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ABSTRACT

A Network Design Model for Multi-Zone

Truckload Shipments. (December 2004)

Nimish Maheshwari, B.E., Punjab Engineering College

Chair of Advisory Committee: Dr. Halit Uster

Truckload shipments constitute a significant portion of the freight transportation

industry. In recent years, truckload industry is facing a serious problem of high driver

turn over rate. In this research, we present a mathematical model for multi-zone

dispatching method to solve this issue. Multi-zone dispatching is a method in which

a service area is divided into many zones. Truckload within a zone is carried by

local drivers and the truckload between zones is carried by lane drivers. Apart from

reducing the driver tour length to a desirable level, the model for multi-zone also

contains some unique constraints to address some issues from the perspectives of the

company and the customer. The binary integer program is solved by exact methods.

As the problem size increases, exact methods fail quickly. Hence, a construction

heuristic within tabu search framework is developed to solve the model. Analysis of

various parameters concerned is provided to gain better insights of varied aspects of

the problem. Computational results for analysis of parameters and comparison of

exact and heuristic methods are provided.
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CHAPTER I

INTRODUCTION

Truck is a major mode of freight transportation in United States. Trucking industry

accounts for 75% of total freight expenditure in US (Chopra and Meindl 2002). The

trucking industry consists of two parts: full truckload (TL) and less-than-truckload

(LTL). While the less-than-truckload shipments serve a wide range of customers rang-

ing from individual users to large corporations of any kind, truckload shipping is suited

for transportation between manufacturing facilities and warehouses or between suppli-

ers and manufacturers or manufacturers and distributors. For example, GM supplies

cars to distribution centers.

Truckload operations have low fixed cost. One can easily enter the market by

owning a few trucks. Hence, truckload trucking is a fiercely competitive industry. It

consists of hundreds of carriers, each with its own characteristics. They mainly differ

in terms of size, Operating and managing policies (Taha and Taylor 1994). One of

the largest publicly held company in truckload industry is J.B. Hunt, which operates

all over US. Some other truckload companies operating throughout US are Ryder

Integrated, Werner, John Fayard / Fastway Systems, Schneider National, etc.

Traditionally, a truckload shipment between two points takes place via direct

route using a single driver. This is called point-to-point dispatching of truckloads.

However, point-to-point dispatching causes a very long driver tour length. The large

driver tour lengths keep the driver away from home for a long time and eventually

may cause them to quit their jobs. This results in a very high driver turn over rate,

which can be as high as 85% - 110% (Taylor et al. 1999). Contrary to this, the

This thesis follows the style and format of Operations Research.
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driver turn over rate are quite low in less-than-truckload industry. In the less-than-

truckload case, hubs are utilized along with two types of drivers, namely the lane and

local drivers. The lane drivers are responsible for carrying the load from hub-to-hub

and the local drivers are responsible for carrying the load from hub to destination or

from source to hub. Therefore, both the local and lane driver tour lengths are much

shorter in less-than-truckload industry. In particular, Taylor and Meinert (2000)

reported the local driver turnover rate to be 4.5% and lane driver turnover rate to be

10% for Yellow Freight.

Taylor et al. (1999) and Taylor and Meinert (2000) state that the factors affecting

the service performance in the truckload industry can be viewed from the points of

view of the (1) company, (2) customer and the (3) driver.

1. From the driver point of view, the parameters are:

• Tour length: For point-to-point dispatching the tour length is defined as

the total distance travelled by the driver to deliver a load from its source to

destination. Tour length for a local driver is defined as the distance from

node-to-hub or hub-to-node. For the lane driver, tour length is defined as

the distance between two hubs.

• Miles per driver per day: Total miles travelled by the driver per day. It is

directly proportional to the earnings of the driver.

• Job quality: Determined by route regularity and get home rates. Route

regularity means the consistency of the tour length to which driver is as-

signed daily.

The most important of the above criteria is the tour length because it largely

determines the job satisfaction of the driver and hence is a major factor in

determining driver turnover rate (Taylor and Meinert 2000).
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2. From the company’s point of view the major factors are cost and service. Service

defines the market share of a company. High quality service means on-time pick

up and delivery. On the other hand, cost has two major components:

• Percentage Circuitry: The percentage of additional distance a load travels

over and above the point-to-point distance. Excess circuitry causes load

to travel more miles than desired and hence results in extra cost.

• First Dispatch Empty Miles: The amount of miles that the truck runs

without carrying any load. This can be when the truck is going to pick-up

the load from the source or when it is returning to its place (hub) after

delivering the load to its destination.

3. From the customer’s point of view, the factors determining the performance

metrics are:

• The total delivery time (the flow time) : The total time since the load was

picked up at the source until it was delivered to final destination.

• Cost associated with the shipment.

• Reliability : Determines how reliable the service of the truckload carrier is

in terms of safety. Issues related to theft and carriage handling (properly

delivering the shipment without damage) are considered.

From the above factors we take only some factors which impact the company, customer

and driver. For the driver, we only consider the tour length. For the company, we

consider circuitry and load imbalance. As will be illustrated in chapter III, low value

of load imbalance results in low first dispatch empty miles. From the customer point of

view, we do not consider any factors directly, however, since the total delivery time is

directly related to dispatching method, we will chose a dispatching method such that
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the total flow time will be reduced. Cost of the shipments for the customer depends

upon the cost incurred by the company. Since we consider the factors affecting the

cost to the company, we do not include additional constraint for customer shipments

cost. Reliability as defined is difficult to measure quantitatively, and is more on

operational side, hence we do not take it into account.

A multi-zone dispatching method can prove to be very effective in reducing driver

tour length and hence solve the driver retention problem in truckload industry. Some

concepts of this model was developed by Taylor et al. (2001), as described in chapter

II. If some additional constraints are added, the model can take care of several factors

from the three different perspectives of the driver, company and the customer. The

method and the additional constraints will be discussed in detail in chapter III.

A. Motivation

There is no model in our knowledge that addresses the issue of driver tour length in

truckload industry. An analytical model especially addressing this issue would be of

immense help to the companies like J.B.Hunt who spend significant amount of money

in driver training and recruitment every year. Further, we consider the effects of

various factors, such as circuitry and load imbalance, that take into account different

perspectives of the company and the customer. The analysis of these parameters will

help in better understanding of trade offs involved between various competing factors

and hence will help company to provide high quality service to the customer at low

cost.
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B. Objective

The objectives of this research are to (i) formulate a mathematical model for the

multi-zone dispatching method, (ii) formulate and analyze various unique constraints

in truckload industry from the perspectives of driver, company and the customer, (iii)

provide solution methodologies for the model.

C. Organization of the Thesis

The thesis is structured as follows. Chapter II gives the literature review of hubs

and spoke as applied to truckload industry, alternative dispatching methods, zoning

and multi-zone dispatching method. Chapter III gives the notation, definition and

problem formulation. It also discusses various unique constraints applied to multi-

zone dispatching method. Following that, chapter IV discusses both the exact and the

heuristic solution procedures to solve the mathematical model. Chapter V provides

computational results for comparison of exact and heuristics methods and analysis

of the parameters. Finally, Chapter VI gives conclusion and recommendations for

future research.
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CHAPTER II

LITERATURE REVIEW

This thesis focuses on developing a strategic network for multi-zone dispatching. The

structure and configuration of multi-zone is similar to that of hub and spoke networks,

which are extensively used in airline and less-than-truckload industries. In addition,

multi-zone method also includes some concepts of zoning. In section A, we review

hub and spoke networks as applied in the truckload industry. Section B reviews

the different dispatching methods in truckload industry. Section C gives briefly the

planning problems in LTL industry. Section D discusses some of issues relating to

zoning. Finally, Section E reviews the previous work in multi-zone dispatching.

A. Hub and Spoke Networks in Truckload Industry

Hub and spoke problem in most general sense (in airline and less-than-truckload

industries) consists of locating number of hubs and assigning nodes to each hub.

