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ABSTRACT 

 
Numerical Simulation of Flow Distribution For  

Pebble Bed High Temperature Gas Cooled Reactors. (May 2003) 

Gokhan Yesilyurt, B.S., Hacettepe University (Ankara/TURKEY) 

Chair of Advisory Committee: Dr. Yassin A. Hassan 

 
 
 
 The premise of the work presented here is to use a common analytical tool, 

Computational Fluid Dynamics (CFD), along with different turbulence models. Eddy 

viscosity models as well as state-of-the-art Large Eddy Simulation (LES) were used to 

study the flow past bluff bodies. A suitable CFD code (CFX5.6b) was selected and 

implemented.  

 Simulation of turbulent transport for the gas through the gaps of the randomly 

distributed spherical fuel elements (pebbles) was performed. Although there are a 

number of numerical studies on flows around spherical bodies, none of them use the 

necessary turbulence models that are required to simulate flow where strong separation 

exists. With the development of high performance computers built for applications that 

require high CPU time and memory, numerical simulation becomes one of the more 

effective approaches for such investigations, and LES type of turbulence models can be 

used more effectively. 

 Since there are objects that are touching each other in the present study, a special 

approach was applied at the stage of building computational domain. This is supposed to 

be a considerable improvement for CFD applications. Zero thickness was achieved 

between the pebbles in which fission reaction takes place.   

Since there is a strong pressure gradient as a result of high Reynolds Number on 

the computational domain, which strongly affects the boundary layer behavior, heat 

transfer in both laminar and turbulent flows varies noticeably. Therefore, noncircular 
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curved flows as in the pebble-bed situation, in detailed local sense, is interesting to be 

investigated. 

Since a compromise is needed between accuracy of results and time/cost of effort 

in acquiring the results numerically, selection of turbulence model should be done 

carefully. Resolving all the scales of a turbulent flow is too costly, while employing 

highly empirical turbulence models to complex problems could give inaccurate 

simulation results. The Large Eddy Simulation (LES) method would achieve the 

requirements to obtain a reasonable result. In LES, the large scales in the flow are solved 

and the small scales are modeled. 

Eddy viscosity and Reynolds stress models were also be used to investigate the 

applicability of these models for this kind of flow past bluff bodies at high Re numbers. 
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CHAPTER I 

INTRODUCTION 

 

 Unsteady 3D fluid flows are very widespread phenomena in nature. The 

understanding of such flows is very important from both theoretical and practical point 

of view. The laboratory investigations of such flows are difficult and in some cases 

impossible. With the development of high performance computers built for applications 

that require high CPU time and memory;  numerical simulation becomes one of the more 

effective approaches for such investigations. 

 In literature, several attempts of numerical simulation [1,2,3] for separated fluid 

flows around a sphere were undertaken. A large number of these numerical studies [4,5] 

have been devoted to the analysis of flow around a circular cylinder at low and moderate 

Reynolds numbers. Unfortunately, there are only few studies [6] which represent the 

flow around randomly distributed spheres as in Pebble Bed Modular Reactors (PBMR) 

under high Reynolds number flow conditions. Furthermore, most of the turbulence 

models that were used for these simulations are eddy viscosity models which doesn’t 

resolve the flow field appropriately where curved flows exist. 

 The simulation of turbulent transport for the gas through the gaps of the 

randomly distributed spherical fuel elements (pebbles) was performed with the help of 

appropriate turbulence model where flow separation exists.  This helped in 

understanding the highly three-dimensional, complex flow phenomena in pebble bed 

caused by flow curvature. 

 In summary, the premise of the work is to use Computational Fluid Dynamics 

(CFD) tools along with different turbulence models including the state-of-the-art Large 

Eddy Simulation to study the flow around randomly distributed pebbles of High 

Temperature Gas Cooled Reactors (HTGR).  

 
    This thesis follows the style and format of Computational Mechanics Journal. 
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I.1 GAS FLOW OVER BLUFF STRUCTURES 

Heat transfer in both laminar and turbulent flows varies noticeably around curved 

surfaces. Curved flows would be present in the presence of contiguous curved surfaces. 

In laminar flow condition and appreciable effect of thermo gravitational forces, the 

Nusselt (Nu) number depends significantly on the curvature shape of the surface. It 

changes with order of 10 times. The flow passages through the gap between the fuel 

balls have concave and convex configurations. The action of the centrifugal forces 

manifests itself differently on convex and concave parts of the flow path (suppression or 

stimulation of turbulence). The flow of this type has distinctive features. In such flow 

there is a pressure gradient, which strongly affects the boundary layer behavior. The 

transition from a laminar to turbulent flow around this curved flow occurs at different 

Reynolds numbers for conventional circular geometry. Consequently, noncircular curved 

flows as in the pebble-bed situation, in detailed local sense, is interesting to be 

investigated. No detailed complete calculations for this kind of reactor to address these 

local phenomena are available. This work is an attempt to bridge this gap by evaluating 

this effect. 

 

I.2 TURBULENCE MODEL SELECTION 

The simulation of these local phenomena cannot be computed with existing 

conventional computational tools. Not all Computational Fluid Dynamic (CFD) methods 

are applicable to solve turbulence problems, in complex geometries. In pebble bed 

reactor core simulations, a compromise is needed between accuracy of results and 

time/cost of effort in acquiring the results. Resolving all the scales of a turbulent flow is 

too costly, while employing highly empirical turbulence models to complex problems 

could give inaccurate simulation results. The Large Eddy Simulation (LES) method 

would achieve the requirements to obtain a reasonable result. In LES, the large scales in 

the flow are solved and the small scales are modeled. Eddy viscosity and Reynolds stress 

models should also be used to investigate the applicability of these models for this kind 

of flow past bluff bodies at high Re numbers. 



 3 

I.3 COMPUTATIONAL FLUID DYNAMICS CODE (CFX-5) 

In PBMR core, fuel elements that are in spherical form are distributed randomly. 

A closed packed modeling of spheres was performed using the CFX-5 [7] Build 

Graphical User Interface (GUI) environment. Since all of the commercial Computer 

Aided Design CAD tools don’t allow creation of touching objects where the spacing is 

zero, some special techniques were applied to solve this problem and zero spacing 

between the pebbles was achieved with the help of CFX-5 Build module. This is a 

considerable improvement from CFD applications point of view. 

Because of the high number of node requirements to resolve the flow field 

properly around the pebbles, CFX-5 Build meshing module was utilized. Tetrahedron 

type of elements was created with enough resolution with the help of maximum edge 

length option. Since mesh quality was tested several times not to exceed a certain value 

of maximum aspect ratio, high quality was achieved from mesh point of view.  

CFX-5 Solver program was started using command line options. CFX-5 Solver 

GUI was used to monitor the convergence of the simulations.  All of the simulations 

were performed on super computer [8] with 48 CPU.  

CFX-5 Post module was utilized to analyze the results of the simulations. 

Important flow parameters were visualized with the help of the plane concept embedded 

in the CFX-5 Post module. Movies of some important variables were created by CFX-5 

Post module. 
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CHAPTER II 

HTGR CONCEPT 

 

 A High Temperature Gas-cooled Reactor (HTGR) [9] is one of the renewed 

reactor designs to play a role in nuclear power generation. This reactor design concepts 

is currently under consideration and development worldwide. Since the HTGR concept 

offers inherent safety, has a very flexible fuel cycle with capability to achieve high 

burnup levels, and provides good thermal efficiency of power plant, it can be considered 

for further development and improvement as a reactor concept of generation IV. The 

combination of coated particle fuel, inert helium gas as coolant and graphite moderated 

reactor makes it possible to operate at high temperature yielding a high efficiency. 

 

II.1 PEBBLE BED MODULAR REACTOR (PBMR) 

 Pebble Bed Modular Reactor (PBMR) is a new type of High Temperature Gas 

Cooled Reactor (HTGR) design. It is proposed with inherently safe and high thermal 

efficiency features as well as their economical aspect. Main features of the reactor can be 

summarized as follows; 

 

Ø PBMR is a small, safe, clean, cost-efficient, inexpensive and adaptable nuclear 

power plant. 

Ø Each PBMR produces 110 megawatts each.  

Ø Ten PBMRs can share a common control center and occupy an area of three 

football fields. 

Ø Unlike conventional reactors that use fuel rods, the PBMR uses fuel spheres 

(pebbles) about the size of a tennis ball coated in graphite. 

Ø PBMR design makes use of helium as the coolant and energy transfer medium to 

a closed cycle gas turbine and generator. 
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II.2 PBMR OPERATION 

 The PBMR [9] power conversion unit is based on the thermodynamic Brayton 

(gas turbine) cycle as shown in Figure 1. The helium (He) gas enters from the top of the 

reactor at a temperature of about 500 ºC and at a pressure of about 8.5 MPa. After the 

gas passes between the fuel balls, helium leaves the reactor at a temperature of about 900 

ºC. This gas passes through three turbines. The first two turbines drive compressors and 

the third generator, from where the power emerges. At that stage the gas is about 600 °C. 

It then goes into a recuperator where it loses excess energy and leaves at about 140 °C. 

A water-cooled precooler takes it down further to about 30 °C. The gas is then 

repressurised in a turbo-compressor before moving back to the regenerator heat-

exchanger, where it picks up the residual energy and goes back into the reactor. About 

2.5-million fuel balls will be required over the 40-year life of a 100 MW reactor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: PBMR Power Conversion Unit 
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 Vertical steel pressure vessel is 6 m in diameter and 20 m high. Figure 2 shows 

the PBMR pressure vessel, pressurizer and pumps. Core is 3.7 m in diameter and 9.0 m 

in height. The pressure vessel is lined with a layer of graphite bricks which serves as an 

outer reflector and passive heat transfer medium. The graphite brick lining is drilled with 

vertical holes to house the control elements. Reactor core consists of two zones, inner 

zone that contains approximately 150,000 graphite spheres, and the outer zone (annulus) 

that contains approximately 380,000 fuel spheres.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: PBMR Pressure Vessel 

 

 

II.3 FUEL ELEMENTS 

 PBMR is a nuclear power plant that uses coated uranium particles encased in 

graphite to form a fuel sphere (60 mm in diameter) where graphite is used as moderator. 

