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ABSTRACT

Analytical Modeling of a Fracture-Injection/Falloff Sequence and the
Development of a Refracture-Candidate Diagnostic Test. (May 2006)
David Paul Craig, B.S., Texas Tech University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Thomas A. Blasingame

Fracture-injection/falloff sequences are routinely used as pre-frac well tests to estimate reservoir pressure
and transmissibility, but the current interpretation methods are limited to analyzing specific and very small
portions of the pressure falloff data. To remove the current limitations, new analytical fracture-
injection/falloff models are developed that account for fracture propagation, fracture closure, and after
fracture closure diffusion. A fracture-injection/falloff differs from a conventional injection/falloff
sequence in that pressure during the injection is sufficient to initiate and propagate a hydraulic fracture. By
considering fracture propagation as time-dependent storage, three new models are presented for a fracture-
injection/falloff sequence in a well in an infinite slab reservoir with a single vertical fracture created
during the injection and with variable fracture and wellbore storage as follows:
o Equivalent propagating-fracture and before-fracture-closure storage with constant after-fracture-
closure storage.
¢ Time-dependent propagating-fracture storage, constant before-closure storage, and constant after-
closure storage.
e Time-dependent propagating-fracture storage, constant before-closure storage with linear flow

from the fracture, and constant wellbore storage and skin with after-closure radial flow.

When a fracture-injection can be considered as occurring instantaneously, limiting-case solutions of the
new fracture-injection/falloff models suggest the observed pressure difference can be integrated to
generate an equivalent pressure difference if the rate were constant. Consequently, a fracture-

injection/falloff sequence can be analyzed with constant-rate, variable-storage type curves.

The new fracture-injection/falloff theory is also extended to allow for a fracture-injection in a reservoir
containing an existing conductive hydraulic fracture. The new multiple-fracture fracture-injection/falloff
model forms the basis of a new refracture-candidate diagnostic test that uses characteristic variable-storage
behavior to qualitatively diagnose a pre-existing fracture retaining residual width and to determine if a pre-
existing fracture is damaged. A quantitative analysis methodology is also proposed that uses a new
pressure-transient solution for a well in an infinite-slab reservoir producing through multiple arbitrarily-

oriented finite- or infinite-conductivity fractures.
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CHAPTER |

INTRODUCTION - REFRACTURE-CANDIDATE DIAGNOSTIC

1.1 Introduction
Oil and gas wells often contain potentially productive layers bypassed either intentionally or inadvertently

during an original completion. Subsequent refracturing programs designed to identify underperforming
wells and recomplete bypassed layers have sometimes been unsuccessful in part because the programs
tend to focus on commingled well performance and well restimulation potential without thoroughly
investigating individual layer properties and the refracturing potential of individual layers. Perhaps the
most significant impediment for investigating layer properties is a lack of representative and cost-effective
diagnostics that can be used to determine layer permeability, reservoir pressure, and to quantify the

effectiveness of previous stimulation treatments.

Fracture-injection/falloff tests, which differ from conventional injection/falloff tests in that a fracture is
propagated during the injection, are asserted to be a valid refracture-candidate diagnostic. The assertion is
proved using new mathematical models and analytical solutions for a fracture-injection/falloff sequence in

an infinite slab reservoir with and without a pre-existing hydraulic fracture.

A special case of interest is a fracture-injection/falloff test with an injection time short relative to the
reservoir response. When the finite time of a fracture injection can be considered instantaneous, slug-test
analysis methods can be applied to the falloff data. The preferred slug-test analysis method "converts"
variable-rate pressure falloff data to equivalent constant-rate pressure data by integration of the recorded
pressure difference with respect to time. After conversion, model-based (type curve) analysis is possible
with new constant-rate variable-storage drawdown type curves that account for fracture closure and after-

closure diffusion.

With a new solution for multiple arbitrarily-oriented uniform-flux, infinite-conductivity, or finite-
conductivity hydraulic fractures, the fracture-injection/falloff test theory is extended to the case with a pre-
existing hydraulic fracture. Consequently, a fracture-injection/falloff sequence with the injection time
short relative to the reservoir response can be used as a refracture-candidate diagnostic to qualitatively
determine the existence of a pre-existing fracture that retains residual width and to determine if a pre-
existing fracture is damaged. Provided sufficient pressure falloff data are recorded, the new refracture-
candidate diagnostic test can also provide estimates of fracture conductivity, fracture half length, reservoir

permeability, and average reservoir pressure.

This dissertation follows the style and format of SPE Journal.



1.2 Refracturing

Howard and Fast' note that between 1947, when hydraulic fracturing was introduced to the industry, and
1970, there were about 500,000 recorded fracturing treatments. Of the half million treatments, an
estimated 35% were refracture treatments to further enhance well production. Between 1970 and 1996, a

modest number of case histories appear in the literature describing refracturing programs in both oil,*”

gas,™* and gas-storage reservoirs,* but the number of wells with refracture treatments in each case is on

the order of 100 or less.

Reeves™ in a 1996 study to identify the technology barriers and potential benefit of restimulation
concluded that only 450 to 550 refracture treatments are pumped per year in the United States. Examples
of gas reservoirs with refracturing programs originating since 1996 include the Barnett shale of North
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Texas,™ the Codell formation in the Denver-Julesburg basin,*° and the Vicksburg in South Texas."’

1.2.1 Fracture Reorientation, Fracture Remediation, and Fracturing Bypassed Layers. Restimulation
following a primary fracturing treatment takes several forms. For example, a premature screenout can
result in a very short effective fracture haf-length, a damaged fracture face, and a plugged proppant pack.
If the cause of a screenout is known or inferred from the treatment records, a refracture treatment is
sometimes performed immediately after correcting the problem to obtain the desired fracture half-length
and conductivity.’® Alternatively, a damaging fluid system, for example, a system that does not degrade
following a treatment, might allow a fracturing treatment to be pumped as designed, but it can also either
plug the proppant pack or significantly reduce fracture conductivity. With a damaging fluid system, the
impact can be immediate, that is, a well may not flow back, or the production profile might show the
effects of slow fracture clean up over time.™ Alternatively, formation fines migration or proppant crushing
can damage fracture conductivity over time. With proppant-pack damage, a remedial chemical stimulation
treatment is sometimes effective, or with severe fracture conductivity damage, a refracture treatment can
be required.® The current Vicksburg refracturing program in South Texas is an example of a fracture
remediation project that attempts to identify refracture-candidates based on unsuccessful primary fracture

treatments or suspected proppant-pack damage. '’

Refracturing programs in the Barnett** shale and Codell™® are believed to be successful because of
secondary fracture azimuth reorientation. Ebel and Mack® theorized that the directions of maximum and
minimum stress change with production. Consequently, a refracture treatment pumped after significant
production can initiate and propagate in a different plane than the primary fracture treatment. A definitive
study of fracture reorientation was presented by Wright et al.”* Wright et al. used tiltmeter interpretations
to demonstrate that the fractures propagated during a 1993 refracturing program in the Lost Hills
Diatomite reoriented to a plane different than the original 1990 tiltmeter-mapped primary hydraulic

fractures.”’ In a subsequent study, Wright et al.?? and Wright and Conant®® demonstrated using tiltmeter



interpretations that the fractures from refracture treatments in the Van Austin Chalk oil field in Texas
reoriented by as much as 56° from the original fracture azimuth. A field experiment in the Barnett shale
using tiltmeters during the original fracture treatment and subsequent refracture treatment, also clearly

demonstrated hydraulic fracture reorientation.*

Multilayer completions with hydraulic fractures can contain layers bypassed intentionally to pursue higher
grade pay and layers bypassed inadvertently because of ineffective fracture treatment diversion. For
example, an average of 26 sands are targeted for fracturing in a typical Piceance basin Mesaverde low
permeability gas well using three to five fracturing treatments with perforation-friction controlled
diversion (limited entry). Esphahanian and Storhaug® in a study of 13 Piceance basin production logs,
found that after fracturing, 28% of the targeted sands produced less than 10 Mcf/D. A similar production
log study in the Jonah field in Wyoming, where each well can contain 30 to 40 low permeability gas sands
targeted for fracturing, found that after completion 35% to 40% of the sands where not significantly
contributing to production.?® In some cases the noncontributing sands may have been successfully fracture
stimulated, but either the reservoir quality is extremely poor or the fracture was damaged by subsequent
uphole completion operations.?® In other cases, the fracturing diversion technique failed, and the sands

were inadvertently bypassed.

Identifying bypassed layers is sometimes possible with near-wellbore radioactive tracing, far-field
tiltmeter fracture imaging, or microseismic fracture imaging.?’ Radioactive tracing adds radioactive
isotopes to the fracturing fluid during a treatment, and after the treatment uses spectral gamma ray logging
to determine the location of the radioactive material. Radioactive tracing is a near-wellbore diagnostic that
can help determine if a sand targeted for fracturing was inadvertently bypassed. Figs. 1.1 and 1.2 contain
a post-frac spectral gamma ray log presentation (Tracerscan) from a Mesaverde well with 20 sands
targeted for fracturing during three fracturing treatments using limited-entry diversion. Fig. 1.1 shows little
or no radioactive material adjacent to perforations at 4,112 ft, 4,420 ft, and 4,468 ft. Similarly, Fig. 1.2
shows no radioactivity measured adjacent to the perforations at 4,984 ft, 5,014 ft, and 5,212 ft. In
summary, the near-wellbore image shown in Figs 1.1 and 1.2 suggest that six of the 20 sands, or 30%,
were not effectively stimulated or were bypassed entirely. In a study of fracturing treatments in the
Almond, Cotton Valley, Delaware, and Red Fork using radioactive tracers and spectral gamma ray
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logging, Fisher et al.”® concluded that between 10% and 33% of layers targeted for fracturing were

unstimulated after completion.

Far-field fracturing imaging methods,”” including tiltmeters and microseismic monitoring, can also help
determine if targeted sands were bypassed, but the resolution of far-field imaging is not sufficient to
definitively identify bypassed layers without other corroborative evidence like production logs or pressure

transient tests of individual layers. Tiltmeters can be either surface or downhole deployed, and measure the



(B TRIDIUM

(i
1[Em]s

IRIDIUM

SCANDIUM

SCANDIUM

APIL 1000

o

L]

L6 EM
1000 API

w1000 APT

FORMATION
TRIDIM

(i
[{(e]

IRIDIUM
FORMATEON

SCANDIUM

AFI 1000

APL 1000

w1000 APT

1000 AFI

——t—t——t— - I.Illm

4000 4100 4200

Fig. 1.1—Multilayer Tracerscan log suggesting perforations at 4112-, 4420-, and 4468 ft were

ineffectively stimulated or completely bypassed during the completion.



GoLE

00iG

o0gr

ooes

00ak

00ES

[ 6
16 Fid 5 JEL M
0 ftoon apl 0 o fioon APl 0 AFI 1000
SCFM | 5L F 8 |
[ofiom aP1 0 o AB]I000 API___1 AP LB00

[ o) [

Fig. 1.2—Multilayer Tracerscan log suggesting perforations at 4984-, 5014-, and 5212 ft were
ineffectively stimulated or completely bypassed during the completion.



minute distortion of the earth during a fracturing treatment.”” An array of tiltmeters in or adjacent to the
treatment well can be used to infer the far field fracture geometry—azimuth, length, and height—based on

relatively simple models of fracture growth.?’

Microseimsic fracturing imaging uses an array of geophones or accelerometers in the treatment well or an
offset well to measure the acoustic energy transmitted from the slippage of microfractures and fissures
adjacent to a propagating fracture. The slippage creates seismic events that form an "envelope" around the
propagating fracture, and by mapping the location of each seismic event, the fracture azimuth, length and
height can be inferred.?” Fig. 1.3 is a composite microseismic image of two limited-entry fracturing stages
from a multilayer completion with a total of 10 layers targeted for fracturing. The targeted layers are
denoted by the crosshatched shading, and the microseismic events recorded (solid circles) are shown in the
fracture plane. Fracture geometry is inferred by distribution of the seismic events in the fracture plane. It's
noteworthy that virtually all of the seismic events were confined to five layers, and that the other five
layers contained few if any of the recorded seismic events. A lack of seismic events in the five layers
strongly suggests the layers were bypassed or ineffectively stimulated by the limited-entry fracture

treaments.

Radioactive tracing and far-field fracture imaging are extremely beneficial when developing a refracture
program to identify and stimulate bypassed layers; however, the vast majority of wells drilled and

completed have no tracing or imaging.

1.2.2 Refracture-Candidate Selection. Howard and Fast® proposed refracture-candidate selection criteria
for oil wells in 1970 that focused on either identifying wells that responded favorably to an initial
treatment but experienced rapid production decline or wells with intentionally bypassed pay that could be
targeted during refracturing. They concluded wells that responded favorably during an initial fracture
treatment would respond favorably to refracturing, or as phrased by Reese et al.,” "good wells make good
refracture candidates." In 1978, however, Crowell and Jennings,® reported only limited success had been
observed following refracturing treatments in low permeability gas wells. More than twenty years later,

Kuuskraa et al.

noted that identifying refracture-candidate wells is "challenging,” and suggested that
refracture-candidate selection should include production data analysis to identify suspected
underperforming wells, well test analysis to validate the production data analysis, fracture modeling, and a

thorough well records review to find potential problems during the original completion.

Other refracture-candidate selection methods have been suggested over the years. Hower and Decker®
identified recompletion candidates in multilayer gas reservoirs by interpreting linear trends in a graph

of p/z versus cumulative production. Fetkovich, et al.*® demonstrated that a graph of p/z versus

cumulative production will be non-linear in layered, no crossflow reservoirs. Thus, Hower and Decker®
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concluded a linear trend in a multilayer completion implied an ineffective completion with bypassed

layers.

A similar refracture candidate selection method was proposed by Fetkovich® using production data
analysis with Fetkovich type curves to identify layered no-crossflow behavior. Fetkovich® recognized that
selectively stimulating the lower permeability layers would add well productivity and reserves, and he
reported that the low permeability layers were targeted for refracturing in wells with strong layered no-
crossflow behavior, which is indicated by a decline curve exponent approaching unity. McCoy, Reese, and
Johnson,® extended the work of Fetkovich and developed refracture-candidate selection guidelines for
multilayer completions. The guidelines included a thorough review of well records—which the author's
conclude is the most important step—production data analysis to identify layered no-crossflow behavior,
production logs to identify nonproductive layers, and layer pressure transient testing to determine layer

reservoir properties.

In the 1990s a relatively new tool was introduced to help select refracture-candidates. An artificial neural
network®® can be developed for refracture programs by "training" a neural-network with a set of input
and output parameters. Training implies the neural-network develops a relationship between a given set of
input and output parameters. After training, the neural-network is used as a predictive tool to indentify
refracture candidates. Shelley®” notes a neural-network trained with public completion and production
information is especially beneficial since it can rapidly screen refracture candidates before more detailed

analysis—Iike thoroughly reviewing the well file, production data analysis, and well testing—is required.

In summary, refracture-candidate selection methods in the late 1990s generally consisted of the following.
o A thorough well record review to identify obvious problems or inadequacies of the initial fracturing
treatment and to identify target layers intentionally bypassed during the original completion.
e Production data analysis to identify well underperformance. Production data analysis can simply
compare offset well production or can entail type-curve analysis and reservoir simulation.

o Refracture-candidate diagnostics including well testing and production logs.

1.2.3 Tight Gas Restimulation Study. Beginning in 1998, the Gas Research Institute (GRI), since
renamed the Gas Technology Institute (GTI), embarked on a research and development project to evaluate
methods for selecting refracture candidates, to identify the mechanisms for well "underperformance,” and
to test restimulation techniques.**** Three methods were used to evaluate well performance and fracture
treatment effectiveness—production statistics, virtual intelligence using a neural network, and production
type-curve analysis.
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Production statistics, or moving domain analysis as implemented on a computer,™™ compares production

indicators of each well with its offsets to identify well underperformance. By comparing a well's



production with only the immediate offset well production, the variability of reservoir quality is
minimized in the comparison. Virtual intelligence was utilized by training an artificial neural network with
production, completion, and fracturing variables that included fracturing fluid type, breaker type, and
breaker concentration. After training, the artificial neural network was used to identify restimulation-
candidate wells with relatively poor fracture treatment design or execution by comparing predicted and
actual well performance. The production type-curve analysis used in the restimulation study required
history-matching well production using analytical type-curves developed specifically for single layer
hydraulically fractured low permeability gas wells.** Restimulation candidates were identified by a short
effective fracture half-length, and the production increase potential of extending the effective fracture half-

length with a restimulation treatment.*

An important guiding principle of the study was the "85/15" rule, which presumed that 85% of the
incremental recovery from restimulation of all wells could be produced by only 15% of the wells.*® Using
the 85/15 rule, the evalution methods were required to identify only the top 15% of the refracture
candidates. Each evaluation method was anticipated to develop a list of candidates, and the overlap
between lists would be the preferred restimulation candidates. Unfortunately, little overlap was observed,*
and a detailed study of the top candidates from each list was required to develop a prioritized list of

restimulation candidates.

After a thorough evalution process, nine multilayer tight-gas wells were restimulated in the Frontier
formation in Wyoming, the Mesaverde in Colorado, and the Cotton Valley in Texas. Eight of the nine
restimulation treatments were refracture treatments with three refracture treatments in the Frontier, two in
the Mesaverde, and three in the Cotton Valley. In the final report to GRI, Reeves® reported that seven of
the eight refracture treatments were economically successful—based on a refracture cost of less than
$0.75/Mcf of incremental gas produced*—with 2.9 Bcf of incremental reserves attributed to the

restimulation project at a cost of $0.26/Mcf.

A new review of the well performance after four years of production following the refracture treatments
reveals the program as a whole was successful, but the measure of success varied considerably by area and
by formation. Figs. 1.4 through 1.6 contain graphs of gas production versus time for the Cotton Valley
restimulation wells, which are the CGU 3-8T, CGU 10-7T, and CGU 15-8T, respectively. Each graph
contains estimated incremental gas recovery since the refracture treatment along with a cost in dollars per
Mcf of the incremental gas. Clearly the CGU 3-8T and CGU 10-7T can be considered economic successes
with 0.67 Bcf of incremental gas produced at a cost of $0.30/Mcf, but the CGU 15-8T appears to be a
failure with only 0.080 Bcf of incremental gas produced at a cost of $1.23/Mcf. Recognizing that an

economic success depends on several factors, including gas price volatility and risk, the incremental gas
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Fig. 1.4—Cotton Valley well CGU 3-8T production decline before and after the refracture
treatment. Solid curve is the extrapolated production decline without a refracture
treatment.
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Fig. 1.5—Cotton Valley well CGU 10-7T production decline before and after the refracture
treatment. Solid curve is the extrapolated production decline without a refracture
treatment.
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may be a better measure of success, and as such, the CGU 15-8T refracture treatment was unsuccessful

with only 5% of the cumulative gas production attributed to the refracture treatment.

Figs. 1.7 through 1.9 contain graphs of gas production versus time for the Frontier wells with refracture
treatments, which are the GRBU 45-12, WSC 20-09D, and the GRBU 27-14, respectively. As observed
with the Cotton Valley refracturing results, two of the three refracturing treatments were successful. The
refracturing treatment in the GBU 45-12 added 0.30 Bcf of incremental production, and the refracturing
treatment in the WSC 20-09D added 0.17 Bcf of incremental production, which corresponds to a cost of
$0.45/Mcf for both wells. Conversely, the refracture treatment in the GRBU 27-14 shown in Fig. 1.9 was

detrimental to well performance, and the treatment resulted in a loss of 0.10 Bcf.

Figs. 1.10 and 1.11 contain graphs of gas production versus time for the RMV 55-20 and Langstaff #1
Mesaverde wells. The refracture treatments resulted in incremental gas production of 0.09 Bcf and
0.055 Bcf, respectively. However, the refracture treatment incremental gas production cost $0.85/Mcf, and

the refracture treatments are considered by the operator to be failures.
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Fig. 1.7—Frontier well GRBU 45-12 production decline before and after the refracture treatment.
Solid curve is the extrapolated production decline without a refracture treatment.
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Fig. 1.8—Frontier well WSC 20-09D production decline before and after the refracture treatment.
Solid curve is the extrapolated production decline without a refracture treatment.
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Fig. 1.9—Frontier well GRBU 27-14 production decline before and after the refracture treatment.
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Fig. 1.10—Mesaverde well RMV 55-20 production decline before and after the refracture treatment.
Solid curve is the extrapolated production decline without a refracture treatment.
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Fig. 1.11—Mesaverde well Langstaff #1 production decline before and after the refracture
treatment. Solid curve is the extrapolated production decline without a refracture
treatment.

After 4 years of production, it appears that four of eight refracture treatments can be considered successful
based on the refracture cost and incremental gas production. Of the other four wells with a refracture
treatment, one is a failure that resulted in a loss of 0.10 Bcf of reserves, and the other three are economic

failures based on the original Reeves and Wolhart*®

$0.75/Mcf refracture treatment cost per incremental
gas production economic threshold. It's also noteworthy that the incremental gas production attributed to
the successful refracture treatments was on the order of 20% of the well cumulative production, while the
incremental gas production from the unsuccessful refracture treatments was less than 5% of the well's

cumulative gas production.

Two common characteristics of every well in the refracture program is that each produced from multiple
layers, and the original fracturing program consisted of some limited-entry fracture treatments.*** If, as
previously suggested, limited-entry fracture treatments ineffectively stimulate or inadvertently bypass on

the order of 30% of the targeted layers, then why wasn't the restimulation program more successful?

One possible explanation is that the approach adopted during the restimulation study was to evaluate the
restimulation potential of each well. All three restimulation candidate evaluation methods—production

statistics, virtual intelligence using artificial neural networks, and production type-curve analysis—were
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developed to evaluate well performance as opposed to identifying bypassed layers that could be at or near
virgin reservoir pressure. While recognizing the importance of evaluating layer properties and targeting
specific layers or groups of layers for restimulation, a lack of cost-effective diagnostic tests for use in
wells producing from multiple layers hindered any attempt to identify specific underperforming layers in
the multilayer completions.**** Additionally, once the refracture wells were identified, the refracture
treatments were designed to restimulate the well as opposed to identifying and stimulating isolated
individual layers. Mechanical isolation and refracturing in stages were preferred in some cases, but
isolation was not allowed either because of operator concerns or project economic constraints.*” As a last
resort, ball sealers were used periodically throughout several treatments to ensure some fluid diversion,

and refracture treatments with radioactive tracing confirmed some diversion was obtained.*’

1.3 Refracture-Candidate Diagnostic Tests
A refracture-candidate diagnostic test should be used prior to a refracture treatment to complete the

following objectives.

Determine if a pre-existing fracture retaining residual width exists.

Determine if a pre-existing fracture is damaged.

Determine pre-existing fracture effective half-length and conductivity

Determine reservoir permeability and average reservoir pressure.

When the diagnostic test objectives are achieved, the benefits of refracturing can be easily evaluated, and

the incremental production from a refracture treatment can be predicted.

Quantitative conventional pressure-transient testing, which includes drawdown, drawdown/buildup, or
injection/falloff tests at a pressure less than the fracture propagation pressure, can be used to achieve the
objectives of a refracture-candidate diagnostic test. However, conventional pressure-transient tests are best
suited for evaluating a single layer. For wells producing from multiple low permeability layers, multilayer
pressure-transient tests have been published,”® but in practice, determining layer flow rates for test
interpretation from multiple layers is problematic—especially with upwards of 20 layers producing.* In
general, a cost-effective quantitative diagnostic test does not exist for low permeability wells producing

from multiple layers.

1.5° describe

Diagnostic testing in low permeability multilayer wells has been attempted, and Hopkins et a
several diagnostic techniques used in a Devonian shale well to diagnose the existence of a pre-existing
fracture(s) in multiple targeted layers over a 727 ft interval. The diagnostic tests included isolation flow
tests, wellbore communication tests, nitrogen injection/falloff tests, and conventional drawdown/buildup

tests.
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As described by Hopkins et al.,* the refracture-candidate well was originally completed in four layers—
the Cleveland, Upper Huron, Middle Huron, and Lower Huron—distributed across a 727 ft gross interval
with a single limited-entry fracture treatment. Isolation flow tests were used to quantify the post-frac
production of each isolated layer, and the tests determined insignificant flow from the Cleveland and
Middle Huron layers. Wellbore communication tests were used to determine if a hydraulic fracture
connected layers outside of the wellbore. The communication tests established that only the Middle and
Lower Huron were communicating beyond the wellbore, which for well testing purposes, effectively

reduced the four layer completion to a three layer case.

Three nitrogen injection/falloff tests were completed in the Cleveland, Upper Huron, and Middle/Lower
Huron layers. During the test, nitrogen was injected at a pressure less than the fracture propagation
pressure, and the pressure falloff during the shut-in period was recorded for one hour. Nitrogen
injection/falloff tests suggested a propped hydraulic fracture existed in the Middle/Lower Huron but not in
the the Cleveland or Upper Huron. Consequently, the limited-entry fracture treatment effectively
stimulated only 50% of the targeted layers. Three pressure buildup tests were completed in Cleveland,
Upper Huron, and Middle/Lower Huron, and a finite-difference simulator was used to history-match the
nitrogen injection-falloff and pressure buildup tests. Well testing interpretations revealed an infinite-
conductivity fracture with a fracture half length of 80 feet had been placed in the poorest quality reservoir
rock in the wellbore. Additionally, reservoir simulation suggested gas recovery could be increased by 29%
by placing infinite-conductivity fractures in the Cleveland and Upper Huron layers, which are the best

quality reservoir rock.*

The post-frac diagnostic program described by Hopkins et al.*

was very thorough and addressed the
objectives of a refracture-candidate diagnostic. However, the diagnostic program was also expensive and
time consuming for a relatively simple four layer case. Many refracture candidates in low permeability gas
wells contain stacked lenticular sands with between 20 to 40 layers which need to be evaluated in a timely

and cost effective manner.

Other more cost effective but qualitative refracture-candidate diagnostic tests have been reported.

Hopkins, et al.>*

also suggested an annulus injection test to qualitatively identify a pre-existing fracture in
the Antrim shale. The annulus injection test requires slowly injecting water into a targeted layer until the
observed pressure approaches the fracture initiation or propagation pressure of the formation. The injected
volume is the "fillup" volume, and a large fillup volume suggests a high conductivity fracture exists. When
the objective of a refracture treatment(s) is to stimulate bypassed layers, a qualitative determination of a
pre-existing fracture may be the only diagnostic test required, that is, if a fracture exists, a refracture

treatment may be deemed unnecessary.
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As part of the recent GRI restimulation project,” Huang et al.>® suggested a quasi-quantitative pressure
transient test interpretation method as a refracture-candidate diagnostic. The "short shut-in test
interpretation method" is designed to provide only an indication of pre-existing fracture effectiveness. The
method uses log-log type curve reference points—the end of wellbore storage, the beginning of
pseudolinear flow, the end of pseudolinear flow, and the beginning of pseudoradial flow—and the known
relationships between pressure and system properties at those points to provide upper and lower limits of
permeability and effective fracture half length. Huang et al.** provide a simulated example that
unfortunately requires 25 hours of shut-in data to bracket fracture half length to within 10% of the known

value and to bracket permeability to within a two order-of-magnitude range.

While not used specifically as a refracture-candidate diagnostic test, nitrogen slug tests have been used
effectively as a prefracture diagnostic test in low permeability reservoirs.***® Jochen et al.*® describe the
nitrogen injection test as a short, small volume injection of nitrogen at a pressure less than the fracture
initiation and propagation pressure followed by an extended pressure falloff period. A nitrogen slug test is
unlike the nitrogen injection/falloff test used by Hopkins et al.* in that the injection period is short and
can be considered instantaneous. A nitrogen slug test is analyzed using slug-test type curves and by history

matching the injection and falloff pressure with a finite-difference simulator.*’

Since 1998, fracture-injection/falloff tests have been routinely utilized as a prefracture diagnostic to
estimate formation permeability and average reservoir pressure.>® Fracture-injection/falloff tests differ
from nitrogen slug tests in that the pressure during the injection is greater than the fracture initiation and
propagation pressure. A fracture-injection/falloff test typically requires a low rate, small volume injection
of treated water followed by an extended shut-in period, and the permeability to the mobile reservoir fluid

and the average reservoir pressure are interpreted from the pressure decline.

The test methods or test programs described are not cost-effective and capable of achieving the objectives
of a refracture-candidate diagnostic in a well completed in multiple layers. The annulus injection test is
qualitative. The short shut-in time buildup test interpretation method is quasi-quantitative, but the tests
require too much time for multilayer testing. Nitrogen slug tests and fracture-injection/falloff tests have

only been used as prefracture diagnostics. Only Hopkins' et al.*®

refracture-candidate diagnostic program
has proven successful in achieving the refracture-candidate diagnostic objectives in a well completed in
multiple layers, but the program is time consuming and may be impractical for low permeability stacked,

lenticular gas reservoirs.

1.4 Research Objectives
A fracture-injection/falloff test with the time of injection short relative to the reservoir response is asserted
to be a viable refracture-candidate diagnostic test. The research objectives documented in this dissertation

include the following.
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e Extend fracture-injection/falloff interpretation methodology to account for pressure-dependent
reservoir fluid properties by formulating before-closure pressure transient analysis in terms of
adjusted pseudopressure and adjusted pseudotime.

e Demonstrate that the pressure difference observed during the falloff of a fracture-injection/falloff
sequence in a layer with or without an existing conductive hydraulic fracture and with the reservoir
response short relative to the time of injection can be converted to an equivalent pressure difference
if the sandface rate were constant.

o Demonstrate that in a layer without a pre-existing conductive hydraulic fracture, a quantitative
determination of reservoir transmissibility is possible by matching equivalent constant-rate pressure
from the falloff of a fracture-injection/falloff sequence with a variable-storage constant-rate
drawdown log-log type curve.

e Demonstrate that a pre-existing hydraulic fracture retaining residual width can be diagnosed from
the variable storage behavior exhibited by the equivalent constant-rate pressure difference observed
during the falloff of a fracture-injection/falloff sequence.

e Demonstrate that a quantitative determination of primary and secondary fracture half-length,
primary and secondary fracture conductivity, and reservoir transmissibility are possible by
matching equivalent constant-rate pressure recorded during the falloff of a fracture-injection/falloff
sequence with a variable-storage constant-rate drawdown log-log type curve developed a well
producing from multiple arbitrarily-oriented uniform-flux, infinite-conductivity, or finite-
conductivity fractures in an infinite-slab reservoir.

o Develop a complete refracture-candidate fracture-injection/falloff test methodology to diagnose the
following.
= The existence of a conductive hydraulic fracture.
= The choked-fracture skin damage of an existing conductive hydraulic fracture.
= The effective primary fracture half-length and primary fracture conductivity of an existing

conductive hydraulic fracture.

= The average reservoir pressure and reservoir transmissibility.

1.5 Dissertation Summary

Chapter Il reviews existing slug-test and fracture-injection/falloff test solutions and interpretation methods
that were derived assuming a slightly compressible fluid. A new formulation and interpretation method are
presented for before-closure pressure transient analysis of a fracture-injection/falloff sequence when the
reservoir fluid is compressible. As shown in Appendix A, the formulation is derived in terms of adjusted

pseudovariables to account for reservoir fluid compressibility.
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Chapter Il presents new analytical variable-storage pressure-transient solutions for a constant-rate
drawdown in a well producing from an infinite slab reservoir containing a single dilated vertical fracture
with the initial reservoir pressure above the minimum insitu or closure stress and with fracture storage and
wellbore storage as follows:

e Constant before fracture closure and constant after fracture closure storage.

o Constant before- and constant after-closure storage with fracture-face and choked-fracture skin.

o Fracture flow during closure with constant before-closure storage and radial flow after closure with

constant wellbore storage and skin.

Additionally, a new fracture-injection/falloff model accounting for fracture creation, fracture closure, and
diffusion after closure is also presented. Limiting-case solutions of the new model are used to demonstrate
when a finite injection time can be considered as occurring instantaneously — which allows the pressure
difference recorded during the falloff to be transformed to an equivalent pressure difference if the rate
were constant. By considering fracture propagation as time-dependent storage, three new models are
presented for a fracture-injection/falloff sequence for a well in an infinite slab reservoir with a single
vertical fracture created during an injection with fracture and wellbore storage as follows:
o Equivalent propagating-fracture storage and before-closure storage with constant after-closure
storage.
o Time-dependent propagating-fracture storage, constant before-closure storage, and constant after-
closure storage.
e Time-dependent propagating-fracture storage and before-closure storage with linear flow from the

fracture before closure and after-closure radial flow with constant wellbore storage and skin.

Limiting-case solutions of the fracture-injection/falloff models are also presented to demonstrate when a
fracture-injection can be considered as occurring instantaneously and the equivalent constant-rate pressure
difference can be calculated from the observed pressure during the falloff of a fracture-injection/falloff

sequence for quantitative type-curve analysis.

In Chapter IV the new fracture-injection/falloff model developed in Chapter 111 is extended to a case with
a pre-existing hydraulic fracture. Ideally, a refracture-candidate diagnostic should identify a pre-existing
hydraulic fracture and allow for estimation of existing fracture half-length, fracture conductivity, average

reservoir pressure, and permeability.

An ancillary development required for the fracture-injection/falloff model with a pre-existing fracture is
the derivation of a new semianalytical pressure-transient solution for a constant-rate drawdown in a well
producing from an infinite slab reservoir through multiple arbitrarily-oriented uniform-flux, infinite-
conductivity, or finite-conductivity fractures. The new pressure-transient solution is illustrated by

preparing a log-log type curve for a constant-rate drawdown in a well producing from an infinite-slab



reservoir through a cruciform fracture with constant storage. Additionally, a variable-storage case is
presented for a constant-rate drawdown through a cruciform fracture in an infinite slab reservoir where the
intial reservoir pressure is in excess of the closure stress of the secondary fracture, and during the
drawdown, the secondary fracture closes — which creates a case of decreasing storage during the

drawdown.

A new refracture-candidate fracture-injection/falloff solution is also presented with time-dependent
propagating secondary fracture storage, constant before-closure primary and secondary fracture storage,
and constant after-closure storage. Limiting-case solutions of the refracture-candidate fracture-
injection/falloff model are also presented to demonstrate when a fracture-injection can be considered as
occurring instantaneously and the equivalent constant-rate pressure difference can be calculated from the

pressure observed during the falloff and used for quantitative type-curve analysis.

The new single- and multiple-fracture pressure-transient solutions combined with the new fracture-
injection/falloff models provide the theoretical basis of a new refracture-candidate diagnostic test method.
Chapter V presents the new refracture-candidate diagnostic test and analysis methodology that can be used
to rapidly identify a pre-existing hydraulic fracture. Field examples are provided to illustrate the
interpretation of a fracture-injection/falloff sequence for the following cases.

¢ No pre-existing hydraulic fracture with pseudoradial flow observed.

o No pre-existing hydraulic fracture with pseudolinear flow observed.

o A pre-existing conductive hydraulic fracture with choked-fracture skin damage.

Chapter VI itemizes the new pressure-transient solutions and fracture-injection/falloff models developed
within the dissertation. Additionally, areas for additional research are recommended for numerically
validating the new pressure-transient solutions and fracture-injection/falloff models; for examining
complex fracture patterns and different multiple fracture configurations beyond the cruciform and oblique
fracture scenarios presented; and for developing a pressure-transient solution for a well producing from

multiple fractures in a bounded reservoir.
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CHAPTER I

SLUG-TEST AND FRACTURE-INJECTION/FALLOFF TEST ANALYSIS

2.1 Introduction

An injection/falloff sequence requires injecting a fluid (liquid or gas) at a pressure less than the pressure
required to initiate and propagate a hydraulic fracture followed by an extended shut-in (falloff) period.
When the injection period is relatively short, an injection/falloff test is referred to as an impulse test,” but
when the finite injection period is very short relative to the reservoir response, the injection can be

considered as occurring instantaneously, and the test is referred to as a slug test.”

A fracture-injection/falloff test sequence requires injecting a fluid (liquid or gas) at a pressure greater than
the pressure required to initiate and propagate a hydraulic fracture. Consequently, a fracture is created
during the injection, and as the pressure declines during the shut-in period, the created fracture closes, and
the pressure continues to decline after closure. The before fracture closure (before-closure) pressure falloff

3759 and the after fracture closure (after-

can be analyzed with before-closure pressure transient analysis,
closure) falloff can be analyzed using an impulse-fracture technique presented by Gu, et al..** and

Abousleiman, ef al.”!

Chapter II reviews existing slug test and fracture-injection/falloff analysis methods, and contains a
discussion of the limitation of existing interpretation methods. Pressure and time and adjusted
pseudopressure and adjusted pseudotime formulations are reviewed for slug tests, and pressure and time
formulations are presented for before-closure pressure transient analysis and after-closure analysis for
fracture-injection/falloff tests. A new formulation in terms of adjusted pseudovariables is also presented
for before-closure pressure transient analysis of a fracture-injection/falloff sequence when the reservoir

fluid is compressible. All equations are derived and shown in Darcy units.

2.2 Slug-Test Solution
In the present context, injection/falloff sequences are restricted to relatively small volume, short duration
injections followed by a lengthy falloff period. A general injection/falloff solution can be derived using a

62-64

technique described by Correa and Ramey ™" that requires writing a material balance equation valid at all

times during the injection/falloff test using the Heaviside unit-step function. The Correa and Ramey®***

derivation technique is used repeatedly throughout the dissertation.

Assume a slightly compressible fluid fills the wellbore and is injected at a constant surface rate. A mass

balance during an injection is written as

Storage
Miy Moyt  ——5—
GB 0 = 1 B D) = s s 2.1)
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where ¢ is the surface injection rate, B is the formation volume factor at surface injection conditions, p is
the fluid density at surface injection conditions, ¢, is the flow rate into the reservoir, B, is the formation
volume factor at reservoir conditions, p, is the density of the reservoir fluid, p,, is the injected fluid density

at average wellbore conditions, and V,, is the wellbore volume.

The derivative with respect to time of the wellbore fluid density is written using the chain rule as

dpy _ 1 dpy, dpy, _ dpyy
e = WCWT, ..........................................................................................

iV dp, dr

where c,, is the isothermal wellbore fluid compressibility. The material balance equation can now be

written as

dpw
qB'D_qVBF'DV = pWCWVW7’ ........................................................................................................ (23)
or assuming a constant density, p = p,, = p,, and a constant formation volume factor, B = B,, the material

balance equation during the injection is written as

1 dp,,
(o o ) 0 24
a9 =q B(cw W) " (2.4)

The dimensionless wellbore pressure for the injection/falloff sequence is written as

Pw(tp) = pi
Drocy () = T e T s (2.5)
wsD\'D P0 - P

where p; is the initial reservoir pressure and p, is an arbitrary reference pressure. For an injection slug test
the wellbore pressure is increased to a pressure, p,,, at time zero, and the dimensionless wellbore pressure
at time zero is written as

Pw0 — Pi

ProsD(0) _W. ........................................................................................................................... (2.6)
Generally for a slug test, the pressure at time zero, p,., is set equal to py, and the dimensionless wellbore
pressure at time zero is unity, p,.p(0) = 1. For an injection test without an instantaneous change in
wellbore pressure, p, is arbitrary provided p, # p;.

Define dimensionless time as

P kt
D= 2

¢,u,,ctr w
where £ is the permeability, ¢ is the porosity (fraction), u, is the reservoir fluid viscosity, ¢, is the total

compressibility, and r,, is the wellbore radius. The dimensionless reservoir flow rate is defined as

q _ qur,ur
D = 2xki(py - pp)’

and the dimensionless well flow rate is defined as
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qBu
T et eee——eeeeeeeeei——eeeeeeeeeii———eeeeeeeai——eaaaeeeaaaa——aaaaeeeaaaaraaaaaaeaas 2.9
D = akin(py — pp) 22

With the dimensionless variables, the material balance equation during an injection is written as

L D (2.10)

4sD =49wsD ~
27r¢cthrv% dip
where the wellbore storage coefficient is written as

G Oy b et (2.11)
Define a dimensionless wellbore storage coefficient as
Cp = % ................................................................................................................................ 2.12)
27pe,hry,

and the dimensionless material balance equation during an injection is written as

dp

G5 = DpsD = CD 5 (2.13)
dt D

During the falloff portion of the test, ¢,,p =0, and the pressure falloff dimensionless material balance

equation is written as

dp
qu:_chtL;D. ........................................................................................................................... (2.14)

The Heaviside unit-step function,* is defined as
0 t<a
U. = ’ S et eeeeeeeeeeirerteeeeeeeiieeeteeeeeeiieteeteeeeeaaai—trteeeeeaaa——artteeeeeiai—a—tteeeeean —rataeeeeeaaraaraaaeas 2.15
a {1 , t>a ( )

62-64

and following the technique of Correa and Ramey, a material balance equation valid at all times for an

injection/falloff sequence with constant wellbore storage is written as

apysD dpysD
qu:(l—U(te)D)[qwsD_cD U O 2 (2.16)

where (z,)p is the dimensionless time at the end of the injection. The material balance equation can be

expanded, simplified, and written as

NS D e 2.17)

45D = 9wsD ~Y(t,) 9wsD ~CD —dtb

The Laplace transform of the material balance equation® is written as

— q q —s(t —
D :%D_WTSDQ s(te)p ~Cp[PrysD = Py (0) |5 wovvsssvevvreessssssiicinncssssccsn (2.18)

where s is the Laplace transform variable. A solution is developed by applying the superposition

principle,® which is written as
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D d -
Ippp—7p)
ProsD :JO qu(TD)%DDdTD S ettt ettt ettt ettt et ene (2.19)

where pp is the dimensionless reservoir pressure solution for a constant-rate injection with dimensionless

pressure defined as

_ 2mkh(p,, (1)~ p;)
9y By 1ty

et e et s e eeeeees (2.20)

The initial condition requires a constant initial pressure, pp(fp) =0, and with the initial condition, the
Laplace transform of the superposition integral is written as

PO e @221

PwsD =4sDSPD <= 4sp = D

Combining the transformed material balance equation and superposition integral results in

— — — — —s(z _
pWSD(l+S2CDpD):qWSDpD_qwstDe (e)D +pwsD(O)CDspD. ........................................... (222)

The Laplace domain dimensionless pressure solution for a well produced at a constant rate with wellbore
storage is written as
Pop = 21’—0, ......................................................................................................................... (2.23)
1+s°C D ]_7 D

and the Laplace domain injection/falloff solution is written as

- - — —s(Z —
BrusD = DD PwD —sD B~ D + P OISy - wrovreresesesesessssesssssesesssese (2.24)

Inverting the Laplace domain solution results in the time domain injection/falloff solution written as

dPwDUD) (2.25)

PwsDUD) =4ywsD | Pwp D)= Pwp D =) p) |+ Pyusp (0Cp iy,

The injection/falloff solution is applicable to both an impulse test and a slug test, that is, in the limit as the
dimensionless injection time approaches zero, (#,)p — 0, the injection/falloff solution reduces to the slug

test solution defined by Ramey and Agarwal® and written as

DD D) e (2.26)

PwsD(p) = Pysp(0)Cp dip,

The slug test solution is written in a general form in that the dimensionless reservoir pressure solution can
be any radial flow solution—infinite-acting, infinite-acting with skin, dual-porosity infinite-acting, etc.
The solution is also analogous to the slug-test solution in a reservoir containing a hydraulic fracture, which

is written as

dpyptrm)

PwsD D) = PywsDOCrm 77— (2.27)

where the dimensionless time for a well with a hydraulic fracture is defined as
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and Ly is the fracture half-length. The dimensionless wellbore storage coefficient for a well containing a

hydraulic fracture is defined as®’

C ettt ettt et e bt e b et e e bt e e bt e s bt e e be e e bt e e bt e enbeeenbeeenneeeane (2.29)
Lp 27z¢cthL3,

With a hydraulic fracture, the dimensionless reservoir pressure solution is written in the Laplace domain as

_ P/D
Bop = + ..................................................................................................................... (2.30)
1+s°C Lﬂ)ﬁ D
where pyp is any fractured-well solution—infinite-acting reservoir with an infinite-conductivity fracture,
infinite-acting reservoir with a finite-conductivity fracture, dual-porosity infinite-acting reservoir with a

finite-conductivity fracture, etc.®’

Ramey e al.*® recommend analyzing a slug test with a special type curve, which is a semi-log graph of the
dimensionless wellbore pressure versus 7,/Cp. Fig. 2.1 contains slug-test type curves for a radial infinite-
acting reservoir with skin. The cylindrical-source reservoir solution with skin, S, is written in the Laplace

domain as®

1 Ko[run ) ettt e ettt 2.31)

Pap =t
s sk (\/E ) s
where K, and K, are the modified Bessel functions of order zero and one, respectively. The cylindrical-
source solution is used with the slug-test solution to generate the type curves in Fig. 2.1. The slug-test
solution is evaluated in the Laplace domain and numerically inverted to the time domain with the Stehfest

algorithm.®

1'56

Slug-test analysis with the Ramey et al.”” method to determine transmissibility requires calculating a

dimensionless pressure plotting function for an injection defined as

_ Pw()—p;

PwsD
ws Po—Pi

or for a production slug test, defined as

pi = Pw(0)

PrsD = W 5 eereeresteseesessestesessessesessestesessestesessesteseesessestesesteseesesestisensestesenseseesensenteteseneesesensns (2.33)
where p;, is the initial reservoir pressure, p,(f), is the observed wellbore pressure, and py, is the wellbore
pressure at the instant a pressure difference is applied (time zero). The slug-test plotting function is
calculated for all observed points during the shut-in period and graphed versus shut-in time, Af, on semi-

log slug-test type curves. Transmissibility is calculated from a time match point, which is written as
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Fig. 2.1—Slug-test type curve for an infinite-slab reservoir with skin.*®

ﬂzi[%/ﬁ} e (2.34)
u 2r At yp

and the skin is calculated using the definition of the dimensionless storage coefficient and the type-curve

match written as

1 28 27r¢c,hrv%
S_Eln[[CDe }MP [Tn ................................................................................................... (2.35)

Peres et al.”’ published an alternative slug-test interpretation method by recognizing that the slug-test

solution written as

pWSD(tD):pWSD(O)CDw, ................................................................................................ (2.306)
D
can be integrated and written as
wa(tD):;j’DpwsD(fD)dTD, ................................................................................... (2.37)
Pywsp(0Cp 70

where 1), is a variable of integration. Peres et al.*’ also noted that the well testing pressure derivative

could be written as



dpwp dpwp _ Ip
=t =—= s ettt eeeeeeeeeeeeeeseeeeiseeeeeeteeseeeessesesireeseesteeseesieseeesireeeeiieeeeearreeeanenens 2.38
d(Intp) D dip ch PwsD ( )

Consequently, the dimensionless pressure observed during a variable-rate slug-test can be converted to an
equivalent dimensionless pressure if the rate were constant and plotted on conventional constant-rate
drawdown log-log type curves. Fig. 2.2 is a log-log graph of dimensionless wellbore pressure and pressure
derivative versus #,/Cp. The dimensionless pressure was generated by integrating the slug-test type curves
in Fig. 2.1 and dividing by the dimensionless wellbore storage coefficient, and the dimensionless pressure
derivative was calculated by multiplying the slug-test type curve dimensionless pressure by #5/Cp. Both
the pressure and pressure derivative curves in Fig. 2.2 reproduce type curves for a constant-rate drawdown
in a radial infinite-acting reservoir with wellbore storage and skin exactly; thus, conventional log-log

constant-rate drawdown type curves can be used to analyze slug-test data.

With the definition of dimensionless time, dimesionless wellbore-storage coefficient, and the
dimensionless slug-test plotting function, the integral equation for equivalent constant-rate dimensionless

pressure can be written as
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Fig. 2.2—Constant-rate drawdown type curves for a radial infinite-slab reservoir with wellbore
storage and skin generated from the slug-test type curves shown in Fig. 2.1.
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2 @
PuwsDOC[po—pi] 1

wa(tD)z( Jjé[pw(f)_pi]dr, .................................................................... (2.39)

which suggests that a log-log graph of the integral of the pressure difference, p,(¢) - p;, versus time during
a slug test will overlay a constant-rate drawdown pressure log-log type curve. The pressure derivative can

also be written as

d,
PwD _[ 2z kh}‘[ Do) = Pi s oo (2.40)

d(inip) | pysp(OCpo - pi] 1
and a graph of the product of time and the pressure difference will overlay a constant-rate drawdown log-

log derivative type curve.

Transmissibility is calculated from a pressure type curve match point as

kh :[PWSD(O)C [Po _Pi]j PwDp(p/Cp) (2.41)
H 2r t — p.
folpw@=pilar |

and the skin can be calculated from the matching type curve as

2
S= %m[[cDeZS }MP {%D e (2.42)

The slug-test analysis method of Peres er al.*’ is general and can be applied for other reservoir systems—
dual porosity, infinite-conductivity hydraulic fracture, finite-conductivity fracture, etc. For example, a slug
test in a reservoir with an infinite conductivity fracture is analyzed as before by preparing a log-log graph
of the integrated pressure difference and the product of shut-in time and the pressure difference versus the
shut-in time. The slug-test data can be matched to a Barker-Ramey™® type curve where the transmissibility
is calculated from Eq. 2.41 assuming fracture storage is negligibly small relative to wellbore storage and if

the reservoir is infinite acting.

When fracture storage is significant, fracture half-length must be known to calculate the storage
coefficient and transmissibility, but fracture half-length cannot be determined from the slug-test analysis
method. However, if transmissibility is known from a previous well test, the fracture half-length can be
calculated from a slug-test using the pressure-curve match, (Cyp)yp, and the definition of the

dimensionless storage coefficient as

L= oo e e e e e ettt eeesee e ee e este e et eeeseree e (2.43)
2rperh| Copp |,
When the reservoir fluid is compressible, Xiao and Reynolds’' suggested that log-log constant-rate

drawdown type curves developed for a slightly compressible fluid can be used for slug-test analysis if the
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slug-test pressure and time are transformed to pseudopressure and pseudotime, or for convenience,

adjusted pseudopressure and adjusted pseudotime.

Lee and Holditch™ previously demonstrated that the governing differential equation for a reservoir
containing a compressible fluid can be effectively linearized by the writing in terms of pseudopressure and
pseudotime, and Meunier ez al.” extended the concept by normalizing the transforms, which results in
adjusted pseudopressure and adjusted pseudotime. With adjusted pseudovariables, flow solutions
developed for a reservoir with slightly compressible fluid can be used directly in a reservoir containing a

compressible fluid.

Recall that a material balance during an injection/falloff is written as

dp
4Bp—q,B,.py = PV Ttw © et eeeeeeeeMeeateeeteeteesteeseeateeteete e et anteaateaaee bt eate e st eneeene e st enteenteeneeas (2.44)

Following the definitions of Xiao and Reynolds’' and assuming the wellbore and reservoir fluid are

compressible, the wellbore storage, ¢, V,,, can alternatively be written as

4o MiCaw(Py)
Vi = gm0 o ooV et (2.45)
Hi  HOCgw0

Cw

where ¢, is the bottomhole fluid compressibility at time zero, y, is the bottomhole fluid viscosity at time
zero, Uy is the bottomhole fluid viscosity at initial reservoir pressure, and c,,(p,,) is the bottomhole fluid

compressibility as a function of pressure. An adjusted storage coefficient can be defined as

and the material balance equation can be written as

HiCayy(Pyy) c dp,,

Bp—-q,B = © et heeeeeeteeeeieteeeiheeeeeaattee e ateeeabteeeabteeeaataeeeeanteeeeaanee 2.47
qBp =4y Brpy = Py, o gm0 a (2.47)
Adjusted pseudopressure is defined as
p
z d
pa{“—j j D oo oo e e e e et eee e e s eeeeeeeeeseseneeeeee (2.48)
P Jrel0 HZ

where the subscript're' denotes a reference pressure, which Xiao and Reynolds define as the initial

reservoir pressure, and adjusted pseudotime is defined as

t
ta:(,uct)rej e (2.49)

0 HwCt

where the reference pressure defined by Xiao and Reynolds is the pressure at the instant a differential is
applied, p,. With the adjusted pseudovariables, and assuming ¢, = c,,, the material balance equation can be

written as
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z dp
4Bp—q,B,py = py, (ﬁj (—j Gy W e (2.50)
z i P w dta

The dimensionless adjusted pseudopressure is defined as

P ~ Pai
PanpsD (0) = e (2.51)
Pa0 ~ Pai

and dimensionless adjusted pseudotime is defined as

kt
LG = o e 2.52)

2
¢/uictirw

With dimsionless adjusted pseudovariables, the material balance equation can be written as

z\ 27mkh(p,o—pg) C dp
qBp—q,B,.p, = p,, (ﬁj [—j a0 — Cai < 5 GWD oeeeeeererererenenenenenen (2.53)
z2Ji\pP )y Ky 27pe,ihry; dabD

Gas formation volume factor is defined as

I (2.54)

Vse P ZseTse
where the subscript 'sc' denotes standard conditions, and gas density can be written as

m __ Mp

vV ZRT’

where m is the mass and M is the molecular weight of the gas. With the definition of gas formation volume

factor, the ratio of gas formation volume factor at bottomhole and initial conditions can be written as

B_W = ﬁZ_WT_W (2.56)
Bi zi pyw T

and with the definition of gas density, the ratio of gas density at reservoir and surface conditions is written

as
L (2.57)
p B

or at wellbore and surface conditions written as

%W:Bi. ........................................................................................................................................ (2.58)
w

With the definitions of gas formation volume factor and gas density, the material balance equation can be
written as

_ 27kh(pa0 = Pai) ~ Cq I 4pawD
Bjp 27z¢cn~hrv% Ty dtgp

q-9q; e et eeeeeeeeeseeeeeeesee e et etee e taeenteeetaeebeeeneeeaeennne (2.59)

Defining the dimensionless adjusted wellbore injection rate as
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q9B; u;
G as]) = o T s e e (2.60)
s 27kh(pgo ~ Pai)
the dimensionless adjusted reservoir injection rate as
9B 1
QS = o s e e (2.61)
“ 27kh(pgo ~ Pai)
and defining the dimensionless adjusted storage coefficient as
C T;
Cip = —az_l’ ...................................................................................................................... (2.62)
2rge,ihry Tw
the dimensionless material balance equation is written in terms of adjusted pseudovariables as
S (2.63)

4asD = 49awsD ~CaD i
aD
Since the material balance equation in terms of adjusted pseudovariables is identical to the material
balance equation for a slightly compressible fluid, the slug-test solution is of the same form and written as

D aD) e (2.64)

PawsD D) = PawsD(0Cyp dip
a

where the Laplace domain reservoir solution is written as

Pawh = 21’#0 ettt ettt (2.65)
1+s CaD]_?aD
The radial diffusivity equation for a compressible fluid is written as
L0 O o D 0 (2.66)
ror\ pz or k z ot
which is written in terms of dimensionless adjusted pseudovariables as’' "
L B B (2.67)
D aI"D a}"D 6taD
where ap is written as
G g0 e (2.68)

P ey )i (g
When ap, =~ 1, which is often the case for slug tests,”’ the diffusivity equation written in terms of adjusted
pseudovariables is of the same form as that for a slightly compressible fluid. Consequently, the
dimensionless pressure solutions are the same, p,p = pp, and log-log type curves developed for a slightly
compressible fluid can be used to analyze slug tests with compressible fluids when plotted in terms of

adjusted pseudopressure and adjusted pseudotime.

In terms of adjusted pseudovariables, transmissibility is calculated from a pressure type curve match point

as
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or from the time match point as

a

kh tp/C
= = psp(0C, { D D} OSSOSO OSSOSO (2.70)
H fa Iup

and the skin can be calculated from the matching type curve as

2
s :%m[[CDeZS JMP {%H .................................................................................................. 2.71)

a

The reference conditions in the adjusted pseudopressure and adjusted pseudotime definitions are arbitrary
and different forms of the solution can be derived by simply changing the normalizing reference

conditions.

2.3 Injection/Falloff Testing At Pressures Greater Than Fracture Initiation Pressure

Injection/falloff tests at pressures greater than the fracture initiation pressure will propagate a hydraulic
fracture and are referred to as fracture-injection/falloff tests to distinguish them from injection/falloff tests
at pressures less than the fracture initiation pressure. Fracture-injection/falloff tests are essentially

breakdown or minifrac treatments where the pressure decline is recorded during a shut-in period.

The pressure decline following a diagnostic fracture-injection/falloff test is analyzed using three methods
that result in pore pressure and permeability estimates and a qualitative leakoff-type identification.’’ "™
The before fracture closure pressure decline is analyzed using G-function derivative analysis’™ to identify
the leakoff type and before-closure pressure transient analysis to estimate permeability and fracture face
resistance.””’ After fracture closure, transmissibility and average reservoir pressure can be estimated
during the pseudoradial flow regime using after-closure analysis.®®" Each method is relatively new and
can be used independently; however, combining all three methods into a single cohesive interpretation

scheme provides a series of checks to ensure reasonable pore pressure and permeability estimates are

obtained.

2.3.1 G-Function Derivative Analysis. Classical minifrac analysis using the G-function was first

described by Nolte.” The Carter’® equation for fluid leakoff velocity, v;, is written as

where C; is a constant leakoff coefficient. Multiplying by leakoff area, 4;, and integrating from 0 to ¢,

results in
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which after integration is written as

VL =2CLALNT 8y s ottt (2.74)
where S, is a constant of integration called the "spurt loss coefficient."

For any differential surface element, dA4, of a fracture that is exposed to fracturing fluid at time 7y, the
leakoff rate is written as

Cr
t—7y

oV, =04 B . oo e eeeee e s et e e e s e renenen (2.75)

The leakoff volume at the end of pumping through two fracture faces of one fracture wing is found by
integrating the leakoff rate from O to A, for each fracture face and integrating over each differential

element from 7y to ¢,, that is,

A, t c
Vie= 2J J L QABL , cooveeoeeeeeeeeeeeeeeeeeeeeeeee e (2.76)
0 TN -1y

where the subscript 'e' denotes the end of pumping.

Nolte pressure-decline analysis assumes fracture growth during an injection is modeled by a power law

relationship’’
AD S EDN e e (2.77)

where Ap is the dimensionless fracture area of one face of one fracture wing, 4Ap = A(t)/A., tpy is the
dimensionless time defined by Nolte, f5y = t/t,, and ay is the fracture growth exponent, which lies between

Y and 1. With the dimensionless variables, and defining 7yp by

D = Tt—N - A%“N e e e oo e (2.78)
n

the leakoff volume at the end of pumping can be written as

1,1

1

Vie zchAe\/ZJ J —l/adthAD e (2.79)
0 4PN ipy —AHY

Defining the dimensionless loss-volume function at the end of the injection, gy(a), as

1l
1
go(aN):J J’ —l/adthAD N (2.80)
0 AYIN \Jtpy — AN

then
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The definition of the dimensionless loss-volume function can be integrated analytically and the result

written as’’

CIN\/;F[OCN]

go(OlN)= 3 5 rereresesesesesesrenerenenenenenenenenenenenenenenananananananananananananananananananananananananananananananas

where I'[-] is the Euler gamma function.

Nolte” assumes a constant fracture area during the shut-in period prior to fracture closure, which allows
the dimensionless loss-volume function to be defined beyond the end of an injection. Defining the Nolte

dimensionless shut-in time as

then an analogous derivation begins with the leakoff-volume integral written as

1o+t
J L Bt e (2.84)

N Vt_TN

With dimensionless variables, the leakoff-volume integral is written as

4,

VL(te+At) = 2J
0

1 1+AtDN
1
ViGy+a) = 2CL Aete e DAY e (2.85)
0 AI/O!N ¢ _Al an
D DN ~“p

The dimensionless loss-volume function at any shut-in time after the injection is defined as

% 1 1+AtDN
g(Mtay) = —=Ue A —JJ S A (2.86)

201 defte 0 AleN \/tDN—A%“N

which has a closed-form solution written as’

dan[Aipy +[ 241+ Atpy ]F[l/2,aN;l+aN;(1+AtDN)_1}

At,an) = e ee e e e ee————— 2.87
g(At,ay) +2ay (2.87)

where the hypergeometric function is defined as”

Fla,bic;d]= ) %% ....................................................................................................... (2.88)
n=0 n ’

Nolte*® observed that a material balance of one fracture wing during closure can be written as
d Vf dwy

1 Ap) = — T = m Ay 2.89
9y Ag) =—— e (2.89)
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where 1 is the average fracture width and 4. is the area of one fracture face. Average fracture width can

also be related to fracture net pressure by
Wy _(Pw=Pc) _Pn (2.90)
Spo S
where p,, is the wellbore pressure, p. is the fracture closure stress, and p, is the fracture net pressure.
Fracture stiffness, S5 is defined as the reciprocal of fracture compliance and is written for the three

common two-dimensional fracture models as®

— Vertical Plane Strain - PKN
hy
S r= 28 1 Horizontal Plane Strain - GDK . .....cccooiiiiiieiieie et 2.91)
7 | 2L 7
2
37 Radial
32Rf

Assuming fracture compliance is constant, the material balance can be written as

—%z—;—;%, .......................................................................................................................... (2.92)
and with definition of the leakoff volume at the end of pumping (Eq. 2.79), the material balance is written
as

dpn 2CLSf 1 dAD

i \/g J \/W ) ettt e et st h e bt e h et sa e b a e e b bt a e b r e saeeneene (2.93)

04/IDN AD

which can be integrated from the end of pumping to some later time during the shut-in and written as

1 rl+Atp 1,1
1 1
Apn = ZCLS](‘\/E J J —l/adthAD —J J —l/adthAD ORI (294)
0 A%aN W’tDN_AD N 0 A%aN ”tDN_AD N

With the definition of the loss-volume function, the net pressure difference can also be written as

Ay =2C1S 1 [(ALD . aN ) = 80 (AN )] wooversieeriieesiceestessessees et (2.95)

Nolte defines the dimensionless difference function, i.e., the G-function, as’

G(AID,O(N)=%[g(AtD,O(N)—g0(O(N)]. ...................................................................................... (2.96)

With the G-function definition, the net pressure difference can be written as
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Provided a reservoir is homogeneous and the fracture area is constant during a shut-in period, a graph of
pressure versus the G-function will fall along a straight line before fracture closure, and the leakoff
coefficient is proportional to the slope of the straight line. Fracture closure is interpreted as the point that

the pressure data begin to deviate from the straight line.

Castillo®' observed that pressure decline data on a G-function plot will not fall along a straight line in a
reservoir exhibiting pressure-dependent leakoff. Pressure-dependent leakoff, which can be indicative of
naturally fractured reservoirs, can be identified by a Cartesian graph of the pressure derivative, dp,/dG,
versus the G-function. A constant pressure derivative before fracture closure indicates a homogeneous-

acting reservoir, but a continuously changing pressure derivative can indicate pressure-dependent leakoff.

A comprehensive G-function graphical technique for qualitatively identifying the leakoff type was
presented by Barree and Mukherjee.” G-function derivative analysis uses graphs of pressure, the pressure
derivative, and a "superposition" derivative, Gdp,,/dG, versus the G-function to identify the leakoff type

and provide a definitive indication of hydraulic fracture closure.

The leakoff type is identified using the characteristic shape of the pressure-derivative and superposition-
derivative curves. Fig. 2.3 contains the G-function derivative graphs for four common leakoff types
observed in low permeability “hard rock” sandstones.*” The four common leakoff types in "hard rock"
sandstone reservoirs are normal, pressure-dependent leakoff from dilated fractures/fissures, fracture-height

recession during shut-in, and fracture-tip extension during shut-in.”*

Normal leakoff behavior occurs when fracture area is constant during shut-in and leakoff is through a
homogeneous rock matrix. With G-function derivative analysis, normal leakoff is indicated by a constant
derivative and when the superposition derivative data fall along a straight line that passes through the
origin. Fracture closure is identified when the superposition derivative data deviate downward from the

straight line.

Pressure-dependent leakoff from dilated fractures/fissures is indicated by a characteristic "hump" in the
superposition derivative that lies above a straight line drawn from the origin and through the normal
leakoff data. The fissure opening pressure is identified at the end of the hump when the superposition
derivative data begin to fall along the straight line, and fracture closure is identified when the

superposition derivative data deviate downward from the straight line.
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Fig. 2.3—G-function derivative analysis common leakoff types.®

Fracture-height recession during shut-in is indicated when the superposition derivative data fall below a
straight line drawn from the origin through the normal leakoff data. Fracture height recession is also
indicated by a concave down pressure curve and an increasing pressure derivative. Hydraulic fracture
closure is identified when the superposition derivative data deviate downward from a straight line drawn

through the normal leakoff data.

Fracture-tip extension during shut-in occurs when the fracture continues to grow after the end of the

injection. Tip extension is indicated when the superposition derivative data lie along a straight line that
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extrapolates above the origin.

2.3.2 Before-Closure Pressure Transient Analysis. The pressure decline following a fracture-
injection/falloff test can be divided into two distinct regions: before-fracture closure and after-fracture
closure. Before-closure pressure transient analysis uses pressure transient methods to determine
permeability from the before-fracture closure decline data. Mayerhofer and Economides® divide the
pressure gradient between an open, infinite-conductivity fracture and the reservoir into four components

written as
Ap(t) = Ap,- () + Apgie (1) + Appiz O+ Apﬁz (B) e oo (2.98)

The pressure drop in the polymer invaded zone, Ap,,.(¥), and the filtrate invaded zone, Apy.(f), are assumed
to be negligibly small; thus, the pressure gradient consists of a reservoir component, Ap,(¢), and a pressure
drop across the filtercake, Ap...(f), which is analogous to Cinco-Ley and Samaniego's fracture-face skin®

defined as

b

| k

S, = S L 2.99
5 2Lf{kfs } (2.99)

where by is the damage zone width and kg is the damage zone permeability. Mayerhofer and

Economides®’ account for variable fracture-face skin by defining resistance as

bp(t
Rfs(t):fT(), .............................................................................................................................. (2.100)
fs
and dimensionless resistance by™"
Re(t
Rp(t) = ]Ij()z ti ................................................................................................................... 2.101)
0 e

where R, is the reference filtercake resistance at the end of the injection.”’

