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ABSTRACT 

 
The Development of Correlations Between HMA Pavement Performance  

and Aggregate Shape Properties.  (December 2005) 

Jeremy McGahan, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Eyad Masad 

 
The physical characteristics of aggregates (form, angularity, and texture) are 

known to affect the performance of hot mix asphalt (HMA) pavements.  Efforts to 

develop relationships between these aggregate characteristics and aggregate performance 

in HMA pavements have been limited in the past due to inherent inaccuracies in the 

methods used to measure these characteristics.  The recently developed Aggregate 

Imaging System (AIMS) offers an opportunity to accurately measure aggregate shape 

characteristics allowing them to be properly related to asphalt performance. 

This research focused on relating the aggregate characteristics of form, 

angularity, and texture measured using AIMS to laboratory performance measurements 

on a wide variety of HMA mixes.    The performance of these mixes was evaluated in 

three projects carried out by the Federal Highway Administration (FHWA) and the 

Texas Transportation Institute (TTI).  During this research, a database of the volumetric, 

performance, and aggregate shape measurements for mixes used in these projects was 

created.  Statistical analysis was conducted to correlate HMA performance parameters to 

volumetric and aggregate shape characteristics.  The results show the dominant effect 

that aggregate shape properties have on HMA performance.   
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CHAPTER I 

INTRODUCTION 

 

PROBLEM STATEMENT 

Aggregate shape characteristics are known to affect the performance of hot mix 

asphalt (HMA) pavements in several ways.  The work of many researchers has proven 

that these characteristics affect stability, permanent deformation, durability, and fatigue 

response of asphalt mixes. However, to date there have been few comprehensive studies 

aimed at correlating aggregate shape properties to actual HMA performance 

measurements.  Accurate measurement of aggregate shape properties is vital to 

improving the design and performance of HMA pavements.  The limitations of the 

standard techniques employed in SuperpaveTM in measuring aggregate shape properties 

have restricted researchers in relating HMA performance to aggregate shape.  The 

recently developed Aggregate Imaging System (AIMS) has proven to accurately and 

efficiently measure these aggregate shape properties.  AIMS is a sophisticated testing 

device which is capable of measuring aggregate shape properties for both fine and coarse 

aggregates.  AIMS results have proven to be reproducible and repeatable in regard to 

operator use and have also proven to be sensitive to slight variations in shape 

characteristics within an aggregate sample (Bathina, 2005).  AIMS was used in this 

research to measure shape properties of a variety of aggregates used in several HMA 
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mixes.  These properties were then correlated to performance characteristics measured 

on each respective mix. 

 

OBJECTIVES OF THE STUDY 

The primary objective of this research is to relate aggregate shape properties to 

HMA performance measurements.  This objective was achieved through completing the 

following tasks: 

• Using AIMS to measure the aggregate shape properties of form, angularity, and 

texture of aggregate samples used in the three different projects incorporated in 

this research. 

• Compiling databases that include the performance, volumetric, and aggregate 

shape measurements for each project. 

• Conducting statistical analysis using computer software (SPSS®) to relate HMA 

performance measurements to aggregate shape properties. 

• Explaining the relationships between HMA performance measurements and the 

aggregate shape properties.  

 

REPORT ORGANIZATION 

This report is organized into the following six chapters: 

• Chapter I provides an introduction to the problem statement of this research, 

followed by the objectives and a brief outline of the report. 
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• Chapter II presents a literature review on the influence of aggregate shape 

properties on HMA performance.  This chapter also includes a section describing 

AIMS features. 

• Chapter III discusses the experimental measurements of HMA properties.  It 

describes the HMA performance and volumetric measurements evaluated in each 

of the three projects being examined as well as the aggregates used in each. 

• Chapter IV includes a discussion of AIMS measurements and the significance of 

these measurements in describing aggregate characteristics.   

• Chapter V discusses the statistical analysis methods used to relate the HMA 

performance measurements with the aggregate shape properties.  It also provides 

a summary of the results and discusses the statistical correlations between the 

HMA performance measurements and the aggregate shape properties.  

• Chapter VI includes both conclusions and recommendations. 
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CHAPTER II  

LITERATURE REVIEW 

 

INTRODUCTION 

 This literature review thoroughly discusses the significance of aggregate 

properties in influencing the performance of HMA pavements.  HMA pavements are the 

most common type of roadway surface used in the United States today.  Federal 

Highway Administration (FHWA) data indicate that more than  90 percent of all 

pavements in the United States contain some type of asphalt surface.  Asphalt pavement 

construction accounts for $15 billion per year in expenditures, approximately one-sixth 

of total highway operation expenses (Superpave System, The, 2000). 

The high cost of operations in this field justifies the need for in depth research on 

characterization of asphalt pavement materials and development of methods for 

predicting HMA pavement performance.  The effect of aggregate properties on 

performance of HMA pavements is one of the key topics that needs to be understood in 

order to optimize selection of aggregates for different loading and environmental 

conditions.  Although the effect of aggregate on HMA performance is known intuitively, 

there is a lack of direct correlation relating aggregate properties to actual HMA 

performance.   However, many researchers have noted the effect of aggregate shape 

characteristics on laboratory HMA specimens which will be discussed throughout this 

chapter. 
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THE INFLUENCE OF AGGREGATE PROPERTIES ON HMA  
 
PERFORMANCE 

 
Aggregate particles can be defined in terms of three independent shape 

properties:  shape (or form), angularity, and surface texture (Barrett, 1980).  These three 

aggregate shape properties fully characterize particles based on their geometry.  The 

form property characterizes aggregate particles based on ratios of particle dimensions.  

The angularity property measurement describes particles based on the variations at the 

edges of particles.  This measurement defines particles in a range from rounded to 

angular.  The final property is surface texture.  This property describes the surface 

roughness of a particle at a small scale, which is not influenced by changes in form or 

angularity.  These three properties are independent of each other:  an increase or 

decrease in one of these properties does not necessarily influence the other two 

properties (Al-Rousan, 2004).  A schematic diagram illustrating the differences between 

these three aggregate shape properties is shown in Figure 2.1. 

 

 

Form 

Angularity 

Texture 

 
Fig. 2.1. Components of aggregate shape:  form, 

angularity, and texture (Masad et al., 2003) 
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The current SuperpaveTM system does not use these three properties separately in 

describing aggregate shape, primarily because current methods used to characterize 

aggregate particles are not able to distinguish between different aggregate 

characteristics.    In fact, recent studies have shown that the current method used in 

SuperpaveTM to measure fine aggregate angularity does not distinguish between poor and 

high quality aggregates (Huber et al., 1998; Chowdhury et al., 2001).  Additionally, 

aggregate texture is not emphasized in the aggregate characterization methods currently 

used by SuperpaveTM (Fletcher et al., 2002).  The current methods used in characterizing 

aggregate particles are not able to distinguish between the different shape properties.  

The development of a method capable of distinguishing between these characteristics, 

rather than a combination of their interactions, is vital in order to properly relate 

aggregate properties to HMA pavement performance (Masad et al., 2003). 

The effects of aggregate shape and size on the stiffness and fatigue response of 

HMA mixes were examined by Monismith (1970).  Monismith showed that stiffness and 

fatigue responses of HMA mixes are influenced by these aggregate characteristics.  He 

recommended using rough-textured aggregates in a dense gradation to increase mix 

stiffness and fatigue life for thick HMA pavements.  For thin pavements, Monismith 

recommended utilizing smooth-textured aggregates, which produce less stiff mixes and 

result in increased fatigue life (Monismith, 1970).   

Foster (1970) compared the resistance of dense-graded HMA mixes containing 

both crushed and uncrushed coarse aggregates to traffic loads using pavement test 

sections.  He concluded that HMA mixes containing crushed coarse aggregate perform 
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no better than mixes containing uncrushed coarse aggregate and that the true capacity of 

dense-graded mixes to resist traffic-induced stress is controlled by fine aggregate 

characteristics (Foster, 1970).   

Lefebure (1957) used the Marshall test to measure the stability of HMA mixes 

containing either crushed cubical or crushed flat and elongated coarse particles.  This 

research combined these two coarse aggregates with both natural and crushed fine 

aggregates.  He concluded that fine aggregates provide the greatest influence on mix 

response (Lefebure, 1957).   

Significant increases in Marshall stability were reported by Wedding and Gaynor 

(1961) when crushed gravel was substituted for uncrushed gravel in HMA mixes.  The 

use of crushed coarse aggregates significantly increased HMA mix stability when 

compared to those that contained uncrushed gravel.  The substitution of crushed coarse 

and fine aggregate for natural sand and gravel increased HMA stability by about 45 

percent.  They found that using crushed fine aggregates had minimal effect on HMA 

stability when crushed coarse aggregates were used.  However, using crushed fine 

aggregates with uncrushed coarse aggregates resulted in a noticeable increase in HMA 

stability.  They concluded that replacing natural sand with crushed gravel sand raises 

stability effectively equal to using 25 percent crushed gravel in the coarse aggregate 

(Wedding and Gaynor, 1961).   

Moore and Welke (1979) tested Marshall stability on mixes that incorporated 110 

different fine aggregates while keeping other components constant (coarse aggregate, 

asphalt content, mineral filler).  They reported that fine aggregate angularity exhibits a 
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positive correlation with Marshall stability.  An increase in aggregate angularity resulted 

in an increase in HMA mix stability (Moore and Welke, 1979). 

 Campen and Smith (1948) studied the influence of replacing natural round 

aggregates with crushed aggregates.  Using Hubbard-Field and Bearing-Index tests, they 

reported a 30 to 190 percent increase in HMA mix stability when using crushed 

aggregates in dense-graded HMA mixes (Campen and Smith, 1948).  Ishai and Gellber 

(1982) related HMA stability to geometric irregularities in aggregate particles using the 

packing volume concept developed by Tons and Goetz (1968).  They found a significant 

increase in asphalt mix stability with increasing geometric irregularities of the aggregate 

particles (Ishai and Gelber, 1982).  Kalcheff and Tunnicliff (1982) studied the effect of 

fine aggregate shape on HMA properties.  Using the Marshall stability, repeated load 

triaxial compression, static indirect split-tensile, and repeated load indirect split-tensile 

tests, they found that replacing natural sand with manufactured sand improved the mix 

resistance to permanent deformation. Winford (1991) reached similar conclusions by 

comparing fine aggregate properties to mechanical properties of HMA.   

 Using triaxial compression testing methods, Herrin and Goetz (1954) studied the 

effect of aggregate shape on HMA mix stability.  They reported that increasing the 

crushed gravel content in the coarse aggregate increases the strength of open-graded 

mixes; however, crushed gravel content had minimal effect on dense-graded HMA 

mixes (Herrin and Goetz, 1954).  Field (1958) also studied the influence of crushed 

particles on HMA mixes.  He found that HMA Marshall stability was not significantly 

affected when less than 35 percent of the coarse aggregates was crushed.  HMA stability 
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increased consistently, however, as the percentage of crushed particles was raised to 100 

percent.  He reported average HMA stability 55 percent higher for 100 percent crushed 

particles when compared to mixes with 35 percent crushed particles (Field, 1958).  

Kandhal and Wenger (1973) also studied the effect of crushed coarse aggregate on 

dense-graded HMA mixes.  Their research showed decreasing Marshall stability with 

increasing uncrushed coarse particle content in dense-graded HMA mixes.   

Gaudette and Welke (1977) studied the effect of increasing the percent crushed 

faces of coarse aggregate particles in HMA mixes.  Mixes containing between 0 and 50 

percent crushed particles, regardless of the number of crushed faces, resulted in a 

stability increase of 17 percent over mixes without crushed particles.  When more than 

50 percent crushed particles was used, the stability of mixes containing particles with 

two or fewer  crushed faces leveled off; however, the stability of mixes containing 

particles with three or more crushed faces continually increased with the percentage of 

crushed particles.  Kandhal et al. (1991) performed an in depth analysis of factors that 

affect asphalt pavement performance.  They found that HMA mixes containing less than 

20 percent natural sand exhibited better overall performance than mixes containing more 

than 20 percent.  For heavy-duty wearing and binder courses, the researchers 

recommended using coarse aggregates that contain more than 85 percent of particles 

with two or more fractured faces (Kandhal et al., 1991).   