The objective is to reduce the total fixed and transportation cost. The fixed cost

results from location of hubs and transportation cost arises out of routing the load

from source node to destination node which passes through hubs. The motivation

behind the implementation of hub and spoke model is to obtain economies of scale

by consolidating the loads at the hubs. The consolidated load is sent through hubs

as opposed to sending individual load directly from source node to destination node.

Campbell et al. (2002) and Daskin (1995) discusses different variations of hub and

spoke model which include cases of single and multiple allocation of demand point

to hubs, capacitated and uncapacitated hub location problems, p-hub problems, p-

median problems, and hub covering problems.

Taylor et al. (1995) used HUBNET simulator, a simulation software, to gener-
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ate different hub scenarios comprising of varied number of hubs, driver tour length

restriction and model structure (whether its entirely hub network or point-to-point

or a combination of the two (hybrid)). They compared performance of these different

scenarios based on different measures like lane driver tour length, local driver tour

length, average miles driven per driver per day, first dispatch empty miles and aver-

age percentage circuitry. They reported that the number of hubs and their location

methodology (distance based, flow based or a combination of the two (hybrid)) are

important factors in determining performance in circuitry and first dispatch empty

miles. Further, they reported that in general, hybrid strategy performs better. This

is because the hybrid strategy provides smaller service areas than distance and flow

based hub layout. Hence, circuitry, first dispatch empty miles and driver tour length

are reduced, although it also reduces average miles per driver per day.

Hub and spoke implementation in truckload industry has some potential advan-

tages. First, since the truckload carriers has full truckload as a shipment, they do

not need freight handling at the hubs. Note that there is no consolidation of loads in

truckload industry. Secondly, hub and spoke networks can increase truck utilization

which is low in truckload industry (Taha and Taylor 1994). Thirdly, hubbing can re-

duce the total delivery time by making use of multiple drivers at each transshipment

hub. Lastly, and most importantly, hub and spoke networks in truckload industry

can reduce driver turnover rate by reducing the driver tour length and increasing

route regularity. To design the hub and spoke system, Taha and Taylor (1994) ex-

amine the location of existing terminals, load and freight volume and physical space

between the hubs, to arrive at the location of hubs, assignments of nodes to hubs and

the service areas of the hubs. Initial location of hubs is determined by load volume

and geographical distance considerations. The assignment of nodes and the service

areas of hubs are determined based on proximity. Lastly, the routing between hubs
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is decided by using shortest path algorithms.

B. Dispatching Methods

In Taylor et al. (1999), authors compared different dispatching alternatives on the

basis of performance metrics of service provider, driver and customer. Authors discuss

the following dispatching methods:

• Baseline model: It describes the method in which loads are dispatched through

direct point-to-point method.

• Zone model: The dispatching is done by using six zone perimeter hubs (located

at the boundary). Zones were divided in accordance with the business sales

unit of J.B Hunt Transport.

• Key lane model: This model moves certain percentage of baseline (point-to-

point) loads along a well defined delivery lane which has high freight density.

• Key hub model: In this model a single hub is located in the areas of high freight

density instead of multiple hubs.

• Hybrid model: This is a combination of key hub and zone models.

They concluded that the zone model performs well in terms of first dispatch empty

miles and percentage late hours (this determines customer service) and almost equiv-

alent miles per driver per day but causes more circuitry.

Taylor and Meinert (2000) conducted simulation studies using SIMNET, a sim-

ulation software to measure performance of zone model with baseline point-to-point.

They compared total flow time which is important from customer point of view and

tour length which on the other hand is important from the perspectives of a driver.
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They report that the total flow time is lower (better) in zone model as compared to

baseline model. This is because of using multiple drivers for a load. The change of

drivers takes place at the transshipment points. They also found that the average

driver tour length in zone model is shorter than the baseline model.

C. Motor Carriers in Trucking Industry

Delorme et al. (1987) describes the strategic, tactical and operational aspects in

motor carriers industry. The strategic issues are concerned with design of trans-

portation system, i.e., finding the type and mix of transportation services offered,

territory coverage and network configuration and service quality decision in terms

of speed and reliability. The tactical planning issues are related to equipment ac-

quisition or replacement and capacity adjustment as per the demand forecast. The

operational level issues are deciding of assignments of drivers to equipments and

transportation scheduling. Braklow et al. (1992) developed SYSNET, a large scale

interactive optimization system to optimize the routing of system and design of the

network. Magnanti and Wong (1984) gives a good survey of network design models

and algorithms.

D. Zoning

Ahituv and Berman (1988) define zoning as the process by which a network is par-

titioned into smaller networks each of which is delegated with a certain degree of

autonomy, in terms of resource allocation and operation. They state following guide-

lines to set up zones:

• Demand Equity: Division done on the basis of equal demand generated.
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• Contiguity: A division is contiguous, if it is possible to travel from every node in

the subnetwork to every other node in it, without crossing another subnetwork.

• Compactness: Edges of the zone are not far from each other.

• Avoidance of Enclaves: An enclave is a subset of nodes not formed as zone due to

equity criterion and cannot be included with other zones due to non-contiguity.

• Additional criterion: such as natural and administrative boundaries.

For our purposes, instead of demand equity, we consider load imbalance as zoning cri-

terion as would be cleared in next section. Further, our design will ensure contiguity,

compactness and avoidance of enclaves.

E. Multi-zone Method

Taylor et al. (2001) compared various configuration of multi-zone dispatching method

with the baseline OTR (on the road) method and with baseline multi-zone model. In

baseline multi-zone dispatching method, zones were divided in accordance with the

sales regions of J.B. Hunt transport. Each zone was configured to have many hubs

(transhipment points), which are mostly located at the boundary of the zones. They

introduced following alternative configurations for the baseline multi-zone method:

• Reducing the number of hubs: This scenario deletes some of the existing hubs

that are underutilized.

• Reducing number of zones

• Allowing low circuitry: In this scenario, an upper limit is set up for the max-

imum circuitry that a load can undergo. If the load has more circuitous path

than allowed it is shipped by point-to-point method.
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• Minimum imbalance: In this scenario zones are divided such as to minimize the

imbalance (load going out - load coming in) for a zone.

Taylor et al. (2001) compared them in accordance with average driver tour length,

flow time and zone boundary imbalance. It was found that the minimum imbalance

criterion produced the shortest driver tour length, almost equal flow time as compared

to zone baseline scenario, and of course, minimum imbalance.



12

CHAPTER III

PROBLEM DEFINITION AND FORMULATION

In this chapter, we first define multi-zone dispatching in section A. Next, we give

the definition of our problem in section B. Section C discusses various constraints of

the model in detail. Section D gives the complete model with the objective function

and all the constraints. Finally, section E describes a generalized model for both

point-to-point and multi-zone dispatching.

A. Multi-zone Dispatching

Multi-zone dispatching is a method in which a geographical area is divided into several

zones. A zone comprises of a single hub and nodes assigned to the hub. Loads

originating in a zone has to pass through various hubs (zones) before reaching its

destination point, unless the destination is within the zone itself. Loads within the

zone are carried to and from the hub by local drivers. Loads between hubs are carried

by the lane driver. Figure 1 shows the lane and local driver tour length.

Following are the important points that describe the structure and configuration

of multi-zone dispatching.

• Driver tour length is an important factor in determining the retention of the

driver in the company. It can be of two types, i.e., lane driver tour length and

the local driver tour length. Minimum imbalance results in shorter driver tour

length (Taylor et al. 2001). Hence, we try to keep load imbalance to a low level.

• Zone boundaries are defined by the nodes assigned to a hub and each zone has

only one hub. Each node is uniquely assigned to a hub. Any load originating at

a node has to go to a hub or a series of hubs before reaching to its destination
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Figure 1. Multi-zone model defining driver travel

Zone boundaries

Local driver tour length

Lane driver tour length

Node assignment to hubs

node. Hubs are actually transhipment points where driver carrying the load is

changed.

• Location of hubs and the assignment of nodes to the hubs depend upon the

driver tour length constraints, load imbalance constraints and the circuitry con-

straints.