Inside each pebble are 15,000 uranium particles, each coated with a silicon carbon 

barrier so dense that no gaseous or metallic radioactive products can escape. 380,000 

fuel pebbles in core. About 3,000 pebbles handled by Fuel Handling Service (FHS) each 
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day. About 350 discarded daily. One pebble discharged every 30 seconds. Average 

pebble cycles through core 15 times. Fuel handling is most maintenance- intensive part of 

plant.  

The PBMR fuel (pebble) is based on proven high-quality graphite sphere 

containing TRISO coated particles. Essentially the fuel elements are multi- layer spheres 

consisting of enriched uranium and various forms of carbon. The first layer deposited on 

the kernels is porous carbon, which accommodates fission products released from the 

kernel without over-pressurizing the coated particle. This is followed by a thin coating of 

pyrolitic carbon (a very dense form of heat-treated carbon), followed by a layer of 

silicon carbide (a strong refractory material), followed by another layer of pyrolitic 

carbon. Fuel pebble characteristics are shown in Figure 3. 

 

 

 

 
Figure 3: PBMR Fuel Element (Pebble) 
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II.4 NOTES CONCERNING PBMR OPERATION 

Helium is chemically inert and does not react with any of the materials that are 

used in the construction of the PBMR. The high operating temperatures and pressures of 

the system enable high efficiency operation. The turbines that are used in light water 

reactors operate with low-temperature and low-pressure steam. This steam condenses in 

the turbine and the presence of the water droplets in the turbine increases the turbine cost 

and decreases its efficiency when compared to the steam turbines used in a fossil- fired 

power plant. The use of helium in a direct cycle gas turbine based power conversion unit 

eliminates the requirement for a heat exchanger between a primary and secondary cycle. 

This also improves the efficiency of the plant. The reactor will be refuelled while it is 

operating. This increases the availability. Furthermore, the fuel spheres are circulated 

through the core several times before they are depleted. This results in more effective 

use of the uranium due to the fact that each fuel sphere will receive an even burn-up 

before being discarded as spent fuel. The PBMR is designed specifically for load-

following operation within specified limits. This means that the amount of electrical 

power that the plant can output can be varied to match the current power demand. On-

line refueling is another key feature of the PBMR. While the unit remains at full power 

and the reactivity of the initial core subsides, fresh fuel elements are added at the top of 

the reactor  

 

II.5 NUCLEAR SAFETY 

These reactors are characterised by their inherent safety properties. The design of the 

PBMR is such that there is no physical process capable of caus ing an induced radiation 

hazard outside the site boundary. The PBMR does not require any of the traditional 

nuclear safety systems that actively guard older generation reactors against radiation 

release. 
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CHAPTER III 

SIMULATED GEOMETRY AND MESH GENERATION 

 

All Computational Fluid Dynamics (CFD) simulations start with the selection of 

appropriate geometry that is going to be used for analyzing the effects of fluid flow and 

heat transfer on the system. Since a compromise is needed between accuracy of results 

and time/cost effort in acquiring the results numerically, importance of size of 

computational domain becomes dominant according to the turbulence model that is 

going to be used. In some systems, a certain geometric pattern repeats itself as in the 

case of PBMR core. Therefore symmetry boundary condition approximation can be 

applied on the boundaries of selected region in the system to decrease the time/cost 

effort in getting the results. In the present study, a small part of the reactor core was 

studied with appropriate boundary conditions. 

 

III.1 GEOMETRY GENERATION 

III.1.1 CFX-BUILD 

CFX-Build was used as a geometry and mesh generation pre-processor module  

of CFX-5. CFX-Build has been developed using the Mac Neal Schwendler 

Corporation’s MSC/PATRAN TM software. It is an interactive program which enables 

to build the system and generate the mesh for the CFX-Pre module, the physics pre-

processor component of CFX-5. 

 

III.1.2 CLOSED PACKED BED 

Not all Computer Aided Design (CAD) softwares are applicable to build 

complex geometries as in the case of PBMR core. Fuel elements that are in spherical 

form are distributed randomly in the core. A closed packed modeling of spheres requires 
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points where two pebbles are touching to each other. At the stage of building the 

geometry using external CAD softwares, it was recognized that these commercial CAD 

tools don’t allow zero spacing between the objects. Fortunately, CFX-5 Build module 

allows generating touching objects by creating a common point on the vertices of a plane  

as can be seen in Figure 4. 

 

 

 

                
               Not Possible                                                Possible 

Figure 4: Plane Constructions at Common Points 

 

 

 

A solid, surface or curve can not touch a plane at a given point even in CFX5-

Build Pre-processing module. But when the plane is divided into four sub planes, the 

point where vertices of the plane are intersecting each other is treated as the common 

point and building objects with zero spacing becomes possible at that location. Two 

pebbles can easily be created with zero spacing with the help of the special technique 

that has just been explained. This approach is shown in Figure 5. 
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Figure 5: Zero Spacing Between Objects 

 

 

 

Figure 6 shows the selected core configurations that were built for the simulation 

of PBMR core by CFX-5. In these configurations, each full pebble touches surrounding 

eight spheres at common points. Likewise, each half and quarter pebble touches 

surrounding four and two spheres respectively. 

All of the geometric entities for the simulated part of the core were summarized 

in the following Figure 7. 
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                         Cold Packed Bed                                                Hot Packed Bed            

Figure 6: Simulated Core Conditions 
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Figure 7: Dimensions of the Simulated Packed Bed 

 

The points where the pebbles are touching each other can be seen clearly in 

Figure 8. This shows that zero space between the objects was achieved by the method as 

stated previously. 

6 cm 

3 cm 

20.8 cm 

3 cm 

13.9 cm 
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Figure 8: Touching Pebbles 

 

 

 

The complete geometry was built by using different fractions of a full pebble. As 

can be seen in Figure 6 and 7, we have 14 full spheres, 10 half spheres on the middle of 

the surfaces, 16 quarter spheres on the sides and 8 one eight of a full sphere on the 

corners of the packed bed. Number of pebbles according to their size and corresponding 

full size pebbles are summarized in Table 1. 

 

Table 1: Pebble Size Distribution 

Size #  of Elements Full Size Factor Corresponding # of full pebbles 

1 (Full) 14 1 14 

1/2 (Half) 10 1/2 5 

1/4 (Quarter) 16 1/4  4 

1/8 8 1/8 1 

 TOTAL   24 

 



 15 

III.2 MESH GENERATION 

In CFX-Build, the mesh was prepared in two stages: 

 

Ø Interactive facilities within CFX-Build were used to generate the surface mesh 

of triangular elements. 

Ø The volume mesh (and surface mesh, not created interactively) was generated 

from the surface mesh during the creation of the Definition File. 

 

The surface mesh was created using a Delaunay method by default. The alternative 

surface mesher uses an Advancing Front (AF) method. The volume mesh was created 

through Advancing Front and Inflation (AFI) irrespective of the choice of surface 

mesher. The Definition file produced by CFX-Build contains the mesh and was imported 

into CFX-Pre to define the simulation physics. 

 

III.2.1 LENGTH SCALE AND MESHING 

Length scale is a term used to describe the relative size of a mesh element with 

respect to the overall size of the model. CFX-Build automatically selects a length scale 

for the model, typically between 1% and 5% of the maximum model dimension. This 

length scale is often referred to as the background length scale. The Maximum Edge 

Length in the volume for present simulated core region was selected less than 1% of the 

maximum extent of the geometry which is 2.1131024 mm. A second length scale, 

generated near surfaces or as a result of a mesh control, is used to locally modify the size 

of mesh elements. This is particularly beneficial in an area of highly irregular flow or in 

a local area of interest. Finally, length scales can be described in two forms. A surface 

length scale is used to describe the relative size of a two-dimensional surface mesh. A 

volume length scale is used to describe the relative size of a three-dimensional volume 

mesh. 
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The following points were considered as good meshing: 

 

Ø The length scale we use should reflect the features of the flow we wish to model. 

Thus, it is important to resolve geometric features that affect the flow with 

adequate mesh resolution. 

Ø The default background length scale is usually sensible, but if the size of the 

geometric features vary significantly over the Domain, then we should require 

more local control over the mesh (e.g. with mesh controls). It is recommended 

that we use at least 10 elements across any features of interest. 

Ø For the highest accuracy, we should generally seek a mesh- independent solution. 

In other words, the results of our model do not change by reducing the mesh 

length scale, unless memory sizes on our machine restrict us from achieving this. 

We can approach this by gradually decreasing the Maximum Edge Length (and 

subsequently the mesh length scale) of our mesh and comparing solutions. Mesh 

independence means that errors due to the scale of the mesh affecting the 

computed results have been eliminated. 

 

Basically, a sphere surface is defined by infinite number of points on the spherical 

coordinates. In other words, the only way to capture all the details of a curved surface is 

to use infinite number of points. Unfortunately, this approach is impossible from 

computational point of view. Therefore structured or unstructured grid approach should 

be used to mesh the computational domain. Structured rectangular orthogonal or 

unstructured tetrahedral type of cells can be used to discretise the domain. Since 

Discretisation of the flow domain by unstructured tetrahedral elements provides several 

advantages for complex geometric entities as in the case of PBMR core, this type of 

elements is utilized in the present study. 
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Table 2: Mesh Statistics 

Mesh Statistics 

Number of nodes in surface mesh 82,827 

Number of faces in surface mesh 165,594 

CPU time for surface meshing 44.171 s 

Number of elements in volume mesh    1,708,304 

Number of nodes in volume mesh       332,759 

Maximum element aspect ratio 6.14 

 

 

 

 

Meshing statistics for the present simulations are summarized in Table 2. 

Maximum element aspect ratio and the total number of nodes are the most important 

parameters from the CPU time point of view. High number of nodes means high CPU 

time and storage space to get the results. Especially Large Eddy Simulation results 

requires cons iderably large amount of disk space because of transient behavior of the 

model and small time step for the integration of transport equations. 

The ratio of the maximum to minimum element length (maximum element aspect 

ratio) shouldn’t be too high. Recommended value of maximum element aspect ratio is 

less than 10 for this type of simulations using LES type turbulence modeling. When we 

reduce the mesh length scale close to the walls with the help of mesh control options, 

maximum element aspect ratio increases 2 times and simulation time increases 

approximately 6 times. Therefore, smaller edge length was used instead of setting lots of 

control points while meshing the computational domain.  

