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ABSTRACT 

 

 

Methodology for Designing a Fuzzy Resolver for a Radial Distribution System Fault 

Locator. (December 2005) 

Jun Li, B.Eng.; M.Eng., Xi’an Jiaotong University 

Chair of Advisory Committee: Dr. Karen L. Butler-Purry 
                                       Dr. B. Don Russell 

 

 

The Power System Automation Lab at Texas A&M University developed a fault 

location scheme that can be used for radial distribution systems. When a fault occurs, the 

scheme executes three stages. In the first stage, all data measurements and system 

information is gathered and processed into suitable formats. In the second stage, three 

fault location methods are used to assign possibility values to each line section of a feeder. 

In the last stage, a fuzzy resolver is used to aggregate the outputs of the three fault 

location methods and assign a final possibility value to each line section of a feeder. 

By aggregating the outputs of the three fault location methods, the fuzzy resolver 

aims to obtain a smaller subset of line sections as potential faulted sections than the 

individual fault location methods. Fuzzy aggregation operators are used to implement 

fuzzy resolvers. 

This dissertation reports on a methodology that was developed utilizing fuzzy 

aggregation operators in the fuzzy resolver. Three fuzzy aggregation operators, the min, 

OWA, and uninorm, and two objective functions were used to design the fuzzy resolver. 

The methodologies to design fuzzy resolvers with respect to a single objective function 

and with respect to two objective functions were presented. A detailed illustration of the 

design process was presented. Performance studies of designed fuzzy resolvers were also 

performed. 

In order to design and validate the fuzzy resolver methodology, data were needed. 

Due to the lack of real field data, simulating a distribution feeder was a feasible 

alternative to generate data. The IEEE 34 node test feeder was modeled. Time current 
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characteristics (TCC) based protective devices were added to this feeder. Faults were 

simulated on this feeder to generate data. 

Based on the performance studies of designed fuzzy resolvers, the fuzzy resolver 

designed using the uninorm operator without weights is the first choice. For this fuzzy 

resolver, no optimal weights are needed. In addition, fuzzy resolvers using the min 

operator and OWA operator can be used to design fuzzy resolvers. For these two 

operators, the methodology for designing fuzzy resolvers with respect to two objective 

functions was the appropriate choice. 
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CHAPTER I 

INTRODUCTION 

1.1 INTRODUCTION 

Electrical power distribution systems connect customers to distribution substations 

through feeders. There is a large number of equipment in distribution systems. This 

equipment ages over time, which may lead to defects. Furthermore, most distribution 

systems are overhead systems, which are easily affected by adverse weather conditions, 

animals, and traffic accidents. These two characteristics make faults in distribution 

systems inevitable. However, with increasing reliance on electricity, customers want an 

acceptable and reliable power supply at economic costs. In other words, they want to 

reduce the outage time and operating cost. Whenever a portion of a feeder experiences a 

loss of power, it is important to keep the duration of the outage to a minimum by quickly 

locating the cause of the disturbance to restore service to affected customers. In order to 

locate faults quickly, automated fault location is needed. 

The primitive fault location method for distribution systems is visual inspection, 

which is time consuming and needs a lot of manpower. With the advent of 

microprocessors and sophisticated data acquisition technology, it is possible to develop 

some computer programs that help system operators perform complicated computations 

and dramatically reduce the time to process huge amounts of data. Some fault location 

methods have been developed and implemented using computer programs so that 

automatic fault location becomes possible. Most fault location methods are based on one 

approach for locating faults. However, these approaches each have some shortcomings. 

Therefore, the accuracy is not high when system operators locate faults based on one 

approach. Besides the accuracy problem, many methods are designed for one specific 

system and not easily applied to other systems. Some methods use detection devices 
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installed in the system. Therefore, they cannot be used for systems where detection 

devices are not installed. Some other methods locate faults based on the status of 

protective devices and heavily rely on supervisory control and data acquisition (SCADA) 

systems, fault detectors, and communication channels. Due to economic constraints, the 

communication between protective devices and the substation are limited to some 

important substations. For many systems, measurements are only available at the 

substation, and the operation status of feeder protective devices is unknown. For such 

systems, these methods based on the status of protective devices are not feasible. Some 

utilities estimate the fault location by executing fault location programs. System operators 

review the results and take the necessary action. Many fault location methods are 

customized for a specific utility and estimate fault locations based on the available 

information in that utility. However, utilities may have different information available. 

Those methods specifically designed for a utility may not be able to generally apply to 

another utility. Development of a generic fault location method that can be applied to 

most utilities is necessary. 

1.2 RESEARCH OBJECTIVES AND DISSERTATION ORGANIZATION 

The dissertation discusses research that focused on the development of a fuzzy 

resolver methodology used in a new fault location scheme. The objective of the new fault 

location scheme is to develop a generic fault location scheme that can be applied to most 

utilities to identify potential faulted line sections. The new scheme consists of three 

stages: the input stage, the fault location methods stage, and the output stage. 

In order to be used for most utilities, the input data for this scheme should be available 

from most utilities. In this new fault location scheme, only the current and voltage 

measurements at the substation, feeder topological data, and protective device settings 

and locations are required. The input stage is used to process and format the data to a 

form useable by the fault location methods stage. 
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There are three independent fault location methods in the fault location methods stage. 

The fault distance method locates faults by calculating the fault distance. The phase 

selector method locates faults by identifying faulted phases and based on the presence of 

phases on each line section. The operated device identification method locates faults by 

identifying the operated protective device for a fault. Since there are uncertainties in the 

load component of the fault current, the fault resistance, the raw data, etc., fuzzy logic 

was utilized in the development of these methods. Each fault location method assigns 

possibility values to each line section of a distribution feeder. These possibility values 

represent how possible a line section is involved in a fault. 

In the last stage, a fuzzy resolver is used to aggregate the outputs of the three fault 

location methods and produce one final aggregation possibility value for each line section. 

Fuzzy aggregation operators were used in the fuzzy resolver. 

This dissertation discusses a methodology for designing fuzzy resolvers. In the 

methodology, fuzzy aggregation operators were used to design the fuzzy resovler. To 

choose fuzzy aggregation operators to design a fuzzy resolver, commonly used fuzzy 

aggregation operators were investigated, and the min, OWA, and uninorm operators were 

chosen as candidate operators based on the characteristics of the three fault location 

methods. To take account of the accuracy of the three fault location methods, weights 

(important factors) were assigned to the three methods. In order to incorporate these 

weights, transformation methods were used for each fuzzy aggregation operator to 

transform the outputs of the three fault location methods into effective values. After that, 

a fuzzy aggregation operator was used to aggregate these effective values to generate 

final possibility values for each line section of a feeder. 

In the design process of a fuzzy resolver, the optimal weights of the three fault 

location methods and the optimal parameters of the OWA operator needed to be 

determined. In order to determine these weights and parameters, field data representing 

many distribution systems were needed. Since field data from real distribution feeders 
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were unavailable to this research, modeling a distribution feeder with protective devices 

and simulating fault cases on the feeder were feasible alternatives. The IEEE 34 node test 

feeder was modeled with the addition of protective devices. Load flow and short circuit 

analysis studies were implemented on this feeder using the software, WindMil [94], to 

determine the protective devices’ settings. The author developed a methodology for 

modeling TCC-based protective devices using the MATLAB SimPowerSystems blockset. 

Faults were exhaustively simulated at all line sections to generate data. After generating 

data, the optimal parameters of the fuzzy resolver (the weights of the three fault location 

methods and the parameters of the OWA operator) needed to be determined. Genetic 

algorithm based methods were used to determine them. Two objective functions were 

used in the optimization process. The first objective function was to maximize the 

number of actual faulted sections whose possibility values are greater than or equal to a 

large possibility value p1, which aimed to achieve the result that actual faulted sections 

had a large possibility value. The other objective function was to maximize the number of 

non-faulted sections whose possibility values are less than a small possibility value p2, 

which aimed to achieve the result that actual faulted sections had a large possibility value. 

Optimal parameters were obtained with respect to the first objective function individually 

and the second objective function individually. Then, optimal parameters were obtained 

with respect to two objective functions. 

This dissertation consists of seven chapters. In Chapter I, an introduction of this 

research work and an organization of the dissertation are presented. In Chapter II, the 

literature of distribution system fault location methods and fuzzy aggregation operators 

are reviewed. In Chapter III, the three fault location methods developed by other 

researchers in the research group are introduced. Fuzzy aggregation operators used in 

fuzzy resolvers are discussed. In Chapter IV, a methodology developed for modeling and 

simulating the benchmark distribution feeder with time-current characteristics (TCC) 

based protective devices is presented. In chapter V, methodologies developed to design 
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fuzzy resolvers with respect to a single objective function and with respect to two 

objective functions are discussed. The designed fuzzy resovlers are studied. In chapter VI, 

the performance of designed fuzzy resolvers is studied using the test cases. In Chapter 

VII, conclusions are drawn and some remarks about future work are presented.
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CHAPTER II 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Over the years, many researchers have put considerable effort into the development of 

fault location methods for transmission systems. However, due to economic constraints, 

utilities do not pay as much attention nor expend as many resources for service reliability 

and quality of the power supply for distribution systems. Therefore, research on fault 

location methods for distribution systems was not active for many years. A primitive fault 

location method for distribution systems is visual inspection, which is time consuming 

and needs a lot of manpower. When a fault happens, system operators normally perform 

fault locations based on the customer’s report. Upon receiving trouble calls from 

customers, system operators determine the outage area based on the feeder map and the 

protection scheme. Then repair crews are sent to patrol the outage area. The process is 

very time consuming so that the outage may last a very long time. 

Distribution systems have some unique characteristics that make fault location 

methods for transmission systems not effective for distribution systems. First, distribution 

lines are much more complex topologies than transmission lines. Transmission lines 

generally are from point to point, or networks have a tee. Distribution lines have dozens 

or even hundreds of laterals, tees, load taps, etc. This difference in topology makes many 

techniques that were designed for transmission lines incapable of functioning on 

distribution lines. Impedance-based algorithms suffer from this because a distribution line 

has many points with the same impedance from the substation. The traveling wave-based 

algorithms are “confused” because a distribution line has many discontinuities, each of 

which causes a reflection. Second, distribution systems have many single-phase and 

two-phase laterals away from the main feeder, which makes the system unbalanced. 

Further, distribution lines are not fully transposed so that they have an asymmetrical 

nature. Therefore, many methods using symmetrical components cannot be used. In 
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addition, distribution systems involve non-homogenous lines, a large number of elements, 

dynamic loads, as well as topological changes because of network expansion. Hence, 

fault location methods specifically designed for distribution systems are needed. 

With the advent of sensitive loads, customers require a high quality of service. In 

addition, due to the introduction of a competitive market into the power industry, service 

quality and reliability of distribution systems have recently caught the utilities’ attention, 

and many researchers have begun to develop fault location methods for distribution 

systems. 

In this chapter, the literature on fault location methods for distribution systems is 

reviewed and summarized, and the shortcomings of these methods are discussed. In order 

to overcome these shortcomings, researchers in the Power System Automation Lab at 

Texas A&M University developed a new fault location scheme that locates faults based 

on several fuzzy logic based methods. Fuzzy aggregation operators were used in the new 

scheme for aggregating these fault location methods’ outputs. In this chapter, the 

commonly used fuzzy aggregation operators are also introduced. 

2.2 LITERATURE REVIEW OF EXISTING FAULT LOCATION METHODS 

FOR DISTRIBUTION SYSTEMS 

Most fault location methods for distribution systems can be categorized into five 

groups: impedance and other fundamental frequency component based methods, high 

frequency components and traveling wave based methods, artificial intelligence and 

statistical analysis based methods, distributed device based methods, and hybrid methods. 

In the following sections, each of these is reviewed. After reviewing the research work on 

distribution system fault location, commercial products and applied fault location systems 

will also be reviewed. 

2.2.1 Impedance and Other Fundamental Frequency Component Based Methods 

Many fault location methods that use the fundamental frequency component find the 

fault location by calculating the apparent impedance. In these methods, the fault types 
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and faulted phases are identified first. Then, the apparent impedance is calculated based 

on the selected voltage and selected current. For the distribution system fault location, 

load currents at different taps are sources of error if they are not considered. Girgis [1] 

gave equations to calculate all kinds of faults occurring at the main feeder and a 

single-phase lateral. In this paper, loads were considered as constant impedance loads. 

The dynamic nature of the loads was not considered, and multiphase taps were not 

considered either. Saha [2] presented a method that could include many intermediate load 

taps. The non-homogeneity of the feeder sections was also taken into account in this 

method, but he assumed the system was balanced. Santoso [3] presented a method similar 

to [1]. However, he used a different method to take account of the fault resistance. Das 

[4]-[6] developed a technique that took account of non-homogenous lines, load taps, and 

the dynamic nature of the loads. However, he still considered the line were fully 

transposed, and was only good for line-to-ground faults. This technique calculated the 

apparent impedance to find the faulted section first. Then an iterative method was used to 

solve an implicit equation in order to find the distance from the start node of the faulted 

section to the fault point. 

Other methods also use the fundamental frequency component to locate faults. 

However, they are not based on the apparent impedance. Aggarwal [7],[8] presented a 

single-ended fault location technique, which was based on the concept of superimposed 

components of voltages and currents rather than total quantities. The method also treated 

all loads as constant impedance loads. The line was modeled using the lumped parameter 

model. This fault location technique located faults by finding ”the point on the line that 

gives the minimum values of the healthy-phase fault path currents.” It was highly 

insensitive to variations in source impedances and to the presence of taps with variable 

loads. However, it was only good to locate faults on the three phase main feeder. Choi [9] 

proposed a method for locating faults by solving a quadratic equation resulting from the 

direct circuit analysis. However, it assumed all load impedance was accurately known. 
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2.2.2 High Frequency Components and Traveling Wave Based Methods 

Traveling wave based methods locate faults based on a fault generating high 

frequency signals. These methods have high accuracy, even for high impedance faults, 

and their accuracy does not rely on system condition. They are used for transmission 

systems because of their simple topologies. However, these techniques need high sample 

rate (above 20 MHz) and have some problems for low inception angle faults. The 

implementation of these methods is more expensive than the implementation of 

impedance based techniques. For distribution systems, there are a lot of load taps and 

discontinuities in a line that will reflect a traveling wave, which makes it difficult to 

apply traveling wave based methods to distribution systems. Thomas [10] tried to use the 

cross-correlation function between the incident wave and the reflected wave to locate 

faults in distribution systems. Both the double-ended method and the single-ended 

method were used. The double-ended method could provide an accurate result if the fault 

happened at the line where the fault recorders were installed, or at the main feeder. The 

single-ended method did not work well. The author did not present any idea to overcome 

the problem caused by multiple discontinuities in distribution systems. Bo [11] presented 

another method to locate faults. In order to distinguish the reflected wave from the fault 

point and that from the remote bus bar, a new fault locator unit was developed, which 

captured high frequency voltage signals between 1 and 10 MHz. Around this range, the 

bus capacitance dominated the bus impedance so that the reflected voltage signal from 

the remote bus had the opposite sign to the incident voltage, while the reflected voltage 

signal from the fault location had the same sign as the incident voltage. Then by 

identifying two successive waves that had the same polarity, the fault distance could be 

determined. Bo found the effects of tapped-off loads were significant, and caused 

problems in identifying the fault location, but he did not solve the problem completely. 

There are many other methods that use high frequency components, but they do not 

use traveling wave theory. Johns, El-Hami, and Tang [12]-[14] developed a device that 
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could identify the fault direction based on the voltage magnitude difference between the 

device’s terminal voltages. However, this method needed to insert some equipment into 

to distribution feeders. It could not be done only using the terminal measurements. 

Magnago [15] proposed a new method based on the high frequency signals measured at 

the substation. Based on the knowledge that different fault locations have different 

attenuation factors resulting from different number of junctions between the substation 

and the fault location, the high frequency signals were decomposed using the wavelet, 

and the wavelet coefficients carried some information that could be used to identify 

different fault laterals. However, in order to use this method, simulations need to be done 

for each distribution system so that users know the wavelet coefficients of different fault 

laterals, and can identify the faulted lateral based on these coefficients. Utilities cannot 

afford to implement a solution on a distribution feeder if there has to be significant 

configuration and/or modeling of each specific feeder. Further, distribution line topology 

also changes frequently (e.g., load diverted from one feeder to another during 

maintenance; addition/removal of individual customers, etc.). Even if a utility could enter 

feeder-specific topology information during initial setup, it never would be able to keep it 

up-to-date. 

2.2.3 Artificial Intelligence (AI) and Statistical Analysis Based Methods 

With the development of computers, many artificial intelligent methods such as expert 

systems, neural networks, etc., emerged. These methods provide a way to capture the 

experience of operators or engineers, and can help people to do much laborious work. By 

using these methods, the time factor is substantially reduced and human mistakes are 

avoided. Hence, many researchers used AI based methods in distribution system fault 

locations. 

In the old days, people’s expertise was needed to process alarm messages to identify 

the fault location after faults happened. With computer programs that simulate the 

behavior of human experts in solving a complex problem, expert systems have received 
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considerable attention for developing fault location methods. Many researchers [16]-[22] 

used rule-based expert systems. In these methods, the trouble calls, the protective 

devices’ status, supervisory control and data acquisition (SCADA) system, and/or 

automatic meter reading (AMR) systems were needed. In addition, the protection scheme 

should be known. Kumano [23] proposed a rule based expert system that also used the 

protective devices’ status. This method was different from other methods due to its 

consideration of sequential information. Ypsilantis [24] developed a rule-based fault 

diagnostic system that used feeder topological information and real time data from 

SCADA systems. The system used two types of rules. A set of core rules using breaker 

trips and bus status was normally enough to cover a majority of faults. In the cases where 

the core rules failed, exception rules were generated by interaction with system operators. 

These exception rules used breaker trip information and the islands formed in the faulted 

network. Rule-based expert systems have a powerful capability to mimic human 

experience. However, a number of rules are needed to describe various devices. The tasks 

of knowledge-acquisition and maintenance of knowledge base are often laborious and 

tedious, and the development of an expert system is often a costly and lengthy process. 

Hence, the portability of expert systems is very important. Instead of representing the 

operator’s expertise as complicated rules, Teo [25] presented a special knowledge based 

system that captured the postfault network state, and recorded it as a pattern. When 

linking to a distribution network simulator, the diagnostic system was trained. When a 

new fault happened, a matching mechanism was used to compare the network state with 

records to identify the fault location. If no one matched, the system would consider it as a 

new fault and prompt the user to enter the faulted element. 

Yang [26]-[27] proposed neural network based methods to locate distribution system 

faults. The system in [26] had a similar profile to an expert system, but a different design 

of the inference engine. Neural networks were used as the knowledge base, instead of 

heuristic rules. The status of protective devices was needed in this method. In [27], a 
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distributed neural nets diagnosis system was constructed by the training database that 

associated the protective scheme with the individual sections. By using the distributed 

processing technique, the burden of communication between the control center and 

substations was alleviated. In order to implement an on-line fault section estimation 

system, Bi [28],[29] employed a multi-way graph partitioning method based on weighted 

minimum degree reordering to partition a large-scale power network into some 

sub-networks. Then a Radial Basis Function Neural Network and its companion fuzzy 

system were used to implement sub-network fault section estimation systems based on 

information on the status of protective devices available from SCADA systems. The 

speed of the distributed fault section estimation system made it possible to use it as an 

on-line system. Al-shaher [30] developed a fault location method for multi-ring 

distribution systems using neural network. The feeder fault voltage, circuit breaker status, 

real power of feeders during the normal condition, and real power of feeders during short 

circuit, etc, were used to train the neural network. Martinas [31] proposed a method for 

locating faults for parallel double-circuit distribution lines. The Clarke-Concordia 

transformation was used to transform line currents into αβ0 current components. Based 

on these components, a data sample correlation matrix was constructed. The eigenvalues 

of the correlation matrix had a non-linear relationship with the fault distance. A neural 

network was used to extract the unknown relationship. In [32] and [33], a neural network 

was used to identify the faulted section based on pattern recognition. Some measurements 

uniquely defined a fault pattern, and a neural network was used to recognize the pattern 

to locate a fault. 

Shahrestain [34] used pattern recognition techniques to identify power system faults. 

During different faults, the network exhibited different patterns, which consisted of the 

status of buses, lines, feeders, and protective devices. With identifying a fault’s pattern 

and comparing the pattern with the knowledge base, the fault location was decided. 
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Most of methods mentioned above estimated the faulted section(s) based on the status 

of protective devices, which were obtained from SCADA systems. However, there are 

uncertainties in these data due to the malfunction or wrong alarm of relays and circuit 

breakers, errors during the data acquisition and transmission, and time inaccuracy. Fuzzy 

set theory provides a convenient means to model uncertainties and inexactness, and 

several researchers [35]-[38] developed distribution system fault location methods based 

on it. In [35]-[36], fuzzy set theory was used to enhance expert system computation. In 

[37], sagittal diagrams were used to represent fuzzy relations for power systems. The 

expert system diagnosed faulted sections by the operation relations, instead of heuristic 

rules. Zhong [38] used fuzzy sets to represent fault currents measured by sensors, fault 

currents calculated by short circuit analysis, and operator’s experience. As the result, a 

priority list of possible faulted sections was provided. 

Wen [39] proposed a method that constructed a probabilistic causality matrix to 

represent the probabilistic relationship between faulted sections and protective device 

action. After the construction, the parsimonious set covering theory was applied to make 

the faulted section estimation as an integer-programming problem. Finally, a refined 

genetic algorithm (RGA) was adopted to solve the problem. Based on the “natural 

selection, best survival” theory, the RGA found the most reasonable hypothesis or 

hypotheses based on the evaluation result of each hypothesis evaluated by set covering 

theory. Besides GA, another evolutionary algorithm has also been used. In [40], Huang 

proposed a method that located faults based on an immune-based optimization approach. 

In this method, each section of the power system model was treated as an antibody. The 

fittest antibody became the solution. 

Huang [41] and Lo [42],[43] proposed a new Petri Nets knowledge representation 

scheme, which was based on status of related protective devices and the heuristic rules 

used by system operators. The inference of the faulted section was through simple matrix 

operations. 
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The statistical hypotheses testing method [44] was also used. The method needed the 

time of outage measurements obtained from customer ends. In [45], a Bayesian network 

was used to identify the faulted device by prioritizing all possible faulted equipment 

according to the fault statistics, the feeder prefault and fault environment, and the patrols’ 

knowledge. Bayesian network was used to combine expert knowledge and historical data. 

Thukaram’s [46] method estimated the voltage magnitude and phase angle at all load 

buses through state estimation. In order to implement the state estimation, the method 

needed to know power flows and power injections. From estimated values, the abnormal 

data or a protective device operation was noticed. Then, the fault detector compared the 

abnormal data with the normal data. A threshold was used to detect the fault path. 

Chen [47] used a cause-effect network to represent causality between faults and the 

actions of protective devices. The cause-effect network’s features of high-speed inference 

and ease of implementation made it feasible to implement an on-line fault section 

estimation system. Based on the actions of protective devices, the network could quickly 

find faulted section candidates. The Group Method of Data Handling (GMDH) networks 

was also used to identify the possible faulted sections using the time-stamped information 

of protective devices [48]. 

2.2.4 Distributed Device Based Methods 

Besides the methods in the above four categories, there are some methods using 

different techniques. Wang [49] presented a mathematical approach that located faults 

based on installed voltage sensors’ information and the network’s topological structure. 

The relation of the voltage sensors with sections was formulated as a matrix. The other 

matrix was constructed based on the topological relation between sections and nodes in 

an electric network. Through some matrix operations, all faulted sections could be found. 

In [50], fault-sensing transmitters were installed in a cable distribution system. These 

transmitters transmitted the coded signal to the control center. Operators located faults 

based on these signals. 
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2.2.5 Hybrid Methods 

Almost all of the above methods locate faults based on one algorithm, such as the fault 

distance calculation or operated protective device’s status analysis, to locate faults. Some 

have investigated the use of hybrid methods that locate faults based on more than one 

algorithm to achieve a more accurate estimation of the faulted section. Zhu [51] proposed 

a hybrid method that computed the fault distance using measurements available at the 

substation. Based only on the fault distance calculation, the method determined multiple 

potential fault locations. To identify the actual fault location, a fault diagnosis procedure 

was applied to rank the list of multiple potential fault locations. By doing a circuit 

simulation, the operation of a particular combination of protective devices and the load 

change pattern during different fault scenarios could be obtained. Then by matching the 

fault situation to these scenarios, the actual faulted section could be determined. However, 

this diagnosis procedure modeled the circuit and simulated different fault scenarios, 

which were time-consuming tasks, and the modeling process needed to be done again for 

another system. Järventausta [35] used the fault distance calculation, fault detector 

information, and geographical information of the distribution system to locate faults. 

Zhong [38] presented a method to locate faults based on fault current measurements, fault 

currents calculated from short circuit analysis, and system operators’ experience. Lee [52] 

calculated the fault distance first to provide some fault location candidates. Then, by 

current pattern matching and interrupted load analysis, the candidate pool was reduced. 

2.2.6 Commercial Products for Distribution System Fault Location 

In addition to research work on distribution system fault location, some companies 

have developed commercial products for distribution system fault location, and some 

utilities have applied systems to implement distribution system fault location. In the 

following sections, these products and systems are reviewed. 
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2.2.6.1 Signature System 

The Signature System Company developed a Radial Fault Locator Answer Module 

[53] that can identify a fault, determine its type, and calculate the distance from the 

monitoring point to the fault. This computes the apparent sequence impedance at the 

monitoring point and estimates the fault distance from the monitoring point. According to 

their literature, its typical error of estimated distance is 10-15%. 

2.2.6.2 ABB 

ABB developed the RES 505 terminal that includes a fault location function [54]. It 

achieves optimum accuracy by using a measuring principle. This principle eliminates 

measuring errors caused by the infeed of fault current from the remote end, load current 

prior to the fault, and magnitude of fault resistance. 

ABB also developed a fault analysis and evaluation tool called PSM 505 [55]. The 

tool applies an algorithm that calculates the loop impedance of the faulted line. In this 

algorithm, parallel lines are considered. This tool utilizes one-terminal fault location 

algorithm and two-terminal fault location algorithm. According to their literature, the 

one-terminal fault location algorithm can achieve an accuracy that is typically better than 

3.5% of the distance to the fault, while the accuracy of the two-terminal fault location 

algorithm is 1% of the line length. 

2.2.6.3 Phase to Phase BV 

Phase to Phase BV is a company in the Netherlands that develops software for 

network calculations. This company developed a fault location system for distribution 

systems [56]. The measurements recorded by digital protection equipment are used to 

calculate the impedance from the substation to the fault location. The calculated result is 

fed into a network model where a fault analysis is performed to find the exact location. 

Simulations are implemented on the network model. In the simulation process the 

calculated short circuit currents, voltages, and reactances are compared with the 
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measured values. The best match reveals the location of the fault. This approach requires 

a detailed circuit model. 

2.2.6.4 Schweitzer Engineering Laboratories (SEL) 

SEL developed the SEL-221-16 distance relay with fault locator [57]. It can provide 

high-speed and time-delayed protection for transmission, subtransmission, and 

distribution lines. Analog inputs from current and voltage transformers are delivered to 

the protective relaying element to locate a fault. The relay uses two fault location 

methods: the simple reactance method when prefault data are not available [58],[59], or 

the Takagi method where prefault data are available [58]-[60]. 

The simple reactance method calculates the apparent impedance using (2.1), where 

Vselect and Iselect are the selected voltage and current, respectively. For different types of 

faults, the apparent impedance is calculated as Table 2.1, where k=(Z0-Z1)/Z1, Z0 is the 

zero sequence line impedance, Z1 is the positive sequence line impedance, Ia, Ib, and Ic 

are phase currents for phase A, B and C, respectively, I0 is the zero sequence current, Va, 

Vb, and Vc are phase voltages for phase A, B and C, respectively. The fault distance is 

calculated using (2.2), where m is the per unit distance to the fault, Im(.) is the imaginary 

part. 

select

select
app I

VZ =
 

(2.1) 

)Im(
)Im(

1Z
Z

m app=
 

(2.2) 

When the prefault data are available, it is possible to improve the result accuracy using 

the Takagi method. This method improves upon the simple reactance method by reducing 

the effect of load flow and minimizing the effect of fault resistance. 

When the fault is a phase A to ground fault, the fault distance is calculated using (2.3) 

and (2.4), where Im(.) is the imaginary part, Vk is the phase k voltage, Ik is the phase k 

fault current, Ikpre is the phase k prefault current, Zkj is the mutual impedance between 
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phase k and j, Iksup
* is the complex conjugate of Iksup. For other single phase to ground 

fault, the distance is calculated using similar equations. 

 

 
TABLE 2.1 EQUATION TO CALCULATE THE APPARENT IMPEDANCE 

Fault Type Apparent Impedance Equation (Zapp=) 

AG )( 0kIIV aa +  

BG )( 0kIIV bb +  

CG )( 0kIIV cc +  

AB or ABG )()( baba IIVV −−  

BC or BCG )()( cbcb IIVV −−  

CA or CAG )()( acac IIVV −−  

ABC )()( baba IIVV −−  or )()( cbcb IIVV −−  or )()( acac IIVV −−  
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sup

*
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acacbabaaa

aa

IIZIZIZ
IV

m
++

=  (2.3) 

apreaa III −=sup  (2.4) 

When the fault is a phase B to C fault, the fault distance is calculated using (2.5)-(2.9), 

where Im(.) is the imaginary part, Vk is the phase k voltage, Ik is the phase k fault current, 

Ikpre is the phase k prefault current, Zkj is the mutual impedance between phase k and j, 

Ikjsup
* is the complex conjugate of Ikjsup. For other phase to phase faults, the distance is 

calculated using similar equations. 
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bcprebcbc III −=sup  (2.6) 

cbbc III −=  (2.7) 

cprebprebcpre III −=  (2.8) 

cbbc VVV −=  (2.9) 

For phase to phase to ground faults and three phase faults, the fault distance 

calculation is the same as for phase to phase faults. 

2.2.6.5 General Electric 

The F60 Feeder Management Relay developed by General Electric is a 

microprocessor-based relay that was designed for feeder protection [61]. This relay has a 

fault location function. The single-ended impedance-based method is used in this relay. 

According to the literature, the relay accuracy is ±1.5%, and the maximum accuracy is 

achieved if the fault resistance is zero or fault currents from all line terminals are in 

phase. 

2.2.6.6 Carolina Power and Light 

Carolina Power and Light developed a system to locate faults on distribution feeders 

[62]. The system locates in substations and finds the fault location based on feeder 

monitoring system (FMS) and short circuit data match. When a fault occurs, the RMS 

fault current is obtained from a FMS, and this RMS current is compared with fault 

currents that are calculated at one-mile increments from the substation using the short 

circuit analysis to locate the fault. 
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2.2.7 Shortcomings of Existing Fault Location Methods 

Almost all existing methods need SCADA systems, digital fault detectors, AMR 

systems, or other specific equipment installed in a system. Therefore, these methods need 

telecommunication channels and are subject to telecommunication channel’s failure and 

data transmission error. In addition, most methods locate faults according to one 

algorithm. Since each algorithm has its own limitation, their accuracy is not good. 

The objective of this research is to develop a fault location method that can be used in 

various distribution systems. However, most of the above mentioned methods need 

SCADA and AMR systems, and these systems may not be available in some distribution 

systems, which makes the portability of these methods poor. To achieve the research’s 

goal, a fault location method that is based on several fault location algorithms and that 

only needs substation measurements and some topological information is desirable. 

2.3 LITERATURE REVIEW OF FUZZY AGGREGATION OPERATORS 

Fuzzy aggregation operators are used in the fuzzy resolver methodology developed by 

the author. In the following sections, commonly used fuzzy aggregation operators are 

reviewed. 

2.3.1 Fuzzy Intersections (T-norms) 

Fuzzy intersections are usually referred to as triangle norms (t-norms). For each 

candidate, x, in a candidate set, these operators calculate the membership value of the 

candidate in the intersection set of set A and set B based on the candidate’s membership 

value in A and B [63]. 

A fuzzy intersection between two arguments a and b is expressed as i(a,b). T-norms 

must satisfy the following requirements as shown in Table 2.2. 
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TABLE 2.2 PROPERTIES OF T-NORMS 

Boundary 

condition: 

i(a,1)=a. The intersection of any membership value with 1 is equal 

to the value itself. 

Monotonicity: 
b≤d implies i(a,b)≤i(a,d). If b≤d, the intersection of any value with 

b is not larger than the intersection of the value with d. 

Commutativity: 
i(a,b)=i(b,a). The order of the input arguments does not affect the 

result. 

Associativity: 
i(a,i(b,d))=i(i(a,b),d). When three arguments are intersected 

together, the sequence of the intersection does not matter. 

 

 

Based on the four requirements, several t-norms can be achieved. The most commonly 

used t-norms are shown in Table 2.3. 

 
TABLE 2.3 COMMONLY USED T-NORMS 

Standard intersection: i(a,b)=min(a,b) 

Algebraic product: i(a,b)=ab 

Bounded difference: i(a,b)=max(0,a+b-1) 

Drastic intersection: i(a,b)=  
⎪
⎩

⎪
⎨

⎧
=
=

otherwise0
1awhenb
1bwhena

 

 

For these operators, the lowest possibility value confines the aggregation possibility 

value. One criterion’s low value makes the final result low no matter how high the other 
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criterion’s values are. In other words, high possibility values do not compensate low 

possibility values. 

Though t-norms are defined on two arguments, their satisfaction of the associativity 

condition ensures these operators are easy to extend for n arguments. Based on the 

requirements that t-norms satisfy, it is easy to prove that the standard intersection is the 

largest t-norm: i(s1 ,…sq)≤min(s1,…,sq), where si is a possibility value [63]. 

2.3.2 Fuzzy Unions (T-conorms) 

Fuzzy unions are often called triangle conorms (t-conorms). For each candidate, x, in a 

candidate set, these operators yield the membership value of the candidate in the union 

set of set A and set B based on the candidate’s membership value in A and B [63]. 

The operator u(a,b) represents the union of the membership value a and b. T-conorms 

also must satisfy four requirements as shown in Table 2.4. 

 

 
TABLE 2.4 PROPERTIES OF T-CONORM 

Boundary 

condition: 
u(a,0)=a. The union of any value with 0 equals to the value itself. 

Monotonicity: 
b≤d implies u(a,b)≤u(a,d). If b≤d, the union of any value a with b 

is not larger than the union of the value with d. 

Commutativity: u(a,b)=u(b,a). 

Associativity: u(a,u(b,d))=u(u(a,b),d). 

 

 

Several t-conorms can satisfy the above requirements. Among them, the following 

t-conorms shown in Table 2.5 are commonly used: 

 

 

 



 23

TABLE 2.5 COMMONLY USED T-CONORMS 

Standard union: u(a,b)=max(a,b) 

Algebraic sum: u(a,b)=a+b-ab 

Bounded sum: u(a,b)=min(1,a+b) 

Drastic union: u(a,b)=  
⎪
⎩

⎪
⎨

⎧
=
=

otherwise1
0awhenb
0bwhena

 

 

In contrast to t-norm operators, the highest possibility value confines the aggregation 

possibility value. A high possibility value from one criterion will make the final result 

high no matter how low the other criteria’s values are. Hence, t-conorms also do not 

provide compensation between criteria.  

As associative operators, these t-conorms can easily be extended to n arguments, and it 

is easy to prove that the standard union is the smallest t-conorm: u(s1 ,…sq)≥ max(s1,…,sq) 

[63]. 

2.3.3 Fuzzy Averaging Operators (Mean type operators) 

Fuzzy averaging operators are also known as mean type operators. Unlike t-norms and 

t-conorms, these operators cannot be explained using set theory. 

Mean type operators have the properties as shown in Table 2.6 [64]. 
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TABLE 2.6 PROPERTIES OF MEAN TYPE OPERATORS 

Idempotency: 
M(a,a,…,a)=a. When the operators aggregate several equal values, 

the aggregation value must equal to the value. 

Monotonicity: 

ai≤bi implies M(a1,a2,…,an)≤ M(b1,b2,…,bn). If there are two sets 

of ordered values a and b, where a1≤a2≤…≤an, b1≤b2≤ …≤bn, and 

ai≤bi, the aggregation value of the set of values a is not larger than 

the aggregation value of the set of values b. 

Commutativity: 
M(a1,a2,…an)=M(an,…,a2,a1). This property ensures the order of 

the input arguments does not affect the final aggregation value. 

 

 

The three commonly used mean type operators are listed below. The first one is the 

simple mean operator. Its mathematical form is (2.10). 

( ) ∑
=

=
n

i
in a

n
aaaA

1
21

1,...,,  (2.10) 

The second one is the median operator. It is defined as the (n/2)th largest element of a 

set (a1,…,an) if n is even, and as the ((n+1)/2)th largest element if n is odd [64]. 