Figure 1 shows, how zones are defined and how local and lane driver travel

internally and across the zone, respectively. Figure 2 shows how nodes are assigned

to hubs, and a sample truckload dispatch.

In Figures 1 and 2, we can easily see that the multi-zone model with each zone

having a single hub, is similar to hub and spoke model with several additional con-
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Figure 2. Hub and spoke model

Node assignment to hub Hub

NodeMulti-zone dispatching
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straints.

B. Problem Definition

Given the demands (loads) between pairs of points and candidate location of hubs,

we develop a network design model to determine the locations of hubs, assignment of

nodes to the hubs (and hence determine the zone boundaries) and actual truckload

routes so that the total transportation and fixed hub location costs are minimized. In

doing so, the model satisfies local and lane driver tour length constraints along with

a desirable load imbalance and percentage circuitry levels.

C. Model Formulation

In this section, we provide details of the model formulation. The model is a binary

integer program that builds on hub and spoke model for network design (Campbell

et al. 2002). Important differences include additional constraints for load imbalance,

percentage circuitry and driver tour length and routing of the load through several

hubs instead of two hubs. Some structural constraints similar to some structural

constraints in hub location problems are also included.

1. Parameters and Decision Variables

Let N denote the set of nodes, N = {1....n}. Dij denotes the demand associated

with a node pair (i,j) and dij represents the distance between them. Let γ1 be the

maximum permissable distance between a hub and a node assigned to it, i.e., γ1

relates to the local driver tour length. Let γ2 be the maximum permissable distance

between any two hubs, i.e., γ2 relates to the lane driver tour length. Further, let β

be the maximum acceptable percentage circuitry and δ be the maximum acceptable
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percentage load imbalance associated with a zone. Lastly, let Fk denote the fixed cost

of locating a hub at a candidate node k ∈ N .

In order to represent the hub locations and the assignment of the nodes to hubs,

we define a binary decision variable Xik, which takes the value of 1 if the node i is

assigned to a hub at node k and 0 otherwise. In addition, to determine the route

followed by an individual load, we define another binary decision variable Y ij

kl , which

takes the value of 1 if the load originating from a source node i destined to a node

j is transferred through a hub-to-hub link (k, l) and 0 otherwise. Note that a load

originating at node i can be transferred through several hub-to-hub links before it

reaches to its destination node j.

2. Objective Function

The following represents the objective function:

∑

i

∑

k

ψ dikXik

∑

j

(

Dij +Dji

)

+
∑

i

∑

j

∑

k

∑

l

φY
ij

kl Dij dkl +
∑

k

FkXkk (3.1)

The first component represents the cost of total transportation from source nodes

to hubs and from hubs to destination nodes for all truckloads. The second component

represents the total transportation cost on hub-to-hub links, and the third component

represents the total fixed cost associated with locating hubs.

Note that we take the cost coefficients φ and ψ to be 1 in all the future calcula-

tions.
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3. Constraints

Next, we present each of the particular constraints that define our problem as well as

the required structural constraints in the model.

a. Percentage Circuitry

Percentage circuitry is defined as the percentage of additional distance a load travels

between the node pair (i,j) when shipped via multi-zone dispatching instead of direct

point-to-point dispatching.

Dij

(

∑

k

dikXik +
∑

k

∑

l

dkl Y
ij

kl +
∑

l

djl Xjl

)

− dij Dij ≤ β dij Dij ∀ i, j ∈ N (3.2)

The constraint ( 3.2) calculates the maximum amount of percentage circuitry that

a load between the node pair (i,j) can experience. This is restricted to a maximum

value of β. Note that if a load does not exist for a pair of nodes (i,j) then this

constraint is automatically nullified for that pair. This is ensured by the inclusion of

Dij on both sides of the constraint.

b. Tour Length

Traditionally, tour length is defined as the distance that a driver travels while deliv-

ering the load from its source to its destination. However, in multi-zone dispatching

the tour length is defined in terms of segments of travel. As defined before, local

driver tour length refers to a distance that driver travels for carrying the load on

node-to-hub or hub-to-node links, and lane driver tour length refers to the distance

that a driver travels for carrying the load on hub-to-hub link.

Constraints ( 3.3) restrict the local driver tour length to a maximum acceptable
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value of γ1 miles. Note that these constraints restrict the maximum distance on

node-to-hub link.

dik Xik ≤ γ1 ∀ i, k ∈ N , (3.3)

Constraints ( 3.4) restricts the lane driver tour length to a maximum value of

γ2 miles. Note that these constraints restrict the maximum distance on a hub-to-hub

link.

dkl Y
ij

kl ≤ γ2 ∀ i, j, k, l ∈ N , (3.4)

c. Load Imbalance

Load imbalance for a zone is defined as the difference between the total incoming and

total outgoing load. As mentioned earlier, load imbalance constraints helps in shorter

driver tour length for multi-zone dispatching as compared the other dispatching meth-

ods. As will be illustrated later, a high load imbalance will cause higher first dispatch

empty miles, which are undesirable to both the company and the customer. To the

company, it is just an extra deadhead miles with no gain in terms of load movement,

and for the customer, large first dispatch empty miles simply means lack of prompt

service and a possible increase in delivery time. In addition, the load imbalance has

two meanings for a zone. It affects the zone both internally and externally as will be

illustrated later in the section.

The following expression gives total outgoing load from a zone represented by a

hub k ∈ N .

Ok =

(

∑

i

Xik

(

∑

j

Dij −
∑

j

DijXjk

)

)

(3.5)
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and the expression total incoming load to a zone k ∈ N is

Ik =

(

∑

i

Xik

(

∑

j

Dji −
∑

j

DjiXjk

)

)

(3.6)

Traditionally, the load imbalance is calculated as.

|Ok − Ik| (3.7)

Load imbalance as mentioned by ( 3.7) has very different meaning for different

companies depending upon their market size. A certain value of load imbalance can

be acceptable for one company but cannot be acceptable for another company. Hence,

instead of controlling the load imbalance in terms of value, we control it by means of

percentage deviation, thus we have the following constraint ( 3.8).

|Ok − Ik| ≤ δ1 Max{Ok, Ik} (3.8)

In ( 3.8), δ1 represents the maximum acceptable percentage load imbalance.

We observe that both ( 3.5) and ( 3.6) are non-linear expressions. Further, their

difference ( 3.7) is also non-linear. We can utilize following equalities:

∑

i

∑

j

Dij Xjk =
∑

i

∑

j

Xik Dji (3.9)

∑

i

∑

j

Xik Xjk Dij =
∑

i

∑

j

Xik Xjk Dji (3.10)

and rewrite ( 3.7) as follows:

|
∑

i

∑

j

Xik Dij −
∑

i

∑

j

XjkDij| (3.11)

The expression ( 3.11) needs to be explored in meaning and definition. To un-
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derstand the meaning of the expression ( 3.11), we define the following:

• C1 is the total load originated inside zone k and reaching to hub k. C1 has two

components:

– C12 is the total load having origin and destination within zone k.

– C13 is total load originated in zone k and destined to another zone.

• C4 is the total incoming load to hub k which originated outside zone k. C4 has

two components:

– C42 be the total load coming from outside of zone k but having the desti-

nation within zone k.

– C43 be the load coming to hub k from other zones whose destination is not

in zone k.

