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ABSTRACT 

              Neural Networks Predict Inflow Performance. (December 2003) 

Muhammad Alrumah, B.S., Kuwait University 

Co-Chairs of Advisory Committee: Dr. Richard Startzman 
Co-Chairs of Advisory Committee:  Dr. David S. Schechter 

Predicting well inflow performance relationship accurately is very important for 

production engineers. From these predictions, future plans for handling and improving 

well performance can be established. One method of predicting well inflow performance 

is to use artificial neural networks.  

Vogel’s reference curve, which is produced from a series of simulation runs for a 

reservoir model proposed by Weller, is typically used to predict inflow performance 

relationship for solution-gas-drive reservoirs. In this study, I reproduced Vogel’s work, 

but instead of producing one curve by conventional regression, I built three neural 

network models. Two models predict the IPR efficiently with higher overall accuracy 

than Vogel’s reference curve. 
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INTRODUCTION1 

 

The inflow performance relationship (IPR) describes the relationship between 

well flow rate and bottomhole pressure. IPR helps petroleum engineers to optimize 

production, identify the optimal design for artificial lift, and predict future production 

following a stimulation treatment.  

Vogel1 built a simulation model using Weller’s2 assumptions for solution-gas-

drive reservoirs. Vogel1 produced IPR curves for different cases, and then plotted 

dimensionless IPR curves for these cases. Noticing that most of these curves exhibited 

the same behavior, he used regression to derive an equation that related flow rate to 

flowing bottomhole pressure in an equation for a curve.  

Artificial neural networks have been widely used3 and are gaining attention in 

petroleum engineering because of their ability to solve problems that previously were 

difficult or even impossible to solve. Neural networks have particularly proved their 

ability to solve complex problems with nonlinear relationships. 

Shippen4 developed a neural network model for prediction of liquid holdup in two-phase 

horizontal flow and the results exhibited better overall performance than other existing 

methods. 

Zambrano5 developed a neural network model to predict dewpoint pressure for 

retrograde gases; the model showed better estimation than all existing correlations.  

 

                                                 
This thesis follows the style of the Journal of Petroleum Technology. 
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An artificial neural network is a network that simulates the learning processes in 

the human brain. It builds its own model on the basis of given information, and then 

estimates an output from new input. The network consists of neurons and connections 

between them. In neural network language, we call the connections weights. Specific 

values are stored in those weights to simulate the human brain. The main advantage of 

the neural network is that it can learn from given input and output and establish its own 

model and relationships between output and input to estimate future values.  

I used the neural network to build three models. Two models are able to establish 

the IPR curve with an overall accuracy better than Vogel’s equation and with a 

reasonable accuracy for the third model. The first model predicts the oil flow rate by 

providing more than one input to indicate the IPR curve more specifically. The second 

model predicts the qo/qomax. This model has more accurate results than the first model. 

The third model predicts the oil flow rate and the average reservoir pressure. 

 



 

 

3

BACKGROUND 

 

Inflow Performance Relationship 

 

The relationship between flow rate (q) and the flowing bottomhole pressure (pwf) 

is described with an equation for easier analysis for well performance. One of the earliest 

attempts for establishing this relationship was based on the assumption that the flow rate 

is directly proportional to the pressure drawdown; the relationship can be derived from 

Darcy’s law for steady-state flow and a single, incompressible fluid. The straight line 

equation in equation form is 

 

( )wfe ppJq −= ,  ………………………………………………………………   (1) 

 

where J is the productivity index and pe is the pressure at the outer boundary. 

But this wasn’t the case in a two-phase gas and oil reservoir. Evinger6 pointed 

out that for a gas and oil flowing in the reservoir, a single J value cannot be assigned; 

rather, it will vary. Hence the IPR will exhibit a curvature indicating varying J value 

with changing pressure as J is a function of pressure/volume/temperature, rock 

properties, and relative permeability. 

Vogel1 used a numerical simulation to investigate the behavior of the IPR of a 

solution-gas-drive reservoir producing below the bubblepoint pressure. He generated 
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IPR curves for 21 fictitious solution-gas-drive reservoirs that covered different fluid 

PVT properties and relative permeability characteristics.  

Vogel1 plotted the different IPR curves as dimensionless IPR curves, where for a 

particular curve the pressure was divided by the maximum or shut-in pressure, and the 

corresponding flow rate was divided by the maximum flow rate. When he noticed that 

the curves were generally exhibiting a similar shape, he applied regression analysis to 

find the best curve that can represent all curves. A dimensionless IPR curve could be 

used to create the IPR curve for any well that produces from a solution-gas-drive 

reservoir at any depletion stage, using only a one-point test. The equation for this 

dimensionless IPR curve is 

 

2

max

8.02.01 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

r

wf

r

wf

o

o

p
p

p
p

q
q ,  …………………………………………………  (2) 

 

Vogel didn’t include IPR curves for wells with damage or high viscosity because 

the dimensionless curves for them deviated significantly from curves for undamaged 

wells and lower oil viscosity.  