Sanders and Dukatz (1992) studied the effect of coarse aggregate angularity on 

permanent deformation using four HMA interstate pavement sections.  After two years 

of operation, only one of the four sections exhibited permanent deformation.  Upon 
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examination, they found that the HMA mix in the binder and surface coarse layers of the 

damaged section contained lower amounts of angular coarse aggregates than the 

undeformed sections (Sanders and Dukatz, 1992).   

 Maupin (1970) conducted a thorough laboratory investigation of the effect of 

particle shape on fatigue behavior of asphalt mixes.  He used three aggregates:  round 

gravel, crushed limestone, and slate.  Using a constant strain mode fatigue test, Maupin 

(1970) concluded that mixes containing round gravel exhibited longer fatigue life than 

those containing crushed limestone or slate. 

Li and Kett (1967) found that HMA mixes containing aggregates with a 

dimension ratio (longest to shortest dimensions) of less than 3:1 had no influence on 

Marshall or Hveem stability.  They found the 30 to 40 percent particles with a dimension 

ratio larger than 3:1 did not adversely affect mix stability (Li and Kett, 1967).  Kandhal 

and Parker (1998) also studied the influence of flat and elongated coarse aggregate 

particles on HMA strength and determined that excessive amounts of flat and elongated 

particles are undesirable in HMA mixes.  Such particles were found to have a high 

tendency to fracture prior to application, which affected HMA mix durability (Kandhal 

and Parker, 1998).   

 Yeggoni et al. (1996) compared an imaging index of aggregate texture (fractal 

dimension) to creep behavior of asphalt mixes. Using the same gradation, seven different 

aggregate blends were prepared with varying amounts of crushed coarse aggregate 

particles.  The relationship between the fractal dimension and the static creep 

compliance measured in this research can be seen in Figure 2.2.   
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Fig. 2.2. Correlation between coarse aggregate texture measured using image  
analysis and rut depth in the creep compliance of HMA (Yeggoni et al., 1996) 

 
 

Figure 2.3 compares the texture of the coarse aggregates used in the National 

Cooperative Highway Research Program (NCHRP) Project 4-19 (Kandhal and Parker, 

1998) with rut depths of HMA pavements.  The texture of these aggregates was 

measured using AIMS (Masad, 2003).  The results show a distinct relationship between 

texture of coarse aggregates and resistance to permanent deformation. 
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Fig. 2.3. Correlation between coarse aggregate texture measured using image analysis 
and HMA rut depth in the Georgia loaded wheel test (GLWT) (Fletcher et al., 2002) 

 

 
THE AGGREGATE IMAGING SYSTEM (AIMS) 

AIMS is a computer automated imaging system that measures aggregate shape 

properties.  AIMS was developed by Dr. Eyad Masad through funding from the FHWA.  

Research performed by Dr. Taleb Al-Rousan led to development of a methodology for 

classifying aggregates based on their shape properties.  Al-Rousan (2004) evaluated a 

large number of test methods for measuring aggregate shape and concluded that AIMS 

was the most effective system for measuring the shape characteristics of both fine and 

coarse aggregates.  AIMS is capable of capturing all three distinct aggregate shape 

properties:  form, angularity, and surface texture.  Coarse aggregate particles are 

generally larger than 4.75 mm, and fine aggregate particles smaller than 4.75mm.  AIMS 
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can analyze both coarse and fine aggregates, ranging from sizes of 150 µm to 37.5 mm 

(Masad, 2004).   

AIMS has been evaluated through analysis of repeatability, reproducibility, and 

sensitivity in a recent study by Bathina (2005).  She found that AIMS accurately 

measured the characteristics of both coarse and fine aggregates.  Analysis showed that 

the maximum coefficient of variation (C.V.) of repeatability was 13.9 percent in 

measuring the texture of random samples and 4.9 percent in measuring the same sample 

several times by the same operator.  Reproducibility analysis (variation among different 

operators) gave a maximum C.V. of 16.3 percent in measuring the texture of random 

samples.  Bathina (2005) also concluded that AIMS is sensitive to changes in the 

distributions of form, angularity, and texture within an aggregate sample.   

 Bathina (2005) compared the repeatability and reproducibility results of AIMS to 

other test methods used to measure aggregate shape properties.  She concluded that 

repeatability and reproducibility of AIMS measurements are excellent compared to other 

measurement methods.   
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CHAPTER III  

EXPERIMENTAL MEASUREMENTS OF HMA PROPERTIES 

 

INTRODUCTION  

 HMA mixes from three separate projects were used in this research to investigate 

the relationship between aggregate characteristics, mix volumetrics, and performance.  

The previous projects were conducted at Texas Transportation Institute (TTI) and at 

FHWA’s mobile laboratory.  The tests involved measuring volumetric and mechanical 

properties of a variety of HMA mixes with different aggregate sources and binder 

grades.  This chapter describes these mixes and their properties. 

 

FHWA MOBILE LABORATORY PROJECTS 

The mixes in this section were collected and tested at FHWA’s mobile 

laboratory.  This mobile laboratory travels across the Unites States testing HMA mixes 

used in different pavements.  The FHWA has compiled a database for tested mixes that 

includes performance parameters and volumetric measurements.  Some state 

specifications for mix volumetrics differ.  These criteria are influenced by the 

environmental surroundings of the pavements as well as the state or local design codes 

for each location.     

Extensive evaluation was conducted on the FHWA database in order to compile 

the same volumetrics, performance measurements, and aggregate shape properties for 

the mixes included in this research.  Some of the pavements examined in the FHWA 
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mobile laboratory unit did not record some of the volumetric measurements and had to 

be excluded from the project.  For instance, the Florida mixes were removed because 

binder shear modulus (G*) was not measured.  Table 3.1 lists the sources of the mixes 

used in this research.   

 

Aggregates and HMA Volumetrics 

The FHWA provided samples of the aggregates used in each mix so that the 

aggregate properties could be measured using AIMS.  They conducted sieve analyses on 

the aggregates used in the mixes, and these aggregate gradations are shown below in 

Table 3.1.   

 

Table 3.1. FHWA Mobile Laboratory Aggregate Sieve Data 
Percent Passing Sieve Size 

(mm) Wiscon-
sin Iowa Maine North 

Carolina 
Minne-

sota Kansas Wash-
ington 

Louis-
iana 

25.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.5 
19.00 98.1 99.9 100.0 100.0 100.0 97.9 100.0 88.4 
12.50 88.4 93.5 100.0 99.6 94.0 89.2 95.7 70.0 
9.50 78.5 86.6 97.9 93.9 87.5 84.9 85.3 55.0 
4.75 62.4 60.7 61.8 65.6 66.9 65.9 54.1 32.6 
2.36 42.5 40.4 38.1 52.8 47.8 41.1 32.5 24.1 
1.18 27.2 29.3 24.7 44.7 32.6 26.6 20.9 19.3 
0.60 17.0 22.2 16.4 31.1 22.0 17.1 14.7 15.5 
0.30 9.1 13.9 10.7 16.8 12.9 9.3 10.8 7.8 
0.15 5.7 8.2 8.0 9.2 6.8 5.3 8.3 4.4 
0.08 4.7 5.2 6.1 5.7 3.8 3.9 6.5 3.3 

 

 

 



  16   
 

The HMA volumetrics and binder properties measured in this project can be seen 

in Table 3.2. The first volumetric parameter measured is voids in mineral aggregate 

(VMA), which is a measurement of the total voids within a compacted aggregate.  VMA, 

along with many of the other volumetrics listed in Table 3.2, is known to affect the 

performance of HMA mixes.  If VMA is too low the mix will have a low film thickness, 

resulting in low durability.  Conversely, if VMA is too high, the mix will have a high 

film thickness leading to stability problems in the mix (Roberts et al., 1996).  The second 

volumetric parameter is voids filled with asphalt (VFA), which is a measurement of the 

percentage of voids in the mix that are filled with asphalt.  This volumetric property also 

affects HMA mix stability and is generally limited to a range of 70 to 85 percent 

(Roberts et al., 1996).   

 

Table 3.2. FHWA Mobile Laboratory Mix Volumetric and Binder Properties 
Mix Volumetric and Binder Properties 

Voids in Mineral Aggregate (VMA) 
Voids Filled with Asphalt (VFA) 

Design Voids in Total Mix (VTM) 
VTM when Tested 

Asphalt Content 
High PG Temperature 

G* (Binder Shear Modulus) 
Temperature at G* Measurement 

Performance Parameters Measurement Temperature 
 
 

The next parameter is the design voids in the total mix (VTM).  This 

measurement is probably the most important factor that affects mix performance 
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throughout the life of HMA pavements (Roberts et al., 1996).  In SuperpaveTM, asphalt 

mixes are designed to attain 4 percent VTM at the design number of gyrations.  The 

actual VTM (when tested) in the mix is the next volumetric parameter.  The fifth 

volumetric parameter is the asphalt content.  This value is the percent of asphalt by 

weight of the mix.  The optimum design asphalt content is determined from compaction 

and volumetric data.   

Every asphalt sample is designated through the SuperpaveTM grading system with 

a high and low performance grade (PG) temperature.  These temperatures are used to 

correlate performance with binder properties.  Binder dynamic shear modulus (G*) was 

measured at a frequency of 10 radians/sec at the maximum grading temperature.  The 

temperature at which the performance parameters were measured is also included as an 

independent parameter in the regression analysis.  The results of HMA property 

measurements can be seen in Table 3.3.  The numbers given in the first column of Table 

3.3, where included, refer to the percent asphalt content in the mix.  
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Table 3.3. FHWA Mobile Laboratory Mix Volumetric and Binder Properties Data  
Mix Volumetric and Binder Properties 

State VMA 
(%) 

VFA 
(%) 

Design 
VTM 
(%) 

VTM 
when 

Tested 
(%) 

Asphalt 
Content 

(%) 

G* 
(KPa) 

High 
PG 

Temp. 
(°C) 

Temp. G* 
was 

Measured 
(°C)  

PPMT 
(°C) 

Wisconsin Mix Rep. 15.1 72.4 4.0 8.0 5.5 1.44 64 64 31 
Wisconsin Plant 14.8 67.7 4.8 8.0 4.7 1.44 64 64 31 
Iowa Mix Rep. 14.8 68.2 4.7 6.0 5.4 1.19 58 58 40 

Iowa Plant 13.0 76.2 4.7 6.0 5.5 1.19 58 58 40 
Maine Mix Rep. 14.3 68.5 4.5 5.0 5.8 1.28 64 64 38 

Maine Plant 14.7 69.8 4.5 5.0 6.1 1.28 64 64 38 
N.C. Mix Rep. 12.0 79.4 2.5 8.0 5.0 1.23 70 70 45 

N.C. Plant 13.0 72.1 3.6 8.0 5.0 1.23 70 70 45 
Louisiana 3.3 12.4 55.6 5.5 7.5 3.3 1.96 64 64 54 
Louisiana 3.8 12.5 65.6 4.3 7.5 3.8 1.96 64 64 54 
Louisiana 4.3 12.3 77.2 2.8 7.5 4.3 1.96 64 64 54 

Louisiana Plant 12.4 63.7 4.5 7.5 3.8 1.96 64 64 54 
Washington 5.5 14.5 69.0 4.5 8.0 5.5 1.34 64 64 45 
Washington 6 14.7 75.5 3.6 8.0 6.0 1.34 64 64 45 

Washington 6.5 14.3 86.7 1.9 8.0 6.5 1.34 64 64 45 
Washington Plant 14.7 75.5 3.6 7.7 6.0 1.34 64 64 45 

California Hveem w/ 
Rap 10.8 86.1 1.5 8.3 4.8 1.29 64 64 48 

California Hveem 
w/o Rap 10.7 69.2 3.3 7.9 4.6 1.29 64 64 45 

California 
SuperpaveTM 13.4 74.6 3.4 8.1 5.2 1.29 64 64 45 

Kansas 4.7 15.1 56.3 6.6 6.9 4.7 1.42 64 64 45 
Kansas 5.2 14.8 64.2 5.3 7.0 5.2 1.42 64 64 45 
Kansas 5.7 14.8 74.3 3.8 7.1 5.7 1.42 64 64 45 