We illustrate the notation in figure 3. Thus, we have

C1 = C12 + C13 (3.12)

C4 = C42 + C43 (3.13)

and the expressions for the components of flow through hub k can be written as

follows:
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Figure 3. Load imbalance
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C1 =
∑

i

∑

j

Xik Dij (3.14)

C12 =
∑

i

Xik (
∑

j

Dij Xjk) (3.15)

C13 =
∑

i

Xik

(

∑

j

Dij(1−Xjk)
)

(3.16)

C42 =
∑

i

Xik

(

∑

j

Dji(1−Xjk)
)

(3.17)

C4 =
∑

i

∑

j

∑

m

Y
ij

mk Dij (3.18)

C43 = C4 − C42 (3.19)

C43 =
∑

i

∑

j

∑

m

Y
ij

mk −
∑

i

Xik

∑

j

Dji(1−Xjk) (3.20)

From the above expressions and ( 3.5, 3.6), we observe that

Ok = C13 (3.21)

Ik = C42 (3.22)

Hence, we have

|Ok − Ik| = |C13 − C42| (3.23)

and adding and subtracting C12, we obtain:

|Ok − Ik| = |C1 − (C12 + C42)| (3.24)

Since we constrain the load imbalance in terms of percentage rather than absolute

value, we define the following constraints for load imbalance:
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|C1 − (C12 + C42)| ≤ δ2 Max{C1, C12 + C42} (3.25)

Using ( 3.9) and ( 3.10), we reduce the above constraints to:

|
∑

i

∑

j

Xik Dij −
∑

i

∑

j

Dij Xjk| ≤ δ2 Max{
∑

i

∑

j

Xik Dij,
∑

i

∑

j

Dij Xjk}

(3.26)

The constraints ( 3.26) can be written as two linear constraints for the load

imbalance as follows:

∑

i

∑

j

Xik Dij −
∑

i

∑

j

Dij Xjk ≤ δ2
∑

i

∑

j

Xik Dij ∀ k ∈ N (3.27)

∑

i

∑

j

Dij Xjk −
∑

i

∑

j

Xik Dij ≤ δ2
∑

i

∑

j

Dij Xjk ∀ k ∈ N (3.28)

The left hand side of the constraints ( 3.27, 3.28) represents the difference between

total incoming load to the hub k from zone k and total outgoing load from hub k

to the nodes within zone k. The quantity on the right hand side constraints the left

hand side to a δ2 percentage amount of the maximum of the two quantities on the left

hand side. This shows how the load imbalance affects the zone internally. See figure

4. Note that large load imbalance would cause large value of first dispatch empty

miles. In an ideal case for every incoming load on the hub k from zone k, there is an

equivalent load from hub k to within zone k. In this case, the local driver delivering

the load from hub k to destination node within zone k will pick up the load from any

source node within zone k to hub k. This will reduce the first dispatch empty miles

unless, the destination node (from hub k) and the source node (having load towards
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Figure 4. Internal effects of load imbalance

K

C1

C12+C42

| Incoming load to hub k from zone k  – Outgoing load from hub k to zone k |

hub k) lies in opposite directions.

On the other hand, the left hand side of constraint ( 3.8) represents the difference

between the total incoming load and total outgoing load for a zone k. The right hand

side constraints the left hand side to a percentage amount of maximum of the two

quantities on the left hand side. This shows how the load imbalance affects the zone

externally. See figure 5.

Note that the left hand side of set of constraints ( 3.27, 3.28) and the set of

constraints ( 3.8) are the same. This left hand side represents the traditional definition

of load imbalance. However, as discussed earlier, we want to control load imbalance in

terms of percentage deviation rather than absolute deviation. Hence, we introduced
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Figure 5. External effects of load imbalance

| load coming out of zone k – load going into the zone k|

Ik

Ok
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δ1 and δ2. As the right hand side the of constraint set ( 3.27, 3.28) is greater than

constraint set ( 3.8), and the left hand side is the same, therefore δ2 will be smaller

than δ1. Either set of constraints can be used for load imbalance calculations, as per

ones criterion of defining percentages. We use the constraints set ( 3.27, 3.28) because

of its linearity on the right hand side. From now onwards, we will denote δ2 by δ.

d. Hub Conservation

The load at the hub should be conserved.

∑

i

∑

j

∑

m

DijY
ij

mk + C1 =
∑

i

∑

j

∑

l

Dij Y
ij

kl + (C12 + C42) ∀ k ∈ N (3.29)

∑

i

∑

j

∑

m

DijY
ij

mk+
∑

i

∑

j

Xik Dij =
∑

i

∑

j

∑

l

Dij Y
ij

kl +
∑

i

∑

j

Dij Xjk ∀ k ∈ N

(3.30)

Above constraints, (3.29,3.30) give the conservation at the hub only when all the

demands are assumed uniform, i.e., the commodities are assumed uniform. However,

in our case we assume that for each demand node pair (i,j) there is a different type

of commodity that exists and hence conservation of each of these must hold true at

each hub. Therefore our disaggregated hub conservation constraints become

∑

m

DijY
ij

mk +Xik Dij =
∑

l

Dij Y
ij

kl +Dij Xjk ∀ i, j, k ∈ N (3.31)

Alternate load imbalance constraints

From the constraints, ( 3.29, 3.30), we can write alternative constraints for load

imbalance as follows:
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∑

i

∑

j

∑

l

Dij Y
ij

kl −
∑

i

∑

j

∑

m

DijY
ij

mk ≤ δ
∑

i

∑

j

∑

l

Dij Y
ij

kl ∀ k ∈ N , (3.32)

∑

i

∑

j

∑

m

DijY
ij

mk −
∑

i

∑

j

∑

l

Dij Y
ij

kl ≤ δ
∑

i

∑

j

∑

m

DijY
ij

mk ∀ k ∈ N , (3.33)

Since the alternative constraints ( 3.32, 3.33) involve four index variables we

prefer using the original constraints ( 3.27, 3.28) to the alternative load imbalance

constraints ( 3.32, 3.33).

e. Other Constraints

Following constraints ensure correct allocation of hubs and assignment of nodes to

hubs.

Constraints ( 3.34) allows a load between the node pair (i,j) to go on several

hub-to-hub links. Constraint ( 3.35) ensures that a node is not assigned to another

node until a hub is located on it. Constraint ( 3.36, 3.37) ensures that a load is not

routed through a node unless it is a hub. Constraint ( 3.38, 3.39) ensures that if a

load has origin and destination belonging to the same hub then it is not transferred

to other zones. Constraint ( 3.40) are the integrality constraints for the variables.

∑

k

∑

l

Y
ij

kl Dij ≥ Dij, ∀ i, j ∈ N (3.34)

Xik ≤ Xkk, ∀ i, k ∈ N (3.35)

Y
ij

kl ≤ Xkk, ∀ i, j, k, l ∈ N (3.36)



28

Y
ij

kl ≤ Xll, ∀ i, j, k, l ∈ N (3.37)

Y
ij

kk ≤ Xik, ∀ i, j, k ∈ N (3.38)

Y
ij

kk ≤ Xjk, ∀ i, j, k ∈ N (3.39)

Xik, Y
ij

kl ∈ {0, 1}, ∀ i, k ∈ N (3.40)

D. Final Model

Minimize

∑

i

∑

k

dikXik

∑

j

(

Dij +Dji

)

+
∑

i

∑

j

∑

k

∑

l

Y
ij

kl Dij dkl +
∑

k

FkXkk (3.41)

Constraints

Dij

(

∑

k

dikXik +
∑

k

∑

l

dkl Y
ij

kl +
∑

l

djl Xjl

)

− dij Dij ≤ β dij Dij, ∀ i, j (3.42)

dik Xik ≤ γ1, ∀ i, k (3.43)

dkl Y
ij

kl ≤ γ2, ∀ i, j, k, l (3.44)

∑

i

∑

j

Xik Dij −
∑

i

∑

j

Dij Xjk ≤ δ
∑

i

∑

j

Xik Dij, ∀ k (3.45)

∑

i

∑

j

Dij Xjk −
∑

i

∑

j

Xik Dij ≤ δ
∑

i

∑

j

Dij Xjk, ∀ k (3.46)

∑

m

DijY
ij

mk +Xik Dij =
∑

l

Dij Y
ij

kl +Dij Xjk, ∀ i, j, k (3.47)

∑

k

∑

l

Y
ij

kl Dij ≥ Dij, ∀ i, j (3.48)
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Xik ≤ Xkk, ∀ i, k (3.49)

Y
ij

kl ≤ Xkk, ∀ i, j, k, l (3.50)

Y
ij

kl ≤ Xll, ∀ i, j, k, l (3.51)

Y
ij

kk ≤ Xik, ∀ i, j, k (3.52)

Y
ij

kk ≤ Xjk, ∀ i, j, k (3.53)

Xik ∈ {0, 1}, ∀ i, k (3.54)

Y
ij

kl ∈ {0, 1}, ∀ i, j, k, l (3.55)

Note that i, j, k, l, m, all ∈ N .