The last one is the ordered weighted averaging operator (OWA) [65], and it is a 

parameterized operator. 

( ) BWbWbWbWaaaA nn2211n21 •=+++= ...,...,,  (2.11) 

where bi is the ith largest element in a1,a2,…,an, wi is the ith weight, . 1W
n

1i
i =∑

=

[ ]n21 WWWW ,...,,= , and [ ]T
n21 bbbB ,...,,= . By adjusting the weights, the OWA 

operator can move from the min operator to the max operator. The Orness of the weights 

is used to represent how close the operator is to the max operator. The definition of 

Orness is given in (2.12). 
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Mean type operators demonstrate the compromise (neutral) attitude of decision makers, 

who are neither pessimistic nor optimistic. Therefore, neither the minimum value nor the 

maximum value decides the final result. The aggregation value ranges between the 

minimum value and the maximum value. Different from t-norms and t-conorms, these 

operators provide compensation between different criteria. One criterion’s value does not 

solely affect the aggregation result. 

Based on the monotonic and idempotent properties, the mean type operators range in 

values between the minimum value and the maximum value: min(s1 ,…sq)≤A(s1 ,…,sq) 

≤max(s1,…,sq) [64]. 

2.3.4 Full Reinforcement Operators 

Full reinforcement operators are hybrid operators that can be used to represent hybrid 

behaviors of decision makers [66]. For these operators, there is a fixed element, g (called 

identity). The possibility values above g cause an increase in the aggregation value while 

those below g cause a decrease in the aggregation value. These operators perform like 

t-norms when all individual possibility values are less than the identity; they perform like 

t-conorms when all individual values are larger than the identity. Hence, in these 

operators, the behavior of the decision maker is not fixed. Sometimes, the decision maker 

uses a t-conorm operator; sometimes he uses a t-norm operator. 

All full reinforcement operators belong to fixed identity monotonic identity 

commutative aggregation (FIMICA) operators [66]. As the name suggests, these 

operators have the following properties: monotonicity, commutativity, and having a fixed 

identity. While all these operators have the characteristics that a collection of high values 

(larger than g) reinforces each other to make the aggregation value more affirmative than 

any of the individual values and a group of low values (less than g) makes the 

aggregation value more disaffirmative than any of the individual values, the difference 
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among these operators is how they aggregate a group of values when some values are 

high and others are low (called the mixture situation hereafter). 

The commonly used full reinforcement operators are listed below [66]. Here, ai is the 

aggregated possibility values. 

• Additive family of FIMICA 

( ) ( ⎟
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where f is a monotonic increasing function. 

• Product family of FIMICA 
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where f is a monotonic increasing function 

• Uninorm 
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where, i(.) and u(.) are a t-norm operator and a t-conorm operator, respectively. 

• FIMICA created from fuzzy models 
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These operators are based on the following two rules [66]: 

Rule 1: If the aggregated possibility values are all low, then use a t-norm operator. 

Rule 2: If the aggregated possibility values are all high, then use a t-conorm operator. 

Using the algebraic product as the t-norm operator, the algebraic sum as the t-conorm 

operator, and the center of area (COA) as the defuzzification technique, the triple Π 

operator, R, emerges [66]. 
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where ii aa −= 1 . 

Using the min operator as the t-norm operator, the max operator as the t-conorm 

operator, and the mean of maximum (MOM) as the defuzzification technique, another 

operator is derived [66]. 
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In summary, aggregation operators have different value ranges. The value ranges of 

different operators that aggregate a set of values A=(a1,a2,…,an) are shown in Figure 2.1. 
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Figure 2.1 Value ranges of four fuzzy aggregation operators 

 

 

 

2.4 CHAPTER SUMMARY 

In this chapter, the fault location problem for distribution systems was introduced. 

Existing distribution fault location methods were reviewed. In addition, the shortcomings 

of existing fault location methods were pointed out. In this dissertation, the author will 

discuss a methodology developed to implement fuzzy resolvers. Commonly used fuzzy 

aggregation operators used in fuzzy resolvers were also introduced. 

Chapter III introduces a new fault location scheme developed by other researchers in 

the Power System Automation Lab at Texas A&M University. Three fault location 

methods used in this scheme are discussed. The problem of the fuzzy resolver that is 

studied in this dissertation is formulated. 
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CHAPTER III 

PROBLEM FORMULATION 

3.1 INTRODUCTION 

Electrical power distribution systems connect customers to distribution substations 

through feeders. Most feeders are radial, which means that the electricity flows only 

through one path from the source to each customer [67]. A feeder may consist of a 

three-phase primary feeder, laterals (three-phase, two-phase or single-phase), loads, 

transformers, shunt capacitor banks, and protective devices. 

There are a large number of apparatus in distribution systems. These apparatus age 

over time, which may lead to defects. Furthermore, most distribution systems are 

overhead systems, which are easily affected by changing weather conditions, animals, 

and traffic accidents. These two characteristics make faults in distribution systems 

inevitable. However, with increasing reliance on electricity, customers want an 

acceptable and reliable power supply at economic costs. In order to reduce the operating 

cost and the outage time and improve the quality of the power supply, fast and accurate 

location of faults is necessary. 

Most fault location methods reviewed in the last chapter are based on one algorithm 

for locating faults. However, all algorithms have some shortcomings. The accuracy of the 

methods that calculate the fault distance from the fault related data is impacted by some 

characteristics of distribution systems, such as unbalance, non-homogenous feeder 

conductors, load types, and fault resistance. The sampling rate, voltage inception angle, 

and load taps or discontinuities in a feeder heavily influence the accuracy of traveling 

wave-based methods. Therefore, the accuracy may not be high if system operators locate 

faults based on one algorithm. 

Beside the accuracy problem, many methods are designed for one specific system and 

are not easily applied to other systems. Some high frequency component based methods 

need to install detection devices in the system. Therefore, they cannot be used for systems 
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where detection devices are not installed. Some AI-based methods usually locate faults 

based on the status of protective devices and heavily rely on supervisory control and data 

acquisition (SCADA) systems, fault detectors, and communication channels. Due to 

economic constraints, the communication between protective devices and the substation 

are limited to some important substations. For many systems, measurements are only 

available at the substation and the operation status of feeder protective devices is 

unknown. For such systems, these methods are not feasible. Many expert system-based 

methods locate faults by using information obtained from SCADA systems, the network 

map and the dispatcher’s past experience. Therefore, these methods are customized to 

one system and difficult to apply to different distribution systems. 

In order to overcome the problems mentioned above, a new fault location scheme for 

radial distribution systems has been developed in the Power System Automation Lab at 

Texas A&M University. In order to improve the accuracy of the fault location method, 

the researchers developed a new fault location scheme that consists of three fuzzy fault 

location methods [69][70]. These methods decide the potential fault locations based on 

different algorithms. The final result is to be obtained by combining all three methods’ 

outputs. Therefore, its accuracy is better than those methods using only one algorithm. In 

addition, this new scheme locates faults only based on the current and voltage 

measurements at the substation, feeder topological data, and protective device settings 

and locations. Hence, the new scheme can be used for almost all distribution systems. 

The methods in the new scheme locate faults using some heuristic rules and analytical 

expressions. These heuristic rules represent human being’s decision-making process. In a 

decision-making process, people always use some vague knowledge, which is expressed 

using natural language. For example, people say that a large current increment at a phase 

means that the phase is involved in a fault. This rule gives a qualitative, not quantitative, 

judgment. However, various people have different viewpoints about what “large” may be. 

Some may think a 30% increment is a large increment, while others may think a 50% 
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increment is a large increment. There is no sharp boundary between “large” and “small.” 

In order to deal with such situations, fuzzy logic is used in the new fault location scheme. 

Another reason for adopting a fuzzy logic technique is that there are uncertainties in 

the measurements and some parameters used in the fault location methods. These 

uncertainties can be modeled by fuzzy membership functions. These uncertainties are 

mainly introduced by the dynamic nature of loads, feeder parameters, protective device 

operations, and data processing. In the following paragraphs, the author will briefly 

discuss uncertainties in distribution system fault locations. 

3.1.1 Uncertainties in Distribution System Fault Locations 

The dynamic nature of loads introduces uncertainty in determining the load 

component in the fault current. The determination of loads plays a significant role in 

impedance-based methods. Because the customer load information is usually unknown, 

loads are always assumed to distribute evenly, and their time-varying nature is ignored. 

In impedance-based fault location methods, fault resistances have a big impact on the 

accuracy of results, and are usually unknown. Besides fault resistances, the uncertainty in 

line parameters also reduces the accuracy of these methods. 

Many AI-based methods use protective device’s information to locate faults. There 

may be errors in the transmission of the protective device operation data. The operated 

protective device may be mistakenly identified due to a protective device malfunction. 

The ambient temperature and prefault load influence the operation of protective devices. 

For example, the clearing time of fuses changes based on the ambient temperature and 

prefault load. 

The raw data are processed to acquire the required data for fault location methods. The 

processing of data also leads to some uncertainties. For example, some fault location 

methods need the information about the fault current magnitude and the fault time 

duration. This information is then used to determine the fault location. The uncertainties 
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introduced in the process to obtain this information will reflect in the results of these 

methods. 

In order to consider the uncertainties, fuzzy logic was used. In the following section, 

the author will introduce some fundamentals of fuzzy logic. 

3.1.2 Fundamentals of Fuzzy Logic 

Fuzzy logic refers to all of the technologies employing fuzzy set theory. Fuzzy set 

theory provides a way to represent uncertainties, and is used to deal with the fuzziness of 

the world. Before the advent of fuzzy set theory, the classical crisp set was used in the 

decision-making process. There is a sharp boundary in the crisp set. An element either 

belongs to a set or not, nothing in between. For the crisp set, the membership of an 

element x in a set A is represented mathematically with the indicator function (3.1). 
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⎨
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Axif

xA ,0
,1
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(3.1) 

Human beings reason very effectively with fuzzy definitions. In order to capture 

imprecise and vague information, Zadeh [68] extended the notion of binary membership 

to accommodate various “degrees of membership” on the interval [0,1], which allow a 

gradual transition from 0 to 1. The degree of membership is called the possibility. Zadeh 

defines a fuzzy set as: 

})(,{( XxxxF F ∈= µ  (3.2) 

where µF is the membership function of x in F, and X is the universe of objectives with 

elements x. 

Same as the crisp set, fuzzy sets have some set operations, such as the intersection, 

union, and complement. In addition to these basic operations, there are many other 

operations that can be applied to performing mathematical operations on fuzzy sets. 

Many of these operations are not uniquely defined; it is up to the fuzzy set practitioner to 
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choose appropriate operators that best reflect expert reasoning in the specific human 

decision-making process. 

In the following sections, the fault location scheme is introduced, and three developed 

fault location methods are presented. In the new fault location scheme, there is a fuzzy 

resolver to aggregate three fault location methods’ outputs. This dissertation is to develop 

a methodology for designing the fuzzy resolver. The author will formulate the problem of 

the fuzzy resolver methodology. 

3.2 FAULT LOCATION SCHEME 

3.2.1 Overall Scheme 

The fault location scheme locates faults for radial distribution systems using the 

current and voltage measurements at the substation, feeder topological data, and 

protective device information. The architecture of the scheme is illustrated in Figure 3.1. 

The boxes shown with dotted lines have not been implemented yet. 
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The fault location scheme consists of three stages and is designed to locate faults on a 

radial distribution feeder with single- and multi-phase laterals. All needed information is 

gathered and processed into suitable formats in stage 1. The information includes feeder 

database information, voltage and current samples, and information from disturbance 

detectors. There are three fault location methods in stage 2. They locate faults based on 

different algorithms. These methods were implemented in a modular manner and 

independent of each other. Each of these methods computes possibility values – between 

0 and 1 – for all line sections of a feeder to indicate the possibility of each line section 

being involved in a fault. Because the automatic meter reading data and trouble call 

information are not easily available from many utilities, the outage area determination 

method has not been implemented. Andoh, a graduate student, developed the fault 

distance calculation and phase selector methods [69]. Manivannan, another graduate 

student, developed the operated device identification method [70]. The fuzzy resolver, in 

stage 3, combines all three methods’ outputs together to produce a final possibility value 

for each line section of a feeder. In the following sections, all three fault location methods 

and the function of the fuzzy resolver are introduced. 

3.2.2 Phase Selector Method 

The phase selector method locates potential faulted sections by analyzing the current 

measured at the substation, that is, Iabcs in Figure 3.2. Based on the knowledge that the 

faulted phases’ currents increase when a fault happens, the faulted phases can be 

identified by observing the current magnitudes’ variations during a fault [69]. 

Upon the detection of a fault event, the method extracts subevents. The definition of a 

subevent is shown in Figure 3.3. The start of a subevent within a fault event is the 

instance when any phase’s current is larger than a preset percentage of its normal value; 

the end of a subevent is the instance when the currents of all phases drop below a preset 

percentage of their normal values for the first time. 
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Figure 3.2 One-line diagram of a simple distribution feeder 

 

 

For each subevent, phase possibility values of all phases are calculated. There are 

three factors influencing the phase possibility value that represents the degree to which a 

phase is involved in a fault. The first factor is the level of the current increment of each 

phase from its normal value. The second factor is the relative current increment of a 

phase with respect to the current increment of other phases. The reason to consider the 

relative current increment is that the current increment of a phase may be due to the 

mutual coupling between different phases, i.e., the currents of healthy phases may 

increase due to their mutual coupling with the faulted phase(s). When a feeder is reclosed 

after clearing a fault, the inrush currents may be several times those of the normal load 

currents. However, the current increase is due to a reclose transient, not a fault. The 

reclose transient is the third factor influencing the phase possibility value. A reclose 

transient can be distinguished from a fault by calculating the second harmonic component 

of currents. Usually the inrush currents include a large second harmonic component, 

while the fault currents do not.
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Figure 3.3 Fault event illustrating the definition of subevent 
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In order to take account of these three factors, three membership functions were 

defined in this method. There are the significant increase membership function, the 

relative current change membership function, and the reclose transient current 

membership function. If a phase is involved in a fault, it should have a large significant 

current increase membership value, a large relative current change membership value, 

and a small reclose transient change membership value. 

For each subevent, three membership values were calculated using these three 

membership functions, and the phase possibility value of each phase was calculated using 

(3.3) based on the three membership values. 

)(, 321jphasekeventsub 1 µµµπ −∧∧=−  (3.3) 

where µ1 is the significant current increase membership value, µ2 is the relative current 

change membership value, µ3 is the reclose transient membership value, and ∧ is the 

minimum operator. 

For a fault event, the phase possibility value of each phase was calculated based on the 

inference rule: if a phase is involved in any one of the subevents, it is involved in the 

fault event. Based on this inference rule, the possibility value of each phase for the fault 

event was calculated using (3.4). 

jphasensubeventjphase2subeventjphase1subeventjphaseevent ,,,, ππππ ∨∨∨= K  (3.4) 

where ∨ is the fuzzy maximum operator, n is the total number of subevents in a fault 

event. 

Based on possibility values of all phases, for each line section, the present phase 

possibility value and non-present phase possibility value were calculated using (3.5) and 

(3.6). 

jphaseevent
P

ktion ,sec ππ ∨=  ∀ phases present at section k (3.5) 

)( ,sec jphaseevent
NP

ktion 1 ππ −∧= ∀ phases present at section k (3.6) 

where ∀ means “for all”. 
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With these two possibility values, each line section’s possibility value was calculated 

using (3.7). 

{ }NP
ktion

P
ktionktion secsecsec ,πππ ∧=  (3.7) 

3.2.3 Fault Distance Method 

The objective of the fault distance method is to exclude some line sections from the set 

of potential faulted sections based on the fault distance calculation so that a smaller set of 

potential faulted sections is obtained [69]. 

A simple distribution feeder shown in (3.3) is used to explain how the method works. 

The method assumes that the substation voltage and current measurements, vabcs and iabcs, 

are available, load currents, ILi, are available or are computed from load flow programs, 

and the impedance matrix of each line segment, Zabci, is given. From the substation 

measurements, the subevents are extracted in the same way as discussed in 3.2.2. The 

phasors of these measurements, Vabcs and Iabcs, are calculated from the longest duration 

subevent. For each line section i, the voltage and current phasors at the sending-end, Vabci 

and Iabci, are calculated using (3.8) and (3.9), respectively. 

[ ] [ ] [ ][ ] [ ][∑
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(3.8) 

where Vabcs is the voltage phasor value at the substation, and Zabcj is the impedance matrix 

of the line segment j. Iabcj is the current phasor value on line segment j. 

[ ] [ ] [∑
=

−=
1-j

1k
Lkabcsabcj III  (3.9) 

where Iabcs is the current vector at the substation, and ILk is the current injection of the 

load connected to node k. 

After calculating the sending-end voltage and current phasors, the fault distance 

calculation is performed on a section-by-section basis. In the following paragraphs, the 
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fault distance calculations for bolted single phase-to-ground faults and for bolted 

phase-to-phase faults are illustrated. 

A bolted single phase to ground fault on phase A at a line section is shown in Figure 

3.4, where If represents the fault current and Zabc is the impedance matrix of the line 

section. Va, Vb, and Vc are the sending-end voltages, which are calculated according to 

(3.8); Ia, Ib, and Ic are the sending-end currents, which are calculated according to (3.9). 

For the faulted phase, the relationship in (3.10) exists. All values except the fault distance 

in (3.10) are known. For each line section, the fault distance can be calculated using (3.11) 

hence. 
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Figure 3.4 A bolted single phase to ground fault at a line section 

 

 

 

( )cacbabaaaa IzIzIzDV ++=  (3.10) 

cacbabaaa

a

IzIzIz
VD

++
=

 
(3.11) 

 



 40

A bolted phase-to-phase fault between phases B and C at a line section is shown in 

Figure 3.5. It can be seen from Figure 3.5 that , where V'
c

'
b VV = b' is the phase B 

voltage at the fault point, and Vc' is the phase C voltage at the fault point. The 

relationships in (3.12) and (3.13) exist. By subtracting (3.13) from (3.12), the voltages at 

the fault point are eliminated and the relationship in (3.14) is obtained. All values except 

the fault distance in (3.14) are known. For each line section, the fault distance can be 

calculated using (3.15) for each line section. 
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Figure 3.5 A bolted phase b to c fault at a line section 
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After calculating the fault distance for a line section, the fault distance is compared 

with the line section’s length. If the distance is larger than the line section’s length, the 

fault is not on this line section; otherwise, the line section is a feasible faulted section. 

After finding all feasible faulted sections, the line section’s possibility value is 

assigned. This fault location method assumes that all faults are bolted, which means the 

fault resistance is equal to zero. Usually the fault resistance is non-zero and the value of 

the fault resistance is unknown. By assuming all faults are bolted, the calculated fault 

distance is the maximum possible distance [69], and the actual faulted section may be 

between the substation and the found feasible faulted section. Therefore, all sections 

between the substation and the found feasible faulted section are assigned a possibility 

value 1. The sections between the found feasible faulted section and the ends of a feeder 

are assigned a possibility value 0. This process is shown as (3.16). 
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(3.16) 

3.2.4 Operated Device Identification Method 

The objective of this method is to identify the operated protective device based on 

protective device’s time current characteristics (TCC) curves[70]. In Figure 3.6, a simple 

distribution feeder with protective devices is shown. The phasor-differenced values of the 

current measurements at the substation, Is, are used in this method [70]. The 

phasor-differenced values are approximations of the instantaneous current after the 

removal of the load components. When a fault is detected, subevents of the fault are 

extracted based on the definition shown in Figure 3.3. Then, the time durations and RMS 

currents of all phases of all subevents are obtained. 
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Figure 3.6 A simple distribution feeder with protective devices 

 

 

For each subevent, the time duration and RMS current of a phase form a pair. Each 

pair corresponds to a point, called operating point, in the time-current plane such as point 

A shown in Figure 3.7. The method compares the point to various protective devices’ 

time-current characteristic (TCC) curves to get the distances between the operating point 

and various TCC curves. The time intervals between subevents are compared with 

protective device’s time settings if protective devices are reclosing devices. If a 

protective device recloses a fault, the time interval should be larger than or equal to its 

time settings. The architecture of this method is shown in Figure 3.8. 
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Figure 3.7 Illustration of the comparison between a TCC curve and an operating point 
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After extracting subevents, the number of subevents (NS-E) in an event could be 

determined. The total number of combinations of the operating sequence of a device can 

be found using (3.17), where NS-E is the number of subevents, NH_Comb is the number of 

hypotheses combinations. 

 
 =  N H_Comb 2

N  −  S E

 
(3.17) 

A hypothesis is defined as a particular operation sequence of a device’s operations. 

The hypotheses generated for an event that has three subevents are shown in Table 3.1. A 

value of ‘1’ under the subevent column shows that a device operates, and a value of ‘0’ 

implies that a device does not operate. For example, the hypothesis (0 0 1) means that a 

device does not operate on the first and second subevents and operates on the third 

subevent. 

After generating hypotheses, four possibility values are calculated for each hypothesis. 

They are the device operation possibility πOp, event downstream possibility πDwn, 

time-satisfaction possibility πTime, and event self-cleared possibility πSelf. The device 

operation possibility represents the possibility that a protective device operates in an 

event, and this possibility value is calculated in block 1 of Figure 3.8. The event 

downstream possibility is the possibility that a protective device allows an event to be 

downstream of it based on its operation characteristics, and this possibility value is 

calculated in block 2 of Figure 3.8. The time-satisfaction possibility is the possibility that 

a protective device allows an event to happen downstream of it based on its time settings, 

and this possibility value is calculated in block 3 of Figure 3.8. The event self-cleared 

possibility represents the possibility that the event is a temporary fault and cleared by 

itself without the operation of the protective device, and this possibility value is 

calculated in block 4 of Figure 3.8. The calculation of this possibility requires 

characterization of arcing phenomena and a detailed study of the behavior of temporary 
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faults, which was not included by Manivannan. Therefore, the event self-cleared 

possibility is always set to be 1. 
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Figure 3.8 Architecture of the operated device identification method 

 

 

The calculation of the above four possibility values is only based on the distances 

between the operating point and various TCC curves and the protective device’s time 

settings. During the calculation, each protective device is considered alone, and the 
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coordination between protective devices is not considered. In the next step, some fuzzy 

rules are used to re-evaluate these four possibility values with consideration of the 

coordination between protective devices. The coordination information is available from 

the feeder connectivity information database. 

Based on these re-evaluated possibility values, the device lockout possibility, device 

successful reclose possibility, and event self-clearing possibility are calculated using 

some fuzzy rules. The device lockout possibility value represents the possibility that a 

section is involved in a permanent fault, and the device protecting this section locks out 

to isolate the fault. The rule to calculate this possibility is that “The event was 

downstream of the device AND the device operated AND the event satisfied the time 

settings of the device AND the number of device operations was equal to NMax-op AND 

the device operated on the final sub-event NS-E,” and the possibility is calculated using 

(3.18). 

 

 
TABLE 3.1 DIFFERENT HYPOTHESES GENERATED FOR NS-E=3 

Subevent 
1 2 3 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 

Hypotheses

1 1 1 

 

 

The device’s successful reclose possibility represents the possibility that a section is 

involved in a temporary fault, and the device protecting the section has a successful 
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reclose to clear the fault. The rule to calculate this possibility is that “The event was 

downstream of the device AND the device operated AND the event satisfied the time 

settings AND the number of device operations was equal to NMax-op AND the device 

operated on the final sub-event NS-E.” This possibility is calculated using (3.19). 

The event self-clearing possibility is the possibility that a section is involved in a 

temporary fault and the fault is gone without the device protecting the section operating. 

The possibility is calculated using the rule, “The event was downstream of the device 

AND the device operated AND the event satisfied the time settings AND the number of 

device operations was less than NMax-op AND the device did not operate on the final 

sub-event NS-E AND the fault self cleared on the last sub-event.” It is calculated using 

(3.20). 

)1)(()( )n,(n _HD ==∧==∧∧∧= −ESHOpOpMaxTimeDwnOpLock NnNNππππ  (3.18) 

)1)(()( )n,(n _HDRe ==∧>∧∧∧= −ESHOpOpMaxTimeDwnOpclose NnNNππππ  (3.19) 

)1)(()( )n,(n _HDSelf ≠∧>∧∧∧= −ESHOpOpMaxTimeDwnOp NnNNππππ  (3.20) 

where nD is a protective device, nH is a hypothesis of the protective device’s operation 

sequence, πOp is the operation possibility, πDwn is the downstream possibility, πTime is the 

time-satisfaction possibility, NMax_Op is the maximum number of times that the device is 

set to operate, NOp is the number of times the device operated according to the hypothesis 

nH. NS-E is the number of subevents, ∧ is the minimum operator. 

After calculating these three possibility values, the possibility value of a protective 

device is calculated using (3.21) and (3.22). 

),(),(),(),( Re HDSelfHDcloseHDLockHDFault nnnnnnnn ππππ ∨∨=  (3.21) 
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where πLock(nD,nH), πReclose(nD,nH), and πSelf(nD,nH) are calculated using (3.18)-(3.20), NH 

is the total number of hypotheses, ∨ is the maximum operator. 
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Based on the protective device’s possibility, line section’s possibility values are 

assigned using (3.23), where nD is the primary protective device of line section k. The 

details of this method are given in [70]. 

)( DFaultkections nππ =  (3.23) 

3.2.5 New Fuzzy Resolver 

For a fault, each of these three fault location methods assigns possibility values for all 

line sections of a feeder. Therefore, each line section of the feeder gets three possibility 

values as shown in Figure 3.9, AODIM, APS, and AFD, where AODIM is the output of the 

operated device identification method, APS is the output of the phase selector method, and 

AFD is the output of the fault distance method. The new developed fuzzy resolver will 

combine all three possibility values into one final possibility value. The sections with 

high possibility values are potential faulted sections. 

 

 
 

 

 

 

 

 

 

 

 

Figure 3.9
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3.3 PROBLEM FORMULATION OF THE FUZZY RESOLVER 

METHODOLOGY 

In order to design a fuzzy resolver, data representing many distribution systems are 

needed to generalize the parameters of the fuzzy resolver. Hence, data from several 

distribution feeders that can provide enough information to apply all three fault location 

methods is needed. These fault location methods need some information, such as the 

feeder’s topological data, the protective device’s placements and settings, and 

measurements at the substation. However, not all of this information was available to the 

author from the utilities. Therefore, no real data were used to design the fuzzy resolver. In 

this dissertation work, one distribution feeder was modeled to generate data. These data 

were not enough to generalize the parameters of the fuzzy resolver. Therefore, only the 

fuzzy resolver methodology is developed in this disseration. 

In the fuzzy resolver methodology, the performance of commonly used fuzzy 

aggregation operators were studied first. Then the candidate fuzzy aggregation operators 

used to design the fuzzy resolver were chosen based on the characteristics of the fault 

location problem. To take account of different accuracy of the three fault location 

methods, weights were assigned to all methods. In order to determine optimal weights, 

two objectives were proposed. After that, an optimization method was selected. Weights 

of the three fault location methods were optimized based on two objective functions and 

using some training cases. The optimal weights were obtained with respect to a single 

objective function first. Then they were obtained with respect to two objective functions. 

The performance of these fuzzy resolvers was compared in terms of these two objective 

functions. After that, the performance of some good fuzzy resolvers were studied using 

the test cases. 
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3.3.1 Fuzzy Aggregation Problem 

In the new fault location scheme, there are three fault location methods. Each method 

uses a criterion. Based on each criterion, a line section is assigned a possibility value to 

indicate the possibility that the line section is involved in a fault. In order to improve the 

accuracy of the result, the fuzzy resolver combines all three methods’ output values to 

produce final possibility values for all sections. The methodology for designing the fuzzy 

resolver is to solve a fuzzy aggregation problem. Fuzzy aggregation operators are needed 

in the fuzzy resolver methodology. 

For each fault case, each method assigns a possibility value Aj(x) ∈ [0, 1] for each line 

section x to indicate the degree to which x may be involved in the fault. In the proposed 

methodology, the fuzzy resolver formulates the overall decision function D from the 

individual possibility values. For any alternative x, D(x) ∈ [0, 1] indicates the degree to 

which x satisfies three criteria. 

))(),(),(()( xAxAxAFxD FDPSODIM=  (3.24) 

The structure F should satisfy the following properties: 

Monotonicity property: with the individual possibility increasing, the overall 

possibility should increase; if Aj(x)≥Aj(y) for all j, then D(x)≥D(y). 

Symmetry property: F should be symmetric with respect to individual possibilities if 

three methods are equally important. In other words, the ordering of the individual 

possibility is irrelevant. F(AODIM(x),APS(x),AFD(x))=F(APS(x),AODIM(x),AFD(x)). 

All fuzzy aggregation operators introduced in Chapter II satisfy these two properties 

and can be used as the overall decision function D. Usually when people choose the 

aggregation operators, they make a choice based on their attitude to the problem. 

Pessimistic people use fuzzy intersections to aggregate possibility values to ensure all 

criteria are satisfied, while optimistic people use fuzzy unions to aggregate in order to 

satisfy at least one of the criteria. However, various possibility values may have different 
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accuracy levels due to the decision-making process, and this characteristic should be 

considered. 

In the decision-making process of each fault location method, the decision maker 

assigns a low possibility value to a line section when the decision maker is sure that the 

fault is not on the line section based on a criterion. In contrast, when the decision maker 

is uncertain that the fault is not on the line section, the decision maker assigns a high 

possibility value to the line section. By doing this, the actual fault location is not 

eliminated from the potential fault locations. Hence, high possibility values just mean the 

fault may be on the line section but is not necessarily on the line section. Therefore, high 

possibility values are less accurate than low possibility values. When choosing fuzzy 

aggregation operators for the fuzzy resolver, this characteristic should be considered. In 

the following paragraphs, the author will investigate commonly used aggregation 

operators introduced in Chapter II and choose appropriate aggregation operators for the 

fuzzy resolver. 

3.3.1.1 Study of Fuzzy Aggregation Operators 

All commonly used operators mentioned in Chapter II were investigated [92]. In the 

study, three arbitrary possibility values that might be assigned by three fault location 

approaches were aggregated using various aggregation operators. The aggregated 

possibility values and the aggregation results obtained using different operators are listed 

in Table 3.2. The description of the symbols used in Table 3.2 is explained in Table 3.3. 

From the numerical tests, various characteristics of the different operators were observed. 

T-norm operators (min, algebraic product) emphasize low possibility values. One low 

possibility value makes the final result low regardless of the other values. The min 

operator does not distinguish between situations such as (0.1,0.2,1) and (0.1,0.8,1). For 

both situations, the min operator assigns 0.1 as the final result. However, these two 

situations are different because under the first situation two criteria assign a low 

possibility to the candidate, while for the second situation only one criterion assigns a 

 



 51

low possibility value to the candidate. Intuitively, the second case should yield an 

aggregation possibility value larger than in the first case. Although the algebraic product 

gives different values for these two situations, it does not really distinguish between the 

situations. For these two situations, it assigns 0.02 and 0.08 as the final values for 

(0.1,0.2,1) and (0.1,0.8,1), respectively. These two results are less than the minimum 

value of the input possibility values. Hence, high possibility values have no substantial 

effect on the final value and high possibility values do not compensate low possibility 

values. Based on the property i(s1,…,sq)≤min(s1,…,sq) [63], it is known that all t-norm 

operators assign the aggregation possibility value equal to or less than the minimum 

value. Therefore, all of them lack the compensation property and cannot distinguish 

between situations such as these two either. In addition, the algebraic product sometimes 

gives a low possibility value when all criteria give high possibility values. For example, it 

assigns 0.343 for (0.7,0.7,0.7). 

T-conorm operators (max, algebraic sum) emphasize high possibility values. If one 

criterion gives a high possibility value, the final value is high and largely unaffected by 

other values. Similar to t-norms, t-conorms have the property u(s1 ,…,sq)≥max(s1,…,sq) 

[63], so that they cannot assign the aggregation possibility value less than the maximum 

value of the input possibility values. Hence, they also lack the compensation property and 

cannot distinguish between cases such as (0.1,0.2,1) and (0.1,0.8,1). In both cases, they 

assign the final value as 1. 

OWA operators can be a max-type operator or a min-type operator based on their 

parameters [65]. In the numerical study, the Orness of OWA1 is larger than 0.5 and is 

equal to 0.6965, which means OWA1 is closer to the max operator than to the min 

operator. It can be seen that its final results tends to high possibility values. OWA2 is 

closer to the min operator; its Orness is equal to 0.0775. The test results confirm the 

emphasis on low possibility values. As seen in Table 3.2, an advantage of OWA over 
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t-norms and t-conorms is that OWA operators can discern cases (0.1,0.2,1) and (0.1,0.8,1) 

due to their compensation property. 

The additive family of FIMICA assigns a large possibility value even when one 

criterion gives a low possibility value, such as (0.9,0.9,0.2). In the case (0.7,0.7,0.6), all 

possibility values are larger than the identity g (choosing g=0.5). Hence, as a full 

reinforcement operator, this family assigns an aggregation possibility value larger than 

0.7. For situations such as (0.9,0.9,0.2) and (0.7,0.7,0.6), the summation of (ai-g) with 

g=0.5 are equal, so that the operator should assign the same value to these two situations. 

Since a value larger than 0.7 is assigned to (0.7,0.7,0.6), the operator also assigns a 

possibility value larger than 0.7 to (0.9,0.9,0.2). Due to the choice of the function f1, 

FIMICA1 assigns 1.0 as the final results for both situations. The product family of 

FIMICA has a similar feature as the additive family, i.e., it assigns a large value when 

one criterion assigns a low possibility value. Since the product of (ai/g) is the same in 

both situations, the operator cannot distinguish between the situations (0.9,0.9,0.2) and 

(0.55,0.55,0.536). For (0.55,0.55,0.536), all input possibility values are larger than g=0.5. 

Hence, the family assigns a final value that is larger than 0.536 for the situation. Due to 

the same product of the two situations, the values assigned to these two situations are 

equal. Hence, it also assigns a value larger than 0.536 to (0.9,0.9,0.2). Due to the formula 

of the function f2, FIMICA2 assigns 0.648 as the final result for (0.9,0.9,0.2). The triple 

Π operator sometimes assigns a possibility value even though one of its inputs is a low 

possibility value. For the case (0.8,0.8,0.3), this operator assigns 0.873 as the final value, 

which is larger than both input values 0.8 and 0.3. Sometimes, another FIMICA operator 

from fuzzy model theory (FM2) assigns a large value when one criterion assigns a low 

possibility value. One example of this situation is (0.2,0.6,0.9). In this case, because 

∆=min(1-0.2,1-0.6,1-0.9)=0.1, Ω=min(0.2,0.6,0.9)=0.2 and ∆<Ω, FM2 gives 

max(0.2,0.6,0.9)=0.9 as the final result. 
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The type II uninorm assigns a large value as the final value even when one or two of 

the input values are small. For example, for the case (0.2,0.6,0.9), the type II uninorm 

assigns 0.9 as the aggregation possibility value. 

3.3.1.2 Choosing Fuzzy Aggregation Operators for the Fuzzy Resolver 

In the new fault location scheme, three methods are used to assign possibility values to 

each line section of a radial distribution system. With the assumption that each method is 

equally accurate, operators are chosen only based on the characteristics of the fault 

location methods, which means that low possibility values are more accurate than high 

possibility values. 

When t-norms aggregate several possibility values, they emphasize low possibility 

values. Hence, t-norms may be used for the aggregation in the new fault location scheme 

described earlier. Among all t-norms, the min operator is the best choice because all other 

t-norm operators produce an aggregation possibility value lower than the minimum value 

of the aggregated possibility values [63], which is not desirable. In addition, the algebraic 

product may assign a low possibility value when all individual possibility values are high, 

which means that when all criteria suggest it is possible that a fault occurred on a 

candidate, the aggregation result shows that it is quite possible that the fault did not occur 

on the candidate. Obviously, this is not reasonable, so the product operator does not fit 

our problem. Other commonly used t-norms have the same problem because their values 

are less than the value of the algebraic product [63]. This is not reasonable and they do 

not fit the fault location method either. The min operator is the only appropriate t-norm 

for the fault location method. 

T-conorms stress high possibility values and do not provide compensation between 

different criteria. Based on these two features, t-conorms are not effective for the new 

fault location scheme. 

There are several mean type operators that range between the min operator and the 

max operator. For this fault location scheme, the mean type operators close to the min 
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operator are more effective. In the commonly used mean type operators, both the simple 

mean operator and the median operator tend to be in the middle of the range. The OWA 

operator, with an appropriate set of weights, can stress low possibility values. Therefore, 

the OWA operator is a good choice for the fault location scheme. 