Kansas Plant 14.3 65.7 4.9 7.1 5.2 1.42 64 64 45 
Minnesota 4.8 16.8 56.0 7.4 8.0 4.8 1.15 70 70 45 
Minnesota 5.3 15.6 68.6 4.9 8.0 5.3 1.15 70 70 45 
Minnesota 5.8 16.2 73.5 4.3 8.0 5.8 1.15 70 70 45 

Minnesota Plant 15.4 69.5 4.7 8.0 5.3 1.2 70 70 45 
Notes:  Rap denotes recycled asphalt pavement.  PPMT labels the performance 
parameters measurement temperature quantity.   
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Table 3.4. FHWA Mobile Laboratory Mix Performance Parameters 
Performance Parameters 

Flow Point  
Strain @ Flow 

Total Accumulated Strain 
N Failure  

Flow Slope 
Flow to Termination Slope 

  
 

HMA Performance Parameters 

The performance parameters measured at the FHWA mobile laboratory are 

shown in Table 3.4.  The first performance parameter, flow point, is the number of 

cycles an asphalt specimen can withstand before it reveals an increasing rate of shear 

deformation development in a dynamic creep test.  Figure 3.1 below shows an 

illustration of strain response of an asphalt sample when a cyclic load is applied to the 

specimen.  The flow point is easily identifiable on the graph.  It is located where the 

graph changes concavity, also known as an inflection point.  This occurs in Figure 3.1 at 

a value of 5,000 cycles and is denoted at point A.   
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Fig. 3.1. Illustration of flow test results   

 

The second performance parameter is strain @ flow, which is also shown in 

Figure 3.1 at point A at a strain of 0.025.  The third and fourth performance parameters 

are also derived from the flow test.  The total accumulated strain is the maximum strain 

the sample reaches before it fails.  In Figure 3.1 above, this maximum value is reached 

when the asphalt specimen fails and is labeled by point B.  However, some asphalt 

samples exhibit a reduction in strain as the sample approaches failure.  The fourth 

performance parameter is the number of cycles the asphalt specimen withstands before 

failure.  This occurs in Figure 3.1 at around 9,500 cycles and is labeled by point B at a 

total accumulated strain of 0.045.   

 

 

 

  A 

  
B 
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The final two performance parameters are arithmetic functions that combine the 

previous performance parameters.  Both of these functions use the logarithmic 

components of each parameter to linearize the flow graph data.  The first function is 

labeled as the Flow Slope and incorporates the Strain @ Flow and Flow Point 

performance parameters.  The second function, Flow to Termination Slope, incorporates 

the Total Strain, Strain @ Flow, N Failure, and Flow Point performance parameters.  

The equations for these two performance parameters can be seen in Equations 1 and 2.  

The performance measurement data for these FHWA mixes are shown in Table 3.5.  

 

log  Strain @ Flow
Flow Slope =  

log Flow Point
      (1) 

log  Total Strain - log Strain @ Flow
Flow to Termination Slope = 

log N Failure - log Flow Point
 (2) 
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Table 3.5. FHWA Mobile Laboratory Performance Measurement Data 

Mix Source Type of Mix Design PPMT 
(°C) 

Flow 
Point, 

(cycles) 

Strain    
@ Flow 

Total 
Accumulated 

Strain 

Total 
Cycles 

Mix Replication 31.2 7,655.0 8,529.4 12,283.8 10,701.9 Wisconsin 
Plant Produced 31.2 4,392.7 13,514.6 28,812.5 8,803.4 
Mix Replication 40.0 376.0 14,407.8 50,134.9 1,263.3 Iowa Plant Produced 40.0 309.8 15,084.8 50,095.2 932.0 
Mix Replication 37.5 4,002.0 14,515.0 30,258.0 9,316.0 Maine Plant Produced 37.5 2,093.0 19,670.0 46,405.0 5,778.0 
Mix Replication 45.0 777.6 22,306.0 50,026.0 2,251.0 North 

Carolina Plant Produced 45.0 496.0 16,900.0 50,038.0 1,554.0 
3.3 Mix 54.0 141.0 25,374.0 50,143.0 360.0 
3.8 Mix 54.0 141.0 28,812.0 50,123.0 328.0 
4.3 Mix 54.0 96.0 40,083.8 50,112.0 185.5 Louisiana 

Plant Produced 54.0 222.6 28,182.5 50,136.8 541.6 
5.5 Mix 45.0 373.0 23,179.0 50,034.0 1,028.0 
6 Mix 45.0 239.0 30,429.0 50,052.0 512.0 

6.5 Mix 45.0 156.0 34,473.0 50,081.0 319.0 
Washington 

Plant Produced 45.0 261.0 25,513.7 50,051.3 653.5 
Hveem w/ Rap 48.4 336.0 34,584.0 50,034.0 634.0 

Hveem w/o Rap 45.0 215.0 26,146.0 50,073.0 542.0 California 
SuperpaveTM 45.0 906.0 25,336.0 50,014.0 2,159.0 

4.7 Mix 45.0 151.0 20,113.0 50,202.0 436.0 
5.2 Mix 45.0 141.0 20,664.0 50,170.0 392.0 
5.7 Mix 45.0 96.0 34,986.0 50,243.0 191.0 

Kansas 

Plant Produced 45.0 157.3 23,495.5 50,133.9 422.9 
4.5 Mix 45.0 282.8 18,478.3 50,104.3 847.0 
5.3 Mix 45.0 220.0 20,986.9 50,119.1 634.9 
5.8 Mix 45.0 261.0 19,288.0 50,084.8 802.5 

Minnesota 

Plant Produced 45.0 433.9 20,044.8 50,052.0 1,283.8 
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TTI PROJECT 9-558  

The second set of data examined was generated during TTI Project 9-558.  This 

project, titled “Evaluation of Simple Performance Tests on HMA Mixtures in the South 

Central USA,” was completed in April 2003 in cooperation with the Texas Department 

of Transportation (TxDOT) and FHWA.  Project 9-558 examined a wide variety of 

asphalt materials and mix designs used in the south central region of the United States 

(nine sections) in addition to three laboratory designed mixes (Bhasin et al., 2003).  

 

Aggregates and HMA Volumetrics 

The aggregates from this project were retrieved from the TTI’s laboratory where 

they were originally used in TTI Project 9-558.  This research evaluated 12 mixes; 

however, only 10 of these mixes were incorporated into this research because the 

aggregates and mix properties from the other two could not be obtained.  Table 3.6 

shows the sieve analyses results for the mixes used in this research. The volumetric 

measurements shown in Table 3.7 were taken from TTI Report 9-558 (Bhasin et al., 

2003).  These volumetrics are the same as those measured in the FHWA mixes discussed 

in the previous section.   
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Table 3.6. Project 9-558 Aggregate Sieve Data (Bhasin et al., 2003) 
Percent Passing Sieve 

Size 
(mm) ARTL ARLR LA NM 

Bingham 
NM 

Vado OK TX 
WF 

TX 
Bryan 

64-40 
RG 

64-40 
RHY 

37.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
25.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
19.00 100.0 100.0 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 
12.50 100.0 100.0 95.3 93.0 77.0 96.0 97.1 100.0 100.0 100.0 
9.50 92.0 94.0 83.0 82.0 66.0 81.0 79.3 66.9 93.7 100.0 
4.75 56.0 62.0 62.3 59.0 44.0 54.0 45.9 34.1 70.7 99.5 
2.36 39.0 46.0 43.7 41.0 26.0 38.0 30.7 18.8 41.6 88.1 
1.18 28.0 31.0 31.5 28.0 19.0 25.0 19.5 11.0 26.7 54.7 
0.60 23.0 21.0 22.9 19.0 14.0 17.0 11.8 8.7 18.1 22.7 
0.30 15.0 11.0 12.4 12.7 10.0 13.0 6.8 7.2 11.1 9.8 
0.15 7.0 7.0 6.9 9.2 7.2 9.0 3.9 0.0 4.6 8.0 
0.08 5.1 4.4 5.1 5.8 5.8 5.8 3.2 0.0 2.9 6.1 

Notes:  Mixes 3 and 10 from project 9-558 were not included due to the unavailability of 
aggregates or mix properties. 

 
 

Table 3.7. Project 9-558 Mix Volumetric and Binder Properties Data 
Aggregate Source Mix Volumetric and Binder Properties 

Aggregate 
Reference # 

Aggregate 
Reference 

VMA 
(%) 

VFA 
(%) 

Design 
VTM 
(%) 

Asphalt 
Content 

(%) 

High PG 
Temperature 

(°C) 

1 ARTL 16.5 72.5 4.5 6.0 64 
2 ARLR 15.8 71.8 4.5 5.8 64 
4 LA 14.8 73.0 4.0 4.7 70 
5 NM Bingham 14.0 71.3 4.0 4.3 70 
6 NM Vado 14.6 72.8 4.0 4.8 82 
7 OK 15.2 73.0 4.0 4.8 70 
8 TX WF 15.3 73.7 4.0 4.8 76 
9 TX Bryan 14.0 75.0 3.5 4.5 64 

11 64-40 RG 16.3 75.4 4.0 5.5 64 
12 64-40 RHY 14.1 75.1 3.5 7.8 64 
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HMA Performance Parameters 

The performance parameters used in Project 9-558 are listed in Table 3.8.  The 

first performance parameter examined in this research was creep compliance, which is 

the ratio of measured strain to applied constant stress on an asphalt sample.  The second 

parameter is strain @ flow.  This performance measurement was discussed in the 

previous section. 

 
 

Table 3.8. Project 9-558 Performance Measurement Data 
Aggregate Data Measured Performance Parameters 

Aggregate 
Reference # 

Aggregate 
Reference 

Compliance  
(1/MPa)  

Strain @ 
Flow 

E*/sin φ at 
10 Hz (Avg. 
1000 MPa)  

APA Rut 
Depth (in) 

Flow 
Point 

(cycles) 
1 ARTL 0.17 0.28 2.1 8.2 0.2 
2 ARLR 0.03 0.17 0.8 18.9 0.2 
4 LA 0.06 0.07 1.4 7.2 0.4 
5 NM Bingham 0.01 0.01 4.4 2.5 15 
6 NM Vado 0.01 0.004 5 2 15 
7 OK 0.08 0.08 1 4.2 3.6 
8 TX WF 0.035 0.04 2.7 3.6 3.2 
9 TX Bryan 0.02 0.02 2.5 4.7 5.8 

11 64-40 RG 0.295 0.27 0.8 6.3 0.2 
12 64-40 RHY 0.335 0.31 1.5 3.8 1.6 
 

 
The next performance parameter is E*/sin φ at a frequency of 10 Hz.  This value 

incorporates the dynamic modulus E* and the phase angle φ.  Dynamic modulus is the 

ratio of amplitude stress to amplitude strain measured under cyclic loading.  The phase 

angle � provides an indication of the proportions of the viscous and elastic behavior of 

the asphalt binder.  A purely elastic material has a � value of 0o, while a purely viscous 

material has a � value of 90o.  
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The next parameter is rut depth (in millimeters) measured in the asphalt paving 

analyzer (APA).  The APA is a laboratory wheel testing device in which an asphalt mix 

slab or a cylindrical specimen is subjected to wheel passes to induce rutting (Bhasin et 

al., 2003). This performance parameter predicts the rutting susceptibility of an asphalt 

pavement after a predetermined number of passes are applied to each asphalt sample.   

The final performance parameter is flow point.  This parameter, previously 

discussed in the FHWA mobile laboratory project, is the number of cycles an asphalt 

sample can withstand before revealing an increasing rate of permanent deformation in a 

dynamic creep test. 

