

LOW COST FAULT DETECTION SYSTEM

FOR RAILCARS AND TRACKS

A Thesis

by

SRIRAM T. VENGALATHUR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2003

Major Subject: Mechanical Engineering

LOW COST FAULT DETECTION SYSTEM

FOR RAILCARS AND TRACKS

A Thesis

by

SRIRAM T. VENGALATHUR

Submitted to Texas A&M University

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

 Reza Langari
 (Chair of Committee)

_______________________ _______________________
 Sooyong Lee Paul Roschke
 (Member) (Member)

 John Weese
 (Head of Department)

August 2003

Major Subject: Mechanical Engineering

 iii

ABSTRACT

Low Cost Fault Detection System for Railcars and Tracks. (August 2003)

Sriram T. Vengalathur, B.E., B.M.S.C.E. (University of Bangalore), India

Chair of Advisory Committee: Dr. Reza Langari

A “low cost fault detection system” that identifies wheel flats and defective

tracks is explored here. This is achieved with the conjunction of sensors,

microcontrollers and Radio Frequency (RF) transceivers.

 The objective of the proposed research is to identify faults plaguing railcars and

to be able to clearly distinguish the faults of a railcar from the inherent faults in the

track. The focus of the research though, is mainly to identify wheel flats and defective

tracks.

 The thesis has been written with the premise that the results from the simulation

software GENSYS are close to the real time data that would have been obtained from

an actual railcar. Based on the results of GENSYS, a suitable algorithm is written that

helps segregate a fault in a railcar from a defect in a track.

 The above code is implemented using hardware including microcontrollers,

accelerometers, RF transceivers and a real time monitor. An enclosure houses the

system completely, so that it is ready for application in a real environment.

 This also involves selection of suitable hardware so that there is a uniform

source of power supply that reduces the cost and assists in building a robust system.

 iv

To my parents and my sisters

 v

ACKNOWLEDGEMENTS

I would like to thank Dr. Reza Langari for his invaluable guidance throughout

the project and for bearing with many a delay. This thesis would not have been possible

without his unwavering support and tremendous patience, thank you.

 I would also like to thank Dr. Sooyong Lee and Dr. Roschke for their comments

and insights.

 There are many people who helped me at various stages of my project. I would

like to thank the following: Mr. Ingemar Persson of GENSYS, for his valuable time and

help during the simulations, Dr. Dongyoon Hyun, for valuable suggestions and support

during the project review, Mohammad Jaradat, for sparing his time to help in hardware

selection, Vijayaditya Kasarabada, for helping me out with the complex VC++ coding.

 vi

TABLE OF CONTENTS

CHAPTER Page

 I INTRODUCTION………………………………………………… 1

A. Introduction…………………………………….. 1
B. Objective……………………………………….. 2
C. Justification for the proposed research………… 3
D. Literature review…………………………… 3
E. Summary of contributions………………………5
F. Outline of this thesis…………………………… 5

II CAUSES OF DERAILMENT…………………………………..... 6

 A. Introduction…………………………………….. 6
 B. Conditions other than a defective railcar that
 might cause derailment…………………………. 6
 C. Faults in a railcar……………………………….. 8

III GENSYS…………………………………………………………… 19

 A. Introduction…………………………………….. 19
 B. Railcar model used ……………………………... 20
 C. Simulations in GENSYS………………………... 22
 D. Conclusion……………………………………… 43

IV PRINCIPLES OF FAULT DETECTION……………………......... 44

 A. Introduction……………………………………... 44
 B. On-board fault detection system………………... 44
 C. Identifying defective tracks…………………….. 48

V HARDWARE SYSTEM FOR FAULT DETECTION……………. 49

 A. Introduction……………………………………... 49
 B. Overview of the system……………………......... 49
 C. Organizing the fault detection system………….. 53
 D. Functioning of the hardware………………….... 56
 E. Hardware architecture…………………………... 56
 F. Fault detection software…………………………. 57
 G. Introduction of 68HC12………………………… 58
 H. Overview of serial communication in

 68HC12….. 62
 I. Data registers used in serial communication……. 71
 J. RF transmission………………………………… 71

 vii

CHAPTER Page

 VI LABORATORY TESTING, CONCLUSION

 AND FUTURE WORK……………………………………………. 77

 A. Introduction…………………………………….. 77
 B. Prototype-1 with RS232 cables and

 Ming RF transceivers………………………….. 77
C. Development of an enclosure…………………… 78
D. Lab set-up……………………………………….. 80
E. Testing procedure………………………………...81
F. Conclusion………………………………………..82
G. Further work……………………………………...82

REFERENCES…………………………………………………………………….. 84

APPENDIX I ……………………………………………………………………... 87

APPENDIX II ……………………………………………………………………... 89

APPENDIX III…………………………………………………............................... 94

APPENDIX IV…………………………………………………………………….. 109

APPENDIX V ……………………………………………………………………... 158

VITA……………………………………………………………………….. ………160

 viii

LIST OF FIGURES

FIGURE Page

1 Fatigue spalling……………………………………………………………. 10

2 Section view of spall……………………………………………………… 11

3 Brinelling………………………………………………………………….. 11

4 Fragment indentation………………………………………………………. 12

5 Peeling………………………………………………………………………12

6 Smearing…………………………………………………………………… 13

7 Etching………………………………………………………………………13

8 Pitting………………………………………………………………………. 14

9 Spun cone…………………………………………………………………... 14

10 Wheel spalling…………………………………………………………….. 15

11 Shattered rim………………………………………………………………. 16

12 Corrugated wheel………………………………………………………….. 16

13 Wheel flats…………………………………………………………………. 17

14 Close up of one of the flats………………………………………………… 18

15 Typical assembly of a 3-piece bogie……………………………………….. 20

16 3-piece bogie model used for simulations in GENSYS……………………. 21

17 Longitudinal position of the center of gravity of the

leading axle of the leading bogie………………………………………….. 24

18 Longitudinal position of the center of gravity of the

trailing axle of the leading bogie………………………………………….. 25

 19 Longitudinal position of the center of gravity of the

 leading axle of the trailing bogie…………………………………………. 26

20 Longitudinal position of the center of gravity of the

 trailing axle of the trailing bogie…………………………………………. 27

21 Position of the bolster beam……………………………………………….. 28

22 Vertical acceleration in car-body over leading bogie ………………………29

23 Vertical acceleration in the center of the car-body………………………… 30

24 Vertical acceleration in car-body over trailing bogie…………………….. 31

 ix

FIGURE Page

25 Car accelerations at different sections……………………………………. 32

26 Vertical force, tread, left wheel……………………………………………. 33

27 Vertical force, tread, right wheel……………………………………………34

28 Flange climb ratio left wheel, first axle……………………………………..35

29 Flange climb ratio right wheel, first axle……………………………………36

30 Flange climb ratio left wheel, second axle…………………………………. 37

31 Flange climb ratio right wheel, second axle……………………………….. 38

32 Flange climb ratio second bogie, left wheel, first axle…………………….. 39

33 Flange climb ratio second bogie, right wheel, first axle…………………… 40

34 Flange climb ratio second bogie, right wheel, second axle………………... 41

35 Response from an accelerometer in presence of a bearing fault…………… 46

36 Response from an accelerometer in presence of a wheel flat……………… 47

37 Overview of the system with the slave…………………………………….. 50

38 Overview of the system with the master…………………………………… 51

39 Expanded view of the process of RF transmission………………………… 52

40 Block diagram of the expanded wide mode of M68HC12A4……………. 62

41 Typical structure of each byte in NRZ format…………………………….. 63

42 Setup with Ming transceivers……………………………………………. 78

43 Penultimate stage of the enclosure…………………………………………. 79

44 Enclosed unit………………………………………………………………. 79

45 Final test set-up…………………………………………………………….. 80

46 Enlarged view of the encircled area in Fig. 45…………………………….. 81

47 Real time plot ……………………………………………………………. 82

48 Flow chart for the system………………………………………………….. 88

49 SCI control register 1……………………………………………………… 90

50 SCI control register 2………………………………………………………. 90

51 SCI status register 1……………………………………………………….. 91

52 SCI data register low………………………………………………………. 92

 x

FIGURE Page

53 SCI baud control register high…………………………………………….. 93

54 SCI baud control register low……………………………………………… 93

 xi

LIST OF TABLES

FIGURE Page

1 Simulation parameters……………………………………………………... 22

2 Test conditions……………………………………………………………... 23

3 Memory map for 68HC12…………………………………………………. 61

4 Sandwich structure of a data packet……………………………………….. 66

 1

CHAPTER I

INTRODUCTION
A. Introduction

The railways in America suffer considerable losses each year due to derailments.

The causes for these derailments are defects in the track and inherent faults in the railcar.

Several attempts have been made to prevent these problems, but most of them have been

restricted to the analysis of track and train dynamics; the derailment problem has not

been analyzed extensively from the viewpoint of the defects in the track and the railcar.

This gap motivates the topic for this thesis, i.e. to look at remedial measures from a

different perspective.

Railways have come a long way in terms of development. There has been a

tremendous progress in reduction of travel time with modern technologies contributing

to speed of the engines. However, one thing that has not undergone a major change is the

track; the tracks are the same in many countries. This is a major source of worry since

the old tracks may not be able to handle current high-speed locomotives and may be a

source of derailment [1]. Various kinds of special purpose railcars that are designed to

handle different types of payloads also add to the existing problem, because the present

day tracks are not designed to handle different types of locomotives and cars (as is the

situation now in North American railways). Replacing or laying thousands of miles

special purpose track is no menial task; it is also not cost effective [2]. Thus the current

need is to develop a system that identifies potential faults in both railcars and tracks. The

goal is to identify where the fault lies. It might so happen that faults existing in the

railcar might damage the track.

Derailment of a train occurs when the wheels lift and slip out of the track. In

more specific terms, a derailment occurs when the ratio of lateral displacement to

vertical displacement, which is termed the L/V, ratio-exceeds a critical limit whose value

is typically 1.2 [3].

The journal model is IEEE/ASME Transactions on Mechatronics.

 2

There are several different ways or mechanisms by which a train/railcar can

derail. The derailment might be due the defects in the track or due to a defect in the

railcar itself.

A major cause for concern in the rail industry is the faults in railcar itself. There

can be instances in which the track buckles due to a faulty bogie. Some faults in railcars

like wheel-flats cause permanent damage to the tracks. Thus, it becomes crucial to

rectify these faults before they cause further damage.

It is critical to identify a faulty bogie and also identify which part of a track is

defective so that corrective measures can be taken.

Defects in a railcar can be very broadly classified as:

• Defects in the bogie and trucks

• Bearing faults

• Wheel defects

 Of the above-mentioned faults wheel defects and bearing faults are the most

damaging ones. Bearing faults have been researched extensively in the past as compared

to wheel defects. Of all the physical damage that occurs in a wheel, a wheel flat is the

most critical, because it is the one that occurs most frequently and causes severe damage

to the track. A primary source for this is due to uneven braking of the wheels.

B. Objective

The main objective of the proposed research is to identify faults that plague a

railcar and be able to clearly distinguish the faults of a railcar from inherent faults in the

track. However, focus of this research is mainly to identify wheel flats. That is, the aim

here is to develop a low cost, fault detection system that identifies whether the potential

source for derailment is a faulty railcar or a defect in the track.

 3

In order to achieve the desired objective, significant preliminary research needs

to be done in terms of development of hardware and software. Research in terms of

hardware involves development of the RF (radio frequency) links in conjunction with

microcontrollers and also manufacturing the enclosure that houses the requisite

hardware. Research in terms of hardware involves development of a robust algorithm

that does not simply detect a fault but also does the same for the system as a whole that

is, noise elimination algorithm for reliable RF transmission.

C. Justification for the proposed research

Most of the research carried out in the railroad industry thus far has been

restricted to the analysis track and train dynamics. In the area of fault detection,

detection of bearing faults has received maximum attention. Wheel flats have not been

given priority although they cause significant damage. In current research efforts,

detection of a wheel flat has been a relatively neglected field. The closest anyone has

come to identifying a wheel flat by similar fault detection techniques is by using the

bearing fault detection method of Dr. A. K. Chan [4], at Texas A&M University, where

the signals meant to analyze the bearing fault are used to identify wheel flats. This

method has not been very successful in detecting wheel flats as accurately as bearing

faults.

An “on-board-real-time” fault detection system has not been explored

extensively in this field, thus making the current research important.

D. Literature review

There has been significant work in the past with regard to identifying the cause

for a fault, especially in identifying the bearing fault. The “Acoustic Bearing Detector “

[4] has been devised by Dr. A. K. Chan at Texas A&M University. This method is

supposed to detect a faulty bearing to an accuracy of 85%. There are a couple of

 4

drawbacks to this system though; this system cannot detect certain conditions like the

grooved axle condition or defective roller condition. This is not an onboard system, the

sensors are placed adjacent to the track, and these sensors pick up the sound waves from

the bearings whizzing past them and analyze it on the spot. The maintenance of these

systems can be pretty expensive. However, there is no such method for identifying a

wheel flat condition. The acoustic bearing detector sometimes catches a signal, which is

a characteristic response of a wheel flat, but no explicit algorithm has been created to

identify wheel flats.

Preliminary study by R. M. Kaul [5], for a train protection warning system does

use the concept of sending certain frequency signals to a box (with receivers to analyze

signals) placed in each of the cars. This system aims at stopping a train for certain faults

and does not use the “centralized system” for transmitting signals back and forth

between the main unit and the controller. Also this system has not been developed to

identify faults in a railcar.

Kumagai et al. [6], have done some extensive research on the occurrence of

wheel flats and have devised certain measures to prevent it. But the issues tackled are

more on the material science side; it does not indicate any method to identify the

beginning of wheel flat, i.e. how the fault manifests when the train is in motion.

Research by D. H. Stone [7], indicates causes for the propagation of a shattered

rim, but analysis is done only after damage has already occurred. Although certain

specific causes are ascertained, it does not indicate how to take preventive measures

when the defect is manifesting in a moving car.

The closest anybody has come to the proposed research is A. Filip [8], who has

done substantial research in the area of a train integrity monitoring system. This system

is useful to identify railcars that detach from the main cars. The drawback of this system

though is that it uses relatively expensive GPS antennae and a sophisticated computer

system. In addition it does not identify any other fault in a railcar.

 5

TRACS [9], a system developed by Par Astrom of ABB, Sweden uses Motorola

microprocessor for general monitoring of system but does not address the wheel flat

issue. This system needs additional memory to store data thus adding to the costs.

E. Summary of contributions

The following items serve to summarize the contributions of this thesis

• Formulation of the problem statement by researching different kinds of faults.

• Modifying an existing simulation software GENSYS to suit the need of North

American railroads.

• Creating the faults in the software and running the simulations for different test

conditions to see the responses of a fault.

• Analyzing the behavior of the vehicle and deciding a suitable scheme to identify

these faults.

• Conceptualization of a system to identify these faults.

• Implement the system using suitable electronics and hardware.

• Address the issues in radio frequency (RF) transmission.

• Write a suitable algorithm to implement a fault detection system.

• Create a Graphical User Interface (GUI) in VC++ to detect the faulty signals

from a sensor.

• Package the setup, i.e. the microcontroller and the RF Transceivers in an

enclosure such that it can be used in any kind of rugged environment.

F. Outline of this thesis

The organization of this thesis is as follows: Chapter II looks at the different

causes for derailment and identifies the different problems that plague a railcar. Chapter

III looks at the software used for simulation: GENSYS, the results are analyzed and

 6

related to the type of fault. Chapter IV looks at a possible fault detection system to tackle

the faults encountered in Chapters II and III. Chapter IV deals with the principle of fault

detection. Chapter V deals extensively with the hardware used and the solutions to the

problems encountered. Chapter VI concludes the thesis.

 7

CHAPTER II

CAUSES OF DERAILMENT

A. Introduction

Before looking at potential causes for derailment of a railcar, let us analyze how

a derailment might occur. Technically speaking the derailment of a train occurs when the

wheels lift and slip out of the track. In more specific terms, derailment occurs when the

ratio of lateral displacement to vertical displacement- termed the L/V ratio-exceeds a

critical limit whose value is typically 1.2 [3].

There are several different ways or mechanisms by which a train/railcar can

derail. The derailment might be due the defects in the track or due to a defect in the

railcar itself. Section B explains some conditions other than the defects in the railcar that

might cause the derailment and section C deals with the defects in the railcar that might

cause the derailment.

B. Conditions other than a defective railcar that might cause derailment

Listed below are the conditions/mechanisms that might cause a railcar to derail.

The conditions and mechanisms listed below are excluding defective railcars.

(a.) Derailment due to resonance [1]

The tracks are not defect free. Defects like waviness in lateral and vertical

directions show up in the long run. This might excite railcars moving at high speeds to a

resonant condition, which may lead to derailment.

 8

(b.) Resonance due to packing material [1]

Most railcars are provided with packing materials whose primary function is to

absorb the undesired vibrations and protect the load it is carrying. However, faulty

packing occasionally drives the railcar to resonance.

(c.) Derailment due to the wheels being lifted of the track [1]

This situation might arise when the train is moving at a high speed on a curve

and the wheel on the outer side might lift of the track above a critical speed. Also when a

locomotive is negotiating a sharp curve it uses high horse power for better traction that

gives rise to high contact stresses at the wheel-track interface that might cause the wheel

to slip over the track.

C. Faults in a railcar

A major cause for concern is faults in the railcar itself. Derailments caused by the

above mentioned factors are also initiated by faults in railcars. There can also be

instances that the track buckles due to a faulty bogie [1].

Some faults in railcars like wheel-flats cause permanent damage to the tracks. It

is very crucial to rectify these faults before they can cause further damage. It becomes

critical here, to identify the faulty bogie and also identify which part of a track is

defective so that corrective measures can be taken.

Defects in a railcar can be broadly classified as:

• Defects in the bogie and trucks

• Bearing faults

• Wheel defects

 9

Of the above list, the last two are the major cause for concern. Extensive research

has been conducted to identify the manifestation of these faults. The wheel flat has been

relatively unexplored as far as fault detection is concerned. These are discussed at a later

part in this thesis.

(a.) Bogie defects

The physical deformation of the parts of the railcar falls into this category. The

defects can be a warped bogie/truck, which happens because of laterally or angularly

misaligned wheel sets. This kind of a defect might cause the track to expand at certain

points.

(b.) Bearing faults

Derailments of trains caused by wheel bearing faults are a significant problem in

the rail industry. Trains often consist of 80-100 wagons and up to 1,600 bearings [10].

The failure of a bearing can cause significant damage to both the cars and the tracks.

One of the most extensively researched fields involves the bearing fault. Listed

below are three of the most common conditions of occurrence of a bearing fault.

• Hot Bearing

• Spalling

• Spun Cone

As the name suggests a hot bearing occurs when the bearing is getting

abnormally hot. If this condition is not identified in its initial stages it may lead to a

catastrophic failure. This condition occurs mainly due to the loss/contamination of the

lubricant that would increase the friction and hence high temperatures on the bearing

surfaces result in a heat build up that leads to failure of the axle journal. Portions of oil

wick could also get caught between the bearing and the journal resulting in heat [11].