When Edge Proximity is enabled, the model is examined for locations where 

relatively small mesh elements are used on a curved surface in close proximity to 
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relatively large coarse elements on a flat surface. In these locations, the coarse elements 

were automatically refined to improve the model in this region. The effect of using Edge 

Proximity was carried over to adjacent surfaces. This can be seen in the Figure 9 where 

the mesh has been refined on the lower face when Edge Proximity is ON. 

 

 
                                Edge Proximity ON  Edge Proximity OFF  

Figure 9: Edge Proximity 

 

 

Figures 10 and Figure 11 show the mesh distribution at different planes for the present 

study. Because of the new wall function and Large Eddy Simulation turbulence 

modeling, high number of elements was used on the computational domain. 
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Figure 10: Mesh Distribution at the inlet 

 

 

 
 Figure 11: Mesh Distribution on the Middle Plane 
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CHAPTER IV 

CALCULATION OF SIMULATION SPECIFIC PARAMETERS 

 

All of the operating technical parameters of the simulated PBMR core were taken 

from a 110 MWe class demonstration reactor at Koeberg near Cape Town [10], where 

Africa’s only nuclear power plant is situated. As stated before, since there is a large 

number of fuel pebbles in PBMR core, it is impossible the make the Computational 

Fluid Dynamic (CFD) simulations for the whole core region using LES type of 

turbulence models. High CPU time and memory requirements of the CFD codes prevent 

simulations at high Reynolds numbers for large domains. Therefore, a small part of the 

core region was chosen with appropriate boundary conditions. Rector core operating and 

geometric parameters [10] of PBMR are summarized in the Table 3.  

 

Table 3: Summary of Operating Parameters of PBMR Core 

Power (Thermal) 250 MWth 

Thermal Efficiency 48 % 

Power (Electric) 120 MWe 

Pressure 8.5 MPa 

Inlet Temperature 500 0C 

Outlet Temperature 900 0C 

Core Diameter 3.7 m 

Core Height 9.0 m 

Number of Fuel Pebbles 380000  

Number of Graphite Pebbles 150000  

Total Number of Pebbles 530.000  

Fuel Diameter 0.06 m 
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Several other simulation specific parameters were calculated for the simulated 

part of the core with the help of Table 3. 

 

IV.1 TOTAL MASS FLOW RATE 

Based on the reactor thermal power, temperature difference across the core and 

specific heat of Helium gas at the operating pressure and temperature, total mass flow 

rate tm&  of He gas through the pebbles can be found by using the Equation (4.1). 

TcmQ pt ∆= &          (4.1) 

where Q, pc , and T∆  represents thermal power of the core, specific heat of He gas at 

constant pressure and temperature difference across the core respectively. Since specific 

heat capacity of He gas  depends on temperature, change in specific heat of Helium gas 

should be investigated carefully under the operating conditions. Figure 12 shows 

temperature dependence of specific heat of He gas. This curve was constructed by 

specific heat values for different temperatures at 8.5 MPa [11]. 
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Figure 12: Cp as a Function of Temperature at Operating Pressure P=8.5 MPa 
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Figure 12 shows that specific heat of He gas doesn’t change with temperature for 

the region of interest 773 K < T < 1073 K at 8.5 MPa under steady state conditions and it 

is equal to 5192 J/kg K.  

Total mass flow rate trough the PBMR core was calculated based on Equation 

(4.1). 

( )( ) skg
x

Tc
Q

m
p

t /120
4005192

10250 6

==
∆

=&  

Because of the unknown velocity profile at the inlet, mass flow rate specification 

would be the most appropriate selection as the inlet boundary condition. Since Helium 

gas mass flow should be given at the inlet, calculation of fractional mass flow rate for 

the simulated core region must be performed.  

 

IV.2 FRACTIONAL MASS FLOW RATE 

Determination of fractional mass flow rate was based on the ratio of cross 

sectional area of simulated packed bed and complete core as seen Equation 4.2. 

( ) 




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A
mm

'
' &&        (4.2) 

'
coreA  and coreA  are cross sectional areas of simulated packed bed and complete core 

respectively. tm&  and hd  represent total mass flow rate and equivalent hydraulic diameter 

of the core. 
2' aAcore =        (4.3) 

22' 019044.0138.0 mAcore ==  

4

2
core
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d
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π
=        (4.4) 
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4

7.314.3
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Putting the results of Equation 4.3 and 4.4 into Equation 4.2, fractional mass flow rate 

was obtained.  
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IV.3 AVERAGE DENSITY 

Average value of density can also be calculated in the range of operating 

temperatures of the reactor. Density of the He as function of temperature was 

constructed by using density values for different temperatures at 8.5 MPa [11]. Figure 13 

shows how the density of He gas depends on temperature. 
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Figure 13: Density as a Function of Temperature at P=8.5 MPa for 300<T<1500 

 

 

 

Average value of density was calculated in the range of operating temperatures by using 

Equation (4.5) and was given as an input to the CFD code. 



 24 

( )∫∆
=

ou t

in

T

T
ave dTT

T
ρρ

1
       (4.5) 

∫ −

∆
=

1173

773

9923.03835
1

dTT
Taveρ  

3/2.4 mkgave =ρ  

 

IV.4 PRESSURE DROP  

In order to verify the pressure drop, Darcy formula was applied by modifying 

several variables for pebble bed situation. Equation 4.6 shows well-known Darcy 

formula for pressure drop calculation. 

ρ2

2'

'

'
e

e

e G
D
H

fp =∆        (4.6) 

where '
eH  is the effective height and Carman showed that effective pebble bed height 

'
eH  is proportional to 2  of the actual height as in shown in Equation 4.7. 

'' 2HH e =                                (4.7) 

( )( ) mH e 29.0207.02' ==  

Effective diameter '
eD  for pebble beds is defined as four times the ratio of the 

free volume to the total pebble surface area.  

'

''
' )(4

s

s
e A

VV
D

−
=         (4.8) 
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where 'V , '
sV  and '

sA  are total volume of the packed bed, total volume of pebbles and 

total surface area of the fuel and graphite pebbles in the simulated region respectively. 

Porosity of the packed bed was calculated by Equation 4.9 

eTotalVolum
FreeVolume

=α =
V

VV s−
       (4.9) 
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and surface area of spheres in the simulated packed bed was found by Equation 4.10. 

d
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Equations 4.8 through 4.10 lead to the equation 4.11. 
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Effective mass flux '
eG  was found as follows; 
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Robinson has shown that friction factor f can be approximated by equation 4.12. 

27.0Re
5.67

=f                     (4.12) 

where  

µ

''
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Putting the values of Equations 4.7 through 4.13 in Equation 4.6 

( )( ) KPap 672,1
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835
018.0
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2

==∆    

     

IV.5 HEAT FLUX 

Besides flow simulations, heat was also added on the surface of the pebbles to 

analysis the heat transfer mechanism.  According to the number of pebbles and thermal 

power of the reactor, heat flux can be calculated by using the Equation (4.14). 

fuelsA
q

q
,

'' =        (4.14) 
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where fuelsA ,  represents the fuel pebble surface area and was  calculated by Equation 

4.15. 
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Equation 4.16 shows effective heat flux per pebble.   

2
6

,

'' /58194
4296

10250
mW

x
A

q
q

fuels

===      (4.16) 



 28 

CHAPTER V 

CFD MODELLING 

 

V.1 COMPUTATIONAL FLUD DYNAMICS (CFD) 

Computational Fluid Dynamics (CFD) is a computer-based tool for simulating 

the behavior of systems involving fluid flow, heat transfer and other related physical 

processes. It works by solving the equations of fluid flow (in a special form) over a 

region of interest, with specified (known) conditions on the boundary of that region. 

 

V.2 THE HISTORY OF CFD 

Computers have been used to solve fluid flow problems for many years. 

Numerous programs have been written to solve either specific problems, or specific 

classes of problem. From the mid-1970’s the complex mathematics required to 

generalize the algorithms began to be understood, and general purpose CFD solvers were 

developed. These began to appear in the early 1980’s and required what were then very 

powerful computers, as well as an in-depth knowledge of fluid dynamics, and large 

amounts of time to set up simulations. Consequently CFD was a tool used almost 

exclusively in research. Recent advances in computing power, together with powerful 

graphics and interactive 3-D manipulation of models mean that the process of creating a 

CFD model and analyzing the results is much less labor- intensive, reducing the time and 

therefore the cost. Advanced solvers contain algorithms which enable robust solution of 

the flow field in a reasonable time. 

As a result of these factors, Computational Fluid Dynamics (CFD) is now an 

established industrial design tool, helping to reduce design timescales and improving 

processes throughout the engineering world. CFD provides a cost-effective and accurate 
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alternative to scale model testing, with variations on the simulation being performed 

quickly, offering obvious advantages. 

 

V.3 THE MATHEMATICS OF CFD 

The set of equations which describe the processes of momentum, heat and mass 

transfer are known as the Navier-Stokes equations. These are partial differential 

equations which were derived in the early nineteenth century. They have no known 

general analytical solution but can be discretised and solved numerically. Equations 

describing other processes, such as combustion, can also be solved in conjunction with 

the Navier-Stokes equations. Often, an approximating model is used to derive these 

additional equations, turbulence models being a particularly important example. There 

are a number of different solution methods which are used in CFD codes. The most 

common one which CFX-5 is based on is known as the finite volume technique. In this 

technique, the region of interest is divided into small sub-regions, called control 

volumes. The equations are discretised and solved iteratively for each control volume. 

As a result, an approximation of the value of each variable at specific points throughout 

the domain can be obtained. In this way,  one derives a full picture of the behavior of the 

flow. 

