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ABSTRACT 

 

 
Low Cost Fault Detection System for Railcars and Tracks. (August 2003) 

Sriram T. Vengalathur, B.E., B.M.S.C.E. (University of Bangalore), India 

Chair of Advisory Committee: Dr. Reza Langari 

 

 

A “low cost fault detection system” that identifies wheel flats and defective 

tracks is explored here. This is achieved with the conjunction of sensors, 

microcontrollers and Radio Frequency (RF) transceivers.  

 The objective of the proposed research is to identify faults plaguing railcars and 

to be able to clearly distinguish the faults of a railcar from the inherent faults in the 

track. The focus of the research though, is mainly to identify wheel flats and defective 

tracks. 

 The thesis has been written with the premise that the results from the simulation 

software GENSYS are close to the real time data that would have been obtained from 

an actual railcar. Based on the results of GENSYS, a suitable algorithm is written that 

helps segregate a fault in a railcar from a defect in a track.  

 The above code is implemented using hardware including microcontrollers, 

accelerometers, RF transceivers and a real time monitor. An enclosure houses the 

system completely, so that it is ready for application in a real environment.  

 This also involves selection of suitable hardware so that there is a uniform 

source of power supply that reduces the cost and assists in building a robust system.  
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CHAPTER I 

INTRODUCTION 
A. Introduction 

The railways in America suffer considerable losses each year due to derailments. 

The causes for these derailments are defects in the track and inherent faults in the railcar. 

Several attempts have been made to prevent these problems, but most of them have been 

restricted to the analysis of track and train dynamics; the derailment problem has not 

been analyzed extensively from the viewpoint of the defects in the track and the railcar. 

This gap motivates the topic for this thesis, i.e. to look at remedial measures from a 

different perspective. 

Railways have come a long way in terms of development. There has been a 

tremendous progress in reduction of travel time with modern technologies contributing 

to speed of the engines. However, one thing that has not undergone a major change is the 

track; the tracks are the same in many countries. This is a major source of worry since 

the old tracks may not be able to handle current high-speed locomotives and may be a 

source of derailment [1]. Various kinds of special purpose railcars that are designed to 

handle different types of payloads also add to the existing problem, because the present 

day tracks are not designed to handle different types of locomotives and cars (as is the 

situation now in North American railways). Replacing or laying thousands of miles 

special purpose track is no menial task; it is also not cost effective [2]. Thus the current 

need is to develop a system that identifies potential faults in both railcars and tracks. The 

goal is to identify where the fault lies. It might so happen that faults existing in the 

railcar might damage the track.  

Derailment of a train occurs when the wheels lift and slip out of the track. In 

more specific terms, a derailment occurs when the ratio of lateral displacement to 

vertical displacement, which is termed the L/V, ratio-exceeds a critical limit whose value 

is typically 1.2 [3].  

________________  
The journal model is IEEE/ASME Transactions on Mechatronics.  
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There are several different ways or mechanisms by which a train/railcar can 

derail. The derailment might be due the defects in the track or due to a defect in the 

railcar itself. 

A major cause for concern in the rail industry is the faults in railcar itself. There 

can be instances in which the track buckles due to a faulty bogie. Some faults in railcars 

like wheel-flats cause permanent damage to the tracks. Thus, it becomes crucial to 

rectify these faults before they cause further damage. 

It is critical to identify a faulty bogie and also identify which part of a track is 

defective so that corrective measures can be taken. 

Defects in a railcar can be very broadly classified as: 

• Defects in the bogie and trucks 

• Bearing faults 

• Wheel defects 

      Of the above-mentioned faults wheel defects and bearing faults are the most 

damaging ones. Bearing faults have been researched extensively in the past as compared 

to wheel defects. Of all the physical damage that occurs in a wheel, a wheel flat is the 

most critical, because it is the one that occurs most frequently and causes severe damage 

to the track. A primary source for this is due to uneven braking of the wheels.  

 

 

B. Objective 

 
The main objective of the proposed research is to identify faults that plague a 

railcar and be able to clearly distinguish the faults of a railcar from inherent faults in the 

track. However, focus of this research is mainly to identify wheel flats. That is, the aim 

here is to develop a low cost, fault detection system that identifies whether the potential 

source for derailment is a faulty railcar or a defect in the track.  
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In order to achieve the desired objective, significant preliminary research needs 

to be done in terms of development of hardware and software. Research in terms of 

hardware involves development of the RF (radio frequency) links in conjunction with 

microcontrollers and also manufacturing the enclosure that houses the requisite 

hardware. Research in terms of hardware involves development of a robust algorithm 

that does not simply detect a fault but also does the same for the system as a whole that 

is, noise elimination algorithm for reliable RF transmission.  

 

 
C. Justification for the proposed research 

 
Most of the research carried out in the railroad industry thus far has been 

restricted to the analysis track and train dynamics. In the area of fault detection, 

detection of bearing faults has received maximum attention. Wheel flats have not been 

given priority although they cause significant damage. In current research efforts, 

detection of a wheel flat has been a relatively neglected field. The closest anyone has 

come to identifying a wheel flat by similar fault detection techniques is by using the 

bearing fault detection method of Dr. A. K. Chan [4], at Texas A&M University, where 

the signals meant to analyze the bearing fault are used to identify wheel flats. This 

method has not been very successful in detecting wheel flats as accurately as bearing 

faults. 

An “on-board-real-time” fault detection system has not been explored 

extensively in this field, thus making the current research important. 

 

D. Literature review 

 
There has been significant work in the past with regard to identifying the cause 

for a fault, especially in identifying the bearing fault. The “Acoustic Bearing Detector “ 

[4] has been devised by Dr. A. K. Chan at Texas A&M University. This method is 

supposed to detect a faulty bearing to an accuracy of 85%. There are a couple of 
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drawbacks to this system though; this system cannot detect certain conditions like the 

grooved axle condition or defective roller condition. This is not an onboard system, the 

sensors are placed adjacent to the track, and these sensors pick up the sound waves from 

the bearings whizzing past them and analyze it on the spot. The maintenance of these 

systems can be pretty expensive. However, there is no such method for identifying a 

wheel flat condition. The acoustic bearing detector sometimes catches a signal, which is 

a characteristic response of a wheel flat, but no explicit algorithm has been created to 

identify wheel flats. 

Preliminary study by R. M. Kaul [5], for a train protection warning system does 

use the concept of sending certain frequency signals to a box (with receivers to analyze 

signals) placed in each of the cars. This system aims at stopping a train for certain faults 

and does not use the “centralized system” for transmitting signals back and forth 

between the main unit and the controller. Also this system has not been developed to 

identify faults in a railcar. 

Kumagai et al.  [6], have done some extensive research on the occurrence of 

wheel flats and have devised certain measures to prevent it. But the issues tackled are 

more on the material science side; it does not indicate any method to identify the 

beginning of wheel flat, i.e. how the fault manifests when the train is in motion. 

Research by D. H. Stone [7], indicates causes for the propagation of a shattered 

rim, but analysis is done only after damage has already occurred. Although certain 

specific causes are ascertained, it does not indicate how to take preventive measures 

when the defect is manifesting in a moving car. 

The closest anybody has come to the proposed research is A. Filip [8], who has 

done substantial research in the area of a train integrity monitoring system. This system 

is useful to identify railcars that detach from the main cars. The drawback of this system 

though is that it uses relatively expensive GPS antennae and a sophisticated computer 

system. In addition it does not identify any other fault in a railcar. 
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TRACS [9], a system developed by Par Astrom of ABB, Sweden uses Motorola 

microprocessor for general monitoring of system but does not address the wheel flat 

issue. This system needs additional memory to store data thus adding to the costs. 

 

 

E. Summary of contributions 

The following items serve to summarize the contributions of this thesis 

• Formulation of the problem statement by researching different kinds of faults. 

• Modifying an existing simulation software GENSYS to suit the need of North 

American railroads. 

• Creating the faults in the software and running the simulations for different test 

conditions to see the responses of a fault. 

• Analyzing the behavior of the vehicle and deciding a suitable scheme to identify 

these faults. 

• Conceptualization of a system to identify these faults. 

• Implement the system using suitable electronics and hardware. 

• Address the issues in radio frequency (RF) transmission. 

• Write a suitable algorithm to implement a fault detection system. 

• Create a Graphical User Interface (GUI) in VC++ to detect the faulty signals 

from a sensor. 

• Package the setup, i.e. the microcontroller and the RF Transceivers in an 

enclosure such that it can be used in any kind of rugged environment. 

 

 

F. Outline of this thesis 

 

The organization of this thesis is as follows: Chapter II looks at the different 

causes for derailment and identifies the different problems that plague a railcar. Chapter 

III looks at the software used for simulation: GENSYS, the results are analyzed and 
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related to the type of fault. Chapter IV looks at a possible fault detection system to tackle 

the faults encountered in Chapters II and III. Chapter IV deals with the principle of fault 

detection. Chapter V deals extensively with the hardware used and the solutions to the 

problems encountered. Chapter VI concludes the thesis. 
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CHAPTER II 

CAUSES OF DERAILMENT 

A. Introduction 

 
Before looking at potential causes for derailment of a railcar, let us analyze how 

a derailment might occur. Technically speaking the derailment of a train occurs when the 

wheels lift and slip out of the track. In more specific terms, derailment occurs when the 

ratio of lateral displacement to vertical displacement- termed the L/V ratio-exceeds a 

critical limit whose value is typically 1.2 [3].  

There are several different ways or mechanisms by which a train/railcar can 

derail. The derailment might be due the defects in the track or due to a defect in the 

railcar itself. Section B explains some conditions other than the defects in the railcar that 

might cause the derailment and section C deals with the defects in the railcar that might 

cause the derailment. 

B. Conditions other than a defective railcar that might cause derailment 

 
Listed below are the conditions/mechanisms that might cause a railcar to derail. 

The conditions and mechanisms listed below are excluding defective railcars. 

 

(a.) Derailment due to resonance [1] 

 
The tracks are not defect free. Defects like waviness in lateral and vertical 

directions show up in the long run. This might excite railcars moving at high speeds to a 

resonant condition, which may lead to derailment. 
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(b.) Resonance due to packing material [1] 

 
Most railcars are provided with packing materials whose primary function is to 

absorb the undesired vibrations and protect the load it is carrying. However, faulty 

packing occasionally drives the railcar to resonance. 

 

(c.) Derailment due to the wheels being lifted of the track [1] 

 
This situation might arise when the train is moving at a high speed on a curve 

and the wheel on the outer side might lift of the track above a critical speed. Also when a 

locomotive is negotiating a sharp curve it uses high horse power for better traction that 

gives rise to high contact stresses at the wheel-track interface that might cause the wheel 

to slip over the track. 

 

C. Faults in a railcar 

 
A major cause for concern is faults in the railcar itself. Derailments caused by the 

above mentioned factors are also initiated by faults in railcars. There can also be 

instances that the track buckles due to a faulty bogie [1].    

Some faults in railcars like wheel-flats cause permanent damage to the tracks. It 

is very crucial to rectify these faults before they can cause further damage. It becomes 

critical here, to identify the faulty bogie and also identify which part of a track is 

defective so that corrective measures can be taken. 

Defects in a railcar can be broadly classified as: 

• Defects in the bogie and trucks 

• Bearing faults 

• Wheel defects 
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Of the above list, the last two are the major cause for concern. Extensive research 

has been conducted to identify the manifestation of these faults. The wheel flat has been 

relatively unexplored as far as fault detection is concerned. These are discussed at a later 

part in this thesis. 

 

(a.) Bogie defects 

 
The physical deformation of the parts of the railcar falls into this category. The 

defects can be a warped bogie/truck, which happens because of laterally or angularly 

misaligned wheel sets. This kind of a defect might cause the track to expand at certain 

points. 

 

(b.) Bearing faults 

 
Derailments of trains caused by wheel bearing faults are a significant problem in 

the rail industry. Trains often consist of 80-100 wagons and up to 1,600 bearings [10]. 

The failure of a bearing can cause significant damage to both the cars and the tracks. 

One of the most extensively researched fields involves the bearing fault. Listed 

below are three of the most common conditions of occurrence of a bearing fault. 

• Hot Bearing 

• Spalling 

• Spun Cone 

As the name suggests a hot bearing occurs when the bearing is getting 

abnormally hot. If this condition is not identified in its initial stages it may lead to a 

catastrophic failure. This condition occurs mainly due to the loss/contamination of the 

lubricant that would increase the friction and hence high temperatures on the bearing 

surfaces result in a heat build up that leads to failure of the axle journal. Portions of oil 

wick could also get caught between the bearing and the journal resulting in heat [11]. 
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 The other common defect is fatigue spalling that is caused by metal stress 

fatigue. Spalling is basically sub-surface defects that propagate to the surface because of 

cyclic stresses. Spalling is the final stage of this propagation. When the material 

imperfection finally breaks away at the surface it is known as “Spall.” Fig. 1 shows a 

typical fatigue spall on a cone, Fig. 2 shows the section views through spalled 

components. Both of these are typical examples of metal stress fatigue explained above. 

 Brinelling is a common defect encountered in roller bearings. This occurs when 

indentations are made in the raceway made by rollers under extreme loading conditions. 

Brinelling can lead to spalling due to uneven load distribution [11]. A typical example of 

Brinelling is shown in Fig. 3. 

 Fragment indentation is a condition in roller bearings that occurs when the 

surface is damaged by debris passing through the roll tracks that result in surface dents 

[11]. These indentations can contribute to fatigue by acting as stress concentration point. 

This is illustrated in Fig. 4. 

  

 
 

 

Fig. 1.  Fatigue spalling [12] 
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Fig. 2.  Section view of spall [13] 

 

 

 
 

 

Fig. 3.  Brinelling [13] 
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Fig. 4.  Fragment indentation [13] 

 

Peeling and smearing are conditions that arise when the rollers move in improper 

lubricating conditions. Peeling is minute particles coming of coming away from the 

surface. Smearing arises because of transfer of metal from one surface to another [11]. 

The phenomena are illustrated in Fig. 5 and Fig. 6. 

 

 
 

 

Fig. 5.  Peeling [13] 

 

 

 



 13

 
 

 

Fig. 6.  Smearing [13] 

 

Water etching and pitting are problems caused by the presence of moisture. 

During cooling of a hot bearing the vacuum inside the bearing attracts air and water 

vapor. This is shown in Figs. 7 and Fig. 8. 

 

 
 

 

Fig. 7.  Etching [13] 
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Fig. 8.  Pitting [13] 

 

Spun Cone is a condition in which the bearing wears out in a tapered fashion. 

This is because of non-conformity of the axle-journal diameters and also because of age 

factors. This is shown in Fig. 9. 

 

 
 

 

Fig. 9.  Spun cone [13] 

 

Bearing faults in huge proportions predominantly causes derailments. Therefore, 

it is very crucial to identify this fault in its initial stages and take requisite actions. 
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(c.) Wheel Defects 

 
This is an important element, it also shelters many a faults. Listed below are a 

few of them 

• Wheel Spalling 

• Shattered Rim 

• Corrugated Wheels 

• Cracks 

• Sub-Surface Defects 

• Treading 

• Wheel Flats 

All these are the physical damage that occurs to the wheel.  

The propagation of crack on the surface of the wheel contributes to wheel 

spalling (which is similar to occurrence in a bearing). Shown in Fig. 10 is a serious 

condition of a wheel spall. 

 

 
 

 

Fig. 10.  Wheel spalling [13] 

 

Shattered rim is an extreme case of wheel spall as can be seen from Fig. 11. 
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Fig. 11.  Shattered rim [14] 

 

Corrugation is a series of irregular waves on a structure. In railways corrugation 

is mainly seen on tracks (corrugated rails). But this defect can also be seen sometimes on 

the circumference of a wheel as shown in Fig. 12.  

 

 

 
 

 

Fig. 12.  Corrugated wheel [15] 
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One of the reasons for corrugation is great traction force on the wheel. This 

phenomenon is also called “polygonisation”.  

 Wheel flat is one of the widely researched topics as far as the defects in a rail car 

go. This, as the name suggests, is flatness on the surface of the wheel. Uneven braking 

and uneven loads are the two main causal factors. This also has a damaging effect on the 

track as can be visualized by Figs. 13 and 14. 

 

 

 

 
 

 

Fig. 13.  Wheel flats [16] 
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Fig. 14.  Close up of one of the flats [16] 

 

Of all the faults listed above, the wheel flat is the critical one, for this is the one 

that occurs most frequently and is not detected easily by any of the present diagnostic 

methods. Thus, this fault along with the bearing fault has been chosen for analysis by the 

proposed system as can be seen in later chapters. 
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CHAPTER III 

GENSYS 
A. Introduction 

 

The response of an accelerometer due to defects on track, wheel, and bearings 

was initially an unknown quantity to begin with. No extensive research has been done in 

North American railways using an accelerometer as a sensor. This makes it difficult to 

get access to data that would show what a faulty data would look like. Restriction to 

access already existing data from the American association of railroads (AAR) test 

facility ruled out using a previous test data. 

 It was decided that simulation was the closest we could come to an actual test on 

a railcar. This apart, using software would give us the flexibility of simulating different 

test conditions that would have been difficult considering the effort and the cost 

involved. 

