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ABSTRACT

Automatic History Matching in Bayesian Framework for Field-Scale Applications.
(December 2004)
Ahmed Mohamed Ibrahim Daoud, B.S., Cairo University, Egypt;
M.S., Cairo University, Egypt
Chair of Advisory Committee: Dr. Akhil Datta-Gupta

Conditioning geologic models to production data and assessment of uncertainty is
generally done in a Bayesian framework. The current Bayesian approach suffers from
three major limitations that make it impractical for field-scale applications. These are:
first, the CPU time scaling behavior of the Bayesian inverse problem using the modified
Gauss-Newton algorithm with full covariance as regularization behaves quadratically
with increasing model size; second, the sensitivity calculation using finite difference as
the forward model depends upon the number of model parameters or the number of data
points; and third, the high CPU time and memory required for covariance matrix
calculation. Different attempts were used to alleviate the third limitation by using
analytically-derived stencil, but these are limited to the exponential models only.

We propose a fast and robust adaptation of the Bayesian formulation for inverse
modeling that overcomes many of the current limitations. First, we use a commercial
finite difference simulator, ECLIPSE, as a forward model, which is general and can
account for complex physical behavior that dominates most field applications. Second,
the production data misfit is represented by a single generalized travel time misfit per
well, thus effectively reducing the number of data points into one per well and ensuring
the matching of the entire production history. Third, we use both the adjoint method and
streamline-based sensitivity method for sensitivity calculations. The adjoint method
depends on the number of wells integrated, and generally is of an order of magnitude
less than the number of data points or the model parameters. The streamline method is

more efficient and faster as it requires only one simulation run per iteration regardless of
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the number of model parameters or the data points. Fourth, for solving the inverse
problem, we utilize an iterative sparse matrix solver, LSQR, along with an
approximation of the square root of the inverse of the covariance calculated using a
numerically-derived stencil, which is broadly applicable to a wide class of covariance
models.

Our proposed approach is computationally efficient and, more importantly, the CPU
time scales linearly with respect to model size. This makes automatic history matching
and uncertainty assessment using a Bayesian framework more feasible for large-scale
applications. We demonstrate the power and utility of our approach using synthetic cases
and a field example. The field example is from Goldsmith San Andres Unit in West
Texas, where we matched 20 years of production history and generated multiple
realizations using the Randomized Maximum Likelithood method for uncertainty
assessment. Both the adjoint method and the streamline-based sensitivity method are

used to illustrate the broad applicability of our approach.
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CHAPTER I
INTRODUCTION

1.1 Introduction

Automatic history matching is to find the best model parameters that minimize the error
between the observed data and that calculated from the model without significant
manual intervention. However, to do that there will be three major questions that we
should answer.' The first question is how accurate is the observed data that we need to
match, the second one is how accurate is the forward model response, in other words,
does the forward model include all the physics of the problem or not. The last one is that
we can find an infinite number of model parameters that can fit the observed data, so
which one to select, in other words, what is the prior information about the model
parameters that are independent of the data observed. Here comes the important of the
statistics to quantify the uncertainties in both the model and the data and the importance
of Bayes’ theory (1763) to get the model that honor both the prior information about the
model parameter and at the same time honor the data.

In petroleum reservoir engineering the main objective is to build a reservoir model
that honors both the geological information and the production history of the reservoir.
The conventional method to do so is the manual history matching process which
involves changing some parameters manually to get a good match with the production
history. The selection of this parameter is subjective and always depends upon the
engineering sense. This process is very tedious and time consuming; the alternative is
using the automatic history-matching concept. The concept of the automatic history
matching under Bayes theory is based on selecting a Gaussian probability distribution
for the prior model parameter and a Gaussian distribution of the error in the data

required to being matched.

The dissertation follows the style and format of SPE Journal.



Then using Bayes theory, we get the posterior distribution that honors both the
uncertainty of the prior and the data error.

The model parameter can be permeability or porosity or skin factor or relative
permeability or all of them and the data to be matched might be gas oil ratio, water cut,
bottom-hole pressure or rate or all of them. The model parameter that maximizes the
posterior distribution is the model parameter that honors both the data and the prior
information. The framework of this study is to get the best permeability realization that
honors both the prior information about the permeability distribution in the reservoir and

the production history using Bayesian formulation.

1.2 Literature Review

Conditioning geological models to production data typically requires the solution of an
inverse problem. Such inverse problems are usually ill-posed and their solutions suffer
from difficulties in existence, uniqueness, and stability. To remedy these problems, a
regularization term, in the form of data-independent prior information is generally added
to the objective function in the inverse problem. Two different approaches to incorporate
the regularization term have been used extensively in reservoir characterization
literatures. One of these approaches is the Bayesian®®, and the other is the

9-12

deterministic. Both approaches have been successfully applied for conditioning

geological models to production history and comparison between the two approaches

can be found in the literature.'>"

Unlike the deterministic approach, the Bayesian
approach associates probability distribution to the prior models and is thus considered
well-suited for post-data inference and uncertainty assessment by defining a posterior
distribution of models and sampling multiple realizations from this distribution. That is
why Bayesian approach is commonly used for uncertainty assessment during production
forecasting.

Typically any inverse problem requires an optimization algorithm. These

optimization algorithms can be classified into gradient-based and gradient-free

algorithm. The gradient-free algorithms like simulated annealing or genetic algorithms



are not competitive with the gradient-based algorithm and computationally prohibitive
for large-scale field applications. For the gradient-based algorithms, it is classified
according to its search direction'” into steepest descent, Newton, quasi-Newton, and
conjugate gradient. The fastest among those are the Newton-type search as it has a
quadratic rate of convergence in the vicinity of the solution compared to the quasi-
Newton method which has a super linear rate of convergence, conjugate gradient and
steepest descent which have linear rate of convergence and can be very slow in difficult
problems. As Gauss-Newton and Levenberg-Marquard'® are considered one of the
Newton-type of search algorithms, they are commonly used to get the maximum a
posteriori estimate (MAP) from the posterior distribution by knowing the sensitivity
coefficients which measure the change in the production response due to the change in
the model parameters. As calculation of sensitivity is considered the key step in
conditioning geologic model to production data, most of the literature survey work is
focusing on the different approaches used for sensitivity computation.

Jacquard and Jain'® presented an analytical formula for the sensitivity of pressure to
a small perturbation in a uniform permeability field which depends on the number of
wells and required about 1+N,, (Ny is the number of wells) simulation runs. Their
method based on the assumptions of reciprocity theory and the linear relationship
between the model parameters and the production response. Jacquard and Jain'®
constructed estimates of two-dimensional permeability fields by history—matching
single-phase flow pressure data by minimizing an objective function equal to the sum of
squared pressure data mismatch terms. They used less than twenty parameters and they
used an optimization procedure similar in spirit to the Levenberg-Marquardt algorithm to
avoid the numerical instabilities that can arise when solving an ill-conditioned inverse
problem. Jahns'’ adapted the basic ideas of Jacquard and Jain'® to estimate both
transmissibility and storage fields by matching single-phase flow pressure data. Jahns'’
used the perturbation method which requires M+1 (M is the number of the model
parameters) simulation runs to construct the sensitivities required by Gauss-Newton

optimization algorithm and he shows that his method is computationally efficient



compared to Jacquard and Jain’s when the number of parameters is less than twice the
number of wells. Jahns'’ during inversion applies a sequence of minimization starting
from small number of parameters to a bigger one (coarse to fine scale inversion).

After about ten years of the fundamental work discussed in the previous paragraph,
Carter et al.'® published a mathematical derivation of an efficient method to calculate
sensitivity coefficients based on Jacquard and Jain’s'® method that require 14N,
simulation runs for sensitivity computation. Carter et al.'"® considered 2D single-phase
flow problems with the same assumptions of Jacquard and Jain'’. Their procedure gives
the sensitivity of reservoir simulator grid block pressures to grid block transmissibility
and storage. He et al."” extended Carter et al.'"® method for 3D single phase flow by
estimating the sensitivity of the wellbore pressure with respect to the model parameter
by using Peacman® equation and a straightforward extension of Carter et al. sensitivities
of grid block pressure with respect to the model parameters. The extension of Carter el
al.'® method for 3D single phase reservoir models require a number of simulation runs
equivalent to the number of the grid blocks penetrated by the well. However He et al.”
developed an approximate procedure to estimate the sensitivity of the wellbore pressure
with respect to the model parameters that still depends only on the number of wells
regardless the number of the penetrated grid blocks by the wells. He at al. method
assumed small vertical pressure gradient and is limited to single phase flow problems.
The methods for the computation of sensitivity discussed to this point are applicable
only for single phase flow problems.

For multi-phase flow, the easiest and the least efficient is the perturbation and
sometimes called finite difference method, where the sensitivities are computed by
perturbing the value of the model parameter and estimating the change in the production
response due to this perturbation. This method has been used by Jans'’ and its
difficulties rest on the fact that its accuracy is sensitive towards the selection of the
amount of perturbation and it requires M+1 simulation runs, where M is the number of
model parameters, which makes it impractical for field-scale applications with thousands

of model parameters. A more efficient method for computation of sensitivity coefficients



is the method discussed in Yeh’s* review of parameter identification methods in the
hydrology literature under the name of “sensitivity equation method” and then later
introduced to the petroleum literature by Anterion et al.”? under the name of “gradient
simulator method” or “direct method”. In this method the sensitivity equation is derived
by differentiating the flow equations with respect to a single model parameter to obtain a
linear system of equation per each parameter. The solution of this system of equation
will give the gradient of the primary variables (pressure and saturation) with respect to
the specified model parameter. The right hand side of this system of equation can be
extracted directly from the Jacobian matrix at the last Newton iteration during solving
for the primary variables using fully implicit method. The left hand side of these linear
equations consists of two parts; the first part can also be extracted directly from the first
Newton iteration while the second part can be obtained numerically or analytically. In
this method the left hand side of the equations is constant, only the right hand side of the
equations should be changed with the change of the model parameter. After solving this
system of equations M times (M is the number of model parameters) with multiple right
hand sides, the sensitivity of the primary variables with respect to the model parameters
at each grid block is obtained. This is considered as redundant information especially as
one requires only the sensitivity of the primary variables at the grid block penetrated by
the wells; hence this method is considered unattractive for large number of model

parameters. Tang® and Tang et al.**

introduced the GPST (Generalized Pulse Spectrum
Technique) for computing the sensitivity of the primary variables (pressure and
saturation) with respect to the model parameters. This method requires only two
simulation runs and uses only the information of sensitivities at the well locations; hence

it is computationally efficient. Tang® and Tang et al.**

used Tikhonov regularization
during parameters updating to alleviate the ill-posed problem and they tested their
method for 2D single and two phase flow using permeability and porosity as the model
parameters and the results reflect its good accuracy and high rate of convergence for
inverting for permeability; however, it does not show good accuracy for porosity

inversion. Also, the computation time for the GPST gives quadratic scaling with the



model size; hence it is impractical for field-scale applications. Chu et al.> used the basic
idea of Tang et al.** and they develop the MGPST (Modified Generalized Pulse
Spectrum Technique) to get the sensitivity of wellbore pressure to reservoir simulator
grid block permeability and porosity.

1.2 and Chavent et al.”” introduced the optimal control theory to estimate

Chen et a
the gradient of the objective function with respect to the control variables (rock
properties like porosity and permeability). This method is called optimal control or
adjoint method and it only requires one simulation run in addition to the solution of
linear system of adjoint equations, hence the sensitivity computation require time
equivalent to two simulation runs. Chen et al.”® used both steepest descent and conjugate
gradient while Chavent et al.”’ used steepest descent as optimization algorithm for
updating the control variables. However, those optimization methods suffer from slow
convergence compared to the sensitivity-based optimization algorithm like Gauss-
Newton or Levenberg-Marquardt which have a quadratic convergence behavior."” Both
Chen et al.”® and Chavent et al.*’ show the derivation of the adjoint system of equations
and the gradient of the objective function using the flow equation in continuous form.
Wasserman et al.*® apply the optimal control theory using the flow equation in semi-
continuous form by discretizing the right hand side of the flow equation leaving the left
hand side in a continuous form. This is equivalent to converting the partial differential
equation of flow in space and time into a set of ordinary differential equations in time
which is more practical for field applications and they applied their method for three
phase 2D field cases. Watson et al.”’ show the application of optimal control theory
using the flow equation in a complete discretized form and apply this method for 2D
multi phase flow problems. All the applications of the optimal control theory up to this
point suffer from one drawback which is the slow convergence as the method gives only
the gradient of the objective function which force to the application of slow convergence
optimization algorithms like steepest descent or conjugate gradient. However, the
method is computationally efficient for the calculation of the gradient of the objective

function as it require only two simulation runs and it is independent of the number of the



model parameters or the number of data or the number of wells. Wu et al.” used the
optimal control theory (adjoint method) to calculate the sensitivity of wellbore pressure
and the water—oil ratio with respect to the grid block permeabilities and porosities for 2D
two phase flow. This method requires one simulation run and a solution of a linear
system of adjoint equations of Ny times (Ny is the number of data points). Li et al.’ used
the optimal control theory to estimate the sensitivity coefficient of wellbore pressure,
water-oil ratio, and gas-oil ratio to grid block permeability, porosity, well skin factor,
and the parameters used to define the power law relative permeability curves for three
dimension, three phase reservoir models. Zhang et al.” used the same adjoint method to
estimate the gradient of the objective function instead of the sensitivities especially for
large scale problems where both the number of model parameters and the number of data
are large. The difference between Zhang et al.” work and the other works**?’ is that they
used quasi-Newton optimization algorithm called LBFGS (Limited Memory Broyden-
Fletcher-Goldfarb-Shano) to minimize the objective function instead of the conjugate
gradient or steepest descent that were used before. However, their method still lacks the
quadratic convergence of Gauss-Newton and Marquardt-Levenberg optimization
algorithms.”” Wu and Datta-Gupta® used the approach of generalized travel time
introduced by Luo and Schuster’ in the context of waveform inversion in seismology
which reduces the data misfit into one point per well. This offer a significant advantage
in reducing the computation burden of sensitivity using the adjoint method where it
requires only one simulation run and solving the adjoint system of equations N, times
(Ny is the number of wells), hence, make the approach well-suited for large-scale field
applications. However their method has been applied only for 2D two phase flow.

Up to this point, all the previous discussions for sensitivity calculations are for finite
difference models. Recently, streamline models show significant advantage in automatic
history matching due to two main reasons; its high speed performance compared to finite

. 1,32
difference models’!?

and the most important is its analytically-derived sensitivities
using one single simulation run.”'® Vasco et al.'’ presented semi-analytical approach for

sensitivity calculation of water cut and tracer response with respect to permeability and



porosity with a total number of 100,000 parameters. They used a two-step inversion
approach by matching first the breakthrough time and then the amplitude (water cut or
tracer response). Their method based on the assumption that the streamline does not
shift; however, for drastic change of flow geometry such as changing well conditions,
infill drilling, pattern conversion the stationary streamline assumption is not valid. He et
al.'' modified the sensitivity calculation for changing field conditions and used the
approach of generalized travel time inversion introduced by Luo and Schuster.’® Due to
the limitation of streamline models to account for compressible flow and complex
physical mechanism, an approach that combine the advantage of streamline models in
sensitivity calculations and at the same time using finite difference models has been
introduced®'? where the velocity field is obtained from the finite difference models
which used to trace the streamline and calculate the time of flight required for sensitivity

calculation.

1.3 Objectives

The main objective of this study is to use Bayes theory as a tool for integrating static and
dynamic data and make it well-suited for field-scale applications and at the same time
use the advantage of Bayes theory as a tool for uncertainty assessment. Accordingly, the

specific objectives are as follows:

. Generalize the application of the “generalized travel time” inversion to 3D two
phase finite difference models by developing the sensitivity of the generalized
travel time with respect to the model parameters using the adjoint method.

. Introduce a new Bayesian formulation that is well-suited for field-scale
applications with a numerically-derived stencil to compute the square root of the
inverse of the covariance matrix required by the new formulation.

=  Apply the new and the conventional Bayesian formulation for integrating static and
dynamic data from finite difference models using adjoint method-based sensitivity

and streamline-based sensitivity.



. Study the computational efficiency with increasing the number of parameters for
both the conventional and the new Bayesian formulation using finite difference
models with sensitivity calculated from adjoint method and streamline.

. Quantify the uncertainty of the estimate by sampling the posterior distribution
resulted from the integration of static and dynamic data using Bayes theory.

. Applications: different synthetic examples used to study the quality of the
inversion and the scaling behavior for the new Bayesian compared to the
conventional approach using sensitivity from both adjoint method and streamline
method. Field example from Goldsmith San Andreas Unit is used to demonstrate
the utility of the new Bayesian formulation using finite difference models with
sensitivity calculated from streamline and adjoint method and also to assess the

uncertainty during the production history matching.

1.4 Dissertation Outline

Chapter II gives a brief introduction about Bayes theory and its application as a tool for
integrating static and dynamic data. It is well known that history matching of production
(dynamic data) always yield non unique solution especially if the model parameters like
permeability and porosity are greater than the data points. Moreover, the history
matching problem of this kind is an ill-posed problem and some form of regularization is
necessary to avoid instability. Thus incorporating the prior data in the history matching
problem using Bayes theory stabilizes the solution and reduce the variability in the
reservoir model parameters that provide an acceptable match to the production data. So,
the first part of this chapter discusses the three important components of automatic
history matching, which are the data misfit, the prior or the regularization, and the
optimization algorithms. Those three components are very important and any
improvement in one of those components leads to a significant contribution in the
automatic history matching process. The second part of this chapter introduces one of
the major parts of this dissertation, which is the reformulation of the Bayesian approach

for field-scale applications with a special reference to a novel approach used to
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approximate the square root of the inverse of the prior covariance matrix required by the
new formulation. In addition we examine the scaling of the computational cost required
by the conventional and new formulation with increasing the number of parameters. The
third part of this chapter is devoted to the uncertainty assessment by briefly discussing
the different methods to sample realizations from the posterior distribution for using in
the uncertainty analysis.

Chapter III represents the central part of this dissertation which is the sensitivity
computation. The first part of this chapter gives a detailed formulation of the sensitivity
of the generalized travel time with respect to the model parameter using adjoint method
for 3D, two phase reservoir models. The second part shows briefly the sensitivity
computation based on streamline for comparison purpose. The forward model used for
the both parts is the finite difference models.

Chapter IV presents applications of the procedures discussed in the previous three
chapters using 2D and 3D synthetic examples to show the quality of the inversion and
the computational time behavior versus the number of parameters for the new Bayesian
approach compared to the conventional method using sensitivity from both adjoint
method and streamline method. Also, a field example from the Goldsmith San Andreas
Unit is used to demonstrate the utility of the new Bayesian formulation using finite
difference models with sensitivity calculated from both streamline and adjoint method.
We also generate different realizations from the posterior distribution for the uncertainty
assessment in production history before and after incorporating production data.

Chapter V summarizes the conclusions and recommendations from this study.

There are three appendices in this dissertation. Appendix A shows the derivation of
the Modified Gauss-Newton used in this work and the mathematical equivalence
between the new Bayesian formulation and the conventional Gauss-Newton formulation.
Appendix B describes the computation of the derivatives in the adjoint system of
equations for the adjoint method-based sensitivity. Appendix C represents the
computation of the derivatives in the sensitivity coefficient calculation using the adjoint

method-based sensitivity.
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CHAPTER1II
BAYES THEORY AS A TOOL FOR DATA INTEGRATION AND
UNCERTAINTY ASSESSMENT

This chapter gives brief introduction about Bayes theory as a tool for integrating static
and dynamic data. Due to the ill-posedness of the history matching problems, a
regularization term is required to remedy this problem and Bayes theory is considered an
appropriate statistical tool that can incorporate the static and dynamic data where the
static data serves as a regularization term during the history matching. This chapter
consists of three parts; the first part of this chapter discusses the three important
components of automatic history matching in Bayesian framework, which are the data
misfit, the prior or the regularization, and the optimization. The second part of this
chapter introduces the reformulation of the Bayesian approach which is well-suited for
field-scale application. A novel approach is used to approximate the square root of the
inverse of the prior covariance matrix required by the new formulation. Finally, we
examine the computational work required in terms of number of multiplications by the
conventional and the new formulation with increasing the number of parameters. The
third part of this chapter is devoted to briefly discussing the methods used to sample
different realizations from the posterior distribution for using them in the uncertainty

analysis.

2.1 Bayes Theory Background

Bayes’ rule is given as follows:

_ . f(dobs /m)
S(m/d, )= f(m) dn e 2.1)

Where, m is a vector of the model parameters, dops is a vector of the observed data,
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f(m) is the prior probability distribution function of the model parameters, f(d,ps/m) is
the probability distribution of the observed data given the true model parameters is m,
f(deps) 1s the marginal probability distribution, which is given as

f (dobs)zjdm f(d,,/m)- f(m) , f(m/deps) is the posterior probability distribution of

the model parameters given the observed data.
Assuming that the error in the data and the forward model and the uncertainty in the
model parameters follow a multi-Gaussian distribution, the posterior probability

.. . . 34
distribution can be written as” :

- -d. Yc?! _d
f(m/d,,) = const exp 51 (g(m)-d,,) Dl(g (m)-d,, )

I (m —m,, )T o (m 3 mpr,»u,.) ereeeeeen(2.2)

Where, g(m) is the forward model that defines the non-linear relationship between the
model parameters and the data, Cp is the covariance operator combines both the error in
the data and the forward model. If the errors in the data and the forward model are
uncorrelated, Cp will be a diagonal matrix. Also, Cy is the covariance operator
describing the estimated uncertainties in the prior model, myyior is a vector of the prior
mean of the model parameter m.

Bayes’ rule provide a natural framework for automatic history matching of reservoir
models by combining the prior geologic model with the production data, where g(m) is
the reservoir simulation model, which can be finite difference or streamline models, the
dops are the production data, and m and myier can be the permeability or porosity or the
skin factor or the relative permeability control parameters or any other reservoir control
parameters assigned by a reservoir engineer.

Eq. 2.2 gives the posterior distribution of the model parameter, where any sample from
this distribution can be a plausible model consistent with the production history and the
prior geological model. The best estimate of the parameter is the one that maximize the

posterior distribution given by Eq. 2.2, or minimizing the following objective function:
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O(m) = % [(g(m) —-d,, )T CBI (g(m) —-d,, )+ (m —m,,, )T CA}I (m —m,,, )] """"""""" (2.3)

According to Eq. 2.3, the three important components for the automatic history
matching process are the first term of Eq. 2.3, which is called “data misfit”, the second
component is the second term of Eq. 2.3, which is called “regularization” or the “prior
model” and the third component is the optimization algorithm used to minimize the
objective function given by Eq. 2.3. The next section is devoted to discussing those three

components.

2.2 Data Misfit
This section discusses three different types of data misfit and the formulation of one of

those types that is used during this work which is the “generalized travel time misfit”.