Fetkovich7 found that the back-pressure curves for the data collected from 

saturated and undersaturated reservoirs follow the same general form as that used for gas 

wells:  

 

( )n
wfr ppCq 22 −= ,  ……………………………………………………………..  (3) 
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where n is the exponent of back-pressure curve.  

 

Flow Efficiency and Skin Effect. Standing8 extended Vogel’s dimensionless 

IPR curves to different flow efficiencies, defining flow efficiency as the ratio of the flow 

rate without damage to the flow rate with damage. Standing8 assumed this definition was 

valid for two-phase system.  

Brown9 showed that Standing’s method will give inconsistent results for high 

flow efficiency and low flowing bottomhole pressure.  The cause of the inconsistent 

results was pointed out by Camacho and Raghavan10, who showed that as Vogel’s IPR 

suggests a quadratic form for deliverability, it implies that the definition of flow 

efficiency must also reflect the quadratic form of the deliverability equation instead of 

the straight line definition. 

Camacho and Raghavan10 used numerical simulation in a theoretical study to 

investigate the effects of skin on well performance producing from solution-gas-drive 

reservoirs. They showed that skin does not change the deliverability curve from 

quadratic into linear form. 

Klins11 also reached the conclusion that a dimensionless IPR curve will not be 

affected if skin is present. He investigated the factors that affect the dimensionless IPR 

behavior and concluded that the bubblepoint pressure and reservoir depletion had a 

significant effect.   
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Inflow Performance Relationship Prediction. For predicting the IPR curve, 

Standing12 presented an extension for Vogel’s IPR equation that can predict the future 

IPR curve for the well as a result of change in ⎟
⎠
⎞⎜

⎝
⎛

oo

ro
B

k
µ . Fetkovich7 also developed a 

method to predict the future IPR by relating the current average reservoir pressure to the 

future average reservoir pressure. These two methods assumed that the ⎟
⎠
⎞⎜

⎝
⎛

oo

ro
B

k
µ  

relation changes linearly with respect to pressure. 

Camacho and Raghavan10 determined that the two methods can be used for IPR 

prediction, but that extrapolations over long periods of time should be avoided. 

 

This Work. I created several IPR curves from simulation runs using the 

ECLIPSE™   simulator for a solution-gas-drive reservoir model with different rock and 

PVT properties and relative permeability characteristics. I used these results to build 

three artificial neural network models that can generate and predict IPR curves. 
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Artificial Neural Network 

 

The artificial neural network is a mathematical model that is designed to replicate 

the learning capabilities of biological neural systems by modeling the low-level structure 

of the brain. It has been used for solving problems that previously were difficult or even 

impossible to solve.  

 

Biological Neural Network. The artificial neural network was inspired by the 

information process in the human brain, where it processes the information in a way 

entirely different than conventional computer models. The brain is a highly complex, 

nonlinear and parallel computer (information-processing system) that has the capability 

to perform certain computations many times faster than the fastest digital computer13.  

 

Artificial Neural Network. The artificial neural network is a simulation model 

for the most basic learning process of the human brain. The network is constructed as 

interconnected neurons; simple processing units that receive and combine signals. The 

information is transported from neuron to neuron through a connection or a weight, in 

neural network terms.  

Haykin13 identified three fundamentally different classes of network 

architectures: single-layer feedforward networks, multilayer feedforward networks, and 

recurrent networks. No single neural network works better for all types of problems. The 

multilayer perceptron (MLP) is the most common network used in the petroleum 
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industry4, 5. The structure for the MLP consists of an input and output layers and at least 

one hidden layer. Each layer consists of number of nodes, depending on the problem 

(Fig. 1). 

 

 

 
Fig. 1  Basic structure for multilayer perceptron network 
 
 
 

In the feedforward network, each neuron in each layer except the input and the 

output layers is connected to all neurons of the preceding and the following layer, and 

there is no connection between the neurons in the same layer. This connection pattern 

ensures that the network outputs can be calculated as explicit functions of the inputs and 

the weights13. The information given to the input layer is propagated layer by layer to the 

output layer through one or more hidden layers. 

x1 

input layer output layer hidden layer 

y x2 

x3 
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Choosing Neural Network Structure. The first step for building neural network 

model is to design the network structure. The basic structure for a multilayer perceptron 

is at least three parallel layers, where each layer has at least one node. The nodes in the 

layers are connected with each other in feedforward pattern. Three layers are sufficient 

to learn any continuous function as it is directly applicable to the universal 

approximation theorem13. 

