
NONLINEAR CONTINUOUS FEEDBACK CONTROLLERS 

 

 
A Thesis 

 
by 

 
SAI GANESH SITHARAMAN 

 
 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 
 
 
 
 

 
May 2004 

 
 
 
 
 
 

Major Subject:  Computer Science 



 

NONLINEAR CONTINUOUS FEEDBACK CONTROLLERS 

 
A Thesis 

 
by 

 
SAI GANESH SITHARAMAN 

 

Submitted to the Office of Graduate Studies of  
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 
 
Approved as to style and content by: 
 
 
 

Dmitri Loguinov 
(Chair of Committee) 

 
 

 
Jyh-Charn (Steve) Liu 

(Member) 
 
 
 

A. L. Narasimha Reddy 
(Member) 

 
 
 

Jennifer Welch 
(Member) 

 
 
 

Valerie Taylor 
(Head of Department) 

 
 
 
 
 

 
 
 

May 2004 
 

Major Subject:  Computer Science 



 

iii

 

 
 

ABSTRACT 

 
Nonlinear Continuous Feedback Controllers. 

 
(May 2004) 

 
Sai Ganesh Sitharaman, B.E., Regional Engineering College, Trichy, India 

 
Chair of Advisory Committee: Dr. Dmitri Loguinov 

 
 
 

Packet-switched communication networks such as today’s Internet are built with 

several interconnected core and distribution packet forwarding routers and several 

sender and sink transport agents. In order to maintain stability and avoid congestion 

collapse in the network, the sources control their rate behavior and voluntarily adjust 

their sending rates to accommodate other sources in the network. In this thesis, we study 

one class of sender rate control that is modeled using continuous first-order differential 

equation of the sending rates. In order to adjust the rates appropriately, the network 

sends continuous packet-loss feedback to the sources. We study a form of closed-loop 

feedback congestion controllers whose rate adjustments exhibit a nonlinear form. 

 

There are three dimensions to our work in this thesis. First, we study the network 

optimization problem in which sources choose utilities to maximize their underlying 

throughput. Each sender maximizes its utility proportional to the throughput achieved.  

In our model, sources choose a utility function to define their level of satisfaction of the 

underlying resource usages. The objective of this direction is to establish the properties 

of source utility functions using inequality constrained bounded sets and study the 

functional forms of utilities against a chosen rate differential equation. 

 

 Second, stability of the network and tolerance to perturbation are two essential 

factors that keep communication networks operational around the equilibrium point. Our 
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objective in this part of the thesis is to analytically understand the existence of local 

asymptotic stability of delayed-feedback systems under homogeneous network delays. 

 

Third, we propose a novel tangential controller for a generic maximization function 

and study its properties using nonlinear optimization techniques. We develop the 

necessary theoretical background and the properties of our controller to prove that it is a 

better rate adaptation algorithm for logarithmic utilities compared to the well-studied 

proportional controllers. We establish the asymptotic local stability of our controller 

with upper bounds on the increase / decrease gain parameters. 
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CHAPTER I  

INTRODUCTION 

Best-effort Internet prevailing today has evolved from a simple experimentation 

ARPANET test bed consisting of a fixed set of routers and end-hosts to a complex, fast 

growing heterogeneous network. Unlike the static circuit-switched telephony network, 

the Internet has become a highly dynamic network with ever increasing number of hosts 

and networks connected to the core [1]. In order to maintain scalability in this constantly 

changing network, early designers devised an open-architecture that would push most of 

the routing and transport intelligences to the end hosts. This open-architecture that is 

widely under operation in today’s network is the familiar Transmission Control Protocol 

(TCP) / Internet Protocol (IP) protocol suite [37]. 

 

The backbone of the open-architecture prevailing in today’s Internet is built with 

several interconnected core, distribution and edge routers that simply forward the data 

from the set of incoming interfaces to the corresponding outgoing physical interface. 

Routers that forward packets do not know the aggregate packet arrival rates in advance 

owing to the connectionless nature of the underlying Internet Protocol (IP). Thus the 

traffic patterns at these routers become unpredictable and often bursty. The Internet 

traffic logs at the service providers’ premises show that the aggregations of several 

traffic streams do not strictly follow the Poisson distribution that was widely used to 

model the teletraffic networks [2], [3] and [4]. Instead, the IP traffic exhibits a highly 

bursty nature with spikes in the arrival rates at all time scales (an effect termed as “ self-

similarity” ). Thus, if the incoming rate exceeds the router queue processing overhead, 

the newly arriving packets are dropped at the bottleneck droptail router owing to the 

buffer overflow and hence packet losses occur. Packet losses also occur if there is a 

significant surge in the traffic burstiness at these intermediate routers. 

                                                 
This thesis follows the style and format of IEEE/ACM Transactions on Networking. 
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Assuming link losses are negligible, packet losses at these intermediate routers 

can be controlled by enforcing flow control schemes that control the sender’ s rate (or 

window sizes). Earlier studies on connectionless flow control schemes were based on 

point-to-point receiver-advertised flow control, but the obvious problem in the protocol 

is that the resource overhead at the intermediate routers were never considered as a part 

of the protocol, resulting in a network-wide packet losses. These flow control schemes 

dictated the point-to-point behavior between the individual sender and the receivers and 

thus are very selfish in nature. The Internet however, requires global congestion control 

and avoidance mechanisms collectively among all the senders and the routers in order to 

efficiently utilize the shared resources along the path from the source to the receiver. 

 

In 1988, Jacobson [5], Chiu and Jain [38] introduced a congestion avoidance 

scheme in which the network signals of an incipient congestion to the end hosts. Their 

congestion avoidance scheme is used to adjust the sender’ s rate dynamically based on 

the load on the network (implicit packet loss), thus preventing further packet loss in a 

congested network. Congestion control schemes similar to those introduced by [5] and 

[38] studies the interaction of sender’ s rate control with the network feedback signals to 

maintain stability in the network. 

 

1 Congestion Control Techniques 

 

Network congestion control problem was not studied seriously until Jacobson 

[5], and Chiu and Jain [38] introduced their congestion avoidance scheme to control the 

source rate behavior to adapt dynamically to the network conditions. In the same year, 

Chiu and Jain [38] and Ramakrishnan and Jain [40] viewed congestion control as a 

resource allocation problem that controls the effective and fair usage of the underlying 

link bandwidth. In their model, an effective utilization is achieved when resources are 

utilized to their maximum extent with minimum losses at the underlying link and a fair 

usage is achieved when the flows of similar nature share the bandwidth equally. 
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The congestion avoidance mechanism introduced by Jacobson [5] in 1988 

became popularly known as TCP-Tahoe and was widely deployed in the Internet since 

then. The TCP-Tahoe scheme implemented several new algorithms including the TCP 

slow-start, an automatic self-clocking and a dynamic window-size adjustment scheme. 

In 1990, TCP Reno proposed modifications to the TCP-Tahoe and performed fast 

recovery and fast retransmits to improve the sender’ s throughput. Both the protocol 

variants used the network-wide packet losses as an implicit signal for congestion 

avoidance. In 1992, TCP Selective Acknowledgement (SACK) [46] implemented an 

acknowledgement option to the existing TCP Tahoe that was proved to improve the 

sender’ s throughput by maintaining the outstanding packets along the path. In 1994, 

TCP Vegas was introduced by Brakmo et al. [47] as an improvement over TCP Reno. 

TCP Vegas anticipated the network losses better than Reno and improved the sender’ s 

throughput by transmitting the window sizes between the actual and expected windows. 

The current Internet widely deploys the TCP SACK protocol and is the most popular 

transport implemented so far. 

 

One of the common features of such congestion control mechanisms is that the 

source rate adjustment is simply a function of closed-loop implicit or explicit network 

feedback. Earlier implementations used a binary single-bit feedback scheme [38], [39], 

[40] that set a congestion indication bit in the packet header to indicate the network load 

for senders to increase or decrease their rates according to the bit. This single-bit 

feedback indicated if the packet losses were to be anticipated in the network if all the 

sources were to continue using the same rate. Such discrete models adjust the sender’ s 

rate following the difference equation given by: 

 

 ( 1) ( ) (1 ) ( ( )) ( ( ))i dx t x t B R x t BR x t+ = + − + . (1) 
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In the equation (1), the value of the single bit B is used by the sender to adjust 

the source rate according to the increase function Ri(x) and the decrease function Rd(x), 

both being functions of current rate x(t). 

 

Additive Increase Multiplicative Decrease (AIMD) is one family of source 

control scheme that uses an additive increase constant� � DQG� D�PXOWLSOLFDWLYH�GHFUHDVH�
conVWDQW� �DFFRUGLQJ�WR�WKH�HTXDWLRQ�JLYHQ�E\� 

 

 

AIMD:

( ) ,   additive  increase
( 1)

( ),      multiplicative decrease
x t

x t
x t

α
β

+
+ = 



. (2) 

 

 As long as there are no losses or congestion indication feedback from the 

receiver or router, the sources increase their rate additively, but once losses occur, the 

rate is reduced multiplicatively. 

 

The increase and decrease functions Ri(x) and Rd(x) in the generic rate equation 

(1) dictate several other source control variants including Additive Increase Additive 

Decrease (AIAD), Multiplicative Increase Additive Decrease (MIAD), and 

Multiplicative Increase Multiplicative Decrease (MIMD). However, it is shown in 

literatures [38], [39] that only AIMD with appropriate increase / deFUHDVH� FRQVWDQWV� �
DQG� �FRQYHUJH� towards efficiency and fairness line. However, AIMD is also proved to 

oscillate around the efficiency and fairness operating points for any given positive 

FRQVWDQWV� �DQG� � 
 

In contrast to the discrete difference equation in (1), continuous controllers 

model the source rate behavior as a function of differential equations. These controllers 

model the source rate behavior as a first-order differential equation with the closed-loop 

continuous feedback loss function explicitly taking into account. Continuous models are 
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thus useful in examining the functional form of the right-hand-side of the first-order 

rate equation. For instance, the control theoretic frequency response methods can be 

directly applied to prove the stability of closed loop response system of these first-order 

systems. Solutions to these set of first-order equations can reveal their properties 

including existence of stationary points and convergence to fairness. Interestingly, it is 

possible to model discrete difference equations using the continuous form with 

discontinuous feedback information. 

 

An ordinary first-order nonlinear differential equation is given by an expression 

such as (3) below. The equation shows that the source rate changes occurs as a function 

of the current rate as well as the loss feedback function p(t). Thus, the function f dictates 

a family of first-order linear or nonlinear differential equation dictated by: 

 

 ( )( )
( ), ( )

dx t
f x t p t

dt
= . (3) 

 

In our proposal, we revisit one such form of continuous feedback controllers 

known as proportional fairness scheme introduced by Kelly [6] that has known useful 

properties including smoother non-oscillatory convergence (theoretic convergence), 

fairness towards similar flows and existence of globally stable operating point. 

Proportional fairness is practically useful in applications like video streaming that 

require faster convergence than currently existing AIMD models, and be fair to similar 

flows. If all flows behave (that is, sources are elastic), such non-oscillatory rate behavior 

naturally reduces the congestion in the network and hence prevents packet losses due to 

congestion. Our underlying motivation is to analytically understand these properties of 

the variants of the proportional fairness scheme and their applicability to the current 

Internet. 

