ

φ
= , .............................................................................................. (5.20) 

where Bi [bbl/Mscf] is the gas formation volume factor evaluated at initial reservoir pressure and 

Be [bbl/Mscf] is the gas formation volume factor evaluated at the pressure at the end of the 

injection. 

 Preparing the specialized graph for a reservoir containing a slightly-compressible fluid requires 

calculating the dimensionless plotting function, (yap)n, for each timestep, n. The plotting function is 

written as 

( )
( )

( )
p paw n aiyap n d t tap n n ne

−
= , .................................................................................................... (5.21) 

where (paw)n [psi] is the observed adjusted pseudopressure at time index n, pai [psi] is the initial 

adjusted pseudopressure, t [hr] is the time, the subscript 'ne' denotes the index corresponding to the 

end of pumping, the variable (dap)n  [psi/hr]  is written as 
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and j=n. 

 The dimensionless adjusted plotting function, (xap)n, for each timestep is calculated as 
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. .................................. (5.23) 

 Prepare a Cartesian graph of the plotting functions, (yap)n vs. (xap)n, and draw a straight line through 

the data points. Fracture-face resistance, R0 [cp/ft] is calculated from the intercept of the straight 

line, bM,  as 

5.615
0 (141.2)(24)

R r S t bp f ne Mπ
= . .............................................................................................. (5.24) 

Permeability is calculated from the slope of a straight line, mM, drawn through the data points as 

22(141.2)(0.02878)(24) 1
5.615k r S mp f M

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

. ............................................................................... (5.25) 

5.2.3 Quantitative Analysis – After-Closure Analysis. When pseudoradial flow is observed, which is 

indicated by a constant derivative on a log-log graph of equivalent constant-rate pressure difference and 

derivative versus time, after-closure analysis based on the impulse solution provides an estimate of 

transmissibility independent of fracture half length(s).55,60-61,108 Consequently, after-closure pseudoradial 

flow analysis can also be applied to refracture-candidate diagnostic data generated with a pre-existing 

fracture. 

As shown by Gu et al.60 and Abousleiman et al.,61 the impulse solution forming the basis of after-closure 

pseudoradial flow analysis is written for a slightly-compressible liquid in field units as 

141.2(24) 1
2

t
w i

ac

Q
p p

kh t
μ

− =
Δ

, ........................................................................................................ (5.26) 

where Qt is the total fluid volume injected during the impulse. The definition of elapsed time, Δtac, is 

defined differently by Gu et al.60 and Abousleiman et al.61 The authors reason that the injection continues 

during fracture closure, and the total injection time should include at least a portion of the time to closure.  
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Consequently, Gu et al. defined elapsed time as Δtac = t – 0.5tc, while Abousleiman et al. define elapsed 

time as Δtac = t – tc.  

Recently, Soliman et al.108 suggested that the elapsed time should be the total time including the injection 

and falloff periods defined as Δtac = te + Δt = t, which the authors base partly on the results published by 

Soliman109 for a buildup test following a short producing time. Soliman et al.108 argue that when the time 

to the end of injection is short, fracture propagation during the injection can be ignored, and the after-

closure falloff data can be analyzed as an injection/falloff (or drawdown/buildup)  using conventional 

pressure transient solutions. Ayoub et al,55 also noted for a impulse test without fracture propagation that 

the elapsed time for the impulse solution should be defined as, Δtac = te + Δt, and the product Δtac(pw – pi) 

when plotted versus Δtac on a log-log graph will overlay the well-testing pressure derivative of the 

appropriate constant-rate type curve for the reservoir/system. 

The pseudoradial flow impulse solutions are essentially the same, but the time function is defined 

differently in each special case. To provide consistency and reconcile the differences, the analytical 

solutions presented in Chapters III and IV can be used to write the complete impulse solution. To illustrate 

the solution, consider the case of a dilating existing fracture or a fracture created instantaneously with 

equivalent before- and after-closure storage. The analytical solution developed in Chapter III is written as 

( ) ( ( ) ) (0) ( )
( ) ( )

( ) ( ) ( )0

q p t p t t p C p twD acD LfD acD LfD e LfD wsD acD acD LfD
p twsD LfD tc LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

⎡ ⎤⎡ ⎤ ′− − +⎣ ⎦⎢ ⎥
= ⎢ ⎥
⎢ ⎥′ ′− − −⎣ ⎦

, ............... (5.27) 

where the Laplace domain dimensionless fracture solution for a well produced at a constant rate with 

constant after-closure storage is written as 

21

p fDpacD
s C pacD fD

=
+

, ................................................................................................................... (5.28) 

and the dimensionless reservoir pressure solution is for a fixed-length finite- or infinite-conductivity  

fracture. With CbcD = CacD, the solution is written as 

( ) ( ) ( ( ) ) (0) ( )p t q p t p t t p C p twsD LfD wD acD LfD acD LfD e LfD wsD acD acD LfD⎡ ⎤ ′= − − +⎣ ⎦
. .................. (5.29) 

As time increases and storage effects dissipate, the reservoir solution can be written as pacD(tLfD) = pfD(tLfD), 

which results in 

( ) ( ) ( ( ) ) (0) ( )p t q p t p t t p C p twsD LfD wD fD LfD fD LfD e LfD wsD acD fD LfD⎡ ⎤ ′= − − +⎣ ⎦
. ....................... (5.30) 

The dimensionless well injection rate can be written as 

20 0 0
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i i e i e LfD t f

q B q Bt Q kqwD kh p p kh p p t kh p p t c L

μ μ μ

φμ
= = =

− − −
, ....................................... (5.31) 

and the solution can be written as 
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. ...................... (5.32) 

As (te)LfD → 0, the derivative of pressure is written as 

( ) 0

( ) ( ( ) ) ( )
lim ( )

( )e LfDt e LfD

p t p t t dp tfD LfD fD LfD e LfD fD LfD p tfD LfDt dtLfD→

− −
′= = , ......................................... (5.33) 

and the solution can be written as 

20

141.2(24) 0.0002637( )
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. ....................................................... (5.34) 

During pseudoradial flow, the well-testing pressure derivative is written as 

1( )
2

t p tLfD fD LfD′ = , .......................................................................................................................... (5.35) 

and the solution is written as 

20

141.2(24) 0.0002637
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. .............................................................................. (5.36) 

Define dimensionless time as 

2
0.0002637 ( )e

t f

k t t
tLfD

c Lφμ

+ Δ
= , ............................................................................................................... (5.37) 

and the complete impulse-fracture solution is written as 

( )0
141.2(24) 1(0) ( )

2 t iw i
e

Q p C p pp p wsD ackh t t
μ + −− =

+ Δ
. ............................................................... (5.38) 

The difference between the solution of Soliman, et al.108 and the impulse-fracture solution is the term 

containing the initial pressure difference and storage. When the injection begins without applying an 

instantaneous pressure difference, pwsD(0) = 0, the impulse solution of Soliman, et al.108 results. However, 

in low permeability reservoirs, beginning the injection at a rate sufficient to create, propagate, or dilate an 

existing fracture essentially results in pwsD(0) = 1. Thus, ignoring the pressure-difference and storage term 

will create some error in the estimation of transmissibility. 

Transmissibility is estimated from the slope of a line through the pseudoradial flow data on a graph of 

bottomhole pressure versus reciprocal elapsed time, and the initial reservoir pressure is estimated from the 

intercept of the line. The complete impulse-fracture solution also suggests a plot for diagnosing 

pseudoradial flow is prepared by a log-log graph of the well-testing pressure derivative written as 
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( ) ( )0
1 141.2(24) 1(0) ( )

1 ( ) 2
w

t i
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dp Q p C p pwsD act tt t d kh t t
μ + −=

+ Δ+ Δ + Δ
, ........................................... (5.39) 

versus reciprocal elapsed time. Pseudoradial flow is indicated when the well-testing derivative data fall 

along a unit slope. Additionally, the correct initial reservoir pressure is known when a log-log graph of the 

pressure difference, pw – pi, versus reciprocal elapsed time overlays the well-testing derivative curve 

during pseudoradial flow. As shown by the complete impulse-fracture solution, the appropriate time 

function is te + Δt. However, in many low-permeability cases, the shut-in time required to observe 

pseudoradial flow is such that te + Δt ≈ Δt.  

The pseudolinear flow impulse-fracture solution is developed by considering the impulse-fracture solution 

written as 

20

141.2(24) 0.0002637( )
( )( )

(0) ( )

t
i t f

kQ p tfD LfD kh p p c Lp twsD LfD
p C p twsD acD fD LfD
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⎡ ⎤′⎢ ⎥−= ⎢ ⎥
⎢ ⎥′+⎢ ⎥⎣ ⎦

. ..................................................................... (5.40) 

Assuming linear flow, the dimensionless pressure solution is written as 

( ) LfDp t tfD LfD π= ,  ....................................................................................................................... (5.41) 

and the derivative with respect to dimensionless time is written as 

1( )
2 LfD

p tfD LfD t
π′ = .  .................................................................................................................. (5.42) 

With the derivative of pressure, the pseudolinear flow impulse-fracture solution can be written as 
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. ........................................................... (5.43) 

With the definition of the dimensionless terms, the pseudolinear flow complete impulse-fracture solution 

is written as 

( )
1 2 1 2

0
1141.2(24) 0.0002637 1 (0) ( )

2 t iw i
t ef

Q p C p pp p wsD acc k t thL
μπ

φ
⎛ ⎞ ⎛ ⎞+ −− = ⎜ ⎟ ⎜ ⎟+ Δ⎝ ⎠ ⎝ ⎠

. .............. (5.44) 

The solution presented by Soliman109 and Soliman et al.108 is written as 

1 2 1 21141.2(24) 0.0002637 t
w i

t ef

Q
p p

c k t thL
μ

φπ
⎛ ⎞ ⎛ ⎞

− = ⎜ ⎟ ⎜ ⎟+ Δ⎝ ⎠ ⎝ ⎠
, ........................................................(5-45) 

which differs from the complete impulse-fracture solution by the pressure-difference and storage term and 

the constant term. In terms of dimensionless variables, Soliman109 wrote the linear-flow impulse-solution 

as 
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( )
( ) e LfD

wD LfD
LfD
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p t

tπ
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which is incorrect. As shown by the the complete pseudolinear-flow impulse solution, assuming 

pwsD(0) = 0, the solution can be written in dimensionless terms as 

( )
( )

2
e LfD

wD LfD
LfD

t
p t

t
π

= . ...............................................................................................................(5-47) 

The complete pseudolinear-flow impulse-fracture solution suggests that a graph of bottomhole pressure 

versus the square root of reciprocal elapsed time will yield an initial reservoir pressure estimate from the 

intercept of a line through the pseudolinear flow data. Additionally, if the fracture half-length is known, 

permeability can be estimated from the slope of the line. The complete pseudolinear-flow impulse-fracture 

solution also suggests a plot for diagnosing pseudolinear flow is prepared by a log-log graph of the well-

testing pressure derivative written as 

( ) ( )
1 2 1 2

0
11 141.2(24) 0.0002637 1 (0) ( )

1 ( ) 4
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t i
t eee f

dp Q p C p pwsD acc k t tt tt t d hL
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, ..... (5.48) 

versus reciprocal elapsed time. Pseudolinear flow is indicated when the well-testing derivative data fall 

along a half-slope line. Additionally, the correct initial reservoir pressure is known when a log-log graph 

of the pressure difference, pw – pi, versus reciprocal elapsed time offsets the well-testing derivative curve 

by a factor of two with a half-slope during pseudolinear flow.  

After-closure analysis requires the following for a reservoir containing a slightly-compressible fluid. 

 Prepare a log-log graph of pressure difference, pw - pi, versus the reciprocal of elapsed time, 

1/(te + Δt). 

 Identify the pseudolinear (½ slope) and pseudoradial (unit slope) flow regimes if they exist. 

Pseudolinear flow may not be observed unless the created fracture retains essentially infinite 

conductivity after closure. Additionally, pseudoradial flow may not be observed without very long 

shut-in periods when the permeability is low and the created fracture half-length is relatively long. 

 

Estimating the permeability during pseudolinear flow in a reservoir containing a slightly-compressible 

liquid requires the following. 

 Prepare a Cartesian graph of bottomhole pressure, pw, versus the square root of the reciprocal of 

elapsed time, (1/(te + Δt))½. 

 The data points on the graph during pseudolinear flow will fall along a line. The intercept of the 

line is the initial reservoir pressure, pi. 
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 Permeability is calculated from the slope of the line, macpl [psi·(hr)½], through the data points 

during pseudoradial flow and is written in field units as 

( )
21 2

0
141.2(24) 0.0002637 1 (0) ( )

2 t i
tf acpl

k Q p C p pwsD acchL m
μπ
φ

⎡ ⎤⎛ ⎞⎢ ⎥= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. ..................... (5.49) 

Calculating the permeability requires knowing the fracture half length which may not be known. 

When the after-closure storage coefficient, Cac, is unknown, and pwsD(0) ≠ 0, the permeability can 

be estimated by assuming Cac = 0. 

Estimating the transmissibility during pseudoradial flow in a reservoir containing a slightly-compressible 

liquid requires the following. 

 Prepare a graph of bottomhole pressure, pw, versus the reciprocal of elapsed time, 1/(te + Δt). 

 The data points on the graph during pseudoradial flow will fall along a line. The intercept of the 

line is the initial reservoir pressure, pi. 

 Transmissibility is calculated from the slope of the line, macpr [psi·hr], through the data points 

during pseudoradial flow and is written in field units as 

 ( )0(0) ( )141.2(24)
2

t i

acpr

Q p C p pkh wsD ac
mμ

+ −
= . ............................................................................(5-50) 

When the after-closure storage coefficient, Cac, is unknown, and pwsD(0) ≠ 0, the transmissibility 

can be estimated by assuming Cac = 0.  

Gu et al.60 examined the effects of a water injection in a gas reservoir using a numerical simulation of a 

radial model and found that the impulse solution remained valid for pseudoradial flow analysis. However, 

after-closure pseudoradial flow analysis in a reservoir containing a compressible fluid modeled as a real 

gas was not addressed theoretically by either Gu et al.60 or Abousleiman et al.61 

The impulse solution can be derived in terms of adjusted pseudopressure and adjusted pseudotime as 

follows. Assume the wellbore, fracture, and reservoir contain a real gas and that fracture propagation can 

be modeled as occurring instantaneously during an injection. With no storage, a material balance equation 

can be written for all time as 

( )(1 )e aLfDrD t Dq U q= − , ..................................................................................................................(5-51) 

where qrD is the dimensionless sandface injection rate, qD is the wellbore injection rate, and U is the unit-

step function defined as62 

0 ,
1 ,

t a
Ua t a

<⎧
= ⎨ >⎩

. ..........................................................................................................................(5-52) 
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A solution to the injection/falloff problem is obtained using superposition, which is written in terms of 

adjusted pseudopressure and adjusted pseudotime as 

( )
( )

0

taLfD dp taD aLfD aDp q dawD rD aD aDdtaLfD

τ
τ τ

⌠
⎮
⎮
⎮
⌡

−
= . ........................................................................(5-53) 

where dimensionless adjusted pseudopressure is defined as 

( )
141.2 ( )i

kh p pa aipaD q Bμ
−

= . .......................................................................................................................(5-54) 

The superposition integral and the material balance equation valid at all time can be transformed to the 

Laplace domain and written as 

( )e aLfDs tp q p q p eawD D aD D aD
−

= − , ...............................................................................................(5-55) 

which can be inverted to the time domain and written as 

( )( ) ( ( ) )( ) e aLfDaLfD D p t p t tp t q aD aLfD aD aLfDawD − −= . ...............................................................(5-56) 

where paD is a general reservoir solution written in terms of adjusted pseudotime. 

During an impulse, the cumulative volume injected is written as Qt = qBte/24, where q [Mscf/D] is the gas 

injection rate, which allows the dimensionless injection rate to be written as 

2
( ) 24 0.0002637
( ) ( ) ( )

e aLfDe t
e e aLfD e aLfD t i f

qB tqBt Q kqD qBt qB t qB t c Lφ μ
= = = . ...........................................................................(5-57) 

With the dimensionless injection rate, the solution can be written as 

( ) 2
24 0.0002637( ) ( ( ) )( )

( ) ( )
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e aLfD t i f

Q kp t p t tp t aD aLfD aD aLfDawD t qB c Lφ μ
− −= . ..................................(5-58) 

In the limit as (te)aLfD goes to 0, that is, as the injection becomes instantaneous for a constant Qt, the 

instantaneous source solution is written as 

2

( ) 0.0002637( ) 24
( )

aLfD t
aLfD t i f

dp t kaD aLfDp t QawD dt qB c Lφ μ
= . ..............................................................................(5-59) 

The derivative of dimensionless adjusted pseudopressure with respect to the natural logarithm of adjusted 

pseudotime is written as 

( ) ( )

(ln ) aLfD
aLfD aLfD

dp t dp taD aLfD aD aLfDt
d t dt
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which during pseudoradial flow is equal to ½. Consequently, the instantaneous source solution during 

pseudoradial flow can be written as 
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or written as 

( ) 24( )
2

t
e a a

Q
t tpawD qB
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With the definition of adjusted pseudopressure, the impulse solution is written in terms of adjusted 

pseudovariables as 
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141.2(24) 1
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Q
p paw ai t tkh

μ
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+ Δ
. ........................................................................................(5-63) 

where Qat [bbl] is the total volume injected, Qat = qBite/24, and Δta = ta – (te)a. Similarly, the complete 

impulse-fracture solution is written as 
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The pseudolinear flow impulse-fracture solution is written in terms of adjusted pseudopressure and 

adjusted pseudotime as 

( )
1 2 1 2

0
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The impulse-fracture solutions written in terms of pressure and time and adjusted pseudopressure and 

pseudotime are of the same form, and after-closure analysis requires the following. 

 Prepare a log-log graph of adjusted pseudopressure difference, paw – pai, versus the reciprocal of 

elapsed adjusted pseudotime, 1/((te)a + Δta). 

 Identify the pseudolinear (½ slope) and pseudoradial (unit slope) flow regimes if they exist. 

Pseudolinear flow may not be observed unless the created fracture retains essentially infinite 

conductivity after closure. Additionally, pseudoradial flow may not be observed without very long 

shut-in periods when the permeability is low and the created fracture half-length is relatively long. 

Estimating the permeability during pseudolinear flow in a reservoir containing a compressible fluid 

requires the following. 

 Prepare a Cartesian graph of bottomhole adjusted pseudopressure, paw, versus the square root of 

the reciprocal of elapsed adjusted pseudotime, (1/(( te)a + Δta)½. 

 The data points on the graph during pseudolinear flow will fall along a line. The intercept of the 

line is the initial reservoir adjusted pseudopressure, pai. 

 Permeability is calculated from the slope of the line, macpl [psi·(hr)½], through the data points 

during pseudoradial flow and is written in field units as 
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. ........... (5.66) 
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Calculating the permeability requires knowing the fracture half length which may not be known. 

When the after-closure storage coefficient, Caac, is unknown, and pawsD(0) ≠ 0, the permeability can 

be estimated by assuming Cac = 0. 

Estimating the transmissibility during pseudoradial flow in a reservoir containing a compressible fluid 

requires the following. 

 Prepare a graph of bottomhole adjusted pseudopressure, paw, versus the reciprocal of elapsed 

adjusted pseudotime, 1/((te)a + Δta). 

 The data points on the graph during pseudoradial flow will fall along a line. The intercept of the 

line is the initial reservoir adjusted pseudopressure, pai. 

 Transmissibility is calculated from the slope of the line, macpr [psi·hr], through the data points 

during pseudoradial flow and is written in field units as 

 ( )0(0) ( )141.2(24)
2

at a ai

i acpr

Q p C p pkh awsD aac
mμ

+ −
= . ...................................................................(5-67) 

When the after-closure storage coefficient, Caac, is unknown, and pawsD(0) ≠ 0, the transmissibility 

can be estimated by assuming Caac = 0.  

5.2.4 Quantitative Analysis – Type-Curve Analysis. Quantitative type-curve matching is applicable 

when the equivalent constant-rate pressure difference and derivative extend beyond the end of storage-

dominated flow. In the absence of pseudolinear or pseudoradial flow, before-closure pressure-transient 

analysis and type-curve analysis are the only methods for determining transmissibility from a fracture-

injection/falloff sequence. 

Quantitative type-curve analysis is based on the limiting-case solutions for a fracture-injection/falloff 

sequence where the fracture-injection can be considered as occurring instantaneously. The solutions were 

developed in Chapter III for a fracture-injection/falloff sequence without a pre-exising fracture and in 

Chapter IV for cases with a pre-existing fracture. The limiting-case solutions are summarized as follows. 

• Before-Closure [tLfD < (tc)LfD] Limiting Case Solutions for a Fracture-Injection Sequence With a 

Dilating or Propagating Fracture 

 Slightly-Compressible Liquid 

( ) (0) ( )p t p C p twsD LfD wsD bcD bcD LfD′= , ................................................................................ (5.68) 

where the Laplace domain dimensionless fracture solution for a well produced at a constant rate 

with constant before-closure storage is written as 

21

p fDpbcD
s C pbcD fD

=
+

. ........................................................................................................... (5.69) 
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The limiting-case solution is a slug-test solution, and as shown by Peres et al.,69 a slug-test solution 

can be integrated with respect to tLfD and written as 

0
1 ( ) ( )

(0)
LfDt

LfDp t dt p twsD LfD bcD LfDp CwsD bcD
=∫ . .............................................................. (5.70) 

The before-closure storage coefficient is defined in field units as 

0.89365.615
2 22

C Cbc bcCbcD
c hL c hLt tf f

π φ φ
= = , ......................................................................................... (5.71) 

where Cbc [bbl/psi] is the before-closure storage coefficient defined as 

2
5.615

AfC c Vbc w w S f
= + , ........................................................................................................... (5.72) 

with cw [1/psi] defined as the compressibility of the wellbore fluid, Vw [bbl] defined as the volume 

of the wellbore, and Af [ft2] is the area of one fracture wing. 

Dimensionless wellbore pressure is defined in field units as 

( )
( )

0

p t pw LfD ip twsD LfD p pi

−
=

−
, ................................................................................................... (5.73) 

which allows the solution for transmissibility to be written in field units as 

0
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, ................................................... (5.74) 

where the subscript 'MP' denotes a matchpoint of the before-closure integrated pressure difference 

and the constant-rate, constant before-closure storage solution. 

 Compressible Fluid 

( ) (0) ( )p t p C p tawsD aLfD awsD abcD bcD aLfD′= , ....................................................................... (5.75) 

where the adjusted before-closure storage is used in the Laplace domain dimensionless fracture 

solution for a well produced at a constant rate with constant before-closure storage and is written 

as 

21

p fDpbcD
s C pabcD fD

=
+
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The dimensinless adjusted before-closure storage coefficient is defined in field units as 

5.615
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⎣ ⎦

, .......................................................... (5.77) 

where Ca [bbl/psi] is the adjusted wellbore-storage coefficient defined as 
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C c Va gi w= , .............................................................................................................................. (5.78) 

and Cfbc [bbl/psi] is the dilated/before-closure storage coefficient written as 

2
5.615

f

f

A
C fbc S

= . ................................................................................................................... (5.79) 

The dimensionless adjusted before-closure storage coefficient can also be written as 

5.615
22

i
aD fbcD
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C TabcC C CabcD Tc hLti f
π φ

= + = , .............................................................................. (5.80) 

where the adjusted before-closure storage coefficient is defined as 

ctiC C Cabc a fbcctbc
= + , ............................................................................................................. (5.81) 

with ctbc [1/psi] defined as the before-closure average total compressibility written as 

0 ,
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tbc w c

c c
c p p

+
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where ct0 [1/psi] is the total compressibility evaluated at the pressure at the end of the injection and 

ctc [1/psi] is the total compressibility evaluated at fracture closure pressure. 

With the dimensionless adjusted before-closure storage coefficient definition, transmissibility can 

be calculated as 

0
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• After-Closure [tLfD  (tc)LfD] Limiting Case Solutions for a Fracture-Injection Sequence With a 

Dilating or Propagating Fracture 

 Slightly-Compressible Liquid 

( )( ) (0) ( ) ( ) ( )p t p C p t C C p twsD LfD wsD bcD wsD c LfD bcD acD acD LfD⎡ ⎤ ′= − −⎢ ⎥⎣ ⎦
, ........................ (5.84) 

where the Laplace domain dimensionless fracture solution for a well produced at a constant rate 

with constant after-closure storage is written as 

21

p fDpacD
s C pacD fD

=
+
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The after-closure limiting-case solution is also a slug-test solution, and can be integrated with 

respect to tLfD and written as 
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The after-closure storage coefficient is defined in field units as 

0.89365.615
2 22

C Cac acCacD
c hL c hLt tf f

π φ φ
= = , ......................................................................................... (5.87) 

where Cac [bbl/psi] is the after-closure storage coefficient defined as 

2C c V c Vac w w f fr= + , ............................................................................................................... (5.88) 

where cf [1/psi] is the compressibility of the fluid in the fracture and Vfr [bbl] is the residual 

fracture volume at closure.   

With the dimensionless before- and after-closure storage coefficient definitions, transmissibility 

can be calculated in field units as 
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 Compressible Fluid 

( )( ) (0) ( ) ( ) ( )p t p C p t C C p tawsD aLfD awsD abcD awsD c aLfD abcD aacD acD aLfD⎡ ⎤ ′= − −⎢ ⎥⎣ ⎦
, ........ (5.90) 

The dimensinless adjusted after-closure storage coefficient is defined in field units as 

2
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2
aac i

aacD
wti f

C C TaC
Tc hLπ φ

+
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where Caac [bbl/psi] is the adjusted after-closure storage coefficient defined as 

2C c Vaac gi fr= , ...................................................................................................................... (5.92) 

and cgi [1/psi] is the gas compressibility evaluated at initial reservoir pressure. 

With the dimensionless adjusted after-closure storage coefficient definition, transmissibility can be 

calculated as 
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. .. (5.93) 

• Before-Closure [tLfD < (tc)LfD] Limiting Case Solutions for a Fracture-Injection Sequence With a 

Dilating or Propagating Fracture, Fracture Flow During Closure, and Radial Flow With Wellbore 

Storage and Skin After Closure 

 Slightly-Compressible Liquid 

( ) (0) ( )p t p C p twsD LfD wsD bcD bcD LfD′= . ................................................................................ (5.94) 

The before-closure limiting-case solution is identical to the before-closure solution for a fracture-

injection/falloff sequence with a dilating or propagating fracture during the injection, and 

transmissibility is calculated in field units as 
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 Compressible Fluid 

( ) (0) ( )p t p C p tawsD aLfD awsD abcD bcD aLfD′= . ....................................................................... (5.96) 

Similarly, for a compressible fluid, transmissibility is calculated in field units as 
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• After-Closure [tLfD  (tc)LfD] Limiting Case Solutions for a Fracture-Injection Sequence With a 

Dilating or Propagating Fracture, Fracture Flow During Closure, and Radial Flow With Wellbore 

Storage and Skin After Closure 

 Slightly-Compressible Liquid 

( )( ) (0) ( ) ( ) ( )p t p C p t C C p twsD LfD wsD bcD wsD c LfD bcD D sacD LfD⎡ ⎤ ′= − −⎢ ⎥⎣ ⎦
, .......................... (5.98) 

where the Laplace domain dimensionless radial flow solution with skin and constant after-closure 

wellbore storage is written in the Laplace domain as 

21

psDpsacD
s C pD sD

=
+
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The cylindrical-source reservoir solution with skin, S, is written in the Laplace domain as65 

( )
( )

0

1

1 wDK r s SpsD s ssK s
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where the dimensionless radius is defined in terms of the created fracture half length written as 

w
wD

f

r
r

L
= . .............................................................................................................................. (5.101) 

After fracture closure no residual volume remains, and the dimensionless wellbore-storage 

coefficient is defined in field units as 

5.615 0.8936
2 22

C CCD
c hL c hLt tf f

π φ φ
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where C [bbl/psi] is the wellbore storage coefficient defined as 

C c Vw w= . ............................................................................................................................... (5.103) 

With the dimensionless storage definitions, transmissibility is calculated in field units as  
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Note that the integrated pressure difference is matched with a constant-rate type curve for 

production from an infinite slab reservoir with wellbore storage and skin. Additionally, the before-

closure storage coefficient is a function of fracture half length, which for previous solutions was 

estimated from fracture imaging27 or other methods.59 However, as shown in Chapter III, an 

immediate transition to radial flow after closure allows the fracture half length to be calculated 

from skin estimated from the type curve match provided the "true" skin damage is negligible. 

Recall from Chapter III that assuming rD = 1, a skin factor is calculated as 

Sw
f

r
r r ewD DL

−= = , ................................................................................................................. (5.105) 

which allows fracture half-length to be calculated in field units as 

w
f S

r
L

e−
= , ............................................................................................................................... (5.106) 

where rw [ft] is the wellbore radius. 

 Compressible Fluid 
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, ........ (5.107) 

After fracture closure no residual volume remains, and the dimensionless wellbore-storage 

coefficient is defined in field units as 

0.89365.615
2 22

a i a i
w w

C T C T
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π φ φ
= = , ................................................................................ (5.108) 

where Ca [bbl/psi] is the wellbore storage coefficient defined as 

aC c Vgi w= . ............................................................................................................................. (5.109) 

With the dimensionless storage definitions, transmissibility is calculated in field units as  
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Once again note that the integrated pressure difference is matched with a constant-rate type curve 

for production from an infinite slab reservoir with wellbore storage and skin. As was true for the 

slightly-compressible fluid case, fracture half length can be calculated from the skin factor match 

as 

w
f S

r
L

e−
= . ............................................................................................................................... (5.111) 

• Before-Closure [tLfD < (tc)LfD] Limiting Case Solutions for a Fracture-Injection Sequence With a 

Constant-Volume Pre-Existing Fracture With Secondary Fracture Propagation 

 Slightly-Compressible Liquid 
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( ) (0) ( )p t p C p twsD LfD wsD LfbcD LfbcD LfD′= , ........................................................................ (5.112) 

where the Laplace domain dimensionless fracture solution for a well producing at a constant rate in 

an infinite slab reservoir through multiple fractures with constant before-closure storage is written 

as 

21

pLfDpLfbcD
s C pLfbcD LfD

=
+
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The limiting-case solution with multiple fractures is also a slug-test solution, and the solution can 

be integrated with respect to tLfD and written as 

0
1 ( ) ( )
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=∫ . ..................................................... (5.114) 

The dimensionless secondary-fracture before-closure storage coefficient is defined in field units as 

0.89365.615
2 22

C CLfbc LfbcCLfbcD
c hL c hLt tf f

π φ φ
= = , ................................................................................. (5.115) 

where CLfbc [bbl/psi] is the secondary-fracture before-closure storage coefficient defined as 

1
2 22

5.615 2
f f

AfC c V c VLfbc w w S f
= + + , ..................................................................................... (5.116) 

with Vf1 [bbl] defined as the volume of the primary fracture, Af2 [ft2] is the area of one wing of the 

secondary fracture, and Sf2 [psi/ft] is the fracture stiffness of the secondary fracture.  

The solution for transmissibility is written in field units as 
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Note that calculating transmissibility requires knowing both primary and secondary fracture half 

lengths. The multiple-fracture type-curve match provides a length ratio defined as 

2

1

L f
L L f

δ = , ............................................................................................................................. (5.118) 

where Lf1 [ft] is the primary fracture half length and Lf2 [ft] is the secondary fracture half length. 

When the primary fracture half length is known from prior well test interpretations or production 

data analysis, the secondary fracture half length can be calculated. When the primary fracture half 

length is unknown, the secondary fracture half length can be estimated by fracture imaging.27 

Assuming no spurt loss and using the method of Valkó and Economides59 will not provide an 

accurate estimate of fracture half-length because leakoff is through two fractures.  However, if 

either the primary or secondary fracture half length is known, or can be determined, the other 



 137 

fracture half-length can be calculated from the type curve match, and the secondary-fracture 

before-closure storage coefficients can be calculated and the transmissibility estimated. 

 Compressible Fluid 

( ) (0) ( )p t p C p tawsD aLfD awsD aLfbcD LfbcD aLfD′= . ................................................................ (5.119) 

The dimensionless adjusted secondary-fracture before-closure storage coefficient is defined in 

field units as 
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5.615

2
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wti f

C T
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Tc hLπ φ
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where CLfbc [bbl/psi] is the adjusted secondary-fracture before-closure storage coefficient defined 

as 

1 1a aac fbcC C C CaLfbc = + + , ............................................................................................... (5.121) 

the adjusted primary-fracture after-closure storage coefficient is written as 

21 1C c Vaac gi f= , .................................................................................................................. (5.122) 

and the adjusted secondary-fracture before-closure storage coefficient is written as 

2
1 5.615

Ac ftiC fbc c Stbc f
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With the storage coefficients defined, transmissibility can be calculated in field units as 
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• After-Closure [tLfD  (tc)LfD] Limiting Case Solutions for a Fracture-Injection Sequence With a 

Constant-Volume Pre-Existing Fracture With Secondary Fracture Propagation 

 Slightly-Compressible Liquid 

( )( ) (0) ( ) ( ) ( )p t p C p t C C p twsD LfD wsD LfbcD wsD c LfD LfbcD LfacD LfacD LfD⎡ ⎤ ′= − −⎢ ⎥⎣ ⎦
, .......... (5.125) 

where the Laplace domain dimensionless fracture solution for a well producing at a constant rate 

through multiple fractures with constant after-closure storage is written as 

21

pLfDpLfacD
s C pLfacD LfD
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The dimensionless multiple-fracture after-closure storage coefficient is defined in field units as 

0.89365.615
2 22

C CLfac LfacCLfacD
c hL c hLt tf f

π φ φ
= = , ................................................................................. (5.127) 
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where CLfac [bbl/psi] is the multiple-fracture after-closure storage coefficient defined as 

2 21 2C c V c V c Vac w w f f f f= + + , ............................................................................................ (5.128) 

where Vf2 [bbl] defined as the volume of the primary fracture.   

With the storage coefficient definitions, transmissibility can be calculated in field units as 
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 Compressible Fluid 
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The dimensionless adjusted secondary-fracture after-closure storage coefficient is defined in field 

units as 
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where CaLfac [bbl/psi] is the adjusted secondary-fracture before-closure storage coefficient defined 

as 

1 2a aac aacC C C CaLfac = + + , .............................................................................................. (5.132) 

the adjusted primary-fracture after-closure storage coefficient is written as 

21 1C c Vaac gi f= , .................................................................................................................. (5.133) 

and the adjusted secondary-fracture after-closure storage coefficient is written as 

22 2C c Vaac gi f= . ................................................................................................................. (5.134) 

With the storage coefficients defined, transmissibility can be calculated in field units as 
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• Primary-Fracture Before-Closure [tLfD < (tc1)LfD] Limiting Case Solutions for a Fracture-Injection 

Sequence With a Dilating Pre-Existing Fracture, Secondary Fracture Propagation, Multiple 

Fracture Closures, and Constant After-Closure Storage 

 Slightly-Compressible Liquid 

( ) (0) ( )1 1p t p C p twsD LfD wsD Lfbc D Lfbc D LfD′= . .................................................................... (5.136) 
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where the Laplace domain dimensionless fracture solution for a well producing at a constant rate 

with constant primary-fracture before-closure storage is written in the Laplace domain as 

1 21 1

pLfDpLfbc D
s C pLfbc D LfD
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The dimensionless primary-fracture before-closure storage coefficient is defined in field units as 

0.89365.615 1 1
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where CLfbc1 [bbl/psi] is the primary-fracture before-closure storage coefficient defined as 
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with Af1 [ft2] is the area of one wing of the primary fracture, and Sf1 [psi/ft] is the fracture stiffness 

of the primary fracture.  

The solution for transmissibility is written in field units as 
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Note that calculating transmissibility requires knowing both primary and secondary fracture half 

lengths. The multiple-fracture type-curve match provides a length ratio defined as 

2

1

L f
L L f

δ = , ............................................................................................................................. (5.141) 

where Lf1 [ft] is the primary fracture half length and Lf2 [ft] is the secondary fracture half length. 