 10

 The other common defect is fatigue spalling that is caused by metal stress

fatigue. Spalling is basically sub-surface defects that propagate to the surface because of

cyclic stresses. Spalling is the final stage of this propagation. When the material

imperfection finally breaks away at the surface it is known as “Spall.” Fig. 1 shows a

typical fatigue spall on a cone, Fig. 2 shows the section views through spalled

components. Both of these are typical examples of metal stress fatigue explained above.

 Brinelling is a common defect encountered in roller bearings. This occurs when

indentations are made in the raceway made by rollers under extreme loading conditions.

Brinelling can lead to spalling due to uneven load distribution [11]. A typical example of

Brinelling is shown in Fig. 3.

 Fragment indentation is a condition in roller bearings that occurs when the

surface is damaged by debris passing through the roll tracks that result in surface dents

[11]. These indentations can contribute to fatigue by acting as stress concentration point.

This is illustrated in Fig. 4.

Fig. 1. Fatigue spalling [12]

 11

Fig. 2. Section view of spall [13]

Fig. 3. Brinelling [13]

 12

Fig. 4. Fragment indentation [13]

Peeling and smearing are conditions that arise when the rollers move in improper

lubricating conditions. Peeling is minute particles coming of coming away from the

surface. Smearing arises because of transfer of metal from one surface to another [11].

The phenomena are illustrated in Fig. 5 and Fig. 6.

Fig. 5. Peeling [13]

 13

Fig. 6. Smearing [13]

Water etching and pitting are problems caused by the presence of moisture.

During cooling of a hot bearing the vacuum inside the bearing attracts air and water

vapor. This is shown in Figs. 7 and Fig. 8.

Fig. 7. Etching [13]

 14

Fig. 8. Pitting [13]

Spun Cone is a condition in which the bearing wears out in a tapered fashion.

This is because of non-conformity of the axle-journal diameters and also because of age

factors. This is shown in Fig. 9.

Fig. 9. Spun cone [13]

Bearing faults in huge proportions predominantly causes derailments. Therefore,

it is very crucial to identify this fault in its initial stages and take requisite actions.

 15

(c.) Wheel Defects

This is an important element, it also shelters many a faults. Listed below are a

few of them

• Wheel Spalling

• Shattered Rim

• Corrugated Wheels

• Cracks

• Sub-Surface Defects

• Treading

• Wheel Flats

All these are the physical damage that occurs to the wheel.

The propagation of crack on the surface of the wheel contributes to wheel

spalling (which is similar to occurrence in a bearing). Shown in Fig. 10 is a serious

condition of a wheel spall.

Fig. 10. Wheel spalling [13]

Shattered rim is an extreme case of wheel spall as can be seen from Fig. 11.

 16

Fig. 11. Shattered rim [14]

Corrugation is a series of irregular waves on a structure. In railways corrugation

is mainly seen on tracks (corrugated rails). But this defect can also be seen sometimes on

the circumference of a wheel as shown in Fig. 12.

Fig. 12. Corrugated wheel [15]

 17

One of the reasons for corrugation is great traction force on the wheel. This

phenomenon is also called “polygonisation”.

 Wheel flat is one of the widely researched topics as far as the defects in a rail car

go. This, as the name suggests, is flatness on the surface of the wheel. Uneven braking

and uneven loads are the two main causal factors. This also has a damaging effect on the

track as can be visualized by Figs. 13 and 14.

Fig. 13. Wheel flats [16]

 18

Fig. 14. Close up of one of the flats [16]

Of all the faults listed above, the wheel flat is the critical one, for this is the one

that occurs most frequently and is not detected easily by any of the present diagnostic

methods. Thus, this fault along with the bearing fault has been chosen for analysis by the

proposed system as can be seen in later chapters.

 19

CHAPTER III

GENSYS
A. Introduction

The response of an accelerometer due to defects on track, wheel, and bearings

was initially an unknown quantity to begin with. No extensive research has been done in

North American railways using an accelerometer as a sensor. This makes it difficult to

get access to data that would show what a faulty data would look like. Restriction to

access already existing data from the American association of railroads (AAR) test

facility ruled out using a previous test data.

 It was decided that simulation was the closest we could come to an actual test on

a railcar. This apart, using software would give us the flexibility of simulating different

test conditions that would have been difficult considering the effort and the cost

involved.

 There are very few rail vehicle dynamics simulation packages in use; this makes

selection process relatively easy. Available software packages are VAMPIRE,

GENSYS, SIMPACK, ADAMS and NUCARS. The selection process was done taking

into account the results of “The Manchester Benchmarks for Rail Vehicle Simulation”

[17].

 The Manchester Benchmarks indicate that all the software codes perform

similarly in most of the regions and concur with the general perspective. Keeping in

mind the response from the companies, the cost and flexibility of the software, GENSYS

was initially chosen to explore the different condition experienced by a railcar.

GENSYS is a multibody computer code and is widely used in railroad research in

Europe and has been constantly validated by asea Brown Boveri (ABB) and Adtranz,

Sweden, for different kinds of rail vehicle [18]. The source code for GENSYS is written

mainly in FORTRAN-77 with the graphics part being taken care of by ANSI-C.

 20

B. Railcar model used

Most of the bogies in North American railroads consist of 3 pieces, which differs

from European railcars. In a 3-piece bogie model wheel sets support two side frames that

support a bolster. The bolster is connected to the car body by a central pivot and side

bearers with sliding surfaces. Seven sets of concentric springs provide the vertical and

lateral suspension between the side frames and the bolster as shown in Fig. 15. Damping

for the model is provided by spring loaded snubbing wedges that are located between the

ends of the side frame and the bolster. The wedges are positioned such that a part of the

body weight goes through the wedges causing the normal forces and thus the damping to

vary with vehicle load [19]. A typical 3-piece bogie assembly is shown in Fig. 15.

Fig. 15. Typical assembly of a 3-piece bogie [13]

 The base model in GENSYS was created keeping in mind the European railcars.

It had to be remodeled to match the 3-piece bogie model; the main code was modified to

create a 3-piece bogie.

 21

In GENSYS vehicle bodies, bogies and wheel sets are modeled as rigid bodies

and have 6 degrees of freedom [20]. The track is modeled as a rigid body and with each

connected wheel set there is a degree of freedom for each track body and hence the

models contain 46 degrees of freedom. The 3-piece model of a truck created using

GENSYS is shown in Fig. 16.

Fig. 16. 3-Piece bogie model used for simulations in GENSYS [21]

A 3-piece bogie conforming to the standards of American railroads was created

with the option of changing the loads from a full load of 120 ton to any other value. For

simulation purposes full and half loads, i.e. 120 and 60 tons were used at 3 different

speeds.

 22

C. Simulations in GENSYS

As mentioned in the earlier chapters, we are trying to identify wheel flats with

the option of a bearing fault being included for future research. Thus when the faults

were created using GENSYS bearing fault was also included.

(a.) Creation of faults

Changing the wheel geometry in the original code simulates a wheel flat. Thus at

the circumference of the wheel a small disturbance is introduced which is very close to a

miniscule wheel flat.

 Bearing fault was introduced into the model by making a small deformation in

the bearing, which would very roughly represent a bearing fault.

(b.) Simulation

Simulation was run for 2 different load sets at 3 different speeds.

The main simulation parameters are shown in table 1.

Table 1. Simulation parameters

Simulation distance 1.6 kms

Simulation loads 60, 120 tons

Simulation speeds 50, 70, 90 km/h

The different test conditions were:

Full load: 120 tons

Half load: 60 tons

 23

Table 2. Test conditions

LOAD SPEED (km/h) FAULT

Full 50 None

Full 70 None

Full 90 None

Half 50 None

Half 70 None

Half 90 None

Full 50 Wheel flat

Full 70 Wheel flat

Full 90 Wheel flat

Half 50 Wheel flat

Half 70 Wheel flat

Half 90 Wheel flat

Full 50 Bearing fault

Full 70 Bearing fault

Full 90 Bearing fault

Half 50 Bearing fault

Half 70 Bearing fault

Half 90 Bearing fault

Full 50 Wheel flat & Bearing fault

Full 70 Wheel flat & Bearing fault

Full 90 Wheel flat & Bearing fault

Half 50 Wheel flat & Bearing fault

Half 70 Wheel flat & Bearing fault

Half 90 Wheel flat & Bearing fault

 24

(c.) Discussion of results

Figs. 17-34 show results of the simulation of a combined bearing fault and wheel

flat at 70 kmph and with a full load. The results are discussed after the figures.

0 500 1000 1500 2000 2500 3000 3500
-1

0

1

2

3

4

5

6

7

8
x 10

-4

m
et

er
s

Data points

Fig. 17. Longitudinal position of the center of gravity of
the leading axle of the leading bogie

 25

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

7

8
x 10

-5

m
et

er
s

Data points
Fig. 18. Longitudinal position of the center of gravity of

the trailing axle of the leading bogie

 26

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

7

8
x 10

-5

Data points

m
et

er
s

Fig. 19. Lo
th

ngitudinal position of the center of gravity of
e leading axle of the trailing bogie

 27

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

7

8
x 10

-5

m
et

er
s

Data points

Fig. 20. Longitudinal position of the center of gravity of
the trailing axle of the trailing bogie

 28

0 500 1000 1500 2000 2500 3000 3500
-0.5

0

0.5

1

1.5

2

2.5

3
x 10-4

m
et

er
s

Data points

Fig. 21. Position of the bolster beam

 29

0 500 1000 1500 2000 2500 3000 3500
-9.9

-9.88

-9.86

-9.84

-9.82

-9.8

-9.78

-9.76

-9.74

m
/s

2

Data points

Fig. 22. Vertical acceleration in car-body over leading bogie

 30

0 500 1000 1500 2000 2500 3000 3500
-9.84

-9.83

-9.82

-9.81

-9.8

-9.79

-9.78

-9.77

-9.76

m
/s

2

Data points

Fig. 23. Vertical acceleration in the center of the car-body

 31

0 500 1000 1500 2000 2500 3000 3500
-9.83

-9.82

-9.81

-9.8

-9.79

-9.78

-9.77

m
/s

2

Data points

Fig. 24. Vertical acceleration in car-body over trailing bogie

 32

0 500 1000 1500 2000 2500 3000 3500
-9.9

-9.88

-9.86

-9.84

-9.82

-9.8

-9.78

-9.76

-9.74

- Leading bogie
: Center of the Car
* Trailing bogie

m
/s

2

Data points

Fig. 25. Car accelerations at different sections

 33

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

K
N

Data points

Fig. 26. Vertical force, tread, left wheel

 34

0 500 1000 1500 2000 2500 3000 3500
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 10

5

Data points

K
N

Fig. 27. Vertical force, tread, right wheel

 35

0 500 1000 1500 2000 2500 3000 3500
-0.04

-0.02

0

0.02

0.04

0.06

0.08

Data points

Fig. 28. Flange climb ratio left wheel, first axle

 36

0 500 1000 1500 2000 2500 3000 3500
-0.1

-0.05

0

0.05

0.1

0.15

Data points

Fig. 29. Flange climb ratio right wheel, first axle

 37

0 500 1000 1500 2000 2500 3000 3500
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

Data points

Fig. 30. Flange climb ratio left wheel, second axle

 38

0 500 1000 1500 2000 2500 3000 3500
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

Data points

Fig. 31. Flange climb ratio right wheel, second axle

 39

0 500 1000 1500 2000 2500 3000 3500
-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

Data points

Fig. 32. Flange climb ratio second bogie, left wheel, and first axle

 40

0 500 1000 1500 2000 2500 3000 3500
-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

Data points

Fig. 33. Flange climb ratio second bogie, right wheel, and first axle

 41

0 500 1000 1500 2000 2500 3000 3500
-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

Data points

Fig. 34. Flange climb ratio second bogie, right wheel, and second axle

 Attached above are a few of the important plots from the simulations run on

GENSYS. These plots enable a better overview of a rail vehicle behavior, more

specifically at the points we desire in presence of a fault. The software gives us

flexibility to place different sensors at vantage points to measure variables like

acceleration and contact forces.

 Fig. 17 is a plot of the longitudinal position of the C.G of leading axle of the

leading bogie. It can be seen that the bearing fault is not having any noticeable effect on

the leading position of the bogie, but the wheel flat shows up on the plot in a big way.

This is because of the impact that a wheel flat causes. There is a temporary loss of

contact between the wheel and the rail and just before the moment of impact. A large

force on the wheel is transmitted to the axle and thus to the bogie. This impact can be

 42

detected by any inexpensive sensor and can be detected easily as opposed to the bearing

fault whose effect is not obvious in the plot.

 The next three figures show the effect of the wheel flat waning away. Figs. 18-

20 shows the lateral position of the trailing axle of the leading bogie and the leading and

trailing axles of the trailing bogie, that is the wheel flat has a major effect only of the

axle where it is located. The next plot explained further verifies this.

 Fig. 21 shows the position of the bolster beam. In the first look it seems that both

the wheel flat and the bearing fault have an effect on the bolster beam which is

surprising considering the fact that the bearing fault had almost no effect on the leading

axle which, is nearer to the fault than the bolster. A closer look at the plot indicates that

the magnitude is much smaller than for the other plots. This further verifies the fact that

the effect of the wheel flat wanes as the distance from the fault increases.

 The next plot shown in Fig. 22 shows the vertical acceleration in car-body over

leading bogie. This can be easily monitored by an accelerometer. The plot when looked

at without any reference might appear difficult to identify any faults, but, as we look the

plots in the next two figures, i.e. Fig. 23 and Fig. 24 we can see that the magnitude of

acceleration is distinguishably higher than that of the accelerations in the center of the

car and at the trailing bogie. In fact the accelerations at the center of the car and at the

trailing bogie do not show any pattern as compared to the leading bogie, where sharp

peaks can be noticed at the points where wheel flat makes contact with the rail.

 The next plot summarizes what was said in the previous paragraph. Fig. 25.

shows accelerations at the leading bogie, the center of the car and the trailing bogie. It

can be seen clearly from this plot that the faulty bogie gives out sharp peaks indicating a

fault. The other parts of the plots almost match in all the three cases, although the

leading bogie does show some higher peaks because of the bearing fault, such small

differences will be difficult to distinguish in real situations.

 Plots in Figs. 26 and 27 indicate the vertical force at the left and the right wheels

in the leading bogie. The forces at the other axles are very small and can be neglected.

This case gives an option of exploring a force sensor to identify faults. It can be clearly

 43

seen that the magnitude of the force shoots up the moment the wheel flat touches the rail.

The bearing fault too seems to increase the contact force, though not on a very large

scale. The fault on the left wheel does not affect the contact forces at the right wheel,

thus enabling us to use the forces at the wheel rail interface to identify the faults

explicitly and more conclusively.

 The remaining plots deal extensively with the most important factor in

identifying (or preventing) the derailment: the flange climb ratio. As mentioned earlier

L/V ratio is a crucial factor in derailment of rail vehicles. The critical value typically lies

around 1.2. None of the cases in the simulation threaten to approach this value for the

magnitude of the fault created is not that serious. The fault created is at the right wheel,

thus we can see that the magnitude of the L/V ratio is high at the right wheel-track

interface, a part of the repercussion can be seen at left wheel-track interface.

D. Conclusion

 Numerical simulations reported in this chapter gave us a very clear picture on

how the response of the vehicle will be in presence of a fault. This also gives us an

opportunity to explore different sensors like strain gages and accelerometers to get

similar kind of responses from a real vehicle. On the basis of this simulation the system

was further developed.

 44

CHAPTER IV

PRINCIPLES OF FAULT DETECTION

A. Introduction

With regards to this project, fault detection implies, identifying the faults that

have a potential to become damaging ones. And “damaging ones” further implies those

faults that would not just damage the tracks but might lead to derailment.

Since, not all the faults listed in chapter II occur frequently, we prioritize and

treat those faults that occur most frequently, which are also the ones that cause the

maximum damage. Wheel flats and bearing fault are two such commonly occurring

faults. As already discussed earlier bearing faults that are left unattended can lead to

catastrophic failures.

Wheel flat has not been given as much importance as its bearing counterpart as

far as the detection part of it goes, but it ranks alongside bearing fault in terms of the

damage caused to the railways, both in terms of damage to the tracks and monetarily.

Thus, these two faults, i.e. wheel flats and bearing faults, have been chosen for

the first stage of fault detection. The other faults have been ignored for the moment since

their damage is relatively less, but this system can be later extended to other kinds of

faults.

B. On-board fault detection system

As mentioned in section C of chapter I, there are well-established systems to

identify bearing faults; the same systems sometimes detect signals of a wheel flat,

 45

though very infrequently. A major disadvantage of this system is that it is a wayside

fault detection system. Although it can identify a bearing fault up to an accuracy of 85%,

maintaining a large number of such systems throughout the railways network will prove

to be an expensive affair.

The aim here is to create a low-cost, low-maintenance on-board fault detection

system; this will not only eliminate the costly job of installing an expensive system and

maintaining it but will also eliminate unnecessary processing of a multitude of data.

The principle of operation of the system will basically be to pick up signals from

some kind of a sensor and analyze those signals to look for the fault, which would

basically be identifying a signature response. The idea is based on the assumption that

each kind of fault will give out a signature response (as has been seen in various

systems).

Vibration at certain points is considered to look for a fault. This was decided

after running some simulations on GENSYS as discussed in the previous chapter.

The vibration response was unique for both types of faults. The bearing fault was

characterized by a high frequency signal, whereas sharp peaks at regular intervals

characterize the wheel flat, as can be seen from Figs. 35 and 36. These responses were

obtained by simulating in GENSYS.

 46

0 500 1000 1500 2000 2500 3000 3500
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
x 10

-7

m
et

er
s

Data points

Fig. 35. Response from an accelerometer in presence of a bearing fault

 47

0 500 1000 1500 2000 2500 3000 3500
-1

0

1

2

3

4

5

6

7

8
x 10

-4

m
et

er
s

Data points

Fig. 36. Response from an accelerometer in presence of a wheel flat

These plots appear as expected. A wheel flat is approximately a smooth flat

surface at the circumference of the rim. When a flat hits the rail the wheel loses contact

with the rail for a fraction of a second; when it comes in contact again with the rail it

creates a certain impact, which stands out as a sharp peak in the response. On the other

hand the bearing fault on the other hand is made up of many small surface defects, and is

located at the center of the wheel and thus gives out a high frequency response.

It is relatively easy to identify a wheel flat for it stands out very significantly, the

effect of noise and other factors can be ignored while identifying a wheel flat.

For a bearing fault, different types of frequency analysis can be used to identify

the fault, but in real world it becomes much more difficult, for there may be many other

similar kinds of noises.

 48

 Considering that we do not have any access to existing data at AAR and certain

memory issues from the sensor we chose to narrow our target to just wheel flat for the

moment.

Thus using vibrations emanating from certain points in a railcar as a signature

response, the fault detection system will be packaged and placed at a suitable point on

the railcar.

