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ABSTRACT 

 

Neural Network-Based Classification of Single-Phase Distribution 

Transformer Fault Data (April 2006) 

 
Xujia Zhang 

Department of Electrical Engineering 
Texas A&M University 

 
Fellows Advisor: Dr. Karen Butler-Purry 

Department of Electrical Engineering 
 
 

The ultimate goal of this research is to develop an online, non-destructive, 

incipient fault detection system that is able to detect incipient faults in transformers and 

other electric equipment before the faults become catastrophic. With the condition 

assessment capability of the detection system, operators are equipped with better 

information during their decision-making process. Corrective actions are taken prior to 

transformer and equipment failures to prevent down-time and reduce operating and 

maintenance costs.  
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Diagnosis of data associated with incipient failures is essential to develop an 

efficient, non-destructive, and online system. Field testing data were collected from 

controlled experiment and simulation data from mathematical models are studied. This 

thesis presents a data-mining approach to analyze field recorded and simulation data to 

characterize incipient fault data and study its properties.  

A supervised classifier using neural network (NN) toolbox in Matlab provides an 

efficient and accurate classification method to separate monitoring signal data into 

clusters base on their properties. However, raw data collected from the field and 

simulations will create too many dimensions and inputs to the neural network and make 

it a complex and over-generalized classification. Therefore, features are extracted from 

the data set, and these features are formed into feature clusters in order to identify 

patterns in signals as they are related to various physical behaviors of the system. The 

similarity between recognized patterns and patterns shown in future monitoring signals 

will trigger the warning of initializing or developing faults in transformers or equipment. 

This thesis demonstrates how different features were extracted from the raw data 

using various analysis techniques in both time domain and time-frequency domain, and 

the design and implementation of a neural network-based classification method. The 
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classifier outputs are classes of data being separated into groups based on their 

characteristics and behaviors. Meaning of different classes is also explained in this 

thesis.  
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INTRODUCTION1 

Overview of Electric Power Systems 

A power system is consisted of power generation plants, transmission lines, 

distribution network, and substations. Transformers are an essential part of the electric 

power system because it has the ability to change voltage and current levels, which 

enables the transformers to generate electric power, to transmit and distribute electric 

power and utilize power at an economical and suitable level [1].  

As shown in Figure 1, voltage of electricity generated at the power plant will be 

increased to a higher level with step-up transformers. A higher voltage will reduce the 

energy lost during the transmission process of the electricity. After electricity has been 

transmitted to various end points of the power grid, voltage of the electricity will be 

reduced to a useable level with step-down transformers for industrial customers and 

residential customers. Transformers are a vital component of the electric power system, 

and they are extensively used to help meet the growing energy needs of the U.S. and the 

rest of the world [30].  

 
                                                 
1 This thesis follows the style and format of IEEE Transactions on Power Systems.  
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Figure 1 [1]: The structure of an electric power transmission and distribution system 

Rising Problem 

Energy Market and Power Industry 

The trend toward a deregulated global electricity market has created a 

competitive environment for the power industry. The U.S. Department of Energy 

predicts the U.S. electric power industry must increase capacity 45% to meet increasing 
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electric power demand by year 2020 [2]. Reducing operational cost, optimizing usage of 

electrical assets, and improving reliability and customer service are significant factors to 

succeed. Detection of incipient faults in electric equipment will allow corrective actions 

to prevent unplanned outages and reduce down time and maintenance cost. Therefore, 

utilities are demanding online monitoring and onsite diagnostic systems [44]. 

Transformers are one of the most expensive and essential components of a power 

system. High capital investment is made to ensure proper operation and prevent 

transformer failures [48]. Success in complex equipment such as transformers will allow 

potential adoption of this methodology to be applied to protection of general electric 

equipment in power systems. Research findings will contribute to reliable power, 

satisfactory customer service, and safe operation [24]. The monitoring parameters 

include only terminal voltages and currents, which can make this detection technique an 

affordable solution to reliable power in the United States as well as undeveloped 

countries.  
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Motivation for an Online, Non-destructive, Fault Detection System 

Due to the challenging and competitive energy market, utilities tend to operate 

the transformers harder, longer, and closer to their capabilities in order to reduce cost 

and generate the most amount of profit. Transformers are more likely to fail under such a 

stress besides regular aging and insulation deteriorating processes. Therefore, utilities 

are calling for an economical yet reliable fault detection system to help with the 

maintaining and extending the life of their existing assets and equipment to provide 

affordable and reliable electric power [21]. The detection systems and diagnosis methods 

developed previously either require the transformers to be taken out of service, which 

means more operational cost to the utility, or are expensive to implement [5]. Therefore, 

a low-cost, on-line, non-destructive fault diagnosis and detection system is highly 

demanded to provide immediate and accurate assessment of the conditions of the 

equipment in the field.   

Contribution of Research 

About 70% to 80% of transformer failures in recent years are caused by internal 

winding faults [31]. There are two types of internal winding faults: internal short circuit 
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faults and internal incipient faults. Incipient faults are caused by gradual deterioration of 

insulation materials [25], it is an early stage of the short circuit fault, however, no turns 

were connected and a short circuit has not bee formed yet [26]. The major contributions 

of this thesis are in two areas. First, a systematic study was designed and implemented to 

characterize single-phase distribution transformers incipient faults through various 

analyses in time domain and time-frequency domain to analyze collected data of the 

project [15]. This characterization is vital to the diagnosis of incipient faults because it 

reveals the properties of incipient faults. Secondly, an accurate and efficient 

classification procedure has been established to utilize neural network to create a 

supervised classifier that is able to classify a data set into different clusters with different 

characteristics [18]. The classification of data is the basis for pattern recognition 

technique, which is the key to fault detection [19][20].  
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LITERATURE REVIEW AND PROBLEM FORMATION 

Introduction 

 In this section of the thesis, a literature review of different fault types of 

transformers, transformer types and structures, and existing transformer fault diagnosis 

and detection techniques is presented. In addition, the problem statement of the entire 

project and also the problem statement of my part of the research are clearly given, 

respectively.  

Incipient Faults 

Under stresses from high voltage, current bypasses the conductor through 

insulators as gradual deterioration of insulation progresses, thus a short circuit was 

created and the transformer failed [25]. Whenever an incipient fault presents, 

abnormalities in voltage, current and other electrical parameters will be detected. 

Therefore, characteristics that uniquely identify abnormal behaviors in transformers can 

be determined from analyzing collected data, and they serve as a prediction method for 

incipient failures [14].  
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Transformer Types 

There are many different types of transformers. For instance, power and 

distribution transformers are used in electrical power systems to generate electrical 

power, transmit, distribute, and utilize power at a safe and economical voltage level. 

Isolating transformers can be used to electrically isolate circuits from each other or block 

signals between circuits. Instrument transformers can be used to measure high voltages 

and high currents [22]. In addition, based on the core construction, transformers are 

classified into shell-form or core-form [22].  

Internal Structures of Transformers 

Field experiments were performed at Conductor Test Facility which is located at 

Texas A&M University Riverside Campus [31] by previous researcher in PSAL. A 

single-phase, 7200V/240V/120V custom-built transformer with a power rating of 

25kVA and operating frequency of 60Hz was used for test purposes [31]. This 

distribution transformer was connected to a resistive load bank and an overhead 

distribution power line, which has a RMS value of 7200V line to neutral voltage supply 

[44].  
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Figure 2 shows the basic structure of a transformer. This is a core type structure. 

The iron is built in the shape of two cores, and each of the cores is wrapped with coils 

around them. The number of turns of the coils will determine the voltage change from 

one side to the other [22].   

 

 

Figure 2 [22]: Windings of the transformer 

Figure 3 shows a shell type of transformer structure. The coils are usually 

rectangular in shape, and the iron is built through the opening and around the outside of 

the coils to form a shell around the coils. Each lamination of the iron forms a rectangle 

with two windows for the coils to pass through [22].    
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Figure 3 [22]: Insulation and winding structure of transformer 

Figure 3 also shows the insulation of the transformer, which is mainly comprised 

with paper insulation around each winding [34]. As the transformer ages and goes 

through high voltage and over-current stresses, the insulating material will start to 

deteriorate gradually [4][25].  

Figure 4 shows the basic operating principle of a transformer. The input coil of 

the transformer is called the primary winding, and the output coil is the secondary 
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winding [15]. The voltage induced in the secondary is determined by the turns ratio and 

the primary-side voltage [15] as shown in equation 1. 

 

 

Figure 4 [22]: Primary and secondary windings of transformer 
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  In order to help with the magnetic coupling between primary and secondary 

windings, the coils are wrapped around a metal core. This core is laminated so that the 

primary side will induce eddy currents, thus power, on the secondary side of the core 

[22]. The core is made up of metal sheets that are insulated from each other [34].  
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Transformer Failures  

Manufacture fault, short circuit faults, abnormal transient fault, premature 

insulation fault, and aging of the insulation materials are major causes of transformer 

failures [24]. There are two major classes of transformer failures: internal faults and 

external faults [3]. Internal faults could be faults between two adjacent turns, between a 

segment of turns, parts of coils, or between a turn and a grouped part of the transformer. 