When the primary fracture half length is unknown, the secondary fracture half length can be 

estimated by fracture imaging.27 Assuming no spurt loss and using the method of Valkó and 

Economides59 to estimate fracture half length cannot provide an accurate estimate because leakoff 

is through two fractures.  However, if either the primary or secondary fracture half length is known 

or can be determined, the other fracture half length can be calculated from the type curve match, 

and the secondary-fracture before-closure storage coefficient can be calculated and the 

transmissibility estimated. 

 Compressible Fluid 

( ) (0) ( )1 1p t p C p tawsD aLfD awsD aLfbc D Lfbc D aLfD′= . ............................................................ (5.142) 

The dimensionless adjusted primary-fracture before-closure storage coefficient is defined in field 

units as 
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where CaLfbc1 [bbl/psi] is the adjusted primary-fracture before-closure storage coefficient defined as 
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with ctbc1 [1/psi] defined as the primary-fracture before-closure average total compressibility 

written as 
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where ctc1 [1/psi] is the total compressibility evaluated at the primary-fracture closure pressure, pc1. 

The solution for transmissibility is written in field units as 
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• Secondary-Fracture Before-Closure [(tc1)LfD << tLfD < (tc2)LfD] Limiting Case Solutions for a 

Fracture-Injection Sequence With a Dilating Pre-Existing Fracture, Secondary Fracture 

Propagation, Multiple Fracture Closures, and Constant After-Closure Storage 

 Slightly-Compressible Liquid 
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where the Laplace domain dimensionless fracture solution for a well producing at a constant rate 

with constant secondary-fracture before-closure storage is written in the Laplace domain as 
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s C pLfbc D LfD

=
+

. ............................................................................................. (5.148) 

The dimensionless primary-fracture before-closure storage coefficient is defined in field units as 
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where CLfbc2 [bbl/psi] is the primary-fracture before-closure storage coefficient defined as 

1
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The solution for transmissibility is written in field units as 
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 Compressible Fluid 
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The dimensionless adjusted primary-fracture before-closure storage coefficient is defined in field 

units as 
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where CaLfbc2 [bbl/psi] is the adjusted secondary-fracture before-closure storage coefficient defined 

as 
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with ctbc2 [1/psi] defined as the secondary-fracture before-closure average total compressibility 

written as 
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where ctc2 [1/psi] is the total compressibility evaluated at the secondary-fracture closure pressure, 

pc2. 

With the storage coefficients defined, transmissibility can be calculated in field units as 
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• After-Closure [tLfD  (tc2)LfD > (tc1)LfD] Limiting Case Solutions for a Fracture-Injection Sequence 

With a Dilating Pre-Existing Fracture, Secondary Fracture Propagation, Multiple Fracture 

Closures, and Constant After-Closure Storage 

 Slightly-Compressible Liquid 
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The solution for transmissibility is written in field units as 
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 Compressible Fluid 
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From the limiting-case solution, transmissibility can be calculated in field units as 
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5.3 Field Examples 

Chapter V also contains field examples to illustrate the interpretation of a fracture-injection/falloff 

sequence for the following cases. 

• Without a pre-existing fracture: 

 Pseudoradial flow observed after closure. 

 Pseudolinear flow observed after closure. 

• With a pre-existing fracture: 

 A pre-existing conductive hydraulic fracture with choked-fracture skin damage. 

5.3.1 Pseudoradial Flow Observed After Closure. A fracture-injection/falloff sequence was completed 

in a relatively thin sandstone reservoir between 10,159- to 10,177 feet. The fracture-injection was pumped 

via 3-1/2 inch tubing landed at 10,091 feet, and the fracture-injection consisted of 67.9 bbl of KCl treated 

water, which was pumped at an average rate of 10.7 bbl/min during the 6.32 minute injection.  
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The entire fracture-injection/falloff sequence is shown in Fig. 5-5, which is a graph of bottomhole pressure 

and surface injection rate versus time. The falloff period shown in Fig. 5.5 extended for 1.70 hours beyond 

the end of the fracture-injection. The fracture-injection/falloff sequence is analyzed as follows. Table 5-2 

contains the time, pressure, and rate data recorded during the injection. 
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t , s p w , psi q i , bbl/min t , s p w , psi q i , bbl/min t , s p w , psi q i , bbl/min t , s p w , psi q i , bbl/min t , s p w , psi q i , bbl/min
0 5496.93 2.893 76 8832.80 11.951 152 8600.74 12.076 228 8513.72 12.076 304 8397.69 12.139
1 5424.41 4.466 77 8905.32 11.951 153 8644.25 12.076 229 8470.20 12.076 305 8325.17 12.139
2 5482.43 4.906 78 8861.81 11.951 154 8600.74 12.076 230 8412.19 12.076 306 8412.19 12.139
3 5554.95 4.780 79 8789.29 11.951 155 8571.73 12.076 231 8499.21 12.076 307 8397.69 12.139
4 5598.46 4.780 80 8818.29 11.951 156 8644.25 12.014 232 8455.70 12.139 308 8339.67 12.139
5 6280.13 4.843 81 8847.30 11.951 157 8600.74 12.014 233 8397.69 12.139 309 8412.19 12.139
6 6526.70 4.969 82 8803.79 11.951 158 8571.73 12.076 234 8499.21 12.076 310 8368.68 12.139
7 6700.74 4.906 83 8774.78 11.951 159 8644.25 12.076 235 8441.20 12.139 311 8368.68 12.076
8 6860.28 4.906 84 8832.80 12.014 160 8600.74 12.076 236 8426.69 12.076 312 8426.69 12.076
9 7251.89 4.780 85 8818.29 11.951 161 8557.23 12.076 237 8484.71 12.139 313 8368.68 12.076
10 7599.98 4.843 86 8731.27 11.951 162 8629.75 12.014 238 8441.20 12.139 314 8383.18 12.076
11 7875.55 4.906 87 8818.29 11.951 163 8600.74 12.014 239 8412.19 12.139 315 8397.69 12.139
12 8020.59 4.906 88 8818.29 11.951 164 8542.72 12.076 240 8455.70 12.202 316 8339.67 12.139
13 8339.67 4.843 89 8731.27 11.951 165 8615.24 12.014 241 8412.19 12.202 317 8383.18 12.139
14 8615.24 4.780 90 8774.78 11.951 166 8600.74 12.014 242 8397.69 12.139 318 8397.69 12.139
15 8977.84 4.717 91 8803.79 12.014 167 8528.22 12.076 243 8470.20 12.139 319 8339.67 12.076
16 9180.89 4.717 92 8760.28 11.951 168 8600.74 12.076 244 8426.69 12.139 320 8412.19 12.076
17 9369.44 4.654 93 8731.27 11.951 169 8600.74 12.076 245 8397.69 12.139 321 8383.18 12.139
18 9572.49 4.654 94 8803.79 11.951 170 8528.22 12.014 246 8470.20 12.139 322 8339.67 12.076
19 9601.50 4.592 95 8774.78 11.951 171 8586.23 12.014 247 8426.69 12.139 323 8397.69 12.139
20 9732.03 4.592 96 8687.76 12.014 172 8586.23 12.076 248 8412.19 12.139 324 8383.18 12.076
21 9630.51 4.654 97 8774.78 12.014 173 8528.22 12.076 249 8470.20 12.139 325 8354.17 12.076
22 9659.51 4.529 98 8745.78 12.014 174 8586.23 12.014 250 8412.19 12.139 326 8397.69 12.139
23 9412.95 4.529 99 8687.76 12.014 175 8586.23 12.076 251 8426.69 12.076 327 8354.17 12.139
24 9180.89 4.529 100 8745.78 11.951 176 8528.22 12.014 252 8470.20 12.139 328 8339.67 12.139
25 8847.30 4.654 101 8760.28 11.951 177 8571.73 12.076 253 8412.19 12.076 329 8397.69 12.139
26 8702.26 4.592 102 8702.26 12.014 178 8571.73 12.076 254 8426.69 12.076 330 8339.67 12.139
27 8499.21 4.529 103 8687.76 11.951 179 8499.21 12.139 255 8455.70 12.139 331 8368.68 12.139
28 8426.69 4.592 104 8745.78 11.951 180 8528.22 12.139 256 8397.69 12.139 332 8383.18 12.139
29 8354.17 4.529 105 8716.77 11.951 181 8571.73 12.076 257 8426.69 12.076 333 8325.17 12.076
30 8223.64 4.654 106 8673.26 11.951 182 8499.21 12.139 258 8455.70 12.139 334 8397.69 12.076
31 8281.65 4.529 107 8716.77 12.014 183 8542.72 12.076 259 8383.18 12.139 335 8383.18 12.139
32 8194.63 4.654 108 8702.26 12.014 184 8557.23 12.076 260 8426.69 12.139 336 8325.17 12.076
33 8281.65 4.529 109 8644.25 12.014 185 8499.21 12.076 261 8441.20 12.139 337 8412.19 12.076
34 8194.63 4.654 110 8702.26 11.951 186 8513.72 12.139 262 8368.68 12.139 338 8368.68 12.139
35 8252.65 4.592 111 8716.77 11.951 187 8557.23 12.076 263 8441.20 12.139 339 8325.17 12.139
36 8223.64 4.654 112 8658.75 12.014 188 8499.21 12.076 264 8441.20 12.139 340 8397.69 12.139
37 8267.15 4.654 113 8658.75 11.951 189 8513.72 12.076 265 8368.68 12.139 341 8354.17 12.076
38 8238.14 4.654 114 8687.76 12.014 190 8542.72 12.076 266 8441.20 12.139 342 8354.17 12.139
39 8252.65 4.654 115 8658.75 12.014 191 8484.71 12.076 267 8426.69 12.139 343 8397.69 12.139
40 8281.65 4.654 116 8615.24 12.014 192 8499.21 12.076 268 8368.68 12.139 344 8310.66 12.139
41 8180.13 4.654 117 8702.26 11.951 193 8542.72 12.076 269 8441.20 12.139 345 8354.17 12.202
42 8267.15 4.654 118 8687.76 11.951 194 8484.71 12.076 270 8441.20 12.076 346 7861.05 12.139
43 8194.63 4.654 119 8615.24 11.951 195 8499.21 12.076 271 8383.18 12.076 347 8006.08 10.693
44 8252.65 4.654 120 8658.75 12.014 196 8528.22 12.139 272 8441.20 12.139 348 8136.62 9.372
45 8180.13 4.654 121 8687.76 11.951 197 8484.71 12.076 273 8412.19 12.139 349 8006.08 9.435
46 8252.65 4.654 122 8629.75 11.951 198 8499.21 12.076 274 8383.18 12.139 350 8035.09 9.246
47 8426.69 4.717 123 8658.75 11.951 199 8528.22 12.076 275 8441.20 12.139 351 8006.08 9.246
48 8600.74 5.032 124 8673.26 12.014 200 8455.70 12.139 276 8397.69 12.139 352 8020.59 9.246
49 8745.78 5.661 125 8644.25 12.014 201 8484.71 12.139 277 8397.69 12.139 353 8020.59 9.246
50 8760.28 7.736 126 8615.24 12.076 202 8528.22 12.076 278 8441.20 12.139 354 8020.59 9.246
51 8455.70 8.994 127 8687.76 11.951 203 8470.20 12.076 279 8383.18 12.139 355 8035.09 9.183
52 8977.84 8.806 128 8673.26 11.951 204 8484.71 12.139 280 8397.69 12.139 356 8035.09 9.183
53 9108.37 9.498 129 8615.24 11.951 205 8513.72 12.139 281 8426.69 12.139 357 8020.59 9.246
54 8992.34 10.567 130 8673.26 12.014 206 8455.70 12.139 282 8368.68 12.139 358 8020.59 9.246
55 8992.34 11.699 131 8673.26 12.014 207 8470.20 12.139 283 8412.19 12.139 359 8035.09 9.183
56 8963.33 11.888 132 8615.24 12.014 208 8513.72 12.076 284 8426.69 12.139 360 8035.09 9.183
57 8745.78 11.825 133 8644.25 12.014 209 8441.20 12.139 285 8354.17 12.139 361 8049.59 9.246
58 8977.84 11.699 134 8673.26 12.014 210 8484.71 12.076 286 8441.20 12.076 362 8049.59 9.246
59 8934.32 11.636 135 8644.25 11.951 211 8499.21 12.139 287 8426.69 12.139 363 8020.59 9.435
60 8774.78 11.762 136 8615.24 12.014 212 8441.20 12.139 288 8354.17 12.139 364 8049.59 9.372
61 8934.32 11.825 137 8673.26 12.014 213 8499.21 12.076 289 8412.19 12.202 365 8049.59 9.372
62 8919.82 11.825 138 8644.25 12.014 214 8499.21 12.139 290 8397.69 12.139 366 8049.59 9.372
63 8818.29 11.825 139 8586.23 12.014 215 8426.69 12.139 291 8354.17 12.139 367 8049.59 9.372
64 8948.83 11.825 140 8658.75 12.076 216 8484.71 12.139 292 8441.20 12.076 368 7570.97 9.246
65 8934.32 11.825 141 8658.75 11.951 217 8484.71 12.139 293 8397.69 12.139 369 7541.96 8.428
66 8861.81 11.762 142 8586.23 12.014 218 8426.69 12.139 294 8368.68 12.139 370 7788.53 5.975
67 8977.84 11.762 143 8658.75 12.014 219 8484.71 12.139 295 8441.20 12.076 371 7759.52 5.472
68 8977.84 11.825 144 8658.75 12.014 220 8484.71 12.139 296 8383.18 12.139 372 7672.50 5.661
69 8876.31 11.951 145 8600.74 11.951 221 8412.19 12.139 297 8368.68 12.139 373 7716.01 5.975
70 8861.81 11.951 146 8629.75 12.014 222 8513.72 12.076 298 8441.20 12.076 374 7788.53 5.975
71 8948.83 11.951 147 8644.25 12.014 223 8470.20 12.139 299 8354.17 12.139 375 7803.03 5.975
72 8861.81 11.888 148 8586.23 12.076 224 8412.19 12.139 300 8397.69 12.139 376 7817.53 5.975
73 8847.30 11.888 149 8615.24 12.076 225 8499.21 12.076 301 8412.19 12.139 377 7774.02 6.038
74 8934.32 11.888 150 8644.25 12.076 226 8470.20 12.139 302 8354.17 12.076 378 7745.02 6.038
75 8890.81 11.951 151 8600.74 12.076 227 8397.69 12.139 303 8412.19 12.139 379 7774.02 6.038

Table 5-2—Fracture-injection time, pressure, and rate data. 
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1. Calculate the function G(g(Δt,αN)) for each time and pressure recorded during the falloff period 

where the function is calculated as75 

[ ]0
4( , ) ( , ) ( )D N D N NG t g t gα α α
π

Δ = Δ − . .................................................................................... (5.161) 

The function g(Δt,αN) can be calculated from the closed-form solution78 noted in Chapter II, or it can be 

calculated from correlations, like those provided by Ispas et al.110 Table 5-3 contains the tabulated values 

of time, pressure, g(Δt,αN), and G(g(Δt,αN)). 

2. Prepare a Cartesian graph of bottomhole pressure, pw, versus the function G(g(Δt,αN)), the 

derivative of pressure, dpw/dG, and the "superposition" derivative, Gdpw/dG. 

3. Identify the leakoff type74 and hydraulic fracture closure using the G-function plot. Fig. 5-6 

contains the G-function plot for the fracture-injection/falloff sequence. The leakoff type is fracture 

height recession during shut-in, which is indicated by the characteristic dip in the superposition 

derivative below a straight line from the origin through the "normal" leakoff data. Fracture closure is 

observed at Gc = 4.33, and the closure stress is 6,382 psi. 

4. Initial reservoir pressure can be estimated from the closure stress and the uniaxial strain 

relationship, which is written as  

min 1

1
1

z
ip

υσ σ
υ

υ
υ

⎛ ⎞− ⎜ ⎟−⎝ ⎠=
⎛ ⎞− ⎜ ⎟−⎝ ⎠

. ................................................................................................................. (5.162) 

Assuming Poisson's ratio, υ = 0.20, and an overburden stress, σz = 10,150 psi (1 psi/ft overburden 

gradient), the initial reservoir pressure estimate is pi = 5,126 psi. The estimated intial reservoir pressure 

from closure stress should be considered as a guide only—the pressure may or may not be accurate 

depending on additional factors, including tectonic stress. 

5. Before-closure analysis59 requires an estimate of fracture half-length and lost fracture width 

because of fluid leakoff, wL. Fracture half-length and lost width are estimated from a graph of 

bottomhole pressure versus the loss-volume function, g(Δt,αN), which is shown in Fig. 5.7 assuming the 

fracture grows under horizontal plane strain conditions (GDK).  The slope of the line through the 

before-closure data is (mN)GDK = -323 psia and the intercept is (bN)GDK = 8003 psia. Fracture half length 

is calculated from the intercept assuming Young's modulus, E = 5(10)6 psi, and fracture height, hf  = 6 ft, 

as59 
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t , s p w , psi g (Δ t ,α N ) G(g (Δ t ,α N )) t a , hr p aw , psi B g , bbl/Mscf c t , psi-1 t , s p w , psi g (Δ t ,α N ) G(g (Δ t ,α N )) t a , hr p aw , psi B g , bbl/Mscf c t , psi-1

385 7599.98 1.478 0.0000 0.10694 6135.57 0.5338 5.012E-05 2081 6526.70 4.473 3.8125 0.54164 5083.26 0.5750 6.344E-05
394 7541.96 1.516 0.0474 0.10944 6079.18 0.5357 5.070E-05 2106 6512.19 4.502 3.8494 0.54765 5068.92 0.5756 6.366E-05
403 7527.46 1.550 0.0917 0.11192 6065.08 0.5362 5.085E-05 2131 6497.69 4.530 3.8861 0.55365 5054.57 0.5763 6.389E-05
410 7469.44 1.576 0.1248 0.11384 6008.61 0.5381 5.144E-05 2161 6483.19 4.565 3.9298 0.56083 5040.22 0.5770 6.411E-05
416 7425.93 1.598 0.1524 0.11547 5966.23 0.5396 5.190E-05 2186 6468.68 4.593 3.9659 0.56680 5025.87 0.5776 6.434E-05
421 7483.95 1.616 0.1749 0.11684 6022.73 0.5376 5.129E-05 2211 6454.18 4.621 4.0019 0.57275 5011.51 0.5783 6.457E-05
426 7396.92 1.633 0.1971 0.11820 5937.96 0.5406 5.221E-05 2241 6439.68 4.655 4.0447 0.57989 4997.15 0.5790 6.481E-05
436 7440.44 1.667 0.2404 0.12092 5980.36 0.5391 5.175E-05 2266 6425.17 4.683 4.0802 0.58582 4982.79 0.5797 6.504E-05
441 7411.43 1.684 0.2615 0.12228 5952.09 0.5401 5.206E-05 2296 6410.67 4.716 4.1224 0.59292 4968.42 0.5804 6.527E-05
446 7425.93 1.700 0.2824 0.12364 5966.23 0.5396 5.190E-05 2321 6396.16 4.744 4.1574 0.59882 4954.06 0.5811 6.551E-05
451 7396.92 1.716 0.3030 0.12499 5937.96 0.5406 5.221E-05 2351 6381.66 4.776 4.1992 0.60589 4939.69 0.5818 6.575E-05
456 7411.43 1.732 0.3233 0.12635 5952.09 0.5401 5.206E-05 2376 6367.16 4.804 4.2337 0.61177 4925.31 0.5825 6.599E-05
466 7396.92 1.764 0.3633 0.12906 5937.96 0.5406 5.221E-05 2406 6352.65 4.836 4.2749 0.61880 4910.94 0.5832 6.623E-05
481 7382.42 1.809 0.4216 0.13312 5923.81 0.5411 5.237E-05 2431 6338.15 4.863 4.3091 0.62466 4896.56 0.5839 6.647E-05
501 7367.92 1.868 0.4966 0.13853 5909.67 0.5416 5.252E-05 2461 6323.65 4.895 4.3498 0.63166 4882.18 0.5846 6.672E-05
516 7353.41 1.911 0.5511 0.14257 5895.52 0.5421 5.268E-05 2491 6309.14 4.926 4.3902 0.63865 4867.79 0.5853 6.696E-05
531 7338.91 1.953 0.6042 0.14661 5881.36 0.5426 5.284E-05 2521 6294.64 4.958 4.4304 0.64563 4853.41 0.5860 6.721E-05
551 7324.41 2.007 0.6730 0.15199 5867.21 0.5431 5.300E-05 2551 6280.13 4.989 4.4704 0.65258 4839.02 0.5867 6.746E-05
566 7309.90 2.046 0.7232 0.15601 5853.05 0.5436 5.316E-05 2586 6265.63 5.026 4.5167 0.66068 4824.63 0.5875 6.771E-05
591 7295.40 2.110 0.8046 0.16271 5838.88 0.5441 5.332E-05 2616 6251.13 5.057 4.5561 0.66761 4810.23 0.5882 6.796E-05
606 7280.89 2.148 0.8522 0.16672 5824.71 0.5446 5.348E-05 2646 6236.62 5.087 4.5952 0.67452 4795.83 0.5889 6.822E-05
631 7266.39 2.208 0.9296 0.17339 5810.54 0.5451 5.365E-05 2676 6222.12 5.118 4.6342 0.68141 4781.43 0.5897 6.847E-05
656 7251.89 2.267 1.0047 0.18005 5796.37 0.5457 5.381E-05 2711 6207.62 5.153 4.6793 0.68944 4767.03 0.5904 6.873E-05
681 7237.38 2.325 1.0778 0.18669 5782.19 0.5462 5.398E-05 2746 6193.11 5.189 4.7241 0.69745 4752.62 0.5912 6.899E-05
701 7222.88 2.370 1.1349 0.19200 5768.01 0.5467 5.414E-05 2776 6178.61 5.219 4.7623 0.70429 4738.22 0.5919 6.925E-05
726 7208.38 2.425 1.2048 0.19862 5753.82 0.5472 5.431E-05 2811 6164.10 5.253 4.8066 0.71226 4723.81 0.5927 6.951E-05
756 7193.87 2.489 1.2864 0.20655 5739.63 0.5477 5.448E-05 2841 6149.60 5.283 4.8443 0.71908 4709.39 0.5934 6.978E-05
786 7179.37 2.551 1.3660 0.21447 5725.44 0.5483 5.465E-05 2876 6135.10 5.317 4.8881 0.72701 4694.98 0.5942 7.004E-05
816 7164.86 2.612 1.4435 0.22237 5711.24 0.5488 5.482E-05 2916 6120.59 5.356 4.9377 0.73605 4680.56 0.5949 7.031E-05
846 7150.36 2.672 1.5193 0.23025 5697.04 0.5493 5.499E-05 2951 6106.09 5.390 4.9809 0.74395 4666.14 0.5957 7.058E-05
876 7135.86 2.730 1.5933 0.23812 5682.84 0.5499 5.516E-05 2986 6091.59 5.424 5.0237 0.75182 4651.72 0.5965 7.085E-05
906 7121.35 2.787 1.6657 0.24598 5668.63 0.5504 5.534E-05 3026 6077.08 5.462 5.0724 0.76080 4637.29 0.5973 7.113E-05
936 7106.85 2.842 1.7367 0.25382 5654.42 0.5510 5.551E-05 3066 6062.58 5.500 5.1208 0.76976 4622.87 0.5981 7.140E-05
971 7092.35 2.906 1.8177 0.26295 5640.21 0.5515 5.569E-05 3106 6048.07 5.538 5.1688 0.77870 4608.44 0.5989 7.168E-05

1001 7077.84 2.959 1.8857 0.27076 5625.99 0.5521 5.586E-05 3146 6033.57 5.575 5.2165 0.78761 4594.00 0.5996 7.196E-05
1036 7063.34 3.020 1.9635 0.27985 5611.77 0.5526 5.604E-05 3186 6019.07 5.613 5.2639 0.79651 4579.57 0.6004 7.224E-05
1066 7048.83 3.072 2.0289 0.28763 5597.55 0.5532 5.622E-05 3226 6004.56 5.650 5.3110 0.80538 4565.14 0.6012 7.252E-05
1096 7034.33 3.122 2.0933 0.29540 5583.32 0.5537 5.640E-05 3271 5990.06 5.691 5.3636 0.81534 4550.70 0.6021 7.281E-05
1126 7019.83 3.172 2.1566 0.30315 5569.09 0.5543 5.658E-05 3316 5975.55 5.732 5.4159 0.82527 4536.26 0.6029 7.310E-05
1161 7005.32 3.229 2.2292 0.31217 5554.85 0.5548 5.676E-05 3361 5961.05 5.773 5.4678 0.83518 4521.81 0.6037 7.338E-05
1196 6990.82 3.285 2.3005 0.32118 5540.61 0.5554 5.694E-05 3411 5946.55 5.818 5.5250 0.84616 4507.37 0.6045 7.368E-05
1221 6976.32 3.325 2.3507 0.32760 5526.37 0.5560 5.713E-05 3461 5932.04 5.862 5.5818 0.85712 4492.92 0.6053 7.397E-05
1251 6961.81 3.371 2.4102 0.33529 5512.13 0.5565 5.731E-05 3506 5917.54 5.902 5.6326 0.86695 4478.47 0.6062 7.426E-05
1286 6947.31 3.425 2.4785 0.34424 5497.88 0.5571 5.750E-05 3556 5903.04 5.946 5.6886 0.87785 4464.02 0.6070 7.456E-05
1316 6932.80 3.470 2.5362 0.35190 5483.63 0.5577 5.769E-05 3611 5888.53 5.994 5.7498 0.88982 4449.57 0.6078 7.486E-05
1346 6918.30 3.515 2.5932 0.35954 5469.37 0.5583 5.788E-05 3666 5874.03 6.042 5.8105 0.90175 4435.11 0.6087 7.516E-05
1376 6903.80 3.559 2.6494 0.36717 5455.12 0.5588 5.807E-05 3726 5859.52 6.093 5.8762 0.91474 4420.66 0.6095 7.546E-05
1406 6889.29 3.603 2.7050 0.37478 5440.85 0.5594 5.826E-05 3786 5845.02 6.145 5.9414 0.92769 4406.20 0.6104 7.577E-05
1436 6874.79 3.646 2.7598 0.38238 5426.59 0.5600 5.845E-05 3846 5830.52 6.195 6.0060 0.94061 4391.74 0.6113 7.608E-05
1461 6860.28 3.681 2.8051 0.38870 5412.32 0.5606 5.864E-05 3906 5816.01 6.246 6.0702 0.95350 4377.27 0.6121 7.639E-05
1491 6845.78 3.724 2.8588 0.39627 5398.05 0.5612 5.884E-05 3971 5801.51 6.300 6.1392 0.96742 4362.81 0.6130 7.670E-05
1521 6831.28 3.765 2.9119 0.40382 5383.77 0.5618 5.903E-05 4041 5787.01 6.358 6.2128 0.98239 4348.34 0.6139 7.701E-05
1546 6816.77 3.800 2.9557 0.41010 5369.50 0.5624 5.923E-05 4116 5772.50 6.419 6.2911 0.99837 4333.87 0.6147 7.733E-05
1576 6802.27 3.841 3.0077 0.41762 5355.21 0.5630 5.943E-05 4191 5758.00 6.480 6.3686 1.01432 4319.40 0.6156 7.764E-05
1606 6787.77 3.881 3.0592 0.42513 5340.93 0.5636 5.963E-05 4266 5743.49 6.541 6.4455 1.03023 4304.93 0.6165 7.797E-05
1631 6773.26 3.914 3.1017 0.43137 5326.64 0.5642 5.983E-05 4351 5728.99 6.608 6.5319 1.04821 4290.46 0.6174 7.829E-05
1661 6758.76 3.954 3.1523 0.43884 5312.35 0.5648 6.003E-05 4436 5714.49 6.676 6.6174 1.06615 4275.99 0.6183 7.861E-05
1686 6744.25 3.987 3.1940 0.44506 5298.06 0.5654 6.023E-05 4526 5699.98 6.746 6.7072 1.08509 4261.51 0.6192 7.894E-05
1711 6729.75 4.019 3.2353 0.45126 5283.76 0.5660 6.044E-05 4626 5685.48 6.824 6.8060 1.10608 4247.03 0.6201 7.927E-05
1741 6715.25 4.058 3.2846 0.45869 5269.46 0.5666 6.064E-05 4726 5670.98 6.901 6.9038 1.12702 4232.55 0.6211 7.960E-05
1766 6700.74 4.090 3.3252 0.46487 5255.15 0.5673 6.085E-05 4831 5656.47 6.980 7.0054 1.14895 4218.07 0.6220 7.994E-05
1791 6686.24 4.122 3.3656 0.47103 5240.85 0.5679 6.106E-05 5061 5627.46 7.153 7.2248 1.19679 4189.11 0.6239 8.061E-05
1816 6671.74 4.153 3.4056 0.47719 5226.53 0.5685 6.127E-05 5186 5612.96 7.245 7.3422 1.22269 4174.62 0.6248 8.095E-05
1846 6657.23 4.190 3.4532 0.48455 5212.22 0.5691 6.148E-05 5316 5598.46 7.340 7.4630 1.24956 4160.13 0.6258 8.130E-05
1871 6642.73 4.221 3.4926 0.49068 5197.90 0.5698 6.169E-05 5456 5583.95 7.441 7.5917 1.27841 4145.65 0.6267 8.165E-05
1896 6628.22 4.252 3.5317 0.49679 5183.58 0.5704 6.190E-05 5606 5569.45 7.548 7.7281 1.30925 4131.16 0.6277 8.199E-05
1926 6613.72 4.289 3.5782 0.50411 5169.26 0.5711 6.212E-05 5766 5554.95 7.661 7.8721 1.34205 4116.67 0.6286 8.235E-05
1951 6599.22 4.319 3.6167 0.51020 5154.94 0.5717 6.233E-05 5771 5554.95 7.665 7.8765 1.34308 4116.67 0.6286 8.235E-05
1976 6584.71 4.349 3.6549 0.51627 5140.61 0.5723 6.255E-05 5921 5540.44 7.769 8.0100 1.37375 4102.18 0.6296 8.270E-05
2001 6570.21 4.379 3.6928 0.52233 5126.27 0.5730 6.277E-05 6021 5554.95 7.839 8.0983 1.39420 4116.67 0.6286 8.235E-05
2026 6555.71 4.408 3.7305 0.52838 5111.94 0.5737 6.299E-05 6091 5540.44 7.887 8.1598 1.40851 4102.18 0.6296 8.270E-05
2046 6541.20 4.432 3.7605 0.53321 5097.60 0.5743 6.321E-05 6171 5525.94 7.942 8.2298 1.42483 4087.69 0.6306 8.306E-05
2051 6541.20 4.438 3.7679 0.53442 5097.60 0.5743 6.321E-05 6351 5511.43 8.065 8.3860 1.46144 4073.19 0.6316 8.342E-05
2056 6541.20 4.444 3.7754 0.53562 5097.60 0.5743 6.321E-05 6476 5496.93 8.149 8.4936 1.48679 4058.70 0.6326 8.378E-05

Table 5-3—Variables required for before- and after-closure analysis. 
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(5.615)(5,208,333.3)(67.9 / 2)( ) 180.3 ft
(6)(8003 6382)GDKL f π

= =
−

,  

and lost width is calculated from the slope as 

1.478(12) (180.3)( ) (323) 0.62 in
5,208,333.3GDKwL

π
= = . 

For a radial fracture geometry, (mN)RAD = -317.6 psi and the intercept is (bN)RAD = 7964 psi. Fracture radius 

is calculated as 

3(5.615) (5,208,333.3)(67.9 / 2)3 61.7 ft
8 (7,964 6,382)

R f = =
−

,   

and the lost width is calculated as 

7.343(12)(61.7)( ) (317.6) 0.11 in
(5208333.3)RADwL π

= = .   

6. Calculate the adjusted pseudotime, adjusted pseudopressure, gas formation volume factor, and 

total compressibility for each recorded time and pressure after the end of the injection. Scale time to 

zero at the beginning of the shut-in period for calculating adjusted pseudotime. Assume the initial 

reservoir pressure is 5,126 psi, which was estimated from the observed closure stress. The reservoir 

temperature is 205°F and the gas gravity is 0.70. Table 5-4 contains the tabulated values for the Kakwa 

07-24 fracture-injection/falloff sequence. 

7. Note the following variables required for the analysis. 

. 

0

5 -1

6 -1

3,686.9 psia
6,135.57 psia
0.660313 bbl/Mscf

0.533824 bbl/Mscf

0.0280152 cp

9.40285(10)  psi

4.52135(10)  psi

ai

a

gi

ge

gi

ti

w

p
p
B

B

c

c

μ

−

−

=

=

=

=

=

=

=

.   

8. Calculate and graph (yap)n versus (xap)n for each recorded time and pressure before fracture 

closure. Table 5-4 contains the tabulated values that are graphed in Fig. 5.8. Under normal leakoff 

conditions, the data on the specialized graph will fall along a straight line, but nonideal leakoff, like 

fracture-height recession during closure causes the data to fan across the page.82 Fracture-height 

recession during closure indicates a changing fracture area during the falloff period, which violates the 

assumptions of before-closure pressure-transient analysis. Consequently, the permeability and fracture-

face resistance estimated will contain error. Drawing a line from the origin through the last few data  
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points recorded before closure results in (mM)GDK = 0.009350. The created fracture height is assumed to be 

confined to the permeable fracture height, rp = hp/hf = 1, and the permeability is estimated as 

2
GDK

2(141.2)(0.02878)(24) 1
( ) 0.163 md

5.615 (1)(9199.7)(0.009350)
k ⎡ ⎤

= =⎢ ⎥
⎣ ⎦

. 

There is no fracture face resistance since the straight line is drawn from the origin. 

