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ABSTRACT 

 

Detection of Physiologically Relevant Alcohol Concentrations Using 

Raman Spectroscopy (April 2006) 

 
Joshua L. McKay 

Department of Biomedical Engineering 
Texas A&M University 

 
Fellows Advisor: Dr. Gerard Coté 

Department of Biomedical Engineering 
 
 

This is the first step in a series of studies to test the feasibility of using Raman 

Spectroscopy (RS) to non-invasively detect physiologically relevant blood alcohol 

concentrations.  Blood tests, urine tests, and the breathalyzer are currently the most 

commonly used techniques to measure blood alcohol content.  Blood tests are invasive 

and require wet labs.  Although urine tests are non-invasive, they also require wet labs.  

The breathalyzer is non-invasive and does not require a lab, but its accuracy has come 

into question.  This method measures alcohol content in the alveolar air, which is not 

always a reliable predictor of alcohol content in the blood.  A Raman-based technique 

could alleviate these problems and eventually replace or complement the breathalyzer.  
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To explore this option, samples of ethanol-in-water from 0-1.0% (wt/vol) were prepared, 

and a time study was performed to test both the ability of RS to detect alcohol in 

relatively short amounts of time and to find an optimum scanning time.  The spectra 

were used to create a partial least squares (PLS) model, which uses differences in the 

spectra to construct a model to describe the relationship between certain peaks and 

alcohol concentration.  The model was used to predict the concentration of several 

known samples.  The accuracy of the model�s prediction was compared for each stage of 

the time study.  This study then focused on measuring ethanol concentrations in plasma, 

a much more complicated media than water.   Again, a model was constructed, used to 

predict alcohol concentrations, and tested for accuracy. This study showed that Raman 

spectroscopy has the ability to detect alcohol in the physiological range in rather 

complex environments and in limited time windows, but repeatability is the main 

question.  Spectra have a tendency to be inconsistent at such low alcohol concentrations, 

which results in a weak model and less accurate predictions. 
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INTRODUCTION1 

 Thousands of people are killed each year in the United States due to alcohol 

related traffic accidents.  To combat this problem, law enforcement agencies impose 

harsh penalties and high fines on people who are convicted of driving drunk.  The 

techniques that are currently used for testing a driver�s blood alcohol content (BAC) are 

not completely adequate or ideal though.  Because of this, some drivers are not being 

punished for driving while intoxicated.  The purpose of this project is to try and 

overcome the drawbacks of the techniques that are currently used by developing a 

Raman Spectroscopy (RS) based technique to measure BAC directly and non-invasively.  

A RS-based technique could be used in field sobriety tests to help combat drunk driving 

and decrease fatalities due to alcohol-related traffic accidents.  This study, however, 

seeks to determine if RS can detect alcohol at physiological levels in limited time 

windows and then in rather complicated media such as plasma.   

It has been shown in previous studies that RS can be used to detect various 

biological compounds, including ethanol.  The majority of these studies are done at 

much higher concentrations than what are found in physiological systems, however.  

                                                
1 This thesis follows the style and format of Journal of Biomedical Optics. 
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Further studies to test the ability of RS to detect ethanol at physiological concentrations 

were needed.  These necessary experiments were performed in this study and showed 

that while RS is capable of detecting ethanol at physiological concentrations in both 

water and plasma, repeatability is a concern.  The low concentrations and short 

integration times increase the variability between experiments.  The ability of RS to 

consistently detect ethanol at such low concentrations in water and plasma was not 

apparent from this study and must be further investigated before any additional 

experiments should be performed. 
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PROBLEM 

BACKGROUND INFORMATION 

Current Techniques for Measuring Blood Alcohol 

 The Fatality Analysis Reporting System maintained by the National Traffic 

Highway Safety Administration reveals that there are approximately 17,000 people 

killed each year in the United States in alcohol related traffic accidents.  This total makes 

up approximately 40% of all traffic fatalities that occur in the U.S. each year.1  In order 

to combat this problem, law enforcement officials impose tough penalties on those that 

are convicted of driving drunk.  These penalties include jail time, fines, and suspension 

of license.  In the U.S., the legal blood alcohol limit for drivers is 0.08% wt/vol (0.08% 

of the weight of the blood consists of alcohol).2  The law enforcement officials require a 

device that can quickly and accurately measure a driver�s blood alcohol content (BAC) 

to enforce these laws.   