External faults include overloads, over-current, over-voltage, reduced system frequency, 

and external short circuits such as a short circuit created on the secondary windings 

[2][5]. Recent record suggests about 70% to 80% of transformer failures are due to 

internal winding faults [31], therefore, internal faults are the focus of this research. 

These faults occur rapidly and require immediate actions by system protection devices 

and operators to isolate the fault and disconnect the transformer from the fault [7].  

Existing Transformer Fault Detection Techniques 

Most existing transformer fault diagnostic and detection techniques such as 

dissolved gas analysis (DGA) [8], degree of polymerization (DPA) [5], partial discharge 

analysis (PDA) [9], frequency response analysis (FRA) [5], and transformer function 
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measurement use parameters other than electrical or require the transformers be taken 

out of service [5]. These methods are suitable for large scale power transformers and are 

expensive to implement, therefore, a new method with low cost and on-line detecting 

capability is demanded [20].  

Problem Statement of the Entire Project  

Among internal faults, incipient fault is caused by gradual deterioration of 

insulating materials, so they develop slowly, and they require a relative long time for the 

incipient behaviors to develop into a short circuit which will lead to a catastrophic 

failure [25]. Unlike short circuit faults, incipient faults cannot be detected by traditional 

system protection devices [3], therefore, this research focuses on the development of an 

online detection system for the incipient faults.  

Incipient faults in internal coil windings are the primary cause of transformer 

failures [5]. Detecting faults caused by a failing component is a fairly immature 

technology [14]. The research hypothesis is that a non-destructive and online system 

using neural network-based pattern recognition technique can be used to characterize 

and detect incipient faults in transformers [6]. With future development, this 
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methodology also could protect general electric equipment. Incipient faults constitute a 

dominant subcategory of equipment faults from inception to completion before leading 

to a catastrophic failure. From a macroscopic perspective, incipient faults refer to the 

abnormalities associated with any type of deterioration phenomena manifested in the 

electrical signals [14].  

Problem Statement of My Part of the Research 

 In order to successfully use pattern recognition techniques to detect and predict 

incipient faults in transformers, the characteristics and properties of the data under 

healthy and faulty operational conditions must be studied. The terminal monitoring 

signals are composed of terminal voltage and current signals [31], and the data of these 

signals are simply collected and stored as one set of data.  

 These recorded signal data can be classified into different classes. Each class of 

the data represents a different behavior of the physical system. Therefore, it is necessary 

to characterize the data and cluster the data set into different classes based on their 

different characteristics.  
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OVERALL SOLUTIONS AND METHODOLOGIES OF THE 

ENTIRE PROJECT 

Data-Mining Approach 

Figure 2 shows a data mining approach of information extraction and feature 

analysis of monitoring voltage and current data [14]. M. Mousavi [14] used this 

approach to analyze and characterize incipient fault data from undergraduate cables, and 

it has been proven to be an efficient to tool to extract information from an unknown set 

of data and study the properties and characteristics of the data. Although underground 

cables and single-phase distribution transformers are very different in structures, fault 

diagnosis techniques, and even monitored signals, it is still beneficial to adopt his data 

mining approach and apply it to the current transformer project. Collected data will be 

classified based on selected features to show patterns. Patterns are associated with actual 

physical conditions of the system. Therefore, certain patterns shown in monitoring 

signals from the data being studied will indicate incipient faults.   
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Figure 5 [14]: Data-mining approach to characterize a given set of data 

Data collection and preprocessing 

Two sets of data from previous research work will be analyzed. Controlled-

experiment data are voltage and current signals recorded before and after fault 

occurrence when fault scenarios were purposely introduced to the transformer during 

field testing. Simulation data were generated with models built in Maxwell that represent 

short-circuit and incipient faults to complement limited field testing [15][16]. Usually, 

the DC component and noise will be filtered out with low-pass and high-pass filters in 
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the data preprocessing phase to protect low-frequency and high-frequency signals [15]. 

However, this particular research project does not require the DC removal and de-nosing 

of the original signal.   

Feature computation with analysis modules 

Time domain analysis will show variations of signals and abnormalities with 

respect to time. Abnormalities can be seen as presence of spikes and load changes [14]. 

Therefore, spike analysis including studies of number and magnitude of spikes will 

convey information about the system abnormalities. Moreover, Root Mean Square 

analysis can provide a way to measure the step change in the current signals when there 

is a load change [30]. In addition, Fourier analysis will obtain the frequency information 

about the signal. Wavelet analysis, which contains information in both time and 

frequency domain, will also be used [44]. Because the Discrete Time Wavelet Transform 

provides an amount of decomposition coefficients that are manageable, and the original 

signal is examined in both time and frequency domain, so a Discrete Time Wavelet 

analysis is performed instead of Fourier analysis [17].  
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Feature Analysis and Anticipated Results 

A feature is a characteristic used to distinguish data groups formed by similar 

attributes [14]. For instance, features could be the degree of arcing, severity of spikes, 

magnitude, standard deviation, and other characteristics of the signal. Once necessary 

features are computed with proposed analysis methods, data are grouped into clusters. 

Neural Network-based clustering is a toolbox in Matlab to analyze data. It is also a self-

learning intelligent organizer that takes input in numeric vector form and produces 

output as groups on a map [14]. Each group shows a unique behavior. On the map, the 

relationship between data points is represented by the depth of color, and these color 

regions are grouped into clusters. Every cluster represents a physical state of the system. 

Some clusters indicate systems with fault or abnormal behaviors, and some clusters 

represent healthy systems [17]. Patterns in clusters of monitoring signal data will predict 

future actions of the system. Therefore, incipient faults in electric equipment can be 

detected by appearance of certain patterns in monitoring voltage and current signals.   
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SOLUTIONS AND METHODOLOGIES OF MY PART OF 

THE RESEARCH  

Neural Network-Based Supervised Classification  

A supervised classification method is suitable in this case because normal and 

faulty data groups are already clearly labeled. Also because the output classes of the 

Neural Network-base classifier are already known, a supervised classification fits the 

purpose better. With supervised classification, problems such as putting different 

clusters into one same cluster or creating too many classes within one single cluster that 

are associated with unsupervised classification can be avoided [16]. There are five steps 

to perform this classification [14]: 

1. Determine features that will be used 
 

2. Implement Feature Extractor 
 
3. Implement the Neural Network Classifier 
 
4. Tran neural network with training data 
 
5. Do studies with test data and determine the accuracy of the classifier 
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  First of all, the entire data set will be arbitrarily separated into two different data 

sets: training set and test set. The training set takes a lot of data input [38][13], and 

therefore, it should be 80% of the entire data files available. The test set should be the 

remaining 20% data files, and the purpose of the test set is to evaluate the performance 

of the Neural Network classifier.  

Feature Extractors of Neural Network 

There are two ways to perform the neural network classification: 

Figure 6 shows the first method to perform supervised classification with neural 

network: raw data such as voltage and current signals are directly feed into the neural 

network. The decision output is different classes that are desired.  

 

  

Figure 6: Neural network classifier with raw data 

 Figure 7 shows the second method to perform supervised classification with 

neural network: raw data is first converted into feature data, such as Discrete Wavelet 

Neural 
Network 

Raw data Decision output 
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Transform (DWT) of primary and difference current, RMS values of the signal, and 

spike severity, which are more meaning to the neural network. The patterns in the raw 

data are harder to find, the dimensions are larger, and the classifier is too complicated to 

be designed [36]. With these intermediate feature data as input of the network, the 

number of neurons in the input layer is reduced [35][37]. Therefore, the complexity of 

the network architecture is also significantly reduced.  

 

 

Figure 7: Neural network classifier with feature extractor 

Feature Extractor 

Different analysis in time domain and time-frequency domain has been 

performed to provide feature files that are necessary to perform classification and 

detection operations later on.  

Neural  
Network 

Feature 
Extractor 

Raw Data 
Feature 
data 

Decision 
output 
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Time Domain Analysis 

Spike Analysis 

The spike analysis is performed to capture the incipient abnormalities that can be 

characterized by the spikes and not identified through other modules. This analysis uses 

a detection algorithm based on the theory of outliers to identify the spikes in the entire 

recording [10][14]. It uses the computed robust estimate of the standard deviation of the 

first differences of the signal. If a spike is detected that is not accompanied by s 

simultaneous change in the low frequency current signals, the input signal is flagged as 

an incipient abnormality. In this analysis standard deviation, mean and median, 

skewness, and kurtosis of the signal are calculated [14].  

RMS Analysis 

The RMS analysis is used to characterize captured data. It utilizes an RMS 

template-matching algorithm to find the best matching template from a given library of 

templates. Among the identified shapes, four templates capture the data most likely 

conveying incipient abnormalities. These input data are classified into incipient classes 

and further analyzed through secondary classifiers. The RMS shape analysis uses the 
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voltage and low frequency current signals to categorize the data in terms of the shape of 

the RMS signal calculated over one power cycle for one-second recording. Max RMS 

step size, percentage of change, max step duration, min step duration, mean RMS value, 

max RMS value, min RMS value, Standard Deviation of RMS are all calculated with 

this analysis [14]. The different calculation fields above are different features used in 

neural network classification [14].  