 

The general form of Kelly’ s source rate differential equation studied in [6] can be 

written as shown in the equation (4) below. For any user k, the rate differential equation 
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KDV�D�FRQVWDQW�DGGLWLYH�FRPSRQHQW� wk and a negative multiplicative factor * jj kκ µ∈∑ , 

LQ�ZKLFK� �Ls a constant positive gain factor. The summation represents the link shadow 

prices or the feedback losses across all links along the path. Intuitively, the link shadow 

prices are themselves a function of the aggregate rate of all the source agents and hence 

the rate equation takes a nonlinear form: 

 

 ( )( )
( ) ( )k

k j kk j

dx t
w x t t

dt εκ µ= − × ∑ . (4) 

 

Recently, other forms of nonlinear continuous controllers were investigated 

including Minimum Potential Delay (MPD) [42], [43], and [7]. The objective of MPD is 

to minimize the time delay for a data transfer and the delay is considered a reciprocal of 

the allocated rate xk(t). The functional form of rate differential equation is similar to that 

of equation (4) but with user rate xk(t) squared in the second term of the equation. It was 

proved that this form of MPD controller also achieves fairness among all behaving flows 

and makes optimum usage of the link bandwidth. 

 

2 Forms of Congestion Feedback 

 

Sources adjust their sending rates based on the congestion feedback signals and 

these signals may be received in an implicit or in an explicit manner. Typically, such 

feedback is provided either by the intermediate routers in the network or from the unique 

end receivers. Schemes that implement network-based indications are commonly 

referred to as Active Queue Management (AQM) techniques. AQM techniques enforce 

queuing constraints to the TCP conversations and provide active congestion feedback to 

the end users. Today’ s routers implement a wide variety of AQM techniques that 

monitor the queue sizes and mark / drop packets of the misusing flows. On the other 

hand, schemes that use end host receiver-based feedback are termed as end-to-end 

feedback control. 
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Two of the most widely used AQM techniques are Random Early Detection 

(RED) and Explicit Congestion Notification (ECN) [44]. RED was introduced in 1993 as 

a scheme to allow the gateway to detect incipient congestion by monitoring the average 

queue sizes. As the average queue size exceeds a threshold limit, the incoming packets 

are randomly marked or dropped and this naturally penalizes flows with higher arriving 

rates. Sources are thus expected to infer the packet drops as network losses (implicitly) 

and adjust their rates accordingly. ECN marking is a variant of RED that sets a 

congestion indication bit in the packet header while still forwarding the packets to the 

end hosts. ECN-capable transports are expected to explicitly make use of this field in 

adjusting their window sizes. 

 

Orthogonal to the AQM techniques is the end-to-end feedback from the receivers 

that acknowledge the received packets. Receiver-based feedback can be ACK-based or 

NACK-based. Both of these schemes suffer from accurate estimation of available 

bandwidth of the bottleneck link. This is because the loss ratio feedback by one receiver 

is alone not sufficient in estimating the bottleneck congestion, as congestion occurs due 

to the aggregation of all the other flows as well. If the number of flows in a bottleneck 

router is known, the feedback from one receiver can be scaled up to multiple flows. 

 

Having said this, AQM methods such as RED (and variants of RED) and ECN 

only provide capabilities to contain and penalize flows that misbehave and use 

disproportionate share of the link capacity. These techniques by themselves may not be 

sufficient in implementing a true end-to-end congestion control. 

 

3 Optimal Flow Control 

 

Providing performance incentives to end-to-end congestion control mechanisms 

can be one of the best ways to encourage deployment of behaving source agents in the 
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Internet [45]. Recent studies have opened several new avenues for optimizing flow 

control using a variety of game-theoretic approach [6], [7], and [20]. These methods 

have spurred a vast interest in deploying such end-to-end congestion schemes in the 

Internet. There has been a significant shift in the paradigm among the researchers in 

analyzing congestion control techniques from traditional closed-loop flow control to 

game-theoretic optimization methods since the latter demonstrate better performance in 

simulations and implementations. Many of these game-theoretic studies use analytical 

models to study users’  behavior given their utility functions and underlying network 

costs. One of the recent experiments based on this approach is Caltech’ s FAST TCP [49] 

that is expected to provide throughput several times higher than TCP in high bandwidth-

delay product networks. FAST TCP uses duality optimization theory to adjust the 

sender’ s response based on both the queuing delay and packet loss as cost factors. The 

success of strategic game theoretic controllers has been demonstrated through analytical 

study and simulations in several recent literatures as well [7], [49], and [50]. 

 

Utility-based techniques converges end flow rates to the solution that optimizes a 

particular objective function. These methods include user response time (faster 

convergence) [6], [8], [51], [49], [55] or providing better fairness [20], [53], [52] to the 

users with different utilities. Only a handful of literatures [6], [7] study the relative 

merits of use of one form of objective function and the rate adaptation against the other. 

Thus an analytical understanding based on optimization theories and basic calculus 

would be beneficial to enable the end applications to appropriately choose their utilities 

regardless of others in the network. From the network perspective, it is equally important 

to optimally make use of link bandwidth given that users assign dissimilar utilities. In 

this paper, we analyze the properties of objective functions in choosing an appropriate 

rate adaptation scheme. We propose a generic maximization function and establish the 

necessary criteria for convergence to efficiency of our rate adaptation algorithm and its 

stability. For a given maximization function, we propose a novel tangential controller 

based on familiar tangent vector calculus that proves to be a better choice for rate 
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adaptation scheme. We describe its origins and motivations and prove that it has some 

interesting properties compared to the widely studied Kelly controller. 

 

In order to study the characteristics of objective functions, it is important to 

understand the form of network cost factors involved. Researchers have debated over the 

use of single or several bits of ECN-style feedback versus providing a fine-grained 

available-bandwidth feedback as in XCP [54]. XCP develops a new congestion control 

scheme by introducing precise congestion signal to provide explicit feedback of the 

available bandwidth in the packet header. We are partly motivated by the design of XCP 

that allows end flows to acquire their fair share of bandwidth quicker than TCP. Our 

model assumes a continuous and uniform loss feedback (all sources receive the same 

network feedback). 

 

The rest of our thesis is organized as follows: We present the three facets of our 

research problem, our motivation to investigate them and their corresponding approaches 

to the solution in chapter II. In chapter II, we present the problems of utility-based flow 

optimization, stability of delayed feedback systems and our novel tangential controller as 

our three major objectives of the thesis work. Chapter III describes the related work in 

our area of research. In chapter IV, we present our network model, the motivation and 

analysis of utility-based optimized flow control schemes. Specifically, we consider the 

constrained optimization problem with inequality Kuhn-Tucker constraints and prove the 

bounds for feasible rate allocations for proportional fairness schemes. Chapter V 

introduces to the problem of analytical evaluation of the existence of asymptotic stability 

in delayed feedback environment. Here, we derive the upper bounds for 

increase/decrease gain parameters of single-flow and N-flow cases using transfer 

function methods. Chapter VI proposes a novel tangential controller using the 

trajectory-following technique and scaled packet loss penalty. Our tangential controller 

rate adaptation scheme uses a trajectory following technique to maximize a given 

objective function with the adjusted penalty. We propose a novel rate control algorithm 
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(for logarithmic utilities) corresponding to our modified pricing scheme that has up to 

4 times less packet losses compared to the proportional controllers. We establish the 

asymptotic stability of our controller using transfer functions. Finally, we analyze and 

implement a rate-based tangential TCP (TTCP) scheme using NS-2 network simulator 

and show simulation results of the relative behavior with other forms of rate control 

schemes. 
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CHAPTER II 

RESEARCH PROBLEM AND SOLUTIONS 

 
1 Utility Functions and Network Optimization Problem 

 

Communication networks that use adaptive and elastic transport agents (such as 

TCP) are highly dynamic in nature and exhibit a non-cooperative (selfish) rational 

decision making process between the participating sources. Rational game theory-based 

decision making involves global optimization of individual and system utilities. 

Although end source agents are unaware of the decisions taken by others, a collective 

rational decision making requires some form of feedback from the network. In the case 

of transport protocols like TCP, this information is available in the form of loss rate 

feedback from the network. 

 

A class of optimization problem that maximizes the system utility globally 

optimizes the system resources knowing the utilities of the individual usages. Each user 

chooses its own utility based on its own resource usage. In most problems, the system 

utility functions are considered to be additive in nature of the individual user utilities. 

 

1.1 Proposed Research 

 

Our proposed research intends to study the properties of utilities within the given 

inequality constrained set (a set consisting of feasible rate allocations) to establish tighter 

bounds on the network shadow prices. Primal and dual optimization algorithms studied 

in, [6], [7] and [8] treat the system maximization problem using equality constraints and 

solves using traditional Lagrangian techniques (with looser sufficiency conditions). We 

believe that there are at least 2 problems in this approach. Network problems are always 
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known to operate under the inequality conditions such as available bandwidth. 

Network queues undergo stochastic fluctuations owing to the arrival and departure of 

flows in the system and also due to the ON-OFF nature of the flows themselves. 

Optimization theories suggest that inequality constraints have tighter bounds compared 

to equality constraints and hence we attempt to take this into account in our problem 

domain. This will be the fundamental focus of our study of utility-based optimization 

approach. 

 

Secondly, we intend to study the functional form of the utilities to establish a 

corresponding rate differential equation. A natural question that arises is whether the rate 

adaptation algorithm can be uniquely determined given the objective function to be 

maximized? That is, are there any systematic ways for source k to adapt its rate xk that 

“ closely follows”  the maximization function? 

 

In investigating these two ends, we realize that the problem of choosing the right 

utility (with appropriate functional properties) is two-fold in nature: to drive the system 

towards an equilibrium point and to establish the local stability of the chosen rate 

differential equation. At one side, we establish the necessary and sufficiency criteria of 

the functional form of utility within the bounded inequality set. At the other side, we 

struggle to prove the existence of a Liapunov function for this optimization problem and 

prove its asymptotic stability of the first-order rate equation (using Liapunov first and 

second stability theorems). 

 

In this section, we give an introduction to the problem. We consider more details 

of our problem formulation and its solution in the actual thesis work. Consider a network 

optimization problem that maximizes the system utility for all the k users in the system. 

We assume our utilities are additive in nature constrained by the link capacity given by: 
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( )  ( )

( ) 0, 0,
k k k

T
k

U MAX U x

h C A x k

= ∑
 = − ≥ ≥ ∀

x

x x
. (5) 

 

In equation (5), the bottleneck capacity is represented by positive constant C and 

h(x) is the constraint to be applied. Matrix A represents a LxN link adjacency matrix of L 

links of N users that has unity 1ikA =  if user i uses link k across its path.  

 

Kelly’ s dual model for a user r maximizes user objective function given by: 

 

  ( ) ,r j r Lr r j j rMAX U x C x Cεµ− ≤∑ ∑ ∑ . (6) 

 

Optimization is done across all the links j of each route set J�DQG� j are the link 

shadow price per rate. The corresponding source rate adjustment of any source k is given 

by the differential equation: 

 

 ( )( )
( ) ( )r

j rr r j

dx t
w x t t

dt εκ µ= − ∑ . (7) 

 

Global Liapunov of the systems (6) and (7) with a logarithmic utility is given by: 

 

 ( ) log ( )r j Jr r jU x w x p y dyε= −∑ ∑ ∫ . (8) 

 

2 Stability of Delayed Feedback Systems 

 

Establishing the necessary theoretical criteria for network stability and robustness 

is a critical factor in understanding the system operation around the equilibrium point. 