With the definition of resistance and dimensionless resistance, variable fracture-face resistance is written
as

_ wkRyRp(t) 7bfs  mkRyRp (1)

St 2Ly 2Ly 2Ly

....................................................................................... (2.102)

The pressure drop in the reservoir is modeled with the early-time vertical fracture infinite-conductivity

solution, which in dimensionless form is written as®

PUDW) = JTLID + oottt sttt (2.103)

DD = e (2.104)
m qBu
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Solving for the pressure difference, Ap(#) = p,(t;) — p;, the early-time infinite-conductivity fracture solution

can be written as

(qf)j
Ap(t}) = /47rk¢c, @, \/— ....................................................................................................... (2.107)

The pressure gradient at the end of pumping, Ap(z,), is obtained by applying the principle of superposition

to account for the variable leakoff rates and fracture area during propagation. Note that ¢, = 0 at z, =0,

and using superposition,

| Bu @ring)j (i) j1 —
Ap,(t,) = n k¢ct21[ ), Iy e =11 » wevveeereeenennnnnnensnnnnnennn s (2.108)

where 'ne' denotes the time index at the end of the injection. Similarly, the pressure drop from fracture-
face resistance is written as

qBu 7kRyRp (1)

S et eeeeeeteeeeeeeeeeeeeieteeeeeeeiea ———eteeeieani———eteeetaai———rteeeeaaa—artteeeeeinraareeaes (2.109)
2rkh 2Lf

Apgfs (1) =

or

BuRy q¢(1)

Apsfs ()= 2 AQ)

3N 2 (2.110)

Mayerhofer and Economides®’ note that the rate-dependent skin is a steady-state pressure drop that is a

function of the "current" leakoff rate and written as

BuR
Apeake(tn) = Ap i (t) :%(RD),Z(W)”. ............................................................................... 2.111)

The pressure difference at the end of the injection is written as

AD(1y) = APy (t0) + ADoie (fo) » wooeeeseeesseesseesseesseessesssesssesesessseeeseeesessesess s ess s 2.112)
or
_ 32 (Wzn])] (W,inj)j—l —
U arige Zl{ Ay Ve

BuR
L BuRy
24,

(RD Ve (@i Ine - -oovereseeessssessssssssssssssnetssessoessoesos oot (2.113)
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The pressure difference during the shut-in period is calculated by subtracting the pressure drop during the
injection from the superposition of all pressure solutions corresponding to each leakoff rate from the

beginning of the injection. The pressure difference is written as

Ap(ty) = [pi —py(ty )] —[pi -pr (tne):|
= pf(tne)_pf(tn)

| ne Gr,in)) ;i Gr,in) j1
- ty—ti_
JZJ D, (D 7
B*u N i (90 @1 | ——
drkge | Al Oy Gy VT
(q¢ ,in ) (90,inj) j—1
_z[ y)j \diin)j ] [
= o
B
2‘1’4 [(RD)(q0)n = (RD e @t ingIne |- oo (2.114)

Provided an estimate for the leakoff rate from one fracture wing, ¢,, is available, Eq. 2.114 models the
pressure decline following a fracture-injection/falloff test before hydraulic fracture closure. The before-
closure leakoff rate can be written as

4.dAp); 4 (Pja-pj)
S d(At); Sf (tj—tj-1)

(q0); = e (2.115)

During fracture propagation, the leakoff rate is bound between upper and lower limits as demonstrated by

Nolte.® The leakoff rate is written as
4CL(4)

t:
R
(qr); = Y ettt (2.116)

Vi

Egs. 2.114 through 2.116 can be used to simulate and history-match a before-closure pressure decline

Upper Bound

Lower Bound

following a fracture-injection/falloff test.

Valké and Economides™ modified the method by writing the reservoir pressure drop as

Ap,,(t)_E [(q/)] (40) - lprD[(t J_l)LfD} ......................................................... 2.117)

and evaluating the dimensionless pressure function, p,p, with respect to the fracture length, (L),, at time ¢,
as opposed to some other time ¢ corresponding to (4);. Valké and Economides™ also assume that the first

ne + 1 leakoff rates are equal; thus



(q7); = Constant, T<i<HEH1, i (2.118)

where ne is the index corresponding to the end of the injection. The pressure gradient at a time ¢, during

the pressure decline can now be written as

Bu| <
Pf(tn)_pi:_ﬂkh JZZI[(‘I()]'_(‘M)j—lJPfD[(tn_tj—l)LfD]
BuR
+ ;’AO(RD)n(qE),,, ............................................................................................ (2.119)

which can also be written as

(a0); P [(tn )Lﬂ)}“[(qé Je+2 = (@0nes1]P D |:(tn -fne+1)LfD]
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With dimensions, the pressure difference is written as

(Pne = Pret1) ;
n
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A graphical method for estimating the permeability and fracture-face resistance from the pressure decline

following a diagnostic fracture-injection/falloff test has been developed from Eqgs. 2.114 and 2.121.7"

Appendix A contains a new derivation of before-closure pressure-transient analysis in terms of adjusted
pseudovariables, and demonstrates the development of the "specialized" Cartesian graph for determining
permeability and fracture-face resistance. Table A-2 contains the specialized graph plotting functions in
terms of pressure and time and adjusted pseudopressure and time. Additionally, Table A-3 contains the
plotting functions in terms of pressure and time and adjusted pseudopressure and adjusted pseudotime for

the specialized graph.

2.3.3 Before-Closure Pressure Transient Analysis in Dual-Porosity Reservoirs. Ehlig-Economides,
Fan, and Economides® formulated the Mayerhofer and Economides®’ model for dual-porosity reservoirs

using Cinco-Ley and Meng's™ early-time solution for flow from an infinite conductivity fracture written as



i’ (2.122)

where for dual-porosity reservoirs,

27k gh[ py ()= ;]

- e 2123
P B ( )
and
k ot
tp = sz e (2.124)
¢ﬂCth

The early-time infinite-conductivity solution can be written as

oprp = /ﬂa)thD PPN (2.125)

which with the definitions of dimensionless pressure and dimensionless time for a dual porosity reservoir

can be written as

_ (C]E)j
Ap(t;) = /4mkﬂ)¢ct @, \/_ ................................................................................................. (2.126)

The reservoir pressure difference for a single porosity reservoir (Eq. 2.107) differs from the dual porosity

reservoir pressure difference by the permeability, &, and the product of storativity ratio and bulk fracture
permeability, wky,. The fracture face pressure difference, Ap.u., remains as defined in Eq. 2.111, and after

applying the superposition principle, the pressure gradient at can be written as

Ap(ty) = [Pi —prty )J —[Pi -rf (tne):|
=Py (the) — pPf (tn)
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where the leakoff rate during closure is defined by Eq. 2.116, and the leakoff rate during the injection is
defined by®
(Vinj VL)

...................................................................................................................... (2.128)
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In a dual-porosity reservoir, therefore, before-closure pressure-transient analysis using the specialized
Cartesian graph results in an estimate of fracture-face resistance and the product wky. Current methods
only allow the product to be calculated, and estimating fracture storativity or bulk-fracture permeability
requires additional testing. Additionally, the Ehlig-Economides, Fan, and Economides® model does not
account for deformation during the injection, that is, the method assumes the fracture network does not
dilate and contract during a fracture-injection/falloff test. Intuition suggests otherwise, and G-function

derivative analysis confirms natural fracture dilation/contraction is common.>*

2.4 After-Closure Analysis

Concurrent with the development of before-closure analysis, Gu et al.** and Abousleiman et al.®'
examined the pressure decline after fracture closure and presented after-closure analysis theory.
Abousleiman ef al.’' assume that a homogeneous reservoir with impervious bounding layers is penetrated
completely by the wellbore, and assume that an injection induces a hydraulic fracture across the entire
formation thickness. Additionally, they assume that the effect of hydraulic fracturing on the reservoir
pressure can be modeled by fluid sources distributed along the fracture trajectory with the magnitude of

each fluid source proportional to the fracturing fluid leakoff rate at that position during the injection.

Abousleiman, et al.®' state that the pressure response of a unit volume injection from a distribution of

instantaneous point sources can be written as

B e (2.129)
Arkht

Ap(xayat) = P(X,y,l)_pi =
The fracture trajectory is along the x-axis with the fracture extending from —L, < x < L,. Additionally, since
the fracture is closed, the fracture width is zero, and y’ = 0. The exposure time of a point, x’, during the
injection along the fracture trajectory lies between z,(x") < ¢’ < 7,(x’), and assuming a variable leakoff rate,

and using the principle of superposition, the pressure response can be integrated and written as

Jle er(x’) O ey 4k(t—7)

Ap(0,0,6) =+

x',t ATAX" . e 2.130
= qp(x,t') ; ( )

L, 74(x)

As a mathematical convenience, the reference time in Eq. 2.130 can be adjusted to the closure time by

defining®’
TOUX") = T (X" ) = T4 (X) 5 et (2.131)
TC D T N ¢ 0 T (2.132)
and
L (2.133)

Assuming the fracture is symmetric about the wellbore, then Eq. 2.130 can be written as
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The large-time asymptotic solution is developed by recognizing that as t — o, t; = At,., and At,. =t;—71;
thus, the exponential term in Eq. 2.134 tends to one, that is,

lim o e /A=) _

e e (2.136)
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and

79(x")

H L, '
Ap(At,.) = ——— TYATAX" © o 2.137
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At closure, the volume injected into one fracture wing, V;,;, can be written as

L¢ p7o(x") ,
ij:jo.fo GUONATAX' ) oo (2.138)

and the large-time asymptotic solution is written as
/JVinj 1
27kh Aty

Oy (2.139)

Eq. 2.139 suggests a Cartesian graph of p,, versus 1/At,. during pseudoradial flow will result in a straight
line with transmissibility,
Ve .
LU et e e e e (2.140)
Ho ATmaepy
where m,,, is the slope of the line. A log-log graph of p,, — p; versus 1/At,. will have a unit slope, and a
log-log graph of the pressure derivative,
dAp(Atye) _ 1 ddp(Atye) _ HVin 1
dlin(l/At,.)] At d(/At,.)  4xkh Aty

................................................................................ (2.141)

will also have a unit slope and overlay the pressure curve during pseudoradial flow. The implication of
the model is that after "sufficient" time, the pressure behavior of the reservoir is not influenced by the

fracture propagation or the final fracture dimensions created by the injection.

Nolte*” also describes the after-closure pressure behavior during the pseudolinear flow period. Nolte states
that the pressure behavior of a finite-length fracture subject to constant pressure leakoff and zero flux after
closure or the pressure behavior of an incremental-length of a propagating fracture within the linear-flow

regime can be written as
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Eq. 2.142 suggests that a log-log graph of p,, — p; versus F;’(At,, t.) and a log-log graph of the pressure
derivative versus F,’(At,., t.) will have a % slope during pseudolinear flow, but the two curves will be
offset by a factor of 2. A straight line drawn through the pseudolinear flow data on a Cartesian graph of p,,

versus F;(At,., t.) will have a slope equal to

Maepl = CL k’;’c‘t oo (2.143)
2.5 Discussion of Existing Injection/Falloff and Fracture-Injection/Falloff Test Analysis Methods
Injection/falloff test interpretation, including both impulse and slug tests, is fundamentally limited® by the
requirement that average reservoir pressure must be known accurately to calculate transmissibility from
the falloff data. Additionally, field implementation of a slug-test requires a finite time of injection, but the
analysis method assumes an injection is instantaneous. Butler® notes that an injection can be considered
instantaneous when the time of injection is short relative to the reservoir response. However, quantitative

guidelines for when an injection can be considered as occurring instantaneously are not available.

Injection/falloff test theory used to analyze slug-test data also assumes that the pressure during an injection
must remain below the fracture propagation pressure and assumes that if a fracture exists, it was created
prior to the injection. Thus, when a fracture is initiated during an injection, the assumptions of existing

slug-test solutions are violated.*’

Like an injection/falloff test, a fracture-injection/falloff test analysis requires an accurate average reservoir
pressure to calculate transmissibility from the falloff data. Current before-closure models for fracture-
injection/falloff tests are also highly idealized, and field tests routinely deviate from ideal behavior. For

example, Craig et al.™

have shown that only 15% of 994 tests analyzed in Rocky Mountain basins
exhibited idealized "normal" leakoff behavior. Additionally, before-closure pressure-transient analysis
fails to adequately model the pressure decline with nonideal leakoff behavior. For example, pressure-
dependent leakoff can be indicative of a naturally fractured or dual-porosity reservoir, and although Ehlig-
Economides et al.*’ formulated before-closure pressure-transient analysis for dual-porosity reservoirs,
field examples demonstrate that the model fails when natural fractures deform (dilate and contract) during

an injection/falloff test.*?

With existing models, only specific and small portions of the pressure decline during a fracture-
injection/falloff test sequence can be analyzed. Before-closure data, which can extend from a few seconds
to several hours, can be analyzed, and after-closure data can be analyzed provided pseudoradial flow is

observed. However, in a low permeability reservoir or when a relatively long fracture is created during the
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injection, an extended shut-in period—hours or possibly days—are required to observe pseudoradial flow.
A quantitative transmissibility estimate from the remaining pressure falloff data, which represents the vast

majority of the recorded pressure decline, is not possible with existing models.

A new fracture-injection/falloff model accounting for fracture creation, fracture closure, and afer-closure
diffusion is presented in Chapter III. Although the new model still requires an accurate estimate of
reservoir pressure to calculate transmissibility from the pressure falloff data, the new model removes other
before- and after-closure analysis limitations. Specifically, the new model can be used to demonstrate
when a finite injection time can be considered as occurring instantaneously — which based on limiting-case
solutions, allows the pressure difference recorded during the falloff to be transformed to an equivalent
constant-rate pressure difference and analyzed using quantitative type-curve analysis. Consequently, all
data recorded during a fracture-injection falloff test is used to construct a type-curve match to estimate

transmissibility.
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CHAPTER I

MODELING A FRACTURE-INJECTION/FALLOFF TEST IN A RESERVOIR
WITHOUT A PRE-EXISTING FRACTURE

3.1 Introduction

When the injection time of a fracture-injection/falloff test is short relative to the reservoir response, the
injection can be considered as occurring instantaneously, and slug-test analysis methods can be applied to

the falloff data as though the created fracture were pre-existing.

The preferred slug-test analysis method converts variable-rate pressure falloff data to an equivalent
constant-rate pressure difference by integration of the recorded pressure difference with respect to time.
After conversion, constant-rate drawdown type curves are used for quantitative type-curve analysis.
However, during the falloff period the created fracture closes, which creates a variable storage problem

that requires new constant-rate drawdown solutions for type-curve matching.

Chapter III presents analytical constant-rate drawdown solutions for a well in an infinite slab reservoir
containing a single dilated vertical fracture with the initial reservoir pressure above the minimum insitu or
closure stress and with fracture storage and wellbore storage as follows:
o Constant before- and constant after-closure fracture and wellbore storage.
e Constant before- and constant after-closure fracture and wellbore storage with fracture-face and
choked-fracture skin.
o Fracture flow during closure with constant before-closure fracture and wellbore storage and radial

flow after closure with constant wellbore storage and skin.

A new fracture-injection/falloff model accounting for fracture creation, fracture closure, and after-closure
diffusion is also presented to demonstrate when slug-test analysis methods are applicable. By considering
fracture propagation as time-dependent storage, three new models are presented for a fracture-
injection/falloff sequence for a well in an infinite slab reservoir with a single vertical fracture created
during an injection with fracture and wellbore storage as follows:
e Equivalent propagating-fracture storage and before-closure storage with constant after-closure
storage.
e Time-dependent propagating-fracture storage, constant before-closure storage, and constant after-
closure storage.
o Time-dependent propagating-fracture storage and before-closure storage with linear flow from the

fracture before closure and after-closure radial flow with constant wellbore storage and skin.
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Limiting-case solutions of the fracture-injection/falloff models and numerical evaluations are also
presented to demonstrate when a fracture-injection can be considered as occurring instantaneously and

slug-test analysis methods can be applied to the falloff data for quantitative type-curve analysis.

3.2 Constant-Rate Drawdown Solutions With Variable Fracture Storage

Constant-rate drawdown solutions for a well in an infinite slab reservoir containing a single dilated
vertical fracture with the initial reservoir pressure above the minimum in-situ or closure stress and with
variable fracture and wellbore storage are derived in Appendix B. The drawdown solutions assume the
reservoir and fracture are initially at a constant uniform pressure sufficient to keep the fracture open, but as
the pressure declines during the drawdown, the fracture closes. Consequently, the new pressure-transient

solution accounts for variable storage before- and after-closure during a constant-rate drawdown.

3.2.1 Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage. Correa

and Ramey®* solved a changing storage problem by using the unit-step function written as
0 t<a
U. =U(t—a)= ’ S eeeeeeeteeeeeeeeeeeteeeieeeeteeeieeiireteeeeeieaii——eteeeeiaai———tteeeeiaai——aateeeeaanaraaaeeeeianats 3.1
a (t-a) {1 , t>a 3-1)

and writing a material balance equation valid at all times during a drawdown. During a variable storage

drawdown in a well with a closing fracture, the before-closure dimensionless material balance equation is

written as
dp
ap =4wp —Cheb dtvg, .................................................................................................................... (3.2)
L
where the dimensionless sandface flow rate is defined as
q
L/ 5 R S P P PP PP PP PP PP PP PPTRPPPP (3 3)
9t
with ¢ being the sandface flow rate and ¢; being the well production rate. Dimensionless pressure is
defined as
27wkh(p; — pyy, (1))
PwD = ettt bbbttt ettt naneas (3.4
qBu
and dimensionless time is defined as
kt
‘LD = e (3.5)
¢ﬂCtL f
A dimensionless before-closure storage coefficient is defined as
C
CpeD = % 5 eeeententeteeteeueeheehtea e et b e et e eh e bt eh e en e eat ettt e he e b e eh e e ateat e b e ekt eh e eheeb e en e et e nteeb e bt eheen s et e tenten (3.6)
2rpe,hl

s

where the before-closure storage coefficient is written as
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dv

ettt ettt ettt et e et et e ettareeneenteneens (3.7)
dp,,

Cpe =,V + 2Cfo +2
and V;is the volume of one wing a fracture symmetrical about the wellbore.

An after-closure storage coefficient is written as

where V. is the residual volume of one fracture wing, and the dimensionless after-closure storage
coefficient is written as

C
CoeD = LZ © ettt ettt ea et h et bbbt a bt et e et e bt e bt bt e bt et e et eh et ehe e bt e bt et e et e e e eanesaaenheen (3.9)
2rpe,hl i

In terms of dimensionless variables, the after-closure material balance equation is written as

oD e (3.10)

62-64

Using the technique of Correa and Ramey, ™" a dimensionless material balance equation valid at all times

during the drawdown is written as

d d
qD :(1_U([C)Lij[qWD _CbcD d:;Lfg]-i_U(tc)LfD [qWD _CacD df;fg}, ................................... (311)

where (%.)p is the dimensionless fracture closure time.

A detailed derivation is contained in Appendix B, but in general the drawdown solution is developed by
first transforming the material balance equation to the Laplace domain. Since the governing differential
equations and boundary conditions are linear, the superposition principle can be applied by transforming
the superposition integral to the Laplace domain and combining with the transformed material balance
equation. After algebraic manipulation, the solution is obtained by inverting back to the time domain.
Thus, for a well in an infinite slab reservoir with an open fracture supported by initial reservoir pressure

that closes during the drawdown with constant before- and after-closure storage, the solution is written as

t)rm ,
pch(szD)=pacD(thD)—(cbcD—CacD)jO T PaeDULD ~TDIPieD EDMTD s oo (3.12)

where p,.p denotes that the pressure solution is for a constant rate and p,.p is the dimensionless pressure
solution for a constant-rate drawdown with constant after-closure storage, which is written in the Laplace

domain as

D (3.13)

PacD = B _
1+s CachjD

and pyp is the reservoir solution for a single vertical infinite- or finite-conductivity fracture.
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3.2.2 Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage With
Fracture-Face and Choked-Fracture Skin. Fracture volume before closure is greater than the residual
fracture volume after closure, V>V, and the change in fracture volume with respect to pressure is
positive. Thus before-closure storage, when a fracture is open and closing, is greater than after-closure
storage, which is written as

de
Cfo +E>Cfor. ..................................................................................................................... (3.14)

Consequently, decreasing storage should be expected during a constant-rate drawdown with a closing
fracture as has been demonstrated for a closing waterflood-induced fracture during a falloff period by

Koning and Niko,” Koning,”' and van den Hoek.”***

Can storage appear to increase during a constant-rate drawdown with a closing fracture? Spivey and Lee’
describe a variable wellbore storage model for reservoirs with natural fractures of limited extent in
communication with the wellbore. The variable storage model includes a natural fracture storage
coefficient and natural fracture skin affecting communication with the reservoir, and a wellbore storage
coefficient and a completion skin affecting communication between the natural fractures and the wellbore.
The Spivey and Lee radial model with natural fractures of limited extent in communication with the

wellbore demonstrates that storage can appear to increase when the completion skin is greater than zero.

The concept of Spivey and Lee” is easily extended to a constant-rate drawdown for a well with a vertical
hydraulic fracture by incorporating fracture-face and choked fracture skin as described by Cinco-Ley and
Samaniego.” The problem is formulated by first considering only wellbore storage and writing a

dimensionless material balance equation as

d
4p =dwp -Cp d’t’wD, ..................................................................................................................... (3.15)
LD

where Cp is the dimensionless wellbore storage coefficient written as

Cp = % oot (3.16)

2rpe,hl ’

and C is the wellbore storage coefficient defined as

C = € e oereereseses st (3.17)

The dimensionless material balance equation is combined with the superposition integral in the Laplace

domain, and the wellbore solution is written as

D * O ek (3.18)

l_7wD - s[l+SCD |:sl_7wa ""(st)ch ﬂ
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where (Sg).; is the choked fracture skin and p,,p is the dimensionless pressure solution outside of the
wellbore in the fracture. The solution outside of the wellbore accounts for variable fracture storage and is

formulated by writing a before-closure dimensionless material balance equation as

dp,,
4D = 4D ~Cfoe dthfg ............................................................................................................... (3.19)
where the dimensionless before-closure fracture storage is written as
C
CpoeD :Lz, .......................................................................................................................... (3.20)
2rpe,hl r
and the before-closure fracture storage coefficient is written as
d Vf
Cq,.=2ceVr+ 2— ................................................................................................................. (3.21)
foe =2y V2o
The after-closure dimensionless material balance equation is written as
dp,,
4D =D ~CacD ffi ............................................................................................................... (3.22)
where the dimensionless after-closure fracture storage is written as
C
cﬂch:ch, .......................................................................................................................... (3.23)
2rpe,hl r
and the after-closure fracture storage coefficient is written as
CfaczchVfr' ................................................................................................................................. (324)

A dimensionless material balance equation written for flow outside of the wellbore in the fracture that is

valid at all times during the drawdown is written as

dp dp
ap :(1_U(tc)Lﬂ)J[qWD ~C fheD dt[jffz]j} Ut (qu C fucD d:jg} ............................. (3.25)

The drawdown solution outside of the wellbore in the fracture for a well in an infinite slab reservoir with
an open fracture supported by initial reservoir pressure that closes during the drawdown with constant

before- and after-closure storage is written as

), ' '
PuDULD) = P fucD L)~ (€ oD =€ fued)] /D PlacDULD ~TD)PwD (FDITD » wovvvvvvvvvnne (3.26)
where pj.p is the dimensionless pressure solution in the fracture for a constant-rate drawdown with

constant storage, which is written in the Laplace domain as

spm+S

P/DTOf (3.27)
s[1+scfacD(sﬁfD +SfS)J

and pyp is the reservoir solution for a single vertical fracture and S is the fracture-face skin.

P facD =
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The Laplace-domain drawdown solution outside of the wellbore in the fracture is written as

_ _ _ ) —st ,
BugD = P facD _(CfbcD _C/acD )SpfacDJ c¢’LfD e LfD PiyD (thD )dthD B (3.28)

0

3.2.3 Constant-Rate Drawdown With Constant Before-Closure Storage, Constant After-Closure
Wellbore Storage, and After-Closure Radial Flow With Skin. When an open hydraulic fracture closes
completely with little or no retained conductivity, the production can no longer be regarded as flowing
from the fracture alone and the system can effectively convert to radial flow. The before-closure

dimensionless material balance equation remains the same and is written as

dp
41D = %D ~Cpe dth, ................................................................................................................ (3.29)
LfD

where g;p denotes the flow rate is at the fracture sandface. With complete closure, the after-closure storage

does not include the fracture volume and a material balance equation is written as

dp D
4p = 0up —Cp d’Z‘D ) (3.30)

where g,p is the sandface flow rate of a radial system.

A drawdown solution can be developed using the unit-step function and writing the dimensionless
wellbore pressure as a sum of superposition integrals reflecting flow from the fracture before closure and

from a radial system after closure. The dimensionless wellbore pressure is written as

‘LD dp oy (t7 9 —71)

: U —Tp
J qu(TD)|:1_U(tC)LfD:|dt—dTD

0 LD (3.31)
DD = e .
" [LfD dpSD(thD—TD)
R

where pyp is the dimensionless reservoir solution for a well with a fixed-length fracture, and the

™D
0

dimensionless reservoir solution for a radial system with skin effect is written as

psD(thD):prD(thD)+S’ .......................................................................................................... (3.32)
and p,p is the dimensionless radial flow reservoir solution and S is the skin effect. Note that dimensionless
time is defined in terms fracture half-length; thus, fracture half-length is the characteristic length used in

the dimensionless radius definition, 7, = r,/L;, and radial solution.

After converting the material balance equations and the superposition integrals to the Laplace domain,
simplifying, and inverting back to the time domain, a drawdown solution for a well with an open fracture
that closes during the drawdown with constant after-closure wellbore storage and after-closure radial flow

1s written as
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P L) =Pt~y |+ s | i1~ |

t
Pren (D) = —Cach(,ch)szD Py tLD ~TD)Piyen EpMTD s (3.33)

() , :
| ~CbeD Jo© o, 'L ~7p)Pywep (FD)TD

3.3 Constant-Rate Drawdown Numerical Solutions With Variable Fracture Storage

3.3.1 Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage. The
solution for a constant-rate drawdown in an infinite slab reservoir producing through a finite- or infinite-

conductivity fracture with constant before- and after-closure storage is written as

(IC)LfD ' ’
pch([LfD):pacD(thD)_(CbcD_CacD)j() paCD(thD—TD)pWCD(TD)dTD. ................... (334)

After integrating-by-parts, the solution is written as

PacD (tL]D) +(CpeD ~CacD)PacD [thD —(t )L]D } PweD |:(tc )LfD }

chD(thD) = (’c)LjD s eerrreenreenraens (3.35)
~(Cpep ~CaeD) PweD(TD)PacD (L ~TpMTD
and after discretizing the integral term, a numerical approximation is written as
PacD (thD In T (CpeD ~CaeD)PachD [([LfD In (thD )j :| PyweD [([LfD )j }
PweDULD)i — PyweDCLD)i -1
()i =rymli-1 R (3.36)

PweDULDIn =

J
~(Cpep =Cacp) 2 || | PweDULD)i—1~ PweD1D)i -2
. (tL)i—1=(p)i-2

| *PacD [(tLjD In=(rm)i-1 )J

where j is the time index at closure. Note that for n <j, pu.p[(t,p), — (tp);] = 0.

A drawdown in an infinite slab reservoir producing through an infinite-conductivity fracture with constant
before-closure storage and decreasing after-closure storage is illustrated in Fig. 3.1, which is a log-log
graph of dimensionless pressure versus dimensionless time for Cy.p = 10, C,ep =1, and (t.)p = {10'5 , 10,
107, 10%}. A drawdown in an infinite slab reservoir producing through an infinite-conductivity fracture
with constant before-closure storage and increasing after-closure storage is illustrated in Fig. 3.2 with

Chep =1, Cuep = 10, and (2.)p = {107, 10,107, 107},
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Fig. 3.1—Constant-rate drawdown in a reservoir with an open fracture with constant before-closure
storage, decreasing constant after-closure storage, and variable dimensionless closure
time.
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3.3.2 Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage With
Fracture-Face and Choked-Fracture Skin. The dimensionless pressure outside of the wellbore in the
fracture for a constant-rate drawdown with constant before-closure storage, after-closure storage, and

fracture-face skin is written in the time domain as

Ueyp :
prD(tLﬂ)) = pfilCD(thD)_(CﬂJCD —CfacD)jO /LD p‘ﬂlCD(thD —Z'D)prD(TD)dTD 5 eereenaenans (3.37)

which is descretized as

_pfacD CLpIn +(C oD ~C faeD)P fach [(thD In =) ] p’wa [(thD )j}

I Pw D)~ Py ULm)i-1
(rm)i~(rm)i-1

pw]@(thD)n =

J
~(Cppep ~Cracp) X || | PwpUrm)i—1 ~ Py U1m)i-2
=1 (trm)i-1-(pp)i-2

I %P facp | (tLDIn ~p)i-1) |

1. ..(3.38)

The dimensionless pressure outside of the wellbore in the fracture is written in the Laplace domain as

J(tc )LD e—sthD

PwfD =P fucD =€ peD =€ fucD)P facD o PfDULDILLD > woovvvvvvvvveeevnesss (3.39)

and after integrating-by-parts is written as

t)m P [(’c)LfD}

@) —st
“(CpeD ~CaeD )Sz JO ep e P Pw LMD

1= (CbeD - CfacD)Se_s

PyD =P fucD C s (3.40)

The Laplace domain wellbore pressure solution with wellbore storage and choked-fracture skin is written

as

PufD * S fs)eh e (3.41)
s[145CD [y + (S e ||

Before fracture closure, the dimensionless pressure in the fracture outside of the wellbore is simply a

PwD =

function of before-closure fracture storage and fracture-face skin and can be written in the Laplace domain

as

P/D*Sf e (3.42)
s[1+scﬂ,cD EZ> +Sﬁﬂ

The before-closure dimensionless wellbore pressure accounting for fracture-face skin, before-closure

PwD =

storage, choked-fracture skin, and wellbore storage is solved by numerically inverting® the Laplace

domain solution, Egs. 3.41 and 3.42.
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After fracture closure, the dimensionless wellbore pressure solution is obtained by evaluating the time-
domain descretized solution for the dimensionless pressure outside of the wellbore and in the fracture,
Eq. 3.38, at each time (#.p),. With the time-domain dimensionless pressure outside of the wellbore in the
fracture known, the Laplace domain solution, Eq. 3.40, can be evaluated numerically and combined with

the Laplace domain wellbore solution, Eq. 3.41, and numerically inverted to the time domain.®®

Fig. 3.3 compares log-log graphs of dimensionless pressure versus dimensionless time for two cases. The
first case is a constant-rate drawdown in an infinite slab reservoir producing through an infinite-
conductivity fracture with constant before-closure storage, C,.p = 10, decreasing constant after-closure
storage, C,.p =1, and a dimensionless closure time of (#.);p = 102, The second case includes wellbore
storage, Cp = 0.5, before-closure fracture storage, Cpep = 9.5, after-closure fracture storage, Cp,ep = 0.5, no

fracture-face or choked fracture skin, and a dimensionless closure time of (#.),p = 1072,
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Fig. 3.3—Comparison of constant-rate drawdown numerical solutions formulated with and
without fracture-face and choked-fracture skin.
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With precise numerical evaluation, the two curves should overlay. However, the two curves during the
transition from before- to after-closure storage separate at closure and converge over a log cycle. The
separation is attributed to error in the numerical approximation of the integral in Eq. 3.40 and numerical
inversion.®® The integral was evaluated using 2-point (Trapezoid) and 4-point (Simpson’s 3/8 Rule)

approximations with near identical numerical inversion results.

Cases illustrating the effects of fracture-face and choked-fracture skin for Cp =1, Cpep = 10, Coep =9, and
(A 107 are shown in Figs. 3.4, 3.5, 3.6. Fig. 3.4 shows a log-log graph of dimensionless pressure
versus dimensionless time for variable fracture-face skin, S; = {0, 0.5, 1},and no choked-fracture skin,
(S/&)ch =0.

Fig. 3.5 contains a log-log graph of dimensionless pressure versus dimensionless time for no fracture-face

skin, S; =0, and variable choked-fracture skin, (Sg)., = {0.05, 1, 5}. Fig. 3.5 clearly demonstrates that

storage appears to increase during a constant-rate drawdown in a well with a closing fracture and choked-

fracture skin.
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Fig. 3.6 contains a log-log graph of dimensionless pressure versus dimensionless time for fracture-face
skin of S;=1 and variable choked-fracture skin, (Sz)., = {1, 3, 5}. Fig. 3.6 also illustrates storage
appearing to increase during a constant-rate drawdown in a well with a closing fracture with choked-

fracture and fracture-face skin.

3.3.3 Constant-Rate Drawdown With Constant Before-Closure Storage, Constant After-Closure
Wellbore Storage, and After-Closure Radial Flow With Skin. The constant-rate drawdown solution for
a well with an open fracture that closes during the drawdown with fracture flow and fracture storage

before closure and radial flow with wellbore storage and skin after closure is written as
P L) =~p |t~ |+ psp | i1~ |

t
~CaeD | oLfD PweD@D)PspULp ~7p)dTp
_ e (3.43)
PweD D) =

tC )L ’ ’
~Cacep | ™ proep @I (trm—7pldtp

) ,
| ~CbeD Jo© D PweDED)P Dt fp —TpMTp

After integrating-by-parts, the solution is written as

_pr (1) =P |~ |+ Pip | 1D~ |
—(CacDPsD [’LfD 7)) } ~CheDP fD [’LfD 7)) J)P'WCD [(ZC)LfD}

o,
PweD (L) =| ~CacD J D pen@DIPsD (/p—tpXtp

(tc )L "
~CacD j() P PweDTD)Pspp —7p)dtp

(t) )
| ~CbeD Jo® LD PweDTD)P p (i p ~TpXTp

and after discretizing the integrals, a numerical approximation is written as
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_pJD(tLﬂ))n _pﬂ) [(thD)n _(szD)ne:|+ psD |:(tLﬂ))n _(tLﬂ))ne:|

B CachsD [(thD )n - (thD )ne:| PyweD (ILJD )ne ~ PweD (thD )ne -1
(thD Ine = (thD)ne—l

~CheDP D [(thD In~ (thD)neJ

PweDULD)i = PweDULD)i—1
()i —Crmi-1

~CueD 5 PweDLD)i -1~ PweDLfD)i—2
i=1||~ -
(rm)i-1~-Urmli-2

PweDULDIn =

| *PsD [(fLﬂ))n ~(rm)i —1)}

PweDLD)i ~ PyweDULD)i—1
()i —rmi-1

ne
+.Z B PweDLD)i -1~ PweDULm)i-2
Crmpli-1-Urmi-2

i _X(CachsD (LI~ a1p)i-) |~ Coepp | 1 p)n =) ‘1)})—- (3.45)

Fig. 3.7 is a log-log graph of dimensionless pressure versus dimensionless time for before-closure fracture
flow with constant before-closure storage, Cp.p = 10, and constant after-closure wellbore storage, Cp =1
with radial flow and no skin, S = 0. Before closure, the reservoir produces through an infinite-conductivity

fracture, which is modeled in the Laplace domain as”

P :ﬁ{ f6/5(1+0-732) Ko[2]dz+ joﬁ(l—o-m) Ko [z]dz}, ....................................................... (3.46)

where K, is the modified Bessel function of order zero and u = sf{s). For a single-porosity reservoir,
As) =1, and for dual-porosity reservoir with pseudosteady-state interporosity flow, f(s) is written as*®

A+ow(l-w)s

= 5 eeeeteeeueet et eu et eh ettt ekttt h et h e h ekt h e a e h ekt h et a bbbttt n ettt s e eaen 3.47
S = o) 347
for transient interporosity flow with slab matrix blocks,”””®
f(s)=w+ \/ ’1(13; ) tanh \/ 3 ;“’)S oo (3.48)

and for transient interporosity flow with spherical matrix blocks,””*®

f(s):a)+si{\/15(1;w)s coth\/ls(l/_l“’)s —1}. ........................................................................... (3.49)
S

The after-closure radial flow reservoir solution is calculated with the cylindrical-source solution with skin,

S, which is written in the Laplace domain as®
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IMJ, .................................................................................................................. (3.50)

ﬁsD:; \/?Kl(\/?) R

where K is the modified Bessel function of order one.
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Fig. 3.7—Constant-rate drawdown in an infinite-slab reservoir with fracture flow before closure,
constant before-closure storage, and radial flow after closure with wellbore storage and
skin—variable dimensionless wellbore radius.

Dimensionless pressure and pressure derivative curves are presented for r,p = {0.10, 0.010, 0.001} and a
dimensionless fracture closure time, (¢.);p, of 0.10, which is clearly indicated by the rapid change in the
derivative and dimensionless pressure values after closure. Fig. 3.8 is a log-log graph of dimensionless
pressure versus dimensionless time for Cp.p = 10, Cp =9, (¢.)yp = 0.10, r,p=0.005, and variable after-
closure skin. In both Figs. 3.7 and 3.8, the dimensionless pressure and pressure derivative curves after
fracture closure have the distinctive shape of conventional drawdown type curves for an infinite-acting

well with radial flow, wellbore storage, and skin.
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Fig. 3.8—Constant-rate drawdown in an infinite-slab reservoir with fracture flow before closure,

constant before-closure storage, and radial flow after closure with wellbore storage and
skin—variable skin.
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Fig. 3.9—Constant-rate drawdown in an infinite-slab reservoir with fracture flow before closure,
constant before-closure storage, and radial flow after closure with wellbore storage and
skin—variable dimensionless wellbore radius and approximation with r,,p =1.



Fig. 3.9 is a log-log graph of dimensionless pressure versus dimensionless time for Cp.p = 10, Cp =9,
(t)yp =0.10, =0, and r,,p = {0.10, 0.010, 0.001}. From well test analysis, an effective wellbore radius

is approximated as”

FweD :rDe_S e ettt h et bttt s b e bt s bt e a e s bt e e ab e s Rt e e e ab e e s bt e e ab e e sa bt e e aa e e s bt e et e e sab e e et e e sareenan e (3.51)

Let rp=1 and for an effective dimensionless wellbore radius, 7,.p, of 0.10, 0.010, and 0.001, the skin
calculated from Eq. 3.46 is 2.303, 4.605 and 6.91, respectively. Fig. 3.9 also shows the dimensionless
pressure and pressure derivative curves generated with rp=1 and S= {2.303,4.905,6.91}, which
overlays the curves generated with r,p, = {0.10, 0.010, 0.001} and S = 0. Fig. 3.9 demonstrates that when
"true" skin damage is negligible, the dimensionless pressure curves can be generated with 7, =1 and a
skin factor determined by

/2 SI(Fy ) - vveeeeseeee e (3.52)

Since the dimensionless radius is defined in terms of fracture half length, r,,, = /L, Fig. 3.9 also suggests
that the skin determined from a type-curve match can be used to calculate r,p using Eq. 3.52 and fracture
half length, L,

3.4 Fracture-Injection/Falloff Solutions

Current fracture-injection/falloff analysis methods®’*'

are based on limiting-case models of specific and
small portions of the pressure response during the falloff. Fig. 3.10 is a graph of pressure versus time for a
typical field fracture-injection/falloff test in a moderate permeability gas reservoir. The injection consisted
of 60.5 bbl of 2% KCI water pumped at an average rate of 6.20 bbl/min over an injection period of 9.8
minutes, and the falloff period was recorded for approximately 3.5 hours. Before-closure pressure-
transient analysis®>° for determining permeability and fracture-face resistance is applicable to the pressure
data recored before hydraulic fracture closure, which for the data from the field test in Fig. 3.10 consists of

only the first 5 minutes of shut-in data.

Permeability and reservoir pressure can be determined using after-closure analysis®®'

provided
pseudoradial flow is observed after fracture closure, but observing pseudoradial flow can require an
excessive shut-in time. Fig. 3.11, for example, is a graph of pressure versus time for the field example, but
the shut-in pressure data are extrapolated from 3.5 hr to 60 hr, which corresponds to the calculated

beginning of pseudoradial flow.

With only before-closure and after-closure analysis methods available, only the data in those specific flow
regimes can be analyzed, and the vast majority of the shut-in data cannot be analyzed quantitatively.
Analyzing the entire pressure falloff dataset requires a new model that accounts for fracture creation,

fracture closure, and after-closure pressure diffusion.
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Fig. 3.10—A typical fracture-injection/falloff sequence in a moderate-permability gas reservoir.
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3.4.1 Solution Accounting for a Dilating Fracture, Before-Closure Storage, and After-Closure
Storage. Consider a fracture-injection/falloff test with the entire fracture length developed instantaneously
when the injection begins. The injection is at a pressure in excess of the minimum in-situ stress, and
fracture volume changes are a function of fracture width, which is a function of pressure during the
injection and before-closure pressure falloff. Fracture dilation is modeled as time-dependent storage in the

dimensionless pressure solution development, which is derived in detail in Appendix C.

During a constant-rate injection with a constant fracture length, the fracture volume of one wing is written
as

Vf thLfﬁ/f(pw(t)):Afﬁ/f(pw(t)). ............................................................................................. (3.53)

The average fracture width, w f (p,, (1)), is a function of net pressure, p, = p.(?) — p., and written as’>%0

0 :g_;: pw(;)f—pc
where Sy is the fracture "stiffness" and p. is the fracture closure stress. Fracture stiffness, or the inverse of
fracture compliance, is defined by the elastic energy or "strain energy" created by an open fracture in a
rock assuming linear elastic theory is applicable. Table 3.1 contains the fracture stiffness definitions for
three common 2D fracture models.*”'® In Table 3.1, E’ is the plane-strain modulus, R, is the fracture

radius of a radial fracture, and /4 is the gross fracture height.

Table 3.1—Fracture stiffness for common two-dimensional fracture models.’%!%
Radial Perkins-Kern-Nordgren Geertsma-deKlerk
Vertical Plane Strain Horizontal Plane Strain
3rE' 2F' E'
S = S = —_— S -
(Sr)RAD 16k, (Sf)pkn why (S£)Gpk "L,

The derivative of average fracture width with respect to pressure is written as

dw
e (3.55)
dpw Sf
A propagating-fracture storage coefficient is defined as
dV 1 (pyy (1)
Cpf =cWVw+2chf(pW(t))+2T, ............................................................................. (3.56)
w

and a dilating-fracture storage coefficient can be written as
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Crr=c,V, ZA—f 1 3.57
fd Cylwt Sf(Cfpn+). ..................................................................................................... 3. )

Typically, cp,(f) < 1,793 and the dilating-fracture storage coefficient can be written as

s
Cfd ZCWVW+2S—. ....................................................................................................................... (3.58)

f

The dimensionless dilating-fracture storage coefficient can be written as

c
Cap = ettt (3.59)

27r¢cthL§r

and the dimensionless material balance equation during a fracture injection with a dilating fixed-length

fracture is written as

D D e (3.60)
dtLﬂ)

where dimensionless wellbore pressure for a fracture-injection falloff is defined as

ap =9wp ~Cap

PwLmp) =P
PrusD L D) S s s (3.61)
wsD LD PO~ P
where p; is the initial reservoir pressure and p is an arbitrary reference pressure. At time zero, the wellbore
pressure is increased to the “opening” pressure, p,, which is generally set equal to p,, and the
dimensionless wellbore pressure at time zero is written as
Pw0 — Pi 3.62
PrsD{(0) = T E s (3.62)
WS P() _ pl

In the material balance equation, dimensionless sandface flow rate is written as

g Bu
ap = e (3.63)
27kh( po— pi)
and the dimensionless well flow rate is defined as
B
e (3.64)

TwD = 2rkh(po — p;)

Following the injection, the falloff portion of the test begins, and a dimensionless before-closure material

balance is written as

DD e (3.65)
dZ‘LfD

where the dimensionless before-closure storage coefficient is written as

4D =~CpeD
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and the before-closure storage coefficient is equivalent to the dilating-fracture storage coefficient and

written as
Ar
Che =cWVw+2—:Cfd. ............................................................................................................. (3.67)
Sf
After fracture closure a constant after-closure storage coefficient is written as
Cac :chw"'szVfr’ ....................................................................................................................... (368)

where Vj; is the residual fracture volume at closure. In some cases, no residual volume will remain after-
closure, and C,. = ¢, V,,. The dimensionless after-closure wellbore storage coefficient is written as

c

e — (3.69)

2rpe,hl i

and the after-closure pressure falloff dimensionless material balance equation is written as

Following the method of Correa and Ramey,**®*

and as shown in Appendix C, the dimensionless pressure
solution for a fracture-injection/falloff with a dilating fracture during the injection and a constant
dimensionless after-closure storage coefficient is written as
9wD [pacD (1)~ PacD LD ~ ) D )} + PysD0CacDPachD ()
PusDULD)= i ,
~(Cpep ~CaeD)Jg PacD LD ~7p)Pywsp(FpMTp
where the Laplace domain dimensionless fracture solution for a well produced at a constant rate with

constant after-closure storage is written as

D (3.72)

PacD = P —
1+s CacD p ﬂ)
and the dimensionless reservoir pressure solution is for a fixed-length finite- or infinite-conductivity

fracture.

3.4.2 Solution Accounting for a Propagating Fracture, Constant Before-Closure Storage, and
Constant After-Closure Storage. A new fracture-injection/falloff model accounting for fracture
propagation, closure, and after-closure diffusion is developed that includes a time-dependent storage term
during fracture extension in addition to a constant before-closure storage coefficient and a constant after-
closure storage coefficient. A dimensionless material balance equation applicable during the injection and

fracture creation is derived in Appendix C and is written as
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dj
qu:qwsD_cpr(wa(thD));LLfg. ........................................................................................... (3.73)

Utilizing the superposition principle to develop a dimensionless pressure solution requires that the
dimensionless propagating fracture storage coefficient be written as a function of time only. The storage
coefficient can be written as a function of time by incorporating a power model for fracture growth.””’

Power-model fracture propagation is written as

o
ﬁ:M:H A (3.74)
Af(te) /’lfo t

e

With power-model propagation, fracture volume as a function of time is written as

Ve(po,(O)=he LW () =h L (P =P)| 1 w (3.75)
fpw())_ f ()Wf()_ fng 5 sesesteeceeceecieteetittettattetcittettattencttetcttensnstonenenn .
and the derivative with respect to wellbore pressure is written as
Vypy@®) hyly [LTN. ........................................................................................................... (3.76)
dp,, Sf ty

A propagating-fracture storage coefficient is written as

4V £ (pyy (1))
d b

Cpf(pw(t)) =c, +2chf(pW(t))+2 T (3.77)
%
which with power-model fracture propagation can be written as
hlp (o™
Cpf(pw(t))zchw+2?(Z (Cfpn +1). ...................................................................... (3.78)
As previously noted, cp,(f) < 1, 9093101 and the propagating-fracture storage coefficient is written as a

function of dimensionless time only as

A f t 1D N
: L
Cpf(thD):cWVw+2S— ©) ) ettt ettt bt h et h ettt re e ne (3.79)
S \Ne’LD
and the dimensionless propagating-fracture storage coefficient is written as a function of time only as
Cortrm)
ey . A (3.80)
p/DVLID 2
2rpe,hl I
The material balance equation during the injection of a fracture-injection/falloff can now be written as
d

PwD
qu:qWSD_cpr(thD)dtLW ) eeerteeeseeesreeesseeesseeessteessetessteensetenteeatteeatteeatteeaaeennteeateensaeeasteenraeens (3.81)

68



and a material balance equation valid at all times for a fracture-injection/falloff test with a propagating

fracture, constant before-closure storage, and constant after-closure storage is written as

4pyysD
9wsD ~ U(te )LfD 9wsD ~ Cpr (tL]D) dth

dpyysD ettt (3.82)
dthD

95D =| *Yo) 11 [C L)~ CbcDJ

dpysD
U, LD [CpeD ~CacD ] diyp

Developing a solution requires an approach similar to the dilated fracture case, but with the fracture half-
length increasing during the injection, a dimensionless pressure solution is required for both a propagating
and fixed-length fracture half-length. The dimensionless material balance equation can be split into

injection and falloff parts by writing as

where the dimensionless material balance equation describing the injection, but valid for all time, is

written as

d
qpr:[I_U(te)Lij(qwsD_Cpr(thD) dizng ettt (3.84)

and the dimensionless material balance equation valid for all time and desribing the falloff is written as

dpywsD dpyysD
wsD gy Croimy o WSED e (3.85)
dlLfD (te )Lﬂ beD dtLﬂ)

A dimensionless pressure solution is derived in Appendix C for a propagating fracture, p,mn(f,p), and the

4/D :U(tc)LfD (CbcD - acD)

propagating-fracture solution for a single vertical fracture is written as

Ppr () tp <(e)rm (3.86)

¢ = s eetrereeeeeeeeereerereseeieeeesteeeeeeeeeiireeeeeeeiaaiiraaaaaeeeaairrareaaaens
Pp L) {PjD(foD) tp > (te) 1

or using the unit-step function written as

PpfD (thD) = (1 _U(te)L_fD )pprfD (thD) + U(te)L_pofD (thD) O U PN (3.87)

A quasi-static solution during fracture propagation is written in the Laplace domain as

B 1 1| L p(typ)+0.732) VulL g (t1p)(1-0.732)

- Knlz]d Knlzldz |, ...(3.88)
P prfD LfD(thD)zs\/;[ 0 olz]dz+ olz]dz

where the dimensionless fracture half-length is defined as
aN
leD
tr <(t

Lip(typ) = ((te)Lij LID SULID | oo ssseeeeene (3.89)

1 [LfD Z(te)LfD
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Appendix C describes the development of the quasi-static solution.

The reservoir solution with a constant fracture half length, p/(f.p), results when #,p > (¢.)p or when the
fracture-growth exponent is set equal to zero, ay=0. The two different reservoir models can be
superposed'” to develop a dimensionless wellbore pressure solution by writing the superposition integrals
as

‘LD - ‘LD _

[ dp o (/D TD)d f dp i (trmp Z'D)d (3.90)
PwsD = qpr(z'D)—dt z'D+ qu(z'D)—dt TP+ eeeereeeeeens .

0 LD 0 LD

The solution for a fracture-injection/falloff with a propagating fracture with constant before- and after-

closure storage is developed in the Laplace domain, and after inverting to the time domain is written as

Gy | P L)~ P oD LD ~ e 1) |

t
~Caen |, oLfD Pt =7p)Pywsp(Tp)dtp

[t

¢ R Y T (3.91)

PwsD (tLjD) =

(1)
+Cpen Jo LD PpLm —7p)Pwsp(Tp)dip

U :
__(CbcD _CacD)jo ¢/L/D PfD(tLjD _TD)PWSD(TD)dTD_

3.4.3 Solution Accounting for a Propagating Fracture, Before-Closure Storage, Constant After-
Closure Storage, and After-Closure Radial Flow. All solutions presented thus far assume flow at the
sandface is through a hydraulic fracture, but after fracture closure with little or no fracture conductivity
remaining, the effect of the induced fracture can be negligible and the reservoir should be modeled as a
radial system. While the material balance for all time for a case with a propagating fracture, constant
before-closure storage, and constant after-closure storage is unchanged, the pressure solution requires the
introduction of a radial reservoir flow model after fracture closure. The dimensionless wellbore pressure

is the sum of superposition integrals for each reservoir model and is written as
S (LD, 3.92
PwsD = > j() quij([LfD—TD)de N ( . )
Jj=1

or expanded and written as

- ]
J oLfD 4ppPpp (LD~ DD

IL ,
PuwsD =|*/o P 4P mmp-tpMip |’

tL ,
+lo ™ 4,ppip (1D —7p)dtp
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where g, is the after-closure dimensionless flow rate for the radial system and the radial flow pressure
solution with skin, p¢py, is written as

pSD(lLfD)ZprD(thD)+S. .............................................................................................................. (394)

Note that dimensionless time is defined in terms of the fracture half-length; thus, fracture half-length is the

characteristic length used in the dimensionless radius definition and radial solution.

A solution is obtained by transforming the dimensionless wellbore pressure equation to the Laplace
domain and combining with the dimensionless flow rate equations valid for each flow model. The

dimensionless flow rate equation for the fracture injection (propagation model) is written as

d
quD:(I_U(te)Lﬂ)j[qwsD_Cpr(tLjD) ZVLV;I?J, ....................................................................... (3.95)

and the flow rate equation for a fixed-length closing fracture is written as

D e (3.96)
dthD

The dimensionless after-closure radial flow rate is written as

4fp = —(U(:Q)Lﬂ) Yeom ijcD

dp D
=-U C et e e e e e e e e —e e e e ——eeeet—aaeatbaeeeatteeeataaeeantraeeaartaeeaannns 3.97
49D (te) 1 D diy (3.97)

where the dimensionless after-closure wellbore storage coefficient is defined as

O O 0 (3.98)

D~ 2
2rpe,hL r

After transforming to the Laplace domain, simplifying, and inverting to the time domain, the
dimensionless wellbore pressure solution for a fracture-injection/falloff test with a propagating fracture
during the injection, constant before-closure storage, constant after-closure wellbore storage, and after-

closure radial flow with skin is written as

t
~Cp | oLfD Psp(LD ~7p)PwspTD)ATp
()
" P ot =)y ED)PuspepMep | (3.99)
PwsD = t)] D ,
+Cpen [ P rm ~tp)Pywsp(tpMtp

(t0)
+CpJy© 4P i (1 —7p)Pwsp(Fp)dTp

(7))
|~Coen o€ P P'pliLp —tp)Pywsp(TpXip
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3.5 Fracture-Injection/Falloff Limiting Solutions

3.5.1 Limiting-Case Solutions With a Dilating Fracture, Before-Closure Storage, and After-Closure
Storage. The dimensionless wellbore pressure solution for a fracture-injection/falloff with a dilating
fracture during the injection, constant before-closure storage, and constant after-closure storage is written
as

9wD [pacD (D)~ PacD LD ~ ) /D )} + PysD(OCacDPacD ()

Pusp (1) = Gy

~(Cpep ~CaeD)fy" 7 PaeD\tLp ~TD)PywspEp)MTp
where the Laplace domain dimensionless fracture solution for a well produced at a constant rate with

constant after-closure storage is written as

D i, (3.101)

PacD = ) —
I+s CachfD

Consider a limiting case where #, > (f.)p such that pu.p(tp)-paco(tim-(t)m) = 0, and the dimensionless

wellbore pressure solution can be written as

PwsDOCqcDPacp /D)

PwsD (th) = (tC)L © eeeeeeeeteeeeciitieneateteeettinnn (3102)
~(Cpep ~CaeD) ™ pen (1 ~7p)PwsD(FDMTp
When Cy.p = C,.p, the solution reduces to
pwsD(ZLfD):pwsD(O)Cachéch(thD)’ ...................................................................................... (3103)

which is the slug-test solution for a hydraulically fractured well with constant storage as defined by

Rushing et al.”’

When Cp.p # Cyep and tp < (t.)1p, the dimensionless wellbore pressure solution can be written as

PwsDOCqcDPacp /D)
PwsD(’LﬂJ): f e r e e e eaaes (3.104)
~(Cpep ~CaeD)g ™ pen (L ~7D)Pywsp(Fp)Tp
which after transforming to the Laplace domain is written as
_ PwsD (O)CachI3 acD
PywsD = ” _ ¢ et (3.105)
~(CpeD — CacD)[SpacD (SpwsD ~PwsD (0))]
After expanding the terms and simplifying, the solution can be written as
_ P
PwsD:PwsD(O)CbcD{ > acD ], .................................................................... (3.106)
1+5%(Cpep ~CacD)PacD

but with the Laplace domain dimensionless fracture solution for a well produced at a constant rate with

constant after-closure storage given in Eq. 3.101, the pressure solution can be simplified and written as
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D e (3.107)

PywsD = PwsD(0Cpheps —
I+s Cbch.fD

Define a Laplace domain dimensionless fracture solution for a well produced at a constant rate with

constant before-closure storage as

Boe :#, ................................................................................................................. (3.108)
1+5“CpepP D
and the before-closure limiting-case dimensionless wellbore pressure solution is written in the Laplace
domain as
PowsD = ProsD (OYChaDSDPeD) - ++veeresessesessssenssssssnsssinsisisissisistssi st it (3.109)

After inverting to the time domain, the solution is written as

pWSD(thD):pWSD(O)CbCDpI')CD(tLﬂ))’ ...................................................................................... (3110)

which is the slug-test solution for a hydraulically fractured well with constant before-closure storage.

When Cpep # Cacp and tp > (t)1p > (¢.)m, the dimensionless wellbore pressure solution can be written as

_pwsD (OCqcpPachD (thD )

pWSD(ZLfD): R (3111)

)L / '
__(CbcD ~CacD )J() P PacDLD ~7D)Pwsp(FDMTD
but with 2, > (t.) 1, Pwcn(tp — T0) = P'acn(t), and the pressure solution can be written as

[ PwsDOCqeDPach G575),

pWSD(ZLfD): T (3112)

__(CbcD ~CaeD)PacD (thD ) |:pWSD ((tc )LfD ) ~PwsD (0)]

After expanding the terms and simplifying, the dimensionless wellbore pressure solution can be written as

PusD L) =] PusD©OChe = PyssD ()LD ) Coep = Caep) | PlacD i) - e (3.113)
which is a slug-test solution for a hydraulically fractured well with variable storage — constant before-

closure storage and constant after-closure storage.

3.5.2 Limiting-Case Solutions With a Propagating Fracture, Before-Closure Storage, and After-
Closure Storage. The dimensionless wellbore pressure solution for a fracture-injection/falloff with a
propagating fracture during the injection, constant before-closure storage, and constant after-closure

storage is written as

73



s P oD ()~ P 1~ ) 1) ]

‘o .
~CacD g D Prm ~7p)Pwsp(tp)dp
~ j(te)LjD , s e (3.114)

PwsDULm)=| =] Pt —7p)Cpp (T p)Pywsp (Tp)dTp

(te)
+Cpen Jo D Pt —7p)Pywsp(Tp)dip

(t)
_(CbcD _CacD)j() oD

Pyt =7p)Pwsp(Tp)d7p |

which can also be written as
9ysD [ppr(ILfD)—ppr(thD _([e)LfD):|

‘Lo, ,
~CaeD g o P m ~7p)Pwsp(tp)dp

L (3.115)
+L()Ze)1<ﬂ) [

PwsD (tLﬁ) = ' , ,
CoepP LD ~7D) = Cpp(Tp)Ppm U ~ TD)} Pwsp(Tp)dtp

()
__(CbcD _CacD)jo c*LD

P’ p —tp)Pywsp(Ep)dip

When the fracture is pre-existing or the fracture half-length is created instantaneously, Cy.p = Cip(tp), and

when #,p > (t.)1p, the dimensionless wellbore pressure solution reduces to

PwsDOCqcDPacD

I , ’
)o© P pren (r/p ~7p)Pwsp(Tp)d7p

pWSD(tLjD): ................................ (3116)

_(CbcD ~CacD
which leads to the same limiting-case solutions as existed for a fracture-injection/falloff with a dilating

fracture, constant before-closure storage, and constant after-closure storage.

Consider the integral term containing propagating-fracture storage, which is written as

() . ' '
Izjoe LD [CbchfD(thD D)~ Co ED)Pop (1D _,D)JpwsD(fD)dTD e (3.117)

When tp > (t.)p, the propagating-fracture solution derivative can be written as

p;?fD(thD_TD);p}JfD(ZLfD)’ ..................................................................................................... (3118)

and the fracture solution derivative can also be approximated as

p'fD(l‘LfD—TD)Ep'fD(l‘LfD). ........................................................................................................ (3119)
The definition of the dimensionless propagating-fracture solution states that when #;p > (f,),p, the

propagating-fracture and fracture solution are equal, and p',n(#,p) = p'p(tp). Consequently, the integral

term containing the propagating-fracture storage for ;> (¢.);» can be written as

t
I= p}D(thD)Jé LD e R Y LT G s R —— (3.120)
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and the dimensionless wellbore pressure solution can be written as

i ’ (t ) '
) (thD)fO ¢'L/D [CbcD ~Cpp(tp )} Pwsp(TD)ATp

t
pWSD(ZLfD): _CaCDIOLpo’fD(thD_TD)P{/VSD(TD)GITD C eeeeteeteteeeseeeneeeeeneeeenneenn (3121)

() , ,
_(CbcD_CacD) Oc Lp P}‘D(’LfD_TD)PwsD(TD)dTD

The before-closure storage coefficient is by definition always greater than the propagating-fracture storage
coefficient, and the difference of the two coefficients cannot be zero unless the fracture half-length is
created instantaneously. However, the difference is also relatively small when compared to Cy.p or Cy.p,
and when the dimensionless time of injection is short and #; > (%.),p, the integral term containing the

propagating-fracture storage coefficient becomes negligibly small, which is written as

’ Z ) ’
) (thD)L() ¢ILD [CbcD ~Cpip (TD)} PwsD(Fp)ATp

um , e (3.122)
- ~CaeD Jg P p 'L —7p)Pywsp(Tp)dtp

(.)
Vo< P Pt~ ep)Phusp (Ep)d 7D

_(CbcD - CacD
Thus, with a short dimensionless time of injection and (%.)p < #p <(t.)ip, the limiting-case before-

closure dimensionless wellbore pressure solution can be written as

t
~Cyen |, oLfD Pt —7p)Pywsp(Tp)dTp
PywsD (th ) = 5 eeeeeresaecaetenetaeeiaeineinenas

() , ,
__(CbcD - CacD)j() LD P (’LfD —7p)Pwsp(Tp)dTp

(3.123)

which after simplifying in the Laplace domain and inverting back to the time domain can be written as

_pwsD (OCqenPacp L)
pWSD(tL_m): (Z )L © secectesceccectesercresantresans (3.124)
__(CbcD ~CucD )IO ¢’LfD PacD (thD —7p)Pwsp(Tp)dTp
When tp < (t.)p, the dimensionless wellbore pressure solution can be written as
PwsD OCqcDPach ()
et e e eeeeae e (3.125)

PwsD (ZLfD) = tL
~(Cpep ~Cac)] ™ piep (/D ~7p)PwsD(FD)M7p

and as previously shown, the solution can be simplified in the Laplace domain and inverted back to the

time domain to obtain the before-closure limiting-case dimensionless wellbore pressure solution written as

pWSD(ZLfD):pWSD(O)CbCDpl'NJD(thD)’ ...................................................................................... (3126)

which is the slug test solution for a hydraulically fractured well with constant before-closure storage.
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When the dimensionless time of injection is short and .5 > (¢.)» > (%), the fracture solution derivative

can be approximated as

p}(D(thD_TD);p}(D(ILfD)’ ........................................................................................................ (3127)

and the dimensionless wellbore pressure solution can be written as

PwsD(OCacDPach ()

pWSD(lLfD): N (3128)

o), , ,
~(CpeD ~CacD )J() D PacDtLp ~7D)Pwsp(FDMTD
but with 7,5 > (t.)0, P'aco(tp — T0) = P acp(typ), and the dimensionless wellbore pressure solution can be

written as

[ PuwsDOCyeDPach (thD )

pWSD(lLfD): PN (3129)

|~(Cep ~Cac)Pacp )| Pusp ()10 )~ Pusp O

After expanding the terms and simplifying, the dimensionless wellbore pressure solution is written as

Pusp (/D) = :pWSD(O)CbCD = PwsD (€ 1D ) Cpen —cacD)}p;wD(thD) s e (3.130)

which is also a slug-test solution and the same as the dimensionless wellbore pressure solution for a
fracture-injection/falloff with a dilating fracture, constant before-closure storage, and constant after-

closure storage.

3.5.3 Limiting-Case Solutions With a Propagating Fracture, Before-Closure Storage, Constant
After-Closure Storage, and After-Closure Radial Flow. The dimensionless wellbore pressure solution
for a fracture-injection/falloff with a propagating fracture during the injection, constant before-closure

storage, constant after-closure wellbore storage, and after-closure radial flow with skin is written as

GysD | P tLm) = Pt ) m) |

t
~Cp | oLfD Psp(Lp ~7p)Pywsp(TD)dTp
() ,
o P oL =)y Ep)PlyspepMep | 3.131)
PwsD = ()], D, ,
+CpepfoC " Pt ~TD)Phsp (TpM D

(t)
+CpJy© 4P i (rp —7p)Pwsp(Fp)dTp

(7))
|~Cben o€ 1P P'pliLp —7p)Pywsp(TpXip

Consider a case with t,p > () 0s Paco(tip) — Paco(tp — (t)p) = 0, and with a short dimensionless time of

injection such that the dimensionless wellbore pressure solution can be written as
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[ (t)
+CpJfy© 4P pip (D —7p)Pwsp(FD)d7p

‘o, .
pWSD([LfD): _CDJ()poSD(thD_TD)pWSD(TD)dTD DR PPN (3132)
) .
~Cpep o © ™y 'L ~7p)Pywsp(TpXMip
When (%.)p < tp < (), the dimensionless wellbore pressure solution can be written as
‘o , ,
pWSD(ZLf[)) = _CbCDj() m pﬂ)(lLfD —Z'D)pWSD(‘[D)dTD ) e eeeeeeetaeeteeee it eateere it eateeratatatenenarneans (3133)

which can transformed to the Laplace domain, simplified, and inverted back to the time domain as
pWS‘D(tL_m):pWSD(O)CbCDpl')CD(ZLﬂ) © eeeeeeeeesiaiseseseatataeaiatatatataiatataitaiaiatatatatatatatatatatatatatatatatananane (3134)

When the dimensionless time of injection is short and .5 > (¢.)p > (f.)p, the fracture solution derivative

can be approximated as

p}(D(ILfD—TD)Ep}(D(ILfD), ........................................................................................................ (3135)

and the radial-flow solution derivative is similarly approximated as

péD(lLfD—TD)EpéD(thD), ......................................................................................................... (3.1306)

which allows the dimensionless wellbore pressure solution to be written as

7+CDP:¢D (thD)[PWSD ((lc)LjD ) ~PwsD (O)J

t
pWSD(ZLfD): _CDJOLJ(D p.;D([LfD _TD)p;VsD(TD)dTD PN (3.137)

_Cbch;’D (thD ) [pwsD ((tc )Lﬁ ) ~ PwsD (0)}

After transforming the solution to the Laplace domain, simplifying, and inverting back to the time domain,

the dimensionless wellbore pressure solution is written as

PwsDOCDPsacD ()

PwsD(LD) = e (3.138)

- [pwsD ((tc )LfD ) ~ PwsD (0):| ( Cbch'facD (thD) ~CpPsach ([LfD ))
where the radial flow solution with skin and constant after-closure wellbore storage is written in the

Laplace domain as

PO e (3.139)

PsacD = 2
1+s CDpSD

and a hybrid fracture-flow solution with constant storage is written in the Laplace domain as

D ] (3.140)

P facD =
f 1+52CD5SD
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As dimensionless time becomes large, the influence of wellbore storage on the dimensioless pressure
diminishes such that p...p(tp) = psp(tim), Praco(typ) = p(typ). Additionally, the derivative of the solutions
at large dimensionless times are equal, which allows the dimensionless wellbore pressure solution to be

written as

PwsD OCpPsacp (thD )

pWSD(lLfD): e (3141)

_(CbcD -Cp )péacD () [pwsD ((Zc )LD ) ~PwsD (0)}

After expanding the terms and simplifying, the dimensionless wellbore pressure solution is written as

PusDULD) =| PusDOChep = Prsp (€ 14D ) Coe = Cp) | Piaep ULp) » o (3.142)

which is also a slug-test solution.

3.5.4 Limiting-Case Solutions With a Large Dimensionless Time of Injection. All previous limiting-
case solutions have assumed the dimensionless time of injection is small, but in many cases, for example,
a pressure falloff test with waterflood-induced fractures, the dimensionless time of injection can be quite
large. Consider a fracture-injection/falloff with a dilating fracture during the injection, constant before-
closure storage, and constant after-closure storage. The dimensionless wellbore pressure solution is

written as

9wD [PacD ([LfD )= PacD ([LfD —(te )L]D )} + PywsD (0CacDPach (thD)
pwsD(thD): C e (3143)

o), , /
~(Cpep ~CacD )J() P PacDLD ~7p)Pywsp(FpMTp
With a large dimensionless time of injection and #;p > (¢.)p, P sco(tip — Tp) = P acp(typ) and the solution
can be written as

9wD [pacD ([LfD )= PacD ([Lﬁ —( )LfD )} +PywsD (0CacDPach (thD)
PwsDULD) = e (3.144)

- [pwsD ((tc )LfD ) ~ PwsD (0):| (Cpep = CacD)PacD (thD)

Following the logic of Correa and Ramey,” a long-time approximation for the dimensionless wellbore
pressure is developed by recognizing that as dimensionless time increases, the effect of after-closure
storage becomes minimal and pg.p(tp) = pw(typ). A long-time approximation for the dimensionless

fracture-flow solution is written as®

pﬂ)(tLﬂ)):%(lnthD+2.80907), .................................................................................................. (3.145)

with a derivative with respect to time defined as

, 1
pm(thD)zthfD. ........................................................................................................................ (3.146)
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With the fracture-flow solution, derivative, and as dimensionless time increases, the terms containing

storage tend to zero, and the dimensionless wellbore pressure solution can be written as

wD | L/D J ......................................................................................... (3.147)

q
PwsDULD) =

which is equivalent to the traditional long-time solution for a pressure buildup with the dimensionless time

of production, (,);p, used in place of the dimensionless time of injection, ().

