
 

 

IDENTIFICATION OF FORCE COEFFICIENTS IN A SQUEEZE FILM 

DAMPER WITH A MECHANICAL SEAL 

 
 

A Thesis  

by 

ADOLFO DELGADO-MARQUEZ 

 
 

Submitted to the Office of Graduate Studies of  
Texas A&M University  

in partial fulfillment of the requirements for the degree of   
 

MASTER OF SCIENCE 
 
 
 
 

 
 
 
 

December 2005 
 
 
 
 

 
 

Major Subject: Mechanical Engineering 



IDENTIFICATION OF FORCE COEFFICIENTS IN A SQUEEZE FILM 

DAMPER WITH A MECHANICAL SEAL 

 
 

A Thesis  

by 

ADOLFO DELGADO-MARQUEZ 

 
 

Submitted to the Office of Graduate Studies of  
Texas A&M University  

in partial fulfillment of the requirements for the degree of   
 

MASTER OF SCIENCE 
 
 
 
 
 

Approved by: 
 
Chair of Committee,      Luis San Andrés 
Committee Members, John M. Vance 
 Othon K. Rediniotis 
Head of Department, Dennis L. O’Neal  

 
 
 
 
 

December 2005 
 
 
 
 

Major Subject: Mechanical Engineering 
 



 

 

iii

ABSTRACT 

Identification of Force Coefficients in a Squeeze Film Damper  

with a Mechanical Seal. (December 2005) 

Adolfo Delgado-Marquez, B.S., Universidad Simón Bolívar 

Chair of Advisory Committee: Dr. Luis San Andrés 

 

Squeeze film dampers (SFDs) with low levels of external pressurization and poor 

end sealing are prone to air entrapment, thus reducing the damping capability. 

Furthermore, existing predictive models are too restrictive. Single frequency, 

unidirectional load and centered circular orbit experiments were conducted on a 

revamped SFD test rig. The damper journal is 1" in length and 5" in diameter, with 

nominal clearance of 5 mils (0.127 mm). The SFD feed end is flooded with oil, while 

the discharge end contains a recirculation groove and four orifice discharge ports to 

prevent air ingestion. The discharge end is fully sealed with a wave-spring that pushes a 

seal ring into contact with the SFD journal. The measurements conducted without and 

with lubricant in the squeeze film lands, along with a frequency domain identification 

procedure, render the mechanical seal dry-friction force and viscous damping force 

coefficients as functions of frequency and motion amplitude. The end seal arrangement 

is quite effective in eliminating side leakage and preventing air entrainment into the film 

lands. Importantly enough, the dry friction force, arising from the contact forces in 

relative motion, increases significantly the test element equivalent viscous damping 

coefficients.  The identified system damping coefficients are thus frequency and 

amplitude of motion dependent, albeit decreasing rapidly as the motion parameters 

increase. Identified force coefficients, damping and added mass, for the squeeze film 

damper alone agree very well with predictions based on the full film, short length SFD 

model. 
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NOMENCLATURE 

c Bearing radial clearance [m] 

CC Cross coupled damping coefficient (CCO) [N.s/m] 

CD Direct damping coefficient [N.s/m] 

Crv = Cs Structure residual damping coefficient [N.s/m] 

Cseal equivalent viscous damping for mechanical seal [N.s/m] 

Ctt Squeeze film damper coefficient prediction (CCO) [N.s/m] 

Ctα Ctα=Crv+Cseal+Cαα , System damping coefficients [N.s/m], α=x,y  

Cαβ Identified squeeze film damping coefficients [N.s/m], α, β=x,y 

DC Cross coupled inertia coefficient (CCO) [kg] 

DD Direct inertia coefficient [kg] 

Dαβ Identified squeeze film added mass coefficients [kg], α, β=x,y 

E Energy dissipated [J]   

Fx,y External (shaker) forces applied to bearing [N] 

,x yF  Frequency components of external forces applied to bearing [N] 

Fµ Dry friction force from contact in mechanical seal [N] 

fn Natural frequency [Hz] 

Hαα Dynamic impedance,α=x,y 

Ksx,, Ksy Structural (support) stiffnesses [N/m] 

L, D Length and diameter of SFD land [m] 

M Mass of bearing housing [kg] 

Mf Estimated mass of lubricant (feed plenum & recirculation annulus) [kg] 

MT M+Mf+D. Dynamic mass of lubricated test system [kg] 

Ps , Pr Inlet pressure and pressure at recirculation annulus [Pa] 

Q Volumetric flow [LPM] 

T Lubricant temperature [°C] 

Uα Experimental Uncertainty (α= measured variable) 
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V Velocity vector [m/s] 

x,y Bearing dynamic motions along X,Y directions [m] 
,x y  Frequency components of bearing motions [m] 

z(ω) Complex displacement in frequency domain [m] 

∆P Ps-Pr, Pressure differential across SFD [Pa] 

ρ, µ Lubricant density [kg/m3] and viscosity [Pa.s] 

ω, ωn Excitation frequency [rad/s], natural frequency [rad/s] 

ζ C/[2 (Ks M)1/2 ]. Viscous damping ratio 

 



 

 

viii

TABLE OF CONTENTS 

Page 

ABSTRACT ..................................................................................................................... iii 

DEDICATION ................................................................................................................. iv 

ACKNOWLEDGEMENTS .............................................................................................. v 

NOMENCLATURE......................................................................................................... vi 

LIST OF TABLES ............................................................................................................ x 

LIST OF FIGURES.......................................................................................................... xi 

I INTRODUCTION .......................................................................................................... 1 

II LITERATURE REVIEW .............................................................................................. 3 

III TEST RIG DESCRIPTION ......................................................................................... 9 

III.1 Data acquisition and post-processing.............................................................. 13 
III.2 Lubrication system .......................................................................................... 13 

IV IDENTIFICATION OF STRUCTURAL PARAMETERS (DRY 
SYSTEM).................................................................................................................. 15 

IV.1 Static tests........................................................................................................ 15 
IV.2 Impact tests...................................................................................................... 16 
IV.3 Periodic input load tests .................................................................................. 19 
IV.4 Identification of dry friction force in contacting seal ring .............................. 26 

V MEASUREMENTS OF FLOW RATE IN LUBRICATED SFD............................... 31 

VI IDENTIFICATION OF DAMPING COEFFICIENTS FOR 
LUBRICATED SFD FROM SINGLE FREQUENCY FORCE 
EXCITATION RESPONSES ................................................................................... 37 

VI.1 Unidirectional tests.......................................................................................... 37 
VI.2 Circular orbit tests ........................................................................................... 51 

VII CONCLUSIONS AND RECOMMENDATIONS ................................................... 65 

REFERENCES................................................................................................................ 67 

APPENDIX A CALIBRATION OF EDDY CURRENT SENSORS............................. 70 

APPENDIX B UNCERTAINTY ANALYSIS OF TEST DATA .................................. 72 

B.1 Eddy current sensor calibration....................................................................... 72 
B.2 Parameter identification .................................................................................. 73 

B.2.1 Static tests................................................................................................ 73 
B.2.2 Impact tests.............................................................................................. 74 



 

 

ix

Page  

B.3 Flow measurements......................................................................................... 75 

APPENDIX C ORBITS AT 30 HZ, 40 HZ, 50 HZ, 90 HZ FROM DYNAMIC 
TESTS (DRY SYSTEM ) ....................................................................... 79 

APPENDIX D DISPLACEMENT ORBIT FROM UNIDIRECTIONAL 
DYNAMIC TESTS ................................................................................. 87 

APPENDIX E SQUEEZE FILM ADDED MASS COEFFICIENTS AS A 
FUNCTION OF DISPLACEMENT AMPLITUDE ............................... 90 

APPENDIX F IDENTIFIED SQUEEZE FILM DAMPING COEFFICIENTS 
AS FUNCTION OF DISPLACEMENT AMPLITUDE AND 
FREQUENCY (UNIDIRECTIONAL TESTS) ...................................... 92 

APPENDIX G IDENTIFICATION OF DRY FRICTION FORCE ............................... 95 

APPENDIX H DISPLACEMENT ORBITS FOR SELECTED 
FREQUENCIES. (CIRCULAR CENTERED ORBITS)........................ 96 

APPENDIX I DYNAMIC IMPEDANCES FOR CIRCULAR CENTERED 
ORBIT TEST .......................................................................................... 99 

VITA ............................................................................................................................. 106 



 

 

x

LIST OF TABLES  

Page 

Table 1 Measured weight and estimated effective mass of the SFD assembly 
and connecting rods............................................................................................. 15 

Table 2 Structural stiffness coefficients of bearing support from static tests ................. 16 

Table 3 Identified parameters from impact tests exerted on SFD test section 
(no lubricant) ....................................................................................................... 19 

Table 4 Identified (averaged) dry friction force and equivalent viscous 
coefficients from single frequency excitation tests (20-200 Hz) ........................ 27 

Table 5 Test conditions for dynamic load tests. Lubricated SFD ................................... 37 

Table 6 Inertia coefficient identified from unidirectional single frequency 
load tests (amplitude of motion: 38 µm, Frequency range 20-60 Hz) ................ 44 

Table 7 Test conditions for dynamic load tests (CCO). Lubricated SFD ....................... 52 

Table 8 Inertia coefficient identified from unidirectional periodic load tests 
(amplitude of motion: 38 µm, Frequency range 20-60 Hz) ................................ 59 

 

Table A1 Eddy current sensors gain estimated from calibration tests. ........................... 70 
 

Table E 1Added mass coefficients and correlation factors ............................................. 90 
 

Table G 1 Identified (averaged) dry friction force and equivalent viscous 
coefficients from single frequency excitation tests (20-120 Hz) .................... 95 



 

 

xi

LIST OF FIGURES 
              

Page 
Figure 1 Schematic view of an industrial end sealed SFD. (Courtesy of 

Honeywell®)..................................................................................................... 8 

Figure 2 Test rig for dynamic force measurements and flow visualization in a 
sealed end SFD.................................................................................................. 9 

Figure 3 SFD housing reference coordinate system and location of sensors.................. 10 

Figure 4 Sealed-end SFD assembly cross section view. ................................................. 11 

Figure 5 Cut view of sealed-end SFD assembly. ............................................................ 12 

Figure 6 Schematic view of lubricant system. ................................................................ 14 

Figure 7 Bearing deflection vs. applied load in the X,Y direction due to a force 
applied in the respective (same) direction. (UF: 0.5 lb) .................................. 16 

Figure 8 Impact and displacement time traces in the Y and X directions. 
(impact load tests) ........................................................................................... 17 

Figure 9 Impact tests transfer function and analytical fit for motions along X 
direction. (Dry system, end seal not in place) ................................................. 18 

Figure 10 Impact tests transfer function and analytical fit for motions along Y 
direction. (Dry system, end seal not in place) ................................................. 18 

Figure 11 Waterfalls of excitation load in the X and Y directions. (Dry SFD. 
End seal in place. L: 40 N).............................................................................. 21 

Figure 12 Waterfalls of displacement response in the X and Y directions. (Dry 
SFD. End seal in place. L: 40 N) .................................................................... 22 

Figure 13 Waterfalls of acceleration response in the X and Y directions. (Dry 
SFD. End seal in place. L: 40 N) .................................................................... 23 

Figure 14 Amplitude of applied dynamic load, X direction. (Dry SFD, end seal 
in place) ........................................................................................................... 24 

Figure 15 Synchronous frequency component of displacement response (X 
direction) due to a constant magnitude circular orbit excitation (40 
N and 33 N). (Dry SFD, end seal in place) ..................................................... 25 

Figure 16 Synchronous frequency component of displacement response ( Y 
direction)due to a constant magnitude circular orbit excitation (40 N 
and 33 N). (Dry SFD, end seal in place) ......................................................... 25 

Figure 17 Work exerted by input force (= dissipated energy) estimated from 
combined damping model (Test 1). (Dry SFD, end seal in place).................. 28 

 



 

 

xii

Page 
Figure 18 Work exerted by input force (= dissipated energy) estimated from 

combined damping model (Test 2). (Dry SFD, end seal in place).................. 28 

Figure 19 Imaginary component of transfer function, Im (X/F), vs excitation 
frequency. (Test 1- Dry SFD, end seal in place)............................................. 30 

Figure 20 Equivalent viscous damping (dry friction + residual) vs excitation 
frequency. (Test1- Dry SFD, end seal in place).............................................. 30 