Assuming the opposite extreme of radial fracture geometry, the specialized graph results in (bM)RAD = 0 

and (mM)RAD = 0.009233. The ratio of permeable to total fracture height for a radial fracture is written as59 

2
12( ) 1 sin

22 2
pp p

p RAD
ff f

hh hr
RR Rπ

−
⎡ ⎤

⎛ ⎞⎢ ⎥= − +⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, ......................................................................... (5.163) 

t , s t a , hr p aw , psi B g , bbl/Mscf c t , psi-1 (x ap )n (y ap )n t , s t a , hr p aw , psi B g , bbl/Mscf c t , psi-1 (x ap )n (y ap )n

385 0.00000 6135.57 0.5338 5.012E-05
394 0.00249 6079.18 0.5357 5.070E-05 1286 0.23729 5497.88 0.5571 5.750E-05 187.9971 3.5605
403 0.00497 6065.08 0.5362 5.085E-05 1316 0.24495 5483.63 0.5577 5.769E-05 163.2005 2.9961
410 0.00689 6008.61 0.5381 5.144E-05 24.0547 0.3916 1346 0.25260 5469.37 0.5583 5.788E-05 163.5288 2.9421
416 0.00853 5966.23 0.5396 5.190E-05 32.8346 0.4369 1376 0.26023 5455.12 0.5588 5.807E-05 163.6744 2.8895
421 0.00989 6022.73 0.5376 5.129E-05 6.1500 — 1406 0.26784 5440.85 0.5594 5.826E-05 163.7626 2.8385
426 0.01126 5937.96 0.5406 5.221E-05 19.4855 0.1785 1436 0.27544 5426.59 0.5600 5.845E-05 163.8124 2.7888
436 0.01397 5980.36 0.5391 5.175E-05 -4.9332 — 1461 0.28175 5412.32 0.5606 5.864E-05 140.0193 2.2875
441 0.01533 5952.09 0.5401 5.206E-05 27.6168 0.5271 1491 0.28932 5398.05 0.5612 5.884E-05 165.4812 2.6977
446 0.01669 5966.23 0.5396 5.190E-05 -17.0092 — 1521 0.29687 5383.77 0.5618 5.903E-05 165.0903 2.6514
451 0.01805 5937.96 0.5406 5.221E-05 29.0252 0.5184 1546 0.30315 5369.50 0.5624 5.923E-05 140.8235 2.1755
456 0.01941 5952.09 0.5401 5.206E-05 -19.3170 — 1576 0.31068 5355.21 0.5630 5.943E-05 166.3640 2.5664
466 0.02212 5937.96 0.5406 5.221E-05 72.2688 2.0380 1606 0.31818 5340.93 0.5636 5.963E-05 165.8772 2.5232
481 0.02618 5923.81 0.5411 5.237E-05 104.5844 2.9929 1631 0.32442 5326.64 0.5642 5.983E-05 141.3283 2.0708
501 0.03158 5909.67 0.5416 5.252E-05 130.7354 3.8888 1661 0.33190 5312.35 0.5648 6.003E-05 166.9778 2.4434
516 0.03563 5895.52 0.5421 5.268E-05 104.0959 2.8583 1686 0.33811 5298.06 0.5654 6.023E-05 142.0026 2.0055
531 0.03967 5881.36 0.5426 5.284E-05 106.5143 2.8021 1711 0.34432 5283.76 0.5660 6.044E-05 143.0818 1.9753
551 0.04505 5867.21 0.5431 5.300E-05 135.0873 3.6476 1741 0.35175 5269.46 0.5666 6.064E-05 168.6777 2.3313
566 0.04907 5853.05 0.5436 5.316E-05 107.3828 2.6842 1766 0.35792 5255.15 0.5673 6.085E-05 143.1735 1.9137
591 0.05576 5838.88 0.5441 5.332E-05 162.7713 4.3534 1791 0.36409 5240.85 0.5679 6.106E-05 144.1008 1.8849
606 0.05977 5824.71 0.5446 5.348E-05 106.4305 2.5650 1816 0.37024 5226.53 0.5685 6.127E-05 144.8157 1.8568
631 0.06644 5810.54 0.5451 5.365E-05 163.3161 4.1655 1846 0.37761 5212.22 0.5691 6.148E-05 170.5956 2.1919
656 0.07310 5796.37 0.5457 5.381E-05 160.2104 4.0622 1871 0.38373 5197.90 0.5698 6.169E-05 144.5468 1.7992
681 0.07975 5782.19 0.5462 5.398E-05 158.4452 3.9639 1896 0.38985 5183.58 0.5704 6.190E-05 145.3550 1.7724
701 0.08506 5768.01 0.5467 5.414E-05 131.5366 3.1072 1926 0.39717 5169.26 0.5711 6.212E-05 171.3402 2.0924
726 0.09168 5753.82 0.5472 5.431E-05 159.3154 3.7944 1951 0.40325 5154.94 0.5717 6.233E-05 145.1162 1.7177
756 0.09961 5739.63 0.5477 5.448E-05 183.0094 4.4355 1976 0.40933 5140.61 0.5723 6.255E-05 145.8882 1.6920
786 0.10752 5725.44 0.5483 5.465E-05 179.5933 4.3243 2001 0.41539 5126.27 0.5730 6.277E-05 146.4633 1.6667
816 0.11542 5711.24 0.5488 5.482E-05 177.2222 4.2186 2026 0.42144 5111.94 0.5737 6.299E-05 146.9561 1.6418
846 0.12331 5697.04 0.5493 5.499E-05 175.4250 4.1179 2046 0.42626 5097.60 0.5743 6.321E-05 120.9402 1.2953
876 0.13118 5682.84 0.5499 5.516E-05 174.0180 4.0223 2051 0.42747 5097.60 0.5743 6.321E-05 0.0000 —
906 0.13903 5668.63 0.5504 5.534E-05 172.8680 3.9307 2056 0.42868 5097.60 0.5743 6.321E-05 0.0000 —
936 0.14687 5654.42 0.5510 5.551E-05 171.9267 3.8434 2081 0.43470 5083.26 0.5750 6.344E-05 145.9733 1.5910
971 0.15600 5640.21 0.5515 5.569E-05 194.3686 4.3750 2106 0.44071 5068.92 0.5756 6.366E-05 146.8988 1.5671

1001 0.16381 5625.99 0.5521 5.586E-05 168.4366 3.6700 2131 0.44670 5054.57 0.5763 6.389E-05 147.4764 1.5435
1036 0.17291 5611.77 0.5526 5.604E-05 191.3621 4.1822 2161 0.45388 5040.22 0.5770 6.411E-05 173.9394 1.8222
1066 0.18069 5597.55 0.5532 5.622E-05 166.1740 3.5112 2186 0.45985 5025.87 0.5776 6.434E-05 147.0343 1.4954
1096 0.18845 5583.32 0.5537 5.640E-05 166.3411 3.4406 2211 0.46581 5011.51 0.5783 6.457E-05 147.6890 1.4728
1126 0.19620 5569.09 0.5543 5.658E-05 166.3093 3.3724 2241 0.47294 4997.15 0.5790 6.481E-05 174.2920 1.7385
1161 0.20523 5554.85 0.5548 5.676E-05 189.2106 3.8492 2266 0.47887 4982.79 0.5797 6.504E-05 147.2964 1.4266
1196 0.21423 5540.61 0.5554 5.694E-05 187.2035 3.7675 2296 0.48597 4968.42 0.5804 6.527E-05 174.0966 1.6839
1221 0.22065 5526.37 0.5560 5.713E-05 139.5048 2.6455 2321 0.49188 4954.06 0.5811 6.551E-05 147.1746 1.3816
1251 0.22834 5512.13 0.5565 5.731E-05 165.1360 3.1153 2351 0.49894 4939.69 0.5818 6.575E-05 174.0459 1.6307

Table 5-4—Variables required for before-closure pressure transient analysis. 
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and is calculated as 

2
12 66 6( ) 0.0631 sin

2(61.7)2(61.7) 2(61.7)
p RADr

π
−

⎡ ⎤
⎛ ⎞⎢ ⎥= =− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

. 

The permeability assuming radial fracture geometry is estimated as 

22(141.2)(0.02878)(24) 1
( ) 1.408 md

5.615 (1)(50330.7)(0.009233)RADk ⎡ ⎤
= =⎢ ⎥
⎣ ⎦

. 

An order of magnitude change in the estimated permeability results by assuming an unconfined radial 

fracture versus a confined fracture. With fracture-height recession observed during the before-closure 

falloff, which suggests the fracture grew into higher stress, low permeability layers adjacent to the 

permeable layer, a radial fracture seems more plausible. However, without fracture imaging the true 

fracture geometry is unknown and before-closure pressure-transient analysis can only bracket the 

estimated permeability, that is, 0.163 md ≤ k ≤ 1.408 md.    

9. After-closure analysis requires a log-log graph of the adjusted pseudopressure difference, 

paw – pai, and the well testing pressure derivative versus the reciprocal elapsed adjusted pseudotime, 

which is shown in Fig. 5.9. The elapsed time and corresponding adjusted pseudotime used in after-
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Fig. 5.8—Fracture-injection/falloff sequence before-closure pressure-transient analysis. 



 151 

closure analysis is calculated relative to the time since the beginning of the injection, and the points in 

Fig 5.9 were calculated and graphed using the adjusted pseudopressure and pseudotime values tabulated 

in Table 5-3.  

The derivative curve is not a function of initial reservoir pressure and should be used to identify the flow 

regimes. In Fig. 5.9, the derivative data fall along a unit slope line, which indicates pseudoradial flow was 

observed. Additionally, the adjusted pseudopressure difference data overlay the derivative data on the unit 

slope line, which suggests that the estimated initial reservoir pressure is correct. In most cases, the 

determination of initial reservoir pressure is an iterative process, and the adjusted pseudopressure 

difference and derivative curves will not overlay during pseudoradial flow until the initial reservoir 

pressure is correct. 

10. Since pseudoradial flow was indicated in Fig. 5.9, a Cartesian graph of adjusted pseudopressure 

versus the reciprocal elapsed adjusted pseudotime is prepared, which is shown in Fig. 5.10. A straight 

line is drawn through the data corresponding to pseudoradial flow, and the initial adjusted 

pseudopressure corresponds to the intercept of the straight line, bacpr = pai = 3,684 psia, which indicates 

the initial reservoir pressure is 5,125 psia. The slope of the straight line,  macpr = 449.082 psia·hr, and the 
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Fig. 5.9—Fracture-injection/falloff sequence after-closure analysis diagnostic graph. 
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transmissibility is calculated as  

141.2(24) 67.9 md ft256.117 
2 449.082 cpi

kh
μ

⋅
= = , 

which corresponds to a permeability-thickness product of kh = 7.173 md·ft. 

Since pseudoradial flow was observed during the Kakwa 07-24 Bluesky fracture-injection/falloff 

sequence, type-curve analysis is unnecessary; however, type-curve analysis can be used to calculate the 

effective fracture half length created during the fracture-injection. 

11. Prepare a log-log graph of I(Δpa) versus (te)a + Δta and Δp'a versus (te)a + Δta and overlay the 

appropriate constant-rate, drawdown type curve for the reservoir/system. Fig 5.11 shows a non-unique 

type-curve match obtained with the observed data and a type curve for production through and infinite-

conductivity fracture in an infinite slab reservoir. The equivalent constant-rate pressure difference and 

derivative points plotted in Fig. 5.11 are also tabulated in Table 5-5. 

Note that the type curve match indicates variable storage during fracture closure, that is, the early-time 

data fall along the solution with CbcD = 3.0, and the late-time data overlay the solution with CacD = 2.0. A 

before-closure match point is as follows. 
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Fig. 5.10—Fracture-injection/falloff sequence Cartesian after-closure analysis graph. 
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2.090752 ( ) 0.173389 hr

0.512268 ( ) 409.8144 psia hr
aLfD e a a

acD a

t t t

p I p

= → + Δ =

= → Δ = ⋅
 

and an after-closure match point is 

10 ( ) 0.83518 hr

1.757406 ( ) 1,383.963 psia hr
aLfD e a a

acD a

t t t

p I p

= → + Δ =

= → Δ = ⋅
 

12. The before-closure match point is used with the transmissibility calculated from after-closure 

analysis to calculate the adjusted before-closure storage coefficient, Cabc. Assume Ti = Tw, let 

pawsD(0) = 1, and Cabc is calculated as 

( )( )
0

( ( ) )
(0)

(141.2)(24)( ) ( )0

256.117 bbl409.8144 0.024694 
(141.2)(24)(6135.37 3686.9)(1) psia0.512268

e a at t
ai i

w
MP

kh
p t p dtT aw aiC pabc awsDp p T p ta ai bcD aLfD

μ
+Δ⎡ ⎤−⎢ ⎥= ⎢ ⎥−

⎢ ⎥⎣ ⎦

⎡ ⎤= =⎢ ⎥− ⎣ ⎦

∫
 

Fig. 5.11—Fracture-injection/falloff sequence variable-storage type-curve match. 
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t a , hr p aw , psi I (Δ p a ), psi·hr dp a /d (ln t a ), psi·hr t a , hr p aw , psi I (Δ p a ), psi·hr dp a /d (ln t a ), psi·hr
0.10694 6135.57 261.8867 261.8867
0.10944 6079.18 267.9172 261.8166 0.54164 5083.26 1063.0632 756.3933
0.11192 6065.08 273.8341 266.1723 0.54765 5068.92 1071.4115 756.9289
0.11384 6008.61 278.3482 264.3131 0.55365 5054.57 1079.6555 757.2724
0.11547 5966.23 282.1125 263.2178 0.56083 5040.22 1089.4238 759.0442
0.11684 6022.73 285.2619 272.9306 0.56680 5025.87 1097.4606 758.9882
0.11820 5937.96 288.3864 266.0918 0.57275 5011.51 1105.3942 758.7420
0.12092 5980.36 294.5611 277.3365 0.57989 4997.15 1114.7912 759.8637
0.12228 5952.09 297.6608 276.9990 0.58582 4982.79 1122.5196 759.2209
0.12364 5966.23 300.7482 281.8245 0.59292 4968.42 1131.6711 759.9063
0.12499 5937.96 303.8232 281.3844 0.59882 4954.06 1139.1956 758.8692
0.12635 5952.09 306.8858 286.2240 0.60589 4939.69 1148.1033 759.1209
0.12906 5937.96 313.0111 290.5436 0.61177 4925.31 1155.4253 757.6920
0.13312 5923.81 322.1250 297.8035 0.61880 4910.94 1164.0908 757.5118
0.13853 5909.67 334.1784 307.9355 0.62466 4896.56 1171.2118 755.6930
0.14257 5895.52 343.1449 314.9131 0.63166 4882.18 1179.6368 755.0838
0.14661 5881.36 352.0378 321.7595 0.63865 4867.79 1187.9423 754.2531
0.15199 5867.21 363.7974 331.4053 0.64563 4853.41 1196.1286 753.2009
0.15601 5853.05 372.5439 337.9711 0.65258 4839.02 1204.1962 751.9277
0.16271 5838.88 386.9999 350.1697 0.66068 4824.63 1213.4702 751.7513
0.16672 5824.71 395.6007 356.4368 0.66761 4810.23 1221.3016 750.0218
0.17339 5810.54 409.8144 368.2405 0.67452 4795.83 1229.0154 748.0738
0.18005 5796.37 423.9074 379.8285 0.68141 4781.43 1236.6121 745.9077
0.18669 5782.19 437.8799 391.2011 0.68944 4767.03 1245.3390 744.7621
0.19200 5768.01 448.9619 399.5975 0.69745 4752.62 1253.9302 743.3640
0.19862 5753.82 462.6945 410.5595 0.70429 4738.22 1261.1784 740.5137
0.20655 5739.63 479.0303 424.0206 0.71226 4723.81 1269.5000 738.6288
0.21447 5725.44 495.2229 437.2255 0.71908 4709.39 1276.5180 735.3318
0.22237 5711.24 511.2729 450.1748 0.72701 4694.98 1284.5720 732.9625
0.23025 5697.04 527.1805 462.8687 0.73605 4680.56 1293.6245 731.4679
0.23812 5682.84 542.9461 475.3080 0.74395 4666.14 1301.4129 728.5850
0.24598 5668.63 558.5701 487.4931 0.75182 4651.72 1309.0693 725.4550
0.25382 5654.42 574.0528 499.4247 0.76080 4637.29 1317.6692 723.1450
0.26295 5640.21 591.9517 513.6509 0.76976 4622.87 1326.1193 720.5537
0.27076 5625.99 607.1530 525.0581 0.77870 4608.44 1334.4202 717.6828
0.27985 5611.77 624.7243 538.7143 0.78761 4594.00 1342.5726 714.5324
0.28763 5597.55 639.6457 549.5995 0.79651 4579.57 1350.5770 711.1040
0.29540 5583.32 654.4277 560.2338 0.80538 4565.14 1358.4341 707.3983
0.30315 5569.09 669.0706 570.6177 0.81534 4550.70 1367.1080 704.3714
0.31217 5554.85 685.9921 583.1597 0.82527 4536.26 1375.6175 701.0350
0.32118 5540.61 702.7524 595.4111 0.83518 4521.81 1383.9632 697.3893
0.32760 5526.37 714.6090 602.6478 0.84616 4507.37 1393.0549 694.3374
0.33529 5512.13 728.6994 612.0168 0.85712 4492.92 1401.9660 690.9448
0.34424 5497.88 744.9782 623.4546 0.86695 4478.47 1409.8242 686.3467
0.35190 5483.63 758.7947 632.3103 0.87785 4464.02 1418.3764 682.2916
0.35954 5469.37 772.4747 640.9194 0.88982 4449.57 1427.5877 678.7281
0.36717 5455.12 786.0186 649.2823 0.90175 4435.11 1436.6037 674.7953
0.37478 5440.85 799.4269 657.3998 0.91474 4420.66 1446.2271 671.2880
0.38238 5426.59 812.6999 665.2723 0.92769 4406.20 1455.6392 667.3797
0.38870 5412.32 823.6483 670.7194 0.94061 4391.74 1464.8409 663.0727
0.39627 5398.05 836.6519 678.1215 0.95350 4377.27 1473.8331 658.3673
0.40382 5383.77 849.5214 685.2801 0.96742 4362.81 1483.3487 653.9901
0.41010 5369.50 860.1344 690.0825 0.98239 4348.34 1493.3539 649.8920
0.41762 5355.21 872.7368 696.7742 0.99837 4333.87 1503.8154 646.0239
0.42513 5340.93 885.2061 703.2241 1.01432 4319.40 1514.0195 641.6662
0.43137 5326.64 895.4868 707.3859 1.03023 4304.93 1523.9674 636.8196
0.43884 5312.35 907.6914 713.3720 1.04821 4290.46 1534.9526 632.7639
0.44506 5298.06 917.7520 717.1150 1.06615 4275.99 1545.6500 628.1589
0.45126 5283.76 927.7031 720.6585 1.08509 4261.51 1556.6733 623.6105
0.45869 5269.46 939.5135 725.9618 1.10608 4247.03 1568.5859 619.6613
0.46487 5255.15 949.2466 729.0895 1.12702 4232.55 1580.1645 615.0723
0.47103 5240.85 958.8711 732.0187 1.14895 4218.07 1591.9730 610.4017
0.47719 5226.53 968.3875 734.7503 1.19679 4189.11 1616.6987 601.1534
0.48455 5212.22 979.6777 739.1575 1.22269 4174.62 1629.5212 596.4527
0.49068 5197.90 988.9787 741.4771 1.24956 4160.13 1642.4323 591.4561
0.49679 5183.58 998.1724 743.6005 1.27841 4145.65 1655.8818 586.5935
0.50411 5169.26 1009.0767 747.3366 1.30925 4131.16 1669.8073 581.7728
0.51020 5154.94 1018.0571 749.0514 1.34205 4116.67 1684.1463 576.9022
0.51627 5140.61 1026.9312 750.5713 1.34308 4116.67 1684.5864 577.3423
0.52233 5126.27 1035.6995 751.8965 1.37375 4102.18 1697.5490 570.6199
0.52838 5111.94 1044.3623 753.0282 1.39420 4116.67 1706.1908 599.3170
0.53321 5097.60 1051.2084 752.2632 1.40851 4102.18 1712.2400 585.0590
0.53442 5097.60 1052.9094 753.9643 1.42483 4087.69 1718.8985 571.1860
0.53562 5097.60 1054.6105 755.6653 1.46144 4073.19 1733.3095 564.6811

Table 5-5—Variables required for type-curve match.
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13. Fracture half length can be estimated from the before-closure storage coefficient with φ = 0.10 as 

0.8936 0.8936(0.024694) 11.4 ft
(0.10)(0.00009402)(6)(3)f

CbcL
c hCti bcDφ

= = =  

Recall from before-closure analysis that the created fracture half-length estimates varied from 61 feet for a 

radial fracture to 180 feet for a confined-height fracture, which suggests either (1) the type-curve match is 

incorrect, (2) the before-closure estimates of fracture half-length are incorrect or (3) fracture half length 

decreases during closure. The before-closure estimate of fracture half length assumes no spurt loss, and 

with the permeability of the formation, it seems unlikely spurt loss is negligible. Consequently, it's likely 

that the before-closure fracture half length estimate is incorrect. However, a better type-curve match might 

have been obtained with additional shut-in data. The observed data plotted in Fig. 5.11 "match" many 

variable-storage type-curve combinations, but additional pseudoradial flow data would improve the match 

by limiting the number of possibilities. 

From the type curve match, the dimensionless after-closure storage coefficient can be written as 

2 2
3 3

C C C CaacD abcD aac abc= → = , 

which is reasonable considering the tubular volume is 87.8 bbl and the injected volume was 67.9 bbl. In 

other words, the fracture storage is of the same magnitude as wellbore storage and a closing fracture will 

create a measureable change in the dimensionless storage coefficient. 

14. Recall that transmissibility is estimated from an after-closure type-curve match point as 

 
( ) 0

( )(0)
(141.2)(24)( )0 ( ) ( ) ( ( ) )a
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i w a MP

p tp C acD aLfDawsD abc Tkh p pa ai Tp t C C p t p dtawsD c aLfD abc aac aw aiμ Δ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= −
⎢ ⎥⎢ ⎥− − −⎣ ⎦ ⎣ ⎦∫

. ...... (5.164) 

The dimensionless wellbore adjusted pseudopressure observed at hydraulic fracture closure is calculated 

as  

( ) 4939.69 3686.9( ) 0.5117
6135.37 3686.90

p paw aip tawsD c aLfD p pa ai

− −
= = =

− −
,   

and the transmissibility is calculated from the after-closure type-curve match as 

( )
0

( )
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0.5117 1.757406(141.2)(24)(6135.37 3686.7)(0.024694) 1
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∫
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The permeability-thickness from the after-closure type-curve match is kh = 6.05 md·ft, which compares 

with 7.17 md·ft from the pseudoradial flow after-closure analysis. A subsequent post-frac pressure buildup 
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test was also completed in the formation with a nonunique interpretation concluding the initial reservoir 

pressure was pi = 5,265 psia and the permeability-thickness product was kh = 6.77 md·ft. Thus the results 

from type-curve analysis, after-closure pseudoradial flow analysis, and the post-frac pressure buildup are 

all in general agreement. 

5.3.2 Pseudolinear Flow Observed After Closure. The shut-in period of a fracture-injection/falloff 

sequence in a low permeability reservoir is often insufficient to observe pseudoradial flow, and most 

interpretations must rely on before-closure pressure transient analysis or after-closure pseudolinear flow 

analysis when it is observed.54 The GM 543-33 is a well producing from 20 low permeability Mesaverde 

sands. Prior to hydraulic fracturing the sandstone reservoir perforated at 4,954 feet, an isolated-layer 

fracture-injection/falloff sequence was completed. A total of 17.69 bbls of 1% KCl treated water was 

pumped at an average rate of 3.30 bbl/min during a 5.30 minute fracture injection. At the end of the 

fracture-injection, a bottomhole plug was seated, and the pressure falloff was recorded for 16.10 hours. 

Table 5-6 contains the time, pressure, and rate data recorded during the fracture injection, and Table 5-7 

contains the time and pressure recorded during the pressure falloff. 

After the falloff period, the plug was removed, and the layer was produced for 168 hours prior to seating 

the plug and beginning a 15 day pressure buildup. With both a fracture-injection/falloff and 

drawdown/buildup sequences completed sequentially, a direct comparison of the buildup and falloff 

interpretations is possible. 

The porosity of the Mesaverde formation is 10%, the gas saturation is 50%, and the gross and net 

thicknesses are 14 feet and 12 feet, respectively, where net thickness is defined as porosity greater than 

6%. Gas gravity is 0.63, and the bottomhole temperature is 160°F.  Before-closure analysis assumes a 

Young's modulus of 5,000,000 psi and a Poisson's ration of 0.20, which results in a plane-strain modulus 

of 5,208,333.3 psi. The Mesaverde formation is separated from adjacent sandstone reservoirs by 

impermeable and high stress shale and mudstone formations. 
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 Table 5-6—GM 543-33 fracture-injection time, bottomhole pressure, and injection rate. 

t , s p w , psi q i , bbl/min t , s p w , psi q i , bbl/min t , s p w , psi q i , bbl/min t , s p w , psi q i , bbl/min t , s p w , psi q i , bbl/min
0 1808.60 3.17 127 3672.87 3.10 254 3513.45 3.10
1 1827.54 3.17 64 3656.96 3.09 128 3675.05 3.10 191 3919.13 4.50 255 3518.10 3.09
2 1846.67 3.17 65 3663.33 3.09 129 3689.54 3.10 192 3911.73 4.50 256 3525.30 3.09
3 1866.34 3.17 66 3665.12 3.09 130 3696.94 3.10 193 3910.42 4.50 257 3526.18 3.09
4 1887.04 3.17 67 3669.00 3.09 131 3661.73 3.10 194 3914.85 4.50 258 3526.45 3.09
5 1907.99 3.17 68 3674.00 3.09 132 3624.31 3.10 195 3907.45 4.49 259 3534.10 3.09
6 1929.38 3.17 69 3678.84 3.09 133 3599.31 3.10 196 3916.91 4.49 260 3531.31 3.09
7 1951.74 3.17 70 3685.89 3.09 134 3576.70 3.10 197 3909.34 4.49 261 3520.45 3.09
8 1974.34 3.17 71 3691.09 3.09 135 3566.36 3.10 198 3910.74 4.49 262 3532.21 3.09
9 1997.26 3.17 72 3698.48 3.09 136 3544.72 3.10 199 3909.97 4.49 263 3523.55 3.09
10 2021.12 3.16 73 3700.23 3.09 137 3546.16 3.10 200 3907.54 4.49 264 3527.47 3.09
11 2045.71 3.16 74 3705.37 3.09 138 3559.77 3.10 201 3919.06 4.49 265 3520.63 3.09
12 2070.20 3.16 75 3707.30 3.09 139 3565.21 3.10 202 3913.36 4.49 266 3522.72 3.09
13 2096.91 3.16 76 3708.65 3.09 140 3576.05 3.10 203 3913.76 4.49 267 3530.56 3.09
14 2123.28 3.16 77 3710.46 3.09 141 3592.27 3.10 204 3912.08 4.49 268 3534.07 3.09
15 2150.83 3.16 78 3704.93 3.09 142 3581.60 3.10 205 3903.85 4.49 269 3521.92 3.09
16 2179.71 3.16 79 3681.73 3.09 143 3602.08 3.10 206 3920.60 4.49 270 3535.23 3.09
17 2208.64 3.16 80 3633.14 3.09 144 3595.58 3.10 207 3914.60 4.50 271 3529.66 3.09
18 2238.54 3.15 81 3569.66 3.09 145 3592.15 3.10 208 3912.96 4.49 272 3531.47 3.09
19 2269.82 3.15 82 3521.56 3.09 146 3592.72 3.10 209 3911.79 4.50 273 3528.96 3.09
20 2301.28 3.15 83 3485.97 3.10 147 3586.38 3.10 210 3905.70 4.50 274 3528.07 3.09
21 2334.11 3.15 84 3456.68 3.10 148 3588.87 3.10 211 3922.70 4.50 275 3523.20 3.09
22 2368.44 3.15 85 3432.63 3.10 149 3595.71 3.10 212 3916.79 4.49 276 3519.49 3.09
23 2404.23 3.14 86 3413.65 3.10 150 3602.03 3.10 213 3915.12 4.50 277 3528.54 3.09
24 2441.06 3.15 87 3396.13 3.10 151 3588.55 3.10 214 3917.10 4.50 278 3526.11 3.08
25 2478.64 3.15 88 3380.58 3.10 152 3604.51 3.10 215 3908.02 4.50 279 3530.59 3.07
26 2519.03 3.14 89 3368.48 3.11 153 3601.07 3.10 216 3923.78 4.50 280 3522.83 3.06
27 2558.40 3.14 90 3357.52 3.11 154 3602.40 3.17 217 3918.42 4.50 281 3519.56 3.05
28 2599.40 3.14 91 3346.23 3.11 155 3597.20 3.31 218 3914.13 4.50 282 3518.14 3.02
29 2643.53 3.14 92 3336.37 3.11 156 3597.63 3.45 219 3915.92 4.50 283 3509.06 2.99
30 2687.07 3.14 93 3329.36 3.11 157 3800.62 3.59 220 3901.36 4.50 284 3496.03 2.96
31 2733.67 3.14 94 3321.78 3.11 158 3863.26 3.73 221 3914.87 4.49 285 3485.85 2.92
32 2785.49 3.13 95 3311.74 3.11 159 3897.01 3.87 222 3908.74 4.50 286 3479.63 2.87
33 2835.77 3.13 96 3306.68 3.11 160 3908.88 4.01 223 3902.82 4.49 287 3465.81 2.81
34 2885.17 3.13 97 3302.11 3.11 161 3927.83 4.15 224 3903.72 4.49 288 3446.68 2.74
35 2943.31 3.13 98 3293.85 3.11 162 3932.71 4.29 225 3894.30 4.49 289 3414.93 2.66
36 2998.80 3.13 99 3284.51 3.11 163 3937.08 4.43 226 3904.34 4.49 290 3397.62 2.58
37 3055.56 3.12 100 3284.20 3.11 164 3935.31 4.50 227 3898.28 4.49 291 3370.21 2.48
38 3113.04 3.12 101 3278.58 3.11 165 3928.13 4.50 228 3893.50 4.49 292 3372.54 2.37
39 3152.43 3.12 102 3268.82 3.11 166 3932.35 4.50 229 3899.20 4.49 293 3353.54 2.27
40 3248.57 3.12 103 3268.54 3.11 167 3925.58 4.49 230 3889.46 4.49 294 3306.88 2.19
41 3318.83 3.11 104 3265.65 3.11 168 3928.29 4.50 231 3900.10 4.49 295 3299.01 2.12
42 3372.58 3.11 105 3258.07 3.11 169 3927.70 4.50 232 3893.05 4.49 296 3311.82 2.06
43 3436.21 3.11 106 3255.33 3.11 170 3921.19 4.50 233 3890.50 4.49 297 3322.79 2.01
44 3482.22 3.11 107 3258.84 3.12 171 3926.76 4.50 234 3898.11 4.49 298 3329.09 1.98
45 3507.17 3.10 108 3262.80 3.11 172 3923.44 4.50 235 3885.90 4.49 299 3332.32 1.95
46 3520.89 3.10 109 3284.60 3.11 173 3930.33 4.49 236 3894.74 4.49 300 3324.64 1.93
47 3531.07 3.10 110 3314.79 3.11 174 3930.00 4.49 237 3889.33 4.44 301 3312.85 1.94
48 3539.44 3.10 111 3334.94 3.11 175 3925.43 4.49 238 3880.79 4.30 302 3315.07 1.96
49 3546.97 3.10 112 3347.70 3.11 176 3926.93 4.49 239 3894.42 4.16 303 3312.69 1.98
50 3556.64 3.10 113 3412.31 3.11 177 3920.71 4.49 240 3680.62 4.02 304 3305.18 1.99
51 3564.52 3.10 114 3502.43 3.11 178 3925.18 4.49 241 3608.07 3.88 305 3313.14 1.99
52 3570.44 3.10 115 3550.31 3.11 179 3926.64 4.49 242 3571.49 3.74 306 3209.97 1.98
53 3578.42 3.10 116 3605.56 3.11 180 3919.12 4.49 243 3549.66 3.60 307 3158.20 1.96
54 3591.63 3.10 117 3610.88 3.10 181 3923.64 4.49 244 3540.96 3.46 308 3151.38 1.80
55 3604.07 3.10 118 3636.67 3.10 182 3916.15 4.49 245 3546.53 3.32 309 3146.82 1.60
56 3612.86 3.09 119 3649.53 3.10 183 3918.15 4.49 246 3525.54 3.18 310 3143.15 1.40
57 3621.89 3.09 120 3647.31 3.10 184 3924.11 4.49 247 3537.59 3.09 311 3139.89 1.20
58 3630.28 3.09 121 3648.77 3.10 185 3914.19 4.49 248 3533.63 3.09 312 3137.01 1.00
59 3635.23 3.09 122 3660.82 3.10 186 3919.90 4.50 249 3530.60 3.09 313 3134.23 0.80
60 3640.80 3.09 123 3651.79 3.10 187 3911.97 4.50 250 3527.56 3.09 314 3131.80 0.60
61 3647.62 3.09 124 3666.57 3.10 188 3916.05 4.50 251 3528.90 3.09 315 3129.47 0.40
62 3650.58 3.09 125 3646.61 3.10 189 3923.56 4.49 252 3521.62 3.09 316 3127.25 0.22
63 3654.16 3.09 126 3659.89 3.10 190 3910.34 4.49 253 3527.79 3.09 317 3125.04 0.04
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Table 5-7—GM 543-33 time and bottomhole pressure recorded during the pressure falloff. 