Time-Frequency Domain Analysis 

 Time-frequency domain analysis methods not only extract the information of the 

signal in the time domain, but information in frequency domain is obtained as well. This 

provides a very informative method to extract information from a given set of data. 

Wavelet analysis is one of the most important and efficient time-frequency domain 

analysis methods. However, the continuous wavelet analysis generates too many wavelet 

coefficients [10], and this causes a great degree of redundancy and creates data 

management issues. Therefore, the Discrete Wavelet Transform is used to only generate 

wavelet coefficient at the points where power of 2 present, and data redundancy problem 

is solved with Discrete Wavelet Transform [10].   
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Application of Discrete Wavelet Transform 

The DWT block is the same as the Dyadic Analysis Filter Bank block in the 

Multi-rate Filters library, but with different default settings [12]. The wavelet analysis is 

a toolbox within Matlab, and it is a mathematical tool that reveals the time-frequency 

domain information about the signal with proper chosen time-shifting and time-dilation 

parameters [42][43].  

 A wavelet is a waveform with limited duration and an average of zero. It is 

defined with a wavelet function:  

 

 From a basic mother wavelet, a set or a variety of signals can be derived by 

changing the time-shifting and time-dilation constants [39]. Wavelet transforms are 

realized with these derived signals. A continuous wavelet transform is defined as “the 

sum over all time of the signal multiplied by scaled shifted versions of the wavelet 

function [6]”.  
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 In this equation, a is the scale, b is the position along the time axis, and x(t) is the 

signal function, and C(a,b) is the wavelet coefficient. With wavelet coefficients, which 

are functions of a and b, the original signal can be reconstructed with proper scaling and 

shifting parameters [28].  

 However, with Discrete Wavelet Transform (DWT), only samples of wavelet 

coefficients are collected, this way, DWT reduces the redundancy of the continuous 

wavelet transform [6].  

 

 

 In the two equations above, a0 and b0 are constants both greater than 1, m and n 

are numbers belong to the positive integers. Also, maa 0=  and manbb 00= . Therefore, the 

DWT function becomes [6]:  
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The last function above shows how to use filter bank techniques to implement the 

DWT in Matlab [10]. Mallat’s decomposition algorithm has been extensively used in 

this procedure. The original signal is decomposed into a low frequency part called 

approximation and high frequency part called detail [29]. With low-pass and high-pass 

filters, the original signal is decomposed into two signals. However, the second data 

point is thrown away to keep the same length of the signal. With an adopted mother 

wavelet, the DWT performs detail analysis on high-frequency part of the mother 

wavelet, while approximation analysis is performed on low-frequency part of the mother 

wavelet [28][29].  

Figure 8 shows the decomposition tree of the DWT decomposition. The original 

signal is down-sampled into two sub-signals with low-frequency part and high-

frequency part, respectively. The low-frequency part is further composed into other two 

sub-signals with different frequency [11]. Based on the structure of the tree, when two 

new signals are created, one old signal will be discarded, therefore the length of the 

decomposed signal will stay the same [11].  



 

 

26

 

Figure 8 [11]: Wavelet decomposition tree   

Figure 9 shows the implementation of DWT in Matlab using Dyadic Analysis 

Filter Bank. Based on the decomposition tree, the original signal is decomposed into 

sub-signals with sub-band. The Dyadic Analysis Filter Bank is essentially the same with 

DWT block, therefore, the DWT procedure is implemented with Dyadic Analysis Filter 

Bank with Daubechies Db-4 type mother wavelet. The signals were decomposed up to 

the fourth scale [10]. 

 

Figure 9 [10]: Implementation of DWT in Matlab 
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PREVIOUS RESEARCHERS’ WORK ON THIS PROJECT 

 A number of previous researchers have contributed their findings and research 

results to the advancements of the current project. It difficult to talk about what I did for 

the project without talking about what has been done by other researchers for the project. 

This way, the work I have accomplished will fit into the big picture of the entire project.  

Field Testing 

A custom-built single-phase, distribution transformer was used in field testing to 

collect data from controlled experiments. In these controlled experiments, a great variety 

of different fault scenarios on both primary side and secondary side of the transformers 

were intentionally introduced into the transformer [31]. In the mean while, terminal 

voltage and current data were recorded with a data acquisition system. The field data is 

significant to the research because it provides actual and practical data that will reflect 

the most accurate conditions and situations with a real power system. In addition, 

controlled experiments will generate faulty terminal voltage and current data that are 

associated with each fault scenario. With these data clearly labeled together with 

different faults, patterns in these faulty data can be identified. Therefore, if future 
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monitoring signal data show similar patterns, it means there is a similar fault. Moreover, 

supervised classification using neural network will be able to be performed because only 

the clearly labeled faulty data will help to train the neural network [14][44].  

Experiment Setup 

 A custom-built distribution transformer was used for field testing, and a data 

acquisition system was used to record signals. There are 780 turns of coils on the 

primary side and 26 turns of windings on the secondary side. A distribution-network 

branch or lateral is connected to the transformer through a fuse to power the transformer. 

 In addition, a load bank was connected to the secondary side of the transformer 

to provide load and reduce the current level [31]. In order to create short circuits 

between two the turns, transformer taps were installed and connected to busbars that are 

fixed on the panel board. These taps can be operated externally, and therefore, different 

scenarios of faults can be created between any two turns of the internal windings [44].  

 In order to monitor the real-time signals during the field testing, a portable data 

acquisition system with real-time data-acquisition capability was connected to the 
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transformer to collect voltage and current signals and record them at a sampling rate of 

3840 samples per second [44].  

Field Data 

The recorded voltage and current signals are collected at 3840 samples per 

second. In addition, field-measured primary current data was filtered through a 60Hz 

notch filter and a notch high-pass filter [31]. The outputs of these signals after the 

filtering process eventually are sampled at 15360 samples per second [30]. Six different 

signals have been recorded from the field testing [44]:   

i1_primary (primary current) 

i2_secondary (secondary current) 
 
notch_hp (notch high-pass primary current) 
 
notch_lp (notch low-pass primary current) 
 
v1_primary (voltage of the primary side) 

v2_secondary (voltage of the secondary side) 
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Transformer Modeling 

Field testing could be expensive, dangerous, and not practical. It is not realistic to 

test all possible fault scenarios with a real transformer in field test. Therefore, a 

transformer model was created in simulation software to continue generate fault data and 

data when the transformer is under normal operation [44].  

A transformer model developed by Bastard et al. was adapted to generate 

simulation data [44]. This model was targeted at winding faults of three-phase, power 

transformers to single-phase, distribution transformers. Also, faults between any two 

turns of the internal windings of the transformer or faults between a turn and a grounded 

part of transformer can be studied with this model [15][44]. This is a linear model that 

studies the terminal behaviors of a single-phase, distribution transformer during incipient 

and short-circuits faults in internal windings [44].  

Simulation Setup 

A Finite Element Method (FEA) [23] and circuit analysis techniques [5] were 

implemented by Hang Wang into the simulating model to build an equivalent circuit that 

accurately and properly represent a transformer with internal faults under real conditions 
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in real scenarios [30]. This simulating model has been implemented in the software 

called ANSOFT Maxwell [31].  

 When the insulation material deteriorates inside the transformer, and it reaches a 

certain level, an incipient internal winding faults will be created that will cause a 

transformer failure. The deteriorating phenomena are caused by factors such as thermal 

stress, electrical stress, mechanical stress, and moisture inside the transformer [25]. The 

simulation model was successfully built, and it accurately represents the aging and 

arching behaviors of the transformer with circuit blocks [5]. The electrical behaviors of 

the dielectric material, natural, and man-made aging effects to the transformer internal 

windings are properly represented [5]. 

Simulation Data 

Seven different signals have been recorded with the simulating transformer 

model [19]: 

i1_primary (primary current) 
 
i2_secondary (secondary current) 
 
i_circ (circulating current) 
 
notch_hp (notch high-pass primary current) 
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notch_lp (notch low-pass primary current) 
 
v1_primary (voltage of the primary winding) 
 
v2_secondary (voltage of the secondary winding) 
 

 The circulating current cannot be obtained with the actual transformer test 

because it requires cutting the transformer into two pieces to measure the circulating 

current. Therefore, there are seven signals instead of six. All signals are sampled at 3840 

samples per second expect the notch high-pass primary current, which is sampled at 

15360 samples per second [5].    

Field Data Match Simulation Data (Accuracy of Simulation) 

The field testing data and simulation data exhibit similar behaviors. During 

normal operation, the signal was a regular sinusoidal wave. However, periodic and 

random arcing behaviors can be seen from the signal when the insulation material ages 

[25]. When an incipient fault eventually developed into a short-circuit fault, a dramatic 

increase in current can be seen from the signal [5]. After examining in the time domain, 

it is confirmed that the simulation data and field data are both accurate and match with 

each other.  
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PRELIMINARY RESULTS AND FINDINGS 

 A set of preliminary results were obtained when different features were 

computed with the feature extractor and the neural network classifier was implemented. 

In this stage, only two classes exist as the output of the neural network-base classifier: 

data files with 10% arcing (low severity) and data files with 50% arcing (high severity).  