Figure 21 Lubricant Flow trough SFD vs. pressure differential for increasing 
oil temperatures ............................................................................................... 32 

Figure 22 Pressure differential across the SFD versus inlet (supply) pressure 
for different temperatures (70 F-110 F) .......................................................... 33 

Figure 23 Cut view of SFD depicting flow restrictor...................................................... 33 

Figure 24 Measured radial clearance vs. lubricant temperature. (Nominal 
value c: 127 µm).............................................................................................. 34 

Figure 25 Representation of SFD deformation due to thermal stresses.......................... 35 

Figure 26 Ratio of test flow rate to predicted flow rate vs. pressure differential 
ratio.................................................................................................................. 36 

Figure 27 Waterfalls of X-excitation load, displacement and acceleration 
response from unidirectional dynamic tests (Displacement 
amplitude along X : 13 µm, lubricated SFD) .................................................. 38 

Figure 28 Waterfalls of X-excitation load, displacement and acceleration 
response from unidirectional dynamic tests (Displacement 
amplitude along X : 39 µm, lubricated SFD) .................................................. 39 

Figure 29 Amplitude of external dynamic Load vs excitation frequency (5 
tests- X and Y directions, lubricated SFD)....................................................... 40 

Figure 30 Fundamental amplitude of bearing motion vs excitation frequency. 
Periodic unidirectional load (5 tests- X and Y directions, lubricated 
SFD) ................................................................................................................ 41 

Figure 31 Dynamic stiffnesses from unidirectional load (single frequency) 
excitation tests and analytical model (D: 39 µm, Ksx= 788 kN/m, 
Ksy= 823 kN/m, Mtxx= 19.7, Mtyy= 18.4, lubricated SFD )............................... 45 

Figure 32  Identified system damping coefficients (Ctx, Cty) versus excitation 
frequency. Unidirectional load tests (Displacement amplitudes along 
X and Y : 13 µm, lubricated SFD) ................................................................... 46 

Figure 33 Identified system damping coefficients (Ctx, Cty) versus excitation 
frequency. Unidirectional load tests. (Displacement amplitudes 
along X and Y: 38 µm, lubricated SFD) .......................................................... 47 



 

 

xiii

Page 
Figure 34 SFD damping coefficients (Cxx, Cyy) versus excitation frequency. 

Unidirectional load tests. (Displacement amplitudes along X and Y: 
13 µm, lubricated SFD)................................................................................... 48 

Figure 35 SFD damping coefficients (Cxx, Cyy) versus excitation frequency. 
Unidirectional load tests. (Displacement amplitudes along X and Y: 
38 µm, lubricated SFD)................................................................................... 48 

Figure 36 Identified system damping coefficients (Ctx, Cty) versus 
displacement amplitude. Unidirectional load tests. (Excitation 
frequency: 20 Ηz and 60 Hz, lubricated SFD) ................................................ 49 

Figure 37 Squeeze film damping coefficients (Cxx, Cyy) versus displacement 
amplitude. Unidirectional load tests. (Excitation frequency: 20 Ηz, 
lubricated SFD) ............................................................................................... 50 

Figure 38 Squeeze film damping coefficients (Cxx, Cyy) versus displacement 
amplitude. Unidirectional load tests. (Excitation frequency: 60 Ηz, 
lubricated SFD) ............................................................................................... 51 

Figure 39 Dynamic excitation load orbits for four amplitude levels. (20 Hz, 
lubricated SFD) ............................................................................................... 53 

Figure 40 Displacement orbits for four amplitude levels and maximum 
clearance orbit. (20 Hz, lubricated SFD, CCO) .............................................. 53 

Figure 41 Amplitude of external dynamic Load vs excitation frequency (4 
tests- CCO, lubricated SFD)............................................................................ 54 

Figure 42 Fundamental amplitude (radius) of bearing circular motion vs 
excitation frequency. (4 tests- CCO, lubricated SFD) .................................... 55 

Figure 43 Dynamic stiffnesses from periodic unidirectional excitation tests 
and analytical model (D: 50 µm, Ks= 805 kN/m, Mt= 21 kg. CCO, 
lubricated SFD) ............................................................................................... 60 

Figure 44  Identified system direct damping coefficient (CD) versus excitation 
frequency for increasing orbit radii. (Circular Centered Orbit, 
lubricated SFD) ............................................................................................... 61 

Figure 45 SFD damping coefficients (CSFD) versus excitation frequency for 
increasing orbit radii. (Circular Centered Orbit, lubricated SFD)................... 62 

Figure 46 Identified system damping coefficients (CD) versus orbit radius for 
increasing frequencies. (Excitation frequency: 20 Ηz, 30 Hz, 40 Hz, 
50 Hz and 60 Hz. Circular Centered Orbit (CCO), lubricated SFD) .............. 63 

Figure 47 Squeeze film damping coefficient (CSFD) versus displacement 
amplitude. (Excitation frequency: 20 Ηz and 60 Hz. CCO, 
lubricated SFD) ............................................................................................... 64 



 

 

xiv

Page 

Figure A1 Picture of VTR set up for calibrating eddy current sensors............................71 

Figure A2 Voltage output of eddy current sensors vs. displacement of SFD bearing. 
(Calibration test)............................................................................................ 71 

 

Figure B1 Lubricant flow through SFD vs. inlet pressure. (average from three sets 
of tests) .......................................................................................................... 78 

 

Figure C1 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the 
displacement response.  (40 N, 30 Hz. Dry system) ....................................... 79 

Figure C2 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the 
displacement response.  (40 N, 40 Hz. Dry system) ....................................... 80 

Figure C3 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the 
displacement response.  (40 N, 50 Hz. Dry system) ....................................... 81 

Figure C4 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the 
displacement response.  (40 N, 90 Hz. Dry system) ....................................... 82 

Figure C5 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the 
displacement response.  (33 N, 30 Hz. Dry system) ....................................... 83 

Figure C6 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the 
displacement response.  (33 N, 40 Hz. Dry system) ....................................... 84 

Figure C7 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the 
displacement response.  (33 N, 50 Hz. Dry system) ....................................... 85 

Figure C8 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the 
displacement response.  (33 N, 90 Hz. Dry system) ....................................... 86 

 

Figure D 1 Linear displacements in X and Y due to a unidirectional load in X and Y 
directions, respectively (20 Hz, lubricated SFD) .......................................... 87 

Figure D 2 Linear displacements in X and Y due to a unidirectional load in X and Y 
directions, respectively (30 Hz, lubricated SFD) .......................................... 87 

Figure D 3 Linear displacement in X and Y due to a unidirectional load in X and Y 
directions, respectively (40 Hz) .................................................................... 88 

Figure D 4 Linear displacement in X and Y due to a unidirectional load in X and Y 
directions, respectively (50 Hz) .................................................................... 88 



 

 

xv

Page 
Figure D 5 Linear displacement in X and Y due to a unidirectional load in X and Y 

directions, respectively (60 Hz) .................................................................... 89 
 

Figure E1 Squeeze film added mass coefficient versus displacement amplitude. 
(Identification range 20-60Hz)........................................................................ 91 

Figure E2 Real component of the transfer function (F/X) versus excitation 
frequency for increasing amplitudes of motion. (Unidirectional tests)........... 91 

 

Figure F1 Squeeze film damping coefficients vs. displacement amplitude for five 
excitation frequencies (20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz). (Lubricated 
SFD, unidirectional load) ................................................................................ 93 

Figure F2 Squeeze film damping coefficient vs. excitation frequency for 5 constant 
displacement amplitudes (13 µm, 19 µm, 25 µm, 32 µm, 38 µm). 
(Lubricated SFD, unidirectional load) ............................................................ 94 

 

Figure G1 Work exerted by input force (= dissipated energy) estimated from 
combined damping model. (Dry SFD, end seal in place,CCO) .................... 95 

Figure H 1 Displacement orbits for four amplitude levels and maximum 
clearance orbit. (20 Hz, lubricated SFD, CCO) ............................................ 96 

Figure H 2 Displacement orbits for four amplitude levels and maximum 
clearance orbit. (30 Hz, lubricated SFD, CCO) ............................................ 97 

Figure H 3 Displacement orbits for four amplitude levels and maximum 
clearance orbit. (40 Hz, lubricated SFD, CCO) ............................................ 97 

Figure H 4 Displacement orbits for four amplitude levels and maximum 
clearance orbit. (50 Hz, lubricated SFD, CCO) ............................................ 98 

Figure H 5 Displacement orbits for four amplitude levels and maximum 
clearance orbit. (60 Hz, lubricated SFD, CCO) ............................................ 98 

Figure I 1 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function 
magnitudes and phase versus excitation frequency. (12 mm, Circular 
Centered Orbit).............................................................................................. 100 

Figure I 2 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function 
magnitudes and phase versus excitation frequency. (25 µm, Circular 
Centered Orbit).............................................................................................. 101 

Figure I 3 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function 
magnitudes and phase versus excitation frequency. (38 µm, Circular 
Centered Orbit).............................................................................................. 102 

Figure I 4 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function 
magnitudes and phase versus excitation frequency. (50 µm, Circular 
Centered Orbit).............................................................................................. 103 



 

 

xvi

Page 
Figure I 5 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) dynamic impedance 

magnitudes and phase versus excitation frequency. (12 µm, Circular 
Centered Orbit).............................................................................................. 104 

Figure I 6 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function 
magnitudes and phase versus excitation frequency. (25 µm, Circular 
Centered Orbit).............................................................................................. 104 

Figure I 7 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function 
magnitudes and phase versus excitation frequency. (38 µm, Circular 
Centered Orbit).............................................................................................. 105 

Figure I 8 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function 
magnitudes and phase versus excitation frequency. (50 µm, Circular 
Centered Orbit).............................................................................................. 105 

 
 



 

 

1

I INTRODUCTION 

Squeeze Film Dampers (SFDs) are widely used to provide external damping in 

aircraft gas turbines supported on rolling element bearings, as well as in hydrocarbon 

compressors, for example. SFDs also aid to attenuate rotor synchronous responses at 

passage through critical speeds where shaft vibration amplitude due to imbalance peaks. 

A typical SFD consists of a stationary journal (generally the outer race of a ball bearing) 

and a cylindrical housing, both separated by a small gap filled with lubricant. In 

operation, the dynamic motion of the journal (whirling) squeezes the thin lubricant film, 

thus generating hydrodynamic pressures and film forces able to dissipate mechanical 

energy [1].  

The forced performance (damping capability) of a SFD depends on its geometrical 

configuration as well as on the operational parameters such as flow regime, type of 

journal motion, lubricant viscosity, cavitation type and air entrapment among others [2]. 

In particular, the latter can lead to a severe reduction of the damping force coefficients 

[3,4]. Air entrapment occurs at sufficiently high whirl frequencies and large vibration 

amplitudes where air is ingested into the lubricant film, becoming entrapped, thus 

severely reducing the damper forced performance [5]. The severity of air ingestion and 

entrapment increases with frequency and journal amplitudes. This phenomenon is more 

pervasive in open ends SFD configurations, where at least one of the damper ends is 

exposed to ambient. 

Presently, with increasing rotor flexibilities and shaft speeds, high performance 

turbomachinery undergoes high dynamic loads and large displacements. Under these 

conditions, air ingestion and entrapment compromise the performance of SFDs with 

opened end or partially sealed configurations. Sealed SFDs prove to be less prone to air 

ingestion/entrapment at high frequencies, thus enhancing their performance at such 

frequencies. Dif1ferent types of seals have been adopted (O-rings, end plates, etc.), yet 

there are many more seal and geometric configurations (i.e. oil feeding arrangement, 
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grooves) used in practice and not yet thoroughly researched. This work includes the 

experimental study of a particular sealed SFD configuration. The configuration 

comprises of a mechanical contact end seal and a recirculation annulus at one end of the 

test damper element. 
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II LITERATURE REVIEW 

Squeeze Film Dampers have been a subject of study since about 45 years ago, when 

they were introduced as an effective mean for attenuating vibration in turbomachinery. 

Della Pietra and Adilleta [6,7] present a compilation of the research conducted on SFDs 

in the last 40 years. The authors include a complete description of SFDs, their physical 

characteristics, including end seal configurations, the research efforts carried out for 

modeling SFD forced performance, developing predictive models and validations with 

test data, etc.  