Studying the problem of network stability is orthogonal to studying the optimization of 

network resources about an efficiency point. While stable systems drive itself back to 
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normal conditions, tolerance to perturbations is considered system robustness. In 

communication networks, instability primarily arises due to multiple network conditions 

including stochastic perturbations due to arrival and departure of flows, transmission and 

queuing delays in the network and resource misuse due to inelastic sources. Elastic 

sources that adjust their rates following a rate differential equation suffer from slower 

response time owing to the lag in the communication feedback delays in the network. 

This delay causes delay in convergence to fairness with other similar source agents. 

Intuitively, the slower the convergence rate is, the longer the transient effects last. These 

transient effects can lead to unpleasant oscillations due to the delay in learning and 

adjustment of the total number of competing flows. In this study, we do not consider 

such transient effects. 

 

Assuming that all sources behave (that is, sources are elastic), instability in the 

network arises solely due to the network delays caused by propagation and queuing 

delays. Our system thus becomes a closed-loop delayed feedback control system in 

which the stability depends directly on the end-to-end feedback delay. In order to 

simplify our study, we consider only a constant propagation delay and ignore the 

queuing delays. In our study, we investigate the relation between the robustness of the 

system around the optimal point and the bounds on homogeneous delays of the sources. 

 

2.1 Proposed Research 

 

Our proposed research intends to analytically study the local stability of the 

chosen rate differential equation under homogeneous delayed feedback conditions. 

Feedback delays of a source can be constant or stochastic owing to the queuing and 

noisy factors added to the delays. Stochastic delays with non-zero mean noises are 

modeled using functional differential equations and are not studied in depth in our study 

here. Our focus in this thesis is on modeling simple practical delayed feedback systems 

with constant homogeneous delays and to develop parametric bounds. 
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We use the control theoretic open-loop transfer function methods to establish the 

local stability of our first-order rate equation. We linearize our rate equation around the 

equilibrium point and use the Laplacian methods to transform it to the frequency 

domain. The transfer function method yields us insights into the system dynamics 

compared to the simple linearized Jacobian technique. Moreover, feedback delays in the 

Laplacian domain simply take the form of an exponent factor in the transfer functions 

and hence are immediately tractable. 

 

In this section, we give an introduction to the problem and consider further 

details of the problem formulation and solutions in the actual thesis. Consider the 

simplest form of proportional controller with Kelly’ s logarithmic utility functions as 

given. 

 

 
dr

rp
dt

α β= −  (9) 

 

Our source rate r is increased additively b\� � DQG� PXOWLSOLFDWLYHO\� E\�
( )* ( )* ( )r t p r tβ . For a single-flow across the bottleneck router, the packet loss function 

p(r(t)) is defined as in: 

 

 
0,

,

r C
p r C

r C
r

<
=  − ≥

, (10) 

 

where C is the bottleneck link capacity. 

 

The system transfer function G(s) (output transfer function divided by the input 

transfer function) of a single-flow constant delayed model is obtained by linearizing (9), 



 

16

 

 
 

followed by transformation to Laplacian domain. The final system open-loop transfer 

function is as given by: 

 

 0

0

1
( )   

,   

sT
e

e

G s
C

s r e
r

C
r r

C

β

αβ β α
β α β

−
=

+ +

+= =
+

, (11) 

 

where T in our model represents the constant roundtrip delay. 

 

Traditional models [4], [5], [6] study the system stability with known functional 

forms of utilities under delayed circumstances. These techniques use state-space analysis 

to prove the existence of negative eigenvalues of the system characteristic equation. 

Applying the Nyquist stability criteria on the system return ratio matrix, they develop 

the upper bounds on the delay that the system tolerates for given conVWDQWV� �DQG� ��,W�LV�
proved that such systems become unstable once the delay exceeds the threshold. Our 

proposal intends to address the stability of the delayed feedback systems as studied 

earlier. However, we compare the Jacobian approaches and study the pitfalls in the 

approach and later develop the transform function-based approach to study the 

dynamics. 

 

3 Tangential Controller 

 

Based on the nonlinear optimization theories developed earlier, we propose a 

novel tangential controller that has several interesting properties compared to the family 

of proportional controllers. Specifically, we have the following motivations in 

developing our analytical model for the tangential controller. 
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We are motivated by several recent literatures studying decentralized rate 

adaptation scheme in which the senders adjust the source rate at the same time 

maximizing the system objective function (utility minus cost). This led us to the 

following questions: 1) Can the rate adaptation algorithm be uniquely determined given 

the objective function to be maximized? That is, are there any systematic ways for a 

source k to adapt its rate xk that “ closely follows”  the maximization function and that 

ultimately maximizes the system throughput of all users at a fair optimum rate *
kx  for all 

users k? 2) How does choosing of a rate control scheme affect its convergence to 

efficiency with a minimum packet loss? 3) How can asymptotic and global stability be 

ensured of such a closed-loop feedback systems under heterogeneous delayed 

conditions? 

 

Literatures [4], [5], [6] survey several forms of objective maximization functions 

but they do not necessary explain why the rate control behaves the way it behaves. 

Specifically, they do not address the following problems: 

 

• What is the correlation between choosing a distributed rate adaptation scheme 

against maximizing a given objective function? 

 

• Are there other maximization functions that can converge to fair optimum rate 

and that are Liapunov stable? 

 

• For a given utility, what is the tradeoff between attaining the optimum 

throughput, the speed of convergence to efficiency and the compromise in 

stability with delayed feedback? 

 

• Can packet loss scaling be made asymptotically sub-linear with the increasing 

number of flows across a link? 
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3.1 Proposed Research 

 

In this section, we use the results from inequality optimizing problem described 

in earlier sections to develop a novel tangential controller. First, we introduce a 

trajectory-following technique and prove that it satisfies the two Kuhn-Tucker inequality 

conditions described in previous section. Second, we show the need for additive 

(positive) packet loss penalty to scale the loss aggressively. Third, we utilize this 

(positive) packet loss scaling factor and prove that our pricing scheme with additional 

loss scaling factor results in much smaller error in source rate evolution. 

 

Consider the network rate allocation problem P as follows. Our aim now is to 

develop a network rate allocation scheme with dependence on the following parameters 

given by: 

 

 ( )

( )1 2

1 1 2 2

P:  ( ( ), ( ), ( ), ( ))

( ) ( )  ( )... ( )

( ) ( )  ( )... ( )
k

l

T
k k

T

R R R

NETWORK h p

U x U x U x

Q Q Q

=

=

U x x x Q x

U x

Q x x x x

,   (12) 

 

where ( ( ), ( ), ( ), ( ))lNETWORK h pU x x x Q x  is the system that maximizes the overall 

utility function defined as: ( )( ) ( ) ( )
kk lk l RMAX U p Q− −∑ ∑x x x . We propose an 

alternative cost function as follows. 

 

Consider our model with link l with packet loss pl(xl), where xl is the aggregate 

rate of all flows that pass through link l. The model assumes an additional route-

dependent penalty scaling factor ( )
kR lQ x  added to the packet loss p(xl). The scaling 

factor is path-dependent such that Rk represents the path for user k. Thus the net cost 

Wk(xk) paid by the user k in our pricing scheme is given by: 
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( )
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( ) ( ) ( ) ( )

( ) max ,

s

k

k

x

k k k k l c R
l R

R s l k
s l

W x U x p s ds Q

Q x C l R

α β β
∈

∈

∑ 
= − −∑ ∫ 

 

= − ∀ ∈∑

x

x

, (13) 

 

In (13), the constant non-QHJDWLYH�JDLQ�SDUDPHWHUV� �� �DQG� c are used in the rate 

differential equation for increasing and decreasing the rates. 

 

Our novel trajectory-following formulation is as follows. Consider a positive-

definite source rate equation x(t) that evolves according to the first-order differential 

equation: 

 
( , )

( )
d d

f
dt dt

φ η= =x x x . (14) 

 

The source rate vector x(t) is adjusted according to trajectory tracking function 

f(x) that is yet to be determined. Family of functions ( , )φ ηx  are said to be flows that are 

solutions to the rate differential equation (14)� VXFK� WKDW�� HYHU\� FRQVWDQW� � \LHOGV� DQ�
integral curve for (14). If the objective maximization function is U(x), then we theorize 

that the tangent vector at any point x (gradient at x) at every step yields the closest 

possible trajectory towards the unique maximum *x . In our pricing scheme, the net cost 

paid by the user k is given by (15). The additional route-dependent penalty scaling factor 

( )
kRQ x  is given by: 

 
0

( ) ( ) ( ) ( )
s

k

x

k k k k l c R
l R

W x U x p x dx Qα β β
∈

∑ 
= − −∑ ∫ 

 
x . (15) 

 

 ( )2

( ) max ,
kR s l k

s l
Q x C l R

∈
= − ∀ ∈∑x  (16) 
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We claim that our optimum rate allocation problem P in (12) is solved by the 

following rate differential equation that follows the cost function closely. 

 

 ( )’ ( ) ( ) kRk
k k k l c

l R k

Qdx
x U x p

dt x
α β ββ

∈

∂
= − −∑

∂
x  (17) 

 

We aim to prove the necessary theory behind this allocation problem and 

establish the stability of this rate controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

21

 

 
 

CHAPTER III 

RELATED WORK 

1 Utility Functions 

 

The concept of utility is borrowed from optimization theory. Utility of a user is a 

function of commodity consumed against the given prices under the budget set. The user 

or the agent’ s objective is to maximize its own utility over the given budget set. 

Equivalently, in network optimization problem the sender maximizes its own throughput 

at the cost of other sources in the system and the constrained link capacity (that is, 

aggregate link rate does not exceed the link capacity). In our model, we assume that the 

senders’  utilities are proportional to their throughput achieved. 

 

In 1998, Kelly [6] introduced a family of game-theoretic utility functions applicable 

to network optimization and allowed individual users to have their own utility function 

Ur(xr) proportional to the current sending rate xr. The collective set of sources forms the 

system-wide additive utility which is to be maximized under the link capacity constraint 

as shown in equation: 

 
  ( )

,  constraint
r rr R

ll L

MAX U x

x C
∈

∈

∑
≤∑

. (18) 

 

The constraint indicates that the aggregate rate across link l cannot exceed the link 

capacity C. 

 

A number of utility functions may be chosen but the important properties are that 

they have to be strictly concave monotonically increasing functions and are continuously 

differentiable over positive rate xr. An implicit assumption made by Kelly et al. in [6] is 

that the utilities increase monotonically (or are concave) as a function of current rate, 
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provided the rate is bounded by the bottleneck capacity. Strict concavity of the 

constraint ensures a unique global maximum in the constrained bounded set. Such 

functions are applicable only within the bounded set given by the constraint in the 

equation (18). Bounded sets are those whose rates are positive values xr���DQG�IRU�WKRVH�
whose aggregated rate does not exceed the link capacity C. 

 

Source agents that behave (adjust their rates dynamically) using a certain class of 

utility functions are said to be elastic. Kelly et al. [6] introduced two source rate 

algorithms, the primal and the dual forms of optimization problem. These algorithms 

maximize the given objective function according to a chosen rate differential equation. 