The three most popular techniques to test BAC are blood tests, urine tests, and 

breathalyzers.  A blood test is a highly accurate technique for measuring BAC, but is 

invasive and requires a wet lab with skilled technicians.  Although they are non-invasive, 
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urine tests also require a wet lab with skilled technicians.  The breathalyzer is currently 

the most popular technique for field BAC tests.  The accuracy of the breathalyzer has 

recently been brought into question, however.3  Small amounts of alcohol in the blood 

are passed into the alveoli in the lungs, where it is then expired.  The breathalyzer 

measures the alcohol content of the expired air and uses these levels to predict BAC.  

However, alcohol in the mouth and throat may mix with expired air, causing a person to 

test positive for higher BAC levels than are actually present.  Because it is only the 

alcohol in the blood that eventually reaches the brain and causes impaired judgment and 

motor function, there is a need for a test that measures BAC more directly, but is still 

portable and non-invasive. 

Raman Spectroscopy 

Raman Spectroscopy is based on the Raman scattering of light from a molecule 

of interest.  When light hits a molecule, a small percentage of the light is inelastically 

scattered.  This means that the energy content of the light scattered from the molecule is 

not identical to the energy of the light that initially hit the molecule.  The magnitude of 

this shift in the energy content is highly dependent on the type of bonds present in the 

molecule and corresponds to a peak in the spectrum.  The Raman spectrum of a 
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molecule is very unique, and thus, RS can be used as a detection technique.  The high 

selectiveness makes RS an ideal technique to detect various biological molecules, 

pharmaceuticals, and other drugs in solutions containing many other chemicals.  It has 

already been shown that various molecules and substances including albumin, glucose, 

urea, cholesterol, and triglyceride can be detected in solution by RS. 

 

LITERATURE REVIEW 

Detection Using Raman Spectroscopy 

 Many studies have attempted to use RS to detect various analytes in solution.  

There are several key factors that affect the results of these studies: the sampling time, 

the laser power, and the complexity of the solvent of the solution.  For RS to really 

become an effective detection technique in vivo, it must be able to accurately predict 

very small concentrations in extremely complex solvents with low laser power and 

relatively short sampling time. 

Initial Raman studies were aimed at proof of concept, and thus were performed 

in basic solutions of water, saline, etc.  Initially, RS was shown to accurately measure 

concentrations of glucose, lactate, ascorbate, pyruvate, and urea in water solutions at 
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higher than physiological concentrations.  To obtain these results, a 200-mW laser was 

used with a sampling time of 1 hour per sample.4  This paved the way for more complex 

studies to be performed.  For example, it was shown that glucose, lactic acid, and 

creatinine could also be accurately measured at much higher than physiological 

concentrations in saline solutions.  These results required a 200-mW laser with a 

sampling time of 100 seconds per sample.5 

With more promising results, the focus turned towards detection of analytes in 

whole blood.  Again, these results showed great potential.  Glucose concentrations were 

determined in whole blood at above-physiological levels.  This study was performed 

with a 150-mW laser and a sampling time of 5 minutes per sample.6  Whole blood adds 

many more complications due to the red blood cells.  For example, glucose is lost at a 

rate of about 6% per hour at room temperature.6  This makes detection and prediction of 

concentrations a two-step process: the actual measurements and then the correction due 

to component loss.  The whole blood studies have been repeated many times and 

expanded to include physiological concentrations of glucose, cholesterol, urea, albumin, 

and triglyceride with a 250-mW laser and 60 second sampling time.7 
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Detection of Alcohol Using Raman Spectroscopy 

 Using RS to characterize alcohol in solution has not been studied in as much 

depth as some other compounds, but initial studies have shown positive results.  Higher 

than physiological concentrations of ethanol could be detected in deionized water using 

a 300-mW laser and a sampling time of 1-5 minutes per sample.8  Additionally, the 

concentration of ethanol in an oral liquid was determined using RS.  This study detected 

the ethanol content through an amber plastic bottle, which is more difficult to detect 

through than a clear cuvette or vial.9 
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METHODS 

All Raman spectra were collected using a Raman Systems R-3000 Raman 

Spectrometer (Ocean Optics Dunedin, FL) with a 785 nm high power laser delivering 

500-mW to the sample.  A significant amount of the laser power was lost within the 

spectrometer, so the actual measured power delivered to the sample was 320-mW.  