Figure 3.2 depicts the typical relationship between total cumulative permanent 

deformation and the number of loading cycles in a dynamic creep test.  In this type of 

test, Kaloush and Witczak (2002) described three zones on a permanent strain versus 

loading repetitions graph:  a primary zone, a secondary zone, and a tertiary zone.   The 

primary zone, as shown in Figure 3.2, is the initial area of the curve before the 

relationship becomes linear.  The secondary zone, located in the center of the figure, 

exhibits a linear relationship between permanent strain and loading repetitions.  The 

tertiary zone begins when the curve shows positive acceleration after the linear behavior 

ceases.  The flow point is located at the point where the tertiary zone begins.  This is 

where the rate of change of compliance is at the minimum (Kaloush and Witczak, 2002).   
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Fig. 3.2. Dynamic creep test expressing the primary, secondary, and tertiary zones   

 

 
TTI PROJECT 4203 

The third and final project incorporated in this research was from a project 

conducted at TTI.  This TTI project, in cooperation with FHWA and TxDOT, was 

completed in March 2003 as part of the Cooperative Research Program:  “As-Built 

Properties of Test Pavements on IH-20 in Atlanta District.”  This project involved the 

construction of nine HMA test sections on IH-20 in Harrison County.  These sections 

were constructed using different mix designs:  three primary aggregate types and three 

mix design types.  All mixes used the same asphalt (PG 76-22) source (Chowdhury et 

al., 2003).  
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Aggregates and HMA Volumetrics 

The three primary types of aggregates used in this project were quartzite, 

sandstone, and siliceous river gravel.  Table 3.9 lists the sources and suppliers of the 

primary aggregates used in this project.  Each primary type of aggregate was used in the 

three designs, also shown in Table 3.9. 

 

Table 3.9. Project 4203 Aggregate Types and Mixes (Chowdhury et al., 2003) 
Test Section Number Aggregate 

Type 
Aggregate 
Supplier 

Aggregate 
Source SuperpaveTM CMHB-C Type C 

Quartzite Martin 
Marietta Jones Mill #3 #6 #9  

Sandstone Meridian Sawyer, OK #2 #5  #8  

Siliceous 
River Gravel Hanson Prescott, AK #1 #4 #7 

 

 
Table 3.10 shows the aggregates used in each mix design.  Each mix design 

incorporated hydrated lime and supplementary aggregates to serve as intermediate/fine 

aggregates.  These additional aggregates and their percentages are shown in Table 3.10.   
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Table 3.10. Project 4203 Aggregate Mix Designs 
Aggregate Mix Designs Design Type Test 

Section # Percent Used Aggregate Type 
67 Siliceous River Gravel 
32 Limestone Screenings #1 
1 Hydrated Lime 

91 Sandstone 
8 Igneous Screenings #2 
1 Hydrated Lime 

89 Quartzite 
10 Igneous Screenings 

SuperpaveTM 

#3 
1 Hydrated Lime 

79 Siliceous River Gravel 
20 Igneous Screenings #4 
1 Hydrated Lime 

87 Sandstone 
12 Igneous Screenings #5 
1 Hydrated Lime 

87 Quartzite 
12 Igneous Screenings 

CMHB-C 

#6 
1 Hydrated Lime 

61 Siliceous River Gravel 
30 Limestone Screenings 
8 Igneous Screenings 

#7 

1 Hydrated Lime 
99 Sandstone #8 
1 Hydrated Lime 

91 Quartzite 
8 Igneous Screenings 

Type C 

#9 
1 Hydrated Lime 
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The three SuperpaveTM mixes were designed to address 30 million equivalent 

single axle loads (ESALs).  On the gyratory compactor, the Nini, Ndes, and Nmax were set 

to 9, 125, and 205, respectively.  The SuperpaveTM design followed Tex-204-F Part IV 

procedure (Chowdhury et al., 2003).  The aggregate gradation and mix design summary 

for the SuperpaveTM mixes can be seen in Tables 3.11 and 3.12.  

 
 

Table 3.11. Aggregate Gradation for SuperpaveTM Mixes Used in Project 4203 
(Chowdhury et al., 2003) 

Cumulative Percent Passing Sieve Size 
(mm) Siliceous River Gravel 

(Section #1 ) 
Sandstone 

(Section #2 ) 
Quartzite 

(Section #3) 
19.00 100.0 100.0 100.0 
12.50 92.0 92.1 93.7 
9.50 84.8 79.4 81.7 
4.75 52.4 49.0 45.5 
2.36 30.9 29.2 31.4 
1.18 20.4 22.4 21.0 
0.60 13.9 18.9 17.7 
0.30 8.8 14.9 11.8 
0.15 4.5 10.2 8.2 
0.08 3.2 6.5 5.6 

 
 
 

Table 3.12. Project 4203 SuperpaveTM Mix Design Summary  
(Chowdhury et al., 2003) 

Mix 
Optimum 
Asphalt 

Content (%) 

Design 
Air Void 

(%) 

VMA 
(%) 

VFA 
(%) 

Percent 
Gmm at 

Nini 

Percent 
Gmm at 

Nmax 

Dust 
Pro-

portion 
Siliceous River 

Gravel (Section #1) 5.0 3.7 15.3 73.9 86.9 97.5 0.6 

Sandstone 
(Section #2 ) 5.1 3.8 15.1 73.1 86.0 97.4 1.3 

Quartzite 
(Section #3) 5.1 3.8 15.6 73.1 86.5 97.4 1.1 

Specifications N/A 4.0±1.0 14.0 
Min 

65-
75 

89.0 
Max 

98.0 
Max 0.6-1.2 



  31   
 

The three CMHB-C mixes followed the TxDOT mix design procedure Tex-294-

F Part II (Chowdhury et al., 2003).  The aggregate gradation and mix design summary 

for these mixes can be seen in Tables 3.13 and 3.14. 

 

Table 3.13. Aggregate Gradation for CMHB-C Mixes Used in Project 4203  
(Chowdhury et al., 2003) 

Cumulative Percent Passing Sieve 
Size (in) Siliceous River Gravel 

(Section # 4 ) 
Sandstone 

(Section # 5 ) 
Quartzite 

(Section #6) 
7/8 100.0 100.0 100.0 
5/8 99.7 100.0 99.6 
3/8 64.5 65.4 65.6 
#4 34.3 38.0 34.2 

#10 21.8 24.0 24.0 
#40 16.2 16.4 14.5 
#80 9.8 10.9 9.1 

#200 6.4 6.4 5.9 
 

 
Table 3.14. Project 4203 CMHB-C Mix Design Summary (Chowdhury et al., 2003) 

Mix 
Optimum 

Asphalt Content 
% 

Design Air 
Void % 

VMA 
% 

Siliceous River 
Gravel (Section #4) 4.7 3.5 14.1 

Sandstone  
(Section #5 ) 4.8 3.5 14.6 

Quartzite    
(Section #6) 4.8 3.5 14.1 
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The three Type C mixes followed the TxDOT mix design procedure Tex-294-F 

Part I (Chowdhury et al., 2003).  The aggregate gradation and mix design summary for 

the Type C mixes are shown in Tables 3.15 and 3.16.   

 
 

Table 3.15. Aggregate Gradation for Type C Mixes Used in Project 4203  
(Chowdhury et al., 2003) 

Cumulative Percent Passing Sieve 
Size (in) Siliceous River Gravel 

(Section #7 ) 
Sandstone 

(Section #8 ) 
Quartzite 

(Section #9) 
7/8 100.0 100.0 100.0 
5/8 100.0 99.8 99.8 
3/8 75.8 80.7 79.1 
#4 49.2 46.2 51.4 

#10 31.5 30.9 34.0 
#40 18.2 15.6 17.9 
#80 11.7 9.6 10.0 

#200 5.8 5.8 5.3 
 
 

Table 3.16. Project 4203 Type C Mix Design Summary (Chowdhury et al., 2003) 

Mix 
Optimum 
Asphalt 

Content (%) 

Design Air  
Void (%) VMA (%) 

Siliceous River Gravel 
(Section #7) 4.4 4.0 14.0 

Sandstone  
(Section # 8 ) 4.5 4.0 14.1 

Quartzite    
(Section #9) 4.6 4.0 14.6 

 

 
The base material used under all the pavements in this project was created using 

approximately 90 percent limestone aggregate and 10 percent field sand.  The limestone 

was obtained from Hanson (Perch Hill), and the field sand was collected in Marshall, 
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Texas.  Table 3.17 gives the mix design data and gradation of the base material used in 

this project (Chowdhury et al., 2003). The mix volumetric and binder properties data for 

this project are shown in Table 3.18. All of these volumetric parameters were previously 

defined in the FHWA mobile laboratory project.   

 
 

Table 3.17. Base Mix Design Summary for Project 4203 (Chowdhury et al., 2003) 

Sieve Size 
(in) 

Percent 
Passing Design Summary 

7/8 100.0 
5/8  90.1 

Optimum Asphalt 
Content (%) 

3.8 

3/8 79.4 
#4 52.9 

Design Air  
Void (%) 4.0 

#10 31.9 
#40 19.4 

Design VMA (%) 13.0 

#80 9.8 
#200 3.8 

Rice Specific 
Gravity (gm/cc) 2.516 

 

 
Table 3.18. Project 4203 Mix Volumetric and Binder Properties Data 

Mix Volumetric and Binder Properties 

Aggregate 
Type 

Mix 
# VMA 

(%) 
VFA 
(%) 

Design 
VTM 
(%) 

VTM 
when 

Tested 
(%) 

Asphalt 
Content 

(%) 

High 
PG 

Temp. 
(°C) 

Performance 
Test Temp. 

(°C) 

3 15.6 73.1 3.8 6.8 5.1 76 64 
6 14.1 74.0 3.5 6.7 4.8 76 70 Quartzite 
9 14.6 72.9 4.0 7.2 4.6 76 64 
2 15.1 73.1 3.8 6.7 5.1 76 70 
5 14.6 76.3 3.5 5.8 4.8 76 70 Sandstone 
8 14.1 71.4 4.0 6.4 4.5 76 82 
1 15.3 73.9 3.7 7.1 5.0 76 70 
4 14.1 76.8 3.5 6.5 4.7 76 64 

River 
Gravel 

7 14 73.8 4.0 7.1 4.4 76 76 
 



  34   
 

HMA Performance Parameters 

Table 3.19 gives the HMA performance measurements data.  The first 

performance parameter is average E* measured at 5 Hz.  This value, known as dynamic 

modulus, is a measure of an HMA specimen’s stress/strain response to axial loading.  In 

this project, the dynamic modulus was measured at four different temperatures:  40°F, 

70°F, 100°F, and 130°F.   

 
 

Table 3.19. Project 4203 Performance Measurement Data 
Measured Performance Parameters 

Avg E* (x103 psi) @ 5 Hz Aggregate 
Type Mix # 

40˚ F 70˚ F 100˚ F 130˚ F 

Hamburg 
Deformation 

(in)   

APA 
Rut 

Depth 
(in) 

Average 
IDT 

Strength 
(psi) 

3 1,869 1,136 336 87 0.0 0.1 154.2 
6 1,874 1,118 394 143 0.1 0.2 159.1 Quartzite 
9 2,130 1,025 283 106 0.1 0.1 176.1 
2 2,736 1,553 454 168 0.1 0.2 226.4 
5 2,415 1,255 373 118 0.1 0.2 205.2 Sandstone 
8 2,936 1,543 563 139 0.1 0.1 213.7 
1 2,217 1,213 400 136 0.1 0.1 174.0 
4 2,047 1,008 317 102 0.1 0.2 168.9 River Gravel 
7 2,433 1,265 390 117 0.1 0.1 173.6 

 

 

The second performance parameter is Hamburg Deformation.  The Hamburg test 

is used to express an HMA sample’s response to permanent deformation.  The Hamburg 

wheel was constrained to 20,000 passes in the test to serve as a common measurement 

point.   
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The next performance parameter listed is APA Rut Depth.  This test, also used in 

TTI Project 9-558, is used to determine the rutting susceptibility of asphalt pavements.  

The fourth performance parameter is average IDT strength.  The Indirect Tension Test, 

commonly known as IDT, measures the tensile capacity of an HMA sample by applying 

a compression load on a cylindrical sample across its diameter.  It is used to simulate 

how HMA responds to tensile forces.  The IDT test was performed according to the Tex-

226-F procedure (Chowdhury et al., 2003). 
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CHAPTER IV 

 AGGREGATE SHAPE PROPERTIES 

 

INTRODUCTION  

Aggregate shape is a term used to characterize and classify aggregates based on 

three distinct geometric properties:  form, angularity, and surface texture.  These 

properties can be measured by several methods.  Geologists have traditionally used 

visual charts to classify aggregates based on their shape characteristics.  Figures 4.1 and 

4.2 show the classification charts used by geologists for ranking aggregate angularity 

and form, respectively.  Using these visual charts is far less accurate and more time 

consuming than many modern methods used today.  AIMS was used in this research to 

classify and measure aggregate shape.  This chapter describes the main AIMS 

components and the types of measurements that AIMS records. 