The entire fracture-injection/falloff sequence is shown in Fig. 5.12, which contains a graph of bottomhole 

pressure and injection rate versus time. Note that relative to the shut-in period, the fracture-injection is 

very short and might reasonably be considered as occurring instantaneously. 

t , s p w , psi t , s p w , psi t , s p w , psi t , s p w , psi t , s p w , psi t , s p w , psi t , s p w , psi t , s p w , psi
318 3123.09 1323 2849.67 2328 2767.22 3333 2715.22 4758 2667.20 6768 2622.85 10038 2574.89 18918 2509.64
333 3098.72 1338 2848.07 2343 2766.22 3348 2714.48 4788 2666.40 6798 2622.09 10098 2574.11 19518 2506.93
348 3080.28 1353 2846.55 2358 2765.21 3363 2713.85 4818 2665.50 6828 2621.61 10158 2573.42 20118 2504.25
363 3065.26 1368 2844.90 2373 2764.35 3378 2713.33 4848 2664.81 6858 2621.03 10218 2572.85 20718 2501.64
378 3052.42 1383 2843.36 2388 2763.40 3393 2712.69 4878 2663.97 6888 2620.53 10278 2572.07 21318 2499.29
393 3040.86 1398 2841.89 2403 2762.53 3408 2711.96 4908 2663.20 6918 2619.88 10338 2571.33 21918 2496.92
408 3030.73 1413 2840.39 2418 2761.54 3423 2711.40 4938 2662.32 6948 2619.56 10398 2570.70 22518 2494.66
423 3021.44 1428 2839.02 2433 2760.60 3438 2710.89 4968 2661.54 6978 2619.03 10458 2569.99 23118 2492.54
438 3012.94 1443 2837.40 2448 2759.80 3453 2710.18 4998 2660.80 7008 2618.36 10518 2569.43 23718 2489.98
453 3005.09 1458 2836.07 2463 2758.74 3468 2709.55 5028 2660.13 7038 2617.91 10578 2568.69 24318 2488.24
468 2997.89 1473 2834.49 2478 2758.03 3483 2709.02 5058 2659.28 7068 2617.45 10638 2567.96 24918 2487.05
483 2991.38 1488 2833.11 2493 2757.08 3498 2708.40 5088 2658.58 7098 2616.88 10698 2567.50 25518 2485.46
498 2985.36 1503 2831.66 2508 2756.22 3513 2707.76 5118 2657.66 7128 2616.41 10758 2566.72 26118 2484.00
513 2979.83 1518 2830.30 2523 2755.21 3528 2707.13 5148 2656.94 7158 2615.88 10818 2566.08 26718 2483.16
528 2974.66 1533 2828.87 2538 2754.39 3543 2706.71 5178 2656.28 7188 2615.35 10878 2565.44 27318 2481.56
543 2969.80 1548 2827.60 2553 2753.57 3558 2706.04 5208 2655.63 7218 2614.90 10938 2564.79 27918 2479.80
558 2965.31 1563 2826.21 2568 2752.65 3573 2705.39 5238 2654.80 7248 2614.27 10998 2564.28 28518 2478.45
573 2961.19 1578 2824.76 2583 2751.79 3588 2705.02 5268 2654.07 7278 2613.73 11058 2563.69 29118 2477.21
588 2957.39 1593 2823.41 2598 2750.88 3603 2704.40 5298 2653.41 7308 2613.24 11118 2563.00 29718 2476.04
603 2953.69 1608 2822.17 2613 2750.16 3618 2703.71 5328 2652.62 7338 2612.68 11178 2562.41 30318 2474.69
618 2950.18 1623 2820.88 2628 2749.18 3633 2703.08 5358 2651.92 7368 2612.18 11238 2561.83 30918 2473.33
633 2946.91 1638 2819.58 2643 2748.39 3648 2702.51 5388 2651.28 7398 2611.68 11298 2561.31 31518 2471.82
648 2943.63 1653 2818.22 2658 2747.55 3663 2702.16 5418 2650.34 7428 2611.20 11358 2560.67 32118 2470.38
663 2940.51 1668 2816.82 2673 2746.76 3678 2701.42 5448 2649.75 7458 2610.74 11418 2560.15 32718 2469.03
678 2937.56 1683 2815.62 2688 2746.04 3693 2700.93 5478 2649.06 7488 2610.19 11478 2559.60 33318 2468.32
693 2934.61 1698 2814.37 2703 2745.23 3708 2700.27 5508 2648.41 7518 2609.69 11538 2559.01 33918 2467.72
708 2931.86 1713 2813.12 2718 2744.39 3723 2699.77 5538 2647.71 7578 2608.70 11598 2558.53 34518 2467.03
723 2929.15 1728 2811.77 2733 2743.61 3738 2699.14 5568 2647.05 7638 2607.72 11658 2557.83 35118 2466.31
738 2926.45 1743 2810.58 2748 2742.73 3753 2698.66 5598 2646.32 7698 2606.69 11718 2557.41 35718 2465.62
753 2923.97 1758 2809.31 2763 2742.10 3768 2698.17 5628 2645.67 7758 2605.78 11778 2556.83 36318 2464.97
768 2921.17 1773 2808.06 2778 2741.29 3783 2697.55 5658 2644.91 7818 2604.84 11838 2556.29 36918 2464.20
783 2918.83 1788 2806.77 2793 2740.39 3798 2697.15 5688 2644.32 7878 2603.98 11898 2555.72 37518 2463.56
798 2916.29 1803 2805.53 2808 2739.68 3813 2696.50 5718 2643.61 7938 2603.00 11958 2555.18 38118 2462.82
813 2913.98 1818 2804.31 2823 2738.82 3828 2696.05 5748 2642.92 7998 2601.98 12018 2554.61 38718 2462.19
828 2911.65 1833 2803.19 2838 2738.14 3843 2695.40 5778 2642.28 8058 2601.27 12078 2554.02 39318 2461.53
843 2909.41 1848 2801.85 2853 2737.40 3858 2694.80 5808 2641.65 8118 2600.23 12138 2553.56 39918 2460.81
858 2907.03 1863 2800.62 2868 2736.54 3873 2694.33 5838 2641.04 8178 2599.38 12198 2553.06 40518 2460.32
873 2904.76 1878 2799.50 2883 2735.93 3888 2693.78 5868 2640.33 8238 2598.49 12258 2552.54 41118 2459.54
888 2902.63 1893 2798.24 2898 2735.09 3903 2693.32 5898 2639.66 8298 2597.66 12318 2551.97 41718 2459.05
903 2900.59 1908 2796.94 2913 2734.34 3918 2692.79 5928 2639.00 8358 2596.77 12378 2551.38 42318 2458.43
918 2898.42 1923 2795.83 2928 2733.61 3948 2691.72 5958 2638.44 8418 2595.86 12438 2550.79 42918 2457.62
933 2896.35 1938 2794.63 2943 2732.87 3978 2690.72 5988 2637.73 8478 2595.21 12498 2550.27 43518 2456.92
948 2894.24 1953 2793.45 2958 2732.25 4008 2689.64 6018 2637.20 8538 2594.26 12558 2549.72 44118 2456.51
963 2892.34 1968 2792.27 2973 2731.43 4038 2688.81 6048 2636.48 8598 2593.33 12618 2549.35 44718 2455.96
978 2890.50 1983 2791.13 2988 2730.71 4068 2687.75 6078 2635.89 8658 2592.43 12678 2548.77 45318 2455.31
993 2888.39 1998 2790.01 3003 2729.99 4098 2686.64 6108 2635.22 8718 2591.67 12738 2548.17 45918 2454.57
1008 2886.43 2013 2788.82 3018 2729.22 4128 2685.73 6138 2634.66 8778 2590.95 12798 2547.75 46518 2454.15
1023 2884.50 2028 2787.74 3033 2728.54 4158 2684.89 6168 2634.14 8838 2590.02 12858 2547.24 47118 2453.50
1038 2882.64 2043 2786.63 3048 2727.89 4188 2683.95 6198 2633.51 8898 2589.35 12918 2546.72 47718 2452.99
1053 2880.74 2058 2785.55 3063 2727.12 4218 2682.86 6228 2632.84 8958 2588.38 13218 2544.31 48318 2452.49
1068 2878.77 2073 2784.49 3078 2726.51 4248 2682.02 6258 2632.20 9018 2587.56 13518 2542.02 48918 2451.84
1083 2877.09 2088 2783.26 3093 2725.64 4278 2681.06 6288 2631.75 9078 2586.77 13818 2539.76 49518 2451.42
1098 2875.16 2103 2782.21 3108 2724.97 4308 2680.19 6318 2631.20 9138 2585.83 14118 2537.47 50118 2450.92
1113 2873.43 2118 2781.16 3123 2724.35 4338 2679.33 6348 2630.54 9198 2585.17 14418 2535.33 50718 2450.41
1128 2871.64 2133 2780.04 3138 2723.65 4368 2678.36 6378 2630.03 9258 2584.52 14718 2533.29 51318 2449.81
1143 2869.80 2148 2779.14 3153 2722.94 4398 2677.36 6408 2629.35 9318 2583.56 15018 2531.25 51918 2449.39
1158 2868.05 2163 2778.07 3168 2722.19 4428 2676.55 6438 2628.79 9378 2582.66 15318 2529.39 52518 2448.96
1173 2866.27 2178 2777.08 3183 2721.71 4458 2675.70 6468 2628.28 9438 2582.09 15618 2527.33 53118 2448.40
1188 2864.61 2193 2775.93 3198 2721.02 4488 2674.81 6498 2627.71 9498 2581.27 15918 2525.58 53718 2448.04
1203 2862.76 2208 2775.07 3213 2720.34 4518 2674.02 6528 2627.08 9558 2580.49 16218 2523.82 54318 2447.42
1218 2861.14 2223 2773.97 3228 2719.56 4548 2673.12 6558 2626.55 9618 2579.69 16518 2522.09 54918 2447.04
1233 2859.40 2238 2773.02 3243 2718.96 4578 2672.14 6588 2626.01 9678 2579.03 16818 2520.34 55518 2446.54
1248 2857.76 2253 2772.01 3258 2718.32 4608 2671.41 6618 2625.47 9738 2578.36 17118 2518.61 56118 2446.05
1263 2856.05 2268 2771.08 3273 2717.76 4638 2670.54 6648 2624.86 9798 2577.62 17418 2516.98 56718 2445.72
1278 2854.45 2283 2770.04 3288 2717.09 4668 2669.70 6678 2624.34 9858 2576.82 17718 2515.59 57318 2445.39
1293 2852.79 2298 2769.14 3303 2716.44 4698 2668.78 6708 2623.75 9918 2576.17 18018 2514.07 57918 2444.79
1308 2851.25 2313 2768.07 3318 2715.71 4728 2668.05 6738 2623.19 9978 2575.52 18318 2512.62 58518 2444.34
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1. Calculate the function G(g(Δt,αN)) for each time and pressure recorded during the falloff period 

and prepare a Cartesian graph of bottomhole pressure, pw, the derivative of pressure, dpw/dG, and the 

"superposition" derivative, Gdpw/dG versus the function G(g(Δt,αN)). 

Identify the leakoff type74 and hydraulic fracture closure using the G-function plot. Fig. 5.13 contains the 

G-function plot for the fracture-injection/falloff sequence. The leakoff type is pressure-dependent leakoff, 

which is indicated by the characteristic hump in the superposition derivative above a straight line drawn 

from the origin through the "normal" leakoff data. Fracture closure is observed at Gc = 4.42, and the 

closure stress is 2,790 psi. 

2. Initial reservoir pressure can be estimated from the closure stress and the uniaxial strain 

relationship. Assuming an overburden stress, σz = 4,954 psi (1 psi/ft overburden gradient), the initial 

reservoir pressure estimate is pi = 2,069 psi. The estimated intial reservoir pressure from closure stress 

should be considered as a guide only—the pressure may or may not be accurate depending on additional 

factors, including tectonic stress. 

Before-closure analysis59 requires an estimate of fracture half-length and lost fracture width, wL, because 

of fluid leakoff. Fracture half-length and lost width are estimated from a graph of bottomhole pressure 

versus the loss-volume function, g(Δt,αN), which is shown in Fig. 5.14 assuming the fracture grows under 
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Fig. 5.12—GM 543-33 Mesaverde formation fracture-injection/falloff sequence. 
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Fig. 5.14—GM 543-33 Mesaverde formation fracture-injection/falloff sequence before-closure 
pressure versus the dimensionless loss-volume function. 
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horizontal plane strain conditions (GDK).  The slope of the line through the before-closure data is 

(mN)GDK = -87.69 psia and the intercept is (bN)GDK = 3183.69 psia. Fracture half-length is calculated from 

the intercept as 

(5.615)(5,208,333.3)(17.69 / 2)( ) 122.2 ft
(14)(3183.69 2790)GDKL f π

= =
−

,  

and lost width is calculated from the slope as 

1.478(12) (122.2)( ) (87.69) 0.11 in
5,208,333.3GDKwL

π
= = . 

Fracture stiffness assuming horizontal plane strain conditions is calculated as 

5,208,333.3 psi( ) 13,566.8 
(122.2) ft

S f GDK π
= = . 

Microseismic imaging of fracture growth in Piceance basin Mesaverde formation suggests a fracture 

created during an injection with water is "contained" by the bounding shale and mudstone 

formations.111-112 Consequently, radial fracture growth is not anticipated, but the radial fracture 

calculations are included for completeness. For a radial fracture geometry, (mN)RAD = -86.855 psi and the 

intercept is (bN)RAD = 3177.3 psi. Fracture radius is calculated as 

3(5.615) (5,208,333.3)(17.69 / 2)3 63.0 ft
8 (3,177.3 2,790)

R f = =
−

,   

and the lost width is calculated as 

7.343(12)(63.0)( ) (86.855) 0.03 in
(5208333.3)RADwL π

= = .  

Fracture stiffness assuming radial fracture geometry is calculated as 

3 (5,208,333.3) psi( ) 48,697.8 
16(63.0) ft

S f GDK
π

= = .  

3. Calculate adjusted pseudotime, adjusted pseudopressure, gas formation volume factor, and total 

compressibility for each recorded time and pressure after the end of the injection. For before-closure 

pressure-transient analysis, scale time to zero at the beginning of the shut-in period for calculating 

adjusted pseudotime. An estimate of reservoir pressure is needed for a first iteration. The reservoir 

pressure estimated from the observed closure stress, 2,069 psi, could be used, or an estimate of reservoir 

pressure from other data. For the GM 543-33, assume the reservoir pressure is 2,332 psi. 

4. Note the following variables required for the analysis. 
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5. Calculate and graph (yap)n versus (xap)n for each recorded time and pressure before fracture 

closure, which is shown in Fig. 5.15. Under normal leakoff conditions, the data on the specialized graph 

will fall along a straight line, but nonideal leakoff, like pressure-dependent leakoff causes the data to fan 

across the page.82 Drawing a line from the origin through the last few data points recorded before 

closure results in (mM)GDK = 0.0337. The created fracture height is assumed to be extend across the total 

thickness of the Mesaverde formation, but the net or permeable fracture height is less than the total 

height. The ratio of permeable to total fracture height is rp = 12/14 = 0.86, and the permeability is 

estimated as 

9

6

3

0

 (Y
a)

n

2001000

 (Xa)n

mM = 0.03371
bM = 0.0

Fig. 5.15—GM 543-33 Mesaverde formation fracture-injection/falloff sequence before-closure 
pressure-transient analysis. 
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2
GDK

2(141.2)(0.02878)(24) 1
( ) 0.008 md

5.615 (1)(0.87)(13566.8)(0.0337)
k ⎡ ⎤

= =⎢ ⎥
⎣ ⎦

. 

There is no fracture face resistance since the straight line is drawn from the origin. 

With radial fracture geometry, the specialized graph results in (bM)RAD = 0 and (mM)RAD = 0.03273. The 

ratio of permeable to total fracture height for a radial fracture is calculated as59 

2
12 1212 12( ) 0.1211 sin

2(63.0)2(63.0) 2(63.0)
p RADr

π
−

⎡ ⎤
⎛ ⎞⎢ ⎥= =− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

. 

The permeability assuming radial fracture geometry is estimated as 

22(141.2)(0.02878)(24) 1
( ) 0.032 md

5.615 (1)(0.121)(48697.8)(0.03273)RADk ⎡ ⎤
= =⎢ ⎥
⎣ ⎦

. 

There is a factor of 4 difference in the estimated permeability that results by assuming an unconfined 

radial fracture versus a confined fracture. However, as noted above, water injections in Mesaverde 

formations are typically confined, and the lower permeability estimate is more realistic. However, without 

fracture imaging the true fracture geometry is unknown and before-closure pressure-transient analysis can 

only bracket the estimated permeability, that is, 0.008 md ≤ k ≤ 0.032 md.    

6. After-closure analysis requires a log-log graph of the adjusted pseudopressure difference, 

paw – pai, and well testing pressure derivative versus the reciprocal elapsed adjusted pseudotime, which 

is shown in Fig. 5.16. The elapsed time and corresponding adjusted pseudotime used in after-closure 

analysis is calculated relative to the time since the beginning of the injection. 

The derivative curve is not a function of initial reservoir pressure and should be used to identify the flow 

regime(s). In Fig. 5.16, a portion of the derivative data fall along a ½-slope line, which indicates 

pseudolinear flow was observed. Additionally, the adjusted pseudopressure difference data are offset by a 

factor of 2 and also fall along a ½-slope line, which seems to confirm pseudolinear flow is observed for a 

portion of the data and suggests that the estimated initial reservoir pressure is correct. In most cases, the 

determination of initial reservoir pressure is an iterative process, and the adjusted pseudopressure 

difference will not follow a ½-slope line with a factor of 2 offset until the initial reservoir pressure is 

correct. Note that as the shut-in progresses, the late-time data diverge from the ½-slope line.  

7. Since pseudolinear flow was indicated in Fig. 5.16, a Cartesian graph of adjusted pseudopressure 

versus the square root of reciprocal elapsed adjusted pseudotime is prepared, which is shown in 

Fig. 5.17. A straight line is drawn through the data corresponding to pseudolinear flow, and the initial 

adjusted pseudopressure corresponds to the intercept of the straight line, bacpl = pai = 1,300 psia, which 

corresponds to an initial reservoir pressure of pi = 2,332 psia. 
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Fig. 5.16—GM 543-33 Mesaverde formation fracture-injection/falloff sequence after-closure 
analysis diagnostic graph. 
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The permeability cannot be calculated from the slope of the straight line, macpl = 376.908 psia·hr on the 

pseudolinear flow graph unless fracture half-length is known. Assuming the fracture half-length from 

before-closure analysis with a confined height fracture and horizontal plane strain, Lf = 122 feet, and 

assuming pawsD(0) = 0, the permeability is calculated as  

( )

21 2

4
0.0177141.2(24) 0.0002637 1 0.002 md17.69

2 12(122)(376.908) 0.10(2.256)(10)
k π

−

⎡ ⎤⎛ ⎞⎢ ⎥= =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. 

which corresponds to a permeability-thickness product of kh = 0.024 md·ft. 

The difference between the permeability calculated from before-closure pressure-transient analysis and 

after-closure pseudolinear flow analysis is factor of 4. A complete and satisfactory analysis of the data 

requires that before-closure analysis, after-closure analysis, and type-curve analysis are consistent and 

provide comparable permeability estimates. 

8. Prepare a log-log graph of I(Δpa) versus (te)a + Δta and Δp'a versus (te)a + Δta and overlay the 

appropriate constant-rate, drawdown type curve for the reservoir/system. Fig 5.18 shows a type-curve 

match obtained with the observed data and a type curve for production through and finite-conductivity 

fracture in an infinite slab reservoir. 

Note that the type curve match indicates minimal storage change during fracture closure, and the before- 

and after-closure storage can be considered equivalent, CabcD = CaacD. A match point is as follows. 

0.002091 ( ) 3.046213 hr

0.060911 ( ) 1108.66 psia hr
aLfD e a a

acD a

t t t

p I p

= → + Δ =

= → Δ = ⋅
 

From the type-curve match, CaacD = 0.01, and the storage coefficient is calculated as 

4 22
(0.10)(2.256)(10) (12)(122) (0.01) bbl0.04509 

0.8936 0.8936 psia
c hL Ct aacDfC Caac

φ −
+ = = =  

The transmissibility is calculated assuming Ti = Tw as 

md ft0.060911(141.2)(24)(1)(2154.88 1300.69)(0.04509) 7.17 
cp1108.66i MP

kh
μ

⋅⎡ ⎤= − =⎢ ⎥⎣ ⎦
 

The permeability-thickness product is 0.127 md·ft, and the permeability is 0.011 md. 

The type-curve match and calculated permeability are in general agreement with before-closure pressure 

transient analysis, but the calculated permeability from after-closure pseudolinear flow differs by a factor 

of four. With the storage coefficient determined from type-curve analysis, Ca + Caac = 0.04509 bbl/psi, the 

complete pseudolinear flow impulse solution is used to calculate permeability as 
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( )

21 2

4
0.0177141.2(24) 0.0002637 1

0.019 md2 12(122)(376.908) 0.10(2.256)(10)
17.69 .04509(2154.88 1300.69)

k
π

−

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟= =⎢ ⎥⎝ ⎠⎢ ⎥
× + −⎢ ⎥⎣ ⎦

, 

which is closer to the results of before-closure and type-curve analysis, but still differs.  The type curve in 

Fig. 5.18 illustrates that fully developed linear flow was never established. The annotation marks the 

estimated beginning of pseudolinear flow as interpreted from the after-closure diagnostic graph, but the 

type curve shows that storage distorts the linear flow data as the transition to pseudolinear flow begins. 

Thus some difference between the results of before-closure, after-closure pseudolinear flow, and type-

curve analysis should be expected with the match selected. The example does illustrate the importance of 

using the complete pseudolinear flow impulse solution. 

None of the methods used for the analysis of the fracture-injection falloff allow for a unique interpretation 

of the data, and the agreement between the results of before-closure, after-closure pseudolinear flow, and 

type-curve analysis might be improved with another iteration using a slightly different initial reservoir 

pressure. However, the results are comparable and reasonably consistent, and iterating is probably 

unnecessary. 

Fig. 5.18—GM 543-33 Mesaverde formation fracture-injection/falloff sequence infinite-
conductivity fracture type-curve match. 
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Note that the calculated storage coefficient is about four times greater than the maximum estimated 

storage coefficient. The tubular configuration resulted in a wellbore volume of 4.65 bbl, and assuming the 

residual fracture volume is the same as the created fracture volume, that is, assuming the fracture width 

did not change during closure, the fracture volume for one wing of a symmetrical fracture is 8.845 bbl. 

Using the gas compressibility in the calculation of storage, the storage coefficient is estimated to be 

4 bbl2 (4.312)(10) (4.65 2(8.845)) 0.0096 
psia gi w gi frC C c V c Vaac

−+ = + = + =  

The reservoir is believed to contain natural fractures, which is supported by the pressure-dependent leakoff 

observed during before-closure G-function analysis, so it is possible that the additional storage volume 

represents natural fractures that were dilated during the fracture injection. 

Immediately following the fracture-injection/falloff, a drawdown/buildup sequence was completed on the 

GM 543-33 Mesaverde formation. During the drawdown, the layer was produced at a constant rate of 

100 Mscf/D for 141.7 hours, but the rate decreased to 98 Mscf/D for the next 24.3 hours. During the 

slickline work required to seat the plug, the rate decreased to 60 Mscf/D for 0.6 hours, and finally 

50 Mscf/D for the final 0.1 hours of the drawdown. After seating the plug, the pressure buildup was 

recorded for 14.95 days. A type curve match for the buildup data is shown in Fig. 5.19, and the buildup 

data are tablulated in Table 5-8. 

Table 5-9 contains a summary of the results from the fracture-injection/falloff and drawdown/buildup 

interpretations. None of the interpretations are unique, but the results from the fracture-injection/falloff 

sequence are consistent and comparable to the results from the drawdown/buildup sequence, which 

increases the confidence that the interpretations are correct. 

Two additional observations are noteworthy. First, the wellbore storage coefficient from the 

drawdown/buildup interpretation, C = 0.001978 bbl/psi, is comparable to the calculated storage coefficient 

based on the wellbore volume, Ca = (4.65 bbl)(0.000431 psi-1) = 0.002 bbl/psi. Recall from the fracture-

injection/falloff sequence that the storage coefficient from the type-curve match was four times the 

calculated storage coefficient based on wellbore and injected fluid volume. Consequently, if natural 

fractures were dilated by the fracture-injection and increase the system storage, then the natural fractures 

must have closed during the drawdown to not affect the wellbore storage during the buildup. 
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Second, the fracture-injection/falloff data were matched to a type curve for an infinite-conductivity 

fracture, and data from the drawdown/buildup sequence was matched to a type curve for a finite-

conductivity fracture, Cf = 17.79 md·ft, which corresponds to a dimensionless fracture conductivity of 

CfD = 12.5. Thus, a small volume water injection without proppant in a low permeability Mesaverde 

formation created a fracture of significant length and surprisingly high dimensionless conductivity—which 

may partly explain the success of "slickwater" fracturing treatments in tight-gas sands. 

Fig. 5.19—GM 543-33 Mesaverde formation fracture-injection/falloff sequence infinite-
conductivity fracture type-curve match. 



 169 

Table 5-8—GM 543-33 time and bottomhole pressure recorded during the pressure buildup. 

 

t , hr p ws , psi t , hr p ws , psi t , hr p ws , psi t , hr p ws , psi t , hr p ws , psi t , hr p ws , psi t , hr p ws , psi t , hr p ws , psi
1.03 1040.81 3.31 1258.43 23.18 1569.14 65.57 1794.14 226.91 2060.12
1.06 1066.84 3.38 1260.55 12.18 1449.62 23.34 1570.49 43.57 1703.12 65.91 1795.32 119.91 1932.80 228.91 2061.59
1.09 1084.31 3.44 1262.53 12.34 1452.01 23.51 1571.85 43.91 1704.78 66.24 1796.60 120.91 1934.58 230.91 2063.13
1.13 1097.22 3.51 1264.56 12.51 1454.30 23.68 1573.33 44.24 1706.41 66.57 1797.59 121.91 1936.54 232.91 2064.50
1.16 1107.35 3.58 1266.70 12.68 1456.68 23.84 1574.87 44.57 1707.99 66.91 1798.87 122.91 1938.19 234.91 2066.08
1.19 1116.23 3.64 1268.84 12.84 1458.99 24.01 1576.15 44.91 1709.58 67.24 1800.05 123.91 1940.10 236.91 2067.59
1.23 1123.85 3.71 1271.06 13.01 1461.09 24.18 1577.53 45.24 1711.25 67.57 1801.11 124.91 1941.79 238.91 2069.11
1.26 1130.72 3.78 1273.06 13.18 1463.37 24.34 1578.85 45.57 1712.94 67.91 1802.22 125.91 1943.64 240.91 2070.36
1.29 1136.66 3.84 1275.26 13.34 1465.54 24.51 1580.34 45.91 1714.49 68.24 1803.27 126.91 1945.36 242.91 2071.80
1.33 1142.20 3.91 1277.40 13.51 1467.73 24.68 1581.56 46.24 1715.93 68.57 1804.51 127.91 1947.08 244.91 2073.23
1.36 1147.44 3.98 1279.60 13.68 1470.02 24.84 1583.05 46.57 1717.61 68.91 1805.51 128.91 1948.79 246.91 2074.50
1.39 1152.21 4.04 1281.70 13.84 1472.16 25.18 1585.76 46.91 1719.21 69.24 1806.67 129.91 1950.55 248.91 2075.91
1.43 1156.76 4.11 1283.74 14.01 1474.35 25.51 1588.29 47.24 1720.70 69.57 1807.71 130.91 1952.03 250.91 2077.21
1.46 1160.99 4.18 1285.82 14.18 1476.46 25.84 1590.85 47.57 1722.29 69.91 1808.80 131.91 1953.80 252.91 2078.64
1.49 1165.00 4.24 1287.86 14.34 1478.52 26.18 1593.49 47.91 1723.85 70.24 1809.98 132.91 1955.47 254.91 2079.88
1.53 1168.94 4.31 1290.10 14.51 1480.50 26.51 1596.08 48.24 1725.23 70.57 1811.10 133.91 1956.92 256.91 2081.29
1.56 1172.68 4.38 1292.09 14.68 1482.71 26.84 1598.59 48.57 1726.93 70.91 1812.15 134.91 1958.68 258.91 2082.36
1.59 1176.48 4.44 1294.08 14.84 1484.70 27.18 1601.07 48.91 1728.27 71.24 1813.26 135.91 1960.24 260.91 2083.77
1.63 1180.02 4.51 1296.15 15.01 1486.65 27.51 1603.68 49.24 1729.91 71.57 1814.28 136.91 1961.81 262.91 2085.04
1.66 1183.50 4.58 1298.09 15.18 1488.70 27.84 1606.18 49.57 1731.30 71.91 1815.38 137.91 1963.35 264.91 2086.25
1.69 1186.84 4.64 1300.08 15.34 1490.58 28.18 1608.53 49.91 1732.91 72.91 1818.49 138.91 1964.99 266.91 2087.55
1.73 1190.05 4.71 1302.01 15.51 1492.65 28.51 1610.88 50.24 1734.32 73.91 1821.60 139.91 1966.36 268.91 2088.74
1.76 1193.17 4.78 1303.95 15.68 1494.55 28.84 1613.48 50.57 1735.82 74.91 1824.82 140.91 1967.98 270.91 2090.00
1.79 1196.10 4.84 1305.73 15.84 1496.59 29.18 1615.71 50.91 1737.22 75.91 1827.81 141.91 1969.57 272.91 2091.20
1.83 1198.76 5.01 1310.49 16.01 1498.46 29.51 1618.06 51.24 1738.64 76.91 1830.89 142.91 1970.98 274.91 2092.44
1.86 1201.78 5.18 1315.05 16.18 1500.24 29.84 1620.49 51.57 1740.09 77.91 1833.78 143.91 1972.55 276.91 2093.63
1.89 1204.42 5.34 1319.56 16.34 1502.03 30.18 1622.61 51.91 1741.55 78.91 1836.79 144.91 1973.91 278.91 2094.68
1.93 1207.04 5.51 1323.91 16.51 1503.97 30.51 1624.93 52.24 1742.94 79.91 1839.81 146.91 1976.92 280.91 2095.88
1.96 1209.47 5.68 1328.16 16.68 1505.94 30.84 1627.29 52.57 1744.36 80.91 1842.59 148.91 1979.81 282.91 2097.03
1.99 1211.95 5.84 1332.29 16.84 1507.76 31.18 1629.61 52.91 1745.75 81.91 1845.31 150.91 1982.50 284.91 2098.01
2.03 1214.32 6.01 1336.42 17.01 1509.63 31.51 1631.89 53.24 1747.10 82.91 1848.20 152.91 1985.29 286.91 2099.17
2.06 1216.72 6.18 1340.43 17.18 1511.28 31.84 1634.10 53.57 1748.50 83.91 1851.00 154.91 1987.98 288.91 2100.30
2.09 1219.07 6.34 1344.46 17.34 1513.12 32.18 1636.15 53.91 1749.93 84.91 1853.70 156.91 1990.72 290.91 2101.34
2.13 1221.38 6.51 1348.36 17.51 1515.00 32.51 1638.44 54.24 1751.31 85.91 1856.41 158.91 1993.39 292.91 2102.41
2.16 1223.67 6.68 1352.08 17.68 1516.79 32.84 1640.54 54.57 1752.70 86.91 1859.13 160.91 1995.99 294.91 2103.46
2.19 1225.76 6.84 1355.84 17.84 1518.47 33.18 1642.73 54.91 1754.05 87.91 1861.74 162.91 1998.38 296.91 2104.57
2.23 1227.97 7.01 1359.49 18.01 1520.24 33.51 1644.77 55.24 1755.42 88.91 1864.34 164.91 2000.83 298.91 2105.68
2.26 1229.95 7.18 1363.09 18.18 1522.11 33.84 1646.92 55.57 1756.78 89.91 1866.96 166.91 2003.12 300.91 2106.64
2.29 1231.97 7.34 1366.79 18.34 1523.68 34.18 1648.94 55.91 1758.08 90.91 1869.62 168.91 2005.53 302.91 2107.77
2.33 1233.73 7.51 1370.32 18.51 1525.46 34.51 1651.10 56.24 1759.32 91.91 1872.11 170.91 2007.88 304.91 2108.63
2.36 1235.37 7.68 1373.69 18.68 1527.11 34.84 1653.12 56.57 1760.62 92.91 1874.64 172.91 2010.09 306.91 2109.56
2.39 1236.76 7.84 1377.06 18.84 1528.86 35.18 1655.10 56.91 1762.04 93.91 1876.98 174.91 2012.70 308.91 2110.61
2.43 1237.91 8.01 1380.22 19.01 1530.43 35.51 1657.14 57.24 1763.42 94.91 1879.42 176.91 2014.66 310.91 2111.64
2.46 1238.79 8.18 1383.46 19.18 1532.27 35.84 1659.08 57.57 1764.68 95.91 1881.78 178.91 2016.84 312.91 2112.65
2.49 1239.65 8.34 1386.83 19.34 1533.80 36.18 1661.15 57.91 1766.06 96.91 1884.20 180.91 2018.89 314.91 2113.54
2.53 1240.74 8.51 1389.99 19.51 1535.55 36.51 1663.20 58.24 1767.26 97.91 1886.58 182.91 2020.89 316.91 2114.56
2.56 1241.64 8.68 1392.98 19.68 1537.17 36.84 1664.91 58.57 1768.54 98.91 1888.87 184.91 2022.96 318.91 2115.39
2.59 1241.97 8.84 1396.01 19.84 1538.80 37.18 1666.92 58.91 1769.86 99.91 1891.29 186.91 2024.92 320.91 2116.40
2.63 1242.53 9.01 1399.07 20.01 1540.30 37.51 1668.77 59.24 1771.12 100.91 1893.52 188.91 2027.00 322.91 2117.33
2.66 1243.12 9.18 1401.96 20.18 1541.87 37.84 1670.89 59.57 1772.50 101.91 1895.81 190.91 2028.84 324.91 2118.27
2.69 1243.80 9.34 1405.02 20.34 1543.63 38.18 1672.69 59.91 1773.75 102.91 1898.08 192.91 2030.73 326.91 2119.18
2.73 1244.59 9.51 1407.83 20.51 1545.06 38.51 1674.63 60.24 1774.98 103.91 1900.15 194.91 2032.70 328.91 2120.04
2.76 1245.24 9.68 1410.78 20.68 1546.63 38.84 1676.38 60.57 1776.18 104.91 1902.47 196.91 2034.69 330.91 2120.96
2.79 1245.92 9.84 1413.45 20.84 1548.25 39.18 1678.16 60.91 1777.53 105.91 1904.71 198.91 2036.50 332.91 2121.74
2.83 1246.41 10.01 1416.25 21.01 1549.83 39.51 1680.02 61.24 1778.68 106.91 1906.84 200.91 2038.22 334.91 2122.66
2.86 1246.99 10.18 1418.99 21.18 1551.32 39.84 1681.82 61.57 1779.96 107.91 1908.96 202.91 2040.13 336.91 2123.63
2.89 1247.41 10.34 1421.55 21.34 1552.83 40.18 1683.83 61.91 1781.11 108.91 1910.92 204.91 2041.86 338.91 2124.44
2.93 1248.26 10.51 1424.37 21.51 1554.39 40.51 1685.45 62.24 1782.20 109.91 1913.05 206.91 2043.67 340.91 2125.28
2.96 1249.12 10.68 1427.09 21.68 1555.89 40.57 1686.33 62.57 1783.48 110.91 1915.16 208.91 2045.40 342.91 2126.06
2.99 1249.87 10.84 1429.67 21.84 1557.48 40.91 1689.68 62.91 1784.67 111.91 1917.10 210.91 2047.04 344.91 2126.83
3.03 1250.61 11.01 1432.37 22.01 1558.88 41.24 1691.29 63.24 1785.99 112.91 1919.18 212.91 2048.80 346.91 2127.72
3.06 1251.47 11.18 1434.81 22.18 1560.43 41.57 1693.09 63.57 1787.13 113.91 1921.17 214.91 2050.46 348.91 2128.46
3.09 1252.40 11.34 1437.28 22.34 1561.95 41.91 1694.69 63.91 1788.26 114.91 1923.20 216.91 2052.22 350.91 2129.34
3.13 1253.25 11.51 1439.89 22.51 1563.37 42.24 1696.39 64.24 1789.46 115.91 1925.18 218.91 2053.76 352.91 2130.17
3.16 1254.13 11.68 1442.36 22.68 1564.89 42.57 1698.06 64.57 1790.66 116.91 1927.03 220.91 2055.36 354.91 2131.00
3.21 1255.52 11.84 1444.67 22.84 1566.38 42.91 1699.77 64.91 1791.88 117.91 1928.97 222.91 2056.91 356.91 2131.70
3.24 1256.33 12.01 1447.20 23.01 1567.69 43.24 1701.43 65.24 1793.02 118.91 1930.92 224.91 2058.47 358.91 2132.46
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Table 5-9—GM 543-33 summary of results from the interpretation of the fracture-
injection/falloff and drawdown/buildup sequences in the Mesaverde formation 
between 4,948- and 4,962-feet. 

5.3.3 Pre-Existing Conductive Hydraulic Fracture With Choked-Fracture Skin Damage. The final 

example illustrates a refracture-candidate diagnostic test in an isolated low-permeability Mesaverde 

sanstone formation. Unlike the previous examples, a propped-fracture treatment placing 250,000 lb of 

20/40 mesh sand had been pumped, and the well had been produced prior to the fracture-injection/falloff 

sequence. Post-frac well performance was below expectations, and the objective of the test was to verify 

the presence of an open hydraulic fracture and to look for evidence of "damage." 

The test consisted of 75.8 bbl of 1% KCl treated water that was injected at an average rate of 4.10 bbl/min 

during an 18.5 minute injection period. Following the fracture-injection, the pressure falloff was recorded 

for 4 hours. Fig. 5.20 shows a graph of surface pressure and injection rate recorded during the entire 

fracture-injection/falloff sequence. As shown in Fig. 5.19, the pressure during the injection exceeded the 

fracture closure stress significantly, and the instantaneous shut-in pressure indicates that about 500 psi of 

pressure in excess of the fracture closure stress was observed during the fracture injection. 

Fig. 5.21 shows a log-log graph of the integrated adjusted pseudopressure difference and derivative versus 

adjusted pseudotime. Dual unit slope (storage-dominated flow) periods were observed during the falloff 

period. The first unit-slope period corresponds to a constant storage coefficient during closure, and the 

second unit slope period—which is clearly shown by the derivative curve—is observed after fracture 

closure. The apparent increase in storage is the characteristic response of a damaged fracture with choked-

fracture skin, and the curves suggest a fracture retaining residual width exists, but the fracture is damaged. 

Consequently, the refracture-candidate diagnostic test qualitatively verified an existing damaged fracture, 

but since the data did not extend beyond the end of storage-dominated flow, quantitative analysis is not 

possible.  

Buildup
Before-Closure After-Closure After-Closure Type Curve Type Curve

Q at Only Q at + Storage

p i 2,096 psi 2332 psi 2332 psi 2,332 2,402 psi
k 0.008 md 0.002 md 0.019 md 0.011 md 0.012 md

kh 0.096 md·ft 0.024 md·ft 0.228 md·ft 0.132 md·ft 0.144 md·ft
L f 122 ft 122 ft 122 ft 122 ft 121.3 ft

C fD ∞ ∞ ∞ ∞ 12.5

Fracture-Injection/Falloff
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Fig. 5.20—Mesaverde formation refracture-candidate diagnostic test pressure and injection rate 
recorded versus time. 

Fig. 5.21—Mesaverde formation refracture-candidate diagnostic equivalent constant-rate 
adjusted pseudopressure difference and derivative versus adjusted pseudotime. 
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CHAPTER VI 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

6.1 Summary and Conclusions 

The goal of the research was to develop a new pressure-transient test for refracture-candidate 

identification, and it was asserted that a fracture-injection/falloff sequence with the time of injection short 

relative to the reservoir response could be a viable refracture-candidate diagnostic.  

Achieving the research goal required several modifications to existing theory, a new theoretical approach 

to a fracture-injection/falloff sequence, and new ancillary, but important, pressure-transient solutions. For 

example, current fracture-injection/falloff analysis methods were modified by formulating before-closure 

pressure-transient analysis and after-closure analysis methods in terms of adjusted pseudopressure and 

adjusted pseudotime to account for pressure-dependent reservoir fluid properties. Additionally, after-

closure analysis was modified by redefining the time plotting function for consistency with Soliman's109 

method for the analysis of a buildup test with a short producing time, and Soliman's109 and Soliman et 

al.'s108 pseudolinear flow solution was corrected.  