2.2.1 Types of Data Misfit

Three different ways used to represent the production data misfit, namely, the
“amplitude misfit”, “travel time misfit”, and “generalized travel time misfit”. The
most common one is the “amplitude misfit” (Fig. 2.1a), where the production data

misfit is represented as follows

J,=S S G ay -y ) e (2.4)

j=1 i=1

For i = 1""’”41' , j=L..,n,
In Eq. 2.4, y,(#,) denotes the production data for well j at time #;, n,, and ng; stand for

the number of production wells and the number of observed data at each well,

respectively and w; represents the data weights, which are the reciprocal of the variance

at each data point under the assumption that the C,, is diagonal matrix, where the errors

between the data points are uncorrelated.
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The “travel time misfit” is represented as shown in Fig. 2.1b, where the misfit is
obtained by lining up the observed and the predicted data at a reference time such as the
breakthrough or the first arrival time. The disadvantage of travel time misfit is that it is
only one time point match and it does not take into consideration all the points as in the
amplitude misfit. However, the travel time misfit has major advantages compared to the
amplitude during inversion, first it has a quasi-linear properties compared to the high
non linearity of the amplitude® as a result the travel time inversion is robust and
converge rapidly even if the initial model is far away from the solution. Second, it is
computationally efficient because the number of travel-time is equal to the number of
wells, regardless of the number of data points. This leads to considerable savings in

computational time during the minimization.
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Fig. 2.1-Illustration of different types of data misfit, (a) Amplitude misfit, (b)
Travel time misfit, (¢) & (d) Generalized travel time misfit
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Fig. 2.1-Continued

The “generalized travel-time misfit” ensures matching of the entire production
history rather than single time point match and at the same time retaining most of the
desirable properties of travel-time inversion. In “generalized travel time match” we
seek an optimal time-shift at each well to minimize the production data misfit at the
well. This is illustrated in Fig. 2.1¢ where the calculated water-cut response is
systematically shifted in small time increments towards the observed response, and the
data misfit is computed for each time increment. Taking well j as an example, the

optimal shift will be given by the Az, that minimizes the misfit function,

Hd/- 2

To=Swly o+ ae,)= v (@) = reaey 2.5)

i=1
Or, alternatively maximizes the coefficient of determination given by:

nd/

S+ ) -y )f
RMy=1- S (2.6)

ny; b
> -]

i=1
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Thus, the generalized travel-time at well j is the ‘optimal’ time-shift A7j that

maximizes the K (At]) or minimizes J, as shown in Fig. 2.1d. It is important to point

out that the computation of the optimal time-shift does not require any additional flow
simulations. It is carried out as a post-processing at each well after the calculated
production response is derived using a flow simulation. The overall production data

misfit can now be expressed in terms of a generalized travel-time misfit at all wells as

follows
n AN 2

J = ( fz) ............ 2.7)
j=1 0

Where, o ]2 is the error variance of the generalized travel time at well j by assuming C,

a diagonal matrix. It is worth to mention here that using the data misfit in the objective
function given by Eq. 2.3 as the generalized travel time reduces the computational
burden during the minimization by reducing the data covariance matrix to be of order

N _ xN,_ and the data misfit vector to be of N x1 which are always of order of
magnitude lower than the number of data points, N,. Thus, the concept of generalized

travel time shift as the data misfit is well-suited for field-scale application and is used
during this study. Accordingly, the objective function given by Eq. 2.3 using the

generalized travel time as the data misfit, will be as follows:
L[ o7 i _
O(m)= 5 [At "CAt + (m -m )y, (m -m )] ............... (2.3)

Where Af is the generalized travel time that minimizes the difference between the
calculated and the observed data as given by Eq. 2.3. A detailed formulation of the
generalized travel time shift under different scenarios will be studied in the next section.
It is important to mention that the selection of the standard deviation of the data error
is subjective and it depends upon the data itself. However a good guideline for selecting

this parameter is given by Wu et al.” and Wu’®.
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2.2.2 Generalized Travel Time Formulation

In this section, a formulation of a general formula for the generalized travel time with
respect to the travel time for two cases is given. The first case is when shifting the
calculated response towards the observed and the second is when shifting the observed
towards the calculated response.

Casel: Shifting calculated towards the observed

Figs 2.2a, 2.2b show situations when the calculated is to the left of the observed and the
calculated to the right of the observed, respectively. The general formula for the
generalized travel time as function of the travel time at each point that satisfies the two

situations in the next figures is as follows:

AL =t —1

1

i=l.n, 2.9
d

cal i

Where, for the first situation as shown in Fig. 2.2a, the sign of the generalized travel
time is positive while for the other situation as shown in Fig. 2.2b, the sign is negative
So, irrespective of the relative location of the calculated and the observed, Eq.2.9
satisfies the both situation for the case of shifting the calculated towards the observed.
As we are shifting all the points with the same amount of shift, so the generalized

travel time shift can be written as the average of all the shift for all the points as follows:

AT = ii ) (2.10)

n; izl

In the vicinity of the solution or when the shape of the calculated response is close to

that of the observed, ¢, can be approximately equal to 7, as shown in Figs. 2.2a,b.

Al

Thus Eq.2.10 will be as follows:

AT

I

LS —1) eeeen(2.11)

=
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Fig. 2.2—-Illustration for the formulation of generalized travel time shift, (a) Shifting
the calculated towards the observed: calculated to the right of the
observed, (b) Shifting the calculated towards the observed: calculated to
the left of the observed, (c¢) Shifting the observed towards the calculated:
calculated to the right of the observed, (d) Shifting the observed towards
the calculated: calculated to the left of the observed
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Case2: Shifting observed towards the calculated

Figs 2.2¢, 2.2d show situations when the calculated is to the left of the observed and the
calculated to the right of the observed, respectively. The general formula for the
generalized travel time as function of the travel time at each point that satisfies the two

situations in the above figures is as follows:

AT = tshiﬁ,i —t

1

i=l.n, (2.12)

obs,i

Where, for the first situation as shown in Fig. 2.2¢, the sign of the generalized travel
time is positive while for the other situation as shown in Fig. 2.2d, the sign is negative.
As we are shifting all the points with the same amount of shift, so the generalized

travel time shift can be written as the average of all the shift for all the points as follows:

L I (2.13)

N, izl

In the vicinity of the solution or when the shape of the calculated response is close to

that of the observed, 7, can be approximately equal to 7, as shown in Figs. 2.2¢, d.

Thus Eq.2.13 will be as follows:

(2,14

Notice here the difference in the formulation of the generalized time shift, Eqs. 2.11 and
2.14 for shifting the calculated towards the observed and the opposite.

It should be mentioned that while using poor initial model, Eqs. 2.11 and 2.14 might not
be good approximation. For example, situations might arise when there is observed
water cut response and no calculated response and vise versa. Under such conditions, the

generalized travel time shift is given by the difference between the breakthrough time
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and the end of the observed response and vise versa. From our experience we have seen
that during successive iterations the shape of the production response gets close to the
observed and Eqs. 2.11 and 2.14 can be considered good approximate formulation for

the generalized travel time misfit.

2.3 Prior Model

The prior model parameter (m ) used in this work is the permeability at each grid block
which are modeled as correlated stationary Gaussian random fields with specified means
(m .. ) and covariance,C,,. The prior covariance is an auto covariance between the

prior
permeability at each grid block and it is calculated by knowing the variogram model
which consists of three main components; the variogram model, the sill and the range.

For more than one type of model parameter, for example permeability and porosity

at each grid block, the covariance matrix will be as follows:

Where, C, is the covariance matrix of permeability derived from the permeability

variogram modeling, C; is the covariance matrix of porosity obtained from the porosity
variogram modeling, C; ;and C, , are the cross covariance matrix between porosity and

permeability and is obtained by modeling the cross variogram or by using the screening
hypothesis of Xu et al.”’ During this study, the model parameter is the permeability at
each grid block which is assumed to have a log normal distribution.

It should be mentioned here that the covariance matrix is a full matrix of order M x M
(M is the number of model parameters, i.e. M is equivalent to the number of grid
blocks). So for field-scale applications with large number of grid blocks, a certain form

34,39

of parameterization® or approximations using the “stencil” concept is required

during inversion. The approximation using stencil will be discussed later in this chapter.
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2.4 Optimization Algorithms

The minimization of Eq. 2.8 or Eq. 2.3 requires an efficient minimization algorithm
especially for large field-scale applications where, the number of model parameters is
usually high of the order of thousands to million grid block permeabilities or porosities.
There are two different methods of minimization algorithms for unconstrained objective
function like that given in Eq. 2.8 or Eq. 2.3; the gradient-based algorithms'” such as the
steepest descent, Newton, Gauss-Newton, Levenberg-Marquardt, conjugate gradient
and Variable metric (sometimes called quasi-Newton) and the non-gradient based
algorithm like simulated annealing, genetic algorithm, Monte Carlo methods, and neural
networks. The non gradient-based algorithms are not practical compared to the gradient
algorithms for large number of parameters and thus, the gradient-based algorithms are
the one that are commonly used in reservoir inverse problems.

The rates of convergence of each type of the gradient-based algorithms are different.
The Newton type of search algorithms like Newton, Gauss-Newton, and Levenberg-
Marquardt have quadratic rate of convergence in the vicinity of the solution compared to
the super-linear rate of convergence of the variable-metric algorithm and the linear rate
of convergence of steepest descent and conjugate gradient."> However, the advantage of
steepest descent, conjugate gradient, and variable metric is that the computation of
sensitivity matrix is not required. Instead, the only requirement is the gradient of the
objective function which can be obtained using adjoint method and need only one
forward run and a solution of the adjoint system of linear equation only once

independent of the number of data or the number of wells.” ***°

Due to the rapid
convergence of the Newton type of search algorithms, the next sections will cover
briefly the equations used during the minimization for Newton, Gauss-Newton, and

Levenberg-Marquardt algorithms.

2.4.1 Newton Algorithm
The Taylor series of the objective function O(m), given by Eq. 2.8, is as follows:

O(m)=0(m,)+[V,AO@m,)] (m-m,) +%(m —m,) Hy(m-m,)+.... ....(2.16)
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Where, V_ O(m,) is the gradient of the objective function with respect to the model

parameter, m at m = my and Hy is the Hessian of the objective function at m = m,.

Taking the gradient of Eq. 2.16,

V,,0m)=V, O(m,)+H (m-m,)+... ... (2.17)

Locating the point m at the optimum value of the O(m) is equivalent to locating the
point where the gradient of O(m) vanishes. By setting V_O(m)= 0 in Eq. 2.17, Eq.

2.16 becomes:

m=m,-H,'V_O(m,) eeeeen(2.18)

Eq. 2.18 is the Newton algorithm and is written in general form as:

m“'=m'-4'v.omy . (2.19)

Where, (1) denotes the iteration level.

Newton algorithm, Eq. 2.19, requires getting the Hessian and its inverse. For large scale
problems, where number of model parameters is extremely high, the inverse of the
Hessian matrix which is of order M x M is computationally difficult. In Variable metric
method, the inverse of the Hessian in Eq. 2.19 is updated at each iteration. Zhang et al.”
used the variable metric method with the gradient of the objective function calculated
using adjoint method and they used LBFGS" to update the inverse of the Hessian
starting with the covariance matrix as the initial guess. However, their method can be
computationally efficient if the updated Hessian remains positive definite at each

iteration which is not the case in general.



23

2.4.2 Gauss-Newton Algorithm
By taking the gradient of the objective function given by Eq. 2.8,

V,.0(m')=G/C,'At +C;/(m' -m,)

Where, G, is the sensitivity matrix of the generalized travel time with respect to the

model parameter and it is given as:

foar, oai, oA, ]
om; om,, om),
oAL, oL, oAR,
G, =(V,(At)) =| o om’ om’, (2221
OAL, , OAL,,  OAL,,
i om; om,, om), I
By taking the gradient of Eq. 2.20,
erneen(2.22)

v2om')=H =(V,G)-(C,)A%, )+ G/ C,'G, + C;)

For small residual, At,, or for quasi-linear problems, the first term in Eq. 2.22 can be

neglected, thus Eq. 2.22 becomes:

H=G/C,G +C,,
Substituting Eq. 2.20, and Eq. 2.23 in the Newton algorithm, Eq. 2.19,

m" =m' -[G7C,'G, + ;] '[67C,'AT, + C;)(m' —m )]
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Eq. 2.24 is the Gauss-Newton formula used during the minimization. The difficulties of

Eq. 2.24, is that updating the model parameter at each iteration requires obtaining the
inverse of the covariance matrix plus the inverse of the matrix [G,T C, G, + C;] both of

which are of order M x M. Tarantola®® and Chu et al.” used a matrix inverse lemma to
convert Eq. 2.24 in a form computationally efficient when the number of model

parameters are greater than the number of data. This form is:
m" =m -C,Gllc,+G,.C,GI[' At -G,m'-m)] ... (2.25)

The form given in Eq. 2.25 is called Modified Gauss-Newton, Appendix A shows the
derivation of the Modified Gauss-Newton formula. Eq. 2.25 and Eq. 2.24 are

mathematically equivalent, but the computation time for both is completely different.

Eq. 2.25 requires only the inverse of matrix [C ,+GC,G/ ] which is of order N x N,
(N, 1s the number of wells) in using the generalized travel time as the data misfit.

It is worth to mention here that starting an initial guess with poor model makes the
residual too large and the approximation of the Hessian given by Eq. 2.23 will not be a
valid assumption and this lead to a poor convergence of Gauss-Newton. Li*" shows that
using Levenberg-Marquardt algorithm with high value of the damping factor at the
initial iteration to damp the model changes can overcome the convergence problem of
the high data misfit at the early iterations. Levenberg-Marquardt algorithm is discussed

in the next section.

2.4.3 Levenberg-Marquardt Algorithm
Bi*' modified Levenberg-Marquardt formula for application to the inverse problems to

be in the following form:
1
m_ —m )
m' =m +1"—-CMG1T[(1+0:)-CD+G,CMG,T]1
+a

~ 1
|:Atl —mGl(ml —mp):l
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a is the damping factor and for large o, the change in the model parameters per iteration
is small. Li* use high value of o equal to 10* or 10° at the initial iteration for large
residual to ensure reduction in the objective function and whenever there is a reduction
in the objective function from one iteration to the other, the value of a decreased by a
factor of 10 until it becomes close to zero, where Eq. 2.26 tends to the original Modified

Gauss-Newton, Eq. 2.25 which is a good assumption at small residual.

The minimization algorithm given by Eq. 2.25 requires knowledge about the
sensitivity matrix, G which is a very critical step during minimization. Chapter III will
be devoted to show the calculation of the sensitivity matrix using the finite difference

simulator as forward model.

2.5 Bayesian Formulation for Field-Scale Applications

The central point for the second part of this chapter deals with reformulating the
objective function, Eq. 2.8 resulting from the Bayesian approach and use the same
approach of Gauss-Newton algorithm to reach to a system of equations for model
updating in order to reduce the burden of matrix multiplications during the minimization
process using the Modified Gauss-Newton, Eq. 2.25. Thus, reducing the computation
time and making it well-suited for large-scale field applications.

2.5.1 Bayesian Formulation

The objective function in the Bayesian formulation given by Eq. 2.8 is re-written in the
following from:

1

O(m)zaeTe .......... (2.27)
Where,

C,% A%
e= eeeen(2.28)

CA;% (m' —mp)
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The minimization of the objective function given in Eq. 2.27 can be obtained by

using Newton’s optimization algorithm given by Eq. 2.19 as follows:

Hom=-V_Om) (2.29)
Where, V_O(m) is obtained from Eq. 2.27 as follows:

v,om =V, )e=|c'c;> ¢;)*le . (2.30)

Letting the Jacobian, J, be as follows:

T C—1/2 G
J=(V,e") { i ,} .......... 2.31)
M

Substitute Eq. 2.31 in Eq. 2.30,

V. Om)=J"e eeen(2.32)

The Hessian is obtained by taking the gradient of Eq. 2.32 with respect to the model

parameter (m):

H=V,(V,om)) =V, (" (Vo' ) )=V, (Vue') +e'V, (Ve

een(2.33)
=J"J+e'V J

Similarly, as Gauss-Newton, by neglecting the second term of Eq. 2.33, Eq. 2.33

becomes:

H=J'J (2.34)
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The approximation for the Hessian, Eq. 2.34, is the same as that of the Gauss-Newton
algorithm and is strictly valid near the solution (small misfit) or for quasilinear

problems. Substituting Eqs. 2.32 and 2.34 in Eq. 2.29;

J'Jém=-J" (2.35)

Eq. 2.35 is simply a least-squares solution to the following system of equations

Jdm=—e (2.36)

Substitute Eqgs. 2.28 and 2.31 in Eq. 2.36,

€6, om = -C, A% 237
B m = y N e (2.37)
CMA CMz(mp—m)

Eq. 2.37 is mathematically equivalent to the Gauss-Newton formulation, Eq. 2.24
and in turn equivalent to the Modified Gauss-Newton formulation, Eq. 2.25. Appendix
A shows the mathematical equivalent between the two formulations, Eq. 2.37 and Eq.
2.24.

Eq. 2.37 represents a system of linear equations and we use an iterative sparse
matrix solver, LSQR** for solving this system. LSQR is well suited for highly ill-
conditioned systems and is widely used for large-scale tomographic problem in
seismology.” However, difficulties arise in the computation of the square root of the
matrix inverse in Eq. 2.37. In practice, the data covariance matrix is assumed to be

diagonal and is thus easy to manipulate. However, the covariance matrix for the model
: . BV .
parameters can be full and in general, the calculation of C Mé will be computationally

prohibitive for large-scale inverse problems. Previous efforts to compute CA;%

analytically have been limited to exponential covariance model'*. Vega* proposes an
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approach to approximate the square root of the inverse of the covariance using a
numerical stencil which is general for any covariance models. The next section will give
brief overview for approximating the square root of the inverse of the prior covariance
matrix using the numerically derived “stencil”.

The scaling of the computation time with respect to the model parameters for the
conventional Bayesian formulation, Eq. 2.25, and Eq. 2.37 will be studied in terms of
the number of multiplications required by each formulation after discussing the concept

of the numerical stencil.

2.5.2 Square Root of the Inverse of the Covariance Using Numerically-Derived
Stencil

The exact analytical calculation of the square root of the inverse of the covariance can be

done using the concept of matrix diagonalization.45 Since the covariance matrix is a

symmetrical matrix so, its square root of the inverse can be calculated exactly using the

following equation:

c,/>=u'A"u (2.38)

Where U is the matrix, whose columns are the eigenvectors of C,,, A is the diagonal
matrix whose diagonal elements are the eigenvalues of the covariance matrix C,,. This

computation is very difficult to handle especially for large field-scale cases where the
covariance matrix is full and large. Another alternative is to use iterative algorithms like
Newton method*® to get the square root of the inverse of the covariance matrix.
However, this method requires the calculation of the inverse of the covariance per
iteration, which makes it impractical for large-scale problems. Recent attempt used to
approximate the square root of the inverse of the covariance matrix by obtaining

analytically its stencil from the covariance kernel'*

based on the previous works for
calculating the inverse of the prior covariance matrix.**** However, the analytical

approximation suffers from two major limitations; it is applicable only for the
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exponential covariance and the ratio of the grid size to the range in the three directions
need to be equal.

Due to these limitations, Vega** proposed a method that overcomes these limitations
which based on two basic principles; First, the covariance matrix and the square root of
its inverse can be constructed using their respective kernels, Second, the two kernels
remain unchanged regardless of the size of the matrix.

The following are the procedures used to approximate the square root of the inverse of
the covariance matrix using a numerically-derived stencil. First, and the most important
step, is choosing the size of the stencil, which depends mainly upon the ranges, the grid
sizes and the number of gridblocks in the three directions. Selections of the stencil is a
tradeoff between speed and accuracy and sensitivity study should be done to best select
the stencil required depending upon the behavior of each problem. To make the method
understandable, we assume that 5x5x5 stencil provide a good compromise between
efficiency and accuracy, so a 5x5x5 stencil can be used to approximate the square root of
the inverse of the covariance matrix. Second, the concept of matrix diagonalization, Eq.
2.38, is used to get the square root of the inverse of the covariance for 5x5x5 grid block
(125x125 covariance matrix) by knowing the kernel of the covariance. This is equivalent
to getting the kernel of the square root of the inverse of any covariance function in a
discretized or numerical form other than obtaining the kernel analytically as before.'*
Third, the set up of the 5x5x5 stencil is shown in Fig. 2.3. This stencil has only 27
distinct elements due to symmetry. Any column or any row of the covariance matrix
calculated from the second step can be used to get the magnitude of each stencil
presented in Fig. 2.3. Column 63 is selected for convenience, as it is the middle column
to construct the magnitude of each stencil. Table 2.1 shows the location of the stencil in
the 125 x 125 matrix constructed in the second step, which in turn gives the magnitude
of each stencil. Finally, the approximation of the square root of the inverse of the
covariance for the model under study is obtained by using the stencil constructed in Fig.

2.3 and its magnitude obtained from Table 2.1.
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Fig. 2.3—5x5xS5 stencil used for the numerical approximation of the square root of
the inverse of the covariance
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Table 2.1-Location of the numerical stencil terms from column 63 of the square root of
inverse of covariance of 5x5x 5 grid

Numerical Stencil Term Row Number in Column 63
G(0) 63
G(1) 62
G(2) 58
G(Q3) 38
G(4) 33
G(5) 57
G(6) 37
G(7) 32
G(8) 61
G(9) 53
G(10) 13
G(11) 52
G(12) 56
G(13) 8
Gl14) 28
G(15) 36
G(16) 12
G(17) 31
G(18) 27
G(19) 7
G(20) 51
G(21) 11
G(22) 3
G(23) 2
G(24)

G(25) 26
G(26) 1

2.5.3 Computational Scaling Properties: Conventional vs Field-Scale Bayesian
Formulation

In comparing the computation effort required by each formulation, we assume that the

computational effort is directly proportional to the number of multiplications required by

each formulation and our objective is to show how the number of multiplications for

each formulation behaves with increasing the number of model parameters. For this
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purpose we will assume that the sensitivity matrix required by the both formulation is

full and covariance matrix is full in case of the conventional Bayesian, while in case of

the new Bayesian formulation, we will use the concept of the stencil discussed before to

approximate the square root of the inverse of the covariance. Thus the matrix will be

sparse and we will use the maximum number of the non zero values for each row to be

equal to the N; (i.e. Ny is the maximum number of stencil, which is equal to 125 in case

of using 5x5x5 stencil).

Conventional Bayesian formulation

The conventional Bayesian formulation is given by Eq. 2.25. The number of

multiplication per iteration required is calculated as follows:

Forming G, (m'-m,): [G], , [m'-m,] requires (N, - M)
multiplications

Forming C,,G/: [Cy ],y -|GT |,y requires (N, - M) multiplications
Forming C,+G,C,,G/: It requires the following multiplication
[G], . -[CWGT |,,.. . which require (N2 - M ) multiplications

Forming|[C,, +G,C,, G |'[AT, —G,(m' =m  )|: Tt require solving a system of
equations in the form of [C, +G,C,, G |, ., “l¢/ ], , =IAT -G,(m"-m )|

to get (gr). The LU Decomposition and LU back substitution is used to get (gr)

and this operation requires* (N fv) multiplications.
Forming C,,G![C, +G,C,,G! | '[AT - G,(m' -m )|:

lc.GT].,. v, g ; ]N,xl requires (N, - M) multiplications.