The present review discusses previous works related to experimental parameter 

identification of force coefficients and those studying the influence of end seals and 

feeding grooves on the performance of SFDs. 

San Andrés and Vance [8] present a detailed experimental work conducted on a 

controlled orbit SFD test rig. The test rig comprises a journal mounted on an eccentric 

lobe of a stiff shaft running on ball bearings with solid steel supports. Measurements of 

dynamic pressure distribution in the oil film are conducted for increasing frequencies. 

The results show large levels of dynamic pressures at the damper central groove, thus 

indicating the importance of groove pressures on the overall damper force performance. 

Roberts et al. [9] present an experimental and theoretical work focused on the 

parameter identification of damping and inertia force coefficients from transient 

response data (impact tests). The theoretical analysis includes predictions based on the 

long and short length bearing models. A parameter identification of the decay response 

data yields the empirical coefficients which are compared to analytical ones. The test 

direct damping coefficients for a squeeze film damper with open ends show good 

agreement with predictions based on the short length bearing model. On the other hand, 

inertia and cross-coupled damping coefficients are well under predicted. Additionally, 

the results show that “memory effects” (frequency dependency) within the squeeze film 

are not significant.  
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Ellis et al. [10] present a parameter identification procedure based on the State 

Variable Filter (SVC) method. The method relies on the assumption that a linearized 

two-dimensional model is appropriate for determining the set of dynamic force 

coefficients in a squeeze-film bearing. The evaluation of the method comprises 

parameter identification from simulated data and experimental data. Simulated input 

data includes increasing noise levels to asses the sensitivity of the method to signal noise 

as it would be present in actual experimentation. Noise proves to affect the accuracy of 

the method, particularly in a heavily damped system. Results show that the linear model 

may not be appropriate for high magnitudes of static eccentricity (ratio >0.5).  

Miller et al. [11] present the identification of rotordynamic coefficients of a squeeze 

film damper. The experimental procedure consists of various set of impact tests 

delivered with an impact gun. The tests are conducted under different temperature 

conditions and journal off-center positions. The parameter identification method 

transforms the test element time response to the frequency domain and extracts dynamic 

force coefficients from the bearing impedance matrix as a function of frequency. The 

estimated damping coefficients agree well with theoretical predictions (based on the 

analysis of San Andrés and Vance [8]). Furthermore, the identified coefficients do not 

show any significant variation with the magnitude of impacts exerted on the test element.   

Levesley and Holmes [12] compare the damping capacity and general performance 

of various SFD configurations, including different types of end seals. Their results show 

that an end-sealed SFD provides more damping capacity and is less prone to the 

occurrence of oil vapor cavitation. The authors conclude that piston-ring end sealed 

SFDs have a better performance over two other end seal arrangements tested (end-

chambered and end plate seals).  

Arauz and San Andrés [13] present a series of experiments to determine the effects 

of a circumferential feeding groove on the dynamic response of a squeeze film damper. 

The damper is sealed by a serrated piston ring located at the discharge end of the damper. 

The tests comprise different damper configurations including two different groove 

depths and journal orbit radii. The experiments show similar magnitudes for the 
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dynamic pressures measured at the groove and those at the film lands for all the 

configuration tested. Consequently, as indicated by Vance and San Andrés [8], relatively 

large damping forces are generated at the groove, which contribute significantly to the 

damping characteristics of the SFD. 

Diaz and San Andrés [3] use the instrumentation variable filter (IVF) method for 

parameter identification of a n-DOF mechanical linear system, and a particularized form 

of the method for the parameter identification of a squeeze film damper operating with a 

bubbly mixture (air in oil). The method, based on frequency domain analysis, proves to 

be a reliable tool for the identification of bearing force coefficients. The predictions of 

the system dynamic flexibilities fairly agree with the experimental results within the 

frequency range from 10 Hz to 50 Hz (system natural frequency of 30 Hz), and for 

various test conditions including different air entrapment volume percentages in the 

lubricant mixture. The conclusions confirm that the amount of damping provided by the 

test SFD is greatly affected by the amount of air ingestion.  

De Santiago and San Andrés [14] identify the damping coefficients of a sealed ends, 

integral SFD from rotor imbalance response tests and impact tests. Both ends of the SFD 

are sealed by end plates of known clearance. Model predictions of the damping 

coefficients are in good agreement with the identified coefficients. The experiments 

results show that the amplitudes of rotor synchronous response at the first and second 

critical speeds are proportional to the imbalance displacement, thus evidencing the 

linearity of the SFD elements. Furthermore, the identified damping coefficients of the 

integral sealed damper are twice as large as values obtained in [1] for the same damper 

with no end seals.  

Diaz and San Andrés [15] present two methods for identification of damping 

coefficients in a squeeze film damper. The first method consists on a least-square curve 

fitting of the damping forces in the time domain, and the second one is based on 

approximating the rotor orbit using its synchronous components (Filtered Orbit Method). 

The frequency domain method proves to be more adequate and simpler than the time 

domain method. The results from the experiments show that the identified damping 
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coefficients are insensitive to whirl frequency and nearly independent of the imbalance 

magnitude. 

San Andrés and De Santiago [16] present experiments to obtain the dynamic 

parameters of an open-end SFD, and comparisons to predictions based on the full-film, 

short length bearing theory. The publication addresses the effects of fluid inertia as well 

as the effects of air entrapment on the dynamic response of the SFD. The authors show 

an interesting approach to predict the performance of the SFD operating with severe air 

entrapment. The air entrapment is accounted for as a reduction of the effective length of 

the damper rather than a reduction in the effective viscosity of the air in oil film mixture 

(as presented in previous analytical efforts). The effective length of the SFD is 

frequency and amplitude dependant, as the amount of air entrapped is a function of these 

two variables. In the experiments presented, the damper effective length ranged from 

82% to 78% of the actual damper length. The identified damping force coefficients 

agree well with predictions, except for the identified inertia coefficients that are 

approximately twice as large as those obtained from conventional model predictions.  

Kim and Lee [17] present an analytical and experimental study of a sealed squeeze 

film damper with a central feeding groove. A dynamic pressure field analysis allows 

identifying the SFD dynamic force coefficients. The analysis includes the effect of the 

groove and end seal over the dynamic coefficients of the SFD. The model relies on the 

short length bearing model (centered condition). Two types of seals are modeled, a 

single-stage and two-stage liquid seals. Experiments are conducted on a test rig that 

incorporates two magnetic bearings and the SFD at one end. The magnetic bearings 

excite the system with single frequency loads. The first frequency components of the 

force and displacements are extracted in the time domain to reduce spectral leakage. 

Damping and inertia coefficients are identified for different seal clearances and 

compared to analytical results. The results show that the model accounting for the two-

stage seal presents good agreement with the inertia coefficients but underestimates the 

damping coefficients. 
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This review shows that SFDs have been extensively tested and analyzed. However, 

there are many more practical configurations and variations to be conceived or/and 

tested. In particular, the adequate location of grooves, feed and discharge recirculation 

annuli, and the type of end sealing are some of the geometric features that have not 

being fully exploited.  Furthermore, none of the papers reviewed presents good 

agreement between the experimental and analytical results for both, damping and added 

mass coefficient simultaneously. Thus, more analytical and experimental works are 

needed to fully understand and maximize the performance of SFDs. 

This experimental work stands to evaluate the performance of an end sealed SFD 

configuration that has not been tested before. The SFD design features an end 

mechanical seal that allows regulating the oil flow through the squeeze film. The damper 

can operate as an open end, partially sealed or fully sealed end configuration. This SFD 

design is currently being used in industry, yet no experimental work has been conducted 

to test the effectiveness or advantages of this SFD design over other dampers.  

Figure 1 depicts the actual sealed end configuration use in industry. This damper 

combines a discharge recirculation annulus and adjustable flow (upon assembly) 

mechanical seal at one end. This arrangement is intended to reduce the occurrence of air 

entrapment and to allow the SFD to operate as an open end, partially sealed or fully seal 

configuration.  A test damper that replicates this end seal SFD was designed and adapted 

to an existing test rig. A description of the test rig and damper follows.  
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A: Bearing Outer ring and O-ring carrier contact interface   F: SFD land 
B: Wave Spring     G: Oil inlet 
C: Oil discharge orifice     H: Recirculation annulus (supply side) 
D: O-ring     I:  Outer ring and bearing support contact interface 
E: Recirculation annulus  (discharge side)    J: Bearing bore (or inner ring) 
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Figure 1 Schematic view of an industrial end sealed SFD. (Courtesy of Honeywell®) 
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III TEST RIG DESCRIPTION  

The test rig comprises of the same structure reported in a previous TRC research 

project [18]. Figure 2 shows a schematic view of the test rig structure. A vertical rigid 

shaft mounted on three precision ball bearings (natural frequency 400 Hz [16]), holds a 

steel journal of 5” (127 mm) diameter and 3” (76.2 mm) long. The bearing assembly 

consists of an acrylic bearing sandwiched by two steel plates, attached by two vertical 

steel plates. These plates also serve as an interface to apply external forces onto the 

bearing assembly. The top plate includes a connection for lubricant supply through a 

flexible hose, a static pressure gauge displaying the feed pressure into the bearing and 

four eddy current sensors facing the shaft. The composite bearing housing hangs from a 

top structure with four steel rods giving a structural stiffness to the test bearing section.  
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Figure 2 Test rig for dynamic force measurements and flow visualization in a sealed end 
SFD. 
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A mechanism comprising two sliding flat plates (top and bottom support plates) on 

the top structure allows centering and off-centering positioning of the bearing with 

respect to the shaft [18]. 

Figure 3 shows the sensor disposition and reference coordinate system on the SFD 

housing. Two electromagnetic shakers (max. 100 lbf or 448 N), suspended from separate 

steel frames, stand to provide excitation forces onto the test device. Slender steel 

stingers connect the shaker to the bearing housing (x and y directions). Piezoelectric load 

cells are fastened to the side plates and the one of the stingers end. The top disk allocates 

two accelerometers (x,y), right above the side plates. 
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1:Accelerometers  
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4: Eddy current 
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Figure 3 SFD housing reference coordinate system and location of sensors. 
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The bearing housing design integrates a SFD land and an annulus that 

accommodates a metallic ring (ring holder). This metallic ring along with the journal 

bottom surface provides a metal-metal mechanical seal. A wave spring, pushing the ring 

holder against the journal, applies a contact force between the matting surfaces. 

Furthermore, different sets of shims make it possible to adjust the contact force between 

the surfaces. Figure 4 and Figure 5 depict a cross section and a cut view of the end 

sealed SFD design along with its components, respectively.  
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Figure 4 Sealed-end SFD assembly cross section view. 
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SFD length: 1 in (2.54 cm) 
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Figure 5 Cut view of sealed-end SFD assembly. 
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III.1 Data acquisition and post-processing  
A DAQ board serves as interface to connect the instrumentation, including pressure 

sensors, accelerometers, load cells and proximity probes to a PC. The data is recorded 

using a modified version of an existing Labview® virtual instrument (VI) initially 

designed by Diaz [19]. The modified version includes the following features to the 

LabView DAQ VI  

o Control magnitude and frequency of 2 shakers (real time- no need to stop 

operation) 

o Control oil pump frequency controller through and digital output (using a 

relay box).  

o Control system to automatically adjust shaker input level to match a 

given load or displacement magnitude (selected by operator). 

o Automated operation for multi-frequency tests.  

A Mathcad® worksheet processes the recorded time traces (displacements, 

acceleration, forces), transforms the data into the frequency domain, and performs the 

spectral analysis to identify the test SFD force coefficients.  

III.2 Lubrication system  
Figure 6 depicts the lubrication system of the test rig, presently including two 

flowmeters and pipe lines for the four outlets of the new SFD configuration (end sealed). 

The flowmeters, located at the SFD inlet and outlet lubrication lines, allow estimation of 

leakage flow through the SFD end seal.  
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Figure 6 Schematic view of lubricant system. 

The piping for connecting the SFD multiple oil outlets is symmetric in order to 

equalize the friction losses for each of the four outlets. This implies same longitude 

hoses and symmetric wye adapters. 