 

V.3.1 TRANSPORT EQUATIONS 

The instantaneous equations of mass, momentum and energy conservation can be 

written as follows in a stationary frame: 
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where toth  is defined as the Specific Total Enthalpy, which for the general case of 

variable  properties and compressible flow is given in terms of the Specific Static 

(thermodynamic) Enthalpy h by: 

2

2
1

Uhhtot += ,  ( )Tphh ,=       (5.4) 

There are seven unknowns (u, v, w, p, T, ρ , h) in the above five equations, but 

the set can be closed by adding two algebraic thermodynamic equations: the Equation of 

State, which relates density to pressure and temperature; and the Constitutive Equation, 

which relates enthalpy to temperature and pressure. 

 

V.3.2 FLUID MODELS AND EQUATIONS OF STATE 

In CFX-5, density for a General Fluid can be described as a function of 

temperature and pressure: 

( )Tp,ρρ =         (5.5) 

The specific heat capacity pc   for a General Fluid can also be described as a 

function of temperature and pressure: 

( )Tpcc pp ,=         (5.6) 

For an Ideal Gas the density is defined by the Ideal Gas Law. CFX-5 allows pc  

being a function of temperature only: 

( )Tcc pp =         (5.7) 

 

V.3.3 EQUATION OF STATE FOR DENSITY 

Equation of state for density as a function of pressure and temperature is 

formulated as shown in Equation 5.8. 
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where w is the molecular weight of the gas, and 0R  is the Universal Gas constant. The 

ratio of specific heats γ  is calculated from the specification of pc  and the molecular 

weight: 

w
R

R 0=         (5.9) 

where R is the Specific Gas Constant. For constant cp, γ  is computed from: 

 

Rc

c

p

p

−
=γ          (5.10) 

If pc  is a function of temperature only, then the total pressure is computed 

correctly for the given variation in specific heat. We cannot specify pc  as a function of 

temperature and pressure. 

 

V.3.4 EQUATION OF STATE FOR ENTHALPY 

The constitutive equation is an algebraic thermodynamic equation of state for 

fluid enthalpy. In order to support general fluid properties, the pressure-temperature-

enthalpy relationship is computed using a property table and a full integration of the 

differential definitions of enthalpy change using the expressions for ρ  and pc . The 

property table is constructed using the upper and lower bounds of temperature and 

pressure. Then, for any general change in conditions from ( 1p , 1T  ) to ( 2p , 2T ), the 

change in enthalpy dh is calculated in two steps: first at constant pressure, then at 

constant temperature. 
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The total change in enthalpy is calculated using: 
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The first step is equivalent to the change in enthalpy for an ideal gas, while the 

second step is a ‘correction’ required for real fluids. The CFX-5 Solver uses a fixed 

number of interpolation points to construct the property table. The more accurate the 

estimate for the upper and lower bounds, the more accurate the interpolation from the 

table. It should be noted that the above enthalpy equations are calculated at user defined 

reference values of Additional Variables in CFX-5, and so their thermodynamic effect is 

modeled only approximately. 

If the relationship for fluid density is based on an Ideal Gas, the change in static 

enthalpy reduces to: 

∫=−
2

1

12

T

T
pdTchh        (5.12) 

If both fluid density and specific heat capacity are constant, the change in static 

enthalpy reduces to: 

ρ
dp

dTcdh p +=        (5.13) 

 

V.4 BOUNDARY CONDITIONS 

V.4.1 INLET 

The boundary mass flow rate is specified along with a direction component at the 

inlet. In CFX-5, the mass influx is calculated using 

∫
=

dA

m
U

&
ρ         (5.14) 

where ∫ dA  is the integrated boundary surface area at a given mesh resolution. The area 

varies with mesh resolution because the resolution determines how well resolved the  
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boundary surfaces are. The value of Uρ  is held constant over the entire boundary 

surface. For the present study, the same mass flow inlet boundary condition was used 

with different turbulence models. These models will be explained in detail in Chapter 6. 

 

V.4.2 INLET TURBULENCE 

For Reynolds stress model the inlet turbulence quantities k  and ε  are either 

specified directly or calculated using expressions which scale the distribution at the inlet 

according to the turbulence intensity I where 

U
u

I =          (5.15) 

The turbulence intensity and length scale were both specified for the eddy 

viscosity simulation which is using Reynolds stress model. The turbulence kinetic 

energy and dissipation were calculated using Equation 5.16: 
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Because of the strong curvature effect in the core, 5 % turbulence intensity at the 

inlet was chosen. Dissipation length scale was based on the equivalent hydraulic 

diameter of the simulated part of the reactor core as recommended by CFX solver 

manual.  

 

V.4.3 OUTLET 

The relative static pressure over the Outlet boundary is specified: 

specOutletstat pp =,        (5.17) 

For the resent study, average relative static pressure at the outlet was specified as zero. 
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V.4.4 WALL 

No slip boundary condition was applied on the surface of pebbles. The velocity 

of the fluid at the wall boundary was set to zero. 

0=WallU          (5.18) 

 

V.4.5 HEAT TRANSFER (HEAT FLUX) 

The heat flux at the Wall boundaries was specified by Equation 5.19. 

specw qq =         (5.19) 

where specq  was chosen to be equal to 58194 W/m2 according to the calculations 

presented in the Chapter 4. 

V.4.6 HEAT TRANSFER 

The Inlet Static Temperature is specified by Equation 5.20. 

specInletstat TT =,         (5.20) 

 For the present study, specified inlet temperature is the mean temperature 

across the reactor core as shown in Equation 5.21. 

2
outletinlet

spec

TT
T

+
=        (5.21) 

KCTspec 973700
2

900500 0 ==
+

=  

 

V.4.7 SYMMETRY PLANE 

The symmetry plane boundary condition imposes constraints which ‘mirror’ the 

flow on either side of it. The normal velocity component at the Symmetry Plane  

boundary is set to zero: 

0=nU         (5.22) 

and the scalar variable gradients normal to the boundary are also set to zero: 
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         (5.23) 

 Boundaries perpendicular to the flow direction were set to symmetry plane in 

the present simulations. Considerable amount of CPU time was saved by applying 

symmetry boundary condition. 

 



 36 

CHAPTER VI 

TURBULENCE MODELING 

 

For practical computations, turbulent flows are commonly computed using the  

Navier–Stokes equations in an averaged form (e.g., Reynolds averaging). The averaging 

process gives rise to new unknown terms representing the transport of mean momentum 

and heat flux by fluctuating quantities. These undetermined terms are the Reynolds 

stresses or heat fluxes and they lead to the well known closure problem for turbulent 

flow computations. In order to determine these quantities, turbulence models are 

required which consist of a set of algebraic or differential equations. 

 

VI.1 TURBULENT CASCADE CONCEPT 

Fluid flow exhibits two distinct regimes in which the flow properties are very 

different. If flow rates are low, the flow will be smooth. However, at high flow rates, the 

flow is no longer smooth, and neighboring fluid particles follow very different paths 

through space. The low flow regime is known as laminar flow, whilst the high flow 

regime is known as turbulent flow. Such flows occur in a wide variety of physical 

situations, and are of major engineering importance. The normal portrait of turbulence is 

that due to Kolmogorov, and is that of a turbulent cascade. In this portrait, a turbulent 

flow consists of eddies on various scales. Large scale eddies are created by whatever 

processes are driving the flow. Interactions between the eddies break them down and 

produce smaller and smaller eddies. Eventually the eddies get so small that the flow is 

dominated by viscosity, and the energy in these small scale eddies is dissipated as heat, 

rather than being transferred to smaller scales, and the turbulent cascade comes to an 

end. 
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VI.2 MAJOR TURBULENCE MODELS 

There are tree major classes of turbulence models. These are Direct Numerical 

Simulation (DNS), Reynolds-Averaged Navier-Stokes (RANS) equations, and Large 

Eddy Simulation (LES). 

Since both LES and RANS type of turbulence modeling were used for the 

present study for the investigation of fluid behavior with and without heat transfer in 

complex geometries as in the case of PBMR core, these models will be explained in 

detail.  

 

VI.3 DIRECT NUMERICAL SIMULATION 

To simulate complex fluid flow phenomena like turbulence numerically, one way 

is to solve the Navier-Stokes equations directly on a fine grid without recourse to any 

empirical modeling. This approach is knows as Direct Numerical Simulation (DNS).  

DNS requires sufficiently fine cells to resolve all flow eddies down to the very smallest 

scales. The grid size is determined to be equal to the  smallest turbulent length scale. 

Kolmogorov 3/5−k  law supposes that the size of smallest eddies of turbulent flow 

depends on the viscosity υ  of the fluid and is proportional to 4/3υ . In industrial 

applications typical viscosity values are 610  and above. Hence solving these problems 

using DNS would require extremely fine grid at high Reynolds’ number in order to 

capture small eddies. In conclusion, DNS simulations are impractical with the present 

serial computers. With an aid of recent developments in the super and parallel 

computers, it is widely used as a tool for fundamental research in turbulence. 
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VI.4 REYNOLDS AVERAGED NAVIER STOKES SIMULATION 

In order to overcome the limitations in DNS approach, it is necessary to simplify 

the mathematical problem, which is achieved by substituting a model for some aspect of 

the flow. One commonly-used technique is to consider the turbulent flow to be 

composed of a mean flow with a random component superimposed on it. Thus we can 

average the flow, and construct a set of partial differential equations based on the 

Navier-Stokes equations which describe the mean flow. These equations include terms 

describing the effect of the random flow component (conventionally referred to as the 

turbulent component) on the mean flow. These terms are unknown, and so a model has 

to be constructed to account for their effect. This approach is known as Reynolds 

Average Simulation (RANS).  

As described above, turbulence models seek to solve a modified set of transport 

equations by introducing averaged and fluctuating components. For example, a velocity 

U  may be divided into an average component, U ,  and a time varying component, u . 

uUU +=         (6.1) 

The averaged component is given by: 
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        (6.2) 

where t∆  is a time scale that is large relative to the turbulent fluctuations, but small 

relative to the time scale to which the equations are solved. 

Substituting the time averaged quantities into the original transport Equations 

results in the Reynolds-averaged equations given below. In the following equations, the 

bar is dropped for time-averaged quantities, except for products of fluctuating quantities. 
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The continuity equation has not been altered but the momentum and scalar 

transport equations contain turbulent flux terms additional to the molecular diffusive 

fluxes. These are the Reynolds stress, uu ⊗  , and the Reynolds flux, Φuρ . These terms 

arise from the non- linear convective term in the un-averaged equations, not the linear 

diffusive one. They reflect the fact that convective transport due to turbulent velocity 

fluctuations will act to enhance mixing over and above that caused by thermal 

fluctuations at the molecular level. At high Reynolds numbers, turbulent velocity 

fluctuations occur over a length scale much larger than the mean free path of thermal 

fluctuations, so that the turbulent fluxes are much larger than the molecular fluxes. 

