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ABSTRACT  

Identification of Erosional Hotspots and Shoreline Position Utilizing an Alongshore 

Shoreline Monitoring System: Galveston Island’s West End (April 2006) 

 

Andrew J. McInnes 
Dept. of Marine Sciences 
Texas A&M University 

 
Research Advisor: Dr. Timothy M. Dellapenna 

Department of Marine Sciences 
 
 
 

A continuous synoptic alongshore method of beach surveying was developed to identify 

shoreline position, erosional hotspots, and to examine the morphological variation of the 

Gulf beaches of Galveston Island’s west end. Near-weekly (average 3 per month) 

surveys were conducted over 15 consecutive months for the approximately 30 km 

section of the west end of Galveston Island beginning April 2004 through September 

2005. Erosional or accretional hotspots are operationally defined here as areas which can 

be statistically determined to have significantly greater migration than the mean 

migration for the entire beach, and are often, but not necessarily, ephemeral. The 

shoreline, by definition, is the wetline - the wet/dry interface on the beach, the furthest 

point of wave run-up - and was recorded by tracing the wetline immediately after the 

turn of the high tide utilizing an all Terrain Vehicle (ATV) equipped with a post-

processed kinematic Global Positioning System (GPS). This system provides high-

resolution topographical surveying with sub-decimeter accuracy in the both the 

horizontal and vertical dimensions. The data were assembled in order to determine mean 



 iv

wetlines – monthly, quarterly, or annually; repeated localized statistically significant 

landward advance of the shoreline is indicative of potential erosional hotspots while an 

annual net landward migration of the wetline indicates a retreating shoreline - erosion. 

This work demonstrates that by using this economically feasible surveying method, 

highly accurate shoreline positions can be used to monitor the morphological changes of 

the shoreline and to identify erosional hotspots. Over the study period the area exhibited 

a mean annual erosion rate of 4.95m -1 with a range of 59.83m (-23.86m to 36.04m); the 

median offset was 4.73m; and mean elevation of the wetline was 1.15m (elevation lacks 

uniformity both spatially or temporally). This project shows that frequent synoptic 

surveys enable the identification of erosional hotspots and enables the establishing of an 

accurate, non-datum corrected shoreline position. Regular monitoring enables 

determination of erosional hotspots and shoreline migration due to storm events and 

annual cycles. Archiving and analysis of these short-term vacillations provides a long 

time-series of shoreline position and is of utility to coastal management and numerous 

stakeholders. 
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INTRODUCTION 

 

Galveston Island is a heavily developed and modified transgressive barrier 

island. Enhanced subsidence due to ground water withdraw, reduced and interrupted 

sediment supply, and response to engineered hard structures including a 22 km long 

seawall and installation of Geotubes® along the western portion of the island has 

resulted in areas of chronic erosion. Galveston Island is recognized as having one of the 

most rapidly retreating shorelines along the Gulf coast with erosion rates reported 

between 3m y -1 (Heinz Center, 2000; Ravens and Sittangang, 2002), and 4m y -1 (Lee et 

al., 2003).  

 The shoreline, by definition, is the position of the wetline (the wet/dry interface 

on the beach) and is the furthest point of wave run-up. Enhanced wave run-up may result 

in erosion and landward migration of the wetline while reduction of wave run-up may 

result in beach accretion and shoreline advance. Erosional or accretional hotspots are 

operationally defined here as areas which can be statistically determined to have 

significantly greater migration than the mean migration for the entire beach, and are 

often, but not necessarily, ephemeral. Beach monitoring efforts typically focus on cross-

shore profiling of the beach using standard surveying techniques such as a total station 

(electronic distance measurement) and GPS. The major assumption is that a  
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single profile is representative of the three-dimensional morphology of a beach segment 

(Swales, 2002) - these profiles provide a cursory view of beach change on the timescale 

over which the survey is conducted and require significant interpolation due to 

their temporal and spatial nature. However, the spacing of these 2-D profiles lines is 

usually too large to allow meaningful interpolation between them and, as a result, 

geomorphic patterns and local erosional hotspots may not be adequately described 

(Freeman et al. 2003).  