  In the input layer, each node represents a parameter that has a relationship with 

the output; the output layer contains the number of parameters we need to predict. 

Number of nodes in the hidden layer can’t be determined easily. Instead, it is an iterative 

process, where we need to try different number of nodes and then compare the results to 

see which the best structure is.   

 

Learning. The neural network can learn in either of two ways; either we can feed 

the system the input data and the actual output, or we can allow the system to group 

similar inputs into classes. Once the system has reached satisfactory results with a set of 

training data, it can process new information in the same way to reach the same logical 

end. I used the first of these ways.  
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MODEL DEVELOPMENT 

 

Reservoir Model 

 

I examined the ability of the neural network to build a model that can establish 

and predict well inflow performance for solution-gas-drive reservoirs. In the learning 

process, the neural network used input and output data together taken from reservoir 

simulation models to construct a neural network model. Then the model predicted the 

output from only the input.  

I built several simple solution-gas-drive reservoir models with only one 

producing vertical well and the following assumptions were considered for 

simplification, 

1- The well is centered in a cylindrical, homogeneous, and isotropic reservoir. 

2- The oil zone is one layer and has constant thickness for the whole reservoir. 

3- The reservoir is completely bounded. 

4- The well is completely penetrating the oil zone. 

5- The initial water saturation is at the connate water saturation. 

6- Gravity and capillary pressure effects were neglected. 
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Table 1 lists the reservoir properties and descriptions, which are taken from 

Vogel’s paper1. 

 

Table 1 - Reservoir properties and descriptions

Porosity (φ) 13.9% 

Permeability (k) 20 md 

Formation thickness (h) 23.5 ft 

Well radius (rw) 0.33 ft 

Outer radius (re) 527 ft 

Irreducible water saturation (Swc) 19.4% 

 

The IPR for solution-gas-drive reservoir above bubblepoint pressure can be 

presented as a straight line with constant productivity index (J). The IPR straight line 

equation can be described as follows: 

 

( )wfe ppJq −= ,  ……………………………………………………………………  (1) 

 

and  

 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=
−

=
−

w

e
oo

wfe

r
r

B

kh
pp

qJ
ln

1008.7 3

µ
,  ……………………………………………………..  (4) 
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These equations can be derived from Darcy’s law for steady-state flow and a single, 

incompressible fluid. However, below the bubblepoint pressure there will be two phases 

flowing, gas and oil. The oil productivity index will change with the change of pressure 

because the oil properties and relative permeabilities are changing.  

I investigated well performance relationship below the bubblepoint. For that, the 

initial reservoir pressure always starts at the bubblepoint pressure for all the simulation 

runs. Hence, the well is produced at a flowing bottomhole pressure below bubblepoint 

pressure.  

  

Fluid and Rock Properties. I used different fluid properties and relative 

permeability curves taken from Vogel’s papaer1 to cover a wide range of cases (see Figs. 

2 through 7). 

The porosity and absolute permeability remained constant for all the cases. 
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Fig. 2  Relative permeability curves 
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Fig. 3  Rs curves 
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Fig. 4  µo curves 
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Fig. 5  Βο curves 
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Fig. 6  1/Βg curves 
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Fig. 7  µg curves 
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Model Accuracy. Before performing the simulation runs, I had to decide which 

grid size is best to use for the reservoir to get results with reasonable accuracy.  

I was not concerned about a high degree of accuracy because the aim was to 

produce the trend of the relationship between the flow rate and the flowing bottomhole 

pressure. Three values for grid sensitivity were examined in the 1-D simulation; 10, 100 

and 1,000 gridblock. For each grid size I ran the simulation and produced IPR curves. 

Fig. 8 shows the IPR curves for the different grid sizes. All three curves are similar 

below 50 STB/D, but above it the curve for 10-grids starts to deviate from the other two.  
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Fig. 8   IPR curves generated from simulator for gridblock sensitivity 
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I chose the 100-grid size because it has much less computational time than the 

1000-grid size, as the computational time increases with increasing number of grids. The 

reservoir was divided into radial grids and the radii were calculated from the following 

equation: 

 

NR
i

w

e
wi r

rrr ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,  ……………………………………………………………………  (5) 

 

where NR is total number of grids and i is the index number. This made the gridblocks 

adjacent to the wellbore small enough to permit capturing the change in pressure and 

saturation. The gridblocks then increase progressively in size outward from the wellbore, 

because as the radius increases, the gradients in pressure and saturation are lower and 

bigger gridblocks are sufficient to capture these changes.  

 

Reservoir Model Results. The first phase of this work produced families of IPR 

curves for different fluid properties and relative permeability curves as these are the 

main parameters affecting the IPR curves. 