3.6 Numerical Evaluation of a Fracture-Injection/Falloff Analytical Solution

Numerical evaluations of a fracture-injection/falloff solution are provided to quantify a "small"
dimensionless time of injection and to establish when the time of a fracture-injection can be considered

short relative to the reservoir response.

The dimensionless wellbore pressure solution for a fracture-injection/falloff with a dilating fracture during

the injection, constant before-closure storage, and constant after-closure storage is written as

9wD [pacD (thD )= PacD (tLﬂ ~(te)Lp )} +PywsD (0CacDPacD ()

i )
__(CbcD ~CacD )J() ¢’LD PacDLfp ~7D)PywsD(Tp)MTp

pwsD(th): C e (3148)

After integrating-by-parts the solution is written as

9wD [PacD ([LfD )= PacD (thD —( )LfD )} +PywsD 0CacDPach (thD)

PwsD (D) =| +(Chep — CacD)PwsD [(tc )LfD}pacD [thD —(t )LjD} P (3.149)

(70)
c cD)IOC LD

| ~(CpeD =Cy PywsD(tDPacD (1D ~7p)d7p

and a discretized form of the solution can be written with p,,,p(0) = 1 as

qdwD |:pacD (thD)n ~PacD [(thD )n - (thD)ne:|:|
+CacDPacD (tLjD n
PwsD ([LfD ne = PwsD ([LfD Ine—1

(thD Ine = (thD Ine—1
- . , (3.150)
PywsD (ZLfD In = [pWSD (thD )i = PwsD (thD )i—1 ]

()i —rmli-1

HCpeD ~ CacD)( JPaCD [(thD I~ (thD)ne}

~(Cpep —CaebD) nze [ PwsDLD)i—1 ~ PwsDLD)i -2
=1 trm)i-1-(pli-2

%Pacp | (1In ~ i1 | |

where the subscript 'ne' corresponds to the time index at the end of the injection.



Consider a case where Cy.p= C,p, which allows the dimensionless wellbore pressure solution to be

written with p,,;p(0) = 1 as

pWSD(ZLfD):qWD [prD(thD)_prD(thD —(Ze)LfD):|+Cbchl')cD(thD) e (3.151)

When the injection term is negligibly small, the dimensionless wellbore pressure solution reverts to a
fractured-well slug-test solution. The magnitude of the slug-test term is a strong function of the the
dimensionless before-closure storage coefficient, and as the storage coefficient decreases, the
dimensionless time of injection must also decrease for the injection term to be negligibly small. Recall the

dimensionless before-closure storage coefficient is written as

b
C e ettt Attt e At s ettt naeee 3.152
beD = e 2 (3152
vy
and the before-closure storage coefficient is defined as

Ar
G = ol i 2 s (3.153)

Sy

Since the definition of the dimensionless before-closure storage coefficient is defined in terms of the
fracture half-length, the coefficient decreases as the fracture length increases. Alternatively, if the wellbore
storage term is assumed to be negligibly small and assuming the dilating fracture is modeled by a

horizontal plane strain condition, the fracture stiffness (Table 3.1) is defined as

r= % 5 eeeteseeteeeseeteteseatetestateteseteteattehese et heae e heR e et A e A ARt ee e A et A e R e Rt ee R ent st en e ee et en e et et en e tese e enene (3.154)
ef
and the dimensionless before-closure storage coefficient can be written as
C - (3.155)
beD ¢C A .

which suggests a small dimensionless before-closure storage coeffficent for "hard" rock, i.e., £'~ 10° psi
and a somewhat larger coefficient for softer rock. A reasonable range for the before-closure storage
coefficient is written as

0001 Cpapy 0101, ooiieresiierresseesssesesssesess s (3.156)

The after-closure storage coefficient is defined as

Cac ZCWVW-‘:-Cfoo, ................................................................................................................... (3.157)

and is generally smaller. If closure is complete, V= 0, with wellbore storage being negligibly small, the
dimensionless after-closure storage coefficient is zero, C,p=0. Therefore, a reasonable range of the
dimensionless after-closure storage coefficient is written as

0L Cap) S Ch+ reveeeeseseesssiessessessssssssssssssess e s (3.158)
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Fig. 3.12—Comparison of a slug-test solution for C ¢p = 0.001 with the dimensionless wellbore
pressure from an injection/falloff sequence with g,p = 100 and (t.).p = {10, 10°, 10°°}.

A series of numerical evaluations were completed assuming Cy.p = C,p = Cpp, Which models an
injection/falloff sequence in a well with a vertical hydraulic fracture created instantaneously during the
injection or with a pre-existing fracture. Fig. 3.12 is a semilog graph of dimensionless wellbore pressure
versus dimensionless time and shows that the dimensionless wellbore pressure for a slug-test [(z.),» = 0]
with Cyp=0.001 and for three injection/falloff sequences with g,,, = 100 and (%,),» = {10, 107, 10°°}.
All injection/falloff sequences shown in Fig. 3.12 result in dimensionless wellbore pressure deviation from
the slug-test solution with the smallest deviation observed for the shortest dimensionless time of injection,
() = 10°. Similarly, semilog graphs shown in Figs. 3.13 and 3.14 illustrate the deviation of the
dimensionless wellbore pressure during an injection/falloff sequence from a slug test solution for
Cyp=0.01 and Cpp=0.10, respectively. Collectively, Figs. 3.12 through 3.14 illustrate that the
dimensionless wellbore pressure deviation from a slug test solution is reduced as the dimensionless time of

injection becomes smaller and as the storage coefficient increases.

Semilog graphs of dimensionless wellbore pressure versus dimensionless time are also shown for
injection/falloff sequences with ¢,,p =10 in Figs. 3.15 through 3.17. The smaller dimensionless injection
rate results in less deviation of the dimensionless wellbore pressure from the slug-test solution when

compared to equivalent dimensionless injection times in Figs. 3.12 through 3.14.
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Fig. 3.13—Comparison of a slug-test solution for C sp = 0.01 with the dimensionless wellbore
pressure from an injection/falloff sequence with g,p = 100 and (). = {10, 10°°, 10°°}.
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Fig. 3.14—Comparison of a slug-test solution for C sp = 0.10 with the dimensionless wellbore

pressure from an injection/falloff sequence with g,p = 100 and (). = {10, 10, 10°}.

82



1.00

\ O Ciip=0.001, (t)1p = 10", & qyp = 10
\ O Ciip=0.001 (te)fp=10"", & Gyp = 10

CrLip=0.001 & (te)Lip =0

o
~
o

A Cpip=0.001, (t) 1o = 10", & gyp = 10| |

0.50

Dimensionless Pressure, pysp
©
N
(6}

\%

0.00
10

6 -5 -4 -3 -2 -1 0

10" 10 10 10 10 10 10 10

Dimensionless Time, t| tp

Fig. 3.15—Comparison of a slug-test solution for C sp = 0.001 with the dimensionless wellbore

1.00

pressure from an injection/falloff sequence with g,o = 10 and (t.) o = {10, 107°, 10°}.
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Fig. 3.16—Comparison of a slug-test solution for C sp = 0.01 with the dimensionless wellbore

pressure from an injection/falloff sequence with guo = 10 and (t.) ;o = {10, 107°, 10°}.
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Fig. 3.17—Comparison of a slug-test solution for C sp = 0.10 with the dimensionless wellbore
pressure from an injection/falloff sequence with g,o = 10 and (t.) o = {10, 107°, 10°}.

The numerical evaluations graphically shown in Figs. 3.12 through 3.17 clearly suggest that as fracture
half-length increases, the time of injection must decrease to minimize the deviation between the
dimensionless wellbore pressure during an injection/falloff sequence and a slug-test solution. However,
the evaluations do not suggest a definitive rule for when an injection/falloff sequence can be modeled as a
slug test. It appears that a dimensionless injection time on the order of 10° with g¢,,, < 100 is a reasonable

rule of thumb that will result in minimal deviation from the slug-test solution.

Fig. 3.18 shows a semilog graph of dimensionless wellbore pressure versus dimensionless time for a
variable-storage dilating-fracture injection/falloff sequence with C,., =0.01, C,.p=0.005, ¢,p=10,
(t)m = {0, 107}, and ()= {2(10)°, 2(10)*}. Recall that Fig. 3.16 demonstrated the dimensionless
wellbore pressure from a fracture-injection/falloff sequence with Cpp = 0.01, g,.p = 10, and () p = 107
would show very little deviation from the constant-storage slug-test solution with (¢.);p = 0. Similarly,
Fig. 3.18 demonstrates minimal deviation is observed between the dimensionless wellbore pressure
calculated using the new variable-storage fracture-injection/falloff model and the variable-storage slug-test

solutions that result when (¢.).» = 0.
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Fig. 3.18—Comparison of a dilating fracture slug-test solution for C,,5 = 0.01, C..p = 0.005, and
(t)u = {2(10)°, 2(10)*} with the dimensionless wellbore pressure from a fracture-
injection/falloff sequence with qup = 10, (t.)Lo = 10°, and (to)up = {2(10)°, 2(10)*}.
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CHAPTER 1V

MODELING A FRACTURE-INJECTION/FALLOFF TEST IN A RESERVOIR
WITH A PRE-EXISTING FRACTURE

4.1 Introduction

A fracture-injection/falloff sequence in a well containing a pre-existing conductive fracture will either
dilate the existing fracture or induce a secondary fracture(s). When the injection time of a fracture-
injection/falloff sequence in a reservoir with a pre-existing conductive fracture is short relative to the
reservoir response, the injection can be considered as occurring instantaneously, and the variable-rate
pressure falloff data can be converted to an equivalent constant-rate pressure difference by integration of
the recorded pressure difference with respect to time. After conversion, constant-rate drawdown type
curves are used for quantitative type-curve analysis. However, during the falloff the dilated or induced
secondary fracture(s) contract to closure, which results in variable storage and requires new constant-rate

drawdown solutions for type-curve matching.

In Chapter III, the new analytical pressure-transient solutions for a fracture-injection/falloff sequence used
the infinite-slab reservoir solution for production through a single vertical finite- or infinite-conductivity
fracture. However, a fracture-injection/falloff sequence in a reservoir with a pre-existing fracture that also
induces and propagates a secondary vertical fracture, requires a new pressure-transient solution for
production through multiple arbitrarily-oriented finite- or infinite-conductivity fractures in an infinite-slab

reservoir.

Chapter IV presents new analytical pressure-transient solutions for a well in an infinite-slab reservoir
producing throught multiple uniform-flux, infinite-conductivity, or finite-conductivity arbitrarily-oriented
vertical fractures. The multiple-fracture reservoir solution is then used in the development of a new
analytical pressure-transient solution for a constant-rate drawdown in a well in an infinite-slab reservoir
containing two arbitrarily-oriented vertical fractures with the initial reservoir pressure above the minimum
insitu or closure stress of the secondary fracture and with constant storage before- and constant storage

after secondary fracture closure.

Chapter IV also presents a new fracture-injection/falloff model for a well with a pre-existing conductive
fracture that accounts for primary fracture dilation, secondary fracture creation, multiple fracture closures,
and after-closure diffusion. Limiting-case solutions of the fracture-injection/falloff model with constant
primary fracture volume and secondary fracture creation are also presented to demonstrate when a
fracture-injection/falloff sequence in a well with a pre-existing conductive fracture can be considered as
occurring instantaneously and slug-test analysis methods can be applied to the falloff data for quantitative

type-curve analysis.
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4.2 Multiple Arbitrarily-Oriented Vertical Fracture Pressure Transient Solution

The new pressure-transient solutions for a well producing through multiple arbitrarily-oriented uniform-
flux or infinite-conductivity vertical fractures in an infinite slab reservoir are derived in Appendix D, and
the new pressure-transient solution for a well producing through multiple arbitrarily-oriented finite-
conductivity vertical fractures is derived in Appendix E. All new solutions allow for variable fracture
half-length and an arbitrary angle between each hydraulic fracture. The finite-conductivity multiple-
fracture solution also allows for constant conductivity within each fracture, but conductivity can vary

among fractures.

4.2.1 Uniform Flux. Multiple fracture pressure-transient solutions require writing a general uniform-flux

solution for a single vertical fracture at any arbitrary angle, which as developed in Appendix D and

written in the Laplace domain for a fracture rotated by an angle 0 f from a point (rp, 6,) as

L
/D 2
_ ap 1 2.2
pD:Lﬂ)Z Ky J;\/[FDCOS(@_QJ()_&} +rfsin (gr_gf) P 4.1
_Lﬂ)
where dimensionless variables are defined as
_ 27wkhAp
S (4.2)
qu
L
f

Ly =L ettt et ettt et e ettt e et e eteeeaeennes 4.3

o7 (43)

q

) = s eeeereer e (4.4)

D 9,
L= SF () 5 ereeeenteeeuet ettt ettt ettt h ket h et b et b et b b bttt h et b bt b et bttt n et beee (4.5)
rDzwlxlz)+y%), .................................................................................................................................. (4.6)
XDZVDCOSHV, .................................................................................................................................... (4 7)
VD TIPSO, e (4.8)

L. is the characteristic length, 6, is the angle between the fracture and the xp-axis, (rp, 6,) are the polar

coordinates of a point (xp, yp), and (a, 6) are the polar coordinates of a point along the fracture.'”

For a single-porosity reservoir, fis) = 1, and for dual-porosity reservoir with pseudosteady-state
interporosity flow, f{s) is written as”
A+ o(l-w)s
fl =Ttz
A+(1-w)s

for transient interporosity flow with slab matrix blocks,””**
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£(s) =w+\/m"“’) tanh\/3(l"“’)s e (4.10)
3s A

and for transient interporosity flow with spherical matrix blocks, *"**

f(s):a)+si{\/15(l;w)s coth\/ls(lgw)s—l] ........................................................................... (4.11)
S

For a well containing 7, fractures connected at the wellbore, the total flow rate from the well assuming all

production is through the fractures is written as

where ¢;p is the dimensionless flow rate for the /"-fracture defined as

R @13)
qw

nf

D ax

k=1

and ¢; is the flow rate from the /™-fracture.

For all fractures intersecting the wellbore, the wellbore pressure is the same and written as
poD:(wa)f , 621,2, . nf .............................................................................................. (414)

The uniform-flux dimensionless pressure solution is obtained by superposing all fractures'* and written in

the Laplace domain as

ny — LﬁD
P =Pwp)i = Zq’—D Ky {\/;\/[rD cos(6, —0,-)—05]2 + 1} sin? (6, —Hi)}da

i=1 2LﬁD ~Lgsip
€=l,2,...,nf. ................................................................................................. (4.15)
Defining the normalized fracture length as
L
§5=-1 S (4.16)
Lfl

and assuming the fracture height is the same for all fractures, allows the dimensionless flow rate to be

written as

gi o;
S (4.17)
G

nf

2%

k=1

With the definition of dimensionless flow rate, the uniform-flux multiple arbitrarily-oriented vertical

fracture pressure-transient solution is written in the Laplace domain as
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s 1 Lpip 2
(Pwp)e =D, — K, \/;\/[FDCOS(HZ—QI-)—CZ] +rjsin? (6, —6,) |da - e (4.18)
—~ny 25l
i=1 fiD J L fiD
2.5 |
k=1
Fig. 4.1 shows a log-log graph of dimensionless pressure versus dimensionless time for a cruciform
uniform-flux vertical fracture. The inset graphics in Fig. 4.1 illustrate a cruciform fracture with primary
fracture half length, L;p, and the secondary fracture half length is defined by the ratio of secondary to
primary fracture half length, J, = Lpp/Lyp, where in Fig. 4.1, 6, = {0, 0.001, 0.01, 0.1, 1}. As shown in
Appendix D, the cruciform-fracture uniform-flux solution is equivalent to the single-fracture uniform-flux
solution, J; =0, when the primary and secondary fracture half-lengths are the same ¢, = 1. For small
dimensionless times and as J; approaches zero, the dimensionless pressure for a cruciform-fracture

approaches twice the dimensionless pressure of a single uniform-flux fracture, but as dimensionless time

increases, all solutions for J; < 1converge to the single-fracture uniform-flux solution.

1 1 1 1
psp Cruciform Fracture Uniform-Flux Solution

10° [o] /
)/

Dimensionless Pressure, p ip
=
o

-1
e T
0.01
Lpp=SiLsp
| e

10° 1

Secondary —> Primary

Fracture Fracture
1073 6 5 4 3 2 1 0 1 2
10 10 10 10 10 10 10 10 10

Dimensionless Time, t ip

Fig. 4.1—Cruciform uniform-flux vertical fracture pressure transient solution for ¢, = 0.001, 0.01,
0.1, and 1.
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4.2.2 Infinite Conductivity. For a single vertical fracture, an approximate infinite-conductivity solution is
obtained by evaluating the uniform-flux solution at an equivalent average pressure point,
(xp=10.732, yp = 0). However, the equivalent average pressure point is dependent on the system geometry
and must be determined numerically for each multi-fracture system.'*

Kuchuk e al'®

encountered a similar problem when deriving the infinite-conductivity solution for
horizontal wells and elected to use the pressure-averaging technique proposed by Wilkinson and
Hammond.'” The pressure-averaging technique approximates the infinite-conductivity horizontal well
solution by averaging the pressure along the flowpath using the uniform-flux solution, which according to

Wilkinson and Hammond approaches the exact solution as a horizontal wellbore radius tends to zero.

As shown in Appendix D, a pressure-averaging approximate infinite-conductivity solution is written as a

system of equations with the dimensionless pressure in Laplace space for the £"-fracture written as

Yoogp 1 (M [t 5
(Pp)e = > Ky \/;\/[’”D 005(9/ -0, ) —a} +rf sin? (04 —9) dadrp
N - 2Lf/DLf‘D 2s ) /
4/*1 - 7 _LffD _LﬁD
€=1,2,...,nf, .................................................................................................................... (4.19)
and the dimensionless flow rate for all fractures in Laplace space written as
1
e e et eeteeheeheeheeteate e te ettt eh e h e a et ea b e b eh e e bt bt eh e eh e ea s et et e bt eh e eh e e bt eh e et et e beebeebeeheebeentententen (4.20)

nf
Jzzlqu = S

The system of equations is formed by recognizing that for infinite-conductivity fractures, the Laplace

domain dimensionless pressure in each fracture is the same, which is written as

(PL I = (PLyD )2 == (DD )y = PLgD s wovtersessssessss s 4.21)
and the system of equations can be written as
1 4 A Ay, T=—=7 [0]
1 12 e | Bum g
LAy Ay A || qip 0
. L e 4.22
: : : : Dp |= . ’ ( )
bodup A Aupnp || 1
0 1 I R
where
(-1) i (Lgp 3
4y =" Ky x/;\/[rDcos(ﬁi—Hj)—a} +rgsin2(a9l-—6j) dodrp + oo (4.23)
4SLﬂDLﬁD —LﬁD —LﬁD

A semianalytical multiple arbitrarily-oriented infinite-conductivity fracture solution can also be developed

in the Laplace domain without resorting to the pressure-averaging technique. If flux is not uniform along
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the fracture(s), a Laplace domain dimensionless pressure for a fracture £ at an arbitrary angle, 6,

accounting for the effect of a fracture(s) i at angle 6 is written as

1

(Pp)ii = m

Lmp)i

J (@p)i(e:9)Ko {JZJ[@ cos (6, ~6;)-a] + 1 sin” (6 —@)}da > s (4.24)
—(L )i

where i,( =1, 2,..., n; Note that (gp); = ¢/q.., where g, is the flow rate from the i"fracture and Up)i =

Ly/Ly = 1. If a point (r;p, §)) is restricted to a point along the i"fracture axis, then the reference and

fracture axis are the same and the Laplace domain dimensionless pressure is written as

1
(Pp)ii = %J 1(qD)l-(oc,s)KO {\/;\/[)A‘:D cos (6, —Hi)—a}z +fcl.20 sin? (6, —Hi)}da )
BASL2,0Bf o i (4.25)

Assuming each fracture is homogeneous and symmetric, that is, (gp);(a,s) =(gp);(-a,s), the Laplace

domain dimensionless pressure for an arbitrarily-oriented infinite-conductivity fracture ¢ in an isotropic
reservoir accounting for the effects of an infinite-conductivity fracture i is written as

1

Ko {\/;\/[J%,D cos (6 — Bi)—x’]2 +fcl.ZD sin? (6, - 91')}
(@p)i(x'ss) dx'>
+K |:\/;\/|:le cos(6y —9,-)+x’]2 +fci2D sin’ (6 —91-)}

(Pplii = 5

I O (4.26)

A semianalytical solution for the multiple infinite-conductivity fractures is obtained by dividing each

fracture into ny equal segments of length, A%;p = Lsp /n s, and assuming constant flux in each segment.

Although the number of segments in each fracture is the same, the segment length can be different for

each fracture, A%;p # A% ;p. With the discretization, the Laplace domain dimensionless pressure for an

arbitrarily-oriented infinite-conductivity fracture £ in an isotropic reservoir accounting for the effects of an

infinite-conductivity fracture 7 is written as

(%], 3
ny Ko {JZ\/[(JQ,-D)_/ cos (0, —6;) -] +(p )G sin® (6 ai)}
(o) = 3, D) o’
m=1 +Ko {\/Z\/[(ﬁm)j cos (6 70,-)+x/f +(%p)F sin® (6, a,-)}
[4ip],,
i,f:1,2,...,nf andj,m:1,2,...,n‘/$. ............................................................................... 4.27)

The multiple infinite-conductivity fracture solution considering permeability anisotropy in an infinite slab

reservoir is developed by defining the dimensionless distance variables as®
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k
v ettt s e r e s s (4.29)
Lo\ Ky,
and
Jo = Ik e (4.30)

The dimensionless variables rescale the anisotropic reservoir to an equivalent isotropic system. As a result

of the rescaling, the dimensionless fracture half-length changes and must be redefined as'®

L
Lyp=-t K os? 0, LK in2 O + ittt (4.31)
P LC kx P ky .

where the angle of the fracture with respect to the rescaled xp-axis is written as

gj’,:tan—l[ k_xtangf} S (4.32)
\/ky 2

When 6,= 0 or 0;= m/2, the angle does not rescale and 6'y= 6;.

With the redefined dimensionless variables and after fracture discretization the Laplace domain
dimensionless pressure for an arbitrarily-oriented infinite-conductivity fracture ¢ in an anisotropic

reservoir accounting for the effects of an infinite-conductivity fracture 7 is written as

[’A‘z{D]mH . 2 2 9
) % G Ko {\/E\/[(X;D)j cos(6)—6f)=x'| +(&fp)}sin (6 —9;)}
(Pp)yi(s)= z % dx’
m=1 +K {JZ\/[(;C;D)‘, cos(&é—él-’)+x’}2+(fc}[))3 sinz(ag_eg)}
Liin ],
l',f=1,2,...,nf andj,m:1,2,...,n‘/$. .............................................................................. (4.33)

A semianalytical solution accounting for multiple arbitrarily-oriented infinite-conductivity fractures in an

anisotropic reservoir is written in the Laplace domain using superposition as

I:;CIED :Im +1 2 5 5
" ne Ky {\/Z\/[@;D)j cos(6) —0;)—)@ +(%p)7jsin (6 —9;)}
- _ J — fi (qD)lm(S) '
(PLm)e(s) =2 5Gip D, — 5 dx
= mel +K0{\/;\/[()214D)j cos(0; ~6;)+x' |+ (ijp )} sin? (6’2—6;)}
[3ip 1,
i,(zl,Z,...,nf andj,m=l,2,...,nfs. .............................................................................. (4.34)
with the Laplace domain dimensionless flow rate for a single fracture defined by
nfs 1
A¥p D @p)im T (4.35)
m=1

and the Laplace domain dimensionless total flow rate for 7, fractures defined by



n

2 1
D qiD = e (4.36)
i=1 §

For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as

(pD)f,~|j:1 = (pD)él-|j:2 =..= (,—)D)g,-|j:nfs (DD s wereererreeressessessesses s (4.37)

and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the

Laplace domain as

R N B B — (4.38)

With each fracture divided into 74 equal length uniform-flux segments, Eqgs. 4.34 through 4.38 describe a
system of n(n; + ny+ 1) + 1 equations and n(n; + n,+ 1) + 1 unknowns. The system of equations forms
the Laplace domain solution for a well with multiple arbitrarily-oriented infinite-conductivity fractures in
an infinite-slab anisotropic reservoir. The system is solved in the Laplace domain and inverted to the time

domain to obtain the pressure-transient solution as described in Appendix D.

Fig. 4.2 shows a log-log graph of the dimensionless pressure and dimensionless pressure derivative versus
dimensionless time for a cruciform fracture with J;, =1. The solutions were generated using the
semianalytical multiple-fracture infinite-conductivity solution, the pressure-averaging infinite-conductivity
solution, and the uniform-flux solution. Several interesting features are noted. First, unlike a single-
fracture solution,* the infinite-conductivity and uniform-flux solutions are not equivalent at dimensionless
times as small as 10, but the solutions converge as dimensionless time increases. Second, the
semianalytical and pressure-averaging multiple-fracture infinite-conductivity solutions overlay at small
dimensionless times, but the solutions diverge significantly at intermediate dimensionless times. Third, as
pseudoradial flow develops, #,p >3, the semianalytical and pressure-averaging infinite-conducitivity
solutions converge again. Similar comparisons are shown in Appendix D for a cruciform infinite-

conductivity fracture with 6, = %, Y4, and Ya.

Following the ideas of Raghavan ef al.'”” for comparing the pressure-transient solutions of a horizontal
well intercepted by a single or multiple fractures, Fig. 4.3 shows a log-log graph of the product of (1 + J;,)
and dimensionless pressure versus dimensionless time for a cruciform infinite-conductivity fracture with
op =0, Ya, Y5, %, and 1. At early times, the cruciform-fracture solutions overlay the single-fracture
solution, but as interference occurs, the multiple fracture solutions diverge from the single-fracture
solution. The divergence occurs at a earlier time for a shorter secondary fracture half length, and the
dimensionless time when divergence begins, which corresponds to the beginning of interference, also
corresponds to the divergence of the semianalytical infinite-conductivity and pressure-averaging infinite-

conductivity solutions shown in Fig 4.2.
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Consequently, the pressure-averaging infinite-conductivity solution is not a good approximation of the
cruciform semianalytical infinite-conductivity fracture solution when interference between the fractures is
observed at intermediate dimensionless times. However, the pressure-averaging infinite-conductivity
solution is a good approximation at very small dimensionless times and as pseudoradial flow develops.
For example, the pressure-averaging infinite-conductivity solution can be used during fracture propagation
in the numerical implementation of a fracture-injection/falloff model in a reservoir containing a constant-
volume pre-existing conductive fracture with a secondary fracture induced and propagated during the
injection.

4.2.3 Finite Conductivity. The development of a multiple finite-conductivity vertical fracture solution
requires writing a general solution for a single finite-conductivity vertical fracture at any arbitrary angle, 6,
from the xp-axis. The multiple-fracture solution is then derived following the approach of Cinco-Ley
et al.'” for a single-fracture finite-conductivity fracture and of Cinco-Ley and Meng® for a single finite-
conductivity fracture in a dual-porosity reservoir. The complete semianalytical multiple finite-conductivity

vertical fracture solution is derived in Appendix E.

A finite-conductivity solution requires coupling reservoir and fracture-flow components, and the solution
assumes the following for each fracture:
e The fracture is modeled as a homogeneous slab porous medium with fracture half-length, Ls
fracture width, wy, and fully penetrating across the entire reservoir thickness, .
o Fluid flow into the fracture is along the fracture length and no flow enters through the fracture tips.
o Fluid flow in the fracture is incompressible and steady by virtue of the limited pore volume of the

fracture relative to the reservoir.

o The fracture centerline is aligned with the z,, axis which is rotated by an angle, 6, from the x, axis.

Cinco-Ley et al."”’ show that the Laplace domain pressure distribution in a single finite-conductivity
fracture is written as
TXp T

sCop %

p— —_ A j\: x'— " " ’
pr(s)—pD(xD,s)= OD J.O gp (X", 8)dX"dx" . oo (4.39)

where pp, (Xp,s) is a reservoir solution and the dimensionless fracture conductivity is defined as,

krw
S
C ) = w0 oot e— e e et e e et e e e —e e e e ateeeaeeeanaaeaeaas 4.4
/D ka, (4.40)

After discretizing the the reservoir and fracture flow component as shown in Appendix E, a

semianalytical Laplace domain multiple arbitrarily-oriented finite-conductivity fracture solution in an

anisotropic infinite-slab reservoir is written as
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(Pwp)e(s) =
[“QICD]WH-I 2 2 P
0y Ko {«/;\/[(X}D)jzl cos (6} 6}) =" +(&ip)7_ sin” (6 —0;)}
qul Z (‘ID )1m (s) . A’
=l +K, [JE\/[@;D) j=1008(0) — )+’ | +(2;D)§=1 sin? () 9,!)} , =1
[¥ip],,
T (szD) 7(%p) j=1
- @p)jj=1(8) +————
Chip 4D %= sCpp
[;C;D]m+l i 2 2 2
Ko i) 07 1)+ T+ i i 0 -0)|
zsql z (QD)zm (s) _ '
m= +K |:\/;\/|:()%;D)j c0s(0@—¢9{)+x'} +()€{D)§ sin? (9}—0{)} , >l
[%ipl, *
ar —1 i A 2 *
z (AXzD) (A%ip) . . . _ 7(X;p);
AN [ Sty / O XA DT L AR ) — mAR: . A
e @p)j <s>+mZ:1_ D+ (Wip) | Gip) j ~mASip | @ im (5) |+~ e
............................................................................................................................................................ (4.41)
forif=1,2,....,nrandjm=1,2, ..., ng.
The Laplace domain dimensionless flow rate for a single fracture is defined by
nfs 1
ARID D (@D )i == s weeeeerevemeeseseesmiisese s (4.42)
m=l1 §
and the Laplace domain dimensionless total flow rate from n, fractures is defined by
" 1
D) S s ererereueueit et ettt h bbbttt bbbttt bbb bbbttt et n et (4.43)
¢ s
i=1

For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as

(p,;))f,~|j:1 = (ﬁD)gi|j:2 =..= (]_)D)gl-|j:nfs (DD ) is wereererrerseesessessssses s (4.44)

and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the

Laplace domain as
(PwDN = (PywD)2 == (DD Inf = PLAD - cweeeereereemsesssemeissemsis (4.45)

For each fracture divided into 4 equal length uniform-flux segments, Eqs. 4.41 through 4.45 describe a
system of n(ng + n+ 1) + 1 equations and n(ng; + n+ 1) + 1 unknowns. Solving the system of equations
requires writing an equation for each fracture segment, which is demonstrated in Appendix E. As was
noted for the semianalytical multiple infinite-conductivity fracture solution, the system of equations are

solved in the Laplace domain and then inverted to the time domain to obtain the dimensionless pressure.
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Fig. 4.4 shows a log-log graph of dimensionless pressure and dimensionless pressure derivative versus
dimensionless time for a cruciform fracture where the angle between the fractures is /2. In Fig. 4.4,
0, =1, and the inset graphic illustrates a cruciform fracture with primary fracture conductivity, Cy;p, and
the secondary fracture conductivity is defined by the ratio of secondary to primary fracture conductivity,

0c¢= Cpp/ Cyp where in Fig. 4.4, ¢ = 1.

In addition to allowing each fracture to have a different half length and conductivity, the multiple fracture
solution also allows for an arbitrary angle between fractures. Fig. 4.5 shows log-log type curves for equal
primary and secondary fracture half length, 6; = 1 and equal primary and secondary conductivity, dc=1,
where Cyp = 100m. The type curves illustrate the effects of decreasing the angle between the fractures as

shown by type curves for 0, = /2, n/4, and n/8.
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Fig. 4.4—Cruciform fracture log-log type curve with variable conductivity, 6, =1 and o= 1.
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Fig. 4.5—Log-log type curves for oblique fractures with 6, =1, 6¢ =1, Cyp = 100m and 0, = n/2,
n/4, and 7/8.

4.3 Multiple Vertical Fracture Constant-Rate Drawdown Pressure Transient Solution With

Variable Fracture Storage

Two scenarios can be considered for a constant-rate drawdown of a well in an infinite slab reservoir
containing multiple vertical fractures with the initial reservoir pressure above the minimum in-situ or
closure stress. First, isotropic stress results in all fractures dilating and closing simultaneously as the
pressure declines below the closure stress. Second, an anisotropic stress condition results in a different
closure stress for each fracture and different closure times for each open vertical fracture. However, not all
fractures are required to be open in an anisotropic stress case since the initial reservoir pressure must be

greater than the closure stress of each open fracture that subsequently closes during a drawdown.

The drawdown solution presented assumes an anisotropic stress condition with the reservoir and two
fractures initially at a constant uniform pressure sufficient to keep the secondary fracture open, but the
intial reservoir pressure is insufficient to dilate the primary fracture. As the pressure declines during the
drawdown, the secondary fracture closes. The anisotropic stress scenario selected for modeling is based on
field data indicating secondary hydraulic fracture reorientation.”*** Reorientation occurs during
refracturing because production from the primary fracture depletes the pore volume adjacent to the

fracture. As the pore volume is depleted, the pressure and in-situ stress are reduced. Consequently, the
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original reservoir stress condition is altered and the direction of minimum insitu stress will change. A
subsequent fracture treatment in a well with altered stress will propagate a fracture(s) in a plane different
than the primary fracture. Other isotropic or anisotropic stress scenarios can be modeled with a similar

approach, but are not developed in Chapter IV.

The derivation for a constant-rate drawdown for a well in an infinite-acting slab reservoir with multiple
vertical hydraulic fractures and the initial reservoir pressure above the closure stress of the secondary
fracture but below the closure stress of the primary fracture is identical to the constant-rate drawdown with
constant before- and after-closure storage for a well with a single vertical fracture derived in Appendix B.
However, the nomenclature changes somewhat to reflect the new multiple fracture storage coefficient

definitions and the reservoir solution accounting for multiple hydraulic fractures. The solution is written as

trm '
PweDLD) = PLucD (L)~ CLpen ~ CriueD) / PLiacDULD ~TD)Pywep(TpMTp s wovvn(4.:46)
where p.p is the dimensionless pressure solution for a constant-rate drawdown in a well producing from
multiple finite- or infinite conductivity vertical fractures with constant after-closure storage, which is

written in the Laplace domain as

p
BLiach = LD ettt (4.47)

2 —
1+5"CriepP LD
and Prm is the Laplace domain reservoir solution for production from multiple arbitrarily-oriented finite-

or infinite-conductivity fractures.

The dimensionless before-closure storage is defined as

C
CLpen = Lﬂ’ ....................................................................................................................... (4.48)
2rpe,hl 11
and the before-closure storage coefficient is written as
_ 472
CLﬂ?C = CWVW + 2Cfol + 2@ © et eeeeeeeeeeeiaeeeiaeeteaeei ettt ettt e e et ettt e e teaeettaaeetae et aeteaeeeaeeas (449)

The before-closure storage coefficient consists of constant wellbore storage, c,V,, constant primary
fracture storage, 2c;;V};, and constant secondary fracture storage where Ay, is the area of one wing of the
secondary fracture and Sy, is the secondary fracture stiffness, which is defined for a single fracture in

Appendix B.
The dimensionless after-closure storage is defined as
C
G e (4.50)

2
2rpe,hl 11

CLfacD =
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where the dimensionless after-closure storage is defined as
CLfac :chw+ZCf(Vf1 +Vf2) e ettt et ettt e eee e ettt e e —t e e e bt e e bt e e e e bt ee e e bt eeeebbteesabeeeenabaeeeanaee “4.51)

4.3.1 Numerical Evaluation of a Multiple Vertical Fracture Constant-Rate Drawdown Pressure
Transient Solution With Variable Fracture Storage. The constant-rate drawdown solution for a well in
an infinite-acting slab reservoir with multiple vertical hydraulic fractures and the initial reservoir pressure
above the closure stress of the secondary fracture but below the closure stress of the primary fracture is

written as

e ,
PweD L) = PLaed (L)~ Crped ~Criaen) o 4D PLiacDULD ~TD)PyepTpHMTp - oo (4:.52)

After integrating-by-parts, the solution is written as

PLfacD L)+ CrpeD = CLfacD)PacD [tLﬂ) )57 J PweD [(fc )LfD}

PweD (D) = “) 5 eeneeenes (4.53)
L "
~Crppen ~Crfacn)fo /D PweDTD)PLfacD LD ~ DM 7D
and after discretizing the integral term, a numerical approximation is written as
PLfacDLDIn + CrpeDd ~CLfacD)PLfacD [(thD)n ~(mp) jJP{wD [(foD) j}
PweDLD)i — PweDULD)i -1
()i —Crmi-1
PweDULDIn = J
~(Crped ~Clacp) X ||| PwepU1D)i—1~ PweDUL)i-2
= t1)i-1-(m)i-2
I | *PLfacD [(tLjD)n ~Urm)i- 1)J | |
............................................................................................................................................................ (4.54)

where j is the time index at closure. Note that for n <, prucol(tup)n - (tp);] = 0.

Fig. 4.6 shows a log-log graph of dimensionless pressure and dimensionless pressure derivative versus
dimensionless time for a cruciform fracture where the angle between two infinite-conductivity fractures is
n/2 and the before- and after-closure storage is constant, Crpep= Crpep = {0.005,0.010}. Similarly,
Fig. 4.7 shows a log-log constant-rate drawdown type curve for an infinite-conductivity cruciform fracture
with Cppep = 0.010, Cprpep =0.005, and (¢.)p = 10™. Note that the variable storage solution overlays the

constant storage type curve before and after closure.

The semianalytical multiple arbitrarily-oriented infinite-conductivity fracture solution with constant
storage is "expensive" to evaluate in terms of computer time. For example, the constant storage evaluation
for Cypep = 0.010 — with the solution programmed in Mathematica 5.2 — required 27 hours of CPU time to
calculate 200 data points across 9 log cycles. However, if the constant storage solution is expensive, the
variable storage solution is exorbitant. The 50 data points across 5 log cycles shown in Fig. 4.7 required

168 hours (seven days) of CPU time.
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fractures and variable storage, C;4.p = 0.005 and C,.p = 0.010.
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Obviously, more efficient algorithms and custom software will improve the CPU time required to evaluate
either the constant or variable storage solutions, but with the variable storage solution overlaying the
constant storage solution before- and after-closure, it may not necessary to calculate the variable storage
solution for routine type curve matching. Matching observed variable-storage data to constant-storage type

curves and ignoring the transition from one curve to another should be sufficient in most cases.

4.4 Fracture-Injection/Falloff Solution With a Pre-Existing Fracture

Several scenarios can occur during a fracture-injection/falloff sequence in a well with a pre-existing
hydraulic fracture. If the local stress field has not been altered by production, an existing fracture can
dilate during the injection and close as the pressure declines below the closure stress during the falloff.
However, if the local stress field has been altered, the existing fracture may dilate during the injection with
a new fracture induced and propagated in an adjacent plane. Alternatively, the injection may induce a new
fracture in a plane other than the pre-existing fracture, but the pressure during the injection is insufficient

to dilate the pre-existing fracture.

When a pre-existing fracture dilates during an injection and closes during the falloff without inducing an
additional fracture, a fracture-injection/falloff sequence is modeled as shown in Chapter III with fracture
length considered to be created instantaneously. When a new fracture is induced in a plane other than the
existing fracture without pre-existing fracture dilation, the propagating- and existing-fracture

dimensionless storage coefficient is defined as

C t
CorfD - DL P ) i (4.55)
’ 27r¢cthL§p1
where the propagating- and existing-fracture storage coefficient is defined as
4V 13(pyy (1)

Cprr (Py () = Wy +2¢p V1V 2 (PyO) 42— (4.56)

dp,,,
Assuming as shown in Appendix C that a power model can be used for fracture propagation; assuming
¢ <<1; and assuming linear-elastic fracture mechanics are applicable; the propagating- and existing-

fracture storage coefficient is written as

A t
12 LfD
Corr(t =c, V., +2c Ve +2 Emmammdl OO O T T T ST 4.57

b f(t fD) Ewhw TV f1 sz {(te)L)DJ ( :

which is not a function of pressure and allows the superposition principle to be used to develop a fracture-

injection/falloff solution in a well with a pre-existing fracture.
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During the falloff, the induced fracture closes, and the before-closure storage coefficient is the same as
previously defined for a closing secondary fracture during a drawdown in a reservoir with multiple

fractures. The before-secondary fracture closure storage coefficient is written as

4
e (4.58)
Sra

Similarly, the after-closure storage coefficient is written as

CLﬂ?C = CWVW + 2Cfo1 +2

CLfac :cWVW +2Cf(Vf1 +Vf2) e e et e e e e e a e e aaee (4.59)

The model for a fracture-injection/falloff sequence in a well with a constant-volume pre-existing vertical
fracture that induces a secondary fracture is a simple modification of the fracture-injection/falloff model
without an existing fracture developed in Appendix C. However, the nomenclature and storage coefficient
definitions change somewhat to reflect the new propagating- and existing fracture storage coefficient
definition, and the reservoir solution changes to account for multiple hydraulic fractures. The solution is

written as

dwsD [P pLD D)~ Pprmrm ~ ) D )}

(t)
fo° 4D PprD L —7D)CpLm Tp)Pywsp (tp)dip

(te) : :
PusD L) = +Crpmen fo 1P LD ~7D)Pywsp(FD)d7p

(D) I .
—(CLfbcD —CLfacD) 0 D L ~7p)Pwsp(Fp)dTp

c /o, . J

- LiacDlo” PLDLD ~7D)Pysp(p)dTp |
where p,;p is the propagating-fracture solution with multiple constant-length fractures and a single
induced fracture, and p;p is the multiple arbitrarily-oriented finite- or infinite-conductivity fracture

solution.
With secondary fracture propagation, the before-closure limiting-case solution for (z,),p << t1p < (¢;)yp is
written as

pWSD(tL]D) = pwsD(O)CLfbch’LfbcD(tLﬂ)) R “4.61)

where p;s.cp is the dimensionless pressure solution for a constant-rate drawdown in a well producing from

multiple fractures with constant before-closure storage, which is written in the Laplace domain as

P
5 LD (4.62)
I+s CLbeDpoD

PLfbcD =

and PLm is the Laplace domain reservoir solution for production from multiple arbitrarily-oriented finite-

or infinite-conductivity fractures.
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The after-closure limiting-case  solution  with  secondary fracture propagation  when
tup >> (t)yp >> (t.)yp 1s written as
PwsD (thD) = [pwsD (O)CLfbcD ~PwsD (([c )LD ) (CLfbcD ~CLfacD )} p'LfacD (tLjD ) e (4.63)

where p;cp is the dimensionless pressure solution for a constant-rate drawdown in a well producing from

multiple fractures with constant after-closure storage, which is written in the Laplace domain as

p
7 LD ettt ettt h ettt Ao btk et b b et h ekttt b et b b et b ettt et et eb et (4.64)
I+s CLfachLfD

PLfpeD =

The limiting-case solutions are slug-test solutions, which suggest that a fracture-injection/falloff sequence
in a well with a pre-existing fracture and a secondary fracture induced during an injection can be analyzed

as a slug test provided the injection time is short relative to the reservoir response.

A fracture-injection/falloff model is more complicated when existing fractures dilate and a new fracture is
induced during an injection. For example, during an injection, an induced fracture will begin to propagate
in the direction of maximum stress. When the injection pressure exceeds the closure stress in the existing
fractures, the existing fractures will begin to dilate. During the falloff, multiple closure times will be
observed as the pressure declines below the closure stress of each dilated existing fracture and the induced
fracture. A fracture-injection/falloff model developed using the unit-step function must account for each
fracture opening and closing through the use of multiple storage coefficients and fracture closure times.
Consider a relatively simple case with a single existing fracture dilated and a single fracture induced

during the injection. The dimensionless propagating- and existing-fracture storage coefficient is written as

A t “
f2| LD
C =c, V,, +2c¢V 2 ettt ettt ettt ettt naees 4.65
pLf L) =cyly +2¢ eV e + S {([e)L J (4.65)

When the existing fracture begins to dilate, (£).p < tp < (f.)p, @ new propagating- and dilating-fracture

storage coefficient is defined as

A A t @
o _Ar( typ
C =c, V,, +2 2 © ettt ettt e ————————————————————————————————————————————————————. 4.66

def([Lﬂ)) Sy’ w T Sfl + sz [(te)L ] ( )

During the falloff when (#.),p <t,p < (t.))yp, a primary-fracture before-closure storage coefficient is
defined as

Ap A
CLpet tLm) = by +2[?fi+5,%] e (4.67)

and a secondary-fracture before-closure storage coefficient is defined for (./),p < t1p < (t.2)p as
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Af2
CLbe2 = CWVW+2C.]('V]'1 +2S—. ............................................................................................... (4.68)

f2
After primary- and secondary-fracture closure, ¢, > (¢.2)1/p, the after-closure storage coefficient is defined

as
CLfac = CWVW + ZCf (Vfl + sz) ettt eeeieeieeteeteeeieeteeteeaeeteeteeieeteete ettt ttaeaeatettaetataetaeaaaaaaeeraeen (4.69)

Following the derivation method described in Appendix C, a material balance equation is developed that
is applicable at all times during the fracture-injection/falloff sequence, and using the unit-step function, a
fracture-injection/falloff model for a well with an existing fracture dilated and a secondary fracture

induced during the injection is written as

_qwsD [PpoD ()= PpLmLm (te)LfD)}

to |, :
~J ™ 10 =~ 70) [ ot D)~ Cpdip D) lysp (ep)depy

(te) , ,
fo° 1w, LD LD ~7D)C parp (*p)Pywsp(tp)dip
) , e (4.70)
PwsDLm) = +Crpe1D j() PL LD ~7D)PwsD(FpD)dTp

D ,
—(Cijch - CLﬂJCZD) 0 4D rLpLmD ~Tp)Pwsp(Fp)dp

(2,
JIp 2P

_(Cijc2D ~CLfacD LD ~TD)Pywsp(TD)dTp

o ' J
_—CLfacho LD ~7D)PywsD(FD)dTp |
Similar to the propagating-fracture solution for a single vertical fracture described in Chapter III, the
propagating-fracture solution, p,;n(fp), with multiple constant-length fractures and a single induced

fracture can be written as

PprfD(typ) L <)L

p (trmp) = ) ettt et ettt ettt ens (4.71)
PEDEEIDT by t1p >t
or using the unit-step function written as
PpLfD (thD) = (1 - U(te)LfD )pprLjD(thD) + U(te)LfD ) R (4.72)

The propagating-fracture solution with multiple constant-length fractures and a single induced fracture can
be written in terms of the semianalytical multiple arbitrarily-oriented finite- or infinte-conductivity

fracture solution by writing a quasi-static form as
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(ﬁprLfD )o(s) =
[)AC’[D (thD )}nﬁ-l 2
np g KO[\/;\/[(%[D)/:WOS(W—91’)—)"] +()?5D)§=1Siﬂ2(9/i—9z!)}
ZS‘Z'D Z @D)im(s) dx'
i=l m=l1 2 ) . ! v2 ot 2 . 2 r_n! .
+Ko| Nuy[[ Gip) jor cos (6]~ 6f)+ x|+ (Eip )i sin® (6] - 6f) =1
[)E;D(thD)}m
Ny 2!
o (Np) 7(¥ip) j=1
7CﬁD Era— (qD)lj=1(S)+7S Cop
I:-QI,D([LfD):Inl-'—l ar ’ ’ ’ 2 ol 2 . 2 ’ ’
oo Ko \/;\/[(xiD)jcos(H/—Hl-)—x] +(&jp)F sin® (6 - 6])
quiD Z @p )ém (s) '
= m=l +K0[\/E\/[()%;D)jcos(eg—9,-')+x'f+(;e;D)§ sinz(é?/f—@l-’)} sl
[ff{'D(lL_fD)]m
7 | (A¥fp)® _ L @aip? . . . _ 7(%ip)
CﬁD{ ] (‘ID)U(S)+mZ=:1 2 +( lD)[(xlD)_] m ZD} @D)im(s) |+ sCﬁD
............................................................................................................................................................ (4.73)

for i,f=1,2, ..., n; and jm=1, 2, ..., nz. The Laplace domain dimensionless flow rate for a single
fracture is defined by
nﬁ 1
Ap D" @p)im T (4.74)
m=l

and the Laplace domain dimensionless total flow rate from n, fractures is defined by

n

J 1
D TID ==y oo (4.75)
i=1 §

For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as

(;—aD)[,-|j:1 = (]_)D)gi|j:2 =...=(Pp)i 0775 ) 1 TR (4.76)

JEIf
and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the

Laplace domain as

(ﬁprLfD N = (ﬁprLfD )y =...= (ﬁprLfD)nf = ﬁprLfD ¢ ettt eee e et e et e e et e st e e e e b et e senaee e naneees 4.77)

Note that the propagating fracture half length changes during the injection, which can be modeled using a

power model approximation and written as

¢ iN
Lo (6 ) = [ - ] LD SULID | oo (4-78)
ADLm) =1\ () ’
1 thD Z(te)LfD

where a;y is the fracture-growth exponent, which varies between ' and 1 for low-and high-efficiency

fracture growth, respectively, and where (f),p is the dimensionless time at the end of fracture
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propagation. With L'p(,) a function of dimensionless time, A%jp, = L (¢7p)/n s and the dimensionless

distances, [Xip]; and[Xip (/7D )]y, are also functions of dimensionless time.

With infinite-conductivity fractures and a small dimensionless injection time, the pressure-averaging
solution described in Section 4.2.2 can be used to numerically evaluate the solution provided the
dimensionless injection time is on the order of 10°. The computational difficulty of the semianalytical
solution versus the relative speed and simplicity of the pressure-averaging solution makes the pressure-
averging solution the preferred solution at small dimensionless times. With a propagating fracture during

the injection, the pressure-averaging solution can be written as

L4y 4 Ain 1 BPorisD 0]
L Ay Ay An, || Gp g .
: : : S U .
by Anpo Aupns | : 1
0 1 1 1 |L9yD | ||
where
LapCm)  rLgp(irm) 3
A" (‘;)L — K|V [’DZ C(.’Sief ~0;)-a] daadry - (4-80)
Ao \tLm) Lo Ui +rjsin® (6, -6, )

~Laptym)Y —Lgp(im)

4.4.1 Limiting-Case Fracture-Injection/Falloff Solutions With a Dilating Pre-Existing Fracture, a
Propagating Induced Fracture, Multiple Closures, and Constant After-Closure Storage. The
dimensionless wellbore pressure solution for a fracture-injection/falloff with a dilating pre-existing
fracture, a propagating induced fracture during the injection, multiple closure times, and constant after-

closure storage is written as

dwsD [P pLD L)~ Pprmrm ~ ) D )J

)
_Jod LD p})LfD(thD_,D)[CpoD(rD)—deLfD(TD)]P'vusD(TD)er

() ,
~fo° H PpL L ~7D)Cparm Tp)Pwsp(Tp)dtp
(%) . )
+Crmein o oD P LD ~7D)Pwsp(Fp)dTp

(te1) , ,
_(Cijch - CLfbczD) 0 b LML ~TD)Pywsp(Tpldip

(te2)r,
Jip 2P

PwsD (thD) =

—(CLfbczD ~CLfacD PLDULHD ~TD)Pywsp(Ep)dTp

t
| ~CLfacD I oLfD PLO LD ~TD)Pywsp (Tp)dTp

107



which can also be written as

9ywsD [PpoD ()= PpLmLm — (Ze)LfD)J

(tg) , .
-J, 4P b1t =) [Cpr D)~ Cparp *D) | Piysp )

(te)
“Jo° P P11 =7p) Cpdtp D)= Cuppeip [Plyspp)p | (4.82)
PusD L) = V. ,
—(CLfbcu) - CLfbczD) 0 L ~7p)Pywsp(Tp)dtp

(te2)r,
Jp 2P

_(Cijc2D ~CLfacD PLDULD ~TD)Pwsp(Tp)dTp

Lt . y
_—CLfach o PLDULD ~7D)Pwsp(FD)dTp
Assume the secondary fracture half-length is created instantaneously such that C,.p= Cypeop and

Cparp = Crperp- A limiting-case solution can be written as

_qWSD [PLfD (o) -rrmlrm —(te)Lﬂ))}

tq) , ,
+(CLfbch - CLfchD) 0 4*Lfp L p —7p)Pwsp(Tpldip

tc)m , s 4.83
PwsD(LD) = _(CLfbch ~Crpe2D )f 0 f LD ~7D)Pwsp(Tp)dTp (483)
e ,
_(Cijc2D - CLfacD)f 0 D PLtLp ~7D)Pwsp (DT
‘o .
| ~ClLfacD Jo P LD ~7D)PywsD(FD)dTp |
Consider a case when (%) < (fo)yp < typ < (t.1)p, Which allows the solution to be written as
trm ,
(CLfbch ~Crhe2D )f 0 LD ~7D)PywsD(FD)d7p 484
pwsD(thD): e et (4.84)

t
~CrfbeiD |, oLfD LD ~7D)Pwsp (TD)dTp

When the injection time is short, (¢.),p» — 0, and recognizing that (z.),p > (t;),p, the solution can be

written as

Pusp D)= —cLﬁdDjéLfD PLDULID ~TDIPysDEDITL 5 oo (4.85)
which after transforming to the Laplace domain, simplifying, and inverting back to the time domain is
written as

PwsDULD) = PywsD (O)CLfbchp,Lfbch (L) > woeveeessssssmsssss s (4.86)

where the Laplace domain dimensionless multiple-fracture solution for a well produced at a constant rate

with constant primary-fracture before-closure storage is written in the Laplace domain as
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. PLD et (4.87)
1+5"CrmpelDPLD

PLfbelD =

Consequently, the limiting-case solution for an instantaneous injection, (¢.),p — 0, with

(ta)em < (t)ip < typ < (te)1p 1s a slug-test solution.

Consider a case with an instantaneous injection, () — 0, when (t2)p < (t)p < (L) < typ < (L),

which allows the solution to be written as

(DL
fo P

_(CLfbch ~CLe2D ) PLDULHD ~TD)PwsD(Ep)dTp

pwsD(’LfD): z e (4.88)
L / '

~Crme2n )y D LD —7D)Pwsp(TpdTp

After transforming to the Laplace domain, simplifying, and inverting back to the time domain, the

limiting-case solution is written as
PwsD(1D) = [PWSD OCLpe1p =~ Pwsp (Ce) LD )(CLfbch ~CLbe2D )} PL2DULD) > oo (4.89)

where the Laplace domain dimensionless multiple-fracture solution for a well produced at a constant rate

with constant secondary-fracture before-closure storage is written in the Laplace domain as

5 PL/D e (4.90)
1+s"CrpcopP LD

PLfbc2D =

Consequently, the limiting-case solution for an instantaneous injection, (f)yp — 0, with

(td)LjD < (te)LjD < (tcl)LfD < tLjD < (tCZ)LfD is also a Slug-test solution.

Finally, consider the case of an instantaneous injection, (t.),p — 0, when

(t))p < (t)p < (L) < (te2)yp < trp , which allows the solution to be written as

teDrm
o

—(Cijch ~CLme2D ) PLDULHD ~TD)PwsD (D)t

(tc2)
)jo 2)LfD e (4.91)

PwsDULD) = —(CLfbczD ~CLfacD PLDLHD ~TD)Pywsp (Fp)dTp

‘o ,
~Crfucd Jg D LD ~7D)Pysp(pldip

After transforming to the Laplace domain, simplifying, and inverting back to the time domain, the

limiting-case solution is written as

PusDOC1e1p = Pusp (DD )(Coppetn = Crpmean ) ,
PwsD(thD): poacD(thD)’ .............

“PwsD ((102 )LD )(CL_fbc2D ~CLfacD )
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where the Laplace domain dimensionless multiple-fracture solution for a well produced at a constant rate

with constant after-closure storage is written in the Laplace domain as

Pim et e et (4.93)

ﬁLfacD = ) —
1+s“CrfaeDPLD

Consequently, the limiting-case solution for an instantaneous injection, (t.),p — 0, with

(ta)p <t < (L) < (L) < tyyp 18 also a slug-test solution.

The limiting-case slug-test solutions are applicable provided that a fracture-injection can be considered to
occur instantaneously. From the analytical solution, a fracture-injection with a dilating pre-existing
fracture, a propagating induced fracture, multiple closure times, and constant after-closure storage can be

considered to occur instantaneously when the inequality written as
: ), :
PL/D (thD)JO /D [C pdLD ~C poD(TD)} Pwsp(Tp)dTp
: (e, :
+PLD (thD)JO e’fp [CLfbch -C defD(fD)] Pwsp(Tp)dp

t
~ClfueD | oLfD PLDLD ~TD)Pysp(Tp)dTp

(tc1) . .

< _(Cijch ~Crpe2D )f 0 c’LfD PL LD ~7D)Pywsp(FD)d7p
(t2) , ,

—(CLfbczD - CLfacD) 0 2D P ~7p)Pywsp(Tpldip

holds for a finite, but short relative to the reservoir response, time of injection.
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CHAPTER V

A REFRACTURE-CANDIDATE DIAGNOSTIC AND EXAMPLE FIELD
APPLICATIONS

5.1 Introduction

The new refracture-candidate diagnostic requires isolating a layer to be tested and completing a fracture-
injection/falloff sequence where the time of injection is short relative to the reservoir response. The new
analytical pressure-transient solutions that were developed in Chapter III for cases without a pre-existing
fracture and in Chapter IV for cases with a pre-existing fracture(s) suggest that with a short time of
injection, the pressure difference recorded during the falloff period can be transformed to an equivalent
pressure difference if the rate were constant, plotted, and matched to variable-storage, constant-rate
drawdown type curves. The limiting-case solutions presented in Chapters III and IV also form the basis for
quantitative interpretation of the observed pressure falloff recorded during the new refracture-candidate

diagnostic test.

The new refracture-candidate diagnostic is used prior to a refracture treatment to achieve the following

objectives.

e To determine if:
= A fracture retaining residual width exists.
= A pre-existing fracture is damaged.

e To estimate:
= Effective fracture half-length of a pre-existing fracture.
= Fracture conductivity of a pre-existing fracture.
= Reservoir transmissibility.

= Average reservoir pressure.

When the diagnostic objectives are achieved, the benefits of refracturing can be easily evaluated, and the

incremental production from a refracture treatment can be predicted.

Chapter V describes the new refracture-candidate diagnostic and the interpretation method for oil and gas
reservoirs. With oil reservoirs—or liquid-filled reservoirs like water saturated coals—the analysis is
performed in terms of pressure and time. With gas reservoirs—or a reservoir containing compressible fluid
modeled as a real gas—the analysis is performed in terms of adjusted pseudopressure and adjusted
pseudotime. A unique quantitative interpretation may not be possible when insufficient falloff data are

recorded, but qualitative analysis of variable storage behavior is useful for identification of a pre-existing
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fracture and flow regime identification is useful for selecting before- and after-closure data for specialized
analysis. The focus of Chapter V is applications, and, as such, all equations in Chapter V are written in

field units.

Chapter V also contains field examples to illustrate the interpretation of a fracture-injection/falloff

sequence for the following cases.
e Without a pre-existing fracture:
= Pseudoradial flow observed after closure.
= Pseudolinear flow observed after closure.
e With a pre-existing Fracture

= A pre-existing conductive hydraulic fracture with choked-fracture skin damage.

5.2 Refracture-Candidate Diagnostic Test

The new refracture-candidate diagnostic test is a fracture-injection/falloff sequence where the time of
injection is short relative to the reservoir response and where the pressure during the injection is sufficient
to initiate, dilate, or propagate a fracture(s). The test was developed by recognizing that an existing
fracture retaining residual width has associated storage, and a new induced fracture creates additional
storage. Consequently, a fracture-injection/falloff test in a layer with a pre-existing fracture will exhibit
variable storage during the pressure falloff, and the change in storage is observed at hydraulic fracture
closure. In essence the test induces a fracture to rapidly identify a pre-existing fracture retaining residual

width.

Both qualitative and quantitative interpretations are possible provided sufficient pressure data are recorded
during the falloff. Qualitative interpretation to identify a pre-existing fracture and pre-existing fracture
damage requires determining hydraulic fracture closure using existing methods and characterizing the
observed variable-storage behavior. Quantitative interpretation of transmissibility requires developing a
type-curve match, or when sufficient data are recorded to observe the pseudoradial flow regime, the
transmissibility can be calculated from the impulse solution.”>*¢" Initial reservoir pressure can also be
estimated from the pressure observed during pseudoradial flow, and fracture half-length and fracture

conductivity can estimated from the type-curve match.

The new refracture-candidate diagnostic test requires the following.
= Isolate a layer to be tested.

= Inject liquid or gas at a pressure exceeding fracture initiation and propagation pressure. The
injected volume should be roughly equivalent to the proppant-pack pore volume of an existing

fracture if known or suspected to exist, but the injection time should be limited to a few minutes.
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= Shut-in and record a pressure falloff period of several hours. A bottomhole gauge and bottomhole

shut-in are preferable to minimize wellbore storage.

Both qualitative and quantitative interpretation require the following steps:

= Identify hydraulic fracture closure during the pressure falloff using existing methods.**"*

= For a reservoir containing a slightly-compressible liquid, transform the recorded variable-rate
pressure falloff data to an equivalent pressure difference if the rate were constant by integrating the
pressure difference with respect to time, which is written in field units as

I(Ap):jgf+A’[pw(r)—pi}dr, ............................................................................................. (5.1)

where At = t—t¢,, t [hr] is the time, z, [hr] is the time at the end of the injection, p,, [psi] is the

observed wellbore pressure, and p; [hr] is the initial reservoir pressure.

Calculate the well testing pressure derivative of the pressure observed during the falloff by

evaluating the pressure derivative function written in field units as

, dl(Ap)
=—————=(t, + At F) = Dj |+ ceveerereerneeeienie ettt 52
2(inttg +50) (te + A0 Py ()~ pi] (5.2)
Prepare a log-log graph of /(Ap) versus ¢, + At and Ap' versus ¢, + At.
= For a reservoir containing a compressible fluid (real gas), calculate adjusted pseudotime in field

units as

t
dt
[ = et eneene (5.3)
“ (IUCt)l J'O (/’lct)w

where x [cp] is the viscosity, ¢, [1/psi] is the total compressibility, the subscript i denotes the
variables are evaluated at the initial reservoir pressure, and the subscript w denotes the variables

are evaluated at the observed wellbore pressure.

Calculate adjusted pseudopressure in field units as
p
Uz pdp
() [P 50
P J)iJo Hz

where z is the gas deviation factor.

Transform the observed adjusted pseudopressure data to an equivalent adjusted pseudopressure
difference if the rate were constant by integrating the adjusted pseudopressure difference with

respect to time, which is written in field units as

I(Ap,) = J(()(te)a +At, )[ Paw (D)= Pai JAT s oo (5.5)



where Az, =t, — (t,)..

Calculate the well testing adjusted pseudopressure derivative observed during the falloff by
evaluating the derivative written in field units as

. dl(Apg)
T d[In((te)g +Aty)

} :((te)a +Ata)[paw(ta)—pai] e et eeesreebeere e (5.6)

Prepare a log-log graph of /(Ap,) versus (¢,), + At, and Ap’, versus (2,), + At,.

5.2.1 Qualitative Analysis. A fracture-injection/falloff sequence in a reservoir either with or without a
pre-existing fracture can result in variable storage behavior. In an ideal case without a pre-existing fracture
prior to the injection and no wellbore storage, the fracture created during the injection will close
completely during the falloff period. With complete closure, storage after closure goes to zero.
Conversely, in an ideal case with a pre-existing fracture that retains residual width prior to the injection
and no wellbore storage, a fracture induced by the injection, or existing fracture dilation as a result of the
injection, will close during the falloff period. However, with complete closure of the induced- or dilated-
fracture, storage does not tend to zero because the pre-existing fracture retains residual width and remains

open.

Variable-storage behavior is illustrated in Figs. 5-1 through 5-3. Fig. 5-1 shows a log-log graph of
dimensionless pressure and pressure derivative versus dimensionless time for a variable-storage
drawdown. During the falloff of an ideal fracture-injection/falloff sequence in a reservoir without an
existing fracture, the transformed equivalent constant-rate pressure difference and derivative fall along the
curve corresponding to C,.p =0.1. After complete fracture closure, the storage goes to zero, C,.p =0,
which creates an abrupt increase in both the dimensionless pressure and the derivative. Van den Hoek***”
presented field data showing similar pressure and derivative changes observed during falloff testing of a

well with a waterflood-induced fracture.

Fig. 5-2 also shows a log-log graph of dimensionless pressure and pressure derivative versus
dimensionless time for a variable-storage drawdown. However, Fig. 5-2 illustrates the falloff of an ideal
fracture-injection/falloff sequence in a reservoir with an existing fracture. With an existing fracture, the
storage after closure is greater than zero provided the existing fracture retains residual width.
Consequently, the transformed equivalent constant-rate pressure difference and derivative would fall along
the curve corresponding to Cp.p = 0.1, and after fracture closure, the storage decreases, C,.p = 0.05, which

creates a more subtle increase in both the dimensionless pressure and the derivative.

Fig. 5-3 illustrates a case with apparent increasing storage, and shows a log-log graph of dimensionless
pressure and pressure derivative versus dimensionless time for a variable-storage drawdown with choked-

fracture skin. With a pre-existing fracture that is damaged at the wellbore, the storage appears to increase
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because of the choked-fracture skin. The pressure and derivative curves in Fig. 5-3 were generated with
before-closure fracture storage, Cp.p=0.095, after-closure fracture storage, Cpcp=0.045, wellbore
storage, Cp=0.005, choked-fracture skin, (S;)c,=0.001, and fracture closure at (Z)yp = 0.0001.
Consequently, the transformed equivalent constant-rate pressure difference and derivative appear to

decrease during and after fracture closure to the curve corresponding to C,.p = 0.05.

Provided the storage does not tend to zero, a change in the magnitude of storage at fracture closure
suggests a fracture retaining residual width exists. When storage decreases to a constant value greater than
zero, an existing fracture is nondamaged. Conversely, a damaged fracture, or a fracture exhibiting choked-

fracture skin, is indicated by apparent increase in the storage coefficient.

In addition to identifying an existing fracture, qualitative analysis is useful for identifying the flow regimes
observed during a fracture-injection/falloff sequence and for identifying the observed data to be used with
quantitative special analysis, including traditional before- and after-closure methods.’”®' Fig. 5-4 shows a
log-log graph of dimensionless pressure and pressure derivative versus dimensionless time for a variable-

storage drawdown with Cy.p = 0.01, C,ep = 0.009, and (#.)p = 107

The data observed during storage-dominated flow, which is indicated by the unit slope line, correspond to

both wellbore and fracture storage. When fracture storage is much greater than wellbore storage and the
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data fall along a unit slope line, the fracture is open, and a change in storage indicates hydraulic fracture
closure has been observed. However, in many field cases, wellbore storage will be much greater than
fracture storage, and the transition from storage-dominated flow may not be a reliable indicator of fracture
closure. For example, in Fig. 5-4, fracture closure occurs at (¢.).p = 10, but storage-dominated flow

continues for a period of time because of wellbore storage.

Before-closure pressure-transient analysis®’ >’

is applicable to the storage-dominated flow data. When a
shut-in period following a fracture-injection only extends to the end of or slightly beyond closure, the
equivalent constant-rate pressure difference and derivative data will remain in storage-dominated flow
during the entire pressure falloff. Consequently, before-closure pressure-transient analysis is the only

quantitative interpretation method that can provide estimates of permeability and fracture-face resistance.