C. Identifying defective tracks

A very interesting find that came out during this research was the ease with which faulty

tracks could be identified. Electronics have been used explicitly to find out different

types of faults, but never has been track defects identified, save for those track cars,

which can never explore the length of the tracks all over North America. This follows a

very simple algorithm, which waits for all the signals from different cars and then

analyzes the characteristic of these signals. If all the cars have emitted the same signal in

a given period of time then we know that there has to be a defect outside the cars, which

points to a defective track. Thus we can record the distance where the fault lies in the

track. A very basic algorithm is explained in appendix III.

 49

CHAPTER V

HARDWARE SYSTEM FOR FAULT DETECTION

A. Introduction

The faults are identified using various hardware setups; all the requisite hardware

should gel as a single unit while monitoring the fault.

Since the need of the hour is a low-cost system, one of the key issues to be kept

in mind is the issue of power management of the hardware. As will be seen in the

following sections the electronic part of the hardware involved requires some sort of

voltage source for functioning and by proper selection of the electronic units, a single

power source can be used to supply power to the hardware; this also reduces the periodic

checks of hardware in the system.

B. Overview of the system

From the previous chapter we know that we need some kind of a sensor that will

send the signals for identification of the fault. There has to be a unit, which will monitor

all the vibration in a railcar and to supervise such small units we will need a main

monitoring system. We will call the main monitoring system as “Master” and the other

smaller units as “Slaves,” in a broad sense.

Communication between the master and slave monitoring systems will take place

via radio frequency (RF) transmission. Thus the system overall will look similar to Fig.

37. The signals picked up from the sensor will be sent through the RF link to the master

for data logging.

Since, the signals picked up from the sensor will have to be processed constantly

for identifying faults, each slave will have a Motorola 68HC12B32 board, and the master

will have a Motorola 68HC12A4 board. Thus, signals from the sensor are sent to the

controller, which in turn, based on the seriousness of the fault communicates to the

master through the RF link (Fig. 38).

 50

CAR 4CAR 3
MASTERCAR 2 CAR 1 CAR 5

RF RECEIVER

68HC12B32
MICROCONTROLLER

RF TRANSMITTER

CAR 4

Fig. 37. Overview of the system with the slave

 51

CAR 4CAR 3
MASTERCAR 2CAR 1 CAR 5

RF RECEIVER

68HC12A4
MICROCONTROLLER

RF TRANSMITTER

CAR 3

Fig. 38. Overview of the system with the master

 52

68HC12A4

RF TRANSMITTER

SERIAL PORT 1
(PIN PS3)

SERIAL PORT 1
(PIN PS1)

RF RECEIVER

68HC12B32

SERIAL PORT 0
(PIN PS1)

RF RECEIVERRF TRANSMITTER

SERIAL PORT 0
(PIN PS0)

MICRO
CONTROLLER

MICRO
CONTROLLER

Fig. 39. Expanded view of the process of RF transmission

 53

C. Organizing the fault detection system

Since we have an overall idea on how to implement the system, we can split the

task into three broad categories.

• Selection of a proper sensor

• Selection of hardware for analysis purposes

• Assembling the whole unit to create a fault detection

system

(a.) Selection of a proper sensor

Since we are aiming at identifying wheel flat and the bearing fault, it will be

appropriate to place the sensor at a point where it can pick up identifiable signals from

both the points. Since the bearing fault occurs mainly at the wheel axle junction and the

wheel flat at the surface of the rim, the best place for the sensor would be just before the

wheel-axle interface.

This area will be subjected to extreme conditions like variations in temperature,

dust, mechanical strains etc. A very robust sensor will therefore be needed, which will

not only pick up the vibrations from the interface but also survive the harsh environs.

Piezoelectric accelerometers are designed for low mechanical strain and are

relatively unaffected by thermal transients, thus it was decided as an ideal choice for a

sensor. To this end, we chose Analog Devices’ ADXL202®, which is a 2-axis

piezoelectric accelerometer.

(b.) Selection of hardware for analysis purpose

After sensor receives the signal, some kind of a processor is needed for

preliminary analysis that would also prevent unnecessary transmission of data that might

 54

clog the master processor. Since the sensor is placed in all the railcars, the centralized

controller-master will monitor the sensors and processors in all the cars.

Thus, this can be broadly classified into two different stages.

• Sensor-Slave Stage

• Slave- Master Stage

As the names suggest, sensor-slave stage involves the interaction between the slave

and the sensor and the slave-master stage involves the interactions between the master

and the slave.

Both the slave and master will have a fair amount of processing to do. The slave has

to continuously monitor the data and look for any ominous signs of a fault. In case a

fault is manifest the slave alerts the master. The tasks a slave is expected to perform

mainly are:

• Respond to the commands sent by the master.

• Pick up the signal from the sensor and process the signal to look for high

frequency components (characteristic of a bearing fault).

• Pick up the signal from the sensor and look for sharp peaks (characteristic of a

wheel flat).

The master processor on the other hand is expected to have certain functionalities, a few

of which are:

• Capable of interpreting user-entered commands on a PC and sends signals to the

slaves accordingly.

• Be able to prioritize signals arriving from various slaves.

• Be able to interpret the data and decide whether a fault lies in a particular section

of a track or on some railcar.

Thus it is clear that some kind of a micro controller that has adequate processing

capabilities is needed to perform the functions of both the master and slave.

 The controllers are expected to perform various tasks like isolating the noise from

the actual data, processing the data, and responding to commands issued by the user.

 55

It is imperative that the controllers used have sufficient memory apart from

having the desired functionalities. After conducted a preliminary research on the various

kinds of commercially available controllers, Motorola 68HCXX series of

microcontrollers were found to have requisite functionalities required for our purpose.

Keeping in mind the various constraints like the cost-efficiency, the memory issue, the

ease of use and available documentation for the controllers, the Motorola M68HC12A4

and M68HC12B32 boards were chosen. Both have the capability to act as a “Master”

controller. For our purpose though the M68HC12B32 has been chosen as the “Master”

controller.

These are 16-Bit microcontrollers with 1K of RAM and 768bytes of EEPROM

with facility to incorporate fuzzy logic.

The next issue that crops up is how to effect the communication between the

master and the slave. Since Motorola 68HCXX series have been chosen, the serial ports

of the microcontroller can be used to effect serial communication (explained later)

between the boards. The simplest way to communicate is just to connect the serial ports

through an RS-232 cable. But the problem arises when you want to make these

connections in a real situation; the total number of cars in a typical freight train is

approximately 100-150, with the total length of the exceeding 1,000 feet. Having the

master-slave communication through a wire in this case is virtually impossible for a host

of reasons, which is explained in RF transmission section. Wireless communication is

not only efficient but also robust and fast. For this reason a Radio Frequency (RF) link

was chosen over communication by wires. Glolab corporations’ TM1V and RM1V

transmitters and receivers were chosen for this purpose. The transmitter module TM1V

is a 418 MHz RF transmitter and it is capable of sending serial data at a rate of up to

4800 bps (bits per second). A huge plus for the transmitter considering that we are

aiming at a low cost system is the low power consumption of 1.5 ma. The receiver

module RM1V also has the same features. When TM1V and RM1V are used in

conjunction, serial data can be transmitted easily over a distance of 300 feet. The

technical details of these are attached in appendix V.

 56

(c.) Assembling of the fault detection system

The idea, as stressed earlier, is to pick up the signals from a sensor and transfer

the signal through a microcontroller, which in turn transmits data though a RF

transceiver to a “Master” controller, which will analyze the data further. It is proposed to

package the entire hardware- sensor, microcontroller and transceiver- in a single

enclosure so that it can be attached to a railcar at an appropriate location. This makes the

system simple to maintain and use.

 D. Functioning of the hardware

After the components are assembled, the master (68HC12A4) and the slave

(68HC12B32) subsystems appear as shown in Fig. 38. Thus when the master receives a

command from the user it performs the required function. Let us say that the command

is to fetch the accelerometer data, the master interprets the command accordingly and

then sends a command through pin PS3 of the serial port1 to the RF transmitter. These

commands are in the form of a packet that is received by the RF receiver on the slave

side and sent to the microcontroller through the pin PS0 of serial port 0. The

microcontroller now fetches the accelerometer data from the analog – digital converter

and sends the data through pin PS1 of the serial port 0 to the RF transmitter. This data is

received by the RF receiver on the master side and send to the microcontroller through

the pin PS1 of the serial port 1. The master then prints this value on the screen. This is

just a very basic explanation on how the data actually flows in this set-up.

E. Hardware architecture

Thus to summarize, the Hardware architecture consists of:

• A PC, which acts as a user-friendly terminal, and that interacts with a “Master”

subsystem.

 57

• A “Master” subsystem will execute the user prompted commands.

• A “Slave” subsystem responds to the “Master” commands.

The “Slave” subsystem is comprised of the following hardware:

• Motorola 68HC12B32 Board

• Accelerometer

• Glolab TM1V and RM1VTransmitter and Receiver

The “Master” subsystem comprises of the following hardware:

Motorola 68HC12A4 Board

Glolab TM1V and RM1V Transmitter and Receiver

All these will be assembled in an enclosure as will be seen in the last chapter.

F. Fault detection software

The fault detection software should be able to identify the faults manifested in

the car. Below is a simple algorithm used for this purpose

Pseudo code for the master:

• Wait for interrupts to occur

• If interrupt is from a slave then transmit the data to the PC terminal

• If some information is required from the slave, communicate with the slave and

re-transmit information to the user.

• If receive interrupts from different slaves, analyze all the data and determine the

kind of fault, if any.

 58

Pseudo code for the slave:

• Wait for the interrupt from the master, but keep processing the signals from the

sensor.

• If there is a critical signal from the sensor, then immediately inform the master,

otherwise keep analyzing data from the sensor.

• If and interrupt occurs because of a command from the master, respond to the

request by sending appropriate information, the command is usually for a

missing data.

Identification of a critical signal in a Slave

• Continuously check the Accelerometer readings

• If the amplitude of the signal goes over the preset (threshold) value, then

indicate that there is a fault

• If the command is to check for a bearing fault, then store some values from

the accelerometer and perform FFT on the signal to identify very high

frequency components.

The flowchart for this system is shown in appendix I.

G. Introduction to 68HC12

Motorola has two variants of their 68HC12 Micro controller, the 68HC12A4 and

the 68HC12B32. The 68HC12 series has 16- Bit Micro controllers. These micro

controllers are compatible with the 68HC11, therefore there is not an issue of

incompatibility with the old code; all HC11 commands are accepted by the 68HC12.

The 68HC12A4 board contains a low-power, high speed CPU. Two

asynchronous serial communication interfaces, a serial peripheral interface, a flexible 8-

channel timer, a 16-bit pulse accumulator module, an 8-channel, 8-bit analog-digital

converter, 1 kilobyte of RAM, 4 kilobytes of EEPROM, and a single-wire Background

Debug Mode (BDM) module. The 68HC12A4 also has some additional features like the

 59

capability to expand over 5 MB of memory, non-multiplexed address and data buses,

and phase-locked loop and 24-key wakeup lines with interrupt capabilities.

The 68HC12B32 has almost all the processing capabilities of the A5. Few things

different from the A4 are that it has only 1 asynchronous serial communication interface

and 768 Bytes of EEPROM. The B32 has some unique features like 32 KB flash

EEPROM and a built in pulse-width modulator.

The A4 is normally configured to run mainly in an expanded mode with some of

the resources existing outside the chip, whereas the B32 is configured to run in a single

chip mode are all the resources are in the chip.

The A4 though can be operated in seven different modes of operation. They

being

• Special single chip

• Special expanded narrow

• Special peripheral

• Special expanded wide

• Normal single chip

• Normal expanded narrow

• Reserved

• Normal expanded wide

The factory default mode is the normal expanded wide mode. In this mode the

expanded bus is present with a 16-bit data bus. Port D is the low byte data bus and port

C is the high byte data bus.

In the normal expanded narrow (x8) mode of operation, the expanded bus is

 60

present with an 8-bit data bus. Port C functions as the data bus in this mode. No external

bus is available in the Normal single chip mode of operation. All program and data

fetches are from on-chip memory or peripheral registers. Ports A, B, C and D are

available for general purpose I/O.

 The special peripheral mode of operation is a test mode. The CPU is not active.

On-chip peripherals may be accessed directly by an external bus master. It is not

possible to change from this mode without going through reset.

In Special single chip mode, the background debug mode is immediately active

out of reset. Execution begins from the background debug ROM. Commands are sent to

the CPU through the background debug interface pin.

In Special expanded narrow mode port D may be used it view the upper 8 bits of

the data bus.

In the special expanded wide, special expanded narrow and special single chip

modes provide the same functionality as the respective normal modes. These modes are

primarily for testing and provide access to several key features as described above. Not

all the ports are available as I/O ports in all the modes; some are used as address or data

buses.

 The memory map for the A4 is shown in table 3. The memory map basically says

which addresses are available for programming.

 61

Table 3. Memory map for 68HC12 [22]

Address Range Description Location

$0000 - $01FF CPU registers On-chip (MCU)

$0800 - $09FF

$0A00 - $0BFF

User code/data

Reserved for D-Bug12

1 K on- chip RAM (MCU)

$1000 - $1FFF User code/data 4 K on chip EEPROM (MCU)

$4000 - $7FFF User code/data 16 K external RAM

$8000 - $9FFF

$A000 - $FD7F

$FD80 - $FDFF

$FE00 - $FE7F

$FE80 - $FEFF

$FF00 - $FF7F

$FF80 - $FFFF

Available for user programs

D-Bug12 program

D-Bug 12 startup code

User-accessible functions

D-Bug12 customization data

Available for user programs

Reserved for interrupt and reset

vectors

32 K external EPROM

The basic structure and configuration of the ports of a 68HC12A4 in its expanded

mode is shown in the Fig. 40 below.

 62

A/DSPI

4 KB of EPROM

1 KB of RAM
CONTROLLER

PORT E PORT G PORT TPORT J

PORT F PORT H PORT S PORT AD

SCI TIMER

EXTERNAL EPROM

EXTERNAL RAM

EXTERNAL I/O

EXTERNAL ROM

Fig. 40. Block diagram of the expanded wide mode of M68HV12A4 [22]

H. Overview of serial communication in 68HC12

The 68HC12 has three independent input / output systems: two serial

communication interfaces (SCI) and a Serial Peripheral Interface (SPI). The pins of port-

S also double up as serial communication pins, as shown in Fig. 39.

The SCI communication on the A4 and the B32 boards is in the NRZ format as

shown in Fig. 41, i.e. data are sent in the following format- one start bit, eight or nine

data bits and one stop bit.

 63

STOP

BIT
BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0

START

BIT

Fig. 41. Typical structure of the each of byte in NRZ format

 The form of communication used is generally asynchronous communication

(discussed in the following section); SPI is used for synchronous communication. The

boards will be in sleep mode most of the time except when a request is made by the user

or a critical data are to be transmitted for further analysis, the former procedure is called

as the “Wake-up” method, and this is explained later under the heading SCI system. This

not only reduces unnecessary burden on the “Master” controller – we have to keep in

mind that we are not just dealing with a single “Slave” but multiple “Slaves”- but also

saves a lot of power, which is really crucial considering the low-cost of maintenance we

are aiming at, not to forget the ease with which we can deal with systems in

asynchronous communication.

(a.) Serial versus parallel communication

Sometimes it becomes imperative that two systems communicate with each

other. For this type of communication there are a certain set of standards and

methodologies. For communications between two 68HC12 boards, the communication

can either be serial or parallel. In parallel communication an exclusive data line is

reserved for each bit to be transferred and all bits are transferred almost simultaneously.

By contrast, in serial communication there is just one line dedicated to data transfer and

data are transferred bit by bit.

Obviously parallel communication is much faster than serial communication, but

the inherent disadvantage is that you need many lines to transfer data, which at times

might not be feasible, especially in this case where RF transmitter is to be used for

 64

exchanging data. Therefore on a practical basis to send a byte, 8 RF transmitter/receivers

are needed on each side.

(b.) Asynchronous versus synchronous communication

The principle of communication with respect to synchronous and asynchronous

communication is same until the receiver wakes up. In both forms of communication the

receiver will have an idle-line in a high state before the exchange of data. The similarity

ends here.

In synchronous communication the “Master” and the “Slave” communicate

between each other, setting their respective clocks. There are two main methods of

synchronizing the transmitter and the receiver. The first method uses a unique word as a

pulse. When the receiver receives this unique word, it synchronizes itself to the

incoming data. The second method involves providing a shift clock signal, the clock

signals pulses for every data put on the transmission line.

The “Master” can also be programmed to know that within a certain time it has to

receive the data, and whatever comes to it outside this time range is not useful data.

Asynchronous communication as the name suggests does not involve

synchronizing the clocks. The data will be sent in a “packet” format. Therefore the first

set will be a start bit, the receiver is ready to receive the data and knows the data

transmission is over when it receives two stops bits. The second method is to configure

transmit (TxD) pin to logic 1, which is an idle signal, when the transmitter is idle. Thus

when the receiver gets a falling edge, it samples the bit several times to ensure it is

indeed a logic low, and if a valid start bit is received it starts receiving the incoming bits.

Synchronous communication is generally faster than asynchronous communication.

But the mode of communication used in this case is asynchronous

communication for we are not dealing with just two units communicating with each

other, but with hundreds of units trying to synchronize the master clock. Whereas in

asynchronous communication each packet contains information for the car it represents.

 65

(c.) Communication protocol

A critical issue in any serial communication interfaces is the protocol involved.

For the data transmission between the computer and the “Master” RS - 232 is ideal

considering that the distance involved in data transmission is typically less than 50 feet

and also that there is no difference in the potential. Also the ease of interfacing is a

positive aspect.

Communication between the “Master” and the “Slave” is the key to this whole

set-up. For initial testing RS-232 protocol was used for the above-mentioned reasons and

also because wires were used to send the data back and forth between the “Master” and

the “Slave” instead of using wireless communication as planned. This was to be replaced

by wireless communication after successful testing with RS-232 cables.

The second phase of the project involves replacing the wires by RF-Transceivers for

the communication between the “Master” and the “Slave.” There are two main issues

that need to be dealt with here:

a. How do we ensure that the receiver receives correct data and also knows it is the

actual data?

b. How do we eliminate noise that might be in the data?

The area of concern is the latter, especially when we are dealing with sensors,

transmitters and receivers; noises are bound to corrupt the data. The validity of the

method thus rests on how well we can nullify the effect of noise in the data.

1. Packaging the data

The first priority though is to get the data across to the master. Since the

possibility of losing data is the highest during the RF transmission, data are sent in form

of a packet.

The packet is made of 5 layers, with the actual data sandwiched between the

signature bytes. The master is programmed in such a way that it knows each packet

 66

consists of two signature start bytes followed by a data byte, and then by two signature

stop bytes as shown in table 4.

Table 4. Sandwich structure of a data packet

START

BYTE

SIGNATURE

SECOND BYTE

DATA BYTE

(FROM A SENSOR)

SIGNATURE

FOURTH BYTE

STOP

BYTE

If the master finds any packet deviating from this standard format it will ask the

slave to resend the packet. Each of the signature bytes will be in the NRZ format (Fig.