Adding up all the above operations, results in the total number of multiplications per

iteration required by the conventional Bayesian approach.

Zoy =N M?>+2N M+NXM+N, ceeeeee(2.39)
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Field-scale Bayesian formulation

The field-scale Bayesian formulation is given by Eq. 2.37, by assuming that C,, is

diagonal matrix, thus Eq. 2.37 can be written as:

We used LSQR* as an iterative sparse matrix solver to solve the above augmented
system of equations. I followed the exact algorithm given by Paige and Saunders* in
counting the number of multiplication required by solving Eq. 2.40, which can be

written in the following form:
[A](NwM)xM [X]Mxl = [b](Nw+M)x1 .......... (2.41)

The following is the number of multiplications required at each step in the algorithm:

1) Initializing:

- Forming [ul ](N My = [b](Nw M - required the product of
[CA}” 2]MxM -[mp —m']MX1 , which requires (M - N,) multiplications, where Nj is

the maximum number of the stencil used to approximate the square root of the

inverse of the covariance (i.e. maximum number of non zero values per each row
of C;'%).

- Normalize [Lzl](N*M)X1 and get B, : require (N, + M ) multiplications

- Form [v],.. :[ ! :|M><(NW+M)[M1](N,+M)><1 : It is equivalent to find the product in

the following form, [v,],,, =(G" | [\ ]y + 1€ ]yl ],y this
require (N, - M +M - N, ) multiplications

- Normalize [v,],,., and get a, : require (M) multiplications

M x1



2)

3)

4)

5)

6)
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Start Iteration inside the LSQR loop for i=1,2,.....Njxr, where Ni, is the number
of iteration

Bidiagonalization

Form [u,, ](NW+M)><1 = [A](NW+M)><M v, ]Mxl -4 [ui](Nw+M)><1: require the following
two products;

: require (N, + M) multiplications

a- «a, [“i ](NH,+M)X1

b- [A]( N MM [v.] /. - 18 equivalent to forming the two products;

[G]NWX " [V,- ] /. - TEQuire (N oM ) multiplications
lc.2 ], [v:]),,.. : require (N, - M )multiplications
and get Bi+ : require (N L TM ) multiplications

Normalize [ui+1 ]( N, + Ml

Form [Vi+1 ]Mxl = [AT]MX(NW+M)[ui+1 ](NW+M)X1 =B [Vi ]Mxl: require the following
two products;
a- B.[v, ]Mxl : require (M) multiplications

b- [AT ]MX( N ) [ui+1 ]( . +aya - 118 equivalent to find the product in the following

form, [GT ]MxNW [u‘m ]wal + [(CA;I/Z)T ]MxM [”m ”]Mxl >
this require (N, - M + M - N ) multiplications

ot 1, and get oy : require (M) multiplications

Normalize [v
Construct and apply next orthogonal transformation: in this step the number of
multiplications is independent upon the number of gridblocks (M) or the number
of wells (Ny), so its multiplications count is not considered as they are very
trivial.

Update [x]Mxl, [w]Mxlz

Update [x],,,, : require (M) multiplications

Update [w],,, : require (M) multiplications

End of the iteration
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Adding the number of multiplications mentioned at each step and inside the LSQR

iteration loop, the total number of multiplications will be:

=2(M-N)+(N,-M)+N, A +2M +
N, [2(N,-M)+2(M-N)+2N, +6M]

Field scale Bayesian

e (2.42)

Fig. 2.4 shows the behavior of each formulation with respect to the model size using Ny,
of 15 for the both formulation and using Ng and Nj., for the field-scale Bayesian
formulation to be 125, and 15 respectively. I assumed that the stencil used is 5x5x5, so

the maximum value for Ny 1s 125.

1EH12

+ Conmventional Bayesian
1E-11
A Field Scale Bayesianl
y =15.34x19%8
1E+10
g_ 1E+09 -
ko]
2 1E+08
10000000 -
1000000 T T T
100 1000 10000 100000 1000000

Grid Size

Fig. 2.4—Computational scaling for field-scale Bayesian vs conventional Bayesian

Clearly as shown from Eqs. 2.39 and 2.42 and from the figure above, the field-scale

Bayesian formulation behaves linearly compared to the conventional Bayesian
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formulation which behaves quadratically with respect to the model size. This shows that
the new Bayesian formulation with the numerically calculated stencil is well suited for
field-scale applications where the number of model parameters exceeds hundred
thousands to millions. However, it is important to mention that the number of
multiplications in the field-scale Bayesian formulation depend upon two additional
parameters other than the conventional Bayesian. Those parameters are the inner
iteration inside the LSQR loop, Nj.r and the number of stencil used, Ns. Selecting the
stencil is the most important factor in choosing between the two formulations as for high
N, the Field-scale Bayesian behaves close to the conventional Bayesian and due to the
inner iterations inside the LSQR loop it might even behave worse than the conventional
Bayesian formulation. That is why selecting the stencil used is the key in choosing

which formula to use during the minimization.

2.6 Bayesian Approach as a Tool for Uncertainty Assessment

The Bayesian approach gives very distinct advantage in associating probability
distribution known as the posterior distribution with its estimate. Sampling the posterior
distribution to generate a suite of realizations provides a good tool to assess the
uncertainty in reservoir variables. Moreover, one can predict the uncertainty in the future
performance of the reservoir by constructing statistics for the set of outcomes obtained
from the realizations generated from the posterior distribution. Accordingly, the correct
sampling of the posterior is a vital issue in accurately quantifying the uncertainties and
many research works are devoted to find an efficient way for accurately sampling the
posterior distribution.

In general, there are two different types of sampling. The first type belongs to the
methods that is known to sample rigorously, such as inversion, rejection, sequential
realization, Gibbs sampler, Markov Chain Mont Carlo (MCMC), and Genetic
algorithms.>®  The second type belongs to those that are known to sample
approximately*’*

(LMAP), randomized maximum likelihood (RML)*, and pilot point (PP) method.

such as linearization about the maximum a posteriori estimate
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The most common method used to sample the posterior distribution rigorously is the
MCMC method and many of the approximate methods are just an approximation from
the MCMC under some specific conditions. In this section, a brief introduction about the
MCMC as a rigorous way of sampling and Randomized Maximum Likelihood (RML) as

an approximate way of sampling is given for completeness.

2.6.1 Markov Chain Monte Carlo (MCMC)

1", a Markov chain is a sequence of random variables X! ),

According to Cunha et a
XM, . X™ where the probability distribution for X™ is determined by the probability
distribution of X™V. The set of all possible values for X0 (1=0,1,2,...n) is called the
state space. The transition probability, P;i" gives the probability of obtaining state j at the
nth location in the sequence if the random variable is in state i at the n-1 location in the
sequence.

Let us denote a particular realization of a certain reservoir properties by m', with the
probability associated with it to be m;, where 7 is the posterior probability distribution
that we want to sample from and T; is the probability of sampling m' from the posterior
(i.e. m(m')). The objective is to generate a new realization or new state m' with the
probability associated with it to be m; such that the transition probability, P;; of obtaining
the state m’ from state m' satisfies the following conditions’’,

1- Itis possible to get from any one state to another in a finite number of transitions,

2- my=2 B (2.43)

Thus, the Markov chain will be stationary and ergodic (independent on initial
conditions) and m will be the stationary distribution, which is the posterior distribution
that we want to sample from.

In Metropolis-Hasting algorithm, the transition probability, P;; is partitioned into two

parts: B, =« q,, where g is the probability of proposing transition from state m' to

state m’ and i 1s the probability of accepting the proposed transition m' as the next state

in the Markov chain and it is given by:
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a, = min{l,ﬂ} .......... (2.44)

74,

Two important points should be taken into consideration in sampling the posterior
distribution using MCMC. The first is selection of g (i.e. the PDF used to sample for the
new state, m). If qij 1s close to the posterior distribution that we want to sample from,
most of the transitions will be accepted and the chain converges quickly to the posterior
distribution. The second point is the way of sampling, for example, whether the two-
point swapping, where two model parameter in two different grid blocks are swapped
per each transition to the new state or the local perturbation, where one model parameter
is perturbed per transition, or the global perturbation, where all the model parameters are
perturbed once per transition. Oliver et al.”' shows that local perturbation is more
efficient in generating independent realizations in the Markov chain for highly non-
linear problem, while global perturbation is efficient in linear to slightly non linear

problems.

2.6.2 Randomized Maximum Likelihood (RML)
Oliver et al.*’ propose a two step transition to a new state in MCMC that has a high
probability of acceptance in the Metropolis-Hasting algorithm. The first step is to
propose an unconditional realization from the prior probability distribution using any
unconditional simulation technique, like sequential Gaussian simulation.”® The second
step involves the history matching of the unconditional model to the production data that
has noise added. The conditional model resulting from the history matching process will
be a new state in the Markov chain. Because the acceptance rate was found very high
(approximately 95% for a small highly non-linear problem), they suggested to accept all
the new state proposed in the chain.

In this study, we applied this method to generate realizations and assessing the
uncertainty. The following is the algorithm for generating realizations from RML

method:
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1. Generate an unconditional realization of the reservoir model parameters,

m, < N [m 2 Cu J , by assuming that the variogram of the prior model is known, this

can be done by using sequential Gaussian simulation or any unconditional simulation
technique

2. Generate a realization of the data,
d, < Nl[d,,.C,] by adding a random noise to the observed data

obs >

3. Compute the set of model variables, m , that minimizes the function:

o(m):%(m_mu Yy (m_mu)%[g(m)_du Feilelm)-d,] . (2.45)

2.7 Chapter Summary

Bayes theory provides a good statistical tool to integrate static with dynamic data and
assess the uncertainty associated with the estimate. This chapter consists of three major
parts. The first part gives a brief introduction about Bayes theory and shows the three
important components for automatic history matching in Bayesian framework. Those
components are the data misfit, the prior term, and the optimization algorithm. For the
data misfit, the general three types of the data misfit are explained, with special
reference to the one that is used during this study which is the “Generalized Travel Time
Misfit”. For the prior term, a brief introduction is given about the covariance matrix
calculation in case of single type of model parameter, like permeability and different
type of model parameters, for example permeability and porosity. For the optimization
algorithm, a brief introduction about gradient-based and gradient-free algorithms with
detailed overview about the gradient based algorithms especially; the Newton type
algorithms are given.

The second part of this chapter concerns with the new Bayesian formulation that is
well-suited for field-scale applications. A numerical approximation of the square root of
the inverse of the covariance using the stencil is required by the new formulation and is
discussed. Finally the computational scaling in the form of the number of multiplication

required by both the conventional and the field-scale Bayesian is investigated. From the
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computational scaling it was found that the field-scale Bayesian scales linearly with the
increase in the number of model parameters compared to the conventional Bayesian
which scales quadratically. This makes the field-scale Bayesian well suited for field-
scale applications from the computational point of view.

The last part of this chapter gives one of the most important applications of the
Bayes theory which is the uncertainty assessment. In this part a brief introduction about
different types of sampling from the posterior distribution for uncertainty assessment are
given with a special reference to the rigorous one, which is the MCMC and the

approximate one which is used during this study, the Randomized Maximum Likelihood

(RML) method.
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CHAPTER III
SENSITIVITY COMPUTATION USING FINITE DIFFERENCE
MODELS

Sensitivity computation is a very critical step in automatic history matching process
when using gradient-based optimization algorithm like Gauss-Newton or Levenberg-
Marquardt to minimize the objective function given in the previous chapter. The
sensitivity is defined as the change in the production response due to a small change in
the model parameter. Chapter I discusses in details the different methods for sensitivity
computation using finite difference as the forward model. In this chapter, we present the
computation of the generalized travel time sensitivity with respect to the model
parameter using the adjoint method (optimal control theory) and the streamline-based
sensitivity for finite difference models. A complete detail for developing the generalized
travel time sensitivity using adjoint method for 3D, two phase flow is given with a brief
introduction for the generalized travel time sensitivity computation from streamline-

based sensitivity.

3.1 Adjoint Method-Based Sensitivity
There are three different approaches presented in the literature for sensitivity formulation
using the adjoint method. The first approach shows the sensitivity formulation starting

from a complete continuous form of the flow equation®**’

, the second approach shows
the formulation starting from a semi-continuous form of the flow equation”™®, where
only the left hand side of the flow equation is discretized leaving the right hand side in a
continuous form. The third approach shows the formulation in a complete discretized

7.2
form,5 7,29

where the flow equation is completely discretized. In this work, we will apply
the third approach to develop the formulation of the generalized travel time sensitivity
for 3D two phase flow problems.

The sensitivity computation using the adjoint method requires the following three

steps; the forward model formulation, adjoint system formulation, and finally the
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sensitivity coefficient formulation. The next sections will describe these steps in more

details.

3.1.1 Forward Model Formulation

In our work the forward model is IMPES finite difference simulator that is developed to
handle 3D, two-phase, oil-water problems. Then later, we used a commercial simulator
(viz. ECLIPSE™) for modeling fluid flow in porous media and the adjoint method-based
sensitivity calculation for practical applications.

The equations governing the two-phase flow equation in the reservoir after neglecting
capillary pressure are as follows:

Oil:

Km . A _g ¢S0
C,V (ﬂ = [K](Vp(x.v.20 J/UVD(x,y,z))j qo(x,y,z,t)—at(czB] ER)

o o o

Water:

K A ; s
oy (é[K](Vp(x’ ¥, 2,0 =7, VD(x,y, Z))j -q,(x,y,2,t) = 6_( :

(3.2
ILIB t Cszj ( )

w

S +S

1.0 (3.3)

Where, C, equal 1.127X10'3, C, equal 5.615, B, is the formation volume factor in
bbl/STB for m stands for o (oil), w (water), K, 1is the relative permeability for

phase m, u is the viscosity for phase m in cp, [K] is the permeability tensor,

K. 0 0
0 K, 0] K, K, K. are the permeability in md, pis the pressure at x,y,z
0 0 K.
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location and at time t, ¢ is porosity, g(x, y,z,t) is the source or the sink term per unit

bulk volume, STB/ft’-day it is zero at all the locations except at the location of the wells.

It is positive for production wells and negative for injection wells, S, is the phase m

saturation, y, is the specific weight of oil and water, and its unit is in psi/ft, and D is

the depth at x,y,z location.

By multiplying Eqs. 3.1 and 3.2 by bulk volume, V,, of each grid block and using

finite difference to discretize Eqs. 3.1 and 3.2, and neglecting the formation

compressibility, the following discretized equations are formed:

Oil:

Tox,i+1/2,j,k (pi+1,_j,k T Pijk TV oiry2,)k (DHI,_/,k - Di,j,k )
- Tox,i—l/2,j,k (pi,j,k “Pi ik T Voicy2,jk (Di,j,k - Di—l,j,k )
+ Toy,i,j+1/2,k (pi,j+1,k = Pijk ~Voij+2k (Di,j+1,k - Di,j,k )
- Tny,i,j—l/Z,k (pi,j,k “Pijak T Voijyak (Di,j,k - Di,j—l,k )
+T,. i knn (pi,j,k+l “Pijk ~Voi k)2 (Di,j,k+1 -D,;, )
- Toz,i,j,k—l/Z (pi,j,k = Pijia T Voijk-12 (Di,j,k - Di,j,k—l )

V i,j, +
v SIS CIN N

Water:

wa,i+1/2,j,k (pi+1,j,k Pk TV wivy2jk (Di+1,j,k - Di,j,k )

- zix,i—l/z,j,k (pi,_j,k “Picjk T Vwicyz ik (Di,_j,k - Di—l,_/,k )
T2k (pi,j+l,k Pk TV wij2k (Di,j+l,k -D, ;. )
- Twy,i,j—l/Z,k (pi,j,k —Pijx— 7/wi,j—l/2,k (Di,j,k - Di,j—l,k ))
+ Twz,i,j,k+l/2 (pi,j,kJrl ~Pijk Vi k12 (Di,j,k+l - Di,_/,k )

Tk (pi,j,k = Pijit T Vwijkoy2 (Di,j,k =D, )

Vv, s +
S fs b (s 0]

Yok

Y ik
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Where, ¢g,, is the phase m rate in STB/day, T, is the phase m transmissibility in X, y,
and z directions, b, is the reciprocal of the formation volume factor of phase m, At is

the time step, andi1=1,2,...... ng,j=12,...n,k=12,....n,

Eqs. 3.4, 3.5 with Eq. 3.3 are solved to calculate the pressure and water saturation at
each grid block per each time step, in addition to the production history at each well.
Since we are interested in matching only the water cut from the wells, so the production
history reported is only the water cut at each well. Also, the pressure and water
saturation at each grid block per each time step should be stored, as it will be used

during sensitivity computation.

3.1.2 Adjoint System Formulation
In formulating the adjoint system of equations, the discretized flow equations, Eqs. 3.4

and 3.5 are given in the following form:

Fl S K LK K) =V B,s, ) — s Y ] (3.6)

m @i, ),k m=m /i, jk m~mJi,jk

It is important to note that Eq. 3.6 gives the difference equations in fully implicit
form, thus it is important that the simulator used to be in fully implicit form for
consistency and for the pressure and water saturation calculated from the simulator to
satisty Eq. 3.6, which is used during our formulation of the adjoint system of equations
as our forward model.

Throughout, / refers to time step index; 0, 1, 2,...... L—1, where L is the total time step

index used in the forward model.

Vg . AcAy Az
pin Lolys BV ARG (3.7)
w0 A C,Ar

From this point on, we will assume that there are M simulator grid blocks that is

ordered from 1,2,3,...,M and then
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00 0
0 v
Vyiio willbe writtenas, V,*' = 00 ¥ | (3.8)
1+1

0 0 0 Vit |yt
Pressure will be written in the vector form as: p' = [pf P Py I (3.9
Saturation will be also written as: S| = [S s S ]T (3.10)
The reciprocal of the formation factor is also written in the vector form as:
T LG.11)
The rate also can be written as: ¢!, = [qfnl q., q. . ]T ..(3.12)

However, ¢, vector is sparse as small numbers of grids, which are the well grid blocks
are only have non zero ¢,
Similarly porosity, ¢, permeability, K, K, K. will be written in the vector as shown

in Egs. 3.9 -3.12.

Accordingly, Eq. 3.6 can be written in the following form:

Fy'P S K LK K )=A4" -4 L (3.13)
Where,

AP S p=v"(b,S,)" (3.14)
AP, Sl =v"(,S,) (3.15)
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F, is independent of porosity and depends on permeability, while A" and A’ are

porosity-dependent and permeability-independent. Accordingly the following equations

hold:

v\ ]=0 (3.16)
vl l=v, =y, jaityl=o (3.17)
Vel l=vi i |=v, i ]=0 e (3.18)

O in Egs. 3.16 -3.18 is a null M x M matrix.

Our objective is to get the sensitivity of the generalized travel time shift, A7 , at each

1 1 1 ! :
well, let us denoted now by g(p ,....., p', S, seeeee. S, KK . K.,p) subject to the set of

constraint equations in the form of finite difference equations given by Eq. 3.13 at each
grid block for each time step. In other words, we want to see how the perturbation in K,
Ky, K, and ¢ at each grid block will affect the generalized travel time at each well. So, a

two M—dimensional vectors of Lagrange multipliers are used to adjoin g with the finite

difference equations to form the augmented objective function J, where M is the

number of grid blocks, as follows:
A= 2, ar (3.19)

A =2, 2, 2] e (3.20)

Thus the equation after adjoining the g function with the constraint equations will be:
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J=g+ f(ﬂgl)T[F,j,“ A +A;] .......... (3.21)

m=o0,w [=0

From Eq. 3.21 and Eq. 3.13, it is clear that J and g are equivalent. Thus, the partial
derivative of J with respect to the model parameter is equivalent to the partial derivative
ofg. The g function in our case is the generalized travel time shift for each well at the
well location, but to keep the formulation general the adjoint equation will be formulated

for any arbitrary function g, which is at certain location in reservoir.

By taking the total differentiation of Eq. 3.21 with respect to the state variables,

pressure and water saturation and with respect to the control variables, K , K ,s Ko,

and g .

dJ = dg+ Z S(iin)r[(vpl I:Fni —A;]T)Idpl +(VS‘,4? [F"i —A,ln]T)‘dev}

m=o,w [=1

) (ka [P ]T)rde + (vky [ ]T)'de + (sz [Fi ]TydKz -
v 4TV ap+ 0, [TV ags (v LTV ap + (o, L] f ast

L

>

m=o0,w [=0

(21)

+BT*
........... (3.22)
Where, BT" is calculated from the following equation:
BT = AENT (V [FL AL]T )Td L (V [FL AL]T )TdSL (3.23)
- Z ( m) pL m  “Ap p + SML, m Ay wl e .

m=o,w

Since initially P, Sy, are always known and the variation in the control variables m

(K., K,, K., andg) will not have any effect on the initial pressure and water

saturation at each grid block, thus,
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dp®=ds’=0 (3.24)

Thus, any term multiplied by dp’ and dS° had to be neglected from Eq. 3.22.
Similarly, by taking the total differentiation of g as it is also depend on state and control

variables, thus the total differentiation of g will be:

dg = {Z W, el +lv,e] dS@)}+[VKYg]Tde V. el ax, +lv, gl dk +[v e ag
=1 ’ : ’ :
ee(3.25)
Substituting Eq. 3.25 in Eq. 3.22,

—
~ ~
L L
3 =
Sl Sl
— =
< <
> =
= )
I_'ﬂl l—,\]]
T~
+ +
< <
> >
0Q 0Q
~ ~
QU
=
[N}
+

/—/_\
~
L
—
=2
s 7
—
=
—_
<
SN

Eq. 3.26 is very important to understand it physically. It shows how the change in

the control variables m (K, K, K., and¢) at each grid block affect the pressure and

water saturation at each time step in each grid block. This in turn affect the augmented
objective function (J) which is equivalent to the change in g (generalized travel time at

each well) as seen from Eq. 3.21.



49

Since, the objective is to get the sensitivity of (g) with respect to the control
variables, which are the permeability and porosity, thus to remove the dependency of J

from pressure and water saturation, we choose the adjoint variables to insure that the

coefficients of dp'and dS! in Eq. 3.26 vanish. This will get the following adjoint

system of equations.

> I(V,,/ [F - al] )ﬂ’m +V [ ] 2 J= V,g e (3.27)

m=o,w

S|y [r-al )i +v [ 2 =—v e (328

m=o,w

Also, to remove the dependency of the change of pressure and water saturation at the

end of simulation, dp”and dS’. due to the change of the control variables, we set
AL =ab=0 (3.29)

This will be the initial condition to solve the adjoint system of equation, Eqs. 3.27 and
3.28 backward in time, to get the Lagrange multipliers, A at each grid block per each
time step. The right hand side of Eq. 3.29 is M-dimensional column vector of zero

values.