Shoreline movement is both non-uniform and non-linear. Consequently, trend 

reversals as well as accelerations and decelerations in rates of shoreline movement need 

to be assessed if accurate modeling and prediction of shoreline positions are expected 

(Morton et al. 1995). Freeman et al. (2003), argue that a ground based technique which 

combines traditional shore-normal profiles with alongshore data is optimal for small 

scale, high frequency monitoring and takes advantage of 3-D analysis without the 

expense of swath-based systems and without the limitations of 2-D methods. 

In an effort to investigate the morphological response of Galveston’s west end 

beaches, a temporal and spatial monitoring method was developed whereby near-weekly 

(average 3 per month) synoptic surveys were conducted to record the position of the 

wetline immediately after the turn of the high tide. Thirty-two surveys were conducted 

over a 15 month period, each averaging 3269 shot points (data points recorded every 

second - every 9.36m).This continuous alongshore measurement was accomplished by 

utilizing an All Terrain Vehicle (ATV) mounted with a post-processed kinematic 

differential Global Positioning System (GPS) which was driven along the beach – 
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tracing the wetline while logging data every second. This method quantifies the 

relationships between temporal and spatial scales of morphologic change and establishes 

alongshore monitoring techniques to determine migration of the shoreline and the 

identification of erosional hotspots. 

The purpose of this study was to develop a cost effective, accurate, and adaptable 

alongshore beach monitoring method for Galveston’s west end which permits: (1) rapid, 

regular, on-going assessment of beach conditions, (2) identification of variability in 

beach morphology on weekly, seasonal, and annual timescales which may provide 

insight into sediment dynamics and budgets, (3) establishment of a long-term baseline 

data set for detecting shoreline change, (4) identification, quantification, and tracking of 

statistically verifiable hotspots as they develop, (5) extraction of highly accurate 

shoreline positions using the interface between wet and dry beach, and (6) enhanced 

public awareness and knowledge. 
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STUDY AREA 

 

Coastal Setting  

 
Galveston Island is part of the longest barrier island system in the United States 

and strikes northeasterly, extending approximately 52 km from its western extremity at 

San Luis Pass to the South Jetty at the Houston/Galveston Entrance Channel. The island 

is roughly 3km wide, tapering to <1 km wide at the western end, and is located on the 

upper Texas coast (Giardino et al. 1987, in Robb et al. 2004) (Figure 1). 

The unarmored west end is approximately 30 km in length, and the remaining 

shoreline of Galveston Island, excluding the eastern most 6 km, is armored by a 22 km 

long seawall that encompasses a 6 km groin field: the seawall, along with other 

engineered structures, have drastically altered the shoreface of Galveston Island, 

causing, among other morphological changes, a landward retreat of the shoreline of 

greater than 30 meters at the western end of the seawall since the completion of the final 

phase of seawall construction in 1962 (Giardino et al.1987; Robb et al. 2004).  

The study area begins at the western terminus of the 4.25m tall seawall - a 

reported “erosional hotspot” where average erosion rates are reported between 3m y -1 

(Heinz Center, 2000; Ravens and Sittangang, 2002), and 4m y -1 (Lee et al. 2003).  
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Figure 1. Study Area – Galveston Island’s west end, Galveston Island, Texas. 
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Physical Setting 

 
The upper Texas coast is characterized by fair weather astronomical tides ranging 

from 0.3 to 0.6 meters and relatively low amplitude waves with periods ranging between 

4 to 6 seconds (Morton and McGowen, 1980). Wave energy is generally low to 

moderate with most significant wave heights being less than 0.6 meters; shallow waves 

greater than 1 meter occur less than 1% of the time and storm waves are typically less 

than 1.8 meters high (USACE, 1983). The microtidal nature of the study area is 

dominated by a diurnal/mixed tidal signal with diurnal range (MHHW-MLLW) of 

0.43m and mean range (MHW-MLW) of 0.31m as measured at Galveston Pleasure Pier 

(NOAA/NOS). 

The west end of Galveston has a straight shoreline, with bathymetric contours 

that are parallel to the shore. The beaches are composed of fine grain sand extending 

1.25 km offshore to the toe of the beach, where it transitions to a progressively muddier 

seabed (Robb et al., 2004). Estimated long-term longshore transport rates for the study 

area are 180,000 m3 yr -1 from northeast to southwest (Ravens and Sittangang, 2003). 