41.). A typical example of the signature bytes is shown in table 6.

For example, the receiver knows that it is supposed to receive $FF and $AA as

the first two bytes, if it receives these two bytes then it knows that the transmission is

smooth and the next byte coming is the data byte. But this process is not complete until

the receiver confirms that the last two bytes $FA and $B0 are also present; this ensures

that the data is the actual data and not some junk value.

2. Elimination of noise (ensuring the correctness of the data)

The second issue to be tackled is to ensure that the data in the package itself is

free of noise. Here noise means the corruption of data by other RF signals. RF signals

can easily be corrupted by many factors (Please refer to the section on RF transmission)

 67

One of the most common methods for identifying noise is to take the average of

the data [23]. The obvious disadvantage is the wastage of time and the issue of how

many times the data has to be resent. Also, is there an optimal number of averaging that

will ensure whether the data is free of noise?

Another alternative devised as a part of the project will allow a margin of noise

in the data. The master after receiving the data, sends back a data byte for every 10 data

byte received. The slave compares this with its data and ascertains the impact of the

noise. If it feels the noise is negligible, the communication process goes uninterrupted;

otherwise the slave sends a suitable correction factor to the master. Further data is

adjusted according to the correction factor, till the noise reduction is seen.

Let us for example assume the first board is sending $1, $2, $3, and so on, but the

receiver always receives a value low i.e. $0, $1, $2.When the second board resends the

data and the first board knows that its value has been constantly offset, it will send a

correction factor for board 1 to add. But this approach does not work if the data are

corrupted because some particular object and does not change constantly.

3. Cyclic redundancy check

The method mentioned in the previous section is a very crude idea of the more

advanced and established CRC (Cyclic Redundancy Check). CRC is a very well

established technique to obtain data reliability. The CRC field is 2 bytes that hold a 16-

bit binary value. The transmitting device that appends the CRC to the message calculates

the CRC. The receiving device recalculates this value and compares the calculated value

with the actual value in the CRC field. It results in an error if they are not equal.

 There are several established algorithms to calculate CRC. Two of the methods

are described below; the second one is used in our algorithm.

The CRC is calculated by first loading a 16-bit register to 1’s. Then successive

bytes of the message are shifted to the present value of the register. The Start, Stop and

parity bit do not apply to the CRC.

 68

During the generation of CRC, each 8-bit character is XORed with the register

contents; this result is shifted in the direction of the LSB with a zero in the MSB. The

LSB is then extracted and examined. If the LSB was a 1, the register I XORed with a

preset, fixed value, otherwise this operation does not take place.

This process id repeated until 8 shifts have been performed. After the 8 bits, the

next 8-bit value is XORed with the registers value, this process continues for 8 more

shifts. The final content will be the CRC value.

 The above-mentioned method is for complex packets. Since our data has a much

simpler structure it would be enough if all the bytes in the packet are XORed, the last

byte in the packet is the CRC. The master upon receiving this packet recalculates the

CRC and compares it with the last byte to check for correctness of the data.

(d.) Ports used in 68HC12A4 and 68HC12B32

 The 68HC12A4 has eleven 8-bit ports and the 68HC12B32 has eight of them.

Most of these ports can be configured as general purpose I/O in different operating

modes. None of the ports though are needed for the system being implemented. The only

port of interest is the Port S; which is the serial communication interface subsystem in

both 68HC12A4 and 68HC12B32. This is the only port that is used. Although other

ports like Port F have been used in the experimental stage to verify the data, they are not

used in the actual system.

Pins of Port S are denoted as PSx, where ‘x’ stands for 0, 1, 2 or 3 corresponding

to the pin numbers. For transmitting data pin PS1 or PS3 is used, for receiving data the

RxD pin PS0 or PS2 is used. The 68HC12B32 has just one SCI port functional, i.e.

SCI 0.

 69

(e.) SCI subsystem

The SCI subsystem in 68HC12A4 uses the pin PS3 of port S for its transmitting

line and pin PS1 for receive. Setting bits in the SCI control register SC1CR2 can enable

them. Port S can be used for general-purpose input/output when not in use for serial

communication.

The data bytes to be transmitted or are received are first stored in the SCI data

register low (SC1DRL). Subsequently the data to be transmitted are read from SC1DRL

and also the registers will read the data, which is received. The Initialization of the

registers is explained in appendix II.

The SCI systems are capable of sending break signals, which is basically to wake

up a receiver; this is an indication to the receiver that it is ready to transmit some data.

The receiver can be put back to sleep by setting the RWU bit in SCI control register 2

(SC1CR2). The method of waking up the receiver as explained in the asynchronous

communication subsection can be selected by changing the WAKE bit in SC1CR1

register.

(f.) Transmit operations

The transmit operation through the serial port takes place by shifting bytes to the

11-bit transmit shift register. The transmit shift register is already pre-configured with

logic low START bit and logic HIGH stop bit. By polling the TDRE register we can

determine whether the transmission has taken place, if this bit is set, it implies that the

transmit data register is empty and is ready to receive another character. This register can

be cleared by reading the SCI control register 1 (SC1CR1) first and then writing to the

SCI data register (SC1DRL).

 Thus the algorithm of the software to transmit a data byte is similar to the pseudo

code below:

STEP 1: Configure the registers (refer to the code in appendix III)

 70

a. Select the baud rate by writing to the baud rate register SC1BDH

b. Select the WAKE up mode and also the length of the data that is transferred

c. Enable transmit, receive and wake up interrupts by modifying SC1CR2

d. Clear all flags

STEP 2: Begin transmission

a. Poll the SC1CR2 register for interrupts and take appropriate action

b. Poll the SC1SR1 register, wait for the TDRE flag to be set

c. If the flag is set, write data to the data register

d. Transmit the next set of data

This can be run continuously, there is no need to clear the flag again, by writing

to the data register the TDRE flag is automatically cleared.

(g.) Receive operation

The receive operation through the serial port is somewhat similar in principle to

the transmit operation; this takes place by shifting the bytes from the 11-bit transmit shift

register. By polling the RDRF register we can determine whether the reception is

complete. If this bit is set, it implies that the receive data register is empty and is ready to

receive another character. This register can be cleared, by reading the SCI control

register SC1CR1 first and then reading the SCI data register (SC1DRL).

The algorithm of the software to receive a data byte is similar to the pseudocode below:

STEP 1: Configure the registers. (refer to the code in appendix III)

a. Select the baud rate by writing to the baud rate register SC1BDH

b. Select the WAKE up mode and also the length of the data that is transferred

c. Enable transmit, receive and wake up interrupts by modifying SC1CR2

d. Clear all flags

 71

STEP 2: Begin transmission

a. Poll the SC1CR2 register for interrupts and take appropriate action

b. Poll the SC1SR1 register, wait for the RDRF flag to be set

c. If the flag is set, then read data from the data register

d. Wait for the next set of data

This can be run continuously, there is no need to clear the flag again, by writing

to the data register the TDRE flag is automatically cleared.

I. Data registers used in serial communication

The registers used are shown in Figs. 46 - 50 in appendix II.

J. RF transmission

Different possibilities were considered before going ahead with the selection of

RF transceivers for the purpose of data transmission between the master and the slave.

The RF transceivers along with the microcontrollers and the sensor-in this case the

accelerometer- are enclosed in a casing to protect them from dust and other external

hazards. In this chapter we will concentrate on the RF transceivers. Attempt has been

made to address all the possible issues regarding why we chose the RF transceivers.

What are its advantages? What problems might be encountered?

(a.) Wireless solution

The first question that obviously needs to be addressed is why you need a

wireless communication? Especially when the difficulties associated with wireless

communications are known.

The system being designed here is supposed to be a low-cost, low-maintenance

and easy to use system. Using wireless form of communication eliminates the possibility

 72

of a human error, which might occur when someone with no technical knowledge

attempts to check the system and in the process fouls the hardware by disturbing a small

wire.

Whereas the entire wireless system will be in a enclosure, so if someone does

want to check, all he has to do is remove the enclosure, replace it with another one (by

just pushing it to a terminal).

Secondly, in a system with wires the possibilities of mechanical damage like

snapping of the wire is very high in a harsh environment. The wires used for the

microcontroller boards are very small in diameter, which will be unable to bear the

rough environ.

Thirdly, let us assume that the wires are strong enough and do not break. We

know that we are typically dealing with a hundred “Slave” controllers trying to send data

to a single “Master” controller over distances varying from 800-1,000 ft. The first issue

here is that we do not have enough serial ports. Secondly transmitting accurate data over

1000 ft through wires is not a very viable option.

Compared to the problems posed by the system with wires, the advantage of

using a wireless system outweighs its disadvantages.

(b.) Selection of RF transceivers

Different types of waves like the ultrasonic waves; infrared waves and radio

frequency waves can achieve data transmission by wireless means. But the first two

waves (ultrasound and infrared) are absorbable by various objects like a human body etc.

The RF waves on the other hand can travel through objects.

Thus when you are looking at sending data over several railcars, you have to

send it through a means that will pass through obstacles.

The other advantage of a RF transmitter is that it requires very small amount of

power for producing the waves. The RF transmitter we have chosen- Glolab

TM1V/RM1V- requires just 5 volts, which is the same as the power needed to run not

 73

just our microcontroller board but also the accelerometer. Thus the task of putting the

whole thing into a single unit is made a lot easier.

A digital radio transmission allows a narrow band to carry a large amount of data

and enables the receiver device to have minimum power usage. We can thus increase the

shelf life of the system considerable. Since the receiver, transmitter and the sensor all

have the same voltage levels, it is a lot easier to decode and analyze the data. This will

not only speed up the process but also saves power.

The connections are also very simple and straightforward with RF transmitters.

The serial ports of the microcontroller can be used to receive and send data from and to

the transceivers.

(c.) Issues in RF transceivers

Using RF transceivers has its share of problems. This section deals with the various

problems encountered while using an RF transceiver. The solution to these mentioned

problems will be dealt with in the next section. A few of the important issues are listed

below.

• RF waves are used in a wide range of devices like cell phones, palm pilots,

pagers, GPS, car alarms, audio sets etc. Because of this certain phenomenon like

“Intermodulation” and “Heterodyning” can occur. These are a great concern with

respect to the receivers. Intermodulation occurs when the receiver receives two

different frequencies, these can either add up or try to cancel out (resulting in a

difference) and in the process produces new harmonics. Heterodyning is a

process in which two similar frequencies interact with the receiver; this results in

a whistling noise [24].

• Another critical problem we will definitely face is “Multipath Cancellation”. This

occurs when the original RF signal reflects off a surface and combines with the

original wave again, this may weaken the signal considerably apart from creating

phase related problems [24].

 74

• The distance between the “Slave” and the “Master” is a crucial factor. As the

distance increases the signal fades considerably and may weaken, the receiver

might even lose the signal completely. This again is due to a combination of

factors like interference because of moving objects, high-current electric

components etc [24].

• During experimentation, which involves sending a single byte, we observe that

the first time the data is sent the receiver is still sleeping and before it wakes up

data could be lost. This is because the first time the receiver was still not ready.

• Assuming that the data is being transmitted properly with no absolutely no

interference and the data flow is not hindered by any means, what is the surety

that the data is not corrupted? What is the guarantee that the data received by the

receiver is the real data and is not contaminated by noise?

The above are a few of the issues we have tried to address in the following section.

(d.) Probable solutions

It is attempted in this section to obtain a solution for all of the above-mentioned

problems.

1. Intermodulation and heterodyning

There is no real “Solution” to this problem as such. The only way to ensure that the

signals do not get mixed up is to obtain a very broad and exclusive frequency bandwidth

from the federal regulatory authorities.

The second step is to tune the receiver for the frequencies in a limited bandwidth.

2. Multipath cancellation and distance between the “Master” and “Slave”

These two problems are intertwined. This problem has to do with the placing of

the transceiver-microcontroller-sensor enclosure. An optimal place on the railcar has to

be chosen that will not only ensure that this set up is away from moving parts but also

 75

from other electrical systems. This should also ensure that any objects do not hinder its

path; this is to ensure that there will be no loss of data.

 The higher the frequency range the longer will be the distance over which the

transceivers can communicate with each other. But as the distance increases, the

probability that the waves will reflect off some surface increases. Having more than one

master on board can resolve this issue. This will not only reduce workload on a master

but also increases the accuracy of the signals transmitted as the distance is considerably

shortened.

The probable place would have been on the top of the railcar, but we will have

problem in placing the sensors separately and then wiring them to the microcontroller to

send the signals from the sensors. Apart from this placing the enclosure on top of the

railcar will make it very vulnerable to the high-tension wires running parallel with the

tracks. This is an issue that can be dealt with only during the testing stage by trying out

various positions on the car body.

3. Awakening the receiver

As mentioned in the previous section we noticed that the first time a data is

transmitted the receiver loses the first part of the data. This is because the receiver is idle

until it receives the first data byte, but it is too late for it to receive the first stream of

bytes.

There can be various approaches to this. The easiest probably will be to send the

data twice, so that it is ready to receive the actual data the second time. Another

alternative can be to send some junk bytes for a small fraction of a second, just to wake

up the receiver. This is generally a high byte.

 76

4. Checking correctness of the data

This issue has been dealt with in the previous chapter. Please refer sections 3.3.a

and 3.3.b. But in addition to checking the data, the data will be passed through a signal-

processing algorithm to minimize noise from the real data.

Although an attempt has been made to address all of these issues, the data

transmission through RF transmission is so vulnerable that it often fails to achieve

repeatability. The same set of data transmissions in almost the same settings might fail to

execute because of some minor fault like moving objects around it,etc.

 77

CHAPTER VI

LABORATORY TESTING, CONCLUSION AND FUTURE WORK

A. Introduction

This chapter explains the lab set up and the tests carried out to identify the wheel flat.

Identifying bearing fault was not considered for this phase of the project because of

many constraints. The following are the reasons behind:

• To identify a bearing fault, signal analysis must be done on a larger group of data

than that is needed to identify a wheel flat. Selected processors do not have the

capability to process a huge set of data.

• Simulating a bearing fault in a laboratory environment is very difficult (so there

is no way to validate the algorithm unless access to a test facility is given).

• From the preliminary meeting we had with AAR/TTCI people, it was decided

that to identify a bearing fault, an accelerometer would not be sufficient and we

would need a special sensor, that should be integrated in the manufacturing

process, it should be able to withstand high temperatures and also be robust.

Thus we restricted ourselves to just identifying a wheel flat.

B. Prototype-1 with RS232 cables and Ming RF transceivers

The initial testing was validated with RS - 232 cables that were then replaced by RF

transmitters from Ming Corporation. A photo of the same is shown in Fig. 42. There

were several problems associated with the Ming RF transmitters, a few of them being:

• Low data transfer rate of 1,200 bps.

• It is not suitable for serial communication (although this is mentioned explicitly,

mini projects using the same have been attempted).

• Complex circuitry makes the task of enclosing even more difficult.

 78

Fig. 42. Setup with Ming transceivers

• Needs amplification of the signals, thus allowing the possibility of amplifying the

noise.

For these main issues we decided to look for another RF transmitter for our next

prototype.

C. Development of an enclosure

Enclosure for the unit was built out of aluminum alloy. Since space was a

constraint, we decided to build a 2-layered enclosure as shown in Fig. 43. The base layer

had the microcontroller and the top layer had the RF transmitter and receiver along with

the antenna. Power for the unit is a set of batteries housed outside the enclosure with the

flexibility of placing it inside too. The hardware selected is now put in an enclosure. The

final two stages of building the enclosure are shown in Figs.43 and 44. The final unit is

shown in Fig. 44.

 79

Transmitter

Receiver

Microcontroller board

Fig. 43. Penultimate stage of the enclosure

Antennae

Fig. 44. Enclosed unit

 80

D. Lab set-up

The final set-up for testing in a laboratory consists of

• Computer terminal on both sending and receiving side. On the receiving side we

use it to monitor the data and also to initially give commands. The data from the

accelerometer can be seen on the screen. Whereas for the sending side, the

monitor is only to load the program initially (this can be eliminated in the final

prototype).

• 68HC12A4 microcontroller

• 68HC12B32 microcontroller

• 2 sets of Glolab RF transmitter and receiver modules

• ADXL202 accelerometer

• Two sets of battery units to power the controllers and the accelerometer

The lab set up is as shown in Figs. 45 and 46.

Fig. 45.

Real Time Monitor

Processors

Final test set-up

 81

Fig. 46. Enlarged view of the encircled area in Fig. 45

E. Testing procedure

The testing procedure is very simple for a wheel flat; we did not need any test

set-up. All we had to check was whether the slave microcontroller transmits the

accelerometer data when it registers a value above a preset threshold (any threshold).

 The second phase after this is to ensure that the packet is received properly on the

receiving side. All this is taken care of by the software listed in appendix IV.

 The test was successful; we could see that the slave microcontroller transmits

data whenever it encounters a value greater than the threshold. The master controller

checks for noise free data and displays it on the screen. Fig. 47 shows a data from an

accelerometer. This code is written in VC++ and the other codes predominantly in

assembly language and a bit of C. All the codes are attached in appendix IV.

 82

Fig. 47. Real time plot

F. Conclusion

It is clearly seen in the laboratory set-up that two way RF communications in

conjunction with a fault-detecting unit is very much a feasible option. This unit is very

easy to operate and maintained even by persons without technical know-how. The cost

of installing and maintaining this system is very inexpensive in comparison with many

of the existing wayside fault detection systems.

 This unit also has an added capability of identifying defects in tracks/rails thus

may save the railways considerable money and time.

G. Further work

To validate this system we will need access to a real railcar test facility. This

apart from letting us know how the system would behave in a real environment would

also help us locate a suitable place for this placing this unit on a railcar.

 With the selection of a proper sensor the same principle can be used to identify a

bearing fault.

 83

 The present processing unit (microcontroller) has a lot of unnecessary

electronics. The final prototype can have a custom made microcontroller with only the

necessary electronics, and this would not only reduce the cost of the system, and also

reduce the size of the unit, giving us an option of including many other electronics-not

necessarily from this project. Exploring MEMS technology for the same application

would not only provide a very convenient and reliable technology but also a cheap

option if manufactured in a very large scale.

 This idea can be utilized in more ways than those touched upon in this thesis and

this system can integrate many other electronics as that mentioned in [25].

 84

REFERENCES
[1] V. K. Garg, Y. H. Tse, “Mathematical models for track/train dynamics,” in

Conference on Advanced Techniques in Track Train Dynamics, Chicago, pp. 223-240,

1977.

[2] G. P. Raymond, D. J. Turcke, O. J. Svec, “Nonlinear analysis of rail track

structures,” in Conference on Advanced Techniques in Track Train Dynamics, Chicago,

pp. 299-313, 1977.

[3] C. A. O’Donell, A. K. Carter, “Factors influencing derailment risk,” in Railway

Engineering, Systems, and Safety, IMechE seminar publication, London, pp. 87-96,

1996.