Optimization problems that maximize an objective function under constraints are treated 

as primal to begin with, and are later converted to its corresponding dual form. Primal 

form seeks to maximize the objective function as expressed by: 

 

 
( )

,  constraint
r jr r j j

r L r

MAX U x C

x Cε

µ−∑ ∑
≤∑

. (19) 

 

In the context of network flow control, solving the primal form requires a closer 

coordination between the sources to adjust their individual rates. Figure 1 shows one 

such model in which sources across routes 1 and 2 are not aware of each other’ s 

presence and only the bottleneck router is expected to share the loss ratio information 

with all sources in the network. In our model, there are two independent sources sets S1 

and S2 each using utility functions Ur and Us respectively. Because users do not have any 

means to share information with other users within the network, any network-wide 

feedback has to be provided by the network infrastructure itself [45]. In our case, sets S1 

and S2 ultimately share a single bottleneck resource and hence the bottleneck router 

sends link usage feedback of one set to the other. 
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Figure 1 Primal coordinated approach. 

 

The Internet, on the other hand, is vastly distributed and heterogeneous in nature and 

hence the dual form is more practical to implement. The dual form of network 

optimization is a distributed approach in which the senders are non-cooperative in nature 

and are only aware of their own losses in the network. This loss information serves as a 

global end-to-end congestion feedback to all the senders to adjust their rates. Thus, the 

whole system functions as a dynamic closed-loop feedback system with network 

operating as a plant transfer function. We illustrate this in the Figure 2. In the model 

shown in the Figure 2, we distinguish the sources in two sets S1 and S2 based on their 

utilities. Sources in sets S1 (r� � S1) and S2 (s� � S2) are distinguished by their utility 

functions Ur and Us respectively with S1 and S2 taking different route to destinations.  
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Figure 2 Closed-loop feedback network model. 

 

A decentralized dual form rate algorithm thus solves a first-order rate differential 

equation with the aggregate loss feedback as given by: 

 

 
( )

* ( ) ’ * ( )k
kk k j

j k

dr t
r t U w t

dt ε
κ µ = − ∑  

. (20) 

 

Rate equation (20) is similar to the Kelly’ s original (4) for any user k, except that 

(20) is for a generic utility. Kelly’ s scheme (4) is obtained by substituting logarithmic 

utility ( ) logU r r=  in (20). 

 

2 Network Loss Feedback 

 

Several forms of implicit (such as packet loss or drops) and explicit network 

feedback (such as ECN [44]) are studied in the literature [38], [39], [40], and [44]. In 

these models, source agents infer the current network load through implicit means such 

as packet drops, queuing delays, asymptotic increase in queue sizes and variance of the 

RTT, all of which are nonlinear in nature. ECN marking [44] is a congestion indicator 
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mechanism that that sets a congestion indication bit in the packet header while still 

forwarding the packets to the end hosts. ECN-capable transports are expected to 

explicitly make use of this field in adjusting their window sizes. Recently, XCP (eXplicit 

Control Protocol) [54] develops a new congestion control scheme by introducing precise 

congestion signal to provide explicit feedback of the available bandwidth in the packet 

header. It is shown by the authors that the design of XCP allows end flows to acquire 

their fair share of bandwidth quicker than TCP. 

 

Kelly et al. [6] propose a rate-adjustment algorithm known as the dual form and 

use the loss feedback as the pricing function. Traditional TCP and earlier utility-based 

studies , [7], [50], [15], [8] assume loss feedback as the pricing function, but recently La 

and Ananthram [55] and Alpcan and Basar [49] investigate the use of queuing delays as 

nonlinear pricing and establish the global stability of such controllers. An important 

challenge faced in nonlinear rate algorithms is to prove the existence of a unique point 

towards which all Liapunov trajectories converge. 

 

The success of strategic game theoretic congestion control with network loss rate 

as feedback has been demonstrated widely through simulations in several recent 

literatures [7], [49], and [50]. Kunniyur et al. [7] simulate agents with three utility 

functions that simultaneously share the network and show the unfairness in their 

behavior when congestion occurs. This happens because utilities with significant round-

trip delays experience buffer starvation in FIFO queues with the drop-tail mechanism, 

while other utilities do not aggressively decrease window sizes when congestion is 

detected. Alpcan and Basar [49] develop a window-based TCP-friendly controller with 

the linear queuing delay as the pricing and show that the new scheme exhibits smoother 

convergence and far less-aggressive behavior compared to TCP. Ganesh and Laevens 

[50] simulate a rate adaptation scheme with a family of utility functions with 

heterogeneous price estimates and prove that the stability of their controller is not 

compromised. 
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In the model studied, we consider an ECN-style explicit network feedback that 

consists of cumulative packet loss across all links along the path of each user. 

Cumulative packet loss is additive in nature as studied in current literatures [6] and [7]. 

However in practice, packet marking (or dropping) typically follows a product form 

probability function1 (1 ( ))l R l lp x∈− −∏ , where pl(xl) is the loss rate at link l, xl is the rate 

of all flows across link l and R is the set of all links along the route of each user. In the 

later proposal of tangential controller, we study the additive penalty with a positive 

route-dependent price that the user pays and prove that this pricing scheme converges to 

a global optimum.  

 

3 Network Stability 

 

 System stability is studied using two well-known approaches: to develop the 

Liapunov function and prove the first and second asymptotic stability criteria [12] and to 

develop the control theoretic open-loop stability using transfer methods [56] and [57]. 

 

Kelly et al. [6], [21], [22] theoretically established that the system maximization 

function (that is, aggregate sum of logarithmic utility minus the price paid per link) was 

indeed the Liapunov proving the local stability of the rate equation. Without the 

stochastic perturbations, the first derivative of the Liapunov function was proved to be a 

strictly increasing positive definite function with a unique maximizing rate. In their 

model, Kelly et al. established the stability of discrete delayed feedback systems. 

 

Massoulié [11] established an upper bound on the increase / decrease gain 

parameters with heterogeneous feedback delays for a continuous-time system. His model 

considered the asymptotic stability of the rate equation with heterogeneous feedback 

delays using matrix transfer methods. Local stability of the rate equation was verified by 
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proving the existence of Liapunov function, its first and second stability criteria and 

the existence of strictly concave Liapunov function. 

Johari and Tan [9] developed an upper bound on the increase / decrease gain 

parameters for proving the local stability of a constant-delay feedback system using a 

discretized characteristic equation. The main difference between their model and 

Massoulié’ s [11] is that the upper bound of the gain parameters using a discrete-time 

equation is tighter as compared to the bound established by a differential-difference 

equation. One immediate inference is that the practical systems are better analyzed 

analytically using discrete-time difference equations. Using their model, the authors 

prove that the same bound exists for non-adaptable users (infinite feedback delay) as 

well as instantly adaptable users (zero feedback delay). 

 

Vinnicombe [10] developed a transfer function-based methodology to verify the 

local asymptotic stability of continuous-time systems with heterogeneous delays. His 

results verified results established by Kelly et al.[6]. An important contribution is his 

explicit accounting of the exponential smoothed pricing information taken into account 

in the rate adjustment algorithm. 
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CHAPTER IV  

UTILITY FUNCTIONS AND NETWORK OPTIMIZATION 

1 Our Network Model 

 

In this section, we present the analytical model for solving the optimization 

problem under link capacity constraints. Our network model resembles that of Kelly et 

al. [6], [21], [22], but solves the inequality constraint problem using Kuhn-Tucker 

inequality conditions [13]. 

 

The analytical model used in this study considers an underlying network 

framework with a set of J resources utilized by set of I users. Resources are links (or 

router queues) that have link capacities Cj and are capable of signaling end users by 

providing aggregate loss feedback pl across link l. Since we wish to explicitly evaluate 

the performance of our model with both end-to-end and AQM methods, we assume both 

forms of feedback control in our model and experiments. 

 

User k I∈  in our model chooses utility function Uk(xk) which is strictly concave, 

monotonically increasing and double differentiable over all rates 0kx ≥ . For simplicity, 

we logically group the sources into groups such that the sources in each group attach the 

same logical meaning to their utilities. Recall that we showed one such example in 

Figure 2 with groups S1 and S2 in the introduction section. The model assumes a 

distributed approach in which the bottleneck link provides an aggregate feedback to 

sources in groups S1 and S2. 
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2 Problem Motivation 

 

The motivation in investigating utility-based flow optimization in our study is 

due to the several recent literatures on decentralized rate adaptation schemes. In these 

schemes, the senders adjust their rates and at the same time maximize the system 

objective function, i.e., utility minus cost. This led us to the following questions: 1) Can 

the rate adaptation algorithm be uniquely determined given the objective function to be 

maximized? That is, is there any systematic way for source k to adapt its rate xk that 

“ closely follows”  the maximization function and that ultimately maximizes the system 

throughput of all users at a fair optimum rate *
kx  for all users k? 2) How does choosing a 

rate control scheme affect its convergence to efficiency and the amount of packet loss? 

3) How can asymptotic and global stability of such a closed-loop feedback systems be 

ensured under heterogeneous end user delays? 

 

Literature survey several forms of objective maximization functions, but they 

often do not address the following problems: 

• What is the correlation between choosing a distributed rate adaptation scheme 

and maximizing a given objective? 

• Are there other maximization functions that can converge to a fair optimum rate 

and are Liapunov stable? 

• For a given utility, what are the tradeoffs between attaining the optimum 

throughput, speed of convergence to efficiency, and stability under delayed 

feedback? 

• Can packet loss be made asymptotically sub-linear with the increasing number of 

flows through a link? 

 

These questions serve as our primary motivation towards investigating 

controllers that may yield the above-mentioned properties. 
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3 Inequality Optimization Problem 

 

Network transport agents are modeled as non-cooperating sender entities that try 

to maximize their own objective function. Objective functions consist of an unbounded 

monotonically increasing utility function minus a nonlinear penalty paid for the service. 

The domain of the objective functions is generally determined by equality or inequality 

constraints. Typically, inequality or equality constraints are applicable depending on 

whether the aggregate rate is strictly lesser than the bottleneck link bandwidth or not. 

Traditional techniques study the optimization problem with equality constraints with the 

primal and dual form algorithms [6]. The primal and dual optimization algorithms 

studied in [6], [8] treat the system maximization as equality constrained using the 

Lagrangian formulation. We believe that there are at least two problems in this approach. 

First, network flows always are known to operate under inequality conditions such as the 

bottleneck bandwidth. Second, optimization theories suggest that inequality constraints 

with application of Kuhn-Tucker conditions [13] establish tighter bounds on shadow 

prices and hence we attempt to take this into account in our study. 

 

Our inequality problem formulation is as follows. Consider a constrained 

optimization problem for maximizing a given user objective function Uk(xk), which is a 

strictly concave, monotonically increasing function of the user’ s throughput xk. The 

domain of the user maximization function is bounded by the inequality constraint for 

link l, ( ) 0lh ≥x  , where hl(x) is the constraint function and x is the aggregate rate of  all 

flows passing through link l. Assuming utilities are additive, the system-wide objective 

function U(x) is a weighted sum of individual user utilities. We further assume that the 

feasible user allocation rates 0kx ≥  are formed by the inequality constraint ( ) 0lh ≥x , 

which forms a closed and bounded set, i.e., a closed ball D with optimum rate *
kx  as its 

radius. It is important to consider a closed-ball in order to establish a global optimum for 

our maximization function and to prevent Kuhn-Tucker conditions from failing at the 
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global optimum. Recall that, Kuhn-Tucker conditions are necessary, but not sufficient 

for the existence of a global maximum [13]. Furthermore, it is important to realize that 

the closed-ball radius *
kx  is different for different flows until optimum fairness among all 

flows is established. However, there exists a global maximum of all flows for a given 

objective function: * *max k
k

x x= . 