The lubricant used is an ISO VG 2 with a density (ρ) of 736 kg/m3 and its absolute 

viscosity is related to temperature, T (°C) by  
0.01665( 23.6)( ) 2.8 T

oil T eµ − −=  cPoise   (1)

 
obtained from viscosity measurements using a rheological viscometer [18].  
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IV IDENTIFICATION OF STRUCTURAL PARAMETERS (DRY SYSTEM) 

IV.1 Static tests 
The SFD assembly was separated into its components: Plexiglas bearing, top and 

bottom plates, and top lid. Each component is weighted using a calibrated scale (±0.01 

lb). The weight of the rods and blocks (connecting the rods to the SFD assembly) is 

measured using a smaller scale (±0.001 lb). Table 1 shows the weight of each of the 

mentioned components and the estimated effective mass. Notice that for a steel rod, its 

effective mass is approximately 1/4 of its total mass, since each rod is fixed as a 

cantilever beam.  

Table 1 Measured weight and estimated effective mass of the SFD assembly and 
connecting rods.   

 Weight [lb] 

SFD Assembly [±0.01] * 14.13 (6.4 kg) 

Lid and hose connector** 6.60(3 kg) 

Rods [±0.001] 1.3 (0.59 kg) 

Blocks[±0.001] 0.25 (0.11 kg) 

Total effective mass  21.3 (9.7 kg) (±1%) 

  *: including hose connectors, ring carrier and sensors. 
  **: including pressure sensor. 

Static load tests using a force gauge (±0.5 lb) and two eddy current sensors2 (X2,Y2) 

yield two stiffness parameters (Ksx, Ksy). These tests were conducted without the journal 

in position (i.e. no rubbing interface). Figure 7 shows the bearing deflections in the X 

and Y directions due to a force exerted in the same direction. Each data point represents 

an average of a set of two static load tests. The results follow a linear tendency along the 

entire range of loads exerted on the SFD assembly (-89 N to 89 N). Thus, a constant 

stiffness coefficient in each direction (X and Y) is appropriate to characterize the rigidity 

of the four rods arrangement. 

                                                 
2 Appendix A details calibration of eddy current sensors.  
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Figure 7 Bearing deflection vs. applied load in the X,Y direction due to a force applied in 
the respective (same) direction. (UF: 0.5 lb) 

Table 2 presents the structure stiffnesses in the X and Y directions. The values are 

very close to each other (~4% different), confirming the isotropy of the elastic support 

system. 

Table 2 Structural stiffness coefficients of bearing support from static tests 

 Ksx[lb/in] Ksy[lb/in] 
Value 4370 (765 x103 N/m) 4490 (786 x103 N/m) 
Uncertainty 175 [~4%] 180 [~4%] 
Range[lb] -20 to 20 -20 to 20 
fn* [Hz] 45±1 45±1 
*: obtained using the stiffnesses and mass measured from static tests 
 

IV.2 Impact tests  
A sets of impact tests performed along the X and Y directions of the SFD assembly 

stand to identify the structural parameters of the SFD assembly. Figure 8 depicts the 

time trace of a typical impact and displacement registered in the Y and X directions, 

respectively. 
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Figure 8 Impact and displacement time traces in the Y and X directions. (impact load 
tests) 

Figure 9 and Figure 10 show the system transfer functions in the X and Y directions, 

respectively obtained from each impact test. Table 3 presents the identified parameter 

derived from the impact tests exerted on the bearing assembly. Appendix B presents the 

uncertainty analysis of the identified coefficients. In Figure 9 the two resonant peaks 

correspond to the natural frequency of the main frame (shown in Figure 1) (~47 Hz) and 

the SFD assembly (~49 Hz).  
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Figure 9 Impact tests transfer function and analytical fit for motions along X direction. 
(Dry system, end seal not in place)  
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Figure 10 Impact tests transfer function and analytical fit for motions along Y direction. 
(Dry system, end seal not in place) 
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Table 3 Identified parameters from impact tests exerted on SFD test section (no lubricant) 

 

 

 

 

 

 

 

 

 

 

The mass estimated from the static tests (measured weight and static stiffness) is in 

agreement (within uncertainty) with the values obtained from impact tests in the X 

direction (~1%) and Y direction (~0.5%). The stiffness estimated from impact tests are 

similar (within ~4%) to the one obtained from static test in the X direction, whereas in 

the Y direction both approaches (impact load and static load tests) render different 

magnitudes (~15%). This discrepancy is attributed to the alignment of the impact 

hammer respect to the test device. The test rig has limited accessibility in the Y direction 

for correct positioning the impact hammer.  

 In the following, the stiffness of the test system is taken from the static load tests 

(uncertainty band 4%), i.e. Ksx = 788 kN/m, and Ksy =823 kN/m. 

IV.3 Periodic input load tests  

This section focuses on the identification of the damping characteristics of the dry 

system (no lubricant) with the mechanical seal in place. The aim is to asses the effect of 

the mechanical seal on the system damping (i.e. dry friction). Four set of single 

frequency excitation tests serve to characterize the damping characteristics of the system. 

The tests include two load magnitudes (40-39 N and 35-33 N) from 20 Hz up to 200 Hz. 

The excitation loads exerted along both directions have the same magnitude and are 900 

 Parameters X Y 
 Stiffness, Ks  [kN/m] 800 (±40) 923 (±46) 
SI Mass,  M  [kg] 8.8 (±0.5) 9.7 (±0.5) 
 Damping, Cs [N.s/m] 367  315 
 Stiffness, Ks  [lb/in] 4570 (±230) 5270 (±265) 
US Mass,  M  [lb] 19.5 (±1) 21.5 (±1.1) 
 Damping, Cs [lb.s/in] 2.1  1.8 
 Damping ratio, ζ 0.069 0.052 
 Natural Frequency fn[Hz] 47 ±1  49 ±1   
 R2 (goodness of fit) 0.96 0.98 



 

 

20

out of phase (i.e. circular load orbit). The results in Figures 10-17 correspond to the last 

set of tests. Appendix C shows system responses and excitation orbits for selected 

frequencies.  

Figures 11 through 13 show the waterfalls of the load, displacements and 

acceleration magnitudes in along the X and Y directions, respectively. Figure 11 

evidences fluctuations of the load magnitude at high frequencies (from 150 Hz to 200 

Hz). These fluctuations are introduced by the FFT operator (frequency resolution) and 

do not reflect the actual load magnitude shown in Figure 14. Figure 13 shows super 

synchronous components in the acceleration mainly for load excitations with frequency 

close to 50 Hz. Odd super synchronous frequencies evidence dry friction interaction. 
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Figure 11 Waterfalls of excitation load in the X and Y directions. (Dry SFD. end seal in 
place. L: 40 N) 
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Figure 12 Waterfalls of displacement response in the X and Y directions. (Dry SFD. end 
seal in place. L: 40 N) 
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Figure 13 Waterfalls of acceleration response in the X and Y directions. (Dry SFD. end 
seal in place. L: 40 N) 

 
Figure 14 depicts the amplitude of the dynamic excitation load in the X direction 

(similar in Y). Figure 15 and Figure 16 show the resulting synchronous displacements 
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along the X and Y directions, respectively. There are two peaks in response (natural 

frequencies), one at ~39 Hz and other ~50 Hz. The first natural frequency is associated 

to the motion of the main frame (see Figure 1), and the second natural frequency is 

associated to the motion of the steel rods supporting the SFD assembly. The effect of 

dry friction interaction between the mating surfaces of the mechanical seal is evident in 

the system response. There are a number of excitation frequencies in the X and Y 

directions where the system response suddenly drops, which represent transitions 

between slipping and sticking regimes of motion.  
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Figure 14 Amplitude of applied dynamic load, X direction. (Dry SFD, end seal in place) 
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Figure 15 Synchronous frequency component of displacement response (X direction) due 
to a constant magnitude circular orbit excitation (40 N and 33 N). (Dry SFD, end seal in 
place) 
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Figure 16 Synchronous frequency component of displacement response ( Y direction)due 
to a constant magnitude circular orbit excitation (40 N and 33 N). (Dry SFD, end seal in 
place) 
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IV.4 Identification of dry friction force in contacting seal ring 

 
The test system equivalent damping coefficient with the mechanical seal in place 

(dry system) is obtained by equating the work exerted by the external force to the energy 

dissipated by the system. The work exerted by the input external force is [20] 

1 2sin( ) sin( )x yWork F X F Yπ φ φ⎡ ⎤= +⎣ ⎦  (2)

where (Fx,Fy) and (X,Y) are the force and response vectors; φ1 and φ2 are the phase lag of 

the response relative to the force along the X and Y directions, respectively. The energy 

dissipated by dry friction is [20] 

1

1

| |
t T

dry t
E F V dtµ

+
= ∫  (3)

where V is the velocity vector (Vx,Vy) constructed from the displacement Fourier 

coefficients (no velocity data is directly available). On the other hand, some energy is 

also dissipated by (residual) viscous effects 

( )1

1

2 2t T

rv rv x yt
E C V V dt

+
= +∫  (4)

where Crv = Cs is a residual viscous damping coefficient from the support structure. The 

overall damping parameters are obtained assuming a combination of dry friction 

damping (arising from the end mechanical seal) and a residual viscous damping from 

other sources (i.e. steel rods, traces of oil entrapped in between ring carrier and Plexiglas 

bearing3). The identification relies on equating Edry + Erv=Work. 

 

Table 4 shows the average of the identified friction force and equivalent viscous 

damping coefficient obtained from each test. The dry friction force (Fµ) and the residual 

viscous coefficients are obtained by finding the values that best fit the work executed by 

the external force (i.e. best correlation-r2). The combination of the energy dissipated by 

                                                 
3 The O-rings have to be lubricated upon assembly, which leaves oil traces in between the ring carrier and 
the Plexiglas bearing.   
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each the dry friction and the residual viscous damping account for the total energy 

dissipated by the system.  

The friction force relates to the magnitude of the contact force at the mechanical seal 

interface. Thus, the friction force can be modified by either changing the compression of 

the wave spring that pushes the two seal surfaces together or by replacing the spring. 

The current contact force (i.e. normal force) at the seal interface is estimated at 70 N (± 

10 N), and represents the minimum force required to create a proper mechanical sealing 

of the SFD section. The magnitude of the residual viscous damping coefficient (Crv= 

370 Ns/m) is similar (within ~10 %) to the one obtained from impact tests on the dry 

system without the seal in place (Table 3); thus representing the damping introduced by 

the support rods.  

 
Table 4 Identified (averaged) dry friction force and equivalent viscous coefficients from 
single frequency excitation tests (20-200 Hz) 

Test Load(N) Friction 
Force Fµ (N) 

Residual 
Damping Crv(N.s/m) 

r2 

1 40 0.99 
 35 0.99 

2 40 0.98 
 35 0.99 

3 41 0.98 
 35 0.99 

4 40 0.98 
 33 

26 370 

0.99 
 

Figures 17 and 18 show the work exerted by the input force and the estimated energy 

dissipated by the combined (dry + viscous) damping model for each test. Figure 17 

shows that the analytical model represents well the energy dissipated, even though the 

system shows stick-slip at certain frequencies.  
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Figure 17 Work exerted by input force (= dissipated energy) estimated from combined 
damping model (Test 1). (Dry SFD, end seal in place) 
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Figure 18 Work exerted by input force (= dissipated energy) estimated from combined 
damping model (Test 2). (Dry SFD, end seal in place) 
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Figure 19 presents the imaginary component of system transfer function (F/X) versus 

the excitation frequency, including the identified residual contribution (Crvω, Crv= 370 

N.s/m). The Im(F/X) relates to the action of the dissipative forces on the system. For a 

purely viscous damping system, Im(F/X) = C x ω, a straight line with the damping 

coefficient (C) as its slope. In the figures Im(F/X) includes the effect of both dry friction 

and residual viscous damping. Notice that the viscous damping contribution, Crv= 370 

N.s/m, is rather small compared to the total damping of the dry system. This indicates 

that the damping arising from the seal dry friction interaction (Fµ= 26 N) accounts for 

most of the system energy dissipation.  

Figure 20 shows the ratio Im(F/X)/ω. This magnitude represents the equivalent 

viscous damping coefficient for the dry system. Again, the residual damping coefficient 

(constant with frequency) represents a minute fraction of the overall system damping. 