 
 

 
Fig. 4.1. Angularity classification chart (Krumbein, 1941) 
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Fig. 4.2. Form classification chart (Rittenhouse, 1943) 

 

CAPABILITIES OF AIMS 

 AIMS is a highly sophisticated system that accurately and efficiently measures 

the aggregate shape properties of form, angularity, and surface texture.  Figure 4.3 shows 

the AIMS system. 
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Fig. 4.3. Illustration of AIMS setup (Al-Rousan, 2004) 

 

The system operates in conjunction with a computer, which is shown in the right 

of Figure 4.3.  The object on the left-hand side is the AIMS hardware, which performs 

the aggregate scanning.  The aggregate test sample is placed on the white tray shown in 

the bottom left of Figure 4.3.  Coarse aggregate particles are placed on preset grid point 

locations, while fine aggregates are randomly spread over the tray.  The system contains 

a camera unit that uses an Optem zoom 160 video microscope.  The system is equipped 

with tube lighting from the microscope unit as well as bottom lighting from beneath the 

tray, allowing optimal pictures to be captured.  The tube lighting is used to capture the 

texture photos, and the bottom lighting is used to capture the angularity/form photos on a 

black-and-white scale.  The system has the ability to move horizontally in both the x- 

and y-directions so that the preset coordinates on the aggregate tray can be captured by 
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the microscopic camera.  These preset points are marked and, as seen in Figure 4.3, are 

the locations where aggregate particles are placed prior to testing.   

For texture photos, the camera also transcends in the z-direction above each 

preset point until optimal focus is acquired on each aggregate surface.  The system is 

computer automated and controlled by LabViewTM (version 6.1) and IMAQ Vision 

(version 2.5) software for motion control of the equipment and image acquisition, 

respectively (Al-Rousan, 2004).  The imaging system can scan an aggregate sample and 

send the results to the computer for analysis in a matter of minutes.   

The aggregate tray moves horizontally in the y-direction along the tracks, 

allowing transition between the rows of aggregate.  The microscopic camera moves in 

the horizontal x-direction, allowing the camera to alternate between the columns of 

aggregate.  As previously stated, the ability of AIMS to capture texture measurements of 

the aggregate relies on the camera transcending in the vertical z-direction.  This vertical 

movement is automated to capture optimal focus of the aggregate particle surfaces.  The 

measurements that AIMS can perform for coarse and fine aggregates are shown in Table 

4.1. 

 
 

Table 4.1. AIMS Measurement Capabilities for Fine and Coarse Aggregates 
Fine Aggregates Coarse Aggregates 

Gradient Angularity Gradient Angularity 
Radius Angularity Radius Angularity 

Form 2d Form 2d 
Form 3d 

  
Texture 
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 The form of particles is measured by AIMS using two methods:  form index (2d) 

and sphericity (3d).  Masad et al. (2001) proposed the following form index to quantify 

the aggregate measurement of form using two dimensions of each particle: 

Form Index = �
∆−=

=

∆+ −θθ

θ θ

θθθ
360

0 R

RR
      (3) 

where the R� variable denotes the radius of the particle being measured at an angle of �.  

The incremental change in the particles radius is expressed by ��.   

 The second technique AIMS uses to measure form is known as sphericity 

(Krumbein, 1941).  This measurement is used to quantify the form measurement of 

particles using all three dimensions of an aggregate particle.  The sphericity 

measurement is denoted by the following equation: 

Sphericity = 3
2

*

l

is

d
dd

       (4) 

where ds is the short dimension of the particle, di is the intermediate dimension, and dl is 

the long dimension. 

AIMS also uses two methods to measure the angularity of aggregate particles.  

The first method used is referred to as radius angularity.  This method of characterizing 

angularity was developed by Masad et al. (2001).  This technique measures the 

difference between a particle’s radius and that of an equivalent ellipse in the same 

direction.  This angularity index can be described by Equation 5: 

Angularity Index =  �
∆−=

=

−θθ

θ θ

θθ
360

0 EE

EEP

R

RR
     (5) 



  41   
 

where RP� denotes the radius of the particle at an angle of � and REE� denotes the radius 

of an equivalent ellipse at the same angle � (Masad et al., 2001). 

 AIMS also measures the angularity of aggregate particles using a gradient 

method.  This method characterizes particles based on comparing the curvature of 

aggregate particles to that of a round particle.  Particles that contain sharp edges rapidly 

change in curvature, which deviates largely from that of a round particle, which has a 

smooth change in curvature.    Angularity is measured using a gradient angle labeled as � 

and a magnitude of difference between the aggregate particle and round particle labeled 

as ��.  The angularity value is taken to be the sum of all the boundary points around the 

edge of the particle, which is denoted as the gradient index (GI) (Chandan et al., 2004), 

and can be described by the following equation: 

�
−

=
+−=

3

1
3

N

i
iiGI θθ         (6) 

where N denotes the total number of boundary points at the edge of the particle and i 

denotes the ith point on the edge of the particle.  Figure 4.4 illustrates the difference in 

gradient vectors between round and angular objects. 
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Fig. 4.4. Illustration of the difference in gradient vectors between particles  
(Chandan et al., 2004) 

  

The texture property of aggregate particles is measured by AIMS using wavelet 

analysis.  This analysis incorporates the use of frequency functions to measure the fine 

and coarse variations in texture.  Two functions are used to denote these variations:  

short high-frequency waves and long low-frequency waves.  Three coefficients denote 

the directional texture information.  The first is labeled HH, which denotes high-

frequency content in the diagonal direction.  Coefficient LH denotes high-frequency 

content in the vertical direction, and coefficient HL stands for high frequency content in 

the horizontal direction.  Texture index is denoted by the following equation: 

( )( )
23

,
1 1

1
 ,

3

N

n i j
i j

Texture Index D x y
N = =

= ��      (7) 
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This equation requires a double summation, as two variables change.  The first variable 

is i, which denotes the three detailed images of texture (HH, LH, and HL).  The second 

variable is j, which is the wavelet coefficient index.  N denotes the level of 

decomposition (Masad, 2004).  This wavelet analysis measurement of texture has been 

discussed in thorough detail by Mallat (1989), Fletcher et al. (2002), Chandan et al. 

(2004), and Al-Rousan (2004).   

AIMS uses an analysis program that classifies and categorizes the aggregate 

property measurements.  The AIMS computer software performs data analysis and 

presentation.  AIMS records two primary types of aggregate property measurements: the 

percentage of particles in each classification group and  the average shape properties of 

each sample.  These results are recorded and automatically exported into Microsoft 

Excel files when the software analysis is performed.   

 

PRESENTATION OF RESULTS BASED ON PERCENTAGE OF PARTICLES 

 One of the two types of measurements that AIMS produces is the percentage of 

particles in the classification groups.  These classification groups, listed in Table 4.2 and 

shown in Figure 4.5, were developed by Al-Rousan (2004) based on statistical analysis 

of the variations of shape characteristics among many different aggregate sources.   

The AIMS software plots each particle scanned as a single data point and then 

calculates the percentages of particles that fall within the classification groups.  These 

values are known as the percentage of particles in the classification groups and are used, 



  44   
 

as discussed in the following chapter, to correlate HMA performance to aggregate 

properties.   

 
 

Table 4.2. Percentage of Particle Clusters Used by AIMS to Associate Similar Particles 

Form 3d  Form 2d  
Radius 

Angularity               
(CRA, FRA) 

Gradient 
Angularity 

(CGA, FGA) 
Texture 

% Flat 
Elongated 

% Circular 
Particles 

% Rounded 
Particles 

% Rounded 
Particles 

% Polished 
Particles 

% Low 
Sphericity 

% Semicircular 
Particles 

% Subrounded 
Particles 

% Subrounded 
Particles 

% Smooth 
Particles 

% Medium 
Sphericity 

% 
Semielongated 

Particles 

% Subangular 
Particles 

% Subangular 
Particles 

% Low Rough 
Particles 

% High 
Sphericity 

% Elongated 
Particles 

% Angular 
Particles 

% Angular 
Particles 

% Med. Rough 
Particles 

                          CRA:  Coarse Radius Angularity  
                          FRA:  Fine Radius Angularity 
                          CGA:  Coarse Gradient Angularity 
                          FGA:  Fine Gradient Angularity 

% High Rough 
Particles 
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Fig. 4.5. Cluster classification charts for different aggregate properties 
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PRESENTATION OF RESULTS BASED ON AVERAGE SHAPE PROPERTIES 

 The AIMS software records the mean, standard deviation, and percentage of 

particles data for each aggregate particle tested.  The mean value is the average value 

based on the number of particles tested.  For coarse samples, 56 particles are always 

tested.  For fine samples, an average of 300-400 particles are examined.  The average 

values are also included in the analysis of the relationship of HMA performance to 

aggregate properties.     

 

PRESENTATION OF RESULTS BASED ON BLEND SHAPE PROPERTIES 

 The weighted average of shape properties is calculated for an aggregate blend.  

The weights are assigned based on the surface area of each aggregate fraction for the 

purpose of calculating the texture and angularity properties.  The surface area is 

estimated based on the weight of aggregate in each size fraction and by assuming 

particles to have a cubical shape with each dimension equal to the average size of the 

sieves bracketing the size fraction.  The surface area is used as the weighing factor based 

on the assumption that smaller particles have greater surface area, and consequently, 

contribute more area to develop friction within the aggregate matrix.  The blend form 

properties are calculated as a weighted average with respect to the aggregate mass in 

each size fraction.   
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CHAPTER V   
 

STATISTICAL ANALYSIS OF THE RELATIONSHIP BETWEEN HMA  
 

PERFORMANCE, HMA VOLUMETRIC, AND AGGREGATE PROPERTIES 
 

 
INTRODUCTION  

The statistical analysis was performed using SPSS® release 11.5.1 software 

(SPSS inc., Chicago, IL).  This analysis program was used to find correlations between 

aggregate shape and volumetric properties and HMA performance parameters.  These 

correlations were determined separately for each of the projects discussed in Chapter III.   

The statistical analysis for each project was divided into two parts.  In the first 

part, correlations were determined among the performance parameters and the shape 

properties in terms of the percentages of particles in each classification group and the 

average properties.  The second part included correlations among the performance 

parameters and the blend shape properties.  The blend shape properties are used to 

calculate the angularity and texture of an aggregate blend proportion based on the 

surface areas of the aggregate size fractions and to calculate the form parameters of an 

aggregate blend based on the weights of the aggregate fractions.  This chapter discuses 

the methods used in determining the regression correlations, the bias present in the 

analysis, and the SPSS® results for this research.  

 

 

 



  48   
 

METHODS USED IN DETERMINING REGRESSION CORRELATIONS 

SPSS® performs many statistical analysis functions.  In this research, the 

program was used to find linear regression correlations between HMA performance 

parameters and volumetric and aggregate shape properties.  The performance parameters 

were dependent variables (y-values), and the HMA volumetric and aggregate shape 

properties were independent variables (x-values).  The x-parameters that best formed a 

linear regression line with respect to each performance parameter y-value were 

determined using SPSS®.  Figure 5.1 shows the SPSS® interface used in the model 

construction process.  The performance parameter being examined is entered in the 

dependent box, and all of the volumetric and aggregate shape property variables are 

entered in the independent box.  Once the linear regression method is chosen, SPSS® 

analyzes the data. 

 

 
Fig. 5.1. SPSS® linear regression interface screen 
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There are multiple methods for determining which variables best fit the 

prediction model. The four types of methods that SPSS® can use, shown in Figure 5.1, 

are:  enter, stepwise, remove, and backward.  Stepwise regression was used in this 

research to create prediction models.  This method, in a step-by-step manner, determines 

which volumetric and aggregate properties best predict the performance parameters by 

inserting and removing predictor variables in an iterative manner (Montgomery and 

Runger, 2003).   