Pseudolinear flow will be observed after closure when sufficient fracture half-length was created during
the injection and provided the fracture after closure has essentially infinite conductivity. In very low-
permeability reservoirs, pseudolinear flow is often observed.”* Pseudolinear flow is indicated by a % slope

of the pressure and derivative curves.
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Pseudoradial flow can be observed when the shut-in period is sufficient, and pseudoradial flow is indicated
by a constant pressure derivative function equal to !4 as shown in Fig. 5-4. When pseudoradial flow is
indicated, after-closure analysis based on the impulse solution will provide an estimate of transmissibility,
and with transmissibility known, a type-curve match point will provide an estimate of storage and the

created fracture half-length.

It is also noteworthy that with complete fracture closure, or when the created fracture half-length is very
short, a log-log graph of equivalent constant-rate pressure difference and the pressure derivative will
transition immediately from storage-dominated flow during fracture closure to radial flow. When radial
flow is indicated immediately after closure, the equivalent constant-rate pressure and derivative data will
fit on a radial flow with wellbore storage and skin type curve. Recall an analytical solution for the case

was presented in Chapter III.

5.2.2 Quantitative Analysis — Before-Closure Pressure-Transient Analysis. Quantitative analysis of a
refracture-candidate diagnostic involves both type-curve matching and specialized analysis of data in
specific flow regimes. Without a pre-existing fracture, specialized analysis includes before- and after-
closure methods. Before-closure pressure-transient analysis does not account for a pre-existing fracture, so
when a pre-existing fracture is indicated by type-curve analysis, before-closure analysis is invalid.

Before-closure pressure-transient analysis® >

was described in Chapter II for reservoirs containing a
slightly-compressible liquid, and Appendix A extends before-closure analysis to reservoirs containing
compressible fluids by formulating in terms of adjusted pseudopressure and adjusted pseudotime.
Table A-2 contains the equations formulated in pressure and time and adjusted pseudopressure and time,
and Table A-3 contains the equations formulated in pressure and time and adjusted pseudopressure and

adjusted pseudotime required for completing before-closure pressure-transient analysis.

Completing before-closure analysis in a reservoir containing a slightly-compressible fluid requires the

following.

= (Calculate the constant ¢;, which is written in field units as

7,
(&) i i T T T LT T T T T P P PP (5.7)
P
and c,, which is written in field units as
5.615 7,
e T S RPN 5.8
2= 50 Mg, (5.8)

where Sy [psi/ft] is the fracture "stiffness" and wy, [ft] is the fracture lost width corresponding to
fluid leak-off volume.” Fracture stiffness, or the inverse of fracture compliance, is defined by the

elastic energy or "strain energy" created by an open fracture in a rock assuming linear elastic
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theory is applicable. Table 5-1 contains the fracture stiffness definitions for three common 2D
fracture models.*'* In field units, E’ [psi] is the plane-strain modulus, R,[ft] is the radius of a

radial fracture, /i [ft] is the gross fracture height, and L, [ft] is the fracture half length.
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Table 5-1—Fracture stiffness for 2D fracture models.3%!%
Radial Perkins-Kern-Nordgren Geertsma-deKlerk
Vertical Plane Strain Horizontal Plane Strain
3xE' 2F' E'
S = S = —_— S -
(Sr)RAD 16k, (Sf)pkn oy (Sr)Gpk =

Estimating fracture stiffness using the 2D idealizations requires determining one fracture
dimension consisting of fracture radius, fracture height, or fracture half-length. With a vertical
plane strain assumption (PKN), fracture height is required for calculating stiffness. In most cases,
fracture height is assumed based on lithology interpreted from log analysis. However, fracture-

imaging methods can also provide an estimate of fracture height when available.”’

Imaging methods may also be beneficial for estimating fracture half length or radius, but in most
cases, a relatively simple fracture model is used. One method for determining fracture radius or
half-length was described by Valko and Economides™ and assumes no spurt loss, which is an
instantaneous fluid loss as the fracturing fluid contacts "new" rock during fracture propagation.
Without spurt loss and assuming ideal leakoff behavior, the pressure recorded during the before-
closure shut-in period will fall along a straight line on a graph of bottomhole pressure versus the

dimensionless loss-volume function, g(A4¢, ay), which was described in Chapter II.

Assuming o = 8/9 for a radial fracture, the radius can be calculated from the intercept, by [psi], of

a line drawn through the observed data, as™

EV,
Ry =3J3(5'615) e e s ee e (5.9)

8 (by-pe)’
where V;,; [bbl] is the volume of fluid injected in one fracture wing, V;,; = Q,/2, and O, [bbl] is the

total volume injected. Assuming a = 2/3 for a horizontal plane-strain (GDK) idealization, fracture

half-length can be calculated as™

(615)EV;, -
oo e eeeeeeeee oottt eeeeee (5.10)

L= [——— "
S "\ zhp by~ pe)



With a characteristic fracture dimension determined for each 2D idealization, fracture lost width is
estimated from the slope of a line, my [psi], drawn through the observed data. For a vertical plane

strain assumption, ay = 4/5, the fracture lost-width is written in field units as”’

O.7075(12)7rhf( )
_ , ).

wr = T N s (5.11)
and for a horizontal plane strain assumption, oy = 2/3, the fracture lost-width is written in field
units as™

1.478(12)7rLf
wr :T(—mN). ................................................................................................... (5.12)

Assuming a radial fracture geometry, the fracture lost-width is written in field units as
7.343(12)R f
Wp=—"_5 =m
E

Preparing the specialized graph for a reservoir containing a slightly-compressible fluid requires

A7)+ e (5.13)

calculating the dimensionless plotting function, y,, for each timestep, n. The plotting function is

written as

e
dntn\line

where (p,,), [psi] is the observed pressure at time index n, p; [psi] is the initial reservoir pressure,

t [hr] is the time, the subscript me’ denotes the index corresponding to the end of pumping, the

variable d, [psi/hr] is written as
p ;o —p .
et B (5.15)

lj—tj_l

and j=n.

The dimesionless plotting function, x,, for each timestep is calculated as

- 1/2 .
dne+2(tn_tne+lJ
dy Inlne
q
1/2
no [ddj ]t )
X, = + X e e (5.16)
P d tt
| j=ne+3 n n‘ne |
1/2
+ 02 1_[1_616*‘1}
a’nt%2 In

Prepare a Cartesian graph of the plotting functions, y, vs. x,, and draw a straight line through the
data points. Fracture-face resistance, R, [cp/ft] is calculated from the intercept of the straight line,

by, as
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5615 .St b
0 —”(1412)(24) D f TEDIML 5 +overerererererer
where 7, is the ratio of permeable to gross fracture height. Permeability is calculated in field units

from the slope of a straight line, m,,, drawn through the data points as

[2041.2)0.02878)24) 1 2

k= e e e e———eeen————eea——eeaa——eeaa——eean—aeaan (5.18)
5.615 rpSme

In many cases, nonideal leakoff behavior will not result in a straight line on the specialized
graph,* and the cause and effect of nonideal leakoff behavior on the permeability estimate have

been examined by Craig et al.™*

In a reservoir containing a compressible reservoir fluid that can be modeled as a real gas, before-closure

pressure-transient analysis requires the following.

= Calculate the constant c,,;, which is written in field units as

ﬂ .
gl

Cap] = A s oo (5.19)
P pey

where 4, [cp] is the gas viscosity at initial reservoir pressure and c, [1/psi] is the total

compressibility at initial reservoir pressure.

Calculate the constant c,,,, which is written in field units as

5,615 B; /ﬂgi
Capz —TSfWLB—e E N (520)

where B; [bbl/Mscf] is the gas formation volume factor evaluated at initial reservoir pressure and
B, [bbl/Mscf] is the gas formation volume factor evaluated at the pressure at the end of the
injection.

= Preparing the specialized graph for a reservoir containing a slightly-compressible fluid requires
calculating the dimensionless plotting function, (v,,),, for each timestep, n. The plotting function is

written as
(v, ) = (Paw)n — Pai
apn ) ettt et et a ettt ekt a et h et ekt h et ekt a et ekttt sttt nae st ere
(ap)nin \ne
where (p,,), [psi] is the observed adjusted pseudopressure at time index n, p,; [psi] is the initial
adjusted pseudopressure, # [hr] is the time, the subscript e’ denotes the index corresponding to the

end of pumping, the variable (d,,), [psi/hr] is written as



(dgp) j =1 {(p")j_l_(p")j], ..................................................................................... (522)

(C;)j (fa)j—(fa)j_l
and j=n.

= The dimensionless adjusted plotting function, (x,,),, for each timestep is calculated as

_(dap)ne+2 (la )n _(ta)neJrl _1/2
(dap)n Intpe
P 0 ) ~(day) ) =) 11 1V
ap)j ap)j— aln alj—
= e ———————— 5.23
(xap)n _+j=%+3 (dap)n e J _ ( )
Cap?2 (ty )}’1/2 _(1_ ) nes1 12
a5 (ta)n |

= Prepare a Cartesian graph of the plotting functions, (v,), vs. (xz),, and draw a straight line through
the data points. Fracture-face resistance, R, [cp/ft] is calculated from the intercept of the straight
line, b, as

5.615
e o 5.24
0= (1a12)(24) P> ne’M (5.24)

Permeability is calculated from the slope of a straight line, m,,, drawn through the data points as

[2041.2)(0.02878)24) 1 2

k= e e e e et e e —— e e e —e e e et e e aaaeeaaraeeaas (5.25)
5.615 rpSme

5.2.3 Quantitative Analysis — After-Closure Analysis. When pseudoradial flow is observed, which is
indicated by a constant derivative on a log-log graph of equivalent constant-rate pressure difference and
derivative versus time, after-closure analysis based on the impulse solution provides an estimate of
transmissibility independent of fracture half length(s).”>**'% Consequently, after-closure pseudoradial
flow analysis can also be applied to refracture-candidate diagnostic data generated with a pre-existing

fracture.

As shown by Gu et al.®” and Abousleiman et al..°" the impulse solution forming the basis of after-closure
pseudoradial flow analysis is written for a slightly-compressible liquid in field units as

141224 Qi 1
2 kh At,.’

Pw—Pi

where Q, is the total fluid volume injected during the impulse. The definition of elapsed time, At,, is
defined differently by Gu et al.** and Abousleiman ef al.*' The authors reason that the injection continues

during fracture closure, and the total injection time should include at least a portion of the time to closure.
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Consequently, Gu et al. defined elapsed time as At,. =t — 0.5¢., while Abousleiman et al. define elapsed

time as At,, =1t —t,.

Recently, Soliman ef al.'® suggested that the elapsed time should be the total time including the injection
and falloff periods defined as At,. = ¢, + At =t¢, which the authors base partly on the results published by

Soliman'®

for a buildup test following a short producing time. Soliman ez al.'® argue that when the time
to the end of injection is short, fracture propagation during the injection can be ignored, and the after-
closure falloff data can be analyzed as an injection/falloff (or drawdown/buildup) using conventional
pressure transient solutions. Ayoub et al,” also noted for a impulse test without fracture propagation that
the elapsed time for the impulse solution should be defined as, Az,. =, + At, and the product Az,.(p,, — p;)
when plotted versus Af,. on a log-log graph will overlay the well-testing pressure derivative of the

appropriate constant-rate type curve for the reservoir/system.

The pseudoradial flow impulse solutions are essentially the same, but the time function is defined
differently in each special case. To provide consistency and reconcile the differences, the analytical
solutions presented in Chapters III and IV can be used to write the complete impulse solution. To illustrate
the solution, consider the case of a dilating existing fracture or a fracture created instantaneously with
equivalent before- and after-closure storage. The analytical solution developed in Chapter III is written as
9wD [pacD (1)~ PacD LD ~ ) D )} + PysD(OCacDPacp ! L/D)

PwsD(LfD) = )
~(Chen ~CacD)fo 4P pren (1D —7p)PwsD(Ep)MTp

where the Laplace domain dimensionless fracture solution for a well produced at a constant rate with

constant after-closure storage is written as

D (5.28)

PacD = B _
1+s CacD p ﬂ)
and the dimensionless reservoir pressure solution is for a fixed-length finite- or infinite-conductivity

fracture. With C,.p = C,.p, the solution is written as

PrsD L) = 4D [pacD(thD)—pacD(thD —(ze)LfD)}+pwsD(0)cachgch(thD) e (5.29)
As time increases and storage effects dissipate, the reservoir solution can be written as p..p(t,p) = p(tip),

which results in

PwsD (lLfD) =49wD [pﬂ) (tLﬂ)) P (thD —(te)Lﬂ))} + pwsD(O)CachffD (tLjD) e (5.30)
The dimensionless well injection rate can be written as

. 1412g,, By 14124 q,Bt, 141224)u O, 0.0002637k
D = = = 2
W2 kh(po-pi)  kh(po-pi)  fe kh(po = pi) (te) LD ¢yctL3,

and the solution can be written as
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o 141.2(24) 1 0.0002637k
patrm)-pmtrm—E)m)

PrusDLm) = (te)LfD[ /DD EDELD ~ e LD }kh(PO_Pi) ¢,chth, s (5.32)

+PysD O Cacp P U 1D)
As (t.)yp — 0, the derivative of pressure is written as
t - t —(z d] t
i 2= Pptyp —tLm) PfD(LfD):pyD(thD), ......................................... (5.33)
(te)/p—0 (te)1m dirm

and the solution can be written as

141.2(24) 12 0.0002637k
kh(po — p;) ¢ﬂcthf S (5.34)

Ot P mlrm)
PwsDULDNLD =
+PywsDDCacp!LpP' D 1D)

During pseudoradial flow, the well-testing pressure derivative is written as

thDpyD(thD):%, .......................................................................................................................... (5.35)

and the solution is written as

O, 141.2(24)u 0.0002637k
2 kh(po - p;) ¢yctL§(

pWS‘D(th)tLJ@ — t et teeeeeeetetaeeeeaetetaneeaatietanietaeietanisttaistanistttietanitaraissanans (536)
CacD
TPwsD (O)T
Define dimensionless time as
= 0’0002637k(2te + A7) » eeeee e et ettt h et h e h et h et h et h et h e et s a et ettt e ne e ene (5.37)
PuceL f
and the complete impulse-fracture solution is written as
141.2(24) u
-pi=———2 (0 + 0)C —Di) ) e e 5.38
Pw — Pj > h (Qt pwsD( ) ac(PO pl)) le+Al ( )
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The difference between the solution of Soliman, et a and the impulse-fracture solution is the term

containing the initial pressure difference and storage. When the injection begins without applying an

1.9 results. However,

instantaneous pressure difference, p,,p(0) = 0, the impulse solution of Soliman, ef a
in low permeability reservoirs, beginning the injection at a rate sufficient to create, propagate, or dilate an
existing fracture essentially results in p,,p(0) = 1. Thus, ignoring the pressure-difference and storage term

will create some error in the estimation of transmissibility.

Transmissibility is estimated from the slope of a line through the pseudoradial flow data on a graph of
bottomhole pressure versus reciprocal elapsed time, and the initial reservoir pressure is estimated from the
intercept of the line. The complete impulse-fracture solution also suggests a plot for diagnosing

pseudoradial flow is prepared by a log-log graph of the well-testing pressure derivative written as
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1 dp,,  141.2024) u

1
M N T OO 539
to+ At d(1/(t, +A0)) > &t PusDOCac(po p’))te+At’ (5-39)

versus reciprocal elapsed time. Pseudoradial flow is indicated when the well-testing derivative data fall
along a unit slope. Additionally, the correct initial reservoir pressure is known when a log-log graph of the
pressure difference, p,, —p;, versus reciprocal elapsed time overlays the well-testing derivative curve
during pseudoradial flow. As shown by the complete impulse-fracture solution, the appropriate time
function is ¢, + Az. However, in many low-permeability cases, the shut-in time required to observe

pseudoradial flow is such that 7, + Az = At.

The pseudolinear flow impulse-fracture solution is developed by considering the impulse-fracture solution

written as
, 141.2(24)u 0.0002637k
O rmprp) — 3
PysD(1sD) = kh(po = pi) ¢,ucth e ettt sttt et aen (5.40)
+PywsD(0Cqcp p'fD ()

Assuming linear flow, the dimensionless pressure solution is written as

pr(thD)Z UZ'thD 5 eeeeeeeeeeeeteeteeteeseeseeeteeteeteetetteettetiettettetta et eatetetteetatteeaaeaeatetteatattaeaetertearaaraaanns (541)

and the derivative with respect to dimensionless time is written as

: _dz_1 5.42
pr(l‘LfD)—T\/%. .................................................................................................................. ( )

With the derivative of pressure, the pseudolinear flow impulse-fracture solution can be written as

141247 Qu  0.0002637k

2 kh(po = pi)  guc I
PwsD (tLﬁ) = v

L S (5.43)

ps Vi
+ 5 PywsD(0Cqcpn

With the definition of the dimensionless terms, the pseudolinear flow complete impulse-fracture solution

is written as

12 12
141.2(24)W7+/0.0002637 1 ( u
—p, = — = 0)C - p; e 5.44
DPi ) th ¢Ctk (Qt +pwsD( ) ac(p() Pl)) t AL ( )
The solution presented by Soliman'® and Soliman ez al.'® is written as
4120300002637 o, (w1 )2 (545)
Pw— D N WLy ek LA T

which differs from the complete impulse-fracture solution by the pressure-difference and storage term and
the constant term. In terms of dimensionless variables, Soliman'® wrote the linear-flow impulse-solution

as
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Db tim) (e )LfD
wD (/D) = \/T y eteeteehe et ettt ea e bttt eu e et e bt et e bt eas e eae e ehe e a e et e e et e eas e e aa e he e b e bt enneeanesanenae
LfD

which is incorrect. As shown by the the complete pseudolinear-flow impulse solution, assuming

Pwsp(0) = 0, the solution can be written in dimensionless terms as

(te)
PwpLm) = ﬁ 10

The complete pseudolinear-flow impulse-fracture solution suggests that a graph of bottomhole pressure

et e e e e (5-47)

versus the square root of reciprocal elapsed time will yield an initial reservoir pressure estimate from the
intercept of a line through the pseudolinear flow data. Additionally, if the fracture half-length is known,
permeability can be estimated from the slope of the line. The complete pseudolinear-flow impulse-fracture
solution also suggests a plot for diagnosing pseudolinear flow is prepared by a log-log graph of the well-
testing pressure derivative written as

1 dp,,  141.2024)7~0.0002637 1 ( u

fe+ At d(1/(f, + A1) 4 hL g \ geik

1/2 1/2
J (Ql + PwsD (O)Cac(po - pl))( J 5 sseee (548)

t, +At

versus reciprocal elapsed time. Pseudolinear flow is indicated when the well-testing derivative data fall
along a half-slope line. Additionally, the correct initial reservoir pressure is known when a log-log graph
of the pressure difference, p,, — p;, versus reciprocal elapsed time offsets the well-testing derivative curve

by a factor of two with a half-slope during pseudolinear flow.

After-closure analysis requires the following for a reservoir containing a slightly-compressible fluid.

= Prepare a log-log graph of pressure difference, p,, - p;, versus the reciprocal of elapsed time,

1/(t, + Af).

= Jdentify the pseudolinear (%2 slope) and pseudoradial (unit slope) flow regimes if they exist.
Pseudolinear flow may not be observed unless the created fracture retains essentially infinite
conductivity after closure. Additionally, pseudoradial flow may not be observed without very long

shut-in periods when the permeability is low and the created fracture half-length is relatively long.

Estimating the permeability during pseudolinear flow in a reservoir containing a slightly-compressible

liquid requires the following.

= Prepare a Cartesian graph of bottomhole pressure, p,, versus the square root of the reciprocal of

elapsed time, (1/(t, + Af))”.

= The data points on the graph during pseudolinear flow will fall along a line. The intercept of the

line is the initial reservoir pressure, p;.
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= Permeability is calculated from the slope of the line, m,qy [psi-(hr)”], through the data points

during pseudoradial flow and is written in field units as

o | 141.204)/710.0002637 1 [u

1/2
%J (Qt + PysD (0C,0 (Po —Pi)) \ e (5.49)
t

2 hl‘fmacpl

Calculating the permeability requires knowing the fracture half length which may not be known.
When the after-closure storage coefficient, C,., is unknown, and p,,p(0) # 0, the permeability can

be estimated by assuming C,. = 0.
Estimating the transmissibility during pseudoradial flow in a reservoir containing a slightly-compressible
liquid requires the following.
= Prepare a graph of bottomhole pressure, p,,, versus the reciprocal of elapsed time, 1/(z, + Af).

= The data points on the graph during pseudoradial flow will fall along a line. The intercept of the

line is the initial reservoir pressure, p;.
= Transmissibility is calculated from the slope of the line, m,, [psi-hr], through the data points
during pseudoradial flow and is written in field units as

kh _1412(24) (91 + PysD(0Cac(Po = 1)) (5-50)
i . et

When the after-closure storage coefficient, C,., is unknown, and p,,;p(0) # 0, the transmissibility

can be estimated by assuming C,. = 0.

Gu et al.®

examined the effects of a water injection in a gas reservoir using a numerical simulation of a
radial model and found that the impulse solution remained valid for pseudoradial flow analysis. However,
after-closure pseudoradial flow analysis in a reservoir containing a compressible fluid modeled as a real

1’60

gas was not addressed theoretically by either Gu ez al.*® or Abousleiman et al.®'

The impulse solution can be derived in terms of adjusted pseudopressure and adjusted pseudotime as
follows. Assume the wellbore, fracture, and reservoir contain a real gas and that fracture propagation can
be modeled as occurring instantaneously during an injection. With no storage, a material balance equation

can be written for all time as

qvD :(I_U(te)aLfD)qD’ .................................................................................................................. (5-51)

where ¢,p is the dimensionless sandface injection rate, gp is the wellbore injection rate, and U is the unit-

step function defined as®

0 t<a
U, = ’ e eeeeeeeeeeeetteeeeeeeesestsieeeeesessstteeeeeeesssettteteeeetettttt———aeeeettttt————aaeettatta——aaeaerrarttaaaeaaerres 5-52
a {1 , t>a ( )
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A solution to the injection/falloff problem is obtained using superposition, which is written in terms of

adjusted pseudopressure and adjusted pseudotime as

4.0 (Tap) Ty - woeseeseesieeses sttt (5-53)

0 dlaLfD

where dimensionless adjusted pseudopressure is defined as

t
alfD dpap (taLﬂ ~7aD)
PawD =

_kh(py = pgi)

- e 5-54
PaD =141 2¢(Bu), (5-34)

The superposition integral and the material balance equation valid at all time can be transformed to the
Laplace domain and written as
= _ = = —s(t, )aLfD 5-55
PawD =9DPaD ~9DPaDe OO PPN ( )
which can be inverted to the time domain and written as
PawD(tarp) = 4D (paD(taLfD) ~PaparD ~ (te)aLfD)) et ettt (5-56)
where p,p is a general reservoir solution written in terms of adjusted pseudotime.
During an impulse, the cumulative volume injected is written as Q, = gBt,/24, where g [Mscf/D] is the gas

injection rate, which allows the dimensionless injection rate to be written as

gBle _4BUcdap _ 240, 0.0002637k e (5-57)
qBt, qB(le)aLfD qB(te)aLjD ¢(:uct)iL§f

ap =

With the dimensionless injection rate, the solution can be written as

40,

2
(te)aLfD

00002637k e (5-58)

PaD(t, )—DPap(t, =(te)arLm)
(PaptarD) = Pap tarp ~(te)arsm )qb’(é(ﬂct),-L?

PawD (taLfD )=

In the limit as (z.).p goes to 0, that is, as the injection becomes instantaneous for a constant Q,, the

instantaneous source solution is written as

dp
PaDUalfD) 00002637k (5-59)

PawD (taLfD) = 24Qt
diaip  qB(uc,); L

The derivative of dimensionless adjusted pseudopressure with respect to the natural logarithm of adjusted
pseudotime is written as
dj t d, t
Paplaip) - PaDUGLD) | oo (5-60)
d(lnl‘aLfD) dtaLfD
which during pseudoradial flow is equal to 2. Consequently, the instantaneous source solution during

pseudoradial flow can be written as

24000026300k - Waplalp) <, (5-61)

PawD aLD)!, =
awDaliD alfD qB¢(#Cz)iL3f P dtar
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or written as

o (()a + At ) :%qQ_];. .............................................................................................................. (5-62)

With the definition of adjusted pseudopressure, the impulse solution is written in terms of adjusted
pseudovariables as

141.2(24) Qatyy; 1

e (5-63)
2 kh ((tg)q +Dtg)

Paw = Pqgi =

where O, [bbl] is the total volume injected, Q. = ¢Bit./24, and At,=t, — (f,),. Similarly, the complete
impulse-fracture solution is written as

1412024 g4

1
Paw — Pai T h (Qt + PywsD (O)Caac (PaO _pai))

e (5.64)
(te )a +Ata
The pseudolinear flow impulse-fracture solution is written in terms of adjusted pseudopressure and
adjusted pseudotime as

141.2(24)V7~/0.0002637 1 [u[

Paw ~ Pai

1/2 | 12
] (Qt+PwsD(0)Caac(Pa0—Pai))(WlJ . ..(5.65)

The impulse-fracture solutions written in terms of pressure and time and adjusted pseudopressure and

pseudotime are of the same form, and after-closure analysis requires the following.

= Prepare a log-log graph of adjusted pseudopressure difference, p,, — p., versus the reciprocal of

elapsed adjusted pseudotime, 1/((z,), + At,).

= Jdentify the pseudolinear (% slope) and pseudoradial (unit slope) flow regimes if they exist.
Pseudolinear flow may not be observed unless the created fracture retains essentially infinite
conductivity after closure. Additionally, pseudoradial flow may not be observed without very long

shut-in periods when the permeability is low and the created fracture half-length is relatively long.

Estimating the permeability during pseudolinear flow in a reservoir containing a compressible fluid

requires the following.

= Prepare a Cartesian graph of bottomhole adjusted pseudopressure, p,,, versus the square root of

the reciprocal of elapsed adjusted pseudotime, (1/(( z.), + At,)".

= The data points on the graph during pseudolinear flow will fall along a line. The intercept of the

line is the initial reservoir adjusted pseudopressure, p,;.

= Permeability is calculated from the slope of the line, mqy [psi-(hr)”], through the data points

during pseudoradial flow and is written in field units as

i =| 14120407 0.0002637 1 [ M
pcii

12 2
] (Qat + PasD (OCoaac (Pa0 —Pai)) e (5.66)

2 thmacpl
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Calculating the permeability requires knowing the fracture half length which may not be known.
When the after-closure storage coefficient, C,,, is unknown, and p,,,sp(0) # 0, the permeability can

be estimated by assuming C,. = 0.

Estimating the transmissibility during pseudoradial flow in a reservoir containing a compressible fluid

requires the following.

= Prepare a graph of bottomhole adjusted pseudopressure, p,,, versus the reciprocal of elapsed

adjusted pseudotime, 1/((%,), + At,).

= The data points on the graph during pseudoradial flow will fall along a line. The intercept of the

line is the initial reservoir adjusted pseudopressure, p,;.

= Transmissibility is calculated from the slope of the line, m,, [psi-hr], through the data points
during pseudoradial flow and is written in field units as

kh _141.2(24) (Qat + PawsD(MCoqc(Pa0 — Pai))

................................................................... (5-67)
Hi 2 Macpr

When the after-closure storage coefficient, C,,, is unknown, and p,,,,p(0) # 0, the transmissibility

can be estimated by assuming C,,. = 0.

5.2.4 Quantitative Analysis — Type-Curve Analysis. Quantitative type-curve matching is applicable
when the equivalent constant-rate pressure difference and derivative extend beyond the end of storage-
dominated flow. In the absence of pseudolinear or pseudoradial flow, before-closure pressure-transient
analysis and type-curve analysis are the only methods for determining transmissibility from a fracture-

injection/falloff sequence.

Quantitative type-curve analysis is based on the limiting-case solutions for a fracture-injection/falloff
sequence where the fracture-injection can be considered as occurring instantaneously. The solutions were
developed in Chapter III for a fracture-injection/falloff sequence without a pre-exising fracture and in

Chapter IV for cases with a pre-existing fracture. The limiting-case solutions are summarized as follows.

e Before-Closure [7;p < (#.);p] Limiting Case Solutions for a Fracture-Injection Sequence With a
Dilating or Propagating Fracture
= Slightly-Compressible Liquid
pWSD (th) = pWSD (O)CbCDpl')CD (tLﬁ) 5 e eeeeseeeeeteteteuetiteeetetetateneietetttetoteneteittitatetesanetetttotatetane (568)

where the Laplace domain dimensionless fracture solution for a well produced at a constant rate

with constant before-closure storage is written as

D (5.69)

ﬁbcD: 2 _
I+s CbCDpr
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The limiting-case solution is a slug-test solution, and as shown by Peres et al.,*’ a slug-test solution
can be integrated with respect to #,, and written as

1 thD
S Poos D AT D)VALLID = PhoDy (T 1)) « wvevereressesessssissisisisisisisisissisi e (5.70)
PrusD OCheD IO wsD\'LfD )4*Lfi bcD\'LfD
The before-closure storage coefficient is defined in field units as
5615 Cpe  0.8936Cp,.

2z de, hLi, de; hL2f

where C,. [bbl/psi] is the before-closure storage coefficient defined as

CheD =

2 Ay
S L A 5.72
be = whw 56155, (>72)

with ¢,, [1/psi] defined as the compressibility of the wellbore fluid, ¥, [bbl] defined as the volume

of the wellbore, and 4, [ft*] is the area of one fracture wing.

Dimensionless wellbore pressure is defined in field units as

Pwrp)—p;
pwsD(thD):%, ................................................................................................... (5.73)
1

which allows the solution for transmissibility to be written in field units as
PoeD D)

kh
— =(141.2)24) pysp (0)(po — P;)C ’
P wsD 0~ Pi)%bc Ié(pw(t)_pi)dt

MP

where the subscript 'MP' denotes a matchpoint of the before-closure integrated pressure difference

and the constant-rate, constant before-closure storage solution.

Compressible Fluid

pawsD(taLfD):pawsD(O)Cabchl’)cD(taLfD)’ ....................................................................... (5.75)
where the adjusted before-closure storage is used in the Laplace domain dimensionless fracture

solution for a well produced at a constant rate with constant before-closure storage and is written

as

D i, (5.76)

EbCD = 2 —_ ’
I+s CabchfD

The dimensinless adjusted before-closure storage coefficient is defined in field units as

C C

5.615 a Soe T
CapeD =Cap +Cep =—— 2 t— 2| e, (5.77)
27 | geyhly  $apchly | Ty

where C, [bbl/psi] is the adjusted wellbore-storage coefficient defined as
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and Cy, [bbl/psi] is the dilated/before-closure storage coefficient written as

_ 2 4
Cfoe =< ers L (5.79)

The dimensionless adjusted before-closure storage coefficient can also be written as

5.615 C T:
CobeD :CaD+c/bcD:_a_bC’2_l, .............................................................................. (5.80)
. 2 ¢Ctith T,
where the adjusted before-closure storage coefficient is defined as
o (5.81)
the
with ¢ [1/psi] defined as the before-closure average total compressibility written as
Cip tC
Cbe =% s Dy D Do oottt ettt sttt (5.82)

where ¢,y [1/psi] is the total compressibility evaluated at the pressure at the end of the injection and

¢ [1/psi] is the total compressibility evaluated at fracture closure pressure.

With the dimensionless adjusted before-closure storage coefficient definition, transmissibility can

be calculated as

m T PbcD (taLfD)
— = (141.2)29) P45D 0X(Pa0 — Pai)Cabe = | ¢ty
7 TW -[0 (paw(t)_pai)dta P

e, (5.83)

o After-Closure [f,p > (¢.)p] Limiting Case Solutions for a Fracture-Injection Sequence With a
Dilating or Propagating Fracture
= Slightly-Compressible Liquid
Pusp D)= [pWSD(O)CbCD - Pusp (/D ) Cpep —cacD)}p&cD(thD) e (5.84)

where the Laplace domain dimensionless fracture solution for a well produced at a constant rate

with constant after-closure storage is written as

D (5.85)

PacD = B —
I+s CachfD

The after-closure limiting-case solution is also a slug-test solution, and can be integrated with

respect to #,p and written as

.......... (5.86)

1
fé” P pysp Lm)dtLD = Phep Uyp) -
PwsD(OCpep = PysD ((tc )LD )(CbcD ~CacD)



The after-closure storage coefficient is defined in field units as

5615 Cue 0.8936C,,

CueD = = ) eeeeeteesseesseestestesseesseesseeseatenteeheeseateateaseeteeseesteeseeteenreas (5.87)
2 2
27 ge,hL b dehly
where C,. [bbl/psi] is the after-closure storage coefficient defined as
Cac :CWVW+2Cfoi'" ............................................................................................................... (588)

where ¢, [1/psi] is the compressibility of the fluid in the fracture and V. [bbl] is the residual

fracture volume at closure.

With the dimensionless before- and after-closure storage coefficient definitions, transmissibility
can be calculated in field units as

PacDLD)
Jeh _ PacDVLD)
22— (141.2)24)(pg - pi)[ PrusDOChe — PrushD ((tc) LfD)(Cbc _Cac)] . e (5.89)
“ Jopw®=ppar |

= Compressible Fluid

PawsD (taLfD) = [pawsD OCabeD = PawsD ((tc )aLfD )(CabcD ~CaacD )] PacD (taLfD) 2 e (5.90)
The dimensinless adjusted after-closure storage coefficient is defined in field units as

5.615 Ca +Caac T;

ChacD = 5 ettereetestesestestesestestesestestesestestesessesteseateteeseteseeseseseeseteteetenseneesen (5.91)
TEam gegn? Ty

where C,,. [bbl/psi] is the adjusted after-closure storage coefficient defined as

Coac = 2Cginr 5 eeeteseesesteseesesseseesessestesessestesessestesessentestasentesesentesesentesesentesebenteseabenteseebenseneee (5.92)

and c,; [1/psi] is the gas compressibility evaluated at initial reservoir pressure.

With the dimensionless adjusted after-closure storage coefficient definition, transmissibility can be

calculated as

—=(141.2)24)(py0 — Pai)
0P (V) e~

kh PawsDOCqpe T; PbeD (taLfD )
TW

} . .(5.93)

t
J.Oa (paw(t) —Pai )dta P

e Before-Closure [f,p < (f.)p] Limiting Case Solutions for a Fracture-Injection Sequence With a
Dilating or Propagating Fracture, Fracture Flow During Closure, and Radial Flow With Wellbore
Storage and Skin After Closure

= Slightly-Compressible Liquid
pWSD(ZLfD):pWSD(O)CbCDpl;CD(thD) PN (594)

The before-closure limiting-case solution is identical to the before-closure solution for a fracture-
injection/falloff sequence with a dilating or propagating fracture during the injection, and

transmissibility is calculated in field units as
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kh PbcD (thD )
= =(141.2)28) s p (O o~ Pi)Che | 70— e ——————— e aa s (5.95)
u [o(Pw® Pyt
MP
= Compressible Fluid
pawsD(taLfD):pawsD(O)Cabchlrch(taLﬂ))' ....................................................................... (596)
Similarly, for a compressible fluid, transmissibility is calculated in field units as
PbeDCar D)
kh T
== = (141.2)24) P gs D ()P0 — Pai)Cabe T_l i e e ———————— (5.97)
M w -[0 (paw(t)_pai)dta Mp

o After-Closure [t,p > (¢.)p] Limiting Case Solutions for a Fracture-Injection Sequence With a

Dilating or Propagating Fracture, Fracture Flow During Closure, and Radial Flow With Wellbore
Storage and Skin After Closure

= Slightly-Compressible Liquid
PywsD (thD) = [pWSD (O)CbcD = PywsD ((tC)LfD )(CbCD — CD)]P.’SaCD(thD) s eereeereeene e eenens (5.98)

where the Laplace domain dimensionless radial flow solution with skin and constant after-closure

wellbore storage is written in the Laplace domain as

_ PsD
PeD = D e (5.99)
1+s CDpSD

The cylindrical-source reservoir solution with skin, S, is written in the Laplace domain as®

1Ko(rw0\5) S

where the dimensionless radius is defined in terms of the created fracture half length written as

e et e e st e e et s s (5.100)

P = L e (5.101)
Ly
After fracture closure no residual volume remains, and the dimensionless wellbore-storage

coefficient is defined in field units as

Cp = 5'26;5 ¢ R 0’89362C 5 eeeheeeetehe et et h et h et h et h et a e bbbt bt se bttt ne e (5.102)
peyhl ’ peyhl r

where C [bbl/psi] is the wellbore storage coefficient defined as

O (5.103)

With the dimensionless storage definitions, transmissibility is calculated in field units as
PsptL/p)

Y o e (5.104)
[y (Pw(® = p)dt

% = (141.2)29(p0 = P))| ProsD OChe = Pysp () 11D ) Cpe - cﬂ{
MP
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Note that the integrated pressure difference is matched with a constant-rate type curve for
production from an infinite slab reservoir with wellbore storage and skin. Additionally, the before-
closure storage coefficient is a function of fracture half length, which for previous solutions was
estimated from fracture imaging”’ or other methods.” However, as shown in Chapter III, an
immediate transition to radial flow after closure allows the fracture half length to be calculated
from skin estimated from the type curve match provided the "true" skin damage is negligible.

Recall from Chapter III that assuming 7, = 1, a skin factor is calculated as

" D:Z_V;:rDe ettt ettt e e (5.105)

Ly :ei, ............................................................................................................................... (5.106)

where r,, [ft] is the wellbore radius.
= Compressible Fluid
PawsD (taL]D) = |:pawsD OCapeD = PawsD ((Zc )aLfD )(CabcD ) )J PsacD ([aLfD) > e (5.107)

After fracture closure no residual volume remains, and the dimensionless wellbore-storage

coefficient is defined in field units as

Cp =28 Ca T O890C i | ottt (5.108)
2z ¢cthL3, Ty ¢cthL3, Ty

where C, [bbl/psi] is the wellbore storage coefficient defined as

Clg = gl oo (5.109)

With the dimensionless storage definitions, transmissibility is calculated in field units as

kh T. | PawsD (0)Cabe PsD (taLfD)

= (141.2)24)(pyg — Pai) » ....(5.110)

M T, ~PawsD ((tc )aLfD )(Cabc -Cy) J.O (paw([a )= Pai )dt, P

Once again note that the integrated pressure difference is matched with a constant-rate type curve
for production from an infinite slab reservoir with wellbore storage and skin. As was true for the
slightly-compressible fluid case, fracture half length can be calculated from the skin factor match

as

Lf:%' ............................................................................................................................... (5.111)
e

e Before-Closure [7;p < (#.);p] Limiting Case Solutions for a Fracture-Injection Sequence With a

Constant-Volume Pre-Existing Fracture With Secondary Fracture Propagation

= Slightly-Compressible Liquid
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where the Laplace domain dimensionless fracture solution for a well producing at a constant rate in
an infinite slab reservoir through multiple fractures with constant before-closure storage is written

as

. PLD e (5.113)
1+s CLﬂ)CDI_yLﬂ)

PLfbeD =

The limiting-case solution with multiple fractures is also a slug-test solution, and the solution can

be integrated with respect to #;4, and written as

1 J-thD

m o) PusDULDIALD = DLpeD (YD) - woovsveveeessssmmeesssssesssn (5.114)
ws. C.

The dimensionless secondary-fracture before-closure storage coefficient is defined in field units as

C 0.8936C
Coppen = 3.615 Lfb; _ éﬂ’c e (5.115)
2z g hL 7 pe hl 7
where Cpz, [bbl/psi] is the secondary-fracture before-closure storage coefficient defined as
CLb =c,V +ZCfo1+ 2 ﬂ, ..................................................................................... (5116)
foc = w'w 56155 )

with V; [bbl] defined as the volume of the primary fracture, 4, [ft*] is the area of one wing of the
secondary fracture, and Sy, [psi/ft] is the fracture stiffness of the secondary fracture.

The solution for transmissibility is written in field units as
PLbeD D)

- N (5.117)
Jopw®=ppat |

kh
e (141.2)2H) pyysp (0)(Po = P)CLhe
Note that calculating transmissibility requires knowing both primary and secondary fracture half

lengths. The multiple-fracture type-curve match provides a length ratio defined as

5y = I]:f_z y eeteeeut oottt ea ettt a ettt e et a et h s e e h et e ekt a Rkt a et bt a et eb et eb bt euena e en et ens (5.118)
11
where Ly [ft] is the primary fracture half length and L, [ft] is the secondary fracture half length.
When the primary fracture half length is known from prior well test interpretations or production
data analysis, the secondary fracture half length can be calculated. When the primary fracture half
length is unknown, the secondary fracture half length can be estimated by fracture imaging.”’
Assuming no spurt loss and using the method of Valké and Economides™ will not provide an
accurate estimate of fracture half-length because leakoff is through two fractures. However, if

either the primary or secondary fracture half length is known, or can be determined, the other
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fracture half-length can be calculated from the type curve match, and the secondary-fracture

before-closure storage coefficients can be calculated and the transmissibility estimated.
= Compressible Fluid

pawsD(taLfD) = paWSD(O)CaLﬂ)CDp,Lﬂ)CD(taLfD) et e e e et e eeeeee (5.119)

The dimensionless adjusted secondary-fracture before-closure storage coefficient is defined in

field units as

C T;
B e (5.120)

27 eyt T

where Cpp,. [bbl/psi] is the adjusted secondary-fracture before-closure storage coefficient defined

CaLfbcD =

as
CaL]bc :Ca+caac1+Cfbc1’ ............................................................................................... (5.121)

the adjusted primary-fracture after-closure storage coefficient is written as

Caacl :chinl’ .................................................................................................................. (5122)

and the adjusted secondary-fracture before-closure storage coefficient is written as

. A
Cp R e (5.123)
“ 5615¢, Sy

With the storage coefficients defined, transmissibility can be calculated in field units as

o (1412)249) 245 (P — Pai)Ca he T tapobCD (arfD)
s T [0 a0 paiddta |

¢ et (5.124)
o After-Closure [t,p > (f.);p] Limiting Case Solutions for a Fracture-Injection Sequence With a
Constant-Volume Pre-Existing Fracture With Secondary Fracture Propagation
= Slightly-Compressible Liquid
PwsD ([LfD) = [pwsD (O)CLﬂ)cD ~PwsD ((tc )LfD )(CLbeD ~CLfacD )] p'LfacD (thD) 3 rereeene (5.125)

where the Laplace domain dimensionless fracture solution for a well producing at a constant rate

through multiple fractures with constant after-closure storage is written as

. PLD e (5.126)
1+s CLfacDﬁLfD

PLfacD =

The dimensionless multiple-fracture after-closure storage coefficient is defined in field units as

c 5615 Crfac  0-8936C1fc
LfacD = - s e
27 gehl’ pehly

(5.127)
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where Cy,. [bbl/psi] is the multiple-fracture after-closure storage coefficient defined as

Cac =

CWVW+20fo1 +26fo2, ............................................................................................ (5128)
where V), [bbl] defined as the volume of the primary fracture.

With the storage coefficient definitions, transmissibility can be calculated in field units as

kh PwsDOCpe PLfacDLD)
" =(141.2)24)(py — p;) PN

. e (5.129)
Jotpw®=ppar |

~PwsD ((tc )LD )(CLfbc ~CLfac)
= Compressible Fluid

PawsD (O)CaLfbcD (5.130)

PawsD (taLfD) :|: ]p'LfacD ([aLfD)'

“PawsD ((Zc )aLfD )(CaLfbcD ~CaLfacD)

The dimensionless adjusted secondary-fracture after-closure storage coefficient is defined in field

units as

C T,
O e G e (5.131)

27 geyh’ T ’

CaLfacD =

where C,.z,. [bbl/psi] is the adjusted secondary-fracture before-closure storage coefficient defined

as

CaLfac = Ca+ Caael + Caacr s +overosvesesosesososesososesososcsosososososesosoeoosoe (5.132)

the adjusted primary-fracture after-closure storage coefficient is written as

Caael = 2 iV 15 +ovvesososesososesosoesooee e (5.133)

and the adjusted secondary-fracture after-closure storage coefficient is written as

Caaed = 20giV 72 + wovesesoeesososesosseo (5.134)

With the storage coefficients defined, transmissibility can be calculated in field units as

" PawsD(0) CﬂLﬂ’C
== (1412)24)(Pg0 — Pai)

Hi

“PawsD ((tc JaLfD ) (Carppe ~CaLfac) (5.135)

T PrfacDtaLD)
x—=| "1,
TW J.O (paw(ta)_pai)d[a Wia

e Primary-Fracture Before-Closure [#,p < (¢./)p] Limiting Case Solutions for a Fracture-Injection
Sequence With a Dilating Pre-Existing Fracture, Secondary Fracture Propagation, Multiple

Fracture Closures, and Constant After-Closure Storage
= Slightly-Compressible Liquid

pWSD(ZLfD):pWSD(O)CLfbchp,LbeID(thD) N (5136)



where the Laplace domain dimensionless fracture solution for a well producing at a constant rate

with constant primary-fracture before-closure storage is written in the Laplace domain as

. PL/D e (5.137)
1+s“CrpepPLmD

PLfbclD =

The dimensionless primary-fracture before-closure storage coefficient is defined in field units as

c 0.8936C
CLppelD _ 3615 Lﬂ’czl - éﬂ’cl et e et (5.138)
27 e, L b doht;

where Cpp.; [bbl/psi] is the primary-fracture before-closure storage coefficient defined as

2 |41 A2
_ e e OSSOSO 5.139
CLpel cWVWJrs.ms[SﬂJrsz (5139

with A4y [ft’] is the area of one wing of the primary fracture, and Sy [psi/ft] is the fracture stiffness
of the primary fracture.

The solution for transmissibility is written in field units as

h PLbeD1D)

B (141.2)(24) pyysp (O - 1;)C s (5.140)
u B I KPR ORI o

Note that calculating transmissibility requires knowing both primary and secondary fracture half

lengths. The multiple-fracture type-curve match provides a length ratio defined as

5y = I;f_z y eeeetent oottt a ettt h ettt ettt a e h et e et e et ekt R Rt h e e e bt a et ekttt et b e bbbt ens (5.141)
11
where Ly [ft] is the primary fracture half length and L, [ft] is the secondary fracture half length.
When the primary fracture half length is unknown, the secondary fracture half length can be
estimated by fracture imaging.”” Assuming no spurt loss and using the method of Valké and
Economides® to estimate fracture half length cannot provide an accurate estimate because leakoff
is through two fractures. However, if either the primary or secondary fracture half length is known
or can be determined, the other fracture half length can be calculated from the type curve match,
and the secondary-fracture before-closure storage coefficient can be calculated and the

transmissibility estimated.
Compressible Fluid

pawsD(taLfD) = pawsD(O)CaLfbchpobch(taLjD) N (5.142)

The dimensionless adjusted primary-fracture before-closure storage coefficient is defined in field

units as

139



c 5615 Catpoet T _O85Catper 1, (5.143)
aLfbelD =5 - b 12 Ty de T2 T,
ti f t f

where C,.p.0; [bbl/psi] is the adjusted primary-fracture before-closure storage coefficient defined as

A Ar
2 ¢t 11 12
C =c, V. + — 4 s ettt e—— e et e et e et et et e ste s te st e st eaaeenaeen (5.144)
aLfbcl =w'w 5615 Ctbcl|:Sf1 sz

with ¢y [1/psi] defined as the primary-fracture before-closure average total compressibility

written as

ci) T C
c,bclz% s Dyp > Dell s eeeeeeeeeeeeeeeeeeeeeeee oo (5.145)

where c,.; [1/psi] is the total compressibility evaluated at the primary-fracture closure pressure, p.;.

The solution for transmissibility is written in field units as

i .| PLwclDarp)
— = (141.2)24) P45 ONPa0 ~ Pai)Cal foct 7~

H

- e (5.146)
a
0 (paw(t)_paj)dta Wis

¢ Secondary-Fracture Before-Closure [(f./)p <<typ <(t2)yp] Limiting Case Solutions for a
Fracture-Injection Sequence With a Dilating Pre-Existing Fracture, Secondary Fracture

Propagation, Multiple Fracture Closures, and Constant After-Closure Storage
= Slightly-Compressible Liquid
PwsDLD) = [pwsD OC1pe1n = Prwsp (¢ 1D )(Coppetn ~Crpean )] Pime2ptym) - -+ (5-147)

where the Laplace domain dimensionless fracture solution for a well producing at a constant rate

with constant secondary-fracture before-closure storage is written in the Laplace domain as

_ PLD
PLpc2D =— S — (5.148)
1+s"CrpeopPrp

The dimensionless primary-fracture before-closure storage coefficient is defined in field units as

5.615 e 0-8936CT gyp

27 ¢cthL3, ¢cthL§,

where Cpp.. [bbl/psi] is the primary-fracture before-closure storage coefficient defined as

............................................................................. (5.149)

Crpe2D =

A
oo (5.150)
56158 17

CLfb6‘2 = cgiVW + 2(2fo1 +

The solution for transmissibility is written in field units as

h PwsDOCLppcl PLpc2DLD)

== 141224)(pg - pp) R (5.151)
Y7

_pwsD((tcl)L]D)(CLﬂ)cl_CLﬂch) L;(pw(t)—p,-)dt i

= Compressible Fluid
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PawsD O CaLpelD

PawsD (taLfD) = ) p’LbeZD (taLjD) N (5 152)

“PawsD ((td )aLfD ) (CaLfbch - CaLfchD
The dimensionless adjusted primary-fracture before-closure storage coefficient is defined in field
units as

5.615 Carfpe2 T

27 geght’y T ’

where C,zp.c2 [bbl/psi] is the adjusted secondary-fracture before-closure storage coefficient defined

CalbeaD = o — Tl ettt (5.153)

as

c —e Vo426 Vﬁiiﬂ, ........................................................................ (5.154)
alfbe2 =tgitw TSNS 615 cibed S £

with ¢y [1/psi] defined as the secondary-fracture before-closure average total compressibility

written as

+
e :%, ................................................................................................................ (5.155)

where ¢, [1/psi] is the total compressibility evaluated at the secondary-fracture closure pressure,

Pe2-
With the storage coefficients defined, transmissibility can be calculated in field units as

. PawsDOCalfpel
. (141.2)24) (P g0 ~ Pai)

1

~PawsD ((td)“LfD)(C"Lfbd TCApeD) | (5.156)
1 | _ PLpe2narsn)

Wi

TW Lia (paw (ta ) - pai )dta P

o After-Closure [#p > (t.2)ip > (t.1)p] Limiting Case Solutions for a Fracture-Injection Sequence

With a Dilating Pre-Existing Fracture, Secondary Fracture Propagation, Multiple Fracture

Closures, and Constant After-Closure Storage
= Slightly-Compressible Liquid
PwsDOCLpe1p = Pusp (DD )(Coppetp ~Crmean )

“PwsD ((102 )LfD )(CLfbczD - CLfacD )

The solution for transmissibility is written in field units as

PwsDULD) = PLpaentyp) -+ G157)
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PysD(0C -p CDrm)lC -C
B aaveam e 0 wsd (1) Cuper ~Cper )
' “Pusp (2)10){Cper ~Crac) e (5.158)

PLfacDLD)
X
fotw—ppar |

= Compressible Fluid

. PawsD (O)CaLfbch ~PawsD ((td )aLfD )(CaLfbch ~CalLfbe2D ) .
PawsD (taLfD )= PLfacD (taLﬂ)) ‘
“PawsD ((tcz )aLfD )(CaLbeZD - CaLfacD )

(5.159)

From the limiting-case solution, transmissibility can be calculated in field units as
PawsD (0CaLfbel

B 041.2008040 ~ )| “Pawsp (i) Catpper ~Carper)

1

7paWSD ((tcz )aLfD )(CaLfbcz _ CaLfaC ) e eeseseeereetetscctsttrerecetsessesaee (5 160)

T PrfacDtaLD)
x| "1,
TW J.O (paw(ta)_pai)dta Wis

5.3 Field Examples

Chapter V also contains field examples to illustrate the interpretation of a fracture-injection/falloff

sequence for the following cases.
o Without a pre-existing fracture:
= Pseudoradial flow observed after closure.
= Pseudolinear flow observed after closure.
e With a pre-existing fracture:

= A pre-existing conductive hydraulic fracture with choked-fracture skin damage.

5.3.1 Pseudoradial Flow Observed After Closure. A fracture-injection/falloff sequence was completed
in a relatively thin sandstone reservoir between 10,159- to 10,177 feet. The fracture-injection was pumped
via 3-1/2 inch tubing landed at 10,091 feet, and the fracture-injection consisted of 67.9 bbl of KCl treated

water, which was pumped at an average rate of 10.7 bbl/min during the 6.32 minute injection.
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The entire fracture-injection/falloff sequence is shown in Fig. 5-5, which is a graph of bottomhole pressure
and surface injection rate versus time. The falloff period shown in Fig. 5.5 extended for 1.70 hours beyond
the end of the fracture-injection. The fracture-injection/falloff sequence is analyzed as follows. Table 5-2

contains the time, pressure, and rate data recorded during the injection.
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Fig. 5.5—Fracture-injection/falloff sequence.



Table 5-2—Fracture-injection time, pressure, and rate data.

t,s| pw.psi| g, bbl/min|t,s| py,psi|q; bbl/min|t,s| p,,psi]|q;, bbl/min|t,s| p,,psi]|qg;, bbl/min|t,s| py,psi|q;, bbl/min
0 | 5496.93 2.893 76 | 8832.80 11.951 152] 8600.74 12.076 228| 8513.72 12.076 304 8397.69 12.139
1 | 5424.41 4.466 77 ] 8905.32 11.951 153| 8644.25 12.076 229| 8470.20 12.076 305/ 8325.17 12.139
2 | 5482.43 4.906 78 | 8861.81 11.951 154| 8600.74 12.076 230| 8412.19 12.076 306 8412.19 12.139
3 | 5554.95 4.780 79 | 8789.29 11.951 155| 8571.73 12.076 231 8499.21 12.076 307 8397.69 12.139
4 | 5598.46 4.780 80 | 8818.29 11.951 156 8644.25 12.014 232| 8455.70 12.139 308| 8339.67 12.139
5 | 6280.13 4.843 81| 8847.30 11.951 157 8600.74 12.014 233| 8397.69 12.139 309| 8412.19 12.139
6 | 6526.70 4.969 82 | 8803.79 11.951 158| 8571.73 12.076 234 8499.21 12.076 310| 8368.68 12.139
7 | 6700.74 4.906 83 | 8774.78 11.951 159 8644.25 12.076 235| 8441.20 12.139 311 8368.68 12.076
8 | 6860.28 4.906 84 | 8832.80 12.014 160| 8600.74 12.076 236 8426.69 12.076 312| 8426.69 12.076
9 |7251.89 4.780 85| 8818.29 11.951 161) 8557.23 12.076 237| 8484.71 12.139 313| 8368.68 12.076
10 | 7599.98 4.843 86 | 8731.27 11.951 162] 8629.75 12.014 238| 8441.20 12.139 314 8383.18 12.076
11 | 7875.55 4.906 87 | 8818.29 11.951 163| 8600.74 12.014 239| 8412.19 12.139 315| 8397.69 12.139
12 | 8020.59 4.906 88 | 8818.29 11.951 164| 8542.72 12.076 240] 8455.70 12.202 316] 8339.67 12.139
13 | 8339.67 4.843 89 | 8731.27 11.951 165] 8615.24 12.014 241| 8412.19 12.202 317] 8383.18 12.139
14 | 8615.24 4.780 90 | 8774.78 11.951 166 8600.74 12.014 242| 8397.69 12.139 318| 8397.69 12.139
15 | 8977.84 4.717 91| 8803.79 12.014 167 8528.22 12.076 243| 8470.20 12.139 319| 8339.67 12.076
16 | 9180.89 4.717 92 | 8760.28 11.951 168| 8600.74 12.076 244| 8426.69 12.139 320| 8412.19 12.076
17 | 9369.44 4.654 93 | 8731.27 11.951 169| 8600.74 12.076 245| 8397.69 12.139 321| 8383.18 12.139
18 | 9572.49 4.654 94 | 8803.79 11.951 170] 8528.22 12.014 246| 8470.20 12.139 322| 8339.67 12.076
19 | 9601.50 4.592 95 | 8774.78 11.951 171 8586.23 12.014 247 8426.69 12.139 323| 8397.69 12.139
20 | 9732.03 4.592 96 | 8687.76 12.014 172) 8586.23 12.076 248| 8412.19 12.139 324| 8383.18 12.076
21 | 9630.51 4.654 97 | 8774.78 12.014 173] 8528.22 12.076 249| 8470.20 12.139 325| 8354.17 12.076
22 | 9659.51 4.529 98 | 8745.78 12.014 174 | 8586.23 12.014 250| 8412.19 12.139 326| 8397.69 12.139
23 | 9412.95 4.529 99 | 8687.76 12.014 175] 8586.23 12.076 251| 8426.69 12.076 327| 8354.17 12.139
24 | 9180.89 4.529 100] 8745.78 11.951 176 8528.22 12.014 252| 8470.20 12.139 328| 8339.67 12.139
25 | 8847.30 4.654 101] 8760.28 11.951 177 8571.73 12.076 253| 8412.19 12.076 329| 8397.69 12.139
26 | 8702.26 4.592 102] 8702.26 12.014 178] 8571.73 12.076 254 8426.69 12.076 330| 8339.67 12.139
27 | 8499.21 4.529 103 8687.76 11.951 179] 8499.21 12.139 255| 8455.70 12.139 331| 8368.68 12.139
28 | 8426.69 4.592 104] 8745.78 11.951 180 8528.22 12.139 256 8397.69 12.139 332| 8383.18 12.139
29 | 8354.17 4.529 105] 8716.77 11.951 181] 8571.73 12.076 257| 8426.69 12.076 333| 8325.17 12.076
30 | 8223.64 4.654 106 8673.26 11.951 182) 8499.21 12.139 258| 8455.70 12.139 334| 8397.69 12.076
31 | 8281.65 4.529 107] 8716.77 12.014 183) 8542.72 12.076 259| 8383.18 12.139 335| 8383.18 12.139
32 | 8194.63 4.654 108] 8702.26 12.014 184 8557.23 12.076 260| 8426.69 12.139 336/ 8325.17 12.076
33 | 8281.65 4.529 109] 8644.25 12.014 185] 8499.21 12.076 261| 8441.20 12.139 337| 8412.19 12.076
34 | 8194.63 4.654 110] 8702.26 11.951 186) 8513.72 12.139 262| 8368.68 12.139 338| 8368.68 12.139
35 | 8252.65 4.592 111] 8716.77 11.951 187 8557.23 12.076 263| 8441.20 12.139 339 8325.17 12.139
36 | 8223.64 4.654 112] 8658.75 12.014 188 8499.21 12.076 264| 8441.20 12.139 340| 8397.69 12.139
37 | 8267.15 4.654 113] 8658.75 11.951 189] 8513.72 12.076 265| 8368.68 12.139 341| 8354.17 12.076
38 | 8238.14 4.654 114| 8687.76 12.014 190 8542.72 12.076 266| 8441.20 12.139 342| 8354.17 12.139
39 | 8252.65 4.654 115] 8658.75 12.014 191] 8484.71 12.076 267| 8426.69 12.139 343| 8397.69 12.139
40 | 8281.65 4.654 116] 8615.24 12.014 192] 8499.21 12.076 268| 8368.68 12.139 344| 8310.66 12.139
41 | 8180.13 4.654 117] 8702.26 11.951 193] 8542.72 12.076 269| 8441.20 12.139 345| 8354.17 12.202
42 | 8267.15 4.654 118] 8687.76 11.951 194 8484.71 12.076 270| 8441.20 12.076 346| 7861.05 12.139
43 | 8194.63 4.654 119] 8615.24 11.951 195] 8499.21 12.076 271| 8383.18 12.076 347| 8006.08 10.693
44 | 8252.65 4.654 120| 8658.75 12.014 196| 8528.22 12.139 272] 8441.20 12.139 348] 8136.62 9.372
45 | 8180.13 4.654 121] 8687.76 11.951 197 8484.71 12.076 273| 8412.19 12.139 349| 8006.08 9.435
46 | 8252.65 4.654 122| 8629.75 11.951 198 8499.21 12.076 274| 8383.18 12.139 350 8035.09 9.246
47 | 8426.69 4.717 123| 8658.75 11.951 199 8528.22 12.076 275| 8441.20 12.139 351| 8006.08 9.246
48 | 8600.74 5.032 124] 8673.26 12.014 200| 8455.70 12.139 276 8397.69 12.139 352| 8020.59 9.246
49 | 8745.78 5.661 125] 8644.25 12.014 201] 8484.71 12.139 277| 8397.69 12.139 353| 8020.59 9.246
50 | 8760.28 7.736 126| 8615.24 12.076 202| 8528.22 12.076 278| 8441.20 12.139 354| 8020.59 9.246
51 | 8455.70 8.994 127] 8687.76 11.951 203| 8470.20 12.076 279| 8383.18 12.139 355 8035.09 9.183
52 | 8977.84 8.806 128] 8673.26 11.951 204| 8484.71 12.139 280| 8397.69 12.139 356 8035.09 9.183
53 | 9108.37 9.498 129] 8615.24 11.951 205| 8513.72 12.139 281| 8426.69 12.139 357 8020.59 9.246
54 | 8992.34 10.567 130] 8673.26 12.014 206 8455.70 12.139 282| 8368.68 12.139 358 8020.59 9.246
55 | 8992.34 11.699 131] 8673.26 12.014 207 8470.20 12.139 283| 8412.19 12.139 359/ 8035.09 9.183
56 | 8963.33 11.888 132] 8615.24 12.014 208 8513.72 12.076 284 8426.69 12.139 360/ 8035.09 9.183
57 | 8745.78 11.825 133] 8644.25 12.014 209| 8441.20 12.139 285| 8354.17 12.139 361 8049.59 9.246
58 | 8977.84 11.699 134] 8673.26 12.014 210] 8484.71 12.076 286 8441.20 12.076 362| 8049.59 9.246
59 | 8934.32 11.636 135] 8644.25 11.951 211] 8499.21 12.139 287| 8426.69 12.139 363 8020.59 9.435
60 | 8774.78 11.762 136] 8615.24 12.014 212| 8441.20 12.139 288| 8354.17 12.139 364 8049.59 9.372
61 | 8934.32 11.825 137] 8673.26 12.014 213] 8499.21 12.076 289| 8412.19 12.202 365 8049.59 9.372
62 | 8919.82 11.825 138] 8644.25 12.014 214 8499.21 12.139 290| 8397.69 12.139 366 8049.59 9.372
63 | 8818.29 11.825 139] 8586.23 12.014 215] 8426.69 12.139 291| 8354.17 12.139 367| 8049.59 9.372
64 | 8948.83 11.825 140] 8658.75 12.076 216 8484.71 12.139 292| 8441.20 12.076 368| 7570.97 9.246
65 | 8934.32 11.825 141] 8658.75 11.951 217] 8484.71 12.139 293| 8397.69 12.139 369| 7541.96 8.428
66 | 8861.81 11.762 142| 8586.23 12.014 218 8426.69 12.139 294| 8368.68 12.139 370| 7788.53 5.975
67 | 8977.84 11.762 143] 8658.75 12.014 219] 8484.71 12.139 295| 8441.20 12.076 371| 7759.52 5.472
68 | 8977.84 11.825 144] 8658.75 12.014 220 8484.71 12.139 296 8383.18 12.139 372| 7672.50 5.661
69 | 8876.31 11.951 145] 8600.74 11.951 221 8412.19 12.139 297| 8368.68 12.139 373| 7716.01 5.975
70 | 8861.81 11.951 146 8629.75 12.014 222| 8513.72 12.076 298| 8441.20 12.076 374| 7788.53 5.975
71 | 8948.83 11.951 147] 8644.25 12.014 223| 8470.20 12.139 299| 8354.17 12.139 375| 7803.03 5.975
72 | 8861.81 11.888 148] 8586.23 12.076 224 8412.19 12.139 300| 8397.69 12.139 376| 7817.53 5.975
73 | 8847.30 11.888 149] 8615.24 12.076 225| 8499.21 12.076 301 8412.19 12.139 377| 7774.02 6.038
74 | 8934.32 11.888 150] 8644.25 12.076 226| 8470.20 12.139 302| 8354.17 12.076 378| 7745.02 6.038
75 | 8890.81 11.951 151] 8600.74 12.076 227| 8397.69 12.139 303| 8412.19 12.139 379| 7774.02 6.038
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1. Calculate the function G(g(At,ay)) for each time and pressure recorded during the falloff period

where the function is calculated as”

4
ID,OAN)=—|8AID, AN ) = ZOUAN )|+ cooeee .
G(A ) 7[[ (A )=golay)] (5.161)

The function g(At,ay) can be calculated from the closed-form solution’ noted in Chapter II, or it can be

lllO

calculated from correlations, like those provided by Ispas et a Table 5-3 contains the tabulated values

of time, pressure, g(At,ay), and G(g(At,ay)).

2. Prepare a Cartesian graph of bottomhole pressure, p,, versus the function G(g(At,ay)), the
derivative of pressure, dp,,/dG, and the "superposition" derivative, Gdp,/dG.

3. Identify the leakoff type’* and hydraulic fracture closure using the G-function plot. Fig. 5-6
contains the G-function plot for the fracture-injection/falloff sequence. The leakoff type is fracture
height recession during shut-in, which is indicated by the characteristic dip in the superposition
derivative below a straight line from the origin through the "normal" leakoff data. Fracture closure is

observed at G, =4.33, and the closure stress is 6,382 psi.

4. Initial reservoir pressure can be estimated from the closure stress and the uniaxial strain

relationship, which is written as

19
O_rnin_( )O'z
1-v

pi= o
%)
1-v

Assuming Poisson's ratio, v=10.20, and an overburden stress, o, =10,150 psi (1 psi/ft overburden

ettt ettt er oo (5.162)

gradient), the initial reservoir pressure estimate is p; = 5,126 psi. The estimated intial reservoir pressure
from closure stress should be considered as a guide only—the pressure may or may not be accurate

depending on additional factors, including tectonic stress.

5. Before-closure analysis™ requires an estimate of fracture half-length and lost fracture width
because of fluid leakoff, w;. Fracture half-length and lost width are estimated from a graph of
bottomhole pressure versus the loss-volume function, g(Az,ay), which is shown in Fig. 5.7 assuming the
fracture grows under horizontal plane strain conditions (GDK). The slope of the line through the
before-closure data is (my)gpx = -323 psia and the intercept is (by)gpx = 8003 psia. Fracture half length
is calculated from the intercept assuming Young's modulus, E = 5(10)° psi, and fracture height, hy =6 ft,

aSS‘)
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Table 5-3—Variables required for before- and after-closure analysis.