E. A Generalized Model

Model presented above for the multi-zone dispatching can be generalized to incorpo-

rate point-to-point dispatching. For this purpose, we need to introduce additional

parameters. Recall that the main drawback of point-to-point dispatching method is

that the driver turn over rate is very high. To represent the cost associated by the

possible high turnover rate due to point-to-point dispatching, we introduce a new

parameter θ. Hence, every time a driver is assigned to point-to-point dispatching

there is a penalty cost factor of θ associated with it.

There exists a trade off between the point-to-point dispatching and multi-zone

dispatching. The trade off involved is that if a load is assigned to multi-zone, then the

costs increases due to circuitry and location of hubs. If however, the load is assigned

to point-to-point dispatching then the costs increases due to the penalty factor θ

which is due to higher costs of turnover. To incorporate this tradeoff we introduce a

binary decision variable Tij, which takes the value of 1, if the load from i to j uses

point-to-point dispatching and a value of zero otherwise.
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Hence, the following term needs to be added to objective function:

θ
(

∑

i

∑

j

dij Dij Tij

)

(3.56)

In addition, the constraint ( 3.34) is modified to ensure that a load can be assigned

to only one dispatching method, i.e., either point-to-point or multi-zone dispatching,

as follows:

∑

k

∑

l

Y
ij

kl Dij + Tij Dij ≥ Dij, ∀ i, j ∈ N (3.57)

Also, the decision variable is binary, hence

Tij ∈ {0, 1}, ∀ i, j ∈ N (3.58)

Therefore our final model incorporating point-to-point dispatching is as follows:

Minimize

∑

i

∑

k

dikXik

∑

j

(

Dij +Dji

)

+
(

∑

i

∑

j

∑

k

∑

l

Y
ij

kl Dij dkl +
∑

k

FkXkk

)

+ θ
(

∑

i

∑

j

dij Dij Tij

)

(3.59)

Constraints

3.42, 3.43, 3.44, 3.45, 3.46, 3.47, 3.57, 3.49, 3.50, 3.51, 3.52, 3.53, 3.54, 3.55,

3.58

As evident, this model is much more difficult to solve than the multi-zone model.

Further, analytical studies needs to be conducted with some real data to correctly
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estimate the value of θ. Since we do not have any analytical data, we do not consider

estimating value of θ.
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CHAPTER IV

SOLUTION METHOD

Following sections describe the different techniques to solve the problem.

A. Exact Method

As mentioned before, the multi-zone model is of binary integer programming type.

CPLEX 7.1 with default settings was applied to solve the problem optimally, whenever

the problem size permitted. Concert technology was used with CPLEX to implement

the problem. Concert technology is a tool provided by ILOG to write constraints in

C++ for input to CPLEX. As will be illustrated in the next chapter, CPLEX fails

very quickly upon increase in problem size. Hence, we resort to heuristic methods

which are described in the next section.

B. Heuristic Method

We select tabu search methodology as it has proved to be a powerful technique in solv-

ing combinatorial optimization problems. Tabu search effectively guides a heuristic

to obtain good solutions to combinatorial optimization problems. An initial feasible

solution is obtained with the help of a construction heuristic. A neighborhood func-

tion helps to obtain a subset of the neighborhood of the initial solution by applying

moves. The subset of neighborhood is searched for local optima. The best solution

(local optima) move is made if it is not in tabu list. A tabu list of certain length

is maintained to store the attributes of some recent moves to prevent cycling. If a

move is in tabu list but satisfies an aspiration criteria then the move is still made.

Tabu search methodology and advance applications can be found in Glover (1989)
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and Glover (1990). A good source for tabu search methodology can also be found in

Glover (1997) and Sait and Youssef (1999).

1. Initial Solution

First step in a tabu search algorithm is to find an initial feasible solution. Our problem

is highly constrained because of the numerous criteria that it has to satisfy, i.e., the

constraints on lane driver tour length, local driver tour length, percentage circuitry

and load imbalance. Hence, finding an initial solution itself is very difficult in this

case. Also, there is no easy way to determine whether the problem with given set of

data is feasible or not. As mentioned before, our main purpose is to reduce driver turn

over rate, which can be effectively controlled by reducing both lane and local driver

tour length. Hence, we form an initial solution such that it satisfies both the tour

length constraints without taking into consideration the constraints of percentage

circuitry and load imbalance. One approach can be to add the circuitry and load

imbalance violations as a penalty to the objective function. However, in the absence

of real data it is difficult to determine the weight that each term, i.e., transportation

cost, fixed cost, imbalance violation and circuitry violation, should receive in objective

function. As stated, our main objective is to reduce tour length, hence we form an

initial feasible solution taking tour length constraints into consideration and measure

circuitry and imbalance for the solution obtained, together with objective function.

This will give a better idea of the quality of the solution. More details on this are

provided in chapter V.

Definition of some terms used in the heuristics:

• Node-cover: Set of nodes that lie within γ1 distance of a node.

• Hub-cover: Set of nodes that lie between γ1 and γ2.
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• All-nodes: Set of all nodes.

• Traffic: Measure of all loads originating out of the node and going into the

node.

Refer to chapter III for the definition of γ1 and γ2.

a. A Construction Heuristic

The construction heuristic finds the solution such that the local and lane driver tour

length constraints are always satisfied.

1. Generate hub-cover and node-cover matrix individually for all nodes. Also

generate a vector containing all nodes.

2. Determine traffic of each node from the demand matrix.

3. Arrange the traffic list in descending order and make the node with the highest

traffic a hub.

4. Delete the nodes covered by this hub, select another hub from the hub-cover

candidate list such that it has maximum traffic among all the candidates.

5. Repeat step 4 until all the nodes are covered. Hence obtain the hub-list.

6. Assign nodes to the hubs based on proximity.

7. Obtain routes for each demand pair (i, j) by employing shortest path method

(we use Dijkstra’s algorithm for this purpose), and hence obtain route for each

demand pair (i,j). We call this route-ij. Note that the shortest path are formed

such that they satisfy node-hub (local driver tour length) and hub-hub (lane

driver tour length) constraints.
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8. Obtain the objective function, which includes the hub location cost and routing

cost.

Figure 6 illustrates how initial solution is obtained. Following is the description

of the example shown in the figure.

Since node 2 has the highest traffic we make it a hub. Next, we look at the nodes

which lie within permissable hub-node distance from node 2, which can be seen from

the node cover list. These nodes are 9 and 11. After assigning these nodes to hub

2, we go one step down the traffic list and see if the second highest traffic node lies

within permissible hub-hub distance from hub 2. The nodes satisfying this criteria

can be found in hub cover list. If it does not lie in the hub cover list of hub 2 we go

further down in the traffic list and so on until we find a node which lies in the hub

cover list of hub 2. In the present case, we find node 4 having the traffic 3 lies in the

hub cover list of hub 2, hence it is made a hub. This process goes on until every node

is covered by a hub or itself made a hub.

Note that, we call this traffic, pseudo because it does not indicate the real traffic

at the node (which is made hub). This is because of the the tour length constraint

that the load has to pass through many zones (hubs) and traffic on a zone (hub)

can actually be much higher than just the sum of loads originating from it and loads

going into it.

2. Improvement Heuristics

We use tabu search framework for improvement heuristics. We implement basic

tabu search, i.e., we use short term memory and a fixed length of tabu list. More

advanced techniques like approaches for handling dynamic tabu list or diversification

and intensification strategies are considered outside the scope of this thesis. The
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Figure 6. Initial solution
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following defines the terminology and the algorithm used for short term memory

tabu search (Sait and Youssef 1999).