SPSS® uses what is known as the p-value approach to select which individual 

predictor variables best fit the model.  In the stepwise regression method, SPSS® enters 

predictor variables if their individual p-value is less than the preset significance level of 

the test.  This preset significance level is chosen by the operator and was set to a value of 

0.05 in this research.  The prediction variable with the lowest p-value serves as the initial 

prediction model.  In the second step the remaining variable with the lowest p-value is 

added to the prediction model.  Predictors added into the model may change the p-values 

of predictors already included in the model.  This is due to factors such as collinearity in 

the data.  Consequently, SPSS® recalculates the p-values of each predictor already 

included in the model every time a new predictor value is added.  If any of the previous 

predictor p-values increase to a value greater than 0.10, that predictor is removed from 

the prediction model.  The value at which variables are removed from the prediction 

model is nominally set at 0.10, but this value can be altered by the operator.  Model 

construction is complete when no additional predictor variables can be added to the 
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model.  This occurs when the p-values of all remaining predictor variables are larger 

than 0.05 (Montgomery and Runger, 2003).  

  

PRESENCE OF BIAS IN THE STATISTICAL ANALYSIS 

Bias is an effect that alters statistical estimates.  Such bias prevents statistical 

estimates from representing true value (Montgomery and Runger, 2003).  Bias should 

not be confused with systematic error, which is the difference between an estimated 

value and the true value (Phillips et al., 2001).  Bias is not always avoidable and can 

result from all of the following:  nonrandom or variant sampling, measurement and 

equipment problems, recording errors, approximations used in making inferences, 

incorrect model assumptions or model choice, and dependence between observations.  

Data used in this research contained properties of mixes selected randomly to represent a 

wide range of mixes used in the field.  Therefore, the lack of statistical design in the 

experiments contributed to the introduction of statistical bias in this research.  For 

example, VMA is known to be an important factor in influencing HMA mix 

performance.  However, as will be shown in the following chapter, VMA was rarely 

included in the statistical correlations.  This is attributed to the fact that the mixes 

studied did not contain a wide range of VMA measurements.  As a result, the statistical 

analysis found few correlations between VMA values and performance measurements.  

Proper experimental design would have introduced mixes with significant differences in 

VMA values as well as other volumetric properties. 
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The bias present in this research can be simplified into two types:  additive bias 

and multiplicative bias.  These two types of bias differ in the manner in which they 

accumulate.  Figure 5.2 illustrates additive bias on a plot of predicted versus measured 

performance measurements.  The dotted line in Figure 5.2 is a 45° reference line on 

which the data would fall in an unbiased condition.  The data are best fitted with a trend 

line, which is shown above the reference 45° line.  The equation and R2 fit of the trend 

line are also shown in Figure 5.2.   The trend line in this illustration appears to be at an 

offset from the 45° line.  The slope of the trend line is approximately 1 (0.9127), which 

is equivalent to the slope of the 45° line.  However, the y-intercept of the trend line 

(0.9682) is significantly different than the y-intercept of the reference line which is at 0.  

This y-intercept offset is a result of additive bias.  The bias in this illustration is added to 

each experimental point, resulting in all of the points being offset by a certain amount.   

 

y = 0.9127x + 0.9682
R2 = 0.8428
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 Fig. 5.2. Illustration of additive bias resulting with a Y-intercept offset  
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 The second type of bias seen in some of the SPSS® results is multiplicative bias.  

This type of bias results in more bias at larger measurement values.  Such bias can be 

seen in Figure 5.3.  

 

y = 0.8685x + 931.09
R2 = 0.8795
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Fig. 5.3. Illustration of multiplicative bias resulting with a slope offset 

  

As seen in Figure 5.3, the trend line deviates more from the 45° reference line as 

measurement values increase.  Initially, the data lie on or fairly close to the 45° reference 

line.  However, as the measurement values increase, the data begin to deviate farther and 

farther from the 45° reference line.  This increasing deviation is due to the slope of the 

trend line (0.8685).  This is an example of multiplicative bias in the results.  A small bias 

is present at the lower measurement values, while much larger bias is present at the 

larger measurement values.    
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y = 0.5698x + 8498.9
R2 = 0.5698
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Fig. 5.4. Illustration of additive and multiplicative biases resulting with  

slope and Y-intercept offsets  
 

 
Both types of bias can be present in some situations; such is the case in Figure 

5.4.  This example expresses both types of bias in the results.  This is likely the result of 

the poor R2 fit of the trend line.  However, disregarding the poor R2 correlation of the 

data, Figure 5.4 shows the presence of both multiplicative and additive biases.   

 

AVERAGE PROPERTIES AND PERCENTAGE OF PARTICLES IN THE  
 
CLASSIFICATION GROUPS  
 

The first part of the statistical analysis determined correlations among the 

performance parameters and the shape properties in terms of the percentages of particles 

in each classification group and the average properties.  This analysis was conducted for 

each of the three projects examined in this research.   
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FHWA Mobile Laboratory Project 

The FHWA mobile laboratory project was the first project examined.  Table 5.1 

gives the SPSS® results for the FHWA mobile laboratory project for this particular 

analysis.  Table 5.1 lists which volumetric and aggregate properties were found to best 

predict each performance parameter, as well as the R2 fit values corresponding to each 

initial and additional predictor variables in the stepwise regression.   

The R2 values shown in these tables are cumulative.  For instance in Table 5.1, 

the first performance measurement, flow point, is shown with the predictor variable #22 

in the initial model.  This is the variable that attained the lowest p-value in the stepwise 

regression analysis.  This single variable has an R2 fit value of 0.567.  In the second 

phase of the stepwise regression, SPSS® added the remaining variable with the lowest p-

value to the model, variable #38.  The R2 fit value of 0.820 denotes the fit of both 

variables #22 and #38 to the model.  Likewise, when variable #19 is added, the resulting 

R2 fit value of 0.853 describes the fit of variables #22, #38, and #19 to the model. 

The bottom region of Table 5.1 lists the variables that were found to correlate 

with each performance parameter.  Variable #22, from Table 5.1, is the temperature at 

which the performance parameter was measured.  Likewise, variables #38 and #19 

represent form 2d coarse percent semicircular particles and G*, respectively.  The x 

column lists the volumetric and aggregate property measurements that were found to 

best fit the performance measurements.  The B (beta) column is the linear equation 

coefficients as shown in Equation 8:  
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y = Constant + B1x1 + B2x2 + … + Bnxn      (8) 

 

The y value of this equation is the predicted measurement response for each performance 

parameter.  The constant and B values are calculated using SPSS® and input into 

Equation 8.  The resulting values are plotted against the measured performance 

parameters.  These predicted versus measured performance measurements are shown in 

Figures A1-A30 in the Appendix.   These graphs are plotted against a trend line used to 

calculate the R2 fit of the data.   

Figures A1-A6 present plots of measured versus predicted performance 

measurements for the FHWA mobile laboratory project.  The R2 fit values shown in 

Figures A1-A6 are the same values as those produced in the SPSS® output shown in 

Table 5.1.  The remaining tables in the Appendix are for the other projects, which will be 

discussed later in this chapter. 

It is evident from Table 5.1 that volumetric properties are very important in 

predicting performance parameters.  The performance results for the FHWA mobile 

laboratory project were also highly dependent on the PPMT prediction variable.  

However, discussion will focus on the influence of aggregate shape properties.   
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Table 5.1. SPSS® Results for the FHWA Mobile Laboratory Projects Using Average 
Properties and Percentage of Aggregates in the Classification Groups 

Performance 
Parameter Flow Point Strain @ Flow Total Accumulated 

Strain  

Value x B R2 X B R2 x B R2 
22 -290 0.567 22 1,199 0.524 22 1,302 0.491 
38 141 0.820 15 469 0.729 38 -882 0.752 
19 2,338 0.853 50 2,674 0.843 19 -12,599 0.799 

Regression 
Order 

44 99 0.881 45 -505 0.880       

Performance 
Parameter N Failure Flow Slope  

(Equation 1) 
Flow to Termination 
Slope (Equation 2) 

Value x B R2 X B R2 x B R2 
22 -370 0.619 22 0.05 0.621 22 -0.02 0.525 
38 640 0.796 40 -0.06 0.828 16 0.08 0.711 
17 -1,363 0.853       50 -0.04 0.840 
28 -66 0.912       29 -0.01 0.880 

Regression 
Order 

54 459 0.946             
Predictor Variables, x 

15 VFA 
16 Design VTM 
17 VTM when Tested 
19 G* 
22 PPMT 
28 Texture % Polished Particles 
29 Texture % Smooth Particles 
38 Form 2d Coarse % Semicircular Particles 
40 Form 2d Coarse % Elongated Particles 
44 CRA % Angular Particles 
45 FGA % Rounded Particles 
50 Form 2d Fine % Semicircular Particles 

Variable 
Notation 

54 FRA % Subrounded Particles 
Note:  The B values correspond to the final prediction model. 
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Flow Point  

The first predicted performance parameter shown in Table 5.1 is flow point.  A 

positive correlation was established between the flow point performance parameter and 

the two aggregate shape properties:  form 2d coarse percent semicircular particles and 

coarse radius angularity (CRA) percent angular particles.  This is shown by the positive 

B values shown in Table 5.1.  Flow point was previously described as the number of 

cycles an asphalt sample can withstand before revealing shear deformation.  It is quite 

evident that a larger percentage of angularity in coarser aggregate particles will improve 

the flow point parameter.  More angular particles provide a larger surface for asphalt to 

bind onto as well as increase mix friction to resist shear stresses. 

The increase in percentage of semicircular particles was found to correspond to a 

decrease in percentage of circular particles, whereas there was very little correlation with 

the percentage of semielongated and elongated particles.  Therefore, the positive 

correlation between flow point and the percentage of semicircular particles is an 

interesting result that can shed light on the suitability of laboratory tests to evaluate the 

influence of the percentage of flat particles.  In this test, the performance was quantified 

by the one-dimensional behavior of the mix without considering deformation in the 

radial direction.  Flat particles tend to orient such that their longest axes are in the 

horizontal direction, as shown in Figure 5.5.  This alignment increases contact among 

particles perpendicular to the applied vertical load.  This anisotropic behavior of the mix 

translates to higher stiffness in the vertical direction when compared to the horizontal 

direction.  Hence, using a performance parameter based on the mix response in the 
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vertical direction might not reflect the actual behavior of the mix under the boundary 

conditions that exist in the field. 

 

 
Fig. 5.5. Illustration of elongated particle orientation in laboratory  

specimen testing leading to anisotropic behavior in the mix 
 

 
Strain  @ Flow 

 The second performance parameter examined in the FHWA mobile laboratory 

project is strain @ flow.  SPSS® identified a positive correlation between the strain @ 

flow performance parameter and the form 2d fine percent semicircular particles 

aggregate shape property.  A negative correlation existed with the fine gradient 

angularity (FGA) percent rounded particles aggregate shape property.  The strain @ flow 

value is the strain an asphalt mix attains at the flow point.  Therefore, it is the strain in an 



  59   
 

asphalt specimen when the sample begins to exhibit an increase in the rate of shear 

deformation.  The first aggregate shape property listed in Table 5.1 is form 2d fine 

percent semicircular particles.   

The significance of the influence of shape characteristics on strain @ flow cannot 

be substantiated without evaluating their effect on flow point.  An increase in strain with 

a decrease in flow point value indicates that the mix is becoming less resistant to 

deformation, whereas a high strain value at a high flow point value may indicate that the 

mix can sustain high deformation before it becomes unstable due to applied loads.  

Increasing the form 2d fine percent semicircular particles was found to increase the flow 

point value; therefore, it is not strange for this aggregate property to improve strain @ 

flow.    The elongation of fine particles is expected to have very little influence on the 

anisotropic behavior of the mix.  Therefore, the discussion of the influence of coarse 

aggregate form might not be applicable to the fine aggregate form. 

 The second aggregate property listed is FGA percent rounded particles.  A 

negative correlation was found between rounded particles and strain @ flow.  An 

increase in round fine aggregate particles resulted in a decrease in strain the asphalt 

sample could withstand.  Further investigation of this relationship revealed that this fine 

aggregate property lowered the flow point of the sample, and in so doing, decreased 

strain @ flow as well.  Thus, it seems reasonable that the FGA percent rounded particles 

property had a negative correlation with the strain @ flow performance measurement. 
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Total Accumulated Strain 

 Only one aggregate property affected the prediction of total accumulated strain.  