Hurricanes strike the Texas coast with moderate frequency; 0.67 hurricanes per 

year since 1900 (Hayes, 1967; in Davis, 1972, and Morton and Paine, 1985). Historical 

records clearly show that Galveston beachfront property will receive minor storm 

damage every few years and extreme storm damage about every 20 years (Morton and 

Paine, 1985). In addition to hurricanes, from October through April, on the average, 

there are 46 cold fronts a year which pass through the Northern Gulf of Mexico (Henry, 

1979), causing high waves and enhancing littoral transport. Cold fronts occur at 3-10 day 
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intervals in a given year and are characterized by a pre-frontal phase of high-energy 

southeasterly winds for 1-2 days, followed by a 12-24 hour period of strong 

northwesterly to northeasterly winds following passage of the front (Co-ops, 2005).  

The upper Texas coast also experiences a rate of relative sea-level rise of 0.65 cm 

yr -1 - this local rate of sea-level rise is about 3 times faster than the global rise in sea 

level, which recently has averaged approximately 0.18 m per century (Gornitz and 

Lebedeff, 1987). 

 

Beach Morphology 

 
Beaches serve many roles, not the least of which is the absorption and 

subsequent dissipation of wave energy. Factors such as beach slope, sediment supply, 

type, and size; tidal range, wave energy, wind energy, frequency of storms, and human 

impacts all factor into the formation of physiographic features of the beach.  

Variability can be largely affected by the presence of structures, especially a 

large variety of structures placed on long coastal stretches (Perlin and Dean, 1983), and 

the most recent historical changes appear to be greatly influenced by anthropogenic 

activities. The strongest indictments against such human-induced shoreline changes are 

the unpredictable but rapid local responses associated with engineering modifications 

(Morton, 1979). Capobianco et al. (2002), report that if a number of artificial 

morphodynamic states are introduced, [as is the case on Galveston Island], they will 

influence the “chronology of events” on the morphodynamic evolution of the area. 
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Erosion is part of the natural response of a beach to changing wave and water 

level conditions. Typically, as stated in the Bruun Rule, the eroded sand is returned to 

shore and the beach is rebuilt during calmer periods (Bruun, 1962). There are, however, 

more severe energy episodes that cause the semi-permanent transport of sand out of the 

littoral system by cross-shore transport to the adjacent backshore flats (Ravens and 

Sittangang, 2006).  

 

Erosional Trends 

 
Morton (1979) reports that since 1960, a loss of equilibrium between sediment 

supply and sediment removal has resulted in prevalent shoreline erosion on the Texas 

coast, and that post 1955-1960, the total length of eroding shoreline increased from 55% 

to nearly 80%. On the Texas coast nearly half of the total beach sand supplied by updrift 

erosion, presently a major sediment source, has been trapped by jetties at harbor 

entrances. More recently, Ravens and Sittangang (2002) concur, stating that there is no 

significant supply of sand to the island due to the jetties. 

 Morton and Paine’s (1985) delineation of aerial photographs and topographic 

maps of the unarmored west end, spanning 120 years (1851 to 1973), exhibited differing 

long-term beach sediment movement. Their analysis showed that three shoreline 

segments varied over this time span; they are: (1) The easternmost segment (adjacent to 

the seawall terminus) showed the greatest rates and distance of shoreline retreat                 

(3.0m yr -1), diminishing westward to Bermuda Beach (0.30m yr -1), which is the 

transition to the stable shoreline segment, (2) The middle segment (<0.30m yr -1) 

 



    9

suggesting a relatively stable shoreline, and (3) The western segment showed long-term 

erosion rates of 0.30 to 0.61m yr -1 (figure 2). 