Thus, from Eq. 3.23 and Eq. 3.29,

BT =0 (3.30)

From Egs. 3.27, 3.28, and 3.30, the change in the augmented function J in Eq. 3.26, will
be:
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In our work, the (g) function is the generalized travel time shift at the well ;j, and

according to the formulation given in the previous chapter assuming we are shifting the

calculated towards the observed; the generalized travel time shift at well j is given by:

7 1 < i i
g = At] = _Z(tobs,j - tcal,j) .......... (332)
Ry i=1
Where, n, are the number of data points for well j, (i) is the index for the data point at

time ¢'. The gradient of the scalar function g in the adjoint system of equations, Egs.

3.27 and 3.28 are given by taking the gradient of Eq. 3.32 as follows:

_ [oa7, oA, oAz, |
szg =V At = P opl S (3.33)
1 2 M
. - [aﬁ, OAT, BAT, T 334)
1 &= ! P = ; - — | il .
S“’ Soholas,, oS, G

It should be noted that Eqs. 3.33 and 3.34 are vectors of non zero elements at grid

blocks containing producing wells only. At grid blocks of producing wells, the partial
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derivatives of the generalized travel time with respect to pressure and water saturation

are given as follows:

OAT, L A ot

O | P (3.35)
oP ng OP | ’ ng op
OAT, L ‘ Oty

L | P (3.36)
os, m,; OS, |57 ’ n, oS,

Where at time step index, /, that is corresponding to the same observed time, ¢', the
derivatives of Eqs. 3.35 and 3.36 exist, otherwise, the derivative will vanish. So, strictly
speaking in solving the adjoint system of equations backward in time the vectors of the
source term or the right hand side of the adjoint system of equations will be null vectors
except at the time corresponding to observed data point time, where the non zero
elements in those vectors will be corresponding to the grid blocks containing producing

wells only.
The derivatives in the right hand side of Eqs. 3.35 and 3.36 are given as follows:

1 atiul,j _ _L 8l‘ial,j . 6K . afwl;cal,j
aK aful;cal,j apl

ng

op' ny

J

The change in permeability has opposite effect with respect to travel time and water cut;

the increase in permeability leads to a decrease in travel time and increase in water cut,

thus:

o, oK 1 1
J . - — - ; = — 7 = 7 1 < e (337a)
aK aercal,j aercal,j /atcal,j (fwcal,j - fwcal,j )/(tcal,j - tcal,j)
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Substituting Eq. 3.37a in Eq. 3.37

1 atiul,j _ 1 1 afwl;cal,j b
T a F P ; Y o veereee(3.37b)
ndj p ndj (.fwcal,j - ﬁvcal,j )/(tcal,j - tcal,j) p
Similarly, the derivative with respect to water saturation is as follows:
1 atial,j _ 1 1 aful;cal,j
T A A Ay sl (3.38)
ndj w ndj (fwcal,j weal, j )/(tcal,j tcal,j ) w

Where, / in Eqgs. 3.37b and 3.38 is corresponding to time, ¢’ at the observed point (i) as
mentioned before, while /-1 is corresponding to time ¢~ which is (¢ — At ), where At
is the time step used in the simulation. This is a backward finite difference
approximation to get numerically the derivative of water cut with respect to time at
time ¢ assuming small A used during simulation. It is important to mention that in
general t' — At is not equal to ¢~ , which is the time for the next observed data point.
The partial derivative of water cut with respect to pressure and water saturation is

obtained as follows:

I K Kl -
s W i _p
8fécal’j B 0 ;{ﬂwlgfvl’j k,j ( J.k wf/)
apl ) apl N Kl i i S ;0 i i
_;L;B;L " 2 ow"")+;{ ;B;L P Pm)_
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- K Ki | _
" S5,
weal,j B wew dk,j
ost oSt & k1 . LK, i i
Z{ i gi :| 'Wlk,_/‘ (ij _PW./',/')+ Z|: i B } 'W[k,j (P/k _PWf,_/‘)
_/f:I /'lw w _lk,j k=1 oo lg,j ]

Where, K is the total number of layers opened for production for well (), WI; is the

well index for layer k£ at well j, which is independent of pressure and water saturation,

K!, , K! are the relative permeability to water and oil at the grid block of well (j) and at

the observed point (i) corresponding to time ¢'. B!, B! are the water and oil formation
volume factors at well j grid block and at the observed point (i) corresponding to time

t'. !, u' are the water and oil viscosity at well j grid block and at the observed time
t'. P!, is the pressure at the well j grid block and at time ¢'. P,, ; is the bottom hole

pressure at well j grid block and at time ¢' and it is assumed constant through the whole
perforation intervals by neglecting the friction loss of the tubing across the perforation
intervals. Appendix B shows a detailed derivative of Eqs. 3.39 and 3.40 with respect to
pressure and water saturation at each individual grid block opened for production.

It is important to mention that at each time step the adjoint system of equations, Eqs.
3.27 and 3.28 are solved only n,, times with the same matrix but with different right
hand side. While in case of the conventional amplitude inversion the adjoint systems
have to be solved ng (number of data points) times. This reduces the computational

difficulties especially in large field-scale problems.

3.1.2.1 Adjoint System Formulation in i,j,k Notation
Till this point the adjoint system of equations are obtained in the form of M simulator
grid blocks arranged from 1,2,3,.. M. The objective of this section to obtain the adjoint

system of equations given by Eqs. 3.27 and 3.28 in a conventional form of 1,j,k notation.
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We will show the procedures for changing Eq. 3.27 into the 1,j,k notation and similarly

the same procedures will be for Eq. 3.28. Eq. 3.27 can be written in the following form:

v T A -v el -v [l 2+v [l 4 -v [g] 4,

. . . veeeeennn.(3.41)
! 1 1 1+1 1 I+ _
v afa ey 4l v [all A =v g
Where, from Eqs. 3.4, 3.5, 3.6, and 3.7, fol , fvi are given as follows:
i i i ! !

fo,i,_/,k = Tox,i+1/2,j,k (pi+1,_/,k “Pijx T Voiry2,jk (Di+1,_/,k - Di,j,k )

i ! I !
- Tnx,ifl/z,j,k (pi,j,k “Pijx T Voicy2,jk (Di,j,k - Di—l,_/,k )

I ! ! !
+ Toy,i,j+1/2,k (pi,_/+1,k “Pijx T Voi 2k (Di,j+1,k - Di,j,k )

i I ! 1
- Tny,i,j—l/Z,k (pi,_/,k “Pijax T Voij2k (Di,_/,k - Di,j—l,k ) ceeennn(3.42)

1 1 1 i
+ Toz,i,_/,k+1/2 (p[,j,k+1 “Pijx T Voi k2 (Di,_/,k+1 - Di,_/,k )
i

! ! !
- Tnz,i,_/,kfl/z (pi,j,k = Pij1 T Voiji-2 (Di,j,k - Di,_/,k—l )

fwlv,i,j,k = vavx,i+l/2,j,k (pil+1,j,k - pil,j,k - yivi+l/2,j,k (Di+1,j,k -D, )

- Tvi'x,i—l/Z,j,k (pil,j,k - pil—l,j,k - ]/i/i—l/Z,j,k (Di,j,k - Di—l,j,k )

+ Twl/y,i,j+1/2,k (pil,j+1,k - pil,j,k - iji,j+l/2,k (Di,j+1,k -D, )

- Tvi'y,i,j—l/Z,k (pil,j,k - pil,j—l,k - 75»4,/‘—1/2,1{ (Di,j,k - Di,j—l,k ) (3.43)
+ T»fvz,i,j,kmz (pil,j,k-H - pil,j,k - yfvi,j,k+l/2 (Di,j,k+1 - Di,j,k )

- Tviz,i,j,k—l/z (pil,j,k - pil,j,k—l - 7/vlui,j,k—1/2 (Di,j,k - Di,j,k—l )

The first term in Eq. 3.41 is given in matrix form as follows:
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) Uy
o o ap,
af 01,1 a.f 01,2 af UI,M
7 _| opsy Op. op’
vl = p S (3.44)
af 01,1 af 01,2 af OI,M
_8p11v1 ap]lM apllw dAMxM

Similarly, we can write Vp, [f‘f ]T ,and Vp, [qfn ]T , sz [Afn ]T for m = o, w in the same form
as given by Eq. 3.44. The source term of Eq. 3.41, Vp/ g , which is a vector is given before

in Eq. 3.33. By substituting Eq. 3.44 and the gradients of the other terms of Eq. 3. 41

and writing the r™ row equation, the resultant equation will be:

i afols i U aqos U aAl ! d fvis l d qivs !
Za I Ao = P Z op ; 'ﬂoas Z I ﬂwv_z P A s
s=1 - s=1 Op, s=1 Op, s=1 , s=1 r (3 45)
v o4 | v o4 \ 8 W .
_z wl,s .;ti”_i_z 0. jf“ Z lvjlY gi[n
= O - ’ s=1 apr s=1 6 ’ ap,

For (r) corresponds to grid block 1,j,k , so from Eq. 3.42 and 3.43 , the only terms of fm i
in the sums of Eq. 3.45 that depend on pil,j,k are f ., o S, nlz,i,j—l,k’ J nlz,i,j,k—l’ /. ni,i,j,k’

! ! i ! . l :
Smisijus Jmijons Jmijun - Also for g,  the terms in the sums that depend on p, ;, is

only ern,i,j,k and for A4,  the only term that depends on p; Jx18 A;,i,j,k as seen from Eqs.
3.14, 3.15, and 3.7. For the source term of the adjoint equation, as mentioned before the
only term that is non zero is the term that at the same time corresponding to the time step
index / and at m =1, j, k.

Thus Eq. 3.45 can be written in the 1,j,k notation as follows:
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! ! i !
af'w,i,j,k—l /1] a.fo,i,j,k—l /11 af'w,i,j—l,k )i af‘o,i,j—l,k i
o Ayt o' Ak T o' " -1,k an! "o, j-1k
Di ik Pi ik Pi ik Pi ik
! ! ! ! !
N afw,i—l,j,k / afo,i—l,j,k / afw,i,j,k aqw,i,j,k aAw,i,j,k !
/ "M,k l “osi-1, ).k / - / - i "M, jk
api,j,k Pk api,j,k api,j,k api,j,k
afl oq' 0A' 8fl fl
o, jik o)k 0i,jik ! witljk Al 0t ik Al

g Cp g ek gr (3 46)
I 1 1 0,i,].k i w,i+l,j,k 1 0,i+1,j,k
Pijx Piju  Piju Pi ;i 9

i,j.k
I I I I
n 8fw,i,j+l,k ] afo,i,j+1,k i afw,i,j,k+1 i afo,i,j,kﬂ !
i ’ wii,j+1,k i ' 0,i,j+1,k i ) w,i, j,k+1 ! ’ 0,i,j,k+1
api,j,k api,j,k api,j,k api,j,k
I I i
_ OAyijk i OAyiji i g
- ] ik T ] ok T 7
api,j,k api,j,k api,j,k
Similarly, Eq. 3.28 can be written in the i,j,k notation as follows:
o, o, o, o,
w,i, k=1 /11 + 0,i,j,k-1 ﬂl w,i, j-1,k I 0,i,j-1,k I}
] i, k-1 7 "o, j k-1 ] “ i, -1k 7 * o, j-1k
aSWi,j,k a wi,jk aSWi,j,k aSWi,j,k
I I I I I
N S itk Y N P ik o FSoviji i B OAy; j x .

o Ay ia T -
oS, b a8 ! T es T as ! as.!

wii, j,k
wi,j.k wi,j.k wi,j.k wi,j.k
of! éq" 04! of! of!
0,i,j,k qo,i,j,k 0,i,j,k /i wii+l,j.k ! 0,i+l,j,k /i
/ - ] - ] 'ﬂ’oi‘k+ ] 'ﬂ’wi+1'k+ 1 'ﬂ’oz#l‘k (347)
oS oS oS " oS TR as e
wi,j.k wi,j.k wi,j.k wi,j.k wi,j.k
! / ! !
a,fw,i,jH,k /11 af'o,i,jJrl,k /1] af‘w,i,j,kH /1] af'o,i,j,kJrl il
+ 65 i ) wii,j+1,k aS i ' 0,i,j+1,k + aS ! ) w,i,j,k+1 + aS ! ) 0,i,j,k+1
wi,jk wi,j.k wi,j.k wi,j.k
! / /
_ OA,; i g 0A,; i Sl 08k
- / w,i, j.k / 0,i,j.k /
aSwi,j,k aSwi,j,k aSw,i,j,k
: : ! ! / ! ! 1
The derivative of the flow terms, fm,i—l,j,k ) fm,i,j—l,k > fm,i,_j,k—l > fm,i,j,k > fm,i+1,j,k ) fm,i,j+1,k >

! : ! . i
Somijusr» the accumulation terms, 4, , ., the source/sink terms, ¢, ., , and the source

term of the adjoint system of equations, gf, x> Wwith respect to pressure and water

saturation as required by Eq. 3.46 and 3.47 is shown in Appendix B.
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3.1.3 Sensitivity Coefficients Formulation

From the previous section, the adjoint variables A, m =o0,w has been calculated for

each grid block at each time step. This section gives the sensitivity coefficient
calculation by knowing the adjoint variables calculated from the previous section.

By considering J in Eq. 3.21, as a function of K, K , K., and ¢, the total

differentiation of J will be:
d=[v, I ak, v, i ak, +v, s ak +v, 0V ag (3.48)

Comparing Eq. 3.31 and Eq. 3.48, leads to the sensitivity coefficients calculation

equations, which are:

wos) [ Z E@TE T ot o

m=o,w [=0

(v, ) = [Z LZi/1”')T(VK}.[F,Z“]T)T}(VK}:gy e (3.50)

m=o,w [=0

SRS (M0 § R

L-1

\ :( >3 () [(V ST -, [Ty D+ V,el (3.52)

m=o,w [=0

In our work, the (g) function is the generalized travel time shift, which is given by
Eq. 3.32. Since, A7 is not an explicit function of permeability and porosity so the last
term in Eqs. 3.49 — 3.52 will vanish. As stated before from Eq. 3.21 and Eq. 3.13 that
the (J) and (g ) are equivalent, so J = AtNJ. (j=1,.ny).

By taking the transpose of Eqs. 3.49 — 3.52, the sensitivity of Ath with respect to the

model parameter will be:
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ong & 1+1 |1 4141
Vs = Yy vl (3.53)
m=o,w [=0
o JERN
Vi, AL ={ > 2V 7] 2 j .......... (3.54)
m=o,w [=0

<
e

2

I

-1
; (WZ Vi lF I/ WJ .......... (3.55)

n=0,w [=

VA7, =[ > ST —v¢[A;“]T]/1’;J v (3.56)

m=o0,w [=0

It is important to mention that the adjoint system of equations given by Eqs. 3.46 and
3.47 and the calculation of the sensitivity coefficients, given by Eqs. 3.53 — 3.56 has to
be performed ny, times to calculate the sensitivity matrix, G. This is a considerable
savings in computation time compared to the conventional method using amplitude
misfit, where the adjoint system of equations have to be solved n4 times which can be

order of magnitude larger than the number of wells. The sensitivity matrix for the

generalized travel time with respect to K as an example is given as follows:

[ OAT,  OAT, OAT,
ok, ok, ok,
OAT,  OAL, OAt,
G=| % Ok o | (3.57)
OAT,  OAI, OAT,
| ok, ok, G/

A%, AL, ... AT, are the generalized travel time shift at well 1,2, ...n, respectively.
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3.1.3.1 Sensitivity Coefficients Formulation in i,j,k Notation

The sensitivity coefficients formulation given by Eqs. 3.53 — 3.56 are obtained in the
form of M simulator grid blocks arranged from 1,2,3,.. M. The objective of this section
is to obtain the sensitivity coefficients in a conventional form of i,j,k notation.

We will show the procedures for changing Eq. 3.53 into the 1,j,k notation and similarly
the same procedures will be applied for the rest of equations, Eqs. 3.54 — 3.56. Eq. 3.53

is given as follows:

L

T 0 () PN 1 PERR 1) N 7 P70 B

=0

Where, £, fI*' are similar to that given before in Eqs. 3.42, and 3.43. The terms in

Eq. 3.58 are given as follows:

v AT OAT,  OAT, OAT, (3.59)
STk, K, K., o
B afm afm afm 7
oK., oK., oK,
ale aflJrl af”l
[f”/l‘*'l ]T — aKx,Z aKx,Z aKxaz , m=o,w L. (360)
afl+l aflJrl afl+1
_aKx,M 8]{x,M aKx’M dMxm
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oq,,  0g,), g, |
oK, oK, oK,
0d,y O 0
Vi, [Q,ln“ ]T - | Kz K K.z , M=0,W (3.61)
04, 04, 0,
K, oK., K,y |,

Substituting Eqs. 3.59 — 3.61 in Eq. 3.58 and writing the r'™ row equation, the resulting

equation will be:

in Z afulH l+l _Z aq‘l:ri L + f: afolj L i _f%-ﬂf (3 62)
x,r 1=0| s=1 aK Wb s=1 aKV " s=1 aKx,r - s=1 aKx’r ”

For ( r) corresponds to grid block i,j,k , so from Eq. 3.42 and 3.43 , the only terms of

Fus

fl+1
m,i+l,j,k >

terms that depend on K, are f,

fl+l
myi,jk+1*

and similarly for the sensitivity with respectto K, ., and K_, .

1+1
Zl/k are f,

: 1+1
K.« isonlyq,;

S, j.k—12

fl+1
m,i,jk >

Thus, Eq. 3.62 will be as follows:

1+1

1+1
fm;,j,k s

1+1

Also for g,

m,i,j—1,k >

m=o,w, in the sums of Eq. 3.62 that depend on K,  are f,

1+1
m,i—1,j,k >

1+1
fmjri,j,k >

which are in the transmissibility terms 7, , ,xand T, i« - Similarly, the

fl+1
m,i,j+1,k >

the terms in the sums that depend on

and those that depend on

i 1+1 I+1 1+1 ]
a.f‘w,i,j,k aqw,i,j,k I+1 afwz -1,/.k 1+1
aK - 8K /Iw,i,j,k + GK /IWI -1,j.k
x,i,j,k x,i, ),k x,i, ),k
g 1+1 I+1 1+1
L-1
aAtj _ afw,i+1,j,k I+l 8f0,i,],k aqo,i,j,k e 363
| Tt | St o7 (3.63)
x,i,j.k =0 x,i,j.k x,i,j.k x,i,j.k
1+1 1+1
af‘ol 1]/( /1[.;.1 +af01+1]k /114.1
8K 0,i-1,j,k aK 0,i+1,j,k
X0, j,k X0, ),k
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As we are interested to get the sensitivity with respect to permeability only, the

following two equations give the sensitivity formulation with respect to K, , and

K., ;.as follows:

I+1 I+1 I+1 ]
6fW,l, a W,l,l k ﬂ”l afW,i,_/*l,k ﬂlﬂ
aK - aK “Mwi ok aK “Mwi -1k
Viisj ok Viisjk Viisj ok
= -1 I+1 1+1 I+1
6Atj B + afw,i,j+1,k I+l N afo,i,j,k aqo,i,j,k I+ (3.64)
= e — W,i,j*»l,k _— . [],[A,./A,k .......... .
aKy,i,j,k =0 aKy,i,j,k 6Ky,i,./',k 6Ky,i,./lk
1+1 1+1
8f0 i j -1,k /1]+1 afo i ]+1 k /1]+1
0,i,j-1, k 0,i,j+1,k
OKy’i’j’k aKy’i’j,k
1+1 1+1 1+1 7
Ui B O ijn | i Wik i
’ w,i,j,k ’ w,i,jk—1
aI<z,i,j,k aI<z,i,j,k 8I<z,i,j,k
" 1+1 1+1 1+1
L-1
aAtj - Z +_6f Wik 14l 9. 0.4 jk aqo,i,j,k QM (3.65)
= "y k+l odjk | e .
aKz,i,j,k =0 aKz,i,j,k aKz,i,j,k 8Kz,i,j,k
1+1 1+1
afn,t,/ k-1 ﬂf” 6f0,i,_/,k+1 ﬂf“
+ aK 0,i,j,k-1 + aK ’ 0,i,],k+1
2,1, ),k z,i,j.k

I+1 I+1 I+1 :
The derivative of the flow terms, ;.. i x> Susix» With respect to K, .,

m,i,Jj, m

the derivative of f,*'. ., f, %' ., and f,' with respect to K the derivative of

m, Vi jik o

e fE . with respect to K and the derivative of the source/sink

mi,j k=12 mi,jk>JS mi,jk+l z,0,j.k >

K K _, ., are given in Appendix C.

I+1 :
terms, ¢,,; ,, with respect to K ik Ko

x,i,j.k 2

3.2 Streamline-Based Sensitivity
The streamline-based sensitivity calculation using finite difference as forward model

follows the following steps:
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i- Obtaining pressure, water saturation, and flux distribution from finite difference
models:

The pressure, water saturation and flux distribution are obtained at time steps

corresponding only to the pressure update times due to changing filed conditions, like

infill drillings, changing well conditions, etc. We use a commercial finite-difference

simulator (viz. ECLIPSE™) for modeling flow in the reservoir to calculate the pressure,

water saturation, and the flux distribution. The two-phase black oil model used here is

completely general and includes comprehensive physical mechanisms such as

compressibility, gravity effects and other cross-streamline fluxes such as mobility

effects, rate changes, infill drilling etc.

ii- Calculating the total velocity field

The total velocity field is calculated from the fluxes distribution obtained from the

previous step.

iii- Tracing the streamline

The streamline tracing takes place by knowing the velocity and calculating the time of

flight according to the algorithm given by Datta-Gupta and King™*.

iv- Sensitivity calculation

The generalized travel time sensitivity is calculated by knowing the velocity field and

the streamlines traced along the grid blocks. A detailed discussion about the sensitivity

computation is given in the next sections.