A negative correlation existed between the predicted total accumulated strain and the 

form 2d coarse percent semicircular particles aggregate property.  As the percentage of 

semicircular particles increased, the number of cycles to failure increased, as shown in 

the next section, and the total accumulated strain decreased.  This finding emphasizes the 

correlation between aggregate form and permanent deformation.  

 

N Failure 

 Three aggregate properties correlated with the number of cycles at failure.  The 

first is form 2d coarse percent semicircular particles.  This aggregate property exhibits a 

positive correlation with the N failure performance measurement.  An increase in 

semicircular particles resulted with an increase in the number of cycles to failure.   

The second aggregate property that correlated with this performance parameter 

was percent polished particles.  This aggregate property exhibits a negative correlation 

with the N failure performance measurement, which seems quite reasonable.  Polished 

particles have far less internal friction when compared to rougher particles.  

Consequently, a larger percentage of polished particles decreases the total number of 

cycles to failure. 

The third aggregate property listed is fine radius angularity (FRA) percent 

subrounded particles.  This aggregate property expressed a positive correlation with the 

N failure performance measurement.  Initially, this seems to be counterintuitive.  
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However, upon careful examination of the data, it was found that the aggregates used in 

this project had comparable percentages of subangular and angular particles.  The 

primary difference between the aggregates used in this project was in the percentages of 

rounded and subrounded particles.  In other words, an increase in subrounded particles 

was a favorable property for this project.   

 

TTI Project 9-558 

The SPSS® results for this project can be seen in Table 5.2.  This table lists the 

volumetric and shape property variables that were found to best predict each 

performance parameter.  The predicted versus measured performance measurement 

graphs for each performance parameter in this project can be seen in Figures A13-A17 in 

the Appendix. 

 

Compliance 

The first performance parameter examined was the compliance.  The results for 

this performance parameter, as well as the others in this project, are shown in Table 5.2.  

One aggregate property, form 2d coarse percent semicircular particles, was found to 

correlate to compliance.  This positive correlation shows that an increase in semicircular 

particles in the asphalt sample will result in an increase in the compliance measurement 

of that sample.



      
      
   
 
 

 
Table 5.2. SPSS® Results for Project 9-558 Using Average Properties and Percentage of Particles in the Classification Groups 

Performance 
Parameter Compliance  Strain @ Flow E*/sin φ at 10 Hz  APA Rut Depth (in)  Flow Point 

Value X B R2 x B R2 x B R2 x B R2 x B R2 

19 -0.01 0.82 18 0.07 0.74 26 -0.01 0.47 44 0.08 0.59 26 0.29 0.52 

35 0.01 0.93 15 0.06 0.90 19 0.02 0.81 15 0.11 0.79 35 -0.79 0.85 

      21 0.00 0.99                   

Regression 
Order 

      36 0.00 1.00                   

Predictor Variables, x 
15 VMA 
18 Asphalt Content 
19 High PG Temperature 
21 % Flat-Elongated Particles 
26 Texture % Smooth Particles 
35 Form 2d Coarse % Semicircular Particles 
36 Form 2d Coarse % Semielongated Particles 
39 CRA % Subrounded Particles 

Variable 
Notation 

44 FGA % Subangular Particles 
Note:  The B values correspond to the final prediction model. 
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A plot of the elongated particles versus the semicircular and circular particles 

under the form 2d measurement is shown in Figure 5.6.  An increase in semicircular and 

circular particles correlate with a decrease in elongated particles, leading to the inference 

that an increase in semicircular particles, or decrease in elongated particles, results in an 

increase in compliance.  This is consistent with the findings from the FHWA mobile data 

that an increase in elongated particles could increase the stiffness in laboratory tests that 

rely on axial deformation measurements only.   
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Fig. 5.6. Relationship between % elongated particles and  

% circular and semicircular particles 
 

 

Strain  @ Flow 

The second performance parameter listed in Table 5.2 is strain @ flow, the total 

permanent strain in an asphalt sample when the sample reaches its flow point.  Two 

aggregate properties exhibited negative correlations with this strain measurement:  form 
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3d percent flat and elongated and form 2d coarse percent semielongated particles.  These 

two parameters quantify the same property but in three dimensions and two dimensions, 

respectively.  It was found that an increase in the percentage of elongated particles 

caused a decrease in strain @ flow, which again can be attributed to the effect of coarse 

aggregate form on the anisotropic behavior of the mix, which tends to increase mix 

resistance to deformation in the vertical direction.   

 
E*/sinφ at 10 Hz 

The next performance parameter, E*/sinφ at 10 Hz, had a positive correlation 

with the aggregate property texture percent smooth particles.  This positive correlation 

reveals that an increase in the number of smooth particles in a mix will result in an 

increase in the E*/sinφ performance measurement.  This finding was quite the opposite 

of what would be expected.  In fact, these dynamic properties are measured at very small 

strain that is not expected to mobilize the aggregate structure enough to correlate 

between aggregate shape properties and measured mechanical properties. 

 

APA Rut Depth 

The next performance parameter examined was APA rut depth.  Table 5.2 shows 

that the FGA percent subangular particle property exhibited a positive correlation with 

this performance parameter.  An increase in percent subangular fine aggregate particles 

resulted in an increase in rut depth measurement.  This is contrary to the typical finding 

in the literature that increasing fine aggregate angularity increases rutting resistance. 
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Flow Point 

The final performance parameter examined in this project is flow point.  A 

positive correlation existed between this measurement and the texture percent smooth 

particles aggregate property.  A negative correlation existed between flow point and 

form 2d coarse percent semicircular particles.   This shows that an increase in smooth 

particles in an HMA mix will result in an increase in the flow point.  Careful evaluation 

of the results showed that the aggregates in this project generally had low texture values, 

and an increase in smooth particles corresponded to a decrease in polished aggregates 

rather than a decrease in textured aggregates.  According to the correlation results, a 

decrease in the percent semicircular particles (an increase in elongated particles) will 

also increase the flow point of HMA.   

 

TTI Project 4203 

 TTI Project 4203 was the final project examined in this section.  Three 

performance parameters were examined, and the SPSS® results of the performance 

parameters are shown in Table 5.3.  The performance parameters are the average 

dynamic modulus (E*), the APA rut depth, and the average indirect tension (IDT) 

strength.  Dynamic modulus was measured at three temperatures.  The predicted versus 

measured performance measurement graphs for each performance parameter in this 

section can be seen in Figures A21-A25 in the Appendix. 

 



      
      
       
 
 
 
 
 
Table 5.3. SPSS® Results for Project 4203 Using Average Properties and Percentage of Particles in the Classification Groups 

Avg E* (x103 psi)  Performance 
Parameter 5 Hz, 40˚ F 5 Hz, 70˚ F 5 Hz, 100˚ F 

APA Rut Depth 
(in)  

Average IDT 
Strength (psi) 

Value x B R2 x B R2 x B R2 x B R2 x B R2 
46 63.25 0.743 67 -52.08 0.678 43 14.98 0.777 38 0.01 0.589 67 -10.16 0.899 Regression 

Order 39 774.92 0.954 38 -50.97 0.862 41 139.03 0.916       40 21.21 0.970 
Predictor Variables, x 

38 VFA 
39 Design VTM 
40 VTM when Tested 
41 Asphalt Content 
43 High DSR Test Temperature 
46 Form 3d % Low Sphericity 

Variable 
Notation 

67 FGA % Subrounded Particles 
Note:  The B values correspond to the final prediction model. 
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Average E*   

The first performance parameter analyzed using SPSS® was the average E* 

measurement at 40°F at 5Hz.  A positive correlation was found between average E* at 

40°F and form 3d percent low sphericity.  The positive correlation is understandable in 

light of previous discussion on the effect of aggregate shape on anisotropy and 

increasing stiffness in the vertical direction.   

The second performance parameter listed in Table 5.3, similar to the first, is the 

average E* at 70°F.  A negative correlation existed between this performance 

measurement and FGA percent subrounded particles.  A decrease in percent subrounded 

particles, which corresponded to an increase in subangular and angular particles, led to 

an increase in the E* measurement. 

The third performance parameter was the average E* value measured at 100 °F.  

No direct correlations were established between this performance measurement and any 

of the aggregate properties.  These discrepancies in the relationship of E* with shape 

properties need further investigation.  They might suggest that aggregate properties do 

not actually affect the E* value.  The E* test is conducted at a very small strain (around 

100 micro strain), which is not high enough to mobilize the frictional properties of the 

aggregate matrix.  The APA rut depth performance measurement was also analyzed; 

however, no correlations were found between the APA rut depth and any aggregate 

properties.   
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Average Indirect Tension Strength 

A negative correlation was found between the predicted IDT strength and the 

aggregate property FGA percent subrounded particles.  It appears that more subrounded 

particles will result in a decrease in the tensile strength of HMA.  The relationship 

between percent subrounded and rounded particles and percent angular particles is 

shown in Figure 5.7.  This relationship depicts a negative correlation between the 

angular and rounded particles, which is to be expected.  Therefore, a decrease in rounded 

particles, or an increase in angular particles, resulted in an increase in the tensile strength 

of the HMA.   
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Fig. 5.7. Relationship between % angular particles and  

% subrounded and rounded particles 
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BLEND SHAPE PROPERTIES OF A MIX 

 The second phase of our statistical analysis incorporated the use of the blend 

shape properties of each mix.  As mentioned above, the blend shape properties are 

calculated in an Excel spreadsheet and are based on the gradation of the aggregates used 

in each mix.  The angularity and texture average values were calculated based on the 

percentage of the surface area of an aggregate size to the total surface area of aggregates 

in the blend.  The surface area of each aggregate size was calculated assuming particles 

to be cubical in shape.  The weighted averages for angularity and texture measurements 

were calculated based on the surface area of each size.  Particles with higher surface 

areas have a greater influence on the blend angularity and texture.  The weighted average 

for sphericity measurements was based on the percentage of each size by weight rather 

than by surface area. 

One noticeable thing about the results of this analysis is that the percentage of 

particles in the classification groups and average property results projected a better 

overall fit than the blend properties results.  This is due to the additional predictor 

variable fields in the first analysis.  With fewer prediction variables in the blend 

properties results, there were fewer means to improve the model fitting.  However, the 

blend properties results achieved a better fit with fewer prediction variables.  The results 

for the flow point performance parameter from the FHWA mobile laboratory project are 

shown in Table 5.4.  
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Table 5.4. Comparison of the Flow Point Performance  
Parameter Results for Both Analyses 

Analysis Type 
Percentage of Particles in the 

Classification Groups and 
Average Properties Results 

Blend Shape Properties 
Results 

Performance 
Parameter Flow Point Flow Point 

Value x B R2 x B R2 
22 -290 0.567 24 -254 0.597 
38 141 0.820 21 3,397 0.762 
19 2,338 0.853 14 49 0.897 

Regression 
Order 

44 99 0.881       
Note:  Variables are defined in Tables 5.1 and 5.5.  The B values correspond to the final 
prediction model. 

 

The percentages of particles in the classification groups and average properties 

results for the flow point performa7nce measurement achieved an R2 fit of 0.853 using 

three predictor variables (22, 38, and 19).  The blend aggregate properties results for the 

flow point achieved an R2 fit of 0.897 using three predictor variables (24, 21, and 14).  

As mentioned, the percentage of particles in the classification groups and average 

properties results do in fact achieve a greater overall R2 fit with the added prediction 

variable.  As shown in Table 5.4, in this particular analysis the flow point performance 

parameter achieved an R2 fit of 0.881 using four predictor variables (22, 38, 19, and 44). 

 

FHWA Mobile Laboratory Project 

The FHWA mobile laboratory project was examined first with respect to the 

blend shape properties and the results can be seen in Table 5.5.  The predicted versus 

measured performance measurement graphs for the performance variables in this section 

can be seen in Figures A7-A12 in the Appendix. 
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Flow Point 

The first performance parameter analyzed in this project was flow point.  Only 

one aggregate property was found to have a distinct correlation with this performance 

measurement.  This property, percent of particles with L/S >3, exhibited a positive 

correlation with the flow point.  This is again confirming the influence of aggregate form 

on the anisotropic behavior of the mix; it shows that more elongation can cause higher 

resistance to deformation in the vertical direction in laboratory performance tests.  