The new theoretical approach to modeling a fracture-injection/falloff sequence utilized throughout the 

dissertation considers fracture creation, propagation, and closure to be storage phenomena. Fracture 

propagation is modeled as time-dependent storage, and fracture closure and after-closure diffusion are 

modeled as having constant, but possibly different, storage. As a result, the pressure-transient solution for 

a fracture-injection/falloff sequence includes variable storage to account for fracture propagation, fracture 

closure, and after-closure diffusion. Since each storage coefficient is derived from fundamental principles, 

properties of the system can be interpreted from the storage coefficient(s), or, more specifically, from the 

changes observed in the storage coefficients. 

New analytical fracture-injection/falloff solutions were developed for the following cases. 

• Equivalent propagating-fracture storage and before-closure storage with constant after-closure 

storage. 

• Time-dependent propagating-fracture storage, constant before-closure storage, and constant after-

closure storage. 

• Time-dependent propagating-fracture storage and before-closure storage with linear flow from the 

fracture before closure and after-closure radial flow with constant wellbore storage and skin. 

Additionally, limiting-case solutions were developed for each case, and the limiting-case solutions 

demonstrated that when the time of injection is short relative to the reservoir response, the observed 

pressure difference between the wellbore and average reservoir pressure during the variable-rate falloff 

can be integrated and converted to an equivalent "constant-rate" pressure difference. A log-log graph of 
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the equivalent pressure difference versus time will overlay a constant-rate type curve for the appropriate 

reservoir/system, which allows for type-curve analysis of fracture-injection/falloff data. 

Since the fracture-injection/falloff model developed includes variable storage, new constant-rate, variable-

storage drawdown solutions were developed for a well producing from an infinite-slab reservoir 

containing a single dilated vertical fracture with the initial reservoir pressure above the minimum insitu or 

closure stress and with fracture and wellbore storage as follows: 

• Constant before-closure and constant after-closure storage. 

• Constant before- and constant after-closure storage with fracture-face and choked-fracture skin. 

• Fracture flow during closure with constant before-closure storage and radial flow after closure with 

constant wellbore storage and skin. 

With the new fracture-injection/falloff theory, a new refracture-candidate diagnostic was developed by 

recognizing that a fracture-injection/falloff sequence in an isolated layer with an existing conductive 

fracture will have a falloff response with characteristic variable-storage behavior. The variable-storage 

behavior is used to qualitatively identify the following. 

• A pre-existing conductive fracture. 

• A pre-existing fracture with damage. 

Both apparent increasing and decreasing storage at fracture closure can indicate an existing conductive 

fracture, but apparent increasing storage indicates the existing fracture is damaged in the form of choked-

fracture skin. 

Developing a quantitative type curve analysis method for the refracture-candidate diagnostic required the 

most important ancillary development in the dissertation: a semianalytical pressure-transient solution for a 

well producing from an inifinite-slab reservoir through multiple, arbitrarily-oriented uniform-flux, infinite-

conductivity, or finite-conductivity fractures. The new multiple-fracture reservoir solutions were combined 

with variable storage models to develop constant-rate drawdown type curves for a well producing through 

multiple fractures. With the new type curves and after extending the fracture-injection/falloff theory to 

cases with multiple fractures and anisotropic stress conditions, a quantitative type-curve analysis method 

was developed for the refracture-candidate diagnostic. 

The new solutions allow for determining the primary and secondary fracture half-length, the primary and 

secondary fracture conductivity, and reservoir transmissibility from the pressure falloff of a refracture 

candidate diagnostic after converting the observed pressure difference to an equivalent constant-rate 

pressure difference and matching with log-log type curves for a well producing from an infinite slab 

reservoir with multiple, aribtarily-oriented fractures. Additionally, when pseudoradial flow is observed, a 
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refracture-candidate diagnostic can provide an estimate of average reservoir pressure using the after- 

closure impulse solution. 

Completing the method required developing solutions in terms of adjusted pseudopressure and adjusted 

pseudotime to account for reservoir fluid compressibility. Before-closure, after-closure, and the limiting-

case solutions that allow type-curve analysis of a fracture-injection-falloff analysis were all derived in 

terms of adjusted pseudovariables. Thus, a complete analysis "package" for a fracture-injection/falloff 

sequence or refracture-candidate diagnostic is available and correct for reservoirs containing oil, gas, or 

water (coal). 

Field fracture-injection/falloff examples and interpretations were provided for a moderate- and a low-

permeability gas reservoir without a pre-existing conductive fracture, and the results of both fracture-

injection/falloff interpretations were compared and validated with conventional pressure-transient tests. 

Additionally, a qualitative interpretation of a refracture-candidate diagnostic in a low-permeability gas 

reservoir with an existing fracture identified a damaged fracture based on apparent increasing storage 

behavior after fracture closure, which validates the new refracture-candidate diagnostic theory.  

Modifications of current fracture-injection/falloff analysis methods; the development of new fracture-

injection/falloff models; the ancillary development of new pressure-transient solutions; and validation with 

field cases demonstrates that the the new refracture-candidate diagnostic presented in the dissertation 

achieves the goal of developing a new pressure-transient test for refracture-candidate identification. 

6.2 Recommendations for Future Research 

The new solutions presented in the dissertation provide numerous opportunities for additional research—

some of which are as follows.  

• The analytical solutions developed within the dissertation need thorough numerical evaluation. The 

dissertation focused on deriving the solutions and provided minimal numerical evaluations of the 

new solutions. A more exhaustive examination is warranted. For example, numerical evaluations 

could quantify the error created by assuming an instantaneous injection when a finite injection time 

is required, that is, quantify the error when (te)LfD = {10-6, 10-5, 10-4, 10-3}. 

• Similarly, the theory is derived to account for dual porosity reservoirs. Numerical evaluation of the 

dual porosity solutions should be compared to single porosity examples. On a more fundamental 

level, the numerical evalutions of the dual porosity solutions should be used to identify when, and 

if, dual porosity behavior can be observed from the falloff of a fracture-injection/falloff sequence. 

• The approach used to derive the pressure-transient solution for a well producing from an infinite-

slab reservoir through multiple, arbitrarily-oriented uniform-flux, infinite-conductivity, or finite-

conductivity fractures is general. The same approach could be used to derive solutions for more 

complex fracture patterns. For example, microseismic fracture imaging from the Barnett shale 
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indicates hydraulic fracturing dilates an entire macro-scale fracture network. Pressure-transient 

solutions with parallel fractures connected through a perpendicular fracture could be derived 

following the same approach. The derivation method and solutions could be used to determine how 

pressure-transient tests in reservoirs with complex-fracture patterns differ from the single, planar 

fracture case. 

• The pressure-transient solution for a well producing from an infinite-slab reservoir through 

multiple, arbitrarily-oriented uniform-flux, infinite-conductivity, or finite-conductivity fractures 

also needs to be derived for bounded reservoirs. 
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NOMENCLATURE 

a =........................................................................... variable of substitution, dimensionless 

A =......................................................................... fracture area during propagation, L2, m2 

AL =............................................................................................ fracture leakoff area, L2, m2 

Aij =........................................................................................ matrix element, dimensionless 

b =........................................................................... variable of substitution, dimensionless 

bM =.............. intercept from special before-closure pressure-transient graph, dimensionless 

bN =.................................................... intercept from Nolte-Shlyapobersky graph, m/Lt2, Pa 

bfs =................................................................................................ damage zone width, L, m  

B =......................................................................... formation volume factor, dimensionless 

c =........................................................................... variable of substitution, dimensionless 

c1 =................................. before-closure pressure-transient analysis function, m/Lt3/2, Pa·s½ 

c2 =............................... before-closure pressure-transient analysis function, m2/L2t3, Pa2·s½ 

cap1 =...................adjusted before-closure pressure-transient analysis function, m/Lt3/2, Pa·s½ 

cap2 =.................adjusted before-closure pressure-transient analysis function, m2/L2t3, Pa2·s½ 

cf =...............................................................compressibility of fluid in fracture, Lt2/m, Pa-1 

cg =.......................................................................................gas compressibility, Lt2/m, Pa-1 

cgw =........................................................................wellbore gas compressibility, Lt2/m, Pa-1 

ct =..................................................................................... total compressibility, Lt2/m, Pa-1 

cti =..................................................... total compressibility at initial conditions, Lt2/m, Pa-1 

ctbc =................................................average before-closure total compressibility, Lt2/m, Pa-1 

cw =............................................................. compressibility of fluid in wellbore, Lt2/m, Pa-1 

C =...................................................................................... wellbore storage, L4t2/m, m3/Pa 

Ca =........................................................................ adjusted wellbore storage, L4t2/m, m3/Pa 

Cac =................................................................................ after-closure storage, L4t2/m, m3/Pa 

Caac =.................................................................. adjusted after-closure storage, L4t2/m, m3/Pa 

Cbc =............................................................................. before-closure storage, L4t2/m, m3/Pa 

Cfbc =............................................................................. before-closure storage, L4t2/m, m3/Pa 

Cf =...........................................................................................fracture conductivity, m3, m3  

Cfd =...........................................................................dilating fracture storage, L4t2/m, m3/Pa 

Cfac =................................................................... after-closure fracture storage, L4t2/m, m3/Pa 

Cfbc =................................................................ before-closure fracture storage, L4t2/m, m3/Pa 

CL =.................................................................................... leakoff coefficient, L/m1/2, m/s1/2 

CLf =..................................... wellbore storage in well with hydraulic fracture, L4t2/m, m3/Pa 

Cpf =....................................................................propagating-fracture storage, L4t2/m, m3/Pa  
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Cfac =................................................................... after-closure fracture storage, L4t2/m, m3/Pa 

Cf1D =............................................................................. primary fracture conductivity, m3, m3  

Cf2D =..........................................................................secondary fracture conductivity, m3, m3  

Cfbc =................................................................ before-closure fracture storage, L4t2/m, m3/Pa 

CpLf =...............................propagating-fracture storage with multiple fractures, L4t2/m, m3/Pa  

CpdLf =......... propagating- and dilating-fracture storage with multiple fractures, L4t2/m, m3/Pa   

CLfac =.....................................................after-closure multiple fracture storage, L4t2/m, m3/Pa 

CLfbc =..................................................before-closure multiple fracture storage, L4t2/m, m3/Pa 

d =........................................................................... variable of substitution, dimensionless 

dj =..................................... before-closure pressure-transient analysis variable, m/Lt3, Pa/s 

(dap)j =....................... adjusted before-closure pressure-transient analysis variable, m/Lt3, Pa/s 

E' =...................................................................................... plane-strain modulus, m/Lt2, Pa 

F =.........................................................................hypergeometric function, dimensionless 

FL =........................................................................ linear-flow time function, dimensionless 

g =.............................................................................. loss-volume function, dimensionless 

G =...............................................................................................G-function, dimensionless 

h =..................................................................................................................... height, L, m  

hf =........................................................................................................fracture height, L, m  

I =.......................................................................................................... integral, m/Lt, Pa·s  

k =........................................................................................................ permeability, L2, m2  

kf =........................................................................................... fracture permeability, L2, m2  

kx =.................................................................................. permeability in x-direction, L2, m2  

ky =.................................................................................. permeability in y-direction, L2, m2  

kfb =.............................................................dual-porosity bulk-fracture permeability, L2, m2  

kfs =............................................................. fracture-face damage-zone permeability, L2, m2  

K0 =...................... modified Bessel function of the second kind (order zero), dimensionless 

K1 =....................... modified Bessel function of the second kind (order one), dimensionless 

L =.............................................................................propagating fracture half length, L, m  

Lc =............................................................................................... characteristic length, L, m  

Le =...................................................................fracture half length at end of pumping, L, m  

Lf =...................................................................fracture half length at end of pumping, L, m  

Lfi =............................................... fracture half length of fracture i at end of pumping, L, m  

L'fi =..........fracture half length of fracture i at end of pumping rescaled for anisotropy, L, m  

m =......................................................................................................................mass, m, kg 

M =................................................................................................. molecular weight, moles 
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mM =....................slope from special before-closure pressure-transient graph, dimensionless 

mN =..........................................................slope from Nolte-Shlyapobersky graph, m/Lt2, Pa 

macpl =..................slope of data on after-closure pseudolinear flow Cartesian graph, m/Lt2, Pa 

macpr =................ slope of data on after-closure pseudoradial flow Cartesian graph, m/Lt, Pa·s 

nf =.................................................................................number of fractures, dimensionless 

nfs =...................................................................number of fracture segments, dimensionless 

p =.......................................................................................................... pressure, m/Lt2, Pa 

pa =............................................................................................ adjusted pressure, m/Lt2, Pa 

pac =...................................................pressure with constant after-closure storage, m/Lt2, Pa 

par =............................................................................. adjusted reservoir pressure, m/Lt2, Pa 

pbc =................................................pressure with constant before-closure storage, m/Lt2, Pa 

paac =.................................... adjusted pressure with constant after-closure storage, m/Lt2, Pa 

paws =................................................... injection/falloff wellbore adjusted pressure, m/Lt2, Pa 

pcake =......................................................................................... filter-cake pressure, m/Lt2, Pa 

pf =.............................................pressure with production from a single fracture, m/Lt2, Pa 

pfs =.............................................pressure at fracture face with fracture-face skin, m/Lt2, Pa 

pfac =........................ fracture pressure with constant after-closure fracture storage, m/Lt2, Pa 

pfiz =........................................................................ filtrate-invaded zone pressure, m/Lt2, Pa 

pface =..................................................................................pressure at fracture face, m/Lt2, Pa 

pls =........................................................................................line-source pressure, m/Lt2, Pa 

pLf =.......................................... pressure with production from multiple fractures, m/Lt2, Pa 

pLfac =...................................... pressure with production from multiple fractures and constant 

  after-closure storage, m/Lt2, Pa 

pLfbc =...................................... pressure with production from multiple fractures and constant 

   before-closure storage, m/Lt2, Pa 

pn =....................................................................................... fracture net pressure, m/Lt2, Pa 

ppf =.............................................................. pressure with a propagating fracture, m/Lt2, Pa 

pps =......................................................................................point-source pressure, m/Lt2, Pa 

ppiz =......................................................................polymer-invaded zone pressure, m/Lt2, Pa 

ppLf =............................................. pressure with a propagating secondary fracture, m/Lt2, Pa 

pprf =..............................................................pressure during fracture propagation, m/Lt2, Pa 

pprLf =.............................................pressure during secondary fracture propagation, m/Lt2, Pa 

psac =....................................... pressure with radial flow and skin with constant after-closure 

  fracture storage, m/Lt2, Pa 

ps =.................................................................pressure in radial system with skin, m/Lt2, Pa 
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psfs =............................................................pressure from fracture-face resistance, m/Lt2, Pa 

pwc =...................................................... wellbore pressure with constant flow rate, m/Lt2, Pa 

pwf =..............................................................pressure outside wellbore in fracture, m/Lt2, Pa 

pws =..................................................................injection/falloff wellbore pressure, m/Lt2, Pa 

q =......................................................................................................... flow rate, L3/t, m3/s 

q  =............................................................................................ fracture-face flux, L3/t, m3/s 

qi =............................................................................ flow rate for the ith-fracture, L3/t, m3/s 

qℓ =............................................................................................. fluid leakoff rate, L3/t, m3/s 

qs =...........................................................................................sandface flow rate, L3/t, m3/s 

qt =................................................................................................. total flow rate, L3/t, m3/s 

qas =............................................................................ adjusted sandface flow rate, L3/t, m3/s 

qpf =........................................................................propagating-fracture flow rate, L3/t, m3/s 

qsf =......................................................................................... sand-face flow rate, L3/t, m3/s 

qws =.................................................................injection/falloff wellbore flow rate, L3/t, m3/s 

qaws =.................................................. adjusted injection/falloff wellbore flow rate, L3/t, m3/s 

Qt =..........................................................................................total injection volume, L3, m3 

Qat =.....................................................................................total injected gas volume, L3, m3 

r =..................................................................................................................... radius, L, m 

Rf =.............................................................................................. radial fracture radius, L, m 

rp =.................................................. ratio of permeable to total fracture area, dimensionless 

rwe =........................................................................................effective wellbore radius, L, m 

R =........................................................................................................resistance, L-1, m/m2 

R0 =...............................reference filtercake resistance at the end of the injection, L-1, m/m2 

Rfs =........................................................................................filtercake resistance, L-1, m/m2 

s =..................................................................... Laplace transform variable, dimensionless 

S =......................................................................................................... skin, dimensionless 

Sf =........................................................................................fracture stiffness, m/L2t2, Pa/m 

Sp =........................................................................................... spurt-loss coefficient, L3, m3 

Sfs =.................................................................................... fracture-face skin, dimensionless  

(Sfs)ch =............................................................................... choked-fracture skin, dimensionless  

t =........................................................................................................................... time, t, s 

t1 =........................................................................................................... reference time, t, s 

ta =.............................................................................................................adjusted time, t, s 

te =.................................................................................. time at the end of an injection, t, s 

tc =............................................................................. time at hydraulic fracture closure, t, s 
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tac =......................................................................................................time after-closure, t, s 

tDN =........................................................................Nolte dimensionless time, dimensionless 

tLfD =................................................................................. dimensionless time, dimensionless 

T =............................................................................................................... temperature, °K 

u =........................................................................... variable of substitution, dimensionless 

U =....................................................................................unit-step function, dimensionless 

νL =........................................................................... fracture fluid leakoff velocity, L/t, m/s 

V =.................................................................................................................volume, L3, m3 

VL =.................................................................................................... leakoff volume, L3, m3 

Vfr =..................................................................residual fracture volume of one wing, L3, m3 

VLc =............................... fluid volume lost from one wing of a hydraulic fracture during the 

  time of closure, L3, m3 

w =...................................................................................................................... width, L, m 

wL =............................................................................................................... lost width, L, m 

   ˆ fw  =........................................................................................... average fracture width, L, m 

x =.............................................................................coordinate of point along x-axis, L, m 

xn =...................before-closure pressure-transient analysis plotting function, dimensionless 

(xap)n =.... adjusted before-closure pressure-transient analysis plotting function, dimensionless 

x' =............................................................................................variable of integration, L, m 

x'' =............................................................................................variable of integration, L, m 

x̂  =........................................................................... coordinate of point along ˆ-axis,x , L, m 

xw =............................................................................... wellbore position along x-axis, L, m 

y =.............................................................................coordinate of point along y-axis, L, m 

yn =...................before-closure pressure-transient analysis plotting function, dimensionless 

(yap)n =.... adjusted before-closure pressure-transient analysis plotting function, dimensionless 

y' =............................................................................................variable of integration, L, m 

ŷ  =...........................................................................coordinate of point along ˆ-axis,y , L, m 

yw =............................................................................... wellbore position along y-axis, L, m 

z =.................................................................................gas deviation factor, dimensionless 

Zi =........................................................................................ matrix element, dimensionless 

  
Greek 
α =.............................................................................variable of integration, dimensionless 

αD =..........................................................viscosity-compressibility function, dimensionless 

αN =........................................................................ fracture growth exponent, dimensionless 
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δi =................................. ratio of fracture i to primary fracture conductivity, dimensionless 

δC =................................ratio of secondary to primary fracture conductivity, dimensionless 

δL =.................................. ratio of secondary to primary fracture half length, dimensionless 

ε =...................................... dual-porosity variable in point-source solution, dimensionless 

Γ =..................................................................................... Gamma function, dimensionless 

Δ =................................................................................................difference, dimensionless 

ζ =........................................................................... variable of substitution, dimensionless 

η =........................................................................... variable of substitution, dimensionless 

ηf =..........................................................................................fracture diffusivity, L2/t, m2/s 

ηr =........................................................................................ reservoir diffusivity, L2/t, m2/s 

ηfD =........................................................................ dimensionless diffusivity, dimensionless 

θ' =........................................................ angle rescaled for permeability anisotropy, radians 

θ =.................................................................................................................. angle, radians 

λ =..................................................................interporosity flow coefficient, dimensionless 

μ =........................................................................................................ viscosity, m/Lt, Pa·s 

ξ =........................................................................... variable of substitution, dimensionless 

ρ =........................................................................................................density, m/L3, kg/m3 

ρf =............................................................. density of fluid filling a fracture, m/L3, lbm/ft3 

ρg =...............................................................................................gas density, m/L3, lbm/ft3 

ρwb =......................................................................... density of wellbore fluid, m/L3, lbm/ft3 

σmin =..............................................................................minimum or closure stress, m/Lt2, Pa 

σz =............................................................................................overburden stress, m/Lt2, Pa 

τ =........................................................................... variable of substitution, dimensionless 

τ0 =........................................................................................................... reference time, t, s 

τa =........................................................................ time at the beginning of an injection, t, s 

τd =......................................................................... a shut-in time following an injection, t,s 

τN =........................................................................................................time at exposure, t, s 

τND =.............................................................. dimensionless time at exposure, dimensionless 

υ =......................................................................................... Poisson's ratio, dimensionless 

φ =................................................................................................... porosity, dimensionless 

χ =........................................................................... variable of substitution, dimensionless 

ψ =........................................................................... variable of substitution, dimensionless 

ω = ..................................................................................................fracture storativity ratio  
  

Subscripts 
0 =.......................................................................................................... reference time zero 
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a =........................................................................................................................... adjusted 

c =............................................................................................................................. closure 

D =.................................................................................................................. dimensionless 

e =................................................................................................................end of injection 

f =............................................................................................................................ fracture 

g =................................................................................................................................... gas 

i =..............................................................................................................initial conditions 

inj =...........................................................................................................................injection 

j =................................................................................................................................index 

ℓ =.................................................................................................................. fracture index 

m =................................................................................................................................index 

MP =......................................................................................................................match point 

n =................................................................................................................................index 

ne =............................................................................................ index at the end of injection 

r =.......................................................................................................................... reservoir 

re =..........................................................................................................................reference 

sc =..........................................................................................................standard conditions 

w =...........................................................................................................................wellbore 
  

Superscripts 
' =........................................................................... denotes derivative with respect to time 

'' =............................................................... denotes second derivative with respect to time 
  

Character Symbols 
¯ =.............................................................................................. denotes Laplace transform 

^ =............................................................................................................... denotes average 
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APPENDIX A 

BEFORE-CLOSURE PRESSURE-TRANSIENT ANALYSIS WITH 

PRESSURE-DEPENDENT RESERVOIR FLUID PROPERTIES 

The methods of Mayerhofer et al.58 and Valkó and Economides59 for analyzing the before-closure pressure 

decline following a fracture-injection/falloff test do not consider a compressible mobile reservoir fluid.  

Accounting for pressure-dependent reservoir fluid properties is accomplished by using pseudovariables, or 

for convenience, adjusted pseudovariables. 

The pressure difference between the created fracture and a point in the reservoir at initial reservoir 

pressure is written as 

( ) ( ) ( ) ( ) ( )r cake piz fizp t p t p t p t p tΔ = Δ + Δ + Δ + Δ . .............................................................................(A-1) 

Writing the pressure difference across the filtercake, Δpcake, polymer-invaded zone, Δppiz, and filtrate-

invaded zone, Δpfiz, as a single fracture-face pressure difference, Δpface, allows the total pressure difference 

to be written as 

( ) ( ) ( )r facep t p t p tΔ = Δ + Δ , ...............................................................................................................(A-2) 

where Δpr is the reservoir pressure difference. Dividing the total pressure difference by the difference at 

the end of the injection, p0 – pi, allows the dimensionless pressure to be written as 

( ) ( ) ( )wD LfD rD LfD fD LfDp t p t p t= + , .............................................................................................(A-3) 

where the dimensionless wellbore pressure is defined as 

( )
( )

0

LfD
LfD

p t pw ip twD p pi

−
=

−
, ...............................................................................................................(A-4) 

the dimensionless reservoir pressure is defined as 

( )
( )

0

LfD
LfD

p t pr ip trD p pi

−
=

−
, ................................................................................................................(A-5) 

and the dimensionless fracture-face pressure is written as 

( )
( )

0

LfD
LfD

p t pf ip tf D p pi

−
=

−
. ..............................................................................................................(A-6) 

The reservoir pressure difference in a formation containing a slightly compressible fluid is modeled using 

Gringarten et al.'s84 early-time solution for the flow from an infinite-conductivity fracture which is written 

as 

fD L Dp tπ= , .................................................................................................................................(A-7) 

where dimensionless time is defined as  
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2
kttLfD
c Lt fφμ

= , ................................................................................................................................(A-8) 

and k is the permeability, φ is the porosity (fraction), μ is the reservoir fluid viscosity, ct is the total 

compressibility, and Lf is the fracture half-length. 

When the injected fluid is a liquid in a gas reservoir, a moving interface exists between the leakoff liquid 

and the mobile reservoir gas.  Provided the injected volume is relatively small and assuming piston-like 

displacement, the depth of filtrate invasion is typically less than a few inches beyond the fracture face. 

When the fracture and the expanding invaded region are small relative to the investigated depth in the 

reservoir, the filtrate invaded region has negligible influence on the pressure behavior and a single-phase 

model is appropriate for the transient falloff analysis.113 

For a compressible reservoir gas, a single-phase model can be formulated using adjusted pseudopressure 

and adjusted pseudotime.  Adjusted pseudopressure is defined as 

0

p
a

re

z pdpp
p z
μ

μ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

⌠
⎮
⌡

, ......................................................................................................................(A-9) 

where the subscript 're' denotes a reference pressure. With the reference pressure defined as initial 

reservoir pressure, dimensionless adjusted pseudopressure is written as  

2 ( )aD a
g gi i

khp p p
q B

π
μ

= Δ , .................................................................................................................(A-10) 

where z is the real-gas deviation factor, h is the formation thickness, Δpa is the adjusted pseudopressure 

difference, par(taLfD) – pai, qg is the gas injection rate, Bg is the gas formation volume factor, and the 

subscript 'i' denotes the property is evaluated at initial reservoir pressure.   

Similarly, adjusted pseudotime is defined as 

0
( )

t
a t re

t

dtt c
c

μ
μ

= ⌠
⎮
⌡

, ........................................................................................................................(A-11) 

and with the reference pressure defined as initial reservoir pressure, dimensionless adjusted pseudotime is 

written as  

2
a

aLfD
i ti f

kt
t

c Lφμ
= . ...........................................................................................................................(A-12) 

Lee and Holditch72 demonstrated that the governing differential equation for a reservoir containing a 

compressible fluid can be effectively linearized by the writing in terms of pseudopressure and pseudotime. 

Meunier et al.73 extended the concept by normalizing the transforms, which results in adjusted 

pseudopressure and adjusted pseudotime. With adjusted pseudovariables, flow solutions developed for a 
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reservoir with slightly compressible fluid can be used directly in a reservoir containing a compressible 

fluid. Consequently, the dimensionless wellbore adjusted pseudopressure, pawD, is written as 

( ) ( ) ( )awD aLfD arD aLfD afD aLfDp t p t p t= + . .................................................................................(A-13) 

Reservoir Adjusted Pseudopressure Difference 

The early-time dimensionless reservoir adjusted pseudopressure solution for an infinite-conductivity 

fracture can be written as 

faD aL Dp tπ= . ............................................................................................................................(A-14) 

The dimensionless reservoir adjusted pseudopressure is obtained by applying superposition, which is 

written as 

( ) ( ) ( )0aLfD
taLfDp t q p t darD aD LfD aD aLfD LfD LfDτ τ τ⌠⎮

⌡
′= − , ...........................................................(A-15) 

where dimensionless injection rate is defined as 

02 ( )
g gi i

aD
a ai

q B
q

kh p p

μ

π
=

−
, .................................................................................................................(A-16) 

and pa0 is the adjusted pseudopressure at the end of the injection. The total injected gas rate, qg, is divided 

between two fracture wings, which is written as 

2 g
g

g

q
q

B
= , .....................................................................................................................................(A-17) 

where qℓg is the gas leakoff rate at reservoir conditions. 

A discretized form of the superposition integral is written as 

1 1
1

( ) ( ) ( ) ( ) ( )
n

aLfD n j j n j
j

p t q q p t tarD aD aD aD aLfD aLfD− −
=

⎡ ⎤⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑ , ............................................(A-18) 

where the subscript 'n' denotes the timestep and the subscript 'j' is a timestep index. With the dimensionless 

variable definitions, the discretized reservoir pseudopressure difference is written as 

1
1 1

( ) ( ) ( )
ngi g gi

ar n a n a j
f ti g gj j j

B q q
p t t

hL kc B B
μ

πφ −
= −

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟Δ = − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ . ...........................................(A-19) 

Nolte80 defines the before-closure fracture leakoff rate as 

( ( ) ) ( )e c e
f f

A d p t p A dp tq
S dt S dt

−
= − = − , ............................................................................................(A-20) 

where Ae is the area of one wing of a fracture symmetric about the wellbore, pc is the fracture closure 

stress, and Sf is the fracture "stiffness." Fracture stiffness, or the inverse of fracture compliance, is defined 

by the elastic energy or "strain energy" created by an open fracture in a rock assuming linear elastic theory 
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is applicable.  Table A-1 contains the fracture stiffness definitions for three common 2D fracture 

models.80,100 In Table A-1, E' is the plane-strain modulus, Rf is the fracture radius of a radial fracture, and 

hf is the gross fracture height. 

Table A-1—Fracture stiffness for 2D fracture models. 80,100 

Radial Perkins-Kern-Nordgren 
Vertical Plane Strain 

Geertsma-deKlerk 
Horizontal Plane Strain 

3( )
16

ES f RAD R f

π ′
=  2( ) ES f PKN h fπ

′
=  ( ) ES f GDK L fπ

′
=  

The before-closure fracture leakoff rate can also be written for a compressible fluid in terms of adjusted 

pseudopressure and adjusted pseudotime as 

f g t a
g

f t g ai

A B c dp
q

S c B dt

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

. ...........................................................................................................(A-21) 

or written in a discretized form as 

1

1

( ) ( )
( )

( ) ( )
f g a j a jt

g j
f g t a j a jji

A B p pc
q

S B c t t
−

−

⎛ ⎞ ⎡ ⎤−⎛ ⎞
⎜ ⎟= ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ −⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

. ...........................................................................(A-22) 

The discretized reservoir pseudopressure difference can now be written as 

1 1
1

1 1( ) ( ) ( ) ( ) ( )
n

i
ar n ap j ap j a n a j

tip f j
p d d t t

cr S k
μ
φπ − −

=

⎡ ⎤Δ = − −⎣ ⎦∑ , ....................................(A-23) 

where the discretized differential, (dap)j, is defined as 

1

1

( ) ( )
( )

( ) ( ) ( )
a j a jti

ap j
t j a j a j

p pc
d

c t t
−

−

⎛ ⎞−
⎜ ⎟=
⎜ ⎟−⎝ ⎠

, ...............................................................................................(A-24) 

and the ratio of permeable fracture area to total fracture area is defined as 

f
p

f

hL
r

A
= . ........................................................................................................................................(A-25) 

Valkó and Economides59 assume that the leakoff rates are constant during the fracture injection, and the 

assumption is modified such that the first ne + 1 leakoff rates are constant at standard conditions, which is 

written as 
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Constant 1 1g

g j

q
j ne

B

⎛ ⎞
⎜ ⎟ = ≤ ≤ +
⎜ ⎟
⎝ ⎠

, ................................................................................................(A-26) 

where 'ne' is the timestep index at the end of the injection. The assumption implies that the pressure in the 

fracture during the injection is approximately constant, and allows the discretized reservoir pseudopressure 

difference to be written as 

1
1

2 1

1 1
3

( )
( ) ( ) 1 1

( )
1 1( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a ne
ap ne a n

a n
i

ar n ap ne a n a ne
tip f n

ap j ap j a n a j
j ne

t
d t

t

p d t t
cr S k

d d t t

μ
φπ

+
+

+ −

− −
= +

⎡ ⎤⎡ ⎤
⎢ ⎥+ − −⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥Δ = −
⎢ ⎥
⎢ ⎥

⎡ ⎤+ − −⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
∑

. ........................(A-27) 

Fracture-Face Adjusted Pseudopressure Difference 

Cinco-Ley and Samaniego,83 suggested a fracture-face skin defined by  

1
2

fs
fs

f fs

b kS
L k

π ⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
, ......................................................................................................................(A-28) 

where bfs is the width and kfs is the permeability of the damaged zone. Mayerhofer and Economides57 use 

the fracture-face skin concept to model a rate-dependent skin created by fluid leakoff by defining fracture-

face resistance as 

( )
( ) fs

fs
fs

b t
R t

k
= , ...............................................................................................................................(A-29) 

and dimensionless resistance as58 

0

( )
( ) fs

D
ne

R t tR t
R t

= ≈
′

, ..................................................................................................................(A-30) 

where R'0 is a reference resistance. With the definition of fracture-face resistance and dimensionless 

resistance, fracture-face skin can be written as 

0 0( ) ( )
2 2 2

fsD D
fs

f f f

bkR R t kR R t
S

L L L

ππ π′ ′
= − ≈ , ........................................................................................(A-31) 

or written as 

0
2fs

f ne

kR tS
L t

π ′
= . ...........................................................................................................................(A-32) 

Fracture-face skin can be written as a dimensionless pseudopressure across the fracture face as 

2 af
afsD fs

g gi i

kh p
p S

q B

π

μ

Δ
= = , ..............................................................................................................(A-33) 
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or with the fracture-face skin definition, written as 

0
2 2

gi gi g
af

f ne

B qR tp
hL t

μ

π
′

Δ = . ..........................................................................................................(A-34) 

With the fracture symmetrical about the wellbore, the fracture-face pseudopressure difference can be 

written as 

0
2

gi i g
af

f g ne

B qR tp
hL B t

μ

π
′

Δ = . ...........................................................................................................(A-35) 

Assuming the fracture-face skin is a steady-state skin,57-58 the fracture-face pseudopressure difference at 

any timestep n is written as 

0( )
2

gi i g n
af n

f g nen

B qR t
p

hL B t

μ

π

⎛ ⎞′
⎜ ⎟Δ =
⎜ ⎟
⎝ ⎠

, ...............................................................................................(A-36) 

or with the definition of before-closure fracture leakoff in terms of adjusted pseudopressure and 

pseudotime, the fracture-face pseudopressure difference can be written as 

( )01( )
2

n
af n ap np f ne

R t
p d

r S tπ
Δ = , .................................................................................................(A-37) 

where 0R is the fracture-face resistance product defined as the product of gas viscosity at initial reservoir 

pressure and the reference fracture-face resistance, that is, R0 = μiR'0.  

Specialized Cartesian Graph for Determining Permeability and Fracture-Face Resistance 

The dimensionless wellbore adjusted pseudopressure was defined as 

( ) ( ) ( )awD aLfD arD aLfD afD aLfDp t p t p t= + , .................................................................................(A-38) 

which can also be written in dimensional form as 

( ) ( ) ( )aw n ar n af np p pΔ = Δ + Δ . .......................................................................................................(A-39) 

With the definitions of reservoir and fracture-face adjusted pseudopressure difference, the wellbore 

adjusted pseudopressure difference can be written as 

1
1

2 1

1 1
3

( )
( ) ( ) 1 1

( )
1 1( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a ne
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− −
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⎡ ⎤⎡ ⎤
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⎢ ⎥
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( )01
2

n
ap np f ne

R t
d

r S tπ
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Algebraic manipulation allows the wellbore adjusted pseudopressure difference to be written as 
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The term (dap)ne+1 can be written in an alternative form as 

1
1 1 1

1 1
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( ) ( )
f gi f g ne f gi

ap ne ap ne g ne
f g ne f gi f g ne
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d d q

A B S B A B
+

+ + +
+ +

= = , ...........................(A-42) 

but recognizing that [qℓg/Bg]ne = [qℓg/Bg]ne+1 and (VL)ne = (qℓg)netne allows the term (dap)ne+1 to be written as 

1
( ) ( )

( )
( )

f g i L ne
ap ne

ne g ne f

S B V
d
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where (VL)ne  is the leakoff volume at the end of the injection.  Define lost width due to leakoff at the end 

of the injection as 

( )L ne
L

f

V
w

A
= , ..................................................................................................................................(A-44) 

and the term (dap)ne+1 can be written as 

1
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  1 1
M

p f
m

r S kπ
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 and 

 01 1
2M

p f ne

R
b

r S tπ
= . .......................................................................................................................(A-51) 

Combining Eq. A-41 and Eqs. A-46 through A-51 results in 

  ( ) ( )ap n M ap n My m x b= + , ...........................................................................................................(A-52) 

which suggests a graph of (yap)n versus (xap)n using the observed fracture-injection/falloff before-closure 

data will result in a straight line with the slope a function of permeability and the intercept a function of 

fracture-face resistance.  Eqs. A-50 and A-51 are used to determine permeability and fracture-face 

resistance from the slope and intercept of a straight-line through the observed data. 