3.2.1 Generalized Travel Time Sensitivity without Pressure Update

The formulation for the generalized travel time shift is given in the previous chapter for
two different cases; shifting the calculated towards the observed and the opposite. In this
section, we will assume that we are shifting the calculated towards the observed, so the
sensitivity of the generalized travel time shift for well j with respect to the model

. . 11
parameter, m , is given as follows :
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o7 ;ati,j /om

om ny

The sensitivity of travel time at producing well j can be obtained in terms of the
streamline time of flight as discussed by He et al."’,
Considering two-phase incompressible flow of oil and water in a non-deformable
permeable medium. The transport equation can be written in the streamline time of flight

coordinates as follows

F
By B o (3.67)
ot ot
Rearranging Eq. 3.67,
o, __oK0o5, (3.68)
o S, ot

In the above expression, 7 represents the streamline time of flight which is the travel

. .1
time of a neutral tracer along a streamline'’,

T = Is(x) dx (3.69)
z

where, the integral is along the streamline trajectory, X, and s(x)is the ‘slowness’

defined as the reciprocal of the total interstitial velocity'

_ P(x)
s(x) = ReOEE e (3.70)
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Where A, represents the total phase mobility, if we assume that the streamlines do not

shift because of small perturbations in reservoir properties, then the changes in the water

saturation at the outlet node of a streamline is given by

T
55 =B 5, B [ﬁ} sn (3.71)
a @ or Lom

The propagation of a fixed saturation can be expressed by simply setting o5, =0 as

follows
T
095 5 95, [ﬁ} smo (3.72)
o © " or | om

We can now combine Eq. 3.72 with Eq. 3.68 in order to obtain the following expression

for travel time sensitivity with respect to a model parameter m in terms of the
l

streamline time of flight,

or
om
ot ;
L (3.73)
om . 6FW
i
oS,

In the above expression, the fractional flow derivatives are computed at the
saturation of the outlet node of the streamline. The time of flight sensitivities can be
obtained analytically in terms of simple integrals along streamline from Eq. 3.69 by
assuming no shift of streamline due to change in reservoir parameters as mentioned

before, so the change in time of flight can be expressed in terms of slowness as follows:
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or=[&(odr (3.74)

As the slowness is a composite function involving reservoir properties, its first order

variation is as follows:

Os(x)

Os(x) % — o) (3.75)

5 (x) = K

——0K(x)+

where, the partial derivatives are

os(x) _  —4p® _ s(x) cren(3.76)
K  AK*VP  K(x)

0s(x) _ 1 _ s(x)
op  AKX|VP ¢(x)

Accordingly, from Eq. 3.74 — 3.77, the time of flight sensitivities can be obtained
analytically in terms of simple integrals along streamline. For example, the time of flight

sensitivity with respect to permeability will be given by

_,[ ﬁs(x) _ J- s(x) . -
6K(x) 6K(X) 4 K(x) (3.

where the integrals are evaluated along the streamline trajectory. It is to be noted that the
quantities in the sensitivity expressions are either contained in the initial reservoir model
or are produced by a single simulation run regardless of the number of parameters or the

number of data points.
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3.2.2 Generalized Travel Time Sensitivity with Pressure Update

The travel time sensitivities derived before assume a stationary streamline, for the cases
of changing field conditions or infill drillings this assumption is no longer valid and a
new sensitivity equation should be derived to account for pressure updating and
remapping of water saturation. According to He et al.'!, the sensitivity of the travel time

will be as follows:

or.
o om, ot"
= L + Ceeeeeenes 379
om, OF, om, G-
oS

In the above equation, ot" /om, is the travel time sensitivity at the beginning of the

pressure update. For multiple pressure updates, o¢" /om will correspond to that of the last
update. Again, all the quantities in Eq. 3.79 can be obtained analytically from a single
forward simulation. Thus the sensitivity computations are extremely efficient and do not
require any additional simulations regardless of the number of data points or the number

of parameters.

3.3 Chapter Summary

In this chapter, we give a detailed discussion about calculating generalized travel time
sensitivity using the adjoint method with a brief overview of the streamline-based
sensitivity using finite difference models. For the adjoint method, the sensitivity
calculation per minimization iteration require one forward simulation run and solving
2M adjoint system of equations each time step for N,, times to get the Lagrange
multipliers. For the streamline-based sensitivity, the sensitivity calculation requires one
simulation run and retracing the streamline and updating the sensitivity calculation each
pressure update. So, the major computational advantages of streamline-based sensitivity

computation compared to the adjoint method are in two points. First, the streamline



67

requires retracing the streamline and updating the sensitivity calculation each pressure
update, which is far less than the time steps used to solve the 2M adjoint system of
equations. The second point, which is most important, is that all the information required
to calculate the sensitivity can be obtained from only one simulation run. So it is
independent of the number of wells, compared to the adjoint method where for
sensitivity calculation, the adjoint system of equations are required to be solved N, times
to get all the information for sensitivity calculation. To improve the adjoint method to be
comparable to the streamline-based sensitivity is to solve the adjoint system of equation
using larger time step™, for example equivalent to the number of pressure update used in
streamline; however, still the second advantage of streamline-based sensitivity makes it
superior compared to the adjoint method or any other rigorous sensitivity calculation

method.
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CHAPTER IV
APPLICATIONS

In this chapter we shows applications for automatic history matching on Bayesian
framework using two different approaches of sensitivity calculation required by any
gradient based optimization algorithms, those are adjoint method-based sensitivity and
streamline-based sensitivity which discussed before in Chapter III. Also, we used two
different approaches to include the regularization term in the objective function, one
based on the conventional approach of using the full covariance and the other based on
the approximation of the square root of the inverse of the covariance using numerical
stencil which is well suited for field-scale applications. In addition, we use two different
techniques during the minimization process for updating the mode parameter, one is the
exact calculation of the model parameter update during the minimization using the
conventional Gauss-Newton with full covariance, and the other is using LSQR as a
sparse matrix solver for calculating the model parameter update with an approximation
of the square root of the inverse of the covariance using numerical stencil which
discussed before in Chapter I1.

Fig. 4.1 and Fig. 4.2 show a flow chart for the automatic history matching process in

Bayesian framework used during this work for adjoint method-based sensitivity and
streamline-based sensitivity, respectively.
The first part of this chapter gives the comparison between the travel time sensitivity
obtained from the perturbation with that obtained from adjoint method after we
formulate it to 3D, two phase flow problems and using commercial simulator (viz.
Eclipse™) as a forward model.

The second part shows two different synthetic examples to test the accuracy of the
history matching using adjoint method-based sensitivity with two different approaches
used during the minimization process, one with Gauss-Newton with full covariance,
which we call it “conventional Bayesian Approach” and the other with LSQR as sparse

matrix solver with an approximation of the square root of the inverse of the covariance
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Fig. 4.1-Flowchart for automatic history matching process using adjoint method-
based sensitivity
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using numerical stencil, which we call it “Field-scale Bayesian Approach” as it is well
suited for field-scale applications.

The third part of this chapter shows the CPU time scaling with increasing the model
parameters for both the conventional and field-scale Bayesian approach using four
synthetic cases of model size ranges from 8000 to 80,000 grid blocks and also shows a
comparison between the CPU time required for the sensitivity calculation using both
adjoint and streamline-based sensitivity.

The fourth part of this chapter shows a field case application taken from Goldsmith
San Andreas unit in West Texas using both adjoint method-based sensitivity and
streamline- based sensitivity with the field-scale Bayesian approach during the
minimization process.

Finally, the last part of this chapter uses the Randomized Maximum Likelihood to
generate multiple realizations from the posterior distribution which can be further used

to assess the uncertainty in the production forecast for Goldsmith field case.
4.1 Sensitivity Comparison

In this section we show the comparison between the travel time sensitivity obtained from
perturbation and that obtained using adjoint method for 3D two phase flow as formulated
before in Chapter III. The only different between the generalized travel time sensitivity
given before in chapter III and the travel time sensitivity is in the way of formulating the
source term (g) in the adjoint system of equations given by Eqs. 3.27 and 3.28, where

the source term is given as:

g=th,. (4.1)

Where, ¢ . is the travel time at well j and at observed point ¢', which is one single

cal,j

i

point on the production response. The gradient of 7,

with respect to pressure and

water saturation is obtained in the same manner as given by Eqs. 3.33 and 3.34 by
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replacing generalized travel time with travel time. At grid blocks of producing wells and
at the observed time #' corresponds to the simulation time index ¢’ , the partial
derivatives of the travel time with respect to pressure and water saturation are given as
follows:

al‘iul,j _ atial,j . aK . af"‘iﬁ'al,f

ap ! aK af Mical J ap :

Similarly as mentioned before, the change in permeability has opposite effect with

respect to travel time and water cut, thus:

Ole; 0K -1 -1

— = — = — — 4.3)
6K a.f‘wcal,j a.fwcal,j /atcal,j (fulfcal,j - fulfail,j )/(tcl*al,j - tcl’all,j)
Substituting Eq. 4.3 in Eq. 4.2
o, . _ oft
mll"’ =— 5 ! ; o fwmll” e (44)
ap (fwcal,j - fwcal,j )/(tcal,j - tcal,j) ap
Similarly, the derivative with respect to water saturation is as follows:
Oleas _ -1 oy (4.5)

I I -1 I I-1 /
aSw (fwcal,j - fwcal,j )/(tcal,j - tcal,j) aSw

Where, / in Eqgs. 4.4 and 4.5 is corresponding to time, ¢' at the single observed point (i)
selected to get the travel time sensitivity, while / —1 is corresponding to time ¢'~' which

is (' — At), where At is the time step used in the simulation.
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The derivative of water cut with respect to pressure and water saturation is given
before in Eqgs. 3.39 and 3.40.

The sensitivity of travel time with respect to horizontal permeability from
perturbation is obtained by perturbing the permeability in x and y direction at each grid
and getting the change in the travel time with respect to the change in permeability at
certain specified water cut value. So for M grid blocks we need to run the forward model
M-+1 times to obtain the sensitivity matrix. The amount of perturbation used is 5% of the
amount of the permeability at each grid block.

The example shown here to show the comparison between the sensitivity from
perturbation and that obtained from adjoint method is quarter five spot of 15x15x2
where we used a homogenous permeability of (K = K, = 244.7 md) and K, = 15 md,
The porosity is homogenous of 0.22. The producer is at grid block (3,3) and produced
from the two layers with constant production rate of 500 STB/D while the injector is at
grid block 13,13 and injected water in two layers with constant bottom hole pressure of
6100 psi. The initial reservoir pressure used is 5500 psi and the initial water saturation is
0.2. The simulation time used is 950 days and the water breakthrough at the producer
occurs after 300 days of production.

Figs. 4.3 a and b show the travel time sensitivity from perturbation and from adjoint
method, respectively. It can be easily shown that the travel time sensitivity from adjoint
method has the same trend and the locations of the high and low values matches well
with the travel time sensitivity from perturbation. It is important to mention that
including the injectors and using the formula given by Eq. B.51 to model it and getting
its derivative with respect to pressure and water saturation required by the adjoint system
of equations and getting its derivative with respect to permeability required by the
sensitivity equations always overestimate the sensitivity values at the injectors compared
to the perturbation and by not including the injectors the results getting better as shown
in Fig. 4.3b. This might be due to the reason that the formula used to model the rate
allocation from the injectors use the total mobility not only the water mobility so that if

the injectors is placed in grid block that water saturation is at connate water saturation,
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Fig. 4.3—Comparison of travel time sensitivity with respect to horizontal
permeability from the two layers, (a) perturbation, (b) Adjoint
method

the mobility of water will be zero while the mobility of oil is not, thus using total
mobility to model the rate allocation from injectors will ensure that always water is in
mobile status even if the water saturation at the injection grid block is still at connate
water saturation. In fact in solving the adjoint equation backward in time the water
saturation at late time will not be at connate water saturation anymore so using the
formula given by Eq. B.51 with total mobility will definitely overestimate the
sensitivity. So, clearly additional work should be done in this area to see how we can
include the injectors in the sensitivity calculation so that we can get reasonable result

with perturbation.

The comparison of streamline sensitivity with perturbation can be found

10,11
elsewhere'®
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4.2 Synthetic Examples Using Adjoint Method-Based Sensitivity

The objective of these synthetic examples is to test the accuracy of the inversion and to
test its practical application using adjoint method-based sensitivity for 3D two phase
reservoirs under two different approaches; one is for full covariance with Gauss-Newton,
the other is with LSQR with the approximation of the square root of the inverse of the

covariance using numerical stencil.

4.2.1 Example 1: Reservoir of Three Permeability Regions
This example is 15x15x2, Table 4.1 summaries the data used for this example and Fig.
4.4 shows the relative permeability data. The well pattern is five spot, with four
producers at the four corners and one injector at the middle. The four producers produce
from the two layers with constant total rate of 100 STB/Day and the injector injects in
the two layers with constant bottom hole pressure of 6100 psi. The location of the
producing wells 1, 2, 3, and 4 are at grid blocks (3,3), (13,3), (13,13), (3,13),
respectively, while the injector is at grid block (8,8).
The true horizontal permeability field is given in Fig. 4.5a, where it consists of three
different zones of permeability at the upper and lower layer. The prior mean and the
initial horizontal permeability are the same and it is given in Fig. 4.5b which is a
uniform permeability of 244.7 md at the upper layer and 54.6 md at the lower layer. The
vertical permeability is kept constant and it is equal to 15 md. The observed water cuts
at the four producers are generated by running the simulator for the true permeability
distribution given in Fig. 4.5a.

The inversion is done using two different approaches that discussed before in
Chapter II, which are “Conventional Bayesian” and “Field-scale Bayesian”.
I- For conventional Bayesian approach
Fig. 4.6a shows the final permeability after inversion along with the true permeability in
Fig.4.6b for comparison purpose. Fig. 4.7 shows the water cut match from the initial and
the MAP estimate for the four producers and Fig. 4.8 shows the “generalized travel

time” misfit and the conventional “amplitude” misfit as function of number of iterations
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and it is clearly seen that the reduction in the misfit from both generalized travel time

and amplitude are in good consistent with each other.

Table 4.1-Data for example 1

Grid Blocks 15x15x2

Grid Size Ax=40ft, Ay =40ft, Az=30ft
Porosity 0.22

Oil and Water Viscosity u, =082cp, u,=1.0cp

Oil and Water Compressibility

¢, =0.00001, c, =0.000004

Initial Water Saturation

0.2

Initial Pressure

5500 psi

Oil Formation volume factor, B, at P,

1.24 bbl/stb

Water Formation volume factor, B, at P, 1.0 bbl/stb
Prior Variogram Model Exponential
Ranges in x, y, z direction 160 ft

Sill for In K oLk =05

06 08
05 - - 07

- 06
04 - o5

& 031 +o04 G

02 - 03

- 02
01 - ol

0 0
0 1

Fig. 4.4—Relative permeability data for example 1
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Fig. 4.5—(a)True permeability, (b)Initial and prior mean permeability for example 1

(a) (b)

Ink: 3831253 8625 400375 4225 430625 448754 61875 475 48125525 514375 S.2750 5406255 5375 SBEEVS

Fig. 4.6—(a) Final permeability using conventional Bayesian approach,
(b) True permeability for example 1
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Fig. 4.7-Water cut match for the four producers using conventional Bayesian
approach for example 1
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Fig. 4.8—Misfit reduction for example 1 using conventional Bayesian approach
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It is clear from the final permeability given in Fig. 4.6a that most of the changes
takes place around well 3 and 4 and this is shown from the water cut match for those
wells, where the match has been improved compared to the initial model, while for the
other wells, well 1 and 2 the match was quite good from the initial model that is why no

changes occurs around those wells.

II-For field-scale Bayesian approach

In this approach we use 5x5x5 stencil to approximate the square root of the inverse of
the covariance using numerical stencil as discussed in Chapter II and then use LSQR as a
sparse matrix solver for updating the model which is the permeability at each grid block
to minimize the objective function given by Eq. 2.8 or Egs. 2.27 and 2.28.

Fig. 4.9 shows the comparison between the exact covariance which is used in the
conventional Bayesian approach and the covariance obtained from using 5x5x5 stencil in
order to see how accurate is our choice of 5x5x5 stencil in approximating the full
covariance. The covariance from the stencil is obtained using the same way of
approximating the square root of the inverse of the covariance, where instead of using
column 63 after getting the square root of the inverse of the 125x125 matrix generated
form the 5x5x5 stencil, we used directly column 63 from the 125x125 covariance matrix
and populate the full matrix using the same technique of the numerical stencil. In Fig.
4.9 we show the comparison for one of the row of the full size covariance matrix which
is the middle row (row 225), as it is difficult to show the comparison row by row for
450 x450 full covariance matrix used in Example 1. As seen from the comparison that
however the ranges of variogram used in example 1 extend to four grid blocks in the x, y
directions and five grid blocks in the z direction, while the 5x5x5 stencil extend only to
two grid blocks in the X, y, and z direction and any correlation between any two
permeabilities that has distance more than two grid blocks will be zero, the comparison
of the covariance obtained from the stencil shows good agreement with the exact

covariance especially for the values of high magnitude.
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Fig. 4.9—Comparison between the exact covariance and covariance from 5x5x5
stencil at row 225 for example 1

Similarly as done before for the conventional Bayesian, Fig. 4.10a shows the final
permeability after inversion along with the true permeability in Fig.4.10b for
comparison purpose. Fig. 4.11 shows the water cut match from the initial and the MAP
estimate for the four producers and Fig. 4.12 shows the “generalized travel time” misfit
and the conventional “amplitude” misfit as function of number of iterations and also
both the amplitude and the generalized travel time misfit are in good consistent with
each other.

It is clearly seen from the final permeability and the water cut match from the both
approaches that there is no big difference, only the filed scale Bayesian approach take
more iteration to converge to the same value as obtained by the conventional approach,
however the computation time taken for the field-scale Bayesian approach is far less
than that for the conventional approach especially for field-scale applications where the
number of model size can exceed thousands to millions grid blocks as will be shown in
the next part of this chapter that compares the computation time required by the both

approaches for field-scale applications.
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Fig. 4.10—(a) Final permeability using field-scale Bayesian approach,

(b) True permeability for example 1
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Fig. 4.11-Water cut match for the four producers using field-scale Bayesian
approach for example 1
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Fig. 4.12—Misfit reduction for example 1 using field-scale Bayesian approach
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4.2.2 Example 2: Heterogeneous Reservoir

The purpose of this example is to test our formulation of the generalized travel time
sensitivity using adjoint method for heterogeneous case. The example used is 15x15x3,
the data used for this example and the relative permeability is the same as that given for
example 1 in Table 4.1 and Fig. 4.4. Also, the well pattern is 5 spot with the location of
the producers and the injectors the same as given in Examplel with the only exception
that the producers and injectors are completed in the three layers.

The true horizontal permeability field is given in Fig. 4.13a, the true permeability is
generated using Sequential Gaussian Simulation®> and characterized by high
permeability in the lower right quadrant for both layer 1 and 3, while layer 2 is
characterized by its low permeability compared to the upper and lower permeability with
high permeability on the right half of the layer and single high permeability streak on the
left part of the layer. The prior mean and the initial horizontal permeability are the same
and it is given in Fig. 4.13b which is a uniform permeability of 387.5 md (In k = 5.95)
in the upper layer, 119.2 md (In k = 4.78) in the middle layer and 419.32 md (In k =
6.03) in the lower layer. The vertical permeability is kept constant and it is equal to 15
md. The observed water cuts at the four producers are generated by running the
simulator for the true permeability distribution given in Fig. 4.13a.

Similarly, the inversion is done using two different approaches that discussed before
in Chapter II, which are “Conventional Bayesian” and “Field-scale Bayesian™.

I- For conventional Bayesian approach

Fig. 4.14a shows the final permeability after inversion along with the true permeability
in Fig.4.14b for comparison purpose. Fig. 4.15 shows the water cut match from the
initial and the MAP estimate for the four producers and Fig. 4.16 shows the “generalized
travel time” misfit and the conventional “amplitude” misfit as function of number of
iterations and as it is clearly seen that the reduction in the misfit from both generalized
travel time and amplitude are in good consistent with each other as shown before for

example 1.
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Fig. 4.13—(a) True permeability, (b) Initial and prior mean permeability for
example 2
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Fig. 4.14—(a) Final permeability using conventional Bayesian approach,
(b) True permeability for example 2
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As It is clear from the final permeability given in Fig. 4.14a that most of the changes
from the initial takes place around the producing wells 1, 2, and 3 and the injectors to
match the water cut data and this shows also in the water cut match shown in Fig. 4.15
where the water cut has been changed completely for wells 1, 2, and 3 to match the
water cut data. However, between the producing well 4 and the injectors, no significant

changes take place as the water cut match from the initial model was quite satisfactory.

II-For field-scale Bayesian approach

Similarly, as mentioned before in Example 1, we use 5x5x5 stencil to approximate the
square root of the inverse of the covariance using numerical stencil as discussed in
Chapter II and then use LSQR as a sparse matrix solver for updating the model which is
the permeability at each grid block to minimize the objective function given by Eq. 2.8
or Eqs. 2.27 and 2.28. Fig. 4.17 shows the comparison between the exact covariance
which is used in the conventional Bayesian approach and the covariance obtained from
using 5x5x5 stencil in the same manner that was done before in order to test the
accuracy of the 5x5x5 stencil in constructing accurate covariance which in turn gives
accurate square root of the inverse of the covariance required by the LSQR solver during
the minimization.

Fig. 4.17 compares row number 338 of the full covariance which is of order 675x675
for this example with the covariance obtained from the stencil, as it is clear that the
covariance from the stencil shows perfect agreement with the exact covariance for the
values of higher magnitude, however the ranges used in the stencil covers only 2 grid
blocks in the three directions, while the actual ranges used in this example covers four

grid blocks in the x, and y direction and five grid blocks in the z direction.
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Fig. 4.17-Comparison between the exact covariance and covariance from 5x5x5
stencil at row number 338 for Example 2

Similarly as done before for the conventional Bayesian, Fig. 4.18a shows the final
permeability after inversion along with the true permeability in Fig.4.18b for
comparison purpose. Fig. 4.19 shows the water cut match from the initial and the MAP
estimate for the four producers and Fig. 4.20 shows the “generalized travel time” misfit
and the conventional “amplitude” misfit as function of number of iterations and also
both the amplitude and the generalized travel time misfit are in good consistent with

each other.
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Fig. 4.18: (a) Final permeability using field-scale Bayesian approach,
(b) True permeability for example 2
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Fig. 4.19—Water cut match for the four producers using field-scale Bayesian
approach for example 2
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Fig. 4.20—Misfit reduction for example 2 using field-scale Bayesian approach

From the comparison between the final permeability and the water cut match
obtained from the field-scale Bayesian and the conventional Bayesian, it is clearly no big
changes due to the good approximation of the 5x5x5 stencil compared to the exact as

shown from Fig. 4.17. However, using the concept of the stencil reduces the
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computation required as mentioned before especially for large sale field applications.
The only notice which also takes place in Example 1 is that the reduction of the misfit
using the Field-scale Bayesian needs more iteration to converge to the same values used

by Gauss-Newton.

4.3 Scaling Comparison

The primary purpose of this section is to examine the CPU time required during the
minimization process and updating the permeability using Gauss-Newton with full
covariance (Conventional Bayesian) and LSQR with the square root of the inverse of the
covariance approximated using numerical stencil (Field-Scale Bayesian) in order to
validate the findings in Chapter II, where we found that the number of multiplications,
which is directly proportion to the CPU time, for the conventional Bayesian approach
scales quadratically compared to the linear scale of the Field-scale Bayesian. The
second purpose is to show a comparison between the CPU times for the sensitivity
calculation from Adjoint method and streamline method and finally, to show the scaling
properties of the conventional and field-scale Bayesian through the whole iteration
process using adjoint method-based sensitivity and streamline-based sensitivity.