There are two types of uninorm operators, and they use different aggregation operators 

under the mixture situation. The type I uninorm (uninorm1) uses the min operator while 

uninorm2 uses the max operator. Hence, uninorm1 emphasizes low possibility values and 

it is effective for the new fault location scheme. Due to its emphasis on high possibility 

values, uninorm2 is not a good operator for the problem. 

As stated earlier, both the additive family and the product family of FIMICA 

sometimes assign a high possibility value as the aggregation possibility value when one 

criterion assigns a low possibility value. Since low possibility values are more accurate 

than high possibility values, the final result should not be too high. Therefore, these two 

operators are not good aggregation operators for the fault location scheme. Neither are 

the triple Π operator or FM2. 
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     T-NORMS T-CONORMS OWA FIMICA

A1 A2 A3 Min 
ALGEBRAIC 

PRODUCT 
MAX

ALGEBRAIC 

SUM 
OWA1 OWA2 UNINORM 1 UNINORM 2 FIMICA1 FIMICA2 TRIPLE Π FM2

0.1 0.2 1 0.1 0.02 1 1.000 0.643 0.123 0.100 1.000 0.300 0.080 1.000 1.000
0.1 0.8 1 0.1 0.08 1 1.000 0.787 0.203 0.100 1.000 0.900 0.320 1.000 1.000
0.7 0.7 0.7 0.7 0.343 0.7 0.973 0.700 0.700 0.973 0.973 1.000 1.000 0.927 0.700
0.7 0.7 0.6 0.6 0.294 0.7 0.964 0.682 0.614 0.964 0.964 1.000 1.000 0.891 0.700
0.9 0.9 0.2 0.2 0.162 0.9 0.992 0.771 0.301 0.200 0.900 1.000 0.648 0.953 0.900
0.55 0.55 0.536 0.54 0.162 0.55 0.906 0.547 0.538 0.906 0.906 0.636 0.648 0.633 0.550
0.8 0.8  0.3 0.3 0.192 0.8 0.972 0.708 0.372 0.300 0.800 0.900 0.768 0.873 0.800
0.2 0.6 0.9 0.2 0.108 0.9 0.968 0.700 0.261 0.200 0.900 0.700 0.432 0.771 0.900

 

 
TABLE 3.3 DESCRIPTION OF THE SYMBOLS USED IN TABLE 3.2 

SYMBOL DESCRIPTION 
A1,A2,A3 Three input possibility values, which represent the possibility values of a candidate assigned by three criteria

Min The minimum value of (a1,a2,a3) 
algebraic 
product 

a1×a2×a3

Max The maximum value of (a1,a2,a3) 
algebraic 

sum 
(a1+a2-a1×a2)+a3-(a1+a2-a1×a2)×a3
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 DSYMBOL ESCRIPTION 

OWA1 An OWA operator close to the max operator, where w1=0.577, w2=0.239, w3=0.184. 
Orness(OWA1)=1/2× (2×0.577+1×0.239+0×0.184)=0.6965. 

OWA2 An OWA operator close to the min operator, where w1=0.011, w2=0.133, w3=0.856. 
Orness(OWA2)=1/2×(2×0.011+1×0.133+0×0.856)=0.0775 

Uninorm1 Type I uninorm operator 
Uninorm2 Type II uninorm operator 

FIMICA1 

A member of the additive family of FIMICA. In order to keep the characteristics that when the satisfaction 
degrees to two criteria equal to g, the final result equals to the satisfaction degree to the other criterion. The 

defined the function, f1(⋅), as: 
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FIMICA2 

A member of the product family of FIMICA. Similar to FIMICA1, the function, f2(⋅), was defined as: 
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 DSYMBOL ESCRIPTION 

FM2 
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By investigating the commonly used aggregation operators, it was determined that the 

OWA operator that is close to the min operator is one of the best choices for the new fault 

location method. T-norms are also a good choice. Full reinforcement operators utilize the 

mutual reinforcement between the results of different criteria. Of the various full 

reinforcement operators, uninorm1 is a good operator for the fault location scheme. 

In summary, the min operator, the OWA operator and the uninorm1 operator were 

investigated. As shown in (2.11), the OWA operator uses parameters. 

3.3.2 Importance of Three Fault Location Methods 

In the previous section, the author chose fuzzy aggregation operators with the 

assumption that the three fault location methods are equally important. However, the 

three fault location methods use different algorithms, and their accuracy levels may be 

different. In order to take into account the different importance of various methods, 

weights are assigned to all methods. 

Fuzzy aggregation operators provide a way to associate the concept of weights or 

importance factors with the method’s outputs, and they can be used to aggregate 

weighted bags. A weighted bag [64] is a bag whose elements are tuples (wi, ai). For each 

tuple, wi is the weight associated with an argument, and ai is the value of the argument 

and represents the output of a fault location method. The process of aggregating weighted 

bags consists of two steps. The first step is a transformation step that converts a weighted 

bag into a single value called the effective value. The second step is to aggregate these 

effective values using fuzzy aggregation operators. In the following subsections, the 

author will discuss the factors influencing the accuracy of different methods and 

introduce the methods for incorporating weights in the chosen fuzzy aggregation 

operators. 
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3.3.2.1 Factors Influencing the Accuracy of Three Fault Location Methods 

In order to locate faults, the fault distance method calculates the fault distance by 

using the current and voltage phasors at the sending end of each line section. The fault 

distance method does not know the fault resistance and assumes that the fault resistance 

is zero. This assumption does not usually reflect the actual situation. The results of this 

method have some errors when the fault resistance is not equal to zero. In addition, there 

are errors and uncertainties in line parameters and in the process of estimating phasors. In 

the process of getting line currents, load currents during a fault are assumed to be the 

same as prefault load currents. However, prefault load currents can only approximate 

load currents during a fault, and there are some differences between them. All these 

errors and uncertainties affect the accuracy of the distance calculation of this method. 

The phase selector method determines the faulted phases based on the current increase. 

However, the fault resistance heavily affects the current increment during a fault. In 

addition, healthy phases’ currents may also increase during a fault due to the mutual 

couplings between various phases, and some current increase is due to the load change. 

All these factors make it difficult to determine the threshold of the current increment that 

indicates a fault. If the threshold is too low, the current increase due to the load change or 

the mutual coupling may be considered as a fault; if the threshold is too high, the current 

increase due to a high impedance fault may be considered as a normal case. 

The operated device identification method compares the current waveform measured 

at the substation with various protective devices’ TCC curves and settings to find out the 

operated protective device. In order to get the correct result, the currents through various 

protective devices need to be estimated. There are errors in the process of estimating 

these currents and of matching the current waveform with the protective devices’ TCC 

curves. In addition, there are errors in the measured data. These errors affect the accuracy 

of this method. Therefore, different factors impact the accuracy levels of various fault 

location methods. The three methods may have different accuracy levels. In order to 
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consider the different accuracy levels, the fuzzy resolver assigns weights to all three 

methods. 

3.3.2.2 Fuzzy Resolver Considering Weights of Three Fault Location Methods 

When weights are associated with each fault location method, the fuzzy resolver 

evaluates the overall decision function D from the individual weighted bags [66]. The 

overall decision function D given in (3.24) becomes (3.25), where <Aj(x),wj> is a 

weighted bag, Aj(x) is the output of the jth fault location method, wj is the weight assigned 

to the method. Aj(x)∈[0,1], wj∈[0,1]. 

)),(,),(,),(()( ><><><= FDFDPSPSODIMODIM wxAwxAwxAFxD  (3.25) 

Fuzzy aggregation operators used as the overall decision function D first transform the 

weighted bag <Aj(x),wj> to an effective value Bj(x) ∈[0,1]. Then, they aggregate these 

effective values using (3.26). 

))(),(),(()( xBxBxBFxD FDPSODIM=  (3.26) 

The overall decision function should have the monotonicity property and symmetry 

property with respect to individual effective values Bj(x), rather than individual 

possibility values Aj(x). 

The methods for transforming a weight bag to an effective value for the chosen 

aggregation operators are discussed in the following sections. 

3.3.2.2.1 Including Importance of Fault Location Methods in the Min Operator 

For the min operator, low possibility values play a more significant role in the 

aggregation result than high possibility values. If a fault location method has low 

accuracy (importance), its output plays a trivial role in the final decision. Therefore, its 

output should become a large effective value. If a method has high accuracy (importance), 

its output plays a significant role in the final decision. Therefore, its output should be 

transformed into a small effective value. In [71], two commonly used methods for 
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including the importance of the fault location methods in the min operator were 

introduced. The first method is shown in (3.27), and the second method is shown in 

(3.28). 

awwa +−= )1('  (3.27) 

waa ='  (3.28) 

where a is the output of a fault location method, w is the weight to represent the accuracy 

(importance) of the method. 

These two transformation methods are similar. When the accuracy of a fault location 

method is 0, which means the fault location method gives no useful information in its 

output, the two transformation methods transform its output, a, to 1. The transformed 

value, 1, does not affect the aggregation result of the min operator at all. When the 

accuracy of a fault location method is 1, which means the method is 100% sure that its 

output is correct, the two transformation methods will keep the method’s output, a, as the 

effective value. The difference between these two methods is that when the output of a 

fault location method is 0, the first method transforms the value to 1-w while the second 

one keeps the value as 0. 

3.3.2.2.2 Including Importance of Fault Location Methods in the OWA Operator 

The OWA operator has different aggregation behavior based on its parameters W , as 

given in (2.11), which is a set of parameters associated with the OWA operator and 

different from the importance factor w. It can behave as a max-type operator, or a 

min-type operator. Based on the fuzzy modeling concept and the transformation methods 

used for the max operator and the min operator, Yager proposed a transformation method 

for the OWA operator [71]. The method is shown as (3.29). 

wawa +−−= )1)(1(' α  (3.29) 

where a is the output of a fault location method, w is the weight to represent the accuracy 
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(importance) of the method, α is the degree of “Orness” of the OWA operator. 

Yager suggested another possible transformation method for the OWA operator [65]. 

This is shown as (3.30). 

),max()1,max(' αα wawa ×−=  (3.30) 

3.3.2.2.3 Including Importance of Fault Location Methods in the Uninorm Operator 

In [66], Yager presented a transformation method for the uninorm operator. The 

method is shown as (3.31). 

gwwaa )1(' −+=  (3.31) 

where a is the output of a fault location method, w is the weight to represent the accuracy 

(importance) of the method, g is the identity of the uninorm operator. 

3.3.2.2.4 Observations and Summary 

These transformation methods have two common properties. The first one is that they 

monotonically increase with respect to the output of a fault location method, a. This 

property guarantees that a larger output a will cause a larger effective value a′. The 

second property is that when the weight, w, is equal to 1, the effective value, a′, is equal 

to a. 

To consider the different accuracy of three fault location methods, weights are 

assigned to these methods. However, these weights cannot be assigned arbitrarily, and the 

optimal weights need to be decided. In addition, one of the chosen aggregation operators, 

the OWA operator, has parameters W, which decides the behavior of the OWA operator. 

These parameters cannot be decided arbitrarily either. 

In the fuzzy resolver design methodology, to determine the optimal weights of three 

fault location methods and the optimal parameters of the OWA operator, an optimization 

technique is needed. The optimal weights and parameters are selected which maximize 
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two objective functions. For this work, the training data set is used to illustrate the 

process for determing the optimal weights. 

The objective of the first function is to maximize the number of fault cases whose 

actual faulted section has a possibility value equal or larger than a preset value. It is 

shown as (3.32) and (3.33). 
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where N is the number of total fault cases in the training set, Pfi is the actual faulted 

section’s possibility value of the ith fault case. p1 is a preset possibility value, Wm is the 

mth set of weights <wODIM, wPS, wFD>. 

The objective of the second function is to maximize the number of non-faulted line 

sections whose possibility value is less than another preset value. In order to determine 

these optimal values, optimization methods are needed. 
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where S is the number of total non-faulted line sections in the training set, Pnfk is the kth 

non-faulted section’s possibility value. p2 is a preset possibility value, Wn is the nth set of 

weights <wODIM, wPS, wFD>. 

3.3.3 Choice of Optimization Method 

Optimization methods fall into three classes: calculus-based methods, enumerative 

methods, and guided random search methods. Calculus-based methods find optimal 

solutions to a problem based on the gradient of objective functions. All calculus-based 

methods can be divided into two groups: indirect methods and direct methods. Since the 
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gradient of objective functions at local extrema equals to zero, indirect methods find local 

extrema by solving a set of nonlinear equations resulting from setting the gradient of 

objective functions equal to zero. Direct methods choose a starting point and calculate the 

gradient of objective functions at the point. The gradient is used to guide the search to a 

new point. Then the methods calculate the gradient of objective functions at the new 

point that guides the search to another new point. The process keeps going until the 

gradient of the new point approaches zero. The success of the methods is heavily 

dependent on both the choice of the starting point and the convexity of objective 

functions. If objective functions are not convex and the choice of the starting point is not 

appropriate, the methods may not find the optimal solution. Usually, calculus-based 

methods are suitable for objective functions that are differentiable and only have one 

extremum [72],[73]. 

Enumerative methods search every point around the search space, one point at a time. 

These methods are easily implemented. The optimal solutions are obtained by comparing 

the objective function’s values at all these points. However, these methods are good only 

when the search space is small. A significant computation burden may hinder the 

application of these techniques. For many applications, the search space is too large to 

use these methods. 

Guided random search methods are stochastic search methods. Genetic algorithms 

consist of the major part of these methods. Genetic algorithms model the natural 

evolution process such as selection, mutation, and competition to find optimal solutions 

[74]-[76]. Compared with calculus-based techniques, genetic algorithms do not need 

objective functions to be differentiable. Hence, their application range is much broader. 

Further, genetic algorithms are global optimization methods and can be used to solve 

objective functions with more than one extremum. 

The proposed objective functions shown in (3.32) and (3.34) are not differentiable. 

Hence, the calculus-based methods are not appropriate. The search space for the 
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importance factors is too large to use enumerative methods. Genetic algorithms fit the 

application due to their flexibility for expressing objective functions and ability to solve 

non-differentiable objective functions. Hence, genetic algorithms are used to determine 

the optimal weights and parameters. 

3.3.4 Simulation Data 

In order to design a fuzzy resolver, data representing many distribution systems are 

needed to generalize the parameters/weights of the fuzzy resolver. Hence, data from 

several distribution feeders that can provide enough information to apply all three fault 

location methods are needed. These fault location methods use information, such as the 

feeder’s topological data, the protective devices’ placements and settings, and 

measurements at the substation. However, not all of this information was available to this 

dissertation author from the utilities. Therefore, no real data were used to design the 

fuzzy resolver. Simulated data was a feasible alternative, and a distribution feeder was 

modeled. Transient fault cases were then simulated on the feeder to generate the 

necessary data. Then, the three fault location methods were executed for the simulated 

fault cases to determine possibility values for all line sections. Lastly, the outputs of three 

methods were used in investigating the fuzzy resolver design methodolgoy. 

The IEEE Power Engineering Society Distribution Subcommittee published several 

distribution feeders with their configurations, parameters, and power flow results [77]. 

These feeders and their results provide a benchmark to which network power flow 

program developers can compare their results and verify the correctness of their programs. 

Of all these feeders, the IEEE 34 node test feeder was chosen as the modeled feeder 

because it is an actual feeder, and its size is moderate. The published feeders do not 

include the protective devices. However, a distribution feeder with correctly coordinated 

protective devices is needed for simulating realistic data. The appropriate protective 

devices and their settings were chosen using the load flow and short circuit analysis 

studies. In addition, the protective devices were modeled and incorporated into the 
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feeder’s model. After modeling the IEEE 34 node test feeder, fault cases were simulated 

on this feeder. For each three-phase line section, ten types of faults were simulated. For 

each single-phase line section, only the phase to ground fault was simulated. For each 

type of fault at each line section, three fault resistance levels were used. 

3.4 CHAPTER SUMMARY 

In this chapter, the new fault location scheme and three fault location methods were 

introduced. To develop a fuzzy resolver methodology, fuzzy aggregation operators were 

investigated, and three fuzzy aggregation operators were chosen to implement the fuzzy 

resolver methodology. The three fault location methods may have different accuracy. 

Weights were assigned to all fault location methods to take account of their different 

accuracy levels. The fuzzy resolver methodology has to determine the optimal weights 

and parameters. In addition, the OWA operator has parameters, and these parameters also 

need to be optimized. In order to optimize weights and parameters, two objective 

functions were proposed, and optimization methods to obtain these optimal values were 

chosen. To develop the fuzzy resolver methodology, field data for several feeders that 

can provide enough information so that all three fault location methods can be applied 

were needed. Since the needed information was not available from the utilities, field data 

cannot be used, and a distribution feeder needs to be modeled to generate the data. One of 

the published feeders was chosen.
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CHAPTER IV 

SYSTEM MODELING AND SIMULATION 

4.1 INTRODUCTION 

In the new fault location scheme developed in the Power System Automation Lab, 

there are three fault location methods. Each locates a fault and assigns a possibility value 

to each line section of a distribution feeder. A fuzzy resolver is developed to aggregate 

the three methods’ outputs and assign a final possibility value for each line section. In 

order to design the fuzzy resolver, field data representing many distribution feeders are 

needed to generalize the parameters/weights of the fuzzy resolver. The fault location 

methods use data such as all line parameters, feeder’s topological data, protective device 

placements and setting, etc. Since this information was not available to the author from 

the utilities, field data were not used to design the fuzzy resolver. A feasible choice was 

to model a feeder with coordinated protective devices and simulated various fault cases. 

The author modeled one of the IEEE distribution test feeders using SIMULINK and 

SimPowerSystems of MATLAB [78],[79]. Also appropriate time current characteristic 

(TCC) based protective devices were added to the model. 

Commonly used protective devices in distribution systems are fuses, reclosers, and 

circuit breakers [80]. Fuses are devices that will blow (i.e., open) within a specific time 

after a fault happens. In order to restore the power supply, repair crews need to replace 

the blown fuse. Reclosers and circuit breakers have the capability to trip and reclose a 

circuit during a fault. After a fault happens, they will trip to interrupt the fault. After 

several seconds, they can reclose and try to restore the power supply. If it is temporary, 

the fault is gone during outage time, and the power supply is restored when the protective 

device recloses. By using protective devices with the reclosing capability, outage time is 

reduced and the reliability of distribution systems is improved. However, reclosers and 

circuit breakers are more expensive than fuses. 
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4.2 MODELING THE IEEE 34 NODE TEST FEEDER WITH PROTECTIVE 

DEVICES 

4.2.1 34 Node Test Feeder Model 

The IEEE Power System Society distribution subcommittee published several 

distribution test feeders with their configurations, parameters, and power flow results [77]. 

These feeders and their results provide a benchmark to which network power flow 

program developers can compare their results and verify the correctness of their programs. 

The IEEE 34 node test feeder was modeled for this work because it is based on a real 

feeder, and its size is moderate. The configurations and parameters of these published 

feeders were downloaded from the website at http://ewh.ieee.org/soc/pes/dsacom/ 

testfeeders.html. A figure of this feeder is shown as Figure 4.1; the feeder parameters that 

were used in this work are listed in Appendix A. 
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Figure 4.1 IEEE 34 node test feeder 
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4.2.2 Component Models 

The feeder was modeled using SIMULINK and SimPowerSystems of MATLAB 

[78],[79]. The voltage level of the substation is 24.9 kV, and the capacity of the 

substation transformer is 2500 kVA. In the IEEE 34 node test feeder, there are 32 line 

segments, five different overhead line configurations, two transformers, two shunt 

capacitor banks, two voltage regulators, six spot loads, and nineteen distributed loads. 

The models developed for these components are described in the following sections. 

4.2.2.1 Shunt Capacitor Models 

The three-phase parallel RLC model was used to model the shunt capacitors given in 

Appendix A.6. The values of these capacitors were calculated as (4.1), where Q is each 

phase’s rated kVar, ω=120π, and U is the rated phase to ground voltage. The Q values 

used are given in Appendix A.6. 

)/( 2UQC ω=  (4.1) 

4.2.2.2 Transformer Models 

There were two transformers in this feeder. One was at the substation, and the other 

was within the feeder. The one at the substation was modeled as the internal impedance 

of an infinite voltage source. The source’s internal voltage was equal to 1.05 multiple of 

the substation transformer’s secondary side voltage, which is given in Appendix A.3 and 

equal to 24.9 kV. The internal impedance of the source was set equal to the transformer’s 

impedance, which was 0.01+j0.08 pu. The 3-phase infinite voltage source model was 

used to model the feeder source. The in-line transformer within the feeder was a two 

winding transformer. The three-phase two winding transformer model was used to model 

it. The primary side voltage and secondary side voltage are given in Appendix A.3. One 

half of the transformer impedance, 0.95+j2.04 pu, was put at the primary side, and the 

other half was put at the secondary side. 
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4.2.2.3 Voltage Regulator Models 

There were two regulators in the feeder, which are used to step up voltages. However, 

SimPowerSystems does not have a regulator component model in its library. Therefore, 

the regulators were implemented using three single-phase wye connected linear 

transformers. The primary side voltages were set equal to the regulator’s input voltages, 

while the secondary side voltages were set equal to the regulator’s output voltages. The 

input and output voltages of the regulators were utilized from Kersting’s load flow result 

at http://ewh.ieee.org/soc/pes/dsacom/testfeeders.html and given in Appendix A.9. Other 

parameters were chosen so that the series impedance of these single-phase transformers 

was close to zero, while the magnetization resistance and reactance were very large. To 

achieve this purpose, the power of these transformers was set to 100kVA; the series 

resistance and reactance of these single-phase transformers were set to 10-6pu; the 

magnetization resistance and reactance were set to 5000pu. 

4.2.2.4 Line Models 

Since the feeder has short line segments, the lumped pi model was used to model all 

line segments. 

4.2.2.4.1 Three-phase Line Models 

For three-phase lines, the three-phase transmission line pi section was used to model 

most of the lines. For this model, the positive sequence and zero sequence of line 

segments were needed. The sequence transformation mentioned as shown in (4.2)-(4.4) 

[81] was used to obtain the positive and zero sequence impedances and shunt capacitance. 

The line impedances and shunt capacitances are given in Appendix A.8. The obtained 

positive and zero sequence impedances and shunt capacitance were used as the 

parameters of the three-phase transmission line pi section. When a line is connected to a 

protective device, the three-phase transmission line pi section cannot be used to model it 

due to numerical oscillation. The reason is that when the protective device is closed, there 
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are two capacitors in parallel through a small resistance (typically 0.01 ohm) if the 

three-phase transmission line pi section was used to model lines connecting the protective 

device, so the two states (capacitors’ voltages) are almost the same. If they are exactly the 

same, it is impossible to formulate state equations in SimPowerSystems. For the situation 

where a low resistance connects two pi models, it is possible to formulate state equations 

but this situation will lead to numerical oscillations in the currents passing through the 

protective device. For this situation, the author developed a different model, the 

three-phase T-line. A figure of the three-phase T-line model is shown as Figure 4.2. This 

model uses the same parameters as the three-phase transmission line pi section, which is 

the sequence impedance and shunt capacitance of a line segment. 
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An example is used to illustrate how parameters for a T-line model as shown in Figure 

4.2 were calculated.For a line section with the length of l miles, its per mile sequence 

impedance is [z1, z0], and its per mile sequence admittance is [y1, y0], where 1 represents 

the positive sequence and 0 represents the zero sequence. The parameters in Figure 4.2 

are calculated using (4.5)-(4.15), where imag(.) is the imaginary part of a number, sinh(.) 

is a hyperbolic sine function, tanh(.) is hyperbolic tangent function, and ω=120π. 
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Figure 4.2 Three-phase T-line 
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][ ms ZZZ =  (4.11) 

ω/)_( 1shyimagC1 =  (4.12) 

ω/)_( 0shyimagC0 =  (4.13) 

1p CC =  (4.14) 

CCC3C ))/( 0101n C−××=  (4.15) 

4.2.2.4.2 Single-phase Line Models 

The pi section model was used to implement single-phase lines. In order to overcome 

the numerical oscillation problem mentioned in 4.2.2.1, the author developed the 

single-phase T-line model for a line that connects a protective device. The inside of the 

single-phase T-line model is shown as Figure 4.3. Its parameters are the same as the pi 

section model, and these parameters are given in Appendix A.8. For a line section with 

the length of l miles, its per mile impedance is z, and its per mile admittance is y. Z in 

Figure 4.3 is computed by zl, and C in Figure 4.3 is computed by yl/ω, where ω=120π. 

 

 

 
Figure 4.3 Single-phase T-line 
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4.2.2.5 Load Models 

There were two kinds of was the spot load, and the 

other was the distributed load. Spot loads were put at the nodes where loads were 

connected. Distributed loads were modeled using the exact lumped load model shown in 

Figure 4.4 [67]. That is, 2/3 of a distributed load was put at 1/4 the length of the line, and 

/3 ut at the end of the line. This exact lumped line 

mo

 

 loads in the feeder model. One 

the other 1  of the distributed load was p

del will give correct computation results for the voltage drop and the power loss down 

the line [67]. The series RLC load model in SimPowerSystems was used as the building 

block to model all loads. This model uses the voltage magnitude, active power, and 

reactive power as the parameters. 

For both spot loads and distributed loads, there were three types: constant impedance 

loads, constant power loads, and constant current loads. In the following sections, the 

author will discuss the parameter calculations used for constant impedance loads, 

constant power loads, and constant current loads, respectively. 

 

 

 

 
 

l=length of a line 
Figure 4.4 Exact lumped load model 

 

 

 

4.2.2.5.1 Constant Impedance Loads 

The series RLC load model in SimPowerSystems was used to model constant 

impedance loads. For constant impedance loads, the nominal voltage was set as the 
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system rated voltage. For wye connected loads, the rated line to ground voltage was 24.9 

kV/sqrt(3)=14.38 kV for loads connected upstream of the primary side of the in-line 

transformer, and 4.16 kV/sqrt(3)=2.4 kV for loads connected downstream of the 

secondary side of the in-line transformer. For delta connected loads, the rated phase to 

ph

ues are given in Appendix A.4 and Appendix A.5. 

 1.0×24.9/sqrt(3) =14.38 kV. The active power and reactive 

po

specified values given in Appendix A.4 and 

Appendix A.5 under steady state. 

ase voltage was 24.9 kV for loads connected upstream of the primary side of the in-line 

transformer and 4.16 kV for loads connected downstream of the secondary side of the 

in-line transformer. The power val

4.2.2.5.2 Constant Power Loads 

In SimPowerSystems, there is no constant power load model. Therefore, this type of 

load was also developed using the series RLC load. Since this model was a constant 

impedance model, its parameters were modified for constant power loads. The power 

values of constant power loads specified in the IEEE 34 node test feeder are under the 

system rated voltage. Since the constant impedance load model was used to model a 

constant power load, to keep the power value as the specified value under the steady state 

condition, the voltage should be equal to the steady state voltage values of the nodes 

where the constant power load was connected. For example, there was a constant power 

load connected at node 860 in the IEEE 34 node test feeder, and the three-phase load was 

wye connected. For each phase, the active power and reactive power were given as 20 

kW and 16 kVar, respectively. Using Kersting’s load flow results [93], it was found that 

the phase A voltage at node 860 was 1.0305 pu. When calculating phase A load values 

for a wye connected three phase load, the voltage was modified to 1.0305×24.9/sqrt(3)= 

14.8145 kV, rather than

wer were still set as 20 kW and 16 kVar. 

This modeling method does not really implement a constant power load. It only 

guaranteed the load’s power was equal to the 
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4.2.2.5.3 Constant Current Loads 

The constant current load was also developed using the series RLC load with modified 

parameters. The voltage was modified as the constant power load; that is, the steady state 

voltage values gotten from Kersting’s load flow results were used as the input voltage for 

constant current loads. In addition, the power value of a constant current load also needs 

to be modified in order to keep currents as the specified value under steady state. Since 

the

fied to 9×1.0303=9.2727 kW, and the reactive power was modified to 

7×

4.2.2.6 Protective Device Selection 

It is very common to install a fuse at each lateral while a recloser or a circuit breaker 

with reclosing relays is put at the main feeder in order to reduce the number and duration 

of service interruptions due to temporary faults [78]. Based on the protection scheme 

discussed in [78], the author put a recloser at the substation to protect the main feeder, 

and put fuses at all laterals. The protection scheme is shown as Figure 4.5. 

Load flow and short circuit analysis studies were implemented using software named 

WindMil [94] to select the appropriate ratings and settings for the protective devices. The 

calculated maximum load currents, minimum fault currents that are obtained when a 

 current magnitude should be kept at the specified value, the power value was set 

proportional to the voltage. An example is used to demonstrate how these parameters 

were modified. A constant current load connected at node 840 was wye connected. The 

steady state voltage value of phase A was 1.0303. When calculating the voltage value in 

the load model, the phase A nominal voltage was 1.0303×24.9/sqrt(3)=14.8116 kV. The 

active power and reactive power of the load were 9 kW and 7 kVar, respectively. To keep 

currents as the specified values under steady state condition, the active power was 

modi

1.0303=7.2121 kVar. 

This modeling method does not really implement constant current loads. It only 

guaranteed the load’s current was set equal to the specified value given in Appendix A.4 

and Appendix A.5 under steady state. 
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single phase fa lt currents of 

selected line segments are shown in Table 4.1. Based on these load currents and fault 

currents, protective devices were chosen [95]. For fuses, their rating must be equal to or 

]. The chosen protective devices are listed in Table 

4.2

Figure 4.5 IEEE 34 node test feeder with added protective devices 

 

 

ult with 40 Ω fault resistance occurs, and maximum fau

greater than the maximum load [83

. 

After the chosen protective devices were put into the feeder model, coordination 

studies were performed using WindMil to ensure that these chosen protective devices 

were coordinated correctly. Coordination between different protective devices is 

necessary to reduce the outage area during faults in a distribution feeder. 
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4.2.2.7 Protective Device Models 

There is only one switc del in S werS s (i.e e circuit breaker model) 

and it operates at a specified time or is rolled  ext signal. However, in the 

au

TABLE 4.1 LOADS AND FAULT CURRENTS FOR SELECTED LINE SEGMENTS 

Start End Max. Load Current Min. Fault Current Max. Fault Current 

h mo imPo ystem ., th

 cont  by an ernal 

thor’s protective device scheme, the feeder was protected by several correctly 

coordinated protective devices that operate according to their TCC curves. The control 

logic was implemented for these protective devices to compute their operational status 

based on their TCC curves. The settings for the devices are given in Appendix A.10. 

 

 

Node Node (A) (A) (A) 
800 802 51.80 48 719 
808 810 1.22 229 527 
816 822 12.91 119 335 
824 826 3.10 161 313 
854 856 0.31 129 273 
832 888 11.71 48 223 
858 864 0.14 123 218 
834 842 16.37 118 212 
836 862 2.08 117 207 

 

 

Start Node End Node Type Rating

TABLE 4.2 CHOSEN PROTECTIVE DEVICES 

800 802 Recloser 50H 
808 810 Fuse 2T 
816 822 Fuse 15T 
824 826 Fuse 5QA 
854 856 Fuse 1T 
832 888 Fuse 12T 
858 864 Fuse 1T 
834 842 Fuse 20K 
836 862 Fuse 3T 

 



 79

The structure of the protective device model is shown as Figure 4.6. The control logic 

determines the open time of a protective device according to its TCC curve and sends the 

open signal to the switch that opens the circuit. If the protective device is a reclosing 

device, the operation logic also sends the reclosing signal to the switch when the 

reclosing time is reached. This protective device model was connected in series within 

the feeder model. In the figure, Iin is a current flowing in the model. To simulate 

TCC-based protective devices, the control logic to determine the control signal status is 

the key element. In the feeder model, fuses and three-phase reclosers were used as 

protective devices. In the following sections, the author will introduce the control logic 

developed for fuses and reclosers, respectively. 

 

 

 

Figure 4.6 Structure of a protective device 

 

 

 

4.2.2.7.1 Control Logic of Fuses 

The structure of the control logic developed for fuses is shown in Figure 4.7. It 

consists of six blocks: filter, A/D converter, magnitude/angle computation, comparator, 

RMS calculation, and control signal determination. For each type of protective device, all 

blocks are the same except the control signal determination block. 
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Figure 4.7 Structure of the control logic block of fuses 

 

 

Current signals first go through an anti-alias filter to avoid aliasing. The cutoff 

frequency of the filter was specified as less than half of the sample rate of the A/D 

converter. Then the A/D converter digitizes the filtered signals at the user-specified 

sam

Figure 

4.8. This output has two functions. First, it is multiplied by the input current signal so that 

 

pling rate. 

After that, the magnitude/angle computation block performs a DFT (Discrete Fourier 

Transform) on the digital signal. It estimates the fundamental frequency (60Hz) 

component’s magnitude and phase angle of the current. The input to the comparator 

block is the fundamental frequency component’s magnitude. This block compares the 

magnitude with the pickup value of a protective device. If the magnitude is larger than 

the pickup value, the block outputs a value of one; otherwise, it outputs a value of zero. 

For example, in the situation where a fuse is the primary protective device and a recloser 

is its secondary device, if a fault is located downstream of the fuse, the recloser will trip 

once (this number is specified according to the setting of the recloser) and then the fuse 

will burn. In such a situation, the block outputs a rectangle waveform as shown in 
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if the fundamental frequency component’s magnitude of the current is larger than the 

protective device’s pickup value, it is passed to the RMS calculation block. Otherwise, a 

value of zero is passed to the RMS calculation block. Second, the output itself is one of 

the inputs of the RMS calculation block serving as an indicator. 

 

 

 

Figure 4.8 Output of the comparator 

 

 

 

it should reset the calculation. If a fault happens, the block will find a step up change in 

As shown in Figure 4.7, the RMS calculation block has two inputs: one is the product 

of the current signal (SIMULINK signal) and the output of the comparator, and the other 

is the comparator’s output. The second input is the indicator that informs the block when 

the indicator and at every time step calculate the fault RMS current value and the time 

duration, whi a protective 

device clears the fault, the block will notic  step down change in the indicator and 

continuously calculate the RMS current valu e duration, which is from 

the

reclose if the device is a reclosing 

device. The outputs of this block are the RMS current value and the time duration. 

he control signal determination block is implemented by S-functions (a powerful 

echanism provided by SIMULINK), which is “a computer language description of a 

IMULINK block” [82]. It is used to simulate the control logic determination process of 

ch is from the fault occurrence time to the present time. If 

e the

e (zero) and the tim

 fault clearing time to the present time. The time is the protective device’s open time 

and is used to determine when the device needs to 

T

m

S
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fuses. This block has two inputs: one is the RMS current value and the other one is the 

me duration during which the RMS current value is calculated. 

The flowchart of the block is shown in Figure 4.9. The control signal status is checked 

first. If the control signal status is zero, it means that the block did not send an open 

signal t e open 

decision function, which determines if the switch should open by comparing the fault 

time duration with the operating time of a specific fuse’s TCC curve at the fault current. 

The comparison method is shown in Figure 4.10. If the fault duration is larger than the 

he control signal status to one to 

inf

n time increases one time step, 

an

ti

o the switch box at a previous time step, and the program will call th

operating time, the open decision function will set t

orm the switch to open. Otherwise the function will set the control signal status to zero, 

and the switch remains closed. Then the simulation time increases one time step, and 

another loop begins. If the control signal status is one, it means this determination block 

has already sent an open signal to the switch at a previous time step. Since fuses are 

non-reclosing devices, no action is required. The simulatio

d another loop begins. 

Begin

Control signal
status = 0

Perform open
decision function

Yes

time=0

time=time+time
step

No

Read Input

 

Figure 4.9 Flowchart of the control signal determination block of fuses 
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The above paragraphs described how to model a single-phase fuse. For a three-phase 

line, three single-phase fuses were used to protect it. 

 

 

 

 

 

 

 

Figure 4.10 Illustration of the comparison between fault duration and operating time 

 

 

 

.2.2.7.2 Control Logic of Three-phase Reclosers 

The structure of the control logic of three-phase reclosers is shown in Figure 4.11. The 

rst five blocks--filter, A/D converter, magnitude/angle computation, comparator, and 

MS calculation--are the same as the control logic of fuses. The only different block is 

e control signal determination block. In the following paragraph, the control signal 

etermination block of three-phase reclosers is discussed. 

The block has six inputs. They are the RMS current values for three phases and the 

time duration chart of the 

block is shown in Figure 4.12. First the program checks if the control signal status is zero. 

If the control signal status is zero, it means that the logic did not send a signal to open the 

switch at a previous step. Then the open decision function is called to determine if the 

switch should open according to the RMS current values, time durations, and the 

recloser’s TCC curve. The open decision function is very similar to the open decision 
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function of fuses. However, this function checks the RMS currents and time durations of 

all three phases. If any of these time durations is larger than the recloser’s operating time, 

the open decision function will set the control signal status to one to instruct the switch to 

open. Otherwise the function will set the control signal status to zero, and the switch will 

remain closed. If the control signal status is one, the circuit open status will be checked. 