Table A-2 contains the variable definitions and plotting functions for before-closure pressure-transient 

analysis in terms of pressure and time and adjusted pseudopressure and time. Table A-3 contains the 

variable definitions and plotting functions in terms of pressure and time and adjusted pseudopressure and 

adjusted pseudotime. 

The pressure and time and adjusted pseudopressure and time formulations require that tne > 0; thus, the 

time at shut-in cannot be scaled to zero. Time should vary from t = 0 to the end of the injection, t = tne, and 

to a point during the shut-in period, t = tn. Adjusted pseudotime can be scaled to zero, that is (ta)ne = 0, in 

the adjusted pseudopressure and adjusted pseudotime formulation because only differences in ta are used 

in the equations and (ta)ne does not appear in a denominator. 
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Table A-2—Before-closure pressure-transient fracture-injection/falloff analysis in terms of 
pressure and time and adjusted pseudopressure and time. 

Description Pressure and Time Adjusted Pseudopressure and 
Time 
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Equation 
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Table A-3—Before-closure pressure-transient fracture-injection/falloff analysis in terms of 
pressure and time and adjusted pseudopressure and adjusted pseudotime. 
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APPENDIX B 

CONSTANT-RATE DRAWDOWN SOLUTIONS ACCOUNTING FOR 

BEFORE- AND AFTER-CLOSURE FRACTURE STORAGE 

Assume a slightly compressible fluid fills the wellbore and a fracture in an infinite-slab reservoir and the 

initial reservoir pressure is constant throughout the reservoir and sufficient for fracture dilation.  As a 

drawdown begins, the fracture will contract until closure.  A mass balance equation is written for the 

before-closure drawdown as 

Storage
( )

2w

m min out d Vd f fwq B q B Vsf r r w dt dt

ρρ
ρ ρ− = + , ..................................................................................... (B-1) 

where qsf is the sandface flow rate into the fracture from the reservoir, and Vf is the fracture volume. 

The material balance equation can be expanded using the product rule and written as 

2 2w
d dVd f fwq B q B V Vsf r r w f fdt dt dt

ρρ
ρ ρ ρ− = + + . ................................................................... (B-2) 

The derivative with respect to time of the wellbore fluid density is written using the chain rule as 

1d d dp dpw w w wcw w wdt dp dt dtw w

ρ ρ
ρ ρ

ρ
= = , ......................................................................................... (B-3) 

where cw is the isothermal wellbore fluid compressibility. Assuming the wellbore and fracture pressure are 

equal, pw = pf, the derivative with respect to time of the density of the fluid filling the fracture is written as 

 
d dpf wcf fdt dt

ρ
ρ= , ......................................................................................................................... (B-4) 

where cf is the isothermal compressibility of the fluid filling the fracture. 

The material balance equation can now be written as 

2 2w
dV dpf wq B q B c V c Vsf r r w w w f f f f dp dtw

ρ ρ ρ ρ ρ
⎛ ⎞

− = + +⎜ ⎟⎜ ⎟
⎝ ⎠

, ..................................................... (B-5) 

or assuming a constant density, ρ = ρw = ρf = ρr, and a constant formation volume factor, B = Br, the 

material balance equation is written as 

1 2 2w
dV dpf wq q c V c Vsf w w f fB dp dtw

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠
. ................................................................................ (B-6) 

Define dimensionless pressure as 

2 ( ( ))kh p p ti wpwD qB
π

μ
−

= , ................................................................................................................ (B-7) 
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dimensionless time as 

2
kttLfD
c Lt fφμ

= , ................................................................................................................................ (B-8) 

and dimensionless flow rate as 

sfq
qD qw

= , ......................................................................................................................................... (B-9) 

where qw is the well production rate.  With the dimensionless variables, the material balance equation 

during the before-closure drawdown is written as 

22

C dpbc wDq qD wD dtc hL LfDt fπφ
= − , .......................................................................................................... (B-10) 

where the before-closure fracture storage coefficient is written as 

2 2
dV fC c V c Vbc w w f f dpw

= + + . ..................................................................................................... (B-11) 

Define a dimensionless before-closure fracture storage coefficient as 

22

CbcCbcD
c hLt fπφ

= , ........................................................................................................................... (B-12) 

and the dimensionless material balance equation during a drawdown with a closing hydraulic fracture is 

written as 

dpwDq q CD wD bcD dtLfD
= − . ................................................................................................................. (B-13) 

Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage 

During a constant-rate drawdown with a constant fracture half-length, the fracture volume is written as 

ˆ ˆ( ( )) ( ( ))V h L w p t A w p tf f f f w f f w= = . ............................................................................................ (B-14) 

The average fracture width, ˆ ,w f is a function of net pressure,  pn = pw(t) – pc, and is written as 

( )
ˆ

p p t pn w cw f S Sf f

−
= = , ................................................................................................................. (B-15) 

where pc is the fracture closure stress and Sf is the fracture "stiffness."  Fracture stiffness, or the inverse of 

fracture compliance, is defined by the elastic energy or "strain energy" created by an open fracture in a 

rock assuming linear elastic theory is applicable.  Table B-1 contains the fracture stiffness definitions for 

three common 2D fracture models.80,100 In Table B-1, E' is the plane-strain modulus, Rf is the fracture 

radius of a radial fracture, hf is the gross fracture height, and Lf is the fracture half-length. 

The derivative of average fracture width with respect to pressure is written as 
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ˆ 1dw f
dp Sw f

= . ..................................................................................................................................... (B-16) 

Table A-1—Fracture stiffness for 2D fracture models.80,100 

Radial Perkins-Kern-Nordgren 
Vertical Plane Strain 

Geertsma-deKlerk 
Horizontal Plane Strain 

3( )
16

ES f RAD R f

π ′
=  2( ) ES f PKN h fπ

′
=  ( ) ES f GDK L fπ

′
=  

A before-closure dilating-fracture storage coefficient can now be written as 

( )2 1
AfC c V c pfd w w f nS f

= + + . .................................................................................................... (B-17) 

Hagoort,101 and other investigators of waterflood induced fractures that followed,90-93 assume that 

( ) 1 1c p tf n + ≅ , ............................................................................................................................... (B-18) 

and the before-closure fracture storage coefficient can be written as 

2
AfC c Vbc w w S f

= + . ....................................................................................................................... (B-19) 

After fracture closure, and assuming the fracture closes to a constant residual width, the material balance 

equation is again written as 

Storage
( )

2

m min out d Vd f fwq B qB Vsf r r w dt dt

ρρ
ρ ρ− = + , .................................................................................... (B-20) 

which is simplified and written as 

1 2 2
dV dpf wq q c V c Vsf w w f fB dp dtw

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠
, ................................................................................. (B-21) 

but the fracture volume is constant, and an after-closure constant storage coefficient is written as 

2C c V c Vac w w f fr= + , ...................................................................................................................... (B-22) 

where Vfr is the residual fracture volume at closure.  In some cases, no residual volume will remain after-

closure, and Cac = cwVw. After converting to dimensionless variables, the material balance equation is 

written as 
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dpwDq q CD wD acD dtLfD
= − , ................................................................................................................. (B-23) 

where the dimensionless after-closure wellbore storage coefficient is written as 

22

CacCacD
c hLt fπφ

= . ........................................................................................................................... (B-24) 

A material balance equation valid at all times for a constant-rate drawdown with a closing fracture and 

constant after-closure storage is written using the unit-step function,62 which is defined as 

0 ,
1 ,

t a
Ua t a

<⎧
= ⎨ >⎩

. ......................................................................................................................... (B-25) 

Following the technique of Correa and Ramey,62-64 a dimensionless material balance equation is written as 

1 ( ) ( )
dp dpwD wDq U q C U q CD t wD bcD t wD acDc LfD c LfDdt dtLfD LfD

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟= − − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
, .................................. (B-26) 

where (tc)LfD is the dimensionless fracture closure time.  The material balance equation can be expanded 

and written as 

( )( )
dp dpwD wDq q C U C CD wD bcD t bcD acDc LfDdt dtLfD LfD

= − + − . ............................................................ (B-27) 

With the identities of Correa and Ramey,62 the Laplace transform of the material balance equation is 

written as 

( )
( ) ( )

0

t stq c LfD LfDwDq sC p C C e p t dtD acD wD bcD acD wD LfD LfDs
⌠
⎮⎮
⌡

−
′= − − − . ................................. (B-28) 

A solution is developed by applying the superposition principle, which is written as 

( )
( )

0

tLfD dp tD LfD Dp q dwD D D DdtLfD

τ
τ τ

⌠
⎮
⎮
⎮
⌡

−
= . .................................................................................... (B-29) 

The initial condition in the fracture and reservoir requires a constant initial pressure, pD(tLfD) = 0, and with 

the initial condition, the Laplace transform of the superposition integral is written as 

pwDp q sp qwD D D D spD
= ⇔ = . .................................................................................................... (B-30) 

Combining the transformed material balance equation and superposition integral results in 

( ) ( )21 ( ) ( )
0

t stc LfD LfDp s C p q p C C sp e p t dtwD acD D wD D bcD acD D wD LfD LfD
⌠
⎮⎮
⌡

−
′+ = − − . .............. (B-31) 

Let the Laplace domain dimensionless solution for a well produced through a fracture at a constant rate 

with constant after-closure storage be written as 
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21

p fDpacD
s C pacD fD

=
+

, .................................................................................................................. (B-32) 

where pfD is either the infinte- or finite-conductivity fracture solution. The wellbore solution is written in 

the Laplace domain solution as 

( )
( ) ( )

0

t stc LfD LfDp q p C C sp e p t dtwD wD acD bcD acD acD wD LfD LfD
⌠
⎮⎮
⌡

−
′= − − . ................................. (B-33) 

Inverting the Laplace domain solution back to the time domain with qwD = 1 results in the constant-rate 

drawdown solution with constant before-closure and constant after-closure storage written as 

( )
( ) ( ) ( ) ( ) ( )0

tc LfDp t p t C C p t p dwcD LfD acD LfD bcD acD acD LfD D wcD D Dτ τ τ⌠⎮
⌡

′ ′= − − − , .................. (B-34) 

where pwcD denotes that the pressure solution is for a constant rate. 

Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage With 
Fracture-Face and Choked-Fracture Skin 

Consider a constant-rate drawdown in a reservoir with a damaged hydraulic fracture where the initial 

reservoir pressure is constant throughout and sufficient for fracture dilation. The drawdown is modeled 

with constant before-closure storage, constant after-closure storage, choked-fracture skin, and fracture-

face skin. Developing a dimensionless pressure solution requires solving the problem in a serial fashion94 

– the wellbore solution with choked-fracture skin is formulated and coupled to the solution in the fracture 

outside of the wellbore with fracture-face skin. 

The dimensionless material balance equation considering wellbore storage is written as 

dpwDq q CD wD D dtLfD
= − . .................................................................................................................... (B-35) 

The superposition integral is written as 

( )
( )

0

tLfD dp tD LfD Dp q dwD D D DdtLfD

τ
τ τ

⌠
⎮
⎮
⎮
⌡

−
= , .................................................................................... (B-36) 

and a “reservoir” pressure solution, pD(tLfD), is written as 

( ) ( ) ( )p t p t SD LfD wfD LfD fs ch= + , .............................................................................................. (B-37) 

where pwfD is the solution in the fracture outside of the wellbore considering before- and after-closure 

storage, and (Sfs)ch is the choked-fracture skin. 

The superposition integral is written in the Laplace domain as 

p q spwD D D= , ................................................................................................................................. (B-38) 

and the Laplace domain reservoir pressure solution is written as 
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( )S fs chp pD wfD s
= + . .................................................................................................................. (B-39) 

The transformed material balance equation is written as 

qwDq sC pD D wDs
= − . ..................................................................................................................... (B-40) 

Combining the superposition integral, the reservoir pressure solution, and the material balance equation in 

the Laplace domain results in 

2p q p s C p pwD wD D acD wD D= − , ................................................................................................... (B-41) 

which with qwD = 1, is written as 

( )

1 ( )

sp SwfD fs chpwD
s sC sp SD wfD fs ch

+
=

⎡ ⎤⎡ ⎤+ +⎢ ⎥⎣ ⎦⎣ ⎦

. ............................................................................................. (B-42) 

The solution outside of the wellbore in the fracture accounting for before- and after-closure storage and 

fracture-face skin is developed using the unit-step function. The dimensionless before-closure material 

balance equation is written as 

dpwfDq q CD wD fbcD dtLfD
= − , .............................................................................................................. (B-43) 

and the dimensionless after-closure material balance equation is written as 

dpwfDq q CD wD facD dtLfD
= − , .............................................................................................................. (B-44) 

where the dimensionless before-closure fracture storage is written as 

22

C fbcC fbcD
c hLt fπφ

= , ......................................................................................................................... (B-45) 

and the before-closure fracture storage is defined as 

2 2
AfC c Vfbc f f S f

= + . .................................................................................................................. (B-46) 

The after-closure fracture storage is defined as 

2C c Vfac f fr= , ................................................................................................................................ (B-47) 

and the dimensionless after-closure fracture storage is written as 

22

C facC facD
c hLt fπφ

= . ......................................................................................................................... (B-48) 

A dimensionless material balance equation valid at all times is written as 
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1 ( ) ( )
dp dpwfD wfDq U q C U q CD t wD fbcD t wD facDc LfD c LfDdt dtLfD LfD

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟= − − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
, ............................ (B-49) 

or written as 

( )( )
dp dpwfD wfDq q C U C CD wD fbcD t fbcD facDc LfDdt dtLfD LfD

= − + − , ..................................................... (B-50) 

The Laplace transform of the dimensionless material balance equation is written as 

(0) ( ) (0)

( )
( ) ( )

0

qwD C sp C p C C sp pfbcD wfD fbcD wfD fbcD facD wfD wfDs
qD t stc LfD LfDC C e p t dtfbcD facD wfD LfD LfD

⌠
⎮⎮
⌡

⎡ ⎤⎡ ⎤− + + − −⎢ ⎥⎣ ⎦
⎢ ⎥=
⎢ ⎥−

′− −⎢ ⎥
⎣ ⎦

. .................... (B-51) 

With pwfD(0) = 0, the dimensionless material balance equation is written as 

( )
( ) ( )

0

t stq c LfD LfDwDq C sp C C e p t dtD facD wfD fbcD facD wfD LfD LfDs
⌠
⎮⎮
⌡

−
′= − − − . .......................... (B-52) 

Combining the transformed material balance equation with the Laplace domain superposition integral 

results in 

2

( )
( ) ( )

0

q p s C p pwD fsD facD fsD wfD
p twfD stc LfD LfDC C sp e p t dtfbcD facD fsD wfD LfD LfD

⌠
⎮⎮
⌡

⎡ ⎤−⎢ ⎥
= ⎢ ⎥−⎢ ⎥′− −
⎢ ⎥⎣ ⎦

, ......................................... (B-53) 

which can be written as 

( )
( ) ( )

0

t stc LfD LfDp q p C C sp e p t dtwfD wD facD fbcD facD facD wfD LfD LfD
⌠
⎮⎮
⌡

−
′= − − , ........................ (B-54) 

where pfacD is the solution for a finite- or infinite-conductivity fracture with fracture-face skin and constant 

after-closure storage, which is written in the Laplace domain as 

21

p fsDp facD
s C pfacD fsD

=
+

. .......................................................................................................... (B-55) 

With fracture-face skin, the Laplace domain dimensionless fracture-sandface pressure solution is written 

as 

S fsp pfsD fD s
= + , ........................................................................................................................ (B-56) 

and the dimensionless fracture-sandface pressure with fracture-face skin and constant after-closure storage 

is written in the Laplace domain  as 

 
1

sp SfD fsp facD
s sC sp SfacD fD fs

+
=

⎡ ⎤⎡ ⎤+ +⎢ ⎥⎣ ⎦⎣ ⎦

. ............................................................................................. (B-57) 
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Inverting the dimensionless pressure solution outside of the wellbore in the fracture to the time domain 

with qwD = 1 results in 

( )
( ) ( ) ( ) ( ) ( )0

tc LfDp t p t C C p t p dwfD LfD facD LfD fbcD facD facD LfD D wfD D Dτ τ τ⌠⎮
⌡

′ ′= − − − . ............. (B-58) 

The dimensionless pressure solution for a constant-rate drawdown with constant before-closure storage, 

constant after-closure storage, fracture-face skin, and choked-fracture skin requires solving the time 

domain solution first for pressure in the fracture outside of the wellbore (Eq. B-58).  With the time domain 

solution, the Laplace domain solutions, Eqs. B-42 and B-54, can be evaluated and numerically inverted to 

the time domain to obtain the dimensionless wellbore pressure. 

Constant-Rate Drawdown With Constant Before-Closure Storage, Constant After-Closure 
Wellbore Storage, and After-Closure Radial Flow With Skin 

Consider a constant-rate drawdown in a well with an open hydraulic fracture that closes with little or no 

remaining conductivity where the before-closure reservoir response during a drawdown is modeled as a 

hydraulically fractured system, but the after-closure reservoir response is modeled as a radial system. 

The dimensionless material balance equation with constant before- and constant after-closure storage is 

written as 

( ) ( )

( ) ( )

dp dpwD wDq U q C U CwD t wD bcD t bcDc LfD c LfDdt dtLfD LfD
qD dpwDU q U Ct wD t acDc LfD c LfD dtLfD

⎡ ⎤
− − +⎢ ⎥

⎢ ⎥
= ⎢ ⎥
⎢ ⎥+ −
⎢ ⎥
⎣ ⎦

, ............................................... (B-59) 

but the fracture has negligible volume after fracture closure and the dimensionless after-closure wellbore 

storage coefficient is written as 

22

c Vw wC CacD D
c hLt fπφ

= = . .................................................................................................................. (B-60) 

The dimensionless wellbore pressure is written as the sum of the effects of both reservoir models,102 that 

is, the solution is written as 

( ) ( )
( ) ( )

0 0

t tLfD LfDdp t dp tfD LfD D sD LfD Dp q d q dwD fD D D rD D Ddt dtLfD LfD

τ τ
τ τ τ τ

⌠ ⌠
⎮ ⎮
⎮ ⎮
⎮ ⎮
⌡ ⌡

− −
= + , ................... (B-61) 

where qfD is the before-closure dimensionless flow rate for the hydraulically fractured system, and pfD is 

the dimensionless reservoir solution for a well with a fixed-length fracture. The after-closure 

dimensionless flow rate, qrD, is for the radial system, and the dimensionless radial flow reservoir solution 

with skin, psD, is written as 

( ) ( )p t p t SsD LfD rD LfD= + , ......................................................................................................... (B-62) 
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where prD is the dimensionless reservoir solution, and S is the skin effect. Note that dimensionless time is 

defined in terms fracture half-length; thus, fracture half-length is the characteristic length used in the 

dimensionless radius definition and radial solution. 

The dimensionless material balance can also be written in terms of before-closure and after-closure 

components as 

q q qD fD rD= + , ............................................................................................................................... (B-63) 

where the flow rate for a fixed-length closing fracture is written as 

( ) ( )
dp dpwD wDq q U q C U CfD wD t wD bcD t bcDc LfD c LfDdt dtLfD LfD

= − − + , ................................................. (B-64) 

and the dimensionless after-closure radial flow rate is written as 

( ) ( )
dpwDq U q U CrD t wD t acDc LfD c LfD dtLfD

= − . .................................................................................. (B-65) 

However, the components of the material balance equation are also valid for all time for the specific flow 

models, and the sum of the superposition integrals and dimensionless flow rate equations can be 

transformed to the Laplace domain and combined as 

( ) ( )

2

( )
( )

0
( )

( )
0

s t s tc LfD c LfDq p q p e q p ewD fD wD fD wD sD

C s p pacD rD wD
tp stc LfDwD LfDC sp e p t dtbcD fD wD LfD LfD

t stc LfD LfDC sp e p t dtacD sD wD LfD LfD

⌠
⎮⎮
⌡

⌠
⎮⎮
⌡

− −⎡ ⎤
− +⎢ ⎥

⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥−
′−⎢ ⎥

⎢ ⎥
⎢ ⎥−⎢ ⎥′+
⎢ ⎥⎣ ⎦

. .................................................... (B-66) 

After inverting to the time domain, the dimensionless pressure solution is written as 

( ) ( ( ) ) ( ( ) )

( ) ( )0
( ) ( )

( ) ( )0
( )

( ) ( )0

q p t p t t p t twD fD LfD fD LfD c LfD sD LfD c LfD
tLfDC p t p dacD sD LfD D wcD D D

p twcD LfD tc LfDC p t p dbcD fD LfD D wcD D D
tc LfDC p t p dacD sD LfD D wcD D D

τ τ τ

τ τ τ

τ τ τ

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤⎡ ⎤− − + −⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′− −
⎢ ⎥= ⎢
⎢ ′ ′− −
⎢
⎢

′ ′+ −⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥

, .......................... (B-67) 

and after simplifying, the pressure solution for a constant-rate drawdown with qwD = 1, constant before-

closure fracture storage, constant after-closure wellbore storage, and after-closure radial flow is written as 
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( ) ( ( ) ) ( ( ) )

( ) ( ) ( )( )

( )
( ) ( )0

p t p t t p t tfD LfD fD LfD c LfD sD LfD c LfD
tLfDp t C p t p dwcD LfD acD sD LfD D wcD D Dtc LfD
tc LfDC p t p dbcD fD LfD D wcD D D

τ τ τ

τ τ τ

⌠⎮
⌡

⌠⎮
⌡

⎡ ⎤
− − + −⎢ ⎥

⎢ ⎥
⎢ ⎥′ ′= − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′− −⎣ ⎦

. ..................................... (B-68) 
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APPENDIX C 

FRACTURE-INJECTION/FALLOFF SOLUTIONS IN A RESERVOIR 

WITHOUT A PRE-EXISTING FRACTURE 

 

Assume a slightly compressible fluid fills the wellbore and a fracture and is injected at a constant rate and 

at a pressure sufficient to create a new hydraulic fracture or dilate an existing fracture. A mass balance 

during a fracture injection is written as 

Storage
( )

2

m min out d Vd f fwq B q B Vw r r w dt dt

ρρ
ρ ρ− = + , ...................................................................................... (C-1) 

where qℓ is the fluid leakoff rate into the reservoir from the fracture, qℓ = qsf, and Vf is the fracture volume. 

The material balance equation can be expanded using the product rule and written as 

2 2
d dVd f fwq B q B V Vw sf r r w f fdt dt dt

ρρ
ρ ρ ρ− = + + . ................................................................... (C-2) 

The derivative with respect to time of the wellbore fluid density is written using the chain rule as 

1d d dp dpw w w wcw w wdt dp dt dtw w

ρ ρ
ρ ρ

ρ
= = , ......................................................................................... (C-3) 

where cw is the isothermal wellbore fluid compressibility. Assuming the wellbore and fracture pressure are 

equal, pw = pf, the derivative with respect to time of the density of the fluid filling the fracture is written as 

 
d dpf wcf fdt dt

ρ
ρ= , ......................................................................................................................... (C-4) 

where cf is the isothermal compressibility of the fluid filling the fracture. 

The material balance equation can now be written as 

2 2
dV dpf wq B q B c V c Vw sf r r w w w f f f f dp dtw

ρ ρ ρ ρ ρ
⎛ ⎞

− = + +⎜ ⎟⎜ ⎟
⎝ ⎠

, ..................................................... (C-5) 

or assuming a constant density, ρ = ρw = ρf = ρr, and a constant formation volume factor, B = Br, the 

material balance equation is written as 

1 2 2
dV dpf wq q c V c Vsf w w w f fB dp dtw

⎛ ⎞
= − + +⎜ ⎟⎜ ⎟

⎝ ⎠
. ................................................................................ (C-6) 

The dimensionless wellbore pressure for a fracture-injection/falloff is written as 

( )
( )

0

p t pw LfD ip twsD LfD p pi

−
=

−
, ............................................................................................................ (C-7) 
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where pi is the initial reservoir pressure and p0 is an arbitrary reference pressure. At time zero, the wellbore 

pressure is increased to the “opening” pressure, pw0, which is generally set equal to p0, and the 

dimensionless wellbore pressure at time zero is written as 

0(0)
0

p pw ipwsD p pi

−
=

−
. .......................................................................................................................... (C-8) 

Define dimensionless time as 

2
kttLfD
c Lt fφμ

= , ................................................................................................................................ (C-9) 

where Lf is the fracture half-length at the end of pumping. The dimensionless reservoir flow rate is defined 

as 

2 ( )0

q BsfqsD kh p pi

μ

π
=

−
, .................................................................................................................... (C-10) 

and the dimensionless well flow rate is defined as 

2 ( )0

q BwqwsD kh p pi

μ
π

=
−

, .................................................................................................................. (C-11) 

where qw is the well injection rate.  With the dimensionless variables, the material balance equation during 

an injection is written as 

22

C dppf wsDq qsD wsD dtc hL LfDt fπφ
= − , ..................................................................................................... (C-12) 

where the propagating-fracture storage coefficient is written as 

2 2
dV fC c V c Vpf w w f f dpw

= + + . .................................................................................................... (C-13) 

Define a dimensionless propagating-fracture storage coefficient as 

22

CpfCpfD
c hLt fπφ

= , ........................................................................................................................... (C-14) 

and the dimensionless material balance equation during an injection at a pressure sufficient to create or 

dilate a hydraulic fracture is written as 

dpwsDq q CsD wsD pfD dtLfD
= − . ............................................................................................................. (C-15) 

Solution Accounting for a Dilating Fracture, Before-Closure Storage, and After-Closure Storage 

Consider a fracture-injection/falloff test with the entire fracture length developed instantaneously when the 

injection begins or with a pre-existing fracture.  The injection is at a pressure in excess of the minimum in-
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situ stress, and fracture volume changes are a function of fracture width – which is a function of pressure 

during the injection and before-closure pressure falloff. 

During a constant rate injection with a constant fracture length, the fracture volume is written as 

ˆ ˆ( ( )) ( ( ))V h L w p t A w p tf f f f w f f w= = . ............................................................................................ (C-16) 

The average fracture width, ˆ ( ( )),w p tf w is a function of net pressure,80 pn = pw(t) – pc, and is written as 

( )
ˆ

p p t pn w cw f S Sf f

−
= = , ................................................................................................................. (C-17) 

where pc is the fracture closure stress and Sf is the fracture "stiffness."  Fracture stiffness, or the inverse of 

fracture compliance, is defined by the elastic energy or "strain energy" created by an open fracture in a 

rock assuming linear elastic theory is applicable.  Table C-1 contains the fracture stiffness definitions for 

three common 2D fracture models.80,100 In Table C-1, E' is the plane-strain modulus, Rf is the fracture 

radius of a radial fracture, hf is the gross fracture height, and Lf is the fracture half-length. 

Table C-1—Fracture stiffness for 2D fracture models.80,100 

Radial Perkins-Kern-Nordgren 
Vertical Plane Strain 

Geertsma-deKlerk 
Horizontal Plane Strain 

3( )
16

ES f RAD R f

π ′
=  2( ) ES f PKN h fπ

′
=  ( ) ES f GDK L fπ

′
=  

The derivative of average fracture width with respect to pressure is written as 

ˆ 1dw f
dp Sw f

= . ..................................................................................................................................... (C-18) 

A dilated-fracture storage coefficient can now be written as 

( )2 1
AfC c V c pfd w w f nS f

= + + . .................................................................................................... (C-19) 

Hagoort,101 and other investigators of waterflood induced fractures that followed,90-93 assume that 

( ) 1 1c p tf n + ≅ , ............................................................................................................................... (C-20) 

which is also a reasonable approximation for a fracture-injection/falloff test, and the dilating-fracture 

storage coefficient can be written as 
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2
AfC c Vfd w w S f

= + , ...................................................................................................................... (C-21) 

which is constant and no longer a function of pressure. The dilating-fracture storage coefficient can be 

written in dimensionless form as 

22

C fdC fdD
c hLt fπφ

= , ........................................................................................................................ (C-22) 

and the dimensionless material balance during an injection with a dilating fracture of fixed length is 

written as 

dpwsDq q CsD wsD fdD dtLfD
= − . ............................................................................................................ (C-23) 

Following the injection, the falloff portion of the test begins, and a before-closure mass balance is written 

as 

Storage
( )

2

m min out d Vd f fwq B q B Vw r r w dt dt

ρρ
ρ ρ− = + , .................................................................................... (C-24) 

which is the same as the dilating-fracture mass balance. Assuming the fracture length remains constant 

during the before-closure falloff, fracture volume changes are a function of fracture width, and the before-

closure storage coefficient is equivalent to the dilating-fracture storage coefficient and written as 

2
AfC c V Cbc w w fdS f

= + = . ............................................................................................................ (C-25) 

The dimensionless before-closure storage coefficient is written as 

22

CbcCbcD
c hLt fπφ

= , ........................................................................................................................ (C-26) 

and the dimensionless before-closure pressure falloff material balance is written as 

dpwsDq q CsD wsD bcD dtLfD
= − . ............................................................................................................. (C-27) 

However, during the falloff portion of the test, qwD = 0, and the before-closure pressure falloff 

dimensionless material balance equation becomes 

dpwsDq CsD bcD dtLfD
= − . ....................................................................................................................... (C-28) 

After fracture closure a constant after-closure storage coefficient is written as 

2C c V c Vac w w f fr= + , ...................................................................................................................... (C-29) 
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where Vfr is the residual fracture volume at closure.  In some cases, no residual volume will remain after-

closure, and Cac = cwVw. The dimensionless after-closure wellbore storage coefficient is written as 

22

CacCacD
c hLt fπφ

= , ........................................................................................................................... (C-30) 

and the after-closure pressure falloff dimensionless material balance equation is written as 

dpwsDq CsD acD dtLfD
= − . ....................................................................................................................... (C-31) 

The Heaviside unit-step function,62 is defined as 

0 ,
1 ,

t a
Ua t a

<⎧
= ⎨ >⎩

, ......................................................................................................................... (C-32) 

and following the technique of Correa and Ramey,62-64 a material balance equation valid at all times for a 

fracture-injection/falloff test with a dilating fracture and constant after-closure storage is written as 

1 ( )

( ) ( )

( )

dpwsDU q Ct wsD fdDe LfD dtLfD
dpwsDq U U CsD t t bcDe LfD c LfD dtLfD

dpwsDU Ct acDc LfD dtLfD

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟− −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

. .............................................................................. (C-33) 

where (te)LfD is the dimensionless time at the end of pumping and (tc)LfD is the dimensionless fracture 

closure time.  The material balance equation can be expanded and written as 

( ) ( )

( ) ( )

( )

dp dpwsD wsDq U q C U CwsD t wsD fdD t fdDe LfD e LfDdt dtLfD LfD
dp dpwsD wsDq U C U CsD t bcD t bcDe LfD c LfDdt dtLfD LfD
dpwsDU Ct acDc LfD dtLfD

⎡ ⎤
⎢ ⎥− − +
⎢ ⎥
⎢ ⎥
⎢ ⎥= − +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

, ........................................ (C-34) 

but for a dilating fracture CfdD = CbcD, and the material balance equation can be simplified and written as 

1 ( )( ) ( )
dp dpwsD wsDq U q C U C CsD t wsD bcD t bcD acDe LfD c LfDdt dtLfD LfD

⎛ ⎞= − − + −⎜ ⎟
⎝ ⎠

. ................................ (C-35) 

The Laplace transform of the material balance equation62 is written as 

( )
(0)

( )
( ) (0) ( )

0

s tq q e LfDwsD wsD e C sp pbcD wsD wsDs s
qsD t stc LfD LfDC C sp p e p t dtbcD acD wsD wsD wsD LfD LfD

⌠
⎮⎮
⌡

−⎡ ⎤
⎡ ⎤− − −⎢ ⎥⎣ ⎦

⎢ ⎥= ⎢ ⎥⎛ ⎞−
′⎢ ⎥+ − − −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, ...................... (C-36) 
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or after canceling terms and simplifying the equation, written as 

( )
(0)

( )
( ) ( )

0

s tq q e LfDwsD wsD e C sp p CacD wsD wsD acDs s
qsD t stc LfD LfDC C e p t dtbcD acD wsD LfD LfD

⌠
⎮⎮
⌡

−⎡ ⎤
− − +⎢ ⎥

⎢ ⎥=
⎢ ⎥−

′− −⎢ ⎥
⎣ ⎦

. .................................................. (C-37) 

A solution is developed by applying the superposition principle, which is written as 

( )
( )

0

tLfD dp tD LfD Dp q dwsD sD D DdtLfD

τ
τ τ

⌠
⎮
⎮
⎮
⌡

−
= . ................................................................................. (C-38) 

The initial condition in the fracture and reservoir requires a constant initial pressure, pD(tLfD) = 0, and with 

the initial condition, the Laplace transform of the superposition integral is written as 

pwsDp q sp qwsD sD D sD spD
= ⇔ = . .............................................................................................. (C-39) 

Combining the transformed material balance equation and superposition integral results in 

( )
( )

(0)
21 ( )

( ) ( )
0

s te LfDq p q p e p C spwsD D wsD D wsD acD D
p s C pwsD acD D t stc LfD LfDC C sp e p t dtbcD acD D wsD LfD LfD

⌠
⎮⎮
⌡

−⎡ ⎤
− +⎢ ⎥

⎢ ⎥+ = −⎢ ⎥′− −⎢ ⎥⎣ ⎦

. ...................... (C-40) 

Let the Laplace domain dimensionless fracture solution for a well produced at a constant rate with after-

closure storage be written as 

21

p fDpacD
s C pacD fD

=
+

, .................................................................................................................. (C-41) 

and the Laplace domain fracture-injection/falloff solution is written as 

( )
(0)

( )
( ) ( )

0

s te LfDq p q p e p C spwsD acD wsD acD wsD acD acD
pwsD t stc LfD LfDC C sp e p t dtbcD acD acD wsD LfD LfD

⌠
⎮⎮
⌡

−⎡ ⎤
− +⎢ ⎥

⎢ ⎥= −⎢ ⎥′− −⎢ ⎥⎣ ⎦

. ............................................ (C-42) 

Inverting the Laplace domain solution results in the time domain dilated-fracture injection/falloff solution 

written as 

( ) ( ( ) ) (0) ( )
( ) ( )

( ) ( ) ( )0

q p t p t t p C p twsD acD LfD acD LfD e LfD wsD acD acD LfD
p twsD LfD tc LfDC C p t p dbcD acD acD LfD D wsD D Dτ τ τ⌠⎮

⌡

⎡ ⎤⎡ ⎤ ′− − +⎣ ⎦⎢ ⎥
= ⎢ ⎥
⎢ ⎥′ ′− − −⎣ ⎦

. ............. (C-43) 

Solution Accounting for a Propagating Fracture, Constant Before-Closure Storage, and Constant 
After-Closure Storage 

Consider a fracture-injection/falloff test with fracture length and width developed during the injection. 