Although the goal of this project is to investigate whether the commercial Raman 

spectrometer can measure physiologically relevant blood alcohol concentrations, the 

initial experiments were performed with ethanol dissolved in spectroscopy-grade water.  

This is because blood is a very complex media and would cause many unnecessary 

complications in the early stages of the study. 

An initial time study was conducted to test the effect that the integration time had 

on the system�s ability to detect ethanol.  A 1.0% (wt/vol) stock solution of pure ethanol 

(Sigma St. Louis, MO) in spectroscopy-grade water (Sigma St. Louis, MO) was 

prepared.  A predetermined amount of the solution was placed into a glass vial and 

diluted to 3 ml using spectroscopy-grade water.  Each sample was prepared separately, 

using the same dilution technique and allowed to sit for at least 30 minutes before being 

placed into the spectrometer. 
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When collecting the Raman spectrum of each sample, the entire vial was placed 

into the sample holder and the laser was then placed against the vial with the liquid 

spacer in place.  The order of the samples was randomized and non-consecutive 

triplicates of each sample were taken.  The integration time, or time required to obtain a 

Raman spectrum for each sample, was varied for each complete set of triplicates.  The 

integration times selected were 5, 10, 15, 30, 60, and 120 seconds. 

All data processing was performed using MATLAB 7.1 (Mathworks, Inc) and 

the MATLAB PLS Toolbox 3.0 (Eigenvector Research Incorporated).  The MATLAB 

code is included in the Appendix.  The data for each complete set of triplicates was 

organized into two groups: calibration and prediction.  Table 1 shows the concentrations 

of the samples selected for each group.   

 
 

Table 1. Selected Concentrations for Calibration and Prediction Data Groups  
(all data collected in triplicates) 

 Calibration Data Set Prediction Data Set 
 

Concentrations of 
Samples (% wt/vol) 

0  0.01  0.02  0.03  0.04  
0.05  0.06  0.07  0.08  0.09  
0.10  0.15  0.20  0.25  0.30  
0.35  0.40  0.45  0.50  0.55  
0.60  0.65  0.70  0.75  0.80  

0.85  0.90  0.95  1.0 

 
0.035  0.065  0.075  0.085  

0.17  0.41  0.73 
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The calibration data consisted of 29 triplicates (87 total spectra) and was used to 

construct the PLS model.  The prediction data consisted of 7 triplicates (21 total spectra) 

and was not included when building the PLS model.  Instead, this data was input into the 

model, and the model was used to predict the concentration of each prediction sample.  

Each triplicate point was averaged for the prediction and calibration data to account for 

variability between sets.  The data for each integration time was then compared and the 

integration time that yielded the model with the best predictive capability was selected. 

 The next part of this study focused on measuring ethanol in plasma, a simpler 

media than blood but more complex than water.  Bovine blood (Veterinary School, 

Texas A&M University) was placed in a centrifuge for 15 minutes at 3500 rpm to 

separate the red blood cells from the plasma.  After isolating the plasma, again a 1.0% 

(wt/vol) stock solution was prepared.  Samples of the same concentrations were made 

from the stock solution according to the previously mentioned procedure.  The data was 

collected using only the integration time selected from the previous time study.  The data 

analysis was conducted in the same manner. 
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RESULTS 

 The first step in the time study, the PLS model of the data collected with a 5-

second integration time, is shown in Figure 1.  Fig. 1 (a) shows the entire range for both 

the calibration and prediction group.  The calibration data was used to construct the PLS 

model.  This model was then used to interpret the prediction data and predict the 

concentration of each sample.  In theory, all the data points should lay on a line in a 1:1 