The control signal status and circuit open status are different. The control signal status 

determines if the open decision function sent an open signal to the switch to open it at a 

previous time step. Since the switch model in SimPowerSystems opens at the zero 

crossing point of the current, the control signal status equal to one does not mean that the 

switch has already opened. The circuit open status is used to determine if the switch 

opened, and it will not be set to one until the RMS currents through the switch is equal to 

zero. 
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Figure 4.11 Structure of the control logic block of three-phase reclosers 
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Figure 4.12 Flowchart of the control signal determination block of three-phase reclosers 

 

 

quence. 

If the circuit open status is equal to zero, the program will check the RMS currents 

through the switch to see if the switch opened. If the switch did not open, the simulation 

time increases one time step, and a new loop begins. If the switch opened, the circuit 

open status will be set to one, and the number of operations will increase by one. The 

number of operations is used to determine if a recloser has finished its operation se
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TABLE 4.3 CO SE VOLTAGES MPARISON OF NODE PHA

V(pu/degree) V(pu/degree, IEEE) Error (%) 
A      B C A  B C A B C 

Mag. Ang.   Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang.    
800  1.0497 0.00 1.0497 -120.00 1.0497 120.00 1.0500 0.00 1.0500 -120.00 1.0500 120.00 0.032 0.032 0.032
802   1.0476 -0.05 1.0483 -120.06 1.0483 119.95 1.0475 -0.05 1.0484 -120.07 1.0484 119.95 0.007 0.012 0.012
806    1.0462 -0.09 1.0469 -120.11 1.0476 119.92 1.0457 -0.08 1.0474 -120.11 1.0474 119.92 0.047 0.049 0.017
808  1.0149 -0.8 1.0274 -120.91 1.0274 119.31 1.0136 -0.75 1.0296 -120.95 1.0289 119.30 0.127 0.213 0.058
810   1.0274 -120.91     1.0294 -120.95    0.194  
812  0.9 807  -1.67 1.0058 -121.84 1.0079 118.61 0.9763 -1.57 1.0100 -121.92 1.0069 118.59 0.247 0.412 0.102
814 1 10.9495 -2.4 0.9885 -122.59 0.9912 18.04 0.9467 -2.26 0.9945 -122.7 0.9893 18.01 0.296 0.608 0.195
850  1.0204 -2.4 1.0198 -122.59 1.0218 118.04 1.0176 -2.26 1.0255 -122.7 1.0203 118.01 0.348 0.560 0.151
816    1.0204 -2.41 1.0198 -122.6 1.0218 118.03 1.0172 -2.26 1.0253 -122.71 1.0200 118.01 0.319 0.609 0.180
818 1.0 981  -2.41     1.0163 -2.27     0.340   
820 0.9961 -2.47        0.9962 -2.32   0.010  
822 0.9926 -2.47     0.9895 -2.33     0.386   
824 1.0114 -2.53 1.0093 -122.81 1.0135 117.79 1.0082 -2.37 1.0158 -122.94 1.0116 117.76 0.387 0.638 0.187
826   1.0093 -122.81 2.94    0.618      1.0156 -12
828 1.0107 -2.54 1.0128 117.77 1.0 95 1.0109 117.75 8 0.1881.0086 -122.83 074 -2.38 1.0151 -122. 0.398 0.63
830 0.9933 117.27 0.9938 1 32 -2.82 0.9912 123.25- 0.9961 0.9894 -2.63 .9982 -123.0 39 17.25 0.39 0.6986 0.2
854 0.992 26 1 34 1 0.4 0.7286 -2.83 0.9905 -123. 0.9954 17.26 0.989 -2.64 0.9978 -123.40 0.99 17.24 37 0.202
852 2 9 1 7 0. .90 90.96 7 -3.35 0.9592 -124.02 0. 662 116.36 0.9581 -3.11 0.9680 -124. 8 0.963 116.33 554 0 5 0.25
832 1 0 1 6 0. .88 51.04 3 -3.35 1.0253 -124.02 1. 385 116.36 1.0359 -3.11 1.0345 -124. 8 1.03 116.33 523 0 8 0.24
858 9 0 2 8 0. .93 61.03 2 -3.41 1.0225 -124.11 1. 364 116.25 1.0336 -3.17 1.0322 -124. 8 1.033 116.22 545 0 6 0.25
834 6 0 3 3 0. .94 71.03 4 -3.48 1.0198 -124.22 1. 344 116.12 1.0309 -3.24 1.0295 -124. 9 1.031 116.09 538 0 7 0.29
842 6 0 0. .931.03 4 3.4- 9 1.0198 -124.23 1. 344 116.12 1.0309 -3.25 1.0294 -124.39 1.0313 116.09 538 0 7 0.297
844 6 0 4 1 0. .90 91.03 4 -3.51 1.0198 -124.25 1. 337 116.09 1.0307 -3.27 1.0291 -124. 2 1.031 116.06 558 0 8 0.24
846 6 0 4 3 0. .90 71.03 4 -3.55 1.0198 -124.30 1. 344 116.04 1.0309 -3.32 1.0291 -124. 6 1.031 116.01 538 0 8 0.29
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EE) %) V(pu/degree) V(pu/degree, IE Error (
A B C C A B  A B C 

g .  g.   Ma . Ang. Mag. Ang  Mag. Ang. Mag. Ang. Mag. Ang. Ma Ang.  
848 6 0 4 4 0. .90 71.03 4 -3.56 1.0198 -124.31 1. 344 116.03 1.0310 -3.32 1.0291 -124. 7 1.031 116.00 528 0 8 0.28
860 5 0 0. 0.9081.03 8 -3.48 1.019  8 -124.22 1. 337 116.12 1.0305 -3.24 1.0291 -124.39 1.0310 116.09 577 0.259
836 5 0 3 8 0. .93 81.03 8 -3.48 1.0191 -124.22 1. 337 116.12 1.0303 -3.23 1.0287 -124. 9 1.030 116.09 529 0 7 0.27
840 5 0 0. 0.9371.03 8 -3.48 1.019  1 -124.22 1. 337 116.12 1.0303 -3.23 1.0287 -124.39 1.0308 116.09 529 0.278
862 5 19  1.033 1 -124.39 1.0308 0.52 0.937 0.2781.03 8 -3.48 1.0 1 -124.22 7 16.13 1.0303 -3.23 1.0287 116.09 9
838   1.0191 -124.22     -124.39  .918  1.0285   0
864 9 0.  1.03 2 -3.41     1.0336 -3.17     545  
888 4 0 7 0 0. .90 11.00 7 -4.87 0.9893 -125.56 1. 030 114.82 0.9996 -4.64 0.9983 -125. 3 1.000 114.82 507 0 5 0.30
890 3 9 7 7 0. .49 00.92 9 -5.64 0.9097 -126.37 0. 235 114.00 0.9167 -5.19 0.9235 -126. 8 0.917 113.98 831 1 0 0.63
856   0.9905 -123.27     0.9977 -123.4  .71  1   0 8
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TABLE 4.4 CO PARISO  OF LINE SEGMENT CURRENTS 

Current (A/degree) Cur nt (A/degree, IEEE) Error (%) 
A B C A B C B C  A From To 

Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang.    
800 802 52.10 -13.18 43.77 -127.67 41.37 118.01 51.56 -12.74 44.57 -127.70 40.92 117.37 1.047  1.795 1.100 
802 806 52.11 -13.23 43.78   -127.73 41.38 117.95 51.58 -12.80 44.57 -127.76 40.93 117.31 1.028 1.772 1.100 
806 808 52.12 -13.26 41.68   -126.78 39.70 119.16 51.59 -12.83 42.47 -126.83 39.24 118.52 1.027 1.860 1.172 
808 812 52.24    -13.85 40.59 -127.04 39.70 118.35 51.76 -13.47 41.30 -127.10 39.28 117.76 0.927 1.719 1.069 
808 810   1.21  -144.57     1.22 -144.62    0.574  
812 814 52.38 -14.53 40.66 -127.93 39.71 117.43 51.95 -14.18 41.29 -127.99 39.33 116.90 0.828  1.526 0.966 
814 850 52.49 -15 04.  40.71 -128.63 39.72 116.72 52.10 -14.73 41.29 -128.69 39.37 116.23 0.749 1.405 0.889 

 



 

TABLE 4.4 CONTINUED 

 Current (A/degree) Current (A/degree, IEEE) Error (%) 
A  B C    A  B C A B CFrom To 

Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang. Mag. Ang.    
850 816 48.81 -15 03.  39.46 -128.61 38.50 116.74 48.47 -14.73 40.04 -128.69 38.17 116.23 0.701 1.449 0.865 
816 818 13.01 -26.83     13.02 -26.69     0.077   
816 824 36.18 -10.82 39.47 -128.62 38.50 116.73 35.83 -10.42 40.04 -128.70 38.17 116.23 0.977 1.424 0.865 
818 820 13.02 -26.91     13.03 -26.77     0.077   
820 822 10.59 -29.13     10.62 -28.98     0.282   
824 826   3.08 -148.79     3.10 -148.92    0.774  
824 828 36.20 -11.08 36.40 -127.29 38.37 116.73 35.87 -10.70 36.93 -127.39 38.05 116.25 0.920 1.435 0.841 
828 830 36.20 -11.11 36.40 -127.31 38.09 116.91 35.87 -10.72 36.93 -127.41 37.77 116.42 0.920 1.435 0.847 
830 854 34.52 -10.34 35.71 -127.37 36.78 116.72 34.22 -9.97 36.19 -127.47 36.49 116.26 0.877 1.326 0.795 
854 852 34.52 -10.35 35.44 -127.62 36.78 116.71 34.23 -9.99 35.93 -127.72 36.49 116.25 0.847 1.364 0.795 
854 856   0.30 -98.55     0.31 -98.70    1.677  
852 832 34.60 -11.31 35.49 -128.55 36.79 115.81 34.35 -11.00 35.90 -128.66 36.52 115.41 0.728 1.142 0.739 
832 Xfrm 11.77 -32.64 11.64 -152.91 11.66 87.77 11.68 -32.29 11.70 -152.73 11.61 87.39 0.771 0.513 0.431 
832 858 21.45 0.24 23.09 -116.51 24.54 128.74 21.31 0.47 23.40 -116.89 24.34 128.36 0.657 1.325 0.822 
858 834 20.86 0.80 22.84 -116.01 24.21 128.86 20.73 1.01 23.13 -116.39 24.02 128.48 0.627 1.254 0.791 
858 864 0.14 -23.05     0.14 -22.82     2.643   
834 860 11.22 -43.21 8.90 -154.38 10.67 100.24 11.16 -43.05 9.09 -154.82 10.60 99.34 0.538 2.101 0.660 
834 842 14.83 34.42 16.14 -95.50 15.17 151.12 14.75 34.68 16.30 -95.63 15.12 151.05 0.542 0.982 0.331 
842 844 14.83 34.41 16.13 -95.51 15.17 151.11 14.74 34.67 16.30 -95.64 15.12 151.03 0.611 1.043 0.331 
844 846 9.88 78.61 9.29 -63.73 9.44 -170.61 9.83 78.88 9.40 -63.87 9.40 -170.67 0.539 1.128 0.426 
846 848 9.82 78.56 9.30 -52.42 9.82 -161.87 9.76 78.80 9.40 -52.54 9.78 -161.93 0.645 1.074 0.409 
860 836 4.18 -30.33 5.79 -154.00 3.61 92.76 4.16 -30.19 5.96 -154.63 3.60 90.25 0.505 2.819 0.250 
836 840 1.50 -20.34 2.19 -149.92 1.71 72.94 1.50 -20.01 2.33 -151.97 1.75 68.00 0.133 5.966 2.514 
836 862   2.07 -149.22     2.09 -149.38    0.957  89
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 T

 Current (A/degree) 

TABLE 4.4 CON INUED 

Current (A/degree, IEEE) Error (%) 
A B C   A B C A B CFrom To 

Mag. Ang. Mag. Ang. Mag. Ang. A Mag.  Mag. ng. Ang. Mag. Ang.   
862 838   2.07 -149.34    2.09  0.861  -149.50    
888 890 70.27 -32.59 69.50 -152.86 69.60 87.82 3 70.04 0.771 69.90 - 2.29 -152.73 69.50 87.39 0.529 0.144 
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4.4 DETERMINATION OF FAULT RESISTANCES 

For a three-phase line segment, ten types of faults were simulated. They are phase A to 

ground, phase B to ground, phase C to ground, phase A to B, phase B to C, phase C to A, 

phase A to B to ground, phase B to C to ground, phase C to A to ground, and 3 phase 

faults. For a single-phase line segment, only phase to ground faults were simulated. 

Three different fault resistances were used in the simulation process. For each type of 

fault at each line segment, three fault resistances were used: low resistance, middle 

resistance, and high resistance. The low resistance was chosen as 10-6 Ω. The middle 

resistance and high resistance varied with line segments. To determine the middle 

resistance and high resistance, for each type of fault, some fault cases with different fault 

resistance were simulated for a short time at line segments. Then, the fault cases whose 

fault currents were between 35-65% of that of the low resistance fault were consid red as 

middle resistance faults;  between 5-15% of that 

of the low resistance fault were considered as high resistance faults. A curve showing the 

different resistances for a particular line segment is illustrated in Figure 4.13. The fault 

resistance levels used for each line segm

e

 the fault cases whose fault currents were

ent are shown in Table 4.5. 
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TABLE 4.5 FAULT RESISTANCE LEVELS AT LINE SEGMENTS 

From To Low (Ω) Middle (Ω) High (Ω) 
800 802 10-6 40 200 
802 806 10-6 40 200 
806 808 10-6 40 200 
808 810 10 50 300 -6

808 812 10-6 50 300 
812 814 10-6 50 400 
814 850 10-6 50 400 
816 818 10-6 80 500 
816 824 -610 60 500 
818 820 10-6 90 600 
820 822 10-6 110 800 
824 826 10 80 500 -6

824 828 10-6 70 500 
828 830 10-6 70 500 
830 854 10 70 500 -6

Low resistance fault

Middle resistance fault 

High resistance fault 
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TABLE 4.5 CONTINUED 

From To Low (Ω) Middle (Ω) High (Ω) 
832 858 10 90 650 -6

834 860 10-6 90 650 
834 842 10-6 90 750 
836 840 10-6 90 650 
836 862 10-6 95 850 
842 844 10-6 90 750 
844 846 10 90 750 -6

846 848 90 750 10-6

850 816 10 60 500 -6

852 832 10-6 70 500 
854 856 10-6 80 600 
854 852 10-6 70 500 
858 864 10-6 120 900 
858 834 10-6 90 650 
860 836 10-6 90 650 
862 838 10-6 90 900 
888 890 10-6* 5* 40* 

* The resistance is at the secondary side of the in-line transformer. 

4.5 SIMULATED FAULT CASES 

After modeling the IEEE 34 node test feeder, 508 fault cases were simulated on the 

feeder. These 508 fault cases represent different fault types at different line sections, and 

include low impedance, middle impedance, and high impedance faults. Of 508 fault cases, 

172 cases were randomly selected as the training cases. The training cases were used to 

obtain the optimal weights and parameters in the fuzzy resolver methodology. The 

remaining 336 cases were used as the test cases, which were used to study the 

pe

4.5.1 Performance of Three Fault Location Methods on Simulated Fault Cases 

rformance of some designed fuzzy resolvers. 

After simulating these fault cases, the three fault location methods were used to assign 

possibility values for all fault cases. Based on these possibility values, the performance of 

the three fault location methods on the simulated fault cases was observed. 
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First, we want to know if a fault location method assigns the largest possibility value 

to the actual faulted section. Table 4.6 shows the percentage of fault cases whose actual 

faulted section is assigned the largest possibility value with using different fault location 

methods for different categories of fault resistances. 

 

 
TABLE 4.6 PERCENTAGE OF FAULT CASES WHOSE ACTUAL FAULTED SECTION HAS THE LARGEST 

POSSIBILITY VALUE 

 Low Resistance Middle Resistance High Resistance 
Phase Selector 100% 100% 100% 
Fault Distance 100% 100% 100% 

ODIM 100% 100% 100% 

 

line sections an identical possibility value for some fault cases. For these specific cases, 

 

method did not provide any useful information to reduce the number of potential faulted 

line sections ted all lin s as potential faulted sections.

also want to k e non-faulted 

section has a different possibility value from the actual faulted section. The percentage of 

fau all section ot have identi ibility values ferent 

categories of fault resistances is shown as Table 4.7. 

Even though the fault location methods did not give all line sections the identical 

ossibility value, each fault location method might identify several line sections as 

potential faulted se aulted section and 

the oth r section ectio e 

possibility value as the actual  section. When the three fault location methods were 

onsidered together, the number of non-faulted sections that have the same possibility 

 

Due to the limitation of fault location methods, some fault location methods gave all 

the actual faulted section obtained the largest possibility value but the fault location

 and it trea e section  Therefore, we 

now the percentage of the 508 fault cases where at least on

lt cases where s do n cal poss for dif

p

ctions. However, only one section was the actual f

e s were non-faulted (healthy) s ns that had been assigned the sam

 faulted

c
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values as the actual faulted sections may reduce. For example, there were three sections: 

the

 sections from the actual faulted section, there is no 

way that a fuzzy resolver can distinguish them. The number of total non-faulted sections 

and non-distinguishable sections in the training cases and test cases is listed in Table 4.8. 

 

 
TABLE 4.7 PERCENTAGE OF FAULT CASES WHERE AT LEAST ONE NON-FAULTED SECTION HAS 

DIFFERENT POSSIBILITY VALUE FROM THE ACTUAL FAULTED SECTION 

 Bolted Fault Middle Impedance High Impedance 

 first one was the actual faulted section; the others were non-faulted sections. The fault 

distance method assigned them possibility values [1 1 0]. The phase selector method and 

operated device identification method assigned them possibility values [0.95 0.4 0.95] 

and [0.92 0.92 0.6], respectively. Each of the three methods gave one non-faulted section 

the same possibility value as the actual faulted section. If we consider the three fault 

location methods together, the three sections obtained group possibility values (1 0.95 

0.92), (1 0.4 0.92), and (0 0.95 0.6), respectively. Therefore, no non-faulted section had 

the same group possibility values as the actual faulted section. However, even when three 

fault location methods were considered together, some non-faulted sections might still 

have the same group possibility values as the actual faulted section, which are called 

non-distinguishable sections hereafter. Since all three fault location methods cannot 

distinguish these non-distinguishable

Phase Selector 100% 100% 100% 
Fault Distance 100% 0% 0% 

ODIM 100% 100% 32.94% 

 

 
TABLE 4.8 NUMBER OF NON-DISTINGUISHABLE SECTIONS 

 # of total non-faulted sections # of non-distinguishable sections 
Training case 5504 1983 

Test cases 10752 4196 

 

 



 96

4.6 CHAPTER SUMMARY 

In this chapter, the m

system , and 

ices used in this feeder were presented. These devices were 

sel

odel of components in the IEEE 34 node test feeder and the 

 model were introduced. The general protective device model was presented

the appropriate protective dev

ected based on load flow and short circuit analysis studies. The steady state results of 

the modeled system were compared with the IEEE published results. The error of node 

voltages was less than 1.5%, with most less than 1.0%, and the error of most line currents 

was less than 2.5%. Ten types of faults were simulated at each three-phase line segment, 

while a phase to ground fault was simulated at each single-phase line segment. For each 

type of fault at each line segment, three fault resistance levels were used: high resistance, 

middle resistance, and low resistance. The values of these resistances vary with each line 

segment. The method used to determine these resistance values was also discussed. The 

chosen resistance values were listed.
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CHAPTER V 

LOGY FOR DESIGNING A FUZZY RESOLVER 

5.1

t its 

be

In order to obtain optimal weights and parameters, genetic algorithms were chosen as 

the optimization method, and two objective functions were proposed. The first objective 

function was to m

1

2

 the author first 

objective function is 

dis

METHODO

 INTRODUCTION 

In the new fault location scheme discussed in section 3.2.1, there is a fuzzy resolver 

that is used to combine the three fault location methods’ outputs to produce the final 

possibility value for each line section of a distribution feeder. The methodology for 

designing a fuzzy resolver is to solve a fuzzy aggregation problem, and fuzzy aggregation 

operators are used to design fuzzy resolvers. After investigating fuzzy aggregation 

operators in Chapter III, three fuzzy aggregation operators, the min, OWA, and uninorm 

operators, were chosen as candidates to design fuzzy resovlers. In order to consider the 

different accuracy of the three fault location methods, weights need to be assigned to 

these fault location methods. In addition, the OWA operator has parameters that affec

havior, and these parameters need to be determined. However, these weights and 

parameters cannot be determined arbitrarily and they need to be optimized. 

aximize the number of fault cases whose actual faulted sections have 

possibility values equal to or larger than a preset possibility value p , which was shown in 

(3.32); the other was to maximize the number of non-faulted line sections whose 

possibility values are less than a preset possibility value p , which was shown in (3.34). 

In this chapter, introduces genetic algorithms. After that, the 

methodology for designing fuzzy resolvers with respect to a single 

cussed. GA-based multi-objective optimization methods are reviewed and evaluated. 

The methodology for designing fuzzy resolvers with respect to two objective functions 

together is also presented. 
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5.2 GENETIC ALGORITHMS (GA) 

As random search based optimization methods, genetic algorithms mimic biological 

evolution in nature [74]-[76],[85]. In the very beginning, many potential individuals are 

generated randomly to form the first g neration, and these individuals are called 

5.2.1 Overview 

e

chromosomes. Crossover and mutation operators are used on these selected individuals to 

create the intermediate generation. Objective functions are evaluated at the individuals of 

the intermediate generation, and objective values are obtained. Based on these objective 

s are assigned to each individual. The selection probabilities of these 

ind

introduced. 

5.2.2 Fitness Assignment 

values, fitness value

ividuals are calculated based on their fitness values. Then, individuals are selected 

based on their selection probabilities to form the next generation. This process continues 

until some criteria are met, or the number of generations is reached to a preset value. 

In the following sections, the commonly used operations for genetic algorithms such 

as the fitness assignment, selection, crossover, and mutation, are 

There are two ways to assign fitness values, the value-based method and rank-based 

method [85]. The value-based method obtains fitness values by using the average of all 

individuals’ objective values to normalize each individual’s objective value. For example, 

there are n individuals, and their objective values are a1,…,an. The average of these 

objective values is 
a
af i

i = . ( ) nan+K . The fitness value of the ith individual is aa += 1

Ba

values are not calculated based on objective values directly. Objective values are ranked 

sed on these fitness values, selection probabilities are calculated. 

This value-based method is straightforward. However, the individuals having a large 

objective value have too many duplicates in the next generation, which causes the search 

to narrow down too quickly so that it is possible not to find the actual optimal points 

[74],[85]. The rank-based method overcomes this shortcoming. In this method, fitness 
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first. Then, fitness values are calculated based on these ranks. The linear ranking fitness 

assignment is commonly used. It is shown in (5.1), where SP is the selective pressure, 

which represents the probability of the best individuals being selected compared to the 

average probability of selection of all individuals, Nind is the number of individuals in the 

population, pos is the rank of an individuals in this population, the least fit individual has 

pos=1, and the fittest individual has pos=Nind. 

1N
1pos1SP2SP2posFitness

ind −
−

×−×+−= )()(  (5.1) 

5.2.3 Selection 

After fitness values are obtained, selection probabilities are calculated based on (5.2), 

where pi is the selection possibility of the ith individual, fi is the fitness value of the ith 

individual. Based on these selection probabilities, individuals are selected. There are 

three commonly used selection methods, the Roulette wheel selection, the stochastic 

universal sampling, and the tournament selection [74],[75],[85]. 

( )n

i
i ff

f
p

++
=

K1

 

In the Roulette wheel selection [74],[85], individuals are mapped to contiguous 

segments of a wheel based on their selection probabilities. A pointer points to the wheel. 

Then the wheel is spun repeatedly. Each time the individual pointed by the pointer is 

chosen. From the description, it is known that the Roulette wheel selection is a stochastic 

selection with replacement. 

Another selection method is the stochastic universal sampling [74]. In this method, the 

mapping method is exactly the same as the Roulette wheel selection. The difference is 

that equally spaced poin

(5.2) 

ters are placed over the wheel. The number of pointers is equal to 

the number of individuals to be selected. For example, there are n individuals to be 

selected. Then n equally spaced pointers are placed over the wheel. The wheel is spun 
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once to pick up n individuals. The stochastic universal sampling method selects offspring 

that is closer to what is deserved than the Roulette wheel selection method [85]. 

The last commonly used selection method is tournament selection [74],[75],[85], 

which chooses individuals based on their objective values directly. In this method, the 

individuals are randomly selected to form a tour and the best individual of the tour is 

selected. The number of tours is determined by the number of individuals to be chosen. 

The size of a tour ranges from 2 to the number of individuals in the population. 

5.2.4 Crossover 

ssover methods, there are the single-point crossover, the multi-point 

crossover, and the uniform crossover [74],[75],[85]. In all crossover methods, a pair of 

individuals is chosen randomly, and all individuals are coded as binary numbers. There is 

a crossover probability, pc. For each crossover operation, a random number within [0,1] is 

generated. If the number is less than pc, the crossover operation is executed. Otherwise, it 

is not implemented. In the single-point crossover, a position is selected uniformly at 

random. The two individuals exchange part of their bits at this point. This process is 

shown in Figure 5.1. In this figure, there are two individuals x=110101001 and 

y=101100011 and position 3 is chosen to implement the crossover operation. These two 

individuals exchange their bits between positions 4 to 9. Therefore, two offspring 

x’=110100011 and y’=101101001 emerge. In this method, the probability of two bits 

being separated is different based on thei or example, for an L length 

binary number, the first two bits only have 1/(L-1) probability of being separated during 

the single-point crossover. However, the irst bit and the last bit have (L-1)/(L-1) 

probability of being disrupted. This makes the positions of bits important in the 

sin

As for cro

r relative positions. F

f

gle-point crossover. 

The multiple-point crossover is similar to the single-point crossover. However, in this 

operation, several positions, let us say m, are randomly selected without duplicates. The 

multiple-point crossover overcomes the problem of the single-point, that is, the positions 
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of bits influence the probability of two bits of being separated, to some extent. A 

three-point crossover is shown in Figure 5.2. In this figure, positions 1, 3, and 7, are 

chosen to implement the crossover operation. The single-point crossover operations 

implements three times at these positions. First the crossover is implemented at position 1. 

After that, two new individuals x1=101100011 and y1=110101001 emerge. Then the 

crossover is implemented on x1 and y1 at position 3. After that, two new individuals 

x2=101101001 and y2=110100011 emerge. Last the crossover is implemented on x2 and 

y2 at position 7. Two offspring x’=101101001 and y’=110100011 emerge. 

 

 

 

Figure 5.1 Single-point crossover 

 

 

 

However, probabilities of separating two bits still depend on their positions and are 

not constant. To overcome this problem completely, the uniform crossover was 

developed. Uniform crossover generalizes the multi-point crossover idea and makes each 

point to be a potential crossover point. In this method, a mask is used. The mask has the 
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same length as the individuals and is created randomly. The parity of the mask’s bits 

indicates which parent will supply the offspring. If one of the mask’s bits is 1, it means 

this bit of the offspring is from parent 1. If it is 0, the bit of the offspring is from parent 2. 

The other offspring is created using the inverse of the mask. An example is shown in 

Figure 5.3. There are two 9-bit individuals x=011100110 (parent 1) and y=101011001 

(parent 2). The mask that is randomly created is m1=011000110. Based on this mask, the 

first bit of the first offspring comes from parent 2, and it is 1. The second bit of the first 

offspring comes from parent 1, and it is 1. Repeating this process, the first offspring is 

x’=111011111. The inverse of the mask, m2, is 00111001. The other offspring y’ 

corresponding to m2 is 001100000. Hence, the two offspring are 111011111 and 

001100000. 

 

 

 

 

Figure 5.2 Three-point crossover 
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utation 

Compared with the crossover operation, the mutation operation is very simple. There 

is a mutation probability, p . For each bit of an individual, a random number within [0,1] 

bits of an individual needs to be mutated, the bit is inversed [74],[75],[85]. For example, 

if the first bit of an individual needs to be mutated, and the value of the bit is 1, after the 

mutation the first bit of the individual becomes 0. 

5.3 METHODOLOGY FOR DESIGNING A FUZZY RESOLVER WITH 

RESPECT TO A SINGLE OBJECTIVE FUNCTION 

The author proposed two objective functions for designing a fuzzy resolver. The min, 

OWA, and uninorm operators were used to design fuzzy resolvers. For the min and OWA 

operators, two transformation methods mentioned in (3.27)-(3.31) were used to design 

Figure 5.3 Uniform crossover 

 

 

 

5.2.5 M

m

is generated. If the random number is less than pm, the bit should be mutated. If any of the 
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fuzzy resolvers. In this section, a methodology for designing a fuzzy resolver with respect 

to a single objective function is discussed. 

5.3.1 Methodology for Obtaining Optimal Weights and Parameters 

 

optim

the min operator, (3.27) and (3.28) were used. For the OWA operator, (3.29) 

and (3.30) were used. For the uninorm operator, (3.31) was used. After that, a fuzzy 

aggregation operator introduced in 2.2.7: the min operator, OWA operator, or uninorm 

operator, was used to aggregate these effective values to produce aggregation possibility 

values of all line sections for all fault cases. After aggregation possibility values were 

obtained, an objective value, either (3.32) or (3.34), was evaluated. After the objective 

values of all chromosomes were obtained, these objective values were ranked. The fitness 

value of each chromosome was assigned using (5.1), and its selection probability was 

In the design process, 172 simulated fault cases were randomly chosen as the training 

set. For each fault case, the three fault location methods were executed individually. Each 

method assigned possibility values for all line sections. These possibility values were 

used as the input data for a fuzzy resolver, and a genetic algorithm was used to obtain

al weights for the three fault location methods and optimal parameters for the OWA 

operator. The process for obtaining these optimal weights and parameters was the same 

for all three fuzzy aggregation operators and all transformation methods. The only 

difference was that the representation of a chromosome for the OWA operator was 

different from the representation of a chromosome for the min and uninorm operators. 

The process for obtaining these optimal values is shown in Figure 5.4 and introduced 

below. 

First, 200 chromosomes were generated randomly to represent the weights of the three 

fault location methods and the parameters of the OWA operator, and they composed the 

population of the first generation. Each chromosome in the first generation was used in a 

transformation method mentioned in (3.27)-(3.31) to transform three fault location 

methods’ outputs (possibility values of all line sections for all fault cases) into effective 

values. For 
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calculated as (5.2). Based on their selection probabilities, some chromosomes were 

hosen using the stochastic universal sampling approach introduced in 5.2.3. 

In this paragraph, an example is used to illustrate the method to choose two 

hromosomes from five chromosomes. These five chromosomes have selection 

robabilities 0.2, 0.12, 0.24, 0.36, 0.8. Using the stochastic universal sampling approach, 

e chromosomes would be mapped to contiguous segments of a wheel as shown in 

igure 5.5. Two equally spaced pointers point to the wheel. The wheel is spun once. The 

o pointed chromosomes, which have selection probabilities 0.12 and 0.36, are chosen. 

The uniform crossover and the mutation operations introduced in section 5.2 were 

plemented over the chosen chromosomes to generate the second generation. In the 

rossover operation, the chosen chromosomes randomly formed pairs. For each pair, a 

ndom number was generated. If the random number was less than pc, the crossover 

etween this pair needed to be implemented. For each bit of the first mask m1, a random 

umber was generated. If the number was less than 0.5, the bit was equal to 1. Otherwise 

 was equal to 0. The second mask m2 was the inverse of m1. In the mutation operation, 

r each bit of a chromosome, a random number was generated. If the number was less 

an pm, the bit was mutated. Otherwise it was not mutated. The same process was used 

 produce the third generation from the second generation. This process continued for 

00 generations, and the optimal chromosomes were obtained. In the following sections, 

e representation of a chromosome for different fuzzy aggregation operators is 

troduced.
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 5.4 Process for obtaining optimal weights and parameters 
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5.3.1.1 Representation of a Chromosome 

 

0.12

0.20

0.24

0.36

0.08

Figure 5.5 Stochastic universal sampling approach 

 

 

 

The min operator and uninorm operator do not have parameters. For these operators, 

only weights of the three fault location methods need to be optimized. These weights are 

real numbers within [0,1]. In this methodology, each weight was represented as an 8-bit 

integer in a chromosome. Each chromosome had 24 bits. In order to represent these 

weights as 8-bit integers, the formula in (5.3) was used, where w was a weight of a fault 

location method, and Int was the integer that was used in a chromosome to represent the 

weight of the fault location method. With using the 8-bit integer, the accuracy of the 

quantization was 001960
12

1
2
1

8 .
)(

=
−

× . To produce a chromosome, three random 

numbers were generated to represent the weights of the three fault location methods w1, 

w2, and w3. Then these random numbers were convert  

integers were used in a chromosome. For example, if three random numbers, 0.252, 0.768, 

and 0.589 were generated to represent w

ed to integers using (5.3). These

inary numbers that constitute a chromosome. The chromosome for this example is 

shown as Figure 5.6. 

1, w2, and w3. Based on (5.3), they were 

converted to three integers, 64, 196, and 150. These three integers were represented as 

b
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))(( w12roundInt 8 ×−=  (5.3) 

 

 

 

Figure 5.6 Representation of a chromosome for the min and uninorm operator 

 the first two parameters of the OWA operator W1 and W2. If W1+ 

W2≤1, W3 was computed as 1-W1-W2; if W1+ W2>1, another two random numbers were 

ample, if three random numbers, 0.252, 

0.7

 

 

 

For the OWA operator, there are three parameters in addition to the weights of the 

three fault location methods. Therefore, a chromosome represents the three weights and 

three parameters. The three parameters are W1, W2, and W3 as was discussed in (2.11). 

These weights and parameters are real numbers within [0,1], and the sum of the three 

parameters should be equal to 1. These weights and parameters were converted to 

integers using (5.3), and each of them has 8 bits. Therefore, a chromosome has 64 bits. 

To produce a chromosome, three random numbers were generated to represent the 

weights of the three fault location methods w1, w2, and w3 and two random numbers were 

generated to represent

generated for W1 and W2 until W1+ W2≤1. For ex

68, and 0.589 were generated to represent w1, w2, and w3, and two random numbers 

0.025 and 0.268 were generated to represent W1 and W2. W3=1-W1-W2=0.707. Based on 

(5.3), they were converted to three integers, 64, 196, 150, 6, 68, and 180. These six 

integers were represented as binary numbers that constitute a chromosome. The 

chromosome for this example is shown as Figure 5.7. 

 

 



 109

 

Figure 5.7 Representation of a chromosome for the OWA operator 

 

 

 

5.3.2 Optimal Weights with Respect to the First Objective Function 

In this section, the methodology for obtaining optimal weights for the min operator, 

WA operator, and uninorm operator with respect to the first objective function was 

intr se 

actual faulted se lue p1 and was 

represented as (3.32). After obtaining the op l 

nu er of non-faulted sections whose possibility values < p2 were evaluated at these 

optimal weights, where p ance of these 

w a sed. Va  studies were perform obtain al 

an e p . In these studies, three values were 

 p 0. 8, respe y, and thre es were for p2, 0.2, 0.3, 

re ly

5.3.2.1 Optimal Weights for

e ra  the opti eights of the three fault 

n ro  obtainin se optimal weights is the same as the process 

mation methods (3.27) and (3.28) were used to transform 

ethods’ outputs into effective values. The min operator was used to 

aggregate ef

m

O

oduced. The first objective function was to maximize the number of fault cases who

ction has a possibility value no less than a preset va

tima weights, the objective function and the 

mb

2 was a small possibility value. The perform

optimal eights w s discus rious ed to optim

weights d param ters using different values of 1

used for 1, 0.95, 9, and 0. ctivel e valu  used 

and 0.4, spective . 

 the Min Operator 

For th  min ope tor, only mal w location methods need 

to be fou d. The p cess for g the

introduced in 5.3.1. Transfor

three fault location m

fective values into aggregation possibility values. For the fitness assignment, 

the selective pressure SP=1.5. For the crossover operation, pc=0.65. For the mutation 

operation, p =0.05. 
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Fuzzy resolver 1 used the transformation method in (3.28). There were several weights 

that maximized the objective function but gave a different number of non-faulted sections 

whose possibility value < p2. 9 optimal weights are arbitrarily selected and listed in Table 

5.1, where w1 is the weight for the operated device identification method, w2 is the 

weight for the phase selector method, w3 is the weight for the fault distance method. 

fter obtaining these optimal weights, the objective function and the number of 

on-faulted sections whose possibility values < p2 were evaluated at these weights, where 

p2 i

 

 
BLE 5.1 IMAL W HTS OF THE MIN OPERATOR W CT TO T OBJE

FUNCTION AN METHOD 

ti h Nu f non-f  section se 
possibility value < p2

A

n

s equal to 0.2, 0.3, and 0.4. 