 

 

 

 

Figure 2. Tripartite division of erosion rates on Galveston Island’s west end based on Morton and Paine’s 
(1985) analysis. The easternmost segment showed the greatest rates and distance of shoreline retreat (3.0m 
yr -1), diminishing westward to Bermuda Beach (0.30m yr -1), which is the transition to the stable shoreline 
segment, (2) The middle segment (<0.30m yr -1) suggesting a relatively stable shoreline, and (3) The 
western segment showed long-term erosion rates of 0.30 to 0.61m yr -1. 
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METHODOLOGY 

 

ase station establishment  

A GPS base station was established at th

from S

 a 

g 

ata Collection 

Each alongshore survey records a series of points of known easting, northing, 

and ele or 

e turn of 

the hig

cond - 

B

 
e residence of the author, located 8km 

an Luis Pass on Galveston’s west end. This location fell within the range of 

vector length required for survey control as stated by the manufacturer and was also

secure site for the unattended base unit. This base station was established by transferrin

National Geological Survey (NGS) benchmark elevations and positions using Thales 

Navigation® processing software.  

 

D

 

vation, and yields a position in 3 dimensions for every data point. Coordinates f

geographic position are referenced to the Universal Transverse Mercator grid (UTM) 

and elevations are referenced to the North American Vertical Datum (NAVD); 

Specifically, UTM NAD 83, Zone 15, and NAVD 88, Geoid 99 for the datum. 

For each survey the shoreline position was recorded immediately after th

h tide utilizing an ATV driven along the wetline of the beach. Two Promark2® 

differential GPS systems were utilized to collect data every second for the duration of 

each survey. Thirty-two surveys were conducted beginning April 2004 through 

September 2005, each averaging 3269 shot points (data points recorded every se
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every 9.4m).The base station unit collected data in static mode while the roving unit, 

mounted on the ATV (Figure 3), operated in kinematic mode . The manufacturers clai

a survey accuracy of 0.005m +1ppm for horizontal, and 0.010m + 2ppm for vertical with 

a satellite elevation mask of 10 degrees. Huang et al. (2002) reported in a comparative 2-

D study in Northern Ireland that the typical precision of an initialized kinematic survey 

is 0.01m +2ppm – fitting well with the accuracies claimed by manufacturers. Elevation 

errors due to changes in the vehicles weight and tire pressure are negligible. 

Beginning at the seawall terminus and heading west toward San Luis 

m 

Pass, the 

seawar  

 

d tire of the ATV tracked the wet/dry interface. Survey speed was 35 km hr -1 in

order to keep up with the progression of the tide; total survey time was 50 minutes. Each

survey is a synoptic cusp to cusp “best fit line” due to required survey speed.  
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Antenna  
(for post-processing) 

 

Figure 3. ATV mounted with post-processed differential kinematic GPS receiver an
 

 

 

Data Processing 

 
The data for each survey were exported from the two receivers

processed to correct for acquisition error, then integrated into GIS whe

The processing shows vectors between the base station and the roving

respective accuracies. The GPS files also contain position precision in

allows the examination of each data point for accuracy (Huang et al, 2

 

Receiver
 

d antenna. 

 and post-

re it was filtered. 

 unit and the 

formation which 

002). This 
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information is in the form of PDOP (Positional Dilution of Precision) and the value 

estimates the impact on the precision of the GPS observations due to satellite geometry 

(Magellan Corporation®, 2001). The data processing software utilized was Ashtec 

Solutions® (a commercial data post-processing application from Magellan Corporation). 

This package identifies any records with an unacceptable quality and rejects them from 

further treatment.   

These filtered data sets were then exported into MATLAB® and analyzed using a 

custom script which generated a mean of the data points for the period under 

examination (i.e. monthly, quarterly, or annual). The wetline is not in the same 

geographic location for each survey; however, each survey begins at approximately the 

same position alongshore and is conducted at the same speed. Because data is gathered 

every second, the data points are spaced equally alongshore, but with differing eastings 

and northings. The MATLAB script groups data points by time interval (every second) 

alongshore and then calculates the mean for that “time interval” and partitions the 

positions into discrete geographic cells which are 9.8m long (figure 4). For each 

geographic cell, a Mean Cell Position (MCP) is calculated. For each MCP a best-fit line 

is generated using ArcMap® (GIS).  
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Figure 4. A GIS image showing discrete geographic cells which allow for a Mean Cell Position (MCP) to 
be calculated.  
 