Notation

Ω Set of feasible solutions.

S Current solution.

S∗ Best admissible solution.

Cost Objective function.

N(S) Neighborhood of S ∈ Ω.

V∗ Sample of neighborhood solution.

T Tabu list.

AL Aspiration Level.

Tabu Search Algorithm

Begin

Start with an initial feasible solution S;

Initialize tabu list and aspiration level;

For fixed number of iterations Do;

Generate neighbor solutions V∗ ⊂ N(S);

Find best S∗ ∈ V∗;

If move S to S∗ is not in T Then

Accept move and update best solution;

Update tabu list and aspiration level;

Increment iteration number;
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Else

If Cost(S∗) <AL Then

Accept move and update best solution;

Update tabu list and aspiration level;

Increment iteration number;

EndIf

EndIf

EndFor

End

In accordance with the above algorithm and our problem structure, we define

the following terms:

• Move: A move is generated by replacing an existing hub with a non-hub in the

current solution. Hence our neighborhood is generated by exchanges.

• Feasible Move: For a move to be called feasible, two conditions must be satisfied:

a. Each hub can be reached from at least one hub, without violating the lane

driver tour length constraints.

b. All nodes are covered with the given set of hub list, i.e., there exists at

least one hub satisfying local driver tour length constraint for each node.

• Attributes stored in the tabu list is the exchange pair (outgoing hub and in-

coming hub)

• Aspiration criterion: If the objective function (Cost) of any candidate move is

lower than the current solution, then the move is made even if it is in tabu list.
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• Candidate Moves: Set of moves that are feasible.

Following steps gives the steps of implemented algorithm.

Tabu Search Algorithm

Step 1. Obtain initial current solution using the construction heuristic. Initialize best

solution = current solution.

Step 2. Generate candidate moves.

a. Generate current hub list and non-hub (nodes that are not hubs) list from

the current or the initial solution.

b. Obtain a neighborhood solution by making move from current solution.

c. Check for the feasibility of move.

d. If the move is feasible, select it as a candidate move.

Step 3. Repeat step 2 until “P” number of candidate moves are obtained. Value of P

is varied as per the problem size.

Step 4. Obtain objective function of each candidate move.

a. Given the hub list, generate the assignment of nodes by assigning node to

the nearest hub. Hence, we obtain Xik.

b. Generate routes for each demand pair by using shortest path algorithm (we

use Dijkstra’s algorithm), this gives us routes-ij. Note that the shortest

path are formed such that they satisfy node-hub (local driver tour length)

and hub-hub (lane driver tour length) constraints.

c. Obtain Y ij

kl from routes-ij.
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e. Obtain objective function for the candidate move which includes fixed cost

of hubs and transportation cost of loads.

Step 5. Repeat step 4 until all objective functions for all the “P” candidate moves are

obtained.

Step 6. Select the best candidate move

a. Sort the objective functions of candidate moves in increasing order.

b. Select the candidate move with the minimum objective function as the

current solution, if it is not in the tabu list.

c. If the move is in the tabu list then check the aspiration criterion. If the

move satisfies the aspiration criterion, then make the move and select it as

current solution, otherwise proceed to the next lowest objective function

value move.

d. After selecting a move and making it as a current solution, add it to the

tabu list.

e. If best solution > current solution, then make best solution = current

solution.

Step 7. If maximum number of iterations for tabu search is done then stop, otherwise

go to step 2.

Figure 7 illustrates moves, candidate moves and tabu list. The candidate moves

are obtained by exchanging an element of hub list with an element of non-hub list.

Once exchange is done, feasibility is checked for that particular configuration of hubs.

If it is feasible then complete solution is obtained including the objective function.

Solution obtained are sorted with respect to their objective function. Before selecting
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Figure 7. Neighborhood and tabu search
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a solution, it is checked with tabu list. Figure 7 shows that both the leaving and

incoming nodes are stored as the attributes of the move in the tabu list.

The next chapter gives the computational results for comparison of heuristics

and exact methods.
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CHAPTER V

COMPUTATIONAL RESULTS

Section A provides the details of experimental set up. Section B discusses the exper-

imental results when multi-zone dispatching model is solved by CPLEX. Section C

describes the analysis of various parameters and explores their relationship with each

other. Finally, section D provides computational comparisons of results from CPLEX

and tabu search.

A. Experimental Set Up

The coordinates of the location of the nodes are generated from uniform distribution

between (0, upper limit). The upper limit is varied from 50 onwards, as the number

of nodes are increased in subsequent runs. Hence, all the nodes for a problem are

contained in a square plot area of (upper limit * upper limit). In the tables the plot

area is denoted by upper limit. The distance between any pair of nodes is taken to

be euclidian. Demand between any pair of nodes is uniformly distributed between

(0, 20). Hence, there can be a maximum of 2000% variation in demand for any given

pair (i,j). There is a 20% probability of assignment of demand to any node pair (i,

j). The unit of demand is truckload. The fixed cost of locating a hub on the node is

derived from uniform distribution (1000, 2500).

For all the computational results that follow in the coming sections, the runs

were made on Pentium IV, 3.06 Ghz, 512 MB RAM.
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B. Experimental Results from CPLEX

CPLEX was used to solve the multi-zone model formed in chapter III. Note that the

constraints of local driver tour length, lane driver tour length, percentage circuitry

and load imbalance are all imposed on the model.

Table I gives the computational results for few representative cases having varied

problem size. The second and the third column of the table gives the number of nodes

and the plot areas respectively, which are increased subsequently to increase the

problem size. The forth and fifth columns lists the maximum percentage circuitry

and imbalance obtained for the problem size. The sixth and the seventh column

gives the average values of percentage circuitry and load imbalance obtained for each

instance. The eighth and ninth column gives the CPU time in seconds and objective

function. Finally, the last three columns gives the lane driver tour length, local driver

tour length and tour length obtained in point-to-point dispatching of the test case,

respectively. The * indicates that the problem could not be solved by CPLEX due to

insufficient memory.

For test1, test2, test3 and test4, the maximum imbalance constraint was set at

100%. For these small size problems there is a possibility of forming isolated hub

with only demand origination or destination, with the given tour length constraint,

hence, maximum imbalance is allowed to a value of 100% to keep problem feasible.

For the cases, test 5 onwards the maximum imbalance constraint was restricted to

a value of 75 %. This is because with the given size there is a rare possibility of

forming isolated hubs with only origin or destination. Hence, we can afford to restrict

maximum imbalance to a lower value and still obtain feasible solution. For all the

test cases the maximum circuitry constraints was kept at 250 %.

The results show that even though the driver tour length in point-to-point dis-
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Table I. Results from CPLEX

Test No. of Plot Max Max Avg Avg Time Objective Lane Local Pt-to-Pt

Case Nodes Area % circ % imbl % circ % imbl function TL TL TL

test1 5 50 80.89 37.5 33.09 28.75 0.41 4243.81 40 20 54.58

test2 7 70 41.43 100 7.89 65.4 0.74 12578.1 50 20 75.66

test3 10 90 151.95 100 41.11 59.58 3.1 29601.6 40 20 104.35

test4 15 100 213.64 87.09 35.06 54.26 7.08 52288.4 40 20 115.60

test5 17 110 130.08 65.6 20.66 48.1 194.2 52452 50 30 127.02

test6 20 120 137.56 68.1 22.39 36.88 1800 65488.1 50 30 139.05

test7 27 130 198.89 61.2 21.39 33.04 5830.78 116797 50 30 139.05

test8 30 140 202.02 59.3 24.35 38.76 806 151037 50 30 150.62

test9 35 150 ****** ****** ****** ****** ****** ****** ****** ****** ******

test10 37 160 ****** ****** ****** ****** ****** ****** ****** ****** ******

test11 40 170 ****** ****** ****** ****** ****** ****** ****** ****** ******
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patching goes on increasing with increase in problem size, the local and lane driver

tour length are constrained to be within desirable limits in multi-zone dispatching.