To achieve those purposes, we generated four 2D synthetic cases using Sequential
Gaussian Simulation® with grid blocks ranges from 8000 to 80,000. Table 4.2
summaries the different cases used in this study. The well configuration for the four
synthetic cases is multi pattern water flooding as shown in Fig. 4.21 with 27 producers

and 15 injectors and we are integrating the water cut response from 5 producers.

Table 4.2—Grid block size for the synthetic cases

Cases Nx Ny M
1 128 64 8192
2 150 80 12000
3 200 100 20000
4 400 200 80000
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Fig. 4.21-Well configuration for the synthetic examples, showing the location of the
producers, the injectors and the producers whose water cut are integrated during
the history matching

It is important to mention that in using the conventional Bayesian approach with full
covariance, we used to save the covariance matrix row by row in a binary file to
overcome the memory allocation problem of the covariance matrix for large model sizes.
Fig. 4.22 shows the CPU time comparison per iteration for the conventional and field-
scale Bayesian during the minimization process as function of the number of grid blocks.
It is clear that the conventional Bayesian shows a quadratic scaling compared to the
linear scaling of the field-scale Bayesian and this confirms the formulation of the

number of multiplications for each approach that shown before in Chapter II.
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Fig.4.22—CPU time comparison during the minimization process between the
conventional and field-scale Bayesian

The second objective of this section is to compare the sensitivity calculation from
adjoint method and streamline-based sensitivities. Fig. 4.23 shows this comparison,
where both shows almost linear trend with increasing the model size, however the rate of
increase of the CPU time with increasing the model size is small in case of streamline-
based sensitivity compared to the adjoint method-based sensitivity. The most important
1s the CPU time different between the two methods, where the CPU time in case of
adjoint method is about two logarithmic cycles more than the streamline-based
sensitivities. This is because the adjoint method-based sensitivity using generalized
travel time concept depends upon the number of integrated wells which are 5 wells in
these synthetic cases and if the number of integrated wells increase, the CPU time

different between the both methods will obviously increase.
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CPU Time Comparison for Sensitivity Calculation
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Fig.4.23—CPU time comparison for sensitivity calculation between the adjoint
method and streamline-based sensitivity

The third objective of this section is to show the CPU time per iteration for the whole
iteration process for both the conventional and field-scale Bayesian using adjoint
method-based sensitivity and streamline-based sensitivity, Fig. 4.24 a, and b show the
CPU time comparison for the both sensitivity method, respectively. It is clearly shown
that the CPU time per iteration in case of adjoint method-based sensitivity and
streamline-based sensitivity gives a linear trend in case of Field-scale Bayesian. While in
case of conventional Bayesian the CPU time per iteration in case of streamline-based
sensitivity shows a quadratic trend as expected while the adjoint method-based
sensitivity shows a nearly linear trend. This is because the CPU timing of the whole
process in case of adjoint method is highly affected by the sensitivity calculation timing,
this can be noticed form a comparison between the timing taken during the minimization
for the conventional Bayesian (Fig. 4.22) and that during the sensitivity calculation from
the adjoint method (Fig. 4.23), thus the total CPU time per iteration for the whole
process using adjoint method-based sensitivity is highly affected by the linear trend of
the sensitivity calculation, that is why it shows nearly linear trend with increasing the

model size. The opposite situation takes place in case of streamline-based sensitivity for
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the conventional Bayesian, where most of the operation timing is highly affected by the
timing of the minimization process which behaves quadratically with increasing the
model size, that is why the streamline-based sensitivity shows quadratic trend in case of

conventional Bayesian.

CPU Time Comparison for the whole process: Adjoint Method CPU Time Comparison During the whole Process: Streamline Method
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Fig. 4.24—CPU time per iteration for the whole inversion process for (a) adjoint
method-based sensitivity; (b) streamline-based sensitivity

4.4 Field Application: Goldsmith San Andreas Unit
In this section we show a field application taken from Goldsmith San Andreas unit in
west Texas using the field-scale Bayesian approach with our formulation of the
generalized travel time sensitivity from adjoint method and from streamline-based
sensitivity.

Goldsmith is a CO2 pilot project area in the Goldsmith San Andres Unit (GSAU), a
dolomite formation in west Texas. The pilot area consists of nine inverted 5-spot
patterns covering around 320 acres with average thickness of 100 ft and has over 50

years of production history prior to CO2 project initiation in Dec 1996. We used the
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waterflood production history prior to the CO2 injection. Fig. 4.25 shows the CO2 pilot
project site in the GSAU. The extended study area is shown in Fig. 4.26 with 11 water
injectors and 31 producers. Among the producers within the study area, 9 wells showed
significant water-cut response before the initiation of the CO2 injection and are used for
data integration. These 9 producers are specified with well name in Fig. 4.26. The
producing wells have changing productions rates and some producers were shut in and
some others are converted to injectors during the production period, a summary of the
well schedules indicating infill drilling, well conversions and also well shut in is
discussed by He et al.'' For adjoint method-based sensitivity, it is important to know the
well schedules during the production period especially the conversions of the wells from
producers to injectors or shut in or for introducing new wells to account for the source
and sink term in the adjoint system of equations and in the sensitivity calculation. For
streamline-based sensitivity, it is important to account for the changing production rates
and different starting times of the injection and production wells by saving the fluxes,
pressures and water saturation for sensitivity calculation at the those times from
ECLIPSE. We used 11 pressure updates to retrace the streamline and updating the
sensitivity calculation from streamline-based sensitivity. The study area is discretized
into a 58x53x10 mesh or a total of 30,740 grid cells. The porosity field, Fig. 4.27, was
generated from log data using sequential Gaussian simulation.”® It was not allowed to
change during the inversion. The initial permeability which is also the prior mean in
using the field-scale Bayesian approach is generated via a cloud transform based on
porosity-permeability relationship and is given in Fig. 4.28.

As we are using the field-scale Bayesian approach with 5x5x5 stencil as an
approximation of the square root of the inverse of the covariance during the
minimization for both adjoint method-based sensitivity and streamline-based sensitivity,
thus it is important to see how accurate is this approximation taken into consideration
that the variogram model used is exponential with sill of (Ln k) of 13, and the ranges in
the x, y, and z directions are 1000, 1000, and 14 ft respectively. These ranges cover

about 10 grid blocks in the x and y direction and about two grid blocks in the z-direction.
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Fig. 4.29 shows a comparison between the exact covariance and the covariance obtained
from the stencil using the same technique used before in the synthetic cases of the two

examples shown in the adjoint method-based sensitivity.

Fig. 4.25—Goldsmith field — Co; pilot project area
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Fig. 4.26—Well configuration of Goldsmith case study area
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Fig. 4.28—Initial and the prior mean permeability for Goldsmith case in log scale
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Fig. 4.29—Comparison between exact covariance and covariance from 5x5x5 stencil
at row 15370 for Goldsmith case
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It can be seen from Fig. 4.29 that the covariance from the stencil always in a perfect
agreement with the covariance of high magnitude, but due to the fact that the 5x5x5
stencil covers only 2 grid blocks in the x, y, z directions only compared to the 10 grid
blocks in case of the exact covariance in case of x and y direction, so some of the high
values in exact covariance are not in good agreement with the covariance from the
stencil. Since the covariance from the stencil covers the same number of grid blocks as
that of the exact in the z direction so clearly for better accuracy, the size of the stencil
should be increased in the x and y direction to 21x21x5 but this will increase the
computation time, so a tradeoff between accuracy and computational efficiency should
be taken place to select the most suitable stencil to use. We used 5x5x5 stencil in
Goldsmith case during dynamic data integration using both adjoint method-based

sensitivity and streamline-based sensitivity.

4.4.1 Field Application: Adjoint Method-Based Sensitivity with Field-Scale
Bayesian Approach

Fig. 4.30 a and b shows the water cut response from the initial and final permeability,
respectively compared to the observed water cut for the nine producing wells during the
20 years of production history and Fig. 4.31 a, and b shows the final and change in the
permeability form the initial, respectively. Fig. 4.32 shows the reduction in the misfits
versus the number of iterations during the inversion.

As seen from the water cut match, most of the wells are in good agreement with the
observed water cut especially wells 3, 7, and 9. From Fig. 4.31 b, we can see that most
changes in the permeability from the initial are at high X and Y values which are at the

locations of the nine integrated wells.
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4.4.2 Field Application: Streamline-Based Sensitivity with Field-Scale Bayesian
Approach

Fig. 4.33 a and b show the water cut response from the initial and final permeability,
respectively compared to the observed water cut for the nine producing wells during the
20 years of production history and Fig. 4.34 shows the change in the permeability form
the initial, where the initial model used is the same as the initial model used in the
adjoint method-based sensitivity and is given in Fig. 4.28. Fig. 4.35 shows the reduction
in the misfits versus the number of iterations during the inversion.

As seen from the water cut match, most of the wells are in good agreement with the
observed water cut especially wells 1, 3, 4, 7, and 9. From a comparison between the
changes in the permeability from both adjoint and streamline-based sensitivity (Fig.
4.31b and Fig. 4.34), we can notice the similarity in the locations of the changes, which
indicates that both methods are successful in resolving the changes in the permeability
however streamline-based sensitivity is much faster than the adjoint method by several
order of magnitude due to the dependency of the adjoint method on the number of
integrated wells, where for goldsmith case we need one simulation run and solving 2M
by 2M (61480 x 61480) adjoint system of equations Ny, (number of integrated wells, 9)
times to get the sensitivity per iteration. While for the streamline-based sensitivity, we
only need one forward run and analytical sensitivity calculation along the streamline,
where all the information required during this calculation can be obtained from one
single forward run per iteration, so it is independent on the number of integrated wells
and this makes it several orders of magnitude faster than the adjoint method-based

sensitivity.
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Fig. 4.33—Water cut match for Goldsmith case using streamline-based sensitivity,
(a) Match from initial permeability model, (b) Match from the final permeability

model



o]

L1

Lok
4321

(k]
=]
=]

I08

— T3
e
oo

Fd et e OO
La2DT2 0T
i Ll 12 gl

[TL L]
om
= oa

-4.31

103

Fig. 4.34—Permeability changes from initial (in Log scale) using streamline-based

sensitivity
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based sensitivity for Goldsmith case
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4.5 Multiple Realizations from Posterior Distribution for Uncertainty Assessment :

Goldsmith Field Application
The main objective of this section is to apply our proposed approach that we used in
history matching to generate multiple realizations that sample the posterior distribution
using one of the approximate sampling methods which is Randomized Maximum
Likelihood that discussed before in Chapter II. These realizations can be further used to
assess the uncertainty in the production forecast.

In sampling multiple realizations from the posterior distribution we use the field-
scale Bayesian approach along with streamline-based sensitivity using generalized travel
time inversion concept due to its robustness and less computation time required
compared to the adjoint method-based sensitivity. In addition we use the Randomized
Maximum Likelihood which accepts all the transition to the new state in the Markov
chain, thus reduce the computation time in proposing transitions that have low
acceptance rate in the Metropolis Hasting algorithm. We follow the same steps showed
before in Chapter II in sampling multiple realizations from the posterior distribution.
The first step, we used cloud transform based on permeability-porosity relationship to
generate four different unconditional realizations of the model parameter. For the four
unconditional realization of the permeability field we used the same variogram model
used for Goldsmith case, which is the exponential variogram with ranges in the x, y, and
z directions, respectively equal to 1000, 1000, 14 ft and with the variance of horizontal
log permeability of 13.0 in order to honor the prior information of Goldsmith field. The
second step, we generated four different realizations of the observed data by adding a
randomly generated Gaussian error with a standard deviation of 0.03 to the observed
water-cut data. The last step, we computed the conditional realization using the same
process of history matching the Goldsmith field case that shown in the previous section
with the only difference that the regularization is with respect to unconditional
realizations of the model and the data instead of the prior model and the observed data.
These conditional realizations are considered as a new state in Markov chain, where all

are accepted using Randomized Maximum likelihood method.
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The resulting unconditioned permeability fields for the four realizations are shown in
Fig. 4.36a to Fig. 4.39a. We used our proposed approach to integrate the entire 7800
days of production history using the four unconditional permeability realizations as the
prior means and the four unconditional water cut as the observed data in our proposed
field-scale Bayesian approach. Fig. 4.40 a, and b to Fig. 4.48 a, and b shows the
unconditioned and conditioned water cuts, respectively for each of the four realizations
for the nine wells. The corresponding four conditioned permeability fields are shown in
Fig. 4.36 b to Fig. 4.39 b. Fig. 4.36 ¢ to Fig. 4.39 ¢ shows the difference between the
unconditional and the conditional realization. Upon comparison of the unconditioned to
the conditioned ensemble of water cut realizations, we found that match has been
improved compared to the unconditional realizations, however some conditional
realizations does not show good match for all the wells this due to the poor
unconditional realizations used. So, for better uncertainty assessment in the production
forecast, many unconditional realizations should be used so that we can select the best
conditional realizations that give good match with the water cut history to be used in
quantifying the uncertainty on the production forecast. The other way is to improve the
way of generating the unconditional realizations to ensure that many conditional
realizations will have good match with the production history. Additional work has been
done for improving the unconditional realizations and thus improving the production
match from the conditional realizations and uses them for assessing the uncertainty in
the production forecast for Goldsmith case, but it is not presented here as the main
objective of this section is to test the applicability of our proposed field-scale Bayesian
approach along with the generalized travel time sensitivity obtained using streamline-
based sensitivity for fast and efficient uncertainty assessment using Randomized

Maximum Likelihood.
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Fig. 4.36—Permeability field, realization 1. (a) Unconditioned, (b) Conditioned,
(c) Different. (Five out of ten layers, all in log scale)
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Fig. 4.37-Permeability field, realization 2. (a) Unconditioned, (b) Conditioned,
(c) Different. (Five out of ten layers, all in log scale)
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Fig. 4.38—Permeability field, realization 3. (a) Unconditioned, (b) Conditioned,
(c) Different. (Five out of ten layers, all in log scale)
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Fig. 4.39—Permeability field, realization 4. (a) Unconditioned, (b) Conditioned,
(c) Different. (Five out of ten layers, all in log scale)
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Fig. 4.41-Water cut, well 2. (a) Unconditioned, (b) Conditioned
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4.6 Chapter Summary

This chapter presents applications from automatic history matching in Bayesian frame
work using two different ways of sensitivity calculations, adjoint method-based
sensitivity and streamline-based sensitivity, and two different approaches during the
minimization process, namely the conventional Bayesian with full covariance and the
field-scale Bayesian with an approximation of the square root of the inverse of the
covariance required by LSQR using numerical stencil. We first present a comparison of
the sensitivity of travel time with respect to permeability form perturbation with our
formulation using adjoint method-based sensitivity for 3D two phase flow. Then, we
tested the robustness and the utility of our proposed field-scale Bayesian approach along
with the conventional Bayesian approach using synthetic cases with a commercial finite
difference simulator (ECLIPSE) as forward model and generalized travel time sensitivity
using adjoint method. The use of commercial finite difference simulator as a forward
model extends the application of generalized travel time sensitivity using adjoint method
to more practical applications. The third part of this chapter shows the CPU time scaling

comparison between our proposed field-scale Bayesian approach and the conventional
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Bayesian approach for increasing the number of model parameters and the results shows
the linear scaling of the field-scale Bayesian compared to the quadratic scaling of the
conventional Bayesian, this leads the field-scale Bayesian approach to be well-suited for
field-scale applications. The fourth part shows field application from Goldsmith San
Andreas unit using our proposed field-scale Bayesian approach along with generalized
travel time sensitivity using both adjoint and streamline-based sensitivity with
commercial finite difference simulator (viz ECLIPSE) as the forward model. To the best
of our knowledge, this is the first field case application using our proposed field-scale
Bayesian approach with generalized travel time sensitivity obtained from both adjoint
method and streamline-based sensitivity and with finite difference simulators as the
forward model. The last part of this chapter shows the applicability of our approach for
uncertainty assessment by generating multiple realizations using RML to be used for the

uncertainty quantification of the production forecast for Goldsmith field case.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Automatic history matching in Bayesian framework especially for field-scale
applications requires the following: first, a stable and general forward model that can
handle field applications with complex physical mechanism, second, a computationally
efficient way for representing the data misfit in the objective function, third, an efficient
way of including the regularization term in the objective function for stable inversion,
and finally, a proper optimization method that is well-suited for field-scale applications.
In this study we proposed an approach to improve all the above factors for fast and
efficient automatic history matching in a Bayesian framework. First, we used a
commercial finite difference simulator (viz ECLIPSE) to model fluid flow in the porous
media. The simulator is general and can account for complex physical behavior that
dominates most of the field applications. Second, the data misfit is represented by a
single generalized travel time misfit for each well, thus reducing the number of data
points into one per well and at the same time ensuring the matching of the entire
production history. This saves computation time required during the minimization and
makes this approach well-suited for field-scale applications. In addition, using the
generalized travel time misfit reduces the computational effort of calculating the
sensitivities required by any gradient-based optimization algorithm. We have used both
adjoint method-based sensitivity and streamline-based sensitivity during this study.
Third, we proposed a field-scale Bayesian approach that utilizes an approximation of
the square root of the inverse of the covariance using numerical stencil. This leads to
large savings in computation time and memory compared to the calculation of the full
covariance required by the conventional Bayesian approach. Finally, we used the LSQR
method as the sparse matrix solver for updating the model parameters during
minimization. The approach is stable when dealing with large-scale applications and also

using LSQR along with the approximation of the square root of the inverse of the
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covariance using numerically derived stencil shows a linear trend with respect to the
increase in the model parameters compared to the quadratic scaling of the conventional
Bayesian with the full covariance matrix. This makes the field-scale Bayesian approach
well-suited for large-scale field applications. We applied our approach on different
synthetic cases and field case from Goldsmith San Andreas unit to demonstrate the
applicability of our approach for history matching and also for generating multiple

realizations for uncertainty assessment.

The major conclusions of this study are summarized as follows:

1- Use of a commerecial finite difference simulator as the forward model

The use of commercial finite difference simulator (ECLIPSE) during this study as a
forward model helps in obtaining a more general and stable solution especially in
dealing with field-scale applications with complex physical mechanisms. For adjoint
method-based sensitivity, we save the pressure, water saturation, and bottom hole
pressure at each time step, which are required during the sensitivity calculations. For
streamline-based sensitivity, we utilize the pressure, water saturation, and fluxes at each

pressure update time to retrace the streamline and update the sensitivity calculation.

2- Formulation of the generalized travel time and travel time sensitivity with
respect to permeability using adjoint method for 3D, two phase flow
The generalized travel time and travel time inversion provide a unique advantage over
the conventional amplitude inversion as it depends only on the number of wells and not
the number of data points as in amplitude inversion. This makes the generalized travel
time sensitivity more computationally efficient than the conventional amplitude
sensitivity especially in using adjoint method-based sensitivity. This makes it well-suited
for field-scale applications. The source term in the adjoint system of equation has been
formulated to account for the generalized and travel time sensitivity for 3D, two phase

flow problems.
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3- Formulation of the field-scale Bayesian approach with approximate calculation
of the square root of the inverse of the covariance using a numerically-derived
stencil

The Bayesian approach is formulated in the form of a system of equations and we use
the LSQR method as a sparse matrix solver. The approach is practical for large-scale
problems for updating the model parameters by knowing the square root of the inverse
of the covariance matrix. The numerically-derived stencil, which is applicable for any
covariance model, is used to approximate the square root of the inverse of the covariance
using 5x5x5 stencil. The use of 5x5x5 stencil reduces the computation time and memory
required compared to the conventional Bayesian with full covariance, thus making the

field-scale Bayesian well-suited for field-scale applications.

4- CPU time scaling with respect to the number of grid blocks using both
conventional and field-scale Bayesian approach

Two formulas for the number of multiplications required by the conventional and field-
scale Bayesian approach during the minimization step have been developed. The
conventional Bayesian approach shows a quadratic behavior while the field-scale
Bayesian approach shows a linear behavior with respect to the number of grid blocks.
Four synthetic cases with number of gridblocks ranging from 8000 to 80,000 are used to
validate the above results by comparing the CPU time per iteration during the
minimization step for the two approaches. This proves the computational efficiency of

the field-scale Bayesian for large-scale applications.

5- Synthetic and field applications

Different 3D synthetic examples used to compare the accuracy of the estimate from both
the conventional and the field-scale Bayesian approach and at the same time to test the
applicability of our formulation of the generalized travel time sensitivity for 3D, two
phase flow using adjoint method-based sensitivity. The results show the success of our

sensitivity formulation in directing the objective function towards the minimum and also
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the estimate from the both approaches look very similar; however the computation time
for the field-scale Bayesian is order of magnitude less than the conventional Bayesian
especially for large-scale applications where the model size exceeds thousands to
millions gridblocks.

Goldsmith San Andreas unit in west Texas is used to test the applicability of our
approach for field-scale applications using both adjoint and streamline-based sensitivity.
The results demonstrate the practical feasibility of our approach with significant

improvement in the water cut match from most of the producing wells.

6- Sampling multiple realizations from the posterior distribution for uncertainty
assessment
One of the practical applications of the Bayesian approach other than history matching is
uncertainty assessment. We used our field-scale Bayesian approach along with the
generalized travel sensitivity calculated using streamlines with commercial finite
difference simulators (ECLIPSE) as forward model. Multiple realizations were
generated from the posterior distribution using Randomized Maximum likelihood
(RML) for the Goldsmith field case to be further used in the uncertainty assessment of
the production forecast. Thus, get the benefit of our proposed approach that is
computationally efficient for field-scale applications and use the Randomized Maximum
Likelihood that reduces the computational burden by avoid rejecting any proposed state

in the Markov chain.

5.2 Recommendations
The following recommendations are suggested to improve our current approach:
1- The current field-scale Bayesian approach suffers from two limitations in
assuming that 5x5x5 stencil is a good approximation for the covariance matrix.
First, the calculation requires getting the square root of the inverse of 5x5x5
stencil, which is a 125x125 matrix using spectral value decomposition, where the

eigen values and eigen vectors of the 125x125 matrix have to be obtained to get
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the square root of the inverse and this computation might be computationally
inefficient for using more than 5x5x5 stencil. Second, using LSQR, which is an
iterative solver, for model updating depends upon the number of iteration which
is subjective and inaccurate estimation might take place if the number of
iterations selected is not sufficient enough, in addition to the time it takes during
these iterations compared to the exact calculation of the model update using the
conventional Bayesian approach with modified Gauss-Newton as the
optimization algorithm. To overcome these limitations, we suggest an approach
that gets the benefit of using the numerical stencil to get an approximation of the
covariance matrix instead of the inverse of the covariance matrix. Thus there is
no need to use the spectral value decomposition to get the approximation of the
square root of the inverse. Second, gets the benefit of the modified Gauss-
Newton by exactly calculating the model update using the approximate of the
covariance matrix from the numerical stencil. This is computationally efficient if
using the generalized travel time inversion concept, where we only need to get
the inverse of NyxN,, matrix as given by Eq. 2.25. So, the steps for applying this
approach will be as follows:
i- Use 5x5x5 stencil and calculate the 125x125 covariance matrix
1i- Use column 63, which is the middle column of the 125x125
covariance matrix to get the stencil. This is similar to use column 63
of the square root of the inverse of the 125x125 matrix
1ii- Populate the exact size of the covariance matrix using the stencil
calculated from step 2 and save only the non-zero values of the exact
size of the covariance. This is the same way of populating the exact
size of the square root of the inverse of the covariance matrix that is
used in the current approach
iv- Use Modified Gauss-Newton with the approximation of the

covariance from step 3 to get an exact solution of the model update.
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In fact, on checking the accuracy of the 5x5x5 stencil for the synthetic and field
cases used in this study, we applied the first three steps above to get the
covariance from the stencil and compare it with the exact covariance. So, the
only change required is to modify the current code of the Modified Gauss-
Newton to get the non-zero values of the covariance from the stencil instead of
calculating the full covariance exactly.