 

  

Because elevation and horizontal position of the wetline varies with the tidal 

cycle (Parker, 2003), each survey is not run on the same absolute position - all lines are 

offset from each other up and down the beach. Offsets were quantified from the mean of 

the period in question (e.g. 2nd quarter 2005) to the reference mean (e.g. 2nd quarter 

2004) and were then exported to a database.  

The quantification of offsets was conducted in ArcMap after the creation of 

polyline shapefiles using the MATLAB output of mean x and y points for the period of 
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interest. An additional shapefile was created composed of a grid of shore- perpendicular 

lines spaced every 250m starting behind the back-beach dune and ending approximately 

100m into the surf zone. This spacing was chosen due to time and labor considerations. 

These shore-perpendicular lines enable the measurement of offsets at the same position 

alongshore for any wetline of interest (figure 5). 

After the importing of the shapefiles of the surveys under consideration, the 

reference line of interest is imported (for this project the baseline was the meanline of 

the second quarter of 2004). The measurement tool in ArcMap is used to measure the 

distance between the survey lines of interest and the reference line, as measured along 

the 250m spaced shore-perpendicular lines. The measurements are then transcribed into 

spreadsheets thereby enabling statistical analyses, the generation of graphs, models, and 

other analyses. 
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Figure 5. Illustration of shore-perpendicular lines used for the measurement of meanline (mean shoreline-
line) offsets at the same alongshore position. 
 

 

 

Statistical Analysis 

 
A primary objective of this project was to identify erosional hotspots. Erosional 

hotspots are operationally defined here as areas where the wet line was consistently 

significantly landward of the baseline measurement (2nd quarter 2004). At each of the 

117 cells (see section on Data Processing), differences were calculated between the 
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baseline and the wet line position measured in four subsequent quarters (3rd quarter ’04; 

4th quarter ’04; 1st quarter ’05; and 2nd quarter ’05). To account for differences in tidal 

height and forcing between each quarterly survey, the overall mean was subtracted 

(centered the data) in each quarter; within each cell, the centered baseline value was 

subtracted from each of the centered values for the other quarters to calculate the 

movement (deviation) of the wet line. Therefore, negative values indicated that the wet 

line deviated seaward and positive values indicate a landward deviation.  

At each of the 117 locations, the mean wet line deviation of the four quarterly 

surveys were tested to see if they were significantly different from zero (t-test, 

alpha=0.05), and hence consistently landward or seaward of the baseline (see 

APPENDIX A). Finally, the mean deviations of the wet line (in meters) were plotted 

with 95% confidence intervals in order to locate specific areas of the shoreline that were 

identified as hotspots.   
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RESULTS  

 

Thirty-two surveys were conducted over a 15 month period. These data enabled 

quantification of shoreline migration rate (figure 6), and also the identification of 20 

hotspot sites, 9 of which are erosional (figure 7). The mean annual erosion rate was 

4.95m -1 with a range of 59.83m (-23.86m to 36.04m); the median offset was 4.73m. The 

data indicate a tripartite division of shoreline migration rates: the highest rates of 

shoreline retreat are located at the extreme ends of the beach while the middle section is 

more stable and exhibits decreased rates of retreat.  
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Figure 6. Graph showing quantitative offset of the 2nd Quarter 2005 meanline  from the 2nd Quarter 2004 
meanline. The data on the graph correspond to the alongshore position in the image shown above it. 
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Figure 7. Graph showing the mean quarterly offsets for each alongshore position. Error bars indicate 
whether the offset is statistically significant (a hotspot).  
 

 

 

The greatest variance (147.07m) occurred at very western end of the study area – 

an area which showed an oscillating trend of the shoreline marked by the greatest 

migration of the shoreline (figures 8 and 9). The easternmost zone displayed a continued 

erosional trend with a variance of approximating 15.00m. The mid-zone exhibited 

relatively small scale rates of erosion with an average variance of <1.00m. 
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DISCUSSION 

 

During the period of this study there was considerable morphological alteration 

of the beach which was uniquely expressed through the weekly shoreline observations. 

Quantitative analysis of the wetline deviations from the 2nd quarter 2004 mean line to 2nd 

quarter 2005 mean line has enabled estimation of the rate of shoreline migration, 

position, and the identification of 20 hotspot sites, nine of which are erosional (table 1). 