TA  OPT EIG ITH RESPE  THE FIRS CTIVE 

D USING THE FIRST TRANSFORMATION 

Op mal weig ts mber o aulted s who

w1 w2 w3

Objective value 1
p pp =0.2 2 2=0.3 2=0.4 

Optimal weights when p1  =0.95
0.1059 0.0078 0.0039 172 2819 2825 2834 
0.0431 0.0549 0.0000 172 2059 2059 2059 
0.0000 0.0235 0.0000 172 0 0 0 

Optimal weights when p1=0.9 
0.2392 0.0863 0.0588 172 2860 2881 2943 
0.1059 0.0745 0.0471 172 2819 2825 2834 
0.0000 0.1137 0.0000 172 0 0 0 

Optimal weights when p1=0.8 
0.5255 0.1569 0.0745 172 2997 3133 3217 
0.1451 0.2980 0.0941 172 2825 2910 2941 
0.0000 0.1020 0.0000 172 0 0 0 

 

 

Fuzzy resolver 2 used the transformation method in (3.27) to transform three fault 

location methods’ outputs to effective values and the min operator to aggregate these 

effective values. There were several weights that maximized the objective function but 
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gave the different number of non-faulted sections whose possibility value < p2. Optimal 

we

Number of non-faulted sections whose 

ights that gave an extreme number of non-faulted sections whose possibility value < p2 

are selected and listed in Table 5.2. After obtaining these optimal weights, the objective 

function and the number of non-faulted sections whose possibility values < p2 were 

evaluated at these weights, where p2 is equal to 0.2, 0.3, and 0.4. 

 

 
TABLE 5.2 OPTIMAL WEIGHTS OF THE MIN OPERATOR WITH RESPECT TO THE FIRST OBJECTIVE 

FUNCTION AND USING THE SECOND TRANSFORMATION METHOD 

Optimal weights possibility value < p2

w1 w2 w3

Objective value 1
p2=0.2 p2=0.3 p2=0.4 

Optimal weights when p =0.95 1

0.0980 0.0980 0.8000 172 1682 1682 1682 
0.0275 0.0431 0.0039 172 0 0 0 

Optimal weights when p =0.9 1

0.1961 0.2000 0.8000 172 1682 1682 1682 
0.2431 0.1333 0.0824 172 0 0 0 

Optimal weights when p1=0.8 
0.0000 0.1176 0.0000 172 0 0 0 
0.4980 0.4000 0.9804 172 1682 1682 1682 

 

 

Comparing the results in Table 5.1 and Table 5.2, the optimal weights using the first 

transformation method (3.28) had better performance than the optimal weights using the 

second transformation method (3.27) because the fuzzy resolver designed using the first 

transformation method made more non-faulted sections have a possibility value < p2. For 

example, when p1=0.95, fuzzy resolver 1 made 2819 non-faulted sections have a 

possibility value < 0.2, while fuzzy resolver 2 at most made 1682 non-faulted sections 

have a possibility value < 0.2. 
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5.3

For the OWA operator, in addition to the optimal weights of  

methods, the opt f the OWA operator need to be found. The process for 

obtaining these optimal weights is the sa

Transformation methods (3.2 orm the outputs of the three 

c in ti es OWA operator was used to aggregate 

e s g n il ues. the  assignment, the 

selective pressure SP=1.5. pc=0.65. For the mutation 

o .

d W at  the form me n (  

e g unctio ut gav a diffe nt 

 - s  whose possibility value < p2. 9 optimal weights are 

1 is the weight for the operated device 

identification method, w2 is the weight for the phase selector method, w3 is the weight for 

the fault dis d, W , W  are the parameters of the OW

After obtaining he number of 

non-faulted sections whose possibility values < p2 were evaluated  

p2 is equal to 0.2

zzy lver used transf ation thod in (3.29) to transf e

location methods’ outputs to operator to aggregate these 

e w er h maxi d the ctiv ctio t 

t r fa ec hos ssibil lue  O  

re b on d sec  whose ossibil  value 2 

o t ig se a d in le 5.4 er o ing  

optimal weights, the objectiv  non-faulted sections whose 

l e e ua he ghts, re p2 is equal to 0.2, 0.3, and 

.2.2 Optimal Weights for the OWA Operator 

 three fault location

imal parameters o

me as the process introduced in 5.3.1. 

9) and (3.30) were used to transf

fault lo ation methods to effec ve valu . The 

effectiv  value  into a gregatio  possib ity val For fitness

For the crossover operation, 

operati n, pm=0 05. 

Fuzzy resolver 3 use  the O A oper or and trans ation thod i 3.30).

There were sev ral wei hts that m e bjectaximiz d the o ive f n b e re

number of non faulted ections

arbitrarily selected and listed in Table 5.3, where w

tance metho 1 2, and W3 A operator. 

 these optimal weights, the objective function and t

 at these weights, where

, 0.3, and 0.4. 

Fu reso  4 the orm  me orm thr e fault 

 effective values and the OWA 

effectiv  values. There ere sev al weig ts that mize  obje e fun n bu

gave a differen  numbe of non- ulted s tions w e po ity va  < p2. ptimal

weights that gave an ext me num er of n -faulte tions  p ity  < p

and an ther op imal we ht are lected nd liste  Tab . Aft btain these

e function and the number of

possibi ity valu s < p2 w re eval ted at t se wei  whe

0.4. 
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TABLE 5.3 OPTIMAL WEIGHTS OF THE OWA OPERATOR WITH RESPECT TO THE FIRST OBJECTIVE 

Optimal weights sections whose 
possibility value < p

FUNCTION AND USING THE FIRST TRANSFORMATION METHOD 

Number of non-faulted 

2

w w w W W W p =0.2 p =0.3 p =0.41 2 3 1 2 3

Objective 
value 1 

2 2 2

Optimal weights when p1=0.95 
0.0000 0.0078 0.0000 0.0000 0.0000 1.0000 172 0 0 0 
1.0000 1.0000 0.9020 0.8824 0.1137 0.0039 172 550 552 559 
0.1020 0.0118 0.8000 0.0000 0.0039 0.9961 172 2819 2822 2834 

Optimal weights when p1=0.9 
0.0000 0.1137 0.0000 0.0000 0.0000 1.0000 172 0 0 0 
0.9961 0.9882 0.9098 0.7216 0.1294 0.1490 172 550 557 560 
0.2490 0.1098 0.9804 0.0000 0.0000 1.0000 172 2860 2888 2943 

Optimal weights when p1=0.8 
0.0000 0.0039 0.0000 0.0000 0.0000 1.0000 172 0 0 0 
0.9686 0.9451 0.8745 0.9098 0.0078 0.0824 172 550 552 557 
0.5294 0.2510 0.9020 0.0000 0.0039 0.9961 172 2997 3139 3235 

 

 
TABLE 5.4 OPTIMAL WEIGHTS OF THE OWA OPERATOR WITH RESPECT TO THE FIRST OBJECTIVE 

UNCTION AND SING THE ECOND RANSFORMATION ETHOD

Optimal weights sections whose 
possibility value < p

F U S T M  

Number of non-faulted 

2

w w w W W W p =0.2 p =0.3 p =0.41 2 3 1 2 3

Objective 
value 1 

2 2 2

Optimal weights when p1=0.95 
0.1098 0.0118 0.3922 0.0000 0.0039 0.9961 172 0 0 0 
0.9882 0.9961 0.9333 0.9137 0.0196 0.0667 172 550 552 557 
0.1137 0.0157 0.8902 0.0000 0.0078 0.9922 172 1682 1682 1682 

Optimal weights when p1=0.9 
0.1137 0.0196 0.1569 0.0039 0.0000 0.9961 172 0 0 0 
0.9647 0.9804 0.9137 0.9451 0.0039 0.0510 172 550 551 557 
0.2118 0.1255 0.8627 0.0039 0.0000 0.9961 172 1682 1682 1682 

Optimal weights when p1=0.8 
0.0980 0.0275 0.1961 0.0000 0.0078 0.9922 172 0 0 0 
0.9529 0.9765 0.8588 0.7765 0.0275 0.1961 172 550 553 560 
0.1098 0.0392 0.9804 0.0000 0.0078 0.9922 172 1682 1682 1682 
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Comparing the results in Table 5.3 and Table 5.4, the optimal weights using 

transformation method (3.30) had better performance than the optimal weights using 

transformation method (3.29) because it achieved the larger number of non-faulted 

sections whose possibility values < p2. For example, when p1=0.95, fuzzy resolver 3 

made 2819 non-faulted sections have a possibility value < 0.2, while fuzzy resolver 4 at 

ost made 1682 non-faulted sections have a possibility value < 0.2. 

5.3.2.3 

For the uninorm operator, only the o ult location methods 

need to be found. The process for obtaining these optimal weights is the same as the 

proce .3.1. T  three 

fault location methods’ outputs into effective values inorm or wa o 

e  v . For t ess ass , 

ti ure SP=1.5. For the crossover operation, pc=0 r the n 

operation, p

 5 e transfo ion method in (3.31) to transform three fault 

location m ou  e  opera  aggrega se 

at ma ed the ve func ut 

ave a different number of non-faulted sections whose possibility value < p2. 6 optimal 

eights are arbitrarily selected and listed in Table 5.5. After obtaining these optimal 

weights, the objective function and the number of non-faulted sections whose possibility 

values < p2 were evaluated at these weights, where p2 is equal to 0.2, 0.3, and 0.4. 

2

1

m

Optimal Weights for the Uninorm Operator 

ptimal weights of the three fa

ss introduced in 5 ransformation method (3.31) was used to transform

. The un  operat s used t

aggregat effective alues into aggregation possibility s value he fitn ignment

the selec ve press .65. Fo mutatio

m=0.05. 

Fuzzy resolver  used th rmat

ethods’ tputs to ffective values and the uninorm tor to te the

effective values. There were several weights th ximiz objecti tion b

g

w

In summary, when the optimal weights were obtained with respect to the first 

objective function, it was not guaranteed that these optimal weights gave the best 

performance on the number of non-faulted sections whose possibility value < p . For 

example, when p =0.95, fuzzy resolver 5 obtained some weights that made 2664 

non-faulted sections have a possibility value < 0.2, while there were some other weights 

that made 3255 non-faulted sections have a possibility value < 0.2. Based on results from 
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Table 5.1-Table 5.5, for the min operator and OWA operator, some weights were 

obtained that made the number of non-faulted sections whose possibility value < p2 equal 

to 0 because without the constraint of non-faulted section’s possibility values, the 

optimization program may find optimal weights that made all line sections have large 

possibility values. 

 

Number of non-faulted sections whose 

 
TABLE 5.5 OPTIMAL WEIGHTS OF THE UNINORM OPERATOR WITH RESPECT TO THE FIRST OBJECTIVE 

FUNCTION 

 

Optimal weights possibility value < p2

w1 w2 w3 p2=0.2 p2=0.3 p2=0.4 
Objective value 1

Optimal weights when p1=0.95 
0.9961 0.9608 0.7843 172 3255 3369 3469 
0.7608 0.7804 0.5961 172 2664 3294 3445 

Optimal weights when p1=0.9 
0.9137 0.6627 0.3216 172 2714 2822 3413 
0.7843 0.7451 0.7333 172 3214 3294 3441 

Optimal weights when p1=0.8 
0.9176 0.9451 0.5176 172 2714 3367 3469 
0.4980 0.4000 0.5020 172 1629 3138 3369 

 

 

5.3.3 Optimal Weights with Respect to the Second Objective Function 

In this section, the methodology for obtaining optimal weights for the min, OWA, and 

uninorm operators with respect to the second objective function was introduced. After 

obtaining these optimal weights, the objective function and the number of faulted 

sections whose possibility values ≥ p1 were evaluated at these optimal weights. The 

performance of these optimal weights was discussed. The second objective function was 

to maximize the number of non-faulted line sections whose possibility value is less than a 
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preset value p2 and was represented as (3.34). Various studies were performed to obtain 

optimal weights and parameters using different p1. In these studies, three values were 

sed for p2, 0.2, 0.3, and 0.4, respectively. 

5.3.3.1 We s for the Min Operator 

For the min op on methods need 

to be found. The process for obtaining these optimal weights is the same as the process 

introduced in 5.3.1. Transformation methods (3.27) 28) w d to  

three fault location methods’ he min operator was used to 

e  v o aggregation possibility s. For th ess assi nt, 

the selective pressure SP=1.5. For the crossover operation, pc=0.65. For the mutation 

, . 

 6  transfo n method in (3.28). All optimal weights that 

ed je nction a ve the different numbe faulted ns 

hose possibility value ≥ p1 are listed in Table 5.6. After obtaining these optimal weights, 

e objective function and the number of faulted sections whose possibility value ≥ p1 

w

Fuzzy resolv al weights that 

maxim e function and gave the d s 

wh e possib ty value p1 are listed in Table 5.7. A aining ptim

the objective function and th hose possibility value ≥ p1 

lu he ts, whe  equal to 0 .9, and 0

Comparing the results in the optimal weights using 

transforma th erforma s of the 

o  s whose lity value when p2 and 0.3 en 

2=0.2, transformation method (3.28) found three optimal weights while the 

transformation method (3.27) only found one optimal weights. In addition, two of the 

three optimal weights found using transformation method (3.28) made more faulted 

u

Optimal ight

erator, only the optimal weights of the three fault locati

 and (3. ere use transform

outputs into effective values. T

aggregat effective alues int  value e fitn gnme

operation  pm=0.05

Fuzzy resolver used the rmatio

maximiz  the ob ctive fu nd ga r of sectio

w

th

ere evaluated at these weights, where p1 is equal to 0.95, 0.9, and 0.8. 

er 7 used the transformation method in (3.27). All optim

ized the objectiv ifferent number of faulted section

os ili  ≥ fter obt  these o al weights, 

e number of faulted sections w

were eva ated at t se weigh re p1 is .95, 0 .8. 

 Table 5.6 and Table 5.7, 

tion me ods (3.28) and (3.27) had the same p nce in term

number f faulted ections possibi ≥ p1 =0.4 . Wh

p
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sections whose possibility value ≥ p1 than the optimal weight found using transformation 

method (3.27). 

 

 
TABLE 5.6 OPTIMAL WEIGHTS OF THE MIN OPERATOR WITH RESPECT TO THE SECOND OBJECTIVE 

FUNCTION AND USING THE FIRST TRANSFORMATION METHOD 

Optimal weights Number of faulted sections whose 
possibility value ≥ p1

w1 w2 w3

Objective value 2
p1=0.8 p1=0.9 p1=0.95 

Optimal weights when p =0.4 2

0.9176 1.0000 0.0824 3485 147 144 134 
0.9843 1.0000 0.6980 3485 147 144 133 

Optimal weights when p =0.3 2

0.9843 0.9725 0.1922 3369 147 144 133 
Optimal weights when p2=0.2 

0.9569 0.4824 0.5100 3255 154 145 135 
0.9608 0.8118 0.2400 3255 147 144 133 
0.9961 0.6667 0.5200 3255 149 144 134 

 

 
TABLE 5.7 OPTIMAL WEIGHTS OF THE MIN OPERATOR WITH RESPECT TO THE SECOND OBJECTIVE 

FUNCTION AND USING THE SECOND TRANSFORMATION METHOD 

Optimal we ections whose 
possibility value ≥ p

ights Number of faulted s
1

w1 w2 w
Objective value 2

p =0.8 5 3 1 p1=0.9 p1=0.9
Optimal weights when p2=0.4 

1.0000 1.0000 0.9725 3485 14 133 147 4 
0.9490 1.0000 0.8000 85 147 434 14  134 

Optimal weights when p2=0.3 
0.9961 0 9 144 133 0.9882 0.9 20 336  147 

Optimal weights when p2=0.2 
0.9922 3 5 144 133 0.9294 0.8 00 325  147 
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5.3

 effective values. The OWA operator was used to aggregate 

ffective values into aggregation possibility values. For the fitness assignment, the 

lective pressure SP=1.5. For the crossover operation, pc=0.65. For the mutation 

o m

Fuzzy resolver 8 used the transformation method in (3.30). All optim

maximized the  are listed in Ta t

weights, the objective function and the number of faulted sections

value ≥ p1 were evaluate at th o 0.95, 0.9 and 0.8. It is seen 

s  b ault tions h e possi ity valu  ≥ 

l

 

TABLE 5.8 OPTIMAL WEIGHTS OF THE OWA OPERATOR WITH RESPECT TO THE SECOND OBJECTIVE 

FUNCTION AND USING THE FIRST TRANSFORMATION METHOD 

value ≥ p1

.3.2 Optimal Weights for the OWA Operator 

For the OWA operator, in addition to the optimal weights of the three fault location 

methods, the optimal parameters of the OWA operator need to be found. The process for 

obtaining these optimal weights is the same as the process introduced in 5.3.1. 

Transformation methods (3.29) and (3.30) were used to transform three fault location 

methods’ outputs into

e

se

peration, p =0.05. 

al weights that 

er obtaining these optimal 

 whose possibility 

objective function ble 5.8. Af

ese weights, where p1 is equal t

that the e optimal weights made the num er of f ed sec av bil es

p1 equa  to 0. 

 

Optimal weights 
Number of faulted 

sections whose possibility 

w1 w2 w3 W1 W2 W3

Objective 
value 2 

p2=0.8 p2=0.9 p2=0.95
Optimal weights when p2=0.4 

0.4235 0.3020 0.1373 0.7216 0.1647 0.1137 5504 0 0 0 
Optimal weights when p2=0.3 

0.2235 0.0784 0.0431 0.7529 0.2196 0.0275 5504 0 0 0 
Optimal weights when p2=0.2 

0.1961 0.1490 0.1400 0.9400 0.0000 0.0600 5504 0 0 0 
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Fuzzy resolver 9 used the transformation method in (3.29). All optimal weights that 

maximized the objective function are listed in Table 5.9. After obtaining these optimal 

weights, the objective function and the number of faulted sections whose possibility 

va

FUNCTION AND USING THE SECOND TRANSFORMATION METHOD 

Optimal weights 
Number of faulted 

sections whose possibility 
value ≥ p1

lue ≥ p1 were evaluated at these weights, where p1 is equal to 0.95, 0.9, and 0.8. It is 

seen that these optimal weights made the number of faulted sections have possibility 

values ≥ p1 equal to 0. 

 

 
TABLE 5.9 OPTIMAL WEIGHTS OF THE OWA OPERATOR WITH RESPECT TO THE SECOND OBJECTIVE 

w1

Objective 
value 2 

w2 w3 W1 W2 W3 p2=0.8 p2=0.9 p2=0.95
Optimal weights when p2=0.4 

0.2353 0.2196 0.1765 0.7843 0.0392 0.1765 5504 0 0 0 
Optimal weights when p2=0.3 

0.2431 0.2353 0.1529 0.945 5504 0 1 0.0549 0.0000 0 0 
Optimal weights when p2=0.2 

0.0118 0.0510 0.0000 0.890 0 0 0 0 0.1100 0.0100 5504 

 

 

Comparing the results in the optimal weights using 

transformation methods (3.3 erformance in terms of the 

f e hose po y values ≥ 

5.3.3.3 Optimal Weights for the Uninorm Operator 

For the uninorm operator, only the optimal weights of three fault location methods 

ese optimal weights is the same as the 

pro

 Table 5.8 and Table 5.9, 

0) and (3.29) had the same p

number o  faulted s ctions w ssibilit p1. 

need to be found. The process for obtaining th

cess introduced in 5.3.1. Transformation method (3.31) was used to transform three 

fault location methods’ outputs into effective values. The uninorm operator was used to 
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aggregate effective values into aggregation possibility values. For the fitness assignment, 

the selective pressure SP=1.5. For the crossover operation, pc=0.65. For the mutation 

operation, pm=0.05. 

Fuzzy resolver 10 used transformation method (3.31) to transform three fault location 

methods’ outputs to effective values and the uninorm operator to aggregate these 

effective values. There were several weights that maximized the objective function but 

gave the different number of faulted sections whose possibility values ≥ 0.95. 5 optimal 

weights are arbitrarily selected and listed in Table 5.5. After obtaining these optimal 

weights, the objective function and the number of faulted sections whose possibility 

values ≥ 0.95 were evaluated at these weights, where p2 is equal to 0.95, 0.9, and 0.8. 

 

 

OBJECTIVE FUNCTION 

Number of faulted sections whose 

TABLE 5.10 OPTIMAL WEIGHTS OF THE UNINORM OPERATOR WITH RESPECT TO THE SECOND 

Optimal weights 
possibility value ≥ p1

w1 w2 w3

Objective value 2
p1=0.8 p1=0.9 p1=0.95 

Optimal weights when p =0.4 2

0.7294 1.0000 0.5059 3485 172 172 156 
0.9490 1.0000 0.5412 3485 172 172 172 
0.6902 1.0000 0.3490 3485 172 171 148 

Optimal weights when p =0.3 2

1.0000 0.8588 0.7608 3369 172 172 172 
Optimal weights when p2=0.2 

0.9804 0.9569 0.7500 3255 172 172 172 

 

 

5.3.4 Summary 

The optimal weights that were obtained with respect to the first objective function 

using three fuzzy aggregation operators and their corresponding objective functions were 

listed in Table 5.1-Table 5.5. It was seen that several weights maximized the number of 
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faulted sections that had possibility values ≥ p1 but they gave the different nu

aulted sections that had possibility values < p

mber of 

non-f the min and OWA operators, 

wh

ithout the second objective function, it was not guaranteed 

to find optimal weights that maximized the first objective function and gave the best 

performance on the number of non-fault sections that had possibility values < p2. These 

fuzzy resolvers identified som

2

1

 ≥ p1. For the OWA operator, when they maximized the 

nu 2

1

 

2. For 

en they maximized the number of faulted sections whose possibility values are ≥ p1, 

some optimal weights made the number of non-faulted sections whose possibility value < 

p2 equal to 0 because without the constraint of non-faulted section’s possibility values the 

optimization program may find optimal weights that made all line sections have large 

possibility values. Therefore, w

e distinguishable non-faulted sections as potential faulted 

sections. Therefore, system operators needed to spend more time to locate a fault. 

The optimal weights that were obtained with respect to the second objective function 

using three fuzzy aggregation operators and their corresponding objective functions were 

listed in Table 5.6-Table 5.10. It was seen that there might be several weights that 

maximized the number of non-faulted sections whose possibility values are less than p , 

but these weights gave the different number of faulted sections whose possibility values ≥ 

p . For the min and OWA operators, these weights could not make all actual fault 

sections have possibility values

mber of non-faulted sections whose possibility values are less than p , the optimal 

weights and parameters caused all sections to have a low possibility value. Hence, no 

actual faulted sections had possibility values ≥ p . These fuzzy resolvers may not identify 

the actual faulted section as potential faulted sections for some fault cases. Therefore, it 

was difficult for system operators to find the actual faulted section for these fault cases. 

In summary, the optimal weights should be obtained with respect to two objective 

functions instead of one of them to achieve better performance. 
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5.4 METHODOLOGY FOR DESIGNING A FUZZY RESOLVER WITH 

There are three ways to solve a multi-objective problem using GA. The simplest way 

is to scale these multiple objectives and combine them into a single objective based on 

the knowledge of the problem, and then GA is applied to find solutions that optimize the 

single objective. However, by using this method the obtained solutions are sensitive to 

the weights, and the user must have thorough knowledge of the problem. The second way 

is non-Pareto methods that treat objective functions separately. A fraction of optimal 

solutions is obtained based on only one of these objective functions. The last way is 

ich optimal weights are obtained based on some 

Pa

inated solutions) [74],[86],[88]. No Pareto-optimal 

sol

RESPECT TO TWO OBJECTIVE FUNCTIONS 

When weights and parameters are optimized using two objective functions, the 

problem becomes a multi-objective optimization problem. There were several GA-based 

multi-objective optimization methods. In the following sections, the author reviews these 

GA-based multi-objective optimization methods. Then, the method that was used for this 

dissertation work is presented. 

5.4.1 Review of GA-based Multi-objective Optimization Methods 

Pareto-based approaches, in wh

reto-based ranking methods. 

In single-objective optimization problems, it is theoretically possible to find a global 

optimum. However, in multi-objective problems, there may not exist a global optimum 

with respect to all objectives. Usually there is a set of solutions that are superior to the 

rest of the solutions with respect to all objectives. The solutions in this set are called 

Pareto-optimal solutions (or non-dom

ution is superior to other Pareto-optimal solutions in terms of all objectives. The user 

may be interested in all Pareto-optimal solutions, not just one Pareto-optimal solution. As 

a population-based algorithm, genetic algorithms are well suited to find Pareto-optimal 

solutions. In the following paragraphs, the non-Pareto methods and Pareto-based methods 

are discussed. 
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5.4.1.1 Non-Pareto Methods 

Non-Pareto methods treat the objective functions separately in the reproduction 

process. There are two non-Pareto methods introduced in the literature to solve a 

multi-objective problem. The first one is the vector evaluated genetic algorithm (VEGA) 

[86]. In this method, the parallel selection that reproduced a fraction of the next 

generation (subpopulation) from the current generation according to each of the 

objectives separately was used. After all subpopulations were generated, they were 

shuffled and merged together to perform the crossover and mutation operations. Fourman 

[87] proposed a method that produced the next generation based on one of the objective 

functions. The tournament selection method introduced in 5.2.3 was used, and two 

individuals formed a tour. The objective function used in each tournament was selected 

either randomly or according to the pre-assigned priorities of the objective functions. 

These kinds of methods can be easily implemented. However, they have a drawback. 

They tend to generate solutions that make one of the objectives extremely good but other 

objectives are not so good [88]. They do not produce all Pareto-optimal solutions. 

5.4.1.2 Pareto-based Methods 

Pareto-based methods treat the objective functions together in the reproduction 

process. They reproduce individuals based on the Pareto-optimality concept. Some 

areto-based methods [74],[88],[89] reproduce the next generation based on the 

areto-based rank, and some ranking methods have been developed to rank each 

dividual [74],[89]. Other methods [90] reproduce individuals based on individuals’ 

alues directly without ranking them. 

In [74],[89], two Pareto-based ranking methods were proposed. After ranking 

dividuals, the rank-based fitness assignment introduced in 5.2.2 was used to produce 

e fitness value and the selection probability. Then, individuals were chosen to survive 

based on their sele election method or 

stochastic universal sampling selection method introduced in 5.2.3. In Goldberg’s 

P

P

in

v

in

th

ction probability using the Roulette wheel s
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ranking method [74], the non-dominated individuals were assigned the rank of 1. Then, 

the non-dominated individuals were removed, and the non-dominated individuals in the 

rem ining population were assigned the rank of 2. This process continued until all 

individuals in the current generation were assigned a rank. The process is shown as 

Figure 5.8. In the figure, two objective functions, f1 and f2, are minimized. It is seen that 

individuals A, C, E, and F are non-dominated because no individual has smaller objective 

functions than they do in both f1 and f2 domain. Hence, they are assigned the rank of 1. 

After removing d individuals. 

Therefore, they are assigned the rank of 2. After removing these two individuals, D is 

non-dominated and assigned the rank of 3. Fonseca and Fleming [89] proposed a slightly 

dif

a

 these four individuals, B and G become non-dominate

ferent ranking method. In their method, the rank of each individual was defined as one 

plus the number of individuals in the current population that dominate this individual. In 

Figure 5.9, there are no individuals that dominate A, C, E, and F. They are assigned the 

rank of 1. For individual G, there are two individuals E and F that dominate it. Hence, the 

rank of G is 1+2=3. For individual B, there is one individual C that dominates it. Hence, 

the rank of B is 1+1=2. For individual D, there are three individuals A, B and C that 

dominate it. Hence, the rank of D is 1+3=4. 

 

 

 

 

 

 

 

 

 

Figure 5.8 Pareto-based ranking (Goldberg’s ranking) 
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Figure 5.9 Pareto-based ranking (Fonseca and Fleming’s ranking) 

 

 

Tanaka, Yamamura, and Kobayashi [88] proposed a different selection method. 

efore the selection operation, crossover and mutation operations were applied to 

roduce many individuals as the intermediate population. Then, all the non-dominated 

dividuals (rank 1) in the intermediate population were selected, and the dominated 

dividuals were discarded. Thus, the population size varied over generations. In some 

ases, another slightly modified version of the selection method was utilized [88], where 

not only the non-domin  a favorable rank (say, 

less than or equal to three) were selected for survival. 

 addition to the above three methods, some other Pareto-based methods reproduce 

the

B

p

in

in

c

ated individuals but also individuals with

In

 next generation without depending on individuals’ values. Horn et al. [90] proposed a 

tournament selection for multi-objective optimization. In his method, the selection did 

not depend on individuals’ rank but on their objective values directly. It was similar to 

the tournament selection method introduced in 5.2.3. Two individuals were randomly 

selected to form a tour. However, in each tournament, two individuals did not compete 

with each other. They competed using a set of other individuals in the population that was 

called a comparison set (the individuals surrounded by the dash line in Figure 5.10). If 

one individual was not dominated by anyone in the comparison set and the other was 

dominated by at least one individual in the comparison set, then the first individual was 
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selected for survival. If both competitors are either dominated or non-dominated, the 

fitness sharing [89] technique was used. In the fitness sharing methods, the fitness value 

of each individual was reduced if there existed other individuals in its neighborhood, and 

therefore an individual located in a more crowded area left less offspring. Thus, the 

population was distributed more uniformly over the Pareto-optimal set. While the 

Pareto-based methods mentioned above can find a variety of the Pareto-optimal solutions, 

they use much computational time [91]. 

 

 

 

 

 

Figure 5.10 Pareto-based tournament selection 

 

 

Non-Pareto and Pareto-based methods were introduced to solve a multi-objective 

roblem. While the first one does not produce all Pareto-optimal solutions, the second 

one uses much comp tional time problem, 

amaki [91] proposed a method that utilized the parallel selection method of the VEGA 

ithout considering the Pareto-based ranking. In order to overcome the VEGA’s problem, 

that is, generating solutions that make one of the objectives extremely good but the other 

objectives not so good, the Pareto reservation strategy was developed [91]; that is, 

no

f1

f2
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p

utational time. In order to overcome the computa

T

w

n-dominated individuals in a population at each generation were all reserved in the 

next generation. The procedure of this method is shown as Figure 5.11. First, the 
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crossover and mutation operations were implemented on the ith generation to produce the 

intermediate population. Then, the non-dominated individuals in the intermediate 

population were found. If the number of non-dominated individuals was less than the 

population size of the next generation, the rest of the population in the next generation 

was produced using the parallel selection method introduced in 5.4.1.1. On the other hand, 

if the number of non-dominated individuals was larger than the population size, 

individuals in the next generation were selected from the non-dominated individuals by 

using the fitness sharing technique [89],[90]. By combining the parallel selection method 

with the Pareto reservation strategy, Tamaki’s method can find a variety of 

Pareto-optimal results with less computational time than the Pareto-based methods. 

 

5.4.2 

Tamaki’s method [91] was used to determine the optimal weights of the three 

aggregation operators and the optimal parameters of the OWA operator. Of 508 fault 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Pareto-based method proposed by Tamaki 
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cases simulated on the IEEE 34 node test feeder, 172 fault cases were randomly chosen 

as the training set. For each fault case in the training set, the three fault location methods 

were executed to calculate possibility values for all line sections. These possibility values 

were used as the input data for a fuzzy resolver, and a genetic algorithm was used to 

obtain optimal weights for the three fault location methods and optimal parameters for 

the OWA operator. The process for obtaining these optimal weights and parameters is the 

sam

es of all line sections for all fault cases) into effective values. Then a 

fuz

e for all three fuzzy aggregation operators and all transformation methods. The only 

difference is that the representation of a chromosome for the OWA operator is different 

from the representation of a chromosome for the min and uninorm operators. The process 

for obtaining these optimal values is shown in Figure 5.11 and introduced below. 

First, 200 chromosomes were generated randomly to represent the weights of three 

fault location methods and the parameters of the OWA operator, and they composed the 

population of the first generation. Then, the uniform crossover and the mutation 

operations introduced in 5.2 were implemented over the first generation to generate the 

intermediate population. The size of the intermediate population was 400. 

Each chromosome in the intermediate population was used in a transformation process 

mentioned in (3.27)-(3.31) to transform the three fault location methods’ outputs 

(possibility valu

zy aggregation operator introduced in 2.2.7 was used to aggregate these effective 

values to produce aggregation possibility values of all line sections for all fault cases. 

After the aggregation possibility values were obtained, the two objective values, both the 

number of faulted sections that had a possibility value no less than a preset value p1 and 

the number of non-faulted sections that had a possibility value less than a preset value p2, 

were evaluated. 

After the objective values of all chromosomes were obtained, the non-dominated 

chromosomes were found. The non-dominated chromosomes were chromosomes to 

which other chromosomes were not superior in terms of two objective values. For 
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example, if the evaluation of two objective functions (3.32) and (3.34) at three 

chromosomes produced objective values (123, 2313) (127, 1982) (98, 983). The 

chromosomes corresponding to (123, 2313) and (127, 1982) were non-dominated 

chromosomes because no chromosome could produce larger objective values in terms of 

two objective functions. These non-dominated chromosomes were kept in the second 

generation. 

If the number of the non-dominated chromosomes was less than the population size, 

the parallel selection technique was used on the dominated chromosomes to fill the rest of 

the second generation. For example, if the size of the second generation was 200 and 

there were 60 non-dominated chromosomes and 340 dominated chromosomes. These 60 

non-dominated chromosomes were kept in the second generation. Then the 340 

dominated chromosomes were ranked based on their first objective values. The fitness 

value of each chromosome was assigned using (5.1), and its selection probability was 

calculated as (5.2).  Based on their selection probabilities, 70 chromosomes were chosen 

to form half of the rest 140 population of the second generation using the stochastic 

universal sampling introduced in 5.2.3. The other half of the rest 140 population of the 

sec

ion, the fitness sharing technique [89],[90] was used to choose 

ch

i

i

ond generation was filled based on the second objective values of the 340 dominated 

chromosomes. 

If the number of the non-dominated chromosomes was larger than the population size 

of the second generat

romosomes to survive in the second generation. In the fitness sharing technique, all 

non-dominated chromosomes had a fitness value 1 and the fitness value of a 

non-dominated chromosome was degraded using its niche count m . This degradation was 

obtained by dividing the fitness value 1 by the niche count to find the shared fitness value: 

1/m . Then the selection probabilities of all chromosomes were obtained based on these 

shared fitness values using the method introduced in section 5.2.3. The stochastic 

universal sampling was used to choose chromosomes that survive in the next generation. 
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An example is used to explain how to calculate the niche count of a chromosome. For 

example, for the ith chromosome, there are two objective values gi and hi. These objective 

values are normalized using (5.4) and (5.5), where max(gi) is the maximum value of gi 

for all chromosomes, max(hi) is the maximum value of hi for all chromosomes. The niche 

count of this chromosome is calculated using (5.6), where d[i,j] is the distance between 

chromosome i and j. The sharing function Sh(d) is defined as Sh(d)=1-d/σshare for d≤σshare 

and Sh(d)=0 share share for d>σ . Here σ  is the niche radius that is fixed at some estimate of 

the minimal separation expected between the chromosome’s objective values. The 

distance between chromosome i and j is calculated using (5.7). 
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hen the third generation was produced from the second generation using the same 

procedure. This procedure continued for 100 generations, and the optimal chromosomes 

were was 

introduced in 5.3.1.1. 

In the following s e methodology was used on the min, OWA, and 

uninorm operators to al weights of the three fault location methods and 

the optimal parameter perator. After obtaining these optimal weights, the 

two objective functions (3.32) and (3.34) were evaluated at these optimal weights. The 

performance of these  was discussed. The first objective function was to 

maximize the number hose actu  section has a possibility value 

no less than a preset n in (3.32 e second ive function was to 

maximize the number of non-faulted line sections whose possibility value is less than a 

T

 obtained. The representation of a chromosome used in this procedure 

ections, the abov

 obtain the optim

s of the OWA o

optimal weights

 of fault cases w al faulted

value p1 as show ). Th object
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pre

5.4.3 Optimal Weights for the Min Operator 

TABLE 5.11 OBJECTIVE VALUES OBTAINED USING THE MIN OPERATOR WITHOUT WEIGHTS 

 Objective 
value 1 

Objective 
value 2 

set value p2 as shown in (3.34). Various studies were performed to obtain optimal 

weights and parameters with different p1 and p2. In these studies, three values were used 

for p1, 0.95, 0.9, and 0.8, respectively. Three values were used for p2, 0.2, 0.3, and 0.4, 

respectively. 