Note that the damping arising from dry friction at the contact surface is lowest at 

frequencies from 40 to 50 Hz, which are precisely those at which the system peaked in 

motion; i.e. natural frequencies. 
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Figure 19 Imaginary component of transfer function, Im (X/F), vs excitation frequency. 
(Test 1- Dry SFD, end seal in place) 

 

10 20 30 40 50 60
0

5

10

Test Data (system damping- X direction)
Viscous damping contribution (Crv: 360 N.s/m)
Identified Dry friction damping contribution (Fdry= 26 N) 

Frequency [Hz]

Im
(F

/X
)/w

 [k
N

.s/
m

]

 
Figure 20 Equivalent viscous damping (dry friction + residual) vs excitation frequency. 
(Test1- Dry SFD, end seal in place) 
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V MEASUREMENTS OF FLOW RATE IN LUBRICATED SFD  

After identifying the Coulomb friction parameter of the “dry” system, lubricant ISO 

VG 2 is pumped trough the SFD to asses the leakage performance of the end seal. The 

performance of the seal is determined by verifying that the mechanical seal assembly 

contact force effectively prevents leakage, and thus the recirculation annulus is 

completely filled with oil at all times. During the flow measurement tests the seal 

effectively prevented oil leakage, thus indicating that the contact force at the seal 

interface is sufficiently large to fully seal the damper.  

 Figure 21 depicts the combined results of flow versus pressure drop from three 

different set of tests, including five increasing oil inlet temperatures (21-43 oC). The 

pressure drop (differential) results from subtracting the pressure measured at the 

recirculation annulus from the pressure measured at the inlet of the damper. The 

measurements show that, as the oil temperature increases the flow increases relative to 

the pressure differential across the damper.  
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Figure 21 Lubricant Flow trough SFD vs. pressure differential for increasing oil 
temperatures 

Figure 22 presents the pressure differential across the SFD versus the supply 

pressure. The pressure differential is clearly a linear function of the inlet pressure, and 

depends on the diameter of hole of the flow restrictors located at the discharge port in 

the recirculation annulus. Furthermore, the pressure at the recirculation annulus is close 

to ambient pressure (max Pr~ 1.12 bar). The through flow restriction consists of four 

pipe inserts, each with a 2.8 mm (0.11in) diameter through hole, that restrict the outlet 

flow at the recirculation annulus. Figure 23 depicts the location of one of the flow 

restrictors. 

 



 

 

33

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Inlet Pressure (bar)

∆
P 

(b
ar

)

70 F
80 F
90 F
100 F
110 F

 
Figure 22 Pressure differential across the SFD versus inlet (supply) pressure for different 
temperatures (70 F-110 F) 
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Figure 23 Cut view of SFD depicting flow restrictor. 
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Figure 24 shows the radial clearances measured after each test with lubricant 

temperatures at 21 oC, 27 oC and 32 oC. The clearance grows significantly with 

increasing oil temperatures. Figure 25 depicts a representation of the growth of the SFD 

bearing due to the raise in temperature, as obtained from a simple finite element model 

using COSMOS®. The radial growth is associated to an axial growth of the SFD land 

and a radial growth of the steel ring inside the SFD bearing that pushes the Plexiglas 

bearing.   
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Figure 24 Measured radial clearance vs. lubricant temperature. (Nominal value c: 127 µm) 

 

The analytical expression of the flow through the damper (centered journal ) is [21] 
 

3

12 ( )
Dc PQ

T L
π

µ
∆

=  (5)

 
where (c, D, L) are the damper radial clearance, diameter and length, respectively; ∆P is 
the pressure drop across the film land; and µ is the lubricant viscosity, a function of  the 
mean  film temperature (T ). 
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Figure 25 Representation of SFD deformation due to thermal stresses  

A flow ratio is obtained by dividing the recorded flow rates by the analytical 

expression of flow through the damper (Eq (5)). Figure 26 shows the flow ratio as a 

function of the pressure differential ratio. The results are consistent, lying within a 16% 

band around the unit value for pressure drop ratio (∆P/Pmax) greater than 0.4. However, 

the difference of the results from a unit value indicates the need for accurate values of 

viscosity from Eq.(1), and the clearance growth obtained experimentally. For lower 

pressure differentials the flow is too small for the instruments (i.e. flowmeters) to make 

an accurate measurement. However, since the flow is linear with pressure differential, 

the flow at pressure differentials less than 0.4 can be estimated by extrapolating the flow 

for greater pressure differentials.  



 

 

36

 

0

0.2

0.4

0.6

0.8

1

1.2

0.00 0.20 0.40 0.60 0.80 1.00 1.20
∆P/∆Pmax 

Fl
ow

 R
at

e 
R

at
io

70 F

80 F

90 F

100 F

110 F

Sensors not 
accurate 

 
Figure 26 Ratio of test flow rate to predicted flow rate vs. pressure differential ratio 
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VI IDENTIFICATION OF DAMPING COEFFICIENTS FOR LUBRICATED 

SFD FROM SINGLE FREQUENCY FORCE EXCITATION RESPONSES  

VI.1 Unidirectional tests 

VI.1.1 Experimental procedure 
 

The first experiments consist of unidirectional periodic excitation load tests, from 20 

Hz to 60 Hz, along two orthogonal directions (i.e. X and Y). The tests include five 

increasing motion amplitudes (13 µm to 39 µm) at each excitation frequency. The 

bearing is initially centered within its journal. The SFD radial clearance is 127 µm ± 6 

µm at the test temperature (23 0C). The DAQ system automatically adjusts the excitation 

load amplitude at each frequency to maintain the preset bearing displacements 

throughout the test frequency range. Maintaining a constant displacement or load 

magnitude provides a favorable scenario for the identification of systems that include 

dry friction [22]. Table 5 shows the test conditions and Appendix D includes recorded 

displacements at selected frequencies from 20 Hz to 60 Hz. 

Table 5 Test conditions for dynamic load tests. Lubricated SFD 

Inlet Pressure (Ps) 15.5 kPa  (2.25 psi)  
Outlet Pressure (Pr)  5.7 kPa   (0.75 psi)   
Frequency Range  20-60 Hz (5 Hz step) 
Lubricant temperature (T) 23-25 0C (73-77 0F) 
Viscosity (µ) 3.17 cP 
Clearance (c) 127 µm (5 mils) 
Displacement amplitude 
(radial) 

13-38 µm (0.5-0.15 mils) 

 
 

Figures 27 and 28 display waterfalls of load, displacement and acceleration for 13 

µm and 39 µm dynamic displacements, respectively. Appendix D presents the 

displacement orbits for selected frequencies (20 Hz-60 Hz). The accelerations show a 

3X super-synchronous component that evidences the presence of dry friction. The 

displacements also show a 3X component though very small when compared to the 
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synchronous component (>1%), a clear indication that the system operates in a macro-

slip regime of motion.  
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Figure 27 Waterfalls of X-excitation load, displacement and acceleration response from 
unidirectional dynamic tests (Displacement amplitude along X : 13 µm, lubricated SFD) 
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Figure 28 Waterfalls of X-excitation load, displacement and acceleration response from 
unidirectional dynamic tests (Displacement amplitude along X : 39 µm, lubricated SFD) 

 
Figure 29 depicts the amplitudes of the applied dynamic load versus frequency. The 

load increases steadily with frequency to maintain constant preset displacements. The 

results demonstrate the system is overdamped, as the transfer function (X/F) does not 

show any resonance peak. Figure 30 shows the amplitudes of motion versus frequency 

for the five preset (constant) levels. 
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Figure 29 Amplitude of external dynamic Load vs excitation frequency (5 tests- X and Y 
directions, lubricated SFD) 
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Figure 30 Fundamental amplitude of bearing motion vs excitation frequency. Periodic 
unidirectional load (5 tests- X and Y directions, lubricated SFD) 

 

VI.1.2 Parameter identification method 
 

The estimation of system parameters from unidirectional load excitations follows a 

simple procedure in the frequency domain. The equations of motion for the test bearing 

section are4  

                                                 
4 In Eq.(6), M= 9.7 kg, Ksx=788 kN/m, Ksy = 823 kN/m as given in Tables 1-3.  

0 0
0 0

f sx x x x

f sy y y yseal SFD

M M K F F Fx x
M M K F F Fy y

+⎡ ⎤ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫
+ = − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥+ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

&&

&&
 (6)
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Mf  (0.62 ± 0.01 kg) represents the estimated mass of fluid enclosed in the plenum 

above the fluid film land section and in the recirculation annulus. This mass is estimated 

by forced displacing the lubricant inside the test section and weighing it.  

The SFD reaction forces follow the linearized description:   

x xx xy xx xy

y yx yy yx yySFD

F C C D Dx x
F C C D Dy y

⎧ ⎫ ⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫
= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎣ ⎦

& &&

& &&
 (7) 

where {Cαβ}αβ=x,y , {Dαβ}αβ=x,y are the damping and inertia force coefficients, respectively.  

Recall that a squeeze film damper does not generate stiffness coefficients. 

Furthermore, as observed in preliminary testing, the cross-coupled damping and mass 

terms are negligible since the end seal effectively prevents air-entrapment into the 

damper at the test frequencies. Thus, the X and Y motions are uncoupled. For prediction 

purposes, the 2π-film (uncavitated) SFD model should be appropriate. The analysis also 

includes the residual viscous damping coefficient, Crv ~ 370 N s/m (2.11 lbf s/in). 

 The dry friction force from contact at the mechanical seal equals  

( ) ,   ,
zz sealF F sign z C z z x yµ= = =& &  (8)

where z is a generic displacement along  the x or y directions; and [20] 
4  

zseal

F
C

z
µ

πω
=   (9)

 
is the equivalent viscous coefficient for the mechanical seal.  

 
In the frequency domain the system response is 

 

where 

tz zz f zzM M M D= + + , and 
ztz zz seal rvC C C C= + + ,  ,z x y=   (11)

 

( )2
( ) ( )tz tz sz

iC M K z Fω ωω
ω

⎡ ⎤+ − =⎢ ⎥⎣ ⎦
&   (10)
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and ( )z ω , ( )F ω  are the discrete Fourier Transform (DFT) of the time varying 

displacements and forces, respectively. In particular, a periodic forcing function can be 

represented as 

Subsequently, the displacement, velocity and acceleration are also periodic with 

identical frequency (ω), and expressed as 

The system damping and mass parameters can be readily identified from Equation (10) 

as 

( )2Re ,   Imz z
tz sz Tz

F FC K M
z z

ω ω⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠& &

, z=x,y    (14)

VI.1.3 Test results: dynamic force coefficients for lubricated system 
 

This section presents the SFD added mass and damping force coefficients identified 

from the unidirectional periodic load tests with lubricant flowing through the damper. 

The squeeze film added inertia coefficients (Dxx, Dyy) are extracted from the dynamic 

stiffness for the largest amplitude of motion tested (38 µm), provided that the mass of 

the housing (M) and the mass of the fluid enclosed in the damper (Mf) are available.  

Table 6 presents the estimated total mass coefficient and the resulting SFD inertia 

coefficient, and a prediction of the added inertia coefficient for an uncavitated squeeze 

film. The model predictive formula is  

( )321
2 10xx yy

R L
D D

c
ρπ

= =  (15)

which delivers a more realistic value than that found in the archival literature [2]. The 

derivation of this formula is given by San Andrés [23].   

 

( )( ) cos( ) sin( ) i t i t
z zc zs zc zs zF t F t F t F i F e F eω ωω ω= + = − =  (12)

2
( ) ( ) ; ;i t i t i t i t

c sz z i z e e z i e z eω ω ω ω
ω ω ω= − = = = −Z Z Z& &&  (13)
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Table 6 Inertia coefficient identified from unidirectional single frequency load tests 
(amplitude of motion: 38 µm, frequency range 20-60 Hz) 

Parameter xx yy 
Stiffness coefficient, (Ks)[kN/m] 788 823 
Total Mass, (Mt) [kg] 19.7 18.4 
Fluid Mass, (Mf) [kg] 0.62 
Housing Mass, (M) [kg] 9.7 
Added mass coefficient, (D) [kg] 9.4 8.1 
R2 0.98 0.96 
Predicted added mass (D) [kg] 8.2 

 

Table 6 shows that the predicted added mass coefficient (8.2 kg) correlates well with 

the experimental values. Figure 31 shows the test derived dynamic stiffness for the 38 

µm motion amplitude test, including the analytical model using the stiffness determined 

from static load and impact load tests and the total mass given in Table 4. The reported 

mass coefficient is determined using the largest amplitude of motion (38 µm). Appendix 

E reports the SFD added mass coefficients identified for other test amplitudes of motion.  
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Figure 31 Dynamic stiffnesses from unidirectional load (single frequency) excitation tests 
and analytical model (D: 39 µm, Ksx= 788 kN/m, Ksy= 823 kN/m, Mtxx= 19.7, Mtyy= 18.4, 
lubricated SFD ) 

 
Figures 32 through 35 depict the test system and SFD (alone) damping coefficients 

identified at each excitation frequency. The total system damping combines the damping 

from the mechanical seal (Coulomb-type damping), the viscous squeeze film, and the 

residual structure viscous damping. The test results show that the system is highly over 

damped. 