 There are very few rail vehicle dynamics simulation packages in use; this makes 

selection process relatively easy. Available software packages are VAMPIRE, 

GENSYS, SIMPACK, ADAMS and NUCARS. The selection process was done taking 

into account the results of “The Manchester Benchmarks for Rail Vehicle Simulation” 

[17]. 

 The Manchester Benchmarks indicate that all the software codes perform 

similarly in most of the regions and concur with the general perspective. Keeping in 

mind the response from the companies, the cost and flexibility of the software, GENSYS 

was initially chosen to explore the different condition experienced by a railcar. 

GENSYS is a multibody computer code and is widely used in railroad research in 

Europe and has been constantly validated by asea Brown Boveri (ABB) and Adtranz, 

Sweden, for different kinds of rail vehicle [18]. The source code for GENSYS is written 

mainly in FORTRAN-77 with the graphics part being taken care of by ANSI-C. 
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B. Railcar model used  

 

Most of the bogies in North American railroads consist of 3 pieces, which differs 

from European railcars. In a 3-piece bogie model wheel sets support two side frames that 

support a bolster. The bolster is connected to the car body by a central pivot and side 

bearers with sliding surfaces. Seven sets of concentric springs provide the vertical and 

lateral suspension between the side frames and the bolster as shown in Fig. 15. Damping 

for the model is provided by spring loaded snubbing wedges that are located between the 

ends of the side frame and the bolster. The wedges are positioned such that a part of the 

body weight goes through the wedges causing the normal forces and thus the damping to 

vary with vehicle load [19]. A typical 3-piece bogie assembly is shown in Fig. 15. 

 

 
 

 

Fig. 15. Typical assembly of a 3-piece bogie [13] 

 

  The base model in GENSYS was created keeping in mind the European railcars. 

It had to be remodeled to match the 3-piece bogie model; the main code was modified to 

create a 3-piece bogie. 
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In GENSYS vehicle bodies, bogies and wheel sets are modeled as rigid bodies 

and have 6 degrees of freedom [20]. The track is modeled as a rigid body and with each 

connected wheel set there is a degree of freedom for each track body and hence the 

models contain 46 degrees of freedom. The 3-piece model of a truck created using 

GENSYS is shown in Fig. 16. 

 

 
 

 

Fig. 16. 3-Piece bogie model used for simulations in GENSYS [21] 

 

A 3-piece bogie conforming to the standards of American railroads was created 

with the option of changing the loads from a full load of 120 ton to any other value. For 

simulation purposes full and half loads, i.e. 120 and 60 tons were used at 3 different 

speeds. 
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C. Simulations in GENSYS 

As mentioned in the earlier chapters, we are trying to identify wheel flats with 

the option of a bearing fault being included for future research. Thus when the faults 

were created using GENSYS bearing fault was also included.  

 

(a.) Creation of faults 

 

Changing the wheel geometry in the original code simulates a wheel flat. Thus at 

the circumference of the wheel a small disturbance is introduced which is very close to a 

miniscule wheel flat. 

 Bearing fault was introduced into the model by making a small deformation in 

the bearing, which would very roughly represent a bearing fault. 

  

(b.) Simulation 

 

Simulation was run for 2 different load sets at 3 different speeds.  

The main simulation parameters are shown in table 1. 

 

Table 1.  Simulation parameters 

 

Simulation distance 1.6 kms 

Simulation loads 60, 120 tons 

Simulation speeds 50, 70, 90 km/h 

 

The different test conditions were: 

Full load: 120 tons 

Half load: 60 tons 
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Table 2.  Test conditions 

 

LOAD SPEED (km/h) FAULT 

Full 50 None 

Full 70 None 

Full 90 None 

Half 50 None 

Half 70 None 

Half 90 None 

Full 50 Wheel flat 

Full 70 Wheel flat 

Full 90 Wheel flat 

Half 50 Wheel flat 

Half 70 Wheel flat 

Half 90 Wheel flat 

Full 50 Bearing fault 

Full 70 Bearing fault 

Full 90 Bearing fault 

Half 50 Bearing fault 

Half 70 Bearing fault 

Half 90 Bearing fault 

Full 50 Wheel flat & Bearing fault 

Full 70 Wheel flat & Bearing fault 

Full 90 Wheel flat & Bearing fault 

Half 50 Wheel flat & Bearing fault 

Half 70 Wheel flat & Bearing fault 

Half 90 Wheel flat & Bearing fault 
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(c.) Discussion of results 

 

Figs. 17-34 show results of the simulation of a combined bearing fault and wheel 

flat at 70 kmph and with a full load. The results are discussed after the figures. 
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Fig. 17.  Longitudinal position of the center of gravity of  
the leading axle of the leading bogie 
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Fig. 18.  Longitudinal position of the center of gravity of  

the trailing axle of the leading bogie 
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Fig. 20.  Longitudinal position of the center of gravity of  
the trailing axle of the trailing bogie 
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Fig. 21.  Position of the bolster beam 
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Fig. 22.  Vertical acceleration in car-body over leading bogie 
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Fig. 23.  Vertical acceleration in the center of the car-body 
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Fig. 24.  Vertical acceleration in car-body over trailing bogie 
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Fig. 25.  Car accelerations at different sections 
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Fig. 26.  Vertical force, tread, left wheel 
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Fig. 27.  Vertical force, tread, right wheel 
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Fig. 28.  Flange climb ratio left wheel, first axle 
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Fig. 29.  Flange climb ratio right wheel, first axle 
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Fig. 30.  Flange climb ratio left wheel, second axle 
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Fig. 31.  Flange climb ratio right wheel, second axle 
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Fig. 32.  Flange climb ratio second bogie, left wheel, and first axle 

 



 40

0 500 1000 1500 2000 2500 3000 3500
-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

 
Data points 

 

Fig. 33.  Flange climb ratio second bogie, right wheel, and first axle 
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Fig. 34.  Flange climb ratio second bogie, right wheel, and second axle 

 

           Attached above are a few of the important plots from the simulations run on 

GENSYS. These plots enable a better overview of a rail vehicle behavior, more 

specifically at the points we desire in presence of a fault. The software gives us 

flexibility to place different sensors at vantage points to measure variables like 

acceleration and contact forces. 

 Fig. 17 is a plot of the longitudinal position of the C.G of leading axle of the 

leading bogie. It can be seen that the bearing fault is not having any noticeable effect on 

the leading position of the bogie, but the wheel flat shows up on the plot in a big way. 

This is because of the impact that a wheel flat causes. There is a temporary loss of 

contact between the wheel and the rail and just before the moment of impact. A large 

force on the wheel is transmitted to the axle and thus to the bogie. This impact can be 
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detected by any inexpensive sensor and can be detected easily as opposed to the bearing 

fault whose effect is not obvious in the plot. 

 The next three figures show the effect of the wheel flat waning away. Figs. 18- 

20 shows the lateral position of the trailing axle of the leading bogie and the leading and 

trailing axles of the trailing bogie, that is the wheel flat has a major effect only of the 

axle where it is located. The next plot explained further verifies this. 

 Fig. 21 shows the position of the bolster beam. In the first look it seems that both 

the wheel flat and the bearing fault have an effect on the bolster beam which is 

surprising considering the fact that the bearing fault had almost no effect on the leading 

axle which, is nearer to the fault than the bolster. A closer look at the plot indicates that 

the magnitude is much smaller than for the other plots. This further verifies the fact that 

the effect of the wheel flat wanes as the distance from the fault increases.  

 The next plot shown in Fig. 22 shows the vertical acceleration in car-body over 

leading bogie. This can be easily monitored by an accelerometer. The plot when looked 

at without any reference might appear difficult to identify any faults, but, as we look the 

plots in the next two figures, i.e. Fig. 23 and Fig. 24 we can see that the magnitude of 

acceleration is distinguishably higher than that of the accelerations in the center of the 

car and at the trailing bogie. In fact the accelerations at the center of the car and at the 

trailing bogie do not show any pattern as compared to the leading bogie, where sharp 

peaks can be noticed at the points where wheel flat makes contact with the rail. 

 The next plot summarizes what was said in the previous paragraph. Fig. 25. 

shows accelerations at the leading bogie, the center of the car and the trailing bogie. It 

can be seen clearly from this plot that the faulty bogie gives out sharp peaks indicating a 

fault. The other parts of the plots almost match in all the three cases, although the 

leading bogie does show some higher peaks because of the bearing fault, such small 

differences will be difficult to distinguish in real situations. 

 Plots in Figs. 26 and 27 indicate the vertical force at the left and the right wheels 

in the leading bogie. The forces at the other axles are very small and can be neglected. 

This case gives an option of exploring a force sensor to identify faults. It can be clearly 
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seen that the magnitude of the force shoots up the moment the wheel flat touches the rail. 

The bearing fault too seems to increase the contact force, though not on a very large 

scale. The fault on the left wheel does not affect the contact forces at the right wheel, 

thus enabling us to use the forces at the wheel rail interface to identify the faults 

explicitly and more conclusively. 

 The remaining plots deal extensively with the most important factor in 

identifying (or preventing) the derailment: the flange climb ratio. As mentioned earlier 

L/V ratio is a crucial factor in derailment of rail vehicles. The critical value typically lies 

around 1.2. None of the cases in the simulation threaten to approach this value for the 

magnitude of the fault created is not that serious. The fault created is at the right wheel, 

thus we can see that the magnitude of the L/V ratio is high at the right wheel-track 

interface, a part of the repercussion can be seen at left wheel-track interface.  

 

D. Conclusion 

 

 Numerical simulations reported in this chapter gave us a very clear picture on 

how the response of the vehicle will be in presence of a fault. This also gives us an 

opportunity to explore different sensors like strain gages and accelerometers to get 

similar kind of responses from a real vehicle. On the basis of this simulation the system 

was further developed. 
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CHAPTER IV 

PRINCIPLES OF FAULT DETECTION 

A. Introduction 

With regards to this project, fault detection implies, identifying the faults that 

have a potential to become damaging ones. And “damaging ones” further implies those 

faults that would not just damage the tracks but might lead to derailment.  

Since, not all the faults listed in chapter II occur frequently, we prioritize and 

treat those faults that occur most frequently, which are also the ones that cause the 

maximum damage. Wheel flats and bearing fault are two such commonly occurring 

faults. As already discussed earlier bearing faults that are left unattended can lead to 

catastrophic failures.  

Wheel flat has not been given as much importance as its bearing counterpart as 

far as the detection part of it goes, but it ranks alongside bearing fault in terms of the 

damage caused to the railways, both in terms of damage to the tracks and monetarily. 

Thus, these two faults, i.e. wheel flats and bearing faults, have been chosen for 

the first stage of fault detection. The other faults have been ignored for the moment since 

their damage is relatively less, but this system can be later extended to other kinds of 

faults. 

 

B. On-board fault detection system 

 
As mentioned in section C of chapter I, there are well-established systems to 

identify bearing faults; the same systems sometimes detect signals of a wheel flat,  
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though very infrequently. A major disadvantage of this system is that it is a wayside 

fault detection system. Although it can identify a bearing fault up to an accuracy of 85%, 

maintaining a large number of such systems throughout the railways network will prove 

to be an expensive affair. 

 

The aim here is to create a low-cost, low-maintenance on-board fault detection 

system; this will not only eliminate the costly job of installing an expensive system and 

maintaining it but will also eliminate unnecessary processing of a multitude of data. 

The principle of operation of the system will basically be to pick up signals from 

some kind of a sensor and analyze those signals to look for the fault, which would 

basically be identifying a signature response. The idea is based on the assumption that 

each kind of fault will give out a signature response (as has been seen in various 

systems). 

Vibration at certain points is considered to look for a fault. This was decided 

after running some simulations on GENSYS as discussed in the previous chapter. 

The vibration response was unique for both types of faults. The bearing fault was 

characterized by a high frequency signal, whereas sharp peaks at regular intervals 

characterize the wheel flat, as can be seen from Figs. 35 and 36. These responses were 

obtained by simulating in GENSYS.  
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Fig. 35. Response from an accelerometer in presence of a bearing fault 
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Fig. 36. Response from an accelerometer in presence of a wheel flat 

 

These plots appear as expected. A wheel flat is approximately a smooth flat 

surface at the circumference of the rim. When a flat hits the rail the wheel loses contact 

with the rail for a fraction of a second; when it comes in contact again with the rail it 

creates a certain impact, which stands out as a sharp peak in the response. On the other 

hand the bearing fault on the other hand is made up of many small surface defects, and is 

located at the center of the wheel and thus gives out a high frequency response. 

It is relatively easy to identify a wheel flat for it stands out very significantly, the 

effect of noise and other factors can be ignored while identifying a wheel flat.  

For a bearing fault, different types of frequency analysis can be used to identify 

the fault, but in real world it becomes much more difficult, for there may be many other 

similar kinds of noises. 
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 Considering that we do not have any access to existing data at AAR and certain 

memory issues from the sensor we chose to narrow our target to just wheel flat for the 

moment. 

Thus using vibrations emanating from certain points in a railcar as a signature 

response, the fault detection system will be packaged and placed at a suitable point on 

the railcar. 

 

C. Identifying defective tracks 

 

A very interesting find that came out during this research was the ease with which faulty 

tracks could be identified. Electronics have been used explicitly to find out different 

types of faults, but never has been track defects identified, save for those track cars, 

which can never explore the length of the tracks all over North America. This follows a 

very simple algorithm, which waits for all the signals from different cars and then 

analyzes the characteristic of these signals. If all the cars have emitted the same signal in 

a given period of time then we know that there has to be a defect outside the cars, which 

points to a defective track. Thus we can record the distance where the fault lies in the 

track.  A very basic algorithm is explained in appendix III.  



 49

CHAPTER V 

HARDWARE SYSTEM FOR FAULT DETECTION 

A. Introduction 

 
The faults are identified using various hardware setups; all the requisite hardware 

should gel as a single unit while monitoring the fault.  

Since the need of the hour is a low-cost system, one of the key issues to be kept 

in mind is the issue of power management of the hardware. As will be seen in the 

following sections the electronic part of the hardware involved requires some sort of 

voltage source for functioning and by proper selection of the electronic units, a single 

power source can be used to supply power to the hardware; this also reduces the periodic 

checks of hardware in the system. 

B. Overview of the system 

 
From the previous chapter we know that we need some kind of a sensor that will 

send the signals for identification of the fault. There has to be a unit, which will monitor 

all the vibration in a railcar and to supervise such small units we will need a main 

monitoring system. We will call the main monitoring system as “Master” and the other 

smaller units as “Slaves,” in a broad sense. 

Communication between the master and slave monitoring systems will take place 

via radio frequency (RF) transmission. Thus the system overall will look similar to Fig. 

37. The signals picked up from the sensor will be sent through the RF link to the master 

for data logging. 

Since, the signals picked up from the sensor will have to be processed constantly 

for identifying faults, each slave will have a Motorola 68HC12B32 board, and the master 

will have a Motorola 68HC12A4 board. Thus, signals from the sensor are sent to the 

controller, which in turn, based on the seriousness of the fault communicates to the 

master through the RF link (Fig. 38). 
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Fig. 37.  Overview of the system with the slave 
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Fig. 38.  Overview of the system with the master 
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Fig. 39.  Expanded view of the process of RF transmission
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C.  Organizing the fault detection system 

 

Since we have an overall idea on how to implement the system, we can split the 

task into three broad categories. 

• Selection of a proper sensor 

• Selection of hardware for analysis purposes 

• Assembling the whole unit to create a fault detection 

system 

 

(a.) Selection of a proper sensor 

 

Since we are aiming at identifying wheel flat and the bearing fault, it will be 

appropriate to place the sensor at a point where it can pick up identifiable signals from 

both the points. Since the bearing fault occurs mainly at the wheel axle junction and the 

wheel flat at the surface of the rim, the best place for the sensor would be just before the 

wheel-axle interface.  

This area will be subjected to extreme conditions like variations in temperature, 

dust, mechanical strains etc. A very robust sensor will therefore be needed, which will 

not only pick up the vibrations from the interface but also survive the harsh environs.  

Piezoelectric accelerometers are designed for low mechanical strain and are 

relatively unaffected by thermal transients, thus it was decided as an ideal choice for a 

sensor. To this end, we chose Analog Devices’ ADXL202®, which is a 2-axis 

piezoelectric accelerometer. 

 

(b.) Selection of hardware for analysis purpose 

 

After sensor receives the signal, some kind of a processor is needed for 

preliminary analysis that would also prevent unnecessary transmission of data that might 



 54

clog the master processor. Since the sensor is placed in all the railcars, the centralized 

controller-master will monitor the sensors and processors in all the cars. 

Thus, this can be broadly classified into two different stages. 

• Sensor-Slave Stage 

• Slave- Master Stage 

As the names suggest, sensor-slave stage involves the interaction between the slave 

and the sensor and the slave-master stage involves the interactions between the master 

and the slave. 

Both the slave and master will have a fair amount of processing to do. The slave has 

to continuously monitor the data and look for any ominous signs of a fault. In case a 

fault is manifest the slave alerts the master. The tasks a slave is expected to perform 

mainly are: 

• Respond to the commands sent by the master. 