 

Consider a network optimization problem that maximizes the system utility for 

all users in the system. We assume our utilities are additive in nature and constrained by 

the link capacity: 

 
( ) max ( ), 0,

( ) 0

k k k
k

T

U U x x k

A

= ≥ ∀ ∑


= − ≥

x

h x C x
, (21) 

 

where the inequality constraint vector h, the rate vector x, the capacity vector C 

and routing matrix A are defined as: 

 

 

1 2

1 2

1 2

( , ,.., ,.., )

( , ,.., ,.., )

( ) ( ( ), ( ),.., ( ),.. ( ))

1,  if user  passes through link 

0,

T
l n

T
l n

T
l n

kl

kl

x x x x

C C C C

h h h h

A k l
A

A otherwise

=

=
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x

C

h x x x x x . (22) 

 

The vectors defined in (22) solve the optimization problem (21) by defining the 

Lagrangian. The Lagrangian of the system (21) is defined by: ( , ) ( ) ( )TL U h= +x [ [ , 

where vector 1 2( , ,.., ,.. )T
l nµ µ µ µ=  are the Lagrangian multipliers or the shadow prices 

corresponding to each link. The optimal solution *x  is determined by applying the 

inequality theorem [13] to the feasible set of rates under the following conditions: 
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• Condition 1: 0,   ( ) 0,   ( ) 0l l l k l kh x h xµ µ≥ = ≥ , for all users  k across 

link  l. 

• Condition 2:  for all users k, we must have the following: 

 

 *

( )
0

0
k k

l
k k k

k x x

k

h
U ’(x )  

x

x
=

 ∂+ = ∂
 ≥

x
 (23) 

 

An immediate observation from the above conditions is that the shadow price 

IDFWRU� l for link l is the same for all users whose route passes through link l. Substituting 

constraint hl(x) in equation (21) in (23), and simplifying yields: 

 

 *’( ) ( )k k l m l
mk

U x C x
x

µ µ∂= − − =∑
∂

. (24) 

 

Lemma 1: Users with the same utilities U(xk) attain a fair share of the underlying 

link l with shadow price� l, and the fair share for all users *x  is given by: 

 

 

*

*

1

( )

( ) 0

( ) 0

k

l

k

l

x
U

U x

U

µ

µ

 = ′
 ′ ≠
 ′ ≠



. (25) 

 

Proof: We first note that (23) gives us the first-derivative of utility at optimum 
*
kx  as *( )k k lU x µ′ = . Assuming that the shadow prices  are non-negative, we apply the 

familiar inverse function theorem to obtain the first-derivative of the utility as a function 

RI� VKDGRZ� SULFH� l for link l at the optimum point *
kx . Inverse function theorem is 
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defined as follows. Given a continuously differentiable function ( )y f x=  and a local 

optimum value *x , the inverse function 1( )x f y−=  exists near *x  if *( ) 0f ≠x  [58]. In 

our case the function f happens to be U’(xk). Since the shadow price communicated to all 

users k (whose route lies along link l) is the equal, their respective fairness share is the 

same. Note that the utility function is strictly concave, monotonically increasing function 

for our proof to hold good.                  � 
 

6LQFH� WKH� VKDGRZ�SULFHV� l can take any non-negative real value, and the first-

GHULYDWLYH� RI� WKH� REMHFWLYH� IXQFWLRQ� H[LVWV� IRU� DOO� l, we conclude that (25) defines the 

fairness among sources that have routes passing through link l. Indeed, in a single-link 

system, we find that this amounts to an exact fair share among all users provided they 

use the same utility functions. It is this non-negativity condition on the shadow prices 

l��� WKDW� HQIRUFHV� IDLUQHVV� DPRQJ� XVHUV� DQG� HVWDEOLVKHV� WLJKWHU� IHDVLELOLW\� VROutions to 

(21). 

 

We next extend the usefulness of shadow prices and prove that it provides a 

family of fairness schemes, one of which is proportional fairness. 

 

Lemma 2: The optimization problem in (21) with additional fairness constraint 
* 0k kx x− ≥  for all users k results in skewed normalized fairness delay (reciprocal of the 

rate) of 
1 1

j i
i jx x

λ λ− = −  for dissimilar users i and j sharing the same bottleneck link l. 

Proportional fairness is one such family of fairness resulting from i jλ λ= . 

 

Proof: The Lagrangian of our new system is determined by the utility minus the 

penalty which are constrained by additional fairness factor for each user k. This results in 

extra shadow prices 0lλ ≥  for each link l. The Lagrangian of this system may be written 

as follows: 
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 *( , ) ( ) ( ) ( ) ( )T T
l lL U p s ds= − + + −∑ ∫x [ K [ [ [  (26) 

 

Consider the Lagrangian of a two-user system with packet loss 

( ) 1k k
k k

C
p x

x
= −∑

∑
, where C is the bottleneck link capacity. The Lagrangian of this 

two-user system for logarithmic utility can be written as: 

 

 
1 2 1 2 1 2

1 2 1 2 1 2

* *
1 1 1 2 2 2

( , , , , ) (log log )

( 2 log( )) ( )

( ) ( )

L x x x x

x x C x x C x x

x x x x

µ λ λ
µ

λ λ

= + −
− + + + + − − +

+ − + −

. (27) 

 

Taking the partial derivatives of (27) with respect to x1 and x2 and equating them 

to zero yields the normalized skewed fairness delay factor for users i and j that share the 

same underlying bottleneck link l: 

    
1 1

j i
i jx x

λ λ− = −  (28) 
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Figure 3 Feasible rates for max-min (left) and proportional fairness (right) for two flows. 
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We show the results of Lemma 2 in Figure 3 that compares two feasible 

allocation rate sets for max-min and proportional fairness. Max-min sets can take values 

in set 2 1 1
C x C≤ ≤  and 2 2 2

C x C≤ ≤ , bounded by the right-triangles shown in the figure. 

On the other hand, proportional fairness are defined by 
*

0k k
k

k

x x
x
− ≤∑  and hence can 

widely vary between the two lines shown * *
1 2x x>  and * *

2 1x x> . The result in Lemma 2 

shows precisely this. 
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CHAPTER V  

STABILITY OF DELAYED FEEDBACK SYSTEMS 

 
1 Motivation 

 

Our motivation is to develop control-theoretic transfer function methods to prove 

the stability of delayed feedback controllers. We develop the bounds on increase / 

decrease parameters using transfer function methods and show that the methods concurs 

with the bounds developed by similar literature earlier. 

 

2 Stationarity of Proportional Controllers 

 

In this section, we derive the stationarity of proportional controllers for two 

cases: a simple single-flow case and a general N-flow case. Establishing the stationary 

steady state rates and packet loss for a general N-flow case is important in linearizing the 

system around the operating point where the local stability is sought. 

 

2.1 Single-flow Case 

 

 Consider a proportionally fair transport agent that adjusts its sending rate using a 

continuous function of time evolving as per the differential equation: 

 

 
dx

xp
dt

α β= − , (29) 
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ZKHUH� � DQG� � DUH� DGGLWLYH� DQG� PXOWLSOLFDWLYH� FRQVWDQWV�� )RU� VLPSOLFLW\��
consider a single bottleneck link with one flow whose rate evolves as per the differential 

equation (29). The link loss feedback function p(x) is continuous and is defined as: 

 

 
0,

( )
,

x C
p x x C

x C
x

<
= − ≥

. (30) 

 

 Substituting (30) in (29) for rates x C≥ , the stationary steady-state rate of the 

source is obtained by forcing the time derivate of rate differential equation (29) to zero. 

That is, 

 

 
0

( ) 0

dx
dt

x C
xp x x

x
α β α β

=

−⇒ − = − =
. (31) 

  

 We obtain the stationary source rate x* and the stationary loss feedback * *( )p x  

for the single-flow bottleneck link by simplifying the expression in (31): 

 

 
*

*
*

x C

p
x C

α
β

α α
β α β

 = +

 = =
 +

. (32) 

 

2.2 N-flow Case 

 

Consider a network model with a simple one bottleneck link with several flows 

whose path lie along the bottleneck link. The flow rates are proportionally fair and 



 

38

 

 
 

evolve according to (29). We define the rates of all flows passing through the 

bottleneck link by a vector 1 2( , ,.., )T
Nx x x=x . The model is the same as a single-flow 

case except that the aggregate packet loss function p(x) is a function of the aggregate 

rate of all flows along the bottleneck link. The individual source rate of user k is defined 

by function fi(xk) that uses the aggregate packet loss p(x): 

 

 
( )

( )  ,   1, 2,..,
i

k i
k k k

i
i

x Cdx
f x x k N

dt x
α β

−∑
= = − =

∑
. (33) 

 

 The stationary rate vector ( )* * * *
1 2* , ,.., ,..,

T

k Nx x x x=x  is obtained by independently 

maximizing the user rate differential equations and solving the N algebraic equations for 

the individual stationary rates. At stationary vector x*, all flows converge to the same 

equilibrium value * * * * *
1 2 .. ..k N cx x x x x= = = = = =  and is given by: 

 

 ( )* * * *
1 2* , ,.., ,..,  , ,...,

T
T

k N

C C C
x x x x

N N N
α α α
β β β

 = = + + + 
 

x . (34) 

 

Recall that, proportional fairness for single-flow results in the stationary rate 

exceeding the bottleneck capacity by α
β  and hence (34) gives us a general stationary 

vector for flows 1N ≥ . Recall that the stationary loss is thus a function of the aggregate 

rate of all flows passing through the link and this hence is given by: 

 

 *1c

C N
p

N x C N
α

β α
= − =

× +
. (35) 
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We now prove the asymptotic stability of the generic N-flow case using the 

strong linear stability theorem [12]. Strong linear stability theorem states that the first 

order differential equation around an equilibrium point is asymptotically stable if the 

distinct eigenvalues of the Jacobian matrix evaluated at the equilibrium point has strictly 

negative real part [12]. The theorem however, remains true even if the eigenvalues of the 

Jacobian matrix are not distinct. 

 

In order to achieve this, we first linearize our rate equation (using Taylor series) 

around the stationary point. Taylor-series linearization requires deriving Jacobian partial 

derivatives of the set of functions fk for all k with respect all independent rates xj. 

Denoting this by various rows and columns, we evaluate the resulting expression at the 

stationary vector x*. The Jacobian yields the following form. 