(predicted vs. actual) manner, meaning that what the model predicts for the sample�s 

concentration is the actual concentration of the sample.  Fig. 1 (a) shows that, while the 

model appears to have a strong correlation between predicted and actual concentrations 

for the calibration set, it cannot accurately predict the concentrations of the prediction 

data samples.  The accuracy of the model and the inaccuracy of prediction are most 

likely because the model is constructed using information that is not indicative of the 

presence of alcohol.  In other words, the model is using too much of each spectrum to 

model the presence of alcohol.  It is possible that the short integration time doesn�t 

supply enough characteristic information about the alcohol in solution to result in an 

accurate prediction by the model.  Fig. 1 (b) shows just the physiological range of the 

model.  The higher concentrations of alcohol are necessary to make the model accurate, 
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but are not the regions of interest for this study.  The physiological range clearly shows 

that the model�s predictions are not accurate.  In some cases, the model even predicts 

concentrations that are nearly 6 times greater than actually present. 

 

 
Figure 1. PLS Model of Ethanol-in-Water Data Collected with 5-second Integration 

Time. ((a) Full range of model, (b) Physiological range of model)  
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 Figure 2 shows the PLS model constructed with the 10-second data.  Again,   

Fig. 2 (a) shows the entire range for both the calibration and prediction group, while Fig. 

2 (b) shows just the physiological range.  Similar to the model of the 5-second data, this 

model appears to have a strong correlation between predicted and actual concentrations 

but cannot accurately predict the concentrations of the prediction data.  The predictions, 

however, are more accurate in this model.  The greatest prediction error in the 

physiological range appears to only be about 3 times the concentration that is actually 

present.  
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Figure 2. PLS Model of Ethanol-in-Water Data Collected with 10-second Integration 

Time ((a) Full range of model, (b) Physiological range of model) 

 

 Figure 3 shows the PLS model constructed with the 15-second data.  This model 

shows improved results when compared to the model of the 10-second data.  Although 

only minor improvements can be seen in the maximum error when predicting the 
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concentration of the prediction samples, it is clear that the predictions are more accurate 

overall.  In general, the prediction points lie closer to the line representing the model.   

 

 
Figure 3. PLS Model of Ethanol-in-Water Data Collected with 15-second Integration 

Time ((a) Full range of model, (b) Physiological range of model) 
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 Figure 4 shows the next stage in the time study, the PLS model of the data 

collected with a 30-second integration time.  Again, there doesn�t seem to be any major 

improvement in the maximum error when predicting the concentrations of the prediction 

samples, but the overall predictive abilities of the model are improved.  Two of the 

prediction points in the physiological range appear to be accurate, while the others are 

still located around the model line.  At this stage, it is still safe to assume that the model 

is using information that is not really an indicator of alcohol to predict concentrations 

because of the highly accurate model but inaccurate predictions.   
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Figure 4. PLS Model of Ethanol-in-Water Data Collected with 30-second Integration 

Time ((a) Full range of model, (b) Physiological range of model) 

 

 The PLS model constructed with the 60-second data is shown in Figure 5.  This 

model again shows improvements over the data collected with the shorter integration 

time before it.  There is only one prediction point that might be considered accurate, but 

as a whole it can be seen that the points are more consistent around the line.  The 
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prediction points are more correlated with each other.  One concentration is not grossly 

over-predicted while the next is under-predicted.  This shows a more representative 

model.  Also, the maximum error in prediction appears to have decreased.  The model 

itself is not as accurate as the previous data sets, especially in the physiological range.  