During a constant rate injection with changing fracture length and width, the fracture volume is written as 

ˆ( ( )) ( ( )) ( ( ))V p t h L p t w p tf w f w f w= , ................................................................................................. (C-44) 
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and the propagating-fracture storage coefficient is written as 

( ( ))
( ( )) 2 ( ( )) 2

dV p tf wC p t c V c V p tpf w w w f f w dpw
= + + . ................................................................ (C-45) 

With dimensionless variables, the material balance equation for a propagating fracture during injection is 

written as 

( ( ))
22

C p t dppf w wsDq qsD wsD dtc hL LfDt fπφ
= − . .................................................................................................. (C-46) 

Define a dimensionless fracture storage coefficient as 

( ( ))
22

C p tpf wCpfD
c hLt fπφ

= , ........................................................................................................................ (C-47) 

and the dimensionless material balance equation during an injection at a pressure sufficient to create and 

extend a hydraulic fracture is written as 

( ( ))
dpwsDq q C p tsD wsD pfD wsD LfD dtLfD

= − . ....................................................................................... (C-48) 

Using the technique of Correa and Ramey,62-64 a material balance equation valid at all times for a fracture-

injection/falloff test with fracture creation and extension and constant after-closure wellbore storage is 

written as 

1 ( ( ))( )

( ) ( )

( )

dpwsDU q C p tt wsD pfD wsD LfDe LfD dtLfD
dpwsDq U U CsD t t bcDe LfD c LfD dtLfD

dpwsDU Ct acDc LfD dtLfD

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟− −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

, ......................................................... (C-49) 

or expanded and written as 

( ( ))( )

( ( ))( )

( )

dpwsDq U q C p twsD t wsD pfD wsD LfDe LfD dtLfD
dpwsDq U C p t CsD t pfD wsD LfD bcDe LfD dtLfD

dpwsDU C Ct bcD acDc LfD dtLfD

⎡ ⎤
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤= + −⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤+ −⎣ ⎦⎢ ⎥⎣ ⎦

. ......................................................... (C-50) 

The Laplace transform of the material balance for an injection with fracture creation and extension is 

written as 
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( )
( ( )) ( )

0

( ( )) ( )
0
( )

( ( )) ( )
0

( )
0

s te LfD stq e LfDwsD q e C p t p t dtwsD pfD wsD LfD wsD LfD LfDs s
stLfDe C p t p t dtpfD wsD LfD wsD LfD LfD

t ste LfD LfDe C p t p t dtpfD wsD LfD wsD LfD LfD
qsD stLfDe C p t dtbcD wsD LfD

⌠
⎮⎮
⌡

⌠
⎮⎮
⌡

⌠
⎮⎮
⌡

⌠
⎮⎮
⌡

− ∞ −
′− −

∞ −
′+

−
′−

=
∞ −

′−

( )
( )

0
( )

( ) (0) ( )
0

LfD

t ste LfD LfDe C p t dtbcD wsD LfD LfD

t stc LfD LfDC C sp p e p t dtbcD acD wsD wsD wsD LfD LfD

⌠
⎮⎮
⌡

⌠
⎮⎮
⌡

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−

′+⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤−⎢ ⎥′+ − − −⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

. .................. (C-51) 

After expanding and simplifying, the material balance equation is written as 

( ) ( )
( ( )) ( )

0
(0)

( )
( )

0
( )

( ) ( )
0

s te LfD t stq e e LfD LfDwsD q e C p t p t dtwsD pfD wsD LfD wsD LfD LfDs s
sC p p CacD wsD wsD acD

q tsD ste LfD LfDe C p t dtbcD wsD LfD LfD

t stc LfD LfDC C e p t dtbcD acD wsD LfD LfD

⌠
⎮⎮
⌡

⌠
⎮⎮
⌡

⌠
⎮⎮
⌡

−⎡ ⎤−⎢ ′− −⎢
⎢
− +⎢
⎢= −⎢ ′+⎢
⎢
⎢ −

′− −⎢
⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. ......... (C-52) 

Developing a solution requires an approach similar to the dilated fracture case, but with the fracture half-

length increasing during the injection, a dimensionless pressure solution is required for both a propagating 

and fixed fracture half-length. A quasi-static dimensionless pressure solution assumes the fracture half-

length is constant for each instant in time, and a quasi-static dimensionless pressure solution is developed 

by integrating the line-source solution, which is written as95 

( )02
qp K r uDls ks
μ
π

Δ = , .................................................................................................................... (C-53) 

from xw – L(tLfD) and xw + L(tLfD) with respect to x'w where L(tLfD) is the fracture half-length during 

propagation. In terms of dimensionless variables, x'wD = x'w/Lf and dx'w = Lfdx'wD, where Lf is the fracture 

half-length at the end of propagation, a quasi-static solution is developed by integrating the line-source 

solution from xwD – LfD(tLfD) to xwD + LfD(tLfD), which is written as 

( )
2 2( ) ( )02 ( )

LfD

LfD

x L tq L wD fDfp K u x x y y dxD wD D wD wDks x L twD fD

μ

π

⌠
⎮
⎮
⌡

+ ⎡ ⎤′ ′Δ = − + −⎢ ⎥⎣ ⎦−
. ................................. (C-54) 

Assuming that the well center is at the origin, xwD = ywD = 0,  
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π
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. ...................................................... (C-55) 

Assuming uniform flux, the flow rate is written as 

2 ( )LfDq q hL t= , ................................................................................................................................. (C-56) 

and the plane-source solution can be written in dimensionless terms as 

( )1 2 2( ) ( )0( ) 2 ( )
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LfD LfD

L tfDqDp K u x y dD D DL t sfD L tfD
α α
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⎮
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where 

2

t

kh ppD q
π

μ
Δ

= , .................................................................................................................................. (C-58) 

( )
( ) LfD

LfD
L t

L tfD L f
= , ........................................................................................................................ (C-59) 

and defining the total flow rate in the time domain as qt(t), the dimensionless flow rate is written as 

( ) 1LfD
qq tD qt

= = , ............................................................................................................................ (C-60) 

where it is assumed that the flow rate is  equivalent to the constant total flow rate at each point in time 

during fracture propagation such that qD(tLfD) = 1. The solution is evaluated in the plane of the fracture, 

and after simplifying the integral using the identity of Ozkan and Raghavan,114 a quasi-static 

dimensionless uniform-flux solution in the Laplace domain for a variable fracture half-length is written as 

[ ] [ ]
( ( ) ) ( ( ) )1 1

0 00 0( ) 2
LfD LfD

LfD
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⌠ ⌠
⌡ ⌡

⎡ ⎤+ −
⎢ ⎥= +
⎢ ⎥⎣ ⎦

, .......... (C-61) 

and the infinite-conductivity solution is obtained by evaluating the uniform-flux solution at LfDxD = 0.732 

and is written as 

[ ] [ ]
( )(1 0.732) ( )(1 0.732)1 1
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. .. (C-62) 

The dimensionless fracture half-length varies between 0 and 1 during fracture propagation, and using a 

power-model approximation,80 a dimensionless fracture half-length can be written during propagation and 

closure as 

( )
( )

( ) ( )

1 ( )

N
LfD LfD

LfD e LfD
LfD e LfD

LfD e LfD

L t t
t t
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, .................................................................... (C-63) 
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where the power-model exponent ranges from αN = ½ and for a low efficiency (high leakoff) fracture and 

αN = 1 for a high efficiency (low leakoff) fracture.  

Valkó and Economides59 approximate dimensionless pressure during fracture propagation using an early-

time approximation for the infinite-conductivity fixed-length fracture solution written as 

( ) ( )p tfD n LfD nπ≅ , ...................................................................................................................... (C-64) 

where the dimensionless time, tLfD, is defined in terms of the fracture length at time (t)n and written as 

( )
( )

( )
2

k t ntLfD n
c Lt n

φμ
= . ................................................................................................................... (C-65) 

Fig. C-1 is a graph of dimensionless pressure versus dimensionless fracture half-length for the propagating 

fracture solution (Eq. C-62) and the early-time approximation of a high efficiency fracture with αN = 1. 

The early-time approximation with dimesionless time as a function of fracture half-length at time (t)n 

generally overlays the propagating-fracture solution after about 5% of the fracture half-length is created.  

For a low efficiency fracture with αN = ½ the approximation is exact during the entire fracture propagation 

period. 

During the before- and after-closure period when the fracture half-length is unchanging, the dimensionless 

pressure solution for an infinite-conductivity fracture results,84 which is written in the Laplace domain as95 

[ ] [ ]1 (1 0.732) (1 0.732)
0 00 02

u up K z dz K z dzfD s u
⌠ ⌠
⌡ ⌡
⎡ ⎤+ −= +⎢ ⎥
⎣ ⎦

. ...................................................... (C-66) 

The two different reservoir models, one for a propagating fracture and one for a fixed-length fracture, can 

be superposed102 to develop a dimensionless wellbore pressure solution by writing the superposition 

integrals as 

( ) ( )
( ) ( )

0 0

t tLfD LfDdp t dp tpfD LfD D fD LfD Dp q d q dwsD pfD D D fD D Ddt dtLfD LfD

τ τ
τ τ τ τ

⌠ ⌠
⎮ ⎮
⎮ ⎮
⎮ ⎮
⌡ ⌡

− −
= + , .............. (C-67) 

where qpfD(tLfD) is the dimensionless flow rate for the propagating fracture model with propagating-fracture 

solution, ppfD(tLfD) , and qfD(tLfD) is the dimensionless flow rate with a fixed fracture half-length model used 

during the before- and after-closure falloff period. The initial condition in the fracture and reservoir is a 

constant initial pressure, pD(tLfD) = ppfD(tLfD) = pfD(tLfD) = 0, and with the initial condition, the Laplace 

transform of the superposition integral is written as 

p q sp q spwsD pfD pfD fD fD= + . ....................................................................................................... (C-68) 

The Laplace domain dimensionless material balance equation can be split into injection and falloff parts 

by writing as 

 q q qsD pfD fD= + , .......................................................................................................................... (C-69) 
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where the dimensionless reservoir flow rate during fracture propagation is written as 

( ) ( )
( ( )) ( )
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−
−

′= − − , .......... (C-70) 

and the dimensionless before- and after-closure fracture flow rate is written as 
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Fig. C-1—Comparison of Laplace Domain propagating fracture solution with early-time infinite-
conductivity fracture approximation with dimensionless time as a function of fracture half-
length at time (t)n. 
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Utilizing the superposition principle to develop a solution requires that the pressure-dependent 

dimensionless propagating-fracture storage coefficient be written as a function of time only.  Let fracture 

propagation be modeled by a power model and written as80 

( )( ) Nh L tA t tf
A h L tf f f e

α⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
. .................................................................................................................. (C-72) 

Fracture volume as a function of time is written as 

ˆ( ( )) ( ( )) ( ( ))V p t h L p t w p tf w f w f w= , ................................................................................................. (C-73) 

which, using the power model, can also be written as 
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The derivative of fracture volume with respect to wellbore pressure is written as 

( ( )) NdV p t h L tf w f f
dp S tw f e

α⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
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Recall the propagating-fracture storage coefficient is written as 

( ( ))
( ( )) 2 ( ( )) 2

dV p tf wC p t c V c V p tpf w w w f f w dpw
= + + , ................................................................ (C-76) 

which, with power-model fracture propagation included, is written as 

( )( ( )) 2 1
Nh L tf fC p t c V c ppf w w w f nS tf e
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As previously noted, cfpn(t)  1, and the propagating-fracture storage coefficient is written as 

( ) 2
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NA tf LfDC t c Vpf LfD w w S tf e LfD

α⎛ ⎞
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⎜ ⎟
⎝ ⎠
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which is not a function of pressure and allows the superposition principle to be used to develop a solution. 

Combining the material balance equations and superposition integrals results in 
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and after inverting to the time domain, the fracture-injection/falloff solution for the case of a propagating 

fracture, constant before-closure storage, and constant after-closure storage is written as 
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The propagating-fracture solution for a single vertical fracture, ppfD(tLfD), can be written as 
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or using the unit-step function written as 

( )( ) ( ) ( ) ( )( ) 1 e LfD LfD e LfD LfDLfD t prfD t t fD tp t U p U ppfD = − + , ............................................................. (C-82) 

where the solution during fracture propagation is written as 
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with dimensionless fracture half-length defined in the Laplace domain as 
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Solution Accounting for a Propagating Fracture Storage, Before-Closure Storage, Constant 
After-Closure Storage, and After-Closure Radial Flow 

The previous fracture solutions assumed fracture flow after-closure, but it is also likely that after-closure 

radial flow occurs when little or no fracture conductivity remains after fracture closure.  The 

dimensionless material balance remains the same for the after-closure radial flow case and is written as 
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where the dimensionless after-closure storage coefficient is defined as 

22

c Vw wC CacD D
c hLt fπφ
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The dimensionless wellbore pressure solution for flow from a propagating fracture, a fixed-length fracture 

during closure, and a perforated (radial) interval after closure can be written by applying the superposition 

principle as 
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or by expanding the summation written as 
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where qrD is the after-closure dimensionless flow rate for the radial system and psD(tLfD) = prD(tLfD) + S is 

the dimensionless radial flow reservoir solution, prD, with skin effect, S. Note that dimensionless time is 

defined in terms of the fracture half-length; thus, fracture half-length is the characteristic length used in the 

dimensionless radius definition and radial solution. 

The dimensionless material balance can also be writtern in terms of before-closure and after-closure 

components as 
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where, utilizing the power model, the flow rate for a propagating fracture is written as 
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The flow rate for a fixed-length closing fracture is written as 
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and the dimensionless after-closure radial flow rate is written as 

( )
dpwsDq U CrD t Dc LfD dtLfD
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The solution is obtained by applying the superposition principle for the propagating fracture, fixed fracture 

half-length, and radial model, which when combined with the material balance equations in the Laplace 

domain can be written as 
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After inverting to the time domain, the dimensionless pressure solution accounting for a propagating 

fracture, before- and after-closure storage, and after-closure radial flow is written as 
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APPENDIX D 

ANALYTICAL PRESSURE-TRANSIENT SOLUTION FOR A WELL 

CONTAINING MULTIPLE INFINITE-CONDUCTIVITY VERTICAL 

FRACTURES IN AN INFINITE SLAB RESERVOIR 

Ozkan and Raghavan95 write the point source solution in the Laplace domain for an infinite-slab reservoir 

between impermeable boundaries at zD = 0 and zD = hD as 

( ) 2 ( )cos cos0 02 1
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� , ...........................(D-1) 

where Lc is a reference length for the system. Assuming permeability isotropy, the dimensionless variables 

are defined as 

c

hhD L
= , ............................................................................................................................................(D-2) 

c

zzD L
= , ............................................................................................................................................(D-3) 

c

zwzwD L
= , ........................................................................................................................................(D-4) 

and 

2 2( ) ( )r x x y yD D wD D wD= − + − . .............................................................................................(D-5) 

The Laplace variable is denoted by ,s and the point-source solution accounts for dual-porosity reservoirs 

with u defined as 
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and εn defined as 

2
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, ............................................................................................................................(D-7) 

where for a single-porosity f(s) = 1. For a dual-porosity case with pseudosteady-state interporosity flow, 

f(s) is written as96 
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for transient interporosity flow with slab matrix blocks,97-98 
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and for transient interporosity flow with spherical matrix blocks,97-98 
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Assuming constant flux, ,q� the line-source solution for a fully penetrating wellbore is developed by 

integrating the right-hand-side of the point-source solution from 0 to h with respect to z'w. In terms of 

dimensionless variables with z'wD = z'w/Lc, the point-source solution is integrated from 0 to hD, which is 

written as 
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Only the first integral term is nonzero, and the fully-penetrating line-source solution for an isotropic 

reservoir is written as 

( )02
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The plane-source (vertically-fractured well) solution is obtained by integrating the right-hand-side of the 

line-source solution from xw – Lf and xw + Lf with respect to x'w. In terms of dimensionless variables with 

x'wD = x'w/Lc, the line-source solution is integrated from xwD – LfD to xwD + LfD, which is written as 
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Assuming that the well center is at the origin, xwD = ywD = 0, the plane-source solution is written as 
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⎡ ⎤′ ′Δ = − +⎢ ⎥⎣ ⎦−

� . ........................................................(D-14) 

With uniform flux, the constant flow rate is written as 

2q q hL f= � , ......................................................................................................................................(D-15) 

and plane-source solution can be written in the Laplace domain as 

1 2 2( ) ( )02

Lq fDDp K u x y dD D DL s LfD fD
α α

⌠
⎮
⎮
⌡

⎡ ⎤= − +⎢ ⎥⎣ ⎦−
, .............................................................(D-16) 

where 

2

t

kh ppD q
π

μ
Δ

= , ................................................................................................................................(D-17) 
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c

L fL fD L
= , ......................................................................................................................................(D-18) 

and defining the total constant flow rate as qt, the dimensionless flow rate is written as 

1qqD qt
= = . ....................................................................................................................................(D-19) 

General Solution for a Vertical Fracture at an Arbitrary Angle from the xD-axis 

Fig. D-1 illustrates a vertical fracture at an arbitrary angle, θ, from the xD-axis.  The uniform-flux plane-

source solution assuming an isotropic reservoir is written in the Laplace domain as 

1 2 2ˆ ˆ( ) ( )02

L fD
p K u x y dD D DsL LfD fD

α α
⌠
⎮
⎮
⌡

⎡ ⎤= − +⎢ ⎥⎣ ⎦−
, ..............................................................(D-20) 

where dimensionless variables are defined as 

2 2
D D Dr x y= + , ...............................................................................................................................(D-21) 

cosD D rx r θ= , .................................................................................................................................(D-22) 

sinD D ry r θ= , .................................................................................................................................(D-23) 

ˆ cos sinD D f D fx x y= +θ θ , ............................................................................................................(D-24) 

ˆ cos sinD D f D fy y x= −θ θ , ............................................................................................................(D-25) 

and θf is the angle between the fracture and the xD-axis, (rD, θr) are the polar coordinates of a point 

(xD, yD), and (α, θf) are the polar coordinates of a point along the fracture.103 Combining Eqs. D-22 through 

D-25 results in 

ˆ cos( )D D r fx r θ θ= − , ......................................................................................................................(D-26) 

and 

ˆ sin( )D D r fy r θ θ= − . ......................................................................................................................(D-27) 

Consequently, the Laplace domain plane-source solution for a fracture rotated by an angle θf from a point 

(rD, θr) is written as 

( ) ( )21 2 2cos sin02 r r

L fD
p K u r r dD D f D fsL fD L fD

θ θ α θ θ α
⌠
⎮
⎮
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⎡ ⎤
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. .......................(D-28) 

The single fracture Laplace domain solution has the fracture aligned with the xD-axis, and the single 

fracture solution is a special case of the general plane-source solution. With ,r fθ = θ  which essentially 

aligns the fracture with a reference axis, the general Laplace domain solution reduces to the known single 

fracture plane-source fracture solution written as 
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General Solution for Multiple Arbitrarily-Oriented Uniform-Flux Vertical Fractures 

For a well containing nf fractures connected at the wellbore, the total flow rate from the well assuming all 

production is through the fractures is written as 

1
1

fn
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q
=
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where qiD is the dimensionless flow rate for the ith-fracture defined as 

1

f
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Fig. D-1—A vertical fracture at an arbitrary angle relative to the xD-axis. 
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and qi is the flow rate from the ith-fracture. 

For all fractures intersecting the wellbore, the wellbore pressure is the same and written as 

( ) , 1, 2,  ,  LfD wD fp p n= =A A … . .............................................................................................(D-32) 

The dimensionless pressure solution is obtained by superposing all fractures102 and written using the 

superposition integral as 

0
1

( ) ( )( ) ( ) , 1, 2,  , 
f
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t
LfD wD iD D D i LfD D D f

i
p p q p t d nτ τ τ

=
′= = − =∑∫A A A … , ..........................(D-33) 

where the pressure derivative accounts for the effects of fracture 'i' on fracture 'ℓ'. 

The Laplace transform of the dimensionless rate equation is written as 

1

1fn

iD
i

q
s=
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and with the initial condition, pD(tLfD = 0) = 0, the Laplace transform of the dimensionless pressure 

solution is written as 

1
( ) ( ) , 1, 2,  , 

fn

wD iD D i f
i

p sq p n
=

= =∑A A A … , ..............................................................................(D-35) 

where ( )D ip A is the Laplace domain uniform-flux solution for a single fracture written to account for the 

effects of multiple fractures as 
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The uniform-flux Laplace domain multiple fracture solution can now be written as 
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For a uniform-flux fracture system, the flow rate from the primary fracture, Lf1D, is written as 

21 1q h L qf f= � , ................................................................................................................................(D-38) 

and the flow rate from the other fractures is written as 

2 ,  2, 3, , 1q h L q i ni f i f fδ= =� … , ...........................................................................................(D-39) 

where the normalized fracture length is written as 

, 1, 2, , 
1

L fi i ni fL f
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The well flow rate is written as 

1
1

2
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q h L q δ
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and the dimensionless flow rate is defined as 
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The Laplace transform of the constant dimensionless flow rate is written as 
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and the Laplace domain uniform-flux multiple fracture solution is written as 
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For the special case of a cruciform fracture with θ1 = 0 and θ2 = π/2, the uniform-flux solution at the 

wellbore is written as 
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. ........................(D-45) 

For Lf1D = 1 and Lf2D = δ2, the uniform-flux Laplace domain solution is written using the identity of Ozkan 

and Raghavan114 as 

( ) [ ] [ ]2
0 00 02

1 1
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u u
LfDp K z dz K z dz

s u
⎡ ⎤

= +⎢ ⎥+ ⎣ ⎦
∫ ∫

δ

δ
, .................................................................(D-46) 

and for the special case when Lf1D = Lf2D, the Laplace domain uniform-flux pressure solution is written as 

[ ]00
1 u

LfDp K z dz
s u
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which is identically equal to a single planar fracture uniform-flux solution. 

Solution for Multiple Arbitrarily-Oriented Infinite-Conductivity Vertical Fractures 

For a single vertical fracture, an approximate infinite-conductivity solution is obtained by evaluating the 

uniform-flux solution at an equivalent average pressure point, (xD = 0.732, yD = 0). However, the 

equivalent average pressure point is dependent on the system geometry and must be determined 

numerically for each multi-fracture system.104 
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Kuchuk et al.104 encountered a similar problem when deriving the infinite-conductivity solution for 

horizontal wells and elected to use the pressure-averaging technique proposed by Wilkinson and 

Hammond.105 The pressure-averaging technique approximates the infinite-conductivity solution by 

averaging the pressure along the flowpath using the uniform-flux solution, which according to Wilkinson 

and Hammond approaches the exact solution as the wellbore radius tends to zero.104-105 Pressure-averaging 

was utilized in developing the horizontal well solution of Kuchuk et al.,104 the dual lateral solution of 

Ozkan et al.,103 and the multi-lateral solution of Yildiz.115 However, it is unclear if the pressure averaging 

technique is appropriate for multiple intersecting vertical fractures. 

For a single infinite-conductivity fracture, Fig. D-2 contains a log-log graph of dimensionless pressure and 

dimensionless pressure derivative versus dimensionless time evaluated using the uniform-flux solution 

with an equivalent average pressure point, xD = 0.732, and using a pressure-averaging approximation. The 

solutions overlay in the very early time, tLfD ≤ 10–5, and as pseudoradial flow develops when tLfD ≥ 3, but 

diverge during the intermediate dimensionless times. However, the maximum deviation between the 

solution and pressure-averaging approximation is only 7.30% and is observed at tLfD = 0.60.  

The pressure-averaging approximation for multiple infinite-conductivity fractures is developed from the 

definition of the average of a function, which is written as 

n ( )
( )

b
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f x dx
f x

b a
=

−
∫ , ...........................................................................................................................(D-48) 

where for a pressure-averaging multiple infinite-conductivity Laplace-domain fracture solution, the 

function f(x) is the pressure in the ℓth-fracture defined by the Laplace domain uniform-flux multiple-

fracture solution (Eq. D-37) as 
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With the definition of the average of a function, the pressure-averaging approximate infinite-conductivity 

solution is written as a system of equations with the dimensionless pressure in the Laplace domain for the 

ℓth-fracture written as 
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and the dimensionless flow rate for all fractures in Laplace space written as 
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1
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q
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The system of equations is formed by recognizing that for infinite-conductivity fractures, the Laplace 

space dimensionless pressure in each fracture is the same, which is written as 

n n n n
1 2( ) ( ) ... ( ) fLfD LfD LfD n LfDp p p p= = = = , .......................................................................................(D-52) 

and the system of equations can be written as 
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where 
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Fig. D-2—A comparison of the equivalent average pressure point infinite-conductivity solution 
with the pressure-averaging approximation for a single fracture. 
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A semianalytical multiple arbitrarily-oriented infinite-conductivity fracture solution can also be developed 

in the Laplace domain without resorting to the pressure-averaging technique. Assume flux is not uniform 

along the fracture(s), and the dimensionless pressure for a fracture at an arbitrary angle, θℓ, accounting for 

the effect of a fracture(s) at angle θi is written as 

( ) ( )
( )
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where i,ℓ = 1, 2, …, nf . Note that the dimensionless flow rate for the ith-fracture is defined as (qD)i = qi/qwi, 

where qwi is the total flow rate assuming all production is from the ith-fracture. Similarly, the dimensionless 

fracture half-length is defined relative to the ith-fracture half-length, (LfD)i = Lfi/Lfi = 1. If a point (riD, θi) is 

restricted to a point along the ith-fracture axis, then the reference and fracture axis are the same and 

Eq. D-26 results in 

ˆ cos( )iD iD i i iDx r rθ θ= − = , ..............................................................................................................(D-56) 

and the Laplace domain dimensionless pressure for fracture ℓ accounting for the effects of fracture i is 

written as 
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Assuming each fracture is homogeneous and symmetric, that is, (qD)i(α,t) = (qD)i(–α,t), the reservoir 

component of the infinite-conductivity solution can be written as 
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and the Laplace domain dimensionless pressure for an arbitrarily-oriented infinite-conductivity fracture ℓ 

in an isotropic reservoir accounting for the effects of an infinite-conductivity fracture i is written in the 

Laplace domain as 
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A semianalytical solution for the multiple infinite-conductivity fracture problem is obtained by dividing 

each fracture into nfs equal segments of length, ˆ / ,iD fiD fsx L nΔ = and assuming constant flux in each 

segment. Note that LfiD = Lfi/Lf1 where Lf1 is the half-length of the primary fracture. Although the number 

of segments in each fracture is the same, the segment length can be different for each 

fracture, ˆ ˆ .iD jDx xΔ ≠ Δ  As shown in detail in Appendix E, the discretization allows the integral term to be 

written as 
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and the Laplace domain dimensionless pressure for an arbitrarily-oriented infinite-conductivity fracture ℓ 

in an isotropic reservoir accounting for the effects of an infinite-conductivity fracture i is written in the 

Laplace domain as 
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Solution for Multiple Arbitrarily-Oriented Infinite-Conductivity Vertical Fractures Considering 
Permeability Anisotropy 

The multiple arbitrarily-oriented infinite-conductivity fracture solution considering permeability 

anisotropy in an infinite-slab reservoir is developed by defining the dimensionless distance variables as95 
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and 
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The dimensionless variables rescale the anisotropic reservoir to an equivalent isotropic system.  As a result 

of the rescaling, the dimensionless fracture half-length changes and must be redefined as106 

2 2cos sinfi
fiD f f

c x y
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L k k
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where the angle of the fracture with respect to the rescaled xD-axis is written as 
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When θf = 0 or θf = π/2, the angle does not rescale and θ'f = θf.  

The dimensionless fracture conductivity is defined in the original anisotropic system, which is written as, 

f f
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but Spivey and Lee106 note an equivalent dimensionless fracture conductivity can also be written in terms 

of the equivalent isotropic system. 

With the redefined dimensionless variables, the Laplace domain dimensionless pressure for an arbitrarily-

oriented infinite-conductivity fracture ℓ in an anisotropic reservoir accounting for the effects of an infinite-

conductivity fracture i is written in the Laplace domain as 
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where the angle, θ', is defined in the rescaled equivalent isotropic reservoir and is related to the anisotropic 

reservoir by  

1
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θ θ
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θ θ π
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After discretizing the integral term, the Laplace domain dimensionless pressure for an arbitrarily-oriented 

infinite-conductivity fracture ℓ in an anisotropic reservoir accounting for the effects of an infinite-

conductivity fracture i is written in the Laplace domain as 
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where ˆ / .iD fiD fsx L n′ ′Δ =   

A semianalytical solution accounting for multiple arbitrarily-oriented infinite-conductivity fractures in an 

anisotropic reservoir is written in the Laplace domain using superposition as 
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which can also be written as 
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with the Laplace domain dimensionless flow rate for a single fracture defined by 

1

1ˆ ( )
fsn

iD D im
m

x q
s=

′Δ =∑ , ......................................................................................................................(D-73) 

and the Laplace domain dimensionless total flow rate for nf fractures defined by 

1

1fn

iD
i

q
s=
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For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as 

1 2( ) ( ) ( ) ( )
fsD i D i D i D ij j j np p p p= = == = = =A A A A… , ..............................................................(D-75) 

and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the 

Laplace domain as 

 1 2( ) ( ) ( ) fwD wD wD nf L Dp p p p= = = =… . ................................................................................(D-76) 

Development of a Matrix Equation and Algorithm for Multiple Infinite-Conductivity Fracture 
Solution 

For each fracture divided into nfs equal length uniform-flux segments, Eqs. D-71 through D-76 describe a 

system of nf(nfs + nf + 1) + 1 equations and nf(nfs + nf + 1) + 1 unknowns.  The solution algorithm is a three 
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step process. First, a system of equations is developed for each fracture where the reference axis and the 

fracture axis coincide, that is, a system of equations is written to solve for ( )D iip and ( )D imq
�

where 

i = 1,2,…,nf and m = 1,2,…,nfs. Solving the system of equations for each fracture requires writing an 

equation for each fracture segment, j = 1,2,…,nfs, which is demonstrated in detail in Appendix E. 

Recall the solution for ( )D ip A is written as 
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Define a variable of substitution, (ζik)mj, as 
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and a system of equations can be written as 

ii i iA x = b , ......................................................................................................................................(D-79) 

where 
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and  
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Second, after solving the system of equations for ( )D iip and ( ) ,D imq
�

the dimensionless pressure terms, 

( ) ,D ip A with i ≠ ℓ are easily evaluated for any j as 
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Third, the semianalytical solution for producing through nf arbitrarily-oriented infinite-conductivity 

fractures in an infinite-slab anisotropic reservoir can be written as a system of equations in the Laplace 

domain as 

Ax = b , ...........................................................................................................................................(D-84) 

where 
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The system of equations, Eq. D-84, are solved in the Laplace domain and then inverted to the time domain 

to obtain the dimensionless pressure.  The system of equations is solved within the Stehfest68 algorithm, 

which is used for the Laplace to time domain inversion.  With the Stehfest algorithm, s is calculated, and 

the A and b matrices are evaluated.  Eq. D-84 is then solved as part of the numerical transformation from 
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the Laplace to the time domain.  Since the system of equations is a function of s, the system must be 

solved N times during each Laplace to time domain inversion, where N is the number of Stehfest 

extrapolation coefficients. 

Fig. D-3 shows a log-log graph of dimensionless pressure and dimensionless pressure derivative versus 

dimensionless time for a cruciform fracture where the angle between the fractures is π/2. In Fig. D-3, the 

inset graphic illustrates a cruciform fracture with primary fracture half length, Lf1D, and the secondary 

fracture half length is defined by the ratio of secondary to primary fracture half length, δL = Lf2D/Lf1D, 

where in Fig. D-3, δL = 1. The constant-rate type curves shown in Fig. D-3 illustrate that the pressure-

averaging infinite-conductivity approximation and the semianalytical infinite-conducitivity solution for a 

cruciform fracture are in agreement during the very early dimensionless times, tLfD ≤ 10–5, and as 

pseudoradial flow develops when tLfD ≥ 3. However, the pressure-averaging approximation diverges 

significantly from the semianalytical solution at intermediate dimensionless times. 

Similar comparisons result with decreasing secondary fracture half length as shown by the constant-rate 

type curves in Figs. D-4 through D-6 for a cruciform infinite-conductivity fracture with δL = ¾, ½, and ¼. 

Consequently, the pressure-averaging method is not a good approximation of the cruciform infinite-

conductivity fracture solution during intermediate dimensionless times, ≈10–5 ≤ tLfD ≤ 3.  
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Fig. D-3—A comparison of a pressure-averaging infinite-conductivity solution and the 
semianalytical infinite-conductivity solution for a cruciform fracture with Lδ = 1. 
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Fig. D-4—A comparison of a pressure-averaging infinite-conductivity solution and the 
semianalytical infinite-conductivity solution for a cruciform fracture with Lδ =¾. 
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Fig. D-5—A comparison of a pressure-averaging infinite-conductivity solution and the 
semianalytical infinite-conductivity solution for a cruciform fracture with Lδ =½. 
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Fig. D-6—A comparison of a pressure-averaging infinite-conductivity solution and the 
semianalytical infinite-conductivity solution for a cruciform fracture with Lδ =¼. 
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APPENDIX E 

ANALYTICAL PRESSURE-TRANSIENT SOLUTION FOR A WELL 

CONTAINING MULTIPLE FINITE-CONDUCTIVITY VERTICAL 

FRACTURES IN AN INFINITE SLAB RESERVOIR 

The development of a multiple finite-conductivity vertical fracture solution requires writing a general 

solution for a finite-conductivity vertical fracture at any arbitrary angle, θ, from the xD-axis.  The 

development follows from the finite-conductivity solutions of Cinco-Ley et al.107 and, for the dual-

porosity case, Cinco-Ley and Meng.86 Fig. E-1 illustrates a vertical finite-conductivity fracture at an angle, 

θ, from the xD-axis in an isotropic reservoir. 

Fig. E-1—A vertical finite-conductivity fracture at an arbitrary angle to the x-axis. 
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A finite-conductivity solution requires coupling reservoir and fracture solutions, and as shown in 

Appendix D, a general plane-source constant-flux solution for a single arbitrarily-oriented fracture in an 

isotropic reservoir is written in the Laplace domain as 
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D
c y

y ky
L k
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and defining the total constant flow rate as qt, the dimensionless flow rate is written as 

1D
t

qq
q

= = , ....................................................................................................................................... (E-8) 

The fracture half-length, Lf, is the reference length for the system, and the horizontal permeability is 

written as k = (kxky)½, where for an isotropic reservoir, k = kx = ky. The Laplace variable is denoted by s, 

and the general solution accounts for dual-porosity reservoirs with u defined as 

( )u sf s= , ........................................................................................................................................... (E-9) 

where for a single-porosity f(s) = 1. For a pseudosteady-state interporosity flow dual porosity case, f(s) is 

written as96 
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for transient interporosity flow with slab matrix blocks,97-98 
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and for transient interporosity flow with spherical matrix blocks,97-98 
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For the finite-conductivity case, the flux is not constant and the Laplace domain plane-source solution for 

a reservoir containing an arbitrarily-oriented vertical fracture is modified and written as 
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A general fracture solution is developed by assuming  

• The fracture is modeled as a homogeneous slab porous medium with fracture half-length, Lf, 

fracture width, wf, and fully penetrating across the entire reservoir thickness, h.    

• Fluid flow into the fracture is along the fracture length and no flow enters through the fracture tips. 

• Fluid flow in the fracture is incompressible and steady by virtue of the limited pore volume of the 

fracture relative to the reservoir. 

• The fracture centerline is aligned with the ˆDx -axis which is rotated by an angle, θ, from the xD-axis. 

The dimensionless Laplace domain partial differential equation describing transient flow in a finite-

conductivity fracture oriented along the ˆ -axis,Dx is written as 
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for ˆ1 1.Dx− ≤ ≤  The dimensionless Laplace domain partial differential equation can also be written as 
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where the dimensionless variables are defined as 
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and ˆ( , )q x s� is the Laplace domain flow rate per unit length into the fracture, qw is the total well flow rate, 

and kf is the fracture permeability. 