The seawall terminus, though exhibiting a large relative erosion rate, is not an erosional 

hotspot under the operational definition in this paper.  

During the duration of the study period, the study area exhibited a mean annual 

erosion rate of 4.95m -1  which is considerably larger than the 3m y-1 commonly reported 

in literature (see Heinz Center, 2000), with a range of 59.83m (-23.86m to 36.04m); the 

median offset was 4.73m. The location of this extreme range was at the very western end 

of the study site, an area that is heavily influenced by tidal-pass dynamics. 
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Table 1. Analysis of hotspots including distance alongshore, type of hotspot, and anthropogenic features 
for that site. 
 

Hotspot # Location   
distance from 
seawall (m) 

Accretional       
or            

Erosional 

Association Statisticly 
significant value 

(α < 0.05) 
1 1520 A nourished .0205 
2 2020 A - .0149 
3 2270 A - .0108 
4 4270 A nourished .0316 
5 5030 E nourished .0459 

6 7870 A nourished + 
geotube .0181 

7 11380 E - .0454 
8 15240 A - .0063 
9 15490 A - .0410 

10 16260 A nourished .0077 
11 16770 A - .0493 
12 19820 E nourished .0116 
13 20560 E nourished .0054 
14 24250 A nourished .0126 
15 27500 A - .0251 
16 27750 E - .0090 
17 28000 E - .0249 
18 28250 E - .0499 
19 28500 E - .0347 
20 28750 E - .0297 

 

 

 

Immediately prior to the commencement of this study there was a re-nourishment 

project conducted over much of the west end of Galveston. This involved the placement 

of 226,730 cubic yards of sand from Blackard Pit on FM3005 onto numerous beaches of 

the west end and was completed by October 2003 (Survey Galveston, Inc., personal 

communication). Due to the physical reworking of these nourished templates by wind 
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and waves, it is likely that these nourished templates amplified the erosional signature 

for the study area.  

The greatest variance occurred in the western zone of the study area, which 

showed a general oscillating trend marked by the greatest migration of the shoreline with 

significant erosion in particular areas. The lower elevation and beach slope, proximity to 

San Luis Pass (one of two natural tidal passes on the Texas coast), and the associated 

tidal pass dynamics likely explains these large scale changes in shoreline position. GIS 

ortho-rectified aerial photography from 1995 – 2003, in conjunction with the annual 

mean shoreline positions generated, enable visual representation and analysis of 

shoreline migration rates over time (Figures 8 and 9).  
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2004 

1995 

Figure 8. GIS illustration of shoreline migration from 1995-2004 at the western end of study area.  
2004 meanline layered on 1995 Digital Ortho Quarter Quadrangle (DOQQ).  
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2004 

2003 

Figure 9. GIS illustration of shoreline migration from 2003-2004 at the western end of study area.   
2004 meanline layered on 2003 DOQQ.  
 

 

 

The easternmost zone displayed a continued erosional trend of generally uniform 

scale. The mid-zone exhibited relatively small scale rates of erosion. These results are 

similar to the decadal shoreline behavior observed in the late 1980’s and early 1990’s by 

Morton et al. (1995). This study’s results show significant spatial and temporal 

movements in the shoreline (figures 10, 11, and 12) and also the identification of 

statistically significant erosional hotspots; however, continued long-term data collection 

is needed to track and identify additional ephemeral erosional hotspots.  
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Figure 10. GIS image of shoreline migration at a representative section of the eastern zone of the study 
area from 2004 -2005. 
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Figure 11. GIS image of shoreline migration at a representative section of the middle zone of the study 
area from 2004 -2005. 
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Figure 12. GIS image of shoreline migration at a representative section of the western zone of the study 
area from 2004 -2005. 
 

 

 

Galveston Island’s economy depends largely on the influx of tourism dollars, 

primarily as a result of its beaches. With the current boom in property development on 

the west end, the practice of beach nourishment as a “soft solution” for beach erosion 

mitigation, increased civic pressure to maintain beach access, and pending litigation and 

legislation, state, city and coastal managers are seeking relevant studies to enable sound 

enviro/socioeconomic decision making. The coastal management community uses 
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scientific data in at least three ways: planning coastal communities, permitting and 

reviewing shoreline stabilization projects, and developing a conceptual understanding of 

the coastal system (Ruggiero et al. 2000). While this method was developed for 

Galveston Island’s west end, it is easily adaptable to other locations. 