The Reynolds-averaged energy equation is described by the following Equation 

6.6: 
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where the mean Total Enthalpy, toth ,  is given by Equation 6.7. 

kUhhtot ++= 2

2
1

       (6.7) 

In addition to the mean flow kinetic energy, the Total Enthalpy now contains a 

contribution from the turbulent kinetic energy, k, given by Equation 6.8. 

2

2
1

uk =         (6.8) 

Turbulence models close the Reynolds-averaged equations by providing models for 

the computation of the Reynolds stresses and  Reynolds fluxes. CFX-5 models can be 

broadly divided into two classes: eddy viscosity models and Reynolds stress models. 

 

Ø Eddy viscosity models which are based on the assumption that the Reynolds 

stresses are a local property of the mean flow and are related to the mean flow 

gradients via a turbulent viscosity. 

Ø Reynolds stress models which assume that the Reynolds stresses are dependent  

variable quantities which can be solved directly from their own transport 
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equations  (Which are derived from the Navier–Stokes equations), along with 

some modeling equations. 

 

The derivation of these models has been largely based on intuition and empirical 

correlation. 

 

VI.4.1 EDDY VISCOSITY TURBULENCE MODELS 

One proposal suggests that turbulence consists of small eddies which are 

continuously forming and dissipating, and in which the Reynolds stresses are assumed to 

be proportional to mean velocity gradients. This defines an ‘eddy viscosity model’. 

The eddy viscosity hypothesis assumes that the Reynolds stresses can be related 

to the mean velocity gradients and Eddy (turbulent) Viscosity by the gradient diffusion 

hypothesis, in a manner analogous to the relationship between the stress and strain 

tensors in laminar Newtonian flow: 

( )( )T
tt UUUkuu ∇+∇+•∇−−=⊗− µδµδρρ

3
2

3
2

  (6.9) 

Here, tµ  is the Eddy Viscosity or Turbulent Viscosity. 

Analogous to the eddy viscosity hypothesis is the eddy diffusivity hypothesis, 

which states that the Reynolds fluxes of a scalar are linearly related to the mean scalar 

gradient: 

Φ∇Γ=Φ− tuρ        (6.10) 

Here, tΓ  is the Eddy Diffusivity. The Eddy Diffusivity can be written: 

t

t
t Pr

µ
=Γ         (6.11) 

where tPr  is the turbulent Prandtl number.  

The above equations can only express the turbulent fluctuation terms of functions 

of the mean variables if the turbulent viscosity, tµ , is known.  
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Subject to these hypotheses, the Reynolds averaged momentum and scalar 

transport equations become: 

( ) ( )( )( )T
eff UUpBUU

t
U

∇+∇•∇+∇−=⊗•∇+
∂

∂
µρ

ρ '   (6.12) 

( ) SU
t eff =Φ∇Γ−Φ•∇+

∂
Φ∂

ρ
ρ

     (6.13) 

where B is the sum of the body forces, effµ  is the Effective Viscosity, and effΓ  is the 

Effective Diffusivity, defined by, 

teff µµµ +=         (6.14) 

teff Γ+Γ=Γ         (6.15) 

and 'p  is a modified pressure, defined by: 
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where ζ  is the bulk viscosity. 

The Reynolds averaged energy equation becomes: 
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  (6.17) 

Note that although the transformation of the molecular diffus ion term may be 

inexact if enthalpy depends on variables other than temperature, the turbulent diffusion 

term is correct, subject to the eddy diffusivity hypothesis. Moreover, as turbulent 

diffusion is usually much larger than molecular diffusion, small errors in the latter can be 

ignored. 

Eddy viscosity models are further classified by the manner in which they 

prescribe the eddy viscosity and eddy diffusivity. 
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VI.4.1.1 ZERO EQUATION MODELS 

Very simple eddy viscosity models compute a global value for Tυ  from the mean 

velocity and a geometric length scale using an empirical formula. Since no additional 

transport equations are solved, these models are termed ‘zero equation’. 

y

u
lmT ∂

∂
=υ         (6.18) 

where ml  is mixing length and specified as a function of space. 

  The zero equation model in CFX-5 uses an algebraic equation to calculate the 

viscous contribution from turbulent eddies. A constant turbulent eddy viscosity is 

calculated for the entire flow domain. The turbulence viscosity is modeled as the product 

of a turbulent velocity scale, tu  , and a turbulence length scale, tl , as proposed by 

Prandtl and Kolmogorov, 

ttt lUfu µρ=   
7

3
1

D
t

V
l =       (6.19) 

where µf  is a proportionality constant. The velocity scale is taken to be the maximum 

velocity in the fluid domain. The length scale is derived using the above tl  formula 

where DV  is the fluid domain volume. 

Since zero-equation model is most robust model, it was used as initial flow field 

for less robust models like Reynolds stress and LES type of turbulence models for the 

present research. 

 

VI.4.1.2 ONE EQUATION MODELS 

Since only one evolution equation is solved, this model is called one-equation 

model. Eddy viscosity is calculated based on characteristic velocity and length scales.  
**luT =υ         (6.20) 
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where *u  and *l  are characteristic velocity and length scales respectively. CFX-5.6 has 

no one equation model turbulence model. 

 

VI.4.1.3 TWO EQUATION MODELS 

Two-equation turbulence models are very widely used, as they offer a good 

compromise between numerical effort and computational accuracy. Two-equation 

models are much more sophisticated than the zero equation models. Both the velocity 

and length scale are solved using separate transport equations (hence the term ‘two-

equation’).  

These two-equation models use the gradient diffusion hypothesis to relate the 

Reynolds stresses to the mean velocity gradients and the turbulent viscosity. The 

turbulent viscosity is modeled as the product of a turbulent velocity and turbulent length 

scale.  

In two-equation models the turbulence velocity scale is computed from the 

turbulent kinetic energy, which is provided from the solution of its transport equation. 

 The turbulent length scale is estimated from two properties of the turbulence 

field, usually the turbulent kinetic energy and its dissipation rate. The dissipation rate of 

the turbulent kinetic energy is provided from the solution of its transport equation. 

ε
υ µ

2k
cT =         (6.21) 

k is the turbulence kinetic energy and is defined as the variance of the fluctuations in 

velocity. It has dimensions of ( 22 / sm ). e is the turbulence eddy dissipation (the rate at 

which the velocity fluctuations dissipate) and has dimensions of k per unit time 

( 32 / sm ). The k-e model introduces two new variables into the system of equations.  
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where 1εC , 2εC , kσ  and εσ  are constants. kP  is the shear production due to turbulence, 

which for incompressible flows is: 

( ) ( )kUUUUUP t
T

tk ρµµ +•∇•∇−∇+∇•∇=
3
2

   (6.24) 

In CFX-5, the default turbulent eddy dissipation is calculated as 
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       (6.25) 

where k is the value calculated above, µC  is a turbulent model constant, ( )deft µµ /  is the 

default eddy viscosity ratio of 10 and υ  is the dynamic viscosity  µρ / . 

 

VI.4.2 REYNOLDS STRESS MODELS 

These models are based on transport equations for all components of the 

Reynolds stress tensor and the dissipation rate. These models do not use the eddy 

viscosity hypothesis, but solve an equation for the transport of Reynolds stresses in the 

fluid. The Reynolds stress model transport equations are solved for the individual stress 

components. 

Algebraic Reynolds stress models solve algebraic equations for the Reynolds 

stresses, whereas differential Reynolds stress models solve differential transport 

equations individually for each Reynolds stress component. In CFX-5 the latter of these 

is implemented. 

The exact production term and the inherent modeling of stress anisotropies 

theoretically make Reynolds Stress models more suited to complex flows, however 

practice shows that they are often not superior to two-equation models. 

The Reynolds averaged momentum equations for the mean velocity is 

( ) ( ) ( ) BuupUUU
t
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ρµρ

ρ ''  (6.26) 
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where ''p  is a modified pressure, B is the sum of body forces and the fluctuating 

Reynolds stress contribution is uu ⊗ . Unlike eddy viscosity models, the modified 

pressure has no turbulence contribution and is related to the static (thermodynamic) 

pressure by:  



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

 −•∇+= ζµ

3
2'' Upp       (6.27) 

In the differential stress model, uu ⊗  is made to satisfy a transport equation. A 

separate transport equation must be solved for each of the six Reynolds stress 

components of uu ⊗ . The differential equation Reynolds stress transport is: 
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where P and G are shear and buoyancy turbulence production terms of the Reynolds 

stresses respectively, Φ  is the pressure-strain tensor, and C is a constant. 

The standard Reynolds Stress model in CFX-5 is based on the equation. The 

CFX-5 solver solves the following equations for the transport of the Reynolds stresses: 
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which can be written in index notation as 
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where ijΦ  is the pressure-strain correlation, and P, the exact production term, is given 

by: 

( ) ( )( )uuUUuuP T ⊗∇+∇⊗−= ρ  

As the turbulence dissipation appears in the individual stress equations, an 

equation for ε  is still required. This now has the form: 
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In these equations, the anisotropic diffusion coefficients of the original models 

are replaced by an isotropic formulation, which increases the robustness of the Reynolds 

stress model. The model constants are listed below for each model. 

 

VI.4.2.1 PRESSURE STRAIN TERMS 

One of the most important terms in Reynolds stress models is the pressure-strain 

correlation, ijΦ . The pressure strain correlations can be expressed in the general form 

21 ijijij Φ+Φ=Φ        (6.32) 
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( )( )TUUW ∇−∇=
2
1

       (6.37) 

In this formulation, a is the anisotropy tensor, S is the strain rate and W is the 

vortic ity. This general form can be used to model linear and quadratic correlations by 

using appropriate values for the constants. The model constants are listed in Table 4.  