Calculating Difference Current 

 Previous research findings suggest the usage of primary current and difference 

current as major signals for pattern recognition purposes because a significant portion of 

the system behaviors has been captured with these two signals. The difference current is 

defined as the difference between the primary current and the secondary current.  

Figure 10 shows a simple Matlab program that was written to calculate the 

“difference current” by subtracting the secondary current from the primary current. For 

each and every single sample point, a difference current data has been calculated. In 

addition, the new column vector “diff_cur” which stands for difference current is saved 

together with the other signal data as column vectors in the “.mat” file.   
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Figure 100: Matlab code to calculate difference current 

Calculating Differential Current 

 Dr. M. Bagriyanik [16] suggested that a differential current signal can benefit the 

classification results. In a transformer, the primary current and the secondary current are 

related with the following equation [49]: 

primaryV
ondaryV

N
N

ondaryi
primaryi

_
sec_

1
2

sec_
_

==  

In the equation above, N1 is the number of turns of the windings on primary side 

of the transformer, and N2 is the number of turns of the windings on secondary side of 

the transformer. The differential current is defined as below [49]: 

ondaryi
primaryicurrentaldifferenti

sec_
__ =  

The equation above indicates the differential current is a ratio of the primary 

current over secondary current. This signal is very useful because it reveals information 
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on the shorted windings within the transformer. For example, the differential current, or 

the ratio of primary current over secondary current, is fixed for a healthy transformer 

that is operating under normal conditions. However, when there is a short circuit 

occurred inside a transformer, and there are some turns shorted together. This change 

will cause the differential current, or the ratio, to change to another value. Therefore, the 

changes in differential current can tell if there are any short circuits faults in the 

transformer. However, the differential current is not helpful to analyze incipient and 

arcing behaviors.  

Similarly in Figure 11, a short Matlab program was written to calculate the 

differential current data for each data file. The new column vector “difcurrent” indicates 

differential current field, and this column vector has been saved together with other 

vectors inside the same Matlab data file.  

%!dir *mat 

%dir('*.mat') 
clear all, clc 
files=dir('*.mat') 
for i = 1:80 
  load(files(i).name) 
  for ii = 1:3840 
  a(ii)=(i1_primary(ii))/(i2_secondary(ii)); 
  end 
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  difcurrent=a'; 
  save (files(i).name, 'i1_primary','i2_secondary','i_circ','notch_hp','notch_lp', 
'v1_primary','v2_secondary','difcurrent') 
end 
 

Figure 111: Matlab code to calculate differential current 

 Both of the primary current and the secondary current are collected at a sampling 

rate of 3840 samples per second. In addition, each data file used in this research has one 

second capture of the monitoring data. Therefore, there are 3840 data points of primary 

current and differential current in each data file. 

Primary and Difference (or Differential) Currents  

 First of all, the 3840 data points in a time sequence within one second capture are 

plotted in Figure 18. The plots of primary current and difference current are shown for 

both the 10% arcing data files and 50% arcing data files. The data came from file named 

“INCIPIENT_P226_255_Rp1_10_pc_MEASURED_VALUES”, which is labeled as 

having 10 % arcing severity. The 50% arcing data file selected was named as 

“INCIPIENT_P280_300_Rp001_50_pc_MEASURED_VALUES”. 

 Figure 12 shows the plot for primary current in 10% arcing data file, and Figure 

13 shows the plot for corresponding primary current in 50% arcing data file. With 
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careful examination and comparison of the two plots, it can be noticed that the arcing 

phenomena occur randomly in the earlier stages in transformer incipient faults. In the 

early stage, there is a larger time interval between two consecutive arcing peaks. As the 

fault develops, arcing becomes more often in the plot with smaller and regular time 

intervals.  
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Figure 122: Plot of primary current in time domain with 10% arcing 
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Figure 13: Plot of primary current in time domain with 50% arcing 

 Similarity, plot of difference current in time domain is obtained and shown in 

Figure 14 for 10% arcing data file and Figure 15 for 50% arcing data file, respectively. 

Comparing the two plots in time domain, it can be noticed that the 10% arcing data file 

has uniformly distributed magnitude of the differential current; on the other hand, the 

50% arcing data file has big difference in adjacent difference current points, and 

therefore has more fluctuation in the difference current magnitude.   
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Figure 14: Plot of the difference current in the time domain with 10% arcing 
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Figure 15: Plot of difference current in time domain with 50% arcing 
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 The plots above proved the importance of both primary current signal and 

difference current signal because both signals carry a significant portion of the data. It 

also explains the reason of focusing on these two signals in this research.  

Feature Extractor 

 Features are calculated with the feature extractor. In order to calculate some of 

the features, different analysis methods are used for feature calculations: statistical 

analysis, time domain analysis, and time-frequency domain analysis.  

Statistical Analysis 

 The statistical analysis includes the calculations of the maximal value, minimal 

value, range, mean, median, and standard deviation for both of the primary current and 

differential current of each of the data file. Thus, there is one value under each feature 

field for every data file. These values are calculated with built-in Matlab commands: 

Maxp=max(i1_primary) % maxp stands for the maximal value of the primary current 

Maxdf=max(diff_curr)  % maxdf stands for the maximal value of the differential current 

Minp=min(i1_primary) 

Mindf=min(diff_cur) 
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Rangep=range(i1_primary) 

Rangedf=range(diff_cur) 

Meanp=mean(i1_primary) 

Meandf=mean(diff_cur) 

Stdp=std(i1_primary) 

Stddf=std(diff_cur) 

Madp=mad(i1_primary) 

Maddf=mad(diff_cur) 

 Each of the calculated value above is a feature of the data. There are a total of 12 

statistical features.  

Time Domain Analysis 

 In time domain analysis, both RMS shape analysis and spike analysis have been 

performed. In spike analysis, the skewness and kurtosis of both primary and differential 

currents are calculated.  

Skewness measures the asymmetry of the data around the sample mean, which 

provides information on the distribution of the data set. If skewness is negative, the data 
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are spread out more to the left of the mean than to the right. If skewness is positive, the 

data are spread out more to the right. The skewness of the normal distribution (or any 

perfectly symmetric distribution) is zero. The skewness of a distribution is defined as 

[46]: 

3

3)(
σ

µ−
=

xEy , where µ is the mean of x, σ   is the standard deviation of x, and E(t) 

represents the expected value of the quantity [46].  

 Kurtosis is used to measure how “outlier-prone” a distribution is [46]. The 

kurtosis of a normal distribution is 3. Distributions that are more outlier-prone than the 

normal distribution have kurtosis greater than 3; distributions that are less outlier-prone 

have kurtosis less than 3 [46]. The kurtosis of a distribution is defined as [46]:  

4

4)(
σ

µ−
=

xEk , where µ is the mean of x, σ  is the standard deviation of x, and E(t) 

represents the expected value of the quantity t. 

 The skewness and kurtosis of primary current and differential current are 

computed with the following commands in Matlab:  

Skewp=skewness(i1_primary)  %skewp means the skewness of primary current 

Skewdf=skewness(diff_cur)      %skewdf means the skewness of differential current 
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Kurp=kurtosis(i1_primary) 

Kurtdf=kurtosis(diff_cur) 

 In RMS analysis, the RMS value of the entire signal of primary current and 

differential current is calculated with a written rms function as shown below in Figure 

16:  

function [rms_signal] = rms(signal,nppc) 
% RMS function calculates the rms values of a periodic signal at each cycle 
% If the second argument is not provided, the output is the rms value of the whole signal 
% Syntax: RMS(input,nppc) 
% input is the input signal  
% nppc is the number of points per cycle 
% nppc = sampling frequency/ signal frequency 
% example: 
%         x= sin(2*pi*60*[1/1920:1/1920:1]); 
%         X = rms(x,1920/60); 
% ACTION 
if nargin ==1  
    rms_signal = sqrt(sum(signal.*signal/length(signal))); 
else 
    signal = reshape(signal,nppc,length(signal)/nppc); 
    rms_signal = sqrt(sum(signal.*signal/nppc)); 
end 

Figure 16: Calculating RMS values of primary and difference currents 

 With this written RMS function in Matlab, the RMS features of the primary 

current and differential current can simply carried out by inputting: 
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RMSp=rms(i1_primary)  %RMSp stands for RMS value of the primary current signal 

RMSdf=rms(diff_cur) %RMSdf stands for the RMS value of the differential current  

 Therefore, the RMS value of the entire cycle of the period signal is computed for 

both primary current and secondary current. There are two RMS features obtained.  

DWT as a Feature Extractor (Time-Frequency Domain) 

 The four DWT plots of primary current and differential current below 

demonstrate the importance of having DWT as the feature extractor of the Neural 

Network classifier. Through using the features of the DWT extracted from primary 

current data and differential current data, the DWT can help with the discriminating of 

different data clusters and groups [27], thus, benefit the predictive and detective system.  