[4] H. C. Choe , Y. Wan, A. K. Chan, “Neural pattern identification of railroad wheel-

bearing faults from audible acoustic signals: comparison of FFT, CWT, and DWT

features,” http://ee.tamu.edu/~akchan/Demo/paper97.pdf, August 2002.

[5] R M Kaul, “Implementating a train protection and warning system,” in Proceedings

of the International Conference on Fault Free Infrastructure, Derby, UK, pp. 159-168,

1999.

[6] N. Kumagai, H. Ishikawa, K. Haga, T. Kigawa, K. Nagasem, “Factors of wheel flats

occurrence and preventive measures,” in Proceedings of the Third International

Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Cambridge, UK,

pp. 277-287, 1990.

[7] D. H. Stone, “Shattered rim defects in wheels,” in ImechE Seminar Publication on

Wheels and Axles, Bury St Edmunds, pp. 75-84, 2000.

[8] A. Filip, “Train real-time position monitoring trials at Czech railways,” in Structural

Integrity and Passenger Safety, edited by C.A. Brebbia, Southampton, UK, WIT Press,

pp. 151-166, 2000.

[9] P. Astrom, “Control Electronics on rail vehicles,” in Proceedings of the ASME/IEEE

Joint Railroad Conference, Atlanta, pp. 107-116, 1992

http://ee.tamu.edu/~akchan/Demo/paper97.pdf

 85

[10] J. Madejski, J. Grabczyk, “Track & rolling stock quality assurance related tools,” in

Structural Integrity & Passenger Safety, Southampton, UK, WIT Press, 2000

[11] M. Fetty, Bearing Basics: Introduction to the cartridge tapered Roller Bearing

manufactured by Brenco and used for Railroad Journal Bearing applications,

http://www.brencoqbs.com/101/tsld001.htm, October 2000.

[12] The Timken Company, Bearings: Recognizing and preventing damage.

http://www.timken.com/products/bearings/services/valueadd/prevent.asp, October 2002.

[13] Brenco, Inc.http://www.brencoqbs.com/introduc.htm, October 2002.

[14] T. Snyder, Union Pacific Railroad, Railroad Wheel Testing of Shattered Rim,

http://www.ndt.net/article/0798/forum/snyder.htm, October 2002.

[15] G. Vohla, Ch. Linder, H. Bruchli : Corrugation of Railway Wheels.

http://www.ifm.ethz.ch/research/rail-4.html, Swiss Federal Institute of Technology,

Zurich, October 2002.

[16] Society for the Preservation of Carter Railroad Resources.

http://www.spcrr.org/current_old.htm, Current Activities Archive, Ardenwood,

California, October 2002.

[17] S. Iwnicki, “The Manchester benchmarks for rail vehicle simulation,” in

Supplement to Vehicle System Dynamics, vol. 31, pp. 4-14, 1999

[18] ”GENSYS User’s Manual,” Release 9910, Desolver, Sweden, 1999.

[19] S. D. Iwnicki, S. Grassie, “Prediction of track damage using computer simulation

tools,” in 2nd International Workshop on Freight Vehicle Design, Manchester

Metropolitan University, pp. 1-9, April 2001

[20] Swedish National Road and Transport Research Institute (VTI), “High speed

railways : alignment optimization with vehicle reactions taken into consideration,”

pp. 4-6, 1998.

http://www.brencoqbs.com/101/tsld001.htm
http://www.timken.com/products/bearings/services/valueadd/prevent.asp
http://www.ndt.net/article/0798/forum/snyder.htm
http://www.ifm.ethz.ch/research/rail-4.html
http://www.spcrr.org/current_old.htm

 86

[21] GENSYS home page. http://home.swipnet.se/gensys/, September 2002.

[22] CPU 12 Reference Manual: M68HC12 Microcontrollers, rev6, Motorola, Inc.,

2002.

[23] B. Russel, D. Hampson, J. Chun, “Noise elimination and the radon transform,”

http://utam.geophys.utah.edu/ebooks/gg527/decon/mult.radon6.pdf, October 2002.

[24] P. S. Mundra, T. L. Singal, T. S. Kamal, “Mobile radio network design considering

radio frequency interference,” in Proceedings of the ASME/IEEE joint railroad

conference, Atlanta, pp. 13-18, 1992.

[25] H. G. Moody, L. F. Sanders, T. Griffith, “Locomotive electronics system

integration architecture,” in Proceedings of the ASME/IEEE joint railroad conference,

Atlanta, pp. 83-85, 1992.

http://home.swipnet.se/gensys/references.html
http://utam.geophys.utah.edu/ebooks/gg527/decon/mult.radon6.pdf

 87

APPENDIX I

 88

A. FLOW CHART FOR THE SYSTEM

68HC12A4

Communication

68HC12B32

Accelerometer

Acceleration Signals

If the A4 commands,
controls the B32.

Stop operation
Start operation
Send required data

Control Module

Save useful data

Data Process Module

 Fault Diagnosis

Communucation Module

Analysis Module

 Transmit necessary data
if faults are detected.

 Receive the A4 commands.
 Transmit the require data

if the A4 commands.

Save Module

A/D conversion
Filtering
Convert to engineering unit

Fig. 48. Flow chart for the system

 89

APPENDIX II

 90

1. Data registers used in the 68HC12 boards

A. SCI control register 1 (SCXCR1)

LOOPS WOMS RSRC M WAKE ILT PE PT

Fig. 49. SCI control register 1 (SCXCR1)

LOOPS: Setting this bit to ‘0’ ensures that the SCI transmit and receive sections operate

normally. The rest are don’t care bits

When loops is set to ‘0’, other’s are don’t care bits.

B. SCI control register 2 (SCXCR2)

TIE TCIE RIE ILIE TE RE RWU SBK

Fig. 50. SCI control register 2 (SCXCR2)

TIE: Transmit Interrupt Enable Bit

Writing logic ‘1’ enables this bit. The SCI interrupt is called whenever this bit is set.

TCIE: Transmit Complete Interrupt Enable Bit

Writing logic ‘1’ enables this bit. Thus whenever a transmission is complete the SCI

interrupt is called.

RIE: Receiver Interrupt Enable Bit

 91

Writing logic ‘1’ enables this bit. Thus the SCI interrupt is called whenever the RDRF

flag is set.

ILIE: Idle Line Interrupt Enable Bit

Writing logic ‘1’ enables this bit. Thus whenever the IDLE flag is set the SCI interrupt is

enabled.

TE: Setting this bit to ‘1,’ the SCI transmit logic is enabled. The TXD pin is dedicated to

the transmitter.

RE: Setting this bit to ‘1,’ the SCI receive logic is enabled.

RWU: Receiver wakeup control bit

0 = Normal SCI receiver

1 = Enable the wake up function and inhibits further receiver interrupts. Normally,

hardware wakes the receiver by clearing this bit automatically.

SBK: Send break bit

0 = Break generator off

1 = Generate a break code, at least 10 or 11 continuous 0s.

As long as this bit remains set, the transmitter sends 0s. When SBK is changed to 0, the

current frame of all 0s is finished before the TxD line goes to idle state.

C. SCI status register 1 (SCXSR1)

TDRE TC RDRF IDLE OR NF FE PF

Fig. 51. SCI status register 1 (SCXSR1)

TDRE: Transmission Data Register Empty flag

If this bit is in logic ‘0’ means that the data register is busy and the transmission is still

incomplete. Whereas logic ‘1’ indicates that the data register is now ready to receive

new data for transmission.

 92

TC: Transmit Complete flag

If this is at logic ‘0’ it means that the transmitter is busy otherwise the transmitter is idle

RDRF: Receive Data Register Full flag

If this bit is in logic ‘0’ it means the data register is empty and is ready to receive new

data. If this is in logic ‘1’ it means the data register is full and cannot receive any further

data.

IDLE: Idle Line Detected Flag

This is a key register if we are to utilize the wake up facility in the micro controller. If

this bit is at logic ‘0’ the RxD line is active otherwise it is in and idle state.

OR: Overrun flag

New byte is ready to be transferred from the receive shift register to receive data

register, but the data register is already full, the data transfer will be inhibited till this is

cleared.

NF: Set during the same cycle as the RDRF bit but not set in case of an overrun.

 0 = Unanimous decision

1 = Noise on a valid start bit, any of the data bits, or on the stop bit

D. SCI data register low (SC0DRL)

R7T7 R6T6 R5T5 R4T4 R3T3 R2T2 R1T1 R0T0

Fig. 52. SCI data register low (SC0DRL)

R7T7-R0T0: Receive/Transmit data bits 7-0

Reads access the eight bits of the read only SCI receive data register (RDR). Writes

accesses to the eight bits of the write-only SCI transmit data register. SC0DRL and

 93

SC0DRH form the 9-bit data word for the SCI. If the SCI is being used with a 7 or 8 bit

data word, SC0DRL alone will suffice.

E. SCI baud control registers (SC1BDH/SC1BDL)

The SCI baud rate control registers are used to set the SCI transmission/reception rate.

BTST BSPL BRLD SBR12 SBR11 SBR10 SBR9 SBR8

SC1BDH

Fig. 53. SCI baud control register high

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

SC1BDL

Fig. 54. SCI baud control register low

The baud rate is set using bits SBR [12:0]. The values are determined using the

following relationship

 SBR = MCLK/ (16*SCI Baud Rate)

where, MCLK is the master clock frequency in Hz.

 94

APPENDIX III

 95

A. ROUTINE FOR TRANSMITTING DATA

#include <iob32.h>

#include <stdio.h>

#define TDRE 0x80 /* transmit ready bit */

#define RDRF 0x20 /* receive ready bit*/

#define SIG 0xAA /*The signature byte to create a CRC*/

#define TRUE 1

#define D_1MS (1000/4)

void delay(unsigned int ms);

int getch();

int C1,C2,C3,R,A,M,S,i,j,RCD,P,Q,T,I,d,k;

getch(){

 R = (ADR1H);

 return(R);

 }

void main(void)

 {

 SC0CR1 = 0X00;

 SC0CR2 = 0X0C;

 SC0BDH = 0x1A1;

 #asm

 LDAA 0X00C4

 STD 0X00C6

 #endasm

 96

 ATDCTL2 = 0X80;

 ATDCTL3 = 0X00;

 ATDCTL4 = 0X01;

 ATDCTL5 = 0X25;

 A=0xFF;

 I=0x0F;

 P=0x31;

 Q=0x32;

 S=0x33;

 T=0x34;

 M=0x06;

 C1 = P^Q^S^T;

for(j=0;j<1000;j++){

 tran1();

 }

for(;;){

while (!(SC0SR1 & TDRE))

 ;

 SC0DRL=I;

while (!(SC0SR1 & TDRE))

 ;

 SC0DRL=A;

while (!(SC0SR1 & TDRE))

 ;

 97

 SC0DRL=P ;

while (!(SC0SR1 & TDRE))

 ;

 SC0DRL= Q;

while (!(SC0SR1 & TDRE))

 ;

 SC0DRL= S;

while (!(SC0SR1 & TDRE))

 ;

 SC0DRL= T;

for(j=0;j<4;j++){

 getch();

 while (!(SC0SR1 & TDRE))

 ;

 SC0DRL= R;

 C2=C2^R;

 }

 C3=C1^C2;

while (!(SC0SR1 & TDRE))

 ;

 SC0DRL= C3;

 recv();

 }

 98

}

//SUB ROUTINES

// TRANSFERS OF FF's TO AWAKEN THE RECEIVERS AND GIVE SOME TIME

//TO SET UP

tran1(){

 while (!(SC0SR1 & TDRE))

 ;

 SC0DRL=A;

 }

//ACTUAL SIGNAL TRANSFER ROUTINE

recv(){

while (!(SC0SR1 & RDRF))

 ;

 RCD=SC0DRL;

 comp();

 }

comp(){

 if(RCD=C3){

 while (!(SC0SR1 & TDRE))

 ;

 SC0DRL= RCD;

 }else{

 recv();

 }

 }

 99

B. SAME CODE IN ASSEMBLY LEVEL LANGUAGE FOR 68HC12

;RSTVEC EQU $F7FE

;COPCTL EQU $0016

REGBASE EQU $0000

SC0BDH EQU REGBASE+$C0

SC0CR1 EQU REGBASE+$C2

SC0CR2 EQU REGBASE+$C3

SC0SR1 EQU REGBASE+$C4

SC0DRL EQU REGBASE+$C7

SC0DRH EQU REGBASE+$C6

SC0BDL EQU REGBASE+$C1

RDRF EQU $20

TDRE EQU $80

BA12 EQU $1A1

 ORG $0800

; CLR COPCTL

; LDS #$09FF

BSR INTACL

BSR INTREC

BSR INTSEN

BSR VAL

BSR CRC

 100

LOOP BSR LOAD

 BRA LOOP

INTACL LDAA #$80 ;THIS IS THE INITIALISATION OF THE RESULTS

 STAA $0062 ;THE A/D CONVERTER IS POWERED UP

 LDAA #$00

 STAA $0063

 LDAA #$01

 STAA $0064

 LDAA #$25

 STAA $0065 ;SET TO READ FROM CONTINUOUSLY

 ;CHANNEL 6 & REGISTER 6

 RTS

INTREC MOVB #$00,SC0CR1

 MOVW #BA12,SC0BDH

 LDAA #$0C

 STAA SC0CR2

 LDAA SC0SR1

 LDAA SC0DRL

 RTS

INTSEN MOVB #$00,SC0CR1

 MOVW #BA12,SC0BDH

 LDAA #$0C

 STAA SC0CR2

 LDAA SC0SR1

 STD SC0DRH

 RTS

 101

VAL LDAB #$04

 LDX #$0B01

 LDAA #$0030

VALS INCA

 STAA 1,X+

 DECB

 BNE VALS

 RTS

CRC LDAA $0B01

 EORA $0B02

 EORA $0B03

 EORA $0B04

 STAA $0B00

 RTS

LOAD LDAA $0072 ;LOAD THE VALUES FROM RESULT

 ;REGISTER OF THE A/D CONVERTER

 CMPA #$7F ;COMPARE WITH A THRESHOLD VALUE

 BHI RECORD ;TRANSMIT IF HIGHER

 BRA LOAD

RECORD LDAB #$0A

 LDX #$0A00

STORE LDAA $0072

 STAA 1,X+

 DECB

 102

 BNE STORE

 BSR CRCR

 BRA TRANS

CRCR LDAA $0A00 ;CALCULATION OF CRC

 EORA $0A01

 EORA $0A02

 EORA $0A03

 EORA $0A04

 EORA $0A05

 EORA $0A06

 EORA $0A07

 EORA $0A08

 EORA $0A09

 EORA $0A0A

 EORA $0B00

 STAA $0A0C

 RTS

TRANS LDY #$50

SENDH LDAA #$FF

SENH TST SC0SR1

 BPL SENH

 STAA SC0DRL

 DEY

 BNE SENDH

 103

 LDAA #$0F

SENH1 TST SC0SR1

 BPL SENH1

 STAA SC0DRL

 LDAA #$FF

SENH2 TST SC0SR1

 BPL SENH2

 STAA SC0DRL

 LDAB #$04

 LDX #$0B01

SEND2 LDAA 1,X+

SEND TST SC0SR1

 BPL SEND

 STAA SC0DRL

 DECB

 BNE SEND2

 LDAB #$0A

 LDX #$0A00

SEND3 LDAA 1,X+

SEND4 TST SC0SR1

 BPL SEND4

 STAA SC0DRL

 DECB

 BNE SEND3

 104

 LDAA $0A0C

SEND5 TST SC0SR1

 BPL SEND5

 STAA SC0DRL

 RTS

 ; ORG RSTVEC

 ; FDB $8000

C. CODE FOR RECEIVING AND VERIFYING THE CORRECTNESS OF THE

DATA

REGBASE EQU $0000

SC0BDH EQU REGBASE+$C0

SC0CR1 EQU REGBASE+$C2

SC0CR2 EQU REGBASE+$C3

SC0SR1 EQU REGBASE+$C4

SC0DRL EQU REGBASE+$C7

SC0DRH EQU REGBASE+$C6

SC0BDL EQU REGBASE+$C1

SC1BDH EQU REGBASE+$C8

SC1CR1 EQU REGBASE+$CA

SC1CR2 EQU REGBASE+$CB

SC1SR1 EQU REGBASE+$CC

SC1DRL EQU REGBASE+$CF

SC1DRH EQU REGBASE+$CE

SC1BDL EQU REGBASE+$C9

 105

RDRF EQU $20

TDRE EQU $80

BA12 EQU $1A1

 ORG $0800

 BSR INTREC

 BSR INTSEN

LOOP BSR REC

 BRA LOOP

INTREC MOVB #$00,SC1CR1

 MOVW #BA12,SC1BDH

 LDAA #$0C

 STAA SC1CR2

 LDAA SC1SR1

 LDAA SC1DRL

 RTS

INTSEN MOVB #$00,SC0CR1

 MOVW #BA12,SC0BDH

 LDAA #$0C

 STAA SC0CR2

 LDAA SC0SR1

 STD SC0DRH

 RTS

REC LDAA SC1SR1

 106

 ANDA #RDRF

 BEQ REC

 LDAA SC1DRL

CMPA #$0F ;CHECKING FOR THE FIRST ;SIGNATURE

 ;BYTE

 BEQ W2

 BRA REC

W2 LDAA SC1SR1

 ANDA #RDRF

 BEQ W2

 LDAA SC1DRL

 CMPA #$FF ;CHECKING FOR THE SECOND SIGNATURE

 ; BYTE

 BEQ RECR

 BRA REC

RECR LDAB #$15 ;STORING THE INCOMING DATA BYTES

 LDX #$0A00

REC1 LDAA SC1SR1

 ANDA #RDRF

 BEQ REC1

 LDAA SC1DRL

 STAA 1,X+

 DECB

 BNE REC1

 LDAA $0A00

 EORA $0A01 ;RECALCULATING THE CRC

 107

 EORA $0A02

 EORA $0A03

EORA $0A04

 EORA $0A05

 EORA $0A06

 EORA $0A07

 EORA $0A08

 EORA $0A09

 EORA $0A0A

 EORA $0A0B

EORA $0A0C

 EORA $0A0D

CMPA $0A0E

 BEQ SENDR

 BRA MIST

MIST LDAA #$EF

TST SC0SR1

 BPL MIST

 STAA SC0DRL

 RTS

SENDR LDAB #$0A ;DISPLAY VALUES IF CRC MATCHES

 LDX #$0A07

SEND2 LDAA 1,X-

SEND TST SC0SR1

 BPL SEND

 STAA SC0DRL

 DECB

 108

 BNE SEND2

 LDAA $0A0E

TRC1 TST SC0SR1

 BPL TRC1

 STAA SC0DRL

 LDAA $EE

TRC2 TST SC1SR1

 BPL TRC2

 STAA SC1DRL

 LDAA $0A0E

TRC3 TST SC1SR1

 BPL TRC3

 STAA SC1DRL

 RTS

D. Pseudo code for identifying a defective track

1. Wait for signals from all the cars.

2. If all the signals exhibit the same characteristic in a given frame of time.

3. Then calculate the distance where this event occurred and calculate the distance

using timer functions

4. It would be around this distance that there would be a defect in the track.

 109

APPENDIX IV

 110

A. OScopeCtrl.cpp : implementation file
This code has been modified from the original versions available on www.codeguru.com

as on October’ 2002.