 

 

( 1)
,     

( )

( 1)
,     

k

j

C
N

N
if k j

C
f
dx

C
N

N
if k j

C

αβ
β

αβ
β β

  − − +  
  ≠


∂ = 

   − +    − =

x
, (36) 

 

Giving generic names for various rows and columns as ;   k k

k j

f f
a b

dr dr
∂ ∂= = , the 

Jacobian simply becomes an N-dimensional Toeplitz matrix for which the eigen-values 

are to be calculated. The Jacobian Toeplitz matrix is given by the symmetric matrix: 

 

 0
. . . .

a b b b

b a b b

b b b a

 
 
 − =
 
 
 

. (37) 
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The corresponding eigen-value of the Toeplitz matrix is as given by: 

 

 0
. . . .

a b b b

b a b b

b b b a

λ
λ

λ

− 
 − − =
 
 − 

. (38) 

 

 Toeplitz matrices are a special form of matrices that has constant elements along 

the negative diagonals and can be constructed with 2N–1 unique elements. If all 

elements of the main diagonal are the same and all other elements (across all other 

diagonals) are the same, we have a special form of Toeplitz matrix called circulant 

matrix. Circulant matrices are symmetrical with respect to the main diagonal, and each 

row or column can be formed by circular-rotation of elements in the previous row or 

column counter-clockwise. An interesting and useful result about an NxN circulant 

matrix is a generic way to determine its eigenvalues. 

 

Eigenvalues i of a circulant matrix is defined as a series summation and a 

SRO\QRPLDO�RI� i, which is one of the nth roots of unity. We note that some of the roots 

may be complex depending on the value of N. 

 

 
1

0
*

n
j

i j i
j

xλ ω
−

=
= ∑ . (39) 

 

To apply this to our case, we observe that there are only two unique values across 

the diagonals including a and b defined above. Thus, the polynomial (39) thus reduces to 

the following: 

 
1

1

( 1) , 1(occurs 1 time)
*

, 1, (occurs -1 times)

n ij
i i

j i

a n b if
a b

a b if n

ω
λ ω

ω
−

=

+ − =
= + =∑  − ≠

. (40) 
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The eigenvector of our circulant matrix can thus be written in the following 

form as in equation (38) below. Since it is already known that 0a b> > , all eigenvalues 

i are negative proving that N-flow system is also asymptotically stable. Moreover, the 

eigenvalues of the matrix is: 

 

 

1

2

( 1)

..

n

a n b

a b

a b

λ
λ

λ

− − −   
   − +   =   
      − +  

. (41) 

 

 

3 Control-theoretic Model 

 

Recall the generic model depicted in Figure 1 where the sources in sets S1 and S2 

have an associated route to their unique receivers in the receiver pool. In this model, we 

assume a constant round-trip delay of T for all sources in the same group. Consider a 

simple model consisting of a single bottleneck link with an arbitrary number of flows 

across the link. It is possible to extend such a model to include more bottleneck links. 

 

The input rate transfer vector of source rates can be defined as a vector: 

1 2( ) ( ( ), ( ),.., ( ),.. ( ))T
l Ns X s X s X s X s=X and the corresponding output vector 

as: 1 2( ) ( ( ), ( ),.., ( ),.. ( ))T
l NY s Y s Y s Y s Y s= . The open-loop transfer function (output transfer 

function divided by input transfer function) vector is defined 

as: 1 2( ) ( ( ), ( ),.., ( ),.. ( ))T
l Ns G s G s G s G s=G . The open-loop vector G(s) is a function of 

state matrix A, the delayed state-matrix Ad, the input matrix B and the input-output 

matrix C. 
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Recall that the open-loop transfer function of a system with multiple-inputs 

and multiple-outputs with the given vectors can be directly found by [56]: 

 

 1( ) ( )dG s C sI A A D B−= − − . (42) 

 

The relation between the input transfer X(s) and the output transfer vector Y(s) 

can be defined as below and this is used to write the system transfer function (42). 

 

 
( )

( )
dsX s AX A DX BU

Y s CX

= + +
=

. (43) 

 

The input matrix B is a unity matrix N NB U ×=  and the input-output matrix C is 

an identity matrix N NC I ×= . Additionally we define a delay diagonal matrix 

{ }sTD diag e−=  of constant delay T of all the sources. The additional state matrix A and 

delayed-state matrix Ad are dependent on the number of flows in the system and are 

determined in later sections. 

 

4 Stability of Single-flow 

 

Consider the proportional rate controller as given in equation (29) but with 

delayed feedback response of delay T. Represent the delayed rate response as xd(t) and 

constant delay T, the resulting equation is denoted by: 

 

 

( )
( , ) ( ) ( )

( ( ) )
( ) , ( )

( )

d

d t
f x t p x T

dt
x t T C

x t x t T C
x t T

α β

βα

= = − −

− −⇒ − − ≥
−

x x x
. (44) 
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The stationary steady state rate of x(t) and xd=x(t-T) for f(x, xd)=0 still remain 

the same for a single-flow model. 

 

 
*

( ) 0 ( ) 0
dx

f x x C
dt

r C

β α

α
β

= = ⇒ − − =

⇒ = +
. (45) 

 

Similarly, the stationary packet loss p* for this rate also remains the same since 

the steady rate xc is the same. 

 

 *

*

*

( ( ) )
( )

( ) x x

x t T C
p x t T

x t T

p
C

α
α β

=

− −= − ×
−

⇒ =
+

. (46) 

 

We however treat the independent variable and delayed rate xd(t) as two 

significantly different rate equations, since it then becomes easier to linearize. Thus our 

right side function f(x, xd) has 2 partial derivatives for each of the rate variables. 

 

 
2

( , )

( , )

c

d c

d
x x

d
x x

d

f x x
x C

f x x C
x C

αβ
β α

β
β α

=

=

∂ −=
∂ +

∂ −=
∂ +

. (47) 

  

Linearizing (44) using the Taylor-series form yields us: 
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2

( ) ( )

( )

c d c

d
x x d x x

d

f f
x t x t x

x x

C
x t x

C C

δ δ δ

β βδ δ
β α β α

•

= =

∂ ∂= × − × =
∂ ∂

−= −
+ +

. (48) 

 

Taking the Laplace transform of on both sides of (48) and noting that the 

Laplacian of the delayed rate xd(t) { } ( )sT
dL x e x sδ δ−= , the resulting linearized 

expression for a single-flow model with constant delay T is given by following 

expression. 

 

 

1
1

0

0

( ) ,    0

 ;   

sT
e

e

C
G s C

C
s x e

x

C
x x

C

β

αβ β α
β α β

−

 = ≠
+ +




 + = =

+


 (49) 

 

 

5 Stability of N-flow Case 

 

Study of stability of general case N-flow system can be done using state-space 

analysis with positive delays using the above discussed techniques discussed to derive 

the stability for a single-flow case. Our flows have equal but constant delays represented 

as T and we use this to construct the state matrix. Recall that, the general case delayed 

model has the system transfer function G(s) as a function of state-matrix A, state-input 

matrix B and input-output matrix C. For convenience and easier matrix manipulation, we 

have an additional state-matrix Ad, called delayed state-matrix and this represents the 

additional delay exponential elements to the system. 
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We notice the stationary steady state rate still remains the same as for any no-

delay N-flow case. 

 

 *
i

C C
x

N N
α β α
β β

+= + =  (50) 

 

 

*
2

*
*

i
i

i
i

x C N
p

x C N
α
β α

−∑
= =

+∑
. (51) 

 

Our Jacobian matrix for N-flow case is thus extended to a delayed Jacobian 

(represented as Jd), which involves as much independent variables as the original 

Jacobian, but with positive delays. Using partial derivatives evaluated for each rate xi 

and xi
d, our Jacobian at the stationary point takes the square matrix form as below: 

 

 
2

( )

N Nstationary

d N Nstationary

N
J I

C N

C
J U

N C N

αβ
β α

β
β α

×

×

−=
+
−=

+

. (52) 

 

The linearized rate differential is a sum of no-delay and delayed-Jacobian, both 

evaluated at their corresponding stationary equilibrium points. That is, 

 

 dJ J
•

= × + × d[ [ [ . (53) 

 

For a general case N-flow delayed system, following are the vectors and matrices 

that are used to derive the system transfer matrix G(s). 
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1 1

2

, ,.., ,..

;  
( )

;   

T

k N

N N d N N

N N N N

x x x x

N C
A I A U

C N N C N
B U C I

δ δ δ δ δ

αβ β
β α β α

• • • • •

× ×

× ×

 =   
− −= =

+ +
= =

X

. (54) 

 

Taking the Laplace transforms on both the sides of the input-output matrix yields 

us the relation between state vector, no-delay and delayed state-matrix and the output. In 

order to accommodate the delayed state-matrix Ad in the input-state expression, an 

additional delay matrix D is required. The delay matrix for a general case is a diagonal 

matrix { }sTD diag e−=  with series of unequal exponent terms corresponding to the 

unequal delays of each flow. 

 

With the inclusion of delayed state-matrix Ad and delay-matrix D, the system 

transfer equation as given in the earlier sections is defined as the following matrix 

multiplication of state matrices. 

 1( ) ( )dG s C sI A A D B−= − − . (55) 

 

 

2

’ " " .. "
" ’ " .. "

;
.. .. .. ..
" " .. ’ "

;   
( )

sT sT sT

sT sT sT

d

sT sT sT

e e e

e e e
A A D

e e e

N C
C N N C N

α β β β
β α β β

β β α β

αβ βα β
β α β α

− − −

− − −

− − −

 − − − −
 − − − − + × =  
  − − − − 

′ ′′= =
+ +

. (56) 

 

The system transfer matrix G(s) reduces to a simpler case for a no-delay N-flow 

as discussed in the earlier sections. We thus have only two unique elements in the matrix 

namely ’ ’ sTs eα β −+ +  and sTeβ −′′ , and using the earlier methods to determine the 



 

47

 

 
 

determinant and inverse, we have the following expression for the system transfer 

function. 

 

All elements of the transfer matrix G(s) remain the same as Gii(s) given below. 

 

 
2 2 2

( )

( ) ( 2) ( 1)

ik

sT

sT sT sT

G s

s e
s e N s e N e

α β
α β α β β

−

− − −

=
′ ′′+ −=

′ ′′ ′ ′′ ′′+ − − − + − − −
 (57) 

 

Thus function represents the relation between any input k and any output i in the 

multiple flow model and the transfer function remains the same for all input-output 

combinations. 
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CHAPTER V  

TANGENTIAL CONTROLLER 

1 Motivation 

 

In this section, we use the results from inequality optimizing problem described 

above to develop a novel tangential controller. First, we introduce a trajectory-following 

technique and prove that it satisfies the two Kuhn-Tucker inequality conditions 

described in previous section. Second, we show the need for additive (positive) packet 

loss penalty to scale the loss aggressively. Third, we utilize this (positive) packet loss 

scaling factor and prove that our pricing scheme with additional loss scaling factor 

results in much smaller error in source rate evolution. 

 

In modeling the controller, we attempt to address some of the motivations 

described in section II. Specifically, we investigate the correlation between a rate 

adaptation scheme and a given objective function. We design a novel trajectory-

following technique that uniquely maximizes the objective function at the finite 

optimum rate. Using logarithmic utility, we contrast our scheme with Kelly-style 

proportional controller. We find that our scheme converges faster and much closer to the 

bottleneck bandwidth with several times less packet loss. The trajectory following 

hypothesis is proved using inequality optimization problem in which the user pays an 

additional (positive) packet loss penalty in addition to the current penalty paid. The 

additional penalty is supported by our underlying theory that packet loss across all links 

in the user’ s route is non-additive in nature and hence an appropriate error scaling factor 

is required. Indeed, cumulative packet drops across droptail-enabled routers results in a 

product-form probability given by 1 (1 ( ))l R l lp x∈− −∏ , where xl is the aggregate rate 

across link l. 
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While the product-form loss penalty function may be suitable for adjusting 

user rates, it is applicable to specific topologies and invariably assumes droptail queues 

across links in user routes. Routes with heterogeneous queuing along the paths may not 

necessary take the product-form penalty function. We believe that a general-form 

additive penalty function with suitable loss scaling factor (a positive addition to the 

packet loss) is more appropriate. We have the following motivations to study this form 

of additive penalty function with suitable a scaling factor: 

 

• What positive error scaling factor is required and how should it be calculated to 

design a rate adaptation scheme that converges to the optimum? 