• Pick up the signal from the sensor and process the signal to look for high 

frequency components (characteristic of a bearing fault). 

• Pick up the signal from the sensor and look for sharp peaks (characteristic of a 

wheel flat). 

The master processor on the other hand is expected to have certain functionalities, a few 

of which are: 

• Capable of interpreting user-entered commands on a PC and sends signals to the 

slaves accordingly. 

• Be able to prioritize signals arriving from various slaves. 

• Be able to interpret the data and decide whether a fault lies in a particular section 

of a track or on some railcar. 

 

Thus it is clear that some kind of a micro controller that has adequate processing 

capabilities is needed to perform the functions of both the master and slave. 

      The controllers are expected to perform various tasks like isolating the noise from 

the actual data, processing the data, and responding to commands issued by the user.  
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It is imperative that the controllers used have sufficient memory apart from 

having the desired functionalities. After conducted a preliminary research on the various 

kinds of commercially available controllers, Motorola 68HCXX series of 

microcontrollers were found to have requisite functionalities required for our purpose. 

Keeping in mind the various constraints like the cost-efficiency, the memory issue, the 

ease of use and available documentation for the controllers, the Motorola M68HC12A4 

and M68HC12B32 boards were chosen. Both have the capability to act as a “Master” 

controller. For our purpose though the M68HC12B32 has been chosen as the “Master” 

controller. 

These are 16-Bit microcontrollers with 1K of RAM and 768bytes of EEPROM 

with facility to incorporate fuzzy logic.  

The next issue that crops up is how to effect the communication between the 

master and the slave. Since Motorola 68HCXX series have been chosen, the serial ports 

of the microcontroller can be used to effect serial communication (explained later) 

between the boards. The simplest way to communicate is just to connect the serial ports 

through an RS-232 cable. But the problem arises when you want to make these 

connections in a real situation; the total number of cars in a typical freight train is 

approximately 100-150, with the total length of the exceeding 1,000 feet. Having the 

master-slave communication through a wire in this case is virtually impossible for a host 

of reasons, which is explained in RF transmission section. Wireless communication is 

not only efficient but also robust and fast. For this reason a Radio Frequency (RF) link 

was chosen over communication by wires. Glolab corporations’ TM1V and RM1V 

transmitters and receivers were chosen for this purpose. The transmitter module TM1V 

is a 418 MHz RF transmitter and it is capable of sending serial data at a rate of up to 

4800 bps (bits per second).  A huge plus for the transmitter considering that we are 

aiming at a low cost system is the low power consumption of 1.5 ma. The receiver 

module RM1V also has the same features. When TM1V and RM1V are used in 

conjunction, serial data can be transmitted easily over a distance of 300 feet. The 

technical details of these are attached in appendix V. 
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(c.) Assembling of the fault detection system 

 

The idea, as stressed earlier, is to pick up the signals from a sensor and transfer 

the signal through a microcontroller, which in turn transmits data though a RF 

transceiver to a “Master” controller, which will analyze the data further. It is proposed to 

package the entire hardware- sensor, microcontroller and transceiver- in a single 

enclosure so that it can be attached to a railcar at an appropriate location. This makes the 

system simple to maintain and use. 

 

 D. Functioning of the hardware 

 

After the components are assembled, the master (68HC12A4) and the slave 

(68HC12B32) subsystems appear as shown in Fig. 38. Thus when the master receives a 

command from the user it performs the required function. Let us say that the command 

is to fetch the accelerometer data, the master interprets the command accordingly and 

then sends a command through pin PS3 of the serial port1 to the RF transmitter. These 

commands are in the form of a packet that is received by the RF receiver on the slave 

side and sent to the microcontroller through the pin PS0 of serial port 0. The 

microcontroller now fetches the accelerometer data from the analog – digital converter 

and sends the data through pin PS1 of the serial port 0 to the RF transmitter. This data is 

received by the RF receiver on the master side and send to the microcontroller through 

the pin PS1 of the serial port 1. The master then prints this value on the screen. This is 

just a very basic explanation on how the data actually flows in this set-up. 

 

E. Hardware architecture 

Thus to summarize, the Hardware architecture consists of: 

• A PC, which acts as a user-friendly terminal, and that interacts with a “Master” 

subsystem.  
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• A “Master” subsystem will execute the user prompted commands. 

• A “Slave” subsystem responds to the “Master” commands. 

 

The “Slave” subsystem is comprised of the following hardware:  

• Motorola 68HC12B32 Board 

• Accelerometer 

• Glolab TM1V and RM1VTransmitter and Receiver 

 

The “Master” subsystem comprises of the following hardware:  

Motorola 68HC12A4 Board 

Glolab TM1V and RM1V Transmitter and Receiver  

All these will be assembled in an enclosure as will be seen in the last chapter. 

 

F. Fault detection software  

 

The fault detection software should be able to identify the faults manifested in 

the car. Below is a simple algorithm used for this purpose 

Pseudo code for the master: 

• Wait for interrupts to occur 

• If interrupt is from a slave then transmit the data to the PC terminal 

• If some information is required from the slave, communicate with the slave and 

re-transmit information to the user. 

• If receive interrupts from different slaves, analyze all the data and determine the 

kind of fault, if any. 
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Pseudo code for the slave: 

• Wait for the interrupt from the master, but keep processing the signals from the 

sensor. 

• If there is a critical signal from the sensor, then immediately inform the master, 

otherwise keep analyzing data from the sensor. 

• If and interrupt occurs because of a command from the master, respond to the 

request by sending appropriate information, the command is usually for a 

missing data. 

 

Identification of a critical signal in a Slave 

• Continuously check the Accelerometer readings 

• If the amplitude of the signal goes over the preset (threshold) value, then 

indicate that there is a fault 

• If the command is to check for a bearing fault, then store some values from 

the accelerometer and perform FFT on the signal to identify very high 

frequency components. 

The flowchart for this system is shown in appendix I. 

 

G. Introduction to 68HC12 

 
Motorola has two variants of their 68HC12 Micro controller, the 68HC12A4 and 

the 68HC12B32. The 68HC12 series has 16- Bit Micro controllers. These micro 

controllers are compatible with the 68HC11, therefore there is not an issue of 

incompatibility with the old code; all HC11 commands are accepted by the 68HC12.  

The 68HC12A4 board contains a low-power, high speed CPU. Two 

asynchronous serial communication interfaces, a serial peripheral interface, a flexible 8-

channel timer, a 16-bit pulse accumulator module, an 8-channel, 8-bit analog-digital 

converter, 1 kilobyte of RAM, 4 kilobytes of EEPROM, and a single-wire Background 

Debug Mode (BDM) module. The 68HC12A4 also has some additional features like the 
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capability to expand over 5 MB of memory, non-multiplexed address and data buses, 

and phase-locked loop and 24-key wakeup lines with interrupt capabilities. 

The 68HC12B32 has almost all the processing capabilities of the A5. Few things 

different from the A4 are that it has only 1 asynchronous serial communication interface 

and 768 Bytes of EEPROM.  The B32 has some unique features like 32 KB flash 

EEPROM and a built in pulse-width modulator. 

The A4 is normally configured to run mainly in an expanded mode with some of 

the resources existing outside the chip, whereas the B32 is configured to run in a single 

chip mode are all the resources are in the chip. 

The A4 though can be operated in seven different modes of operation. They 

being 

• Special single chip  

• Special expanded narrow 

• Special peripheral 

• Special expanded wide 

• Normal single chip 

• Normal expanded narrow 

• Reserved  

• Normal expanded wide 

The factory default mode is the normal expanded wide mode. In this mode the 

expanded bus is present with a 16-bit data bus. Port D is the low byte data bus and port 

C is the high byte data bus.  

In the normal expanded narrow (x8) mode of operation, the expanded bus is  
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present with an 8-bit data bus. Port C functions as the data bus in this mode. No external 

bus is available in the Normal single chip mode of operation. All program and data 

fetches are from on-chip memory or peripheral registers. Ports A, B, C and D are 

available for general purpose I/O. 

 The special peripheral mode of operation is a test mode. The CPU is not active. 

On-chip peripherals may be accessed directly by an external bus master. It is not 

possible to change from this mode without going through reset. 

In Special single chip mode, the background debug mode is immediately active 

out of reset. Execution begins from the background debug ROM. Commands are sent to 

the CPU through the background debug interface pin.  

In Special expanded narrow mode port D may be used it view the upper 8 bits of 

the data bus.  

In the special expanded wide, special expanded narrow and special single chip 

modes provide the same functionality as the respective normal modes. These modes are 

primarily for testing and provide access to several key features as described above. Not 

all the ports are available as I/O ports in all the modes; some are used as address or data 

buses.  

 The memory map for the A4 is shown in table 3. The memory map basically says 

which addresses are available for programming. 
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Table 3.  Memory map for 68HC12 [22] 

 

Address Range Description Location 

$0000 - $01FF CPU registers On-chip (MCU) 

$0800 - $09FF 

$0A00 - $0BFF 

User code/data 

Reserved for D-Bug12 

1 K on- chip RAM (MCU) 

$1000 - $1FFF User code/data 4 K on chip EEPROM (MCU)

$4000 - $7FFF User code/data 16 K external RAM  

$8000 - $9FFF 

$A000 - $FD7F 

$FD80 - $FDFF 

$FE00 - $FE7F 

$FE80 - $FEFF 

$FF00 - $FF7F 

$FF80 - $FFFF 

Available for user programs 

D-Bug12 program 

D-Bug 12 startup code 

User-accessible functions 

D-Bug12 customization data 

Available for user programs 

Reserved for interrupt and reset 

vectors 

32 K external EPROM 

 

The basic structure and configuration of the ports of a 68HC12A4 in its expanded 

mode is shown in the Fig. 40 below. 
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A/DSPI

4 KB of EPROM 

1 KB of RAM 
CONTROLLER

PORT E PORT G PORT TPORT J

PORT F PORT H PORT S PORT AD

SCI TIMER

EXTERNAL EPROM 

EXTERNAL RAM 

EXTERNAL I/O

EXTERNAL ROM

 

Fig. 40.  Block diagram of the expanded wide mode of M68HV12A4 [22] 

 

H. Overview of serial communication in 68HC12 

 
The 68HC12 has three independent input / output systems: two serial 

communication interfaces (SCI) and a Serial Peripheral Interface (SPI). The pins of port-

S also double up as serial communication pins, as shown in Fig. 39.  

The SCI communication on the A4 and the B32 boards is in the NRZ format as 

shown in Fig. 41, i.e. data are sent in the following format- one start bit, eight or nine 

data bits and one stop bit. 
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STOP 

BIT 
BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 

START 

BIT 

 

 

Fig.  41.  Typical structure of the each of byte in NRZ format 

 

  The form of communication used is generally asynchronous communication 

(discussed in the following section); SPI is used for synchronous communication.  The 

boards will be in sleep mode most of the time except when a request is made by the user 

or a critical data are to be transmitted for further analysis, the former procedure is called 

as the “Wake-up” method, and this is explained later under the heading SCI system. This 

not only reduces unnecessary burden on the “Master” controller – we have to keep in 

mind that we are not just dealing with a single “Slave” but multiple “Slaves”- but also 

saves a lot of power, which is really crucial considering the low-cost of maintenance we 

are aiming at, not to forget the ease with which we can deal with systems in 

asynchronous communication.  

 

(a.) Serial versus parallel communication 

 
Sometimes it becomes imperative that two systems communicate with each 

other. For this type of communication there are a certain set of standards and 

methodologies. For communications between two 68HC12 boards, the communication 

can either be serial or parallel. In parallel communication an exclusive data line is 

reserved for each bit to be transferred and all bits are transferred almost simultaneously. 

By contrast, in serial communication there is just one line dedicated to data transfer and 

data are transferred bit by bit. 

Obviously parallel communication is much faster than serial communication, but 

the inherent disadvantage is that you need many lines to transfer data, which at times 

might not be feasible, especially in this case where RF transmitter is to be used for 
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exchanging data. Therefore on a practical basis to send a byte, 8 RF transmitter/receivers 

are needed on each side. 

 

(b.) Asynchronous versus synchronous communication 

 
The principle of communication with respect to synchronous and asynchronous 

communication is same until the receiver wakes up. In both forms of communication the 

receiver will have an idle-line in a high state before the exchange of data. The similarity 

ends here. 

In synchronous communication the “Master” and the “Slave” communicate 

between each other, setting their respective clocks. There are two main methods of 

synchronizing the transmitter and the receiver. The first method uses a unique word as a 

pulse. When the receiver receives this unique word, it synchronizes itself to the 

incoming data. The second method involves providing a shift clock signal, the clock 

signals pulses for every data put on the transmission line. 

The “Master” can also be programmed to know that within a certain time it has to 

receive the data, and whatever comes to it outside this time range is not useful data.  

Asynchronous communication as the name suggests does not involve 

synchronizing the clocks. The data will be sent in a “packet” format. Therefore the first 

set will be a start bit, the receiver is ready to receive the data and knows the data 

transmission is over when it receives two stops bits. The second method is to configure 

transmit (TxD) pin to logic 1, which is an idle signal, when the transmitter is idle. Thus 

when the receiver gets a falling edge, it samples the bit several times to ensure it is 

indeed a logic low, and if a valid start bit is received it starts receiving the incoming bits. 

Synchronous communication is generally faster than asynchronous communication. 

But the mode of communication used in this case is asynchronous 

communication for we are not dealing with just two units communicating with each 

other, but with hundreds of units trying to synchronize the master clock. Whereas in 

asynchronous communication each packet contains information for the car it represents. 
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(c.) Communication protocol 

 
A critical issue in any serial communication interfaces is the protocol involved. 

For the data transmission between the computer and the “Master” RS - 232 is ideal 

considering that the distance involved in data transmission is typically less than 50 feet 

and also that there is no difference in the potential. Also the ease of interfacing is a 

positive aspect. 

Communication between the “Master” and the “Slave” is the key to this whole 

set-up. For initial testing RS-232 protocol was used for the above-mentioned reasons and 

also because wires were used to send the data back and forth between the “Master” and 

the “Slave” instead of using wireless communication as planned. This was to be replaced 

by wireless communication after successful testing with RS-232 cables. 

The second phase of the project involves replacing the wires by RF-Transceivers for 

the communication between the “Master” and the “Slave.” There are two main issues 

that need to be dealt with here: 

a. How do we ensure that the receiver receives correct data and also knows it is the 

actual data? 

b. How do we eliminate noise that might be in the data? 

 

The area of concern is the latter, especially when we are dealing with sensors, 

transmitters and receivers; noises are bound to corrupt the data. The validity of the 

method thus rests on how well we can nullify the effect of noise in the data. 

1. Packaging the data 

The first priority though is to get the data across to the master. Since the 

possibility of losing data is the highest during the RF transmission, data are sent in form 

of a packet. 

The packet is made of 5 layers, with the actual data sandwiched between the 

signature bytes. The master is programmed in such a way that it knows each packet 
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consists of two signature start bytes followed by a data byte, and then by two signature 

stop bytes as shown in table 4. 

 

Table 4. Sandwich structure of a data packet 

 

START 

BYTE 

SIGNATURE 

SECOND BYTE 

DATA BYTE 

(FROM A SENSOR) 

SIGNATURE 

FOURTH BYTE 

STOP 

BYTE 

 

 

If the master finds any packet deviating from this standard format it will ask the 

slave to resend the packet. Each of the signature bytes will be in the NRZ format (Fig. 

41.).  A typical example of the signature bytes is shown in table 6.  

For example, the receiver knows that it is supposed to receive $FF and $AA as 

the first two bytes, if it receives these two bytes then it knows that the transmission is 

smooth and the next byte coming is the data byte. But this process is not complete until 

the receiver confirms that the last two bytes $FA and $B0 are also present; this ensures 

that the data is the actual data and not some junk value. 

2. Elimination of noise (ensuring the correctness of the data) 

The second issue to be tackled is to ensure that the data in the package itself is 

free of noise. Here noise means the corruption of data by other RF signals. RF signals 

can easily be corrupted by many factors (Please refer to the section on RF transmission) 
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One of the most common methods for identifying noise is to take the average of 

the data [23]. The obvious disadvantage is the wastage of time and the issue of how 

many times the data has to be resent. Also, is there an optimal number of averaging that 

will ensure whether the data is free of noise? 

Another alternative devised as a part of the project will allow a margin of noise 

in the data. The master after receiving the data, sends back a data byte for every 10 data 

byte received. The slave compares this with its data and ascertains the impact of the 

noise. If it feels the noise is negligible, the communication process goes uninterrupted; 

otherwise the slave sends a suitable correction factor to the master. Further data is 

adjusted according to the correction factor, till the noise reduction is seen. 

Let us for example assume the first board is sending $1, $2, $3, and so on, but the 

receiver always receives a value low i.e. $0, $1, $2.When the second board resends the 

data and the first board knows that its value has been constantly offset, it will send a 

correction factor for board 1 to add. But this approach does not work if the data are 

corrupted because some particular object and does not change constantly. 