Hence, multi-zone method proves to be very effective in controlling the local and lane

driver tour length. Note that for test2 the lane driver length is 50. This is because,

with the given configuration of test2 and values of parameters, a feasible solution

could not be obtained. Hence the lane driver tour length was increased from 40 to

50. This results in fall of average circuitry.

As the problem size increases, the longest distance between any demand pair

increases, which causes more circuitry. Hence, the maximum percentage circuitry

increases with increase in problem size, for a particular constrained value of local and

lane driver tour length. Further, if with increase in the problem size we increase the

maximum local and lane driver tour length then the maximum circuitry can drop

down. This is because with increase in permissible local and lane driver tour length,

the demand pair having the farthest distance can have more direct route than before.

Given a particular value of maximum permissible lane and local driver tour

length, the maximum imbalance is expected to decrease with increase in number of

nodes. The increase in number of nodes assigned to a hub can lead to increase in size

of the zone and ultimately leads to increase in aggregation of demand. This reduces

the variation between incoming load and outgoing load in a zone and hence reduces

load imbalance. However, several exceptions can be seen in the table for this general

rule. The reason can be attributed to the reduction in number of nodes assigned to

the hub due to increase in plot area. Maximum circuitry constraint can also cause

changes in assignments of nodes to hub and therefore can affect load imbalance.

Hence, there are several competing factors for load imbalance for the same value of

lane and local driver tour length namely, the number of nodes and their assignment

to hubs, maximum circuitry allowed and plot area. The relationship among these is
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explored further in the next section. Some test cases have the maximum value of load

imbalance as high as 100%. This happens when only either outgoing or incoming load

is present for a zone. This case frequently arises when isolated hubs are formed as a

zone with no nodes assigned to them and serving only as either origin or destination.

In general, solution time increases very sharply with increase in problem size.

Test 8 is an exception to this trend. This can be attributed to the particular structure

of the problem or good value of parameters which gave tighter bounds.

Computer runs out of memory for problem sizes having greater than or equal to

35 nodes.

C. Analysis of Parameters

This section explores how the important parameters, i.e., lane driver tour length

and local driver tour length, relate to other parameters like percentage circuitry and

load imbalance, for a given problem. To evaluate the impact of the local and lane

driver tour length over other parameters we relax the constraints of circuitry and

load imbalance and measure their maximum and average values. Further, since all

the local and lane driver tour length constraints would not be tight, we measure the

average values of local and lane driver tour length as well. Better understanding of

the relationship involved between different parameters can help in developing a better

insight into the problem and can help transportation manager to make better and

more practical decision.

Table II gives the test cases for a 25 node problem with same experimental design

as discussed in section A. Second and third column gives the maximum permissible

values of local and lane driver permissible and forth and fifth column gives their av-

erage values, respectively. Sixth and seventh column gives the maximum and average



48

Table II. Analysis of Parameters

Test Max TL Max TL Avg. TL Avg. TL Max TL Avg. TL Max Avg. Max Avg. No. of

Case local lane local lane Pt-to-Pt Pt-to-Pt % Circ % Circ % Imbl % Imbl Hubs

25test1 10 50 2.73 35.1 150.62 76.12 85.29 8.1 100 43.4 23

25test2 10 60 6.95 39.5 150.62 76.12 44.68 4.9 100 43.4 23

25test3 10 70 6.59 45.68 150.62 76.12 44.68 3.1 100 43.43 23

25test4 10 80 6.59 49.94 150.62 76.12 38.49 2.47 100 43.43 23

25test5 20 50 13.25 37.43 150.62 76.12 117.22 13.81 100 36.35 16

25test6 20 60 7.99 41.25 150.62 76.12 117.23 12.47 100 36.35 15

25test7 20 70 9.07 46.05 150.62 76.12 117.23 10.73 100 36.35 15

25test8 20 80 12.25 50.79 150.62 76.12 85.29 9.77 100 36.35 15

25test9 30 50 15.46 36.85 150.62 76.12 221.55 15.59 81.15 35.44 15

25test10 30 60 15.5 40.2 150.62 76.12 221.55 17.06 69.38 34.06 13

25test11 30 70 16.34 46.32 150.62 76.12 221.55 17.69 79.72 31.6 13

25test12 30 80 18.93 51.91 150.62 76.12 221.55 19.99 84.26 35.97 12

25test13 40 50 17.36 36.73 150.62 76.12 221.55 20.55 54.34 33.06 13

25test14 40 60 23.5 40.78 150.62 76.12 221.55 20.25 43.62 31.66 12

25test15 40 70 20.01 46.48 150.62 76.12 221.55 18.52 43.62 31.66 12

25test16 40 80 23.23 53.68 150.62 76.12 221.55 19.5 47.47 30.96 11
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values of tour length when point-to-point dispatching method is used. This remains

same for all the test cases as it is same problem. Last five columns give maximum and

average values of percentage circuitry and load imbalance obtained and the number

of hubs located in the test case.

From the table, we observe that the values of average local and lane driver tour

length are much less than the maximum permissible local and lane driver tour lengths.

This indicates that only a few local and lane driver tour length constraints are tight.

Keeping the local driver tour length constant, if the lane driver tour length is increased

then the average tour length of the lane driver increases and vice versa.

The maximum circuitry and average circuitry have very high difference between

them. This is due to the fact that a certain load which is carried over to long

distance has a very high circuitry compared to the average circuitry faced. Similarly,

the average imbalance is low in comparison to the maximum imbalance. The 100%

imbalance in several cases for small local driver tour length is because of the reason

explained in section B.

The number of hubs, average circuitry and average imbalance share a very com-

plex relationship with each other in addition to their relationship with tour length.

Average imbalance is expected to decrease when lane driver tour length is increased

for decrease in hubs, for a particular value of local driver tour length . This is because

with less number of hubs more aggregation of demand would be possible which would

results in lower variation. However, with change in lane driver tour length, assign-

ment of nodes to a hub can vary and hence, can affect load imbalance. Therefore,

no general trend can be set. Average circuitry is expected to decreases with decrease

in number of hubs, increase in lane driver tour length and same value of local driver

tour length. This can be attributed to the decrease in number of hubs which causes

the load to follow a less circuitous route. The exceptions to this may result due to
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different assignments of node which changes with change in lane driver tour length.

Hence, it is difficult to set up general trends.

For a particular value of lane driver length, if local driver tour length is varied

then there is much larger reduction in number of hubs. Due to this, average load

imbalance decreases. This is because of increase in size of zone which causes demand

aggregation.

From the above discussion, we conclude that there are several factors competing

against each other. These factors are local driver tour length, lane driver tour length,

circuitry, imbalance, number of nodes, assignment of nodes and plot area. All of them

affect each other. It is difficult to set up general trends. However, some conclusions

can be drawn which can prove very useful to a manager. The following subsection

describes these inferences.

1. Inferences for a Manager

Based on the earlier discussion following inferences can be drawn to help the manager

in decision making.

1. Average values for local and lane driver tour length are much lower than the

maximum values. Hence, while designing the network a manager can set a high,

even though undesirable value of permissible tour length. Only very few drivers

would travel such a distance. Majority of the drivers would travel a much lower

average distance. Setting up a higher value of permissible tour length would

aid in obtaining a feasible solution with less number of hubs, which will help in

lowering the total fixed cost incurred due to setting up of hubs.

2. Average values of circuitry and imbalance are much lower than the maximum

values. Hence, it is advisable that certain loads which are on highly circuitous
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routes can be assigned to point-to-point dispatching rather than multi-zone

dispatching. Similarly, the loads that are causing isolated hubs which in-turn

causes high load imbalance, can be moved to point-to-point dispatching.

3. Fixed cost of the hubs should be kept low, as much as possible, due to creation

of large number of hubs in multi-zone dispatching method. Recall that the hubs

are actually the transhipment points in our case which requires no consolidation

of loads. Hence, cost of hubs can be kept low.