• How aggressive can the scaling penalty be while maintaining a stable rate control 

equation? 

• Can the scaling factor be utilized to bring the system optimum rate below the 

bottleneck capacity? 

• Does the user rate control equation tolerate negative packet loss penalty? 

 

We justify the addition of an error scaling factor, i.e., the first three points in 

section B and C below and leave the last point for further study. 

 

2 Trajectory-Following Algorithm 

 

Our trajectory-following formulation is as follows. Consider a positive-definite 

source rate that evolves according to the first-order differential equation: 

 

 
( , )

( )
d d

f
dt dt

φ η= =x x x  (58) 

 

The source rate vector x is adjusted according to trajectory tracking function f(x) 

that is yet to be determined. Functions ( , )φ ηx  are said to be flows that are solutions of 
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the rate differential equation such that every constanW� �\LHOGV�DQ�LQWHJUDO�FXUYH�RI�(58)

. We claim that there exists at least one such integral curve of (58) that starts at a non-

zero local minimum x0 (initial source rate) and converges to *x  along the given objective 

function curve f(x). 

 

Lemma 1: Suppose U(x) is the objective maximization function. The tangent 

vector at any point x (gradient at x) of the cost function U(x) at every step yields the 

closest possible trajectory towards unique maximum *( )U x . 

 

Proof: Consider any feasible allocation vector D∈x , where D is the closed ball 

of allocation rates. If our incremental rate change is still bounded by ball D, D+ ∆ ∈x x , 

then we can define our objective function around the neighborhood of U(x) using Taylor 

series expansion: 

 

( ) ( ),
( )

( ) ( ) ( ),

( ) ( )
0,

U U

U
U R U

U R

+ ∆ ≥ ∀
∂+ ∆ + ∆ ≥ ∀

∂
∂ ∆ ∆ + ≥ ∀ ∂ ∆ 

x x x x
xx x x x x

x
x xx x

x x

 (59) 

 

Noticing that ∆x  is positive and 
0

R( )
lim 0
∆ →

∆ =
∆x

x
x

, the gradient of the objective 

function is positive: 

 
( )

0
U∂ ≥
∂

x
x

 (60) 

 

The objective function U(x) grows monotonically with time and because of this 

property, an integral curve solution for (58) is given by: 
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( , ) ( )

( ) ( ) ( , )
0

T
d U

dt
dU U d

dt dt

φ η

φ η

∂ =  ∂ 
∂= ≥

∂

x x
x

x x x
x

 (61) 

 

One such proof of the tangent vector and solution (61) is given in [57] in a 

nonlinear constrained optimization.                        

 

Since the source rate evolves “ closely”  according to the trajectory followed along 

the gradient of the cost optimization function U(x), we term our controller a tangential 

controller. 

 

Lemma 2: The gradient of objective maximization function U(x) is concave and 

evolves strictly along the direction of the gradient 
( )h∂

∂
x

x
 of the inequality constraint 

function h(x). 

 

Proof: The theorem is proved using Farkas’ s lemma [57]. The geometric 

interpretation of Farkas’ s lemma is that the steepest increase in the gradient 
( )U∂

∂
x

x
 must 

lie along the direction of the gradient of the constraint function 
( )h∂

∂
x

x
, which is negative 

in our case. Kuhn-Tucker Condition (23) requires this as a necessary condition and 

hence the gradient 
( )U∂

∂
x

x
 indeed satisfies Farkas’ s lemma.             

 

Our immediate observation is that the tangent vector scheme is related to the 

Kuhn-Tucker inequality conditions. We illustrate the trajectory-tracking mechanism 

using Figure 4. The simple linear constraint h(x) is shown by a thick linearly decreasing 

function ( )h C= −x x , where C is the bottleneck capacity. As long as the constraint is 
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fulfilled, the objective function monotonically increases along the curve U(x). At the 

critical rate *x , the objective function settles at a constant gradient and hence the rate 

becomes steady. The downward directional vector indicates the negative constraint 

gradient taking effect at optimum *x . 

 

                                  h(x) = C - x
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Figure 4 Trajectory-tracking technique and linear constraint. 

 

 

3 Packet Loss Penalty 

 

Our motivation to reconsider packet loss penalty functions arises from two main 

sources. Existing literatures [6], [7] consider additive packet losses across the links along 

the path of the user. Ganesh et al. [50] consider an iso-elastic exponentially weighted 

moving average price estimator with the goal of keeping link utilization close to the 

bottleneck capacity. A similar gradient-projection price estimator was developed by Low 

and Lapsley [8] in which link prices are adjusted in the opposite direction to the gradient 

of the price at every step. Their controller adjusts link prices according to the aggregate 

price across the bottleneck link. The price gradient is the gradient of the dual objective 

function, i.e., the Lagrangian itself. 
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Our penalty adjustment is similar to the controller developed by Low and 

Lapsley [8], but we develop our motivation from optimization theory. The objective of 

their price adjustment controller is to solve for the source rate as a function of optimum 

price. Our tangential controller algorithm solves the dual form introduced by Kelly et al. 

[6]. We use sequential nonlinear programming [57] techniques that add certain penalty 

functions to the maximization function. In a discretized version of the nonlinear 

programming technique, successive iterations lead to convergence of the sequence. The 

goal is to choose an appropriate penalty function that converges to optimum. Using the 

tangent vector controller developed earlier, we show that our pricing scheme indeed 

converges to unique optimum. 

 

Consider the link l with packet loss pl(xl), where xl is the aggregate rate of all 

flows that pass through link l. The model assumes an additional route-dependent penalty 

scaling factor ( )
kR lQ x  added to the packet loss p(xl). The scaling factor is path-

dependent such that Rk represents the path for user k. Thus the net cost Wk(xk) paid by the 

user k in our pricing scheme is given by: 

 

 

( )
0

2

( ) ( ) ( ) ( )

( ) max ,

s

k

k

x

k k k k l c R
l R

R s l k
s l

W x U x p s ds Q

Q x C l R

α β β
∈

∈

∑ 
= − −∑ ∫ 

 

= − ∀ ∈∑

x

x

 (62) 

 

In (62), the constant non-QHJDWLYH�JDLQ�SDUDPHWHUV� �� �DQG� c are used in the rate 

differential equation for increasing and decreasing the rates. The original pricing scheme 

Mk(xk) as studied by Kelly et al. [6] is given by: 

 

 
0

( ) ( ) ( )
sx

k k k k l
l R

M x U x p s dsβ
∈

∑
= − ∑ ∫  (63) 
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Lemma 3: Path-dependent penalty scaling factor ( )
kRQ x  used in the pricing 

scheme Wk(xk) in (62) solves for optimum rate x*. 

 

Proof: The lemma requires that the scaling factor ( )
kRQ x  be bounded. The 

scaling factor adds large penalties initially when the flow starts (i.e., when the rates 

differs from the constraint widely) and becomes smaller as the aggregate rate stays 

closer to the bottleneck bandwidth. This proves the convergence of our rate algorithm to 

an optimum x*.          

                     

 

Notice that, the scaling factor introduced in Wk(xk) is the square of the constraint 

hk(rk) and this is one form of additional penalty used by sequential nonlinear 

programming methods. 

 

The penalty function ( )
kRQ x  is chosen to be the maximum of all the penalties 

across the user’ s path. 

 

Corollary: Our pricing vector 1 1 2 2( ) ( ( ), ( ),.., ( ),.., ( ))T
l l N NW x W x W x W x=W x  in 

(62) is bounded and it results in a convergence to optimum rate x*. 

 

In order to demonstrate that our penalty converges to a steady state, we perform 

experiments that compare our tangential controller with proportional fairness. We 

perform three experiments with a given three-flow topology below and show its 

significance. 
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S1
R1 R3R2 R4

R1

Link 1
(1000
kbps)

Link 3
(750 kbps)

Link 2
(900 kbps)

Flow 1 S1-R1

R2S3

Flow 2 S1-R2

Flow 3 S3-R1

 
Figure 5 Parking lot topology with three flows. 

 

Figure 5 shows the parking-lot topology for our experiments. We consider two 

sources, two receivers and three bottleneck links with three flows S1-R1, S1-R2, and S3-R1. 

Flows either use proportional or tangential controllers.  

 

 
Figure 6 Growth of additive flow loss for proportional controllers. 
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Figure 7 Growth of multiplicative packet loss for proportional controllers. 

 

 
Figure 8 Growth of link packet loss for tangential controller. 
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In our experiments, we compare the cumulative flow losses of each of the 

three flows S1-R1, S1-R2, S3-R1 and across links 1, 2 and 3. Figure 6 and Figure 7 show 

the cumulative additive and multiplicative losses for proportional controllers and Figure 

8 shows cumulative losses for our tangential controller. All flows start at initial rate 

 ��NESV�ZLWK�  �����:H�ILQG�WKDW�DGGLWLYH�ORVVHV�ZHUH�FRQVLVWHQWO\�VPDOOHU�FRPSDUHG�
to multiplicative for the proportional controller. The cumulative loss of tangential 

controller is roughly twice that of additive controller suggesting less-aggressive link 

utilization. On the other hand, the individual link losses are up to 4 times smaller than 

that of the proportional (not shown above). 

 

4 Pricing Scheme and Rate Adaptation 

 

In this subsection, we demonstrate that our network pricing scheme establishes a 

unique equilibrium x* between the user paid price and the network allocated rates. Our 

previous subsection describes the necessary motivation for the additional packet loss 

penalty and we use it to design a pricing scheme in this subsection. We find that all users 

sharing a common link l pay additional penalty that leads to faster convergence to the 

optimum point and reduced overall packet loss for all flows through each link. Our aim 

now is to develop a network rate allocation scheme P with dependence on the following 

parameters: 

 ( )

( )1 2

1 1 2 2

P:  ( ( ), ( ), ( ), ( ))

( ) ( )  ( )... ( )

( ) ( )  ( )... ( )
k

l

T
k k

T

R R R

NETWORK h p

U x U x U x

Q Q Q

=

=

U x x x Q x

U x

Q x x x x

 (64) 

 

where ( ( ), ( ), ( ), ( ))lNETWORK h pU x x x Q x  is the system that maximizes the 

overall utility function defined as: ( )( ) ( ) ( )
kk lk l RMAX U p Q− −∑ ∑x x x . 
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Utilities are user-dependent, strictly concave, increasing functions of user’ s 

throughput xk constrained by h(x). We now claim that our network problem P in (64) is 

solved by the pricing scheme (62). We conjecture that our pricing scheme indeed 

establishes a unique optimum x* only if the source rate adaptation uses the tangent-

vector algorithm. The gradient vector algorithm simply requires the rate differential 

equation for user k to vary according to the gradient of the objective function with 

respect to the rate xk. The rate algorithm is given by: 

 

 
( ) ( )k k k k k

k c
k k

dx M x Q x
x

dt x x
ββ∂ ∂= −

∂ ∂
 (65) 

 

Expanding the right side of (65), we get the following: 

 

 ( )’ ( ) ( ) kRk
l Rk k k l c

k

Qdx
x U x p

dt x
α β ββ∈

∂
= − −∑

∂
x  (66) 

 

Lemma 4: With a strictly concave increasing utility U(x), the pricing scheme (62) 

forms a Liapunov function for the source rate control (65). 