The “viscous” damping arising from dry friction is inversely proportional to the 

amplitude of motion and excitation frequency, i.e. Cseal~Fµ/(ω|z|). Therefore, “dry 

friction” damping is dominant at low frequencies and small amplitude of motions. On 

the other hand, the squeeze film damping coefficient is expected to be independent of 

excitation frequency, albeit a function of the amplitude of dynamic displacement. 
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Figures 32 and 33 depict the total identified viscous damping coefficients (Ctx, Cty) 

for the largest and smallest amplitudes (13 µm and 38 µm) of motion versus excitation 

frequency, respectively. For both dynamic displacements, the system damping 

coefficients decrease with frequency, but for the 13 µm displacement amplitude the 

damping is considerably higher at low frequencies; thus confirming the significant 

contribution of the mechanical seal dry friction to the overall viscous damping.  
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Figure 32  Identified system damping coefficients (Ctx, Cty) versus excitation frequency. 
Unidirectional load tests (Displacement amplitudes along X and Y : 13 µm, lubricated 
SFD) 
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Figure 33 Identified system damping coefficients (Ctx, Cty) versus excitation frequency. 
Unidirectional load tests. (Displacement amplitudes along X and Y: 38 µm, lubricated 
SFD) 

 
Subtracting the “dry friction” damping (Cseal) and residual damping (Crv) from the 

system damping coefficients, yields the viscous damping coefficient for the squeeze film 

alone, i.e. Cxx=Ctx-Cseal-Crv. Figures 34 and 35 depict the squeeze film damping 

coefficients (Cxx, Cyy) extracted from the 13 µm and 38 µm dynamic displacement tests, 

respectively. The film damping coefficients (Cxx, Cyy) are nearly constant and similar for 

both displacement amplitudes. Appendix F presents the identified viscous coefficients 

for all the frequencies and amplitudes of motion tested. 
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Figure 34 SFD damping coefficients (Cxx, Cyy) versus excitation frequency. Unidirectional 
load tests. (Displacement amplitudes along X and Y: 13 µm, lubricated SFD) 
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Figure 35 SFD damping coefficients (Cxx, Cyy) versus excitation frequency. Unidirectional 
load tests. (Displacement amplitudes along X and Y: 38 µm, lubricated SFD) 

 

Figure 36 depicts the system total damping coefficients (Ctx, Cty) versus displacement 

amplitude for excitations at 20 Hz and 60 Hz. (Ctx, Cty) magnitudes are largest for the 

smallest amplitudes of dynamic motion, in particular at the lowest test frequency, thus 
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evidencing the effect of dry friction interaction upon the dissipation features of the 

system.  
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Figure 36 Identified system damping coefficients (Ctx, Cty) versus displacement 
amplitude. Unidirectional load tests. (Excitation Frequency: 20 Ηz and 60 Hz, lubricated 
SFD) 

  
Figures 37 and 38 depict the squeeze film damping coefficients (Cxx, Cyy) and model 

predictions versus displacement amplitude for the lowest and highest excitation 

frequencies, 20 Hz and 60 Hz, respectively. The short length, open ends bearing formula 

for damping coefficient is [2] 

( )
( )

23

22

1 2

2 1
rr

LC D
c

π ε
µ

ε

+⎛ ⎞= ⎜ ⎟
⎝ ⎠ −

   (16)

This formula considers a full film and is derived from small amplitude unidirectional 

motions about a static journal eccentricity ratio (ε=e/c). The test derived squeeze film 

damping coefficients (Cxx, Cyy) increase slightly with the amplitude of motion, though 

less pronouncedly than the model predictions. The test results at 60 Hz evidence 

invariant damping coefficients.  For both frequencies, the simple model predictions are 
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in good agreement with the identified coefficients. The average value of viscous 

damping is  6,000 Ns/m (34. 3 lbf.s/in). 
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Figure 37 Squeeze film damping coefficients (Cxx, Cyy) versus displacement amplitude. 
Unidirectional load tests. (Excitation Frequency: 20 Ηz, lubricated SFD) 
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Figure 38 Squeeze film damping coefficients (Cxx, Cyy) versus displacement amplitude. 
Unidirectional load tests. (Excitation Frequency: 60 Ηz, lubricated SFD) 

 

VI.2 Circular orbit tests 
 

The second set of experiments consists of single frequency dynamic loads exciting 

centered circular orbits (CCO) from 20 Hz to 60 Hz. The tests include four increasing 

motion amplitudes (12 µm to 50 µm) at each excitation frequency. Table 7 presents the 

test conditions. A series of adjustments between the linear motion and circular tests lead 

to a new estimation of the dry friction force calculated in the section IV. The calculation 

is detailed in Appendix G. The resulting friction force is 30 N instead of 26 N.  
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Table 7 Test conditions for Dynamic load Tests (CCO). Lubricated SFD 

Inlet Pressure (Ps) 15.5 kPa  (2.25 psi)  
Outlet Pressure (Pr)  5.7 kPa   (0.75 psi)   
Frequency Range  20-60 Hz (10 Hz step) 
Lubricant temperature (T) 23-25 0C (73-77 0F) 
Viscosity (µ) 3.17 cP 
Clearance (c) 127 µm (5 mils) 
Displacement amplitude 
(radial) 

12-50 µm (0.5-2 mils) 

 

Following the procedure from unidirectional tests, the applied dynamic load is set to 

maintain constant amplitude circular orbits throughout the test frequency range for each 

amplitude level (12 µm, 25 µm to, 38 µm, 50 µm). Figures 39 and 40 show the forces 

and displacement orbits (Y vs. X) at 20 Hz for the four displacement amplitude tested, 

respectively.  Appendix H includes displacements and excitation force orbits at other 

selected frequencies from 20 Hz to 60 Hz. 

Figures 41 and 42 show the amplitudes of the dynamic load and the ensuing orbit 

radius versus frequency. The dynamic load increases steadily with frequency in order to 

maintain the design (preset) constant orbit amplitude. 
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Figure 39 Dynamic excitation load orbits for four amplitude levels. (20 Hz, lubricated SFD) 
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Figure 40 Displacement orbits for four amplitude levels and maximum clearance orbit. (20 
Hz, lubricated SFD, CCO) 
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Figure 41 Amplitude of external dynamic Load vs excitation frequency (4 tests- CCO, 
lubricated SFD) 
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Figure 42 Fundamental amplitude (radius) of bearing circular motion vs excitation 
frequency. (4 tests- CCO, lubricated SFD) 

 

VI.2.1 Parameter identification method 
 

This section describes the identification method employed to estimate the SFD 

parameters from centered circular orbit tests. As presented in section VI.1.2, the 

equations of motion for the test bearing section are5  

                                                 
5 In Eq. (17), M= 9.7 kg, Ksx=788 kN/m, Ksy = 823 kN/m as given in Tables 1-3.  

0 0
0 0
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where Mf  (0.62 ± 0.01 kg) represents the estimated mass of fluid enclosed in the plenum 

above the fluid film land section and in the recirculation annulus.  

The SFD reaction forces follow the linearized description:   

x xx xy xx xy

y yx yy yx yySFD

F C C D Dx x
F C C D Dy y

⎧ ⎫ ⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫
= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎣ ⎦

& &&

& &&
 (18)

where {Cαβ}αβ=x,y , {Dαβ}αβ=x,y are the damping and inertia force coefficients, respectively.  

The seal force is expressed as  

2 2

0 1
0

x
seal

y seal

F F x x
C

F F y yx y
µ

µ

⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥

+⎩ ⎭ ⎩ ⎭⎣ ⎦⎩ ⎭

& &

& && &
 

(19)

 
where Cseal is an equivalent viscous parameter that follows from equating the energy 

dissipated by viscous and dry friction forces.  
2 ( )sealC V dt F Vsign V dtµ=∫ ∫� �  (20)

  
In the frequency domain the system can be represented as 

where 
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and ( )Z ω , ( )F ω  are the discrete Fourier Transform (DFT) of time varying displacements 

and forces, respectively. In particular, a periodic forcing function can be represented as 

( ) ( )
2

( ) ( )i Z H Z Fω ωω ωω ω⎡ ⎤− + + = =⎣ ⎦M C K  (21)
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Subsequently, the bearing displacement and accelerations are also periodic with 

identical frequency (ω), and are expressed as  

( ) ; xc s i t i t i t

yc s

ax i xx x x
Z e e e

ay i yy y y
ω ω ω

ω

− ⎧ ⎫⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭

&&
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 (24)

 
In Eq.(21) the impedance matrix ( ( )H ω ) includes four coefficients, which are 

complex algebraic functions of the excitation frequency (ω). Rearranging Eq. (21) yields  

1xx xy yy yx
x x y y

x y y xH H H H
F F F F

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
+ = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (25)

 
where (x/Fx )and (y/Fy) are the direct transfer functions, and (y/Fx) and (x/Fy) are the 

cross transfer functions of the test system. For circular centered orbits with no evidence 

of cavitation or air entrapment, the system (structurally isotropic) is expected to yield 

similar transfer functions. Indeed, the experimental results (see Appendix I) show that 

the direct transfer functions are similar in magnitude and phase, and the cross transfer 

functions are similar in magnitude with inverted phase. Thus, from experimental 

verification  

,     d xx yy c xy yyH H H H H H= = = = −  (26)
 
then the system impedances become 
 

1
2 ,      

d
x

d c

x y y

xH
FH Hx y y

F F F

−
= =

+
 (27)

 
Appendix G shows that the cross impedance (Hc) is negligible when compared to the 

direct impedance (Hd). Thus cross coupled coefficients, as expected, are negligible.  

The fluid inertia coefficients (DD=Dxx,, Dyy) are identified from the dynamic stiffness 

obtained from the real component of the direct impedance,  
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( )( ) ( )2 Res D DK M D Hω− + =  (28)

 
The damping coefficient is identified from the imaginary components of the direct 

impedance as 

 
( )Im D

D xx yy

H
C C C

ω
= = =  

where  
 

D SFD seal rvC C C C= + +  (29)
 
is the combined system total direct damping, comprising the effects of the squeeze film, 

dry friction and residual viscous damping.  

The squeeze film damper coefficient also follows from equating the energy 

dissipated by the system damping coefficient (CD) and the combination of viscous 

damping and dry friction damping, 
2

D v dry rvC V dt W W W= + +∫�  (30)

 
where 
 

dryW F V dtµ= ∫� ,    2
v SFDW C V dt= ∫� ,  2

rv rvW C V dt= ∫�  (31)

 
VI.2.2 Test results: Dynamic force coefficients for lubricated system 
 

This section presents the SFD added mass and damping force coefficients identified 

from the circular centered orbit tests with lubricant flowing through the damper. The 

added inertia term (DD) is extracted from the dynamic stiffness for the largest amplitude 

of motion tested (50 µm), provided that the mass of the housing (M) and the mass of the 

fluid enclosed in the damper (Mf) are available.  

The short length, open ends bearing formula for viscous damping coefficient is [2] 
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(32)

This formula considers a full film and is derived for circular center orbit (CCO) motion, 

with e as the circular orbit radius [2].  

 
Table 8 presents the identified inertia coefficient from the circular orbit tests, and the 

structural parameters previously identified. The predicted inertia coefficient agrees well 

with the identified inertia coefficient (~ 9 %). Furthermore, the identified inertia 

coefficient is considerably larger (~20 %) than that identified from unidirectional tests. 

This discrepancy is attributed to the effects of the oil entrapped in the recirculation 

annulus. For these tests, the predicted added mass term is obtained using formulae 

described in an internal communication document [18], and which includes the effects 

of the recirculation annulus. This development will be released in the near future.  

Table 8 Inertia coefficient identified from unidirectional periodic load tests (amplitude of 
motion: 38 µm, Frequency range 20-60 Hz) 

 
 
 
 
 
 
 
 
 
 

Figure 43 depicts the system dynamic stiffness and the curve fit the rendered the 

inertia coefficient. The stiffness (Ks) represents an average of the stiffness identified 

from structural tests.  