 Figure 17 shows the plots of the coefficients of the Discrete Wavelet Transform 

(DWT) of primary current with 10% arcing. Accordingly, Figure 18 shows the plots of 

the coefficients of DWT of primary current with 50% arcing. It can be easily noticed that 

the time interval between two adjacent spikes in the plot of DWT coefficients is larger 

for 10% arcing case. Also, there are fewer spikes that appeared randomly in the plot in 

the 10% arcing case.  
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Figure 17 DWT of primary current measured for incipient behavior of 10% arcing 
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Figure 18: DWT of primary current for incipient behavior of 50% arcing 

 Figure 19 shows plots of the DWT coefficients of differential current in a 10% 

arcing data file. Figure 20 shows plots of the DWT coefficients of differential current in 

a 50% arcing data file. Comparing these two plots, the same conclusion as of last 

comparison results can be drawn: the plots of DWT coefficients of differential current 

have random and fewer spikes with larger time intervals can be observed with the 10% 

arcing data file.  

 

 

Figure 19 DWT of difference current for incipient behavior (10% arcing) 
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Figure 20 DWT of difference current for incipient behavior of 50% 

In general, for internal incipient faults, there are random spikes occurring in the 

DWT plots of the primary current and differential current. However, the number of 

spikes and the time interval between adjacent spikes are different in the DWT coefficient 

plots for different types of data files (various arcing degrees). These plots above 

illustrated the importance of differential current. More importantly, these plots 

demonstrated that it is necessary to have DWT as a pre-processor for the neural network-

based classifier because it helps to distinguish between two data classes.  
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Figure 21 shows the process of how different levels of DWT coefficients are 

obtained. In the panel on the right, the original signal, i1_primary, is decomposed into 

low-frequency and high-frequency parts (approximation a1 and detail d1). Each 

approximation will be further decomposed into second-level approximations and details 

(a2 and d2).  

 

Figure 131: Acquisition of DWT coefficients 

 Figure 22 demonstrates the decomposition process of the DWT of primary 

current. On the left, a DWT composition tree is shown. The top right graph shows how 
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the signal is decomposed, and the lower right graph shows how the original signal can be 

reconstructed with DWT coefficients. 

 

 

Figure 22: Demonstration of the decomposition tree of DWT 

 Figure 23 shows some of the statistical measures of the DWT coefficients 

obtained. For instance, the mean, maximal, minimal, standard deviation, and range can 

be calculated for these DWT coefficients as well. The total number of the DWT 

coefficients stays the same due to the nature of the discrete transform process. The mean 

values of d1 (first level), d2 (second level), d3 (third level), d4 (fourth level), and a4 



 

 

50

(fourth level) are calculated and stored. Each of the mean value of every single 

coefficient is also a feature of the data.  

 

. 

Figure 23:  Statistical data of the DWT coefficients 

 In all DWT processes performed above, the Db-4 type mother wavelet 

(Daubechies—4) has been used. Also, the decomposition level of the DWT of these 

signals has been kept at 4.  In Matlab, the following commands were used to calculate 

the mean value of each DWT coefficients: 
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[c1A,c1D]=dwt(i1_primary,'db4');         
[c2A,c2D]=dwt(c1A,'db4');                    
[c3A,c3D]=dwt(c2A,'db4');                
[c4A,c4D]=dwt(c3A,'db4');  
coed1p=mean(c1D);          % calculating mean value of coefficient d1 for primary 
current 
coed2p=mean(c2D);          % for d2 
coed3p=mean(c3D); 
coed4p=mean(c4D); 
coea4p=mean(c4A); % for a4 
[c1Adf,c1Ddf]=dwt(diff_cur,'db4'); 
[c2Adf,c2Ddf]=dwt(c1Adf,'db4'); 
[c3Adf,c3Ddf]=dwt(c2Adf,'db4'); 
[c4Adf,c4Ddf]=dwt(c3Adf,'db4'); 
coed1df=mean(c1Ddf);      % calculating mean value of coefficient d1 for differential 
current 
coed2df=mean(c2Ddf); 
coed3df=mean(c3Ddf); 
coed4df=mean(c4Ddf); 
coea4df=mean(c4Adf); 

Figure 24: Matlab code to calculate mean DWT coefficient values 

Creation of Features Structure 

 Now that all necessary features of the data have been calculated and extracted. It 

is time to create a structure called “Features” to store all the calculation values and 

results in this structure.  
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 Later when the feature input data is input into the neural network based-

classifier, the data stored in this structure can be easily input into the classifier by calling 

the field names within the structure. 

 In Figure 25, the structure created to store the features is shown. In Figure 26, 

different fields within one structure are shown. It has different field names such as max, 

min, mean, STD…etc. Each of the field is filled with a number from a single data file. 

The way this structure is built will allow convenient calls of the field data to be input 

into the neural network later.  

 

Figure 25: Creation of a structure for features 

max 

min 

Std… 

A total of 
28 
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Data file #1

A total of 80 data 
files 

Data file #2
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Figure 26: Structure created for features 

Normalization  

 In general, features are normalized before being input into the neural network. 

Feature data points are normalized to be a value between 0 and 1. This data is 

normalized before inputting it into the neural network model.  

 In order to achieve a value between 0 and 1, the normalized value is calculated 

with the following equation [18]: 
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−

=  

Choice of Neural Network 

 A probabilistic neural network is good for classification problems [13]. When an 

input is feed into the classifier, the first layer will be able to compute the distance 

between the input vector and the training input vectors, and produce a vector whose 

elements show the closeness between the input data points and the training vector points 

[47]. The second layer will sum up “contributions for each class of inputs to produce as 

its net output a vector of probabilities [47].” As the last step, a transfer function called 

“compete [47]” will pick the maximum of the probabilities on the second layer, and it 

will also provide a one for that class and a zero for the other classes [47]. 

 Figure 27 shows the two different layers of the neural network, and it also shows 

how the input to the neural network is processed, and how output classes are formed on 

the competitive layer. The probabilistic neural network used in this research belongs to a 

type of neural network called Radial Basis Networks [13][47].  
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Figure 27 [47]: How probabilistic Neural Network works  

Supervised Neural Network Classifier 

A neural network is ideal for fault identification because it has the ability to 

recognize the hidden and complex relationships between the fault status and symptoms 

and predict fault based on future monitoring signals from previous knowledge [32]-[34]. 

An improved Back-Propagation Neural Network Classifier is implemented for 

classification of the recorded field and simulation data. The given data set is divided into 

two subsets: training set and test set [40]. The training data set is used to train the neural 

network to estimate the structure and assess the performance of various candidate model 

structures and thereby select a good model structure that will provide a minimum output 
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error of that network for the testing subset [41]. The testing data set is used to evaluate 

the performance of the network and measure the generalization performance of the well-

trained network.  

Four Different Studies: an Overview 

 In this thesis, four different types of studies have been conducted to design a 

Neural Network-based classifier with different input and output scenarios. With different 

input and output and their different combinations of the classifier, the performance of the 

classifier can vary dramatically. Therefore, it is important to implement and study the 

classifier performance under each study. The following is the list of the four different 

studies: 

Study 1: Neural Network-Based Classifier with Primary Current and Difference 

Current as Input Signals and Two Output Classes 

Study 2: Neural Network-Based Classifier with Primary Current and Differential 

Current as Input Signals and Two Output Classes 

Study 3: Neural Network-Based Classifier with Primary Current and Difference 

Current as Input Signals and Four Output Classes 
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Study 4: Neural Network-Based Classifier with Primary Current and Differential 

Current as Input Signals and Four Output Classes 

As stated in the study descriptions, study 1 and 2 will have only two output 

classes:  

10% arcing incipient behavior class (low severity incipient fault)  

50% arcing incipient behavior class (high severity incipient fault) 

The difference between study 1 and study 2 is that study one uses primary and 

difference currents as inputs while study two uses primary and differential currents as 

inputs. 

Similarly, study 3 and study 4 have the common point that both of them have 

four output classes:  

Normal Operation 

Short Circuit Faults 

Incipient Fault with 10% Arcing Severity 

Incipient Fault with 50% Arcing Severity 

However, study 3 uses primary and difference currents as inputs, and study 4 

uses primary and differential currents as inputs. The different input and output selection 
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combinations will change the performance of the classifier, and therefore, each study is 

conducted. The descriptions and distinctions between four studies are summarized in the 

table below: 

Table 1: Summary of Four Types of Studies Using NN-based Classifier  

  Classifier Inputs Decision/Classification Outputs 
Primary Current 10% Arcing Incipient Behavior (Low Severity) 

Study 1 Difference Current 50% Arcing Incipient Behavior (High Severity) 
Primary Current 10% Arcing Incipient Behavior (Low Severity) 

Study 2 Differential Current 50% Arcing Incipient Behavior (High Severity) 
Normal Operation 

Primary Current Short Circuit Faults 
10% Arcing Incipient Behavior (Low Severity) 

Study 3 Difference Current 50% Arcing Incipient Behavior (High Severity) 
Normal Operation 

Primary Current Short Circuit Faults 
10% Arcing Incipient Behavior (Low Severity) 

Study 4 Differential Current 50% Arcing Incipient Behavior (High Severity) 

Classifier Training and Testing Procedure 

 Generally, the training and testing procedures for the Neural Network-based 

classifier are similar. Therefore, this thesis will go over the training process and testing 

part of the classifier design and implementations in details. It is a redundancy to go 

through the same process with the other three studies, therefore, only results and 

evaluations of other studies are provided.  
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Training Process and Theory of the Supervised Neural Network Classifier 

 Training of the Neural Network-base classifier is similar to teaching a child how 

to read. First of all, a matrix which is consisted of rows (features and attributes) and 

columns (individual data files to be classified) is obtained prior to training. In the 

training process, a classification number is assigned to each individual data file from 

their known and existing labels. This is similar to showing a child what a new word 

looks like so that he or she can remember and recognize the same word next time. In 

another word, Neural Network learns how a class of data looks like so that it will 

recognize data in that class later when a new set of data is feed into the classifier.  