IPR curves were generated for 16 reservoir models. The relative permeability and 

PVT for the cases examined are tabulated in Table 2.  
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Table 2 – Relative permeability and PVT 
curves selected for cases examined 

Case 
no. 

Relative permeability 
curve PVT curves  

1 a a 
2 b a 
3 c a 
4 d a 
5 a b 
6 b b 
7 c b 
8 d b 
9 a c 
10 b c 
11 c c 
12 d c 
13 a d 
14 b d 
15 c d 
16 d d 

 

 

The IPR curves generated from a reservoir simulation runs for case 1 depicted in 

Fig. 9. The IPR curves for the remaining cases are in Appendix. 
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Fig. 9  IPR curves for case 1 (refer to Table 2)   

 
 
For each case with specific fluid properties and relative permeability curves, I 

made several runs at constant bottomhole pressure. The results include time with the 

corresponding oil flow rate (qo) and the cumulative oil produced (Np). 

The reservoir model didn’t reach constant productivity index to achieve the 

boundary dominated flow condition, but for practical purposes, I assumed the condition 

was reached when I get a relative change in the productivity index less than 1% (Fig. 

10). 
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Fig. 10  Relative change in productivity index with time 

To draw a single IPR curve, first we choose a single specified value for the 

cumulative produced oil (Np) and at that chosen value we read the corresponding 

production rate from each run. At the end, a table of qo with pwf will be established for 

the chosen Np. This procedure is repeated for different Np values. An example procedure 

for calculating a single point on the IPR curve is shown as follows: 

Using Table 3, we want to establish an IPR curve at Np = 50,000 STB. 
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Table 3 – Sample of results from reservoir simulation 

pwf  =  900 psia pwf  =  800 psia pwf  = 700 psia 
qo Np qo Np qo Np 

STB/DAY STB STB/DAY STB STB/DAY STB 
31.32 47318 32.79 50014 34.65 52346 
30.23 48917 31.45 52093 33.12 54061 
29.06 50532 30.03 53767 31.39 55767 
27.80 52153 28.45 55431 29.68 57461 
26.49 53776 26.84 57081 27.85 59130 
25.03 55385 25.22 58708 25.83 60755 

 

For the simulation run for pwf = 900 psia there is no value for Np = 50,000 STB. 

So we interpolate to get the corresponding oil flow rate as follows, 

DSTBSTBNpqo /44.2923.30)917,48000,50(*
)917,48532,50(

)23.3006.29()000,50(@ =+−
−
−

==  

This point will correspond to pwf = 900 psia. 

We perform the same procedure for pwf = 800 psia and pwf = 700 psia to have 

three points on the IPR curve of Np = 50,000 STB 

The best performance for the well will be at the early time of the reservoir life 

when there is high oil saturation and the average reservoir pressure (pr) is high, and 

hence, gives high maximum oil flow rate. As the reservoir is being depleted, this reduces 

reservoir energy, and decreasing pr. When pr decreases, this causes more gas to evolve 

from solution to increase gas saturation and decrease oil saturation which will reduce the 

oil relative permeability, causing well performance to give lower oil flow rates.  

When the reservoir is fully depleted, the family of IPR curves is produced. The 

IPR curves exhibit the shape of concave downward as Np increases.  
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Comments on Vogel’s Work 
 

I tried to match Vogel’s results with my results that were generated from the 

reservoir simulation using Vogel’s data. The matching was unsuccessful. 

I have the following notes about Vogel’s data: 

• Of the six PVT curves, five have the same bubblepoint pressure, which is 2130 

psig, although they have different PVT properties. 

• Most PVT curves were approximated as straight lines, which is unrealistic. 

• At 14.7 psia, the value of (1/Bg) equals 50, which cannot occur, in the PVT curve 

in Fig. 11. There was no clue about the units of (1/Bg). So, I assumed it is 

(scf/rcf), which was the most reasonable unit. 

• The kro curve stops before it intersects with the saturation axis at kro = 0. It 

doesn’t show the minimum liquid saturation, SL (Fig. 12). 

 

Vogel showed that the dimensionless IPR for a damaged well will nearly 

approach a straight line, with significant deviation for more viscous crude. But Klins11 

proved that neither damaged nor improved skin has significant effect on dimensionless 

IPR curve, and for more viscous crude, the dimensionless IPR curve exhibited a shape 

similar to the less viscous crude.   
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Fig. 11   PVT curves from Vogel’s paper1 

 

             
Fig. 12   Relative permeability curves from Vogel’s paper1 
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 Neural Network Models 

 

After finishing the simulation runs and generating the IPR curves, I arranged all 

the data from the simulator results to build the neural network model. 