For the min operator, only the optimal weights of the three fault location methods need 

to be determined. The process to obtain these optimal weights is the same as the process 

introduced in section 0. Transformation methods (3.27) and (3.28) were used to transform 

the outputs of the three fault location methods into effective values. The min operator 

was used to aggregate effective values into aggregation possibility values. For the fitness 

assignment, the selective pressure SP=1.5. For the crossover operation, pc=0.65. For the 

mutation operation, pm=0.05. 

Before obtaining optimal weights, the author investigated the performance of the min 

operator without weights in terms of the two objective functions. The objective values 

obtained using the min operators without weights are listed in Table 5.11. 

 

 

p1=0.95, p2=0.2 133 3255 
p1=0.95, p2=0.3 133 3369 
p1=0.95, p2=0.4 133 3485 
p1=0.9, p2=0.2 144 3255 
p1=0.9, p2=0.3 144 3369 
p1=0. 2=0.4 9, p 144 3485 
p1= 55 0.8, p2=0.2 147 32
p1= 0.3 147 3369 0.8, p2=  
p1= 0.4 147 3485 0.8, p2=  
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Fuzzy resolver 11 used the tra  (3.28). 12 optimal weights that 

gave different objective values were obtained fo nd ptimal weights 

that gave different objec p2=0.3. 13 optimal 

weights that gave different objective values were obtained for .95 and p2=0.4. 7 

optimal weights ve t o e values were obtaine 1=0.9 and p2=0.2. 

9 optimal weig  g ferent objective values were o d for p1=0.9 and 

p2=0.3. 11 optim  p1=0.9 

and p2=0.4. 6 o w hat differen jective va ere obtained for 

p1=0.8 and p2=0 ti gh ave di nt objectiv ues were obtained 

for p1=0.8 and p2=0.3. t objective values were 

obtained for p1=0.8 and p pt eights ave the e e objective values 

and some other l weights are listed in Table 5.12. Com  Table 5.12 with 

Table 5.11, when no w e function obtained its 

maximum value  u igh ay be ible to inc the first objective 

value while keeping the second objective value equal to its maxim alue. For example, 

when p1=0.95, th

increased to 135 with using weights. In addition, there were som timal weights that 

increased the first objective value but simultaneously decreased the second objective 

value. 

 

 
TABLE 5.12 OPTIM HT  M TOR WI  TO T FUNCTIONS 

ND HE RANSFO ION METHO

nsformation method in

r p1=0.95 a p2=0.2. 14 o
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2=0.4. O imal w that g xtrem

 optima paring

eights were used, the second objectiv

s. With sing we ts, it m poss rease 

um v

p2=0.2, e objective 1 was equal to 133 without weights; it was  value 

e op

AL WEIG S OF THE IN OPERA TH RESPECT WO OBJECTIVE 

A  USING T  FIRST T RMAT D 

Optimal weights 
w1 w2 w3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.95, p2=0.2 
0.9843 0.5843 0.2275 135 3255 
0.9490 0.0706 0.0118 161 3221 
0.1216 0.0706 0.0275 172 2819 
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TABLE 5.12 CONTINUED 

Optimal weights 
w1 w2 w3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.95, p2=0.3 
1.0000 1.0000 1.0000 133 3369 
0.9490 0.9059 0.4824 134 3367 
0.7176 0.0706 0.0392 165 3239 
0.1216 0.0706 0.0039 172 2831 

Optimal weights when p1=0.95, p2=0.4 
0.9059 1.0000 0.3725 134 3485 
0.7255 1.0000 0.6000 138 3463 
0.6039 0.0706 0.0471 168 3254 
0.1216 0.0706 0.0196 172 2845 

Optimal weights when p1=0.9, p2=0.2 
1.0000 0.4902 0.3020 145 3255 
0.7961 0.1490 0.0157 170 3216 
0.2510 0.1490 0.0980 172 2860 

Optimal weights when p1=0.9, p2=0.3 
1.0000 1.0000 1.0000 144 3369 
0.7765 0.1490 0.0667 170 3254 
0.2510 0.1490 0.0667 172 2888 

Optimal weights when p1=0.9, p2=0.4 
1.0000 1.0000 1.0000 144 3485 
0.8078 0.1490 0.0314 170 3325 
0.2510 0.1490 0.0471 172 2956 

Optimal weights when p1=0.8, p2=0.2 
0.9725 0.4941 0.0078 154 3255 
0.9961 0.3216 0.0157 171 3243 
0.5216 0.3216 0.0784 172 3003 

Optimal weights when p1=0.8, p2=0.3 
1.0000 1.0000 1.0000 147 3369 
0.9765 0.3216 0.1255 171 3338 
0.5294 0.3216 0.1922 172 3163 

Optimal weights when p1=0.8, p2=0.4 
1.0000 1.0000 1.0000 147 3485 
0.9137 0.3216 0.1255 171 3361 
0.4392 0.3216 0.3098 172 3233 

 

 

 



 134

Fuzzy resolver 12 used the transformation method in (3.27). 4 optimal weights that 

gave different objective values were obtained for p1=0.95 and p2=0.2. 8 optimal weights 

that gave different objective values were obtained for p1=0.95 and p2=0.3. 10 optimal 

weights that gave different objective values were obtained for p1=0.95 and p2=0.4. 4 

optimal weights that gave different objective values were obtained for p1=0.9 and p2=0.2. 

4 optimal weights that gave different objective values were obtained for p1=0.9 and 

p2=0.3. 5 optimal weights that gave different objective values were obtained for p1=0.9 

and p2=0.4. 3 optimal weights that gave different objective values were obtained for 

p1=0.8 and p2=0.2. 4 optimal weights that gave different objective values were obtained 

for p1=0.8 and p2=0.3. 5 optimal weights that gave different objective values were 

obtained for p1=0.8 and p2=0.4. Optimal weights that gave the extreme objective values 

and some other optimal weights are listed in Table 5.13. Comparing Table 5.13 with 

Table 5.11, when no weights were used, the second objective function obtained its 

maximum values. With using weights, it may be possible to increase the first objective 

value while keeping the second objective value equal to its maximum value. For example, 

when p1=0.95, p2=0.4, the objective value 1 was equal to 133 without weights; it was 

increased to 134 with using weights. In addition, there were some optimal weights that 

increased the first objective value but simultaneously decreased the second objective 

value. 

 

 
TABLE 5.13 OPTIMAL WEIGHTS OF THE MIN OPERATOR WITH RESPECT TO TWO OBJECTIVE FUNCTIONS 

AND USING THE SECOND TRANSFORMATION METHOD 

Optimal weights 
w1 w2 w3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.95, p2=0.2 
1.0000 1.0000 1.0000 133 3255 
0.9451 0.0196 0.8039 161 3217 
0.0353 0.0824 0.9608 172 1682 
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TABLE 5.13 CONTINUED 

Optimal weights 
w1 w2 w3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.95, p2=0.3 
1.0000 1.0000 1.0000 133 3369 
0.9961 0.7412 0.7961 134 3341 
0.7333 0.0353 0.8118 165 2997 
0.0706 0.0627 0.7020 172 1682 

Optimal weights when p1=0.95, p2=0.4 
0.9333 1.0000 0.9686 134 3485 
0.7373 1.0000 0.8275 138 3379 
0.6118 0.0196 0.7765 168 2940 
0.0314 0.0157 0.9686 172 1682 

Optimal weights when p1=0.9, p2=0.2 
1.0000 1.0000 1.0000 144 3255 
0.8196 0.0471 0.8902 170 2943 
0.1294 0.1686 0.9451 172 1682 

Optimal weights when p1=0.9, p2=0.3 
1.0000 1.0000 1.0000 144 3369 
0.8078 0.1373 0.7882 170 3216 
0.2863 0.0196 0.7843 172 1682 

Optimal weights when p1=0.9, p2=0.4 
1.0000 1.0000 1.0000 144 3485 
0.8157 0.1294 0.6588 170 3269 
0.0667 0.1490 0.6118 172 1682 

Optimal weights when p1=0.8, p2=0.2 
1.0000 1.0000 1.0000 147 3255 
0.9843 0.0196 0.9490 171 3239 
0.1647 0.0157 0.9294 172 1682 

Optimal weights when p1=0.8, p2=0.3 
1.0000 1.0000 1.0000 147 3369 
0.9922 0.2471 0.9020 171 3325 
0.3882 0.0706 0.8275 172 1682 

Optimal weights when p1=0.8, p2=0.4 
1.0000 1.0000 1.0000 147 3485 
0.9843 0.0078 0.8314 171 3345 
0.2706 0.1176 0.7490 172 1682 
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Comparing Table 5.12 with Table 5.13, fuzzy resolver 11 had better performance than 

fuzzy resolver 12 in terms of two objective values. That is, fuzzy resolver 11 made either 

more actual faulted sections have possibility values ≥ p1 or more non-faulted sections 

have possibility values ≤ p2 than fuzzy resolver 12. For example, when p1=0.95, p2=0.2, 

fuzzy resolver 11 found optimal weights that gave objective values (135, 3255), (161, 

3221), and (172, 2819); fuzzy resolver 12 found optimal weights that gave objective 

values (133, 3255), (161, 3217), and (172, 1682). When both fuzzy resolvers made the 

first objective value equal to 172, fuzzy resolver 11 made the second objective value 

equal to 2819 while fuzzy resolver 12 made the first objective value equal to 1682. 

Therefore, transformation method (3.28) was used to design the fuzzy resolver for the 

min operator. 

Comparing Table 5.12 with Table 5.1, fuzzy resolver 1 may not be able to find a 

Pareto-optimal solution. For example, when p1=0.95 and p2=0.3, fuzzy resolver 1 found 

optimal weights that made the two objective values equal to (172, 2059) while the 

Pareto-optimal solution in fuzzy resolver 11 was (172, 2831). The Pareto-optimal 

solution had better performance than the non Pareto-optimal solution because the 

Pareto-optimal solution achieved the same objective value in the first objective function 

but made more non-faulted sections have possibity values < p2. Comparing Table 5.12 

with Table 5.6, the similar observation could be found. Fuzzy resolver 6 may not be able 

to find a Pareto-optimal solution. Further, even when fuzzy resolver 1 or fuzzy resolver 6 

was able to find a Pareto-optimal solution, fuzzy resolver 11 found the same 

Pareto-optimal solution. In addition, fuzzy resolver 11 found more Pareto-optimal 

solutions than fuzzy resolver 1 and fuzzy resolver 6. 

5.4.4 Optimal Weights for the OWA Operator 

For the OWA operator, in addition to the optimal weights of three fault location 

methods, the optimal parameters of the OWA operator need to be found. The process for 

obtaining these optimal weights and optimal parameters is the same as the process 
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introduced in section 0. Transformation methods (3.29) and (3.30) were used to transform 

three fault location methods’ outputs into effective values. The OWA operator was used 

to aggregate effective values into aggregation possibility values. For the fitness 

assignment, the selective pressure SP=1.5. For the crossover operation, pc=0.65. For the 

mutation operation, pm=0.05. 

Before obtaining optimal weights, the author investigated the performance of the 

OWA operator in terms of the two objective functions without weights. 12 optimal 

parameters that gave different objective values were obtained for p1=0.95 and p2=0.2. 11 

optimal parameters that gave different objective values were obtained for p1=0.95 and 

p2=0.3. 16 optimal parameters that gave different objective values were obtained for 

p1=0.95 and p2=0.4. 5 optimal parameters that gave different objective values were 

obtained for p1=0.9 and p2=0.2. 7 optimal parameters that gave different objective values 

were obtained for p1=0.9 and p2=0.3. 9 optimal parameters that gave different objective 

values were obtained for p1=0.9 and p2=0.4. 7 optimal parameters that gave different 

objective values were obtained for p1=0.8 and p2=0.2. 11 optimal parameters that gave 

different objective values were obtained for p1=0.8 and p2=0.3. 13 optimal parameters 

that gave different objective values were obtained for p1=0.8 and p2=0.4. Optimal 

parameters that gave extreme objective values are listed in Table 5.14, where W1, W2, 

and W3 are the parameters of the OWA operator. 

 

 
TABLE 5.14 OBJECTIVE VALUES OBTAINED USING THE OWA OPERATOR WITHOUT WEIGHTS 

Parameters 
W1 W2 W3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.95, p2=0.2 
0.0000 0.0000 1.0000 133 3255 
0.0000 0.9020 0.0980 172 1626 

Optimal weights when p1=0.95, p2=0.3 
0.0000 0.0000 1.0000 133 3369 
0.0000 0.9059 0.0941 172 1633 
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TABLE 5.14 CONTINUED 

Parameters 
W1 W2 W3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.95, p2=0.4 
0.0000 0.0000 1.0000 133 3485 
0.0039 0.9020 0.0941 172 1635 

Optimal weights when p1=0.9, p2=0.2 
0.0000 0.0000 1.0000 144 3255 
0.0000 0.8000 0.2000 172 1626 

Optimal weights when p1=0.9, p2=0.3 
0.0000 0.0000 1.0000 144 3369 
0.0000 0.8078 0.1922 172 1633 

Optimal weights when p1=0.9, p2=0.4 
0.0000 0.0000 1.0000 144 3485 
0.0039 0.8000 0.1961 172 1647 

Optimal weights when p1=0.8, p2=0.2 
0.0000 0.0000 1.0000 147 3255 
0.0000 0.6196 0.3804 172 1633 

Optimal weights when p1=0.8, p2=0.3 
0.0000 0.0000 1.0000 147 3369 
0.0039 0.5961 0.4000 172 1647 

Optimal weights when p1=0.8, p2=0.4 
0.0000 0.0000 1.0000 147 3485 
0.0078 0.6039 0.3883 172 1688 

 

 

Fuzzy resolver 13 used the transformation method in (3.30). 13 optimal weights and 

parameters that gave different objective values were obtained for p1=0.95 and p2=0.2. 15 

optimal weights and parameters that gave different objective values were obtained for 

p1=0.95 and p2=0.3. 14 optimal weights and parameters that gave different objective 

values were obtained for p1=0.95 and p2=0.4. 8 optimal weights and parameters that gave 

different objective values were obtained for p1=0.9 and p2=0.2. 10 optimal weights and 

parameters that gave different objective values were obtained for p1=0.9 and p2=0.3. 12 

optimal weights and parameters that gave different objective values were obtained for 

p1=0.9 and p2=0.4. 7 optimal weights and parameters that gave different objective values 
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were obtained for p1=0.8 and p2=0.2. 7 optimal weights and parameters that gave 

different objective values were obtained for p1=0.8 and p2=0.3. 5 optimal weights and 

parameters that gave different objective values were obtained for p1=0.8 and p2=0.4. 

Optimal weights that gave the extreme objective values and some other optimal weights 

are listed in Table 5.15, where w1 is the weight for the operated device identification 

method, w2 is the weight for the phase selector method, w3 is the weight for the fault 

distance method, W1, W2, and W3 are the parameters of the OWA operator. Comparing 

Table 5.15 with Table 5.14, fuzzy resolver 13 had better performance than the fuzzy 

resolver without weights in terms of two objective values. That is, fuzzy resolver 13 

made either more actual faulted sections have possibility values ≥ p1 or more non-faulted 

sections have possibility values ≤ p2 than the fuzzy resolver without weights. For 

example, when p1=0.95, p2=0.2, the fuzzy resolver without weights found optimal 

weights that gave objective values (133, 3255) and (172, 1626); fuzzy resolver 13 found 

optimal weights that gave objective values (135, 3255) and (172, 2819). When both fuzzy 

resolvers made the first objective value equal to 172, fuzzy resolver 13 made the second 

objective value equal to 2819 while the fuzzy resolver without weights made the first 

objective value equal to 1626. 

 

 
TABLE 5.15 OPTIMAL WEIGHTS OF THE OWA OPERATOR WITH RESPECT TO TWO OBJECTIVE 

FUNCTIONS AND USING THE FIRST TRANSFORMATION METHOD 

Optimal weights 
w1 w2 w3 W1 W2 W3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.95, p2=0.2 
1.0000 0.5405 0.1529 0.0000 0.0039 0.9961 135 3255 
0.9294 0.0706 0.0039 0.0000 0.0000 1.0000 161 3221 
0.1216 0.0706 0.1216 0.0000 0.0000 1.0000 172 2819 
0.1412 0.0824 0.0353 0.7137 0.2706 0.0157 0 5504 
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TABLE 5.15 CONTINUED 

Optimal weights 
w1 w2 w3 W1 W2 W3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.95, p2=0.3 
1.0000 0.9961 0.7216 0.0000 0.0118 0.9882 133 3369 
0.9490 0.9333 0.5529 0.0000 0.0000 1.0000 134 3367 
0.7176 0.0706 0.0235 0.0000 0.0000 1.0000 165 3239 
0.1216 0.0706 0.2941 0.0000 0.0000 1.0000 172 2831 
0.1451 0.2235 0.0196 0.9373 0.0627 0.0000 0 5504 

Optimal weights when p1=0.95, p2=0.4 
0.9098 1.0000 0.1137 0.0000 0.0000 1.0000 134 3485 
0.7294 1.0000 0.1059 0.0000 0.0000 138 3463 1.0000
0.6039 0.0706 0.0353 0.0000 0.0000 1.0000 168 3254 
0.1216 0.0706 0.0353 0.0000 0.0000 1.0000 172 2845 
0.2353 0.2353 0.1529 0.9451 0.0431 0.0117 0 5504 

Optimal weights when p1=0.9, p2=0.2 
0.9843 0.4902 0.3098 0.0000 0.0039 0.9961 145 3255 
0.7922 0.1490 0.0549 0.0000 0.0039 0.9961 170 3216 
0.2510 0.1490 0.0549 0.0000 0.0000 1.0000 172 2860 
0.0588 0.2000 0.0275 0.7686 0.1490 0.0824 0 5504 

Optimal weights when p1=0.9, p2=0.3 
0.9882 0.8824 0.6863 0.0039 0.0039 0.9922 144 3369 
0.7686 0.1490 0.0314 0.0000 0.0000 1.0000 170 3254 
0.2510 0.1490 0.1059 0.0000 0.0000 1.0000 172 2888 
0.0706 0.0588 0.0235 0.5843 0.3333 0.0824 0 5504 

Optimal weights when p1=0.9, p2=0.4 
0.9804 1.0000 0.7569 0.0000 0.0000 1.0000 144 3485 
0.7490 0.1490 0.2275 0.0000 0.0039 0.9961 170 3325 
0.2510 0.1490 0.0588 0.0000 0.0000 1.0000 172 2956 
0.2353 0.2353 0.1529 0.9451 0.0431 0.0117 0 5504 

Optimal weights when p1=0.8, p2=0.2 
0.9765 0.4980 0.1765 0.0000 0.0039 0.9961 154 3255 
0.9569 0.3216 0.1255 0.0000 0.0000 1.0000 171 3243 
0.5216 0.3216 0.0784 0.0000 0.0000 1.0000 172 3003 
0.0745 0.0549 0.0078 0.7176 0.2157 0.0667 0 5504 
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TABLE 5.15 CONTINUED 

Optimal weights 
w1 w2 w3 W1 W2 W3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.8, p2=0.3 
0.9882 0.9294 0.3647 0.0039 0.0039 0.9922 147 3369 
0.9961 0.3216 0.0980 0.0000 0.0039 0.9961 171 3338 
0.5294 0.3216 0.0588 0.0000 0.0000 1.0000 172 3163 
0.0941 0.2784 0.0353 0.4549 0.5333 0.0118 0 5504 

Optimal weights when p1=0.8, p2=0.4 
1.0000 1.0000 0.6549 0.0000 0.0000 1.0000 147 3485 
0.9765 0.3216 0.2275 0.0000 0.0000 1.0000 171 3361 
0.4902 0.3216 0.0392 0.0000 0.0000 1.0000 172 3233 
0.2353 0.2353 0.1529 0.9451 0.0431 0.0118 0 5504 

 

 

Fuzzy resolver 14 used the transformation method in (3.29). 5 optimal weights and 

parameters that gave different objective values were obtained for p1=0.95 and p2=0.2. 9 

optimal weights and parameters that gave different objective values were obtained for 

p1=0.95 and p2=0.3. 11 optimal weights and parameters that gave different objective 

values were obtained for p1=0.95 and p2=0.4. 5 optimal weights and parameters that gave 

different objective values were obtained for p1=0.9 and p2=0.2. 5 optimal weights and 

parameters that gave different objective values were obtained for p1=0.9 and p2=0.3. 6 

optimal weights and parameters that gave different objective values were obtained for 

p1=0.9 and p2=0.4. 4 optimal weights and parameters that gave different objective values 

were obtained for p1=0.8 and p2=0.2. 5 optimal weights and parameters that gave 

different objective values were obtained for p1=0.8 and p2=0.3. 6 optimal weights and 

parameters that gave different objective values were obtained for p1=0.8 and p2=0.4. 

Optimal weights that gave the extreme objective values and some other optimal weights 

are listed in Table 5.16. Comparing Table 5.16 with Table 5.14, fuzzy resolver 14 had 

better performance than the fuzzy resolver without weights in terms of two objective 

values. That is, fuzzy resolver 14 made more actual faulted sections have possibility 
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values ≥ p1, or made more non-faulted sections have possibility values ≤ p2 than the fuzzy 

resolver without weights. For example, when p1=0.95, p2=0.2, the fuzzy resolver without 

weights found optimal weights that gave objective values (133, 3255) and (172, 1626); 

fuzzy resolver 14 found optimal weights that gave objective values (133, 3255) and (172, 

1682). When both fuzzy resolvers made the first objective value equal to 172, fuzzy 

resolver 13 made the second objective value equal to 1682 while the fuzzy resolver 

without weights made the first objective value equal to 1626. 

 

 
TABLE 5.16 OPTIMAL WEIGHTS OF THE OWA OPERATOR WITH RESPECT TO TWO OBJECTIVE 

FUNCTIONS AND USING THE SECOND TRANSFORMATION METHOD 

Optimal weights 
w1 w2 w3 W1 W2 W3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.95, p2=0.2 
1.0000 0.9333 0.9608 0.0000 0.0078 0.9922 133 3255 
0.9529 0.0392 0.9922 0.0000 0.0039 0.9961 161 3217 
0.0784 0.0078 0.9529 0.0000 0.0000 1.0000 172 1682 
0.0902 0.1451 0.0353 0.9098 0.0471 0.0431 0 5504 

Optimal weights when p1=0.95, p2=0.3 
0.9882 0.9843 0.9098 0.0000 0.0000 1.0000 133 3369 
0.9961 0.7333 0.9725 0.0000 0.0039 0.9961 134 3341 
0.7373 0.0235 0.9137 0.0000 0.0000 1.0000 165 2997 
0.1020 0.0235 0.9725 0.0000 0.0078 0.9922 172 1682 
0.1608 0.0157 0.1686 0.9137 0.0039 0.0824 0 5504 

Optimal weights when p1=0.95, p2=0.4 
0.9255 1.0000 0.9333 0.0000 0.0000 1.0000 134 3485 
0.7373 1.0000 0.9961 0.0000 0.0000 1.0000 138 3379 
0.6118 0.0941 0.7843 0.0000 0.0000 1.0000 168 2940 
0.0235 0.0392 0.9176 0.0000 0.0000 1.0000 172 1682 
0.1333 0.1333 0.1529 0.8157 0.0235 0.1608 0 5504 

Optimal weights when p1=0.9, p2=0.2 
0.9961 0.8667 0.9176 0.0000 0.0078 0.9922 144 3255 
0.8196 0.1804 0.8392 0.0000 0.0039 0.9961 170 2943 
0.0039 0.1294 0.9804 0.0000 0.0000 1.0000 172 1682 
0.0000 0.1020 0.0392 0.8353 0.1490 0.0157 0 5504 
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TABLE 5.16 CONTINUED 

Optimal weights 
w1 w2 w3 W1 W2 W3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.9, p2=0.3 
1.0000 0.9412 0.9216 0.0000 0.0118 0.9882 144 3369 
0.8118 0.0706 0.7098 0.0000 0.0000 1.0000 170 3216 
0.0353 0.0784 0.8392 0.0000 0.0000 1.0000 172 1682 
0.0314 0.0 0.8196 0.0078 0 5504 000 0.2627 0.1725

Optimal weights when p1=0.9, p2=0.4 
0.9804 1.0000 0.8824 0.0000 0.0000 1.0000 144 3485 
0.8196 0.1098 0.9725 0.0000 0.0039 0.9961 170 3269 
0.0784 0.1059 0.9961 0.0000 0.0078 0.9922 172 1682 
0.0941 0.0157 0.2863 0.8157 0.1647 0.0157 0 5504 

Optimal weights when p1=0.8, p2=0.2 
1.0000 0.8549 0.8784 0.0000 0.0157 0.9843 147 3255 
0.9922 0.0980 0.8863 0.0000 0.0039 0.9961 171 3239 
0.1647 0.1373 0.8980 0.0000 0.0000 1.0000 172 1682 
0.1725 0.0706 0.1725 0.9569 0.0392 0.0039 0 5504 

Optimal weights when p1=0.8, p2=0.3 
1.0000 0.9412 0.8784 0.0000 0.0078 0.9922 147 3369 
1.0000 0.3176 0.7843 0.0000 0.0000 1.0000 171 3325 
0.2078 0.0196 0.8980 0.0000 0.0000 1.0000 172 1682 
0.1333 0.2118 0.1569 0.8431 0.1490 0.0078 0 5504 

Optimal weights when p1=0.8, p2=0.4 
0.9882 1.0000 0.9686 0.0000 0.0000 1.0000 147 3485 
0.9922 0.1961 0.9059 0.0000 0.0039 0.9961 171 3345 
0.2706 0.1137 0.9529 0.0000 0.0000 1.0000 172 1682 
0.0510 0.0353 0.1765 0.4824 0.4667 0.0510 0 5504 

 

 

Comparing Table 5.15 with Table 5.16, fuzzy resolver 13 had better performance than 

fuzzy resolver 14 in terms of two objective values. That is, fuzzy resolver 13 made either 

more actual faulted sections have possibility values ≥ p1 or more non-faulted sections 

have possibility values ≤ p2 than fuzzy resolver 14 does. For example, when p1=0.95, 

p2=0.2, fuzzy resolver 13 found optimal weights that gave objective values (0, 5504), 

(135, 3255), (161, 3221), and (172, 2819); fuzzy fuzzy resolver 14 found optimal weights 
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that gave objective values (0, 5504), (133, 3255), (161, 3217), and (172, 1682). When 

both fuzzy resolvers made the first objective value equal to 172, fuzzy resolver 13 made 

the second objective value equal to 2819 while fuzzy resolver 12 made the first objective 

value equal to 1682. Therefore, transformation method (3.30) was used to design the 

fuzzy resolver for the OWA operator. 

Comparing Table 5.15 with Table 5.3, fuzzy resolver 3 may not be able to find a 

Pareto-optimal solution. For example, when p1=0.95 and p2=0.3, fuzzy resolver 3 might 

find optimal weights that made two objective values equal to (172, 2822) while the 

Pareto-optimal solution in fuzzy resolver 13 was (172, 2831). The Pareto-optimal 

solution had better performance than the non Pareto-optimal solution because the 

Pareto-optimal solution achieved the same objective value in the first objective function 

but m 2. Com

thre

ate ef

values obtained using the uninorm operators without weights are listed in Table 5.17. 

ade more non-faulted sections have possibity values < p paring Table 5.15 

with Table 5.8, the solution of fuzzy resolver 8 was one of the Pareto-optimal solutions of 

fuzzy resolver 13. Further, even when fuzzy resolver 3 was able to find a Pareto-optimal 

solution, fuzzy resolver 13 found the same Pareto-optimal solution. In addition, fuzzy 

resolver 13 found more Pareto-optimal solutions than fuzzy resolver 3. 

5.4.5 Optimal Weights for the Uninorm Operator 

For the uninorm operator, only the optimal weights of three fault location methods 

need to be found. The process for obtaining these optimal weights is the same as the 

process introduced in 0. Transformation method (3.31) was used to transform e fault 

location methods’ outputs into effective values. The uninorm operator was used to 

aggreg fective values into aggregation possibility values. For the fitness assignment, 

the selective pressure SP=1.5. For the crossover operation, pc=0.65. For the mutation 

operation, pm=0.05. 

Before obtaining optimal weights, the author investigated the performance of the 

uninorm operator without weights in terms of the two objective functions. The objective 
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TABLE 5.17 OBJECTIVE VALUES OBTAINED USING THE UNINORM OPERATOR WITHOUT WEIGHTS 

 Objective Objective 
value 1 value 2 

p1=0.95, p2=0.2 172 3255 
p1=0.95, p2=0.3 172 3369 
p1=0.95, p2=0.4 172 3485 
p1=0.9, p2=0.2 172 3255 
p =0.9, p =0.3 172 3369 1 2

p1=0.9, p2=0.4 172 3485 
p1=0. =0.2 8, p2 172 3255 
p1= 3369 0.8, p2=0.3 172 
p1= 0.4 172 3485 0.8, p2=  

 

 

Fuzzy resolver 15 use an n method in (3.31). 1 optimal weight was 

obtained for p1=0.95 and 1 optimal weigh  obtained =0.95 and p2=0.3. 

1 optimal weight was obta  

p1=0.9 and p2=0.2. 1 optimal weight was obtained for p1=0.9 and p2=0.3. 1 optimal 

weight was obtained for p1=0.9 and p2=0.4. 1 optimal weight was obtained for p1=0.8 and 

p2=0.2. 1 optimal weight was obtained for p1=0.8 and p2=0.3. 1 optimal weight was 

obtained for p1=0.8 and p2=0.4. All of these obtained optimal weights and their 

corresponding objective values are listed in Table 5.18, where w1 is the weight for the 

operated device identifica thod, w2 is the weight for the phase selector method, w3 

 the weight for the fault distance method. Comparing Table 5.18 with Table 5.17, fuzzy 

resolver 15 obtained the same objective values as the fuzzy resolver without weights. 

Fro

d the tr sformatio

p2=0.2. t was  for p1

ined for p1=0.95 and p2=0.4. 1 optimal weight was obtained for

tion me

is

m (3.31), it is seen that the effective value a’ is equal to a when the weight w is 1. 

That is, no weight is equivalent to w=1. It is also observed that when w decreases, the 

transformation method tries to make the effective value closer to g. That is, when a>g, 

a’<a; when a<g, a’>a. Therefore, this transformation tends to reduce the difference 

between high possibility values and low possibility values when w decreases. Hence, the 
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fuzzy resolver without weights has better performance than fuzzy resolver 15 in terms of 

the difference between high possibility values and low possibility values. 

 

 
TABLE 5.18 OPTIMAL WEIGHTS OF THE UNINORM OPERATOR WITH RESPECT TO TWO OBJECTIVE 

FUNCTIONS 

Optimal weights 
w1 w2 w3

Objective 
value 1 

Objective 
value 2 

Optimal weights when p1=0.95, p2=0.2 
1.0000 1.0000 1.0000 172 3255 

Optimal weights when p1=0.95, p2=0.3 
1.0000 1.0000 0.9569 172 3369 

Optimal weights when p1=0.95, p2=0.4 
1.0000 1.0000 0.8510 172 3485 

Optimal weights when p1=0.9, p2=0.2 
0.9961 1.0000 0.8000 172 3255 

Optimal weights when p1=0.9, p2=0.3 
1.0000 1.0000 0.8941 172 3369 

Optimal weights when p1=0.9, p2=0.4 
0.9961 1.0000 0.8980 172 3485 

Optimal weights when p1=0.8, p2=0.2 
1.0000 1.0000 0.8078 172 3255 

Optimal weights when p1=0.8, p2=0.3 
1.0000 1.0000 0.9843 172 3369 

Optimal weights when p1=0.8, p2=0.4 
1.0000 1.0000 0.9294 172 3485 

 

 

Comparing Table 5.15 with Table 5.3, fuzzy resolver 3 may not be able to find a 

Pareto-optimal solution. For example, when p1=0.95 and p2=0.3, fuzzy resolver 3 might 

found optimal weights that made two objective values equal to (172, 2822) while the 

Pareto-optimal solution in fuzzy resolver 13 was (172, 2831). The Pareto-optimal 

solution had better performance than the non Pareto-optimal solution because the 

Pareto-optimal solution achieved the same objective value in the first objective function 
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but made more non-faulted sections have possibity values < p2. Comparing Table 5.15 

with Table 5.8, the solution of fuzzy resolver 8 was one of the Pareto-optimal solutions of 

fuzzy resolver 13. Further, even when fuzzy resolver 3 was able to find a Pareto-optimal 

solution, fuzzy resolver 13 found the same Pareto-optimal solution. In addition, fuzzy 

resolver 13 found more Pareto-optimal solutions than fuzzy resolver 3. 

1 2

ng

2

1

ibility values ≥ p1, 

or m 2

1 2

Comparing Table 5.18 with Table 5.5, fuzzy resolver 5 may not be able to find a 

Pareto-optimal solution. For example, when p =0.9 and p =0.3, fuzzy resolver 5 might 

find optimal weights that made two objective values equal to (172, 3294), while the 

Pareto-optimal solution in fuzzy resolver 13 was (172, 3369). Compari  Table 5.18 with 

Table 5.10, a similar observation was made. Fuzzy resolver 10 may not be able to find a 

Pareto-optimal solution. Further, even when fuzzy resolver 5 or fuzzy resolver 10 was 

able to find a Pareto-optimal solution, fuzzy resolver 15 found the same Pareto-optimal 

solution. 

Comparing the objective values of three aggregation operators, the OWA operator 

achieved the same objective values as the min operator. In addition, it had one set of 

weights that made all non-faulted sections (5504) have possibility values < p  and 0 

actual faulted sections have possibility values ≥ p . For both of these two operators, there 

were several Pareto-optimal solutions. One Pareto-optimal solution maximized the first 

objective function. Another Pareto-optimal solution maximized the second objective 

function. Other Pareto-optimal made a compromise between these two objective 

functions and had moderate performance on two objective functions. The uninorm 

operator had better performance than the min operator in terms of two objective values. 

That is, fuzzy resolver 15 made more actual faulted sections have poss

ore non-faulted sections have possibility values ≤ p  than fuzzy resolver 11. For 

example, when p =0.95, p =0.2, fuzzy resolver 11 found optimal weights that gave 

objective values (135, 3255), (161, 3221), and (172, 2819); fuzzy fuzzy resolver 15 found 

optimal weights that gave objective values (172, 3255). Obviously, (172, 3255) 
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dominated (135, 3255), (161, 3221), and (172, 2819). Similarly, the solution of the 

uninorm operator dominated most solutions of the OWA operator except solution (0, 

5504). 

5.4.6 Summary 

In the above sections, the author studied fuzzy resolvers with respect to two objective 

functions. Three fuzzy aggregation operators were used. For the min operator and OWA 

operator, fuzzy resolvers were designed using two transformation methods. From the 

results, the better transformation method for the min operator is (3.28), and the better 

transformation method for the OWA operator is (3.30). Comparing fuzzy resolvers 

designed using two objective functions with fuzzy resolvers designed using only one 

objective function, fuzzy resolvers designed using only one objective function may not be 

able to find Pareto-optimal solutions. Even when resolvers designed using only one 

objective function can find Pareto-optimal solutions, fuzzy resolvers using two objective 

functions can find not only the same solutions but also other Pareto-optimal solutions. 

For the min operator and OWA operator, the fuzzy resolver with weights has better 

performance than the fuzzy resolver without weights in terms of two objective functions. 

For the uninrom operators, the fuzzy resolver with using weights has the same 

performance as the fuzzy resolver without weights in terms of two objective functions. In 

terms of the difference between high possibility values and low possibility values, the 

fuz

resolver designed using the uninorm operator. For the fuzzy resolvers designed using the 

zy resolver without weights gives better performance than the fuzzy resolver using 

weights. Comparing three fuzzy aggregation operators, the uninorm operator has better 

performance than the min operator and OWA operator. 

In summary, the fuzzy resolver designed using the uninorm operator without weights 

yields the best performance. The fuzzy resolver designed using the min operator and 

OWA operator with weights make all actual faulted sections have possibility values ≥ p1 

but they make less non-faulted sections have possibility values < p2 than the fuzzy 
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min operator, fuzzy resolver 11 (which uses weights) is better than fuzzy resolver 12 

which uses weights). For the fuzzy resolvers designed using the OWA operator, fuzzy 

resolver 13 (whi

(

ch uses weights) is better than fuzzy resolver 14 (which uses weights). 

The author compared the performance of various fuzzy resolvers in term of two objective 

functions. The different fuzzy resolvers and their performance are listed in Table 5.19. 