In our current approach, we used 5x5x5 stencil to approximate the covariance
matrix; however selecting the best size of the stencil depends upon the ranges
and the grid block size used to model the reservoir under study and this may vary
from one reservoir to another. So, sensitivity study should be done to select the
best stencil size to represent the reservoir, which is a tradeoff between the
accuracy and the computational efficiency and it depends upon personal
judgment.

In generating multiple realizations for uncertainty assessment of Goldsmith case,
some conditional realizations show good match with production history and
some do not. So, we suggest either to generate a lot of priors so that we can have
variety to select only the conditioned realizations that show better match or to
improve the priors used to obtain conditional realizations that most of them will
match well the production history to be further used for uncertainty assessment
of the production forecast.

From a preliminary result of solving the adjoint system of equations at one
particular time step using LSQR and Bi-conjugate gradient method which is
currently used for large-scale problems, we found that the LSQR gives more
stable results within few iterations compared to the Bi-Conjugate gradient. So,
we highly suggest using LSQR as a solver in solving the adjoint system of
equations backward in time especially in large-scale problems.

In comparing the travel time sensitivity from adjoint method with perturbation,
we found that including the injectors in the adjoint system of equations and in the

sensitivity calculation always overestimate the sensitivity compared to the
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perturbation due to the reason mentioned before in Chapter IV. Further study
should be done to investigate this problem.

During our work with the adjoint method-based sensitivity, it was found that
using large time step higher than the time step used in the forward simulator in
solving the adjoint system of equations backward in time does not have much
effect in the final estimate. Clearly additional study should be done to select the
best time step to be used during solving the adjoint system of equations. This will
have a tremendous saving in computation time compared to the current approach,
where we are solving the adjoint system of equations backward in time using the
same time steps used in the forward simulator.

Streamline-based sensitivity has unique advantage in term of its fast sensitivity
calculation compared to the adjoint method-based sensitivity. However, in highly
depleted reservoirs where frequent pressure updates are required for accurate
sensitivity calculation, streamline might not be the good candidate. In adjoint
method-based sensitivity, however we are using the generalized travel time
inversion, which makes the adjoint method-based sensitivity depends only on the
number of wells compared to the conventional approach which depends on the
number of data points, still its computation time is unsatisfactory especially for
large-scale applications. So, we suggest using the same concept of generalized
travel time and using the adjoint method to obtain the gradient of objective
function as has been done in the past, thus we need only one simulation run and
one solution of adjoint system of equations. Using the generalized travel time
inversion will reduce the computational burden during the minimization and
using the gradient of the objective function will allow us to solve the adjoint
system of equation backward in time only once to get the gradient of the
objective function. The draw back of this approach is the rate of convergence of
the optimization algorithms that used the gradient of the objective function, like
conjugate gradient or LBFGS will be small compared to Newton-type of search

algorithms like Gauss-Newton or Modified Gauss-Newton used in this study.
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NOMENCLATURE
AT = Vector of Generalized travel time shift
A = Diagonal matrix whose diagonal are the eigen values of the

covariance matrix

o = Damping factor used in Marquardt Levenberg algorithm

T = Time of flight

T = Probability of sample state m' from the posterior

i = Probability of accepting transition in the Markov Chain
o = Error variance of generalized travel time at well

L = Viscosity of (m) phase, m stands for oil and water

Ym = Specific weight of (m) phase, m stands for oil and water
Am = Lagrange multipliers for phase m, m stands for oil and water
Pm = Density of phase m, m stands for oil and water
Pmse = Density of phase m at standard conditions

At = Total mobility ratio

At = Time step

At = Time shift at well ;

Ax;, Ay;, Az = Cartesian grid block sizes

AL = Accumulation term of phase m, m stands for oil and water
Bn = Formation volume factor, m stands for oil and water
Cq = Data covariance matrix
Ck = Prior covariance matrix of permeability
Cum = Prior covariance matrix of the model parameter
Cy = Prior covariance matrix of porosity
Cyx or Cyy = Cross covariance between porosity and permeability

D = Depth



dobs
dy
e
Sdops)
Sdops/m)
f(m)
f(m/ dyps)
Fcats
S

= Column vector with observed data

= Unconditional realization of data

= Residual of the objective function O(m)

= Marginal probability distribution

= Likelihood probability distribution given the prior distribution
= Prior probability distribution

= Posterior probability distribution given the observed data
= calculated water cut at well j and at time step index /

= flow term of phase m, m stands for oil and water

= Fractional flow of water

= Source term in the adjoint system of equations

= Column vector with calculated reservoir performance data
= Sensitivity matrix

= Hessian of the objective function O(m)

= Identity matrix

= Jacobian of the objective function O(m). Gradient of e

= Production data misfit

= Production data misfit at well j

= Generalized travel time misfit

= Permeability

= Relative permeability to phase (m); m stands for oil or water
= Permeability in the x, y, and z direction

= Last time step (last data point)

= Number of model parameters

= Column vector of the reservoir parameter

= Maximum a Posteriori estimate

= Markov Chain

= Markov Chain Monte Carlo

= Oil and Water Mobility
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= Column vector with prior knowledge of reservoir parameter
= Unconditional realization of reservoir model parameters
= Number of data points

=Number of data points

= Number of data points at well j

=Number of iteration inside the LSQR loop

= Maximum number of stencil

= Number of wells

= Number of wells

= Number of grid blocks in the x, y, and z direction

= Objective function of Bayesian formulation

= Pressure

= Bottom hole pressure at well j and time step index /

= Probability of proposing transition to another state in the Markov
Chain
= rate of m phase, m is for oil and water

= rate per bulk volume, m stands for oil and water

= Coefficient of determination

= Randomize Maximum Likelihood

= Slowness

= Skin factor at well j and layer k&

= Saturation of m phase, m stands for water and oil

= Time

= travel time at well j and observed point i

= Transmissibility of m phase in the x-direction, m stands for oil and
water

= Transmissibility of m phase in the y-direction, m stands for oil and

water
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T = Transmissibility of m phase in the z-direction, m stands for oil and
water
U = Matrix whose column are the eigen vectors of the covariance
Vs = Bulk volume
Wi = Data weight for each data point (7) and at well ()
Wi = Well index at well j, produced from layer &
y = Calculated data at well
y = Observed data at well j
yj?bs = Average of observed data

Zficldscalebayesian = INumber of multiplications in field-scale Bayesian formulation
ZGN = Number of multiplications in Gauss-Newton Iteration

) = Porosity
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APPENDIX A
MODIFIED GAUSS-NEWTON AND MATHEMATICAL
EQUIVALENT BETWEEN GAUSS-NEWTON AND FIELD-SCALE
BAYESIAN FORMULATION

A.1 Modified Gauss-Newton

Gauss- Newton formulation as given by Eq. 2.24 and is repeated here is as follows:
m" =m'-[G7C,lG, +C; ] [6Tc AT +clam' -m )] (A.1)

The inverse of the matrix [G,TC;G, + Cﬁ_j] and the covariance matrix, C,, which are of

order of M x M makes the formulation given by Eq. A.l inefficient for field-scale
application where M can be of order of thousands or millions. So, the modification to

this formulation can be done by using the following matrix inverse lemma’®:
[4+BCD' =4 -4 Blc'+DA'B]' DA .. (A2)

Where, 4, C, and [C '+D A"IB] must be non-singular square matrix.

So, by letting,

4=C,,
B=G/
cC=C,
D =G,

By substituting Eq. A.3 in Eq. A.2,
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lcr'ce +c]'=c,-c, ¢ [c,+6c,6'G,Cc, . (A4)
Multiplying Eq. A.4 by C,,,

lcrcle +ct]'c,i=1-¢, 6" [c,+G.c,6r|'q, e (ALS)
From the following identity*:

G’ +G'c,'G6,.c, Gl =G!'c,'[c, +G,c,G |=|crc,'G + ¢ e, Gl (A.6)
From the matrix identity given by Eq. A.6,

¢'c,lc, +6,.c, Gl |=|¢Ic;'6,+c;lc,af (A7)

Multiply Eq. A.7 from left by [G7C;'G, +C;} | and from right by [C, + G,C,,G! ",

_ aF _ —1
lcrc6 +c]'6lc,) =c,6llc, +6c,67] L. (A.8)

It is important also to mention that from the identity given by Eq. A.6, one can reach to

Eq. A.5 with simple matrix manipulation.

Gauss-Newton equation, Eq. A.1, can be written as:

m' =m' -G/ C;'G, +C; | GT ¢ AT,
_ I o
67636, +C2]' i -amy



133

Substituting Eqs. A.5 and A.8 in Eq. A.9, gives the Modified Gauss-Newton

formulation:
m" =m_ -C,GT[c, +G,C, G |'[AT-Gm' -m)] .. (A.10)

The Modified Gauss-Newton formula given by Eq. A.10 requires only the inverse of
matrix [C »+GC,, GZT] which is of order Ny x Ny, (Ny is the number of wells) in using
the generalized travel time as the data misfit which is of order of magnitude less than the

number of model parameters. This makes the Modified Gauss-Newton more efficient for

field-scale applications.

A.2 Mathematical Equivalent of Gauss-Newton and Field-Scale Bayesian
Formulation

In order to prove the mathematical equivalency between Gauss-Newton formulation and

the field-scale Bayesian formulation, it is easy to compare the Newton equation for

model updating used by the both method as they both used the same Newton equation

for model updating which is given as:

Hém=-V_Om) (A.11)

Where, the Hessian matrix, H , is equivalent to G/C,'G, +C,, given by Eq. 2.23 in
using Gauss-Newton and is equivalent toJ”J given by Eq. 2.34 using the field-scale
Bayesian formulation. While the gradient of the objective function,V_O(m), is
equivalent to G/ C;'At, +C,/(m' —m,) given by Eq. 2.20 in using Gauss-Newton, and
is equivalent to J e given by Eq. 2.32 in using the field-scale Bayesian formulation.

Thus to prove that Gauss-Newton and field-scale Bayesian formulation are

mathematically equivalent is to prove that:
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i- J'J=G/C,'G, +C;; ,and

ii- J'e=G/C At +C;/(m' —-m,)

First: J is given by Eq. 2.31 as follows:
C71/2 G
J:[ Z"”Z ’} ........ (A.12)
M

Thus, J'J is given as follows:
Y v GG
JTJ:[GIT(CD”) (ci?) ][ g_l/zl} ............ (A.13)
M

As, C, and C,, are symmetric matrices, thus,

(Cz_)m )T _ C;/z

(C;/Z)T Lot (A.14)
Substitute Eq. A.14 in Eq. A.13 and multiply, we get the first requirement.
J'J=G'c,'G,+c,, (A.15)
Second: e is given by Eq. 2.28 as follows:

e= C;% A% cieeee(AL16)

CA;% (m' —mp)

So, J'e is given as:
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/o~
C2 AT
JTez[G[TCI—JI/Z C;/z]- Ify 1
) m'-m) (A.17)

=G/C,)At +C;/(m' -m,)

From Eqs. A. 15 and A.17, it can be easily seen that the Gauss-Newton and the field-

scale Bayesian formulation are mathematically equivalent.
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APPENDIX B
COMPUTATION OF THE DERIVATIVES IN THE ADJOINT
SYSTEM OF EQUATIONS

The adjoint system of equations is given in i,j,k notations by Eqs. 3.46 and 3.47, in this

appendix, we give the derivative of the flow terms, £ i S i s S i s i ko

Fovivtins Soijerns Sumijue» the accumulation terms, 4, the source/sink terms,

m,i,jk >
qun,i, x> and the source term of the adjoint system of equations, gf’ 4 » With respect to

pressure and water saturation, where m stands for oil, o, and water, w, phase.

B.1 Derivative of the Flow Terms in the Adjoint System of Equations
The oil and water flow term equations are given by Eqs. 3.42 and 3.43, which are

repeated here for convenience,

fal,i,j,k = Talx,i+1/2,j,k (pil+l,j,k - pil,j,k - 7/zlzi+1/2,j,k (Di+1,j,k - Di,j,k )

- Tolx,i—l/Z,j,k (pil,j,k - pil—l,j,k - 721‘71/2,1‘,1( (Di,j,k - Di—l,j,k ))

+ Toly,i,j+1/2,k (pz‘l,j+1,k - pil,j,k - 7;',,41/2,/{ (Di,j+1,k - Di,j,k )

- Toly,i,j—l/2,k (pil,j,k - pil,j—l,k - 751‘,]‘71/2,1{ (Di,j,k - Di,j—l,k )) ----------- (B- 1)
+ Tolz,i,j,k+l/2 (pil,j,k+1 - pil,j,k - 7(l;i,j,k+1/2 (Di,j,k+l - Di,j,k )

1

! 7 I
- Toz,i,j,k—l/z (pi,j,k = Piji1 = Voi jk-12 (Di,j,k - Di,j,k—l )

f»i,i,j,k = Zéx,imz,j,k (pil-#l,j,k - pil,j,k - }/fvi+l/2,j,k (Di+l,j,k =D, )

-7 w{x,i-uz,j,k (pil,j,k - pil—l,j,k -7 jvi—l/Z,j,k (D ijk D i-1,j.k )

+ Tviy,i,jn/z,k (pil,j+l,k - pil,j,k - 7/fvi,j+1/2,k (Di,j-f-l,k -D, )

- va’y,i,j—l/Z,k (pil,j,k - pi[,j—l,k - yvlui,j—l/z,k (Di,j,k - Di,j—l,k ) (B.2)
+ Tml)z,i,j,k+l/2 (pi[,j,k+l - pil,j,k - yxlvi,j,k+l/2 (Di,j,k+l - Di,j,k )

- va’z,i,j,k—l/Z (pi[,j,k - pil,j,k—l - 7vlw',j,k—1/2 (Di,j,k - Di,j,k—l )
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this section gives the derivative of the seven stencil flow terms used in the adjoint
: : i ! i i i i

system of equations, which are f, ., .. o iciis Foijucrs Fuius Soioijus Soivins

f ,il ;41 With respect to pressure and water saturation at grid block i,j,k.

1- Derivatives of Flow terms in grid block (i +1, j,k) :

From Egs. B.1 and B.2, the derivatives of the flow terms at grid block (i +1, j,k) with

respect to pf’j’k (for m = 0,w) are as follows:

1 7
U stk _ OT 112, [ ! I ! (D D )]
Pijk ~Pisijk Y Vminira o \Pivjxe —Pij

i - /
api,_/,k api,j,k
1 vreeeenn..(B3)
T 1 87/m,ii1/2,j,k (D D )
+ mx,itl/2, ]k t— il .k~ i jk

l
Pi. ;i

Similarly, the derivatives of f,f,,iil’j’k with respect to S, ;& (for m=o,w) are as

follows:

! !
U stk _ OT 112, [ ! 1 ! (D D )]
PYY T s Pijx ~Pisijk TVmizr2,jx \Pisi ik — ik

w,i,j .k wii,j.k

2- Derivatives of Flow terms in grid block (i, jx 1,,k) :

Similarly, the derivatives of oil and water flow terms, f, . ., with respectto p; ;i for

S, jEl,

m=o,w are as follows:
afl oT!

mijrlk  Ylmyi 12,k [ I i / (D D )]

! Y Piji ~Pijrig T Vom0 Wi e ik

Pijk Pi,jk

........... (B.5)
oy’
/ mi, j*1/ 2.k ( )
+ Tmy,i,jil/Z,k I+ — Di,jrl,k - Di,/‘,k

7
api,j,k
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/
w.i, j.k

The derivatives of f,, a0 With respect to S for m =o,w are:

U oniors O,

IR RN VEN [ /
; =

I i
7 DPijk ~Pijsig TV mijriron (Di,_/ﬂ,k - Di,_/,k )]
oS

Wi, j.k Wai, j.k

3- Derivatives of Flow terms in grid block (i, J.k £ 1):
Similarly, the derivations of the flow terms at grid block (i, J.kt 1) with respect to p[’,_/,k

for m = o, ware as follows:

1 1
afm,i,_/,kirl . aTmz,i,_/,kil/Z [ / / / (D D )]
pi,j,k - pi,j,kil + ym,i,‘j,kil/Z ikl — ik

] - ]
api,j,k api,j,k
L (B.7)
oy, . .
! myi,j,kxtl/2
+ Tmz,i,j,kil/Z 1 —(Di,j,kil _Diajak)

i
api, ik
The derivatives of oil and water flow terms f, ;xn With respect to water saturation

! .
Shijx are:

1 i
afm,i,j,kirl _ aTmz,i,j,kil/Z [ !

/ !
PYY Y Pijik = Pijirt ¥V mi s (Di,/,kﬂ =D, i )] (B.8)
Lk D TR S Em R .

4- Derivatives of flow terms in grid block (i,j,k)
From Egs. B.1, B.2 and from the derivatives of the other flow terms, it can be easily

noticed that the derivatives of the flow terms at grid block (i,j,k) for m = o, w are:

! ! ! / 1 ! 1
afm,i,j,k afm,i+1,j,k afm,i—l,j,k afm,i,j+1,k afm,i,j—l,k afm,i,j,k+l afm,i,j,k—l
= — + + + + + ....(B.9)
0 op! op! op! op! op’ op’

Pijk Pijk Pijk Pijk Pijk Pijk Pijk

afni,i,j,k _ 8fnlz,i+1,j,k afni,i—l,j,k afnlz,i,jﬂ,k afni,i,j—l,k afnlz,i,j,k+1 afrrll,i,j,k—l
I - I + I + I I I + I
oS oS oS oS oS oS oS

w,i, .k w,i,j.k w,i,j.k w,i,j.k wii,j.k wii,j.k wii,j.k

j..(B.lO)
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As seen from Eqs. B.3 to B.10, to calculate the derivatives of flow terms with respect to

state variables, p, ., and S we need to calculate the derivatives of the

w,i,j.k
transmissibility terms (7') & gravity terms ( ) with respect to these state variables. The

following provides the details of the calculation of these derivatives.

5- Derivatives of Transmissibility, 7 :

The transmissibility can be written as:

1
ClijAZka,i+1/z,j,k K

! _ rm,i+1/2,j.k
me,i+1/2,j,k = " B e (B.11)
X —X; Honivt12, 7k Pmivti2,jk
. . 3
For m=o,w,1=1,2,....... n. -1, and ¢, 1s 1.127x10~.

For no-flow boundary conditions, the transmissibilities at the boundaries are

I _ ol _
me,l/Z,j,k - me,nx+l/2,j,k =0 (B12)
Similarly,
!
! _ CleiAZkKy,i,_/H/Z,k Krm,i,_/+1/2,k B.13
my,i,j+1/2,k — T Bl ( . )
Viag = Vi Honijr112.5Pmijrii 2.k
For m=o,wandj=1,2,....... n,—1 and
I _ il _
Tiniog =Topin 124 =0 oo (B.14)

Also, transmissibilities in the vertical direction are given by
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1
ClijAxi Kz,i,j,k+1/2 K

! _ rm,i,j,k+1/2
mz,j k2 ; B eeeen(BL1S)
Zry T % Mo ies1/2Pm j ks1/2
For m=o0,wand k=1,2,....... n,—1 and
! _ i _
Tmz,i,j,l/Z - Tmy,i,_/‘,nz+1/2 =0 (B16)

During this work, the K B

rm,i+1/2,j,k > Krm,i,j+1/2,k s Krm,i,j,k-%—l/Z H m,i+1/2,j.k H Bm,i,j+1/2,k’
B,k s Mmiinjas Mmigeiiogs M jrnso are evaluated by upstream weighting , for

example , for k! ,

! . . . .
, ~ K, ix (@ +1,7,k)is upstream |
rmi+1/2,j,k / . L. L e (B 7)
K, .« 1f(,Jj,k)is upstream
, B K, s 1if (G, ] +1,k) is upstream B8
g, 412,k ; G Biswsteam (B.18)
K, 1f (i, j,k)is upstream
i . .. .
, ~ Kymijxn 1 (@, J,k +1)1s upstream
i jkAl/2 T L e (B.19)
kwijx 1 (i, j,k)1s upstream
The derivatives of the transmissibilities with respect to pressure are
/ l
aT'm)c,l‘Jrl/Z,_j,k _ me,i+1/2,j,k %
1 T 1
api,j,k o irraja Bt B.20
B B T (B.20)
mitl/ 2,k | Honic1/2,jk 1
A1 FMmiv2jk L E— m,i+1/2,j,k

] I
Pk Pk
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i I
aT'my,i,j+1/2,k _ Tmy,i,j+l/2,k %
l - l /
api,j,k lum,i,j+1/2,kBm,i,j+l/2,k
, LT (B.21)
aBm,i,/+1/2,k ! 4 aﬂm,i,/n/z,k !
] mi,j+1/2,k T ] m,i,j+1/2,k
8pi,j,k api,j,k
i !
aTvrnz,i,j,k-H/Z _ Tmz,i,j,k+l/2 %
/ - I
api,j,k Mo i k112Boi s s
, L e (B.22)
aBm,i,j,k+1/2 i a/um,i,j,k+1/2 i
—8 / Mo jrsrin T P myi,jk+1/2
Pijk Pi.jk

The derivatives of transmissibilities at boundaries are all equal to 0.

The formation volume factor ( B) and viscosity ( x) are evaluated by upstream weighting,

so the derivatives of these terms are given by:

OB’

myi,j.k . .. .
aBrln,iJrl/Z,_/,k _ 6Bnlq,i,j+1/2,k _ aB/ii,i,j,kJrl/Z _ T if (i, j, k) is upstream (B.23)
api[,j,k apil,j,k apil,j,k h L
if (i, j, k) is not upstream
! I I a/";[n,t,j kooep e . g
a/um,i+1/2,j,k _ a/um,i,j+l/2,k _ a:um,i,j,k+1/2 _ ? if (i, j, k) is upstream (B.24)
Gpil,j,k apil,j,k apil,j,k nk .
0 if (i, j, k) is not upstream

OB’ . Ou, . .
ook ik
TR and —22

api,j,k api,j,k

can be evaluated from PVT correlations or table.