For the learning process for the neural network, I chose input and output 

parameters. An IPR curve requires only the values of the bottomhole pressure and the 

corresponding oil flow rate, but defining a specific IPR curve requires more parameters. 

These input parameters should have a relationship with the output. 

I designed three neural networks with Vogel’s input and output parameters, 

arranging the data in different ways to cover all the possibilities for neural network to 

find the best solution. 

 

First Model. In the first model I tried to build a neural network model that could 

predict the oil flow rate by including all the parameters that have direct or indirect effect 

on the flow rate. The data were taken directly from the simulator model without any 

preprocessing except for the oil flow rate, which was obtained by interpolation. 

  I considered the following as inputs for the input layer, 

1- The recovery factor, Np/N. 

2-  Flowing bottomhole pressure, pwf. 

3- Average reservoir pressure, pr. 

4- Maximum oil flow rate, qomax. 

5- Bubblepoint pressure, pb. 
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6- Oil formation volume factor at bubblepoint pressure, Bob. 

7- Oil viscosity at bubblepoint pressure, µob. 

8- Solution gas-oil ratio at bubblepoint pressure, Rsb. 

9- Gas formation volume factor at bubblepoint pressure, Bgb. 

10- Gas viscosity at bubblepoint pressure, µgb. 

11- Critical gas saturation, Sgc. 

The output is the oil flow rate, qo. 

I considered the oil and gas properties at bubblepoint because it is difficult to 

have the oil and gas properties at each pressure, but the properties at the bubblepoint will 

be fixed for the whole life of the reservoir. 

For building the neural network model I used STATISTICA Neural Networks 

software, which includes an option called Intelligent Problem Solver (IPS). This option 

allows the software to test many neural network architectures and select the best 

networks. The user has to specify how many networks need to be retrieved from the 

tested networks.  

I determined which network works better for the data set, I left the IPS to test the 

entire library of available network types, and then I retrieved the best networks. IPS 

tested the Linear Network, Generalized Regression Neural Network (GRNN), the 

Probabilistic Neural Network (PNN), the Radial Basis Function (RBF) Network, and the 

Multilayer Perceptron (MLP) Network with one and two hidden layers. The best 

networks were the MLP with one and two hidden layers; therefore, all the remaining 

work was performed only on the MLP.  
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After training was completed, the software tested different MLP architectures by 

changing the number of hidden layers, one or two, and the number of nodes in the 

hidden layers. The best network found was the one with five input nodes (Np/N, pwf, 

qomax, pr, and µgb), five hidden nodes, and one output node (Fig. 13). Weights and 

thresholds for the network are tabulated in Tables 4 and 5. This network found that these 

five input parameters affected the qo. 

 
 
 

 
 

Fig. 13  Illustration for the construction of the first neural network model 
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Table 4 - The weights for first neural network model 
J  

1 2 3 4 5 
1 0.095694 0.28260 -0.118643 0.173360 -0.115229 
2 -0.316322 -2.24489 0.657257 0.844103 -0.972225 
3 0.105862 1.14525 0.133993 0.345051 -0.312361 
4 0.730777 -0.18464 1.293967 -0.930935 1.079821 

i 

5 -0.047286 0.19473 -0.078116 0.152635 0.007135 
k 1 0.83540 2.31298 1.51986 -1.36656 1.49853 

 

Table 5 - Threshold for first neural network model 
J k 

1 2 3 4 5 1 
0.642428 -1.39777 0.009031 -0.779553 1.053500 1.20079 

 

Activation function for the hidden layer is the hyperbolic function 

xx

xx

ee
eexf −

−

+
−

=)( ,  …………………………………………………………..…….  (6) 

and the activation function for the output layer is the logistic function 

xe
xf −+

=
1

1)( ,  …………………………………………………………………..  (7) 

 

Second Model. Although the neural network solved a complex relationship that 

could not be solved by traditional mathematical methods, it is desirable to simplify the 

relationship for better performance. 

For simplifying the relationship, I tried to build a neural network that can 

establish the relationship between the qo/qomax and pwf/pr. In the first model, the plot of qo 
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versus pwf shows different curves with a wide range of qo values. In our case, all the 

curves are similar and follow the same trend.  

I considered the following as inputs: 

1- The recovery factor, Np/N. 

2-  Dimensionless pressure, pwf/pr. 

3- Bubblepoint pressure, pb. 

4- Oil formation volume factor at bubblepoint pressure, Bob. 

5- Oil viscosity at bubblepoint pressure, µob. 

6- Solution-gas-oil ratio at bubblepoint pressure, Rsb. 

7- Gas formation volume factor at bubblepoint pressure, Bgb. 

8- Gas viscosity at bubblepoint pressure, µgb. 

9- Critical gas saturation, Sgc. 

The output is the dimensionless oil flow rate, qo/qomax. 