#include "stdafx.h"

#include "math.h"

#include "OScopeCtrl.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__ ;

#endif

///

// COScopeCtrl

COScopeCtrl::COScopeCtrl()

{

 m_dPreviousPosition = 0.0 ;

 m_nYDecimals = 3 ;

 m_dLowerLimit = -10.0 ;

 m_dUpperLimit = 10.0 ;

 m_dRange = m_dUpperLimit - m_dLowerLimit ;

 m_nShiftPixels = 4 ;

 m_nHalfShiftPixels = m_nShiftPixels/2 ; // protected

 m_nPlotShiftPixels = m_nShiftPixels + m_nHalfShiftPixels ; // protected

 m_crBackColor = RGB(0, 0, 0) ; // see also SetBackgroundColor

 m_crGridColor = RGB(0, 255, 255) ; // see also SetGridColor

 111

 m_crPlotColor = RGB(255, 255, 255) ; // see also SetPlotColor

 m_penPlot.CreatePen(PS_SOLID, 0, m_crPlotColor) ;

 m_brushBack.CreateSolidBrush(m_crBackColor) ;

 m_strXUnitsString.Format("Samples") ; // can also be set with SetXUnits

 m_strYUnitsString.Format("Y units") ; // can also be set with SetYUnits

 m_pbitmapOldGrid = NULL ;

 m_pbitmapOldPlot = NULL ;

} // COScopeCtrl

///

COScopeCtrl::~COScopeCtrl()

{

 if (m_pbitmapOldGrid != NULL)

 m_dcGrid.SelectObject(m_pbitmapOldGrid) ;

 if (m_pbitmapOldPlot != NULL)

 m_dcPlot.SelectObject(m_pbitmapOldPlot) ;

} // ~COScopeCtrl

BEGIN_MESSAGE_MAP(COScopeCtrl, CWnd)

 //{{AFX_MSG_MAP(COScopeCtrl)

 ON_WM_PAINT()

 ON_WM_SIZE()

 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

///

// COScopeCtrl message handlers

///

BOOL COScopeCtrl::Create(DWORD dwStyle, const RECT& rect,

 CWnd* pParentWnd, UINT nID)

{

 112

 BOOL result ;

static CString className = AfxRegisterWndClass(CS_HREDRAW | CS_VREDRAW) ;

 result = CWnd::CreateEx(WS_EX_CLIENTEDGE | WS_EX_STATICEDGE,

 className, NULL, dwStyle,

 rect.left, rect.top, rect.right-rect.left, rect.bottom-rect.top,

 pParentWnd->GetSafeHwnd(), (HMENU)nID) ;

 if (result != 0)

 InvalidateCtrl() ;

 return result ;

} // Create

///

void COScopeCtrl::SetRange(double dLower, double dUpper, int nDecimalPlaces)

{

 ASSERT(dUpper > dLower) ;

 m_dLowerLimit = dLower ;

 m_dUpperLimit = dUpper ;

 m_nYDecimals = nDecimalPlaces ;

 m_dRange = m_dUpperLimit - m_dLowerLimit ;

 m_dVerticalFactor = (double)m_nPlotHeight / m_dRange ;

 InvalidateCtrl() ;

} // SetRange

///

void COScopeCtrl::SetXUnits(CString string)

{

 m_strXUnitsString = string ;

 InvalidateCtrl() ;

} // SetXUnits

///

 113

void COScopeCtrl::SetYUnits(CString string)

{

 m_strYUnitsString = string ;

 InvalidateCtrl() ;

} // SetYUnits

///

void COScopeCtrl::SetGridColor(COLORREF color)

{

 m_crGridColor = color ;

 InvalidateCtrl() ;

} // SetGridColor

///

void COScopeCtrl::SetPlotColor(COLORREF color)

{

 m_crPlotColor = color ;

 m_penPlot.DeleteObject() ;

 m_penPlot.CreatePen(PS_SOLID, 0, m_crPlotColor) ;

 InvalidateCtrl() ;

} // SetPlotColor

///

void COScopeCtrl::SetBackgroundColor(COLORREF color)

{

 m_crBackColor = color ;

 m_brushBack.DeleteObject() ;

 m_brushBack.CreateSolidBrush(m_crBackColor) ;

 InvalidateCtrl() ;

} // SetBackgroundColor

///

 114

void COScopeCtrl::InvalidateCtrl()

{

 int i ;

 int nCharacters ;

 int nTopGridPix, nMidGridPix, nBottomGridPix ;

 CPen *oldPen ;

 CPen solidPen(PS_SOLID, 0, m_crGridColor) ;

 CFont axisFont, yUnitFont, *oldFont ;

 CString strTemp ;

 CClientDC dc(this) ;

 if (m_dcGrid.GetSafeHdc() == NULL)

 {

 m_dcGrid.CreateCompatibleDC(&dc) ;

 m_bitmapGrid.CreateCompatibleBitmap(&dc, m_nClientWidth, m_nClientHeight) ;

 m_pbitmapOldGrid = m_dcGrid.SelectObject(&m_bitmapGrid) ;

 }

 m_dcGrid.SetBkColor (m_crBackColor) ;

 m_dcGrid.FillRect(m_rectClient, &m_brushBack) ;

 nCharacters = abs((int)log10(fabs(m_dUpperLimit))) ;

 nCharacters = max(nCharacters, abs((int)log10(fabs(m_dLowerLimit)))) ;

 nCharacters = nCharacters + 4 + m_nYDecimals ;

 m_rectPlot.left = m_rectClient.left + 6*(nCharacters) ;

 m_nPlotWidth = m_rectPlot.Width() ;

 oldPen = m_dcGrid.SelectObject (&solidPen) ;

 m_dcGrid.MoveTo (m_rectPlot.left, m_rectPlot.top) ;

 m_dcGrid.LineTo (m_rectPlot.right+1, m_rectPlot.top) ;

 115

 m_dcGrid.LineTo (m_rectPlot.right+1, m_rectPlot.bottom+1) ;

 m_dcGrid.LineTo (m_rectPlot.left, m_rectPlot.bottom+1) ;

 m_dcGrid.LineTo (m_rectPlot.left, m_rectPlot.top) ;

 m_dcGrid.SelectObject (oldPen) ;

 nMidGridPix = (m_rectPlot.top + m_rectPlot.bottom)/2 ;

 nTopGridPix = nMidGridPix - m_nPlotHeight/4 ;

 nBottomGridPix = nMidGridPix + m_nPlotHeight/4 ;

 for (i=m_rectPlot.left; i<m_rectPlot.right; i+=4)

 {

 m_dcGrid.SetPixel (i, nTopGridPix, m_crGridColor) ;

 m_dcGrid.SetPixel (i, nMidGridPix, m_crGridColor) ;

 m_dcGrid.SetPixel (i, nBottomGridPix, m_crGridColor) ;

 }

 axisFont.CreateFont (14, 0, 0, 0, 300,

 FALSE, FALSE, 0, ANSI_CHARSET,

 OUT_DEFAULT_PRECIS,

 CLIP_DEFAULT_PRECIS,

 DEFAULT_QUALITY,

 DEFAULT_PITCH|FF_SWISS, "Arial") ;

 yUnitFont.CreateFont (14, 0, 900, 0, 300,

 FALSE, FALSE, 0, ANSI_CHARSET,

 OUT_DEFAULT_PRECIS,

 CLIP_DEFAULT_PRECIS,

 DEFAULT_QUALITY,

 DEFAULT_PITCH|FF_SWISS, "Arial") ;

 oldFont = m_dcGrid.SelectObject(&axisFont) ;

 m_dcGrid.SetTextColor (m_crGridColor) ;

 m_dcGrid.SetTextAlign (TA_RIGHT|TA_TOP) ;

 116

 strTemp.Format ("%.*lf", m_nYDecimals, m_dUpperLimit) ;

 m_dcGrid.TextOut (m_rectPlot.left-4, m_rectPlot.top, strTemp) ;

 m_dcGrid.SetTextAlign (TA_RIGHT|TA_BASELINE) ;

 strTemp.Format ("%.*lf", m_nYDecimals, m_dLowerLimit) ;

 m_dcGrid.TextOut (m_rectPlot.left-4, m_rectPlot.bottom, strTemp) ;

 m_dcGrid.SetTextAlign (TA_LEFT|TA_TOP) ;

 m_dcGrid.TextOut (m_rectPlot.left, m_rectPlot.bottom+4, "0") ;

 m_dcGrid.SetTextAlign (TA_RIGHT|TA_TOP) ;

 strTemp.Format ("%d", m_nPlotWidth/m_nShiftPixels) ;

 m_dcGrid.TextOut (m_rectPlot.right, m_rectPlot.bottom+4, strTemp) ;

 m_dcGrid.SetTextAlign (TA_CENTER|TA_TOP) ;

 m_dcGrid.TextOut ((m_rectPlot.left+m_rectPlot.right)/2,

 m_rectPlot.bottom+4, m_strXUnitsString) ;

 m_dcGrid.SelectObject(oldFont) ;

 oldFont = m_dcGrid.SelectObject(&yUnitFont) ;

 m_dcGrid.SetTextAlign (TA_CENTER|TA_BASELINE) ;

 m_dcGrid.TextOut ((m_rectClient.left+m_rectPlot.left)/2,

 (m_rectPlot.bottom+m_rectPlot.top)/2, m_strYUnitsString) ;

 m_dcGrid.SelectObject(oldFont) ;

 if (m_dcPlot.GetSafeHdc() == NULL)

 {

 m_dcPlot.CreateCompatibleDC(&dc) ;

 m_bitmapPlot.CreateCompatibleBitmap(&dc, m_nClientWidth, m_nClientHeight) ;

 m_pbitmapOldPlot = m_dcPlot.SelectObject(&m_bitmapPlot) ;

 }

 m_dcPlot.SetBkColor (m_crBackColor) ;

 117

 m_dcPlot.FillRect(m_rectClient, &m_brushBack) ;

 InvalidateRect(m_rectClient) ;

} // InvalidateCtrl

//

double COScopeCtrl::AppendPoint(double dNewPoint)

{

 double dPrevious ;

 dPrevious = m_dCurrentPosition ;

 m_dCurrentPosition = dNewPoint ;

 DrawPoint() ;

 Invalidate() ;

 return dPrevious ;

} // AppendPoint

 //

void COScopeCtrl::OnPaint()

{

 CPaintDC dc(this) ; // device context for painting

 CDC memDC ;

 CBitmap memBitmap ;

 CBitmap* oldBitmap ; // bitmap originally found in CMemDC

 // no real plotting work is performed here,

 // just putting the existing bitmaps on the client

 // to avoid flicker, establish a memory dc, draw to it

 memDC.CreateCompatibleDC(&dc) ;

 memBitmap.CreateCompatibleBitmap(&dc, m_nClientWidth, m_nClientHeight) ;

 oldBitmap = (CBitmap *)memDC.SelectObject(&memBitmap) ;

 118

 if (memDC.GetSafeHdc() != NULL)

 {

 // first drop the grid on the memory dc

 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,

 &m_dcGrid, 0, 0, SRCCOPY) ;

 // now add the plot on top as a "pattern" via SRCPAINT.

 // works well with dark background and a light plot

 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,

 &m_dcPlot, 0, 0, SRCPAINT) ; //SRCPAINT

 // finally send the result to the display

 dc.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,

 &memDC, 0, 0, SRCCOPY) ;

 }

 memDC.SelectObject(oldBitmap) ;

} // OnPaint

///

void COScopeCtrl::DrawPoint()

{

 // this does the work of "scrolling" the plot to the left

 // and appending a new data point all of the plotting is

 // directed to the memory based bitmap associated with m_dcPlot

 // the will subsequently be BitBlt'd to the client in OnPaint

 int currX, prevX, currY, prevY ;

 119

 CPen *oldPen ;

 CRect rectCleanUp ;

 if (m_dcPlot.GetSafeHdc() != NULL)

 {

 // shift the plot by BitBlt'ing it to itself

 // note: the m_dcPlot covers the entire client

 // but we only shift bitmap that is the size

 // of the plot rectangle

 // grab the right side of the plot (exluding m_nShiftPixels on the left)

 // move this grabbed bitmap to the left by m_nShiftPixels

 m_dcPlot.BitBlt(m_rectPlot.left, m_rectPlot.top+1,

 m_nPlotWidth, m_nPlotHeight, &m_dcPlot,

 m_rectPlot.left+m_nShiftPixels, m_rectPlot.top+1,

 SRCCOPY) ;

 // establish a rectangle over the right side of plot

 // which now needs to be cleaned up proir to adding the new point

 rectCleanUp = m_rectPlot ;

 rectCleanUp.left = rectCleanUp.right - m_nShiftPixels ;

 // fill the cleanup area with the background

 m_dcPlot.FillRect(rectCleanUp, &m_brushBack) ;

 // draw the next line segement

 // grab the plotting pen

 oldPen = m_dcPlot.SelectObject(&m_penPlot) ;

 120

 // move to the previous point

 prevX = m_rectPlot.right-m_nPlotShiftPixels ;

 prevY = m_rectPlot.bottom -

 (long)((m_dPreviousPosition - m_dLowerLimit) * m_dVerticalFactor) ;

 m_dcPlot.MoveTo (prevX, prevY) ;

 // draw to the current point

 currX = m_rectPlot.right-m_nHalfShiftPixels ;

 currY = m_rectPlot.bottom -

 (long)((m_dCurrentPosition - m_dLowerLimit) * m_dVerticalFactor) ;

 m_dcPlot.LineTo (currX, currY) ;

 // restore the pen

 m_dcPlot.SelectObject(oldPen) ;

 // if the data leaks over the upper or lower plot boundaries

 // fill the upper and lower leakage with the background

 // this will facilitate clipping on an as needed basis

 // as opposed to always calling IntersectClipRect

 if ((prevY <= m_rectPlot.top) || (currY <= m_rectPlot.top))

 m_dcPlot.FillRect(CRect(prevX, m_rectClient.top, currX+1, m_rectPlot.top+1),

&m_brushBack) ;

 if ((prevY >= m_rectPlot.bottom) || (currY >= m_rectPlot.bottom))

 m_dcPlot.FillRect(CRect(prevX, m_rectPlot.bottom+1, currX+1,

m_rectClient.bottom+1), &m_brushBack) ;

 // store the current point for connection to the next point

 m_dPreviousPosition = m_dCurrentPosition ;

 121

 }

} // end DrawPoint

///

void COScopeCtrl::OnSize(UINT nType, int cx, int cy)

{

 CWnd::OnSize(nType, cx, cy) ;

 // NOTE: OnSize automatically gets called during the setup of the control

 GetClientRect(m_rectClient) ;

 // set some member variables to avoid multiple function calls

 m_nClientHeight = m_rectClient.Height() ;

 m_nClientWidth = m_rectClient.Width() ;

 // the "left" coordinate and "width" will be modified in

 // InvalidateCtrl to be based on the width of the y axis scaling

 m_rectPlot.left = 20 ;

 m_rectPlot.top = 10 ;

 m_rectPlot.right = m_rectClient.right-10 ;

 m_rectPlot.bottom = m_rectClient.bottom-25 ;

 // set some member variables to avoid multiple function calls

 m_nPlotHeight = m_rectPlot.Height() ;

 m_nPlotWidth = m_rectPlot.Width() ;

 122

 // set the scaling factor for now, this can be adjusted

 // in the SetRange functions

 m_dVerticalFactor = (double)m_nPlotHeight / m_dRange ;

} // OnSize

///

void COScopeCtrl::Reset()

{

 // to clear the existing data (in the form of a bitmap)

 // simply invalidate the entire control

 InvalidateCtrl() ;

}

B. TestOScope.cpp : Defines the class behaviors for the application.
#include "stdafx.h"

#include "TestOScope.h"

#include "TestOScopeDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

/* -- */

#ifdef __BORLANDC__

#pragma hdrstop // borland specific

 123

#include <condefs.h>

#pragma argsused

USEUNIT("Tserial_event.cpp");

#endif

//---

#include "conio.h"

#include "Tserial_event.h"

///

// CTestOScopeApp

BEGIN_MESSAGE_MAP(CTestOScopeApp, CWinApp)

 //{{AFX_MSG_MAP(CTestOScopeApp)

 // NOTE - the ClassWizard will add and remove mapping macros here.

 // DO NOT EDIT what you see in these blocks of generated code!