 

3. Cyclic redundancy check 

The method mentioned in the previous section is a very crude idea of the more 

advanced and established CRC (Cyclic Redundancy Check). CRC is a very well 

established technique to obtain data reliability. The CRC field is 2 bytes that hold a 16-

bit binary value. The transmitting device that appends the CRC to the message calculates 

the CRC. The receiving device recalculates this value and compares the calculated value 

with the actual value in the CRC field. It results in an error if they are not equal. 

 There are several established algorithms to calculate CRC. Two of the methods 

are described below; the second one is used in our algorithm. 

The CRC is calculated by first loading a 16-bit register to 1’s. Then successive 

bytes of the message are shifted to the present value of the register. The Start, Stop and 

parity bit do not apply to the CRC. 
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During the generation of CRC, each 8-bit character is XORed with the register 

contents; this result is shifted in the direction of the LSB with a zero in the MSB. The 

LSB is then extracted and examined. If the LSB was a 1, the register I XORed with a 

preset, fixed value, otherwise this operation does not take place. 

This process id repeated until 8 shifts have been performed. After the 8 bits, the 

next 8-bit value is XORed with the registers value, this process continues for 8 more 

shifts. The final content will be the CRC value. 

 The above-mentioned method is for complex packets. Since our data has a much 

simpler structure it would be enough if all the bytes in the packet are XORed, the last 

byte in the packet is the CRC. The master upon receiving this packet recalculates the 

CRC and compares it with the last byte to check for correctness of the data. 

 

(d.) Ports used in 68HC12A4 and 68HC12B32 

 

 The 68HC12A4 has eleven 8-bit ports and the 68HC12B32 has eight of them. 

Most of these ports can be configured as general purpose I/O in different operating 

modes. None of the ports though are needed for the system being implemented. The only 

port of interest is the Port S; which is the serial communication interface subsystem in 

both 68HC12A4 and 68HC12B32. This is the only port that is used. Although other 

ports like Port F have been used in the experimental stage to verify the data, they are not 

used in the actual system. 

Pins of Port S are denoted as PSx, where ‘x’ stands for 0, 1, 2 or 3 corresponding 

to the pin numbers. For transmitting data pin PS1 or PS3 is used, for receiving data the 

RxD pin PS0 or PS2 is used. The 68HC12B32 has just one SCI port functional, i.e.    

SCI 0. 
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(e.) SCI subsystem 

 

The SCI subsystem in 68HC12A4 uses the pin PS3 of port S for its transmitting 

line and pin PS1 for receive. Setting bits in the SCI control register SC1CR2 can enable 

them. Port S can be used for general-purpose input/output when not in use for serial 

communication.  

The data bytes to be transmitted or are received are first stored in the SCI data 

register low (SC1DRL). Subsequently the data to be transmitted are read from SC1DRL 

and also the registers will read the data, which is received. The Initialization of the 

registers is explained in appendix II. 

The SCI systems are capable of sending break signals, which is basically to wake 

up a receiver; this is an indication to the receiver that it is ready to transmit some data. 

The receiver can be put back to sleep by setting the RWU bit in SCI control register 2 

(SC1CR2). The method of waking up the receiver as explained in the asynchronous 

communication subsection can be selected by changing the WAKE bit in SC1CR1 

register. 

 

(f.) Transmit operations 

 

The transmit operation through the serial port takes place by shifting bytes to the 

11-bit transmit shift register. The transmit shift register is already pre-configured with 

logic low START bit and logic HIGH stop bit. By polling the TDRE register we can 

determine whether the transmission has taken place, if this bit is set, it implies that the 

transmit data register is empty and is ready to receive another character. This register can 

be cleared by reading the SCI control register 1 (SC1CR1) first and then writing to the 

SCI data register (SC1DRL). 

  Thus the algorithm of the software to transmit a data byte is similar to the pseudo 

code below: 

STEP 1: Configure the registers (refer to the code in appendix III) 
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a. Select the baud rate by writing to the baud rate register SC1BDH 

b. Select the WAKE up mode and also the length of the data that is transferred 

c. Enable transmit, receive and wake up interrupts by modifying SC1CR2 

d. Clear all flags 

 

STEP 2: Begin transmission 

a. Poll the SC1CR2 register for interrupts and take appropriate action 

b. Poll the SC1SR1 register, wait for the TDRE flag to be set 

c. If the flag is set, write data to the data register 

d. Transmit the next set of data 

 

This can be run continuously, there is no need to clear the flag again, by writing 

to the data register the TDRE flag is automatically cleared. 

 

(g.) Receive operation 

 

The receive operation through the serial port is somewhat similar in principle to 

the transmit operation; this takes place by shifting the bytes from the 11-bit transmit shift 

register. By polling the RDRF register we can determine whether the reception is 

complete. If this bit is set, it implies that the receive data register is empty and is ready to 

receive another character. This register can be cleared, by reading the SCI control 

register SC1CR1 first and then reading the SCI data register (SC1DRL). 

The algorithm of the software to receive a data byte is similar to the pseudocode below: 

STEP 1: Configure the registers. (refer to the code in appendix III) 

a. Select the baud rate by writing to the baud rate register SC1BDH 

b. Select the WAKE up mode and also the length of the data that is transferred 

c. Enable transmit, receive and wake up interrupts by modifying SC1CR2 

d. Clear all flags 
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STEP 2: Begin transmission 

a. Poll the SC1CR2 register for interrupts and take appropriate action 

b. Poll the SC1SR1 register, wait for the RDRF flag to be set 

c. If the flag is set, then read data from the data register 

d. Wait for the next set of data 

 

This can be run continuously, there is no need to clear the flag again, by writing 

to the data register the TDRE flag is automatically cleared. 

 

I. Data registers used in serial communication 

 

The registers used are shown in Figs. 46 - 50 in appendix II. 

J. RF transmission 

 
Different possibilities were considered before going ahead with the selection of 

RF transceivers for the purpose of data transmission between the master and the slave. 

The RF transceivers along with the microcontrollers and the sensor-in this case the 

accelerometer- are enclosed in a casing to protect them from dust and other external 

hazards. In this chapter we will concentrate on the RF transceivers. Attempt has been 

made to address all the possible issues regarding why we chose the RF transceivers. 

What are its advantages? What problems might be encountered?  

 

(a.) Wireless solution 

 
The first question that obviously needs to be addressed is why you need a 

wireless communication? Especially when the difficulties associated with wireless 

communications are known.  

The system being designed here is supposed to be a low-cost, low-maintenance 

and easy to use system. Using wireless form of communication eliminates the possibility 
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of a human error, which might occur when someone with no technical knowledge 

attempts to check the system and in the process fouls the hardware by disturbing a small 

wire.  

Whereas the entire wireless system will be in a enclosure, so if someone does 

want to check, all he has to do is remove the enclosure, replace it with another one (by 

just pushing it to a terminal).  

Secondly, in a system with wires the possibilities of mechanical damage like 

snapping of the wire is very high in a harsh environment. The wires used for the 

microcontroller boards are very small in diameter, which will be unable to bear the 

rough environ. 

Thirdly, let us assume that the wires are strong enough and do not break. We 

know that we are typically dealing with a hundred “Slave” controllers trying to send data 

to a single “Master” controller over distances varying from 800-1,000 ft. The first issue 

here is that we do not have enough serial ports. Secondly transmitting accurate data over 

1000 ft through wires is not a very viable option. 

Compared to the problems posed by the system with wires, the advantage of 

using a wireless system outweighs its disadvantages.  

 

(b.) Selection of RF transceivers  

 
Different types of waves like the ultrasonic waves; infrared waves and radio 

frequency waves can achieve data transmission by wireless means. But the first two 

waves (ultrasound and infrared) are absorbable by various objects like a human body etc. 

The RF waves on the other hand can travel through objects. 

Thus when you are looking at sending data over several railcars, you have to 

send it through a means that will pass through obstacles. 

The other advantage of a RF transmitter is that it requires very small amount of 

power for producing the waves. The RF transmitter we have chosen- Glolab 

TM1V/RM1V- requires just 5 volts, which is the same as the power needed to run not 
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just our microcontroller board but also the accelerometer. Thus the task of putting the 

whole thing into a single unit is made a lot easier. 

A digital radio transmission allows a narrow band to carry a large amount of data 

and enables the receiver device to have minimum power usage. We can thus increase the 

shelf life of the system considerable. Since the receiver, transmitter and the sensor all 

have the same voltage levels, it is a lot easier to decode and analyze the data. This will 

not only speed up the process but also saves power.  

The connections are also very simple and straightforward with RF transmitters. 

The serial ports of the microcontroller can be used to receive and send data from and to 

the transceivers. 

 

(c.) Issues in RF transceivers 

 
Using RF transceivers has its share of problems. This section deals with the various 

problems encountered while using an RF transceiver. The solution to these mentioned 

problems will be dealt with in the next section. A few of the important issues are listed 

below. 

• RF waves are used in a wide range of devices like cell phones, palm pilots, 

pagers, GPS, car alarms, audio sets etc. Because of this certain phenomenon like 

“Intermodulation” and “Heterodyning” can occur. These are a great concern with 

respect to the receivers. Intermodulation occurs when the receiver receives two 

different frequencies, these can either add up or try to cancel out (resulting in a 

difference) and in the process produces new harmonics. Heterodyning is a 

process in which two similar frequencies interact with the receiver; this results in 

a whistling noise [24].  

• Another critical problem we will definitely face is “Multipath Cancellation”. This 

occurs when the original RF signal reflects off a surface and combines with the 

original wave again, this may weaken the signal considerably apart from creating 

phase related problems [24]. 
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• The distance between the “Slave” and the “Master” is a crucial factor. As the 

distance increases the signal fades considerably and may weaken, the receiver 

might even lose the signal completely. This again is due to a combination of 

factors like interference because of moving objects, high-current electric 

components etc [24]. 

• During experimentation, which involves sending a single byte, we observe that 

the first time the data is sent the receiver is still sleeping and before it wakes up 

data could be lost. This is because the first time the receiver was still not ready. 

• Assuming that the data is being transmitted properly with no absolutely no 

interference and the data flow is not hindered by any means, what is the surety 

that the data is not corrupted? What is the guarantee that the data received by the 

receiver is the real data and is not contaminated by noise? 

The above are a few of the issues we have tried to address in the following section. 

(d.) Probable solutions  

 
It is attempted in this section to obtain a solution for all of the above-mentioned 

problems. 

1. Intermodulation and heterodyning 

There is no real “Solution” to this problem as such. The only way to ensure that the 

signals do not get mixed up is to obtain a very broad and exclusive frequency bandwidth 

from the federal regulatory authorities.  

The second step is to tune the receiver for the frequencies in a limited bandwidth. 

2. Multipath cancellation and distance between the “Master” and   “Slave” 

These two problems are intertwined. This problem has to do with the placing of 

the transceiver-microcontroller-sensor enclosure. An optimal place on the railcar has to 

be chosen that will not only ensure that this set up is away from moving parts but also 
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from other electrical systems. This should also ensure that any objects do not hinder its 

path; this is to ensure that there will be no loss of data.  

 The higher the frequency range the longer will be the distance over which the 

transceivers can communicate with each other. But as the distance increases, the 

probability that the waves will reflect off some surface increases. Having more than one 

master on board can resolve this issue. This will not only reduce workload on a master 

but also increases the accuracy of the signals transmitted as the distance is considerably 

shortened. 

The probable place would have been on the top of the railcar, but we will have 

problem in placing the sensors separately and then wiring them to the microcontroller to 

send the signals from the sensors. Apart from this placing the enclosure on top of the 

railcar will make it very vulnerable to the high-tension wires running parallel with the 

tracks. This is an issue that can be dealt with only during the testing stage by trying out 

various positions on the car body. 

3. Awakening the receiver 

 
As mentioned in the previous section we noticed that the first time a data is 

transmitted the receiver loses the first part of the data. This is because the receiver is idle 

until it receives the first data byte, but it is too late for it to receive the first stream of 

bytes. 

There can be various approaches to this. The easiest probably will be to send the 

data twice, so that it is ready to receive the actual data the second time. Another 

alternative can be to send some junk bytes for a small fraction of a second, just to wake 

up the receiver. This is generally a high byte. 
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4. Checking correctness of the data 

 
This issue has been dealt with in the previous chapter. Please refer sections 3.3.a 

and 3.3.b. But in addition to checking the data, the data will be passed through a signal-

processing algorithm to minimize noise from the real data. 

Although an attempt has been made to address all of these issues, the data 

transmission through RF transmission is so vulnerable that it often fails to achieve 

repeatability. The same set of data transmissions in almost the same settings might fail to 

execute because of some minor fault like moving objects around it,etc. 
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CHAPTER VI 

LABORATORY TESTING, CONCLUSION AND FUTURE WORK 
 

A. Introduction 

 

This chapter explains the lab set up and the tests carried out to identify the wheel flat. 

Identifying bearing fault was not considered for this phase of the project because of 

many constraints. The following are the reasons behind: 

• To identify a bearing fault, signal analysis must be done on a larger group of data 

than that is needed to identify a wheel flat. Selected processors do not have the 

capability to process a huge set of data. 

• Simulating a bearing fault in a laboratory environment is very difficult (so there 

is no way to validate the algorithm unless access to a test facility is given). 

• From the preliminary meeting we had with AAR/TTCI people, it was decided 

that to identify a bearing fault, an accelerometer would not be sufficient and we 

would need a special sensor, that should be integrated in the manufacturing 

process, it should be able to withstand high temperatures and also be robust. 

Thus we restricted ourselves to just identifying a wheel flat. 

 

B. Prototype-1 with RS232 cables and Ming RF transceivers 

 

The initial testing was validated with RS - 232 cables that were then replaced by RF 

transmitters from Ming Corporation. A photo of the same is shown in Fig. 42. There 

were several problems associated with the Ming RF transmitters, a few of them being: 

• Low data transfer rate of 1,200 bps. 

• It is not suitable for serial communication (although this is mentioned explicitly, 

mini projects using the same have been attempted). 

• Complex circuitry makes the task of enclosing even more difficult. 



 78

 
 

 

Fig. 42. Setup with Ming transceivers 

 

• Needs amplification of the signals, thus allowing the possibility of amplifying the 

noise. 

For these main issues we decided to look for another RF transmitter for our next 

prototype. 

 

C. Development of an enclosure 

 

Enclosure for the unit was built out of aluminum alloy. Since space was a 

constraint, we decided to build a 2-layered enclosure as shown in Fig. 43. The base layer 

had the microcontroller and the top layer had the RF transmitter and receiver along with 

the antenna. Power for the unit is a set of batteries housed outside the enclosure with the 

flexibility of placing it inside too. The hardware selected is now put in an enclosure. The 

final two stages of building the enclosure are shown in Figs.43 and 44. The final unit is 

shown in Fig. 44. 
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Fig. 43. Penultimate stage of the enclosure 

 

 

Antennae 

 

 

Fig. 44. Enclosed unit 
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D. Lab set-up 

 

The final set-up for testing in a laboratory consists of 

• Computer terminal on both sending and receiving side. On the receiving side we 

use it to monitor the data and also to initially give commands. The data from the 

accelerometer can be seen on the screen. Whereas for the sending side, the 

monitor is only to load the program initially (this can be eliminated in the final 

prototype). 

• 68HC12A4 microcontroller 

• 68HC12B32 microcontroller 

• 2 sets of Glolab RF transmitter and receiver modules 

• ADXL202 accelerometer 

• Two sets of battery units to power the controllers and the accelerometer 

The lab set up is as shown in Figs. 45 and 46. 

 

Fig. 45. 

 

Real Time Monitor
 

Processors 

 

 

Final test set-up 
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Fig. 46. Enlarged view of the encircled area in Fig. 45 

 

E. Testing procedure 

  

The testing procedure is very simple for a wheel flat; we did not need any test 

set-up. All we had to check was whether the slave microcontroller transmits the 

accelerometer data when it registers a value above a preset threshold (any threshold).  

 The second phase after this is to ensure that the packet is received properly on the 

receiving side. All this is taken care of by the software listed in appendix IV. 

 The test was successful; we could see that the slave microcontroller transmits 

data whenever it encounters a value greater than the threshold. The master controller 

checks for noise free data and displays it on the screen. Fig. 47 shows a data from an 

accelerometer. This code is written in VC++ and the other codes predominantly in 

assembly language and a bit of C. All the codes are attached in appendix IV.  
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Fig. 47. Real time plot 

 

F. Conclusion 

 

It is clearly seen in the laboratory set-up that two way RF communications in 

conjunction with a fault-detecting unit is very much a feasible option. This unit is very 

easy to operate and maintained even by persons without technical know-how. The cost 

of installing and maintaining this system is very inexpensive in comparison with many 

of the existing wayside fault detection systems.  

 This unit also has an added capability of identifying defects in tracks/rails thus 

may save the railways considerable money and time. 

 

G. Further work 

 

To validate this system we will need access to a real railcar test facility. This 

apart from letting us know how the system would behave in a real environment would 

also help us locate a suitable place for this placing this unit on a railcar. 