 

Proof: Recall that, a Liapunov function requires that the time derivative to 

monotonically increase for rates below x* and negative for rates above the optimum. For 

a strictly concave increasing utility function U(x), we observe that the rate change of the 

Liapunov Wk(xk) as given by: 
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( ) ( )

k k k

k k

k k k k k
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k k k

W x dxd
dt x dt

M x Q x dx
x x dt
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 ∂ ∂= +∑ ∂ ∂ 

W x

 (67) 
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For the given rate adaptation algorithm given in (66), the derivative of Wk(xk) 

is positive definite for rates below capacity C of the bottleneck link, as show below: 

 

 

( )

2 2

( )

( ) ( )

( ) ( )
1

k k k k
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k
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k
k k

d
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x x
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x x
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W x

 (68) 

 

The time derivative of the cost optimization function for rates below optimum x* 

is positive definite because the partial derivatives of functions Mk(xk) and ( )
kRQ x  are 

strictly positive: 
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0
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0, 0

( )
0, 0

k k
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k k
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M x

x
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Q x
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x
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 (69) 

 

Thus, the monotonically increasing Liapunov gradient with respect to time 

uniquely maximizes the rate evolution to optimum x*. However, as the aggregate rates 

exceed x*, the Liapunov time derivative becomes negative since the term 
( )

0k k

k

M x
x

∂ ≤
∂

 

becomes negative and dominates in (68). As shown in Figure 3, the constraint h(x) takes 

effect as the rate approaches the bottleneck bandwidth and it is at this point that the 

Liapunov reaches its maximum.                  
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Lemma 5: Our scaled pricing scheme in (62) introduces a smaller error factor 

along the rate trajectory compared to the Kelly’ s pricing scheme (63). 

 

Proof: In order to prove this, we calculate the cumulative area of the error curve 

along the trajectory starting at the initial rate x0. 

 

 ( )
*

0

( , ) ( )
k

k k

k

x

W k k k W k
x

E x W x x dxη η= −∫  (70) 

 

Notice that the error along the trajectory of that of Kelly’ s cost function in (63) is 

given by: 

 ( )
*

0

( , ) ( )
k

k k

k

x

M k k k M k
x

E x M x x dxη η= −∫  (71) 

 

We prove that the error resulting from pricing scheme (62) is lesser than that of 

Kelly’ s (63). That is, error condition 
kW k ME E<  holds. Evaluating integral (70) along the 

curve and simplifying the expression 
kW k ME E−  yields: 

 

 
( )( )2* * 2

*

3 3
3

0  as  lim

k k

k k

c
W M k k

W M k

E E x C x C

E E x C

ββ− = − −

− ≤ →
. (72) 

 

 

This establishes that for condition 0
kW k ME E− ≤ , we must have 0cβ > . Notice 

WKDW�LI� c=0, the controller is equivalent to the well-studied proportional controller. 
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5 Stability Analysis 

 

In this section, we establish local stability of the tangential controller with 

homogeneous delays using a fluid approximation and the transfer-function method. 

Using the Jacobian linearization around the equilibrium point, we study the tolerance to 

perturbation and prove that our controller indeed has a high phase margin. Recall that, 

controllers possessing high-phase margin are more robust against perturbation against 

feedback delays. For a given finite time delay, we prove that the open loop transfer 

function of our plant controller does not encircle negative unity only if the decrease 

parameters are bounded. That is: 

 
(2 1)

(1 ) ,   0
2

0

T
c

c

n
n Te nαπ β β π

β

′ + < + < ≥

 ≥

. (73) 

 

where n is a non-negative integer. We thus establish that our controller is delay-

tolerant as long as the delay  T is finite. 

 

5.1 Conditions for Local Stability 

 

Consider the generic model depicted in Figure 1 where the sources in sets S1 and 

S2 have an associated route to their unique receivers in the receiver pool. We assume 

constant round-trip delay of T for all sources in this set. Consider a simple model 

consisting of a single bottleneck link with an arbitrary number of flows across the link. It 

is possible to extend such a model to include more bottleneck links. 

 

Consider the input rate transfer vector 1 2( ) ( ( ), ( ),.., ( ),.. ( ))T
l Ns X s X s X s X s=X  of 

source rates whose open-loop system NxN matrix is G(s). The open-loop vector is a 

function of state matrix A, delayed state-matrix Ad, input matrix B and input-output 

matrix C. These matrices are defined as follows: 
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. (74) 

 

Additionally, we define a delay matrix { }sTD diag e−=  of equal delay T for all 

sources. The open-loop transfer function of our system with multiple-inputs and 

multiple-outputs is given by: 

 

 1( ) ( )dG s C sI A A D B−= − − . (75) 

 

The open-loop transfer matrix G(s) is constant having the same elements across 

all rows and columns because the matrix 1( ) ( )dM s sI A A D −= − −  is symmetric and 

circulant. The elements in the constant matrix G(s) is given by: 
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. (76) 

 

where the constants α′  are β ′′  are defined as below: 

 

 
2 2

(1 )
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C N
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N C N
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Lemma 6: Consider a closed-loop feedback system with transfer function in (75) 

for a network with single bottleneck link l consisting of N flows. Assume that each flow 

(or the user) k has a non-zero positive delay T. Then, the system is locally asymptotically 

stable if the following bound holds: 

 

 0 (1 )
2

T
c Teα πβ β ′< + < . (78) 

 

Proof: We notice that the characteristic polynomial of our open-loop system 

transfer function is the determinant of circulant matrix M given by the following 

characteristic polynomial for 1N >  flows: 

 

 
1

( ( 3) (1 ) )

( (1 ) ) 0

sT
c

sT N
c

s N e

s e

α β β
α β β

−

− −

′ ′′+ + − + ×
′ ′′× + + + =

. (79) 

 

Nyquist stability criterion requires that the roots of (79) be lesser than one. In our 

case, we prove that our polynomial term (1 ) sT
cs eα β β −′ ′′+ + +  has negative real roots 

resulting in the stability our controller (66). The roots of this polynomial are given by 

Lambert’ s W function [59] and the only negative range of values for which our 

polynomial holds is given by (78).         

          

 

We plot the frequency response of the open-loop transfer polynomial in Bode 

diagram in Figure 9 for three different values of delay T. 
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Figure 9 Bode plot of open-loop transfer function for various delays. 
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CHAPTER VI 

SIMULATIONS 

1 Introduction 

 

In this section, we perform ns2 simulations to verify our theoretical results. We 

develop discretized delay-tolerant source and sink agents that emulate the behavior of 

the various controllers using end-to-end and explicit AQM loss feedback. We evaluate 

the stationarity and convergence properties of the proportional controller with additive 

penalty. We perform experiments using three explicit loss feedback AQM schemes, 

which include max-min, proportional fairness, and tangential loss adjustments. Our 

simulation results show that proportional controller suffers from overestimation of 

aggregate rates at the bottleneck links. Moreover, a sliding-window average rate 

calculation requires estimation of sliding loss. Our observation is that extrapolating the 

aggregate rate or the averaged loss estimation leads to AIMD-type large oscillations. 

Since one of our motivations is keep our steady-state oscillations closer to the bottleneck 

bandwidth, we investigate on developing AQM-based schemes. 

 

 

2 Simulation Setup 

 

We use an AQM-based loss calculation scheme in our simulations. Routers 

calculate aggregate link losses at only a specific AQM interval and the sources respond 

only once during this interval. We consider a standard parking-lot topology with three 

flows and two intermediate bottleneck links with link capacity 500kbps. All sources start 

at the same time with an initial rate of 20kbps. We set the increase/decrease constants to 

 ��NESV��  ���� DQG� c=1/C, where C is the bottleneck capacity. Max-min fairness 

results when our AQM scheme updates the packet header with the largest packet loss of 
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the most congested link across the path from the source. Similarly, proportional 

fairness is achieved by adding across all the links along the path. In addition to the 

proportional controller loss, the tangential controller requires a loss scaling factor that is 

calculated and inserted by the AQM scheme in the packet header. 

 

 

3 Max-min and Proportional AQM Feedback 

 

Figure 10 shows the rate evolution of three flows of max-min and proportional 

controllers. The figure shows the convergence of three flows with bottleneck bandwidth 

of 500kbps. Flow 2 starts 10 time units after flow 1 and flow 3 starts 20 units after flow 

1. The initial rates of these flows were set to 20kbps, 250kbps and 500kbps respectively. 

We observe that max-min converges at 256kbps whereas proportional converges slower 

to 210kbps, but with less link loss. 
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Figure 10 Rate evolution of max-min (left) and proportional controllers (right). 
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4 Proportional and Tangential AQM Feedback 

 

We use the same agents to adjust the AQM feedback for either proportional 

(additive penalty) or tangential controllers. Figure 11 shows that the tangential controller 

is capable of achieving convergence to fairness much closer to the link bottleneck with 

much lesser packet loss. While proportional controller converges at 256kbps, our fair 

convergence occurs at around 200kbps for all three flows. 
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Figure 11 Rate evolution of proportional (left) and tangential controllers (right). 

 

Figure 12 demonstrates the loss across the two bottleneck links for proportional 

and tangential controllers. The aggregate positive scaling factor results in a much stable 

and smaller flow losses compared to the proportional controller. 
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Proportional 3 flow controller loss evolution
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Figure 12 Flow loss evolution of proportional (left) and tangential controllers (right). 
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CHAPTER VII 

CONCLUSIONS 

In this thesis, we considered a family of nonlinear continuous feedback 

controllers based on utility functions, cost penalty and applied optimization theory to the 

problem. Specifically, we studied the stationarity and stability properties of logarithmic 

proportional controllers and compared it against our novel tangential controller. We 

derive our motivation from sequential nonlinear programming methods that allow 

additional penalty to objective function based on the square of linear constraint. Here, 

we showed that this additional penalty has immediate application to adjusting our loss 

penalty function and the network cost factor. We developed a novel tangential source 

rate controller whose trajectory followed closely that of source’ s own cost function and 

proved that the controller indeed minimized the aggregate losses. Using simulations, we 

also established its convergence and existence of stationary optimal rate. Finally, we 

established the asymptotic stability of the tangential controller and derived the upper 

bounds on the increase and decrease parameWHUV� �� ��DQG� c. 

 

Recollecting some of the motivation in the earlier sections, we see that our 

scheme well-defined the rate adjustment algorithm for the given cost function. The 

significance of our work is in its improvement of the speed of convergence and 

consistent reduction in packet loss compared to the proportional controller. Our 

tangential controller is thus suited for high bandwidth-delay product networks. In the 

future, we intend to study the aggressiveness of the loss scaling factor and whether such 

penalty may be applicable for general form of utility functions.  
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