 
Table 5.5. SPSS® Results for the FHWA Mobile Laboratory  

Projects Using Blend Shape Properties 

Performance 
Parameter Flow Point Strain @ Flow Total Accumulated 

Strain  

Value x B R2 X B R2 x B R2 
24 -255 0.597 24 729 0.570 24 1,330 0.508 
21 3,398 0.762       21 -18,604 0.709 

Regression 
Order 

14 49 0.897             

Performance 
Parameter N failure Flow Slope  

(Equation 1) 
Flow to Termination 
Slope (Equation 2) 

Value x B R2 x B R2 x B R2 
24 -521 0.595 24 0.04 0.716 15 0.00 0.632 
12 -43,096 0.774 12 5.03 0.974 24 -0.01 0.807 

Regression 
Order 

21 5793 0.887             
Predictor Variables, x 

12 Sphericity 
14 % Particles w/ L/S > 3 
15 Texture 
21 G* 

Variable 
Notation 

24 PPMT 
Note:  The B values correspond to the final prediction model. 
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 Strain @ Flow 

The second performance parameter examined in this project was strain @ flow.  

No correlations existed between the strain performance parameter and the blend 

properties measurements.  The reason for this lack of correlation is probably the result of 

the dominant correlation between the strain @ flow performance parameter and the 

volumetric predictor variable PPMT. 

 

Total Accumulated Strain 

 Similar to the previous results, the total accumulated strain performance 

parameter also lacked correlation to any blend aggregate properties, also due to the 

dominant correlation between the performance parameter and the PPMT predictor 

variable.  This performance parameter was found to be correlated to the PPMT and G* 

volumetric properties. 

 

N Failure 

The fourth performance parameter, N failure, was found to be negatively 

correlated with the aggregate property of sphericity.  Sphericity is the resulting 

measurement of the form 3d test.  The negative correlation between spherical particles 

and the N failure performance measurement agrees with the previous discussion about 

mix anisotropic behavior.   
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TTI Project 9-558 

 The SPSS® results for TTI Project 9-558 are shown in Table 5.6.  These results 

include the performance measurements of compliance, strain @ flow, and APA rut 

depth.  The predicted versus measured performance measurement graphs for the 

performance variables in this section can be seen in Figures A18-A20 in the Appendix. 

 

Compliance 

Only two of the performance parameters were found to correlate with the blend 

aggregate properties.  The first performance parameter, compliance, was found to 

negatively correlate to the aggregate property measurement of radius angularity.  It is 

reasonable that an increase in angularity would increase HMA dynamic modulus and 

thus decrease compliance.  This is due to the gained additional bonding and friction 

between angular aggregates and asphalt.   

 

Strain @ Flow 

The second performance parameter shown in Table 5.6 is the strain @ flow.  A 

negative correlation was found between this measurement and percent of particles with 

L/S > 3.  This correlation shows that an increase in elongated particles results in a 

decrease in the strain in an HMA sample.   
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Table 5.6. SPSS® Results for Project 9-558 Using Blend Shape Properties 
Performance 

Parameter Compliance  Strain @ Flow APA Rut Depth (in) 

Value x B R2 x B R2 x B R2 
21 -0.01 0.819 20 0.08 0.739 19 9.30 0.400 
20 0.04 0.907 17 0.07 0.900       

Regression 
Order 

11 -0.04 0.969 15 -0.00 0.984       
Predictor Variables, x 

11 Radius Angularity 
15 % Particles w/ L/S > 3 
17 VMA 
19 Design Air Voids 
20 Asphalt Content 

Variable 
Notation 

21 High PG Temperature 
   Note:  The B values correspond to the final prediction model. 

 
APA Rut Depth 

APA rut depth was found to have a positive correlation with the design air voids 

volumetric property.  The APA rut depth did not correlate with any of the aggregate 

properties.   

 

TTI Project 4203 

The SPSS® results for TTI Project 4203 can be seen in Table 5.7.  Similar to the 

previous section, the blend properties results for Project 4203 found few correlations 

between aggregate properties and HMA performance.  Only one of the five performance 

parameters was found to correlate to an aggregate property.  The predicted versus 

measured performance measurement graphs for the performance variables in this section 

can be seen in Figures A26-A30 in the Appendix. 
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The only performance parameter found to correlate to an aggregate shape 

property in this section is average IDT strength.  The results show a negative correlation 

between the IDT strength and percent of particles with L/S >3.  An increase in elongated 

particles results in a decrease in tensile strength in the HMA sample.  This also results 

from the anisotropic behavior of the HMA mix.    



      
      
      
     
 
 

 
 
 
 
 
 

Table 5.7. SPSS® Results for Project 4203 using Blend Shape Properties 
Avg E* (x103 psi)  Performance 

Parameter 5 Hz, 40˚ F 5 Hz, 70˚ F 5 Hz, 100˚ F 
APA Rut Depth (in)  Average IDT Strength 

(psi) 

Value x B R2 x B R2 x B R2 x B R2 x B R2 

45 47.06 0.584 45 33.66 0.551 45 14.98 0.78 40 0.01 0.589 37 -1.70 0.873 Regression 
Order       43 433.7 0.783 43 139.03 0.92             

Predictor Variables, x 
37 % Particles w/ L/S >3 
40 VFA 
43 Asphalt Content 

Variable 
Notation 

45 Temperature G* was Measured  
Note:  The B values correspond to the final prediction model.
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CHAPTER VI  

CONCLUSIONS AND RECOMMENDATIONS 

 

CONCLUSIONS 

The analysis conducted for this thesis evaluated the influence of aggregate shape 

properties, among other mix properties, on a number of performance parameters 

measured using laboratory tests.  Three databases containing results from major studies 

on performance evaluation of HMA mixes were included in the statistical analysis 

conducted for this thesis.  The correlation analysis was possible with the development of 

AIMS, which is capable of accurately and rapidly measuring aggregate shape properties. 

The analysis results indicate that aggregate shape properties play a dominant role 

in influencing the performance of HMA.  Many of the aggregate properties were found 

to correlate with multiple performance parameters.  The percentage of smooth particles 

in the texture aggregate property correlated to the performance parameters of flow point 

and number of cycles to failure.    The form of coarse particles correlated to flow point, 

strain @ flow, total accumulated strain, number of cycles to failure, and compliance.   

The most interesting, and probably controversial, finding is that an increase in 

the percentage of flat particles corresponded to an increase in resistance to permanent 

deformation in the vertical direction.  This could be caused by the fact that elongated 

particles tend to orient such that the longest axes of particles are inclined toward the 

horizontal plane.  Consequently, more contacts develop in the vertical direction.  The 

increase in these contacts induces an anisotropic behavior of the mix, which translates to 
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higher stiffness in the vertical direction.  This finding might suggest that axial laboratory 

tests might not reproduce actual field performance of aggregates with different 

percentages of flat and elongated particles.  The reported disadvantages of using flat and 

elongated particles are breakage of particles and weak planes in the horizontal directions.  

Neither of these behaviors is captured sufficiently in axial performance tests. 

The weighted average of shape properties was calculated for each aggregate 

blend.  The weights were assigned based on the surface area of each aggregate fraction 

for the purpose of calculating the texture and angularity properties.  The surface area was 

estimated based on the weight of aggregate in each size fraction and by assuming 

particles to have a cubical shape with each dimension equal to the average size of the 

sieves bracketing the size fraction.  The surface area was used as the weighing factor 

based on the assumption that smaller particles have greater surface area, and 

consequently, contribute more area to develop friction within the aggregate matrix.  The 

blend form properties were calculated as a weighted average with respect to the 

aggregate mass in each size fraction.  The correlations with blend properties were far 

less pronounced than with the percentages of particles in the different classification 

groups.     

Unfortunately, the lack of statistical design in the databases used in this research 

deterred the development of actual predictive equations that include aggregate shape.  

The excessive amount of bias in the correlations, which can be seen in Figures A1-A30 

in the Appendix, prevented any predictive equations from being reformulated to include 

aggregate shape properties.  Although this is a drawback to the extensive amount of 
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effort put into this research, the fact that aggregate shape properties vastly affect the 

performance of HMA pavements is evident.  SPSS® determined that some of the 

aggregate shape properties were more dominant factors in predicting certain 

performance parameters than were the mix volumetrics.  This can be seen in the SPSS® 

results found in Tables 5.1-5.3 and 5.5-5.7. 

 

RECOMMENDATIONS 

It is evident that aggregate shape characteristics of form, angularity, and texture 

influence the performance of HMA pavements.  Recent studies have also shown that 

AIMS is capable of accurately measuring these aggregate characteristics.  The inability 

to develop predictive equations that relate HMA performance to volumetric and 

aggregate properties was largely due to the original experimentation process.  The 

development of predictive equations can only be achieved in a project designed for that 

purpose.  Such a project must consider statistical analysis design so that all statistical 

assumptions are satisfied when relating aggregate shape properties and HMA 

performance measurements.  Variations in HMA properties believed to affect 

performance should be included in these experiments.   

The inclusion of many different types of aggregates is also needed.  Larger 

variations between aggregate shape properties of form, angularity, and texture, in each 

aggregate sample would produce better results.  Each aggregate would need to be 

examined in several different types of HMA mix designs, as well.  This type of project 
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would require an extensive amount of time and funding, but it is the only way to 

properly relate aggregate shape properties to HMA performance.   
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Fig. A1. FHWA mobile lab.-average properties- 

flow point measured vs. predicted results 
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Fig. A2. FHWA mobile lab.-average properties- 

N failure measured vs. predicted results 
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Fig. A3. FHWA mobile lab.-average properties- 

strain @ flow measured vs. predicted results 
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Fig. A4. FHWA mobile lab.-average properties- 

total strain measured vs. predicted results 
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Fig. A5. FHWA mobile lab.-average properties- 

flow slope measured vs. predicted results 
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Fig. A6. FHWA mobile lab.-average properties- 

flow to termination slope measured vs. predicted results 
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Fig. A7. FHWA mobile lab.-blend properties- 

flow point measured vs. predicted results 
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Fig. A8. FHWA mobile lab.-blend properties- 

N failure measured vs. predicted results 
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Fig. A9. FHWA mobile lab.-blend properties- 
strain @ flow measured vs. predicted results 
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Fig. A10. FHWA mobile lab.-blend properties- 

total strain measured vs. predicted results 
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Fig. A11. FHWA mobile lab.-blend properties- 

flow slope measured vs. predicted results 
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Fig. A12. FHWA mobile lab.-blend properties- 

flow to termination slope measured vs. predicted results 
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Fig. A13. Project 9-558-average properties- 
compliance measured vs. predicted results 
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Fig. A14. Project 9-558-average properties- 
strain @ flow measured vs. predicted results 
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Fig. A15. Project 9-558-average properties- 

flow point measured vs. predicted results 
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Fig. A16. Project 9-558-average properties- 

APA rut depth measured vs. predicted results 
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Fig. A17. Project 9-558-average properties- 

E*/sin � measured vs. predicted results 
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Fig. A18. Project 9-558-blend properties- 
compliance measured vs. predicted results 
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Fig. A19. Project 9-558-blend properties- 

strain @ flow measured vs. predicted results 
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Fig. A20. Project 9-558-blend properties- 

APA rut depth measured vs. predicted results 
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Fig. A21. Project 4203-average properties- 

avg. E* at 5 Hz and 40°F measured vs. predicted results 
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Fig. A22. Project 4203-average properties- 

avg. E* at 5 Hz and 70°F measured vs. predicted results 
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Fig. A23. Project 4203-average properties- 

avg. E* at 5 Hz and 100°F measured vs. predicted results 
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Fig. A24. Project 4203-average properties- 

APA rut depth measured vs. predicted results 
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Fig. A25. Project 4203-average properties- 

avg. IDT strength measured vs. predicted results 
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Fig. A26. Project 4203-blend properties- 

avg. E* at 5 Hz and 40°F measured vs. predicted results 
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Fig. A27. Project 4203-blend properties- 

avg. E* at 5 Hz and 70°F measured vs. predicted results 
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Fig. A28. Project 4203-blend properties- 

avg. E* at 5 Hz and 100°F measured vs. predicted results 
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Fig. A29. Project 4203-blend properties- 

APA rut depth measured vs. predicted results 
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Fig. A30. Project 4203-blend properties- 

avg. IDT strength measured vs. predicted results 
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