S| pw,psifgt,ay)]| G(g(At,ay))| ta, hr | paw, psi| By, bbl/Mscf c,psi’ [ t.s|py.psi|g@t.ay)|Gla@t.ay)| ta,hr [paw. psi B4, bbl/Mscf c,,psi’
385 | 7599.98 1.478 0.0000 0.10694| 6135.57 0.5338 5.012E-05[2081]6526.70]  4.473 3.8125 0.54164| 5083.26 0.5750 6.344E-05
394 | 7541.96 1.516 0.0474 0.10944| 6079.18 0.5357 5.070E-05[2106]6512.19] 4.502 3.8494 0.54765| 5068.92 0.5756 6.366E-05
403 | 7527.46 1.550 0.0917 0.11192] 6065.08 0.5362 5.085E-05[2131]6497.69] 4.530 3.8861 0.55365| 5054.57 0.5763 6.389E-05
410 [7469.44 1.57 0.1248 0.11384] 6008.61 0.5381 5.144E-05|2161[6483.19] 4.565 3.9298 0.56083| 5040.22 0.5770 6.411E-05
416 | 7425.93 .59 0.1524 0.11547] 5966.23 0.5396 5.190E-05[2186] 6468.68] 4.593 3.9659 0.56680] 5025.87 0.5776 6.43. 5
421 | 7483.95 .61 0.1749 0.11684| 6022.73 0.5376 5.129E-05[2211] 6454.18]  4.621 4.0019 0.57275| 5011.51 0.5783 .45 5
426 | 7396.92 .633 0.1971 0.11820] 5937.96 0.5406 5.221E-05[2241/6439.68] 4.655 4.0447 0.57989] 4997.15 0.5790 .481E-05
436 | 7440.44 1.667 0.2404 0.12092] 5980.36 0.5391 5.175E-05[2266) 6425.17] 4.683 4.0802 0.58582| 4982.79 0.5797 .504E-05
441741143 1.684 0.2615 0.12228| 5952.09 0.5401 5.206E-05[2296]6410.67| 4.716 4.1224 0.59292| 4968.42 0.5804 .527E-05
446 | 7425.93 1.700 0.2824 0.12364| 5966.23 0.5396 5.190E-05[2321]|6396.16] 4.744 4.1574 0.59882| 4954.06 0.5811 6.551E-05
451 ]7396.92 1.716 0.3030 0.12499| 5937.96 0.5406 5.221E-05[2351]|6381.66| 4.776 4.1992 0.60589| 4939.69 0.5818 6.575E-05
456 [7411.43 1.732 0.3233 0.12635| 5952.09 0.5401 5.206E-05)|2376[6367.16| 4.804 4.2337 0.61177] 4925.31 0.5825 .599E-05
466 | 7396.92 1.764 0.3633 0.12906| 5937.96 0.5406 5.221E-05[2406] 6352.65| 4.836 4.2749 0.61880] 4910.94 0.5832 .623E-05
481 |7382.42 1.809 0.4216 0.13312] 5923.81 0.5411 5.237E-05[2431]6338.15] 4.863 4.3091 0.62466| 4896.56 0.5839 .647E-05
501 ]7367.92 1.868 0.4966 0.13853| 5909.67 0.5416 5.252E-05[2461]6323.65] 4.895 4.3498 0.63166| 4882.18 0.5846 6.672E-05
516 | 7353.41 1.911 0.5511 0.14257| 5895.52 0.5421 5.268E-05[2491]|6309.14]| 4.926 4.3902 0.63865| 4867.79 0.5853 6.696E-05
531]7338.91| 1.953 0.6042 0.14661] 5881.36 0.5426 5.284E-05[2521|6294.64] 4.95 4.4304 0.64563| 4853.41 0.5860 6.721E-05
551 17324.41 2.007 0.6730 0.15199| 5867.21 0.5431 5.300E-05[2551]6280.13] 4.98 4.4704 0.65258| 4839.02 0.5867

566 | 7309.90] 2.046 0.7232 0.15601| 5853.05 0.5436 586 6265.63|  5.02 4.5167 0.66068| 4824.63 0.5875

5911729540 2.110 0.8046 0.16271| 5838.88 0.5441 16[/6251.13| 5.057 4.5561 0.66761| 4810.23 0.5882

06 |7280.89] 2.14 0.8522 0.16672| 5824.71 0.5446 2646]6236.62] 5.087 4.5952 0.67452| 4795.83 0.5889

31 |7266.39] 2.20 0.9296 0.17339| 5810.54 0.5451 2676)6222.12] 5.118 4.6342 0.68141| 4781.43 0.5897

656 | 7251.89] 2.26 1.0047 0.18005| 5796.37 0.5457 11]6207.62 5.153 4.6793 0.68944| 4767.03 0.5904

681 ]7237.38] 2.325 1.0778 0.18669| 5782.19 0.5462 746 6193.1 5.189 4.7241 0.69745| 4752.62 0.5912 .
70117222.88] 2.370 1.1349 0.19200] 5768.01 0.5467 776]16178.6 5.219 4.7623 0.70429| 4738.22 0.5919 .925E-05
726 |7208.38] 2.425 1.2048 0.19862| 5753.82 0.5472 5.431E-05[2811]|6164.10] 5.253 4.8066 0.71226| 4723.81 0.5927 .951E-05
756 |7193.87| 2.489 1.2864 0.20655| 5739.63 0.5477 5.448E-05[2841]|6149.60] 5.283 4.8443 0.71908| 4709.39 0.5934 .978E-05
786 |7179.37] 2.551 1.3660 0.21447] 5725.44 0.5483 5.465E-05[2876]6135.10] 5.317 4.8881 0.72701] 4694.98 0.5942 7.004E-05
816 |7164.86] 2.612 1.4435 0.22237] 5711.24 0.5488 5.482E-05[2916]6120.59]| 5.356 4.9377 0.73605| 4680.56 0.5949 7.031E-05
846 | 7150.36| 2.672 1.5193 0.23025] 5697.04 0.5493 5.499E-05[2951[6106.09]  5.390 4.9809 0.74395] 4666.14 0.5957 7.058E-05
876 17135.86] 2.730 1.5933 0.23812| 5682.84 0.5499 5.516E-05[2986] 6091.59] 5.424 5.0237 0.75182] 4651.72 0.5965 7.085E-05
906 | 7121.35] 2.787 1.6657 0.24598| 5668.63 0.5504 5.534E-05[3026] 6077.08] 5.462 5.0724 0.76080| 4637.29 0.5973 7.113E-05
936 | 7106.85] 2.842 1.7367 0.25382| 5654.42 0.5510 5.551E-05[3066] 6062.58]  5.500 5.1208 0.76976| 4622.87 0.5981 7.140E-05
971 17092.35| 2.906 1.8177 0.26295| 5640.21 0.5515 5.569E-05[3106) 6048.07| 5.538 5.1688 0.77870| 4608.44 0.5989 7.168E-05
1001]7077.84] 2.959 1.8857 0.27076] 5625.99 0.5521 5.586E-05[3146|6033.57] 5.575 5.2165 0.78761] 4594.00 0.5996 7.196E-05
1036]7063.34]  3.020 1.9635 0.27985| 5611.77 0.5526 5.604E-05[3186]6019.07] 5.613 5.2639 0.79651] 4579.57 0.6004 7.224E-05
1066]7048.83] 3.072 2.0289 0.28763| 5597.55 0.5532 5.622E-05[3226] 6004.56]| 5.650 5.3110 0.80538| 4565.14 0.6012 7.252E-05
1096]7034.33] 3.122 2.0933 0.29540] 5583.32 0.5537 5.640E-05[3271]5990.06 5.691 5.3636 0.81534] 4550.70 0.6021 7.281E-05
1126]7019.83] 3.172 2.1566 0.30315| 5569.09 0.5543 5.658E-05[3316] 5975.55] 5.732 5.4159 0.82527| 4536.26 0.6029 7.310E-05
1161] 7005.32 3.229 2.2292 0.31217] 5554.85 0.5548 5.676E-05[3361]|5961.05| 5.773 5.4678 0.83518| 4521.81 0.6037 7.338E-05
11961 6990.82 3.285 2.3005 0.32118| 5540.61 0.5554 5.694E-05[3411]5946.55] 5.818 5.5250 0.84616| 4507.37 0.6045 7.368E-05
1221]6976.32 3.325 2.3507 0.32760] 5526.37 0.5560 5.713E-05[3461] 5932.04] 5.862 5.5818 0.85712] 4492.92 0.6053 7.397E-05
1251]6961.81 3.371 2.4102 0.33529] 5512.13 0.5565 5.731E-05[3506) 5917.54]  5.902 5.6326 0.86695| 4478.47 0.6062 7.426E-05
1286) 6947.31 3.425 24785 0.34424| 5497.88 0.5571 5.750E-05)3556[5903.04| 5.946 5.6886 0.87785| 4464.02 0.6070 7.456E-05
1316]6932.80] 3.470 2.5362 0.35190] 5483.63 0.5577 5.769E-05[3611] 5888.53] 5.994 5.7498 0.88982| 4449.57 0.6078 7.486E-05
1346]6918.30] 3.515 2.5932 0.35954| 5469.37 0.5583 5.788E-05[3666) 5874.03]  6.042 5.8105 0.90175] 4435.11 0.6087 7.516E-05
1376]6903.80] 3.559 2.6494 0.36717] 5455.12 0.5588 5.807E-05[3726] 5859.52]  6.093 5.8762 0.91474| 4420.66 0.6095 7.546E-05
1406]6889.29] 3.603 2.7050 0.37478| 5440.85 0.5594 5.826E-05[3786] 5845.02]  6.145 5.9414 0.92769| 4406.20 0.6104 7.577E-05
1436]6874.79| 3.646 2.7598 0.38238] 5426.59 0.5600 5.845E-05[3846( 5830.52]  6.195 6.0060 0.94061] 4391.74 0.6113 7.608E-05
461]6860.28] 3.681 2.8051 0.38870] 5412.32 0.5606 5.864E-05[3906] 5816.0 6.246 6.0702 0.95350| 4377.27 0.6121 E-05
491] 6845.78 .724 2.8588 0.39627| 5398.05 0.5612 5.884E-05]3971) 5801.5 6.300 6.1392 0.96742| 4362.81 0.6130

521]|6831.28 .765 29119 0.40382] 5383.77 0.5618 5.903E-05[4041] 5787.0 6.358 6.2128 0.98239] 4348.34 0.6139
1546]6816.77] 3.800 2.9557 0.41010] 5369.50 0.5624 5.923E-05[4116] 5772.50] 6.419 6.2911 0.99837] 4333.87 0.6147
1576]6802.27] 3.841 3.0077 0.41762| 5355.21 0.5630 5.943E-05[4191] 5758.00]  6.480 6.3686 1.01432] 4319.40 0.6156

606|6787.77| 3.881 3.0592 0.42513| 5340.93 0.5636 5.963E-05[4266] 5743.49]  6.541 6.4455 1.03023] 4304.93 0.6165

31| 6773.26] 3.914 3.1017 0.43137] 5326.64 0.5642 5.983E-05[4351] 5728.99]  6.608 6.5319 1.04821] 4290.46 0.6174

61]6758.76 3.954 3.1523 0.43884] 5312.35 0.5648 6.003E-05[4436|5714.49] 6.676 6.6174 1.06615( 4275.99 0.6183
1686]6744.25] 3.987 3.1940 0.44506| 5298.06 0.5654 6.023E-05[4526] 5699.98]| 6.746 6.7072 1.08509] 4261.51 0.6192
17111 6729.75] 4.019 3.2353 0.45126| 5283.76 0.5660 6.044E-05[4626] 5685.48| 6.824 6.8060 1.10608| 4247.03 0.6201

741|6715.25| 4.058 3.2846 0.45869| 5269.46 0.5666 6.064E-05[4726] 5670.98] 6.901 6.9038 1.12702] 4232.55 0.6211

766|6700.74| 4.090 3.3252 0.46487| 5255.15 0.5673 6.085E-05[4831] 5656.47]  6.980 7.0054 1.14895] 4218.07 0.6220

791]6686.24| 4.122 3.3656 0.47103] 5240.85 0.5679 6.106E-05[5061 5627.46] 7.153 7.2248 1.19679] 4189.11 0.6239

816/ 6671.74| 4.153 3.4056 0.47719| 5226.53 0.5685 6.127 5186 5612.96| 7.245 7.3422 1.22269] 4174.62 0.6248 .095E-05
846 6657.23| 4.190 3.4532 0.48455| 5212.22 0.5691 6.148E: 5316] 5598.46]  7.340 7.4630 1.24956] 4160.13 0.6258 .130E-05
871|6642.73] 4.221 3.4926 0.49068] 5197.90 0.5698 6.169E-05|5456| 5583.95|  7.441 7.5917 1.27841| 4145.65 0.6267 .165E-05
1896]6628.22] 4.252 3.5317 0.49679| 5183.58 0.5704 6.190 5606 5569.45| 7.548 7.7281 1.30925] 4131.16 0.6277 .199E-05
19261 6613.72] 4.289 3.5782 0.50411| 5169.26 0.5711 6.212 5766] 5554.95|  7.661 7.8721 1.34205] 4116.67 0.6286 .235E-05
951 6599.22 4.319 3.6167 0.51020] 5154.94 0.5717 6.233E: 5771]|5554.95| 7.665 7.8765 1.34308] 4116.67 0.6286 .235E-05
976 6584.7 4.349 3.6549 0.51627] 5140.61 0.5723 6.255E-05[5921] 5540.44]  7.769 8.0100 1.37375] 4102.18 0.6296 .270E-05
2001[6570.2 4.379 3.6928 0.52233] 5126.27 0.5730 6.277E-05[6021| 5554.95]  7.839 8.0983 1.39420| 4116.67 0.6286 .235E-05
2026 6555.71 4.408 3.7305 0.52838| 5111.94 0.5737 6.299E-05[6091] 5540.44| 7.887 8.1598 1.40851] 4102.18 0.6296 .270E-05
2046|6541.20] 4.432 3.7605 0.53321| 5097.60 0.5743 6.321E-05[6171] 5525.94|  7.942 8.2298 1.42483| 4087.69 0.6306 .306E-05
2051[6541.20] 4.438 3.7679 0.53442| 5097.60 0.5743 6.321E-05[6351]| 5511.43]  8.065 8.3860 1.46144] 4073.19 0.6316 8.342E-05
2056]| 6541.20] 4.444 3.7754 0.53562| 5097.60 0.5743 6.321E-05[6476 5496.93]  8.149 8.4936 1.48679( 4058.70 0.6326 8.378E-05
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Fig. 5.6—Fracture-injection/falloff sequence G-function derivative analysis.
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_ [(5.615)(5,208,333.3)(67.9/2) _
(Lr)opK = \/ 2680036382y P03,

and lost width is calculated from the slope as

_ 1.478(12)7(180.3)
5,208,333.3

(Wp)GDK (323)=0.62 in .

For a radial fracture geometry, (my)g4p = -317.6 psi and the intercept is (by)rsp = 7964 psi. Fracture radius

is calculated as

R :%/3(5.615) (5,208,3333(67.9/2) _ ¢ 2

8 (7,964 —6,382)
and the lost width is calculated as

_ 7.343(12)(61.7)

(317.6)=0.111n.
7(5208333.3)

(Wr)RaD

6. Calculate the adjusted pseudotime, adjusted pseudopressure, gas formation volume factor, and
total compressibility for each recorded time and pressure after the end of the injection. Scale time to
zero at the beginning of the shut-in period for calculating adjusted pseudotime. Assume the initial
reservoir pressure is 5,126 psi, which was estimated from the observed closure stress. The reservoir
temperature is 205°F and the gas gravity is 0.70. Table 5-4 contains the tabulated values for the Kakwa
07-24 fracture-injection/falloff sequence.

7. Note the following variables required for the analysis.
DPai =3,686.9 psia
Pao = 6,135.57 psia
Bg; =0.660313 bbl/Mscf
. Bge =0.533824 bbI/Mscf .
Hgi =0.0280152 cp
¢ =9.40285(10)7 psi’!
¢,y =4.52135(10) 6 psi!

8. Calculate and graph (y,,), versus (x,,), for each recorded time and pressure before fracture
closure. Table 5-4 contains the tabulated values that are graphed in Fig. 5.8. Under normal leakoff
conditions, the data on the specialized graph will fall along a straight line, but nonideal leakoff, like
fracture-height recession during closure causes the data to fan across the page.*” Fracture-height
recession during closure indicates a changing fracture area during the falloff period, which violates the
assumptions of before-closure pressure-transient analysis. Consequently, the permeability and fracture-

face resistance estimated will contain error. Drawing a line from the origin through the last few data



Table 5-4—Variables required for before-closure pressure transient analysis.

t,s| ta, hr | paw,psi|Bg, bblMsct| c,psi® | (Xap)n | &V apda| t:S | ta, hr | paw. psi| By, bbliMsct| c,psi® | (Xap)n | Vap)n
385 [0.00000| 6135.57 0.5338 5.012E-05
394 [0.00249| 6079.18 0.5357 5.070E-05 1286]0.23729| 5497.88 0.5571 5.750E-05[187.9971] 3.5605
403 | 0.00497| 6065.08 0.5362 5.085E-05 1316]0.24495| 5483.63 0.5577 5.769E-05] 163.2005] 2.9961
410 10.00689| 6008.61 0.5381 5.144E-05]| 24.0547 |0.3916] 1346] 0.25260| 5469.37 0.5583 5.788E-05[163.5288]2.9421
416 10.00853| 5966.23 0.5396 5.190E-05| 32.8346 |0.4369] 1376]0.26023| 5455.12 0.5588 5.807E-05[163.6744|2.8895
421 10.00989| 6022.73 0.5376 5.129E-05]| 6.1500 — ]1406]0.26784| 5440.85 0.5594 5.826E-05) 163.7626] 2.8385
426 10.01126| 5937.96 0.5406 5.221E-05] 19.4855 |0.1785]1436]0.27544| 5426.59 0.5600 5.845E-05[163.8124]2.7888
436 10.01397| 5980.36 0.5391 5.175E-05| -4.9332 — ]1461]0.28175| 5412.32 0.5606 5.864E-05(140.0193] 2.2875
441 10.01533| 5952.09 0.5401 5.206E-05] 27.6168 | 0.5271]1491]0.28932| 5398.05 0.5612 5.884E-05) 165.4812]2.6977
446 10.01669| 5966.23 0.5396 5.190E-05] -17.0092 — ]1521]0.29687| 5383.77 0.5618 5.903E-05[165.0903] 2.6514
451 10.01805| 5937.96 0.5406 5.221E-05]| 29.0252 |0.5184]|1546]0.30315| 5369.50 0.5624 5.923E-05[140.8235]2.1755
456 10.01941| 5952.09 0.5401 5.206E-05] -19.3170 — ]1576]0.31068| 5355.21 0.5630 5.943E-05( 166.3640] 2.5664
466 |0.02212| 5937.96 0.5406 5.221E-05] 72.2688 |2.0380] 1606]0.31818| 5340.93 0.5636 5.963E-05[165.8772]2.5232
481 10.02618| 5923.81 0.5411 5.237E-05] 104.5844]2.9929]| 1631]0.32442| 5326.64 0.5642 5.983E-05(141.3283]2.0708
501 [0.03158] 5909.67 0.5416 5.252E-05] 130.7354 | 3.8888]| 1661 0.33190| 5312.35 0.5648 6.003E-05[166.9778|2.4434
516 ]0.03563] 5895.52 0.5421 5.268E-05] 104.0959]2.8583| 1686 0.33811| 5298.06 0.5654 6.023E-05) 142.0026| 2.0055
531 [0.03967| 5881.36 0.5426 5.284E-05]106.5143]2.8021|1711]0.34432| 5283.76 0.5660 6.044E-05[143.0818]1.9753
551 0.04505| 5867.21 0.5431 5.300E-05] 135.0873|3.6476|1741|0.35175| 5269.46 0.5666 6.064E-05[168.6777]2.3313
566 | 0.04907| 5853.05 0.5436 5.316E-05] 107.3828]2.6842]| 1766| 0.35792| 5255.15 0.5673 6.085E-05)143.1735[1.9137
591 [0.05576| 5838.88 0.5441 5.332E-05]162.7713]4.3534| 1791] 0.36409| 5240.85 0.5679 6.106E-05(144.1008] 1.8849
606 | 0.05977| 5824.71 0.5446 5.348E-05] 106.4305|2.5650]| 1816 0.37024| 5226.53 0.5685 6.127E-05[144.8157| 1.8568
631 ]0.06644] 5810.54 0.5451 5.365E-05] 163.3161]4.1655| 1846 0.37761| 5212.22 0.5691 6.148E-05)170.5956]2.1919
656 [0.07310] 5796.37 0.5457 5.381E-05] 160.2104]4.0622] 1871]0.38373| 5197.90 0.5698 6.169E-05[144.5468] 1.7992
681 [0.07975| 5782.19 0.5462 5.398E-05] 158.4452| 3.9639] 1896 0.38985| 5183.58 0.5704 6.190E-05[145.3550]1.7724
701 ]10.08506| 5768.01 0.5467 5.414E-05] 131.5366] 3.1072| 1926 0.39717| 5169.26 0.5711 6.212E-05)171.3402|2.0924
726 {0.09168] 5753.82 0.5472 5.431E-05] 159.3154]3.7944] 1951]| 0.40325| 5154.94 0.5717 6.233E-05[145.1162]1.7177
756 [0.09961| 5739.63 0.5477 5.448E-05] 183.0094 | 4.4355]| 1976 0.40933| 5140.61 0.5723 6.255E-05(145.8882] 1.6920
786 ]0.10752] 5725.44 0.5483 5.465E-05] 179.5933]4.3243|2001]|0.41539| 5126.27 0.5730 6.277E-05) 146.4633| 1.6667
816 [0.11542] 5711.24 0.5488 5.482E-05]177.2222]4.2186]2026]| 0.42144| 5111.94 0.5737 6.299E-05[146.9561]1.6418
846 [0.12331| 5697.04 0.5493 5.499E-05] 175.4250]4.1179] 2046] 0.42626| 5097.60 0.5743 6.321E-05[120.9402] 1.2953
876 10.13118] 5682.84 0.5499 5.516E-05] 174.0180]4.0223|2051]|0.42747| 5097.60 0.5743 6.321E-05| 0.0000 —

906 [0.13903] 5668.63 0.5504 5.534E-05] 172.8680] 3.9307] 2056 0.42868| 5097.60 0.5743 6.321E-05] 0.0000 —

936 [0.14687| 5654.42 0.5510 5.551E-05] 171.9267|3.8434|2081]0.43470| 5083.26 0.5750 6.344E-05[145.9733]1.5910
971 [0.15600| 5640.21 0.5515 5.569E-05] 194.3686|4.3750] 2106 0.44071| 5068.92 0.5756 6.366E-05[146.8988|1.5671
1001]0.16381| 5625.99 0.5521 5.586E-05] 168.4366]3.6700]2131]0.44670| 5054.57 0.5763 6.389E-05]147.4764 | 1.5435
1036]0.17291| 5611.77 0.5526 5.604E-05] 191.3621]4.1822]2161]0.45388| 5040.22 0.5770 6.411E-05]173.9394|1.8222
1066]0.18069| 5597.55 0.5532 5.622E-05]166.1740]3.5112] 2186 0.45985| 5025.87 0.5776 6.434E-05]|147.0343]1.4954
1096]0.18845| 5583.32 0.5537 5.640E-05] 166.3411]3.4406]2211]0.46581] 5011.51 0.5783 6.457E-05]147.6890] 1.4728
1126]0.19620| 5569.09 0.5543 5.658E-05] 166.3093|3.3724|2241]0.47294| 4997.15 0.5790 6.481E-05]174.2920(1.7385
1161]0.20523| 5554.85 0.5548 5.676E-05] 189.2106| 3.8492| 2266 0.47887| 4982.79 0.5797 6.504E-05]147.2964 | 1.4266
1196]0.21423| 5540.61 0.5554 5.694E-05] 187.2035] 3.7675]| 2296 0.48597| 4968.42 0.5804 6.527E-05|174.0966] 1.6839
1221]0.22065| 5526.37 0.5560 5.713E-05] 139.5048|2.6455] 2321|0.49188| 4954.06 0.5811 6.551E-05]|147.1746]1.3816
1251]0.22834| 5512.13 0.5565 5.731E-05] 165.1360| 3.1153| 2351 0.49894 | 4939.69 0.5818 6.575E-05(174.0459]1.6307

points recorded before closure results in (m,,)gpx = 0.009350. The created fracture height is assumed to be

confined to the permeable fracture height, r, = h,/h;= 1, and the permeability is estimated as

Oy | 204120.02878)24) | 2 0163 md
GDK ~ 5.615 (1)(9199.7)(0.009350) | '

There is no fracture face resistance since the straight line is drawn from the origin.

Assuming the opposite extreme of radial fracture geometry, the specialized graph results in (by)rap =0
and (my)rap = 0.009233. The ratio of permeable to total fracture height for a radial fracture is written as™
h

2
(rp)RAD =—| 2
T 2Rf

(5.163)
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Fig. 5.8—Fracture-injection/falloff sequence before-closure pressure-transient analysis.

and is calculated as

2 2
(rp)RAD:_[ 6 1—( 6 j +sin!
7| 2(61.7) 2(61.7)

=0.063.
2(61.7)]

The permeability assuming radial fracture geometry is estimated as

2(141.2)(0.02878)(24 1
(k)MD{< )(0.02878)(24)

2
=1.408 md .
5.615 (1)(50330.7)(0.009233)

An order of magnitude change in the estimated permeability results by assuming an unconfined radial
fracture versus a confined fracture. With fracture-height recession observed during the before-closure
falloff, which suggests the fracture grew into higher stress, low permeability layers adjacent to the
permeable layer, a radial fracture seems more plausible. However, without fracture imaging the true
fracture geometry is unknown and before-closure pressure-transient analysis can only bracket the
estimated permeability, that is, 0.163 md < k£ < 1.408 md.

9. After-closure analysis requires a log-log graph of the adjusted pseudopressure difference,

Paw— Pai» and the well testing pressure derivative versus the reciprocal elapsed adjusted pseudotime,

which is shown in Fig.5.9. The elapsed time and corresponding adjusted pseudotime used in after-
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closure analysis is calculated relative to the time since the beginning of the injection, and the points in
Fig 5.9 were calculated and graphed using the adjusted pseudopressure and pseudotime values tabulated

in Table 5-3.

The derivative curve is not a function of initial reservoir pressure and should be used to identify the flow
regimes. In Fig. 5.9, the derivative data fall along a unit slope line, which indicates pseudoradial flow was
observed. Additionally, the adjusted pseudopressure difference data overlay the derivative data on the unit
slope line, which suggests that the estimated initial reservoir pressure is correct. In most cases, the
determination of initial reservoir pressure is an iterative process, and the adjusted pseudopressure
difference and derivative curves will not overlay during pseudoradial flow until the initial reservoir

pressure is correct.

10. Since pseudoradial flow was indicated in Fig. 5.9, a Cartesian graph of adjusted pseudopressure
versus the reciprocal elapsed adjusted pseudotime is prepared, which is shown in Fig. 5.10. A straight
line is drawn through the data corresponding to pseudoradial flow, and the initial adjusted
pseudopressure corresponds to the intercept of the straight line, b, = p,; = 3,684 psia, which indicates

the initial reservoir pressure is 5,125 psia. The slope of the straight line, m,, = 449.082 psia-hr, and the

10

w

=
S

dpaw/d(In 1/((te)a+4ts))

(Paw - Pai) O dpgy/d(In 1/((te)a*+4ta)), PSia

10 1 0 1
107 10 10

U((t)g+ty), hr

Fig. 5.9—Fracture-injection/falloff sequence after-closure analysis diagnostic graph.
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Fig. 5.10—Fracture-injection/falloff sequence Cartesian after-closure analysis graph.

transmissibility is calculated as

kh _141.2(24) 67.9 256,117 md-ft’
) 2 449.082 cp

which corresponds to a permeability-thickness product of k4 = 7.173 md-ft.

Since pseudoradial flow was observed during the Kakwa 07-24 Bluesky fracture-injection/falloff
sequence, type-curve analysis is unnecessary; however, type-curve analysis can be used to calculate the

effective fracture half length created during the fracture-injection.

11. Prepare a log-log graph of I(Ap,) versus (t.), + At, and Ap’, versus (t,), + At, and overlay the
appropriate constant-rate, drawdown type curve for the reservoir/system. Fig 5.11 shows a non-unique
type-curve match obtained with the observed data and a type curve for production through and infinite-
conductivity fracture in an infinite slab reservoir. The equivalent constant-rate pressure difference and

derivative points plotted in Fig. 5.11 are also tabulated in Table 5-5.

Note that the type curve match indicates variable storage during fracture closure, that is, the early-time
data fall along the solution with Cp.p = 3.0, and the late-time data overlay the solution with C,.p =2.0. A

before-closure match point is as follows.
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Fig. 5.11—Fracture-injection/falloff sequence variable-storage type-curve match.

tarp =2.090752 = (te)4 +At, =0.173389 hr
Pacp =0.512268 — I(Ap,)=409.8144 psia - hr

and an after-closure match point is
taip =10 = (te)q + Aty =0.83518 hr
Pach =1.757406 — I(Ap,)=1,383.963 psia-hr
12. The before-closure match point is used with the transmissibility calculated from after-closure
analysis to calculate the adjusted before-closure storage coefficient, C,.. Assume T;=T,, let
Pawsp(0) =1, and C. is calculated as
kh

; T: t)—p,;)dt
i PawsD(O)T—l (paw() paz) a4

J-((te)a+Ata)
.- 0
abe (141.2)2H(pu0 — Pgi) w PbeDCar D)

MP

256.117 [409.8144} bbl

- =0.024694 ———
(141.2)(24)(6135.37—3686.9)(1) | 0.512268 psia



Table 5-5—Variables required for type-curve match.

ta, hr | paw, Psi| 1(Apa), psichr| dp,/d(Int,), psichr| t,, hr [pay, psi|1(4pa) psi-hr| dp,/d(Inty,), psihr
0.10694| 6135.57 261.8867 261.8867

0.10944| 6079.18 267.9172 261.8166 0.54164| 5083.26 1063.0632 756.3933
0.11192] 6065.08 273.8341 266.1723 0.54765[ 5068.92 1071.4115 756.9289
0.11384] 6008.61 278.3482 264.3131 0.55365| 5054.57 1079.6555 757.2724
0.11547] 5966.23 282.1125 263.2178 0.56083[ 5040.22 1089.4238 759.0442
0.11684| 6022.73 285.2619 272.9306 0.56680( 5025.87 1097.4606 758.9882
0.11820] 5937.96 288.3864 266.0918 0.57275( 5011.51 1105.3942 758.7420
0.12092] 5980.36 294.5611 277.3365 0.57989( 4997.15 1114.7912 759.8637
0.12228] 5952.09 297.6608 276.9990 0.58582| 4982.79 1122.5196 759.2209
0.12364| 5966.23 300.7482 281.8245 0.59292( 4968.42 1131.6711 759.9063
0.12499| 5937.96 303.8232 281.3844 0.59882( 4954.06 1139.1956 758.8692
0.12635| 5952.09 306.8858 286.2240 0.60589 4939.69 1148.1033 759.1209
0.12906| 5937.96 313.0111 290.5436 0.61177 4925.31 1155.4253 757.6920
0.13312] 5923.81 322.1250 297.8035 0.61880( 4910.94 1164.0908 757.5118
0.13853| 5909.67 334.1784 307.9355 0.62466 | 4896.56 1171.2118 755.6930
0.14257| 5895.52 343.1449 314.9131 0.63166| 4882.18 1179.6368 755.0838
0.14661| 5881.36 352.0378 321.7595 0.63865( 4867.79 1187.9423 754.2531
0.15199]| 5867.21 363.7974 331.4053 0.64563 | 4853.41 1196.1286 753.2009
0.15601| 5853.05 372.5439 337.9711 0.65258 | 4839.02 1204.1962 751.9277
0.16271| 5838.88 386.9999 350.1697 0.66068| 4824.63 1213.4702 751.7513
0.16672| 5824.71 395.6007 356.4368 0.66761[ 4810.23 1221.3016 750.0218
0.17339| 5810.54 409.8144 368.2405 0.67452| 4795.83 1229.0154 748.0738
0.18005| 5796.37 423.9074 379.8285 0.68141 4781.43 1236.6121 745.9077
0.18669| 5782.19 437.8799 391.2011 0.68944 4767.03 1245.3390 744.7621
0.19200| 5768.01 448.9619 399.5975 0.69745( 4752.62 1253.9302 743.3640
0.19862| 5753.82 462.6945 410.5595 0.70429| 4738.22 1261.1784 740.5137
0.20655| 5739.63 479.0303 424.0206 0.71226 | 4723.81 1269.5000 738.6288
0.21447| 5725.44 495.2229 437.2255 0.71908( 4709.39 1276.5180 735.3318
0.22237| 5711.24 511.2729 450.1748 0.72701[ 4694.98 1284.5720 732.9625
0.23025| 5697.04 527.1805 462.8687 0.73605 4680.56 1293.6245 731.4679
0.23812] 5682.84 542.9461 475.3080 0.74395 4666.14 1301.4129 728.5850
0.24598| 5668.63 558.5701 487.4931 0.75182| 4651.72 1309.0693 725.4550
0.25382| 5654.42 574.0528 499.4247 0.76080( 4637.29 1317.6692 723.1450
0.26295| 5640.21 591.9517 513.6509 0.76976 | 4622.87 1326.1193 720.5537
0.27076] 5625.99 607.1530 525.0581 0.77870( 4608.44 1334.4202 717.6828
0.27985| 5611.77 624.7243 538.7143 0.78761| 4594.00 1342.5726 714.5324
0.28763| 5597.55 639.6457 549.5995 0.79651( 4579.57 1350.5770 711.1040
0.29540| 5583.32 654.4277 560.2338 0.80538( 4565.14 1358.4341 707.3983
0.30315| 5569.09 669.0706 570.6177 0.81534 4550.70 1367.1080 704.3714
0.31217] 5554.85 685.9921 583.1597 0.82527 4536.26 1375.6175 701.0350
0.32118] 5540.61 702.7524 595.4111 0.83518( 4521.81 1383.9632 697.3893
0.32760] 5526.37 714.6090 602.6478 0.84616| 4507.37 1393.0549 694.3374
0.33529| 5512.13 728.6994 612.0168 0.85712 4492.92 1401.9660 690.9448
0.34424| 5497.88 744.9782 623.4546 0.86695| 4478.47 1409.8242 686.3467
0.35190] 5483.63 758.7947 632.3103 0.87785( 4464.02 1418.3764 682.2916
0.35954| 5469.37 7724747 640.9194 0.88982( 4449.57 1427.5877 678.7281
0.36717] 5455.12 786.0186 649.2823 0.90175( 4435.11 1436.6037 674.7953
0.37478| 5440.85 799.4269 657.3998 0.91474 4420.66 1446.2271 671.2880
0.38238| 5426.59 812.6999 665.2723 0.92769( 4406.20 1455.6392 667.3797
0.38870] 5412.32 823.6483 670.7194 0.94061 4391.74 1464.8409 663.0727
0.39627| 5398.05 836.6519 678.1215 0.95350( 4377.27 1473.8331 658.3673
0.40382| 5383.77 849.5214 685.2801 0.96742( 4362.81 1483.3487 653.9901
0.41010] 5369.50 860.1344 690.0825 0.98239( 4348.34 1493.3539 649.8920
0.41762| 5355.21 872.7368 696.7742 0.99837 4333.87 1503.8154 646.0239
0.42513| 5340.93 885.2061 703.2241 1.01432] 4319.40 1514.0195 641.6662
0.43137| 5326.64 895.4868 707.3859 1.03023| 4304.93 1523.9674 636.8196
0.43884| 5312.35 907.6914 713.3720 1.04821] 4290.46 1534.9526 632.7639
0.44506| 5298.06 917.7520 717.1150 1.06615| 4275.99 1545.6500 628.1589
0.45126| 5283.76 927.7031 720.6585 1.08509| 4261.51 1556.6733 623.6105
0.45869| 5269.46 939.5135 725.9618 1.10608| 4247.03 1568.5859 619.6613
0.46487| 5255.15 949.2466 729.0895 1.12702| 4232.55 1580.1645 615.0723
0.47103| 5240.85 958.8711 732.0187 1.14895]| 4218.07 1591.9730 610.4017
0.47719| 5226.53 968.3875 734.7503 1.19679] 4189.11 1616.6987 601.1534
0.48455| 5212.22 979.6777 739.1575 1.22269| 4174.62 1629.5212 596.4527
0.49068| 5197.90 988.9787 741.4771 1.24956| 4160.13 1642.4323 591.4561
0.49679| 5183.58 998.1724 743.6005 1.27841]| 4145.65 1655.8818 586.5935
0.50411] 5169.26 1009.0767 747.3366 1.30925| 4131.16 1669.8073 581.7728
0.51020] 5154.94 1018.0571 749.0514 1.34205| 4116.67 1684.1463 576.9022
0.51627] 5140.61 1026.9312 750.5713 1.34308| 4116.67 1684.5864 577.3423
0.52233| 5126.27 1035.6995 751.8965 1.37375] 4102.18 1697.5490 570.6199
0.52838| 5111.94 1044.3623 753.0282 1.39420| 4116.67 1706.1908 599.3170
0.53321] 5097.60 1051.2084 752.2632 1.40851] 4102.18 1712.2400 585.0590
0.53442| 5097.60 1052.9094 753.9643 1.42483| 4087.69 1718.8985 571.1860
0.53562| 5097.60 1054.6105 755.6653 1.46144| 4073.19 1733.3095 564.6811

154



13. Fracture half length can be estimated from the before-closure storage coefficient with ¢=0.10 as

L 0.8936Cp. _ 0.8936(0.024694) —114ft
f ¢cihCpep (0.10)(0.00009402)(6)(3)

Recall from before-closure analysis that the created fracture half-length estimates varied from 61 feet for a

radial fracture to 180 feet for a confined-height fracture, which suggests either (1) the type-curve match is
incorrect, (2) the before-closure estimates of fracture half-length are incorrect or (3) fracture half length
decreases during closure. The before-closure estimate of fracture half length assumes no spurt loss, and
with the permeability of the formation, it seems unlikely spurt loss is negligible. Consequently, it's likely
that the before-closure fracture half length estimate is incorrect. However, a better type-curve match might
have been obtained with additional shut-in data. The observed data plotted in Fig. 5.11 "match" many
variable-storage type-curve combinations, but additional pseudoradial flow data would improve the match

by limiting the number of possibilities.

From the type curve match, the dimensionless after-closure storage coefficient can be written as

2 2
CaacD = g CabeD = Caac= ; Cabe>

which is reasonable considering the tubular volume is 87.8 bbl and the injected volume was 67.9 bbl. In
other words, the fracture storage is of the same magnitude as wellbore storage and a closing fracture will

create a measureable change in the dimensionless storage coefficient.

14. Recall that transmissibility is estimated from an after-closure type-curve match point as

kh PawsDDCqpe T, PacDtarD)
—=(141.2)(24X(Pa0 ~ Pai)

L e (5.164)
Hi “PawsD ((tc )aLfD )(Cabc —Caac) | Tw J-O C(Paw®) = pgpdt, P

The dimensionless wellbore adjusted pseudopressure observed at hydraulic fracture closure is calculated
as

Paw—Pai _ 4939.69—-3686.9

‘ - = =0.5117,
pawsD((c)aLﬂ’) Pa0 - Pai  6135.37-3686.9

and the transmissibility is calculated from the after-closure type-curve match as

PacDCar D)
H_’=(141.2)(24)(pa0—pai)Cabc[l_]WD((W] AL ach o/l

Hi 3 0 a(paw(t)_pai)dta MP

= (141.2)(24)(6135.37 —3686.7)(0.024694)(1— 0.51 17]{”5 7406]
3 )11383.963 Iyp

_o1s5.g md-ft

cp
The permeability-thickness from the after-closure type-curve match is k4 = 6.05 md-ft, which compares

with 7.17 md-ft from the pseudoradial flow after-closure analysis. A subsequent post-frac pressure buildup
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test was also completed in the formation with a nonunique interpretation concluding the initial reservoir
pressure was p; = 5,265 psia and the permeability-thickness product was k% = 6.77 md-ft. Thus the results
from type-curve analysis, after-closure pseudoradial flow analysis, and the post-frac pressure buildup are

all in general agreement.

5.3.2 Pseudolinear Flow Observed After Closure. The shut-in period of a fracture-injection/falloff
sequence in a low permeability reservoir is often insufficient to observe pseudoradial flow, and most
interpretations must rely on before-closure pressure transient analysis or after-closure pseudolinear flow
analysis when it is observed.>® The GM 543-33 is a well producing from 20 low permeability Mesaverde
sands. Prior to hydraulic fracturing the sandstone reservoir perforated at 4,954 feet, an isolated-layer
fracture-injection/falloff sequence was completed. A total of 17.69 bbls of 1% KCI treated water was
pumped at an average rate of 3.30 bbl/min during a 5.30 minute fracture injection. At the end of the
fracture-injection, a bottomhole plug was seated, and the pressure falloff was recorded for 16.10 hours.
Table 5-6 contains the time, pressure, and rate data recorded during the fracture injection, and Table 5-7

contains the time and pressure recorded during the pressure falloff.

After the falloff period, the plug was removed, and the layer was produced for 168 hours prior to seating
the plug and beginning a 15 day pressure buildup. With both a fracture-injection/falloff and
drawdown/buildup sequences completed sequentially, a direct comparison of the buildup and falloff

interpretations is possible.

The porosity of the Mesaverde formation is 10%, the gas saturation is 50%, and the gross and net
thicknesses are 14 feet and 12 feet, respectively, where net thickness is defined as porosity greater than
6%. Gas gravity is 0.63, and the bottomhole temperature is 160°F. Before-closure analysis assumes a
Young's modulus of 5,000,000 psi and a Poisson's ration of 0.20, which results in a plane-strain modulus
of 5,208,333.3 psi. The Mesaverde formation is separated from adjacent sandstone reservoirs by

impermeable and high stress shale and mudstone formations.
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Table 5-6—GM 543-33 fracture-injection time, bottomhole pressure, and injection rate.

t,s|pw,psi|a;, bbl/imin|t,s|py,psi|q;, bbl/min|t,s|py,psi|q;, bbl/min|t,s|py,psi|q;, bbl/min|t,s|py,psi| q;, bbl/min
0 |1808.60 3.17 127]3672.87 3.10 254]|3513.45 3.10
1.11827.54 3.17 64 | 3656.96 3.09 128 3675.05 3.10 191[3919.13 4.50 255|3518.10 3.09
2 |1846.67 3.17 65 | 3663.33 3.09 129 3689.54 3.10 192[3911.73 4.50 256 3525.30 3.09
3 |1866.34 3.17 66 | 3665.12 3.09 130 3696.94 3.10 193[3910.42 4.50 2573526.18 3.09
4 [1887.04 3.17 67 |3669.00 3.09 131[3661.73 3.10 194(3914.85 4.50 258 3526.45 3.09
5 11907.99 3.17 68 |3674.00 3.09 132]3624.31 3.10 195(3907.45 4.49 259(3534.10 3.09
6 |1929.38 3.17 69 |3678.84 3.09 133]3599.31 3.10 196]3916.91 4.49 260(3531.31 3.09
7 11951.74 3.17 70 | 3685.89 3.09 134]3576.70 3.10 197]3909.34 4.49 261 3520.45 3.09
8 11974.34 3.17 71 13691.09 3.09 135 3566.36 3.10 198(3910.74 4.49 262 3532.21 3.09
9 |1997.26 3.17 72 13698.48 3.09 136 3544.72 3.10 199(3909.97 4.49 263 3523.55 3.09
10 | 2021.12 3.16 73 13700.23 3.09 137]3546.16 3.10 200 3907.54 4.49 264 |3527.47 3.09
11 [2045.71 3.16 74 |3705.37 3.09 138] 3559.77 3.10 201]3919.06 4.49 265 3520.63 3.09
12 | 2070.20 3.16 75 13707.30 3.09 139] 3565.21 3.10 202 3913.36 4.49 266 3522.72 3.09
13 | 2096.91 3.16 76 | 3708.65 3.09 140] 3576.05 3.10 203 3913.76 4.49 267 3530.56 3.09
14 12123.28 3.16 77 13710.46 3.09 141]3592.27 3.10 2043912.08 4.49 268 3534.07 3.09
15 |2150.83 3.16 78 13704.93 3.09 142] 3581.60 3.10 205 3903.85 4.49 269|3521.92 3.09
16 | 2179.71 3.16 79 13681.73 3.09 143]3602.08 3.10 206 3920.60 4.49 270 3535.23 3.09
17 | 2208.64 3.16 80 | 3633.14 3.09 144 3595.58 3.10 207 3914.60 4.50 271 3529.66 3.09
18 | 2238.54 3.15 81 | 3569.66 3.09 145 3592.15 3.10 208 3912.96 4.49 272|3531.47 3.09
19 | 2269.82 3.15 82 |3521.56 3.09 146 3592.72 3.10 209(3911.79 4.50 273 3528.96 3.09
20 ] 2301.28 3.15 83 13485.97 3.10 147]3586.38 3.10 210 3905.70 4.50 274|3528.07 3.09
2112334.11 3.15 84 |3456.68 3.10 1481 3588.87 3.10 211]3922.70 4.50 275 3523.20 3.09
22 | 2368.44 3.15 85 |3432.63 3.10 149 3595.71 3.10 212]3916.79 4.49 2763519.49 3.09
23 |2404.23 3.14 86 | 3413.65 3.10 150 3602.03 3.10 213/3915.12 4.50 277|3528.54 3.09
24 |2441.06 3.15 87 |3396.13 3.10 151 3588.55 3.10 21413917.10 4.50 2783526.11 3.08
25 | 2478.64 3.15 88 |3380.58 3.10 152 3604.51 3.10 215]3908.02 4.50 279|3530.59 3.07
26 12519.03 3.14 89 |3368.48 3.11 153]3601.07 3.10 216 3923.78 4.50 280 3522.83 3.06
27 | 2558.40 3.14 90 | 3357.52 3.11 154]3602.40 3.17 217/3918.42 4.50 281 3519.56 3.05
28 |2599.40 3.14 91 13346.23 3.11 155 3597.20 3.31 218[3914.13 4.50 282|3518.14 3.02
29 | 2643.53 3.14 92 13336.37 3.11 156 3597.63 3.45 219]3915.92 4.50 283 3509.06 2.99
30 [2687.07 3.14 93 ]3329.36 3.11 157 3800.62 3.59 220 3901.36 4.50 284 3496.03 2.96
31 [2733.67 3.14 94 13321.78 3.11 158 3863.26 3.73 221]3914.87 4.49 285 3485.85 2.92
32 12785.49 3.13 95 |3311.74 3.11 159]3897.01 3.87 222|3908.74 4.50 286 3479.63 2.87
33 12835.77 3.13 96 | 3306.68 3.11 160 3908.88 4.01 223|3902.82 4.49 287 [ 3465.81 2.81
34 |2885.17 3.13 97 |3302.11 3.11 161] 3927.83 4.15 22413903.72 4.49 288 3446.68 2.74
35 [2943.31 3.13 98 |3293.85 3.11 162]3932.71 4.29 225|3894.30 4.49 289|3414.93 2.66
36 [2998.80 3.13 99 |3284.51 3.11 163]3937.08 4.43 226 3904.34 4.49 290 3397.62 2.58
37 | 3055.56 3.12 100 3284.20 3.11 164]3935.31 4.50 227|3898.28 4.49 291(3370.21 2.48
38 |3113.04 3.12 101] 3278.58 3.11 165] 3928.13 4.50 228 3893.50 4.49 292|3372.54 2.37
39 [3152.43 3.12 102] 3268.82 3.11 166 3932.35 4.50 229 3899.20 4.49 293|3353.54 2.27
40 | 3248.57 3.12 103 3268.54 3.11 167 3925.58 4.49 230 3889.46 4.49 294 |3306.88 2.19
4113318.83 3.11 104 | 3265.65 3.11 168 3928.29 4.50 231]3900.10 4.49 295(3299.01 2.12
42 13372.58 3.11 105 3258.07 3.11 169 3927.70 4.50 232 3893.05 4.49 296(3311.82 2.06
43 | 3436.21 3.11 106 3255.33 3.11 170] 3921.19 4.50 233 3890.50 4.49 2973322.79 2.01
44 13482.22 3.11 107 3258.84 3.12 171]3926.76 4.50 234(3898.11 4.49 298 3329.09 1.98
45 ]3507.17 3.10 108 3262.80 3.11 172]3923.44 4.50 235 3885.90 4.49 299|3332.32 1.95
46 |3520.89 3.10 109 3284.60 3.1 173[3930.33 4.49 236 3894.74 4.49 300 3324.64 1.93
47 13531.07 3.10 110] 3314.79 3.11 174] 3930.00 4.49 2373889.33 4.44 301/3312.85 1.94
48 | 3539.44 3.10 111] 3334.94 3.11 175]3925.43 4.49 238 3880.79 4.30 302 3315.07 1.96
49 |3546.97 3.10 112]3347.70 3.11 176]3926.93 4.49 239|3894.42 4.16 303 3312.69 1.98
50 [ 3556.64 3.10 113]3412.31 3.11 177]3920.71 4.49 240/ 3680.62 4.02 3043305.18 1.99
51 | 3564.52 3.10 114]3502.43 3.11 178]3925.18 4.49 241 3608.07 3.88 305/3313.14 1.99
52 |3570.44 3.10 115] 3550.31 3.11 179] 3926.64 4.49 242|3571.49 3.74 306 3209.97 1.98
53 [3578.42 3.10 116 3605.56 3.11 180]3919.12 4.49 243|3549.66 3.60 3073158.20 1.96
54 [3591.63 3.10 117]3610.88 3.10 181]3923.64 4.49 244 3540.96 3.46 3083151.38 1.80
55 [3604.07 3.10 118/ 3636.67 3.10 182[3916.15 4.49 245| 3546.53 3.32 309 3146.82 1.60
56 |3612.86 3.09 119]3649.53 3.10 183[3918.15 4.49 246 3525.54 3.18 310 3143.15 1.40
57 | 3621.89 3.09 120] 3647.31 3.10 184]3924.11 4.49 247 3537.59 3.09 311/3139.89 1.20
58 [3630.28 3.09 121]3648.77 3.10 185]3914.19 4.49 248|3533.63 3.09 312(3137.01 1.00
59 [3635.23 3.09 122 3660.82 3.10 186 3919.90 4.50 2491 3530.60 3.09 313/3134.23 0.80
60 | 3640.80 3.09 123[3651.79 3.10 187[3911.97 4.50 250/ 3527.56 3.09 314/3131.80 0.60
61 | 3647.62 3.09 124]3666.57 3.10 188 3916.05 4.50 251 3528.90 3.09 315/3129.47 0.40
62 | 3650.58 3.09 125]3646.61 3.10 189] 3923.56 4.49 252|3521.62 3.09 3163127.25 0.22
63 | 3654.16 3.09 126 3659.89 3.10 190 3910.34 4.49 253|3527.79 3.09 317|3125.04 0.04
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Table 5-7—GM 543-33 time and bottomhole pressure recorded during the pressure falloff.

t,s Pw,PpSi t,s pw, PSi t,s P, PSi t,s pw, psi t,s Pw, PSi t,s P, psi t,s Pw, PSi t,s P, psi
318 | 3123.09 | 1323 | 2849.67 | 2328 | 2767.22 | 3333 | 271522 | 4758 | 2667.20 | 6768 | 2622.85 | 10038 | 2574.89 | 18918 | 2509.64
33 3098.72 338 848.07 | 234 2766.22 348 714.48 | 4788 | 2666.40 | 679 622.09 | 10098 | 2574.11 95 2506.93
34 3080.2 353 846.55 | 235 2765.21 363 713.85 | 4818 | 266550 | 682 621.61 0158 | 2573.42 | 201 2504.25
36 3065.2 368 844.90 | 237 2764.35 378 713.33 | 4848 | 2664.81 | 685 621.03 0218 | 2572.85 | 207 2501.64
378 | 3052.4 383 843.36 | 2388 | 276340 | 3393 712.69 | 4878 | 2663.97 | 6888 620.53 0278 | 2572.07 13 2499.29
393 | 3040.86 | 1398 | 2841.89 | 2403 | 276253 | 3408 | 2711.96 | 4908 | 2663.20 | 691 2619.88 | 10338 | 2571.33 | 2191 2496.92
40 3030.73 413 84039 | 241 2761.54 423 71140 | 4938 | 2662.32 | 694 619.56 0398 | 2570.70 | 225 2494.66
42 3021.44 428 839.02 43 760.60 438 710.89 | 4968 66154 | 697 619.03 0458 | 2569.99 | 231 249254
438 | 3012.94 443 837.40 448 750.80 | 3453 710.18 | 4998 660.80_ | 700 618.36 0518 | 2569.43 | 237 2489.98
453 | 3005.09 458 836.07 | 2463 | 2758.74 | 3468 709.55 | 5028 | 2660.13 | 703 617.91 0578 | 2568.69 | 2431 2488.24
46 2997 8! 473 834.49 | 247 2758.03 483 709.02 | 5058 | 2659.2 706 617.45 | 10638 | 2567.96 | 249 2487.05
48 2991.3; 488 833.11 | 249 2757.08 498 70840 | 5088 | 2658.5 709 616.88 0698 | 2567.50 | 255 2485.46
498 | 2985.36 503 831.66 | 2508 | 275622 | 3513 707.76 | 5118 | 2657.6 7128 616.41 0758 | 2566.72 | 261 2484.00
513 | 2979.83 | 1518 | 2830.30 | 2523 | 275521 | 3528 | 2707.13 | 5148 | 2656.94 | 715 2615.88 | 10818 | 2566.08 | 2671 2483.16
52 2974.66 533 828.87 | 253 2754.39 543 706.71 | 5178 | 2656.28 | 71 615.35 | 10878 | 256544 | 273 2481.56
54 69.80 548 827.60 55 753.57 558 706.04 | 5208 65563 | 72 614.90 0938 | 2564.79 | 279 2479.80
558 65.31 563 826.21 568 75265 | 3573 70539 | 5238 654.80 | 724 614.27 0998 | 2564.28 | 285 2478.45
573 | 2961.19 578 824.76 | 2583 | 2751.79 | 3588 705.02 | 5268 | 2654.07 | 727 613.73 1058 | 2563.69 | 2911 2477.21
58 2957.39 593 823.41 | 259 2750. 603 704.40 | 5298 | 2653.4 730 613.24 118 | 2563.00 | 297 2476.04
60 2953.69 608 82217 | 261 2750. 618 70371 | 5328 | 2652.6 733 612.68 178 | 2562.41 | 303 2474.69
618 | 2950.18 623 820.88 | 2628 | 2749.18 | 3633 703.08 | 5358 | 265192 | 7368 612.18 238 | 2561.83 | 309 247333
633 | 2946.91 | 1638 | 281958 | 2643 | 2748.39 | 3648 | 270251 | 5388 | 2651.28 | 7398 | 2611.68 | 11298 | 2561.31 | 31518 | 2471.82
648 | 2943.6 65 818.2 2658 | 2747.55 66 702.16 | 5418 | 2650.34 | 742 611.20 358 | 2560.67 | 321 2470.38
63 40.5 66 816.8 673 746.76 67 701.4 5448 649.75 | 745 610.74 418 | 256015 | 327 2469.03
78 37.5 68 815.6 688 746.04 69 700. 5478 649.06 | 748 61019 478 | 2559.60 | 333 2468.32
93 934.6 698 814.3 703 74523 | 3708 700.2 5508 64841 | 7518 609.69 38 | 2559.01 | 339 2467.72
708 | 2931.86 | 1713 | 281312 | 2718 | 2744.39 | 3723 | 2699.77 | 5538 | 2647.71 | 757 260870 | 11598 | 2558.53 | 3451 2467.03
723 | 2929.15 72i 81177 | 2733 | 274361 73 699.14 | 5568 | 2647.05 | 763 607.72 658 | 2557.83 | 351 2466.31
738 6.45 74 810.58 748 742.73 75 698.66 | 5598 64632 | 769 606.69 718 | 2557.41 | 357 2465.62
753 3.97 758 809.31 763 74210 | 3768 69817 | 5628 64567 | 775 605.78 778 | 2556.83 | 363 2464.97
768 | 2921.17 773 | 2808.06 | 2778 | 2741.29 | 3783 697.55 | 5658 | 2644.91 | 781 604.84 38 | 2556.29 | 3691 2464.20
783 | 2918.83 78 806.77 | 2793 | 27403 7 69715 | 5688 | 2644.32 | 787 603.98 1898 | 2555.72 | 375 2463.56
798 6.29 80 805.53 808 739.6 8 696.50 | 5718 643.6 793 603.00 1958 | 2555.1 81 2462.82
813 3.98 818 804.31 823 738.8 3828 696.05 | 5748 642.92 | 799 601.98 | 12018 | 25546 87 246219
28 | 2911.65 833 803.19 | 2838 | 2738.14 | 3843 69540 | 5778 | 2642.2 805 601.27 2078 | 2554.02 931 2461.53
43 | 2909.4 84 801.85 | 2853 | 2737.40 85 694.80 | 5808 | 2641.65 | 811 600.23 2138 | 255356 | 399 2460.8
58 07.0 86 800.62 68 736.54 87 694.33 | 5838 641.04 | 817 599.38 2198 | 2553.06 | 405 2460.32
873 04.7 878 799.50 83 73593 | 3888 693.78 | 5868 64033 | 823 50849 | 12258 | 255254 | 411 2459.54
888 02.6 893 798.24 | 2898 | 2735.09 | 3903 | 2693.32 | 5898 | 2639.66 | 829 597.66 2318 | 2551.97 | 4171 2459.05
903 | 2900.5! 90 796.94 | 2913 | 2734.34 91 69279 | 5928 | 2639.00 | 835 596.77 2378 | 2551.38 | 423 2458.43
918 98.4 92 795.83 28 733.61 94 691.72 | 5958 638.44 | 841 505.86 2438 | 2550.79 | 429 2457.62
933 96.35 938 794.63 943 732.87 | 397 690.72 | 5988 637.73 | 847 595.21 2498 | 255027 | 435 2456.92
948 | 2894.24 953 79345 | 2958 | 2732.25 | 400 689.64 | 6018 | 2637.20 | 853 594.26 2558 | 2549.72 | 4411 2456.51
963 | 2892.34 96 792.27 | 2973 | 2731.43 | 403 688.81 | 6048 | 2636.48 | 859 593.33 2618 | 2549.35 | 447 2455.96
978 90.50 98 791.1 2988 730.71 | 406 687.75 078 635.89 | 865 592.43 2678 | 254877 | 453 245531
993 | 2888.39 998 790.0 3003 729.99 | 4098 86.64 08 3522 | 8718 591.67 2738 | 254817 | 459 454.57
1008 886.43 | 2013 788.82 | 3018 72922 | 4128 85.73 38 3466 | 8778 500.95 | 12798 | 2547.75 | 465 454.15
1023 | 288450 | 2028 787.74 | 3033 | 272854 | 415 684.89 68 | 2634.14 | 883 590.02 2858 | 2547.24 | 4711 453.50
03 2882.64 043 786.63 | 304 2727.89 | 41 683.95 198 | 2633.51 | 889 580.35 | 12918 | 2546.72 | 477 2452.99
05 80.74 058 785.55 | 306 72712 | 42 682.86 228 632.84 | 895 588.38 3218 | 254431 | 483 2452.49
068 78.77 073 784.49 | 3078 72651 | 424 682.02 258 632.20 | 901 587.56 3518 | 2542.02 | 489 2451.84
083_| 2877.09 088 783.26 | 3093 | 2725.64 | 427 681.06 288 | 2631.75 | 907 586.77 3818 | 2539.76 | 4951 2451.42
0! 2875.16 03 782.21 | 310 272497 | 430 680.19 318 | 2631.20 | 913 585.83 | 14118 | 2537.47 | 501 2450.92
1 73.43 18 781.16 | 312 72435 | 433 679.33 348 63054 | 919 585.17 | 14418 | 2535.33 | 507 2450.4
28 71.64 33 780.04 | 3138 72365 | 436 678.36 378 630.03 | 925 58452 | 14718 | 253329 | 513 2449.8
[ 1143 | 2869.80 148 77914 | 3153 | 2722.94 | 439 677.36 408 | 2629.35 | 931 583.56 5018 | 2531.25 | 5191 2449.39
58 | 2868.05 63 778.07 | 316 2722.1 442 676.55 438 | 262879 | 937 582.66 5318 | 2529.39 | 525 2448.96
73 66.27 78 777.08 | 318 721.7 445 675.70 468 628.28 | 943 582.00 | 15618 | 2527.33 | 531 2448.40
88 64.61 93 77593 | 3198 721.02 | 448 674.81 498 627.71 | 949 581.27 5018 | 252558 | 537 2448.04
203 | 2862.76 208 775.07 | 3213 | 2720.34 | 451 674.02 528 | 2627.08 | 955 580.49 | 16218 | 2523.82 | 5431 2447.42
21 2861.14 223 773.97 | 322 2719.56 | 454 673.12 558 | 262655 | 961 579.69 | 16518 | 2522.09 | 549 2447.04
23 59.40 238 773.02 | 324 718.9 457 67214 588 626.01 | 967 579.03 6818 | 2520.34 | 555 2446.54
248 857.76 253 772.01 | 3258 718.3 4608 671.41 618 62547 | 9738 578.36 7118 | 251861 | 561 2446.05
263 856.05 268 771.08 | 3273 717.7 4638 670.54 648 624.86 | 9798 577.62 7418 | 2516.98 | 567 244572
1278 | 2854.45 | 2283 | 2770.04 | 3288 | 2717.09 | 4668 | 2669.70 678 | 262434 | 0858 | 2576.82 | 17718 | 251559 | 5731 2445.39
1293 | 2852.79 | 2298 | 2769.14 | 3303 | 2716.44 | 4698 | 2668.78 708 | 262375 | 9918 | 2576.17 | 18018 | 2514.07 | 5791 2444.79
1308 | 2851.25 | 2313 | 2768.07 | 3318 | 2715.71 | 4728 | 2668.05 738 | 262319 | 9978 | 257552 | 18318 | 2512.62 | 5851 2444.34

The entire fracture-injection/falloff sequence is shown in Fig. 5.12, which contains a graph of bottomhole

pressure and injection rate versus time. Note that relative to the shut-in period, the fracture-injection is

very short and might reasonably be considered as occurring instantaneously.
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Fig. 5.12—GM 543-33 Mesaverde formation fracture-injection/falloff sequence.

1. Calculate the function G(g(4t,ay)) for each time and pressure recorded during the falloff period
and prepare a Cartesian graph of bottomhole pressure, p,,, the derivative of pressure, dp,/dG, and the

"superposition" derivative, Gdp,/dG versus the function G(g(4t,ay)).

Identify the leakoff type’* and hydraulic fracture closure using the G-function plot. Fig. 5.13 contains the
G-function plot for the fracture-injection/falloff sequence. The leakoff type is pressure-dependent leakofT,
which is indicated by the characteristic hump in the superposition derivative above a straight line drawn
from the origin through the "normal" leakoff data. Fracture closure is observed at G.=4.42, and the

closure stress is 2,790 psi.

2. Initial reservoir pressure can be estimated from the closure stress and the uniaxial strain
relationship. Assuming an overburden stress, o, =4,954 psi (1 psi/ft overburden gradient), the initial
reservoir pressure estimate is p; = 2,069 psi. The estimated intial reservoir pressure from closure stress
should be considered as a guide only—the pressure may or may not be accurate depending on additional

factors, including tectonic stress.

Before-closure analysis®® requires an estimate of fracture half-length and lost fracture width, w;, because
of fluid leakoff. Fracture half-length and lost width are estimated from a graph of bottomhole pressure

versus the loss-volume function, g(At,ay), which is shown in Fig. 5.14 assuming the fracture grows under
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Fig. 5.13—GM 543-33 Mesaverde formation fracture-injection/falloff sequence G-function
derivative analysis.
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Fig. 5.14—GM 543-33 Mesaverde formation fracture-injection/falloff sequence before-closure
pressure versus the dimensionless loss-volume function.
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horizontal plane strain conditions (GDK). The slope of the line through the before-closure data is
(my)apk = -87.69 psia and the intercept is (by)gpx = 3183.69 psia. Fracture half-length is calculated from

the intercept as

Loy - [G619)6.208 333 3117.69/2)
JIGDR AT 2 (14)(3183.69— 2790)

=1222 ft,

and lost width is calculated from the slope as

1.478(12)7(122.2)
5,208,333.3

(Wp)GDK = (87.69)=0.11in .

Fracture stiffness assuming horizontal plane strain conditions is calculated as

5,208,333.3

~13,566.8 22
7(122.2) ft

(Sr)Gpk =

Microseismic imaging of fracture growth in Piceance basin Mesaverde formation suggests a fracture
created during an injection with water is '"contained" by the bounding shale and mudstone
formations.'"'"'*  Consequently, radial fracture growth is not anticipated, but the radial fracture
calculations are included for completeness. For a radial fracture geometry, (my)rap = -86.855 psi and the

intercept is (by)rap = 3177.3 psi. Fracture radius is calculated as

=63.0 ft,

o _3G615) (5,208,3333)17.69/2)
/ 8 (3,177.3-2,790)

and the lost width is calculated as

_ 7.343(12)(63.0)

(86.855)=0.03 in .
7(5208333.3)

(Wr)R4D

Fracture stiffness assuming radial fracture geometry is calculated as

(S )GDK = —3”(51’62((2’3?3'3) — 48,697.8 % .

3. Calculate adjusted pseudotime, adjusted pseudopressure, gas formation volume factor, and total
compressibility for each recorded time and pressure after the end of the injection. For before-closure
pressure-transient analysis, scale time to zero at the beginning of the shut-in period for calculating
adjusted pseudotime. An estimate of reservoir pressure is needed for a first iteration. The reservoir
pressure estimated from the observed closure stress, 2,069 psi, could be used, or an estimate of reservoir

pressure from other data. For the GM 543-33, assume the reservoir pressure is 2,332 psi.

4. Note the following variables required for the analysis.



DPai =1,300.69 psia
DPa0 = 2,154.88 psia
Bg; =1.16107 bbl/Mscf
" Bge =0.87974 bbl/Mscf -
Hgi =0.0177 cp

¢y =2.26(10)* psi’!

5. Calculate and graph (y,,), versus (x,), for each recorded time and pressure before fracture
closure, which is shown in Fig. 5.15. Under normal leakoff conditions, the data on the specialized graph
will fall along a straight line, but nonideal leakoff, like pressure-dependent leakoff causes the data to fan
across the page.®” Drawing a line from the origin through the last few data points recorded before
closure results in (m1,7)gpx = 0.0337. The created fracture height is assumed to be extend across the total
thickness of the Mesaverde formation, but the net or permeable fracture height is less than the total
height. The ratio of permeable to total fracture height is r,=12/14 =0.86, and the permeability is

estimated as

9
My = 0.03371
bM =0.0
6
c
3
z
3
[®
Q,
o o
0
0 100 200

(Xan

Fig. 5.15—GM 543-33 Mesaverde formation fracture-injection/falloff sequence before-closure
pressure-transient analysis.
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Oopg = {2(141.2)(0.02878)(24) 1

2
} =0.008 md.
5.615 (1)(0.87)(13566.8)(0.0337)

There is no fracture face resistance since the straight line is drawn from the origin.

With radial fracture geometry, the specialized graph results in (by)rsp =0 and (my)r4p = 0.03273. The

ratio of permeable to total fracture height for a radial fracture is calculated as®®

2 2
(rp>RAD=—[ 12 1_( 12 )Hin—lL]:mzl.
7| 2(63.0) 2(63.0) 2(63.0)

The permeability assuming radial fracture geometry is estimated as

2(141.2)(0.02878)(24 1
(k)RAD{( )(0.02878)(24)

2
=0.032 md.
5.615 (1)(0.121)(48697.8)(0.03273)}

There is a factor of 4 difference in the estimated permeability that results by assuming an unconfined
radial fracture versus a confined fracture. However, as noted above, water injections in Mesaverde
formations are typically confined, and the lower permeability estimate is more realistic. However, without
fracture imaging the true fracture geometry is unknown and before-closure pressure-transient analysis can

only bracket the estimated permeability, that is, 0.008 md < £ < 0.032 md.