This is expected, however, because now it can be hypothesized that the model is using 

parts of each spectrum more selectively.  Mostly, the parts corresponding to just alcohol 

are being drawn upon to construct the model.  Because the prediction points and the 

model are showing similarities in error, the error is assumed to be more because of the 

difficulty in detecting such small amounts of alcohol in solution, rather than the lack of 

characteristic information in the spectra. 
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Figure 5. PLS Model of Ethanol-in-Water Data Collected with 60-second Integration 

Time ((a) Full range of model, (b) Physiological range of model) 

 

 Figure 6 shows the final step of the time study, the PLS model of the data 

collected with a 120-second integration time.  This model shows some error in 

calibration, similar to the model of the 60-second data.  This shows that again the model 

is more representative of the solution than any of the models of data collected with 
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shorter integration times.  This model is the most accurate at predicting the 

concentrations of the prediction samples.  Both the maximum error in prediction and the 

consistency of the predictions are the best out of all the other models. 

 

 

Figure 6. PLS Model of Ethanol-in-Water Data Collected with 120-second Integration 
Time ((a) Full range of model, (b) Physiological range of model) 
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 Table 2 shows the error of prediction for the model created using the data of each 

step in the time study.  This shows that the 120-second integration time should produce 

the best results for any future work with this spectrometer.  Although it might be 

beneficial to increase the integration time even higher than 120-seconds, the 

spectrometer used in this project cannot exceed this time.  Additionally, an integration 

time much longer than 120-seconds would not be realistic for a field sobriety test, the 

eventual goal of this project.  

 

Table 2. Error of Prediction for Time Study Data Sets 
Integration Time of Data Set Error 

5 Seconds 283% 
10 Seconds 135% 
15 Seconds 64.2% 
30 Seconds 46.9% 
60 Seconds 45.8% 
120 Seconds 27.5% 

 
 

Figure 7 shows the PLS model of ethanol-in-plasma data collected with a 120-

second integration time.  As expected, the model�s ability to predict concentrations does 

not appear to be as accurate as when ethanol is dissolved in water.  Plasma can contain 

proteins, salts, sugars, enzymes, lipids, and many other biological components, and thus, 
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is a much more complicated media than water.  The model is still comparable, however, 

with the ethanol-in-water model.  Two of the predicted points in the physiological range 

lie within the region of the model.  One predicted concentration is dramatically less than 

what is actually present, but again, any one of the additional components of plasma 

could have caused these problems.  Table 3 shows the error of prediction for the ethanol 

in water and the ethanol in plasma data sets taken with a 120 second integration time.  

This shows that the additional components of the plasma made it more difficult to 

predict concentrations. 

 

Table 3. Error of Prediction for Water and Plasma Data with 120 Second 
Integration Time 

Solution with Ethanol Error 
Water 27.5% 
Plasma 35.3% 
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Figure 7. PLS Model of Ethanol-in-Plasma Data Collected with 120-second Integration 
Time ((a) Full range of model, (b) Physiological range of model) 
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SUMMARY AND CONCLUSIONS 

SUMMARY OF STUDY 

 The time study that was performed with samples of ethanol dissolved in water 

showed somewhat expected results.  The ability of the model to accurately predict the 

concentrations of the prediction samples improved as the integration time, or time spent 

acquiring each spectrum, increased.  This resulted in the 120-second integration time 

data producing the best model at prediction. 

 It should also be noted that the data collected with integration times less than 

about 30-seconds appeared to create models that represented the calibration data very 

accurately but could not give accurate predictions.  This is assumed to happen because 

the model was using too much of each spectrum to characterize the alcohol in solution.  

The data collected with shorter integration times do not contain enough information to 

effectively characterize the alcohol in solution, so when used to construct a model, it is 

unable to accurately predict alcohol concentrations. 

 The plasma study showed promising results.  Despite the plasma being a much 

more complicated media than water, the model was still relatively accurate in predicting 

the concentrations of most of the prediction samples.  The predictive capabilities of the 
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model should not be expected to be equal to or exceed the accuracy of the ethanol-in-

water model because of the difference in media. 

CONCLUSIONS 

 The purpose of this study was to further the knowledge of using Raman 

Spectroscopy to detect alcohol, specifically at physiological concentrations, with the 

eventual goal of developing a non-invasive, Raman-based blood alcohol detector.  The 

primary concerns that were investigated were if such low levels of alcohol could be 

detected in water and plasma, a more complicated medium, with a limited time window. 