The methodology for designing a fuzzy resolver would entail selecting the most 

effective operator and optimal weights. Based on the training analysis, using simulated 

data, performed on the fifteen fuzzy resolvers studied in this chapter, fuzzy resolver 11, 

13, 15, and the fuzzy resolver using the uninorm operator without weights showed the 

best potential. These fuzzy resolvers identified all faulted line sections as potential 

faulted sections and identified as many as possible non-faulted sections as non-faulted 

sections. Therefore, system operators just need to locate a fault from a small number of 

line sections. These fuzzy resolvers were studied further using the test set of the 

simulated data. Results of the studies are presented in chapter 6. 

5.5 CHAPTER SUMMARY 

In this chapter, three fuzzy aggregation operators were used to design various fuzzy 

resolvers using the training set of the simulated data. For the min operator and OWA 

operator, two transformation methods were used to design two different fuzzy resolvers. 

The optimal weights and parameters of fuzzy resolvers were obtained with respect to 

each objective function separately, and with respect to two objective functions together. 

In the next chapter, 336 test cases are used in some performance studies. The 

performance of these fuzzy resolvers designed using three operators with respect to two 

objective functions (fuzzy resolver 11, 13, and 15) are compared with each other. The 

performance of fuzzy resolvers designed with respect to two objective functions (fuzzy 

resolver 11, 13, and 15) are compared with fuzzy resolvers designed with respect to the 

first objective function (fuzzy resolver 1, 3, and 5). The performance of fuzzy resolvers 

designed with respect to two objective functions (fuzzy resolver 11, 13, and 15) are 
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compared with fuzzy res  transformation method 

(3.28) is used for the min operator, and transformation method (3.30) is used for the 

OWA opera

olvers without weights. For these studies,

tor. 
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TABLE 5.19 SUMMARIES OF FUZZY RESOLVERS 

Fuzzy 
resolver 

Operator Transformation
Objective 
function 

Performance 

1 Min (3.28) (3.32) 
2 Min (3.27)  (3.32) 
3 OWA (3.30) (3.32) 
4 OWA (3.29) (3.32) 
5 Uninorm (3.31) (3.32) 

May not achieve the Pareto-optimal solution. 
Even when achieving the Pareto-optimal 
solution, it is one of the Pareto-optimal 
solutions obtained using fuzzy resolvers 11, 12, 
13, 14, and 15 

6 Min (3.28) (3.34) 
7 Min (3.27)  (3.34) 
8 OWA (3.30) (3.34) 
9 OWA (3.29) (3.34) 

10 Uninorm (3.31) (3.34) 

May not achieve the Pareto-optimal solution. 
Even when achieving the Pareto-optimal 
solution, it is one of the Pareto-optimal 
solutions obtained using fuzzy resolvers 11, 12, 
13, 14, and 15 

11 Min (3.28) Both Achieves Pareto-optimal solutions that 
dominate Pareto-optimal solutions obtained 
using fuzzy resolver 12 

12 Min (3.27)  Both  

13 OWA (3.30) Both Achieves Pareto-optimal solutions that 
dominate Pareto-optimal solutions obtained 
using fuzzy resolver 14 

14 OWA (3.29) Both  
15 Uninorm (3.31) Both Achieves a Pareto-optimal solution that 

dominates the solutions of fuzzy resolvers 11, 
12, 13, and 14 

 Min  Without 
weights 

May not achieve the Pareto-optimal solution. 
Even when achieving the Pareto-optimal 
solution, it is one of the Pareto-optimal 
solutions obtained using fuzzy resolvers 11 and 
12. 

 OWA  Without 
weights 

May not achieve the Pareto-optimal solution. 
Even when achieving the Pareto-optimal 
solution, it is one of the Pareto-optimal 
solutions obtained using fuzzy resolvers 13 and 
14. 

 Uninorm  Without 
weights 

Achieves the same Pareto-optimal solution as 
fuzzy resolver 15. It has better performance 
than fuzzy resolver 15 because it keeps the 
difference between low possibility values and 
high possibility values as large as possible. 
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CHAPTER VI 

STUDIES AND RESULTS 

6.1 INTRODUCTION 

In the previous chapter, three fuzzy aggregation operators and several transformation 

methods were used to design various fuzzy resolvers. The optimal weights of these fuzzy 

resolvers were obtained using the training data set. The two objective values obtained 

from the fuzzy resolvers designed with respect to two objective functions were compared 

with those obtained from the fuzzy resolvers designed with respect to a single objective 

function. The two objective values obtained from the fuzzy resolvers designed using 

weights were compared with those obtained from the fuzzy resolvers designed without 

weights. The two objective values obtained from the fuzzy resolvers designed using 

different fuzzy aggregation operators were compared with each other. The purpose of 

these studies was to find the most effective operators and optimal weights. Based on the 

training analysis performed on the fifteen studied fuzzy resolvers, fuzzy resolvers 

designed with respect to two objective functions (fuzzy resolver 11, 13, 15) and the fuzzy 

resolver using the uninorm operator without weights showed the best potential. These 

fuzzy resolvers were studied further using a test set of simulated data. 

The remaining 336 simulated fault cases were used to test the performance of the four 

promising fuzzy resolvers. Some selected results of those studies are presented in the 

following sections. For these studies, transformation method (3.28) was used for the min 

operator, and transformation method (3.30) was used for the OWA operator. Through 

these studies, the optimal weights that obtained the best performance were chosen for 

each aggregation operator. A case study was implemented using these optimal weights. 

In order to study the performance of fuzzy resolvers, the maximum achievable number 

of actual faulted sections that could be designated as potential faulted sections and the 

maximum achievable number of non-faulted sections whose possibility values were 

distinguishable from faulted sections in the test set was used as a benchmark. There were 

 



 153

336 cases in the test set. Therefore, the maximum achievable number of actual faulted 

sections that could be designated as potential faulted sections was 336. In Table 4.8, it 

was stated that there were 4196 non-distinguishable non-faulted line sections in the test 

set, and there were 10,752 total non-faulted sections. Hence, the maximum achievable 

number of non-faulted sections whose possibility values were distinguishable from 

faulted sections was 6556 (=10752-4196). Therefore, the maximum achievable 

percentage of actual faulted sectio that were designated as potential faulted sections 

was 100%. The maximum achievable percentage of non-faulted sections whose 

possibility values were distinguishable from faulted sections was 60.97% (=6556/10752). 

6.2 CASE STUDY 

Through the design process, for the min and OWA operator, one of the Pareto-optimal 

weights that made all the actual faulted sections have a possibility value ≥ p1 (=0.8) was 

[0.5216 0.3216 0.0784] and [0.5294 0.3216 0.0588 0.0000 0.0000 1.0000], respectively. 

For the uninorm operator, the fuzzy resolver without weights obtained the best 

performance. In this section, a case study was performed to show the results of the fuzzy 

resolvers designed using the min and OWA operators with the optimal weights [0.5216 

0.3216 0.0784] and [0.5294 0.3216 0.0588 0.0000 0.0000 1.0000], respectively, and the 

fuzzy resolver designed using the uninorm operator without weights. In this case study 

and the following performance studies, the α-level as shown in Figure 6.1 was used to 

classify faulted sections and non-faulted sections. The line sections with a possibility 

value greater than or equal to the α-level were identified as potential faulted sections, 

while the line sections with a possibility value less than the α-level were identified as 

non-faulted sections. In Figure 6.1, line sections within [a, b] and [c, d] are identified as 

potential faulted sections. In this case study and the following performance studies, 0.8 

was used as the α-level. 
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Figure 6.1 Illustration of the α-level 

 

 

A phase A to G fault staged on line section 8 (between node 816 and 818) with an 

80Ω fault resistance was used for this study. For this case, the three fault location 

methods assigned possibility values for each line section as shown in Table 6.1 and 

Figure 6.2. In the table, PS stands for the phase selector method; FD stands for the fault 

distance method; ODIM stands for the operated device identification method. From this 

table, it is seen that the phase selector method identified 28 sections (1, 2, 3, 5, 6, 7, 8, 9, 

10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, and 33) as 

potential faulted sections with a possibility value 0.9933. The fault distance method 

identified all 33 line sections as potential faulted sections with a possibility value 1.0000. 

The operated device identification method assigned the largest possibility value 0.6581 to 

sections 8, 10, and 11. Since no line sections were assigned a possibility value greater 

than or equal to 0.8, this method did not identify any sections as potential faulted 

sections. 

 

1.0 

0.0 

Line section 

Possibility value 

α-level 

a b c d
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Figure 6.2 Outputs of the three fault location methods 

 
TABLE 6.1 OUTPUTS OF THE THREE FAULT LOCATION METHODS 

Section  
1 2 3 4 5 6 7 8 9 

PS 0.9933 0.9933 0.9933 0.0067 0.9933 0.9933 0.9933 0.9933 0.9933
FD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ODIM 0.3419 0.3419 0.3419 0.0000 0.3419 0.3419 0.3419 0.6581 0.3419
 10 11 12 13 14 15 16 17 18 

PS 0.9933 0.9933 0.0067 0.9933 0.9933 0.9933 0.9933 0.9933 0.9933
FD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ODIM 0.6581 0.6581 0.0000 0.3419 0.3419 0.3419 0.3419 0.3468 0.3419
 19 20 21 22 23 24 25 26 27 

PS 0.9933 0.9933 0.9933 0.9933 0.9933 0.9933 0.9933 0.9933 0.0067
FD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ODIM 0.1231 0.3419 0.0000 0.1231 0.1231 0.1231 0.3419 0.3419 0.0000
 28 29 30 31 32 33    

PS 0.9933 0.9933 0.9933 0.9933 0.0067 0.9933    
FD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000    

ODIM 0.3419 0.0000 0.3419 0.3419 0.0000 0.3468    
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The outputs of three fuzzy resolvers are shown in Table 6.2 and Figure 6.3. From this 

table, it can be observed that all three fuzzy resolvers identified sections 8, 10, and 11 as 

potential faulted sections because they had possibility values larger than 0.8 (the α-level), 

and identified all other sections as non-faulted sections. For these output results, the 

operator would have only three of 33 sections identified as potential faulted sections. The 

min operator based method gave potential faulted sections a possibility value 0.8039; the 

OWA operator based method gave potential faulted sections a possibility value 0.8013; 

and the uninorm operator based method gave potential faulted sections a possibility value 

1.0000. The maximum possibility values of non-faulted sections were 0.5714, 0.5666, 

and 0.3419 for the min, OWA, and uninorm operator based methods, respectively. From 

this study, the uninorm operator based method has better performance than the other two 

operators because it gives the faulted section a larger possibility value and gives 

distinguishable non-faulted sections lower possibility values. 

 

 

 

Figure 6.3 Outputs of fuzzy resolvers 
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TABLE 6.2 OUTPUTS OF FUZZY RESOLVERS 

Section  
1 2 3 4 5 6 7 8 9 

Min 0.5714 0.5714 0.5714 0.0000 0.5714 0.5714 0.5714 0.8039 0.5714 
OWA 0.5666 0.5666 0.5666 0.0000 0.5666 0.5666 0.5666 0.8013 0.5666 

Uninorm 0.3419 0.3419 0.3419 0.0000 0.3419 0.3419 0.3419 1.0000 0.3419 
 10 11 12 13 14 15 16 17 18 

Min 0.8039 0.8039 0.0000 0.5714 0.5714 0.5714 0.5714 0.5756 0.5714 
OWA 0.8013 0.8013 0.0000 0.5666 0.5666 0.5666 0.5666 0.5709 0.5666 

Uninorm 1.0000 1.0000 0.0000 0.3419 0.3419 0.3419 0.3419 0.3468 0.3419 
 19 20 21 22 23 24 25 26 27 

Min 0.3353 0.5714 0.0000 0.3353 0.3353 0.3353 0.5714 0.5714 0.0000 
OWA 0.3299 0.5666 0.0000 0.3299 0.3299 0.3299 0.5666 0.5666 0.0000 

Uninorm 0.1231 0.3419 0.0000 0.1231 0.1231 0.1231 0.3419 0.3419 0.0000 
 28 29 30 31 32 33    

Min 0.5714 0.0000 0.5714 0.5714 0.0000 0.5756    
OWA 0.5666 0.0000 0.5666 0.5666 0.0000 0.5709    

Uninorm 0.3419 0.0000 0.3419 0.3419 0.0000 0.3468    

 

 

6.3 FUZZY FAULT LOCATION SCHEME 

There were three fault location methods in the new fault location scheme. The fault 

resistance affected the accuracy of the fault distance method significantly. When a fault 

was a middle resistance fault or high resistance fault, the method identified all line 

sections as potential faulted sections and assigned the possibility value 1 to all line 

sections. The phase selector method assigned each phase a possibility value to represent 

the possibility that the phase was involved in the fault. A line section was assigned a 

possibility value based on the presence of phases on the line section. The fault resistance 

affected the magnitude of the fault current increment and therefore affected the 

possibility values assigned to all line sections. For some high resistance faults where the 

fault current increments were too small, the phase selector method might assign a small 

possibility value to the faulted phases and did not identify any line section as potential 

faulted sections. For a fault, the operated device identification method assigned 
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possibility values to each protective device indicating the possibility that the protective 

device was involved in the fault (operated when the fault occurred). For some high 

impedance faults where the fault currents were less than protective device’s pickup 

values, no protective devices operated and no protective devices were identified as being 

involved in the fault. Therefore, the ODIM method identified all line sections as potential 

faulted sections. For some single phase to ground faults staged on laterals, the ODIM 

method assigned a small possibility value (<0.8) to the operated protective device and 

therefore did not identify any line section as potential faulted sections. Hence, each 

method had its own individual shortcomings and did not give satisfactory results for 

some situations. 

The fuzzy resolvers were designed to reduce these problems and identify a smaller 

subset of line sections as potential faulted sections than individual fault location methods. 

By aggregating the three fault location methods’ outputs, the fuzzy resolvers achieved 

this objective. However, for a line section for which all three fault location methods 

assigned the same possibility values as the actual faulted section, fuzzy resolvers were 

not able to distinguish this non-faulted section from the actual faulted section. 

6.4 PERFORMANCE STUDIES 

The performance of a fuzzy resolver fault location method was measured based on its 

ability for a fault occurrence to assign a high possibility value to the actual faulted section 

and low possibility values to the non-faulted sections. Since, practically speaking, the 

methods usually identify some of the non-faulted sections as faulted sections, the quality 

of the performance of the fuzzy resolver fault location ultimately is measured by the 

number of potential faulted sections the method identifies. The smaller value of this 

number, the better a fuzzy resolver performs. 

A good fuzzy resolver should be able to correctly identify the actual faulted line 

section as one of the potential faulted sections and should not identify distinguishable 

non-faulted sections as potential faulted sections. The best fuzzy resolver should achieve 
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the result that both the percen e of correctly identified actual faulted sections and the 

percentage of correctly identified distinguishable non-faulted sections are equal to 100%. 

The three fault location methods were executed for the 336 fault cases in the test set. The 

output results were possibility values for all line sections. Nine fuzzy resolvers were 

executed which aggregated the outputs of the three fault location methods and assigned 

an aggregation possibility value to each line section for each test case. After these 

aggregation possibility values were obtained, the percentage of faulted sections that were 

identified as potential faulted sections (correctly identified actual faulted sections), the 

percentage of distinguishable non-faulted sections that were identified as non-faulted 

sections (correctly identified distinguishable non-faulted sections), and the percentage of 

non-faulted sections that were identified as non-faulted sections (identified non-faulted 

sections) were obtained. Theses percentages were used to evaluate the performance of the 

nine fuzzy resolvers. In the following sections, the results of three studies are discussed. 

The three studies and the fuzzy resolvers used in each study are listed in Table 6.3. 

6.4.1 Comparison of the Performance of the Fuzzy Resolvers Designed Using 

Different Operators with Respect to Two Objective Functions 

This study is to evaluate the performance of the fuzzy resolvers designed using three 

aggregation operators with respect to two objective functions. The three fuzzy resolvers 

were used to aggregate three fault location methods’ outputs. The percentage of correctly 

identified actual faulted sections (=the number of correctly identified actual faulted 

sections/336), the percentage of correctly identified distinguishable non-faulted sections 

(=the number of correctly identified distinguishable non-faulted sections/6556), and the 

percentage of identified non-faulted sections (=the number of identified non-faulted 

sections/10752) are summarized in Table 6.4-Table 6.6, respectively.  

 

 

 

tag
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TABLE 6.3 FUZZY RESOLVERS USED IN STUDIES 

 
 Study 

 
Fuzzy resolver 

1 Comparison of the performance of the 
fuzzy resolvers designed using 

different operators with respect to two 
objective functions 

(a) Min operator with respect to two objective 
functions and with transformation method (3.28);

(b) OWA operator with respect to two objective 
functions and with transformation method (3.30); 

(c) Uninorm operator with respect to two objective 
functions and with transformation method (3.31) 

2 Comparison of the performance of the 
fuzzy resolvers designed with respect 
to the first objective function and the 
fuzzy resolvers designed with respect 

to two objective functions 

(a) Fuzzy resolvers in study 1; 
(b) Min operator with respect to the first objective 

function and with transformation method (3.28);
(c) OWA operator with respect to the first objective 

function and with transformation method (3.30); 
(d) Uninorm operator with respect to the first 

objective function and with transformation method 
(3.31) 

3 Comparison of the performance of the 
fuzzy resolvers designed with respect 

to two objective functions and the 
fuzzy resolvers without weights 

(a) Fuzzy resolvers in study 1; 
(b) Min operator without weights; 

(c) OWA operator without weights; 
(d) Uninorm operator without weights 

 

 

From able 6.4 and Table 6.5, for the fuzzy resolvers designed using the min and 

OWA operators, a set of weights achieved a larger percentage of correctly identified 

actual faulted sections than another set of weights while it achieved a smaller percentage 

of correctly identified distinguishable non-faulted sections and a smaller percentage of 

identified non-faulted sections than that set of weights. Only several optimal weights of 

the fuzzy resolvers designed using the min operator and OWA operator identified all 

actual faulted sections as potential faulted sections. However, most of these weights 

identified some distinguishable non-faulted sections as potential faulted sections. For 

example, with using the optimal weight [0.2510 0.1490 0.0667] in Table 6.4 that was 

obtained when p1=0.9 and p2=0.3, the fuzzy resolver designed using the min operator 

 T
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identified 92.68% of distinguishable non-faulted sections as non-faulted sections. 7.32% 

of distinguishable non-faulted sections were identified as potential faulted sections. For 

the optimal weights that identified 100% of actual faulted sections as potential faulted 

sections, when p1 was closer to the α-level, the percentage of correctly identified 

distinguishable non-faulted became closer to 100%; when p1 was equal to the α-level, 

which was 0.8, the percentage of correctly identified distinguishable non-faulted sections 

was equal to 100%. For example, for the optimal weights that identified 100% of actual 

faulted sections as potential faulted sections, when the α-level was equal to 0.95, 0.9, and 

0.8, the percentage of correctly identified distinguishable sections was equal to 92.68%, 

96.89%, and 100%, respectively. In addition, for the fuzzy resolver designed using the 

OWA operator, there was a set of weights that identified all non-faulted sections as 

non-faulted sections, i.e., the percentage of identified non-faulted sections was equal to 

100%. However, for this set of weights, the percentage of correctly identified 

non-distinguishable sections was equal to 0%. Therefore, it was not a desirable set of 

weights. 

 

 
TABLE 6.4 RESULTS OF THE FUZZY RESOLVER DESIGNED USING THE MIN OPERTOR WITH RESPECT TO 

TWO OBJECTIVE FUNCTIONS 

Optimal weights 

w1 w2 w3

% of faulted 
sect≥0.8 

% of 
distinguishable 

non-faulted 
sect<0.8 

% of non-Faulted 
Sect<0.8 

Pareto-optimal weights when p1=0.95, p2=0.2 
0.9843 0.5843 0.2275 89.29 100.00 68.15 
0.9490 0.0706 0.0118 98.81 96.75 59.09 
0.1216 0.0706 0.0275 100.00 92.68 56.48 

Pareto-optimal weights when p1=0.95, p2=0.3 
1.0000 1.0000 1.0000 87.80 100.00 68.66 
0.9490 0.9059 0.4824 88.39 100.00 68.42 
0.7176 0.0706 0.0392 99.40 96.77 59.03 
0.1216 0.0706 0.0039 100.00 92.68 56.48 
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TABLE 6.4 CONTINUED 

Optimal weights 

w1 w2 w3

% of faulted 
sect≥0.8 

% of 
distinguishable 

non-faulted 
sect<0.8 

% of non-Faulted 
Sect<0.8 

Pareto-optimal weights when p1=0.95, p2=0.4 
0.9059 1.0000 0.3725 87.80 100.00 68.66 
0.7255 1.0000 0.6000 88.39 100.00 68.60 
0.6039 0.0706 0.0471 99.70 96.77 59.02 
0.1216 0.0706 0.0196 100.00 92.68 56.48 

Pareto-optimal weights when p1=0.9, p2=0.2 
1.0000 0.4902 0.3020 89.88 100.00 67.66 
0.7961 0.1490 0.0157 98.81 96.89 59.16 
0.2510 0.1490 0.0980 100.00 96.89 59.08 

Pareto-optimal weights when p1=0.9, p2=0.3 
1.0000 1.0000 1.0000 87.80 100.00 68.66 
0.7765 0.1490 0.0667 98.81 96.89 59.16 
0.2510 0.1490 0.0667 100.00 96.89 59.08 

Pareto-optimal weights when p1=0.9, p2=0.4 
1.0000 1.0000 1.0000 87.80 100.00 68.66 
0.8078 0.1490 0.0314 98.81 96.89 59.16 
0.2510 0.1490 0.0471 100.00 96.89 59.08 

Pareto-optimal weights when p1=0.8, p2=0.2 
0.9725 0.4941 0.0078 89.58 100.00 67.92 
0.9961 0.3216 0.0157 98.81 100.00 61.06 
0.5216 0.3216 0.0784 100.00 100.00 60.97 

Pareto-optimal weights when p1=0.8, p2=0.3 
1.0000 1.0000 1.0000 87.80 100.00 68.66 
0.9765 0.3216 0.1255 98.81 100.00 61.06 
0.5294 0.3216 0.1922 100.00 100.00 60.97 

Pareto-optimal weights when p1=0.8, p2=0.4 
1.0000 1.0000 1.0000 87.80 100.00 68.66 
0.9137 0.3216 0.1255 98.81 100.00 61.06 
0.4392 0.3216 0.3098 100.00 100.00 60.97 
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TABLE 6.5 RESULTS OF THE FUZZY RESOLVER DESIGNED USING THE OWA OPERTOR WITH RESPECT TO 

TWO OBJECTIVE FUNCTIONS 

Optimal weights 

w1 w2 w3 W1 W2 W3

% of faulted 
sect≥0.8 

% of 
non-faulted 

distinguishable 
sect<0.8 

% of 
non-faulted 

sect<0.8 

Pareto-optimal weights when p1=0.95, p2=0.2 
1.0000 0.5405 0.1529 0.0000 0.0039 0.9961 89.29 100.00 68.15 
0.9294 0.0706 0.0039 0.0000 0.0000 1.0000 98.81 96.77 59.09 
0.1216 0.0706 0.1216 0.0000 0.0000 1.0000 100.00 92.68 56.51 
0.1412 0.0824 0.0353 0.7137 0.2706 0.0157 0.00 100.00 100.00 

Pareto-optimal weights when p1=0.95, p2=0.3 
1.0000 0.9961 0.7216 0.0000 0.0118 0.9882 87.80 100.00 68.66 
0.9490 0.9333 0.5529 0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.7176 0.0706 0.0235 0.0000 0.0000 1.0000 99.40 96.77 59.03 
0.1216 0.0706 0.2941 0.0000 0.0000 1.0000 100.00 92.68 56.51 
0.1451 0.2235 0.0196 0.9373 0.0627 0.0000 0.00 100.00 100.00 

Pareto-optimal weights when p1=0.95, p2=0.4 
0.9098 1.0000 0.1137 0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.7294 1.0000 0.1059 0.0000 0.0000 1.0000 88.39 99.91 68.60 
0.6039 0.0706 0.0353 0.0000 0.0000 1.0000 99.70 96.77 59.02 
0.1216 0.0706 0.0353 0.0000 0.0000 1.0000 100.00 92.68 56.51 
0.2353 0.2353 0.1529 0.9451 0.0431 0.0117 0.00 100.00 100.00 

Pareto-optimal weights when p1=0.9, p2=0.2 
0.9843 0.4902 0.3098 0.0000 0.0039 0.9961 89.88 100.00 67.66 
0.7922 0.1490 0.0549 0.0000 0.0039 0.9961 98.81 96.89 59.16 
0.2510 0.1490 0.0549 0.0000 0.0000 1.0000 100.00 96.89 59.08 
0.0588 0.2000 0.0275 0.7686 0.1490 0.0824 0.00 100.00 100.00 

Pareto-optimal weights when p1=0.9, p2=0.3 
0.9882 0.8824 0.6863 0.0039 0.0039 0.9922 88.39 100.00 68.42 
0.7686 0.1490 0.0314 0.0000 0.0000 1.0000 98.81 96.89 59.16 
0.2510 0.1490 0.1059 0.0000 0.0000 1.0000 100.00 96.89 59.08 
0.0706 0.0588 0.0235 0.5843 0.3333 0.0824 0.00 100.00 100.00 

Pareto-optimal weights when p1=0.9, p2=0.4 
0.9804 1.0000 0.7569 0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.7490 0.1490 0.2275 0.0000 0.0039 0.9961 98.81 96.89 59.16 
0.2510 0.1490 0.0588 0.0000 0.0000 1.0000 100.00 96.89 59.08 
0.2353 0.2353 0.1529 0.9451 0.0431 0.0117 0.00 100.00 100.00 
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TABLE 6.5 CONTINUED 

Optimal weights 

w1 w2 w3 W1 W2 W3

% of faulted 
sect≥0.8 

% of 
non-faulted 

distinguishable 
sect<0.8 

% of 
non-faulted 

sect<0.8 

Pareto-optimal weights when p1=0.8, p2=0.2 
0.9765 0.4980 0.1765 0.0000 0.0039 0.9961 89.58 100.00 67.92 
0.9569 0.3216 0.1255 0.0000 0.0000 1.0000 98.81 100.00 61.06 
0.5216 0.3216 0.0784 0.0000 0.0000 1.0000 100.00 100.00 60.97 
0.0745 0.0549 0.0078 0.7176 0.2157 0.0667 0.00 100.00 100.00 

Pareto-optimal weights when p1=0.8, p2=0.3 
0.9882 0.9294 0.3647 0.0039 0.0039 0.9922 89.58 100.00 67.92 
0.9961 0.3216 0.0980 0.0000 0.0039 0.9961 98.81 100.00 61.06 
0.5294 0.3216 0.0588 0.0000 0.0000 1.0000 100.00 100.00 60.97 
0.0941 0.2784 0.0353 0.4549 0.5333 0.0118 0.00 100.00 100.00 

Pareto-optimal weights when p1=0.8, p2=0.4 
1.0000 1.0000 0.6549 0.0000 0.0000 1.0000 89.58 100.00 67.92 
0.9765 0.3216 0.2275 0.0000 0.0000 1.0000 98.81 100.00 61.06 
0.4902 0.3216 0.0392 0.0000 0.0000 1.0000 100.00 100.00 60.97 
0.2353 0.2353 0.1529 0.9451 0.0431 0.0118 0.00 100.00 100.00 

 

 

From Table 6.6, for the fuzzy resolver designed using the uninorm, all Pareto-optimal 

weights achieved the best achievable results, that is, both the percentage of correctly 

identified actual faulted sections and the percentage of correctly identified distinguishable 

non-faulted sections were equal 100%. 

6.4.1.1 Summary 

In the above performance study, it was found that for all three fuzzy resolvers, there 

were some sets of weights that achieved the result that both the percentage of correctly 

identified actual faulted sections and the percentage of correctly identified distinguishable 

non-faulted sections were equal to 100%. However, for the min operator and OWA 

operator, only when p1 was equal to the α-level did the fuzzy resolvers achieve this result 

For the uninorm operator, the fuzzy resolver always achieved this result for the three 
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values of p1. Therefore, when the fuzzy resolver was designed using the uninorm operator, 

it achieved high performance even when p1 was not equal to the α-level. 

 

 
TABLE 6.6 RESULTS OF THE FUZZY RESOLVER DESIGNED USING THE UNINORM OPERTOR WITH 

RESPECT TO TWO OBJECTIVE FUNCTIONS 

 
Optimal weights 

w1 w2 w3

% of 
faulted 

sect≥0.8 

% of 
distinguishable 

non-faulted 
sect<0.8 

% of 
non-faulted 

sect<0.8 

Pareto-optimal weights when p1=0.95, p2=0.2 
1.0000 1.0000 1.0000 100.00 100.00 60.97 

Pareto-optimal weights when p1=0.95, p2=0.3 
1.0000 1.0000 0.9569 100.00 100.00 60.97 

Pareto-optimal weights when p1=0.95, p2=0.4 
1.0000 1.0000 0.8510 100.00 100.00 60.97 

Pareto-optimal weights when p1=0.9, p2=0.2 
0.9961 1.0000 0.8000 100.00 100.00 60.97 

Pareto-optimal weights when p1=0.9, p2=0.3 
1.0000 1.0000 0.8941 100.00 100.00 60.97 

Pareto-optimal weights when p1=0.9, p2=0.4 
0.9961 1.0000 0.8980 100.00 100.00 60.97 

Pareto-optimal weights when p1=0.8, p2=0.2 
1.0000 1.0000 0.8078 100.00 100.00 60.97 

Pareto-optimal weights when p1=0.8, p2=0.3 
1.0000 1.0000 0.9843 100.00 100.00 60.97 

Pareto-optimal weights when p1=0.8, p2=0.4 
1.0000 1.0000 0.9294 100.00 100.00 60.97 

 

 

 



 166

6.4.2 Comparison of the Performance of the Fuzzy Resolvers Designed with 

Respect to the First Objective Function and the Fuzzy Resolvers Designed 

with Respect to Two Objective Functions 

This study investigates the comparison of the fuzzy resolvers designed with respect to 

two objective functions and the fuzzy resolvers designed with respect to the first 

objective function. In this study, the fuzzy resolvers designed with respect to the first 

objective function were used to calculate the aggregation possibility values for the test 

cases. Based on these possibility values, the percentage of correctly identified actual 

faulted sections, the percentage of correctly identified distinguishable non-faulted 

sections, and the percentage of identified non-faulted sections were evaluated. The fuzzy 

resolvers designed with respect to two objective functions were compared with fuzzy 

resolvers designed with respect to the first objective function in terms of these 

percentages. 

The fuzzy resolvers designed with respect to the first objective function are listed in 

section 5.3.2. The performance of the fuzzy resolvers designed using different operators 

with respect to the first objective function is summarized in Table 6.7-Table 6.9. From 

Table 6.7 and Table 6.8, for the fuzzy resolvers designed using the min operator and 

OWA operator, even when p1 was equal to the α-level, these fuzzy resolvers did not 

achieve the result that the percentage of correctly identified distinguishable non-faulted 

sections was equal to 100%. Without the constraint of the second objective function, 

some optimal weights might be found that increased all line sections’ possibility values 

too much so that too many sections had possibility values larger than or equal to the 

α-level. For example, for p1=0.95, fuzzy resolver 1 generated one set of the optimal 

weights [0.0000 0.0235 0.0000]. These weights achieved the result that the percentage of 

correctly identified distinguishable non-faulted sections was equal to 0%. Therefore, all 

line sections were identified as potential faulted sections. Comparing Table 6.7 and Table 

6.8 with Table 6.4 and Table 6.5, for the min operator and OWA operator, when 
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achieving the percentage of correctly identified actual faulted sections equal to 100%, the 

fuzzy resolvers designed with respect to two objective functions achieved the percentage 

of correctly identified distinguishable non-faulted sections equal to 92.68%, 96.89%, and 

100% for p1=0.95, 0.9, and 0.8, respectively. The fuzzy resolvers with respect to the first 

objective function achieved the maximum percentage of correctly identified 

distinguishable non-faulted sections equal to 91.82%, 96.77%, and 96.89% for p1=0.95, 

0.9, and 0.8, respectively. Therefore, for the min and OWA operators, the fuzzy resolvers 

designed with respect to two objective functions had better performance than the fuzzy 

resolvers designed with respect to the first objective function for these test cases. 

 

 
TABLE 6.7 RESULTS OF THE FUZZY RESOLVER DESIGNED USING THE MIN OPERATOR WITH RESPECT TO 

THE FIRST OBJECTIVE FUNCTION 

Optimal weights 
w1 w2 w3

% of faulted 
sect≥0.8 

% of distinguishable 
non-faulted sect<0.8 

% of non-faulted 
sect<0.8 

Optimal weights when p1=0.95 
0.1059 0.0078 0.0039 100.00 91.82 55.99 
0.0431 0.0549 0.0000 100.00 70.76 43.15 
0.0000 0.0235 0.0000 100.00 0.00 0.00 

Optimal weights when p1=0.9 
0.2392 0.0863 0.0588 100.00 96.77 59.00 
0.1059 0.0745 0.0471 100.00 92.07 56.39 
0.0000 0.1137 0.0000 100.00 32.21 19.64 

Optimal weights when p1=0.8 
0.5255 0.1569 0.0745 100.00 96.89 59.08 
0.1451 0.2980 0.0941 100.00 95.79 58.41 
0.0000 0.1020 0.0000 100.00 32.09 19.57 

 

 

From Table 6.9, the fuzzy resolver designed using the uninorm operator with respect 

to the first objective function correctly identified all actual faulted sections and achieved 

the result that both the percentage of correctly identified actual faulted sections and the 
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percentage of correctly identified distinguishable non-faulted sections were equal to 

100%. Comparing Table 6.9 with Table 6.6, the fuzzy resolver designed with respect to 

the first objective function had the same performance as the fuzzy resolver designed with 

respect to two objective functions. 

 

 
TABLE 6.8 RESULTS OF THE FUZZY RESOLVER DESIGNED USING THE OWA OPERATOR WITH RESPECT 

TO THE FIRST OBJECTIVE FUNCTION 

Optimal weights 

w1 w2 w3 W1 W2 W3

% of 
faulted 

sect≥0.8 

% of 
distinguishable 

non-Faulted 
sect≥0.8 

% of 
non-faulted 

sect<0.8 

Optimal weights when p1=0.95 
0.0000 0.0078 0.0000 0.0000 0.0000 1.0000 100.00 0.00 0.00 
1.0000 1.0000 0.9020 0.8824 0.1137 0.0039 100.00 29.94 18.26 
0.1020 0.0118 0.8000 0.0000 0.0039 0.9961 100.00 91.55 55.82 

Optimal weights when p1=0.9 
0.0000 0.1137 0.0000 0.0000 0.0000 1.0000 100.00 32.21 19.64 
0.9961 0.9882 0.9098 0.7216 0.1294 0.1490 100.00 53.00 32.32 
0.1176 0.1098 0.9804 0.0000 0.0078 0.9922 100.00 92.68 56.51 

Optimal weights when p1=0.8 
0.0000 0.0039 0.0000 0.0000 0.0000 1.0000 100.00 0.00 0.00 
0.9686 0.9451 0.8745 0.9098 0.0078 0.0824 100.00 32.20 19.63 
0.3059 0.2510 0.9020 0.0039 0.0000 0.9961 100.00 99.21 60.49 

 

 

6.4.2.1 Summary 

The above study found that for the min operator and OWA operator, fuzzy resolvers 

designed with respect to two objective functions had better performance than fuzzy 

resolvers designed with respect to the first objective function because the fuzzy resolvers 

designed with respect to the first objective function did not achieve the result that both 

the percentage of correctly identified actual faulted sections and the percentage of 
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correctly identified distinguishable non-faulted sections were equal to 100%. For the 

uninorm operator, the fuzzy resolver designed with respect to two objective functions had 

the same performance as the fuzzy resolver designed with respect to the first objective 

function because they all achieved the result that both the percentage of correctly 

identified actual faulted sections and the percentage of correctly identified distinguishable 

non-faulted sections were equal to 100%. 

 

 
TABLE 6.9 RESULTS OF THE FUZZY RESOLVER DESIGNED USING THE UNINORM OPERATOR WITH 

RESPECT TO THE FIRST OBJECTIVE FUNCTION 

 
Optimal weights 

w1 w2 w3

% of faulted 
sect≥0.8 

% of 
distinguishable 

non-faulted 
Sect<0.8 

% of 
non-faulted 

Sect<0.8 

Optimal weights when p1=0.95 
0.9961 0.9608 0.7843 100.00 100.00 60.97 
0.7608 0.7804 0.5961 100.00 100.00 60.97 

Optimal weights when p1=0.9 
0.9137 0.6627 0.3216 100.00 100.00 60.97 
0.7843 0.7451 0.7333 100.00 100.00 60.97 

Optimal weights when p1=0.8 
0.9176 0.9451 0.5176 100.00 100.00 60.97 
0.4980 0.4000 0.5020 100.00 100.00 60.97 

 

 

6.4.3 Comparison of the Performance of the Fuzzy Resolvers Designed with 

Respect to Two Objective Functions and the Fuzzy Resolvers without 

Weights 

This study investigates the comparison of the fuzzy resolvers designed with respect to 

two objective functions and the fuzzy resolvers without weights. In this study, the fuzzy 

resolvers without weights were used to calculate the aggregation possibility values for the 

 



 170

test cases. Based on these possibility values, the percentage of correctly identified actual 

faulted sections, the percentage of correctly identified distinguishable non-faulted 

sections, and the percentage of identified non-faulted sections were evaluated. The fuzzy 

resolvers designed with respect to two objective functions were compared with fuzzy 

resolvers without weights in terms of these percentages. 