Parameter   
Stiffness coefficient, (Ks)[kN/m] 805  
Total Mass, (Mt) [kg] 21.04  
Fluid Mass, (Mf) [kg]          0.62 
Housing Mass, (M) [kg]           9.7 
Added mass coefficient, (D) [kg] 10.7  
R2 0.98  
Predicted added mass (D) [kg]           11.7 
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Figure 43 Dynamic stiffnesses from periodic unidirectional excitation tests and analytical 
model (D: 50 µm, Ks= 805 kN/m, Mt= 21 kg. CCO, lubricated SFD) 

Figure 44 depicts the damping coefficient identified for the four orbit amplitudes 

tested (12 µm, 25 µm, 38 µm, 50 µm). The damping coefficients, which include the 

viscous and dry friction contribution, present a similar trend to those obtained form the 

unidirectional load tests. The damping coefficient decays steadily with frequency. 

Furthermore, for the smallest amplitude tests (12 µm) the coefficient is significantly 

larger than those identified for larger amplitudes. This evidences the large influence of 

dry friction arising from the mechanical seal. Importantly enough, the dependency of the 

damping coefficient upon the amplitude of motion is less predominant as the amplitude 

of motion increases. This is particularly common for systems with dry friction, which 

generally present threshold amplitudes that determine the different regimes of motion 

(i.e. slip, macro-slip) 

( )2
s TK Mω−
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Figure 44  Identified system direct damping coefficient (CD) versus excitation frequency 
for increasing orbit radii. (Circular Centered Orbit, lubricated SFD) 

 
Figure 45 presents the squeeze film coefficients (CSFD) extracted from the system 

total damping coefficient (CD). The SFD coefficient represents the squeeze film viscous 

damping contribution to the system overall damping. Unlike the total direct damping 

coefficient, the squeeze film damping coefficient shows a weak dependency on 

frequency, which further confirms the significant contribution of the dry friction 

interaction to the system overall damping coefficient. The damping coefficients 

decreases near 40 Hz, which coincides with the natural frequency of the test rig main 

frame. Thus, the change of the damper coefficient between 40 Hz and 50 Hz may be 

associated to a change (increase) of the normal force at the seal interface due to a larger 

absolute motion of the main frame.  
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Figure 45 SFD damping coefficients (CSFD) versus excitation frequency for increasing 
orbit radii. (Circular Centered Orbit, lubricated SFD) 

 
Figure 46 depicts the system damping coefficient (CD) as a function of the amplitude 

of motion. The dependency of the coefficient upon the displacement amplitude is more 

pronounced at low frequencies. Furthermore, the damping coefficient for the smaller test 

amplitudes (12 µm) is larger than the damping recorded at any other amplitude level for 

all the frequencies tested. Once more, these trends are consistent with the effect of dry 

friction in the system.  

12 µm 

25 µm 
38 µm 
50 µm 

Amplitude of motion 



 

 

63

0 10 20 30 40 50 60
0

6

12

18

24

30

Displacement [um]

D
am

pi
ng

 c
oe

ff
ic

ie
nt

 [k
N

.s/
m

]

 
Figure 46 Identified system damping coefficients (CD) versus orbit radius for increasing 
frequencies. (Excitation frequency: 20 Ηz, 30 Hz, 40 Hz, 50 Hz and 60 Hz. Circular 
Centered Orbit (CCO), lubricated SFD) 

 

Figure 47 illustrates the squeeze film damping coefficients (CSFD) and predictions as 

function of the amplitude of motion for two excitation frequencies (20 Hz and 60 Hz). 

The viscous damping, as oppose to the combined total damping (CD), increases steadily 

with the amplitude of motion. The predictions, using Eq. (32), render good agreement 

for 60 Hz excitations. Though, the predictions slightly underestimate (~18 %) the 

experimental value for excitations at 20 Hz. This probably indicates that the dry friction 

damping is being underestimated at low frequencies, thus the estimated CSFD magnitude 

is larger than the actual value. 
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Figure 47 Squeeze film damping coefficient (CSFD) versus displacement amplitude. 
(Excitation frequency: 20 Ηz and 60 Hz. CCO, lubricated SFD) 

20 Hz 

60 Hz 
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VII CONCLUSIONS AND RECOMMENDATIONS  

Exhaustive experiments were conducted to characterize the mechanical parameters 

of a SFD installed with an end mechanical seal. The damper can operate as an open end, 

partially sealed or fully sealed end configuration. The SFD is currently being used in 

industry, yet no experimental work has been conducted to test the effectiveness of this 

design.  

The test SFD structure stiffnesses are derived from static load tests without the seal 

in place. Periodic loads, single frequency, acting on the dry test system (no lubricant) aid 

to identify the dry friction force (26 N-31 N) at the mechanical seal contact surface via 

mechanical energy balance method. The damping action of the dry friction coefficient is 

included in the system equations of motion as an equivalent viscous damping coefficient.   

Experimental test system damping and added mass coefficients follow from 

unidirectional and circular dynamic load excitations in the frequency range from 20 to 

60 Hz. In the experiments, the load magnitudes vary to maintain prescribed amplitudes 

of motion. The parameter identification is carried in the frequency domain by building 

system transfer functions from the measured load and displacements. The test system 

damping combines the effects of dry-friction in the contact zone of the mechanical seal, 

the squeeze film lands, and a residual action from the structural supports. The squeeze 

film damping coefficient is effectively extracted from the test system damping by 

equating the work (exerted by the external load) to the energy dissipated by each type of 

damping, provided that the dry friction force is previously identified.  

The identification results show that the system damping coefficients are larger at the 

lowest frequency and lowest amplitude of motion, denoting the paramount effect of dry 

friction in the mechanical seal. The estimated damping coefficients for the squeeze film 

land alone are nearly independent of frequency, increasing slightly with the amplitude of 

dynamic motion. Theoretical predictions, based on the short length bearing model, agree 

well with the experimental results.  
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The experimental results demonstrate the end seal effectively prevents air 

entrapment into the squeeze film land for the frequencies and amplitudes of motion 

tested. Further experimentation is planned to identify damping coefficients for elliptical 

motions, centered and off-centered. Future tests aim to vary the seal contact force and to 

replace the orifice discharge ports in order to simulate continued operation, wear and 

aging under extend periods of work, for example. 

Future work will also include test with higher frequency ranges and a scrutiny of the 

dynamic pressures at the recirculation annulus and squeeze film land. These 

experimental results will also provide benchmarks to validate analytical developments 

focused on improving predictions of inertia force coefficients (added mass terms) in 

squeeze film dampers.   
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APPENDIX A  

CALIBRATION OF EDDY CURRENT SENSORS 
 

This section describes the results and procedure followed for calibrating the eddy 

current sensors employed in the identification of the test rig structural parameters. 

The calibration of the eddy current sensors was performed in situ (i.e. eddy current 

sensors attached to the rig). Two dial gauge (± 0.0001) with magnetic bases, located in 

the X and Y direction, made it possible to measure the actual displacement of the bearing 

housing. An ad-hoc device attached to the lower base of the test rig (as shown in Figure 

A 1) served to induce a steady displacement of the SFD housing. The calibration 

includes deflections in both directions of X and Y. Table A1 presents the gain of the 

eddy current sensors estimated from a linear regression of the calibration results shown 

in Figure A 2.   

Table A1 Eddy current sensors gain estimated from calibration tests. 

 X1 X2 Y1 Y2 
Gain[mV/mils] 202 195 204 N/A 
  R2 0.99 0.99 0.99 N/A 
Serial # H-108912 H-108877 H-108913 H-108914 
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Figure A 1 Picture of VTR set up for calibrating eddy current sensors 
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Figure A 2 Voltage output of eddy current sensors vs. displacement of SFD bearing. 
(Calibration test) 
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APPENDIX B  

UNCERTAINTY ANALYSIS OF TEST DATA 
 

This section is dedicated to asses the uncertainty associated with the results reported 

in previous sections. The analysis contemplates the estimation of the error of each 

individual measurement, as well as the error propagation associated with parameters that 

are function of other variables.   

B.1 Eddy current sensor calibration  

The calibration of the proximity sensor (Appendix A) included readings from a 

displacement gauge (Ud = ±0.0001”) and a voltmeter (Uv = ± 0.001 V). The uncertainty 

at each point is normally given by the precision and bias error of each instrument. 

However, for this calibration process, the uncertainty of each point (Ud,Uv) does not 

include the bias error of each instrument. Recall that the bias error is the fixed, 

systematic, or constant component of total error [24]. Thus, the calculation of the 

proximity sensor gains is not affected by the bias error, considering that the calculation 

of such gain is based on the relative value between each measurement (i.e. slope). On 

the other hand, the standard error of an estimate (SEE) can be used to obtain the 

goodness of the (least-squares) line that best fits the collection of pairs (voltage, 

displacement). That is, the SEE, given in equation (B.1) below, represents the deviation 

of the curve fit (y=ax +b) from the data set. The term “N-2” in the denominator arises 

from the two degrees of freedom lost from the set of N data pairs (Xi,Yi) when 

determining the curve constants, a and b (slope and axis intersection) [24]. 
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The proximity sensor gain, given by the slope (a) of the curve fit, also follows the 

relationship 
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with ∆D as the displacement variation and ∆Vfit as the voltage variation given by the 

linear fit.  

    The general equation used for calculating the uncertainty of parameters that are 

calculated from direct relations (i.e. r=f(x1,x2,..xn)) is defined as [24]  
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Then, from Equation B.3 the uncertainty of expression B.2 is  
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where ∆D and ∆Vfit are given by the range of experimental values and 
fitVU  is calculated 

combining the voltmeter uncertainty (Uv) and the uncertainty of the curve fit given by 

the B.1 as 

( ) ( )2 2

fitV fit VU U U= +  (B.5) 

B.2 Parameter identification 

B.2.1 Static tests 
The procedure to estimate uncertainty of the stiffness resulting from static test is 

similar to the one followed in the calibration of the proximity sensor. In this case, since 

each data pair (displacement, force) is the average from three different tests, the 

uncertainty of each point (in the displacement axis) of the force vs. displacement data 

collection is given by the combination of the instrument uncertainty (i.e. voltmeter) and 

the error incurred from averaging the three test, which is given by  
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where xS  is the precision index of the mean value, Sx is the precision index; and, X and 

Xi represent the mean of the sample array and the individual samples, respectively. And t 

is the coefficient for 2 degrees of freedom (N-1) and a 95% confidence interval for a t-

distribution of data points [24].  

Subsequently, the uncertainty of the linear fit is given by B.1 and the uncertainty 

associated with the slope (stiffness coefficient) is defined as 
22 2 21 1 1

fit

K
F D G

fit

U U U U
K F D G

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (B.7)

where 

GK F
V

=  (B.8)

B.2.2 Impact tests 
 For this case the uncertainty in the stiffness and mass coefficients is given by the 

uncertainty associated with the measurements of displacement and force (i.e. 

instrumentation uncertainty) and the error from the transfer function fit. 
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This assumption is valid for stiffness and mass coefficient only, regarding that the curve 

fit matches the measured flexibility (i.e. displacement/ force) at ω → 0 (±4%), and that 

the stiffness and the mass given by the numerical fit follow from the expressions  

( ) 10fitH
K

= ,  2
n

KM
ω

=  (B.10)

where the uncertainty of the natural frequency ωn is given by the window resolution 

used in the dynamic frequency analyzer ( 400 Hz/400 lines= ± 1Hz resolution). 

Therefore, the uncertainties of the stiffness and mass are 
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where  
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B.3 Flow measurements 

The flow meter is rated for flows of .3 to 3 GPM, and is field calibrated to ensure 

greater accuracy.  The calibration procedure requires a container calibrated in one gallon 

increments from one to five. The container is calibrated by weighing water to estimate 

its volume as 

2
2

1 1. * *
0h ogal Mass

h Cpρ
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (B.12)

where mass as the liquid mass, ρ the density of water at 21 0C and Cp a conversion 

factor conversion factor (0.13368 ft^3/gal. h20) 

The uncertainty of Eq. B.1 is related to the dynamometer used to weight the 

water and is given by the expression [24] 
1/ 22.. *galUcalib Umass

Mass
⎡ ⎤∂⎛ ⎞= ⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦

 (B.13) 

The uncertainty of the calibration of the container is 0.03 gallons. 