 //}}AFX_MSG

 ON_COMMAND(ID_HELP, CWinApp::OnHelp)

END_MESSAGE_MAP()

///

// CTestOScopeApp construction

CTestOScopeApp::CTestOScopeApp()

{

 // TODO: add construction code here,

 // Place all significant initialization in InitInstance

}

///

// The one and only CTestOScopeApp object

//friend class CTestOScopeDlg;

CTestOScopeApp theApp;

 124

CTestOScopeDlg* dlg = NULL;

DWORD* lpThreadId = NULL;

// CTestOScopeApp initialization

/* == */

/* =============== OnCharArrival ===================== */

/* == */

void CTestOScopeApp::OnDataArrival(int size, char *buffer)

{

 if ((size>0) && (buffer!=0))

 {

 buffer[size] = 0;

 printf("OnDataArrival: %s ",buffer);

 dlg->m_OScopeCtrl.AppendPoint((double)atoi(buffer));

 }

}

/* == */

/* =============== OnCharArrival ===================== */

/* == */

void SerialEventManager(uint32 object, uint32 event)

{

 char *buffer;

 int size;

 Tserial_event *com;

 com = (Tserial_event *) object;

 if (com!=0)

 125

 {

 switch(event)

 {

 case SERIAL_CONNECTED :

 //printf("Connected ! \n");

 ::AfxMessageBox("Connected!");

 break;

 case SERIAL_DISCONNECTED :

 printf("Disonnected ! \n");

 break;

 case SERIAL_DATA_SENT :

 //printf("Data sent ! \n");

 ::AfxMessageBox("Data Sent!");

 break;

 case SERIAL_RING :

 printf("DRING ! \n");

 break;

 case SERIAL_CD_ON :

 printf("Carrier Detected ! \n");

 break;

 case SERIAL_CD_OFF :

 printf("No more carrier ! \n");

 break;

 case SERIAL_DATA_ARRIVAL :

 size = com->getDataInSize();

 buffer = com->getDataInBuffer();

 theApp.OnDataArrival(size, buffer);

 126

 com->dataHasBeenRead();

 break;

 }

 }

}

BOOL CTestOScopeApp::InitInstance()

{

 DWORD WINAPI Graph_Plotter(LPVOID);

 AfxEnableControlContainer();

#ifdef _AFXDLL

 Enable3dControls(); // Call this when using MFC in a shared DLL

#else

 Enable3dControlsStatic(); // Call this when linking to MFC statically

#endif

 dlg = new CTestOScopeDlg;

 m_pMainWnd = dlg;

 HANDLE h_graph_plotter = ::CreateThread(

 NULL, // pointer to security attributes

 0, // initial thread stack size

 Graph_Plotter,// pointer to thread function

 dlg, // argument for new thread

 0, // creation flags

 lpThreadId // pointer to receive thread ID

);

 Send_recv_COM_data();

 127

 WaitForSingleObject(h_graph_plotter, INFINITE);

 return TRUE;

}

void CTestOScopeApp::Send_recv_COM_data()

{

 //int c;

 int erreur;

 //char txt[32];

 Tserial_event *com;

 com = new Tserial_event();

 if (com!=0)

 {

 com->setManager(SerialEventManager);

 erreur = com->connect("COM1", 19200, SERIAL_PARITY_NONE, 8,

true);

 if (!erreur)

 {

 ::AfxMessageBox("Connected!");

 /*com->sendData("Hello World",11);

 com->setRxSize(5);

 // ------------------

 do

 {

 c = getch();

 printf("_%c",c);

 128

 txt[0] = c;

 com->sendData(txt, 1);

 com->setRxSize(1);

 }

 while (c!=32);*/

 }

 else

 AfxMessageBox("ERROR : com->connect");

 // ------------------

 // com->disconnect();

 // ------------------

 // delete com;

 // com = 0;

 }

}

DWORD WINAPI Graph_Plotter(LPVOID lpParameter) // thread data

{

 CTestOScopeDlg* dlg = (CTestOScopeDlg*) lpParameter;

 int nResponse = dlg->DoModal();

 if (nResponse == IDOK)

 {

 // TODO: Place code here to handle when the dialog is

 129

 // dismissed with OK

 }

 else if (nResponse == IDCANCEL)

 return 0;

}

C. TestOScopeDlg.cpp : implementation file
#include "stdafx.h"

#include <stdlib.h>

#include "TestOScope.h"

#include "TestOScopeDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

///

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{

public:

 CAboutDlg();

// Dialog Data

 //{{AFX_DATA(CAboutDlg)

 enum { IDD = IDD_ABOUTBOX };

 130

 //}}AFX_DATA

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CAboutDlg)

 protected:

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

 //}}AFX_VIRTUAL

// Implementation

protected:

 //{{AFX_MSG(CAboutDlg)

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)

{

 //{{AFX_DATA_INIT(CAboutDlg)

 //}}AFX_DATA_INIT

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)

{

 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CAboutDlg)

 //}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)

 //{{AFX_MSG_MAP(CAboutDlg)

 //}}AFX_MSG_MAP

 131

END_MESSAGE_MAP()

///

// CTestOScopeDlg dialog

CTestOScopeDlg::CTestOScopeDlg(CWnd* pParent /*=NULL*/)

 : CDialog(CTestOScopeDlg::IDD, pParent)

{

 //{{AFX_DATA_INIT(CTestOScopeDlg)

 // NOTE: the ClassWizard will add member initialization here

 //}}AFX_DATA_INIT

 // Note that LoadIcon does not require a subsequent DestroyIcon in Win32

 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

 m_bStartStop = FALSE ;

 srand((unsigned)time(NULL));

}

void CTestOScopeDlg::DoDataExchange(CDataExchange* pDX)

{

 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CTestOScopeDlg)

 // NOTE: the ClassWizard will add DDX and DDV calls here

 //}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CTestOScopeDlg, CDialog)

 //{{AFX_MSG_MAP(CTestOScopeDlg)

 ON_WM_SYSCOMMAND()

 ON_WM_PAINT()

 132

 ON_WM_QUERYDRAGICON()

 //ON_WM_TIMER()

 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

///

// CTestOScopeDlg message handlers

BOOL CTestOScopeDlg::OnInitDialog()

{

 CDialog::OnInitDialog();

 // Add "About..." menu item to system menu.

 // IDM_ABOUTBOX must be in the system command range.

 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);

 ASSERT(IDM_ABOUTBOX < 0xF000);

 CMenu* pSysMenu = GetSystemMenu(FALSE);

 if (pSysMenu != NULL)

 {

 CString strAboutMenu;

 strAboutMenu.LoadString(IDS_ABOUTBOX);

 if (!strAboutMenu.IsEmpty())

 {

 pSysMenu->AppendMenu(MF_SEPARATOR);

 pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

 }

 }

 133

 // Set the icon for this dialog. The framework does this automatically

 // when the application's main window is not a dialog

 SetIcon(m_hIcon, TRUE); // Set big icon

 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here

 // determine the rectangle for the control

 CRect rect;

 GetDlgItem(IDC_OSCOPE)->GetWindowRect(rect) ;

 ScreenToClient(rect) ;

 // create the control

 m_OScopeCtrl.Create(WS_VISIBLE | WS_CHILD, rect, this) ;

 // customize the control

 m_OScopeCtrl.SetRange(-10.0, 10.0, 1) ;

 m_OScopeCtrl.SetYUnits("Volts") ;

 m_OScopeCtrl.SetXUnits("Samples (Windows Timer: 100 msec)") ;

 m_OScopeCtrl.SetBackgroundColor(RGB(0, 0, 64)) ;

 m_OScopeCtrl.SetGridColor(RGB(192, 192, 255)) ;

 m_OScopeCtrl.SetPlotColor(RGB(255, 255, 255)) ;

 return TRUE; // return TRUE unless you set the focus to a control

}

void CTestOScopeDlg::OnSysCommand(UINT nID, LPARAM lParam)

{

 if ((nID & 0xFFF0) == IDM_ABOUTBOX)

 {

 CAboutDlg dlgAbout;

 134

 dlgAbout.DoModal();

 }

 else

 {

 CDialog::OnSysCommand(nID, lParam);

 }

}

void CTestOScopeDlg::OnPaint()

{

 if (IsIconic())

 {

 CPaintDC dc(this); // device context for painting

 SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

 // Center icon in client rectangle

 int cxIcon = GetSystemMetrics(SM_CXICON);

 int cyIcon = GetSystemMetrics(SM_CYICON);

 CRect rect;

 GetClientRect(&rect);

 int x = (rect.Width() - cxIcon + 1) / 2;

 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon

 dc.DrawIcon(x, y, m_hIcon);

 }

 else

 {

 135

 CDialog::OnPaint();

 }

}

HCURSOR CTestOScopeDlg::OnQueryDragIcon()

{

 return (HCURSOR) m_hIcon;

}

void CTestOScopeDlg::OnRunstop()

{

 // TODO: Add your control notification handler code here

 m_bStartStop ^= TRUE;

 if (m_bStartStop)

 SetTimer(1,100,NULL);

 else

 KillTimer(1);

}

/*void CTestOScopeDlg::OnTimer(UINT nIDEvent)

{

 double nRandom=0;

 // nRandom = -5.0 + 10.0*rand()/(double)RAND_MAX;

 // append the new value to the plot

 m_OScopeCtrl.AppendPoint(nRandom);

 136

 CDialog::OnTimer(nIDEvent);

}*/

void CTestOScopeDlg::OnOK()

{

 m_bStartStop ^= TRUE;

 if (m_bStartStop)

 SetTimer(1,100,NULL);

 else

 KillTimer(1);

}

void CTestOScopeDlg::OnCancel()

{

 if (!m_bStartStop)

 KillTimer(1) ;

 CDialog::OnCancel();

}

D. Tserial_event.cpp
/* -- */

#define STRICT

#include <stdio.h>

 137

#include <stdlib.h>

#include <string.h>

#include <process.h>

#include <conio.h>

#include <windows.h>

#include "Tserial_event.h"

#define SIG_POWER_DOWN 0

#define SIG_READER 1

#define SIG_READ_DONE 2 // data received has been read

#define SIG_WRITER 3

#define SIG_DATA_TO_TX 4 // data waiting to be sent

#define SIG_MODEM_EVENTS 5

#define SIG_MODEM_CHECKED 6

void Tserial_event_thread_start(void *arg);

typedef unsigned (WINAPI *PBEGINTHREADEX_THREADFUNC) (LPVOID

lpThreadParameter);

typedef unsigned *PBEGINTHREADEX_THREADID;

/* -- */

/* --------------------- Tserial_event_thread_start ------------------- */

/* -- */

/**

 This function is not part of the Tserial_event object. It is simply used

 to start the thread from an external point of the object.

 138

*/

void Tserial_event_thread_start(void *arg)

{

 class Tserial_event *serial_unit;

 serial_unit = (Tserial_event *) arg;

 if (serial_unit!=0)

 serial_unit->run();

}

/* ------------------------- Tserial_event ------------------------- */

Tserial_event::Tserial_event()

{

 int i;

 ready = false;

 parityMode = SERIAL_PARITY_NONE;

 port[0] = 0;

 rate = 0;

 threadid = 0;

 serial_handle = INVALID_HANDLE_VALUE;

 thread_handle = 0;

 owner = 0;

 tx_in_progress = 0;

 rx_in_progress = 0;

 max_rx_size = 1;

 tx_size = 0;

 received_size = 0;

 139

 check_modem = false;

 manager = 0;

 /* -- */

 // creating Events for the different sources

 for (i=0; i<SERIAL_SIGNAL_NBR; i++)

 {

 if ((i==SIG_READER) || (i==SIG_WRITER) || (i==SIG_MODEM_EVENTS))

 serial_events[i] = CreateEvent(NULL, TRUE, FALSE, NULL); // Manual Reset

 else

 serial_events[i] = CreateEvent(NULL, FALSE, FALSE, NULL); // Auto reset

 }

}

/* -- */

/* -------------------------- ~Tserial_event ----------------------- */

/* -- */

Tserial_event::~Tserial_event()

{

 int i;

 if (thread_handle!=0)

 WaitForSingleObject(thread_handle, 2000);

 thread_handle = 0;

 /* -- */

 for (i=0; i<SERIAL_SIGNAL_NBR; i++) // deleting the events

 {

 140

 if (serial_events[i]!=INVALID_HANDLE_VALUE)

 CloseHandle(serial_events[i]);

 serial_events[i] = INVALID_HANDLE_VALUE;

 }

 if (serial_handle!=INVALID_HANDLE_VALUE)

 CloseHandle(serial_handle);

 serial_handle = INVALID_HANDLE_VALUE;

}

/* -- */

/* -------------------------- disconnect ------------------------- */

/* -- */

void Tserial_event::disconnect(void)

{

 ready = false;

 SetEvent(serial_events[SIG_POWER_DOWN]);

 if (thread_handle!=0)

 WaitForSingleObject(thread_handle, 2000);

 thread_handle = 0;

}

/* -- */

/* -------------------------- connect ------------------------- */

/* -- */

/**

 Serial port, file and overlapped structures initialization

*/

int Tserial_event::connect (char *port_arg, int rate_arg, int parity_arg,

 char ByteSize , bool modem_events)

 141

{

 int erreur;

 DCB dcb;

 int i;

 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0 };

 /* --- */

 if (serial_handle!=INVALID_HANDLE_VALUE)

 CloseHandle(serial_handle);

 serial_handle = INVALID_HANDLE_VALUE;

 if (port_arg!=0)

 {

 strncpy(port, port_arg, 10);

 rate = rate_arg;

 parityMode = parity_arg;

 check_modem = modem_events;

 erreur = 0;

 ZeroMemory(&ovReader ,sizeof(ovReader)); // clearing the overlapped

 ZeroMemory(&ovWriter ,sizeof(ovWriter));

 ZeroMemory(&ovWaitEvent,sizeof(ovWaitEvent));

 memset(&dcb,0,sizeof(dcb));

 /* -- */

 // set DCB to configure the serial port

 dcb.DCBlength = sizeof(dcb);

 /* ---------- Serial Port Config ------- */

 142

 dcb.BaudRate = rate;

 switch(parityMode)

 {

 case SERIAL_PARITY_NONE:

 dcb.Parity = NOPARITY;

 dcb.fParity = 0;

 break;

 case SERIAL_PARITY_EVEN:

 dcb.Parity = EVENPARITY;

 dcb.fParity = 1;

 break;

 case SERIAL_PARITY_ODD:

 dcb.Parity = ODDPARITY;

 dcb.fParity = 1;

 break;

 }

 dcb.StopBits = ONESTOPBIT;

 dcb.ByteSize = (BYTE) ByteSize;

 dcb.fOutxCtsFlow = 0;

 dcb.fOutxDsrFlow = 0;

 dcb.fDtrControl = DTR_CONTROL_DISABLE;

 dcb.fDsrSensitivity = 0;

 dcb.fRtsControl = RTS_CONTROL_DISABLE;

 dcb.fOutX = 0;

 dcb.fInX = 0;

 143

 /* ----------------- misc parameters ----- */

 dcb.fErrorChar = 0;

 dcb.fBinary = 1;

 dcb.fNull = 0;

 dcb.fAbortOnError = 0;

 dcb.wReserved = 0;

 dcb.XonLim = 2;

 dcb.XoffLim = 4;

 dcb.XonChar = 0x13;

 dcb.XoffChar = 0x19;

 dcb.EvtChar = 0;

 /* -- */

 serial_handle = CreateFile(port, GENERIC_READ | GENERIC_WRITE,

 0, NULL, OPEN_EXISTING,FILE_FLAG_OVERLAPPED,NULL);

 // opening serial port

 ovReader.hEvent = serial_events[SIG_READER];

 ovWriter.hEvent = serial_events[SIG_WRITER];

 ovWaitEvent.hEvent = serial_events[SIG_MODEM_EVENTS];

 if (serial_handle != INVALID_HANDLE_VALUE)

 {

 if (check_modem)

 {

 if(!SetCommMask(serial_handle, EV_RING | EV_RLSD))

 erreur = 1;

 }

 144

 else

 {

 if(!SetCommMask(serial_handle, 0))

 erreur = 1;

 }

 // set timeouts

 if(!SetCommTimeouts(serial_handle,&cto))

 erreur = 2;

 // set DCB

 if(!SetCommState(serial_handle,&dcb))

 erreur = 4;

 }

 else

 erreur = 8;

 }

 else

 erreur = 16;

 /* --- */

 for (i=0; i<SERIAL_SIGNAL_NBR; i++)

 {

 if (serial_events[i]==INVALID_HANDLE_VALUE)

 erreur = 32;

 }

 145

 /* --- */

 if (erreur!=0)

 {

 CloseHandle(serial_handle);

 serial_handle = INVALID_HANDLE_VALUE;

 }

 else

 {

 // start thread

 thread_handle = (HANDLE) _beginthreadex(NULL,0,

 (PBEGINTHREADEX_THREADFUNC) Tserial_event_thread_start,

 this, 0, &threadid);

 /*if (thread_handle==-1)

 thread_handle=0; */

 }

 /* --- */

 return(erreur);

}

/* -- */

/* --------------------- setManager --------------------- */

/* -- */

void Tserial_event::setManager(type_myCallBack manager_arg)

{

 manager = manager_arg;

}

/* -- */

/* --------------------- setRxSize --------------------- */

/* -- */

 146

void Tserial_event::setRxSize(int size)

{

 max_rx_size = size;

 if (max_rx_size>SERIAL_MAX_RX)

 max_rx_size = SERIAL_MAX_RX;

}

/* -- */

/* --------------------- setManager --------------------- */

/* -- */

char * Tserial_event::getDataInBuffer(void)

{

 return(rxBuffer);

}

/* -- */

/* --------------------- setManager --------------------- */

/* -- */

int Tserial_event::getDataInSize(void)

{

 return(received_size);

}

/* -- */

/* --------------------- setManager --------------------- */

/* -- */

void Tserial_event::dataHasBeenRead(void)

{

 SetEvent(serial_events[SIG_READ_DONE]);

}

/* -- */

/* ----------------------- getNbrOfBytes --------------------------- */

 147

/* -- */

int Tserial_event::getNbrOfBytes (void)

{

 struct _COMSTAT status;

 int n;

 unsigned long etat;

 n = 0;

 if (serial_handle!=INVALID_HANDLE_VALUE)

 {

 ClearCommError(serial_handle, &etat, &status);

 n = status.cbInQue;

 }

 return(n);

}

/* -- */

/* -------------------------- sendData ------------------------- */

/* -- */

void Tserial_event::sendData (char *buffer, int size)

{

 if ((!tx_in_progress) && (size<SERIAL_MAX_TX) && (buffer!=0))

 {

 tx_in_progress = 1;

 memcpy(txBuffer, buffer, size);

 tx_size = size;

 SetEvent(serial_events[SIG_DATA_TO_TX]);

 // indicating data to be sent

 }

 148

}

/* -------------------------- OnEvent ------------------------- */

void Tserial_event::OnEvent (unsigned long events)

{

 unsigned long ModemStat;

 GetCommModemStatus(serial_handle, &ModemStat);

 if ((events & EV_RING)!=0)

 {

 if ((ModemStat & MS_RING_ON)!= 0)

 {

 if (manager!=0)

 manager((uint32) this, SERIAL_RING);

 }

 }

 if ((events & EV_RLSD)!=0)

 {

 if ((ModemStat & MS_RLSD_ON)!= 0)

 {

 if (manager!=0)

 manager((uint32) this, SERIAL_CD_ON);

 }

 else

 {

 if (manager!=0)

 manager((uint32) this, SERIAL_CD_OFF);

 }

 149

 }

}

/* -- */

/* -------------------------- run ------------------------- */

/* -- */

#define DEBUG_EVENTS

/* */

void Tserial_event::run(void)

{

 bool done;

 long status;

 unsigned long read_nbr, result_nbr;

 char success;

 ready = true;

 done = false;

 tx_in_progress = 0;

 rx_in_progress = 0;

 WaitCommEventInProgress = 0;

 if (manager!=0)

 manager((uint32) this, SERIAL_CONNECTED);

 GetLastError(); // just to clear any pending error

 SetEvent(serial_events[SIG_READ_DONE]);

 if (check_modem)

 SetEvent(serial_events[SIG_MODEM_CHECKED]);

 150

 while(!done)

 {

 /* -- */

 /* */

 /* */

 /* */

 /* Waiting for signals */

 /* */

 /* */

 /* */

 /* -- */

 status = WaitForMultipleObjects(SERIAL_SIGNAL_NBR, serial_events,

 FALSE, INFINITE);

 // processing answer to filter other failures

 status = status - WAIT_OBJECT_0;

 if ((status<0) || (status>=SERIAL_SIGNAL_NBR))

 done=true; // error

 else

 {

 /* ++

*/

 /* ++++++++++++++++++++ EVENT DISPATCHER ++++++++++++++++++

*/

 /* ++

*/

 switch(status)

 {

 151

 case SIG_POWER_DOWN:

 done = true;

 break;

 /* # RX # */

 case SIG_READ_DONE:

 // previous reading is finished

 // I start a new one here

 if (!rx_in_progress)

 {

 // locking reading

 rx_in_progress = 1;

 // starting a new read

 success = (char) ReadFile(serial_handle,&rxBuffer,

 max_rx_size,&read_nbr,&ovReader);

 if (!success)

 {

 // failure

 if(GetLastError() != ERROR_IO_PENDING)

 {

 // real failure => quiting

 done = true;

 #ifdef DEBUG_EVENTS

 printf("Readfile error (not pending)\n");

 #endif DEBUG_EVENTS

 }

 #ifdef DEBUG_EVENTS

 else

 printf("ReadFile pending\n");

 152

 #endif DEBUG_EVENTS

 }

 #ifdef DEBUG_EVENTS

 else

 {

 printf("ReadFile immediate success\n");

 }

 #endif

 }

 break;

 /* ## */

 case SIG_READER:

 // reading the result of the terminated read

 //BOOL GetOverlappedResult(

 // HANDLE hFile, // handle of file, pipe, or communications device

 // LPOVERLAPPED lpOverlapped, // address of overlapped structure

 // LPDWORD lpNumberOfBytesTransferred, // address of actual

bytes count

 // BOOL bWait // wait flag

 //);

 //

 if (GetOverlappedResult(serial_handle, &ovReader,

 &result_nbr, FALSE))

 {

 #ifdef DEBUG_EVENTS

 printf("ReadFile => GetOverlappedResult done\n");

 #endif DEBUG_EVENTS

 // no error => OK

 // Read operation completed successfully

 153

 ResetEvent(serial_events[SIG_READER]);

 // Write operation completed successfully

 received_size = result_nbr;

 rx_in_progress = 0; // read has ended

 // if incoming data, I process them

 if ((result_nbr!=0) &&(manager!=0))

 manager((uint32) this, SERIAL_DATA_ARRIVAL);

 // I automatically restart a new read once the

 // previous is completed.