Study 1: Neural Network-Based Classifier with Primary Current and 

Difference Current as Input Signals and Two Output Classes 

 As mentioned earlier, only the training and testing process of the classifier is 

demonstrated in details for study 1, and only results and evaluations are provided for the 

other studies because they all have similar procedures and steps. The following steps and 

procedures are specific and applicable to study 1 only without special notes.  
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Labels and Labeling System of Data Files 

The naming system of the simulation data file clearly identifies the parameters 

used in the simulating and the behaviors of the transformer (health or faulty). For 

instance: 

 “INCIPIENT_P55_160_Rp1_10_pc_MEASURED_VALUES” means the fault 

was between turn 55 and turn 160. The resistance Rp used was 1 Ω, and the arcing 

severity was 10%.  

Similarly, “INCIPIENT_P55_160_Rp10_50_pc_MEASURED_VALUES”means 

the fault was between turn 55 and turn 160. However, the resistance value used in 

simulation was 10 Ω, and the arcing severity level was 50%, which indicates a pending 

fault.  

The naming and labeling system of the simulation data files significantly 

contribute to the usage of a supervised neural network-based classifier. Because the 

behaviors of the transformer were already clearly labeled with the name, training of the 

supervised neural network would allow neural network to learn patterns inside normal 

and faulty data. In addition, the testing data of the neural network classifier will obtain 
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classification results. These results can be compared with the labels to evaluate how 

accurate performance of the classifier. 

 Based on the label of the simulation data, two classes can be created as the 

decision output: low severity degree class, which is a collection of 10% arcing data files 

and a high severity degree class, which is a collection of 50% arcing data files. 20% of 

the total simulation data files was categorized as the training set and was used for 

training; therefore, 36 out of the total 182 files are for training purposes.   

 After the neural network classifier has been properly trained, the test-set data are 

input into the neural network classifier, which will classify the data into two output 

classes as shown in Figure 28: low severity degree class and high severity degree class, 

10% arching and 50% arching files, just as it was trained.  

 

Figure 28: Training of the neural network 

Neural Network 
Classifier 

Low Severity Degree 
(10% Arcing) 

High Severity Degree 
(50% Arcing) 
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Training of the Neural Network 

Figure 29 shows the Matlab code that was used to train the neural network and 

test the neural network with test data. Figure 30 helps to illustrate how this training 

process works. Each field of the Features structure contains all the information on that 

field from all data files. Each column in this features structure is input into a matrix, and 

the label of this column is created with another matrix Tc. If Tc equals one, it means the 

class that the data file belongs to is 10% class. If Tc equals two, it means the class that 

the data file belongs to is 50% arcing class.  

 

Figure 29: Matlab code for training and testing of neural network 
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Figure 140: Illustration of how training works 

Training Accuracy 

 The training accuracy is defined as: 
ofFilestotal

edctlyAssignfilesCorre
#

# , and this number 

has been calculated after the training process, which is 100%. It makes sense because the 

exact same data set is used to test the neural network based-classifier after it has been 

trained with the same data set.  

max 

min 

Std… 

A total of 
28 
features 

Data file (10% arching) 80 files 

A total of 146 
(80+66) data files 

Data file (50% arching) 66 files 

Tc=                   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11……2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ... 
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Testing and Performance Evaluation of the NN Classifier 

Generalization 

 The test set data was feed through the neural network based supervised classifier. 

Table 1 shows that the number of data files labeled with 10% arcing is 18 and the 

number of data files classified with 10% arcing is 25.  

 Table 5 also shows the number of data files labeled with 50% arcing is 18 and 

the number of data filed classified with 50% arcing is 11.  

The percentage of error is calculated with: 

%81%100*
36

29
=

Filestotalof
esssignedFilCorrectlyA  

 
Table 2: Evaluation of the Classifier Performance (Study 1) 
 
Number of Data Files Used for Training 146
Number of Total Data Files for Testing 36
Number of Data Files Labeled with 10% Arcing 18
Number of Data Files Labeled with 50% Arcing 18
Number of Data Files Classified with 10% Arcing 25
Number of Data Files Classified with 50% Arcing 11
Percentage of correctly assigned label 81%
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In Figure 38, the output classes (from Matlab code and simulations) are 

compared with the file labels to compute for the accuracy of the neural network 

classifier.  

Labels =   Columns 1 through 15  

             1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

             Columns 16 through 30  

             1     1     1     2     2     2     2     2     2     2     2     2     2     2     2 

             Columns 31 through 36  

              2     2     2     2     2     2 

Yc2 =   Columns 1 through 15  

             1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

             Columns 16 through 30  

             1     1     1     1     2     2     2     2     2     1     2     1     1     2     1 

             Columns 31 through 36  

              1     2     2     1     2     2 

Figure 151: Output Classes for signal selections of primary and difference currents 
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Study 2: Neural Network-Based Classifier with Primary Current and 

Differential Current as Input Signals and Two Output Classes 

 In study 2, the differential current is used instead of difference current together 

with primary current as inputs. The decision output classifications are still 2 classes. 

Figure 39 below shows the Matlab output classes. 

Labels =   Columns 1 through 15  

             1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

             Columns 16 through 30  

             1     1     1     2     2     2     2     2     2     2     2     2     2     2     2 

             Columns 31 through 36  

              2     2     2     2     2     2 

Yc2 =   Columns 1 through 15  
 
      1     1     1     1     1     1     1     1     1     1     1     1     1     1     2 
 

 Columns 16 through 30  
 
      1     2     1     1     2     1     1     1     1     1     1     1     1     1     1 
 
   Columns 31 through 36  
 
      1     2     1     1     1     1 
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Figure 162: Output class for signal selections of primary and differential current 

 A summary of the results of study 2 is shown in table 2, and the percentage error 

is calculated for the classifier performance.  

Table 3: Evaluation of the Classifier Performance (Study 2) 
 
Number of Data Files Used for Training 146
Number of Total Data Files for Testing 36
Number of Data Files Labeled with 10% Arcing 18
Number of Data Files Labeled with 50% Arcing 18
Number of Data Files Classified with 10% Arcing 32
Number of Data Files Classified with 50% Arcing 4
Percentage of correctly assigned label 50%

 

 Again, the percentage of error is calculated with the previous equation: 

%50
36
18_%100*

#
#

=== errorpercentage
ofFilestotal

esssignedFilCorrectlyA  

Study 3: Neural Network-Based Classifier with Primary Current and 

Difference Current as Input Signals and Four Output Classes 

 In study 3, the decision output classes of the Neural Network-based classifier 

have been increased from 2 classes to 4 classes to examine the accuracy and flexibility 

of the overall performance of the classifier. Figure 31 shows this process.  
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Figure 33: Study 3 Inputs and Outputs 

 Figure 32 below shows the Matlab output classes of the NN based-classifier. 

There are a total of 72 individual data files for testing purposes. Among them, 16 files 

are labeled with normal class, 20 files are for short circuit fault class, 18 files are for 

10% arcing incipient fault class, and the rest of 18 files are of 50% arcing incipient fault 

class. The classifications are summarized in the plot below. 

 

Figure 34: Classes for Study 3 and 4 

 

Neural  
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Fault Class 

Incipient Fault 
Class 
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(Low Severity) 
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Primary 
Current & 
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Current 
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data (28 
features

Normal 
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10% arcing 
50% arcing 

Decision 
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Figure 33 shows the output classes from Matlab NN classifier simulations. As 

shown in the labels, the first 18 files are class one, so the first 18 numbers are all ones. 

The second 18 files are class two, they are labeled with twos. The next 16 files are of 

class three, they have threes. Finally, the last group of data files are class 4, and they are 

labeled with fours.  