6. After-closure analysis requires a log-log graph of the adjusted pseudopressure difference,
Paw — Pai» and well testing pressure derivative versus the reciprocal elapsed adjusted pseudotime, which
is shown in Fig. 5.16. The elapsed time and corresponding adjusted pseudotime used in after-closure

analysis is calculated relative to the time since the beginning of the injection.

The derivative curve is not a function of initial reservoir pressure and should be used to identify the flow
regime(s). In Fig. 5.16, a portion of the derivative data fall along a 's-slope line, which indicates
pseudolinear flow was observed. Additionally, the adjusted pseudopressure difference data are offset by a
factor of 2 and also fall along a Ys-slope line, which seems to confirm pseudolinear flow is observed for a
portion of the data and suggests that the estimated initial reservoir pressure is correct. In most cases, the
determination of initial reservoir pressure is an iterative process, and the adjusted pseudopressure
difference will not follow a '4-slope line with a factor of 2 offset until the initial reservoir pressure is

correct. Note that as the shut-in progresses, the late-time data diverge from the Y2-slope line.

7. Since pseudolinear flow was indicated in Fig. 5.16, a Cartesian graph of adjusted pseudopressure
versus the square root of reciprocal elapsed adjusted pseudotime is prepared, which is shown in
Fig. 5.17. A straight line is drawn through the data corresponding to pseudolinear flow, and the initial
adjusted pseudopressure corresponds to the intercept of the straight line, b, = p,; = 1,300 psia, which

corresponds to an initial reservoir pressure of p; = 2,332 psia.
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Fig. 5.16—GM 543-33 Mesaverde formation fracture-injection/falloff sequence after-closure
analysis diagnostic graph.
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Fig. 5.17—GM 543-33 Mesaverde formation fracture-injection/falloff sequence after-closure
pseudolinear flow graph.
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The permeability cannot be calculated from the slope of the straight line, m,, = 376.908 psia-hr on the
pseudolinear flow graph unless fracture half-length is known. Assuming the fracture half-length from
before-closure analysis with a confined height fracture and horizontal plane strain, L,= 122 feet, and

assuming p,,,sp(0) = 0, the permeability is calculated as

i — | 141.224)V7~/0.0002637 1 [ 0.0177

1/2
4 =0.002 md -
2 12(122)(376.908) 0.10(2.256)(10)_& (17.69)} m

which corresponds to a permeability-thickness product of k% = 0.024 md-ft.

The difference between the permeability calculated from before-closure pressure-transient analysis and
after-closure pseudolinear flow analysis is factor of 4. A complete and satisfactory analysis of the data
requires that before-closure analysis, after-closure analysis, and type-curve analysis are consistent and

provide comparable permeability estimates.

8. Prepare a log-log graph of I(Ap,) versus (), + At, and Ap', versus (%), + At, and overlay the
appropriate constant-rate, drawdown type curve for the reservoir/system. Fig 5.18 shows a type-curve
match obtained with the observed data and a type curve for production through and finite-conductivity

fracture in an infinite slab reservoir.

Note that the type curve match indicates minimal storage change during fracture closure, and the before-
and after-closure storage can be considered equivalent, C,s.p = Cucp- A match point is as follows.

tarfp =0.002091 —  (fp), +At, =3.046213 hr

PacD =0.060911 — I(Ap,)=1108.66 psia-hr

From the type-curve match, C,,.p = 0.01, and the storage coefficient is calculated as

2

9ehlrCaaeD  (0.10)(2.256)(10) 4 (12)(122)2(0.01) bbl
wac = = =0.04509 —
0.8936 0.8936 psi

The transmissibility is calculated assuming 7; = T,, as

@:(141.2)(24)(1)(2154.88—1300.69)(0.04509)[w} _ 7,17 md-ft
: 1108.66 yp cp

Hj

The permeability-thickness product is 0.127 md-ft, and the permeability is 0.011 md.

The type-curve match and calculated permeability are in general agreement with before-closure pressure
transient analysis, but the calculated permeability from after-closure pseudolinear flow differs by a factor
of four. With the storage coefficient determined from type-curve analysis, C, + C,,. = 0.04509 bbl/psi, the

complete pseudolinear flow impulse solution is used to calculate permeability as
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Fig. 5.18—GM 543-33 Mesaverde formation fracture-injection/falloff sequence infinite-
conductivity fracture type-curve match.

2
141.2(24)V7~/0.0002637 1 0.0177 12
~0.019 md>

k= 2 12(122)(376.908) | 0.10(2.256)(10) ™
x(17.69+.04509(2154.88—1300.69))

which is closer to the results of before-closure and type-curve analysis, but still differs. The type curve in
Fig. 5.18 illustrates that fully developed linear flow was never established. The annotation marks the
estimated beginning of pseudolinear flow as interpreted from the after-closure diagnostic graph, but the
type curve shows that storage distorts the linear flow data as the transition to pseudolinear flow begins.
Thus some difference between the results of before-closure, after-closure pseudolinear flow, and type-
curve analysis should be expected with the match selected. The example does illustrate the importance of

using the complete pseudolinear flow impulse solution.

None of the methods used for the analysis of the fracture-injection falloff allow for a unique interpretation
of the data, and the agreement between the results of before-closure, after-closure pseudolinear flow, and
type-curve analysis might be improved with another iteration using a slightly different initial reservoir
pressure. However, the results are comparable and reasonably consistent, and iterating is probably

unnecessary.
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Note that the calculated storage coefficient is about four times greater than the maximum estimated
storage coefficient. The tubular configuration resulted in a wellbore volume of 4.65 bbl, and assuming the
residual fracture volume is the same as the created fracture volume, that is, assuming the fracture width
did not change during closure, the fracture volume for one wing of a symmetrical fracture is 8.845 bbl.
Using the gas compressibility in the calculation of storage, the storage coefficient is estimated to be

4 bbl
Cu +Cage = iV +2ciV i = (4312)(10)* (4.65 +2(8.845)) = 0.0096 P

The reservoir is believed to contain natural fractures, which is supported by the pressure-dependent leakoff
observed during before-closure G-function analysis, so it is possible that the additional storage volume

represents natural fractures that were dilated during the fracture injection.

Immediately following the fracture-injection/falloff, a drawdown/buildup sequence was completed on the
GM 543-33 Mesaverde formation. During the drawdown, the layer was produced at a constant rate of
100 Mscf/D for 141.7 hours, but the rate decreased to 98 Mscf/D for the next 24.3 hours. During the
slickline work required to seat the plug, the rate decreased to 60 Mscf/D for 0.6 hours, and finally
50 Mscf/D for the final 0.1 hours of the drawdown. After seating the plug, the pressure buildup was
recorded for 14.95 days. A type curve match for the buildup data is shown in Fig. 5.19, and the buildup
data are tablulated in Table 5-8.

Table 5-9 contains a summary of the results from the fracture-injection/falloff and drawdown/buildup
interpretations. None of the interpretations are unique, but the results from the fracture-injection/falloff
sequence are consistent and comparable to the results from the drawdown/buildup sequence, which

increases the confidence that the interpretations are correct.

Two additional observations are noteworthy. First, the wellbore storage coefficient from the
drawdown/buildup interpretation, C = 0.001978 bbl/psi, is comparable to the calculated storage coefficient
based on the wellbore volume, C, = (4.65 bbl)(0.000431 psi™') = 0.002 bbl/psi. Recall from the fracture-
injection/falloff sequence that the storage coefficient from the type-curve match was four times the
calculated storage coefficient based on wellbore and injected fluid volume. Consequently, if natural
fractures were dilated by the fracture-injection and increase the system storage, then the natural fractures

must have closed during the drawdown to not affect the wellbore storage during the buildup.
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Fig. 5.19—GM 543-33 Mesaverde formation fracture-injection/falloff sequence infinite-
conductivity fracture type-curve match.

Second, the fracture-injection/falloff data were matched to a type curve for an infinite-conductivity
fracture, and data from the drawdown/buildup sequence was matched to a type curve for a finite-
conductivity fracture, Cf=17.79 md-ft, which corresponds to a dimensionless fracture conductivity of
CfD =12.5. Thus, a small volume water injection without proppant in a low permeability Mesaverde
formation created a fracture of significant length and surprisingly high dimensionless conductivity—which

may partly explain the success of "slickwater" fracturing treatments in tight-gas sands.
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Table 5-8—GM 543-33 time and bottomhole pressure recorded during the pressure buildup.

CAr Tpuws,psi] ©AF Tpws,psi] TAr Tpus,psi] TAM Tpus,psi[ ©hr Tpus,psi] TAM Tpus,psi] ©hr Tpus,psi]| A Tpus, psi
1.03 1040.81 3.31 1258.43 23.18 1569.14 65.57 1794.14 226.91 2060.12
1.06_| 1066.84 | 3.38 | 1260.55 | 12.18 | 144962 | 23.34 | 157049 | 4357 | 1703.12 | 65.91 | 1795.32 | 119.91 | 1932.80 | 228.91 | 2061.59
1.09 | 108431 | 344 | 126253 | 12.34 | 1452.01 | 2351 | 1571.85 | 43.91 | 1704.78 | 66.24 | 1796.60 | 120.91 | 1934.58 | 230.91 | 2063.13
113 | 1097.02 | 351 | 1264.56 | 12.51 | 1454.30 | 23.68 | 1573.33 | 44.24 | 1706.41 | 66.57 | 1797.59 | 121.91 | 1936.54 | 232.91 | 2064.50
1.16_| 1107.35 | 358 | 1266.70 | 12.68 | 145668 | 23.84 | 1574.87 | 4457 | 1707.09 | 66.91 | 1798.87 | 122.91 | 1938.19 | 234.91 | 2066.08
119 | 1116.23 | 3.64 | 1268.84 | 12.84 | 1458.99 | 24.01 | 1576.15 | 44.91 | 1709.58 | 67.24 | 1800.05 | 123.91 | 1940.10 | 236.91 | 2067.59
123 | 1123.85 | 3.71_| 1271.06 | 13.01 | 1461.09 | 24.18 | 1577.53 | 4524 | 1711.25 | 67.57 | 1801.11 | 124.91 | 1941.79 | 238.91 | 2069.11
126 | 1130.72 | _3.78 | 1273.06 | 13.18 | 1463.37 | 24.34 | 1578.85 | 4557 | 1712.94 | 67.91 | 1802.22 | 12591 | 1943.64 | 240.91 | 2070.36
1.29 1136.66 3.84 1275.26 13.34 1465.54 24.51 1580.34 45.91 1714.49 68.24 1803.27 | 126.91 1945.36 | 242.91 2071.80
133 | 114220 | 3.91 | 1277.40 | 13.51 | 1467.73 | 24.68 | 1581.56 | 46.24 | 171593 | 68.57 | 1804.51 | 127.91 | 1947.08 | 244.91 | 2073.23
1.36_| 1147.44 | 3.98 | 1279.60 | 13.68 | 1470.02 | 24.84 | 1583.05 | 46,57 | 1717.61 | 68.91 | 1805.51 | 128.91 | 1948.79 | 246.91 | 2074.50
139 | 115221 | 4.04 | 1281.70 | 13.84 | 1472.16 | 2518 | 1585.76 | 46.91 | 1719.21 | 69.24 | 1806.67 | 129.91 | 1950.55 | 248.91 | 2075.91
1.43 1156.76 4.11 1283.74 14.01 1474.35 25.51 1588.29 47.24 1720.70 69.57 1807.71 130.91 1952.03 | 250.91 2077.21
146 | 1160.99 | 4.18 | 1285.82 | 14.18 | 147646 | 2584 | 1590.85 | 47.57 | 1722.29 | 69.91 | 1808.80 | 131.91 | 1953.80 | 252.91 | 2078.64
149 | 1165.00 | 4.24 | 1287.86 | 14.34 | 147852 | 26.18 | 1593.49 | 47.91 | 1723.85 | 70.24 | 1809.98 | 132.91 | 1955.47 | 254.91 | 2079.88
153 | 1168.94 | 4.31 | 1290.10 | 14.51 | 1480.50 | 26,51 | 1596.08 | 48.24 | 1725.23 | 70.57 | 1811.10 | 133.91 | 1956.92 | 256.91 | 2081.29
156 | 117268 | 4.38 | 1292.00 | 14.68 | 1482.71 | 26.84 | 1598.59 | 4857 | 1726.93 | 70.91 | 1812.15 | 134.91 | 1958.68 | 258.91 | 2082.36
1.59 1176.48 4.44 1294.08 14.84 1484.70 27.18 1601.07 48.91 1728.27 71.24 1813.26 | 135.91 1960.24 | 260.91 2083.77
163 | 1180.02 | 451 | 1296.15 | 15.01 | 1486.65 | 2751 | 1603.68 | 49.24 | 1729.01 | 71.57 | 1814.28 | 136.91 | 1961.81 | 262.91 | 2085.04
1.66 | 118350 | 4.58 | 1298.09 | 15.18 | 1488.70 | 27.84 | 1606.18 | 49.57 | 1731.30 | 71.91 | 1815.38 | 137.91 | 1963.35 | 264.91 | 2086.25
169 | 1186.84 | 4.64 | 1300.08 | 1534 | 1490.58 | 28.18 | 1608.53 | 49.91 | 1732.91 | 72.91 | 1818.49 | 138.91 | 1964.99 | 266.91 | 2087.55
1.73 1190.05 4.71 1302.01 15.51 1492.65 28.51 1610.88 50.24 1734.32 73.91 1821.60 | 139.91 1966.36 | 268.91 2088.74
176 | 1193.17 | 4.78 | 1303.95 | 15.68 | 1494.55 | 28.84 | 1613.48 | 50.57 | 1735.82 | 74.91 | 1824.82 | 140.91 | 1967.98 | 270.91 | 2090.00
179 | 1196.10 | 4.84 | 1305.73 | 15.84 | 1496.59 | 29.18 | 161571 | 50.91 | 1737.22 | 75.91 | 1827.81 | 141.91 | 1969.57 | 272.91 | 2091.20
1.83_| 1198.76 | 5.01 | 131049 | 16.01 | 1498.46 | 29.51 | 1618.06 | 51.24 | 1738.64 | 76.91 | 1830.89 | 142.91 | 1970.98 | 274.91 | 2092.44
1.86 1201.78 5.18 1315.05 16.18 1500.24 29.84 1620.49 51.57 1740.09 77.91 1833.78 | 143.91 1972.55 | 276.91 2093.63
1.89 1204.42 5.34 1319.56 16.34 1502.03 30.18 1622.61 51.91 1741.55 78.91 1836.79 | 144.91 1973.91 278.91 2094.68
193 | 1207.04 | 551 | 1323.91 | 16.51 | 1503.97 | 3051 | 1624.93 | 52.24 | 1742.94 | 79.91 | 1839.81 | 146.91 | 1976.92 | 280.91 | 2095.88
1.96 | 1209.47 | 568 | 1328.16 | 16.68 | 1505.94 | 30.84 | 1627.29 | 52.57 | 1744.36 | 80.91 | 1842.59 | 148.91 | 1979.81 | 282.91 | 2097.03
199 | 1211.95 | 584 | 133229 | 16.84 | 1507.76 | 31.18 | 1629.61 | 52.91 | 1745.75 | 81.91 | 1845.31 | 150.91 | 1982.50 | 284.91 | 2098.01
2.03 1214.32 6.01 1336.42 17.01 1509.63 31.51 1631.89 53.24 1747.10 82.91 1848.20 | 152.91 1985.29 | 286.91 2099.17
206 | 1216.72 | 6.18 | 134043 | 17.18 | 1511.28 | 31.84 | 1634.10 | 53.57 | 1748.50 | 83.91 | 1851.00 | 154.91 | 1987.98 | 288.91 | 2100.30
209 | 1219.07 | 6.34 | 1344.46 | 17.34 | 1513.12 | 32.18 | 1636.15 | 53.91 | 1749.93 | 84.91 | 1853.70 | 156.91 | 1990.72 | 290.91 | 2101.34
213 | 1221.38 | 651 | 1348.36 | 17.51 | 1515.00 | 32.51 | 1638.44 | 54.24 | 1751.31 | 8591 | 1856.41 | 158.91 | 1993.39 | 292.91 | 2102.41
2.16 1223.67 6.68 1352.08 17.68 1516.79 32.84 1640.54 54.57 1752.70 86.91 1859.13 | 160.91 1995.99 | 294.91 2103.46
219 | 122576 | 6.84 | 1355.84 | 17.84 | 1518.47 | 33.18 | 1642.73 | 54.91 | 1754.05 | 87.91 | 1861.74 | 162.91 | 1998.38 | 296.91 | 2104.57
223 | 1227.97 | 7.01_| 135949 | 18.01 | 152024 | 3351 | 1644.77 | 5524 | 175542 | 88.91 | 1864.34 | 164.91 | 2000.83 | 298.91 | 2105.68
226 | 122995 | 718 | 1363.09 | 18.18 | 1522.11 | 33.84 | 1646.92 | 5557 | 1756.78 | 89.91 | 1866.96 | 166.91 | 2003.12 | 300.91 | 2106.64
229 | 1231.97 | 7.34 | 1366.79 | 18.34 | 1523.68 | 34.18 | 1648.94 | 5591 | 1758.08 | 90.91 | 1869.62 | 168.91 | 200553 | 302.91 | 2107.77
2.33 1233.73 7.51 1370.32 18.51 1525.46 34.51 1651.10 56.24 1759.32 91.91 1872.11 170.91 2007.88 | 304.91 2108.63
236 | 123537 | 7.68 | 1373.69 | 18.68 | 1527.11 | 34.84 | 1653.12 | 56.57 | 1760.62 | 92.91 | 1874.64 | 172.91 | 2010.09 | 306.91 | 2109.56
239 | 1236.76 | 7.84 | 1377.06 | 18.84 | 1528.86 | 35.18 | 1655.10 | 56.91 | 1762.04 | 93.91 | 1876.98 | 174.91 | 2012.70 | 308.91 | 2110.61
243 | 1237.91 | 801 | 1380.22 | 19.01 | 1530.43 | 3551 | 1657.14 | 57.24 | 176342 | 94.91 | 1879.42 | 176.91 | 2014.66 | 310.91 | 2111.64
2.46 1238.79 8.18 1383.46 19.18 1532.27 35.84 1659.08 57.57 1764.68 95.91 1881.78 | 178.91 2016.84 | 312.91 2112.65
249 | 123965 | 8.34 | 1386.83 | 19.34 | 1533.80 | 36.18 | 1661.15 | 57.91 | 1766.06 | 96.91 | 1884.20 | 180.91 | 2018.89 | 314.91 | 2113.54
253 | 1240.74 | 851 | 1389.99 | 1951 | 153555 | 36.51 | 1663.20 | 58.24 | 1767.26 | 97.91 | 1886.58 | 182.91 | 2020.89 | 316.91 | 2114.56
256 | 124164 | 8.68 | 1392.98 | 19.68 | 1537.17 | 36.84 | 1664.91 | 58.57 | 1768.54 | 98.91 | 1888.87 | 184.91 | 2022.96 | 318.91 | 2115.39
259 | 1241.97 | 8.84 | 1396.01 | 19.84 | 1538.80 | 37.18 | 1666.92 | 58.91 | 1769.86 | 99.91 | 1891.29 | 186.91 | 2024.92 | 320.91 | 2116.40
2.63 1242.53 9.01 1399.07 20.01 1540.30 37.51 1668.77 59.24 1771.12 | 100.91 1893.52 | 188.91 2027.00 | 322.91 2117.33
266 | 124312 | 918 | 1401.96 | 20.18 | 1541.87 | 37.84 | 1670.89 | 59.57 | 1772.50 | 101.91 | 1895.81 | 190.91 | 2028.84 | 324.91 | 2118.27
269 | 124380 | 034 | 140502 | 20.34 | 1543.63 | 38.18 | 1672.69 | 59.91 | 1773.75 | 102.91 | 1898.08 | 192.91 | 2030.73 | 326.91 | 2119.18
273 | 124459 | 051 | 1407.83 | 2051 | 1545.06 | 38.51 | 1674.63 | 60.24 | 1774.98 | 103.91 | 1900.15 | 194.91 | 2032.70 | 328.91 | 2120.04
2.76 1245.24 9.68 1410.78 20.68 1546.63 38.84 1676.38 60.57 1776.18 | 104.91 1902.47 | 196.91 2034.69 | 330.91 2120.96
279 | 124592 | 0.84 | 141345 | 20.84 | 1548.25 | 39.18 | 1678.16 | 60.91 | 1777.53 | 10591 | 1904.71 | 198.91 | 2036.50 | 332.91 | 2121.74
283 | 124641 | 10.01 | 1416.25 | 21.01 | 1549.83 | 39.51 | 1680.02 | 61.24 | 1778.68 | 106.91 | 1906.84 | 200.91 | 2038.22 | 334.91 | 2122.66
286 | 1246.99 | 10.18 | 1418.99 | 21.18 | 1551.32 | 39.84 | 1681.82 | 61.57 | 1779.96 | 107.91 | 1908.96 | 202.91 | 2040.13 | 336.91 | 2123.63
2.89 1247 .41 10.34 1421.55 21.34 1552.83 40.18 1683.83 61.91 1781.11 108.91 1910.92 | 204.91 2041.86 | 338.91 2124.44
2.93 1248.26 10.51 1424.37 21.51 1554.39 40.51 1685.45 62.24 1782.20 | 109.91 1913.05 | 206.91 2043.67 | 340.91 2125.28
296 | 124912 | 10.68 | 1427.09 | 2168 | 1555.89 | 40.57 | 1686.33 | 62.57 | 1783.48 | 110.91 | 1915.16 | 208.91 | 204540 | 342.91 | 2126.06
2,99 | 124987 | 10.84 | 142967 | 21.84 | 1557.48 | 40.91 | 1689.68 | 62.91 | 1784.67 | 111.91 | 1917.10 | 210.91 | 2047.04 | 344.91 | 2126.83
3.03_| 1250.61 | 11.01 | 1432.37 | 22.01 | 1558.88 | 41.24 | 1691.29 | 63.24 | 1785.99 | 112.91 | 1919.18 | 212.91 | 2048.80 | 346.91 | 2127.72
3.06 1251.47 11.18 1434.81 22.18 1560.43 41.57 1693.09 63.57 1787.13 | 113.91 1921.17 | 214.91 2050.46 | 348.91 2128.46
3.09 | 125240 | 11.34 | 1437.28 | 22.34 | 1561.95 | 41.91 | 1694.60 | 63.91 | 1788.26 | 114.91 | 1923.20 | 216.91 | 205222 | 350.91 | 2129.34
313 | 1253.25 | 1151 | 1439.89 | 2251 | 1563.37 | 42.24 | 1696.39 | 64.24 | 1789.46 | 11591 | 192518 | 218.91 | 2053.76 | 352.91 | 2130.17
316_| 1254.13 | 11.68 | 1442.36 | 2268 | 1564.89 | 42.57 | 1698.06 | 64.57 | 1790.66 | 116.91 | 1927.03 | 220.91 | 2055.36 | 354.91 | 2131.00
3.21 1255.52 11.84 1444.67 22.84 1566.38 42.91 1699.77 64.91 1791.88 | 117.91 1928.97 | 222.91 2056.91 356.91 2131.70
3.24 | 1256.33 | 12.01 | 1447.20 | 23.01 | 1567.69 | 43.24 | 1701.43 | 65.24 | 1793.02 | 118.91 | 1930.92 | 224.91 | 2058.47 | 358.91 | 2132.46
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Table 5-9—GM 543-33 summary of results from the interpretation of the fracture-
injection/falloff and drawdown/buildup sequences in the Mesaverde formation
between 4,948- and 4,962-feet.

Fracture-Injection/Falloff Buildup
Before-Closure | After-Closure | After-Closure Type Curve Type Curve
Qa Only Q. + Storage
Pi 2,096 psi 2332 psi 2332 psi 2,332 2,402 psi
k 0.008 md 0.002 md 0.019 md 0.011 md 0.012 md
kh 0.096 md-ft 0.024 md-ft 0.228 md-ft 0.132 md-ft 0.144 md-ft
L 122 ft 122 ft 122 ft 122 ft 121.3 ft
Cwmp 0 o0 0 0 12.5

5.3.3 Pre-Existing Conductive Hydraulic Fracture With Choked-Fracture Skin Damage. The final
example illustrates a refracture-candidate diagnostic test in an isolated low-permeability Mesaverde
sanstone formation. Unlike the previous examples, a propped-fracture treatment placing 250,000 Ib of
20/40 mesh sand had been pumped, and the well had been produced prior to the fracture-injection/falloff
sequence. Post-frac well performance was below expectations, and the objective of the test was to verify

the presence of an open hydraulic fracture and to look for evidence of "damage."

The test consisted of 75.8 bbl of 1% KCl treated water that was injected at an average rate of 4.10 bbl/min
during an 18.5 minute injection period. Following the fracture-injection, the pressure falloff was recorded
for 4 hours. Fig. 5.20 shows a graph of surface pressure and injection rate recorded during the entire
fracture-injection/falloff sequence. As shown in Fig. 5.19, the pressure during the injection exceeded the
fracture closure stress significantly, and the instantaneous shut-in pressure indicates that about 500 psi of

pressure in excess of the fracture closure stress was observed during the fracture injection.

Fig. 5.21 shows a log-log graph of the integrated adjusted pseudopressure difference and derivative versus
adjusted pseudotime. Dual unit slope (storage-dominated flow) periods were observed during the falloff
period. The first unit-slope period corresponds to a constant storage coefficient during closure, and the
second unit slope period—which is clearly shown by the derivative curve—is observed after fracture
closure. The apparent increase in storage is the characteristic response of a damaged fracture with choked-
fracture skin, and the curves suggest a fracture retaining residual width exists, but the fracture is damaged.
Consequently, the refracture-candidate diagnostic test qualitatively verified an existing damaged fracture,
but since the data did not extend beyond the end of storage-dominated flow, quantitative analysis is not

possible.
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Fig. 5.20—Mesaverde formation refracture-candidate diagnostic test pressure and injection rate

recorded versus time.
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CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 Summary and Conclusions
The goal of the research was to develop a new pressure-transient test for refracture-candidate
identification, and it was asserted that a fracture-injection/falloff sequence with the time of injection short

relative to the reservoir response could be a viable refracture-candidate diagnostic.

Achieving the research goal required several modifications to existing theory, a new theoretical approach
to a fracture-injection/falloff sequence, and new ancillary, but important, pressure-transient solutions. For
example, current fracture-injection/falloff analysis methods were modified by formulating before-closure
pressure-transient analysis and after-closure analysis methods in terms of adjusted pseudopressure and
adjusted pseudotime to account for pressure-dependent reservoir fluid properties. Additionally, after-

closure analysis was modified by redefining the time plotting function for consistency with Soliman's*®®
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method for the analysis of a buildup test with a short producing time, and Soliman's™ and Soliman et

al.'s'® pseudolinear flow solution was corrected.

The new theoretical approach to modeling a fracture-injection/falloff sequence utilized throughout the
dissertation considers fracture creation, propagation, and closure to be storage phenomena. Fracture
propagation is modeled as time-dependent storage, and fracture closure and after-closure diffusion are
modeled as having constant, but possibly different, storage. As a result, the pressure-transient solution for
a fracture-injection/falloff sequence includes variable storage to account for fracture propagation, fracture
closure, and after-closure diffusion. Since each storage coefficient is derived from fundamental principles,
properties of the system can be interpreted from the storage coefficient(s), or, more specifically, from the

changes observed in the storage coefficients.

New analytical fracture-injection/falloff solutions were developed for the following cases.
e Equivalent propagating-fracture storage and before-closure storage with constant after-closure
storage.
e Time-dependent propagating-fracture storage, constant before-closure storage, and constant after-
closure storage.
o Time-dependent propagating-fracture storage and before-closure storage with linear flow from the

fracture before closure and after-closure radial flow with constant wellbore storage and skin.

Additionally, limiting-case solutions were developed for each case, and the limiting-case solutions
demonstrated that when the time of injection is short relative to the reservoir response, the observed
pressure difference between the wellbore and average reservoir pressure during the variable-rate falloff

can be integrated and converted to an equivalent "constant-rate” pressure difference. A log-log graph of
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the equivalent pressure difference versus time will overlay a constant-rate type curve for the appropriate

reservoir/system, which allows for type-curve analysis of fracture-injection/falloff data.

Since the fracture-injection/falloff model developed includes variable storage, new constant-rate, variable-
storage drawdown solutions were developed for a well producing from an infinite-slab reservoir
containing a single dilated vertical fracture with the initial reservoir pressure above the minimum insitu or
closure stress and with fracture and wellbore storage as follows:

o Constant before-closure and constant after-closure storage.

o Constant before- and constant after-closure storage with fracture-face and choked-fracture skin.

o Fracture flow during closure with constant before-closure storage and radial flow after closure with

constant wellbore storage and skin.

With the new fracture-injection/falloff theory, a new refracture-candidate diagnostic was developed by
recognizing that a fracture-injection/falloff sequence in an isolated layer with an existing conductive
fracture will have a falloff response with characteristic variable-storage behavior. The variable-storage
behavior is used to qualitatively identify the following.

o A pre-existing conductive fracture.

o A pre-existing fracture with damage.

Both apparent increasing and decreasing storage at fracture closure can indicate an existing conductive
fracture, but apparent increasing storage indicates the existing fracture is damaged in the form of choked-

fracture skin.

Developing a quantitative type curve analysis method for the refracture-candidate diagnostic required the
most important ancillary development in the dissertation: a semianalytical pressure-transient solution for a
well producing from an inifinite-slab reservoir through multiple, arbitrarily-oriented uniform-flux, infinite-
conductivity, or finite-conductivity fractures. The new multiple-fracture reservoir solutions were combined
with variable storage models to develop constant-rate drawdown type curves for a well producing through
multiple fractures. With the new type curves and after extending the fracture-injection/falloff theory to
cases with multiple fractures and anisotropic stress conditions, a quantitative type-curve analysis method

was developed for the refracture-candidate diagnostic.

The new solutions allow for determining the primary and secondary fracture half-length, the primary and
secondary fracture conductivity, and reservoir transmissibility from the pressure falloff of a refracture
candidate diagnostic after converting the observed pressure difference to an equivalent constant-rate
pressure difference and matching with log-log type curves for a well producing from an infinite slab

reservoir with multiple, aribtarily-oriented fractures. Additionally, when pseudoradial flow is observed, a
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refracture-candidate diagnostic can provide an estimate of average reservoir pressure using the after-

closure impulse solution.

Completing the method required developing solutions in terms of adjusted pseudopressure and adjusted
pseudotime to account for reservoir fluid compressibility. Before-closure, after-closure, and the limiting-
case solutions that allow type-curve analysis of a fracture-injection-falloff analysis were all derived in
terms of adjusted pseudovariables. Thus, a complete analysis "package" for a fracture-injection/falloff
sequence or refracture-candidate diagnostic is available and correct for reservoirs containing oil, gas, or

water (coal).

Field fracture-injection/falloff examples and interpretations were provided for a moderate- and a low-
permeability gas reservoir without a pre-existing conductive fracture, and the results of both fracture-
injection/falloff interpretations were compared and validated with conventional pressure-transient tests.
Additionally, a qualitative interpretation of a refracture-candidate diagnostic in a low-permeability gas
reservoir with an existing fracture identified a damaged fracture based on apparent increasing storage

behavior after fracture closure, which validates the new refracture-candidate diagnostic theory.

Modifications of current fracture-injection/falloff analysis methods; the development of new fracture-
injection/falloff models; the ancillary development of new pressure-transient solutions; and validation with
field cases demonstrates that the the new refracture-candidate diagnostic presented in the dissertation

achieves the goal of developing a new pressure-transient test for refracture-candidate identification.

6.2 Recommendations for Future Research
The new solutions presented in the dissertation provide numerous opportunities for additional research—
some of which are as follows.

e The analytical solutions developed within the dissertation need thorough numerical evaluation. The
dissertation focused on deriving the solutions and provided minimal numerical evaluations of the
new solutions. A more exhaustive examination is warranted. For example, numerical evaluations
could quantify the error created by assuming an instantaneous injection when a finite injection time
is required, that is, quantify the error when (t.).o = {10°%, 10°, 10, 10},

o Similarly, the theory is derived to account for dual porosity reservoirs. Numerical evaluation of the
dual porosity solutions should be compared to single porosity examples. On a more fundamental
level, the numerical evalutions of the dual porosity solutions should be used to identify when, and
if, dual porosity behavior can be observed from the falloff of a fracture-injection/falloff sequence.

o The approach used to derive the pressure-transient solution for a well producing from an infinite-
slab reservoir through multiple, arbitrarily-oriented uniform-flux, infinite-conductivity, or finite-
conductivity fractures is general. The same approach could be used to derive solutions for more

complex fracture patterns. For example, microseismic fracture imaging from the Barnett shale
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indicates hydraulic fracturing dilates an entire macro-scale fracture network. Pressure-transient
solutions with parallel fractures connected through a perpendicular fracture could be derived
following the same approach. The derivation method and solutions could be used to determine how
pressure-transient tests in reservoirs with complex-fracture patterns differ from the single, planar
fracture case.

e The pressure-transient solution for a well producing from an infinite-slab reservoir through
multiple, arbitrarily-oriented uniform-flux, infinite-conductivity, or finite-conductivity fractures

also needs to be derived for bounded reservoirs.
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NOMENCLATURE
a et e et e e eaaes variable of substitution, dimensionless
A et etteer e ettt ettt e et e b e e b e et e e ta e ba e raenrennnas fracture area during propagation, L?, m?
Ay e e e et e ea it e e e e — e e e et e e e e e e anaeeaans fracture leakoff area, L, m’
Ay s matrix element, dimensionless
b et eans variable of substitution, dimensionless
by = veereenieens intercept from special before-closure pressure-transient graph, dimensionless
by S teereesressreeraeesaesnessnesnesanesstesasenesn intercept from Nolte-Shlyapobersky graph, m/Lt*, Pa
by et e e e —e e i ——e e et te e et e e et e e eateeeeaaaaeas damage zone width, L, m
B et e et eaa e e e etaeeeanaes formation volume factor, dimensionless
c ettt eaas variable of substitution, dimensionless
cy e before-closure pressure-transient analysis function, m/Lt*?, Pa-s”
c2 S rererere e srens before-closure pressure-transient analysis function, m*/L*t’, Pa®s”
Capl S adjusted before-closure pressure-transient analysis function, m/Lt*?, Pa-s”
Cap2 S veereenresnnees adjusted before-closure pressure-transient analysis function, m*/L*t’, Pa*s”
cr S teereesrersressresree st esstesntssnesnesssestestensasaeas compressibility of fluid in fracture, Lt*/m, Pa’
Co ettt te ettt bttt et et e teeteebe et ea e et et et e tebeeheebe et et et et eaes gas compressibility, Lt"/m, Pa’
Cow et e et e e e e e e e eeeaaes wellbore gas compressibility, Lt*/m, Pa’!
¢ et e e e et e eae e e eaaeean total compressibility, Lt*/m, Pa’!
Cii s total compressibility at initial conditions, Lt*/m, Pa’!
Cibe S trerererer e st e e e e sne e neenneens average before-closure total compressibility, Lt*/m, Pa™
Cy et e e e compressibility of fluid in wellbore, Ltz/m, Pa’!
C e teereesreeaeete st esne s re st e st e st e s ee st e st e e s sesresaaesatesatesnesrnane wellbore storage, L*t/m, m’/Pa
C, et e e ettt e e e e e eeeanes adjusted wellbore storage, L**/m, m*/Pa
Cue T et e et e et e st eeeaaeeeanes after-closure storage, L**/m, m*/Pa
Coac et e adjusted after-closure storage, L**/m, m*/Pa
Che T et a e eares before-closure storage, L*?/m, m*/Pa
Chye et enaaeas before-closure storage, L**/m, m*/Pa
Cr e e——— e et e e a——— e e——e e e et e e an—a e an——eas fracture conductivity, m’, m®
Cu S teereesressreesaeet et et esnesnesra e st e st esasasserseertensaesraens dilating fracture storage, L*t*/m, m’/Pa
Clac e e e e e e e e e e e aae s after-closure fracture storage, L4t2/m, m>/Pa
Chre e aaae e before-closure fracture storage, L**/m, m*/Pa
C T e e et e e et e e et e e en—eeeeareeaaas leakoff coefficient, L/m"%, m/s"?
Cyy S TRV wellbore storage in well with hydraulic fracture, L**/m, m*/Pa

Cy it erteere ettt ettt et e b e e b e raesreenaeenseanes propagating-fracture storage, L*t*/m, m*/Pa
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Crac et after-closure fracture storage, L**/m, m*/Pa
Chp  eeerererer e s e st e et et et et e st et e et e e st e s ersree s ennnesnns primary fracture conductivity, m’, m*
Cep ettt et et e e e e ———eeeee s e ——raeeeesanaaaee secondary fracture conductivity, m3, m>
Che et e e e aeaas before-closure fracture storage, L4t2/m, m>/Pa
Corr S teereesreeanesaesnassnesres propagating-fracture storage with multiple fractures, L**/m, m*/Pa
Cpars S propagating- and dilating-fracture storage with multiple fractures, L*t*/m, m*/Pa
Criae e after-closure multiple fracture storage, L*?*/m, m*/Pa
Cippe e before-closure multiple fracture storage, L*?*/m, m*/Pa
d ettt e e variable of substitution, dimensionless
d; e before-closure pressure-transient analysis variable, m/Lt’, Pa/s
(dap); S adjusted before-closure pressure-transient analysis variable, m/Lt’, Pa/s
E' ettt e e e e e et e e e e e ———eeeee s e e ——reeeesaeaaaaes plane-strain modulus, m/Lt, Pa
F S teerersressressre st et esatesasessse s et et e raensasnesrneanesans hypergeometric function, dimensionless
F; et e et e e e s e e e e eaas linear-flow time function, dimensionless
g ettt et ettt te et e et et et et et et et e besaeebe et et enes loss-volume function, dimensionless
G et e et e et e e ettt e e an—e e e et e e eateeeeanans G-function, dimensionless
h e e———— e ——eeea———eee———e e e —te e e —teeaa——eeeatateearrteeanrreeeaareeeannans height, L, m
hy et e———eeee———eee——eeee———eean——eeaa—aeeaa—teeaateeareeeennnes fracture height, L, m
1 ettt e —eeee———eeee——eeee——eeea———ee ettt eeaa——eeearteean—teeaaaeeeinreeaan integral, m/Lt, Pas
k S teereesrersrerae st es st et eyt e et e e e s e s n e s e e s R e sat e st e aterese s e st e st e rasssasresaes permeability, L%, m’
ky S teereenreesreesre st e st e st e ne s s et e st e st e s e e s e e e e st e s e e st snasnesrsesaneras fracture permeability, L%, m’
ky et e et et e e et e e et e e e eaaes permeability in x-direction, L2, m?
k, e rtter e et e e e e e e e bt e bt et e et et a et e et e et e e reesaeeraenres permeability in y-direction, L% m’
kg,  ertte ettt e b e et e e e e reereenaeenns dual-porosity bulk-fracture permeability, L, m*
ks  teerererer e e ettt e n e e r e s e st e ne e neesneenes fracture-face damage-zone permeability, L%, m*
K, v modified Bessel function of the second kind (order zero), dimensionless
K; SO modified Bessel function of the second kind (order one), dimensionless

S teereesressresaee st esntesnesr e st e st e st et eenseera e rassrassnessaesras propagating fracture half length, L, m
L. et e e e e e e e e e et e e et e e et e e e naaeesaaees characteristic length, L, m
L, et fracture half length at end of pumping, L, m
Ly it erteerre ettt et et ettt e et e re et e et eesteesaenraens fracture half length at end of pumping, L, m
Ly et ere e eaenraas fracture half length of fracture i at end of pumping, L, m
L e fracture half length of fracture i at end of pumping rescaled for anisotropy, L, m
m T et ——eee———eeeeiteeeai——eeei——eeea—teeea———eeeai—eeean—eeean—aeeea—eeeanreeeannes mass, m, kg
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My e slope from special before-closure pressure-transient graph, dimensionless
my S trererrrer e st e et et et e e e e s ennennns slope from Nolte-Shlyapobersky graph, m/Lt>, Pa
My e slope of data on after-closure pseudolinear flow Cartesian graph, m/Lt%, Pa
Macpr S verreeeeeres slope of data on after-closure pseudoradial flow Cartesian graph, m/Lt, Pa-s
ny s number of fractures, dimensionless
ng SO TOPOTO PO number of fracture segments, dimensionless
p ettt ettt et eeee—e e ee it eohe e teeteete et eteebe e be e be et e ateeateebeeaeerbeeaeeereereerean pressure, m/Lt>, Pa
Pa e etteerree e e e —e et e —t e —e et e et e et et a et e et e et e arteateesreesreeraeantennes adjusted pressure, m/Lt>, Pa
Dac e pressure with constant after-closure storage, m/Lt’, Pa
Dar  ererererer e s e et et et et et et e et e et e ere e s e e ren s ennrennnes adjusted reservoir pressure, m/Lt*, Pa
DPbe S trererererrre st et ne e e s resne e neennaans pressure with constant before-closure storage, m/Lt>, Pa
DPaac e adjusted pressure with constant after-closure storage, m/Lt, Pa
Daws e injection/falloff wellbore adjusted pressure, m/Lt, Pa
Pcake ettt eeeireeeeeeeeeaiteeeeeeeeaabteaeeaeeaaaa—taeeaaeeaaarrttaaeaeeaaanrrranaes filter-cake pressure, m/Ltz, Pa
)2 ettt pressure with production from a single fracture, m/Lt>, Pa
Ps s pressure at fracture face with fracture-face skin, m/Lt>, Pa
Dfac e fracture pressure with constant after-closure fracture storage, m/Lt>, Pa
Pjiz e et reeeeans filtrate-invaded zone pressure, m/Lt’, Pa
DPace e et e et e e e aaneas pressure at fracture face, m/Lt’, Pa
Dis ettt e e e e e e —————eeeeeea—————teeee e s e ———teeeeesaaaaaes line-source pressure, m/Lt, Pa
Diy S teereesressreeseeesaessaesnessnesneans pressure with production from multiple fractures, m/Lt*, Pa
Difac s pressure with production from multiple fractures and constant

after-closure storage, m/Lt2, Pa
Piipc S etetete ettt ettt een pressure with production from multiple fractures and constant

before-closure storage, m/Lt*, Pa

Dn ettt e e et eee—e e i beea—e e beeabe e tbeaabeeatbeeabeentbeenabeeares fracture net pressure, m/Lt*, Pa
DPof S teereesressreeaeestesnessre st e st e stesssersrertessasarans pressure with a propagating fracture, m/Lt>, Pa
DPps TR point-source pressure, m/Ltz, Pa
Dpiz et aaaea s polymer-invaded zone pressure, m/Lt%, Pa
DpLf et pressure with a propagating secondary fracture, m/Lt?, Pa
Dprt s pressure during fracture propagation, m/Lt’, Pa
DPprif S tertere et rae et erae e pressure during secondary fracture propagation, m/Lt*, Pa
Dsac s pressure with radial flow and skin with constant after-closure

fracture storage, m/Lt%, Pa
Ds S teereesreraeestesnessne st e st esas e s eeteestesassressseonas pressure in radial system with skin, m/Lt*, Pa
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Dsfs e pressure from fracture-face resistance, m/Lt’, Pa
DPwe S rrrreeereresreserenesneessseessneessnnessraessanessn wellbore pressure with constant flow rate, m/Lt*, Pa
2% S trererrrer e ettt e e et e s e e s e e s ennnennns pressure outside wellbore in fracture, m/Lt*, Pa
Dws e et eeeeaas injection/falloff wellbore pressure, m/Lt, Pa
q S teereesreesreeae st e ot et esn e st et e e st e s s e e e TR TR e e e e e e e nesnesRa e st e atenseerseereens flow rate, L*/t, m’/s
q e e——— e e e e e et e ee————eea—teea—teean—aeeannaaaans fracture-face flux, L*/t, m’/s
q; T et flow rate for the i"-fracture, L*/t, m’/s
qc et fluid leakoff rate, L*/t, m*/s
qs T e e e—— e et e e e——— e e——eeea—a e e et e e an—aeas sandface flow rate, L*/t, m*/s
q; e e——— e e eee—————eee——ee e et e a———eeaa—aeean—aeeennneas total flow rate, L*/t, m’/s
Qus et e e e — e e e s e e a——aees adjusted sandface flow rate, L3/t, m’/s
qpf S teereesreesreraeestesatesre et e et e st e s asssees e e st estssnasnanans propagating-fracture flow rate, L*/t, m’/s
qs B e — et e e e e te e e e e e et e e eaareeeaaaaes sand-face flow rate, L3/t, m*/s
Qs ettt e e eae e injection/falloff wellbore flow rate, Lt m'/s
Gaws e adjusted injection/falloff wellbore flow rate, Lt m'/s
0O, e e ——— e e ——eeee—— e e et e e et e e an——eeaa——eas total injection volume, L’ m
Qus T e et e et e et e e a——eean—aaaan total injected gas volume, L’ m’
r et eee—— e ee———e e e e —eeeee—eeeee——aeeetteeeaiaeeeaiaeeeeareeeaaaes radius, L, m
Ry OO OO OO radial fracture radius, L, m
7y TP ratio of permeable to total fracture area, dimensionless
Tyve B e e et e e e et e e et e e eaateeeaaaresaaes effective wellbore radius, L, m
R e e e————eee———e e e ——eean———eaa——t e e e ——e e e —teeaaateeaarteeaanes resistance, L', m/m?
Ry s reference filtercake resistance at the end of the injection, L m/m?
Ry et e— e e et e e en e e eereeeaiaeeaanns filtercake resistance, L', m/m?
s  teerererer et e et et et e et et e et e et e e ne e s e e ransrennees Laplace transform variable, dimensionless
S T et e —————eeee e e ———————teeeeea——————teeeee e e ———teeeeesaa i ——teeeeesaaananes skin, dimensionless
Sr TSP fracture stiffness, m/L’t’, Pa/m
S, T e e —e e et e e et e e et e e e et e e et e e e anaeeas spurt-loss coefficient, L’ m
Sk s fracture-face skin, dimensionless
(Sk)ch T et e e e e e aaaeaans choked-fracture skin, dimensionless
t S e —eee———eee———eea—teea———eeaa——eeea et eean—teean—teeeatteeeaateeanareeenreeean time, t, s
t ettt e e———eeee——eee————eeee———ee e —eeea———eean——eeea—aeeaa—eeeanraeaans reference time, t, s
t, T et ———eee————eeee———eeea————eea———eeea——eeaa——teean—teeeaaaeeearaaeaans adjusted time, t, s
t, ettt e e e e e ———— et e e e e e e ——teeeseen——aareeeaaaas time at the end of an injection, t, s

t, et e e e e e e aaaeeaan time at hydraulic fracture closure, t, s
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Lac e e——— e e e e et e e e ——eeea——ee e e e teeanate e et eeenreeeeanes time after-closure, t, s
ton ettt eeesee e —— et e e s e e e —aeeeeesaniaaaes Nolte dimensionless time, dimensionless
tp ettt e ——————ete e et a———————eeeeetraa————teeesee i —araeeees dimensionless time, dimensionless
T S teeveesressresee st e st e st ey e e e e e e sR s e e ne s e PR e e st e a s e et e s e ns e st e reessasnesareaeesans temperature, °K
u et e e e e e e e e e e e e —— e e e e e e eanaaaes variable of substitution, dimensionless
U S teeete e et e e et e e e e e ae e et e e e aeee it e e teeerte e rteeareeearreearaenans unit-step function, dimensionless
VL et e et e e seaaes fracture fluid leakoff velocity, L/t, m/s
V T e e————e e e ——e e e ——eeea————eeaa——eeen ittt e ea—te e e —eeeanteeeeaareeeaaaes volume, L3, m*
Vi e e ——— e e———e et e e e ——teea———e e et e e e et e aaareeeaaaeeaas leakoff volume, L, m®
Vi ettt e e e e e e residual fracture volume of one wing, L’ m’
Vie e S fluid volume lost from one wing of a hydraulic fracture during the

time of closure, L*, m®

w e e—eeeei—eeeee—eee e —eeeee——eeee—eeeea—eeeeei—aeeaiaeeeaareeeaanneas width, L, m
wr B e —e e —eeee——ee e e ——ee e ——eeei—eeeea——e st —teeaa et eaaatesinateeenareeeennans lost width, L, m
W, S teereesressreesre st st e st e ne s s e e et et e s e e s e e e e st e s e e st enasnenraesaneras average fracture width, L, m
X  teteere e e e et e —e e — et e et et a e s e et e et e ta e raerraensennnas coordinate of point along x-axis, L, m
Xy TSR before-closure pressure-transient analysis plotting function, dimensionless
(XapIn =.... adjusted before-closure pressure-transient analysis plotting function, dimensionless
x' e e e e et e e e———e e ——eear——eeea—aaea——aaan variable of integration, L, m
x" et ————— et e e e e ——————eee e e e a—————teee e s e i ———reeeesaan———aaes variable of integration, L, m
x St ettter e et e e et e e e e bt e beate et e te e te e reesbeestearaeraens coordinate of point along x-axis,, L, m
Xy T e et e et r e e eareeeetaeeeanns wellbore position along x-axis, L, m
y  erererrer e st e et e et et et e st e s e et e et eene e s e e ranrennnenans coordinate of point along y-axis, L, m
Vn et before-closure pressure-transient analysis plotting function, dimensionless
YVapn =.... adjusted before-closure pressure-transient analysis plotting function, dimensionless
y' S teereesreesressee st st et esn e sr e st e st et e st en s e s e ee st e e e st e st snasrnesrnerans variable of integration, L, m
Y RPN coordinate of point along y-axis,, L, m
Yw  tteterrer et et e et e st et e et e r e s e e s esaresan e neesneenes wellbore position along y-axis, L, m
z teerererer e e e et et e et et e et e s e e s e e s e e s e et esne e neernes gas deviation factor, dimensionless
Z; e e e e e e e e e e iaeeeanes matrix element, dimensionless
Greek
o teereesresresare st et esnes s et e st e st e s eenseestesrassrassresaesraes variable of integration, dimensionless
op ettt ettt ettt sttt et tans viscosity-compressibility function, dimensionless

oy et e e e e e e e e —r e e e e e eanaaaes fracture growth exponent, dimensionless
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0; et ratio of fracture i to primary fracture conductivity, dimensionless
d¢ S ratio of secondary to primary fracture conductivity, dimensionless
oL S trererrre e ratio of secondary to primary fracture half length, dimensionless
€ S teereesreesereaessassnassnesanesans dual-porosity variable in point-source solution, dimensionless
r T et e e e e e e e e e e e e e ———teeeeeean—arteeeseaanaes Gamma function, dimensionless
A T et e e e ——e e et e e e —te e e e e e et e e enteeeearaaeas difference, dimensionless
C ettt ettt et ettt et bttt e e et et e tesbe e beebe et as variable of substitution, dimensionless
n S tetteere ettt ettt et e te e b e et e anaesraesreebeereennens variable of substitution, dimensionless
ny oSO O OO SOO RPN fracture diffusivity, L*/t, m*/s
7y  teererrerr e e e et et e n et e e st et e e et e et e st e b e e s ernsennresnrernes reservoir diffusivity, L*/t, m*/s
o S eeererrer et et et e et et et e et e e r e e r e e neenenanesnes dimensionless diffusivity, dimensionless
o' S teereesressreeaeesaesnassnasnesanesatesasesnessness angle rescaled for permeability anisotropy, radians
0 S teerersressre st st et e et sy ee s e e e e s e s r e e s Rt e st e at e et e R e e st e Rt en s e s sasnesaeesaneatenatenes angle, radians
A ettt ettt ettt ettt te et e bt ehe bt et e e et enean interporosity flow coefficient, dimensionless
U ettt te bt et e e et eteateateehe et et et et e beeteebe et et et et ebeebeebeeateat et e tebenteens viscosity, m/Lt, Pa‘s
¢ et e e naaeas variable of substitution, dimensionless
p e eteerteeteete —eate—tete e —e et tet e e be e beate et teart e bt ertearteart et eenreenseessearaeres density, m/L?, kg/m’
Pr  teererererrr e ettt en e e e s e s e e nn e neenneenes density of fluid filling a fracture, m/L3, lbm/ft3
Pg teetererererer e e e e et e st et e et e et e st e s e et e e e e st e Rt e neeneeraeerresnren gas density, m/L3, Ibm/ft3
Pwb ettt e e e e e s e —r e e e e e e ananes density of wellbore fluid, m/L3, lbm/t3
Orin ettt —eee e e e rr—————eeeseaar———tteeese s i arareeeas minimum or closure stress, metz, Pa
o, T e e et e e e —— e s et e e e e te e e e eeaaaaeeas overburden stress, m/Lt%, Pa
T et e e e e e e e e e e ——— e e e e e e aenaaaes variable of substitution, dimensionless
7 ettt e ———— e e e e e ——————eeeeeaaa—————eteeeaaa————eeeeeaa i ——teeeesaan—rareeeeaas reference time, t, s
7, ettt et et ettt et et et et e teebeeheebe et et et eaean time at the beginning of an injection, t, s
Ty et e et e e e e e e a shut-in time following an injection, t,s
Ty e e———— e ———eea——eea—— e e e ——e e e et e ea—eeeatateeareeeeaaes time at exposure, t, s
™D et e e et e e e e s e n——raees dimensionless time at exposure, dimensionless
v et e e et e e et e s e ateeaaeeeanaeeeanans Poisson's ratio, dimensionless
@ S teerersressreeaee st et e e s re st et et e e e e e ee e et e st ensas e e s eese e st entesnesrnenans porosity, dimensionless
X  teererrer e s e st et et et e et et e e et esnne s e e sneesneenesrnens variable of substitution, dimensionless
v  teererrrer e s e st et et et e et e e e s esnne s e e eneesneenesrnenns variable of substitution, dimensionless
@ T terveerteertee e e e e et e e e s n e s e e s Rt e st e et e e eea et eeresnsassaeera e saesnasnesans fracture storativity ratio
Subscripts

0 T et et e e e e ee e e e —————teeeeeaa———————eeeeeia—————teeeeeaia————eeeeesan——raeeas reference time zero
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a e etteerteereete e te e —eatetteteabearte et tettebte st e bt ante et e et e st et e et e e s eesae et aeteerreenseentenraenres adjusted
c e eteeeeetee e sttt et et e e s r et et st e e et et ser RSt S e et e e e et sereRe s Rt et et e e e ee e nere s et et et e e eaes closure
D e eteteeeee e s n ettt et et et e st ettt e s e et st et et et ettt e et st e e s s et et et eaeene dimensionless
e teeveesreesresae st e st et s n e st et et en st e R s e e e TR e e e R e e s e e e e nesa s e st e At e s tassearareraeestesrass end of injection
f teereessessressre et st et et e et ey se Rt e et ee b e s R e e ne e ee s R e SRt e at e a s e et ere s R e et e st e rasssasrassresaees fracture
g e eteteteeteeue e eeteteateteabeeteebe et et et et eabeteebeeatehe et eat et ete bt eheehe et eat et e tebeeheebeeateat et entanes gas
i ettt teteehe e et e teteateateabeeheehe et et et e te bt eheebe et et et et et e eheebe et et et et aeteeaeenn initial conditions
inj tetteerteeteete e —e te tte bt e teateattettereenteate et te ateaeerae et earaeate et e enseesteasteasaereenreerseaneas injection
J o teteerteeteeteete e teateetea b e e teattettebeetearaeartearte st erte et e et s eas s e teesseenteenseeraeereenseenseenseantens index
e eteteeeee e s n et ettt et e et et e st et e At et et e et et e et et et et e et ste e s s et et et eanene fracture index

m e eteteetea e s r et et et et e et st e e e st e et e e et et e et sarese SRRt et et et et e s sar et et et et e e e et sereresaseas index
MP teerterueesresre st et et eyt et et e e s e s n e e e e e s At e Rt e n s n e Rt et e s st en s e e e e e e e s e ssasnesrenans match point
n teerersressrerae st et et ey et e e e e s e s R s e s e e s e SRt e Rt e a e e e e e e Rt e Rt ee e es s e e ne e ee Rt e ateatearersesreees index
ne ettt ettt e eh et et et eteateateebeeaeeh e et et et etebeebeebeeae et et et eteten index at the end of injection
r ettt ettt et e et ea et bt e bt e bt e bttt ea e e e h e e bt et e e a bt eh et eh e e bt e b e e bt et e et e saeenaeenteenee reservoir
re e etetete e et et et et et et e be et e e et et et et e beshe e bt et et et et et et e besatebt et et et et enbesenses reference
sc e etete et e e et e et et e tete et et et et et et e b e s ae bt et et et et e be bt e bt et et et et enbenee standard conditions
w e eteeteeeee e sttt et et et e e st et et et et e e e e sar e e Rt et e e e e e et sar e st et et et e et sarere st et et enen wellbore

Superscripts
'  trererrer e st s et et et e et e st e e et eenresneesneesneenesnnens denotes derivative with respect to time
" S teereesressreeaeestesntesnesnesan e st e stessenereraesraens denotes second derivative with respect to time
Character Symbols

teereesreesre st e st e st e sre st et e st et se st et e b e sn s e s resRa e st e naenenanesstenatanes denotes Laplace transform

n et tete ettt ettt ete e eteabeeteebeeateae et et et eteabeeheebeeae et et et e tetebeeaeebeeae et entent denotes average
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APPENDIX A

BEFORE-CLOSURE PRESSURE-TRANSIENT ANALYSIS WITH
PRESSURE-DEPENDENT RESERVOIR FLUID PROPERTIES

1.7 and Valké and Economides™ for analyzing the before-closure pressure

The methods of Mayerhofer et a
decline following a fracture-injection/falloff test do not consider a compressible mobile reservoir fluid.
Accounting for pressure-dependent reservoir fluid properties is accomplished by using pseudovariables, or

for convenience, adjusted pseudovariables.

The pressure difference between the created fracture and a point in the reservoir at initial reservoir

pressure is written as
Ap(t) = Ap,- (t) + Apogie () + AP piz )+ Ap iz (1) e (A-1)
Writing the pressure difference across the filtercake, Ap..., polymer-invaded zone, Ap,:, and filtrate-

invaded zone, Apy., as a single fracture-face pressure difference, Apy,.., allows the total pressure difference

to be written as

AP() = APy (8) F AP e (E) 1 oovveeiieeiiii s (A-2)
where Ap, is the reservoir pressure difference. Dividing the total pressure difference by the difference at
the end of the injection, p, — p,, allows the dimensionless pressure to be written as

PwDULD) = PrDULD) + PADLID) 1 oovvverinri e, (A-3)

where the dimensionless wellbore pressure is defined as

Pw(tLm)—p;
Do (D) = s (A-4)
wD\!LfD P0-1;

the dimensionless reservoir pressure is defined as

D) = LEIPYTPE [ (A-5)
-p;
and the dimensionless fracture-face pressure is written as
prltym)=p
PO —Pi

pr (thD) = e e e e e e e e (A-G)

The reservoir pressure difference in a formation containing a slightly compressible fluid is modeled using
Gringarten et al.'s™ early-time solution for the flow from an infinite-conductivity fracture which is written

as

where dimensionless time is defined as
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and k is the permeability, ¢ is the porosity (fraction), u is the reservoir fluid viscosity, ¢, is the total

compressibility, and L, is the fracture half-length.

When the injected fluid is a liquid in a gas reservoir, a moving interface exists between the leakoff liquid
and the mobile reservoir gas. Provided the injected volume is relatively small and assuming piston-like
displacement, the depth of filtrate invasion is typically less than a few inches beyond the fracture face.
When the fracture and the expanding invaded region are small relative to the investigated depth in the
reservoir, the filtrate invaded region has negligible influence on the pressure behavior and a single-phase

model is appropriate for the transient falloff analysis.**

For a compressible reservoir gas, a single-phase model can be formulated using adjusted pseudopressure
and adjusted pseudotime. Adjusted pseudopressure is defined as

z P pd
pa{ﬂ_] j DO (A9)
P Jrdo wz

where the subscript 're' denotes a reference pressure. With the reference pressure defined as initial

reservoir pressure, dimensionless adjusted pseudopressure is written as

27kh

DaD =—————AP4 (D)1 oo (A-10)
Qngi/ui

where z is the real-gas deviation factor, % is the formation thickness, Ap, is the adjusted pseudopressure
difference, p.(t.p)—pa» g4 is the gas injection rate, B, is the gas formation volume factor, and the
subscript 'i' denotes the property is evaluated at initial reservoir pressure.

Similarly, adjusted pseudotime is defined as

t
dt

t, = (,uc[),,ej e T TSP PUPPPURRPRPO (A-11)
0 H¢

and with the reference pressure defined as initial reservoir pressure, dimensionless adjusted pseudotime is

written as

kt
lalfp = —“2 © ettt e EreeeteetieieebeeteeseieietEeseeeeestiietbereeeteetiaher e et tee s i e L L e et e e ee e e b aa e e e e e e s i b rbareeeeian (A-12)
Puicy L f

Lee and Holditch’ demonstrated that the governing differential equation for a reservoir containing a
compressible fluid can be effectively linearized by the writing in terms of pseudopressure and pseudotime.

1.73

Meunier et al.™” extended the concept by normalizing the transforms, which results in adjusted

pseudopressure and adjusted pseudotime. With adjusted pseudovariables, flow solutions developed for a
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reservoir with slightly compressible fluid can be used directly in a reservoir containing a compressible

fluid. Consequently, the dimensionless wellbore adjusted pseudopressure, p,.,.p, iS written as
pawD(taLﬂ)) = parD(taL]D)"‘pafD(taLﬂ)) N (A-13)

Reservoir Adjusted Pseudopressure Difference
The early-time dimensionless reservoir adjusted pseudopressure solution for an infinite-conductivity

fracture can be written as

PaD = ’ﬂ'taLfD © e e e e et ea e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaas (A-14)

The dimensionless reservoir adjusted pseudopressure is obtained by applying superposition, which is

written as

lalfD ,
parD(taLfD):foa f an(TLfD)paD(l‘aLfD—Z'LfD)dTLfD e e reaaeeeareaaeeeaarraaEe et rerararans (A-15)
where dimensionless injection rate is defined as
q qugi/ui
D E 1
“ 27kh(pao - Pai)

and p, is the adjusted pseudopressure at the end of the injection. The total injected gas rate, g,, is divided

between two fracture wings, which is written as

where g, is the gas leakoff rate at reservoir conditions.

A discretized form of the superposition integral is written as

n
ParD tarpIn = 2 @aD)j = @ap)j2 Pap | CarfpIn = Capgp) j-1 | oo (A-18)
J=1
where the subscript 'n' denotes the timestep and the subscript /' is a timestep index. With the dimensionless

variable definitions, the discretized reservoir pseudopressure difference is written as

_Bai | m | dg | _[dr2 - )
(Apa,,)n—th /”¢kcti£ [B J,- [B Jj—l [ O T (A-19)

g g

Nolte® defines the before-closure fracture leakoff rate as
_ A, d(p(t)-pc)

_ Ae dp([) (A-ZO)

Sf dt Sf dt
where 4, is the area of one wing of a fracture symmetric about the wellbore, p. is the fracture closure

stress, and Sy is the fracture "stiffness.” Fracture stiffness, or the inverse of fracture compliance, is defined

by the elastic energy or "strain energy" created by an open fracture in a rock assuming linear elastic theory
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is applicable. Table A-1 contains the fracture stiffness definitions for three common 2D fracture
models.***® In Table A-1, E'is the plane-strain modulus, R, is the fracture radius of a radial fracture, and

hyis the gross fracture height.

Table A-1—Fracture stiffness for 2D fracture models. 8%
Radial Perkins-Kern-Nordgren Geertsma-deKlerk
Vertical Plane Strain Horizontal Plane Strain
37k’ 2E' E'
S = S =
(Sr)raD =14 Ry (Sr)prn = iy (Sf)Gpk = Ly

The before-closure fracture leakoff rate can also be written for a compressible fluid in terms of adjusted

pseudopressure and adjusted pseudotime as

As B
drg e e B (A-21)
Sp | Bg ). dig

or written in a discretized form as

4 B (Pa) j1—(Pa);
() L (B } [_gJ {# e (a22)
f g J; Ct j (ta)j_(ta)j—l
The discretized reservoir pseudopressure difference can now be written as
(AP )n = ! Z [(dap) = (dgp) 1-1] [6)n =) jt + e (A-23)
\/_ Sf\/_ ¢Ct
where the discretized differential, (d,,);, is defined as
(dgp) ;=1 ) T Pa) | e (A-24)
()| () j—(ta)ja

and the ratio of permeable fracture area to total fracture area is defined as
hL

T (A-25)

Ay

Valké and Economides™ assume that the leakoff rates are constant during the fracture injection, and the

assumption is modified such that the first ne + 1 leakoff rates are constant at standard conditions, which is

written as



[%J =CONSIANE 1< J < ME+L, oo s (A-26)
&/

where 'ne' is the timestep index at the end of the injection. The assumption implies that the pressure in the
fracture during the injection is approximately constant, and allows the discretized reservoir pseudopressure

difference to be written as

+(dap)ne+l\/(t In |:1_1’1 (t( )n)e+1:|
1 1 Hi — -
(Apgy)n = \/_r Sff v (dapine+2*/(ta)n (t2)nes e ———— (A-27)
+ Y [ap); ~ap) o | Jltadn —(ta) j2
| Jj=ne+3 )

Fracture-Face Adjusted Pseudopressure Difference

Cinco-Ley and Samaniego,®® suggested a fracture-face skin defined by

b
fs
S B U PRPRPRPRRNS (A-28)
5=
So2L f [ k fs ]

where b is the width and & is the permeability of the damaged zone. Mayerhofer and Economides®’ use

the fracture-face skin concept to model a rate-dependent skin created by fluid leakoff by defining fracture-

face resistance as
t
Ry () = ff( i, (A-29)
S
and dimensionless resistance as>®

5 (1)
Rp (1) = J};O et (A-30)

where R’) is a reference resistance. With the definition of fracture-face resistance and dimensionless

resistance, fracture-face skin can be written as

’ b !
Spy = ZRORD(O) 20 TRRORD() | (A-31)
2Lf 2Lf 2Lf

or written as

Sk L (A-32)
2Lf the

Fracture-face skin can be written as a dimensionless pseudopressure across the fracture face as

27khAp 4

DafsD =S 5 = et et (A-33)
afs 2 Qngi/‘i
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or with the fracture-face skin definition, written as

B,ittoi R
Apafzﬂ—oq—g e (A-34)
WLy 27 2 \iye

With the fracture symmetrical about the wellbore, the fracture-face pseudopressure difference can be

written as

Bt R
Mpap = ZELROIUE [ L (A-35)
WLy 27 By \ne

57-58

Assuming the fracture-face skin is a steady-state skin, the fracture-face pseudopressure difference at

any timestep » is written as

Boitti Ry [ qv t
A e VI - e TSSO A-36
( paf)n th or Bg ( )

or with the definition of before-closure fracture leakoff in terms of adjusted pseudopressure and

pseudotime, the fracture-face pseudopressure difference can be written as

1 Ry t
A =——|(d ettt ettt A-37
(APgf ) 2%Sf( w), o (A-37)

where Ry is the fracture-face resistance product defined as the product of gas viscosity at initial reservoir
pressure and the reference fracture-face resistance, that is, Ry = w;R’.
Specialized Cartesian Graph for Determining Permeability and Fracture-Face Resistance
The dimensionless wellbore adjusted pseudopressure was defined as

PawD (tarfD) = ParD CarfD) + PafD (aLfD) 1 vvvveveveiiriiiiis (A-38)
which can also be written in dimensional form as

(Apaw)n = (AP )n + (quf)n © e e e ee e eeitestesEeiEeeeeeeteteateEe i e ae et et et e te e abeareaaeete e e etenrearenre e (A-39)

With the definitions of reservoir and fracture-face adjusted pseudopressure difference, the wellbore

adjusted pseudopressure difference can be written as

+(dap)ne+1M{l— 1—%}

_ 1t A ) =)oy
(Apaw)n—\/;rpsf\/z des (dapjne+2 (ta)n —(a)ne
+ Y [[ap)j=ap) joa | Jtadn = (ta) 1

| Jj=ne+3 )
Ry
+i—0(dap) o e (A-40)
ZﬂrpSf n\ tye

Algebraic manipulation allows the wellbore adjusted pseudopressure difference to be written as
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(dap)ne+2 ( (ta)n - (ta)ne+l Jl/z
(dap)n

IR CY PR S S 7R [(da>,~—(da)j_l](oa)n—(ta)j_l]l/z
(dap)n\/_\/; \/_ Sf\/_ on j=ne+3 (dg)n

(dap)ne+1\/ (ta)n { (1_ (ta)ne+1 JI/Z}

tn tne

t}’l tne

(dap)n(\/; (ta)n
o R0 e, (A-41)
2r rpSf the

The term (d,,)q.+; €an be written in an alternative form as

S B,, A (B ) S By,
°f g Af ne+1 °f

—_— ) reeeree s (A-42)
Af (B ) rorl Sf Bgl (d ap)ne+1 Af (B )ne+1 (‘Mg)ne+1

(dap Jne+1 =

but recognizing that [gs/Belse = [qee/ Belner1 ANA (Vi)ne = (Geg)netse allows the term (d,,) .1 to be written as

Sf (Bg)i (VL)ne
Ine (Bg)ne Af

where (V,),. is the leakoff volume at the end of the injection. Define lost width due to leakoff at the end

(dap Jnes1 =

of the injection as

:M, .................................................................................................................................. (A-44)
Af
and the term (d;),..+1 Can be written as
B,; 1
(g ) pot] = S FW oo o e eeve e ee e (A-45)
aponen 4 (Bg)ne Ine
Define
) __ (Apayw)n (A-46)
apIn TS
(ap)nltn e
Hi
Capl = | 1 et (A-47)
@ Py

B .

g | Hi
.......................................................................................................... A-48
Cap2 = f wL (B e ¢Ctl ( )
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- , -
(ap)nes2 ((ra)n A j”
(dap In Inlpe
Capl 2
1 [(dap)j ~Wap) jad( Cadn — ) 1 VY
(Xap)n = + > @) — S (A-49)
| Jj=ne+3 ap’n n°ne ]
2
N CapZ\/(fa)n 1_(1_ (ta)ne-i—lJ]/
2
L (dap )}’l '\/atfl’/e (ta )n |
1 1
Y USSR A-50
M \/; rpSf\/% ( )
and
by = S, (A-51)
27 1pS £ e
Combining Eqg. A-41 and Egs. A-46 through A-51 results in
()’ap)n =myy (xap)n F DR 1 (A-52)

which suggests a graph of (y,,), versus (x,,). using the observed fracture-injection/falloff before-closure
data will result in a straight line with the slope a function of permeability and the intercept a function of
fracture-face resistance. Egs. A-50 and A-51 are used to determine permeability and fracture-face

resistance from the slope and intercept of a straight-line through the observed data.