The value of qo/qomax is always between 0 and 1. So, when the neural network 

model is used to predict future values of qo/qomax, the predicted values mast fall between 

0 and 1, which makes the job of the neural network model easier by setting a range for 

the predicted values. 

With using the IPS, the best network was the MLP. The best architecture was for 

three input nodes (µgb, Bob, and pwf/pr), using three hidden nodes, and one output node 

(Fig. 14). Weights and thresholds for the network are tabulated in Tables 6 and 7.  
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Fig. 14  Illustration for the construction of the second neural network model 
 
 
 

Table 6 - The weights for second neural network model 
j  

1 2 3 
1 -1.19333 -2.62913 -1.40054
2 -0.13539 0.18450 -0.08751i 
3 -0.26119 0.18477 -0.04386

k 1 1.478838 3.418597 1.560448
 

Table 7 - Threshold for second neural network model 
j k 

1 2 3 1 
-0.10841 -2.90354 0.09337 0.837178

 

Activation function for the hidden layer is the hyperbolic function (Eq. 6), 

and the activation function for the output layer is the logistic function (Eq. 7). 
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Third Model. In the Vogel1 and Fetkovich6 equations, the average reservoir 

pressure pr is considered as an input to establish the IPR curve. This model considers pr 

as an output.  

I considered the following as inputs: 

1- The recovery factor, Np/N. 

2-  Flowing bottomhole pressure, pwf. 

3- Maximum oil flow rate, qomax. 

4- Bubblepoint pressure, pb. 

5- Oil formation volume factor at bubblepoint pressure, Bob. 

6- Oil viscosity at bubblepoint pressure, µob. 

7- Solution gas-oil ratio at bubblepoint pressure, Rsb. 

8- Gas formation volume factor at bubblepoint pressure, Bgb. 

9- Gas viscosity at bubblepoint pressure, µgb. 

10- Critical gas saturation, Sgc. 

The outputs are the oil flow rate, qo, and the average reservoir pressure, pr.  

As the oil is produced, the oil in place decreases and in consequence the average 

reservoir pressure decreases. In this model I am trying to determine whether the neural 

network can predict the relationship between the cumulative oil produced and the 

average reservoir pressure.  

The learning process was performed with only the MLP. From the best five 

models, I selected the one with five input nodes (Np/N, pwf, qomax, Rsb, and Bob), five 
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hidden nodes, and two output nodes (Fig. 15). Weights and thresholds for the network 

are tabulated in Tables 8 and 9.  

The activation function for the hidden layer is hyperbolic (Eq. 6), and logistic for 

the output layer (Eq. 7).  

 
 

 
 

Fig. 15  Illustration for the construction of the third neural network model 
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Table 8 - The weights for third neural network model 
j  

1 2 3 4 5 
1 0.810700 0.055842 -0.173058 0.63933 -0.006894 
2 0.247285 1.313917 1.365727 -0.14048 -0.204629 
3 -0.206950 -0.349037 0.624382 -1.00049 0.300263 
4 0.534303 0.120481 0.162954 -0.00439 -0.371571 

i 

5 0.208213 -0.144539 -0.061151 -0.47161 0.284447 
1 0.21009 -1.26307 1.18380 0.30444 0.31154 k 
2 -0.227246 0.006402 -0.036087 -0.818592 0.091393 

 

Table 9 - Threshold for third neural network model 
j k 

1 2 3 4 5 1 2 
-0.633504 0.232344 0.158766 0.03563 0.577545 0.02651 -0.522668 
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MODEL EVALUATION AND DISCUSSION 

 

To test the accuracy of prediction of each of the three neural network models, I 

introduced new data that were not used in the training process. The predicted values 

differ from the actual values, and to evaluate the accuracy of the models, I used the 

percentage relative error 

 

100
 valueActual

 valueActual- valuePredicted(%))(eError  Relative Percentage r ×⎟
⎠
⎞

⎜
⎝
⎛=   ……….  (8) 

 

It gives an indication of the relative deviation of the predicted data from the actual data. 

Number of data points used for training is 1208 data points, and for evaluation is 50 data 

points. 

The first and the second models were compared to results generated using 

Vogel’s equation, 
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For establishing the dimensionless IPR curve using Vogel’s equation we need to 

have either pwf and pr, or qo and qomax. On the other hand, if we want to establish the IPR 

curve, we need to have any three of the four parameters in the equation. 
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I can only compare the first and the second model to Vogel’s equation, but not 

the third model. The input parameters used in the third model to establish an IPR curve 

are not enough to establish an IPR curve using Vogel’s equation. 

 

First Model. The percentage relative error for 80% of the training data is 

between 15% and -15% (Fig. 16), which indicates high accuracy for the model 

prediction. The same results were obtained for the evaluation data (Fig. 17). 