 With the selection of a proper sensor the same principle can be used to identify a 

bearing fault. 
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 The present processing unit (microcontroller) has a lot of unnecessary 

electronics. The final prototype can have a custom made microcontroller with only the 

necessary electronics, and this would not only reduce the cost of the system, and also 

reduce the size of the unit, giving us an option of including many other electronics-not 

necessarily from this project. Exploring MEMS technology for the same application 

would not only provide a very convenient and reliable technology but also a cheap 

option if manufactured in a very large scale. 

 This idea can be utilized in more ways than those touched upon in this thesis and 

this system can integrate many other electronics as that mentioned in [25]. 
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A. FLOW CHART FOR THE SYSTEM  
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Fig. 48. Flow chart for the system 
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1. Data registers used in the 68HC12 boards 
 

A. SCI control register 1 (SCXCR1) 

 

LOOPS WOMS RSRC M WAKE ILT PE PT 

 

 

Fig. 49. SCI control register 1 (SCXCR1) 

 
LOOPS: Setting this bit to ‘0’ ensures that the SCI transmit and receive sections operate 

normally. The rest are don’t care bits 

When loops is set to ‘0’, other’s are don’t care bits. 

 

B. SCI control register 2 (SCXCR2) 

 

TIE TCIE RIE ILIE TE RE RWU SBK 

    

 

Fig. 50. SCI control register 2 (SCXCR2) 

 

TIE: Transmit Interrupt Enable Bit 

Writing logic ‘1’ enables this bit. The SCI interrupt is called whenever this bit is set. 

TCIE: Transmit Complete Interrupt Enable Bit 

Writing logic ‘1’ enables this bit. Thus whenever a transmission is complete the SCI 

interrupt is called.  

RIE: Receiver Interrupt Enable Bit 
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Writing logic ‘1’ enables this bit. Thus the SCI interrupt is called whenever the RDRF 

flag is set. 

ILIE: Idle Line Interrupt Enable Bit 

Writing logic ‘1’ enables this bit. Thus whenever the IDLE flag is set the SCI interrupt is 

enabled. 

TE: Setting this bit to ‘1,’ the SCI transmit logic is enabled. The TXD pin is dedicated to 

the transmitter. 

RE: Setting this bit to ‘1,’ the SCI receive logic is enabled.  

RWU: Receiver wakeup control bit 

0 = Normal SCI receiver 

1 = Enable the wake up function and inhibits further receiver interrupts. Normally, 

hardware wakes the receiver by clearing this bit automatically. 

SBK: Send break bit 

0 = Break generator off 

1 = Generate a break code, at least 10 or 11 continuous 0s. 

As long as this bit remains set, the transmitter sends 0s. When SBK is changed to 0, the 

current frame of all 0s is finished before the TxD line goes to idle state.  

 

C. SCI status register 1 (SCXSR1) 

 

TDRE TC RDRF IDLE OR NF FE PF 

 

Fig. 51. SCI status register 1 (SCXSR1) 

 

TDRE: Transmission Data Register Empty flag 

If this bit is in logic ‘0’ means that the data register is busy and the transmission is still 

incomplete. Whereas logic ‘1’ indicates that the data register is now ready to receive 

new data for transmission. 
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TC: Transmit Complete flag 

If this is at logic ‘0’ it means that the transmitter is busy otherwise the transmitter is idle 

RDRF: Receive Data Register Full flag 

If this bit is in logic ‘0’ it means the data register is empty and is ready to receive new 

data. If this is in logic ‘1’ it means the data register is full and cannot receive any further 

data. 

IDLE: Idle Line Detected Flag 

This is a key register if we are to utilize the wake up facility in the micro controller. If 

this bit is at logic ‘0’ the RxD line is active otherwise it is in and idle state. 

OR: Overrun flag  

New byte is ready to be transferred from the receive shift register to receive data 

register, but the data register is already full, the data transfer will be inhibited till this is 

cleared. 

NF: Set during the same cycle as the RDRF bit but not set in case of an overrun. 

 0 = Unanimous decision 

1 = Noise on a valid start bit, any of the data bits, or on the stop bit 

 

D.  SCI data register low (SC0DRL) 

 

R7T7 R6T6 R5T5 R4T4 R3T3 R2T2 R1T1 R0T0 

 

 

Fig. 52. SCI data register low (SC0DRL) 

 

R7T7-R0T0: Receive/Transmit data bits 7-0 

Reads access the eight bits of the read only SCI receive data register (RDR). Writes 

accesses to the eight bits of the write-only SCI transmit data register. SC0DRL and 
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SC0DRH form the 9-bit data word for the SCI. If the SCI is being used with a 7 or 8 bit 

data word, SC0DRL alone will suffice.  

 

E. SCI baud control registers (SC1BDH/SC1BDL) 

The SCI baud rate control registers are used to set the SCI transmission/reception rate. 

 

BTST BSPL BRLD SBR12 SBR11 SBR10 SBR9 SBR8 

  

SC1BDH 

 

Fig. 53. SCI baud control register high 

 

   

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0 

 

SC1BDL 

 

Fig. 54. SCI baud control register low 

 

The baud rate is set using bits SBR [12:0]. The values are determined using the 

following relationship 

 

   SBR = MCLK/ (16*SCI Baud Rate) 

where, MCLK is the master clock frequency in Hz. 
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A. ROUTINE FOR TRANSMITTING DATA 

 

#include <iob32.h> 

#include <stdio.h> 

 

#define TDRE 0x80 /* transmit ready bit */ 

#define RDRF 0x20 /* receive ready bit*/ 

#define SIG     0xAA /*The signature byte to create a CRC*/ 

#define TRUE    1 

#define D_1MS (1000/4) 

void delay(unsigned int ms); 

int getch(); 

int C1,C2,C3,R,A,M,S,i,j,RCD,P,Q,T,I,d,k; 

 

getch(){ 

 R = (ADR1H); 

 return(R); 

 } 

 

void main(void) 

 { 

  

 SC0CR1 = 0X00; 

 SC0CR2 = 0X0C; 

 SC0BDH = 0x1A1; 

 #asm 

  LDAA 0X00C4 

  STD  0X00C6 

 #endasm 
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  ATDCTL2 = 0X80; 

  ATDCTL3 = 0X00; 

  ATDCTL4 = 0X01; 

  ATDCTL5 = 0X25;  

 A=0xFF;  

 I=0x0F;  

     P=0x31; 

 Q=0x32; 

 S=0x33; 

 T=0x34; 

 M=0x06; 

 C1 = P^Q^S^T; 

  

for(j=0;j<1000;j++){ 

  tran1(); 

    } 

  

for(;;){ 

while (!(SC0SR1 & TDRE)) 

  ; 

 SC0DRL=I; 

 

while (!(SC0SR1 & TDRE)) 

  ; 

 SC0DRL=A; 

   

while (!(SC0SR1 & TDRE)) 

  ; 
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 SC0DRL=P ; 

 

while (!(SC0SR1 & TDRE)) 

  ; 

 SC0DRL= Q; 

 

while (!(SC0SR1 & TDRE)) 

  ; 

 SC0DRL= S; 

 

while (!(SC0SR1 & TDRE)) 

  ; 

 SC0DRL= T; 

 

for(j=0;j<4;j++){ 

  getch(); 

  

 while (!(SC0SR1 & TDRE)) 

  ; 

 SC0DRL= R; 

 C2=C2^R; 

 } 

 C3=C1^C2; 

 

while (!(SC0SR1 & TDRE)) 

  ; 

 SC0DRL= C3; 

  recv(); 

 } 
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} 

 

//SUB ROUTINES 

// TRANSFERS OF FF's TO AWAKEN THE RECEIVERS AND GIVE SOME TIME 

//TO SET UP 

tran1(){ 

 while (!(SC0SR1 & TDRE)) 

  ; 

 SC0DRL=A; 

  } 

 

//ACTUAL SIGNAL TRANSFER ROUTINE 

recv(){ 

while (!(SC0SR1 & RDRF)) 

  ;  

 RCD=SC0DRL; 

       comp(); 

 } 

 

comp(){ 

  if(RCD=C3){ 

     while (!(SC0SR1 & TDRE)) 

    ; 

           SC0DRL= RCD; 

     }else{ 

   recv(); 

                 } 

  } 
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B. SAME CODE IN ASSEMBLY LEVEL LANGUAGE FOR 68HC12 

 

;RSTVEC  EQU  $F7FE 

;COPCTL  EQU  $0016 

 

REGBASE         EQU $0000 

SC0BDH          EQU REGBASE+$C0 

SC0CR1          EQU REGBASE+$C2 

SC0CR2          EQU REGBASE+$C3 

SC0SR1          EQU REGBASE+$C4 

SC0DRL          EQU REGBASE+$C7 

SC0DRH          EQU REGBASE+$C6 

SC0BDL          EQU REGBASE+$C1 

 

RDRF            EQU $20 

TDRE            EQU $80 

BA12            EQU $1A1 

 

 

 ORG $0800 

 

;    CLR  COPCTL 

;   LDS  #$09FF 

 

BSR  INTACL 

BSR  INTREC 

BSR  INTSEN 

BSR  VAL 

BSR  CRC 
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LOOP           BSR  LOAD 

                      BRA  LOOP 

 

INTACL        LDAA     #$80   ;THIS IS THE INITIALISATION OF THE RESULTS 

                       STAA     $0062 ;THE A/D CONVERTER IS POWERED UP 

                        LDAA     #$00 

                STAA     $0063 

                LDAA     #$01 

                STAA     $0064 

                LDAA     #$25 

                STAA     $0065   ;SET TO READ FROM CONTINUOUSLY    

                                                     ;CHANNEL 6 & REGISTER 6 

                RTS 

 

INTREC         MOVB  #$00,SC0CR1 

                MOVW  #BA12,SC0BDH 

                LDAA  #$0C 

                STAA  SC0CR2 

                LDAA  SC0SR1 

                LDAA  SC0DRL 

                RTS 

 

INTSEN         MOVB #$00,SC0CR1 

                MOVW #BA12,SC0BDH 

                LDAA #$0C 

                STAA SC0CR2 

                LDAA SC0SR1 

                STD  SC0DRH 

                RTS 
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VAL             LDAB  #$04 

                LDX   #$0B01 

                LDAA  #$0030 

VALS            INCA 

                STAA  1,X+ 

                DECB 

                 BNE   VALS 

                RTS 

 

 

CRC             LDAA  $0B01 

                EORA  $0B02 

                EORA  $0B03 

                EORA  $0B04 

                STAA  $0B00 

                RTS 

 

LOAD           LDAA    $0072                   ;LOAD THE VALUES FROM RESULT  

             ;REGISTER OF THE A/D CONVERTER 

                CMPA    #$7F        ;COMPARE WITH A THRESHOLD VALUE 

                BHI     RECORD       ;TRANSMIT IF HIGHER    

                BRA     LOAD 

 

RECORD         LDAB    #$0A 

                 LDX     #$0A00 

STORE             LDAA   $0072 

                  STAA    1,X+ 

                  DECB 
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                BNE     STORE 

                BSR     CRCR 

                BRA     TRANS 

 

CRCR             LDAA    $0A00          ;CALCULATION OF CRC 

                        EORA    $0A01 

                        EORA    $0A02 

                        EORA    $0A03 

                  EORA    $0A04 

                  EORA    $0A05 

                        EORA    $0A06 

                  EORA    $0A07 

                        EORA    $0A08 

                        EORA    $0A09 

                        EORA    $0A0A 

 

                  EORA    $0B00 

                        STAA    $0A0C 

                        RTS 

 

 

 

TRANS           LDY #$50 

SENDH           LDAA #$FF 

SENH            TST  SC0SR1 

                 BPL  SENH 

                 STAA SC0DRL 

                 DEY 

                 BNE  SENDH 



 103

 

                 LDAA #$0F 

SENH1           TST  SC0SR1 

                 BPL  SENH1 

                 STAA SC0DRL 

 

 

                 LDAA #$FF 

SENH2           TST  SC0SR1 

                BPL  SENH2 

                 STAA SC0DRL 

 

                LDAB #$04 

                  LDX  #$0B01 

SEND2                LDAA 1,X+ 

SEND                  TST  SC0SR1 

                     BPL  SEND 

                      STAA SC0DRL 

                      DECB 

                     BNE  SEND2 

 

                LDAB #$0A 

                LDX  #$0A00 

SEND3      LDAA 1,X+ 

SEND4                TST  SC0SR1 

                BPL  SEND4 

                 STAA SC0DRL 

                DECB 

                 BNE  SEND3 
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                LDAA $0A0C 

SEND5     TST  SC0SR1 

                 BPL  SEND5 

                   STAA SC0DRL 

                 RTS 

   ;     ORG     RSTVEC 

    ;  FDB     $8000 

 

C. CODE FOR RECEIVING AND VERIFYING THE CORRECTNESS OF THE 

DATA 

 

REGBASE         EQU $0000 

SC0BDH          EQU REGBASE+$C0 

SC0CR1          EQU REGBASE+$C2 

SC0CR2          EQU REGBASE+$C3 

SC0SR1          EQU REGBASE+$C4 

SC0DRL          EQU REGBASE+$C7 

SC0DRH          EQU REGBASE+$C6 

SC0BDL          EQU REGBASE+$C1 

SC1BDH          EQU REGBASE+$C8 

SC1CR1          EQU REGBASE+$CA 

SC1CR2          EQU REGBASE+$CB 

SC1SR1          EQU REGBASE+$CC 

SC1DRL          EQU REGBASE+$CF 

SC1DRH          EQU REGBASE+$CE 

SC1BDL          EQU REGBASE+$C9 
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RDRF            EQU $20 

TDRE            EQU $80 

BA12            EQU $1A1 

 

 

                 ORG $0800 

                 BSR INTREC 

                BSR INTSEN 

LOOP            BSR REC 

            BRA LOOP 

 

INTREC          MOVB  #$00,SC1CR1 

                 MOVW  #BA12,SC1BDH 

            LDAA  #$0C 

             STAA  SC1CR2 

            LDAA  SC1SR1 

             LDAA  SC1DRL 

            RTS 

 

INTSEN         MOVB #$00,SC0CR1 

               MOVW #BA12,SC0BDH 

            LDAA #$0C 

             STAA SC0CR2 

            LDAA SC0SR1 

             STD  SC0DRH 

            RTS 

 

 

REC      LDAA SC1SR1 
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            ANDA #RDRF 

             BEQ  REC 

            LDAA SC1DRL 

CMPA #$0F ;CHECKING FOR THE FIRST ;SIGNATURE   

 ;BYTE 

            BEQ  W2 

             BRA  REC 

 

W2               LDAA SC1SR1 

            ANDA #RDRF 

             BEQ  W2 

            LDAA SC1DRL 

              CMPA #$FF  ;CHECKING FOR THE SECOND SIGNATURE  

     ; BYTE 

            BEQ  RECR 

             BRA  REC 

 

RECR  LDAB #$15  ;STORING THE INCOMING DATA BYTES 

            LDX  #$0A00 

REC1  LDAA SC1SR1 

            ANDA #RDRF 

             BEQ  REC1 

            LDAA SC1DRL 

             STAA 1,X+ 

            DECB 

             BNE  REC1 

 

            LDAA    $0A00 

             EORA    $0A01    ;RECALCULATING THE CRC  
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            EORA    $0A02 

             EORA    $0A03 

EORA    $0A04 

   EORA    $0A05 

            EORA    $0A06 

  EORA    $0A07 

            EORA    $0A08 

             EORA    $0A09 

            EORA    $0A0A 

  EORA    $0A0B 

EORA    $0A0C 

  EORA    $0A0D 

CMPA    $0A0E 

            BEQ  SENDR 

  BRA  MIST 

 

MIST   LDAA #$EF  

TST  SC0SR1 

            BPL  MIST 

             STAA SC0DRL 

            RTS 

 

SENDR            LDAB #$0A  ;DISPLAY VALUES IF CRC MATCHES 

              LDX  #$0A07 

SEND2            LDAA 1,X- 

SEND            TST  SC0SR1 

           BPL  SEND 

             STAA SC0DRL 

            DECB 
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             BNE  SEND2 

            LDAA $0A0E 

TRC1            TST  SC0SR1 

                       BPL  TRC1 

           STAA SC0DRL 

 

          LDAA $EE 

TRC2            TST  SC1SR1 

                       BPL  TRC2 

           STAA SC1DRL 

 

                      LDAA $0A0E 

TRC3            TST  SC1SR1 

          BPL  TRC3 

                       STAA SC1DRL 

           RTS 

 

 

 

D. Pseudo code for identifying a defective track 

  

1. Wait for signals from all the cars. 

2. If all the signals exhibit the same characteristic in a given frame of time. 

3. Then calculate the distance where this event occurred and calculate the distance 

using timer functions 

4. It would be around this distance that there would be a defect in the track. 
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A. OScopeCtrl.cpp : implementation file  
This code has been modified from the original versions available on www.codeguru.com 

as on October’ 2002. 