Table A-2 contains the variable definitions and plotting functions for before-closure pressure-transient
analysis in terms of pressure and time and adjusted pseudopressure and time. Table A-3 contains the
variable definitions and plotting functions in terms of pressure and time and adjusted pseudopressure and

adjusted pseudotime.

The pressure and time and adjusted pseudopressure and time formulations require that #,, > 0; thus, the
time at shut-in cannot be scaled to zero. Time should vary from ¢ = 0 to the end of the injection, ¢ = #,., and
to a point during the shut-in period, ¢ = ¢,. Adjusted pseudotime can be scaled to zero, that is (z,),. = 0, in
the adjusted pseudopressure and adjusted pseudotime formulation because only differences in ¢, are used
in the equations and (z,),. does not appear in a denominator.
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Table A-2—Before-closure pressure-transient fracture-injection/falloff analysis in terms of
pressure and time and adjusted pseudopressure and time.

Pressure and Time

Adjusted Pseudopressure and

201

Description
Time
Ba5|c_ Yn =byr +myrx;, (Vadn =by +mpg (x4)n
Equation
b or () y _(pw)n_pi () _M
n=" _ — — aln =
n O (Vadn dyJin e @)t Jtne
dpes2 [ln “lne+l Jl/z ) ner2 [ th —thest V2
dy Inlpe (dg)n Inlpe
a Ca
LS [dj-dja](ta-1;1 ) ' o $ W)l (=t V2
xn or (xtl )n Xn = Jj=ne+3 dn tytpe (x”),, - J=ne+3 (da)n thtne
12 ¢ tnest 1V2
cp [ thesn 4—CGa2__ 1—[17L+l]
o] s
Pid—P; ) i )
4) or(d), a2 1-Pj (da)jz(ug)]{(pa), 1 (pa)]}
ti—tjig (#g)i Li—tjq
| u Hi
cp orc a=,-— Cal =
1 al de, a dey;
B,; .
_s A =S 8l /L
cp Orcyo c=Srwg ™ Ca2 =9 fWL (Bg)ne de,
i 1 Ry 1 _ 1 R 1
M M=o TpSf e 2 1St Ine
11 S
" V1S i syl




Table A-3—Before-closure pressure-transient fracture-injection/falloff analysis in terms of
pressure and time and adjusted pseudopressure and adjusted pseudotime.

Description Pressure and Time Adjusted Pseudopressure and
Adjusted Pseudotime
Basic - Yn = bM +myrx, (yap)n =by +my (xap)n
Equation
(Pw)n — pi (Paw)n = Pai
Vn OF (Vap) In="T"—1—r— (yap)n = . — —
’ o dy \/a\l Ine (dap)n \/E\/ Ine
[ dpe+2 [ln “lne+1 jl/z | (dapne+2 {M}Vz
T4y e | G tnfne
a

Xy OF (xap)n

Xy = +

Jj=ne+3 dy

2
L2 1-1- Ine+l Y
d 3/2 t
| 9nlne n

tn tﬂ(’

> [4j-dj1] [fn ~tj-1

A

apl

(iap)n =

2
o ) =) ) o =G ]]/

ia G

i’ (1,[17 (mml]“
ot 2

l}ll”(’

d; or (dgp) ; g, =PIl (), =Lk Padiala);
J p)j 1,4 P e)j| )= tg) j
|« o=
€1 Of Cp1 a= v, Capt = ¢Tln
€9 O gy =Sy [ capr = Sy B [
ap 2 =9 fWL dc, ap f (Bg)ne oy
, 1R 1 LR 1
M 27 1pSf the 27 rpSf tye
1
myf
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my =——
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APPENDIX B

CONSTANT-RATE DRAWDOWN SOLUTIONS ACCOUNTING FOR
BEFORE- AND AFTER-CLOSURE FRACTURE STORAGE

Assume a slightly compressible fluid fills the wellbore and a fracture in an infinite-slab reservoir and the
initial reservoir pressure is constant throughout the reservoir and sufficient for fracture dilation. As a
drawdown begins, the fracture will contract until closure. A mass balance equation is written for the
before-closure drawdown as
Storage

d dVepyr)

c/;tw +2 i;t : '
where g, is the sandface flow rate into the fracture from the reservoir, and ¥ is the fracture volume.

Mip Mout
—

—
quBrpr _qWBp = VW

The material balance equation can be expanded using the product rule and written as

dpf de (B_Z)
r P

d
Pw +2pf r

dt

quBrpr —quwBp =V, + 2Vf

The derivative with respect to time of the wellbore fluid density is written using the chain rule as

dp. 1 dp,, dp dp
W e W =W s (B-3)
dt Py dpy, dt dt

where ¢, is the isothermal wellbore fluid compressibility. Assuming the wellbore and fracture pressure are

equal, p,, = p;; the derivative with respect to time of the density of the fluid filling the fracture is written as

where c,is the isothermal compressibility of the fluid filling the fracture.

The material balance equation can now be written as

quBrpr—qWBp: chWVW+2pfchf +2pf$ T (B-5)
w

or assuming a constant density, p = p,, = p,=p,, and a constant formation volume factor, B = B,, the

material balance equation is written as

1 de dp
qu :qW+E{CWVW+2Cfo +2EJT;‘) ................................................................................ (B'6)

Define dimensionless pressure as

27kh(p; — py, (1))
qBu ’

PwD =
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dimensionless time as

kt
thD = § et e eeeEEeeeEaeereheeeeea e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e (B-8)
duuc, I
r=f
and dimensionless flow rate as
q
D = ettt (B-9)
v

where g,, is the well production rate. With the dimensionless variables, the material balance equation

during the before-closure drawdown is written as

O (B-10)

ap = awp ——2—
" 27z¢cthL3, dtpp

where the before-closure fracture storage coefficient is written as

Cpe =V +2¢ -V~+2ﬁ. ..................................................................................................... (B-11)
c = “ww f'f dp,,
Define a dimensionless before-closure fracture storage coefficient as
OB e (B-12)
27z¢cthL3,

and the dimensionless material balance equation during a drawdown with a closing hydraulic fracture is

CpeD =

written as

dp D
ap :qWD_CbCD dtw © e e (B'13)
LfD

Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage

During a constant-rate drawdown with a constant fracture half-length, the fracture volume is written as

Vf = hfolf’{/f (pw(t)) = Afﬁ/f (pw(t)) E e e e e e e e e (B-14)

The average fracture width, w o is a function of net pressure, p, = p.(f) — p., and is written as

. 1) -
o _Pu_Pw)-Pc

where p. is the fracture closure stress and Sy is the fracture "stiffness.” Fracture stiffness, or the inverse of
fracture compliance, is defined by the elastic energy or "strain energy" created by an open fracture in a
rock assuming linear elastic theory is applicable. Table B-1 contains the fracture stiffness definitions for
three common 2D fracture models.*>'® In Table B-1, E' is the plane-strain modulus, R, is the fracture
radius of a radial fracture, A, is the gross fracture height, and L, is the fracture half-length.

The derivative of average fracture width with respect to pressure is written as
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TN (B-16)
dp., Sf
Table A-1—Fracture stiffness for 2D fracture models.®**®
Radial Perkins-Kern-Nordgren Geertsma-deKlerk
Vertical Plane Strain Horizontal Plane Strain
37E' 2E' E’'
S = S === S ==
(Sr)raD 6%, (Sr)prN why (Sr)epk o
A before-closure dilating-fracture storage coefficient can now be written as
Ay
Cpu :CWVW+2§(Cfpn L] (B-17)
Hagoort,*®* and other investigators of waterflood induced fractures that followed,” assume that
Cfpn(t)+151, ............................................................................................................................... (B-18)
and the before-closure fracture storage coefficient can be written as
Ay
Che = OV F 2 e (B-19)
Sy

After fracture closure, and assuming the fracture closes to a constant residual width, the material balance

equation is again written as

Storage
Min Mot dp,, . 4Vrpr)
quBrp,, -qBp =V, v +2 " © ettt e ettt bt Rt Rt R e bt bt r et st ene (B-20)
which is simplified and written as
dsf :q+% chw+20fo +2i’p% dZ—r}, ................................................................................. (B-21)
but the fracture volume is constant, and an after-closure constant storage coefficient is written as
e = O s 2 s e (B-22)

where V. is the residual fracture volume at closure. In some cases, no residual volume will remain after-
closure, and C,. = c¢,V,. After converting to dimensionless variables, the material balance equation is
written as



dp
ap = 4yp - Cach deD ................................................................................................................. (B-23)
LD
where the dimensionless after-closure wellbore storage coefficient is written as
C
CoeD = % et ehererteteeetereetetereeteteseteter et ebe et eter et e Lo et ete e e b eR et et ete e et e te et eb et e e e beRe et et ere s erene s (B-24)
2mpe,hL

f

A material balance equation valid at all times for a constant-rate drawdown with a closing fracture and

constant after-closure storage is written using the unit-step function,®* which is defined as

0 t<a
U = ' C B-25
a {l , t>a ( )

62-64

Following the technique of Correa and Ramey, " a dimensionless material balance equation is written as

d dwa -
D :(l—U(tc)Lﬂ)][qu CbCD o fD] (l )Lﬂ) [qWD CacD 7 fD} .................................. (B 26)

where (z.),p is the dimensionless fracture closure time. The material balance equation can be expanded
and written as

WD e (B-27)
dthD

With the identities of Correa and Ramey,* the Laplace transform of the material balance equation is

dp,,
4p =49wD ~CpeD dt LD +U(l )LfD (CbcD CacD)

written as

q9wD _
4p = v: =5CuepPwD ~(Cphep ~Caeb)

(t) t
J LD =3 LD 0017007 (B-28)
A solution is developed by applying the superposition principle, which is written as

'LfD dpr(tr m —1p)
wa:J qD(TD)%dTD' .................................................................................... (B-29)
0 LD

The initial condition in the fracture and reservoir requires a constant initial pressure, pp(t,p) = 0, and with

the initial condition, the Laplace transform of the superposition integral is written as

p
pWD qu‘pD < qD_ WD .................................................................................................... (B-30)
SpD

Combining the transformed material balance equation and superposition integral results in

_ J'(tc)LfD =styp

Pwp (1+52Cach_?D =4wpPD =~ (Cpep ~CacD)PD | PuD L)t - oo (B-31)

Let the Laplace domain dimensionless solution for a well produced through a fracture at a constant rate

with constant after-closure storage be written as
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D i, (B-32)

PacD = 2 _
1+s CachfD
where py, is either the infinte- or finite-conductivity fracture solution. The wellbore solution is written in

the Laplace domain solution as

(tc )LfD e—SthD

PwD =49wDPacD ~ (CbcD - CacD)SI_’acD JO p'wD (tLjD )dtLﬂ) e (B-33)

Inverting the Laplace domain solution back to the time domain with ¢,,» = 1 results in the constant-rate

drawdown solution with constant before-closure and constant after-closure storage written as

PweD L) = PacD 1)~ Cpep ~Cacd)| (()tC)LfD PacDLD ~TD)PyweD TDMTD s s (B-34)
where p,..p denotes that the pressure solution is for a constant rate.
Constant-Rate Drawdown With Constant Before- and Constant After-Closure Storage With
Fracture-Face and Choked-Fracture Skin
Consider a constant-rate drawdown in a reservoir with a damaged hydraulic fracture where the initial
reservoir pressure is constant throughout and sufficient for fracture dilation. The drawdown is modeled
with constant before-closure storage, constant after-closure storage, choked-fracture skin, and fracture-
face skin. Developing a dimensionless pressure solution requires solving the problem in a serial fashion®
— the wellbore solution with choked-fracture skin is formulated and coupled to the solution in the fracture

outside of the wellbore with fracture-face skin.
The dimensionless material balance equation considering wellbore storage is written as

dp
ap :qWD—CD dtl‘:(lD) © e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e et eee (8'35)

The superposition integral is written as

LD dpp (¢ -7p)
DVYLD~TD
Pub :J apTp +er, .................................................................................... (B-36)
0 LD
and a “reservoir” pressure solution, pp(#.p), is written as
pD(tLﬂ))zpwa(thD)+(SfS)ch, .............................................................................................. (B-37)

where p,p is the solution in the fracture outside of the wellbore considering before- and after-closure
storage, and (S). is the choked-fracture skin.
The superposition integral is written in the Laplace domain as

]_JWD = qDSﬁD e e R R R R R e R R R R R R R R R R R R R R R R r s (B-38)
and the Laplace domain reservoir pressure solution is written as
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(S f5)eh
Pp=r o bbb bbbt b et bbb et bt et bt e et benenaerens B-39
PD = PwfD P ( )
The transformed material balance equation is written as
ap = quD T 0 T Y (B-40)

Combining the superposition integral, the reservoir pressure solution, and the material balance equation in

the Laplace domain results in

_ _ 2 _
pWD :qWDpD ) CachprD T T I T (B'41)
which with ¢,,, = 1, is written as

PufD + (S e e (B-42)
S|:l+ SCD |:s1—7WfD + (Sﬁ)(:h :|:|

PwD =

The solution outside of the wellbore in the fracture accounting for before- and after-closure storage and
fracture-face skin is developed using the unit-step function. The dimensionless before-closure material

balance equation is written as

DD e, (B-43)

and the dimensionless after-closure material balance equation is written as

defD

. :qu_cfacDW, .............................................................................................................. (B-44)

where the dimensionless before-closure fracture storage is written as

e i (B-45)

2e,hi,

and the before-closure fracture storage is defined as

Ay
Cﬂ)c =2Cfo +2S—. .................................................................................................................. (B-46)

f

The after-closure fracture storage is defined as

CfbcD =

and the dimensionless after-closure fracture storage is written as

I (B-48)

2;z¢cthL§,

A dimensionless material balance equation valid at all times is written as

¢ facD =
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ap _(1_U([C)LfD][qWD_CbeD W} (tC)LfD [qWD facD = fD PN (B'49)
or written as
apywiD apywiD
qD:qWD_CﬁCD%-FU(tC)LfD (CbeD_CfaCD)dthD PP (B 50)
The Laplace transform of the dimensionless material balance equation is written as
9wD o osp o +C 0)+(C gpy —C By — 0
s fbeDSPwiD t fbchwa( )+( fbeD facD) SPwfD pwa( ) (B-51)
ap = Wi ot C e
~(Cppep—C facD)Jo e PywpLmtrp
With p,,,p(0) = 0, the dimensionless material balance equation is written as
_ q _ (tc)L =Sty ,
4D :WTD_CfacDSijD_(CfbcD_CfacD)JO fDe powa(’LfD)dthD' .......................... (B-52)

Combining the transformed material balance equation with the Laplace domain superposition integral

results in
4wDP fsD _Schach_jstl_’wa
PuD = oy s e (B-53)
~(C e =€ fueD)P 5D Jo e PwD L)t m
which can be written as
_ _ _ t)rm —st '
PufD = IwDP fach - (Cﬂ)cD B CfacD)SpfacD J'o ¢/LfD . SUL/D PwD (thD )dthD ) reeeere e (B-54)

where py.p is the solution for a finite- or infinite-conductivity fracture with fracture-face skin and constant

after-closure storage, which is written in the Laplace domain as

P gD

1 facD = C et e et ete et eE e et ettt e et et et a R et bR et et eRe s e bt et et e R et et ere et et e re et bene s (B-55)
1+52C P
facDP fsD
With fracture-face skin, the Laplace domain dimensionless fracture-sandface pressure solution is written
as
S .
— — S
p_fS‘D = ij +%, ........................................................................................................................ (B-56)
and the dimensionless fracture-sandface pressure with fracture-face skin and constant after-closure storage

is written in the Laplace domain as

P/ *Sf e (B-57)
s [l+ SCfacD [SﬁjD + st ﬂ

p facD =
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Inverting the dimensionless pressure solution outside of the wellbore in the fracture to the time domain

with ¢,,p = 1 results in

P L) = P faeD 1)~ (€ e —cfacD)jgc)LfD Plaen (LD ~ D) PiygD TDMTD - o (B-58)
The dimensionless pressure solution for a constant-rate drawdown with constant before-closure storage,
constant after-closure storage, fracture-face skin, and choked-fracture skin requires solving the time
domain solution first for pressure in the fracture outside of the wellbore (Eqg. B-58). With the time domain
solution, the Laplace domain solutions, Egs. B-42 and B-54, can be evaluated and numerically inverted to
the time domain to obtain the dimensionless wellbore pressure.

Constant-Rate Drawdown With Constant Before-Closure Storage, Constant After-Closure
Wellbore Storage, and After-Closure Radial Flow With Skin

Consider a constant-rate drawdown in a well with an open hydraulic fracture that closes with little or no
remaining conductivity where the before-closure reservoir response during a drawdown is modeled as a

hydraulically fractured system, but the after-closure reservoir response is modeled as a radial system.

The dimensionless material balance equation with constant before- and constant after-closure storage is

written as

dpwp dpyp
-U -C 2wWE L C 2w
9wD ~ (1) yp IwD ~ “beD di; Y pp “beD diy

qp = dp 5 ) eeaeraereareieeraerreireeerar e,

+U, -U C,.p—2=
but the fracture has negligible volume after fracture closure and the dimensionless after-closure wellbore
storage coefficient is written as

C _M:CD. .................................................................................................................. (B-60)

acD — 2
2mpe,hl I

The dimensionless wellbore pressure is written as the sum of the effects of both reservoir models,'®* that
is, the solution is written as
t t
Pub :J P qu(rD)—dprZ[LfD D) drp) +J P 0D (TD)_dpSD ZtLﬂ) ~™p) ATy s o (B-61)
0 LD 0 LD
where gyp is the before-closure dimensionless flow rate for the hydraulically fractured system, and py, is
the dimensionless reservoir solution for a well with a fixed-length fracture. The after-closure
dimensionless flow rate, ¢,p, is for the radial system, and the dimensionless radial flow reservoir solution

with skin, p,p, is written as

pSD(le)=prD([LjD)+S ) e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e et e e e e e aaa (B-62)
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where p,p is the dimensionless reservoir solution, and S is the skin effect. Note that dimensionless time is
defined in terms fracture half-length; thus, fracture half-length is the characteristic length used in the

dimensionless radius definition and radial solution.

The dimensionless material balance can also be written in terms of before-closure and after-closure
components as

where the flow rate for a fixed-length closing fracture is written as

dpywp drwp )
4 :qu_U(fc)LfquD Cpopp LwD e U, ) Cpopy— WD dthD ................................................. (B-64)

and the dimensionless after-closure radial flow rate is written as

dj
4p = U(tC)LfD 4wp U, )LD Coch df]j(l; .................................................................................. (B-65)

However, the components of the material balance equation are also valid for all time for the specific flow
models, and the sum of the superposition integrals and dimensionless flow rate equations can be
transformed to the Laplace domain and combined as

— — _s(tc)L — _S(Zc)L ]
9wDP fD ~49wDP fD¢ /D *t4wDPsD® /D

2
~CacDS PrDPwD

(i sy e (B-66)

PwD =

~CpepsP fDJ pwD ULt p

_ (tc )L —st
+CaeDPsD «[O P e YD

Pup UL ) 1D

After inverting to the time domain, the dimensionless pressure solution is written as
4wp | P 1m) = P L =~ () )+ Psptiyp ~ ) 1) |

t
o) ~CaeD | oLfD Psp 11D =7p)Pywep (Fp)Tp
PweD\ULD) = ) '
~Cpen Jo© D P —7p)Pweptp)ip

_+CacD J (gtc )Lﬂ)

and after simplifying, the pressure solution for a constant-rate drawdown with ¢,,, = 1, constant before-

Psp(Lmp =7p)Pwep TpMTp

closure fracture storage, constant after-closure wellbore storage, and after-closure radial flow is written as
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Pmrp)=p iy =) )+ Psprm =) p)

t
Pren (D) = _CacDJ(if)lsz Py \tLD ~ D) Piuen (Ep M s (B-68)

(t.)
| =Chen |, 0 o Pt =7p)Pwep (Ep)7p




APPENDIX C

FRACTURE-INJECTION/FALLOFF SOLUTIONS IN A RESERVOIR
WITHOUT A PRE-EXISTING FRACTURE

Assume a slightly compressible fluid fills the wellbore and a fracture and is injected at a constant rate and
at a pressure sufficient to create a new hydraulic fracture or dilate an existing fracture. A mass balance

during a fracture injection is written as

Storage

m; m
n out dpw , d(prf)
+ 1

awBP=ayBrpy =V dt d

where ¢ is the fluid leakoff rate into the reservoir from the fracture, ¢, = g, and V;is the fracture volume.

The material balance equation can be expanded using the product rule and written as

d,of de
" +2pf T (C-2)

dp,,
awBP =5 Brpy =V dt

+ 2Vf
The derivative with respect to time of the wellbore fluid density is written using the chain rule as

dp 1 dpy,, dp dp
o iy o | e (C-3)
dt Py dp,, dt dt

where ¢, is the isothermal wellbore fluid compressibility. Assuming the wellbore and fracture pressure are

equal, p,, = p;; the derivative with respect to time of the density of the fluid filling the fracture is written as

dpf _ dpyy
T—prfT, ......................................................................................................................... (C'4)

where c,is the isothermal compressibility of the fluid filling the fracture.

The material balance equation can now be written as

Bp—q.B,.p, = Vo2pre v s2p, ] 9w (C-5)
4D p C]Sf 7Pr =| Puwluw”w prf f pf dp r Y
w

or assuming a constant density, p = p,, = p,=p,, and a constant formation volume factor, B = B,, the

material balance equation is written as

1
qu :qW—E{CWVw+2Cfo+2?J7 ................................................................................ (C'6)
w

The dimensionless wellbore pressure for a fracture-injection/falloff is written as

P D P (C-7)

PwsDLp) = 011
l
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where p; is the initial reservoir pressure and p, is an arbitrary reference pressure. At time zero, the wellbore
pressure is increased to the “opening” pressure, p,, Which is generally set equal to p,, and the

dimensionless wellbore pressure at time zero is written as

PO TP ettt (C-8)

Pywsp (0) =
wsD PP

Define dimensionless time as

where L, is the fracture half-length at the end of pumping. The dimensionless reservoir flow rate is defined

as
95 Bu
dsp = e i (C-10)
2rkh(pg — p;)
and the dimensionless well flow rate is defined as
B
oo (C-11)

twsD = o rk(po - pp)

where ¢, is the well injection rate. With the dimensionless variables, the material balance equation during

an injection is written as

c d
pf %PwsD -
qu:qwsD_—zdL' ..................................................................................................... (C-12)
2mpehL 7 LD
where the propagating-fracture storage coefficient is written as

de
Cpf ZCWVW-I—ZCfo +2? e (C-13)

w

Define a dimensionless propagating-fracture storage coefficient as

A (C-14)

27r¢cthL3,

and the dimensionless material balance equation during an injection at a pressure sufficient to create or

Cpp

dilate a hydraulic fracture is written as

DD e (C-15)
dlLﬂ)

Solution Accounting for a Dilating Fracture, Before-Closure Storage, and After-Closure Storage

4sD =9wsD ~Cp

Consider a fracture-injection/falloff test with the entire fracture length developed instantaneously when the

injection begins or with a pre-existing fracture. The injection is at a pressure in excess of the minimum in-
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situ stress, and fracture volume changes are a function of fracture width — which is a function of pressure
during the injection and before-closure pressure falloff.

During a constant rate injection with a constant fracture length, the fracture volume is written as

Vf :hfl‘ffvf(pw(t)):Afﬁ}f(pw(t))' ............................................................................................ (C-].G)

The average fracture width, w £ (2, (), is a function of net pressure, p, = p..(¢) — p., and is written as

ho 5_; _ pw(;)f ~ e
where p. is the fracture closure stress and Sy is the fracture "stiffness.” Fracture stiffness, or the inverse of
fracture compliance, is defined by the elastic energy or "strain energy" created by an open fracture in a
rock assuming linear elastic theory is applicable. Table C-1 contains the fracture stiffness definitions for
three common 2D fracture models.**'® In Table C-1, £’ is the plane-strain modulus, R, is the fracture

radius of a radial fracture, &, is the gross fracture height, and L, is the fracture half-length.

Table C-1—Fracture stiffness for 2D fracture models.&%
Radial Perkins-Kern-Nordgren Geertsma-deKlerk
Vertical Plane Strain Horizontal Plane Strain
3rE' 2F' E’
(Sr)RaAD 167, (Sr)pkn ohy (Sr)epk _

The derivative of average fracture width with respect to pressure is written as

i, (C-18)
dp,, S r
A dilated-fracture storage coefficient can now be written as
Ay
Cru :chw+2§(Cfpn L] (C-19)
Hagoort,*™ and other investigators of waterflood induced fractures that followed,”* assume that
cfpn(t)+1£1, ............................................................................................................................... (C-20)

which is also a reasonable approximation for a fracture-injection/falloff test, and the dilating-fracture

storage coefficient can be written as
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Cpy=cyV, +2A—f (C-21)
fd ww Sf PP PP TP PP

which is constant and no longer a function of pressure. The dilating-fracture storage coefficient can be
written in dimensionless form as
Cap =

2rpey hL‘;

and the dimensionless material balance during an injection with a dilating fracture of fixed length is

written as

dp D
dsD = 9wsD —Cde d[WS N (C'23)

LfD
Following the injection, the falloff portion of the test begins, and a before-closure mass balance is written

as
Storage
m; m
n out dpw d(prf)

awBp—aqyB.p,. =V, ” +2 7 SRRSO (C-24)

which is the same as the dilating-fracture mass balance. Assuming the fracture length remains constant
during the before-closure falloff, fracture volume changes are a function of fracture width, and the before-

closure storage coefficient is equivalent to the dilating-fracture storage coefficient and written as

Ay
Cbc = CWVW +2——= Cfd e (C-25)
Sy
The dimensionless before-closure storage coefficient is written as
C
CheD = L5 s (C-26)
27r¢ctth

and the dimensionless before-closure pressure falloff material balance is written as

DD oo (C-27)
dthD

However, during the falloff portion of the test, ¢,p=0, and the before-closure pressure falloff

45D = 9wsD ~CheD

dimensionless material balance equation becomes

dp D
4sp =—Cpep dtsz et (C-28)

After fracture closure a constant after-closure storage coefficient is written as

Cac = CWVW + ZCfVﬁ" J E e e e e e e e e e e e e e e R e e e e e R e e e e E e R e e ey (C'Zg)
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where V7 is the residual fracture volume at closure. In some cases, no residual volume will remain after-

closure, and C,. = ¢,,V,,. The dimensionless after-closure wellbore storage coefficient is written as

C
CoeD = ¢2 ) et eeeeeeeeeteeeeeeeeeieeeereteiteeareteiteeareeeiteeartteiteeareteitteareteiteeaieerrtesiteerreesinerres (C-30)
2mpe,hl’y
and the after-closure pressure falloff dimensionless material balance equation is written as
d,
45D =—Coep ZwsD ....................................................................................................................... (C-31)
LD

The Heaviside unit-step function,®® is defined as

Ua:{o e, (C-32)

1, t>a

62-64

and following the technique of Correa and Ramey, a material balance equation valid at all times for a

fracture-injection/falloff test with a dilating fracture and constant after-closure storage is written as

d
(1_U(le)LfD j[qwsD - Cde ;Z;Zl)) ]

APYSD | ovvvvorseevisesesssese s C-33
asp = _(U(te)Lﬂ) U, )Lij beD dtW;D (¢-33)

U dpyysD
(¢, )LfD CacD d’Lﬂ)

where (z.),p is the dimensionless time at the end of pumping and (z.),p is the dimensionless fracture

closure time. The material balance equation can be expanded and written as

dp 4PywsD dpyysD
+U, C
_ dpyy, 4pywsD S (C-34)
4sp =|~Y(,) LD CpeD— dt fD D.y (t) i/ CheD diy
dpyys
—U(t )LfD acD dt w
but for a dilating fracture Cyp = Cyep, and the material balance equation can be simplified and written as
gen =|1-U q C dpwsD ‘U ® ) WwsD (C-35)
sD (te)LjD wsD ~%beD — diy LD (¢ )LfD beD ~CacD diy LD
The Laplace transform of the material balance equation® is written as
q q —s() _
WTSD_WTSDe e’L/D ~CpeD I:SpWSD ~PwsD (O)J
o= } e (C-36)
4sD _ (t.) LD ~styp
HCpeD ~CacD)| PwsD ~ PywsD (0) _Jo PwsD ULt LD
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or after canceling terms and simplifying the equation, written as

GwsD  9wsD —SW)L _
% - % e /D _ CacDPwsD * PwsD 0Cqcp
R (C-37)

() —st '
_(CbcD_CacD)JOC /P D PwsD LMD

asp =

A solution is developed by applying the superposition principle, which is written as

'L/D dpp(trmy —
pwsD:J DD D D) e (C-38)

qSD(TD)dt— ™D
0 LD
The initial condition in the fracture and reservoir requires a constant initial pressure, pp(t,p) = 0, and with
the initial condition, the Laplace transform of the superposition integral is written as
_ - _ p
PusD =TsDPD S Gsp = 25D o e (C-39)
SpD

Combining the transformed material balance equation and superposition integral results in

— — _S(te)L _
4wsDPD ~4wsDPD¢ /D + PwsD (O)CachPD

PwsD (1 SzCacDPD) (t.) /D —st
— c/L LD
(CbCD CLICD )SpD J: e

e (C-40)

'

PwsDULmtLm

Let the Laplace domain dimensionless fracture solution for a well produced at a constant rate with after-

closure storage be written as

D (C-41)

PacD = 2 _
1+s CachjD

and the Laplace domain fracture-injection/falloff solution is written as

— — - (tg ) L —
9wsDPacD ~9wsDPacD® Dy PuwsD O CocDPacD

_ (tC)LfD =Sty
~(CpeD = CaecD)PacD «[0 e P

BroeD = S (C-42)

Pwsp (LD)tLD
Inverting the Laplace domain solution results in the time domain dilated-fracture injection/falloff solution
written as

9wsD [pacD ([LfD) ~PacD ([LfD - )LfD)} + PwsD OChcDPach (thD)

PwsD (thD) =N e (C-43)

(), ' ,
~(Cpep ~ CacD)Jo P PacD (thD ~7p)Pywsp (D)7
Solution Accounting for a Propagating Fracture, Constant Before-Closure Storage, and Constant
After-Closure Storage
Consider a fracture-injection/falloff test with fracture length and width developed during the injection.

During a constant rate injection with changing fracture length and width, the fracture volume is written as
O ) R 2 N 3 o N 3 (C-44)
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and the propagating-fracture storage coefficient is written as

dV 1 (pyy ()
LA

Cop (Pu(0) =,V +26 £V £ (P () + 22 s (C-45)

w

With dimensionless variables, the material balance equation for a propagating fracture during injection is

written as

o Pw ) oo e (C-46)
2rmpey hLif dthD

4sD =49wsD ~

Define a dimensionless fracture storage coefficient as

272'¢cthL3,

and the dimensionless material balance equation during an injection at a pressure sufficient to create and

O =Lt (C-47)

extend a hydraulic fracture is written as

d
95D = 9wsD _Cpr(pWSD(ZLfD)) ;:;) C e (C'48)

62-64

Using the technique of Correa and Ramey, a material balance equation valid at all times for a fracture-

injection/falloff test with fracture creation and extension and constant after-closure wellbore storage is
written as

d
(1_ U(te)LfD ){qwsD - Cpr (PysD (thD ) ZZ£

4pywsD TN (C-49)
dthD

45D = _(U(te)Lﬂ) Y m jcbcD

dpysD
_U(tc) LD CacD dip g

or expanded and written as

dpysD
dthD

9wsD ~ U(te)LfD dwsD ~CpD (PywsD (thD )

apyysD e (C-50)
dthD

4sD = +U(te)LfD [ijD (PwsD (tLjD )- CbcD}

dp wsD
dt LfD

+U(tc)LfD [CbcD ~CucD :I

The Laplace transform of the material balance for an injection with fracture creation and extension is

written as



asp =

9wsD 0 ‘LD c

e—s(te)LfD o
_qWSD —_J

N

0 —gt
+J e SLfDC
0

_J'(fe)LfD e—sthC
0

0 —st
_Jo e 1P CpeDPwsD ULt 1D

[

—SIL ,
0 /P CoepPiusD ()L

_ )L
+(Cpep — CaCD){SpwsD — Pysp(0) - JO c'LD ¢

1D (PysD UL Pysp )t

/D (Prwsp L) PysD L)t D

LD PywsD

oD (PysD UL Pywsp )i

(thD )dthD

.......... (C-51)

After expanding and simplifying, the material balance equation is written as

—S(te)LfD ) st
D g S| P P Copp (s 1) s 1 ML

=5CaeDPwsD + PywsD (0CqcD

. J(le) LD e—st LD
0

~4wsD
7 = R (C-52)
S

CoeDPwsD CLmtp

t)rm —st '
Oc /P LD PwsD (L)L

_(CbcD - CacD)J

Developing a solution requires an approach similar to the dilated fracture case, but with the fracture half-
length increasing during the injection, a dimensionless pressure solution is required for both a propagating
and fixed fracture half-length. A quasi-static dimensionless pressure solution assumes the fracture half-
length is constant for each instant in time, and a quasi-static dimensionless pressure solution is developed

by integrating the line-source solution, which is written as*
= qu I

A = )
plS 27ks O(rD ll)

from x,,— L(t,p) and x, + L(t,») with respect to x', where L(z;p) is the fracture half-length during
propagation. In terms of dimensionless variables, x',» = x"./L,and dx', = Ldx',p, where L, is the fracture
half-length at the end of propagation, a quasi-static solution is developed by integrating the line-source

solution from x,,p — Lip(tp) 10 x,up + Lip(t1p), Which is written as

GuL s waD +Lp ()

> ks KO|:\/;\/(XD_x;/VD)2+(yD_yWD)2:|dx{/VD e (C-54)

A=
xwp ~Lptrm)

Assuming that the well center is at the origin, x,.» = y,.p =0,
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—_ GuL s JLfD(thD)

L Ko |:\/;\/(xD o+ ) }dxer e ———— (C-55)

~Lip )

Assuming uniform flux, the flow rate is written as

Q= G2RL{ELAD) 1 v (C-56)

and the plane-source solution can be written in dimensionless terms as
Lip(irm)
P :q_DziJ PEPT {J;\/(XD_O,)ZWD)Z}M, .................................................. (C-57)
Lptm) 25 )1 g ()

where

L (C-58)

qrH
L(t1/p)
LD (D) = =2 s (C-59)

Ly
and defining the total flow rate in the time domain as ¢(z), the dimensionless flow rate is written as

qD(thD):qizl, ............................................................................................................................ (C-60)
t

where it is assumed that the flow rate is equivalent to the constant total flow rate at each point in time
during fracture propagation such that ¢p(z;p) = 1. The solution is evaluated in the plane of the fracture,

4

and after simplifying the integral using the identity of Ozkan and Raghavan,"* a quasi-static

dimensionless uniform-flux solution in the Laplace domain for a variable fracture half-length is written as

11| Nulplum)+ap) VulL i (typ) - xp) o1
pplffD - LfD(thD) zsﬁ[ 0 KO [Z]dz+f0 KO [z]dz ) e ( )

and the infinite-conductivity solution is obtained by evaluating the uniform-flux solution at Lxp = 0.732

and is written as

B 1 1| NuLp(pp)a+0732) Vul i (t1p)(1-0.732)
=— Kolz]dz+ Ko|z]dz |- - (C-62)
PpuD LfD(thD)zs«/E[JO olzld=+ g olz]dz
The dimensionless fracture half-length varies between 0 and 1 during fracture propagation, and using a
power-model approximation,® a dimensionless fracture half-length can be written during propagation and
closure as

L(trp) _[ LD

- (te)LfD

N
Liptum)={ L, ] D <ULD | oo (C-63)

1 thD Z(te)LfD
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where the power-model exponent ranges from ay = % and for a low efficiency (high leakoff) fracture and
ay =1 for a high efficiency (low leakoff) fracture.

Valké and Economides® approximate dimensionless pressure during fracture propagation using an early-

time approximation for the infinite-conductivity fixed-length fracture solution written as

(D D) = LD )y + wovrvssesesessesesesseeess e (C-64)

where the dimensionless time, ¢, is defined in terms of the fracture length at time (¢), and written as
k(6),

W TN (C-65)

(thD)n =

Fig. C-1is a graph of dimensionless pressure versus dimensionless fracture half-length for the propagating
fracture solution (Eq. C-62) and the early-time approximation of a high efficiency fracture with ay= 1.
The early-time approximation with dimesionless time as a function of fracture half-length at time (¢),
generally overlays the propagating-fracture solution after about 5% of the fracture half-length is created.
For a low efficiency fracture with ay = % the approximation is exact during the entire fracture propagation

period.

During the before- and after-closure period when the fracture half-length is unchanging, the dimensionless

pressure solution for an infinite-conductivity fracture results,® which is written in the Laplace domain as®

_ 1 u . u(1-0.
pﬂ):m{fa/— (U+0.732) g 2] dz + jaf @ 0732)K0[z]dz:|. ...................................................... (C-66)

The two different reservoir models, one for a propagating fracture and one for a fixed-length fracture, can
be superposed'® to develop a dimensionless wellbore pressure solution by writing the superposition

integrals as

JthD dppr (thD —TD)
pWSD = - 5

'LiD d -
J ) Pl -p)
0

. am@p T v e
where g,p(t,p) is the dimensionless flow rate for the propagating fracture model with propagating-fracture
solution, p,n(t,p) , and gmp(t.p) is the dimensionless flow rate with a fixed fracture half-length model used
during the before- and after-closure falloff period. The initial condition in the fracture and reservoir is a
constant initial pressure, pp(tp) = puo(typ) = poltyp) =0, and with the initial condition, the Laplace

transform of the superposition integral is written as

ﬁWSD = qpmsl_)pj@ + qj@s‘ﬁj@ e e e e e ey (C'68)
The Laplace domain dimensionless material balance equation can be split into injection and falloff parts
by writing as

qSD qum +qu, .......................................................................................................................... (C-Gg)
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Dimensionless Pressure, pip
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Propagating Fracture Solution
Infinite-Conductivity Fracture
Power Model Exponent (o = 1)
Dimensionless Time at End of Pumping (te)LfD =0.001
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Dimensionless Fracture Half-Length, Lip(t, ;p)

Fig. C-1—Comparison of Laplace Domain propagating fracture solution with early-time infinite-
conductivity fracture approximation with dimensionless time as a function of fracture half-

length at time (2),..

where the dimensionless reservoir flow rate during fracture propagation is written as

S () p s
q,ﬂ):—qij—qwsD—e —J LD SUD -

0 p/D (PywsD (thD))p{/vsD (thD)dthD’ ..........

and the dimensionless before- and after-closure fracture flow rate is written as

N



Pwp O Cycp —5ChepPrysD

(Ze)LfD e—SthD

T =|+Cpen J . et (C-71)

PwspD LML

((:c ) st

~(Cpep — CacD)J PwsD (L)L

Utilizing the superposition principle to develop a solution requires that the pressure-dependent
dimensionless propagating-fracture storage coefficient be written as a function of time only. Let fracture

propagation be modeled by a power model and written as®

o
A e (C-72)
Af hfo l‘e
Fracture volume as a function of time is written as
N R G ) N (C-73)
which, using the power model, can also be written as
L y0-p)( ) i
Vf(pw(z))_hfoT o OSSOSO (C-74)
The derivative of fracture volume with respect to wellbore pressure is written as
a
A B (©-75)
dpw Sf tp
Recall the propagating-fracture storage coefficient is written as
av 1 (pyy (1))
Cpf (P @) =), V3 + 26‘f Vf (P () + ZT ) re et oo et eaenrenren (C-76)
w
which, with power-model fracture propagation included, is written as
heLe( (9N
Cpf (o) =V + 2%{% (c £ Pn +1) e (C-77)
f e
As previously noted, ¢p,(f) < 1, and the propagating-fracture storage coefficient is written as
anN
Ar| _fm
Cpf (thD) = CWVW + 2S_ T ) e e e e e e e e e (C'78)
J \Ve/L/D

which is not a function of pressure and allows the superposition principle to be used to develop a solution.

Combining the material balance equations and superposition integrals results in
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S(l‘e)LfD _c

dwsDP pfD ~ qwsDﬁpre_ acD [sﬁfD (SEWSD - pwp(0) ):|

_ ) —st .

) 0 PP ) Phsp apXingm
PwsD = ()1 —st
+SI_7fDCbcDJOe /D LD PwsD1D)

((JZC)LfD e P [Cpop—C

—sp D J acD } PwsD (ZLfD )dthD

and after inverting to the time domain, the fracture-injection/falloff solution for the case of a propagating

fracture, constant before-closure storage, and constant after-closure storage is written as

GyusD | 2D (D)= P typ ~ ) 1) |

‘LD, ,
~CaeD Jg ™y ' ~7p)Pywsp (Fp)dTp

- j(fe)LfD , e (C-80)

PwsD L) =| =g Pt —7p)Cpp (tp)Pywsp (Tp)dTp
e ,
+Cpen Jo “p 'mLp —7p)Pywsp(Fp)dip

()
Jo© P

_—(CbcD ~CacD Pyt ~7p)Pwsp(Tp)dep |
The propagating-fracture solution for a single vertical fracture, p,mn(f.p), can be written as

PprfD(typ)  1yp < (te)p

Pop(tim) = ’
pDTLD {pr(thD) tp > (o)1

or using the unit-step function written as

ppr (thD) = (1_U(te)LfD )pPVfD(thD) +U(te)LfD pr(thD) S (C-82)
where the solution during fracture propagation is written as
_ 1 1 [ NuL (e p)a+0732)
P =L i) 25 | 1O &
DVLD) 2s\u

with dimensionless fracture half-length defined in the Laplace domain as

olz]dz+ ja/; Epuma-0732) 1, . (c83)

L(tymp) :{ ‘LD

aN
Lipump)=1 Ly (te)LfD] R G (C-84)
1 tp 2 (te) LD

Solution Accounting for a Propagating Fracture Storage, Before-Closure Storage, Constant
After-Closure Storage, and After-Closure Radial Flow

The previous fracture solutions assumed fracture flow after-closure, but it is also likely that after-closure
radial flow occurs when little or no fracture conductivity remains after fracture closure. The

dimensionless material balance remains the same for the after-closure radial flow case and is written as
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d
(1_ U(te)LfD j{qwsD - Cpr (PwsD (thD ) szv—sf'?

dpysD TN (C-85)
dthD

45D = —(U(re)Lﬂ) Y m ijcD

apyysD
“U,) LD CacD 1D

where the dimensionless after-closure storage coefficient is defined as

Y (C-86)
2e,hly

The dimensionless wellbore pressure solution for flow from a propagating fracture, a fixed-length fracture

Ca cD

during closure, and a perforated (radial) interval after closure can be written by applying the superposition

principle as

3 ¢

L ’ -

PwsD = Z 1IO j@qSD]pDJ (thD —TD)dz'D e et e e e e e e e e e e e e e e e e e Eeareeraararanreananes (C 87)
J:

or by expanding the summation written as

t
Jo”” app P oy ~7p)ep

‘LD .
PwsD = +fof amPmlymp-tplip |’
L .
+lo ™ 4,p0ip (/D —7p)d7p

where g, is the after-closure dimensionless flow rate for the radial system and p,p(t.p) = po(tm) + S is
the dimensionless radial flow reservoir solution, p,p, with skin effect, S. Note that dimensionless time is
defined in terms of the fracture half-length; thus, fracture half-length is the characteristic length used in the
dimensionless radius definition and radial solution.

The dimensionless material balance can also be writtern in terms of before-closure and after-closure
components as
qSD :qpr +QfD +qu, .................................................................................................................. (C'89)

where, utilizing the power model, the flow rate for a propagating fracture is written as

4 ws
dpfD = (1—U(,6)Lﬂ) j[qwsD ~ComtLp) dl;L}z?J s (C-90)

The flow rate for a fixed-length closing fracture is written as

T (C-91)
dthD

q4fp = _(U(te)LfD Yem ijcD
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and the dimensionless after-closure radial flow rate is written as

2T (C-92)
dlLﬂ)

The solution is obtained by applying the superposition principle for the propagating fracture, fixed fracture

9D =Y(t,) 1 p €D

half-length, and radial model, which when combined with the material balance equations in the Laplace

domain can be written as

_ _ =st)p
9wsDP pfD ~9wsDP pfD€ e’LD
-Cp [SﬁsD (Sl_jwsD + PywsD (0))]

_ ) —st ,
) 0 PP ) Phsp X gm
te) 1D S
0
) st '
_CbCDSprJOC fDe § LpoWSD(thD)dthD

)i -
+Cpspsp Jo P D PwsD (L) LD

_ C e (C-93)
PwsD =

+CpeDSP ﬂ)J PwsD (L)L p

After inverting to the time domain, the dimensionless pressure solution accounting for a propagating

fracture, before- and after-closure storage, and after-closure radial flow is written as

GysD | PpD (D)= P o0 D ~ ) 1) |
t
~Cp oLfD Psp\tp ~7p)Pywsp(Zp)drp
(t0) . .
S0 P leam D)o D) Psp DM | (C-94)
DI ,
+Chen Jo - Pty ~ D) Phsp (tp)Tp

t
+Cp ], (() LD Psp(Lm —7p)Pywsp (Fp)dtp

()
~Chen g D Pty —7p)Pywsp tpldtp



APPENDIX D

ANALYTICAL PRESSURE-TRANSIENT SOLUTION FOR A WELL
CONTAINING MULTIPLE INFINITE-CONDUCTIVITY VERTICAL
FRACTURES IN AN INFINITE SLAB RESERVOIR

Ozkan and Raghavan® write the point source solution in the Laplace domain for an infinite-slab reservoir

between impermeable boundaries at zp = 0 and zp = hp as

_ gu 2 Zp ZwD
=—2 | Kn(r \/; +2 Kn(rn&. )cos| nr—= |cos| nx g ereeneereneeeeraeaieneans (D-l)
P'ps = 2xkihpys 0UpVH) nE 0UD%) [ hDj [ hp H

where L. is a reference length for the system. Assuming permeability isotropy, the dimensionless variables

are defined as

By 2 e (D-2)
LC
z
e ee——eeee——eee—————eee————eeeetteeee——teeai——eeaa—teeeaa—teeai—eeeanrteeaaaeeeaareeeenreeeans (D-3)
ZD LC
z
z ettt et at s ae sab e s et at e et e e et seR e bRt s bt s bt s at e ae s Rt satseat e atenesenesentaentsentons (D-4)
wD Lc
and
- - 2 - 2 D-5
VD— (XD xWD) +(yD wa) © heeeeeeetaeeeeateetaeeeaattetanetaatietanieaatietanisaatittanitaatittantottttttanttarttstanes ( )

The Laplace variable is denoted by s, and the point-source solution accounts for dual-porosity reservoirs

with u defined as

U SFT(8) 5 oottt e st b e et (D-6)
and ¢, defined as
2
£, = |u J{EJ e et e e et e e e s (D-7)
hp

where for a single-porosity f{s) = 1. For a dual-porosity case with pseudosteady-state interporosity flow,
As) is written as™

_A+o(l-w)s
S = iy

for transient interporosity flow with slab matrix blocks,””*®

(s)=w+ \/ AAZ®) onh \/ S e (D-9)
3s A
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and for transient interporosity flow with spherical matrix blocks,””®

f(s):a)+si{\/15(l;w)s coth\/ls(lgw)s—l] .......................................................................... (D-10)
S

Assuming constant flux, g, the line-source solution for a fully penetrating wellbore is developed by

integrating the right-hand-side of the point-source solution from 0 to # with respect to z',. In terms of

dimensionless variables with z',,, =z',/L., the point-source solution is integrated from 0 to /p, which is

written as
h /
} jOD KO(FD\/;)dZWD +
Al_jls =—— hD LN e (D-11)
z z
2zkhpys D KO(ngn)cos(nﬂh—D]J cos[mz ZVDsz’WD
n=1 D))o D

Only the first integral term is nonzero, and the fully-penetrating line-source solution for an isotropic

reservoir is written as
— qu
AD 1. = B K (Fy V) « covveeeeeeeeeeeeee e (D-12)
plS 27Z'kS 0( D )

The plane-source (vertically-fractured well) solution is obtained by integrating the right-hand-side of the
line-source solution from x,, — L, and x,, + L, with respect to x',. In terms of dimensionless variables with
x'wp = x'y/L, the line-source solution is integrated from x,,p — Lyp to x,,p + Lyp, which is written as

- +L
A_ — q/uLC XWD fD K
2rcks 0

{\/Z\/(xD—x’WD)Z+(yD_yWD)2}dx'WD. .................................. (D-13)
wa _LfD

Assuming that the well center is at the origin, x,,p = y,,p = 0, the plane-source solution is written as

~ L
L.
Ap = IHEe /D K, \/;\/(xD_x'wD)er(yD)z T — (D-14)
2rcks —L
D
With uniform flux, the constant flow rate is written as
q= qZth 5 eeeeeeeeheeeheeeaheeehee e b et e hee e b et e be e e b et e b et e b et e b et e b et e be e e b et e ebe e e b et e be e e bt e e e bee e bt e e s ateeebt e e sateenanees (D-15)

and plane-source solution can be written in the Laplace domain as

L
l_’D:q_DiJ /D KO[\/Z\/(xD—a)er(yD)z}da, ............................................................. (D-16)
Loy2s)_
/D Lo
where
L, (D-17)
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General Solution for a Vertical Fracture at an Arbitrary Angle from the xp-axis
Fig. D-1 illustrates a vertical fracture at an arbitrary angle, 0, from the xp-axis. The uniform-flux plane-

source solution assuming an isotropic reservoir is written in the Laplace domain as

L
ﬁDzz 1 [ﬂ) KO[\/;\/()}D_Q)zJF()}D)z}da, .............................................................. (D-20)
SL]D _L]D

where dimensionless variables are defined as

XD S TP COSO, s e (D-22)
VD SFDSINB, 5 oo (D-23)
Xp=XpC0SEs + PP SINOy s oo (D-24)
ID =YD C0SEs —XDSINO L5 o (D-25)

and O, is the angle between the fracture and the xp-axis, (rp, 6,) are the polar coordinates of a point
(xp, yp), and (a,, 0y) are the polar coordinates of a point along the fracture.'” Combining Egs. D-22 through
D-25 results in

JACD =Ip COS(&,, _gf)’ ...................................................................................................................... (D-26)
and
-);D =Ip Sin(t9r - Hf) © e eeeeeaeeeeeeaeeaeeea et e a et et a e h et et ea e st e e ea e st a e eaeea e aeea e aeea e et aeehaeaeeneenaeraeenans (D-27)

Consequently, the Laplace domain plane-source solution for a fracture rotated by an angle 6, from a point

(rp, ©,) is written as

L
1 /D

KO \/;\/[FD cog(@r —Qf)—a}z +rg sinz(gr _gf) At - oeeveenvrenireennes (D-28)

The single fracture Laplace domain solution has the fracture aligned with the xp-axis, and the single

fracture solution is a special case of the general plane-source solution. With 0, =0 1o which essentially

aligns the fracture with a reference axis, the general Laplace domain solution reduces to the known single

fracture plane-source fracture solution written as
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Fig. D-1—A vertical fracture at an arbitrary angle relative to the xp-axis.

L
Pp = ! J » K, [\/ﬁ\/(xD —a)? +(yD)2}1a. ................................................................... (D-29)
2L J -1y

General Solution for Multiple Arbitrarily-Oriented Uniform-Flux Vertical Fractures
For a well containing 7, fractures connected at the wellbore, the total flow rate from the well assuming all

production is through the fractures is written as

where ¢,p is the dimensionless flow rate for the i™-fracture defined as

i i s (D-31)

ny
D4
k=1
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and ¢; is the flow rate from the /"-fracture.

For all fractures intersecting the wellbore, the wellbore pressure is the same and written as
poD:(wa)f 5 521,2, cee }’lf ............................................................................................. (D-32)

2

The dimensionless pressure solution is obtained by superposing all fractures'®” and written using the

superposition integral as

n
/. t

poD:(PwD)fZZIOLfDQiD(TD)(p,D)Ei(thD_TD)dTD R N T (D-33)
i=1

where the pressure derivative accounts for the effects of fracture 'i' on fracture 'C'.

The Laplace transform of the dimensionless rate equation is written as

nf 1
Z i) = » wereererer e s (D-34)
i=1 §

and with the initial condition, pp(#,p=0)=0, the Laplace transform of the dimensionless pressure

solution is written as
ny
(Pwp)s :zS@D@DM , (=12, ... ST 5 (D-35)
i=1

where (p),),; s the Laplace domain uniform-flux solution for a single fracture written to account for the

effects of multiple fractures as

Lgip
(Pp)i =;J K()[\/;\/[”D cos(ef _91')—0!]2+r5 sin2 (0, —@)}da- ........................ (D-36)
2SLﬁD _LﬁD

The uniform-flux Laplace domain multiple fracture solution can now be written as

"fog Lgp 2
P =(Pwp)e =Z;£D J Ky {\/;\/[’”D cos(6, —6;)-a ] +rpsin® (6, —Hi)}d“
i=1 “%fiD J ~Lgp

L T (D-37)

For a uniform-flux fracture system, the flow rate from the primary fracture, L, p, is written as

and the flow rate from the other fractures is written as

ql = 2hf5iLflq N i= 2’ 3, ey }’lf 5  seeeteseecteceeerecaeteieaeteetetetetetatetetatttitacttetetetetetatetetactritattrttrttretes (D'39)

where the normalized fracture length is written as

L
5=t T —— (D-40)
Ly
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The well flow rate is written as

n
S
qy = 2;,/,;/,1525,{ s e eeeeeeeeee et eeteeeeeueeeeee—eaeteateateateataaaeaaearteateateataaeeate st eetesteaeeaneeeresenenrnens (D-41)
k=1

and the dimensionless flow rate is defined as

B (D-42)
9y
> 5%
k=l
The Laplace transform of the constant dimensionless flow rate is written as
_ o; .
aip = }’lfl 5 ettt ettt h ek bbbkt h btk bkt h ekt e h bt h ket b et ekttt b etk (D-43)
N z §k
k=1

and the Laplace domain uniform-flux multiple fracture solution is written as

LﬁD 3
— — < s 1 rpcos(6, -6 )—a
poD :(pWD)Zzznfl 2SL— KO \/; |: ) 5 g l) :| Aop « cooerererssessieeiiinnn (D-44)
i=1 fiD +rpsin” (6, - 6;)
Z5k —-Lgip

k=1
For the special case of a cruciform fracture with €, =0 and &, =m/2, the uniform-flux solution at the

wellbore is written as

1 [fLﬂD K, [\/L_,\/aiz} doa + foZD K [ﬁ@}da] e, (D-45)

Pyp =
(1+52) 2SLle -Lrip -Lrop

For L;;p =1 and Lyyp = J,, the uniform-flux Laplace domain solution is written using the identity of Ozkan

and Raghavan''* as

_ 1 1 | ¢Vu Sy u
poD:mm{J.o Ko[Z]dZ'i‘J.O Ko[Z]dz:|, ................................................................. (D-46)

and for the special case when L;p = Lpp, the Laplace domain uniform-flux pressure solution is written as

which is identically equal to a single planar fracture uniform-flux solution.

Solution for Multiple Arbitrarily-Oriented Infinite-Conductivity Vertical Fractures

For a single vertical fracture, an approximate infinite-conductivity solution is obtained by evaluating the
uniform-flux solution at an equivalent average pressure point, (xp=0.732, yp=0). However, the
equivalent average pressure point is dependent on the system geometry and must be determined

numerically for each multi-fracture system.'®
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Kuchuk et al.'™ encountered a similar problem when deriving the infinite-conductivity solution for
horizontal wells and elected to use the pressure-averaging technique proposed by Wilkinson and
Hammond.'” The pressure-averaging technique approximates the infinite-conductivity solution by
averaging the pressure along the flowpath using the uniform-flux solution, which according to Wilkinson
and Hammond approaches the exact solution as the wellbore radius tends to zero.'**'® Pressure-averaging

104
L,

was utilized in developing the horizontal well solution of Kuchuk et a the dual lateral solution of

103
L,

Ozkan et a and the multi-lateral solution of Yildiz.'"> However, it is unclear if the pressure averaging

technique is appropriate for multiple intersecting vertical fractures.

For a single infinite-conductivity fracture, Fig. D-2 contains a log-log graph of dimensionless pressure and
dimensionless pressure derivative versus dimensionless time evaluated using the uniform-flux solution
with an equivalent average pressure point, xp = 0.732, and using a pressure-averaging approximation. The
solutions overlay in the very early time, #,p < 107, and as pseudoradial flow develops when 7, > 3, but
diverge during the intermediate dimensionless times. However, the maximum deviation between the

solution and pressure-averaging approximation is only 7.30% and is observed at #,5 = 0.60.

The pressure-averaging approximation for multiple infinite-conductivity fractures is developed from the
definition of the average of a function, which is written as
b
[ fodx
() = T (D-48)
b-a

where for a pressure-averaging multiple infinite-conductivity Laplace-domain fracture solution, the
function f{x) is the pressure in the ¢™-fracture defined by the Laplace domain uniform-flux multiple-
fracture solution (Eq. D-37) as

ne

Logp (P 2, 2.2
f@)=Prp) =y, 2 J KO{\/;\/[FDCOS(HZ—HI-)—Q] + 7 sin (@—@)}da. ....... (D-49)

i=1 2LﬁD ~Lsp

With the definition of the average of a function, the pressure-averaging approximate infinite-conductivity
solution is written as a system of equations with the dimensionless pressure in the Laplace domain for the

M-fracture written as

Lyip rLgp 2
) T rpcos(8, -6 -«
(ﬁLﬂ))/=27q‘/D = Ko|Nu [D (0= } dadrp
A 2LyipLyp 2s +rpsin’ (6, -0, )
~LyipY —Lgp
L T, (D-50)

and the dimensionless flow rate for all fractures in Laplace space written as
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Dimensionless Pressure or Derivative, p sp or dp ¢p/d(In t_¢p)
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Dimensionless Time, t ip

3

Fig. D-2—A comparison of the equivalent average pressure point infinite-conductivity solution
with the pressure-averaging approximation for a single fracture.

2 G D = (D-51)
— K
j=1

The system of equations is formed by recognizing that for infinite-conductivity fractures, the Laplace

space dimensionless pressure in each fracture is the same, which is written as

(Proh =Pyp)a == @Lﬂ))nff SDID » e (D-52)
and the system of equations can be written as
14y Ap A __1_7/Lj\D_ _8_
1L 4y Ay Ans |\ ap . bss
. 2l e Il F (D-53)
1 Anfl Aan Anfnf _ : 1
0 1 11 Iy ]|
where
Lsp L
A (Lgp
=n 1 2, 2.2 i
ij_ﬁ%J J’ KO[\/;\/[rDcos(Hi—Hj)—aJ +rpsin (0,-—0]-) dadrp = e (D-54)
fiD*=fiD 7LﬁD _L/jD
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A semianalytical multiple arbitrarily-oriented infinite-conductivity fracture solution can also be developed
in the Laplace domain without resorting to the pressure-averaging technique. Assume flux is not uniform
along the fracture(s), and the dimensionless pressure for a fracture at an arbitrary angle, &, accounting for

the effect of a fracture(s) at angle 6 is written as

Lmp)i
(P =5 J @)Ky {J;J[GD cos(0,—6,) |+ sin® (0 _@)}da, .......... (D-55)
L) ~(Lyp);

where i,0 =1, 2, ..., n;. Note that the dimensionless flow rate for the i"-fracture is defined as (D) = 9i/Gwi»
where ¢, is the total flow rate assuming all production is from the /"-fracture. Similarly, the dimensionless
fracture half-length is defined relative to the i"-fracture half-length, (Lyp); = Ls/Ls = 1. If a point (r;p, ) is
restricted to a point along the i™fracture axis, then the reference and fracture axis are the same and
Eq. D-26 results in

Xip = 1D COS(0; = ;) S HiD 5 v (D-56)

and the Laplace domain dimensionless pressure for fracture £ accounting for the effects of fracture i is

written as

1
(Pp)ii = % J @p)i(@.9)K {\/E\/[fc,-,) cos(0, - 6)—a ]’ +£23, sin? (6, _gl.)} L (D-57)
-1

Assuming each fracture is homogeneous and symmetric, that is, (gp)iat) =(gp)i(-o.t), the reservoir

component of the infinite-conductivity solution can be written as

1
J (@p)i(a,s)Kq {\/;\/[)?w cos (6, —9,-)—0:}2 +fcl~20 sin? (6 —Hl-)}da
-1

1

Ko |:\/;\/|:)AQD cos(6y —9,-)—0:]2 +fcl.2D sin? (6, —Hi)}

= | @pli(as)

+K {\/;\/[’AQD cos(6y —Hi)+a]2 +fcl.2D sin? (6 —:9,-)}
0

and the Laplace domain dimensionless pressure for an arbitrarily-oriented infinite-conductivity fracture £
in an isotropic reservoir accounting for the effects of an infinite-conductivity fracture i is written in the
Laplace domain as

1

Ky |:\/;\/|:)ACID cos(6y —Hi)—x’]z +fcl.2D sin? (6, —9,»)}
(Pp)ii =3 | (@p)i(xs9) dx'>

+K |:\/;\/|:le cos(6, —6;)+ x']z +)€i2D sin? (6, -6 )}

[0 = 1,2t L f oo (D-59)
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A semianalytical solution for the multiple infinite-conductivity fracture problem is obtained by dividing

cach fracture into ny equal segments of length, A%;p = L;p /n ., and assuming constant flux in each

segment. Note that L, = L,/Ly where Ly is the half-length of the primary fracture. Although the number
of segments in each fracture is the same, the segment length can be different for each

fracture, AY;py # A%;p. As shown in detail in Appendix E, the discretization allows the integral term to be

written as
1
Ky [\/ﬁ\/[ﬁm cos(6; —9,.)—x']2 +32 sin® (6, —e,-)}
5 (@p)i(x',s) dx’'
+K {\/;\/[)@D cos(6y —¢9l-)+x’]2 +fcl.2D sin? (6,-6; )}
0
(Fip)m+1 3
ny KO{\/Z\/[(;eiD)j cos (0 —6;)-x' | +(Eip) sinz(eg—ﬂi)}
_ z (gD )im (s) dy' > --(D-60)
_ 2 2
m=1 +K0 |:\/L_l\/|:()%lD)j COS(eg —6,-)+x'} +()%iD)3‘ sin2 (9/ —0i):|
(JAC[D)m

and the Laplace domain dimensionless pressure for an arbitrarily-oriented infinite-conductivity fracture £
in an isotropic reservoir accounting for the effects of an infinite-conductivity fracture i is written in the

Laplace domain as

(%D )1 - R
) ng T ) Ky {\/;\/[(xlp)j cos (6 701-)7)5} +(¥;p)jsin (61(01»)} ’
(Pp)ui(s) = 3, P2 '
m=1 +Ko {JZ\/[(;Q,-D)_/ cos (6 70,-)+x/f +(%p)F sin® (6, a,-)}
[4ip],
i,€:1,2,...,nf andj,m:1,2,...,nfs. .............................................................................. (D-61)

Solution for Multiple Arbitrarily-Oriented Infinite-Conductivity Vertical Fractures Considering
Permeability Anisotropy

The multiple arbitrarily-oriented infinite-conductivity fracture solution considering permeability

anisotropy in an infinite-slab reservoir is developed by defining the dimensionless distance variables as”

et e ettt s et (D-62)
XD LC kx
[k
P e e e (D-63)
Lok,
and
= kb, o oottt (D-64)
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The dimensionless variables rescale the anisotropic reservoir to an equivalent isotropic system. As a result

of the rescaling, the dimensionless fracture half-length changes and must be redefined as'*

Ly [k k
’ fi 2 .2
L =T [ COST @ F —SINT @4 5 ceeerernreeneetaeeiieetieetia ettt ettt eta ettt et et ettaatn et rannaanns (D-65)
LA \/ ke o Tk

where the angle of the fracture with respect to the rescaled xp-axis is written as

sztan_l k—xtanﬁf , O<Hf <£. ..................................................................................... (D-66)
A V&, U

When 6,= 0 or 8,= n/2, the angle does not rescale and 8= 6:
The dimensionless fracture conductivity is defined in the original anisotropic system, which is written as,

krw

Gy e oot e e (D-67)
kL ¢

but Spivey and Lee'” note an equivalent dimensionless fracture conductivity can also be written in terms

of the equivalent isotropic system.