Fig. 18 shows percentage relative error for predicted qo using Vogel’s equation, 

where 71% of the predictions have percentage relative error between -15% and 15%. 

The first model shows higher accuracy than Vogel’s equation.  

Fig. 17 shows the percentage relative error of the evaluation data for both first 

model and Vogel’s equation. In this figure, Vogel’s equation has better performance 

than the first model. The percentage relative error is between -15% and 15% for 94% of 

the data resulted from Vogel’s equation and for 79% of the data resulted from the first 

model. 
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Fig. 16   Percentage relative error of the predicted qo for training data (first model) 
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Fig. 17   Percentage relative error of the predicted qo for evaluation data (first 

model versus Vogel’s equation) 
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Fig. 18   Percentage relative error of the predicted qo for training data (Vogel’s 

equation) 

 

The first model has the same error range for almost the same percentage amount 

of the data for both training and evaluation data. Vogel’s equation has for the same error 

range a significant difference in the percentage amount of the data for training and 

evaluation data. 

Fig. 19 shows selected three IPR curves from the training data. The first model is 

better than Vogel’s equation for two IPR curves. 
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Fig. 19   Comparing the IPR curves produced using the first model and Vogel’s 

equation to the actual IPR curves 

 

Fig. 20 shows a crossplot for the training data comparing the predicted data with 

the actual data, which reflects good prediction by the first model. If a point lies on a 45o 

line, that means the predicted point equals exactly the actual point.  
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Fig. 20   Crossplot for qo for training data (first model) 

 



 

 

41

Second Model. The model predicts qo/qomax.  Fig. 21 compares the second model 

and Vogel’s equation to simulation results. Vogel’s equation is overestimating the actual 

values, where the second model is overlaying the simulation values. The percentage 

relative error for about 90% of the training data is between 10% and -10% (Fig. 22), 

which gives very good indication for the high accuracy of the model in prediction. 

Where for the evaluation data, the results show slightly lower accuracy than the training 

data. The percentage relative error is between 10% and -10% for 85% of the data. (Fig. 

23). 

 
 
 

 
 
 
 
Fig. 21   Dimensionless IPR for actual, second model, and Vogel’s equation 
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Fig. 22   Percentage relative error of the predicted qo/qomax for training data (second 

model) 

 

The second model predicted outputs with higher accuracy than the first model 

and the range of the error for training and evaluation data was almost the same for the 

same percentage amount of the data. 

The percentage relative error when Vogel’s equation used was between -10% and 

10% for about 55% of the training data (Fig. 23) and 87% for the evaluation data (Fig. 

24). As in the first model case, for Vogel’s equation for the same error range we have 

significant difference between the percentage amount of the data for the training and the 

evaluation data. 
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Fig. 23   Percentage relative error of the predicted qo/qomax for evaluation data 

(second model versus Vogel’s equation) 
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Fig. 24   Percentage relative error of the predicted qo/qomax for training data 

(Vogel’s equation) 

 

The results show very good model predictions for both the training and 

evaluation data, and it can be observed in the crossplot in Fig. 25 which shows very 

good agreement for the predicted values with the actual values. 
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Fig. 25   Crossplot for qo/qomax for training data (second model) 

 

 

Third Model. This model showed moderate error. This model is more 

complicated than the previous two. I am trying to predict with this model two parameters 

with different natures. For a single IPR curve, qo is always changing with changing pwf. 

On the contrary, I have only one value for pr. 

  For the training data, the percentage relative error for qo was between -20% and 

20% for about 70% of the data (Fig. 26), and for pr, it was between -10% and 10% for 

about 88% of the data (Fig. 27). 
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For the evaluation data, the percentage relative error was the same for qo (Fig. 

28), and for pr, it was divided into two groups. The first group has 26% of the data and 

the percentage relative error is between 15% and 25%. The second group has 74% of the 

data and percentage error is between -10% and 0% (Fig. 29). 
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Fig. 26   Percentage relative error of the predicted qo for training data (third 

model) 
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Fig. 27   Percentage relative error of the predicted pr for training data (third model) 
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Fig. 28   Percentage relative error of the predicted qo for evaluation data (third 

model) 
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Fig. 29   Percentage relative error of the predicted pr for evaluation data (third 

model) 

 

From comparing the results of the predicted and actual data for the training data 

in the crossplot (Figs. 30 and 31), a good agreement can be seen which reflects a good 

prediction from the neural network model. 
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Fig. 30   Crossplot of qo for training data (third model) 
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Fig. 31   Crossplot of pr for training data (third model) 
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CONCLUSIONS 

 

Three artificial neural networks were developed to establish the inflow 

performance relationship. The first model predicts the oil flow rate, qo. The second 

model predicts the normalized oil flow rate, qo/qomax. The third model predicts the oil 

flow rate, qo, and the average reservoir pressure, pr. 