 

#include "stdafx.h" 

#include "math.h" 

#include "OScopeCtrl.h" 

 

#ifdef _DEBUG 

#define new DEBUG_NEW 

#undef THIS_FILE 

static char THIS_FILE[] = __FILE__ ; 

#endif 

///////////////////////////////////////////////////////////////////////////// 

// COScopeCtrl 

COScopeCtrl::COScopeCtrl() 

{ 

  m_dPreviousPosition =   0.0 ; 

  m_nYDecimals = 3 ; 

  m_dLowerLimit = -10.0 ; 

  m_dUpperLimit =  10.0 ; 

  m_dRange      =  m_dUpperLimit - m_dLowerLimit ;    

  m_nShiftPixels     = 4 ; 

  m_nHalfShiftPixels = m_nShiftPixels/2 ;                     // protected 

  m_nPlotShiftPixels = m_nShiftPixels + m_nHalfShiftPixels ;  // protected 

 

  m_crBackColor  = RGB(  0,   0,   0) ;  // see also SetBackgroundColor 

  m_crGridColor  = RGB(  0, 255, 255) ;  // see also SetGridColor 
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  m_crPlotColor  = RGB(255, 255, 255) ;  // see also SetPlotColor 

  m_penPlot.CreatePen(PS_SOLID, 0, m_crPlotColor) ; 

  m_brushBack.CreateSolidBrush(m_crBackColor) ; 

  m_strXUnitsString.Format("Samples") ;  // can also be set with SetXUnits 

  m_strYUnitsString.Format("Y units") ;  // can also be set with SetYUnits 

  m_pbitmapOldGrid = NULL ; 

  m_pbitmapOldPlot = NULL ; 

}  // COScopeCtrl 

///////////////////////////////////////////////////////////////////////////// 

COScopeCtrl::~COScopeCtrl() 

{ 

  if (m_pbitmapOldGrid != NULL) 

    m_dcGrid.SelectObject(m_pbitmapOldGrid) ;   

  if (m_pbitmapOldPlot != NULL) 

    m_dcPlot.SelectObject(m_pbitmapOldPlot) ;   

} // ~COScopeCtrl 

 

BEGIN_MESSAGE_MAP(COScopeCtrl, CWnd) 

  //{{AFX_MSG_MAP(COScopeCtrl) 

  ON_WM_PAINT() 

  ON_WM_SIZE() 

  //}}AFX_MSG_MAP 

END_MESSAGE_MAP() 

///////////////////////////////////////////////////////////////////////////// 

// COScopeCtrl message handlers 

///////////////////////////////////////////////////////////////////////////// 

BOOL COScopeCtrl::Create(DWORD dwStyle, const RECT& rect,  

                         CWnd* pParentWnd, UINT nID)  

{ 
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  BOOL result ; 

static CString className = AfxRegisterWndClass(CS_HREDRAW | CS_VREDRAW) ; 

 

  result = CWnd::CreateEx(WS_EX_CLIENTEDGE | WS_EX_STATICEDGE,  

                          className, NULL, dwStyle,  

                          rect.left, rect.top, rect.right-rect.left, rect.bottom-rect.top, 

                          pParentWnd->GetSafeHwnd(), (HMENU)nID) ; 

  if (result != 0) 

    InvalidateCtrl() ; 

  return result ; 

} // Create 

///////////////////////////////////////////////////////////////////////////// 

void COScopeCtrl::SetRange(double dLower, double dUpper, int nDecimalPlaces) 

{ 

  ASSERT(dUpper > dLower) ; 

  m_dLowerLimit     = dLower ; 

  m_dUpperLimit     = dUpper ; 

  m_nYDecimals      = nDecimalPlaces ; 

  m_dRange          = m_dUpperLimit - m_dLowerLimit ; 

  m_dVerticalFactor = (double)m_nPlotHeight / m_dRange ;  

  InvalidateCtrl() ; 

}  // SetRange 

///////////////////////////////////////////////////////////////////////////// 

void COScopeCtrl::SetXUnits(CString string) 

{ 

  m_strXUnitsString = string ; 

  InvalidateCtrl() ; 

}  // SetXUnits 

///////////////////////////////////////////////////////////////////////////// 
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void COScopeCtrl::SetYUnits(CString string) 

{ 

  m_strYUnitsString = string ; 

 

  InvalidateCtrl() ; 

}  // SetYUnits 

///////////////////////////////////////////////////////////////////////////// 

void COScopeCtrl::SetGridColor(COLORREF color) 

{ 

  m_crGridColor = color ; 

  InvalidateCtrl() ; 

}  // SetGridColor 

///////////////////////////////////////////////////////////////////////////// 

void COScopeCtrl::SetPlotColor(COLORREF color) 

{ 

  m_crPlotColor = color ; 

  m_penPlot.DeleteObject() ; 

  m_penPlot.CreatePen(PS_SOLID, 0, m_crPlotColor) ; 

  InvalidateCtrl() ; 

}  // SetPlotColor 

///////////////////////////////////////////////////////////////////////////// 

void COScopeCtrl::SetBackgroundColor(COLORREF color) 

{ 

  m_crBackColor = color ; 

  m_brushBack.DeleteObject() ; 

  m_brushBack.CreateSolidBrush(m_crBackColor) ; 

  InvalidateCtrl() ; 

}  // SetBackgroundColor 

///////////////////////////////////////////////////////////////////////////// 



 114

void COScopeCtrl::InvalidateCtrl() 

{ 

  int i ; 

  int nCharacters ; 

  int nTopGridPix, nMidGridPix, nBottomGridPix ; 

 

  CPen *oldPen ; 

  CPen solidPen(PS_SOLID, 0, m_crGridColor) ; 

  CFont axisFont, yUnitFont, *oldFont ; 

  CString strTemp ; 

  CClientDC dc(this) ;   

 

  if (m_dcGrid.GetSafeHdc() == NULL) 

  { 

    m_dcGrid.CreateCompatibleDC(&dc) ; 

    m_bitmapGrid.CreateCompatibleBitmap(&dc, m_nClientWidth, m_nClientHeight) ; 

    m_pbitmapOldGrid = m_dcGrid.SelectObject(&m_bitmapGrid) ; 

  } 

  m_dcGrid.SetBkColor (m_crBackColor) ; 

  m_dcGrid.FillRect(m_rectClient, &m_brushBack) ; 

 

  nCharacters = abs((int)log10(fabs(m_dUpperLimit))) ; 

  nCharacters = max(nCharacters, abs((int)log10(fabs(m_dLowerLimit)))) ; 

  nCharacters = nCharacters + 4 + m_nYDecimals ;   

  m_rectPlot.left = m_rectClient.left + 6*(nCharacters) ; 

  m_nPlotWidth    = m_rectPlot.Width() ; 

  oldPen = m_dcGrid.SelectObject (&solidPen) ;  

  m_dcGrid.MoveTo (m_rectPlot.left, m_rectPlot.top) ; 

  m_dcGrid.LineTo (m_rectPlot.right+1, m_rectPlot.top) ; 



 115

  m_dcGrid.LineTo (m_rectPlot.right+1, m_rectPlot.bottom+1) ; 

  m_dcGrid.LineTo (m_rectPlot.left, m_rectPlot.bottom+1) ; 

  m_dcGrid.LineTo (m_rectPlot.left, m_rectPlot.top) ; 

  m_dcGrid.SelectObject (oldPen) ;  

  nMidGridPix    = (m_rectPlot.top + m_rectPlot.bottom)/2 ; 

  nTopGridPix    = nMidGridPix - m_nPlotHeight/4 ; 

  nBottomGridPix = nMidGridPix + m_nPlotHeight/4 ; 

 

  for (i=m_rectPlot.left; i<m_rectPlot.right; i+=4) 

  { 

    m_dcGrid.SetPixel (i, nTopGridPix,    m_crGridColor) ; 

    m_dcGrid.SetPixel (i, nMidGridPix,    m_crGridColor) ; 

    m_dcGrid.SetPixel (i, nBottomGridPix, m_crGridColor) ; 

  } 

  axisFont.CreateFont (14, 0, 0, 0, 300, 

                       FALSE, FALSE, 0, ANSI_CHARSET, 

                       OUT_DEFAULT_PRECIS,  

                       CLIP_DEFAULT_PRECIS, 

                       DEFAULT_QUALITY,  

                       DEFAULT_PITCH|FF_SWISS, "Arial") ; 

  yUnitFont.CreateFont (14, 0, 900, 0, 300, 

                       FALSE, FALSE, 0, ANSI_CHARSET, 

                       OUT_DEFAULT_PRECIS,  

                       CLIP_DEFAULT_PRECIS, 

                       DEFAULT_QUALITY,  

                       DEFAULT_PITCH|FF_SWISS, "Arial") ; 

  oldFont = m_dcGrid.SelectObject(&axisFont) ; 

  m_dcGrid.SetTextColor (m_crGridColor) ; 

  m_dcGrid.SetTextAlign (TA_RIGHT|TA_TOP) ; 
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  strTemp.Format ("%.*lf", m_nYDecimals, m_dUpperLimit) ; 

  m_dcGrid.TextOut (m_rectPlot.left-4, m_rectPlot.top, strTemp) ; 

 

  m_dcGrid.SetTextAlign (TA_RIGHT|TA_BASELINE) ; 

  strTemp.Format ("%.*lf", m_nYDecimals, m_dLowerLimit) ; 

  m_dcGrid.TextOut (m_rectPlot.left-4, m_rectPlot.bottom, strTemp) ; 

  m_dcGrid.SetTextAlign (TA_LEFT|TA_TOP) ; 

  m_dcGrid.TextOut (m_rectPlot.left, m_rectPlot.bottom+4, "0") ; 

  m_dcGrid.SetTextAlign (TA_RIGHT|TA_TOP) ; 

  strTemp.Format ("%d", m_nPlotWidth/m_nShiftPixels) ;  

  m_dcGrid.TextOut (m_rectPlot.right, m_rectPlot.bottom+4, strTemp) ; 

 

  m_dcGrid.SetTextAlign (TA_CENTER|TA_TOP) ; 

  m_dcGrid.TextOut ((m_rectPlot.left+m_rectPlot.right)/2,  

                    m_rectPlot.bottom+4, m_strXUnitsString) ; 

  m_dcGrid.SelectObject(oldFont) ; 

  oldFont = m_dcGrid.SelectObject(&yUnitFont) ; 

  m_dcGrid.SetTextAlign (TA_CENTER|TA_BASELINE) ; 

  m_dcGrid.TextOut ((m_rectClient.left+m_rectPlot.left)/2,  

                    (m_rectPlot.bottom+m_rectPlot.top)/2, m_strYUnitsString) ; 

  m_dcGrid.SelectObject(oldFont) ; 

   

  if (m_dcPlot.GetSafeHdc() == NULL) 

  { 

    m_dcPlot.CreateCompatibleDC(&dc) ; 

    m_bitmapPlot.CreateCompatibleBitmap(&dc, m_nClientWidth, m_nClientHeight) ; 

    m_pbitmapOldPlot = m_dcPlot.SelectObject(&m_bitmapPlot) ; 

  } 

  m_dcPlot.SetBkColor (m_crBackColor) ; 
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  m_dcPlot.FillRect(m_rectClient, &m_brushBack) ; 

  InvalidateRect(m_rectClient) ; 

 

} // InvalidateCtrl 

//////////////////////////////////////////////////////////////////////////// 

double COScopeCtrl::AppendPoint(double dNewPoint) 

{ 

  double dPrevious ; 

  dPrevious = m_dCurrentPosition ; 

  m_dCurrentPosition = dNewPoint ; 

  DrawPoint() ; 

 

  Invalidate() ; 

  return dPrevious ; 

} // AppendPoint 

 //////////////////////////////////////////////////////////////////////////// 

void COScopeCtrl::OnPaint()  

{ 

  CPaintDC dc(this) ;  // device context for painting 

  CDC memDC ; 

  CBitmap memBitmap ; 

  CBitmap* oldBitmap ; // bitmap originally found in CMemDC 

  // no real plotting work is performed here,  

  // just putting the existing bitmaps on the client 

  // to avoid flicker, establish a memory dc, draw to it  

 

  memDC.CreateCompatibleDC(&dc) ; 

  memBitmap.CreateCompatibleBitmap(&dc, m_nClientWidth, m_nClientHeight) ; 

  oldBitmap = (CBitmap *)memDC.SelectObject(&memBitmap) ; 
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  if (memDC.GetSafeHdc() != NULL) 

  { 

    // first drop the grid on the memory dc 

    memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,  

                 &m_dcGrid, 0, 0, SRCCOPY) ; 

    // now add the plot on top as a "pattern" via SRCPAINT. 

    // works well with dark background and a light plot 

    memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,  

                 &m_dcPlot, 0, 0, SRCPAINT) ;  //SRCPAINT 

    // finally send the result to the display 

    dc.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,  

              &memDC, 0, 0, SRCCOPY) ; 

  } 

 

  memDC.SelectObject(oldBitmap) ; 

 

} // OnPaint 

 

///////////////////////////////////////////////////////////////////////////// 

void COScopeCtrl::DrawPoint() 

{ 

  // this does the work of "scrolling" the plot to the left 

  // and appending a new data point all of the plotting is  

  // directed to the memory based bitmap associated with m_dcPlot 

  // the will subsequently be BitBlt'd to the client in OnPaint 

   

  int currX, prevX, currY, prevY ; 
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  CPen *oldPen ; 

  CRect rectCleanUp ; 

 

  if (m_dcPlot.GetSafeHdc() != NULL) 

  { 

    // shift the plot by BitBlt'ing it to itself  

    // note: the m_dcPlot covers the entire client 

    //       but we only shift bitmap that is the size  

    //       of the plot rectangle 

    // grab the right side of the plot (exluding m_nShiftPixels on the left) 

    // move this grabbed bitmap to the left by m_nShiftPixels 

 

    m_dcPlot.BitBlt(m_rectPlot.left, m_rectPlot.top+1,  

                    m_nPlotWidth, m_nPlotHeight, &m_dcPlot,  

                    m_rectPlot.left+m_nShiftPixels, m_rectPlot.top+1,  

                    SRCCOPY) ; 

 

    // establish a rectangle over the right side of plot 

    // which now needs to be cleaned up proir to adding the new point 

    rectCleanUp = m_rectPlot ; 

    rectCleanUp.left  = rectCleanUp.right - m_nShiftPixels ; 

 

    // fill the cleanup area with the background 

    m_dcPlot.FillRect(rectCleanUp, &m_brushBack) ; 

 

    // draw the next line segement 

 

    // grab the plotting pen 

    oldPen = m_dcPlot.SelectObject(&m_penPlot) ; 
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    // move to the previous point 

    prevX = m_rectPlot.right-m_nPlotShiftPixels ; 

    prevY = m_rectPlot.bottom -  

            (long)((m_dPreviousPosition - m_dLowerLimit) * m_dVerticalFactor) ; 

    m_dcPlot.MoveTo (prevX, prevY) ; 

 

    // draw to the current point 

    currX = m_rectPlot.right-m_nHalfShiftPixels ; 

    currY = m_rectPlot.bottom - 

            (long)((m_dCurrentPosition - m_dLowerLimit) * m_dVerticalFactor) ; 

    m_dcPlot.LineTo (currX, currY) ; 

 

    // restore the pen  

    m_dcPlot.SelectObject(oldPen) ; 

 

    // if the data leaks over the upper or lower plot boundaries 

    // fill the upper and lower leakage with the background 

    // this will facilitate clipping on an as needed basis 

    // as opposed to always calling IntersectClipRect 

    if ((prevY <= m_rectPlot.top) || (currY <= m_rectPlot.top)) 

      m_dcPlot.FillRect(CRect(prevX, m_rectClient.top, currX+1, m_rectPlot.top+1), 

&m_brushBack) ; 

    if ((prevY >= m_rectPlot.bottom) || (currY >= m_rectPlot.bottom)) 

      m_dcPlot.FillRect(CRect(prevX, m_rectPlot.bottom+1, currX+1, 

m_rectClient.bottom+1), &m_brushBack) ; 

 

    // store the current point for connection to the next point 

    m_dPreviousPosition = m_dCurrentPosition ; 
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  } 

 

} // end DrawPoint 

 

///////////////////////////////////////////////////////////////////////////// 

void COScopeCtrl::OnSize(UINT nType, int cx, int cy)  

{ 

  CWnd::OnSize(nType, cx, cy) ; 

 

  // NOTE: OnSize automatically gets called during the setup of the control 

   

  GetClientRect(m_rectClient) ; 

 

  // set some member variables to avoid multiple function calls 

  m_nClientHeight = m_rectClient.Height() ; 

  m_nClientWidth  = m_rectClient.Width() ; 

 

  // the "left" coordinate and "width" will be modified in  

  // InvalidateCtrl to be based on the width of the y axis scaling 

  m_rectPlot.left   = 20 ;   

  m_rectPlot.top    = 10 ; 

  m_rectPlot.right  = m_rectClient.right-10 ; 

  m_rectPlot.bottom = m_rectClient.bottom-25 ; 

 

  // set some member variables to avoid multiple function calls 

  m_nPlotHeight = m_rectPlot.Height() ; 

  m_nPlotWidth  = m_rectPlot.Width() ; 
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  // set the scaling factor for now, this can be adjusted  

  // in the SetRange functions 

  m_dVerticalFactor = (double)m_nPlotHeight / m_dRange ;  

 

} // OnSize 

 

 

///////////////////////////////////////////////////////////////////////////// 

void COScopeCtrl::Reset() 

{ 

  // to clear the existing data (in the form of a bitmap) 

  // simply invalidate the entire control 

  InvalidateCtrl() ; 

} 

 

 

B.  TestOScope.cpp : Defines the class behaviors for the application. 
#include "stdafx.h" 

#include "TestOScope.h" 

#include "TestOScopeDlg.h" 

 

#ifdef _DEBUG 

#define new DEBUG_NEW 

#undef THIS_FILE 

static char THIS_FILE[] = __FILE__; 

#endif 

/* ---------------------------------------------------------------------- */ 

#ifdef __BORLANDC__ 

#pragma hdrstop             // borland specific 
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#include <condefs.h> 

#pragma argsused 

USEUNIT("Tserial_event.cpp"); 

#endif 

//--------------------------------------------------------------------------- 

#include "conio.h" 

#include "Tserial_event.h" 

///////////////////////////////////////////////////////////////////////////// 

// CTestOScopeApp 

 

BEGIN_MESSAGE_MAP(CTestOScopeApp, CWinApp) 

  //{{AFX_MSG_MAP(CTestOScopeApp) 

    // NOTE - the ClassWizard will add and remove mapping macros here. 