 The time study that was performed showed that ethanol could be measured at 

physiological levels in a limited time window.  Theoretically, the more time that is 

allowed to acquire each spectrum, the more accurate the detection will be.  With the 

eventual goal of developing a blood-alcohol detector, it must be kept in mind that 

allowing much more than a few minutes per spectrum is unreasonable.  A smaller time 

window must be used to make the findings more applicable towards the goal of the 

overall project.  This was accomplished when a model was shown to be able to 

reasonably predict alcohol concentrations with data that was collected with 120-second 

integration times.  Ideally, the integration time would be even further reduced, but this 
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study was aimed at testing the feasibility of the reduced time.  From here, more studies 

may be conducted to test the capabilities of measuring physiological alcohol 

concentrations in reduced time windows and more complicated media.  Time studies 

may be performed in other media such as urine, plasma, or whole blood. 

 The aim of trying to measure physiological levels of alcohol in a complicated 

media like plasma proved to be more troubling.  The many components contained in the 

plasma added interference and noise to the detection measurements.  This is believed to 

be one of the main reasons why the prediction of the model is not as accurate as the 

ethanol-in-water model.  The model, however, still showed some promising results.  

Further studies need to be performed to better characterize the ability of RS to measure 

alcohol in complicated media like plasma. 

 The main issue that consistently came up when using RS to measure 

physiological levels of alcohol was repeatability.  Because these are such low 

concentrations and a limited time window is in use, there is a high variability between 

data sets.  This also causes problems in model calibrations, especially in plasma.  As the 

plasma is allowed to sit, components of the plasma begin to fall out of solution.  This 

leads to changes in the spectra of the samples and reduces the model�s ability to predict 
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samples over time.  Although this study shows that RS is capable of measuring alcohol 

at physiological levels, it does not address the repeatability issues.  More studies that 

characterize the ability to measure these levels of alcohol consistently over time should 

be performed before additional experiments are explored. 
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clear; 

clc; 

clf; 

  

matrix1(:,1) = csvread('WAT1201_0026.csv',10,1);      

matrix1(:,2) = csvread('WAT1201_0010.csv',10,1); 

matrix1(:,3) = csvread('WAT1201_0032.csv',10,1); 

matrix1(:,4) = csvread('WAT1201_0018.csv',10,1);     

matrix1(:,5) = csvread('WAT1201_0005.csv',10,1); 

matrix1(:,6) = csvread('WAT1201_0020.csv',10,1); 

matrix1(:,7) = csvread('WAT1201_0034.csv',10,1);    

matrix1(:,8) = csvread('WAT1201_0038.csv',10,1); 

matrix1(:,9) = csvread('WAT1201_0029.csv',10,1); 

matrix1(:,10) = csvread('WAT1201_0016.csv',10,1);    

matrix1(:,11) = csvread('WAT1201_0013.csv',10,1); 

matrix1(:,12) = csvread('WAT1201_0031.csv',10,1); 

matrix1(:,13) = csvread('WAT1201_0008.csv',10,1);     

matrix1(:,14) = csvread('WAT1201_0019.csv',10,1); 

matrix1(:,15) = csvread('WAT1201_0023.csv',10,1); 

matrix1(:,16) = csvread('WAT1201_0003.csv',10,1);     

matrix1(:,17) = csvread('WAT1201_0028.csv',10,1); 

matrix1(:,18) = csvread('WAT1201_0014.csv',10,1); 

matrix1(:,19) = csvread('WAT1201_0004.csv',10,1);    

matrix1(:,20) = csvread('WAT1201_0024.csv',10,1); 

matrix1(:,21) = csvread('WAT1201_0030.csv',10,1); 

matrix1(:,22) = csvread('WAT1201_0011.csv',10,1);    

matrix1(:,23) = csvread('WAT1201_0022.csv',10,1); 

matrix1(:,24) = csvread('WAT1201_0001.csv',10,1); 

matrix1(:,25) = csvread('WAT1201_0035.csv',10,1);    

matrix1(:,26) = csvread('WAT1201_0017.csv',10,1); 

matrix1(:,27) = csvread('WAT1201_0006.csv',10,1); 

matrix1(:,28) = csvread('WAT1201_0036.csv',10,1);    

matrix1(:,29) = csvread('WAT1201_0021.csv',10,1); 

matrix1 = matrix1(400:2047,:); 