The intent of this project was to develop a monitoring method to record and 

analyze coastal processes and shoreline responses to energy fluxes over temporal and 

spatial scales and to identify and predict erosional hotspots. This project shows that the 

wetline is not uniform in elevation, and that frequent synoptic surveys enable the 

averaging of short term and seasonal variations thereby establishing an accurate non-

datum corrected shoreline position. Importantly, the identification of localized erosional 

hotspots is also achieved. 

Comparison and analyses of quarterly mean lines showed that during the period 

of this study there has been considerable morphological alteration of the beach. These 

analyses also allowed for the identification of zones experiencing repeated relative 

advance/retreat of the shoreline and this is uniquely expressed in the weekly shoreline 

observations. Enhanced wave run-up may result in erosion (wetline advance landward), 

while reduction of wave run-up may result in accretion (wetline retreat seaward).  

Since 1995, the first year of beach nourishment on Galveston Island (Ravens and 

Sitanggang, 2002), significant tax dollars have been spent in an effort to (1) locate and 

provide beach quality sand, (2) monitor the longevity and effectiveness of nourishment 

templates, and (3) identify and model the relocation of the nourished sand.  
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There are some limitations to the method, however, and these include: (1) 

obstructions along the wetline such as large debris, beachgoers, and vehicle barricades, 

(2) the inability to survey during periods of rain because there may be no discernable 

wetline, (3) accumulation of Sargassum seaweed along the wetline during the Spring and 

early Summer, which hides the true location of the wetline, (4) houses and sand-socks on 

the beach limit the landward advance of the wetline during spring tides and storm events, 

(5) beach nourishment projects likely impact the magnitude of the shoreline migration 

signal, and (6) only sub-aerial portions of the coastal zone are monitored, exempting the 

significantly active sub-aqueous zone. 

It is an underlying assumption of this project, however, that the sub-aqueous 

zone alterations will be directly represented in shoreline fluctuation. Consequently, the 

costly acquisition of data from this zone is unnecessary. Additionally, this alongshore 

monitoring method provides an important advantage over traditional beach surveying 

methods in the greater spatial coverage that can be achieved by running continuous data 

collection in parallel survey lines along the beachface. The alongshore method will be 

minimal in both cost and survey time, adaptable and transferable to other locations on 

the Texas coast, and sufficiently precise (sub decimeter). 
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CONCLUSIONS 

 

Beginning April 2004 through September 2005, thirty-two synoptic surveys were 

conducted along the wetline of Galveston Island’s west-end. Quantification of the 

shoreline deviations during this study clearly show that the beach is undergoing 

considerable shoreline retreat. This paper presents successful identification of the 

shoreline position and erosional hotspots utilizing an alongshore post-processed 

kinematic GPS monitoring method. The data collection technique is accurate, rapid, 

repeatable, economical, and transferable to many locations. The method eliminates the 

problem of a “snapshot in time” analysis of shoreline position, removes the need for data 

to be corrected to a vertical datum, and also averages out short term variations in the 

signal.  

Archiving and analyses of these short-term changes will provide a long time-

series of shoreline position and behavior. This will be used to strengthen existing and 

future models of shoreline change and will also project future coastal change. Further 

analyses such as month-to-month or quarter-to-quarter could also be useful in analyzing 

the morphological behavior of Galveston’s west-end. Incorporation of this monitoring 

method with existing data enables the opportunity of scientifically-based sound 

management.  It also provides utility for the complex task of state and local coastal 

planning and decision making. The 15 months of data from this study indicates that this 

method of shoreline monitoring is indeed viable, enabling stakeholders to utilize the 

results as another tool in their deliberations. 
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APPENDIX A 
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A-1.  
Results of t-test and identification of hotspots. 
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A-2.  
Raw offset data for each quarter’s MCP. 
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A-3.  
Centered offset data for each quarter’s MCP. 
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