The results of the min operator without weights are shown in Table 6.10. The results 

of the OWA operator without weights on the fault location method outputs are shown in 

Table 6.11, where W1, W2, and W3 are the optimal parameters of the OWA operator. 

From Table 6.10, it is observed that for the min operator, when no weights were used, 

only 87.80% of actual faulted sections were correctly identified as potential faulted 

sections but all distinguishable non-faulted sections were correctly identified. From Table 

6.11, it is seen that the OWA operator was able to achieve the result that the percentage 

of correctly identified actual faulted sections equal to 100% by choosing appropriate 

parameters when no weights were used. However, most of the parameters that achieved 

100% of correctly identified actual faulted sections achieved the percentage of correctly 

identified distinguishable non-faulted sections less than 100%. 

 

 
TABLE 6.10 RESULTS OF THE FUZZY RESOLVER DESIGNED USING THE MIN OPERATOR WITHOUT 

WEIGHTS 

Optimal weights % of faulted 
sect≥0.8 

% of 
distinguishable 

non-faulted 
sect<0.8 

% of 
non-faulted 

sect<0.8 

No weight 87.80 100.00 68.66 

 

 

Comparing Table 6.11 with Table 6.5, without weights, the OWA operator usually 

achieved more distinguishable non-faulted sections to be identified as potential faulted 
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sections than the fuzzy resolver designed with respect to two objective functions. For 

example, the OWA operator using optimal parameters obtained when p1=0.95 and p2=0.2 

but without weights achieved 52.56% of distinguishable non-faulted sections as 

non-faulted sections while the fuzzy resolver designed with respect to two objective 

functions achieved 92.68% of distinguishable non-faulted sections as non-faulted sections 

when p1=0.95 and p2=0.2.  

 

 
TABLE 6.11 RESULTS OF THE FUZZY RESOLVER DESIGNED USING THE OWA OPERATOR WITHOUT 

WEIGHTS 

Optimal parameters 

W1 W2 W3

% of 
faulted 

sect≥0.8 

% of 
distinguishable 

non-faulted 
sect<0.8 

% of 
non-faulted 

sect<0.8 

Optimal weights when p1=0.95, p2=0.2 
0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.0000 0.9020 0.0980 100.00 52.56 32.05 

Optimal weights when p1=0.95, p2=0.3 
0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.0000 0.9059 0.0941 100.00 52.33 31.91 

Optimal weights when p1=0.95, p2=0.4 
0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.0039 0.9020 0.0941 100.00 52.33 31.91 

Optimal weights when p1=0.9, p2=0.2 
0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.0000 0.8000 0.2000 100.00 91.29 55.66 

Optimal weights when p1=0.9, p2=0.3 
0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.0000 0.8078 0.1922 100.00 72.61 44.27 

Optimal weights when p1=0.9, p2=0.4 
0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.0039 0.8000 0.1961 100.00 90.60 55.25 

Optimal weights when p1=0.8, p2=0.2 
0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.0000 0.6196 0.3804 100.00 99.88 60.90 
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TABLE 6.11 CONTINUED 

Optimal parameters 
% of 

faulted 
sect≥0.8 

% of 
distinguishable 

non-faulted 
sect<0.8 

% of 
non-faulted 

sect<0.8 

Optimal weights when p1=0.8, p2=0.3 
0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.0039 0.5961 0.4000 100.00 100.00 60.97 

Optimal weights when p1=0.8, p2=0.4 
0.0000 0.0000 1.0000 87.80 100.00 68.66 
0.0078 0.6039 0.3883 100.00 99.94 60.94 

 

 
TABLE 6.12 RESULTS OF THE FUZZY RESOLVER DESIGNED USING THE UNINORM OPERATOR WITHOUT 

WEIGHTS 

Optimal weights % of faulted 
sect≥0.8 

% of 
distinguishable 

non-faulted 
sect<0.8 

% of 
non-faulted 

sect<0.8 

No weight 100.00 100.00 60.97 

 

 

From Table 6.12, it is observed that the fuzzy resolver designed using the uninorm 

operator without weights achieved the result that both the percentage of correctly 

identified actual faulted sections and the percentage of correctly identified distinguishable 

non-faulted sections were equal to 100%. Comparing Table 6.6 with Table 6.12, the 

performance of the fuzzy resolver without weights was the same as the fuzzy resolver 

designed with respect to two objective functions. There was no need for weights for this 

operator. As discussed in section 5.4.5, transformation method (3.31) tends to reduce the 

difference between high possibility values and low possibility values when w decreases, 

and no weight is equivalent to w=1. When using weights, the difference between high 

possibility values and low possibility values is reduced. Therefore, for the uninorm 
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operator, the fuzzy resolver designed without weights performed better than the fuzzy 

resolver with weights. 

6.4.3.1 Summary 

From the above study, for the min operator, the fuzzy resolver without weights did not 

identify all actual faulted sections as potential faulted sections; however, the fuzzy 

resolver with respect to two objective functions achieved this result. For the OWA 

operator, the fuzzy resolver without weights usually did not achieve the same 

performance as the fuzzy resolver designed with respect two objective functions because 

the fuzzy resolver without weights did not achieve the result that both the percentage of 

correctly identified actual faulted sections and the percentage of correctly identified 

distinguishable non-faulted sections were equal to 100%. For the uninorm operator, the 

fuzzy resolver without weights had the same performance as the fuzzy resolver with 

weights. When the difference between high possibility values and low possibility values 

was considered, the fuzzy resolver without weights was better than the fuzzy resolver 

with weights. 

6.5 SUMMARY OF THE STUDIES AND RECOMMENDATIONS 

All Pareto-optimal weights in Table 6.4-Table 6.12 that achieved the best achievable 

results were shaded. From the first study, it was found that for the min operator and 

OWA operator, the fuzzy resolver designed with respect to two objective functions 

achieved the best results when p1 was equal to the α-level as shown in Table 6.4 and 

Table 6.5; that is, they identified all actual faulted sections as potential faulted sections 

and all distinguishable non-faulted sections as non-faulted sections. As shown in Table 

6.6, for the uninorm operator, the fuzzy resolver designed with respect to two objective 

functions always achieved the best results for the three values of p1. 

From the second study, as shown in Table 6.4, Table 6.5, Table 6.7 and Table 6.8, for 

the min operator and OWA operator, the fuzzy resolvers designed with respect to the first 

objective function did not achieve the best results because these fuzzy resolvers only 
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maximized the percentage of faulted sections whose possibility values ≥ 0.8 but did not 

achieve the optimal percentage of distinguishable non-faulted sections whose possibility 

values < 0.8. For example, the fuzzy resolver designed using the min operator with 

respect to the first objective function achieved a set of weights as [0.0431 0.0549 0.0000]. 

This set of weights caused some distinguishable non-faulted sections to have a possibility 

value larger than 0.8. Therefore, the weights achieved the result that only 70.76% 

distinguishable non-faulted sections were identified as non-faulted sections. For the 

uninorm operator, both the fuzzy resolver designed with respect to two objective 

functions and the fuzzy resolver designed with respect to the first objective function 

achieved the best results as shown in Table 6.6 and Table 6.9. 

From the third study, as shown in Table 6.4, Table 6.5, Table 6.10, and Table 6.11, for 

the min and OWA operator, the fuzzy resolvers designed with respect to two objective 

functions had better performance than the fuzzy resolvers without weights because the 

fuzzy resolvers without weights did not achieve the result that both the percentage of 

correctly identified actual faulted sections and the percentage of correctly identified 

distinguishable non-faulted sections were equal to 100%. As shown in Table 6.6 and 

Table 6.12, for the uninorm operator, the fuzzy resolver without weights had better 

performance than the fuzzy resolver designed with weights because it generated the 

largest difference between high possibility values for actual faulted sections and low 

possibility values for distinguishable non-faulted sections. 

In order to compare the performance of individual fault location methods and the 

fuzzy resolver designed using the uninorm operator without weights in terms of fault 

location, the number of potential faulted sections identified by the individual fault 

location methods and the fuzzy resolver designed using the uninorm operator without 

weights for the test cases are listed in Table 6.13. The number of cases represents how 

many fault cases have the same combination of the number of potential faulted sections. 

From this table, it can be seen that the fuzzy resolver identified a smaller number of line 
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sections as potential faulted sections than the individual fault location methods for 43 

fault cases. For 37 fault cases with high or middle fault resistance levels, the phase 

selector method identified all line sections as non-faulted sections while the fuzzy 

resolver identified some line sections as potential faulted sections. For 4 fault cases 

staged on laterals, the ODIM method identified all line sections as non-faulted sections 

while the fuzzy resolver identified some line sections as potential faulted sections. For 

119 fault cases with a middle or high fault resistance level, the fault distance method 

identified all line sections as potential faulted sections while the fuzzy resolver identified 

a smaller subset of line sections as potential fault sections. For 34 fault cases with a high 

fault resistance level, the ODIM method identified all line sections as potential faulted 

sections while the fuzzy resolver identified a smaller subset of line sections as potential 

fault sections. For the fault cases where all individual methods identified a non-zero 

number of line sections as potential faulted sections, the fuzzy resolver always identified 

a smaller or same number of line sections as potential faulted sections. 

Based on these performance studies, some recommendations about designing desirable 

fuzzy resolvers are obtained. The author recommends designing a fuzzy resolver using 

the min operator without weights. If fuzzy resolvers are designed using the min operator 

and OWA operator, the author suggests the methodology for designing fuzzy resolvers 

with respect to two objective functions, and p1 of the first objective function should be 

equal to the α-level. 

 

 
TABLE 6.13 PERFORMANCE OF INDIVIDUAL FAULT LOCATION METHODS AND THE FUZZY RESOLVER 

DESIGNED USING THE UNINORM OPERATOR WITHOUT WEIGHTS 

# of 
cases 

Fault 
resistance 

ODIM PS FD Fuzzy 
Resolver

# of 
cases

Fault 
resistance

ODIM PS FD Fuzzy 
Resolver

106 Middle/high 18 25 33 18 2 Low 18 29 6 6 
27 Middle/high 18 29 33 18 2 Low 18 29 10 10 
21 High 33 0 33 25 2 Low 18 29 13 13 

 



 176

TABLE 6.13 CONTINUED 

# of 
cases 

Fault 
resistance 

ODIM PS FD Fuzzy 
Resolver

# of 
cases

Fault 
resistance

ODIM PS FD Fuzzy 
Resolver

12 Low 18 25 10 10 2 Low 18 29 15 14 
11 High 33 0 33 29 2 Low 18 29 17 15 
8 Low 18 25 13 13 2 Low 18 29 17 17 
8 Low 18 25 17 17 2 Low 18 29 18 18 
7 Low 18 25 4 4 2 High 33 25 33 25 
6 Low 18 25 2 2 1 Middle 3 25 33 1 
6 Low 18 25 6 6 1 Middle 2 25 33 1 
6 Low 18 25 18 18 1 Low 18 25 1 1 
5 Middle 2 0 33 2 1 Low 5 25 19 1 
5 Low 4 25 17 2 1 Low 3 25 22 1 
5 Low 18 25 3 3 1 Low 18 29 1 1 
5 Low 18 25 7 7 1 Low 5 29 12 1 
5 Low 18 25 8 8 1 Low 5 29 15 1 
5 Low 18 25 14 14 1 Middle 6 25 33 1 
5 Low 18 25 15 15 1 Low 0 29 11 1 
4 Low 4 25 18 3 1 Low 3 25 19 1 
4 Middle 5 29 33 5 1 Low 3 29 18 1 
4 Middle 6 25 33 6 1 Low 6 25 18 1 
3 Low 6 25 17 2 1 Low 5 29 19 1 
3 Low 2 25 15 2 1 Low 0 29 9 2 
3 Low 18 25 11 11 1 Low 6 29 17 2 
2 Low 4 25 16 1 1 Middle 3 29 33 2 
2 Middle 5 25 33 1 1 Low 6 29 19 3 
2 Low 6 25 15 2 1 Low 4 29 18 3 
2 Middle 2 25 33 2 1 Low 0 29 10 3 
2 Low 18 29 2 2 1 Low 6 29 18 3 
2 Low 18 29 3 3 1 Low 6 25 19 4 
1 Low 6 25 20 4 1 Low 18 25 9 8 
1 Low 4 29 19 4 1 Low 18 25 10 9 
1 Low 18 29 4 4 1 Low 18 29 9 9 
1 Low 6 25 21 6 1 Low 18 29 11 11 
1 Low 18 29 7 7 1 Low 18 25 17 15 
1 High 0 29 33 7 1 Low 18 25 16 16 
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6.6 CHAPTER SUMMARY 

In this chapter, the performance of the fuzzy resolver designed using the min, OWA, 

and uninorm operators with respect to two objective functions, and the fuzzy resolver 

rm operator without weights was studied using fault cases in the 

test set. The performance of fuzzy resolvers designed with respect to two objective 

functions was compared with the performance of fuzzy resolvers designed with respect to 

the first objective function. The performance of fuzzy resolvers without weights was 

compared with the performance of fuzzy resolvers using weights. The performance of 

fuzzy resolvers designed using three fuzzy aggregation operators with weights was 

compared with each other. The results showed that the fuzzy resolver designed using the 

uninorm operator without weights achieved the best fuzzy performance. 

In the next chapter, conclusions and future work are discussed.

designed using the unino
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

7.1 SUMMARIES 

A new fault location scheme that uses measurements at the substation and distribution 

system’s topological data was developed in the Power System Automation Lab at Texas 

A&M University. This new scheme has three stages: the input stage, the fault location 

methods stage, and the output stage. In order to be used for most utilities, the input data 

for this scheme should be available from most utilities. In this new fault location scheme, 

only the current and voltage measurements at the substation, feeder topological data, and 

protective device settings and locations are required. The input stage is used to process 

and format the data to a form useable by the fault location methods stage. The fault 

location methods stage consists of three independent fault location methods. The fault 

distance method locates faults by calculating the fault distance. The phase selector 

method locates faults by identifying faulted phases and based on the presence of phases 

on each line section. The operated device identification method locates faults by 

identifying the operated protective device for a fault. Since there are uncertainties in the 

load component of the fault current, the fault resistance, the raw data, etc., fuzzy logic 

was utilized in the development of these methods. Each fault location method determines 

possibility values to each line section of a distribution feeder. These possibility values 

represent how possible a line section is involved in a fault. In the last stage, a fuzzy 

resolver is used to aggregate the outputs of the three fault location methods and produce 

one final aggregation possibility value for each line section. Fuzzy aggregation operators 

were used in the fuzzy resolver. This dissertation discusses the author’s work in the 

development of a methodology for designing a fuzzy resolver for stage three of the fault 

location scheme. 

In the methodology, fuzzy aggregation operators were used to design the fuzzy 

resovler. To choose fuzzy aggregation operators to design a fuzzy resolver, commonly 
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used fuzzy aggregation operators were investigated, and the min, OWA, and uninorm 

operators were chosen as candidate operators. To take account of the accuracy of the 

three fault location methods, weights (important factors) were assigned to these methods. 

In order to incorporate these weights, transformation methods were used for each fuzzy 

aggregation operator to transform the outputs of the three fault location methods into 

effective values. After that, a fuzzy aggregation operator was used to aggregate these 

effective values to generate final possibility values for each line section of a feeder. 

In the design process of a fuzzy resolver, the optimal weights of the three fault 

location methods and the optimal parameters of the OWA operator needed to be 

determined. In order to determine these weights and parameters, data representing many 

distribution systems were needed. Since field data from real distribution feeders were 

unavailable to this research, modeling a distribution feeder with protective devices and 

simulating fault cases on the feeder were feasible alternatives. The IEEE 34 node test 

feeder was modeled with the addition of protective devices. Load flow and short circuit 

analysis studies were implemented on this feeder using software WindMil to determine 

the protective devices’ settings. The author developed a methodology for modeling 

TCC-based protective devices in MATLAB SimPowerSystems blockset. Faults were 

exhaustively simulated at all line sections to generate data. After generating data, the 

optimal parameters of the fuzzy resolver (the weights of the three fault location methods 

and the parameters of the OWA operator) needed to be determined. Genetic algorithm 

based methods were used to determine them. Two objectives were used in the 

optimization process. The first objective was to maximize the number of actual faulted 

sections whose possibility values are greater than or equal to a large possibility value p1, 

which aimed to achieve the result that actual faulted sections had a large possibility value. 

The other was to maximize the number of non-faulted sections whose possibility values 

are less than a small possibility value p2, which aimed to achieve the result that actual 

faulted sections had a large possibility value. Fuzzy resolvers were designed with respect 
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to a single objective function individually and with respect to two objective functions, 

respectively. The performance of the designed fuzzy resolvers was studied. 

7.2 CONCLUSIONS 

This dissertation discussed the work in the development of the fuzzy resolver 

methodology. In the fuzzy resolver methodology, fuzzy aggregation operators were used 

to design fuzzy resolvers. Commonly used fuzzy aggregation operators were investigated 

and then three of these operators, the min, OWA, and uninorm operators, were chosen 

based on the characteristics of the fault location problem. The IEEE 34 node test feeder 

was simulated to generate data that was used to design and validate the fuzzy resolver 

methodology. Genetic algorithm based optimization methods were used to determine the 

optimal parameters of fuzzy resolvers. Two objective functions were used in the 

optimization process. The first objective function was to maximize the number of actual 

faulted sections whose possibility values are greater than or equal to a large possibility 

value p1, which aimed to achieve the result that actual faulted sections had a large 

possibility value. The other objective function was to maximize the number of 

non-faulted sections whose possibility values are less than a small possibility value p2, 

which aimed to achieve the result that actual faulted sections had a large possibility value. 

In the design process, fuzzy resolvers were first designed with respect to the first 

objective function individually and the second objective function individually. After that, 

fuzzy resolvers were designed with respect to two objective functions. When fuzzy 

resolvers designed with respect to two objective functions, the problem to obtain the 

optimal parameters of the fuzzy resolver was a multi-objective optimization problem. In 

multi-objective problems, there may not exist a global optimum with respect to all 

objectives. Usually there is a set of solutions that are superior to the rest of the solutions 

with respect to all objectives. The solutions in this set are called Pareto-optimal solutions 

(or non-dominated solutions). When the fuzzy resolver was designed with respect to two 

objective functions, Pareto-optimal solutions were found. 
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After the optimal parameters of a fuzzy resolver were obtained in the design process, 

the number of actual faulted sections whose possibility values are greater than or equal to 

a large possibility value p1 and the number of non-faulted sections whose possibility 

values are less than a small possibility value p2 were evaluated at these optimal weights. 

The results indicated that fuzzy resolvers designed with respect to two objective functions 

had better performance than fuzzy resolvers designed with respect to a single objective 

function because the fuzzy resolvers designed with respect to a single objective function 

usually did not obtain Pareto-optimal solutions. The fuzzy resolver designed using the 

uninorm operator had better performance than fuzzy resolvers designed using the min 

operator and OWA operator because its solution was larger than the solutions of the min 

and OWA operators with respect to two objective functions. For the min and OWA 

operator, the fuzzy resolvers designed with respect to two objective functions had better 

performance than the fuzzy resolvers without weights because the fuzzy resolvers 

without weights usually did not obtain a Pareto-optimal solution. For the uninorm 

operator, the fuzzy resolver without weights and the fuzzy resolver designed with respect 

to two objective functions had the same performance. 

After fuzzy resolvers were designed, the performance of the designed fuzzy resolvers 

was studied. In the performance studies, the α-level (a specific possibility value) was 

used to classify potential faulted sections and non-faulted sections. The line sections with 

a possibility value greater than or equal to the α-level were identified as potential faulted 

sections, while the line sections with a possibility value less than the α-level were 

identified as non-faulted sections. Through these studies, it was found that for the min 

and OWA operators, the fuzzy resolvers designed with respect to two objective functions 

could achieve the best achievable results when the preset value p1 of the first objective 

function was equal to the α-level. The fuzzy resolvers without weights could not achieve 

the best achievable results. Without the constraint of the second objective function, the 

fuzzy resolvers designed with respect to the first objective function usually did not 
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achieve the best achievable results. For the uninorm operator, the fuzzy resolver designed 

with respect to two objective functions, the fuzzy resolver designed with respect to the 

first objective function, and the fuzzy resolver without weights all achieved the best 

achievable results. The transformation method used by the uninorm operator tended to 

reduce the difference between high possibility values and low possibility values when w 

decreased, and no weight was equivalent to w=1. Therefore, when using weights, the 

difference between high possibility values and low possibility values was reduced. 

Therefore, the fuzzy resolver designed without weights was better than the fuzzy 

resolvers designed both with respect to two objective functions and with respect to the 

first objective function. 

Based on these performance studies, some recommendations about designing desirable 

fuzzy resolvers were obtained. The author recommends designing a fuzzy resolver using 

the min operator without weights. If fuzzy resolvers are designed using the min operator 

and OWA operator, the author suggests the methodology for designing fuzzy resolvers 

with respect to two objective functions, and p1 of the first objective function should be 

equal to the α-level. 

7.3 FUTURE WORK 

There is still some room to improve this research work. In this dissertation, only one 

distribution feeder was simulated to generate fault data to design fuzzy resolvers. In order 

to design a good fuzzy resolver, field data from several actual feeders are needed to 

generalize the parameters of the fuzzy resolver. If data from several real feeders are 

available, the process of designing the fuzzy resolver needs to be performed with this 

data. In the performance study, the α-level was used to identify potential faulted sections 

and non-faulted sections, and the author did not analyze the number of non-faulted 

sections whose possibility values were less than p2 of the second objective function. In 

the future, the analysis should be done. When modeling reclosers at the substation, only 
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phase overcurrent protections were modeled and ground overcurrent protections were not 

modeled. In the future, ground overcurrent protections need to be modeled. 
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APPENDIX A 

A The IEEE 34 node test feeder 

The parameters and load flow results of the IEEE 34 node test feeder are listed in A.1-A.9. 

They are line segment data, overhead line configurations and their impedance and 

susceptance, transformer data, spot loads, distributed loads, shunt capacitors, regulator 

data, and load flow results. These data were downloaded from the web at 

http://ewh.ieee.org/soc/pes/dsacom/testfeeders.html. 

ta A.1 Line Segment Da

Section Node A Node B Length(ft.) Config.
1 800 802 2580 300
2 802 806 1730 300
3 806 808 32230 300
4 808 810 5804 303
5 808 812 37500 300
6 812 814 29730 300
7 814 850 10 301
8 816 818 1710 302
9 816 824 10210 301

10 818 820 48150 302
11 820 822 13740 302
12 824 826 3030 303
13 824 828 840 301
14 828 830 20440 301
15 830 854 520 301
16 832 858 4900 301
17 832 888 0 XFM-1
18 834 860 2020 301
19 834 842 280 301
20 836 840 860 301
21 836 862 280 301
22 842 844 1350 301
23 844 846 3640 301
34 846 848 530 301
25 850 816 310 301
26 852 832 10 301
27 854 856 23330 303
28 854 852 36830 301
29 858 864 1620 303
30 858 834 5830 301
31 860 836 2680 301
32 862 838 4860 304
33 888 890 10560 300
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A.2 Overhead Line Configurations (Config.) 

A.5 Distributed Loads 

A.6 Shunt Capacitors 

Config. Phasing Phase Neutral Spacing ID
ACSR ACSR

300 B A C N  1/0  1/0 500
301 B A C N #2  6/1 #2  6/1 500
302 A N #4  6/1 #4  6/1 510
303 B N #4  6/1 #4  6/1 510

A.4 Spot Loads 

kVA kV-high kV-low R - % X - %
Substation: 2500 69 - D 24.9 -Gr. W 1 8
XFM -1 500 24.9 - Gr.W 4.16 - Gr. W 1.9 4.08

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model kW kVAr kW kVAr kW kVAr

860 Y-PQ 20 16 20 16 20 16
840 Y-I 9 7 9 7 9 7
844 Y-Z 135 105 135 105 135 105
848 D-PQ 20 16 20 16 20 16
890 D-I 150 75 150 75 150 75
830 D-Z 10 5 10 5 25 10

Total 344 224 344 224 359 229

Node Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
A B Model kW kVAr kW kVAr kW kVAr

802 806 Y-PQ 0 0 30 15 25 14
808 810 Y-I 0 0 16 8 0 0
818 820 Y-Z 34 17 0 0 0 0
820 822 Y-PQ 135 70 0 0 0 0
816 824 D-I 0 0 5 2 0 0
824 826 Y-I 0 0 40 20 0 0
824 828 Y-PQ 0 0 0 0 4 2
828 830 Y-PQ 7 3 0 0 0 0
854 856 Y-PQ 0 0 4 2 0 0
832 858 D-Z 7 3 2 1 6 3
858 864 Y-PQ 2 1 0 0 0 0
858 834 D-PQ 4 2 15 8 13 7
834 860 D-Z 16 8 20 10 110 55
860 836 D-PQ 30 15 10 6 42 22
836 840 D-I 18 9 22 11 0 0
862 838 Y-PQ 0 0 28 14 0 0
842 844 Y-PQ 9 5 0 0 0 0
844 846 Y-PQ 0 0 25 12 20 11
846 848 Y-PQ 0 0 23 11 0 0
Total 262 133 240 120 220 114

A.3 Transformer Data 
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848 150 150 1
Total 250 250 250

Node Ph-A Ph-B Ph-C
kVAr kVAr kVAr

844 100 100 100
50

A.7 Regulator Data 
Regulator ID: 1
Line Segment: 814 - 850
Location: 814
Phases A - B -C
Connec 3-Ph,LG
Monitoring Phase: A-B-C
Bandwidth: 2.0 volts
PT Ratio: 120
Primary CT Rating: 100
Compensator Settings: Ph-A Ph-B Ph-C
R - Setting: 2.7 2.7 2.7
X - Setting: 1.6 1.6 1.6
Volltage Level: 122 122 122

Re 2
Line Segment: 852 -
Location: 852
Phases: A - B -C
Connection: 3-Ph,LG
Monitoring Phase: A-B-C
Bandwidth: 2.0 volts
PT Ratio: 120
Primary CT Rating: 100
Compensator Settings: Ph-
R 2.5
X - Setting: 1.5 1.5 1.5
Volltage Level: 124

:
tion:

gulator ID:
 832

A Ph-B Ph-C
 - Setting: 2.5 2.5

124 124
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A.8 Impedance and Susceptance of Overhead Line Configurations 

Configuration 300: 

Z (R +jX) in ohms per mile 
1.3368+j1.3343 0.2101+j0.5779 0.2130+j0.5015 
0.2101+j0.5779 1.3238+j1.3569 0.2066+j0.4591 
0.2130+j0.5015 0.2066+j0.4591 1.3294+j1.3471 

B in micro Siemens per mile 
5.3350 -1.5313 -0.9943 
-1.5313 5.0979 -0.6212 
-0.9943 -0.6212 4.8880 

Configuration 301: 

Z (R mile 
1.9300+j1.4115 0.2327+j0.6442 0.2359+j0.5691 
0.2327+j0.6442 1.9157+j1.4281 0.2288+j0.5238 
0.2359+j0.5691 0.2288+j0.5238 1.9219+j1.4209 

B in micro Siemens per mile 
5.1207 -1.4364 
-1.4364 4.9055 -0.5951 
-0.9402 -0.5951 4.7154 

Configuration 302: 

Z (R +jX) in ohms per mile 
2.7995+j1.4855 0.0000+j0.0000 0.0000+j0.0000 
0.0000+j0.0000 0.0000+j0.0000 0.0000+j0.0000 
0.0000+j0.0000 0.0000+j0.0000 0.0000+j0.0000 

B in micro Siemens per mile 
4.2251 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 

 

 

 

 

+jX) in ohms per 

-0.9402 
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Configuration 303: 

Z (R +jX) in ohms per mile 
0.0000+j0.0000 0.0000+j0.0000 0.0000+j0.0000 
0.0000+j0.0000 2.7995+j1.4855 0.0000+j0.0000 
0.0000+j0.0000 0.0000+j0.0000 0.0000+j0.0000 

0.0000 0.0000 0.0000 
0.0000 4.2251 0.0000 
0.0000 0.0000 0.0000 

0.0000+j0.0000 
 

0.0000 0.0000 0.0000 
0.0000 4.3637 0.0000 

B in micro Siemens per mile 

Configuration 304: 

Z (R +jX) in ohms per mile 
0.0000+j0.0000 0.0000+j0.0000 
0.0000+j0.0000 1.9217+j1.4212 0.0000+
0.0000+j0.0000 0.0000+j0.0000 0.0000+j0.0000 

j0.0000

B in micro Siemens per mile 

0.0000 0.0000 0.0000 
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A.9 Power Flow Results 
-  R A D I A L  F L O W  S U M M A R Y - DATE:  6-24-2004 AT 16:34:11 HOURS --- 

 INPUT -------(A)-------|-------(B)-------|-------(C)-------|------------------ 
 kW   :       759.136   |       666.663   |       617.072   |      2042.872 
 kVAr :       171.727   |        90.137   |        28.394   |       290.258 

 LOAD  --(A-N)----(A-B)-|--(B-N)----(B-C)-|--(C-N)----(C-A)-|---WYE-----DELTA-- 
 kW   :   359.9    246.4|   339.3    243.3|   221.8    359.0|   921.0    848.8 
  TOT :       606.322   |       582.662   |       580.840   |      1769.824 
                        |                 |                 | 
 kVAr :   230.9    128.7|   216.9    128.7|   161.8    184.6|   609.6    441.9 
  TOT :       359.531   |       345.609   |       346.407   |      1051.547 
                        |                 |                 | 
 kVA  :   427.6    278.0|   402.7    275.3|   274.6    403.7|  1104.5    957.0 
  TOT :       704.903   |       677.452   |       676.293   |      2058.647 
                        |                 |                 | 
 PF   :   .8417    .8864|   .8425    .8840|   .8078    .8894|   .8339    .8870 
  TOT :        .8601    |        .8601    |        .8589    |        .8597 
   
 LOSSES ------(A)-------|-------(B)-------|-------(C)-------|------------------ 
 kW   :       114.836   |        80.389   |        77.824   |       273.049 
 kVAr :        14.200   |        10.989   |         9.810   |        34.999 
 kVA  :       115.711   |        81.137   |        78.440   |       275.283 
 
 CAPAC --(A-N)----(A-B)-|--(B-N)----(B-C)-|--(C-N)----(C-A)-|---WYE-----DELTA-- 
 R-kVA:   250.0       .0|   250.0       .0|   250.0       .0|   750.0       .0 
  TOT :       250.000   |       250.000   |       250.000   |       750.000 
                        |                 |                 | 
 A-kVA:   265.7       .0|   264.8       .0|   265.9       .0|   796.3       .0 
  TOT :       265.658   |       264.760   |       265.869   |       796.287 

 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        
-----  --------------------------------------------------------------------------

 SYSTEM        PHASE             PHASE             PHASE             TOTAL 

 kVA  :       778.318   |       672.729   |       617.725   |      2063.389 
 PF   :        .9754    |        .9910    |        .9989    |        .9901 
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 --- V O L T A G E   P R O F I L E  ---- DATE:  6-24-2004 AT 16:34:18 HOURS ---- 

 SUBSTATION:  IEEE 34;   FEEDER:  IEEE 34                                        

 ------------------------------------------------------------------------------- 

 NODE  |   MAG       ANGLE  |    MAG       ANGLE  |    MAG       ANGLE |mi.to SR 

 ------------------------------------------------------------------------------- 

 ______|_______ A-N ______  |_______ B-N _______  |_______ C-N _______ | 

 800   |  1.0500 at    .00  |  1.0500 at -120.00  |  1.0500 at  120.00 |    .000 

 802   |  1.0475 at   -.05  |  1.0484 at -120.07  |  1.0484 at  119.95 |    .489 

 806   |  1.0457 at   -.08  |  1.0474 at -120.11  |  1.0474 at  119.92 |    .816 

08   |  1.0136 at   -.75  |  1.0296 at -120.95  |  1.0289 at  119.30 |   6.920 

at -120.95  |                    |   8.020 

 812   |  1.0100 at -121.92  |  1.0069 at  118. 023 

 814   |   .9467 at  -2 |   -1   53 

 RG10  |  1.0177 at  -2 |  1. -122.70  |  1.0203 at  118.01 |  19.654 

 850   |  1.0176 at  -2.26  |  1.0255 at -122.70  |  1.0203 at  118.01 |  19.655 

 816   |  1.0172 at  -2.26  |  1.0253 at -122.71  |  1.0200 at  118.01 |  19.714 

 818   |  1.0163 at  -2.27  |                     |                    |  20.038 

 820   |   .9926 at  -2.32  |                     |                    |  29.157 

 822   |   .9895 at  -2.33  |                     |                    |  31.760 

 824   |  1.0082 at  -2.37  |  1.0158 at -122.94  |  1.0116 at  117.76 |  21.648 

 826   |                    |  1.0156 at -122.94  |                    |  22.222 

 828   |  1.0074 at  -2.38  |  1.0151 at -122.95  |  1.0109 at  117.75 |  21.807 

 830   |   .9894 at  -2.63  |   .9982 at -123.39  |   .9938 at  117.25 |  25.678 

 854   |   .9890 at  -2.64  |   .9978 at -123.40  |   .9934 at  117.24 |  25.777 

 852   |   .9581 at  -3.11  |   .9680 at -124.18  |   .9637 at  116.33 |  32.752 

 RG11  |  1.0359 at  -3.11  |  1.0345 at -124.18  |  1.0360 at  116.33 |  32.752 

 832   |  1.0359 at  -3.11  |  1.0345 at -124.18  |  1.0360 at  116.33 |  32.754 

 858   |  1.0336 at  -3.17  |  1.0322 at -124.28  |  1.0338 at  116.22 |  33.682 

 834   |  1.0309 at  -3.24  |  1.0295 at -124.39  |  1.0313 at  116.09 |  34.786 

 842   |  1.0309 at  -3.25  |  1.0294 at -124.39  |  1.0313 at  116.09 |  34.839 

 844   |  1.0307 at  -3.27  |  1.0291 at -124.42  |  1.0311 at  116.06 |  35.095 

 846   |  1.0309 at  -3.32  |  1.0291 at -124.46  |  1.0313 at  116.01 |  35.784 

 848   |  1.0310 at  -3.32  |  1.0291 at -124.47  |  1.0314 at  116.00 |  35.885 

 860   |  1.0305 at  -3.24  |  1.0291 at -124.39  |  1.0310 at  116.09 |  35.169 

 836   |  1.0303 at  -3.23  |  1.0287 at -124.39  |  1.0308 at  116.09 |  35.677 

 840   |  1.0303 at  -3.23  |  1.0287 at -124.39  |  1.0308 at  116.09 |  35.839 

 862   |  1.0303 at  -3.23  |  1.0287 at -124.39  |  1.0308 at  116.09 |  35.730 

 838   |                    |  1.0285 at -124.39  |                    |  36.650 

 864   |  1.0336 at  -3.17  |                     |                    |  33.989 

 XF10  |   .9997 at  -4.63  |   .9983 at -125.73  |  1.0000 at  114.82 |  32.754 

 888   |   .9996 at  -4.64  |   .9983 at -125.73  |  1.0000 at  114.82 |  32.754 

 8

 810   |                    |  1.0294 

   .9763 at  -1.57  |  59 |  14.

.26  .9945 at 22.70 |   .9893 at  118.01 |  19.6

.26  0255 at 
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 890   |   .9167 at  -5.19  |   .9235 at -126.78  |   .9177 at  113.98 |  34.754 

 856   |                    |   .9977 at -123.41  |                    |  30.195 

 

A.10 Settings of Protective Devices 

The settings of each protective device are listed in the following table. It lists the start 

node and end node of the line section where a protective device locates, protective 

device’s types and ratings, and recloser’s operation curves and reclosing times. 

 

Start Node End Node Type Rating Curves Settings 
800 802 Recloser 50H [Fast Slow Slow] [1.0 1.0] 
808 810 Fuse 2T   
816 822 Fuse 15T   
824 826 Fuse 5QA   
854 856 Fuse 1T   
832 888 Fuse 12T   
858 864 Fuse 1T   
834 842 Fuse 20K   
836 862 Fuse 3T   
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