Field calibration of the flow meter involves reading the amount of liquid in the 

container and inputting the data into the flow meter. The level of liquid in the calibration 

container can be read at an accuracy of 1/16” from the actual gallon mark. The 

combined error of the calibration is 0.04 Gal.  The bias error of the flow meter is given 

by the manufacturer as %1.5 of the measured value.   
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Pressure is measured using Omega® PX-215 pressure sensors.  The sensors operate 

on a process current from 4 to 20mA.  This current is read by a digital ammeter before 

entering the Omega® display.  The current output of the pressure sensors was calibrated 

to pressures using an Ashcroft portable gauge tester.  The current measured is converted 

to pressure using equation  

2*P k ip C= +  (B.14)

 

where k is the pressure sensor calibration constant, ip the measured current (mA) and C2 

intercept of pressure calibration curve 

The equation for the pressure sensor calibration constant is given by  

The uncertainties used in this analysis were the uncertainty of the Ashcroft portable 

tester and the digital ammeters.  The uncertainty values for the pressure sensors at the 

inlet and recirculation annals are calculated at 5 psig.  The uncertainty of the calibration 

(Eq. B.3) is given by [24] 
1/ 222

.* *calib
k kUk UP Uip
P ip

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞= +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
 (B.15)

Combining the uncertainty of the calibration and the uncertainty of the ammeter 

reading yields the uncertainty of the pressure measurement  
1/ 222

*P PUp Uk Uip
k ip

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞= ∗ +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
 (B.16)

 

The uncertainty of the inlet pressure reading is 0.182 psig.  The uncertainty of the 

pressure readings at the recirculation annulus is 0.177 psig. 

For the flow measurements the precision index for each sample is calculated as [24] 
1/ 22__

1

1
1

N

X i
i

S X X
N =

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦
∑  (B.17)

and the precision index of the mean is  
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/XXS S N=  (B.18)

 

where N is the number of samples , X is the sample values and X  is the mean value of 

the sample population.  The t value for %95 confidence with three samples is 4.3.  The 

precision error is [24] 

X XP tS=  (B.19)

The bias error is a combination of the calibration errors and the manufacturer 

given %1.5 bias error. 
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Figure B 1 Lubricant flow through SFD vs. inlet pressure. (Average from three sets of 
tests)  
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APPENDIX C  

ORBITS AT 30 HZ, 40 HZ, 50 HZ, 90 HZ FROM DYNAMIC TESTS (DRY 

SYSTEM ) 

 
 

44 22 0 22 44

44

22

22

44

Experimental Data
From Fourier coefficients

X Load [N]

Y
 L

oa
d 

[N
]

16 8 0 8 16

16

8

8

16

Experimental Data 
From Fourier coefficients

X Acceleration [m/s^2]

Y
 A

cc
el

er
at

io
n 

[m
/s

^2
]

130 65 0 65 130

130

65

65

130

Experimental Data
From Fourier coefficients

X displacement [um]

Y
 d

is
pl

ac
em

en
t [

um
]

0.04 0.02 0 0.02 0.04

0.04

0.02

0.02

0.04

From Fourier coefficients
Load X [N]

V
el

oc
ity

 X
 [u

m
]

X Velocity [m.s] 

Y
 V

el
oc

ity
 [m

.s]
 

 
Figure C 1 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the displacement response.  
(40 N, 30 Hz. Dry system) 
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Figure C 2 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the displacement response.  
(40 N, 40 Hz. Dry system) 
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Figure C 3 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the displacement response.  
(40 N, 50 Hz. Dry system) 
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Figure C 4 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the displacement response.  
(40 N, 90 Hz. Dry system) 
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Figure C 5 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the displacement response.  
(33 N, 30 Hz. Dry system) 
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Figure C 6 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the displacement response.  
(33 N, 40 Hz. Dry system) 
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Figure C 7 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the displacement response.  
(33 N, 50 Hz. Dry system) 
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Figure C 8 Excitation and response orbits from experimental data and Fourier 
coefficients. Velocity orbit built from Fourier coefficients of the displacement response.  
(33 N, 90 Hz. Dry system) 
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APPENDIX D  

DISPLACEMENT ORBIT FROM UNIDIRECTIONAL DYNAMIC TESTS 
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Figure D 1 Linear displacements in X and Y due to a unidirectional load in X and Y 
directions, respectively (20 Hz, lubricated SFD) 
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Figure D 2 Linear displacements in X and Y due to a unidirectional load in X and Y 
directions, respectively (30 Hz, lubricated SFD) 
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Figure D 3 Linear displacement in X and Y due to a unidirectional load in X and Y 
directions, respectively (40 Hz) 
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Figure D 4 Linear displacement in X and Y due to a unidirectional load in X and Y 
directions, respectively (50 Hz) 
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Figure D 5 Linear displacement in X and Y due to a unidirectional load in X and Y 
directions, respectively (60 Hz) 
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APPENDIX E  

SQUEEZE FILM ADDED MASS COEFFICIENTS AS A FUNCTION OF 

DISPLACEMENT AMPLITUDE 

This appendix shows the added mass coefficient identified from the unidirectional 

periodic excitation load tests. The coefficients are extracted from system dynamic 

stiffness and are presented in Table E 1. 

Table E 1Added mass coefficients and correlation factors 

  Coefficient [kg] Correlation (r2) 
13 µm Dxx 6.8 0.92 
 Dyy 3.2 0.79 
19 µm Dxx 8.4 0.98 
 Dyy 5.2 0.87 
25 µm Dxx 8.9 0.92 
 Dyy 6.2 0.98 
32 µm Dxx 9.1 0.99 
 Dyy 7.7 0.96 
38 µm Dxx 9.4 0.98 
 Dyy 8.1 0.96 

 

Figure E1 depicts the identified added mass coefficients versus displacement 

amplitude. For motion amplitudes less than 32 µm, the correlation factor for the 

analytical fit is not good (r2 < 0.92), making the parameters not reliable. This poor 

correlation is related to variations of the system stiffness due to the presence of dry 

friction. Figure E 2 shows the real component of the transfer function (F/X). The 

dynamic stiffness (Re (F/X)) is somewhat irregular for smaller amplitude of motions, 

becoming smoother as the amplitude of motions increases. Further testing is needed to 

asses this phenomenon and improve the identification of added mass coefficients at low 

amplitudes of motion.  
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Figure E1 Squeeze film added mass coefficient versus displacement amplitude. 
(Identification range 20-60Hz) 
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Figure E2 Real component of the transfer function (F/X) versus excitation frequency for 
increasing amplitudes of motion. (Unidirectional tests) 
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APPENDIX F  

IDENTIFIED SQUEEZE FILM DAMPING COEFFICIENTS AS FUNCTION OF 

DISPLACEMENT AMPLITUDE AND FREQUENCY (UNIDIRECTIONAL 

TESTS) 

 
This appendix presents the viscous damping coefficients for five excitation 

frequencies and displacement amplitudes. Figure F1 shows the squeeze film damper 

coefficients are mostly constant throughout the displacement amplitudes tested (13 µm - 

38 µm).  

Figure F2 presents the squeeze film damper coefficient versus excitation frequency 

for five different amplitudes of motion. Notice that the damper coefficient drops 

suddenly at around 40 Hz, which coincides with the natural frequency of the main frame 

of the test rig. This behavior is presumably related to a variation of the dry friction force 

due to a motion of the main frame holding the test element. However, the damper 

coefficients are fairly constant throughout the test frequency range, in particular for the 

largest amplitude of motion (38 µm).  
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Figure F1 Squeeze film damping coefficients vs. displacement amplitude for five 
excitation frequencies (20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz).( Lubricated SFD, unidirectional 
load) 
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Figure F2 Squeeze film damping coefficient vs. excitation frequency for 5 constant 
displacement amplitudes (13 µm, 19 µm, 25 µm, 32 µm, 38 µm). (Lubricated SFD, 
unidirectional load) 
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APPENDIX G  

IDENTIFICATION OF DRY FRICTION FORCE 
 

This appendix presents the identification of the end seal friction force for the 

centered circular orbit (CCO) tests. A reassessment of the dry friction force for the CCO 

tests was mandatory due to a series of modifications applied to the tests rig in order to 

improve the alignment of the test damper element. Table G1 presents the dry friction 

force and equivalent viscous damping value from the new sets of tests. The dry friction 

force value equals 31 N and is slightly higher (~16%) than the previous value (26 N).  

Table G1 Identified (averaged) dry friction force and equivalent viscous coefficients from 
single frequency excitation tests (20-120 Hz) 

Test Load(N) Friction 
Force Fµ (N) 

Residual 
Damping Crv(N.s/m) 

r2 

1 40 0.98 
 34 

31 370 
0.98 

 

20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

Work (input force 40 N)
Work (input force 34 N) 
Energy dissipated (Dry Friction  31 N EqV D 370 Ns/m)
Energy dissipated (Dry Friction  31 N EqV D 370 Ns/m)

Frequency [Hz]

En
er

gy
 D

is
si

pa
te

d-
W

or
k 

[N
.m

]

 

Figure G1 Work exerted by input force (= dissipated energy) estimated from combined 
damping model. (Dry SFD, end seal in place,CCO) 
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APPENDIX H  

DISPLACEMENT ORBITS FOR SELECTED FREQUENCIES. (CIRCULAR 

CENTERED ORBITS) 

 

This appendix presents the recorded orbits for the circular centered tests. The orbits 

are mostly circular from 20 Hz to 55 Hz. The orbits at 60 Hz are not circular due to an 

uneven distribution of the normal force at the sealing interface, mainly associated to 

misalignment of the test element. This same phenomenon was evidenced without oil in 

the SFD land. 
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Figure H 1 Displacement orbits for four amplitude levels and maximum clearance orbit. 
(20 Hz, lubricated SFD, CCO) 
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Figure H 2 Displacement orbits for four amplitude levels and maximum clearance orbit. 
(30 Hz, lubricated SFD, CCO) 
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Figure H 3 Displacement orbits for four amplitude levels and maximum clearance orbit. 
(40 Hz, lubricated SFD, CCO) 
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Figure H 4 Displacement orbits for four amplitude levels and maximum clearance orbit. 
(50 Hz, lubricated SFD, CCO) 
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Figure H 5 Displacement orbits for four amplitude levels and maximum clearance orbit. 
(60 Hz, lubricated SFD, CCO) 
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APPENDIX I  

DYNAMIC IMPEDANCES FOR CIRCULAR CENTERED ORBIT TEST 
 

This appendix presents the direct (X/Fx, Y/Fy) and cross (X/Fy, Y/Fx) dynamic 

transfer functions versus excitation frequency. Figures I1 through I4 depict the 

magnitude and phase angle of the dynamic impedances for 12 µm, 25 µm, 38 µm, 50 

µm displacement amplitudes, respectively. The direct dynamic impedances in X and Y 

show similar magnitude and phase. On the other hand, the cross-coupled dynamic 

impedances in X and Y directions are similar magnitudes but 1800 out of phase (opposite 

sign).   

Figures I5 through I8 present the direct and cross dynamic impedances (HD, HC). The 

amplitude of the cross-coupled impedance is considerably smaller than the direct 

impedance for all the test displacement amplitudes.  
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Figure I 1 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function magnitudes and 
phase versus excitation frequency. (12 mm, Circular Centered Orbit) 
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Figure I 2 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function magnitudes and 
phase versus excitation frequency. (25 µm, Circular Centered Orbit) 
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Figure I 3 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function magnitudes and 
phase versus excitation frequency. (38 µm, Circular Centered Orbit) 
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Figure I 4 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function magnitudes and 
phase versus excitation frequency. (50 µm, Circular Centered Orbit) 
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Figure I 5 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) dynamic impedance magnitudes and 
phase versus excitation frequency. (12 µm, Circular Centered Orbit) 
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Figure I 6 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function magnitudes and 
phase versus excitation frequency. (25 µm, Circular Centered Orbit) 
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Figure I 7 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function magnitudes and 
phase versus excitation frequency. (38 µm, Circular Centered Orbit) 
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Figure I 8 Direct (X/FX, Y/FY) and cross (Y/FX, X/FY) transfer function magnitudes and 
phase versus excitation frequency. (50 µm, Circular Centered Orbit) 
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