 

Table 4 Reynolds Stress Model Constants 

RSCµ  eRSs  sc  1εc  2ec  1sC  2sC  1rC  2rC  3rC  4rC  5rC  

0.12 1.10 0.22 1.45 1.90 1.80 0.00 0.00 0.80 0.00 0.60 0.60 

 

 

VI.5 LARGE EDDY SIMULATION 

In CFD calculations, selection of the turbulence model has great importance to 

make an accurate prediction and to capture the details of the flow parameters. And 

depending on complexity of the geometry, the magnitude of the Re number and 

time/cost factors, the most appropriate turbulence model should be chosen. In this study, 

large eddy simulation (LES) of turbulence is applied as well as Eddy Viscosity and 

Reynolds Stress models. 

We define a large eddy simulation as any simulation in which the large-scale 

motions are explicitly resolved while small-scale motions, taking place below the limits 

of numerical resolution, are represented approximately by a model. The underling 

premise is that the largest eddies are directly effected by the boundary conditions and 

must be computed. By contrast, the small-scale turbulence is more nearly isotropic and 

has universal characteristics; it is thus more amenable to modeling.  

It is commonly thought that large eddy simulation (LES) of turbulence is a 

compromise between direct numerical simulation (DNS) and Reynolds-averaged Navier-

stokes (RANS) solution of turbulence transport models. In the RANS solution, all 

dynamical degrees of freedom smaller then the size of the largest (energy containing) 

eddies are averaged over, so there is no dynamical information about smaller scales. On 
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the other hand, in DNS, all eddies down to dissipation scale must be simulated with 

accuracy. LES seems to lie between the two extremes of DNS and RANS. In LES, a fine 

grid (with grid size ∆ ) is used to calculate a system of modified Navier-Stokes equations 

in which eddies of size less then O( ∆ ) are removed from the dynamics. Thus, in LES, 

eddies significantly larger then ∆  are calculated in detail so their statistical properties 

(like correlation functions, structure functions and spectra) are computable. Eddies 

smaller then ∆  are treated by turbulence transport modeling techniques so that the 

information available about them includes only the single point quantities like the kinetic 

energy at subgrid scales and the dissipation at subgrid scales.  

The only difference between LES and RANS is the definition of small scales; in 

LES, small scales are smaller than the grid size ∆ , while in RANS small scales are 

smaller than the largest eddies, of size L (maximum domain size). Indeed, if the grid size 

of an LES simulation is taken larger and larger, self-consistency requires that LES 

results approach the RANS results. 

If enough grid resolution can be employed, any turbulent flow can be simulated 

accurately by LES. In fact, given sufficiently fine resolution, LES becomes direct 

numerical simulation (DNS) whose accuracy is unquestioned. Unfortunately, for flows 

of practical importance, CPU and memory requirements of DNS or fine grid LES render 

such simulations unfeasible. Even with the introduction of massively parallel machines, 

the cost of such simulations is out of reach except for a limited range of well-chosen 

flows. Since LES involves modeling the smallest eddies, the smallest finite difference 

cell can be larger than Kolmogorov length, and much larger time steps can be taken than 

are possible in a DNS. Hence the principal advantage of LES over DNS is the fact that it 

allows one to compute flows at Reynolds numbers much higher than those feasible in 

DNS, or at the same Reynolds numbers but a considerably smaller expense. 

It is also important to note that in engineering turbulent flows, turbulent eddies 

are strongly three dimensional and unsteady even at the largest scales, so LES must also 

posses these characteristics.  
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Unlike the molecular viscosity which is the property of the fluid, the eddy 

viscosity depends upon many details of the flow under consideration. It is affected by the 

shape and nature of any solid boundaries, free stream turbulence intensity, and, perhaps 

most significantly, flow history effects.  

 

VI.5.1 SUB GRIG MODELING 

The concept of filtering must be introduced in Large Eddy Simulation. A filter 

provides a formal definition of the averaging process and separates the resolvable scales 

from the subgrid scales. Filtering is used to derive the resolvable-scale equations. 

When the Navier-Stokes equations are filtered, the resulting equations for the 

large scale component of the velocity contain terms representing the effect of small 

scales on the large ones; these subgrid (SGS) Reynolds Stresses must be modeled. When 

the SGS Reynolds stress is a small part of the total time-averaged turbulence, the results 

produced by LES are relatively insensitive to the quality of the model. The choice of 

model and values of parameters are of only moderate importance. On the other hand, 

when LES is applied to complex and or high Reynolds number flows, much of the 

 Reynolds stresses lies in the unresolved scales and model quality becomes much 

more important.  

The non filtered Navier Stokes equations for incompressible flows are: 
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Large Eddy Simulation (LES) is about filtering of the equations of movement 

and decomposition of the flow variables into a large scale  (resolved) and a small scale 

(unresolved) parts. Any flow variable f can be written such as: 

'fff +=         (6.39) 

where f , the large scale part, is defined through volume averaging as: 
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where ( )'
ii xxG −  is the filter function (called the hat filter or Gaussian filter). 
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After performing the volume averaging, the filtered Navier Stokes equations become: 
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The non linear transport term in the filtered equation can be developed as: 

( )( )''
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       ''''
jiijjiji uuuuuuuu +++=      (6.44) 

           (1)       (2)      (3)      (4) 

In time averaging the terms (2) and (3) vanish, but when using volume averaging this is 

no longer true. Introducing the sub-grid scale (SGS) stresses, ijτ  , as: 

iijiij uuuu −=τ        (6.45) 

we can rewrite the filtered Navier Stokes equations as: 

( )
jj

i

ij

jiiji

xx
u

x
p

x

uu

t
u

∂∂
∂

+
∂
∂

−=
∂

+∂
+

∂
∂ 21

ρ
µ

ρ

τ
    (6.46) 

( )
j

ij

jj

i

ij

jii

xxx
u

x
p

x

uu

t
u

∂

∂
−

∂∂
∂

+
∂
∂

−=
∂

∂
+

∂
∂ τ

ρ
µ

ρ

21
    (6.47) 

with 

jijiij uuuu −=τ        (6.48) 

     jijiijjiji uuuuuuuuuu −+++= ''''  

     ijijij RCL ++=  

iiiiij uuuuL −=     Leonard Stresses    (6.49) 

''
ijjiij uuuuC +=  Cross Term     (6.50) 
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''
jiij uuR =   SGS Reynolds Stresses   (6.51) 

Leonard (1974) showed that the Leonard stress term removes significant energy from the 

resolvable scales. It can be computed directly and needn’t be modeled.  

The cross-term stress tensor, ijC , also drains significant energy from the 

resolvable scales. Current efforts are to model the sum ijC  and ijR . Clearly, the accuracy 

of a LES depends upon the model used for these terms. 

 

VI.5.2 SMAGORINSKY MODEL 

The Smagorinsky model can be thought of as combining the Reynolds averaging 

assumptions given by 0=+ ijij CL with a mixing- length based eddy viscosity model for 

the Reynolds SGS tensor. It is  thereby assumed that the SGS stresses are proportional to 

the modulus of the strain rate tensor, ijS  ,of the filtered large-scale flow: 
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   (6.52) 

To close the equation, we need a model for the SGS viscosity SGSυ  . Based on 

dimensional analysis the SGS viscosity can be expressed as: 

SGSSGS lq∝υ         (6.53) 

where l is the length scale of the unresolved motion (usually the grid size ( ) 3/1Vol=∆  

and SGSq   is the velocity of the unresolved motion. 

In the Smagorinsky model, based on an analogy to the Prandtl mixing length 

model, the velocity scale is related to the gradients of the filtered velocity: 

SqSGS ∆=  where  ( ) 2/1
2 ijij SSS =    (6.54) 

This yields the Smagorinsky model  for the SGS viscosity: 

( ) SCSSGS
2∆=υ        (6.55) 
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with SC   the Smagorinsky constant. The value of the Smagorinsky constant for isotropic 

turbulence with inertial range spectrum 

( ) 3/53/2 −= kCkE kε        (6.56) 
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For practical calculations the value of SC  is changed depending on the type of 

flow. Its value is found to vary between a value of 0.065 (channel flows) and 0.25. Often 

a value of 0.1 is used. 

 

VI.6 WALL DAMPING 

Close to walls, the turbulent viscosity can be damped using a combination of a 

mixing length minimum function, and a viscosity damping function µf  : 

( ) ijijSmixT SShCfl 2,min 2
µρµ ⋅=      (6.58) 

with  Swallmix Cyl ⋅⋅= κ   and κ can be set by the user. 

By default, the damping function µf  is 1.0. A Van Driest and a Piomelli like 

damping can be specified by the user. For the Van Driest case, the damping function is: 

( )Ayf /exp1 *−−=µ        (6.59) 

with A = 25. For the Piomelli case it is: 

( )3* /exp1 Ayf −−=µ       (6.60) 

with A = 25. The normalised wall distance 

 

( ) υ/~* uyy ⋅=         (6.61) 

is defined as a function of the calculated wall distance y , kinematic viscosity υ  and 

local velocity scale u~ . 
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The Van Driest or Piomelli wall damping can be switched on when the LES 

turbulence model is selected. The damping factor A is defaulted to 25.0. 

 

VI.6.1 MODELING NEAR WALL FLOW 

The wall- function approach in CFX-5 is an extension of the method of Launder 

and Spalding. In the log-law region, the near wall tangential velocity is related to the 

wall-shear-stress by means of a logarithmic relation. 

In the wall- function approach, the viscosity affected sublayer region is bridged by 

employing empirical formulas to provide near-wall boundary conditions for the mean 

flow and turbulence transport equations. These formulas connect the wall conditions 

(e.g. the wall-shear-stress) to the dependent variables at the near-wall mesh node which 

is 

presumed to lie in the fully- turbulent region of the boundary layer. 