 
Labels =   
 

   Columns 1 through 15  
 
         1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 
 
       Columns 16 through 30  
 
        1     1     1     2     2     2     2     2     2     2     2     2     2     2     2 
 
       Columns 31 through 45  
 
          2     2     2     2     2     2     3     3     3     3     3     3     3     3     3 
 
       Columns 46 through 60  
 
           3     3     3     3     3     3     3     4     4     4     4     4     4     4     4 
 
      Columns 61 through 72  
 
               4     4     4     4     4     4     4     4     4     4     4     4 
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Yc2 =   

 
Columns 1 through 15  

 
      1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 
 
   Columns 16 through 30  
 
      1     1     1     1     2     2     2     2     2     1     2     1     1     2     1 
 
   Columns 31 through 45  
 
      1     2     2     1     2     2     3     3     3     3     3     3     3     3     3 
 
   Columns 46 through 60  
 
      3     3     3     3     3     3     3     4     1     1     1     1     1     1     1 
 
   Columns 61 through 72  
 

      1     4     4     1     4     1     1     4     1     1     1     1 

Figure 35: Study 3 Class Outputs 

Comparing the labels with the output classes, the performance of the Neural 

Network-based Classifier is once more evaluated, which is summarized in table 4.  
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Table 4: Evaluation of the Classifier Performance (Study 3) 
 
Number of Data Files Used for Training 385
Number of Total Data Files for Testing 72
Number of Data Files Labeled with 10% Arcing 18
Number of Data Files Labeled with 50% Arcing 18
Number of Data Files Labeled with Normal 16
Number of Data Files Labeled with Short Circuit 20
Number of Data Files Classified with 10% Arcing 40
Number of Data Files Classified with 50% Arcing 11
Number of Data Files Classified with Normal 16
Number of Data Files Classified with Short Circuit 5
Total Number of Correctly Labeled Files 50
Percentage of correctly assigned label 69%

 

Again, the percentage of error is calculated with the previous equation: 

%69
72
50_%100*

#
#

=== errorpercentage
ofFilestotal

esssignedFilCorrectlyA  

Problems can be noticed in this set of results. Most of the class 4 data files are 

misclassified as class 1. However, all 16 class 3 files (normal operation class) have been 

correctly and successfully identified. It also shows that the Neural Network-Based 

Classifier is having trouble distinguishing between class 1 (10% arcing incipient fault) 

and class 4 (short circuit faults) data files. However, it is very successful when it 

classified class 3 with a perfect accuracy.    
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Study 4: Neural Network-Based Classifier with Primary Current and 

Differential Current as Input Signals and Four Output Classes 

Similar to the other three studies that have been conducted previously, study 4 

looks at the classifier with four different classification outputs. However, the inputs used 

are primary current and differential current. From discussions presented in the 

differential current section of the thesis, it was expected that the differential current will 

help with the distinction between short circuit faults and normal operation data files.  

Figure 34 below shows the Matlab NN-based Classifier output classes. The 

labels of the files are exactly the same as those used in study 3.  

Labels =   
 

   Columns 1 through 15  
 
         1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 
 
       Columns 16 through 30  
 
        1     1     1     2     2     2     2     2     2     2     2     2     2     2     2 
 
       Columns 31 through 45  
 
          2     2     2     2     2     2     3     3     3     3     3     3     3     3     3 
 
       Columns 46 through 60  
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           3     3     3     3     3     3     3     4     4     4     4     4     4     4     4 
 
      Columns 61 through 72  
 
               4     4     4     4     4     4     4     4     4     4     4     4 
 
Yc2 = 
 
  Columns 1 through 15  
 
     1     1     1     1     1     1     1     1     1     1     1     1     1     1     2 
 
  Columns 16 through 30  
 
     1     2     1     1     2     1     1     1     1     1     1     1     1     1     1 
 
  Columns 31 through 45  
 
     1     2     1     1     1     1     1     1     1     1     1     1     1     1     1 
 
  Columns 46 through 60  
 
     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 
 
  Columns 61 through 72  
 

     1     4     4     4     4     1     1     4     1     1     1     1 

Figure 36: Class Outputs of Study 4 (with differential current) 
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Results of the performance evaluation of study 4 have been summarized in table 

5 below:  

Table 5 Evaluation of the Classifier Performance (Study 4) 

Number of Data Files Used for Training 385

Number of Total Data Files for Testing 72
Number of Data Files Labeled with 10% Arcing 18
Number of Data Files Labeled with 50% Arcing 18
Number of Data Files Labeled with Normal 16
Number of Data Files Labeled with Short Circuit 20
Number of Data Files Classified with 10% Arcing 63
Number of Data Files Classified with 50% Arcing 4
Number of Data Files Classified with Normal 0
Number of Data Files Classified with Short Circuit 5
Total Number of Correctly Labeled Files 23
Percentage of correctly assigned label 32%

 

Again, the percentage of error is calculated with the previous equation: 

%32
72
23_%100*

#
#

=== errorpercentage
ofFilestotal

esssignedFilCorrectlyA  

The performance of this study is poor considering the accuracy of the classifier is 

in the thirties. The classifier could not separate class 1 (10% arcing) and class 3 (normal 

operation) data files. In addition, the distinction between class 1 and class 2 (50% 

arcing) has not been well made. The different degree of incipient fault severity is hard to 

detect with settings and parameters of the NN-based classifier fixed as in study 4.  
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Comparison of Study 1, Study 2, Study 3, and Study 4 Results 

 After careful review and comparison of results from these four different studies 

performed with Neural Network-Based Classifier, many useful conclusions can be 

drawn. Table 6 below summarizes the accuracy performance of the four studies. 

Table 6: Comparison of Results from 4 Different Studies 

Study Type and Description  Accuracy  

Study 1: primary and difference current with 2 output classes 81% 
Study 2: primary and differential current with 2 output classes 50% 
Study 3: primary and difference current with 4 output classes 69% 
Study 4: primary and differential current with 4 output classes 32% 

 

 First of all, it can be observed that the difference current as input to the Neural 

Network classifier works better than having a differential current. Secondly, it can be 

seen that the Neural Network classified designed and implemented in this thesis supports 

the argument that it works better with less classes, in this case, the accuracy of two 

output classes is much higher than having a four-class output. In addition, it is proved 

that the differential current does not help much with the distinction between short circuit 

faults and 10% arcing incipient fault classes. However, the classifier implemented here 

works well with normal and incipient fault classes. For instance, all 16 class 3 (normal 
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operation) data files were correctly and successfully identified from the rest of the data. 
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SUMMARY AND CONCLUSION 

Summary 

In summary, because raw data would create complex and inaccurate neural 

network architectures, feature data was extracted from the raw signals and then feed into 

the neural network. Because the feature data is meaningful and carries more specific 

information, the number of neurons in the middle layers will be reduced and only 

simpler network architecture is needed. As shown in table 6, as part of the time domain 

analysis, spike analysis and RMS analysis have been performed on the primary current 

and differential current, which is the difference between the primary current and the 

secondary current. Also, differential current has been obtained to help distinguish short 

circuit fault class from other classes. However, performance evaluation of the classifier 

did not support this argument and did not show an increase in accuracy of classification 

when differential current has been used. As part of the time-frequency analysis, the 

DWT analysis is also performed on the primary current and differential current to help 

the discrimination process of the predictive and detective maintenance method.  
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Table 7: Analysis Methods and Signals of Study 
 

DOMAIN 

ANALYSIS 

METHOD SIGNALS 

Primary Current 

Spike Analysis Differential/Difference current 

Primary Current 

Time Domain Analysis RMS Analysis Differential/Difference current 

Primary Current 

Time-Frequency Analysis DWT Analysis Differential/Difference current 

 

The DWT analysis is proven to be an efficient feature extractor for the neural 

network to generate feature data and provide better classification results. Also, the 

difference current is calculated by subtracting the primary current by the secondary 

current. Similarly, the differential current has been proven to carry a significant portion 

of the signal information and benefit the formations of feature clusters. The DWT plots 

of the primary and differential current have shown that various types of faults can be 

distinguished from each other using DWT on these signals.  

Finally, the neural network classifier is trained with data files in the training set 

of the data. Once the Probabilistic Neural Network Classifier has been properly trained, 

the testing data set can be input into the neural network classifier to classify the data into 
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clusters. An evaluation of the performance of the Neural Network classifier was also 

conducted after running the testing data set.  

Four different studies have been done to examine the performance of the NN 

classifier under different combinations of input singles and output decision classes. The 

results from the four studies show that the differential current does not help with 

classification of short circuit fault class as predicted. However, the classifications of 

incipient fault class and normal operation class have been successful. In addition, the 2-

class simulation results show much higher accuracy of the classifier than the 4-class 

simulations do. 
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Conclusion 

In conclusion, a Neural Network-based classifier has been successfully designed 

and implemented in this research work. Different inputs and output decision classes have 

been tried under four different studies to provide performance evaluation of the 

implemented classifier. Spike analysis, RMS analysis, and discrete wavelet transform 

were proven to be efficient feature extractors of the neural network-based supervised 

classifier. The primary current and differential (or difference) current are the focus of the 

research because they carry important information of the signals and provide better 

feature cluster formations. The Probabilistic Network Classifier has been successfully 

trained with training data, and the performance evaluation of the classifier from the test 

data shows that the accuracy of the neural network classification method is acceptable.  

 
 
 
 
 
 
 

 



 

 

81

REFERENCES 

[1] Federation of American Scientists, CBU-94 “Blackout Bomb” BLU-114/B “Soft-

Bomb,” May 07, 1999. Online. Internet. FAS. January 7, 2006. 

<http://www.fas.org/man/dod-101/sys/dumb/blu-114.htm>. 

[2] Nuclear Energy Institute, Nuclear Energy Vital to the New Economy, April 2006. 

Online. Internet. Nuclear Energy Institute. January 8, 2006. < 

http://www.nei.org/index.asp?catnum=3&catid=694> 

[3] C. Bengtsson, “Status and trends in transformer monitoring”, in IEEE 1995 

Powertech Conference, Stockhlom, Sweden, Aug. 1995, pp. 1379-1384. 