 //SetEvent(serial_events[SIG_READ_DONE]);

 // BUG CORRECTION 02.06.22

 }

 else

 {

 // GetOverlapped didn't succeed !

 // What's the reason ?

 if(GetLastError()!= ERROR_IO_PENDING)

 done = 1; // failure

 }

 break;

 /* # TX # */

 case SIG_DATA_TO_TX:

 success = (char) WriteFile(serial_handle, txBuffer, tx_size,

 &result_nbr, &ovWriter);

 if (!success)

 {

 // ouups, failure

 if(GetLastError() != ERROR_IO_PENDING)

 {

 154

 // real failure => quiting

 done = true;

 #ifdef DEBUG_EVENTS

 printf("WriteFile error (not pending)\n");

 #endif DEBUG_EVENTS

 }

 #ifdef DEBUG_EVENTS

 else

 printf("WriteFile pending\n");

 #endif DEBUG_EVENTS

 }

 #ifdef DEBUG_EVENTS

 else

 {

 printf("WriteFile immediate success\n");

 }

 #endif

 break;

 /* ## */

 case SIG_WRITER:

 // WriteFile has terminated

 // checking the result of the operation

 if (GetOverlappedResult(serial_handle, &ovWriter,

 &result_nbr, FALSE))

 {

 // Write operation completed successfully

 ResetEvent(serial_events[SIG_WRITER]);

 // further write are now allowed

 tx_in_progress = 0;

 155

 // telling it to the manager

 if (manager!=0)

 manager((uint32) this, SERIAL_DATA_SENT);

 }

 else

 {

 if(GetLastError() != ERROR_IO_PENDING)

 done = 1; // failure

 }

 break;

 /* # MODEM_EVENTS EVENTS # */

 case SIG_MODEM_CHECKED:

 if ((!WaitCommEventInProgress) && check_modem)

 // if no wait is in progress I start a new one

 {

 WaitCommEventInProgress=1;

 success = (char) WaitCommEvent(serial_handle,&dwCommEvent,

 &ovWaitEvent);

 // reading one byte only to have immediate answer on each byte

 if (!success)

 {

 // ouups, failure

 if(GetLastError() != ERROR_IO_PENDING)

 {

 // real failure => quiting

 done = true;

 #ifdef DEBUG_EVENTS

 printf("WaitCommEvent error (not pending)\n");

 #endif DEBUG_EVENTS

 156

 }

 #ifdef DEBUG_EVENTS

 else

 printf("WaitCommEvent pending\n");

 #endif DEBUG_EVENTS

 }

 #ifdef DEBUG_EVENTS

 else

 {

 printf("WaitCommEvent immediate success\n");

 }

 #endif

 }

 break;

 /* ## */

 case SIG_MODEM_EVENTS:

 // reading the result of the terminated wait

 if (GetOverlappedResult(serial_handle, &ovWaitEvent,

 &result_nbr, FALSE))

 {

 // Wait operation completed successfully

 ResetEvent(serial_events[SIG_MODEM_EVENTS]);

 WaitCommEventInProgress = 0;

 // if incoming data, I process them

 OnEvent(dwCommEvent);

 // automatically starting a new check

 SetEvent(serial_events[SIG_MODEM_CHECKED]);

 }

 else

 157

 {

 // GetOverlapped didn't succeed !

 // What's the reason ?

 if(GetLastError() != ERROR_IO_PENDING)

 done = 1; // failure

 }

 break;

 }

 }

 };

 // --------------------- Disconnecting ----------------

 ready = false;

 if (serial_handle!=INVALID_HANDLE_VALUE)

 CloseHandle(serial_handle);

 serial_handle = INVALID_HANDLE_VALUE;

 if (manager!=0)

 manager((uint32) this, SERIAL_DISCONNECTED);

}

/* -- */

 158

APPENDIX V

 159

 A. Specifications of RM1V Receiver

B. Specifications of TM1V Transmitter

 160

VITA

Sriram T. Vengalathur received his B.E. degree in mechanical engineering from

B.M.S.C.E., Bangalore in 1999. He joined the master’s program at Texas A&M

University in August 2000 and graduated in August 2003. He can be contacted through

the Department of Mechanical Engineering, Texas A&M University, College Station,

TX-77843-3123.

	Chapters-All.pdf
	B. Objective
	C. Justification for the proposed research
	D. Literature review
	CHAPTER II.pdf
	CAUSES OF DERAILMENT
	A. Introduction
	B. Conditions other than a defective railcar that might cause derailment
	(a.) Derailment due to resonance [1]
	(b.) Resonance due to packing material [1]
	(c.) Derailment due to the wheels being lifted of the track [1]

	C. Faults in a railcar
	Bogie defects
	(b.) Bearing faults
	(c.) Wheel Defects

	CHAPTER III.pdf
	Fig. 15. Typical assembly of a 3-piece bogie [13]
	Fig. 16. 3-Piece bogie model used for simulations in GENSYS [21]

	Table 1. Simulation parameters
	Table 2. Test conditions
	
	LOAD
	SPEED (km/h)
	FAULT

	CHAPTER IV.pdf
	CHAPTER IV
	A. Introduction
	B. On-board fault detection system
	C. Identifying defective tracks

	CHAPTER V.pdf
	CHAPTER V
	A. Introduction
	B. Overview of the system
	E. Hardware architecture
	G. Introduction to 68HC12
	Table 5. Memory map for 68HC12 [16]
	Address Range
	Description
	Location
	$0000 - $01FF
	CPU registers
	On-chip (MCU)
	$0800 - $09FF
	User code/data
	1 K on- chip RAM (MCU)
	$1000 - $1FFF
	User code/data
	4 K on chip EEPROM (MCU)
	$4000 - $7FFF
	User code/data
	16 K external RAM
	$8000 - $9FFF
	Available for user programs
	32 K external EPROM
	The basic structure and configuration of the ports of a 68HC12A4 in its expanded mode is shown in the Fig. 40 below.
	�
	Fig. 40. Block diagram of the expanded wide mode of M68HV12A4 [16]
	H. Overview of serial communication in 68HC12
	(a.) Serial versus parallel communication
	(b.) Asynchronous versus synchronous communication

	(c.) Communication protocol
	1. Packaging the data
	2. Elimination of noise (ensuring the correctness of the data)

	J. RF transmission
	(a.) Wireless solution
	(b.) Selection of RF transceivers
	(c.) Issues in RF transceivers
	(d.) Probable solutions
	1. Intermodulation and heterodyning
	2. Multipath cancellation and distance between th
	3. Awakening the receiver
	4. Checking correctness of the data

	Chapter VI.pdf
	F. Conclusion

	CHAPTER V.pdf
	CHAPTER V
	A. Introduction
	B. Overview of the system
	E. Hardware architecture
	G. Introduction to 68HC12
	Table 3. Memory map for 68HC12 [16]
	Address Range
	Description
	Location
	$0000 - $01FF
	CPU registers
	On-chip (MCU)
	$0800 - $09FF
	User code/data
	1 K on- chip RAM (MCU)
	$1000 - $1FFF
	User code/data
	4 K on chip EEPROM (MCU)
	$4000 - $7FFF
	User code/data
	16 K external RAM
	$8000 - $9FFF
	Available for user programs
	32 K external EPROM
	The basic structure and configuration of the ports of a 68HC12A4 in its expanded mode is shown in the Fig. 40 below.
	�
	Fig. 40. Block diagram of the expanded wide mode of M68HV12A4 [16]
	H. Overview of serial communication in 68HC12
	(a.) Serial versus parallel communication
	(b.) Asynchronous versus synchronous communication

	(c.) Communication protocol
	1. Packaging the data
	2. Elimination of noise (ensuring the correctness of the data)

	J. RF transmission
	(a.) Wireless solution
	(b.) Selection of RF transceivers
	(c.) Issues in RF transceivers
	(d.) Probable solutions
	1. Intermodulation and heterodyning
	2. Multipath cancellation and distance between th
	3. Awakening the receiver
	4. Checking correctness of the data

	CHAPTER V.pdf
	CHAPTER V
	A. Introduction
	B. Overview of the system
	E. Hardware architecture
	G. Introduction to 68HC12
	Table 3. Memory map for 68HC12 [22]
	Address Range
	Description
	Location
	$0000 - $01FF
	CPU registers
	On-chip (MCU)
	$0800 - $09FF
	User code/data
	1 K on- chip RAM (MCU)
	$1000 - $1FFF
	User code/data
	4 K on chip EEPROM (MCU)
	$4000 - $7FFF
	User code/data
	16 K external RAM
	$8000 - $9FFF
	Available for user programs
	32 K external EPROM
	The basic structure and configuration of the ports of a 68HC12A4 in its expanded mode is shown in the Fig. 40 below.
	�
	Fig. 40. Block diagram of the expanded wide mode of M68HV12A4 [22]
	H. Overview of serial communication in 68HC12
	(a.) Serial versus parallel communication
	(b.) Asynchronous versus synchronous communication

	(c.) Communication protocol
	1. Packaging the data
	2. Elimination of noise (ensuring the correctness of the data)

	J. RF transmission
	(a.) Wireless solution
	(b.) Selection of RF transceivers
	(c.) Issues in RF transceivers
	(d.) Probable solutions
	1. Intermodulation and heterodyning
	2. Multipath cancellation and distance between th
	3. Awakening the receiver
	4. Checking correctness of the data

	Chapter VI.pdf
	F. Conclusion

	Last Segment.pdf
	Appendix 2.pdf
	1. Data registers used in the 68HC12 boards
	Fig. 49. SCI control register 1 (SCXCR1)

	Appendix 3.pdf
	D. Pseudo code for identifying a defective track

	Appendix 5.pdf
	A. Specifications of RM1V Receiver
	B. Specifications of TM1V Transmitter

	Appendix 2.pdf
	1. Data registers used in the 68HC12 boards
	Fig. 49. SCI control register 1 (SCXCR1)

	Appendix 3.pdf
	D. Pseudo code for identifying a defective track

	Appendix 5.pdf
	A. Specifications of RM1V Receiver
	B. Specifications of TM1V Transmitter

	Chapters-All.pdf
	B. Objective
	C. Justification for the proposed research
	D. Literature review
	CHAPTER II.pdf
	CAUSES OF DERAILMENT
	A. Introduction
	B. Conditions other than a defective railcar that might cause derailment
	(a.) Derailment due to resonance [1]
	(b.) Resonance due to packing material [1]
	(c.) Derailment due to the wheels being lifted of the track [1]

	C. Faults in a railcar
	Bogie defects
	(b.) Bearing faults
	(c.) Wheel Defects

	CHAPTER III.pdf
	Fig. 15. Typical assembly of a 3-piece bogie [13]
	Fig. 16. 3-Piece bogie model used for simulations in GENSYS [21]

	Table 1. Simulation parameters
	Table 2. Test conditions
	
	LOAD
	SPEED (km/h)
	FAULT

	CHAPTER IV.pdf
	CHAPTER IV
	A. Introduction
	B. On-board fault detection system
	C. Identifying defective tracks

	CHAPTER V.pdf
	CHAPTER V
	A. Introduction
	B. Overview of the system
	E. Hardware architecture
	G. Introduction to 68HC12
	Table 5. Memory map for 68HC12 [16]
	Address Range
	Description
	Location
	$0000 - $01FF
	CPU registers
	On-chip (MCU)
	$0800 - $09FF
	User code/data
	1 K on- chip RAM (MCU)
	$1000 - $1FFF
	User code/data
	4 K on chip EEPROM (MCU)
	$4000 - $7FFF
	User code/data
	16 K external RAM
	$8000 - $9FFF
	Available for user programs
	32 K external EPROM
	The basic structure and configuration of the ports of a 68HC12A4 in its expanded mode is shown in the Fig. 40 below.
	�
	Fig. 40. Block diagram of the expanded wide mode of M68HV12A4 [16]
	H. Overview of serial communication in 68HC12
	(a.) Serial versus parallel communication
	(b.) Asynchronous versus synchronous communication

	(c.) Communication protocol
	1. Packaging the data
	2. Elimination of noise (ensuring the correctness of the data)

	J. RF transmission
	(a.) Wireless solution
	(b.) Selection of RF transceivers
	(c.) Issues in RF transceivers
	(d.) Probable solutions
	1. Intermodulation and heterodyning
	2. Multipath cancellation and distance between th
	3. Awakening the receiver
	4. Checking correctness of the data

	Chapter VI.pdf
	F. Conclusion

	CHAPTER V.pdf
	CHAPTER V
	A. Introduction
	B. Overview of the system
	E. Hardware architecture
	G. Introduction to 68HC12
	Table 3. Memory map for 68HC12 [16]
	Address Range
	Description
	Location
	$0000 - $01FF
	CPU registers
	On-chip (MCU)
	$0800 - $09FF
	User code/data
	1 K on- chip RAM (MCU)
	$1000 - $1FFF
	User code/data
	4 K on chip EEPROM (MCU)
	$4000 - $7FFF
	User code/data
	16 K external RAM
	$8000 - $9FFF
	Available for user programs
	32 K external EPROM
	The basic structure and configuration of the ports of a 68HC12A4 in its expanded mode is shown in the Fig. 40 below.
	�
	Fig. 40. Block diagram of the expanded wide mode of M68HV12A4 [16]
	H. Overview of serial communication in 68HC12
	(a.) Serial versus parallel communication
	(b.) Asynchronous versus synchronous communication

	(c.) Communication protocol
	1. Packaging the data
	2. Elimination of noise (ensuring the correctness of the data)

	J. RF transmission
	(a.) Wireless solution
	(b.) Selection of RF transceivers
	(c.) Issues in RF transceivers
	(d.) Probable solutions
	1. Intermodulation and heterodyning
	2. Multipath cancellation and distance between th
	3. Awakening the receiver
	4. Checking correctness of the data

	CHAPTER V.pdf
	CHAPTER V
	A. Introduction
	B. Overview of the system
	E. Hardware architecture
	G. Introduction to 68HC12
	Table 3. Memory map for 68HC12 [22]
	Address Range
	Description
	Location
	$0000 - $01FF
	CPU registers
	On-chip (MCU)
	$0800 - $09FF
	User code/data
	1 K on- chip RAM (MCU)
	$1000 - $1FFF
	User code/data
	4 K on chip EEPROM (MCU)
	$4000 - $7FFF
	User code/data
	16 K external RAM
	$8000 - $9FFF
	Available for user programs
	32 K external EPROM
	The basic structure and configuration of the ports of a 68HC12A4 in its expanded mode is shown in the Fig. 40 below.
	�
	Fig. 40. Block diagram of the expanded wide mode of M68HV12A4 [22]
	H. Overview of serial communication in 68HC12
	(a.) Serial versus parallel communication
	(b.) Asynchronous versus synchronous communication

	(c.) Communication protocol
	1. Packaging the data
	2. Elimination of noise (ensuring the correctness of the data)

	J. RF transmission
	(a.) Wireless solution
	(b.) Selection of RF transceivers
	(c.) Issues in RF transceivers
	(d.) Probable solutions
	1. Intermodulation and heterodyning
	2. Multipath cancellation and distance between th
	3. Awakening the receiver
	4. Checking correctness of the data

	Chapter VI.pdf
	F. Conclusion

	CHAPTER III.pdf
	Fig. 15. Typical assembly of a 3-piece bogie [13]
	Fig. 16. 3-Piece bogie model used for simulations in GENSYS [21]

	Table 1. Simulation parameters
	Table 2. Test conditions
	
	LOAD
	SPEED (km/h)
	FAULT

	CHAPTER III.pdf
	Fig. 15. Typical assembly of a 3-piece bogie [13]
	Fig. 16. 3-Piece bogie model used for simulations in GENSYS [21]

	Table 1. Simulation parameters
	Table 2. Test conditions
	
	LOAD
	SPEED (km/h)
	FAULT

	CHAPTER III.pdf
	Fig. 15. Typical assembly of a 3-piece bogie [13]
	Fig. 16. 3-Piece bogie model used for simulations in GENSYS [21]

	Table 1. Simulation parameters
	Table 2. Test conditions
	
	LOAD
	SPEED (km/h)
	FAULT

	CHAPTER II.pdf
	CAUSES OF DERAILMENT
	A. Introduction
	B. Conditions other than a defective railcar that might cause derailment
	(a.) Derailment due to resonance [1]
	(b.) Resonance due to packing material [1]
	(c.) Derailment due to the wheels being lifted of the track [1]

	C. Faults in a railcar
	Bogie defects
	(b.) Bearing faults
	(c.) Wheel Defects

	Last Segment.pdf
	Appendix 2.pdf
	1. Data registers used in the 68HC12 boards
	Fig. 49. SCI control register 1 (SCXCR1)

	Appendix 3.pdf
	D. Pseudo code for identifying a defective track

	Appendix 5.pdf
	A. Specifications of RM1V Receiver
	B. Specifications of TM1V Transmitter

	Appendix 2.pdf
	1. Data registers used in the 68HC12 boards
	Fig. 49. SCI control register 1 (SCXCR1)

	Appendix 3.pdf
	D. Pseudo code for identifying a defective track

	Appendix 5.pdf
	A. Specifications of RM1V Receiver
	B. Specifications of TM1V Transmitter

	Appendix 2.pdf
	1. Data registers used in the 68HC12 boards
	Fig. 49. SCI control register 1 (SCXCR1)

	Appendix 5.pdf
	A. Specifications of RM1V Receiver
	B. Specifications of TM1V Transmitter

	Appendix 5.pdf
	A. Specifications of RM1V Receiver
	B. Specifications of TM1V Transmitter

	Appendix 5.pdf
	A. Specifications of RM1V Receiver
	B. Specifications of TM1V Transmitter