4. More careful attention is needed while setting up the local driver tour length

than setting up lane driver tour length. A small change in local driver tour

length may result in a significant change in average circuitry and average load

imbalance.

D. Heuristic Results

As stated in section B, computer runs out of memory while solving the multi-zone

model with CPLEX, when number of nodes in the problem becomes equal to greater

than 35 nodes. Hence, we apply heuristic methods to solve larger problems. This

section provides a comparison of solutions obtained from tabu search and CPLEX in

terms of solution quality and computational time for some test cases.

In solving the model from CPLEX and TS, we consider only the constraints of

local and lane driver tour length. As discussed in the chapter IV, the constraints

of circuitry and load imbalance are relaxed. Further, no violations of circuitry and

imbalance are added as part of objective function. Table III gives the description of

the parameter values used for the test cases. The demand data, fixed cost for hubs

are set in accordance with the experimental design described in section A.

Table IV gives the comparison of local and lane driver tour length between
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Table III. Problem Structure

Test No. of Plot Max. TL Max. TL

Case Nodes Area local lane

TStest1 5 50 20 40

TStest2 10 100 35 60

TStest3 15 100 35 60

TStest4 20 110 35 60

TStest5 25 120 35 60

TStest6 30 120 35 60

TStest7 35 140 40 80

TStest8 40 150 45 80

TStest9 45 160 50 75

TStest10 50 170 50 80

CPLEX and tabu search. Recall that the values of local and lane driver tour length

plays a key role in determining the driver turn over rate. We observe form the table

IV that the average values of local and lane driver tour length are close for CPLEX

and tabu search, except for test case TStest2, where the average local driver tour

length formed in tabu search is quite high. This happened because there was large

number of hubs formed by tabu search in this case. This causes majority of drivers

to travel along the lane and very few to travel as local drivers. Further, the ones

which are travelling locally have high local tour length values. Test case TStest3 has

higher local and lane driver tour length for both tabu search and CPLEX. This is

because there are less number of hubs formed in this test case relative to its problem

size, as compared to other test cases. The * indicates that the problem could not be

solved by CPLEX due to insufficient computer memory. The average lane and local
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driver tour length obtained are much shorter than the average point-to-point driver

tour length. This further reinforces effectiveness of multi-zone dispatching method to

obtain small values for driver tour lengths.

Table IV. Solution Quality Comparison between CPLEX and TS

CPLEX TS CPLEX TS

Test Avg. TL Avg. TL Avg. TL Avg. TL Avg. TL

Case local local lane lane Pt-to-Pt.

TStest1 16.92 15.39 26.42 22.82 33.65

TStest2 16.93 30.08 43.84 41.47 59.16

TStest3 24.21 23.96 45.9 49.5 60.64

TStest4 17.76 19.1 42.87 44.22 57.8

TStest5 16.64 21.53 41.49 41.16 70.26

TStest6 15.26 14.9 40.69 41.17 72.07

TStest7 ****** 11.56 ****** 47.07 76.74

TStest8 ****** 16.28 ****** 49.92 81.99

TStest9 ****** 20.59 ****** 49.95 80.28

TStest10 ****** 15.54 ****** 52.34 88.51

Table V gives the comparison for average percentage circuitry and average per-

centage load imbalance between CPLEX and tabu search. The * indicates that the

problem could not be solved by CPLEX due to insufficient computer memory. Com-

petitive values of average circuitry and load imbalance are obtained for tabu search

in relation to CPLEX. We observe that the hubs formed by tabu search are always

greater than the hubs formed by CPLEX. This is because the number of hubs remains

fixed in the tabu search after it is obtained from the initial feasible solution. This
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can be improved by using an add and drop neighborhood function together with the

exchange neighborhood function.

Table V. Solution Quality Comparison between CPLEX and TS

CPLEX TS CPLEX TS CPLEX TS

Test Avg. Avg. Avg. Avg. No. of No. of

Case % Circ % Circ % Imbl % Imbl hubs hubs

TStest1 33.09 33.09 28.75 19.16 2 3

TStest2 20.65 7.29 47.64 54.82 6 9

TStest3 40.12 35.51 7.88 16.75 4 5

TStest4 37.63 30.45 29.62 24.5 6 8

TStest5 22.14 30.93 32.74 28.72 11 12

TStest6 32.55 18.59 36.43 37.24 13 20

TStest7 ***** 7.47 ***** 33.78 ***** 26

TStest8 ***** 9.33 ***** 30.34 ***** 29

TStest9 ***** 37.38 ***** 24.64 ***** 17

TStest10 ***** 17.94 ***** 24.83 ***** 26

Table VI gives the comparison of computational time and objective function

between CPLEX and tabu search. The CPU time is measured in seconds. The tabu

search was stopped after 50 iterations. As can be observed in table VI, the gap %

obtained for tabu search suggests that it reaches within reasonably good solution

within reasonable time for the test cases presented. Further, the solution time are

very low for tabu search as compared to CPLEX. Lastly, CPLEX runs out of memory

for the problems of size greater than or equal to 35. Tabu search is able to solve

larger size problems than CPLEX in less time and has low memory requirement.
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Table VI. Objective Function and Solution Time Comparison between CPLEX and

TS

CPLEX TS CPLEX TS

Test No. of Objective Objective Gap % Time Time

Case Nodes function function seconds seconds

TStest1 5 4243.81 4530.8 6.76 0.62 14.2

TStest2 10 26212.2 31589.9 20.52 3.85 8.2

TStest3 15 37013.1 38197.9 3.2 90 35.8

TStest4 20 56086.8 59316.7 5.76 2583.2 88.38

TStest5 25 99806.6 108308 8.51 11096 189.56

TStest6 30 142939 154475 8.07 565995 162.17
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CHAPTER VI

CONCLUDING REMARKS

A. Conclusions

This research involves mathematical formulation of multi-zone dispatching method

for truckload industry with the aim of reducing driver tour length. The model in-

cludes several unique constraints like lane driver tour length, local driver tour length,

percentage circuitry and load imbalance. These constraints inculcate several factors

from the three perspectives, namely, the driver, the company and the customer. The

binary integer program is attempted to solve using CPLEX solver with concert tech-

nology. Test runs confirmed that the solution time rises very quickly with increase

in number of nodes which defines the problem size. Further, computer runs out of

memory very quickly and therefore a solution cannot be obtained for large size prob-

lems. Hence, a construction heuristic is proposed and implemented within a tabu

search framework. Significant reductions in solution time and memory requirements

was obtained for several test cases presented. The unique constraints were analyzed

to develop insights into the problem structure and relationship of the parameters

involved. Test cases results indicated that there is a significant difference between

the maximum and average values for circuitry and load imbalance. The advantage

of this can be taken by shifting unfavorable load from multi-zone to point-to-point

dispatching. Hence, a generalized model was proposed that includes both multi-zone

and point-to-point dispatching. Finally, test results confirm that significant reduction

in driver tour length can be obtained using multi-zone dispatching as compared to

using point-to-point dispatching method.
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B. Recommendations for Future Work

The mathematical model for multi-zone dispatching can be expanded in terms of

scope and structure. To increase the scope of the model, some additional factors

can be taken into consideration which can come from any perspective, i.e., driver,

company or the customer. Some factors that can be taken into consideration are

first dispatch empty miles, miles per driver per day, driver route regularity, total flow

time, etc. For changing the structure, multiple hubs can be used instead of single hub

for a zone. Further, the nodes can be assigned to several hubs rather than uniquely

to a single hub, which will help in reducing load imbalance. Advance tabu search

techniques such as maintaining dynamic tabu list, intensification and diversification

strategies can be applied to improve the quality of solution obtained. Further, an

add and drop neighborhood function combined with exchange neighborhood function

could be implemented for tabu search to improve quality of solution obtained. A

good idea might be to consider it as a multi-objective problem with appropriate

weights assigned to different criteria like transportation cost, fixed cost of hubs, load

imbalance and circuitry. Lastly, more extensive and rigorous experimentation can be

done with real life data to get better insights into the relationship between various

parameters involved.
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