[4] R. Bartnikas, Engineering Dielectrics Volume II B-Electrical Properties of Solid 

Insulating Materials: Measurement Techniques, Special Technical Publi9cation 926, 

American Society for Testing and Materials, Philadelphia, PA, 1987.  

[5] H. Wang, “Models for Short Circuit and Incipient Internal Faults in Single-Phase 

Distribution Transformers”, Ph.D. Thesis, Dept. of Electrical Engineering, Texas 

A&M University, College Station, U.S.A., 2001.  



 

 

82

[6] K. L. Butler-Purry, M. Bagraynick, "Identifying Transformer Incipient Events for 

Maintaining Distribution System Reliability," Proceedings of 36th Hawaii 

International Conference on System Sciences, Hawaii, Jan., 2003, pp. 648-656. 

[7] P.M. Anderson, Power System Protection, New York: IEEE Press, 1999. 

[8]  C.E. Lin, J.M. Ling, and C.L. Huang, “Expert system for transformer fault diagnosis 

using dissolved gas analysis”, IEEE Trans. On Power Delivery, Vol. 8, No. 1, Jan. 

1993, pp. 231-238.  

[9] A. Noro, K. Nakamura, T. Watanabe and T. Morita, “Acoustic-based real-time 

partial discharge location in model transformer”, in Proceedings ICSPAT’94, pp. 

1077-1082. 

[10] MATLAB Wavelet Toolbox User’s Guide, version 2, The Mathworks Inc, 2000. 

[11] S. Mallat, A Wavelet Tour of Signal Processing, 2nd Ed, Academic Press, 1999. 

[12] G. Strang, T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, 

Revised Edition 1997. 

[13] C. Looney, Pattern Recognition Using Neural Network, Oxford: Oxford University 

Press, 1997. 



 

 

83

[14] M. Mir, “Underground Distribution Cable Incipient Fault Diagnosis System”, Ph.D. 

Thesis, Dept. of Electrical Engineering, Texas A&M University, College Station, 

U.S.A., 1999. 

[15] H. Wang, K. Butler, "Detection of Transformer Winding Faults Using Wavelet 

Analysis and Neural Network," Proceedings of the 1999 Intelligent Systems 

Application to Power Systems, BRAZIL, April 1999. 

[16] K. L. Butler-Purry, M. Bagriyanik, "Characterization of Transients in Transformers 

Using Discrete Wavelet Transforms," Power Systems, IEEE Transactions on 

Power Systems, volume: 18 issue: 2, May 2003, pp. 648-656. 

[17] G. Garcia, K. Butler, and N. Stubbs, "Relative Performance of Clustering Based 

Neural Network and Statistical Pattern Recognition for Nondestructive Damage 

Detection," Smart Materials and Structures Journal, 6 (1997), pp. 415-424. 

[18] H. Wang, K. L. Butler, "Neural Networking Modeling of Distribution Transformers 

with Internal Short Circuit Winding Faults," Proceedings of International 

Conference on Power Industry Computer Applications (PICA), May 2001, 

Australia,pp. 122-127. 



 

 

84

[19] H. Wang, K. L. Butler, "Modeling Transformer Internal Short Circuit Faults using 

Neural Network Techniques," Proceedings of North American Power Symposium, 

Oct. 15-16, 2001, College Station, TX, pp. 430-435. 

[20] K L. Butler, J. Momoh, L. Dias, and D. Sobajic, "An Approach to Power 

Distribution Fault Diagnosis using Neural Net based Supervised Clustering 

Methodology," International Journal of Engineering Intelligent Systems, Vol. 5, 

no. 1, March 1997, pp. 51-57. 

[21] Mirrasoul J. Mousavi, K. L. Butler-Purry, "Transformer Internal Incipient Fault 

Simulations," Proceedings of 2003 North American Power Symposium, Rolla, 

MO, October 2003, pp. 195-203. 

[22] J.B. Gibbs, Transformer Principles and Practice, 2nd ed., New York: McGraw-Hill, 

1950.  

[23] Ansoft, Maxwell Software, version 3.0. 

[24] S.A. Stigant, A.C. Franklin, The J&P Transformer Book: A Practical Technology of 

the Power Transformer, 11th ed., Butterworths, Boston, MA, 1983.  

[25] H.L. Willis, G. V. Welch, and R.R. Schrieber, Aging Power Delivery 

Infrastructures. New York: Marcel Dekker, 2001.  



 

 

85

[26] H. Wang and K.L. Butler, “Modeling transformers with internal incipient faults,” 

IEEE Trans. Power Delivery, vol. 17, pp.500-509, Apr. 2002. 

[27] M.G. Morante and D.W. Nicoletti, “A wavelet-based differential transformer 

protection,” IEEE Trans. Power Delivery, vol. 14, pp. 1351-1358, Oct. 1999. 

[28] C.H. Kim and R. Aggarwal, “Wavelet transforms in power systems—part 1, general 

introduction to the wavelet transforms,” Inst. Elect. Eng. Power Eng.J., pp. 81-87, 

Apr. 2000. 

[29] C.H. Kim and R. Aggarwal, “Wavelet transforms in power systems—part 2, 

examples of application to actual power system transients,” Inst. Elect. Eng. Power 

Eng. J.,pp. 193-202, Aug. 2001.  

[30] H.Wang and K.L. Butler, “Finite element analysis of internal winding faults in 

distribution transformers,” IEEE Trans. Power Delivery, vol. 16, pp. 422-427, July 

2001.  

[31] P. Palmer-Buckle, A Methodology for Experimentally Verifying Simulation Models 

for Distribution Transformer Internal Faults, MS Thesis, Texas A&M University, 

May 1999.  



 

 

86

[32] Laurene Faulsett, Fundamentals of Neural Networks—architectures, algorithms, 

and applications, Prentice-Hall, Inc. 1994. 

[33] Yann-Chang Huang, Hong-Tzer Yang, Ching-Lien Huang, “Design of robust 

transformer fault diagnosis system using evolutionary fuzzy logic”, Circuits and 

Systems, 1996. ISCAS ’96., Connecting the world., 1996 IEEE International 

Symposium on Circuits and Systems, vol. 1, pp. 613-616. 

[34] Y.M. Tu, J.M. Huang, N.Gao, Z.S. Zhu, Z. Yan, “Transformer insulation diagnosis 

based on improved ANN analysis,” Proceeding of the 5h International Conference 

on Properties and Applications of Dielectric Materials, May 25-30 1997, Seoul, 

Korea, pp. 263-266.  

[35] Y. Zhang, X. Ding, Y. Liu, P.J. Griffin, “An artificial neural network approach to 

transformer fault diagnosis,” IEEE Trans. On Power Delivery, vol. 11, no. 4, 

October 1996, pp. 1836-1841. 

[36] M. Nagpal, M.S. Sachdev, Kao Ning, L.M. Wedephol, “Using a neural network for 

transformer protection”, Proceedings 1995 International Conference on Energy 

Management and Power Delivery EMPD ’95, pp. 674-679. 



 

 

87

[37] Thomas Baumann, Alain J. Germond, Daniel Tschudi,” Impulse test fault diagnosis 

on power transformer using Kohonen’s self-organization neural network”, 

Proceedings o f the 1992 INNS Summer Workshop-Neural Network Computing for 

the Electric Power Industry, pp. 199-205.  

[38] S. Martin, I. Kamwa, R.J. Marccau, “Applications of artificial neural networks to 

the identification of dynamical systems”, Proceedings of 1995 Canadian 

Conference on Electrical and Computer Engineering, pp. 606-612 

[39] A.W. Galli, G.T. Heydt, P.F. Ribeiro, “Exploring the power of wavelet analysis”, 

IEEE Computer Applications in Power, October 1996, pp. 37-41. 

[40] Simon Haykin, “Neural networks—a comprehensive foundation”, Macmillian 

College Publishing Company, 1994.  

[41] “Neural Networks TOOLBOX User’s Guide”, the Math Work Inc., 1996. 

[42] B.B. Hubbard, “The world according to wavelets”, A K Peters, Wellesley, 

Massachusetts, 1996. 

[43] Charles K. Chui, An introduction to wavelets, Academic Press, Inc., 1992 

[44] P. Bastard, P. Bertran, M. Meunier, “A transformer model for winding fault 

studies”, IEEE Trans. on Power Delivery, vol. 9, no. 2, April 1994, pp. 690-699. 



 

 

88

[45] D.R. Stebbins, “Dissolved gas analysis of transformer oil”, Panel Session, 1997 

Winter Meeting, Feb. 1997, PES/IEEE, New York , pp. 1-7.  

[46] MATLAB User’s Guide, version 7, The Mathworks Inc, 2002. 

[47] MATLAB Neural Network Toolbox User’s Guide, version 3, The Mathworks Inc, 

1998. 

[48] S.R. Kolla, D.A. Gedeon, “Microprocessor-based protection scheme for power 

transformers”, in Proceedings of Electrical Electronics Insulation Conference and 

Electrical Manufacturing & Coil Winding Conference, Piscataway, NJ, Sept. 1995, 

pp. 195-198. 

[49] A.R. Bergen, V. Vittal, Power Systems Analysis, Prentice Hall, Inc., 2000, 2nd 

edition.  

 
 
 
 
 

 
 



 

 

89

 