Vogel1 didn’t provide sufficient information to reproduce his work. Part of the 

data presents unrealistic data that can not occur. 

The first two models accurately predicted the required output to establish the 

inflow performance relationship by considering more than one input.  

The first model showed a good prediction, and the error increases at the end 

points of the curves. The results were compared with Vogel’s equation. The first model 

showed higher accuracy than Vogel’s equation for the training data but Vogel’s equation 

produced more accurate results for the evaluation data.  

The error was consistent for the first model between the training and the 

evaluation data but for Vogel’s equation, it showed a significant difference. 

  The second model predicts the output with a higher accuracy than the first model. 

For the training data the second model showed higher accuracy than Vogel’s equation 

but for the evaluation data it showed similar accuracy to Vogel’s equation. Also in this 

case, the second model showed consistent error for the training and the evaluation data, 

unlike Vogel’s equation that has significant differences between the training and the 

evaluation data error.  
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The third model could predict the output with a reasonable accuracy because the 

two outputs qo and pr, have two different natures. If we want to feed one IPR curve to the 

neural network, we will feed it with different values of qo but only one value of pr.  

The input data used in the third model to predict qo and pr is not enough to be 

used in Vogel’s equation to get the same outputs in the third model. 

For establishing the IPR curve using any of the three models, we need to have the 

qomax first, which can be calculated from other methods. 

This work proved the ability of the neural network to predict the oil flow rate, the 

dimensionless oil flow rate, and the average reservoir pressure to establish the inflow 

performance relationship with a good accuracy.  
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NOMENCLATURE 

 

α = timestep increase factor 

Bg = gas formation volume factor, RB/scf 

Bgb = gas formation volume factor at bubblepoint, RB/scf 

Bo = oil formation volume factor, RB/STB 

Bob = oil formation volume factor at bubblepoint, RB/STB 

C = back-pressure curve coefficient, STB/D/psi2n 

φ = porosity, fraction 

h = formation thickness, ft 

J = productivity index, STB/D/psi 

k = absolute permeability, md 

kro = oil relative permeability 

µg = gas viscosity, cp 

µgb = gas viscosity at bubble point, cp 

µo = oil viscosity, cp 

µob = oil viscosity at bubblepoint, cp 

n = exponent of back-pressure curve, dimensionless 

N = initial oil in place 

Np = cumulative oil produced, STB 

pb = bubblepoint pressure, psia 

pe = pressure at the reservoir outer boundary, psia 
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pr = average reservoir pressure, psia 

pwf = flowing bottomhole flowing pressure, psia 

qo = oil flow rate, STB/D 

qomax = maximum oil flow rate, STB/D 

re = reservoir outer radius, ft 

rw = wellbore radius, ft 

Rs = solution gas-oil ratio, Mscf/STB 

Rsb = solution gas-oil ration at bubblepoint, Mscf/STB 

SL = total liquid saturation 

Sor = residual oil saturation, fraction 

Swc = irreducible water saturation, fraction 
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APPENDIX 

IPR CURVES GENERATED FROM RESERVOIR SIMULATION 
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Fig. A-1  IPR curves for case 2 (refer to Table 2) 
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Fig. A-2  IPR curves for case 3 (refer to Table 2) 
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Fig. A-3  IPR curves for case 4 (refer to Table 2) 



 

 

60

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140 160 180
q o , STB/D

p w
f, 

ps
ia

Np/N = 1%
Np/N = 2%
Np/N = 4%
Np/N = 6%
Np/N = 7%

 

Fig. A-4  IPR curves for case 5 (refer to Table 2) 
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Fig. A-5  IPR curves for case 6 (refer to Table 2) 
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Fig. A-6  IPR curves for case 7 (refer to Table 2) 
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Fig. A-7  IPR curves for case 8 (refer to Table 2) 
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Fig. A-8  IPR curves for case 9 (refer to Table 2) 
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Fig. A-9  IPR curves for case 10 (refer to Table 2) 
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Fig. A-10  IPR curves for case 11 (refer to Table 2) 
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Fig. A-11  IPR curves for case 12 (refer to Table 2) 
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Fig. A-12  IPR curves for case 13 (refer to Table 2) 

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600
q o , STB/D

p w
f, 

ps
ia

Np/N = 1%
Np/N = 4%
Np/N = 8%
Np/N = 17%
Np/N = 20%

 

Fig. A-13  IPR curves for case 14 (refer to Table 2) 
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Fig. A-14  IPR curves for case 15 (refer to Table 2) 
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Fig. A-15  IPR curves for case  16 (refer to Table 2) 
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