 

 

32

  

matrix2(:,1) = csvread('WAT1202_0012.csv',10,1);      

matrix2(:,2) = csvread('WAT1202_0030.csv',10,1); 

matrix2(:,3) = csvread('WAT1202_0004.csv',10,1); 

matrix2(:,4) = csvread('WAT1202_0015.csv',10,1);      

matrix2(:,5) = csvread('WAT1202_0036.csv',10,1); 

matrix2(:,6) = csvread('WAT1202_0005.csv',10,1); 

matrix2(:,7) = csvread('WAT1202_0019.csv',10,1);     

matrix2(:,8) = csvread('WAT1202_0022.csv',10,1); 

matrix2(:,9) = csvread('WAT1202_0029.csv',10,1); 

matrix2(:,10) = csvread('WAT1202_0009.csv',10,1);     

matrix2(:,11) = csvread('WAT1202_0016.csv',10,1); 

matrix2(:,12) = csvread('WAT1202_0027.csv',10,1); 

matrix2(:,13) = csvread('WAT1202_0001.csv',10,1);     

matrix2(:,14) = csvread('WAT1202_0024.csv',10,1); 

matrix2(:,15) = csvread('WAT1202_0011.csv',10,1); 

matrix2(:,16) = csvread('WAT1202_0033.csv',10,1);     

matrix2(:,17) = csvread('WAT1202_0003.csv',10,1); 

matrix2(:,18) = csvread('WAT1202_0032.csv',10,1); 

matrix2(:,19) = csvread('WAT1202_0014.csv',10,1);    

matrix2(:,20) = csvread('WAT1202_0035.csv',10,1); 

matrix2(:,21) = csvread('WAT1202_0018.csv',10,1); 

matrix2(:,22) = csvread('WAT1202_0008.csv',10,1);    

matrix2(:,23) = csvread('WAT1202_0023.csv',10,1); 

matrix2(:,24) = csvread('WAT1202_0017.csv',10,1); 

matrix2(:,25) = csvread('WAT1202_0006.csv',10,1);    

matrix2(:,26) = csvread('WAT1202_0028.csv',10,1); 

matrix2(:,27) = csvread('WAT1202_0002.csv',10,1); 

matrix2(:,28) = csvread('WAT1202_0021.csv',10,1);    

matrix2(:,29) = csvread('WAT1202_0026.csv',10,1); 

matrix2 = matrix2(400:2047,:); 

  

matrix3(:,1) = csvread('WAT1203_0013.csv',10,1);      

matrix3(:,2) = csvread('WAT1203_0025.csv',10,1); 



 

 

33

matrix3(:,3) = csvread('WAT1203_0020.csv',10,1); 

matrix3(:,4) = csvread('WAT1203_0033.csv',10,1);      

matrix3(:,5) = csvread('WAT1203_0003.csv',10,1); 

matrix3(:,6) = csvread('WAT1203_0029.csv',10,1); 

matrix3(:,7) = csvread('WAT1203_0017.csv',10,1);    

matrix3(:,8) = csvread('WAT1203_0008.csv',10,1); 

matrix3(:,9) = csvread('WAT1203_0035.csv',10,1); 

matrix3(:,10) = csvread('WAT1203_0021.csv',10,1);    

matrix3(:,11) = csvread('WAT1203_0028.csv',10,1); 

matrix3(:,12) = csvread('WAT1203_0015.csv',10,1); 

matrix3(:,13) = csvread('WAT1203_0005.csv',10,1);     

matrix3(:,14) = csvread('WAT1203_0030.csv',10,1); 

matrix3(:,15) = csvread('WAT1203_0012.csv',10,1); 

matrix3(:,16) = csvread('WAT1203_0027.csv',10,1);     

matrix3(:,17) = csvread('WAT1203_0010.csv',10,1); 

matrix3(:,18) = csvread('WAT1203_0019.csv',10,1); 