    //    DO NOT EDIT what you see in these blocks of generated code! 

  //}}AFX_MSG 

  ON_COMMAND(ID_HELP, CWinApp::OnHelp) 

END_MESSAGE_MAP() 

///////////////////////////////////////////////////////////////////////////// 

// CTestOScopeApp construction 

 

CTestOScopeApp::CTestOScopeApp() 

{ 

  // TODO: add construction code here, 

  // Place all significant initialization in InitInstance 

} 

///////////////////////////////////////////////////////////////////////////// 

// The one and only CTestOScopeApp object 

//friend class CTestOScopeDlg; 

CTestOScopeApp theApp; 
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CTestOScopeDlg* dlg = NULL; 

DWORD* lpThreadId = NULL; 

 

 

// CTestOScopeApp initialization 

/* ======================================================== */ 

/* ===============  OnCharArrival     ===================== */ 

/* ======================================================== */ 

void CTestOScopeApp::OnDataArrival(int size, char *buffer) 

{ 

    if ((size>0) && (buffer!=0)) 

    { 

        buffer[size] = 0; 

        printf("OnDataArrival: %s ",buffer); 

  dlg->m_OScopeCtrl.AppendPoint((double)atoi(buffer)); 

    } 

} 

 

/* ======================================================== */ 

/* ===============  OnCharArrival     ===================== */ 

/* ======================================================== */ 

void SerialEventManager(uint32 object, uint32 event) 

{ 

    char *buffer; 

    int   size; 

    Tserial_event *com; 

 

    com = (Tserial_event *) object; 

    if (com!=0) 
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    { 

        switch(event) 

        { 

            case  SERIAL_CONNECTED  : 

                                        //printf("Connected ! \n"); 

         

 ::AfxMessageBox("Connected!"); 

                                        break; 

            case  SERIAL_DISCONNECTED  : 

                                        printf("Disonnected ! \n"); 

          break; 

            case  SERIAL_DATA_SENT  : 

                                        //printf("Data sent ! \n"); 

         

 ::AfxMessageBox("Data Sent!"); 

                                        break; 

            case  SERIAL_RING       : 

                                        printf("DRING ! \n"); 

                                        break; 

            case  SERIAL_CD_ON      : 

                                        printf("Carrier Detected ! \n"); 

                                        break; 

            case  SERIAL_CD_OFF     : 

                                        printf("No more carrier ! \n"); 

                                        break; 

            case  SERIAL_DATA_ARRIVAL  : 

                                        size   = com->getDataInSize(); 

                                        buffer = com->getDataInBuffer(); 

                                        theApp.OnDataArrival(size, buffer); 
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                                        com->dataHasBeenRead(); 

                                        break; 

        } 

    } 

} 

 

 

BOOL CTestOScopeApp::InitInstance() 

{ 

  DWORD WINAPI Graph_Plotter(LPVOID); 

  AfxEnableControlContainer(); 

#ifdef _AFXDLL 

  Enable3dControls();      // Call this when using MFC in a shared DLL 

#else 

  Enable3dControlsStatic();  // Call this when linking to MFC statically 

#endif 

  dlg = new CTestOScopeDlg; 

  m_pMainWnd = dlg; 

 

  HANDLE h_graph_plotter = ::CreateThread( 

    NULL,  // pointer to security attributes 

    0,     // initial thread stack size 

    Graph_Plotter,// pointer to thread function 

    dlg,         // argument for new thread 

    0,            // creation flags 

    lpThreadId    // pointer to receive thread ID 

 ); 

 

  Send_recv_COM_data(); 
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  WaitForSingleObject(h_graph_plotter, INFINITE); 

  return TRUE; 

 

} 

 

void CTestOScopeApp::Send_recv_COM_data() 

{ 

 //int            c; 

 int            erreur; 

 //char           txt[32]; 

 Tserial_event *com; 

 

 com = new Tserial_event(); 

 if (com!=0) 

 { 

  com->setManager(SerialEventManager); 

  erreur = com->connect("COM1", 19200, SERIAL_PARITY_NONE, 8, 

true); 

  if (!erreur) 

  { 

   ::AfxMessageBox("Connected!"); 

   /*com->sendData("Hello World",11); 

   com->setRxSize(5); 

 

   // ------------------ 

   do 

   { 

    c = getch(); 

    printf("_%c",c); 
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    txt[0] = c; 

    com->sendData(txt, 1); 

    com->setRxSize(1); 

   } 

   while (c!=32);*/ 

 

  } 

  else 

   AfxMessageBox("ERROR : com->connect"); 

  // ------------------ 

  // com->disconnect(); 

 

  // ------------------ 

  // delete com; 

  // com = 0; 

 } 

} 

 

 

DWORD WINAPI Graph_Plotter(LPVOID lpParameter)   // thread data 

{ 

 

  CTestOScopeDlg* dlg = (CTestOScopeDlg*) lpParameter; 

 

  int nResponse = dlg->DoModal(); 

 

  if (nResponse == IDOK) 

  { 

    // TODO: Place code here to handle when the dialog is 
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    //  dismissed with OK 

  } 

  else if (nResponse == IDCANCEL) 

 

 

  return 0; 

} 

 

 

C. TestOScopeDlg.cpp : implementation file 
#include "stdafx.h" 

#include <stdlib.h> 

#include "TestOScope.h" 

#include "TestOScopeDlg.h" 

 

#ifdef _DEBUG 

#define new DEBUG_NEW 

#undef THIS_FILE 

static char THIS_FILE[] = __FILE__; 

#endif 

///////////////////////////////////////////////////////////////////////////// 

// CAboutDlg dialog used for App About 

class CAboutDlg : public CDialog 

{ 

public: 

  CAboutDlg(); 

// Dialog Data 

  //{{AFX_DATA(CAboutDlg) 

  enum { IDD = IDD_ABOUTBOX }; 
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  //}}AFX_DATA 

  // ClassWizard generated virtual function overrides 

  //{{AFX_VIRTUAL(CAboutDlg) 

  protected: 

  virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support 

  //}}AFX_VIRTUAL 

// Implementation 

protected: 

  //{{AFX_MSG(CAboutDlg) 

  //}}AFX_MSG 

  DECLARE_MESSAGE_MAP() 

}; 

 

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) 

{ 

  //{{AFX_DATA_INIT(CAboutDlg) 

  //}}AFX_DATA_INIT 

} 

 

void CAboutDlg::DoDataExchange(CDataExchange* pDX) 

{ 

  CDialog::DoDataExchange(pDX); 

  //{{AFX_DATA_MAP(CAboutDlg) 

  //}}AFX_DATA_MAP 

} 

 

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) 

  //{{AFX_MSG_MAP(CAboutDlg) 

  //}}AFX_MSG_MAP 
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END_MESSAGE_MAP() 

///////////////////////////////////////////////////////////////////////////// 

// CTestOScopeDlg dialog 

 

CTestOScopeDlg::CTestOScopeDlg(CWnd* pParent /*=NULL*/) 

  : CDialog(CTestOScopeDlg::IDD, pParent) 

{ 

  //{{AFX_DATA_INIT(CTestOScopeDlg) 

    // NOTE: the ClassWizard will add member initialization here 

  //}}AFX_DATA_INIT 

  // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 

  m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); 

  m_bStartStop = FALSE ; 

  srand( (unsigned)time( NULL ) ); 

  

} 

 

void CTestOScopeDlg::DoDataExchange(CDataExchange* pDX) 

{ 

  CDialog::DoDataExchange(pDX); 

  //{{AFX_DATA_MAP(CTestOScopeDlg) 

    // NOTE: the ClassWizard will add DDX and DDV calls here 

  //}}AFX_DATA_MAP 

} 

 

BEGIN_MESSAGE_MAP(CTestOScopeDlg, CDialog) 

  //{{AFX_MSG_MAP(CTestOScopeDlg) 

  ON_WM_SYSCOMMAND() 

  ON_WM_PAINT() 
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  ON_WM_QUERYDRAGICON() 

  //ON_WM_TIMER() 

  //}}AFX_MSG_MAP 

END_MESSAGE_MAP() 

///////////////////////////////////////////////////////////////////////////// 

// CTestOScopeDlg message handlers 

 

BOOL CTestOScopeDlg::OnInitDialog() 

{ 

  CDialog::OnInitDialog(); 

 

  // Add "About..." menu item to system menu. 

 

  // IDM_ABOUTBOX must be in the system command range. 

  ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX); 

  ASSERT(IDM_ABOUTBOX < 0xF000); 

 

  CMenu* pSysMenu = GetSystemMenu(FALSE); 

  if (pSysMenu != NULL) 

  { 

    CString strAboutMenu; 

    strAboutMenu.LoadString(IDS_ABOUTBOX); 

    if (!strAboutMenu.IsEmpty()) 

    { 

      pSysMenu->AppendMenu(MF_SEPARATOR); 

      pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu); 

    } 

  } 
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  // Set the icon for this dialog.  The framework does this automatically 

  //  when the application's main window is not a dialog 

  SetIcon(m_hIcon, TRUE);      // Set big icon 

  SetIcon(m_hIcon, FALSE);    // Set small icon 

    // TODO: Add extra initialization here 

  // determine the rectangle for the control 

  CRect rect; 

  GetDlgItem(IDC_OSCOPE)->GetWindowRect(rect) ; 

  ScreenToClient(rect) ; 

 

  // create the control 

  m_OScopeCtrl.Create(WS_VISIBLE | WS_CHILD, rect, this) ;  

 

  // customize the control 

  m_OScopeCtrl.SetRange(-10.0, 10.0, 1) ; 

  m_OScopeCtrl.SetYUnits("Volts") ; 

  m_OScopeCtrl.SetXUnits("Samples (Windows Timer: 100 msec)") ; 

  m_OScopeCtrl.SetBackgroundColor(RGB(0, 0, 64)) ; 

  m_OScopeCtrl.SetGridColor(RGB(192, 192, 255)) ; 

  m_OScopeCtrl.SetPlotColor(RGB(255, 255, 255)) ; 

 

  return TRUE;  // return TRUE  unless you set the focus to a control 

} 

 

void CTestOScopeDlg::OnSysCommand(UINT nID, LPARAM lParam) 

{ 

  if ((nID & 0xFFF0) == IDM_ABOUTBOX) 

  { 

    CAboutDlg dlgAbout; 
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    dlgAbout.DoModal(); 

  } 

  else 

  { 

    CDialog::OnSysCommand(nID, lParam); 

  } 

} 

 

void CTestOScopeDlg::OnPaint()  

{ 

  if (IsIconic()) 

  { 

    CPaintDC dc(this); // device context for painting 

 

    SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0); 

 

    // Center icon in client rectangle 

    int cxIcon = GetSystemMetrics(SM_CXICON); 

    int cyIcon = GetSystemMetrics(SM_CYICON); 

    CRect rect; 

    GetClientRect(&rect); 

    int x = (rect.Width() - cxIcon + 1) / 2; 

    int y = (rect.Height() - cyIcon + 1) / 2; 

 

    // Draw the icon 

    dc.DrawIcon(x, y, m_hIcon); 

  } 

  else 

  { 
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    CDialog::OnPaint(); 

  } 

} 

 

HCURSOR CTestOScopeDlg::OnQueryDragIcon() 

{ 

  return (HCURSOR) m_hIcon; 

} 

 

void CTestOScopeDlg::OnRunstop()  

{ 

  // TODO: Add your control notification handler code here 

  m_bStartStop ^= TRUE; 

 

  if (m_bStartStop) 

    SetTimer(1,100,NULL); 

  else 

    KillTimer(1); 

   

} 

 

/*void CTestOScopeDlg::OnTimer(UINT nIDEvent)  

{ 

  double nRandom=0; 

  

 // nRandom = -5.0 + 10.0*rand()/(double)RAND_MAX; 

 

  // append the new value to the plot 

  m_OScopeCtrl.AppendPoint(nRandom); 
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  CDialog::OnTimer(nIDEvent); 

}*/ 

 

void CTestOScopeDlg::OnOK()  

{ 

  m_bStartStop ^= TRUE; 

 

  if (m_bStartStop) 

    SetTimer(1,100,NULL); 

  else 

    KillTimer(1); 

 

} 

 

void CTestOScopeDlg::OnCancel()  

{ 

  if (!m_bStartStop) 

    KillTimer(1) ; 

 

  CDialog::OnCancel(); 

} 

 

D. Tserial_event.cpp                                             
/* ---------------------------------------------------------------------- */ 

 

#define STRICT 

#include <stdio.h> 
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#include <stdlib.h> 

#include <string.h> 

#include <process.h> 

#include <conio.h> 

#include <windows.h> 

 

 

#include "Tserial_event.h" 

 

#define SIG_POWER_DOWN     0 

#define SIG_READER         1 

#define SIG_READ_DONE      2    // data received has been read 

#define SIG_WRITER         3 

#define SIG_DATA_TO_TX     4    // data waiting to be sent 

#define SIG_MODEM_EVENTS   5 

#define SIG_MODEM_CHECKED  6 

 

void Tserial_event_thread_start(void *arg); 

 

typedef unsigned (WINAPI *PBEGINTHREADEX_THREADFUNC) (LPVOID 

lpThreadParameter); 

typedef unsigned *PBEGINTHREADEX_THREADID; 

 

/* ---------------------------------------------------------------------- */ 

/* ---------------------  Tserial_event_thread_start  ------------------- */ 

/* ---------------------------------------------------------------------- */ 

/** 

    This function is not part of the Tserial_event object. It is simply used 

    to start the thread from an external point of the object. 
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*/ 

void Tserial_event_thread_start(void *arg) 

{ 

    class Tserial_event *serial_unit; 

 

    serial_unit = (Tserial_event *) arg; 

     

    if (serial_unit!=0) 

        serial_unit->run(); 

} 

 

/* -------------------------    Tserial_event ------------------------- */ 

Tserial_event::Tserial_event() 

{ 

    int i; 

 

    ready            = false; 

    parityMode       = SERIAL_PARITY_NONE; 

    port[0]          = 0; 

    rate             = 0; 

    threadid         = 0; 

    serial_handle    = INVALID_HANDLE_VALUE; 

    thread_handle    = 0; 

    owner            = 0; 

    tx_in_progress   = 0; 

    rx_in_progress   = 0; 

    max_rx_size      = 1; 

    tx_size          = 0; 

    received_size    = 0; 
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    check_modem      = false; 

 

    manager          = 0; 

 

    /* -------------------------------------------------------------- */ 

    // creating Events for the different sources 

    for (i=0; i<SERIAL_SIGNAL_NBR; i++) 

    { 

        if ((i==SIG_READER) || (i==SIG_WRITER) || (i==SIG_MODEM_EVENTS)) 

            serial_events[i] = CreateEvent(NULL, TRUE, FALSE, NULL);  // Manual Reset 

        else 

            serial_events[i] = CreateEvent(NULL, FALSE, FALSE, NULL); // Auto reset 

    } 

} 

 

/* -------------------------------------------------------------------- */ 

/* --------------------------    ~Tserial_event ----------------------- */ 

/* -------------------------------------------------------------------- */ 

Tserial_event::~Tserial_event() 

{ 

    int i; 

 

    if (thread_handle!=0) 

        WaitForSingleObject(thread_handle, 2000); 

    thread_handle = 0; 

 

    /* -------------------------------------------------------- */ 

    for (i=0; i<SERIAL_SIGNAL_NBR; i++)         // deleting the events 

    { 
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        if (serial_events[i]!=INVALID_HANDLE_VALUE) 

            CloseHandle(serial_events[i]); 

        serial_events[i] = INVALID_HANDLE_VALUE; 

    } 

 

    if (serial_handle!=INVALID_HANDLE_VALUE) 

        CloseHandle(serial_handle); 

    serial_handle = INVALID_HANDLE_VALUE; 