The fracture-flow “wellbore” boundary condition for a constant rate is written in the Laplace domain as 
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and the boundary condition for no flow through the fracture tip is written in the Laplace domain as 
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Eq. E-15 is integrated twice with respect to ˆ ,Dx and the general Laplace domain pressure distribution in a 

finite-conducitivity fracture is written as 
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where ˆ( , )D Dp x s is the general reservoir solution defined in Eq. E-13.  Adding the reservoir and fracture 

solutions results in the Laplace domain dimensionless pressure solution for a finite-conductivity fracture 

rotated by an angle θf from the x-axis, which is written as 
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π π ′

′′ ′′ ′+ − ∫ ∫ , .......................................................................... (E-22) 

where dimensionless variables are defined as 

2 2
D D Dr x y= + , ............................................................................................................................... (E-23) 

cosD D rx r θ= , ................................................................................................................................. (E-24) 

sinD D ry r θ= , ................................................................................................................................. (E-25) 

ˆ cos sinD D f D fx x y= +θ θ , ............................................................................................................ (E-26) 

ˆ cos sinD D f D fy y x= −θ θ , ............................................................................................................ (E-27) 

and θf  is the angle between the fracture and the xD-axis, (rD, θr) are the polar coordinates of a point 

(xD, yD), and (α, θf) are the polar coordinates of a point along the fracture. Combining Eqs. E-25 through 

E-27 results in 

ˆ cos( )D D r fx r θ θ= − , ...................................................................................................................... (E-28) 

and 

ˆ sin( )D D r fy r θ θ= − . ...................................................................................................................... (E-29) 

Consequently, the Laplace domain dimensionless pressure solution for a finite-conductivity fracture 

rotated by an angle θf from the xD-axis is written as 
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where for a single fracture θr = θf, ˆDx = rD, LfD = 1, and the single fracture solution is written as 
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For a well in an infinite-slab reservoir producing through multiple finite-conductivity fractures, the 

Laplace domain dimensionless pressure for a fracture ℓ at an arbitrary angle, θℓ , accounting for the effects 

of fracture i at an angle θi is written as 
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where i,ℓ = 1, 2, …, nf  and nf is the number of fractures. Note that the dimensionless flow rate for the 

ith-fracture is defined as (qD)i = qi/qwi, where qwi is the well flow rate assuming all production is from the 

ith-fracture. Similarly, the dimensionless fracture half-length is defined relative to the ith-fracture half-

length, (LfD)i = Lfi/Lfi = 1. If a point (riD, θi) is restricted to a point along the ith-fracture axis, then the 

reference and fracture axis are the same and Eq. E-28 results in 

ˆ cos( )iD iD i i iDx r rθ θ= − = , .............................................................................................................. (E-33) 

and the Laplace domain finite-conductivity fracture dimensionless pressure can be written as 
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Assuming each fracture is homogeneous and symmetric, that is, ( ( , ) ( ( , ),) )D Dq s q si iα α= − the reservoir 

component of the Laplace domain dimensionless pressure can be written as 
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and the dimensionless pressure for a finite-conductivity fracture ℓ accounting for a finite-conductivity 

fracture i in an isotropic reservoir is written as 
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A semianalytical solution for the multiple finite-conductivity fracture problem is obtained by dividing 

each fracture into nfs equal segments of length, ˆ / ,iD fiD fsx L nΔ = and assuming constant flux in each 

segment.  Although the number of segments in each fracture is the same, the segment length can be 

different for each fracture, ˆ ˆ .iD jDx xΔ ≠ Δ  Note that LfiD = Lfi/Lf1 where Lf1 is the half-length of the primary 

fracture. With the discretization, the reservoir component of the Laplace domain dimensionless pressure 

can be written as 
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The fracture component is approximated by dividing the fracture into equal length segments as shown in 

Fig. E-2. The double integral, which is written as 

ˆ
0 0

( ) ( , )iDx x
D iq x s dx dx

′
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describes any point in the fracture, but the approximation assumes a point within any segment can be 

represented by the midpoint of the segment. 
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Let a point of interest be located in the first segment, n = 1, then j = 1 and the double integral can be 

written as 

1
1

ˆ( )
1 ˆ( ) 0

( ) ( , )iD j
iD m

x x
j D ix

q x s dx dx=

=

′
= ′′ ′′ ′Ψ = ∫ ∫ . ....................................................................................... (E-39) 

Assuming uniform flux within each fracture segment, ( ( , ) ( ) ( ) ( ) ,)D D im j D ijq x s q s qi =′′ ≅ = and the double 

integral can now be written as 
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Referring to Fig. E-2 with j = 1 and 1ˆ( ) ,D mx = the limits of integration can also be written as  
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Fig. E-2. Fracture half-length discretization. 
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For the second segment, j = 2, the integration can be split into two parts (Fig. E-2), which is written as 
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The uniform flux assumption for each equal length segment allows a local coordinate system to be used 

for integrating over any segment; thus, 
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and after completing the integration, Eq. E-43 can be written as  
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The first integral of Eq. E-42 can also be evaluated using a local coordinate system, that is,  
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Recognize that 2ˆ( )DxΔ can be written as  
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and Fig. E-2 shows that 
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Consequently, the first integral of Eq. E-42 is written as 
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and 2j=Ψ  is written as 

2 2
2 2 2 1

ˆ ˆ( ) ( ) ˆ ˆ ˆ( ) ( ) ( ) ( )
8 2
iD iD

j D ij iD iD j iD D ij
x x

q x x x q= = = =
⎡ ⎤Δ Δ ⎡ ⎤⎢ ⎥Ψ = + + Δ −Δ⎣ ⎦⎢ ⎥⎣ ⎦

. ............................. (E-49) 

The process can be repeated for j = 3 (Fig. E-2) by recognizing that each segment—and the integration 

over each segment—is independent, but over the same length.  Consequently, the flux terms can be 

interchanged between blocks provided the sum of the integrations over each segment is equivalent to 

integrating over the entire fracture length.  The resulting expression can be written as 
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The pattern exhibited by Eqs. E-44, E-49, and E-50 suggests a general relationship can be written as 
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By combining the reservoir and fracture approximations, the Laplace domain dimensionless pressure for a 

finite-conductivity fracture ℓ accounting for a finite-conductivity fracture i in an isotropic infinite-slab 

reservoir with production through multiple finite-conductivity fractures is written as 
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where i,ℓ = 1, 2, …, nf and j,m = 1, 2, …, nfs.  

A semianalytical solution accounting for multiple arbitrarily-oriented finite-conductivity fractures in an 

isotropic infinite-slab reservoir is written in the Laplace domain using superposition as 

1
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which can also be written as 
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where i,ℓ = 1, 2, …, nf and j,m = 1, 2, …, nfs. Note that qiD = qi/qt where qt is the total production from all 

fractures, and qiD ≠ (qD)i. 

The Laplace domain dimensionless flow rate for a single fracture is defined by 

1

1ˆ ( )
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iD D im
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x q
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and the Laplace domain dimensionless total flow rate for all fractures is defined by 

1
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q
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For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as 

1 2( ) ( ) ( ) ( )
fsD i D i D i D ij j j np p p p= = == = = =A A A A… , .............................................................. (E-57) 

and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the 

Laplace domain as 

 1 2( ) ( ) ( ) fwD wD wD nf L Dp p p p= = = =… . ................................................................................ (E-58) 

Solution for Multiple Arbitrarily-Oriented Finite-Conductivity Vertical Fractures Considering 
Permeability Anisotropy 

The multiple finite-conductivity fracture solution considering permeability anisotropy in an infinite-slab 

reservoir is developed by defining the dimensionless distance variables as95 

D
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D
c y

y ky
L k

= , ................................................................................................................................. (E-60) 

and 

x yk k k= . ...................................................................................................................................... (E-61) 

The dimensionless variables rescale the anisotropic reservoir to an equivalent isotropic system.  As a result 

of the rescaling, the dimensionless fracture half-length changes and must be redefined as106 

2 2cos sinfi
fiD f f
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where the angle of the fracture with respect to the rescaled xD-axis is written as 
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When θf = 0 or θf = π/2, the angle does not rescale and θ'f = θf.  

The dimensionless fracture conductivity is defined in the original anisotropic system, which is written as, 

f f
fD

f

k w
C

kL
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but Spivey and Lee106 note an equivalent dimensionless fracture conductivity can also be written in terms 

of the equivalent isotropic system. 

With the redefined dimensionless variables, the Laplace domain dimensionless pressure for a finite-

conductivity fracture ℓ accounting for a finite-conductivity fracture i considering permeability anisotropy 

is written as 
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where the angle, θ', is defined in the rescaled equivalent isotropic reservoir and is related to the anisotropic 

reservoir by  
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A semianalytical multiple arbitrarily-oriented finite-conductivity fracture solution for an anisotropic 

infinite-slab reservoir is written in the Laplace domain as 
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for i,ℓ = 1, 2, …, nf and j,m = 1, 2, …, nfs.  

The Laplace domain dimensionless flow rate for a single fracture is defined by 
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x q
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and the Laplace domain dimensionless total flow rate from nf fractures is defined by 

1

1fn
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q
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For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as 

1 2( ) ( ) ( ) ( )
fsD i D i D i D ij j j np p p p= = == = = =A A A A… , .............................................................. (E-70) 

and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the 

Laplace domain as 

 1 2( ) ( ) ( )wD wD wD nf LfDp p p p= = = =… . .................................................................................. (E-71) 

Development of Matrix Equation and Algorithm for Multiple Finite-Conductivity Fracture 
Solution 

For each fracture divided into fsn equal length uniform-flux segments, Eqs. E-67 through E-71 describe a 

system of nf(nfs + nf + 1) + 1 equations and nf(nfs + nf + 1) + 1 unknowns.  The solution algorithm is a three 

step process. First, a system of equations is developed for each fracture where the reference axis and the 
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fracture axis coincide, that is, a system of equations is written to solve for ( )D iip and ( )D imq
�

where 

i = 1,2,…,nf and m = 1,2,…,nfs. Solving the system of equations for each fracture requires writing an 

equation for each fracture segment, j = 1,2,…,nfs. For example consided the discretized cruciform fracture 

with each fracture wing divided into three segments as shown in Fig. E-3. The system of equations will be 

written for the discretized fracture in Fig. E-3 and then generalized for nf fractures divided into nfs fracture 

segments. 

Figure E-3. Multiple fracture half-length discretization.
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For the cruciform fracture in an anistropic reservoir illustrated in Fig. E-3, the primary fracture is oriented 

at an angle θf1 = θ'f1 = θfr = 0 and the secondary fracture is oriented at an angle θf1 = θ'f1 = π/2. Let the 

reference length be defined as Lc = L'f1, and let the length of the secondary fracture be defined as 

L'f2 = δ2L'f1. Consequently, the dimensionless fracture half-lengths are defined as L'f1 = 1, and 

L'f2D = δ2L'f1D = δ2.  

Define the following variables of substitution as 
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With the variables of substitution, the dimensionless pressure equation for a single finite-conductivity 

fracture accounting for multiple finite-conductivity fractures is written as 
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The development follows from the finite-conductivity solutions of Cinco-Ley et al.107 and, for the dual-

porosity case, Cinco-Ley and Meng.86 Let j = 1, and the dimensionless pressure equation for the primary 

fracture is written as 
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For j = 2, the dimensionless pressure equation is written as 
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and for j = 3, the dimensionless pressure equation is written as 
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Collecting like terms and algebraically rearranging the equations for the primary fracture results in  

[ ] 1 1
1 11 11 11 11 21 12 11 31 1311 1

( )
( ) ( ) ( ) ( ) ( ) ( )( ) D D DD j q q qp

s
η

ξ ζ ζ ζ= + − − − = , ............................................... (E-80) 

[ ] [ ] 1 2
1 12 11 12 11 1 11 22 12 11 32 1311 2

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) D D DD j q q qp

s
η

χ ζ ξ ζ ζ= + − + − − = , ............................... (E-81) 
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With the dimensionless rate equation for a single fracture (Eq. E-68) expanded and written as 
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and recognizing from Eq. E-70 that 11 11 11( ) ( ) ( ) 111 2 3 ( )DD D D pp p pj j j= == = = = , a linear system of 

equations can be written in matrix form as 
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Similarly, a linear system of equations for the secondary fracture is written as 

22 2 2A x = b , ................................................................................................................................... (E-94) 

where 
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The system of equations are solved for for ( ) , ( ) , ( ) , and ( ) ,11 22 1 2p p q qD D D m D m where m = 1,2,3. 

The second step in the solution algorithm for a cruciform fracture requires solving for 12 21( ) ( ) and .D Dp p  

Since 1 2( ) ( ) and D m D mq q
� �

are known, the dimensionless pressure terms 12 21( ) ( ) and D Dp p can be evaluated for 

any j, where for convenience j = 1 is arbitrarily selected, and the pressure terms are written as 
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The third and final step in the solution algorithm requires writing a system of equations in the Laplace 

domain as 

Ax = b , ......................................................................................................................................... (E-100) 

where 
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The system of equations, Eq. E-100, are solved in the Laplace domain and then inverted to the time 

domain to obtain the dimensionless pressure, pLfD. 

The algorithm can also be written for nf fractures as follows. First, a system of equations is developed for 

each fracture where the reference axis and the fracture axis coincide, that is, a system of equations is 

written to solve for ( )D iip and ( )D imq
�

where i = 1,2,…,nf and m = 1,2,…,nfs. A system of equations can be 

written for each fracture as 

ii i iA x = b , .................................................................................................................................... (E-104) 
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Solving the system of equations, Eq. E-104, provides values for ( )  and ( ) ,p qD ii D im where m = 1, 2, …, nfs. 

Second, the Laplace domain dimensionless pressure, ( ) ,D ip A with ℓ ≠ i is calculated. Since ( )D imq
�

are 

known, the dimensionless pressure terms can be evaluated for any j, where for convenience j = 1 is 

arbitrarily selected, and the dimensionless pressure term is written as 
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Third, the semianalytical solution for producing through nf arbitrarily-oriented finite-conductivity fractures 

in an infinite-slab anisotropic reservoir can be written as a system of equations in the Laplace domain as 

Ax = b , ......................................................................................................................................... (E-109) 

where 
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and  
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The system of equations, Eq. E-109, are solved in the Laplace domain and then inverted to the time 

domain to obtain the dimensionless pressure.  The system of equations is solved within the Stehfest68 

algorithm, which is used for the Laplace to time domain inversion.  With the Stehfest algorithm, s is 

calculated, and the A and b matrices are evaluated.  Eq. E-109 is then solved as part of the numerical 

transformation from the Laplace domain to the time domain.  Since the system of equations is a function 

of s, the system must be solved N times during each Laplace to time domain inversion where N is the 

number of Stehfest extrapolation coefficients. 

Fig. E-4 contains a log-log graph of dimensionless pressure and dimensionless pressure derivative versus 

dimensionless time for a cruciform fracture where the angle between the fractures is π/2. In Fig. E-4, the 

inset graphic illustrates a cruciform fracture with primary fracture half length, Lf1D, and primary fracture 

conductivity, Cf1D. Secondary fracture half length is defined by the ratio of secondary to primary fracture 

half length, δL = Lf2D/Lf1D, and secondary fracture conductivity is similarly defined by the ratio of 
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secondary to primary conductivity, δC = Cf2D/Cf1D. The constant-rate type curves shown in Fig. E-4 were 

generated with δL = δC = 1 and the variable fracture conductivity noted on each curve. Figs. E-5 through 

E-7 contain the constant-rate type curves for a cruciform fracture with variable fracture conductivity, 

δC = 1, and δL = ¾, ½, and ¼. Figs. E-8 and E-9 contain constant-rate type curves for a cruciform fracture 

with δL = 1 and δL = ¼ with δC = 1, 0.10, and 0.010. 

In addition to allowing each fracture to have a different half length and conductivity, the multiple fracture 

solution also allows for an arbitrary angle between fractures. Fig. E-10 contains constant-rate type curves 

for equal primary and secondary fracture half length, δL = 1, and equal primary and secondary 

conductivity, δL = 1 where Cf1D = 100π. The type curves illustrate the effects of decreasing the angle 

between the fractures as shown by type curves for θf2 = π/2, π/4, π/8. As the angle is further reduced, the 

type curve response approaches the solution for a single finite-conductivity fracture. 

10-4

10-3

10-2

10-1

100

101

 D
im

en
si

on
le

ss
 P

re
ss

ur
e 

or
 D

er
iv

at
iv

e,
 p

L f
D
 o

r d
p L

fD
/d

(ln
 t L

fD
)

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

Dimensionless Time, tLfD

1f DL

1f DC

2 1Lf D f DL L= δ

2 1f D C f DC C= δ

Secondary
Fracture

Primary
Fracture

1f DL

1f DC

2 1Lf D f DL L= δ

2 1f D C f DC C= δ

Secondary
Fracture

Primary
Fracture

Cruciform Fracture
δL = 1
δC = 1

Cf1D = 0.1π

100π

0.1π

∞

∞

10π

π

π

10π

100π

Fig. E-4—Cruciform fracture constant-rate type curve with variable conductivity, δL = 1, and 
δC = 1. 
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Fig. E-5—Cruciform fracture constant-rate type curve with variable conductivity, δL = ¾, and 
δC = 1. 
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Fig. E-6—Cruciform fracture constant-rate type curve with variable conductivity, δL = ½, and 
δC = 1. 
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Fig. E-7—Cruciform fracture constant-rate type curve with variable conductivity, δL = ¼, and 
δC = 1. 
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Fig. E-9—Cruciform fracture constant-rate type curve with δL = ¼, Cf1D = 10π, and δC = 0.01, 
0.1, and 1. 
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APPENDIX F 

FRACTURE-INJECTION/FALLOFF SOLUTIONS IN A RESERVOIR 

CONTAINING A COMPRESSIBLE FLUID 

 

The fracture-injection/falloff solutions for a wellbore, fracture, and reservoir containing a slightly-

compressible liquid are developed in Appendix C, but in many cases, a wellbore, fracture, and reservoir 

will contain a compressible fluid. In conventional pressure-transient testing, solutions developed for a 

reservoir containing a slightly compressible liquid can be used to interpret pressure-transient data in a 

reservoir containing a compressible fluid by transforming pressure and time into pseudopressure and 

pseudotime, or adjusted pseudopressure and adjusted pseudotime.72-73 

Appendix F demonstrates that fracture-injection/falloff solutions developed for a reservoir containing a 

slightly compressible liquid can also be used to model pressure-transient data from a fracture-

injection/falloff sequence in a well with the wellbore, fracture, and reservoir containing a compressible 

fluid (real gas) when pressure and time are transformed to adjusted pseudopressure and adjusted 

pseudotime. 

Solution Accounting for a Dilating Fracture, Before-Closure Storage, and After-Closure Storage 

Formulated in Terms of Adjusted Pseudopressure and Adjusted Pseudotime 

Consider a fracture-injection/falloff sequence with the entire fracture length developed instantaneously 

when the injection begins or with a pre-existing fracture.  The wellbore, fracture, and reservoir contain a 

compressible fluid, and the injection is at a pressure in excess of the minimum in-situ stress. From 

Appendix C, a material balance equation during the fracture injection is written as 

2r
f

Adp dpfw wqB q B c Vr r w gw w fdt S dt
ρ ρ ρ ρ− = + , .......................................................................... (F-1) 

where q is the well injection rate, qr is the sandface flow (leakoff) rate, B is the well formation volume 

factor at injection conditions, Br is the formation volume factor at reservoir conditions, ρ is the fluid 

density at injection conditions, ρr is the fluid density at reservoir conditions, ρw is the fluid density at 

wellbore conditions, ρf is the fluid density at fracture conditions, cgw is the wellbore-gas compressibility, 

Vw is the wellbore volume, pw is the wellbore pressure, t is the time, Af is the fracture area, and Sf is the 

fracture "stiffness." 

Fracture stiffness, or the inverse of fracture compliance, is defined by the elastic energy or "strain energy" 

created by an open fracture in a rock assuming linear elastic theory is applicable.  Table F-1 contains the 

fracture stiffness definitions for three common 2D fracture models.80,100 In Table F-1, E' is the plane-strain 
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modulus, Rf is the fracture radius of a radial fracture, hf is the gross fracture height, and Lf is the fracture 

half-length. 

Table F-1—Fracture stiffness for 2D fracture models.80,100 

Radial Perkins-Kern-Nordgren 
Vertical Plane Strain 

Geertsma-deKlerk 
Horizontal Plane Strain 

3( )
16
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π ′
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′
=  ( ) ES f GDK L fπ

′
=  

Define an adjusted wellbore storage coefficient as 
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where cgi is the gas compressibility at initial reservoir pressure, pi, and define a before-closure storage 

coefficient as 

2 f

f

A
C fbc S
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With the new definitions, the material balance equation can be written as 
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Adjusted pseudopressure is defined as 
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and the derivative is written as 
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Adjusted pseudotime is defined as 
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and the derivative can be written as 
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With the definition of adjusted pseudopressure and adjusted pseudotime, the material balance equation can 

be written as 

( )

( ) ( )

( )
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gw g re

g w g i are w
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g re
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. ........................................... (F-9) 

Define the reference condition, subscript 're', as the initial reservoir pressure, pi, and note that cg ≅ ct. The 

reference condition allows the material balance equation to be written as 
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Formation volume factor is defined for a real gas as 

sc
sc sc sc

pV zTB
V p z T
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and the ratio of the formation volume factor at wellbore and initial conditions can be written as 

 w i
i w i w

zB T p
pB T z
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Gas density is defined as 

Mp
zRT

ρ = , ......................................................................................................................................... (F-13) 

where M is the molecular weight of the gas and R is the gas constant. The ratio of reservoir-gas density to 

injected-gas density is written as 

r
r

B
B

ρ
ρ

= . ......................................................................................................................................... (F-14) 

Similarly, the ratio of wellbore-gas density to injected-gas density is written as 

w
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ρ
ρ

= , ....................................................................................................................................... (F-15) 

and the ratio of fracture-gas density to injected-gas density is written as 

f

f

B
B

ρ

ρ
= . ....................................................................................................................................... (F-16) 

With the gas density and formation volume factor relationships, the material balance equation can be 

simplified and written as 

w ti ifbci r i
f tw w a

B c dpT awC CqB q B a B c T dt
⎡ ⎤+− = ⎢ ⎥
⎣ ⎦

. ................................................................................. (F-17) 

Define the dimensionless adjusted wellbore pressure as 
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and the dimensionless adjusted wellbore pressure derivative can be written as 

( )0aw ai awsDdp p p pa= − . ............................................................................................................. (F-19) 

Define the dimensionless adjusted pseudotime as 

2( )
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aLfD
t i f

kt
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c Lφ μ
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and the dimensionless adjusted pseudotime derivative can be written as 

2
1 1

( )a aLfDt i f

k
dt dtc Lφ μ

= . ............................................................................................................... (F-21) 

With the definitions of dimensionless adjusted pseudovariables, the material balance equation can be 

written as 

0
2

2 ( ) 1
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Define the dimensionless adjusted wellbore injection rate as 
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and the dimensionless adjusted sandface injection rate as 
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With the dimensionless rate definitions, the material balance equation can be written as 
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Two assumptions and simplifications are required to develop the dimensionless material balance equation. 

First, assume that the fracture and wellbore formation volume factors are approximately equivalent, 

Bf ≅ Bw. Second, assume the wellbore temperature, Tw, is constant and define a dimensionless adjusted 

wellbore storage coefficient as 

22
i

aD
wti f

C TaC
Tc Lπφ

= ,  ..................................................................................................................... (F-26) 

and a dimensionless adjusted dilated/before-closure fracture storage coefficient as 

22
fbc i

abcD
wtw f

C T
C

Tc Lπφ
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At low pressures, the dimensionless adjusted dilated/before-closure fracture storage coefficient is not 

constant because of the total compressibility term. However, as the closure stress increases, the wellbore 

total compressibility approaches a constant value and can be approximated by the total compressibility at 

closure, ctw ≈ ctc. Alternatively, recognize that the net pressure – the pressure in excess of fracture closure 

stress – generated during a fracture-injection/falloff test is minimal and typically on the order of a few 

hundred psi or less. Consequently, the average before-closure total compressibility is constant and 

approximately equal to the wellbore total compressibility where the average before-closure total 

compressibility is defined as 

0 ,
2

t tc
tw tbc w c

c c
c c p p

+
≅ = > . ............................................................................................... (F-28) 

With the average before-closure total compressibility, the dimensionless adjusted dilated/before-closure 

fracture storage coefficient can be written as 

22
fbc i

fbcD
wtbc f

C T
C

Tc Lπφ
= . ................................................................................................................. (F-29) 

The dimensionless adjusted wellbore and dilated/before-closure storage definitions allow the material 

balance equation to be written as 

fbcDasD awsD
aLfD

dpawsDC Cq q aD dt
+⎡ ⎤= − ⎣ ⎦ . .................................................................................... (F-30) 

Provided the assumptions hold, the dimensionless adjusted wellbore and dilated/before-closure storage 

coefficients are constant and can be combined to create a single dimensionless adjusted before-closure 

storage coefficient written as 

abcD fbcDC C CaD= + . ................................................................................................................... (F-31) 

With the single dimensionless adjusted before-closure storage coefficient, the material balance equation 

during fracture-injection when the fracture dilates with the wellbore, fracture, and reservoir containing a 

real gas can be written as 

asD awsD abcD
aLfD

dpawsDq q C
dt

= − . ................................................................................................... (F-32) 

During the before-closure falloff of a fracture-injection/falloff sequence, the fracture contracts and the 

material balance equation can be written as 

asD abcD
aLfD

dpawsDq C
dt

= − . ............................................................................................................... (F-33) 

As shown in Appendix C, an after-closure material balance equation can be written as 

( )2r
dpwc V c VqB q B w gw w f gf fr r dt

ρ ρρ ρ +− = . ......................................................................... (F-34) 
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Define an adjusted after-closure storage coefficient as 

2C c Vaac gi fr= , ............................................................................................................................. (F-35) 

and with the definition of adjusted wellbore storage coefficient, a material balance equation can be written 

as 

( ) ( )
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. ...................................................... (F-36) 

With the definitions of adjusted pseudopressure and adjusted pseudotime (Eqs. F-5 through F-8) and with 

the reference condition, 're', defined as the initial pressure, pi, the material balance equation can be written 

as 

( )
gf

aacr
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c dpzgw p awC CqB q B w a fr r c p dtzg

μ
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. .............................................. (F-37) 

Additionally, with the definitions of gas density, gas formation volume factor, and the relationships shown 

in Eqs. F-11 through F-16, the after-closure material balance equation can be written as 
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The adjusted pseudovariable defninitions, Eqs. F-18 through F-21, and the dimensionless rate equations, 

Eqs. F-23 and F-24, can be combined with the material balance equation, which is written as 
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Three assumptions and simplifications are required to develop the dimensionless material balance 

equation. First, assume that the fracture and wellbore formation volume factors are approximately 

equivalent, Bf ≅ Bw. Second, assume the wellbore temperature, Tw, is constant, and third, assume the 

wellbore and fracture gas compressibility are equivalent. With the assumptions, and defining a 

dimensionless adjusted after-closure storage coefficient as 

22
aac i

aacD
wti f

C C TaC
Tc hLπφ

+
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the dimensionless after-closure material balance equation for a well with the wellbore, fracture, and 

reservoir containing a real gas can be written as 

asD awsD aacD
aLfD

dpawsDq q C
dt

= − . ................................................................................................... (F-41) 

However, during the after-closure period, there is no injected fluid, and the material balance equation can 

be simplified and written as 
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asD aacD
aLfD

dpawsDq C
dt
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As shown in Appendix C, a material balance equation valid at all times can be written using the Heaviside 

unit-step function, which is defined as62 
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. ......................................................................................................................... (F-43) 

Following the technique of Correa and Ramey,62-64 a material balance equation valid at all times is written 

as 
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where (te)aLfD is the dimensionless adjusted pseudotime at the end of pumping and (tc)aLfD is the 

dimensionless adjusted pseudotime at fracture closure. After expanding and simplifying, the material 

balance equation for a fracture-injection/falloff sequence with the wellbore, fracture, and reservoir 

containing a real gas and with a dilating fracture and constant after-closure storage is written as 

1 ( )( ) ( )
dp dpawsD awsDq U q C U C CasD t awsD abcD t abcD aacDe LfD c LfDdt dtaLfD aLfD
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. ................... (F-45) 

Following the derivation in Appendix C, the fracturing-injection/falloff solution in a well with the 

wellbore, fracture, and reservoir containing a real gas is written as 
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where paacD is defined in the Laplace domain as 

21
afD

afD

p
paacD

s CaacDp
=

+
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and pafD is the finite- or infinite-conductivity fracture solution written in terms of adjusted pseudopressure 

and adjusted pseudotime. 

Recall from Appendix C that the time-domain dilated-fracture injection/falloff solution in a well with the 

wellbore, fracture, and reservoir containing a slightly-compressible liquid is written as 
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where pacD is defined in the Laplace domain as 
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and pfD is the finite- or infinite-conductivity fracture solution for a reservoir containing a slightly-

compressible liquid. 

Note that the two solutions, and limiting cases of the two solutions, have the same form. Consequently, the 

interpretation methods developed for a wellbore, fracture, and reservoir containing a slightly-compressible 

liquid can be applied when the wellbore, fracture, and reservoir contain a real gas provided that pressure 

and time are transformed to adjusted pseudopressure and adjusted pseudotime and provided that the 

reservoir pressure-transient solution written in terms of adjusted pseudovariables, pafD(taLfD), is equivalent 

to the solution for a slightly-compressible fluid at the same dimensionless adjusted pseudotime, pfD(taLfD).  

Linearizing the Real-Gas Diffusivity Equation 

Lee and Holditch72 demonstrated that the radial diffusivity equation for a real gas could be linearized 

under certain conditions by formulating in terms of pseudopressure and pseudotime. However, 

demonstrating the equivalence of pafD(taLfD) and pfD(taLfD) requires formulating diffusivity equations in 

spherical and rectangular coordinates in terms of pseudopressure and pseudotime, or for convenience, 

adjusted pseudopressure and adjusted pseudotime. The spherical-flow diffusivity equation for a real gas is 

written in terms of adjusted pseudopressure with flow in the radial direction only as 
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where pa = pa(r, t) and pa = pa(r, ta). Following the derivation of Lee and Holditch,72 the spherical-flow 

real-gas diffusivity equation is effectively linearized by formulating in terms of adjusted pseudotime and 

adjusted pseudopressure when 
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and the linear spherical-flow real-gas diffusivity equation is written as 
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where the reference condition, 're', for the viscosity-compressiblity product is the intial reservoir pressure, 

pi.  

Similarly, the real-gas diffusivity equation in a rectangular coordinate system is effectively linearized 

when 
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and linear diffusivity equation for a reservoir containing a real gas can be written in rectangular 

coordinates as 
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Partial Differential Equation for a Reservoir Producing Through a Finite-Conductivity Fracture 

Consider a reservoir and fracture model as shown in Fig. F-1. Assume linear flow in the reservoir, which 

is written as 
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where xD = x/Lf and the derivative of dimensionless pressure is defined as 
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The partial differential equation describing flow in the reservoir is written as 
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where yD = y/Lf, the diffusivity is defined as 
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and the derivative of dimensionless time is defined as 
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Assuming two-dimensional flow in the fracture, the governing partial differential equation is written as 
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where the dimensionless diffusivity is defined as 
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The boundary conditions are written for the fracture as 
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and the interface condition is written as 
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Following the pseudofunction approach and derivation of Bennett et al.,116 assume that 
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Fig. F-1—Flow directions in the reservoir and a finite-conductivity fracture. 
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and integrate the fracture equation from yD = 0 to yD = wD/2, which is written as 
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where at yD = 0, 
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and at yD = wD/2, the interface condition applies and is written as 
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Evaluation of the integrals results in   
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which can be written as 
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where dimensionless conductivity is defined as 
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The flow rate is defined as 
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where the flux must account for both fracture wings, which is written as 
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or written as 
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In terms of adjusted pseudopressure, the flux is written as 
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where the reference condition is the initial reservoir pressure, pi. 

Dimensionless adjusted flux is defined as 
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and can also be expressed as 
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The governing partial differential equation can be written in terms of adjusted pseudovariables as 
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When steady flow is assumed in the fracture, the equation reduces to 
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which can be written in the Laplace domain as 
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The fracture-flow “wellbore” boundary condition for a constant rate is written in the Laplace domain as 
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and the boundary condition for no flow through the fracture tip is written in the Laplace domain as 
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Eq. F-76 is integrated twice with respect to xD, and the general Laplace domain pressure distribution in a 

finite-conducitivity fracture is written as 
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where paD(xD,taLfD) is the reservoir solution for production through a vertical fracture written in terms of 

adjusted pseudovariables. 

From Appendix E, the finite-conductivity fracture solution is written in the Laplace domain for a reservoir 

containing a slightly-compressible liquid as 
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Note that the two solutions have the same form. Provided the solution for a reservoir containing a real gas 

and forumulated in terms of adjusted pseudovariables, paD(xD, taLfD), and the reservoir solution for a 



 279 

reservoir containing a slightly-compressible fluid, pD(xD, taLfD), are equivalent, then the finite-conductivity 

fracture pressure-transient solution written in terms of adjusted pseudovariables, pafD(taLfD), is equivalent to 

the solution for a slightly-compressible fluid, pfD(taLfD).  

Reservoir Solution for a Well Producing a Real-Gas Through a Uniform-Flux Fracture 

Appendix D contains the derivation of the the fully-penetrating vertical uniform-flux fracture solution for 

a reservoir containing a slightly compressible fluid where the solution is derived in the Laplace domain 

from the point-source solution as shown by Ozkan and Rhagavan.95 The Laplace domain point-source 

solution is derived from the spherical-flow diffusivity equation,95 which for real-gas flow and in terms of 

adjusted pseudovariables is written as (Eq. F-54) 

2
2

( )1 at ia
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r

tr krr

φ μ ∂⎛ ⎞∂ ∂⎛ ⎞ =⎜ ⎟ ⎜ ⎟∂∂ ∂⎝ ⎠ ⎝ ⎠
, ...................................................................................................... (F-84) 

or in terms of dimensionless variables as 
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were rD = r/Lc, Lc is a characteristic length, and a general dimensionless adjusted pseudotime is defined as 

2( )
a

aD
t i c

k t
t

c Lφ μ

∂
∂ = . ............................................................................................................................ (F-86) 

The initial condition for solution of the governing differential equation requires that 

( 0 , 0) 0a D aDp r tε +> → = = , ........................................................................................................... (F-87) 

and the boundary conditions are written as 

( , 0) 0a D aDp r t→∞ ≥ = , .................................................................................................................. (F-88) 

and 
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The governing differential equation and boundary conditions for a reservoir containing a real gas are linear 

and identical in form to the governing differential equation and boundary conditions for a reservoir 

containing a slightly compressible liquid.95 Consequently, the point-source solutions, and reservoir 

solutions developed from the point-source solutions, are the same. In the present context, the conclusion 

means that the reservoir solution formulated in terms of dimensionless adjusted pseudopressure for a well 

producing a real-gas through a vertical fracture is the same as the dimensionless pressure solution for a 

well producing a slightly-compressible liquid, which can be written as 

( ) ( )aD aD D aDp t p t= . ........................................................................................................................ (F-90) 
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When the reservoir solutions are the same, the finite- and infinite-conductivity fracture solutions are also 

the same, which is written as 

( ) ( )afD aD fD aDp t p t= , ..................................................................................................................... (F-91) 

and when the finite- and infinite-conductivity solutions are the same, the fracture-injection/falloff solution 

for a dilating fracture formulated in terms of adjusted pseudopressure and adjusted pseudotime with the 

wellbore, fracture, and reservoir containing a real gas can be written as 

( ) ( ( ) )

(0) ( )( )
( )

( ) ( ) ( )0

q p t p t tawsD acD aLfD acD aLfD e aLfD
p C p tawsD acD acD aLfDp tawsD aLfD

tc aLfDC C p t p dabcD aacD acD aLfD D awsD D Dτ τ τ⌠⎮
⌡

⎡ ⎤⎡ ⎤− −⎣ ⎦⎢ ⎥
⎢ ⎥′+= ⎢ ⎥
⎢ ⎥
⎢ ⎥′ ′− − −⎣ ⎦

. ...................... (F-92) 

All fracture-injection/falloff solutions presented in Chapters III and IV can be cast in terms of adjusted 

pseudopressure and adjusted pseudotime, and in each fracture-injection/falloff solution, the reservoir and 

fracture solution derived in terms of adjusted pseudovariables can be replaced by a slightly-compressible 

liquid solution evaluated in terms of adjusted pseudotime.  
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