The logarithmic relation for the near wall velocity is given by: 
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+u   is the near wall velocity, τu is the friction velocity, tU  is the known velocity tangent 

to the wall at a distance of y∆  from the wall, +y  is the dimensionless distance from the 

wall, wτ  is the wall shear stress, κ  is the von Karman constant and C is a log- layer 

constant depending on wall roughness (natural logarithms are used). 
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VI.6.2 SCALABLE WALL FUNCTIONS 

Equation 6.62 has the problem that it becomes singular at separation points 

where the near wall velocity, tU  , approaches zero. In the logarithmic region, an 

alternative ve locity scale, *u  can be used instead of +u  : 
2/14/1* kCu µ=         (6.65) 

This scale has the useful property that it does not go to zero if tU  goes to zero (in 

turbulent flow k is never completely zero). Based on this definition, the following 

explicit equation for the wall-shear-stress is obtained: 
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where 

( ) ( )yU tvisc ∆= /µτ        (6.67) 

( ) µρ /** yuy ∆=        (6.68) 

and *u   is as defined earlier. 

One of the major drawbacks of the wall- function approach is that the predictions 

depend on the location of the point nearest to the wall and are sensitive to the near-wall 

meshing; refining the mesh does not necessarily give a unique solution of increasing 

accuracy. The problem of inconsistencies in the wall- function in the case of fine meshes 

can be overcome with the use of the Scalable  Wall Function formulation developed by 

CFX. It can be applied on arbitrarily fine meshes and allows us to perform a consistent 

mesh refinement independent of the Reynolds number of the application. The basic idea 

behind the scalable wall- function approach is to assume that the surface coincides with 

the edge of the viscous sublayer, which is defined to be at 11=+y . This is the 

intersection between the logarithmic and the linear near wall profile. The computed +y  

is not allowed to fall below this limit. Therefore, all mesh points are outside the viscous 

sublayer and all fine mesh inconsistencies are avoided. 
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Very close to the wall, the profile changes from logarithmic to linear, i.e. similar 

to that of laminar flow, as viscous effects become significant. This innermost region is 

often called the ‘viscous sub- layer’. To  account for this change when using Standard 

Wall Functions, the logarithmic profile is blended with a linear one so that below +y  » 

5-10, the profile approaches (this does not apply to Scalable Wall Functions): 
++ = yu         (6.69) 

However, it is important to note the following points: 

 

Ø To fully resolve the boundary layer we should put at least 10 nodes into the log 

part of the velocity profile. 

Ø If we are using the Standard Wall Functions (not recommended), then in 

addition: 

Ø the values of +y  should not drop below approximately 11. Values less than 11 

indicate that the mesh is too refined close to the wall, and the wall function 

model does not adequately span the laminar sub- layer region of the boundary 

layer. 

Ø the upper limit for +y  is a function of the device Reynolds number. For example 

a large ship may have a Reynolds number of 109 and +y  can safely go to values 

much greater than 1000. For lower Reynolds numbers (e.g. a small pump) the log 

part of the boundary layer may end at +y  = 300. Values of +y  greater than the 

upper limit indicate that the mesh in the near wall region is too coarse, and will 

require subsequent refinement if boundary layer effects are significant. 
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CHAPTER VII 

FLOW IN A CLOSED PACKED COLD PBMR CORE 

 

The simulation of turbulent transport for the He gas through the gaps of the 

spherical fuel elements (fuel pebbles) was performed under isothermal flow condition. 

This helps in understanding the highly three-dimensional, complex flow phenomena in 

pebble bed caused by flow curvature. 

Initial flow field was generated by Zero Equation turbulence model for Reynolds 

Average Navier-Stokes Simulation (RANS) and Large Eddy Simulation (LES) because 

of its robustness and fast convergence rate. As a result of this approach, total number of 

iterations required by RANS and LES was substantially reduced. Table 5 shows the total 

number of iterations for a given RMS Mass and Momentum Residual for the present 

simulation. 

 

 

Table 5: Required Number of Iterations for Desired Convergence 

Turbulence Model Iteration 

range 

Number of 

Iterations  

RMS Mass and 

Momentum Residual 

Zero Equation 1-6 6 0.1473 % 

Reynolds Stress 7-54 47 0.1473 % 

Large Eddy Simulation 7-518 512 0.1473 % 

 

 

 

VII.1 RESIDUAL PLOTS 

The CFX-5 Solver calculates the solution to various equations given the 

appropriate boundary conditions and models for a particular CFD problem. These 
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equations are described fully in Governing Equations (Chapter 5-CFD Modeling). At 

any stage of the calculation, each equation will not be satisfied exactly, and the 

“residual” of an equation tells by how much the left-hand-side of the equation differs 

from the right-hand-side at any point in space. If the solution is “exact” then the 

residuals will all be zero. This means that each of the relevant finite volume equations is 

satisfied precisely; however, since these equations only model the physics 

approximately, this does not mean that the solution will exactly match what happens in 

reality.  

Inlet mass flow rate for the present simulation was 14.73 kg/s and given value of 

RMS residual value was 0.001473. This means that the equations are satisfied to within 

one part in about ten thousand, which was a reasonable solution. 

To make the scales of the residuals meaningful, the solver normalizes their 

values by dividing by appropriate scales at each point. It is these Normalized Residuals 

that are plotted by the solver manager using a log (base 10) scale.  

A measure of how well the solution is converged can be obtained by plotting the 

residuals for each equation at the end of each time step. For a well-converged solution, it 

would be expected that the maximum residual to be around 10-3 of the inlet mass flow 

rate; typically the RMS residual will be an order of magnitude lower than this. The RMS 

(Root Mean Square) residual is obtained by taking all of the residuals throughout the 

domain, squaring them, taking the mean, and then taking the square root of the mean; it  

should give an idea of a typical magnitude of the residuals. 

Maximum and RMS residuals for RANS and LES models with the accumulated 

time steps are shown in Figures 14 through Figure 17. 
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Figure 14: Maximum Residual Plots for Reynolds Stress Model 
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Figure 15: RMS Residual Plots for Reynolds Stress Model 
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Figure 16: Maximum Residual Plots for LES 
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Figure 17: RMS Residual Plots for LES 
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VII.2 IMBALANCES 

These are the normalized sum of the flows (i.e. % imbalance), for a given 

equation, on a particular domain. The absolute flow is normalized by the maximum 

flow, calculated by looking at flows on all domains, for that particular equation. This is 

another way of looking convergence of the solution. Imbalances for RANS and LES are 

shown in Figures 18 and Figure 19. 
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Figure 18: Imbalances for Reynolds Stress Model 

 

 

 

While Mass, U and V Momentum equations shows less then 0.1 % imbalance for 

Reynolds Stress Model, the largest deviation occurs in W-momentum equations which is 

0.4 %. 
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Figure 19: Imbalances for LES 

 

 

 

In the case of LES, imbalances for Mass, U, V, and W momentum equations show less 

then 0.1 % imbalance.  

 

VII.3 DRAG AND LIFT FORCE CALCULATION 

The CFX-5 Solver calculates the normal pressure and viscous components of 

forces on all boundaries specified as Walls in CFX-Build. Calculation of drag and lift 

force on any wall can be performed with the help of components of normal and 

tangential forces are shown Figure 20. 
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Figure 20: Drag and Lift Force Calculation 

 

 

 

Lift is the net force on the body in the direction perpendicular to the direction of 

flow. In Figure 20, the lift is the sum of the forces on the wall in the horizontal direction, 

i.e. the sum of the pressure force and the viscous force components in the perpendicular 

direction to flow. 

Drag is the net force on the body in the direction of the flow. In Figure 20, the 

drag is the sum of the forces on the wall in the horizontal direction, i.e. the sum of the 

pressure force and the viscous force components in the flow direction. It is apparent 

from this that the viscous force is not a pure shear force since it also has a small 
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component in the normal direction, arising in part from a normal component in the 

laminar flow shear stress. 

Since we know the x, y, and z components of the normal and tangential forces on 

the walls, total drag and lift forces were calculated for two sample full spheres using 

RANS and LES turbulence modeling by summing up z, x and y components of the 

relevant forces. Location of sphere 19 was shown in Figure 21. 

 

 

 

 
Figure 21: Location of Sphere 19 

 

 

 

Sphere 19 is located on the top of the four spheres at the bottom of the simulated 

geometry. Likewise, sphere 39 is located at the top of the following four spheres after 

sphere 19. These are the only two full spheres that are located in the center line of the 

simulated region of the core. Following Figures 22 through Figure 25 shows the sum of 

the normal and tangential forces in each direction for RANS and LES turbulence 

Sp35 

Sp19 

Sp19 
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models. Total force in z direction corresponds to drag force. Sum of the x and y 

components of the relevant forces correspond to lift force. 
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Figure 22: Total Drag and Lift Force on sp19 for Reynolds Stress Model 
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Figure 23: Total Drag and Lift Force on sp19 for LES 
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Figure 24: Total Drag and Lift Force on sp39 for Reynolds Stress Model 
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Figure 25: Total Drag and Lift Force on sp39 for LES 

 

 

VII.4 POWER SPECTRUM 

Several points in the computational domain were monitored for the velocity 

fluctuating components to obtain Power Spectral Density. These points were chosen at 

the outlet region of computational domain where the flow is fully developed. These 

selected points can be shown in the following Figure 26. 
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Figure 26: Locations of Monitored Points 

 

 

 

 

A special matlab function called psd (Power Spectral Density) was utilized to 

obtain the power spectrum of the flow for mean and W-Component of velocity vector at 

the final iteration in the case of Large Eddy Simulation. These are shown in Figure 27 

and Figure 28. 
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Figure 27: Power Spectral Density of Velocity at Different Locations 
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Figure 28: Power Spectral Density of W-Velocity at Different Locations 
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VII.5 PRESSURE DROP CALCULATIONS 

Pressure drop across the simulated part of the core was already calculated in 

Chapter 4. This theoretical result should be compared with observed results of 

simulation for both turbulence model. It was shown in Chapter 4 that total pressure drop 

across the simulated part of the core is 1,672 KPa. 

Figure 29 and Figure 30 show the pressure drop across the core for Reynolds 

Stress and LES turbulence modeling respectively. 

 

 

 

 
Figure 29: Pressure Distribution with Reynolds Stress Turbulence Modeling 
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Figure 30: Average Pressure Distribution with LES Turbulence Modeling 

 

 

 

As can be seen from Figure 29 and Figure 30, total pressure drop across the 

simulated packed bed is about 350KPa for both turbulence modeling. When we compare 

this value with the theoretical one, there is a big difference between them. There is also 

about 30 KPa difference between these two different turbulence models. 
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VII.6 VECTOR PLOT OF VELOCITY FIELD 

 Figure 31 and Figure 32 show the vector plot of the velocity field. As can be seen 

from these figures, separation of flow takes place between the pebbles in the flow 

direction.  