With the redefined dimensionless variables, the Laplace domain dimensionless pressure for an arbitrarily-
oriented infinite-conductivity fracture £ in an anisotropic reservoir accounting for the effects of an infinite-
conductivity fracture i is written in the Laplace domain as

1

Ko |:\/;\/|:ng cos(6; —6’,-’)—x']2 +5cl% sin’ (6 —0{)}
dx'>

(Pp)iei(s) = N (@p)i(x',s)
+K, {JZ\/[@D cos(0; —9,-')+x']2 +372 sin? (6 —9;)}
0
F 0= 1,200t oo (D-68)

where the angle, &, is defined in the rescaled equivalent isotropic reservoir and is related to the anisotropic

reservoir by
7 6=0
0 = tan™! k—xtanﬁ 0 <G T/ 2 worrmmeeesssmmssisss sttt (D-69)
k)’
0 0=r/2

After discretizing the integral term, the Laplace domain dimensionless pressure for an arbitrarily-oriented
infinite-conductivity fracture ¢ in an anisotropic reservoir accounting for the effects of an infinite-

conductivity fracture i is written in the Laplace domain as
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[;C‘,'D ]m +1

2
e Ko {\/;\/[()?;D)j cos(el;—a,f)—x'} +(5c;D)§ sinz(ag_el!)}
2 @p)im (s)

(Pplei)= 3, 2% . '
m=1 +K0|:\/;\/[()21'~D)jcos(6éHl-’)er’} +()?15D)%Sin2(0é’9i')j|
E
i,€=1,2,...,nf andj,m=1,2,...,nfs, ............................................................................. (D-70)

where A%jp = Lisp /nj.

A semianalytical solution accounting for multiple arbitrarily-oriented infinite-conductivity fractures in an

anisotropic reservoir is written in the Laplace domain using superposition as

ny
(ﬁLfD)f(s):zsqlD(ﬁD)/l 5 #9400t eteeeneeeteeteeteteeeneeteeceetaeeneneeeteesseteeereeeeettesteteeereeetetceeteeereretettestesaeereretettesres (D‘71)
i=1
which can also be written as
[)ACIID ]m +1
2
o Ky {ﬁ\/[(%)j cos (6 79;)7);'} +(ip)3 sin? (0 9;)}
_ < L @pin® '
(PLm)e(s) =2 sGip D, - 5 dx
=ome 1K {\/;\/[(E;D)j cos(0) ;) +x' | +(&gp)} sin (6 —e;)}
Em
L0=12,,npand Jum =12, s (D-72)
with the Laplace domain dimensionless flow rate for a single fracture defined by
n |
ARID D (@D i == 5 wevvvemeessseeeesseemisssss e (D-73)
m=l1 §
and the Laplace domain dimensionless total flow rate for n,fractures defined by
D UTiD = e (D-74)
i=1 s

For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as

(fa,j)mj:1 =(]_7D)gl-|j:2 =...=(Pp)i (DD )i > wererrerereseessieesenssessiee s (D-75)

JEN g
and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the

Laplace domain as

T I R — (D-76)

Development of a Matrix Equation and Algorithm for Multiple Infinite-Conductivity Fracture
Solution

For each fracture divided into n; equal length uniform-flux segments, Eqs. D-71 through D-76 describe a

system of n(ns; + ny+ 1) + 1 equations and nfng; + n,+ 1) + 1 unknowns. The solution algorithm is a three
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step process. First, a system of equations is developed for each fracture where the reference axis and the

fracture axis coincide, that is, a system of equations is written to solve for(p,);and(g,),, where

i=1.2,..,n and m=12,...n4 Solving the system of equations for each fracture requires writing an

equation for each fracture segment, j = 1,2,...,n, which is demonstrated in detail in Appendix E.

Recall the solution for (p,),; is written as

I:JACZ/ID :Im +1 2 5 5
" Ko {\/E\/[()@!D)j cos(6)—6f)=x'|" +(&jp)}sin (6 —9;)}
Pyt = 3, TRim) _ '
=l +K0{JZ\/[()2;D)]C05(9@—9;)+x'} +(i}D)3sin2(9é—9;)}
Liip ],
i,€=1,2,...,nf andj,m=1,2,...,nfs. ............................................................................. (D-77)
Define a variable of substitution, (i), as
[)el!D]erl
Ar ' 2 2 2 ar : ’ 2
1 Ko {ﬁ \/[(x,-m jeos(0)=6)=x']" +(&ip)jsin® (6 —@-)}
Ctidmj = 5 . di! s e (D-78)
+K {\/Z \/[(fc;D) jeos(0;—6f)+x' " +(&jp)7 sin® (6} —e;)}
[%ip],,
and a system of equations can be written as
Aiixi = bi RN (D-79)
where
[ —Cin i1 g ]
(G2 @iz Cidng2 ]
(i3 Gz gz 1 R 1S (D-80)
Aji = : : : :
~Cidng-1 ~Cidang—1 0 ~Cidngng-n 1
i ~Cidang o ~Cidngng 1
M{D M;D o M{D 0— VlfSJran /‘3‘+1
[ @pa
(@p)i2
X; = 5 e (D-81)
(4D )in g
_(ﬁD)ik (S)—nfs+1><1

and



0

0 ettt e e e (D-82)
1
N nfs +1x1

Second, after solving the system of equations for (p,),and(gp),,,the dimensionless pressure terms,

(Pp);> With i # £ are easily evaluated for any j as
ng
(PD)1i = D0 (@D)im(0i) jim - woovessssssssmmmossssssseneeesssssss s (D-83)

m=1
Third, the semianalytical solution for producing through n, arbitrarily-oriented infinite-conductivity
fractures in an infinite-slab anisotropic reservoir can be written as a system of equations in the Laplace

domain as

where
stephr - s(epha - s(Ppin, 1

s(Pp)a1 s(Pplaa - s(PDlayr -1 (D-85)
A= : : - : :

S(ﬁD)nf-l S(ﬁD)nf-Z S(ﬁD)nf-nf -1

s s B
91D
92D

qnfD

L PLD ne +1x1

and

(=)

b=|: e et e et e st eeseseens (D-87)

— O

L dng +1x1

The system of equations, Eq. D-84, are solved in the Laplace domain and then inverted to the time domain
to obtain the dimensionless pressure. The system of equations is solved within the Stehfest®® algorithm,
which is used for the Laplace to time domain inversion. With the Stehfest algorithm, s is calculated, and

the A and b matrices are evaluated. Eq. D-84 is then solved as part of the numerical transformation from
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the Laplace to the time domain. Since the system of equations is a function of s, the system must be
solved N times during each Laplace to time domain inversion, where N is the number of Stehfest

extrapolation coefficients.

Fig. D-3 shows a log-log graph of dimensionless pressure and dimensionless pressure derivative versus
dimensionless time for a cruciform fracture where the angle between the fractures is n/2. In Fig. D-3, the
inset graphic illustrates a cruciform fracture with primary fracture half length, Lyp, and the secondary
fracture half length is defined by the ratio of secondary to primary fracture half length, 6, = Lpp/Lyp,
where in Fig. D-3, J; = 1. The constant-rate type curves shown in Fig. D-3 illustrate that the pressure-
averaging infinite-conductivity approximation and the semianalytical infinite-conducitivity solution for a
cruciform fracture are in agreement during the very early dimensionless times, #,p < 10°, and as
pseudoradial flow develops when .5 >3. However, the pressure-averaging approximation diverges

significantly from the semianalytical solution at intermediate dimensionless times.

Similar comparisons result with decreasing secondary fracture half length as shown by the constant-rate
type curves in Figs. D-4 through D-6 for a cruciform infinite-conductivity fracture with 6, = %, %, and Ya.
Consequently, the pressure-averaging method is not a good approximation of the cruciform infinite-

conductivity fracture solution during intermediate dimensionless times, ~10°< typ<3.
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Fig. D-3—A comparison of a pressure-averaging infinite-conductivity solution and the
semianalytical infinite-conductivity solution for a cruciform fracture with 6; =1.
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Fig. D-4—A comparison of a pressure-averaging infinite-conductivity solution and the
semianalytical infinite-conductivity solution for a cruciform fracture with 6; =%.
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Fig. D-5—A comparison of a pressure-averaging infinite-conductivity solution and the
semianalytical infinite-conductivity solution for a cruciform fracture with 6; =%.
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APPENDIX E

ANALYTICAL PRESSURE-TRANSIENT SOLUTION FOR A WELL
CONTAINING MULTIPLE FINITE-CONDUCTIVITY VERTICAL
FRACTURES IN AN INFINITE SLAB RESERVOIR

The development of a multiple finite-conductivity vertical fracture solution requires writing a general
solution for a finite-conductivity vertical fracture at any arbitrary angle, 6, from the xp-axis. The
development follows from the finite-conductivity solutions of Cinco-Ley et al.'” and, for the dual-
porosity case, Cinco-Ley and Meng.* Fig. E-1 illustrates a vertical finite-conductivity fracture at an angle,

0, from the xp-axis in an isotropic reservoir.

N

Fig. E-1—A vertical finite-conductivity fracture at an arbitrary angle to the x-axis.
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A finite-conductivity solution requires coupling reservoir and fracture solutions, and as shown in
Appendix D, a general plane-source constant-flux solution for a single arbitrarily-oriented fracture in an

isotropic reservoir is written in the Laplace domain as

_ 1 (Lm " "
pD:q_D_ Koli\/;\/(xD—a)2+(yD)2:|da, .................................................................... (E-l)
LfD 2s _LfD
where
_  2nkhA
D) = et (E-2)
qi i
L
f
L 1) D e ) ettt ettt ettt e e et et e attente ettt e et e etteatt et e eb e et e et e ettenteenreenaeenes (E-3)
/D L,
XD =XpCOSEr + PP SINOy ;s oo s (E-4)
ID=YDCOSOr —Xp SO oo (E-5)
x |k
== S e eteeeteeeteeeteenteerteetesttesteesseenteeteieeetteeteentteteeteiteiteattettete e te e te et e ateeateeeeenteereeereenreenns (E-6)
XD I

The fracture half-length, L, is the reference length for the system, and the horizontal permeability is
written as k= (kxlg,)%, where for an isotropic reservoir, k =k, = k,. The Laplace variable is denoted by s,

and the general solution accounts for dual-porosity reservoirs with u defined as

where for a single-porosity f{s) = 1. For a pseudosteady-state interporosity flow dual porosity case, f(s) is

written as’®

A+ao(l-w)s
8 ) T o et eeeee et ee e e et e e ——ee e e t—te e e ——ee e —teeeattteeaa—teeaantteeeattteeantaeeaanraaeeantaeeeannnes E-10
/) A+(1-w)s ( )
for transient interporosity flow with slab matrix blocks,””**
f(s)=w+ \/ /1(13; ) tanh \/3(1 ;“’)S, ............................................................................................. (E-11)

and for transient interporosity flow with spherical matrix blocks,””®

f(s)=w+i{\/15(l"“’)s coth\/ls(l_w)s —1}. .......................................................................... (E-12)
5s A

A
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For the finite-conductivity case, the flux is not constant and the Laplace domain plane-source solution for

a reservoir containing an arbitrarily-oriented vertical fracture is modified and written as

L
P :LJ P JD(a,S)Ko[«/N(ffD—05)2+(J>D)2}d0‘= ............................................................. (E-13)
L)y

A general fracture solution is developed by assuming
e The fracture is modeled as a homogeneous slab porous medium with fracture half-length, L,

fracture width, wy, and fully penetrating across the entire reservoir thickness, .
e Fluid flow into the fracture is along the fracture length and no flow enters through the fracture tips.

o Fluid flow in the fracture is incompressible and steady by virtue of the limited pore volume of the

fracture relative to the reservoir.

e The fracture centerline is aligned with the x, -axis which is rotated by an angle, 0, from the xp-axis.

The dimensionless Laplace domain partial differential equation describing transient flow in a finite-

conductivity fracture oriented along the %, -axis, is written as

2
0 PLD 2 a1_7D|
%p  Cm dp|

Fp=wp/2
for —1<xp <1. The dimensionless Laplace domain partial differential equation can also be written as
2
0 poD T = A
?*ip Cm
where the dimensionless variables are defined as

2LrG(%5) -2 5pp|

ip(Gp)= - ettt ettt r oot r e (E-16)
dw T p |5’D:WD/2
WD=W—f, ....................................................................................................................................... (E-17)
Ly
k
Oty = (E-18)
kL ¢

and §(%,s) is the Laplace domain flow rate per unit length into the fracture, g,, is the total well flow rate,

and kyis the fracture permeability.

The fracture-flow “wellbore” boundary condition for a constant rate is written in the Laplace domain as

.
g LD e (E-19)
Xp =0 sCp
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and the boundary condition for no flow through the fracture tip is written in the Laplace domain as

DL

axD )ACDZil

20 ettt et e e eeee oo sreeeene (E-20)

Eq. E-15 is integrated twice with respect to X, and the general Laplace domain pressure distribution in a
finite-conducitivity fracture is written as
X D T X D
sCpp Cpp 0

where pp(Xp,s) is the general reservoir solution defined in Eq. E-13. Adding the reservoir and fracture

B ()-Pp(Ep.s) = [ Ox T ) Ll (E-21)

solutions results in the Laplace domain dimensionless pressure solution for a finite-conductivity fracture

rotated by an angle @, from the x-axis, which is written as

_ 11 (ko _ - 2, 2

PfD(S):L_EJ QD(a’S)KO[\/;\/(XD_a) +(¥p) }dd
/D “J-Lmp

Zip 7

SCJT) CfD

where dimensionless variables are defined as

Py ZAJXD & P+ eooeesssseeees s oo (E-23)

+

)%D x_ " " _
0 -[0 qD(x LNAX"AX 5 e (E 22)

XD ST COSO, 5 et (E-24)
VD ZFDSING, 5 e (E-25)
Xp=XpCOSEr + PP SINOy ;s oo s (E-26)
ID =YD COSO = XD SO s oo (E-27)

and 6, is the angle between the fracture and the xp-axis, (7p, 6.) are the polar coordinates of a point
(xp, yp), and (a, ) are the polar coordinates of a point along the fracture. Combining Eqs. E-25 through
E-27 results in

)’eD =Ip COS(@V —Hf), ...................................................................................................................... (E—28)
and
_);D =Ip Sin(&r — Hf) © e eeeeeeeeeaeeeia et e et e ettt ettt et et e et et a e et e et e e et e et e e b e e e e et et aeeet et eeaeeeaateeaaes (E-29)

Consequently, the Laplace domain dimensionless pressure solution for a finite-conductivity fracture

rotated by an angle @, from the x-axis is written as
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L
ﬁm(s):ilJ’ " qD(a,s)Ko{\/;\/[rDcos(Hr—Hf)—(x}2+rgsin2(:9,—9f) da

2

L
2 N L E-30
sCﬂ) Cﬂ) J.O gp(x",s)dx"dx", ( )

where for a single fracture 6.= 6, xp=rp, Lp =1, and the single fracture solution is written as

_ 1
pr(s>=5J ap (¥, s)Ko{fm}dHSch =

For a well in an infinite-slab reservoir producing through multiple finite-conductivity fractures, the

o jo Tp (" $)dx"dx’ . ....... (E-31)

Laplace domain dimensionless pressure for a fracture ¢ at an arbitrary angle, 6, , accounting for the effects

of fracture 7 at an angle 6 is written as

1 (LfD)l
(ﬁD)Zi(S):z(L—fD)iJ_ ((JD)l(a S)Ko{[\/[’DCOS Oy - 6; 0‘] +’DSm 2(0,-6;) |dex

”—"D—LI’C’D [¥ @) (" $)dx"dx’ . £=120np s (E-32)
SCﬁD CﬁD 0 0 :
where i,0=1,2,...,n, and n,is the number of fractures. Note that the dimensionless flow rate for the

i fracture is defined as (¢p); = gi/q.:, where q,,; is the well flow rate assuming all production is from the
i™fracture. Similarly, the dimensionless fracture half-length is defined relative to the i™-fracture half-
length, (Lyp); = Li/L; = 1. If a point (7,p, 6) is restricted to a point along the i"fracture axis, then the
reference and fracture axis are the same and Eq. E-28 results in

.)/elD =Ip COS(HI- —01) 475 IR T LTy T PR TRIS (E'33)

and the Laplace domain finite-conductivity fracture dimensionless pressure can be written as

(Pp)ei(s) == J @p)i(a. S)Ko{\/— J[xchos (0,-0)a] +5sin? (0 - 9)}101

ﬂ-;ciD T lD " .
- (qD) (x",8)dx"dx" | Ll =12,0 e e (E-34)
Assuming each fracture is homogeneous and symmetric, that is, (gp);(a,s) = (gp);(-a,s), the reservoir

component of the Laplace domain dimensionless pressure can be written as
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1
J @p);(a,5)Ky {\/;\/[)QZD cos(@z —Hi)—an +)2,~2D sin? (0[5 —Hi)}da
-1

1
Ky {x/;\/[fc,D cos(6y —Hi)—a]z +fcl.2D sin? (6,-6; )}

= (q_D)l- (OZ,S) A s+ vvererirerininnnn (E-35)

+K {\/;\/[fcll) cos(6y —6’1-)+on2 +£i2D sin® (6 —Hi)}

0
and the dimensionless pressure for a finite-conductivity fracture £ accounting for a finite-conductivity
fracture 7 in an isotropic reservoir is written as

1

Ky {\/;\/[)ACZD cos(6y —Hi)—x'}z +fci2D sin? (6, —Hi)}

(Pp)ei(s) = 5 (@p)i(x',s) dx’
+K {«/;\/[)QZD cos (6 — Hi)+x']2 + fclzD sin? (6,-6; )}
XD T J'xiD J‘x (@p)i(x",s)dx"dx" , il = L2, e (E-36)
SCﬁD CﬁD 0 0

A semianalytical solution for the multiple finite-conductivity fracture problem is obtained by dividing

each fracture into ny; equal segments of length, A%;p = L;p /ng, and assuming constant flux in each

segment. Although the number of segments in each fracture is the same, the segment length can be

different for each fracture, A%;p # A%;p. Note that Lsp = Lg/Ly where Ly is the half-length of the primary

fracture. With the discretization, the reservoir component of the Laplace domain dimensionless pressure

can be written as

1
| Ky |:\/;\/|:£1D cos(6y —t%)—x']2+fcl.2D sin? (Gg—Hi)}
5| @i (x',s) dx’'
+K |:\/;\/|:le cos(6y —6’,~)+x’}2 +)2i2D sin? (6,-6; )}
0
(&ip)m+1 )
ny Ko [\/;\/[(fclp)j cos(6, - 6;) x|+ (&) sinz(Hg—Hi)}
_ Y @i PR (E-37)
2
m=l +K0 |:\/;\/|:()AC,D )/ COS(&( - 191-)+x’}2 + ()elD)a SiIl2 (9/ - 91- ):|
(;CiD)m

The fracture component is approximated by dividing the fracture into equal length segments as shown in

Fig. E-2. The double integral, which is written as

X; x' — " "yt
\P:jOlD jo (GD)i (X3 S)AX"AX" ;oo (E-38)

describes any point in the fracture, but the approximation assumes a point within any segment can be

represented by the midpoint of the segment.
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Fig. E-2. Fracture half-length discretization.

Let a point of interest be located in the first segment, n =1, then j=1 and the double integral can be

written as

()%Z‘D) =1 x' — " "yt
Y= j()el_D);l jo (@D)i (X" SMAX"AX" . oo (E-39)

Assuming uniform flux within each fracture segment, (gp);(x",s) = (gp)in=;(s) = (qp);, and the double

integral can now be written as

()elD) =1 ,— ¥ "gr ()%lD) i=1 — r g
Wi =] (fcl-D),:1=1 @p)ij=1(9)] ) ' = [ (%D);:l @D )it (XX e (E-40)

Referring to Fig. E-2 with j = 1 and (xp ), the limits of integration can also be written as



A A 2
AXip/2 ., (A _
‘I’j=1=fo i/ (@p)jj=1x'dx =%(QD)Z~]~:1. ........................................................................ (E-41)

For the second segment, j = 2, the integration can be split into two parts (Fig. E-2), which is written as

. _ ()%iD)mzz — N x' "yt (%'D)_j:Z — N\ x "t
Wi, = j(fc,p)m:l (qD)lFle dx"dx +j(£iD)m=2 @p)ij=2] L ——— (E-42)

The uniform flux assumption for each equal length segment allows a local coordinate system to be used

for integrating over any segment; thus,

[(?%D)j:f(??iz))m:ﬂ

()ACZ'D) =2 — X/ "dx'
J (QD)U:ZJO dx"dx :j[(iiD)mzz—(iiD)mzz]

xl
i — . d Ild !
(%ip)m=2 @D 2'[0 v

_ A)EID/Z — x "y
= jo @p)ij=2 N — (E-43)
and after completing the integration, Eq. E-43 can be written as

()%ZD) =2 — ¥ "y (AﬁeD)2 —
(&_D)’izz (qD),-j:zj0 dx"dx _’T(qD),-j:z. .......................................................................... (E-44)

The first integral of Eq. E-42 can also be evaluated using a local coordinate system, that is,

()% ) =2 — X "1 A%; — X "gr A —
()%fl’)j)m 12 (qD),-jzljo dx"dx :jo P @p)ij | o dx"dx = (AGD ) (@D )jj=l - oo (E-45)
1 m=

Recognize that (AXp )2 can be written as

(Axl-D)zzAxiD(AxiD)z(Axl-D)[ 2”3 +TID}, ........................................................................... (E-46)

and Fig. E-2 shows that
Atip _

T2 = (BiD)j2 ~ARD - s (E-47)

Consequently, the first integral of Eq. E-42 is written as

A

X =2 — ' "gr I Ax; I IS —
j((;f)):: (qD),-jzljox dx"dx' = (Axl-D)[ 2’D +(Gip) j=2 —Ax,-D)}(qD),-j_l, ............................... (E-48)

and ‘I’j: o 18 written as

_ (Akip)*

V._
Jj=2 8

A N2
_ (AX;p) . . . _
@p )ij=2 +[lT+ (AxiD)[(xiD)j:Z - iD] (gp S R (E-49)
The process can be repeated for j =3 (Fig. E-2) by recognizing that each segment—and the integration
over each segment—is independent, but over the same length. Consequently, the flux terms can be
interchanged between blocks provided the sum of the integrations over each segment is equivalent to

integrating over the entire fracture length. The resulting expression can be written as
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A 2
Wiz = (AxlD) —=—(@p)ij=3 {%+(MID)[(%‘D)/‘:3_MiDJ]@D)IFI

f 2
{%+ (85| (i) joa - 2A£l~Dﬂ (@D)jj2 oo (E-50)

The pattern exhibited by Eqgs. E-44, E-49, and E-50 suggests a general relationship can be written as

A2
B Gy s =1
¥, = y o (E-51)
T ] ax Zacp)? . o9l
. <qD),,<>+2{%uwm[(m»—mAxiD]](qD»m(s) L el
m=1

By combining the reservoir and fracture approximations, the Laplace domain dimensionless pressure for a
finite-conductivity fracture ¢ accounting for a finite-conductivity fracture i in an isotropic infinite-slab

reservoir with production through multiple finite-conductivity fractures is written as

[)%iD]mH
Ky {\/;\/[(fclp )j=l1 cos(6y - 6;) —x'Jz +&p )3:1 sin? (6, -6; )}
dx'

+Ko |:‘/;\/|:()AC1D)]'—1 cos (6 —9i)+x']2 +(J@'D)§:1 sin” (6 —91‘)} , j=1

nﬁ @D)im(s)

[%p],,
oz (Ax,D) 7(Xp) j=1
. CﬁD (@p)ij=1(s)+ 7scﬁD
(Pp)ei = [’ACiD]erl 5
K {ﬁ\/[(%)] cos(6; ~6;)=x'|"+ (i)} sin® (6 —9i)}
z (qD)zm(V) dx'
+K, {\/1;\/[()@1))]- cos (6, —01-)+x']2 +(&p)F sin® (6 —9,-)} sl
[%p],,
(A%ip)? &l @ip)?® s N 7(5ip) ;
CZD{ D2 @p)y(s >+m221[20+(mm>[<xm> 5 —mmiu]]@mim(s)}scj;

where i,6=1,2,...,npandjm=1,2, ..., ng.

A semianalytical solution accounting for multiple arbitrarily-oriented finite-conductivity fractures in an
isotropic infinite-slab reservoir is written in the Laplace domain using superposition as
nf
(ﬁLﬂ))((S) — zsaiD(ﬁD)fi 5 Seeeteneeeneeeteteeetananeneeeteettetaeeneeeetteetetaeeneeetetteetanenereeetetttetattreretetttetetaaereeerottteres
i=1

which can also be written as
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(P =
[)eiD]erl P ) )
ny ng Ko{\/;\/[(ﬁw)j1005(9/:—91')—@ +(Xip) -y Sin (9/:—5’1')}
i S @D )im () o
i 2
= mel +K0{\/;\/[()2,-D)jl cos(Hg—Hi)+x'J2+(fciD)§1sin2(0(g—t9l-)} o=l
[%ip],,
T (M) B 7(%ip) j=1
Cop 8 (@p)ij=1(s)+ o
[“%iD]mH* ) ) )
ny a5 KO|:‘/;\/|:()ACiD)j=IC°S(9€ei)x’} +(Xip)j sin (9491')}
ZS%DZM dx'
. 2
= +Ko [\/;\/[(fcm)j:l 005(95*9i)+x'}2+()?m)3=1 Sinz(f)z@i)} sl
[%p], -
7 | Wip)? Slawp)?® o . - 7(Gip);
N SD (QD);']'(S)+mZ=:1 =Ty (Atip)| Gip) j ~mA%ip | (@D Yim (5) +TﬁD/

where i,0=1,2,...,n,and jm =1, 2, ..., ns. Note that g;,» = q/q, where ¢, is the total production from all

fractures, and g;p # (¢p);-

The Laplace domain dimensionless flow rate for a single fracture is defined by

ng 1
Aip D @p)im T (E-55)
m=l1

and the Laplace domain dimensionless total flow rate for all fractures is defined by

For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as

(faD)f,-|j:1 =(]_7D)gl'|j:2 =...=(Pp)i (DD )i > werevrrremeserssineeissssessses s (E-57)

JEn g
and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the

Laplace domain as

T (B T — (E-58)

Solution for Multiple Arbitrarily-Oriented Finite-Conductivity Vertical Fractures Considering
Permeability Anisotropy

The multiple finite-conductivity fracture solution considering permeability anisotropy in an infinite-slab

reservoir is developed by defining the dimensionless distance variables as®

x |k
Xn =— ) e eeeeeueeeueeeteeeteeteetteetteetteteeteeteeteatteate e te et eteattett eyt et e e teerteaateteeteeateeatesteeeteeteennean (E-59)
D LC kx
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k
P S o s e (E-60)
L.\k,
and
= JK (E-61)

The dimensionless variables rescale the anisotropic reservoir to an equivalent isotropic system. As a result

of the rescaling, the dimensionless fracture half-length changes and must be redefined as'®

L
Lyp=-t K os? 0, LK in2 O + it (E-62)
P LC kx P ky .

where the angle of the fracture with respect to the rescaled xp-axis is written as

gj’,:tan_l[ k—xtanﬁf} , O<0f<£. ..................................................................................... (E-63)
\ky 2

When 6,= 0 or §,= /2, the angle does not rescale and &,= 6.

The dimensionless fracture conductivity is defined in the original anisotropic system, which is written as,
kpwy

 KLs
but Spivey and Lee'” note an equivalent dimensionless fracture conductivity can also be written in terms

of the equivalent isotropic system.

With the redefined dimensionless variables, the Laplace domain dimensionless pressure for a finite-
conductivity fracture £ accounting for a finite-conductivity fracture i considering permeability anisotropy
is written as

1

K {\/E\/[;egD cos (8 —6})~x' | + &2 sin? (6 —9;)}

(Pp)ii(s) = 5 (@p)i(x',s) ax'
+Ko {JE \/[ng cos(0 - 6f)+x' > + 32 sin’ (0} —9;)}
0
$22D T[N G ) ()Y =12 e (E-65)
SCﬁD CﬁD 0 0 .

where the angle, &, is defined in the rescaled equivalent isotropic reservoir and is related to the anisotropic

reservoir by

0 0=0

0 = tan_l( xtan@] Ry N (E-66)
y

0 0=r/2

»|»
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A semianalytical multiple arbitrarily-oriented finite-conductivity fracture solution for an anisotropic

infinite-slab reservoir is written in the Laplace domain as

(Pwp)e(s) =
[“QICD]WH-I 2 2 P
0y Ko {\/;\/[(X}D)jzl cos (6} 6})~x' | +(&ip)7_ysin” (6 —0;)}
qul Z (‘ID)zm (s) . A’
=l +K, [JE\/[@;D) j=1008(0) — )+’ | +(2;D)§=1 sin? () 9,!)} , =1
[%ip],,
At N2 ar
z (ARp)” _ 7(%ip) j=1
- @p)jj=1(8) +————
Crip 8 P sChip
[;C;D ]m+l i 2 2 2
o i) o7 1)+ T+ i i 0 -0)|
zsql z (QD)zm (s) . '
m= +K |:\/;\/|:()%;D)j c0s(0@—¢9{)+x'} +()€{D)§ sin? (9}—0{)} , >l
[%ipl,
ar —1 i A 2 *
z (AXzD) (A%ip) . . . _ 7(X;p);
AN [ Sty / O XA DT L AR ) — mAR: . A
e @p)j <s>+mZ:1_ D+ (Wip) | Gip) j ~mASip | @ )im (5) |+ e
......................................................................................................................................................... (E-67)
forif=1,2,....,nrandjm=1,2, ..., ng.
The Laplace domain dimensionless flow rate for a single fracture is defined by
nfs
A¥p D @p)im =—, ...................................................................................................................... (E-68)
m=l1 §
and the Laplace domain dimensionless total flow rate from n, fractures is defined by
D UTiD == s v (E-69)

For each fracture, an equation relating the dimensionless pressure is written in the Laplace domain as

(faD)f,.|j:1 =(]_7D)gl'|j:2 =...=(Pp)i S (DD )i > werereerereseessieeniinsiseesieesi e (E-70)

J=h g
and for the entire multiple-fracture system, the dimensionless pressure at the wellbore is written in the
Laplace domain as

(BaD)L = (BuD)2 = oo = (DD nf = PLfD - wovvveeresivesieesisessoesisesioesisesisessosssoesisessoesoese (E-71)

Development of Matrix Equation and Algorithm for Multiple Finite-Conductivity Fracture
Solution

For each fracture divided inton fs equal length uniform-flux segments, Eqgs. E-67 through E-71 describe a

system of n(n; + n,+ 1) + 1 equations and nfng + ny+ 1) + 1 unknowns. The solution algorithm is a three

step process. First, a system of equations is developed for each fracture where the reference axis and the
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fracture axis coincide, that is, a system of equations is written to solve for(p,);and(¢,),, Where

i=1.2,..n and m=12,...n5 Solving the system of equations for each fracture requires writing an
equation for each fracture segment, j = 1,2,...,n5. For example consided the discretized cruciform fracture
with each fracture wing divided into three segments as shown in Fig. E-3. The system of equations will be

written for the discretized fracture in Fig. E-3 and then generalized for n,fractures divided into ny fracture

segments.
Yp=%p
S
)EZDm:4
m3=3 s L
X2D;3 4 2D
qZDm:j—3 /=3 7
£2Dm=3
> k
n22 =2 R *
— XD, AxX
9)Dyejey VT2 2D
£2Dm:2
n1=1 . A
7 21 204+ | |M2p ) A ) A )
2m=j=1 xle=1 xle=2 xle=2 xle=3 xle=3 xle=4
l l l
. ! ! XD =Xp
*p,, =0 >
. 0 A% p A% p A% p
x =
1Dy, n =1 npy =2 s =3
71 Dpr= 1 91 Dp=j=2 41Dy j=3

Figure E-3. Multiple fracture half-length discretization.
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For the cruciform fracture in an anistropic reservoir illustrated in Fig. E-3, the primary fracture is oriented
at an angle ;= 6; = 6, =0 and the secondary fracture is oriented at an angle &, = 8; =n/2. Let the
reference length be defined as L.=L';, and let the length of the secondary fracture be defined as
L', =0,L". Consequently, the dimensionless fracture half-lengths are defined as Ly =1, and
L'pp=0:L"p=0>.

Define the following variables of substitution as

[)%;D]er] ,\ 3 R 5 o
Ky Ju [(fo)j cos(6; —Hi')—x'J +(&jp)7j sin (6, -6))
(Sik Imj =% ' s e (E-72)
+K, {ﬁ\/[(f;,))j cos (6 —9,-')+x']2 +(&fp)} sin (6] —e;)}
[%ip],,
T (M'D)z ar ar Ar
(Zi )m] = CﬁD I:IT-F(AXI'D)[(XZ'D)J' —mAx,-D :|:| N (E-73)
ar N2
G D e (E-74)
Cip 8
and
7(%ip);
(771) 1 = o e ettt (E-75)
i)j CﬁD

With the variables of substitution, the dimensionless pressure equation for a single finite-conductivity

fracture accounting for multiple finite-conductivity fractures is written as

)=t , _ s .
L i@+ > @D)im ) Cri)m , j=1 76
(Pp)ei(s)= _ m=l1 y s e
(1) _ -l _ Ko .
B ~&@p)ij ()= 2 Cdmi@D)im )+ X @D)im N&pidmj > J>1
m=1 m=l1

The development follows from the finite-conductivity solutions of Cinco-Ley et al.'” and, for the dual-
porosity case, Cinco-Ley and Meng.® Let j = 1, and the dimensionless pressure equation for the primary

fracture is written as
(Pp1G)| ;- = (4“11)11@))11(S)+(4“11)21((7D)12(S)+(C11)31(51))13(S)—§1((?D)11(S)+@- ~~~~~~~~~~~~~~~~~~~~ (E-77)
For j =2, the dimensionless pressure equation is written as

1D12@pN1()+(C11)22@p)12() +(S11)32(@p)13(5)
(m)2

(o) =
N

=&(@p)12()=(x12(@pr1(s)+

and for j = 3, the dimensionless pressure equation is written as
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(C113@pN18)+(811)23(@p )12 () +(£11)33(@p)13(5)

PoIl;es = ~E@D)3() -3 @) - ()3 @p a9+ D2
Collecting like terms and algebraically rearranging the equations for the primary fracture results in
(ﬁD)ll‘jZI +[& -G Dul@n -G D21@pha —(€131@p)3 = @, ............................................... (E-80)
(P joy +[Gen2 = G112]@p)i1 +[61 = (G1122]@p)12 = (6132 @p )13 :@’ """""""""""""""" (E-81)
and
(Pl jos + G013 = G0131@pn +[Gn)23 = G023 1@z + [~ (G11)33]@p s = @ ----------------- (E-82)
With the dimensionless rate equation for a single fracture (Eq. E-68) expanded and written as
AR @D+ AR (@p)ia + AR @)1 :é, ............................................................................. (E-89)

and recognizing from Eq. E-70 that(p), )11|j:1 =(Pp )11|j:2 =(Pp )“|j:3 =(Pp)11, @ linear system of

equations can be written in matrix form as

Al 1X1 = bl 5 e eeerieeeteeeeeeeieeeteeetieetteerteeeaeeateeetaeeteeateeatetaeeat e eheeaee st eaa et ate e et eehaeeteerteeateaateeataeereees (E-90)
where

[& -] ~(¢1)21 ~(¢11)31
|G-l [G-Co2] -G

(D13 -Ci3] [ =(GD23] [&- (&3]
Axip Axip Axip

S = = =

(@p)1
. = @ph2
(@ph3
(Pp1

_m_
N

(m)2

D1 = | | oo e e E-93
1 (m)3 (£:53)

Q=

Similarly, a linear system of equations for the secondary fracture is written as
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[& - (221] ~($22)21 ~(¢22)31 1

b= (212 -Cn2]  [62-(622)22] —(¢22)32 1
(2013 = (€2213] [(12)23 - (€22)23] [&2-(C22)33] 1
A%p A% p A¥%p 0

(@p)21

| @p)a
| @)
(Pp)22

|

()
S

(m2)2

D9 = | S e e e e et E-97
2 (m)3 (597

N

1
s

The system of equations are solved for for @)y Pp) ,where m = 1,2,3.

227 (p)yy 04 (0p)y,,
The second step in the solution algorithm for a cruciform fracture requires solving for (7,,),, and (7,)),,-

Since (g,),,, and (g,),,, are known, the dimensionless pressure terms (p,),, and (,,),, can be evaluated for

any j, where for convenience j = 1 is arbitrarily selected, and the pressure terms are written as

ool = - 5@ )16+ @)1 G + @) i) + @23 12N (E-98)
and
o)1} =L - @)1 )+ @I a0 +@p)aCani + @3 a3 - o (E-99)

The third and final step in the solution algorithm requires writing a system of equations in the Laplace

domain as
X T 0, e e e et e e (E-100)
where
s(pph1 s(Ppha -1
A= S(ﬁD)Z] S(ﬁD)ZZ T B T IR (E-l()l)
K K 0
91D
X | G0 |5 crevereerereremeiettnn ettt etttk (E-102)
PLD

and



D= 0 |+ oo eeee et e e ee e e s ereee (E-103)
1

The system of equations, Eq. E-100, are solved in the Laplace domain and then inverted to the time

domain to obtain the dimensionless pressure, p;p.

The algorithm can also be written for n, fractures as follows. First, a system of equations is developed for

each fracture where the reference axis and the fracture axis coincide, that is, a system of equations is

written to solve for (pj),; and (gp),,, where i =1,2,....n,and m = 1,2,...,ns. A system of equations can be

written for each fracture as

Aiixi = b[ 5 ettt ettt ettt e ettt e et e e e e ettt et e e e e e et e e et e e e ettt e et et e ettt et eaaeeans (E-104)
where
[& — (i) —(Gii)21 ~(GitIn g1 ]
[(zi2 = (&in2] [§i-CiNz] - Cidng2 1
A, = : ; . : S (E-105)

|:(Zi)13 _'(gii)lnﬁ:| |:(Zi)23_.(§ii)2nfs:| | |:§i_(~/;izi)nfsnfs:| 1
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: e e et e e e e e e s s s e e ee e ees e eeeees (E-106)

| (PD)ii |
N
(17:)2
S

b; = : et (E-107)

N )

Solving the system of equations, Eq. E-104, provides values for (7)), and (7)), 5 wherem=1, 2, ..., ng.

Second, the Laplace domain dimensionless pressure, (p,,),,with £ #1i is calculated. Since(y,),, are

known, the dimensionless pressure terms can be evaluated for any j, where for convenience j=1 is

arbitrarily selected, and the dimensionless pressure term is written as
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m=1
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Third, the semianalytical solution for producing through n,arbitrarily-oriented finite-conductivity fractures

in an infinite-slab anisotropic reservoir can be written as a system of equations in the Laplace domain as

K Z D) oo e e et ee e e et e e eeeee (E-109)
where
s(ephy - stepha -+ S(Pphn, -1
s(Pplat s(Pplz - s(Pplayy -1 e (E-110)
A=l P : :
S(ﬁD)nfl S(ﬁD)an S(li’D)nfnf -1
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91D
92D
x=| ° et e e (E-111)
67nfD
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and

b=|: et e e e et esee e seeeeeene (E-112)

ne +1x1

The system of equations, Eq. E-109, are solved in the Laplace domain and then inverted to the time
domain to obtain the dimensionless pressure. The system of equations is solved within the Stehfest®®
algorithm, which is used for the Laplace to time domain inversion. With the Stehfest algorithm, s is
calculated, and the A and b matrices are evaluated. Eq. E-109 is then solved as part of the numerical
transformation from the Laplace domain to the time domain. Since the system of equations is a function
of s, the system must be solved N times during each Laplace to time domain inversion where N is the

number of Stehfest extrapolation coefficients.

Fig. E-4 contains a log-log graph of dimensionless pressure and dimensionless pressure derivative versus
dimensionless time for a cruciform fracture where the angle between the fractures is /2. In Fig. E-4, the
inset graphic illustrates a cruciform fracture with primary fracture half length, Ly p, and primary fracture
conductivity, Cy;p. Secondary fracture half length is defined by the ratio of secondary to primary fracture
half length, J,=Lpp/Lyp, and secondary fracture conductivity is similarly defined by the ratio of
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secondary to primary conductivity, dc = Cpp/Cyp. The constant-rate type curves shown in Fig. E-4 were
generated with J;, = dc =1 and the variable fracture conductivity noted on each curve. Figs. E-5 through
E-7 contain the constant-rate type curves for a cruciform fracture with variable fracture conductivity,
doc=1, and d; = %, %, and Y. Figs. E-8 and E-9 contain constant-rate type curves for a cruciform fracture

with 6, = 1 and d; = % with =1, 0.10, and 0.010.

In addition to allowing each fracture to have a different half length and conductivity, the multiple fracture
solution also allows for an arbitrary angle between fractures. Fig. E-10 contains constant-rate type curves
for equal primary and secondary fracture half length, 6, = 1, and equal primary and secondary
conductivity, 6, = 1 where Cyp = 100m. The type curves illustrate the effects of decreasing the angle
between the fractures as shown by type curves for 6, = n/2, n/4, n/8. As the angle is further reduced, the

type curve response approaches the solution for a single finite-conductivity fracture.
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Fig. E-4—Cruciform fracture constant-rate type curve with variable conductivity, 6; = 1, and
5(‘ =1.
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Fig. E-8—Cruciform fracture constant-rate type curve with é; = 1, Cp = 10z, and ¢ = 0.01,

0.1, and 1.
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APPENDIX F

FRACTURE-INJECTION/FALLOFF SOLUTIONS IN A RESERVOIR
CONTAINING A COMPRESSIBLE FLUID

The fracture-injection/falloff solutions for a wellbore, fracture, and reservoir containing a slightly-
compressible liquid are developed in Appendix C, but in many cases, a wellbore, fracture, and reservoir
will contain a compressible fluid. In conventional pressure-transient testing, solutions developed for a
reservoir containing a slightly compressible liquid can be used to interpret pressure-transient data in a
reservoir containing a compressible fluid by transforming pressure and time into pseudopressure and

pseudotime, or adjusted pseudopressure and adjusted pseudotime.” "

Appendix F demonstrates that fracture-injection/falloff solutions developed for a reservoir containing a
slightly compressible liquid can also be used to model pressure-transient data from a fracture-
injection/falloff sequence in a well with the wellbore, fracture, and reservoir containing a compressible
fluid (real gas) when pressure and time are transformed to adjusted pseudopressure and adjusted

pseudotime.

Solution Accounting for a Dilating Fracture, Before-Closure Storage, and After-Closure Storage

Formulated in Terms of Adjusted Pseudopressure and Adjusted Pseudotime

Consider a fracture-injection/falloff sequence with the entire fracture length developed instantaneously
when the injection begins or with a pre-existing fracture. The wellbore, fracture, and reservoir contain a
compressible fluid, and the injection is at a pressure in excess of the minimum in-situ stress. From
Appendix C, a material balance equation during the fracture injection is written as

dpyy A_fde

Bp-q,B = pnConwVw —— +2
Q50 —ArBr oy prWWdt P S; dt

where ( is the well injection rate, q; is the sandface flow (leakoff) rate, B is the well formation volume
factor at injection conditions, B, is the formation volume factor at reservoir conditions, p is the fluid
density at injection conditions, pr is the fluid density at reservoir conditions, g, is the fluid density at
wellbore conditions, px is the fluid density at fracture conditions, Cgy is the wellbore-gas compressibility,
Vy is the wellbore volume, py, is the wellbore pressure, t is the time, As is the fracture area, and S is the

fracture "stiffness."

Fracture stiffness, or the inverse of fracture compliance, is defined by the elastic energy or "strain energy"
created by an open fracture in a rock assuming linear elastic theory is applicable. Table F-1 contains the

fracture stiffness definitions for three common 2D fracture models.*®'?” In Table F-1, E' is the plane-strain
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modulus, Rs is the fracture radius of a radial fracture, h; is the gross fracture height, and L; is the fracture

half-length.

Table F-1—Fracture stiffness for 2D fracture models.?*!%
Radial Perkins-Kern-Nordgren Geertsma-deKlerk
Vertical Plane Strain Horizontal Plane Strain
3zE’ 2E' E’
(Sf)RAD 16R (S£)PKN P (Sf)GDK P

Define an adjusted wellbore storage coefficient as

where Cy is the gas compressibility at initial reservoir pressure, p;, and define a before-closure storage
coefficient as
At

Ctpe =28—. .................................................................................................................................... (F-3)
f

With the new definitions, the material balance equation can be written as

aBpo—ar By oy :pWCagg%dZ—;N+prfbc(t)—¥V. ................................................................... (F-4)
Adjusted pseudopressure is defined as

by = [”_pzjre J:% e (F-5)
and the derivative is written as

Paw = [ﬂ_PZJre (ﬂ—pzjw Py« <eoeeeeeeeeeeeee e (F-6)
Adjusted pseudotime is defined as

t

ta =( ﬂct)rejo 77 TP (F-7)
and the derivative can be written as

L HOtE L e (F-8)

dt  (uz), dta



With the definition of adjusted pseudopressure and adjusted pseudotime, the material balance equation can

be written as

C HgiCqw (ﬂgcg)re[ij (,u_z) dpaw
Bp—0rB " (g dw (gCq)i 2 )l Py dta (F-9)
aBp—q,B,py = e -
S (ﬂg°g>re(p) (ﬂzj dpaw
pCpo 970 P ) (K2
P ugeg)i Luz o\ p )y dty

Define the reference condition, subscript 're’, as the initial reservoir pressure, p;, and note that ¢y = c;. The

reference condition allows the material balance equation to be written as

Cti p z dpaW
gBp—-q,Byp —{p Cy+p Cfb }(—j ( ) e e e (F-10)
r=rr~r wa f CCtW 2)ilp)y, d'[a

Formation volume factor is defined for a real gas as

V. T Ppsc

= e s e e e e s eeeenn (F-11)
Vse P ZscTsc
and the ratio of the formation volume factor at wellbore and initial conditions can be written as
By Ti z
—w i (Bj [—j e (F-12)
Bi Tw \z/i\PJy
Gas density is defined as
Mp
B o et F-13
P=RT (F-13)

where M is the molecular weight of the gas and R is the gas constant. The ratio of reservoir-gas density to

injected-gas density is written as

P B (F-14)

p B

Similarly, the ratio of wellbore-gas density to injected-gas density is written as

%W:Bi, ....................................................................................................................................... (F-15)
W

and the ratio of fracture-gas density to injected-gas density is written as
P B
e (F-16)
p B
With the gas density and formation volume factor relationships, the material balance equation can be

simplified and written as

et (F-17)

By Ci |T: d
qB; —ar Bj {Ca +Cfbc—wl}—'ﬂ

Define the dimensionless adjusted wellbore pressure as
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_Padw(Pa)i _ Paw = Pai e (F-18)

- (Pa)o —(Pa)i Pz — Pai

PawsD

and the dimensionless adjusted wellbore pressure derivative can be written as
dpaw = ( pao - pal ) pawsD b e eetteeaeteeeiieeaeteeateeaateaatetaaeteaatttaeteattttaeitattittaeteatttttetentttttsetentiettretenttatane (F—19)

Define the dimensionless adjusted pseudotime as

Kty

taLip = s (F-20)
P(uc)i Ly
and the dimensionless adjusted pseudotime derivative can be written as
L K L, (F-21)

dta  g(ucyi L} Lo

With the definitions of dimensionless adjusted pseudovariables, the material balance equation can be

written as

By G | T .y g
qBi —arB; = {Ca +Cbc B—Wi}lhkh(pao Pai) ! . PawsD (F-22)
f Cw | Tw Hi 2mpel;  dtaLD

Define the dimensionless adjusted wellbore injection rate as

aBj i

GaSD) = o s ettt bbbt b ettt (F-23)
WSE T 2mkh(pao - Pai)
and the dimensionless adjusted sandface injection rate as
arBisi
S = T+ ererereeeeret et bbbt b bbbttt b ettt (F-24)
2 27kh(pag — Pai)
With the dimensionless rate definitions, the material balance equation can be written as
BwCi |T; 1 dp
GasD = YawsD —{Ca +Cfocg o~ [=- 5 BWSD) e (F-25)
f Cw | Tw 270 L5 dtar D

Two assumptions and simplifications are required to develop the dimensionless material balance equation.
First, assume that the fracture and wellbore formation volume factors are approximately equivalent,
B; = B,,. Second, assume the wellbore temperature, T, is constant and define a dimensionless adjusted

wellbore storage coefficient as

C Ti
Cop=—2 5 e (F-26)
2Ly Tw
and a dimensionless adjusted dilated/before-closure fracture storage coefficient as
Cic T
CabeD = ettt AR A AR AR AR AR A A AR AR A en (F-27)

27r¢ctWL2f Tw
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At low pressures, the dimensionless adjusted dilated/before-closure fracture storage coefficient is not
constant because of the total compressibility term. However, as the closure stress increases, the wellbore
total compressibility approaches a constant value and can be approximated by the total compressibility at
closure, Cy, = Cy. Alternatively, recognize that the net pressure — the pressure in excess of fracture closure
stress — generated during a fracture-injection/falloff test is minimal and typically on the order of a few
hundred psi or less. Consequently, the average before-closure total compressibility is constant and
approximately equal to the wellbore total compressibility where the average before-closure total

compressibility is defined as

_ Cio +
th%%c=t°Tctc s DI D PG+ oo (F-28)

With the average before-closure total compressibility, the dimensionless adjusted dilated/before-closure
fracture storage coefficient can be written as
Ctoc T

o ettt e e r e s e e (F-29)
2fCpc s Tw

CtocD =
The dimensionless adjusted wellbore and dilated/before-closure storage definitions allow the material
balance equation to be written as

dp
anD = anSD _|:CaD +C fbcD dta—\NSD © e eeeesereeeseeie e ee ettt aee e e tetasestatestasestattttatesttttttantssrteranas (F'30)
aLfD

Provided the assumptions hold, the dimensionless adjusted wellbore and dilated/before-closure storage
coefficients are constant and can be combined to create a single dimensionless adjusted before-closure

storage coefficient written as

CabeD = Cap T CHED « cvrvreerereerersiritiieieie et (F-31)
With the single dimensionless adjusted before-closure storage coefficient, the material balance equation
during fracture-injection when the fracture dilates with the wellbore, fracture, and reservoir containing a
real gas can be written as

d
S D e (F-32)

dasD = YawsD — CahcD d .
taLfD

During the before-closure falloff of a fracture-injection/falloff sequence, the fracture contracts and the

material balance equation can be written as

d
S D (F-33)

dasD = —CabcD d
taLfD

As shown in Appendix C, an after-closure material balance equation can be written as

dp
aBp -0y By pr = (PuCgwVw +22¢ Cgf Vi )d—;"’ ......................................................................... (F-34)
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Define an adjusted after-closure storage coefficient as

and with the definition of adjusted wellbore storage coefficient, a material balance equation can be written

as

HgiC HgiCof d
girow | 5ec 9'—g]ﬂ ...................................................... (F-36)

WBp—arBror =| PnCa————+p
rPrPr [ W a(ﬂgcg)i f aac(#gcg)i at

With the definitions of adjusted pseudopressure and adjusted pseudotime (Egs. F-5 through F-8) and with
the reference condition, 're', defined as the initial pressure, p;, the material balance equation can be written

as

HgwCof |(p) (z) dpaw
aBp—-0qrBror =| PwCq + P Caagc——— (—j — e (F-37)
rPrPr [ w-a f aac(,ugcg)W 2)i\p),, dt

Additionally, with the definitions of gas density, gas formation volume factor, and the relationships shown

in Egs. F-11 through F-16, the after-closure material balance equation can be written as

et (F-38)

HgwCof By, | T; dp
0Bi - ¢ B; =| Cg +Caac — w | i ZPaw
(4gCq)w Bt |Ty dta

The adjusted pseudovariable defninitions, Eqs. F-18 through F-21, and the dimensionless rate equations,

Egs. F-23 and F-24, can be combined with the material balance equation, which is written as

HowCof B_WJ Ti 1 dPawsD (F-39)

JasD =YawsD —| Ca *Caac T ——— —
( (HgCgw Bf | Ty 27r¢ctihL2f dtaLfD

Three assumptions and simplifications are required to develop the dimensionless material balance
equation. First, assume that the fracture and wellbore formation volume factors are approximately
equivalent, B;=B,,. Second, assume the wellbore temperature, T, is constant, and third, assume the
wellbore and fracture gas compressibility are equivalent. With the assumptions, and defining a
dimensionless adjusted after-closure storage coefficient as

Ca+Caac Tj

CaacD = >
2rpehlh Tw

the dimensionless after-closure material balance equation for a well with the wellbore, fracture, and

reservoir containing a real gas can be written as

d
S D e (F-41)

dasD = YawsD — CaacD d .
taLfD

However, during the after-closure period, there is no injected fluid, and the material balance equation can

be simplified and written as
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S D (F-42)

dasD = —CaacD .
dta D

As shown in Appendix C, a material balance equation valid at all times can be written using the Heaviside

unit-step function, which is defined as®

0 t<a
U, = ’ ¢ et b a e h et et a e b bt e h Rt et s h e b eh e bt et e et sa e e b sae e ens F-43
a {l , t>a ( )
Following the technique of Correa and Ramey,*** a material balance equation valid at all times is written
as
I dPawsD ]
(1 _U(te)aLfD j[anSD _CabCD dtaLfD
_ APAWSD | oo (F-44)
GasD = —(U(te)a,_fD Yoo )CabcD ity 10
dPawsD
-y (tc)aLfD CaacD dty ip

where (t).mp is the dimensionless adjusted pseudotime at the end of pumping and (t;).m is the
dimensionless adjusted pseudotime at fracture closure. After expanding and simplifying, the material
balance equation for a fracture-injection/falloff sequence with the wellbore, fracture, and reservoir
containing a real gas and with a dilating fracture and constant after-closure storage is written as

dpawsD

dPawsD (F-45)
dta) fD

dta D

QasD = (I_U(te)LfD JQawsD ~CabcD +Ut.), 1p (CabeD ~CaacD)

Following the derivation in Appendix C, the fracturing-injection/falloff solution in a well with the

wellbore, fracture, and reservoir containing a real gas is written as

GawsD [ PaacD (taL fD) ~ PaacD (taLfD — (te)aLfD)}

PawsD (taLfD) = +PawsD (0)CacD PaacD (taLfD) e (F-46)
(tc)aLfD '
~(Cabed ~Caacd)) 0 PaacD (taLfD ~7D) PawsD (FD)d7D

where Paacp is defined in the Laplace domain as

DD oo (F-47)

PaacD =% —
1+ SZCaacDﬁafD

and Pgp is the finite- or infinite-conductivity fracture solution written in terms of adjusted pseudopressure
and adjusted pseudotime.

Recall from Appendix C that the time-domain dilated-fracture injection/falloff solution in a well with the

wellbore, fracture, and reservoir containing a slightly-compressible liquid is written as
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AwsD [ PacD (tLfD) ~ PacD (LD ~(te)LfD )}

PwsD (tLfp) =| T PwsD (0)Cqcp PacD L D) OO (F-48)
(tcLfp ,
~(Ched ~Cacd)g PacD (tLfD ~7D)PwsD (*D)d7D

where pqcp is defined in the Laplace domain as

_ P
o (F-49)
1+sCacDpp

and ppp is the finite- or infinite-conductivity fracture solution for a reservoir containing a slightly-

compressible liquid.

Note that the two solutions, and limiting cases of the two solutions, have the same form. Consequently, the
interpretation methods developed for a wellbore, fracture, and reservoir containing a slightly-compressible
liquid can be applied when the wellbore, fracture, and reservoir contain a real gas provided that pressure
and time are transformed to adjusted pseudopressure and adjusted pseudotime and provided that the
reservoir pressure-transient solution written in terms of adjusted pseudovariables, psp(taip), is equivalent

to the solution for a slightly-compressible fluid at the same dimensionless adjusted pseudotime, Pip(ta ).
Linearizing the Real-Gas Diffusivity Equation

Lee and Holditch™ demonstrated that the radial diffusivity equation for a real gas could be linearized
under certain conditions by formulating in terms of pseudopressure and pseudotime. However,
demonstrating the equivalence of Pamp(tarp) and pm(tasp) requires formulating diffusivity equations in
spherical and rectangular coordinates in terms of pseudopressure and pseudotime, or for convenience,
adjusted pseudopressure and adjusted pseudotime. The spherical-flow diffusivity equation for a real gas is

written in terms of adjusted pseudopressure with flow in the radial direction only as

Lﬁ(ﬂ%j :W_"t(%) e e e (F-50)
2 or or )y k Lat )

where p, = pa(r, t) and p, = pa(r, ta). Following the derivation of Lee and Holditch,” the spherical-flow
real-gas diffusivity equation is effectively linearized by formulating in terms of adjusted pseudotime and

adjusted pseudopressure when

2 2
Lﬁ(rz%j 5[ °Pa (at_j o] @Pa (a_) z(m] [at_j ............................... (F-51)
2 or or at2 N atgor o or )y rlor e\lork

and the linear spherical-flow real-gas diffusivity equation is written as

iﬁ(rzaﬁjzw L (F-52)
2 or or k Loty )
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where the reference condition, 're’, for the viscosity-compressiblity product is the intial reservoir pressure,
pi.

Similarly, the real-gas diffusivity equation in a rectangular coordinate system is effectively linearized

when
2 2 2 2 2 2 2
{_8 gaJ +[—a F;a] +(_a gaJ >>[8 ga} [(%J +(%J +(%j }
28 Y,Z,ta oy X,Z,ty oz X,Y.ta oty X,Y,Z X Jy,zt %y X,Z,t 0z Jx,yt
(o
22f(@) ] (2
Oty X Jy,2t, XY,z X Jy,zt . (F-53)
o a
223 ] )
ata_ X,Z,ty Y.z oy X,2.t
0
1l [Lj (% )
ata_ 2 X,Y.ta | Z Jx,y.t

and linear diffusivity equation for a reservoir containing a real gas can be written in rectangular
coordinates as

2 2 2

0 pa+a pa_i_a Pa _ #(uCt)i

o oyr o? k [

Partial Differential Equation for a Reservoir Producing Through a Finite-Conductivity Fracture

%Pa
oty

] et sereeeee (F-54)

Consider a reservoir and fracture model as shown in Fig. F-1. Assume linear flow in the reservoir, which

is written as

P D () e (F-55)
OX 6xD
where Xp = X/L; and the derivative of dimensionless pressure is defined as
27kh
ODAD = ot B « eeeeeeeesssseee e (F-56)
0B 44
The partial differential equation describing flow in the reservoir is written as
O D L DD (F-57)
6y2D 1r OtalfD
where yp = Yy/Ly, the diffusivity is defined as
k
ny = S eteeeeeeeeeeeeieeeeiteeeieseieeeeisseiisseesseiiseeeeseiisseeeseitseeerteeiteseeieteiteseeteeiiteeeteeireeaeeeiireeaareens (F-58)
L puc)i
and the derivative of dimensionless time is defined as
kot
AtaLip = B ittt e eeeeeeeeeeeeeeeeeeeebeeateeeatae ettt eataeeabeetbeeataeeatbeeaabeeatbeaaabeeatbeearbeeatbeanrreans (F-59)

puc)i s
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Fig. F-1—Flow directions in the reservoir and a finite-conductivity fracture.

A 4

Assuming two-dimensional flow in the fracture, the governing partial differential equation is written as

2 2
0” Pafd +8 PaiD 1 OPafD

= 5 ettt et e h et a e h et h bt e bt a bttt ettt ekttt b et b e n et nenaen (F-60)
o% oy 7D daL
where the dimensionless diffusivity is defined as
Ke  p (uch)i
"D = D (F-61)
gt (u)i  Kg
The boundary conditions are written for the fracture as
OPaD | PaD | (F-62)
aXD |XD:1 aYD |yD:0
and the interface condition is written as
 FPaD _ i PafD e (F-63)
ND lyy=wp /2 ND lyy-wp /2
Following the pseudofunction approach and derivation of Bennett et al.,''® assume that
OPafp  OP,
D TBD £ (Y1) s coreerrrseeemssmesess e (F-64)

Xp otaLp
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and integrate the fracture equation from yp = 0 to yp = Wp/2, which is written as

® o, b "o
2 0”pafD OPafD 1 [ 2 0Opamd
J, &(—ZdyD + d o = % at— 5 eeeeeeie e aaes
0 D a 0 aLfD

where at yp =0,

0
a= PafD
YD yp=0

and at yp = Wp/2, the interface condition applies and is written as

b:apafD _ _k 9Pap e
%D yp=Wp/2 ke YD yp=Wp /2

Evaluation of the integrals results in

1 OPafid

2
O"PaiD 2 k PaD _
yp=wp/2 "D LD

g Wp ki dp

which can be written as

2
0 PafD 2 pap | _ 1 Opad

ad  Cm Wb |yD:WD/2 1D OtaLfD

where dimensionless conductivity is defined as

wekg

CHD = v sereree e

kL ¢

The flow rate is defined as

OB = 215 GUXGE) 5 orrrerrmeeesseeeeesseeesss et sss sttt

where the flux must account for both fracture wings, which is written as

- -2)Au
oy =25
X

or written as
(1) 2zkh ap
T u oy

In terms of adjusted pseudopressure, the flux is written as

a0 =

(-1)B 27kh dpa
7 By oy

where the reference condition is the initial reservoir pressure, p;.

axn =

Dimensionless adjusted flux is defined as

5 seereseeceeseeseieaitetsaitattattettttttttitatttisattetsasans

................ (F-65)

................ (F-67)

................ (F-68)

................ (F-69)

................ (F-70)

................ (F-73)
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daD 5 eeteneee ettt ettt ettt n et r ettt et neenees (F-75)
qwB 7 By & 7 D |y w2
and can also be expressed as
0
—7lgp =2 PaD ettt (F-76)
ayD Yp=Wp /2
The governing partial differential equation can be written in terms of adjusted pseudovariables as
2 ~
O PaD  70aD L PaD e (F-77)
o Ci 7 dMap
When steady flow is assumed in the fracture, the equation reduces to
2
6 ~
CPAD.  ZABD | () et (F-78)
o C
which can be written in the Laplace domain as
’Pafo 4
CZ8D (), e (F-79)

2 Cc
o i
The fracture-flow “wellbore” boundary condition for a constant rate is written in the Laplace domain as

9PafD T
6XD

and the boundary condition for no flow through the fracture tip is written in the Laplace domain as

9PafD
6XD

T (F-81)
Xp==*l

Eq. F-76 is integrated twice with respect to Xp, and the general Laplace domain pressure distribution in a
finite-conducitivity fracture is written as

7Z'XD _ V4 XD
sCip Cip -0

p— —_— X/— ” 1} !
PaiD (5)— Pap (XD, S) = jo GaD (X S)AX"AX" . oo (F-82)

where pap(Xp,tarp) is the reservoir solution for production through a vertical fracture written in terms of

adjusted pseudovariables.

From Appendix E, the finite-conductivity fracture solution is written in the Laplace domain for a reservoir
containing a slightly-compressible liquid as
TXp /4 XD

X'— " " !
o oo jo AL DO S)IXOX s (F-83)

P (S)—Pp(Xp,S) =

Note that the two solutions have the same form. Provided the solution for a reservoir containing a real gas

and forumulated in terms of adjusted pseudovariables, Pap(Xp, tap), and the reservoir solution for a
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reservoir containing a slightly-compressible fluid, pp(Xp, tap), are equivalent, then the finite-conductivity
fracture pressure-transient solution written in terms of adjusted pseudovariables, pamp(taim), is equivalent to

the solution for a slightly-compressible fluid, pip(taLm).
Reservoir Solution for a Well Producing a Real-Gas Through a Uniform-Flux Fracture

Appendix D contains the derivation of the the fully-penetrating vertical uniform-flux fracture solution for
a reservoir containing a slightly compressible fluid where the solution is derived in the Laplace domain
from the point-source solution as shown by Ozkan and Rhagavan.” The Laplace domain point-source
solution is derived from the spherical-flow diffusivity equation,” which for real-gas flow and in terms of

adjusted pseudovariables is written as (Eq. F-54)

Lﬁ(ﬁ %jzw L (F-84)
r2or\ or k oty )

or in terms of dimensionless variables as

Li[rz %]:( %Pa j ................................................................................................................. (F-85)

2 or ot
5 or D aD

were I'p = I'/L, L. is a characteristic length, and a general dimensionless adjusted pseudotime is defined as

gD = B (F-86)
Pucy)ile

The initial condition for solution of the governing differential equation requires that

PA(TD > € = 07,140 =0) = 05 wrerieeeiiieiie ettt (F-87)
and the boundary conditions are written as

Pa(ID 90,150 Z0) =05 oot s (F-88)
and

lim, q(“;/'j)i L. (ré :;L;] QoD () - oo (F-89)

The governing differential equation and boundary conditions for a reservoir containing a real gas are linear
and identical in form to the governing differential equation and boundary conditions for a reservoir
containing a slightly compressible liquid.”” Consequently, the point-source solutions, and reservoir
solutions developed from the point-source solutions, are the same. In the present context, the conclusion
means that the reservoir solution formulated in terms of dimensionless adjusted pseudopressure for a well
producing a real-gas through a vertical fracture is the same as the dimensionless pressure solution for a

well producing a slightly-compressible liquid, which can be written as

PaD(taD) = PD(MAD ) -+ cveerreerieeiie s (F-90)
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When the reservoir solutions are the same, the finite- and infinite-conductivity fracture solutions are also

the same, which is written as
PafD (TaD ) = PAD (TAD)) 5 ++vveerereermmeemteentt e (F-91)

and when the finite- and infinite-conductivity solutions are the same, the fracture-injection/falloff solution
for a dilating fracture formulated in terms of adjusted pseudopressure and adjusted pseudotime with the

wellbore, fracture, and reservoir containing a real gas can be written as

YawsD [pacD (taLfD) ~ PacD (taLfD ~(te)aLfD )}

PawsD (taL ) =| ~ PawsD (DCacD PacD (taLfD) e (F-92)
(tc)aLfD , ,
~(Cabed ~Caacd)) 0 PacD (taLfD —7D)PawsD (7D )d7p

All fracture-injection/falloff solutions presented in Chapters III and IV can be cast in terms of adjusted
pseudopressure and adjusted pseudotime, and in each fracture-injection/falloff solution, the reservoir and
fracture solution derived in terms of adjusted pseudovariables can be replaced by a slightly-compressible

liquid solution evaluated in terms of adjusted pseudotime.

280



Name:

Born:

Permanent Address:

Phone:

E-mail Address:

Education:

VITA

David Paul Craig

May 14, 1961
Fort Worth, Texas

14459 Williams Street
Thornton, CO 80602-7000

720-929-0515

doctorbubba@earthlink.net

Texas A&M University, College Station, Texas, USA
Doctor of Philosophy in Petroleum Engineering
May 2006

Texas A&M University, College Station, Texas, USA
Master of Science in Petroleum Engineering
December 1991

Texas Tech University, Lubbock, Texas, USA
Bachelor of Science in Petroleum Engineering
December 1989

281



	Title  TOC  TOF  TOT  Abstract.pdf
	Chapter I.pdf
	Chapter II.pdf
	Chapter III.pdf
	Chapter IV.pdf
	Chapter V.pdf
	Chapter VI.pdf
	Nomenclature.pdf
	References.pdf
	Appendix A.pdf
	Appendix B.pdf
	Appendix C.pdf
	Appendix D.pdf
	Appendix E.pdf
	Appendix F.pdf
	Vita.pdf