matrix3(:,19) = csvread('WAT1203_0006.csv',10,1);   

matrix3(:,20) = csvread('WAT1203_0034.csv',10,1); 

matrix3(:,21) = csvread('WAT1203_0011.csv',10,1); 

matrix3(:,22) = csvread('WAT1203_0022.csv',10,1);   

matrix3(:,23) = csvread('WAT1203_0018.csv',10,1); 

matrix3(:,24) = csvread('WAT1203_0002.csv',10,1); 

matrix3(:,25) = csvread('WAT1203_0014.csv',10,1);    

matrix3(:,26) = csvread('WAT1203_0036.csv',10,1); 

matrix3(:,27) = csvread('WAT1203_0004.csv',10,1); 

matrix3(:,28) = csvread('WAT1203_0024.csv',10,1);    

matrix3(:,29) = csvread('WAT1203_0031.csv',10,1); 

matrix3 = matrix3(400:2047,:); 

  

Conc = [0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

1.0]; 

  

for i = 1:29 
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        matrixAverage(:,i) = (matrix1(:,i) + matrix2(:,i) + 

matrix3(:,i))./3; 

end 

  

options = pls('options'); 

options.display = 'on'; 

options.plots   = 'final'; 

pre = preprocess('default','mean center'); 

options.preprocessing{1} = pre;   % 

options.preprocessing{2} = pre;   %y-block 

  

Conc = Conc'; 

matrixAverage = matrixAverage'; 

model = pls(matrixAverage,Conc,5,options); 

temp = model.pred; 

ModelData = cell2array(temp(2)); 

  

%******************************************************PRED************ 

matrix1p(:,1) = csvread('WAT1201_0025.csv',10,1);      

matrix1p(:,2) = csvread('WAT1201_0015.csv',10,1); 

matrix1p(:,3) = csvread('WAT1201_0007.csv',10,1); 

matrix1p(:,4) = csvread('WAT1201_0033.csv',10,1);     

matrix1p(:,5) = csvread('WAT1201_0002.csv',10,1); 

matrix1p(:,6) = csvread('WAT1201_0027.csv',10,1); 

matrix1p(:,7) = csvread('WAT1201_0012.csv',10,1);    

matrix1p = matrix1p(400:2047,:); 

  

matrix2p(:,1) = csvread('WAT1202_0020.csv',10,1);      

matrix2p(:,2) = csvread('WAT1202_0007.csv',10,1); 

matrix2p(:,3) = csvread('WAT1202_0013.csv',10,1); 

matrix2p(:,4) = csvread('WAT1202_0034.csv',10,1);      

matrix2p(:,5) = csvread('WAT1202_0025.csv',10,1); 

matrix2p(:,6) = csvread('WAT1202_0010.csv',10,1); 

matrix2p(:,7) = csvread('WAT1202_0031.csv',10,1);     
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matrix2p = matrix2p(400:2047,:); 

  

matrix3p(:,1) = csvread('WAT1203_0016.csv',10,1);      

matrix3p(:,2) = csvread('WAT1203_0009.csv',10,1); 

matrix3p(:,3) = csvread('WAT1203_0007.csv',10,1); 

matrix3p(:,4) = csvread('WAT1203_0026.csv',10,1);      

matrix3p(:,5) = csvread('WAT1203_0023.csv',10,1); 

matrix3p(:,6) = csvread('WAT1203_0001.csv',10,1); 

matrix3p(:,7) = csvread('WAT1203_0032.csv',10,1);    

matrix3p = matrix3p(400:2047,:); 

  

for i = 1:7 

        matrixP(:,i) = (matrix1p(:,i) + matrix2p(:,i) + 

matrix3p(:,i))./3; 

end 

 

PredConc = [0.035 0.065 0.075 0.085 0.17 0.41 0.73]; 

PredConc = PredConc'; 

matrixP = matrixP'; 

 

Predict = pls(matrixP, model,options); 

temp = Predict.pred; 

Prediction = cell2array(temp(2)); 

figure(99); 

hold on 

plot(PredConc, Prediction,'o'); 

plot(Conc, ModelData,'x'); 

hold off 
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