 

 

 

 
Figure 31: Vector Plot of Velocity Field at t=2.56 s for LES 
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Figure 32: Vector Plot of Velocity Field at t=2.56 s for LES (Center) 
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CHAPTER VIII 

FLOW IN A CLOSED PACKED HOT PBMR CORE 

 

In this part of the study, heat was added to the surface of the pebbles as in the 

case of PMBR. Behavior of flow field was investigated by adding thermal energy model 

to the simulations.    

Initial flow field was generated by Zero Equation turbulence model for Reynolds 

Average Navier-Stokes Simulation (RANS) and Large Eddy Simulation (LES) because 

of its robustness and fast convergence rate as in the case of cold core simulations. Table 

6 shows the total number of iterations for a given RMS Mass and Momentum Residual 

for the present simulation. 

 

 

Table 6: Required Number of Iterations for Desired Convergence 

Turbulence Model Iteration 

range 

Number of 

Iterations  

RMS Mass and 

Momentum Residual 

Zero Equation 1-6 6 0.1473 % 

Reynolds Stress 7-41 35 0.1473 % 

Large Eddy Simulation 7-518 512 0.1473 % 

 

 

 

VIII.1 RESIDUAL PLOTS 

Maximum and RMS residuals for RANS and LES models with the accumulated 

time steps are shown in Figure 33 through Figure 36 with thermal energy model. In 

addition to the Mass, U, V and W momentum residuals, Energy residual was also added. 
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Figure 33: Maximum Residual Plots for Reynolds Stress Model 
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Figure 34: RMS Residual Plots for Reynolds Stress Model 
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Figure 35: Maximum Residual Plots for LES 
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Figure 36: RMS Residual Plots for LES 
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VIII.2 IMBALANCES 

Imbalances for RANS and LES are shown in Figure 37 and Figure 38. As can be 

seen, when the thermal energy model included, imbalances between inlet and outlet 

reduced. 
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Figure 37: Imbalances for Reynolds Stress Model 

 

 

 

Energy E, Mass, U, V and W Momentum equations show less then 0.01 % 

imbalance for Reynolds Stress Model. 
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Figure 38: Imbalances for LES 

 

 

 

In the case of LES, imbalances for Energy, Mass, U, V, and W momentum equations 

show more fluctuations.   

 

VIII.3 DRAG AND LIFT FORCE CALCULATION 

Pebble number 19 and 35 were used to investigate the drag and lift force as in the 

case of cold core simulation. Figure 39 through 42 show the sum of the normal and 

tangential forces in each direction for RANS and LES turbulence models. Total force in 

z direction corresponds to drag force. Sum of the x and y components of the relevant 

forces correspond to lift force. 
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Figure 39: Total Drag and Lift Force on sp19 for Reynolds Stress Model 
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Figure 40: Total Drag and Lift Force on sp19 for LES 
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Figure 41: Total Drag and Lift Force on sp35 for Reynolds Stress Model 
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Figure 42: Total Drag and Lift Force on sp35 for LES 
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VIII.4 POWER SPECTRUM 

As in the cold core simulation, the same points in the computational domain were 

monitored for the instantaneous velocity to obtain Power Spectral Density 

A special matlab function called psd (Power Spectral Density) was utilized to 

obtain the power spectrum of the flow for mean and W-Component of velocity vector at 

the final iteration in the case of Large Eddy Simulation. These are shown in Figure 43 

and Figure 44. 
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Figure 43: Power Spectrum of Velocity 
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Figure 44: Power Spectrum of W Velocity Component 

 

 

 

VIII.5 PRESSURE DROP CALCULATIONS 

Pressure drop across the simulated part of the core was already calculated in 

Chapter 4. This theoretical result should be compared with observed results of 

simulation for both turbulence model. It was shown in Chapter 4 that total pressure drop 

across the simulated part of the core is 1,672 KPa. 

Figure 45 and Figure 46 show the pressure drop across the core for Reynolds 

Stress and LES turbulence modeling respectively. 
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Figure 45: Pressure Distribution with Reynolds Stress Turbulence Modeling 

 

 
Figure 46: Pressure Distribution with LES Turbulence Modeling 
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As can be seen from Figure 45 and Figure 46, total pressure drop across the 

simulated packed bed is about 350KPa for both turbulence modeling. When we compare 

this value with the theoretical one, there is a big difference between them. 

 

VIII.6 TEMPERATURE DISTRIBUTION ON PEBBLES 

 

 Figure 47 shows the temperature distribution on the pebbles at the bottom of the 

simulated packed bed. As can be seen from these Figure, regions where separation take 

place are heated more than the other surfaces of the pebbles. 

 

 

 

 
 

Figure 47: Temperature Distribution on the pebbles at the outlet 
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CHAPTER IX 

CONCLUSIONS 

 

Simulation of flow through the pebbles in the PBMR core was performed with 

different turbulence modeling using a commercially available CFD code CFX-5. It was 

shown that both of the turbulence models are converging pretty well and convergence 

criteria was satisfied without any difficulty. Both RMS residuals and imbalance results 

showed that mass, momentum and energy equations that were used in the simulations 

were perfectly satisfied.  

Pressure drop across the simulated region of the core was calculated theoretically 

and compared with simulation results for cold and hot core situations. It was seen that 

CFX-5 overestimates pressure drop through the core with respect to the theoretical 

results. Since theoretical approach was based on the effective variable concept, some 

error was already expected in theoretical calculations. When the Reynolds Stress 

turbulence modeling applied, total pressure drop across the simulated packed bed for 

cold and hot core was found 370KPa and 335KPa respectively. Total pressure drop with 

LES turbulence modeling for cold and hot case was found 335KPa and 330KPa 

respectively. As can be seen, prediction of pressure drop varies with respect to the 

turbulence model that we used. Since complete height of the core is 18.5 times grater 

than simulated height of the pebble bed, this pressure difference should be scaled up. 

Total pressure drop difference according to the different turbulence modeling for cold 

and hot cases would be 650KPa and 90KPa respectively. 

 Drag and lift force were also calculated for selected pebbles in the PMBR core. It 

was shown that average drag force is about 400N on both selected pebbles for both 

turbulence models and average lift force is about zero. Drag and lift force is also the 

same when we include heat on the pebble surface. But fluctuations in drag force are 

increasing in the case of hot core simulations. Increased instability of the flow was 

expected because of the high heat flux imposed on the pebble surface. In addition to this, 

when the both turbulence modeling were compared, fluctuation in Reynolds Stress 
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model is slower than LES model. But the magnetite of the fluctuations is higher in the 

case of Reynolds Stress modeling. 

Vorticity in the y direction perpendicular to the flow was investigated. It was 

observed that eddied are created and destroyed very fast between the pebbles. This was 

expected because of the increased Reynolds number where two pebbles are touching to 

each other. 

Although very small time step was used in LES simulations, suitability of 

transient time steps should be investigated using a more powerful computational server 

for future studies. In addition to this, a dynamic model should also be used for the 

prediction of SGS viscosity which plays an important role in LES turbulence modeling. 



 

 

86 

REFERENCES 

 

1. Tomboulides A.G., Orszag S.A., Karniadakis G.E. (1993)  Direct and Large 

Eddy Simulations of the Flow Past a Sphere. International Symposium on 

Engineering Turbulence Modeling and Measurements 2: 273-282, Florence, Italy 

2. Bagchiand P., Balachandar S. (2002) Steady planar straining flow past a rigid 

sphere at moderate Reynolds number. Journal of Fluid Mechanics 466:365-407 

3. Lee S. (2000) A numerical study of the unsteady wake behind a sphere in a 

uniform flow at moderate Reynolds numbers. Computers & Fluids  29:639-667 

4. Gushchin V.A., Kostomarov A.V., Matyushin P.V.  (2002) Direct numerical 

simulation of the transitional separated fluid flows around a sphere and a circular 

cylinder. Journal of Wind Engineering and Industrial Aerodynamics 90:341-358 

5. Bush M.B. (1992) On the flow past a sphere in a cylindrical tube. 6th National 

Conference on Rheology, Clayton, Victoria, British Columbia 

6. Calis H.P.A., Nijenhuis J., Paikert B.C., Dautzenberg F.M., Van Den Bleek 

C.M. (2001) CFD modeling and experimental validation of pressure drop and flow 

profile in a novel structured catalytic reactor packing. Chemical Engineering 

Science  56:1713-1720 

7. AEA Technology Engineering Software Ltd. (1996-2003) CFX5.6b User 

Manual  http://www.cfx.aeat.com 

8. K2 Texas A&M University Super Computing Facility, College Station 

9. Idoha National Engineering and Environmental Laboratory (2001) Modular 

Pebble-Bed Reactor Project. http://web.mit.edu/pebble-bed/ 

10. Pebble Bed Modular Reactor (Pty) Ltd. PBMR Technical information 

http://www.pbmr.com/ 

11. Sychev V.V., Vasserman A.D., Kozlov A.D., Spiridonov G.A., Tsymarny V.A.  

(1987) Thermodynamics properties of helium. Washington, DC: Hemisphere 

Publishing Corporation 



 

 

87 

VITA 

 

Gokhan Yesilyurt, son of Nuri and Hulya Yesilyurt, was born on April 16, 1976 

in Kutahya, Turkey. He graduated from Ataturk High School in 1993 in Kutahya. He 

continued his education at Hacettepe University, in Ankara and received his Bachelor of 

Science degree in nuclear engineering in June 1999. He worked as a research assistant at 

Nuclear Engineering Department in Ankara for one year after his graduation. He also 

worked as a system administrator in a computer network company Bimel Ltd. for one 

year. His research interests include computational fluid dynamics, pebble bed modular 

reactors, particle tracking in particle laden flows, parallel processing, object oriented 

programming and all sort of linux and unix systems.  

 
 
Author’s permanent address: 
 
Ahmet Sefik Kalayli Caddesi 
57. Sokak   No:4   Etlik/Ankara     TURKEY  
  