} 

/* -------------------------------------------------------------------- */ 

/* --------------------------    disconnect   ------------------------- */ 

/* -------------------------------------------------------------------- */ 

void Tserial_event::disconnect(void) 

{ 

    ready = false; 

    SetEvent(serial_events[SIG_POWER_DOWN]); 

 

    if (thread_handle!=0) 

        WaitForSingleObject(thread_handle, 2000); 

    thread_handle = 0; 

} 

/* -------------------------------------------------------------------- */ 

/* --------------------------    connect      ------------------------- */ 

/* -------------------------------------------------------------------- */ 

/** 

     Serial port, file and overlapped structures initialization 

*/ 

int  Tserial_event::connect (char *port_arg, int  rate_arg,  int parity_arg, 

                             char ByteSize , bool modem_events) 



 141

{ 

    int  erreur; 

    DCB  dcb; 

    int  i; 

    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0 }; 

 

    /* --------------------------------------------- */ 

    if (serial_handle!=INVALID_HANDLE_VALUE) 

        CloseHandle(serial_handle); 

    serial_handle = INVALID_HANDLE_VALUE; 

 

    if (port_arg!=0) 

    { 

        strncpy(port, port_arg, 10); 

        rate        = rate_arg; 

        parityMode  = parity_arg; 

        check_modem = modem_events; 

 

        erreur      = 0; 

        ZeroMemory(&ovReader   ,sizeof(ovReader)   );  // clearing the overlapped 

        ZeroMemory(&ovWriter   ,sizeof(ovWriter)   ); 

        ZeroMemory(&ovWaitEvent,sizeof(ovWaitEvent)); 

        memset(&dcb,0,sizeof(dcb)); 

 

        /* -------------------------------------------------------------------- */ 

        // set DCB to configure the serial port 

        dcb.DCBlength       = sizeof(dcb);                    

         

        /* ---------- Serial Port Config ------- */ 
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        dcb.BaudRate        = rate; 

 

        switch(parityMode) 

        { 

            case SERIAL_PARITY_NONE: 

                            dcb.Parity      = NOPARITY; 

                            dcb.fParity     = 0; 

                            break; 

            case SERIAL_PARITY_EVEN: 

                            dcb.Parity      = EVENPARITY; 

                            dcb.fParity     = 1; 

                            break; 

            case SERIAL_PARITY_ODD: 

                            dcb.Parity      = ODDPARITY; 

                            dcb.fParity     = 1; 

                            break; 

        } 

 

 

        dcb.StopBits        = ONESTOPBIT; 

        dcb.ByteSize        = (BYTE) ByteSize; 

 

        dcb.fOutxCtsFlow    = 0; 

        dcb.fOutxDsrFlow    = 0; 

        dcb.fDtrControl     = DTR_CONTROL_DISABLE; 

        dcb.fDsrSensitivity = 0; 

        dcb.fRtsControl     = RTS_CONTROL_DISABLE; 

        dcb.fOutX           = 0; 

        dcb.fInX            = 0; 
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        /* ----------------- misc parameters ----- */ 

        dcb.fErrorChar      = 0; 

        dcb.fBinary         = 1; 

        dcb.fNull           = 0; 

        dcb.fAbortOnError   = 0; 

        dcb.wReserved       = 0; 

        dcb.XonLim          = 2; 

        dcb.XoffLim         = 4; 

        dcb.XonChar         = 0x13; 

        dcb.XoffChar        = 0x19; 

        dcb.EvtChar         = 0; 

         

        /* -------------------------------------------------------------------- */ 

        serial_handle    = CreateFile(port, GENERIC_READ | GENERIC_WRITE, 

                   0, NULL, OPEN_EXISTING,FILE_FLAG_OVERLAPPED,NULL); 

                   // opening serial port 

 

        ovReader.hEvent    = serial_events[SIG_READER]; 

        ovWriter.hEvent    = serial_events[SIG_WRITER]; 

        ovWaitEvent.hEvent = serial_events[SIG_MODEM_EVENTS]; 

 

        if (serial_handle    != INVALID_HANDLE_VALUE) 

        { 

            if (check_modem) 

            { 

                if(!SetCommMask(serial_handle, EV_RING | EV_RLSD)) 

                    erreur = 1; 

            } 
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            else 

            { 

                if(!SetCommMask(serial_handle, 0)) 

                    erreur = 1; 

            } 

 

                 

            // set timeouts 

            if(!SetCommTimeouts(serial_handle,&cto)) 

                erreur = 2; 

 

            // set DCB 

            if(!SetCommState(serial_handle,&dcb)) 

                erreur = 4; 

        } 

        else 

            erreur = 8; 

    } 

    else 

        erreur = 16; 

 

 

    /* --------------------------------------------- */ 

    for (i=0; i<SERIAL_SIGNAL_NBR; i++) 

    { 

        if (serial_events[i]==INVALID_HANDLE_VALUE) 

            erreur = 32; 

    } 
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    /* --------------------------------------------- */ 

    if (erreur!=0) 

    { 

        CloseHandle(serial_handle); 

        serial_handle = INVALID_HANDLE_VALUE; 

    } 

    else 

    { 

        // start thread 

        thread_handle = (HANDLE) _beginthreadex(NULL,0, 

                  (PBEGINTHREADEX_THREADFUNC) Tserial_event_thread_start, 

                   this, 0, &threadid); 

        /*if (thread_handle==-1) 

            thread_handle=0;   */ 

    } 

 

    /* --------------------------------------------- */ 

    return(erreur); 

} 

/* -------------------------------------------------------------------- */ 

/* ---------------------           setManager     --------------------- */ 

/* -------------------------------------------------------------------- */ 

void         Tserial_event::setManager(type_myCallBack manager_arg) 

{ 

        manager = manager_arg; 

} 

/* -------------------------------------------------------------------- */ 

/* ---------------------           setRxSize      --------------------- */ 

/* -------------------------------------------------------------------- */ 
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void         Tserial_event::setRxSize(int size) 

{ 

        max_rx_size = size; 

        if (max_rx_size>SERIAL_MAX_RX) 

            max_rx_size = SERIAL_MAX_RX; 

} 

/* -------------------------------------------------------------------- */ 

/* ---------------------           setManager     --------------------- */ 

/* -------------------------------------------------------------------- */ 

char *      Tserial_event::getDataInBuffer(void) 

{ 

    return(rxBuffer); 

} 

/* -------------------------------------------------------------------- */ 

/* ---------------------           setManager     --------------------- */ 

/* -------------------------------------------------------------------- */ 

int      Tserial_event::getDataInSize(void) 

{ 

    return(received_size); 

} 

/* -------------------------------------------------------------------- */ 

/* ---------------------           setManager     --------------------- */ 

/* -------------------------------------------------------------------- */ 

void   Tserial_event::dataHasBeenRead(void) 

{ 

    SetEvent(serial_events[SIG_READ_DONE]); 

} 

/* -------------------------------------------------------------------- */ 

/* -----------------------   getNbrOfBytes  --------------------------- */ 
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/* -------------------------------------------------------------------- */ 

int Tserial_event::getNbrOfBytes    (void) 

{ 

    struct _COMSTAT status; 

    int             n; 

    unsigned long   etat; 

 

    n = 0; 

 

    if (serial_handle!=INVALID_HANDLE_VALUE) 

    { 

        ClearCommError(serial_handle, &etat, &status); 

        n = status.cbInQue; 

    } 

    return(n); 

} 

/* -------------------------------------------------------------------- */ 

/* --------------------------    sendData     ------------------------- */ 

/* -------------------------------------------------------------------- */ 

void Tserial_event::sendData (char *buffer, int size) 

{ 

    if ((!tx_in_progress) && (size<SERIAL_MAX_TX) && (buffer!=0)) 

    { 

        tx_in_progress = 1; 

        memcpy(txBuffer, buffer, size); 

        tx_size = size; 

        SetEvent(serial_events[SIG_DATA_TO_TX]); 

        // indicating data to be sent 

    } 
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} 

/* --------------------------    OnEvent      ------------------------- */ 

void Tserial_event::OnEvent (unsigned long events) 

{ 

    unsigned long ModemStat; 

 

    GetCommModemStatus(serial_handle, &ModemStat); 

 

    if ((events & EV_RING)!=0) 

    { 

        if ((ModemStat &  MS_RING_ON)!= 0) 

        { 

            if (manager!=0) 

                manager((uint32) this, SERIAL_RING); 

        } 

    } 

 

    if ((events & EV_RLSD)!=0) 

    { 

        if ((ModemStat &  MS_RLSD_ON)!= 0) 

        { 

            if (manager!=0) 

                manager((uint32) this, SERIAL_CD_ON); 

        } 

        else 

        { 

            if (manager!=0) 

                manager((uint32) this, SERIAL_CD_OFF); 

        } 
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    } 

} 

/* -------------------------------------------------------------------- */ 

/* --------------------------       run       ------------------------- */ 

/* -------------------------------------------------------------------- */ 

 

#define DEBUG_EVENTS 

/* */ 

 

void Tserial_event::run(void) 

{ 

    bool          done; 

    long          status; 

    unsigned long read_nbr, result_nbr; 

    char          success; 

 

    ready                   = true; 

    done                    = false; 

    tx_in_progress          = 0; 

    rx_in_progress          = 0; 

    WaitCommEventInProgress = 0; 

 

    if (manager!=0) 

        manager((uint32) this, SERIAL_CONNECTED); 

 

    GetLastError();               // just to clear any pending error 

    SetEvent(serial_events[SIG_READ_DONE]); 

    if (check_modem) 

        SetEvent(serial_events[SIG_MODEM_CHECKED]); 
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        while(!done) 

    { 

        /* ------------------------------------------------------------------ */ 

        /*                                                                    */ 

        /*                                                                    */ 

        /*                                                                    */ 

        /*                          Waiting  for signals                      */ 

        /*                                                                    */ 

        /*                                                                    */ 

        /*                                                                    */ 

        /* ------------------------------------------------------------------ */ 

        status = WaitForMultipleObjects(SERIAL_SIGNAL_NBR, serial_events, 

                                        FALSE, INFINITE); 

 

        // processing answer to filter other failures 

        status = status - WAIT_OBJECT_0; 

        if ((status<0) || (status>=SERIAL_SIGNAL_NBR)) 

            done=true;   // error 

        else 

        { 

            /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

*/ 

            /* ++++++++++++++++++++ EVENT DISPATCHER ++++++++++++++++++ 

*/ 

            /* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

*/ 

            switch(status) 

            { 
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                case SIG_POWER_DOWN: 

                                        done = true; 

                    break; 

                /* #                       RX                             # */ 

 

                case SIG_READ_DONE: 

                    // previous reading is finished 

                    // I start a new one here 

                    if (!rx_in_progress) 

                    { 

                        // locking reading 

                        rx_in_progress = 1; 

                        // starting a new read 

                        success = (char) ReadFile(serial_handle,&rxBuffer, 

                                         max_rx_size,&read_nbr,&ovReader); 

                        if (!success) 

                        { 

                            // failure 

                            if(GetLastError() != ERROR_IO_PENDING ) 

                            { 

                                // real failure => quiting 

                                done = true; 

                                #ifdef DEBUG_EVENTS 

                                printf("Readfile error (not pending)\n"); 

                                #endif DEBUG_EVENTS 

                            } 

                            #ifdef DEBUG_EVENTS 

                            else 

                                printf("ReadFile pending\n"); 
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                            #endif DEBUG_EVENTS 

                        } 

                        #ifdef DEBUG_EVENTS 

                        else 

                        { 

                            printf("ReadFile immediate success\n"); 

                        } 

                        #endif 

                    } 

                    break; 

                /* ######################################################## */ 

                case SIG_READER: 

                    // reading the result of the terminated read 

                    //BOOL GetOverlappedResult( 

                    //    HANDLE hFile, // handle of file, pipe, or communications device 

                    //    LPOVERLAPPED lpOverlapped, // address of overlapped structure 

                    //    LPDWORD lpNumberOfBytesTransferred, // address of actual 

bytes count 

                    //    BOOL bWait  // wait flag 

                    //   ); 

                    // 

                    if (GetOverlappedResult(serial_handle, &ovReader, 

                        &result_nbr, FALSE)) 

                    { 

                        #ifdef DEBUG_EVENTS 

                            printf("ReadFile => GetOverlappedResult done\n"); 

                        #endif DEBUG_EVENTS 

                        // no error => OK 

                        // Read operation completed successfully 
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                        ResetEvent(serial_events[SIG_READER]); 

                        // Write operation completed successfully 

                        received_size  = result_nbr; 

                        rx_in_progress = 0; // read has ended 

                        // if incoming data, I process them 

                        if ((result_nbr!=0) &&(manager!=0)) 

                            manager((uint32) this, SERIAL_DATA_ARRIVAL); 

                        // I automatically restart a new read once the 

                        // previous is completed. 

                        //SetEvent(serial_events[SIG_READ_DONE]); 

                        // BUG CORRECTION 02.06.22 

                    } 

                    else 

                    { 

                        // GetOverlapped didn't succeed ! 

                        // What's the reason ? 

                        if(GetLastError()!= ERROR_IO_PENDING ) 

                            done = 1;  // failure 

                    } 

                    break; 

                /* #                       TX                             # */ 

                case SIG_DATA_TO_TX: 

                    success = (char) WriteFile(serial_handle, txBuffer, tx_size, 

                                        &result_nbr, &ovWriter); 

                        if (!success) 

                        { 

                            // ouups, failure 

                            if(GetLastError() != ERROR_IO_PENDING ) 

                            { 
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                                // real failure => quiting 

                                done = true; 

                                #ifdef DEBUG_EVENTS 

                                printf("WriteFile error (not pending)\n"); 

                                #endif DEBUG_EVENTS 

                            } 

                            #ifdef DEBUG_EVENTS 

                            else 

                                printf("WriteFile pending\n"); 

                            #endif DEBUG_EVENTS 

                        } 

                        #ifdef DEBUG_EVENTS 

                        else 

                        { 

                            printf("WriteFile immediate success\n"); 

                        } 

                        #endif 

                    break; 

                /* ######################################################## */ 

                case SIG_WRITER: 

                    // WriteFile has terminated 

                    // checking the result of the operation 

                    if (GetOverlappedResult(serial_handle, &ovWriter, 

                        &result_nbr, FALSE)) 

                    { 

                        // Write operation completed successfully 

                        ResetEvent(serial_events[SIG_WRITER]); 

                        // further write are now allowed 

                        tx_in_progress = 0; 
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                        // telling it to the manager 

                        if (manager!=0) 

                            manager((uint32) this, SERIAL_DATA_SENT); 

                    } 

                    else 

                    { 

                        if(GetLastError() != ERROR_IO_PENDING ) 

                            done = 1;  // failure 

                    } 

                    break; 

                /* #                    MODEM_EVENTS EVENTS                      # */ 

                case SIG_MODEM_CHECKED: 

                    if ((!WaitCommEventInProgress) && check_modem) 

                    // if no wait is in progress I start a new one 

                    {             

                        WaitCommEventInProgress=1; 

                        success = (char) WaitCommEvent(serial_handle,&dwCommEvent, 

                                                       &ovWaitEvent); 

                        // reading one byte only to have immediate answer on each byte 

                        if (!success) 

                        { 

                            // ouups, failure 

                            if(GetLastError() != ERROR_IO_PENDING ) 

                            { 

                                // real failure => quiting 

                                done = true; 

                                #ifdef DEBUG_EVENTS 

                                printf("WaitCommEvent error (not pending)\n"); 

                                #endif DEBUG_EVENTS 
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                            } 

                            #ifdef DEBUG_EVENTS 

                            else 

                                printf("WaitCommEvent pending\n"); 

                            #endif DEBUG_EVENTS 

                        } 

                        #ifdef DEBUG_EVENTS 

                        else 

                        { 

                            printf("WaitCommEvent immediate success\n"); 

                        } 

                        #endif 

                    } 

                    break; 

                /* ######################################################## */ 

                case SIG_MODEM_EVENTS: 

                    // reading the result of the terminated wait 

                    if (GetOverlappedResult(serial_handle, &ovWaitEvent, 

                        &result_nbr, FALSE)) 

                    { 

                        // Wait operation completed successfully 

                        ResetEvent(serial_events[SIG_MODEM_EVENTS]); 

                        WaitCommEventInProgress = 0; 

                        // if incoming data, I process them 

                        OnEvent(dwCommEvent); 

                        // automatically starting a new check 

                        SetEvent(serial_events[SIG_MODEM_CHECKED]); 

                    } 

                    else 
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                    { 

                        // GetOverlapped didn't succeed ! 

                        // What's the reason ? 

                        if(GetLastError() != ERROR_IO_PENDING ) 

                            done = 1;  // failure 

                    } 

                    break; 

                            } 

        } 

    }; 

 

    // --------------------- Disconnecting ---------------- 

    ready = false; 

    if (serial_handle!=INVALID_HANDLE_VALUE) 

        CloseHandle(serial_handle); 

    serial_handle = INVALID_HANDLE_VALUE; 

 

    if (manager!=0) 

        manager((uint32) this, SERIAL_DISCONNECTED); 

} 

/* -------------------------------------------------------------------- */ 
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