The derivatives,
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Similarly, the derivatives of the transmissibilities with respect to water saturation are

evaluated as follows:

i
oT, nix,i+1/2,j,k GOV 2R siora T 11 : aKrlm’i’j L if (i, j, k )is upstream
W - Xigp =X (,um B, )i,j,k aSw,i,j,k
. 0 if (i, j, k )is not upstream
i
OT,, . ju1/24 el VT Y ; 1, : aK';m’i’j’k if (i, j, k )is upstream
W - Yin =V, (/um B, )i,j,k aSw,i,j,k
o 0 if (i, j, k )is not upstream
!
oT, niz,i,j,k+1/2 GO R s T 1, - aK:m’i’j’k if (i, j, k )is upstream
W - Zke1 T %k (,um B, )i,j,k aSw,i,j,k
e 0 if (i, j, k) is not upstream

.(B.25)

..(B.26)

.(B.27)

The derivative is evaluated at upstream grid block as according to Eqs. B.17 to B.19,

i i
Krm,i+l/2,j,k 4 Krm,i,j+l/2,k’
!
rm,i,j,k

!
wii,j.k

derivatives of

permeability table.

6- Derivatives of gravity terms

The specific weights 7! are defined as follows:

! 1
}/1 _ g (pm,i,_/,k + pm,iil,_/,k)
RES VNN S
mEZIE T 444 2

and K r’ml ks1/2 are evaluated by the upstream weighting. The

are computed by using correlation or from the relative

Similarly, for 7, .., and 7, . ..,. The phase density p, . terms for two phase

flow problems are given as:
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!
I N pm,sc
pmaia./ak - Bl
m

Where, p;’sc is the density of oil and water at standard conditions, the density unit is

Ibm/ft.

From Eqs. B.28 and B.29, the derivatives of specific weight terms are given as follows:

aV,In,fﬂ/z,_/,k __ 8 8'Orln,i,./,k
8pi[jj,k 288gc apil,j,k

1 !
Vo, j=1/2.k O mijhs12 . . 0P, ix
———— and ——=——are obtained using Eq. B.30, where, —=~/= for

Similarly, - :
api,j,k 8pi,j,k api,j,k

oil and water phase are obtained as follows:

/ /
apm,i,j,k _ pm,sc aBm,i,j,k
i - 1\2 ]
api,j,k (B,) api,j,k

!
m,i,j.k

for m = o, w can be evaluated from PVT
op ik

As mentioned before the derivatives of

correlations or table.

B.2 Derivative of the Accumulation Terms in the Adjoint System of Equations
The definition of accumulation terms are given in Eqs. 3.14, 3.15, and 3.17, and it is

repeated here as follows:

Al =
mebe o, B!

wii, j,k

i
; Vb,i,_/,k¢i,j,k ) Sw,i,_/,k (B.32)
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!
PIRLOYE Y b-s (B.33)

ok C,At' B!

0.i,j.k

Accordingly, the derivatives of water accumulation term with respect to pressure and

water saturation are given as follows:

! 1 !
aAw,i,j,k . Vb,i,j,k¢i,j,kSw,i,j,k an,i,j,k (B.34)
l —_ l 1 l 2 I ttttttttt .
api,j,k C,At™ (Bw,i,j,k) 6pi,j,k
!
6Aw,i,j,k . Vb,i,j,k Lk
; = i PP PP (B.35)
aSw,[,j,k CZAZ Bw,i,j,k

Similarly, the derivatives of oil accumulation term with respect to pressure and water

saturation are given as follows:

0A'

0.i,j.k

i i
Vb,i,j,k¢i,j,kS0,i,j,k 8B

0,i,j.k
=0l 0 PR TR B.36
6pil,j,k CzAtl (Bi,i,j,k)z 8pil,j,k ( :

aAi,i,_/,k _ Vb,i,_/,k¢i,j,k B.37
btk o _BRMILIL (B.37)
aSw,i,j,k CZAt Bo,i,j,k

OB, . . OB . .
As mentioned before, —=~ *and l’” *are obtained from the PVT correlation or
Pi ik Pijk

table.

B.3 Derivative of the Source/Sink Terms in the Adjoint System of Equations
In this section, we compute the derivative of the source and sink terms with respect to

the state variables (pressure and water saturation).
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1- Production wells
We assume the producing wells are completed in a total of K connections, so the rate

allocation modeling for oil and water is given by :

1

Kro, i,k
Qoju, =W, ‘(le,ka _P»f;f,j)= Wl , M, '(le,ko - P vlvf,j) ------------ (B.38)
/uo,j,ku 0,j.k,
Kl
™w,j.k,
9 iv,j,ko =W, '—jz'(P/l,kn -P ‘iflj): Wi, ;M »lv,_/,kn '(P_/l,kn _Pé/;/‘) ---------- (B.39)

!
Hyjk, Pk,

Where, qé, ;1,18 the oil rate from layer &, at well j at time step /, q’w, ;1,18 the water rate
from layer k,at well j at time step /, WI, ; is the well index of layer &, for well j,

M i« and M ! are the water and oil mobility ratio at layer &, for well ; at time step

o, w,j.k,

I, P!

"« 18 the pressure at well j and layer k, at time step /, and Pwlf, ; 1s the bottom hole
pressure at well j and it is assumed constant throughout the producing intervals by

neglecting the friction loss of tubing through the producing intervals.

It is important to mention here, that by using commercial simulator as the forward

i
model, we can get the P,

directly from the simulator at each time step regardless the
wells are producing with constant rate or constant pressure or switched between both
during the simulation run. Thus, help us to prevent the tedious way of calculating the
Pl

., When the wells are produced with constant rate or switched from constant rates to
constant bottom hole pressures and the opposite during the simulation run. This is
considered one of the major advantages of adjoining the adjoint method-based sensitivity

with a commercial simulator as a forward model.
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The well index term, W1, ; is given as follows:

0.00708 Az, JK ., K

g

x,i,j.k

yphik (B40)

Wi
k ln(r,,,k,j [Tk )+ Sk.j

Where, the equivalent radius, 7, , ;, obtained from Peaceman’s equation as follows:

K = Ay,
0.28073 Axi\/l+w, Y
Ax.

K.
rooo= R (B.41)

0,k,j
I+ K, /K u

r

wx.; 18 the well bore radius of well j at layer k and the s, ; is the skin factor for well

J at layer k. It is worth to mention that WI, , is independent of pressure and water

saturation.

The derivatives of ¢’ ;. and q. ;4 With respect to pressure and water saturation at

well j and layer 4 are as follows:

Atk=k,,
oq’ oM
qof’ko =Wl "M, +WI, '(P/l,ko ~Py, ) P (B.42)
apj’ko ‘ ‘ ' ‘ ' apj,ku
aqiv Jk ] i ] anlv Jk
WL, ML (P!, =P, )t oo (B.43)
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qujk oM! .

b _ppp, (P, - Pl )t (B.44)
anV,j,ko 0sJ J Ko f s anv,jjkD
o\ oM .

wihe _ppr, (Pl - Pl ) (B.45)
anV,j’ko 02J Ik, ] aS‘i’j’ka
Where,
oM'! -K' oB! ou!

0,7,k _ ro,j.k, . )i . 0,j.k, +Bl uo,j,ko (B 46)
P l | Mok P ik ol e :
Pk (luo,j,k,, 0.jik, ) Pk, Pk,

oM'! -K! OB' !

w,j,k _ w,Jj,k, . )i w,j,k, ! uw,j,k (B 47)
W (o | M, P ik o | :
P (luw,j,ko Wik, ) P jk Pk,

aMzi,j,k _ 1 aI<r{o,j,k
a5 =— 7 . a5 ...(B.48)
w,j,k, /’lo,j,ko 0,j.k, w,j,k,
anlv,j,ko 1 aK;{w,j,ko B.49
a5’ =— Y . 3 e (B.49)
w,j.k, ILlW,j,kU w,Jj.k, w, .k,
At k#k,,
aqzl;,j,k,, _ aqtl),j,k{, B aq;,j,ko _ 8q\14/,j,k0 _ B.50
T +(8:50)
Pk w, j Dk w, jk
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: . ! ! i l :
The derivatives of B, B, > K, ., K, ;. with respect to pressure and water

2ok 2
saturation can be obtained as mentioned before by knowing the correlation or from PVT

and relative permeability table.

2- Injection wells

We assume the water injection wells are completed in a total of K connections, so the

injection rate allocation modeling for water is given by’ *":
-, l i,
Kro,_/',ka K"Wﬁjako
K, A,
/ _ 0.j.k, w,jk, [ I i ]
QWinj,j,kU - Wlkv,j ’ B] pj’ku - pwf,j .......... (BSI)
w.J .k,

Where, ¢, ., is the water injection rate to layer k,, p,, is the bottom hole pressure

for well j at time step /, which is assumed constant by neglecting the friction loss as

discussed before in case of producing wells. It is important also to mention that by using

the commercial simulator as the forward model, p,, . is obtained directly from the

simulator at each time step without any tedious way of calculating the bottom hole

pressure for the injectors of constant injection rates.

The derivatives of qi,mj’ ;. With respect to pressure and water saturation at well j

and layer & are as follows:

Atk=k,,
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Oql. .
winj.j.k, [ I ]
op' =WI, ;- \Pjx, = Pur;
Pk,
l l 1
_Kro,Jk ﬂl an,Jk ! aﬂo,j,ku
i i 2 O,j,ko ] W,j,kn i
(/un,_/k w.jok ) 0 ok ap-/JC
l l l vieeen(B52)
Krw 7.k /,ll an,j,kﬂ ! lLlw .k
I / 2 w,j -k, l w.j -k, l
(/JW/kUBw,j,ko) P P
% /
Km,j,ka n Kk
ILII ﬂl
k, ,J .k
+WI, 2/ >
0>/ Bl
w,j,k,
8q1A o
winj,j .k, [ [N ]
st WI, ;- \Pix, = P
w,j.k,
) LY e (B.53)
1 K., s, 1 0K, ik,
b B! oS! ' B! oS!
Hojk, P, jk, wik, Mk, Pk, .k,
At k#k,,
1 /
aqwmj’j’k” = aqwm”""k” =0 ceeeeen..(B.54)
op' oS!
Pk w, j.k
The derivatives of B’ K’ K' with respect to pressure and water saturation
woid, > Brok, s B jik, p p

can be obtained as mentioned before from correlations or from PVT and relative

permeability table.

B.4 Derivative of the Source Term in the Adjoint System of Equations

As shown from Eqs. 3.32 — 3.38, the derivative of the source term, g with respect to
pressure and water saturation is reduced to getting only the derivative of the water cut

with respect to the state variables at observed time, ¢' equivalent to simulation time step,
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/. 1In this section, we give the derivative of the water cut with respect to pressure and

water saturation for producing wells.

The water cut for producing well ; is obtained as follows:

S !
. kz_;qw,j,k
.f‘wca[,j = K — K e (B.SS)

1 [
Z Gujr T Z 9o.jk
k=1 k=1

By substituting Eqs. B.38 and B.39 in Eq. B.60, the water cut will be as follows:

_ . )
Z[ } W (Pl =Py)
! =1 ,UWBw . ’
fwcal,j= «[ K - l
Bl sr], mten-m B | o)
ZMW/k (])Jl Pvifj)
ZMW" ( WfJ) zMo/k Wlk,j'(ij Pvif,)

The derivatives of water cut given by Eq. B.56 with respect to pressure and water

saturation at well j and layer k, , where k, is one of the layers completed for well j,

are as follows:



afvical,j _ 1 %
apl'k 2
. ZMwﬂc ( wj/) ZMo/k Wlk,j'(lek Pvif/)}
oM'!
1 wk / /
WI ka Wlkn,/' P (P/ ow/)
pjk
1 1
zMw,k SECRDS SRR )| R,
l 1
{ZMW,;{ k/'(P_/k Pw//)}
I oM’ 1
I w,jk, i /
WI ;M ¥ W (P/k ow/)
Jok,
M
/ 0,j,k, / I
WI ;M + W —— (P]k_PWfJ)
L Joko i
1
afwcal,j — 1 %
aSl K 2
w, jk, 1 1 /
{;MW,L,{-WI,C,/-(PM W/‘/) zka WI,” -(ij ow/)}
=1
Sl i, (P, - P )
aMl o w,j,k k.j J.k wf',Jj
WI,W aSzw’j’ . '(le,k - wlf -
I Zka Wlkj (Pl _Pvifj)
[ oM’ ]
w, .k, / !
Wlko,/' aSl_'(Pj”‘ ow,)
! i w.Jsk,
S el
W, e (P~ P! )
kosj aSl » Jk wf'.J
L ..k, ]
...(B.58)
. . aMi]k aM\i/jk aMijk 6M\1Aujk . .
The derivatives of , , . , and ————= are given before in Egs.
apjaky apj,ku aSWJk aSWJk

B.46 - B.49.
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APPENDIX C
COMPUTATION OF THE DERIVATIVES IN THE SENSITIVITY
COEFFICIENTS EQUATIONS

The sensitivity of generalized travel time with respect to permeability in the x, y, and z

directions is given by Eqs. 3.63, 3.64, and 3.65. In this appendix, we show the

computation of the derivative of the flow terms f,' ot o i o ;.4 » With respect to
: : 1+1 1+1 1+1 :
K. i the derivative of fm,i,_/—l,k’ fmj’k, and fm,[,jﬂ’k with respect to K, the

derivative of ' fM fH | with respect to K and the derivative of the

mijk=1> S mi k> S mi,jh+ 2, jk

1+1
m,i,j,k

source/sink terms, ¢ with respecttoK ; ,,,K ,,,and K_, ., for m=o,w

C.1 Derivatives of the Flow Terms in the Sensitivity Coefficients Equations

The oil and water flow term equations are given by Eqs. 3.42 and 3.43, which are

repeated here as follows:

I ol 1 I 1

fo,i,j,k = Tox,i+1/2,j,k (pi+1,j,k “Pijk T Voisy2,jk (Di+1,j,k - Di,j,k )
1 1 1 I

—Toiinj (pi,j,k T Picjk T Voiy2.k (Di,j,k =Dy 4 )
1 1 I 1

+ Toy,i,j+1/2,k (pi,j+l,k “DPijk TV oij2k (Di,j+1,k - Di,j,k )

! ! ! I

- Y:)y,i,j—l/Z,k (pi,j,k “Pijk T Voij-y2.k (Di,j,k - Di,j—l,k ) (C.1)
I ! I !

+ Toz,i,j,k+1/2 (pi,j,k+l - pi,j,k - 7oi,A/,k+1/2 (Di,j,k+l - Di,j,k ))
i i ! !

T jiar2 Py = Pijia = Voijuop Dy = Ds i)
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.f»f',i,j,k = Tvi’x,i+1/2,j,k (pz'l+l,j,k - pil,j,k - yfvi+l/2,j,k (Di+l,j,k - Di,j,k )

- Tvtlzx,i—l/Z,j,k (pil,j,k - pil—l,j,k - 7v1vi—1/2,j,k (Di,j,k - Di—l,j,k )

+ Tvéy,i,j+1/2,k (pil,j+l,k - pil,j,k - yfvi,(/+l/2,k (Di,j-f-l,k - Di,j,k ))

- Twlzy,i,j—l/Z,k (pil,j,k - pil,j—l,k - 7/vlui,j—l/2,k (Di,j,k - Di,j—l,k ) (C2)
+ Tvéz,i,j,k+l/2 (pil,j,kJrl - pil,_/,k - yvlvi,_/,k+1/2 (Di,j,k+l - Di,_/,k )

- Tu[/z,i,_/,k—l/z (pi[,j,k - pl‘l,_/,kfl - yfv[,_/,kfl/z (Di,j,k - Di,_/,k—l )

As shown from Egs. C.1 and C.2, the only terms that depend on £, ;, are

1+1 1+1 1+1 I+1 I+1 I+1
Joictj> Foijis 1, those that depend on K, ,, are f, f f and

m m,i+l,j,k 2 myi,j—1,k > J m,i,j,k> m,i,j+1,k >
finally, those that depend on K _, ,, are f," ., full o, full In this section we give

n,i,j,k—1°J myi,j,k>J mi,jk+1"*

the derivatives of those terms with respect to permeability in the x, y, and z directions.

1- Derivatives of flow terms in grid block (i £1, j,k) with respectto &,

From Egs. C.1 and C.2, the derivatives of the flow terms at grid block (i +1, j,k) with

respect to k., (for m =o0,w) are as follows:

of' ... OT ...,
o,itl,j.k ox,ixl/2,j,k i i 1
ok ok [pi,j,k — Pisiju +Vousrnin D i — Di,j,k] .............. (C.3)

X0,/ k x.i,j .k

oft ... OT ...

w,itl,j.k wx,ixl/2,j,k i i /

ok = ok [pi,j,k Pkt Vw2, k (Diil,j,k - Di,_/,k] ------------ (C4)
X0, ],k X0, ],k

2- The derivatives of flow terms in grid block (i, j £ 1,k) with respect to &

yiisj .k

Similarly, the derivatives of the flow terms with respect to &, ;, are as follows:

8f14 ' oT'’
o,i,jtlLk oy,i,jx1/2,k i ! !
ok ok [pi,j,k ~Dijnie T Vou 12k (Di,jil,k _Di,j,k] """""" (C.5)

Vihsj ok Viisj ok
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of’ . orT'.
wii,jtLk wy,i,jE1/2,k / / i
ok = ok [pi,_/,k ~Dijeie vV w0k (Di,jirl,k - Di,j,k ] ------------ (C.6)

Vi, j.k Vi, j .k

3- The derivatives of flow terms in grid block (i, j,k 1) with respectto K _, ,

5f14 ' o
0,i,j,ktl oz,i,j,k+l/2 ] i i
ok ok [pi,j,k ~Pijirt TVoi k2 (Di,j,kil - Di,j,k ] ----------- (C.7)

z,i,jk z,0,j,k

8fl. . or' .
w,i, jktl wz,i,j,kxl/2 ! i ]
ok ok [p[,j,k “Dijgn TV k12 (Di,j,kirl - Di,j,k] ------------ (C.8)

2,0,k 2,0,k

4- The derivatives of flow terms in grid block (i, j,k) with respect to k , .., k . .,
and K,
The derivative of Egs. C.1, and C.2 with respect to &k, ,,, k,,,;,and K_,  are as
follows:
ork ofl ... oft .
fm,z,_/,k __ fm,Hl,/JC + fm,l*L/ak ........... (C.9)
akx,i,j,k ak)c,i,j,k ak)c,i,j,k
ol ofl . ork .
Somiik = —[ oo + Iwiin | (C.10)
aky’w',k aky,i,j,k aky,i,j,k
o .. ol ofl .
fm,l,_/,k - _ fm,l,/,k+l + f;n,l,j,kfl ......... (Cl 1)
akz,i,j,k akz,i,j,k akz,i,j,k

for m = o,w, where all the derivatives in Eqs. C.9 — C.11 are obtained before from Eqs.

C3-Ca38.
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As noticed from Egs. C3 — C11, all the derivatives depend upon the derivatives of the
transmissibilities with respect to permeability in X, y, z direction. These derivatives are

obtained as follows:

5- Derivatives of the transmissibility with respectto k¢, ., , k ,  ,and K_,

The transmissibility equations are given before in Appendix B, Egs. B.11-B.16 and are

repeated here as follows:

1
ClijAZka,H—l/Z,j,k K

! _ rm,i+1/2,j.k
me,i+1/2,j,k = " B (C.12)
X =X Honivt12,j 5k Pmivti2,jk
. . 3
For m=o,w,1=1.2,....... n,—1, and ¢, 1s 1.127x10™.

For no-flow boundary conditions, the transmissibilities at the boundaries are

! il _
me,l/Z,j,k - me’nv‘_+l/27jjk - O ......... (C.13)
Similarly,
!

7! _ CleiAZkKy,i,_/H/Z,k Krm,i,_/+1/2,k C.14

myi, 1/ 2.k = "3 f e (C14)

- B
Yia =Y, Honijs125Pmi jr1/2.k

For m=o0,wandj=1,2,....... n,—1 and

! il _
Tpiniog =Topin 104 =0 oo (C15)

Also, transmissibilities in the vertical direction are given by



1

_ rm,i,j,k+1/2
mz,i,j.k+1/2

1
ClijAxi Kz,i,j,k+1/2 K

I I
Zry T % /um,i,j,k+l/ZBm,i,j,k+l/2
For m=o0,wand k=1,2,....... n,—1 and
! _ il _
Tmz,i,j,l/Z - Tmy,i,_/,nz+1/2 =0
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.(C.16)

.(C.17)

The permeabilities at grid block interfaces are computed as harmonic averages as

follows:

(Axi + Axm )Kx,i,j,kK
Axin,Hl,j,k +Ax

x,i+l, 7.k

K

Kx,i+1/2,j,k =

i+ xi jk

At the boundary,

Kx,l/Z,j,k =K

x,1,/,k

K

x,n.+1/2,j.k = KX,",X JJ ok

Thus, the derivative of Eqs. C.18-C.20 with respect to K, ;  are as follows:

Fori=123,., n_ -1,

X

aKx,Hl/Z,j,k _ Ax, K
oK

x,i+1,j .k

Kx,i,_/,k (Axin,Hl,_/,k + Ax

K )Kx,i+1/2,j,k
X0, ],k i+l i, j,k
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While at the boundary,

aKx,l/Z,j,k _ oK

e (C.22)
aI(x,l,j,k 8I<Jc,nx,j,k
Similarly, K, ,,, ;18 given as follows:
(Axi—l + Axi )Kx,i—l,j,ka,i,j,k
Kiiipju=—"-—""—>=> . (C.23)
Axi—le,i,j,k + Axin,tfl,./,k
The derivative of Eq. C.23 with respectto K, ;, is as follows:
Fori=23,.., n_,
Rosiizgs SR Koo e (C.24)
aI(x,i,j,k Kx,i,j,k (Axi—le,i,j,k + A'X:l[(x,i—l,j,k) e
At the boundary the derivatives are the same as that given by Eq. C.22.
Similarly, the derivatives of K, ..,,, and K, ., withrespectto K, , are:
aKy,i,ﬁl/z,k _ ijKy,i,j-H,k K (C.25)
= Lk e .
K. K, (ijKy,i,j+l,k +AY Kk ) o
aKy,i,j—l/Z,k . ijKy,i,j—l,k K (C.26)
= Uk e .
K., K, (ij—le,i,j,k + ij+1Ky,i,j—l,k) o
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Similarly, the derivatives of K, ,,.,, and K_, ,, ,,, withrespectto K _, ,, are:

0K ka2 _ Az, K

A K Cc.27
= Cik2 e (C.27)
aKx,i,j,k Kz,i,j,k (AZsz,i,/,k+1 + AZk+1Kz,i,j,k )
aKz,i,j,k—l/Z _ AZsz,i,j,k—l K C28
3K =X (AZ X Ay K ) Cigk)2 e (C.28)
x,i,j.k z,0, ],k k—-1"*z,i,j.k + k+17% 20, j,k—1
The derivative of Eq. C.12 with respect to K, ; , is as follows:
!
ame,iH/Z,j,k _ Axin,iH,j,k 7! (C.29)
- : mx,i+1/2,j,k .
aKx,i,j,k Kx,i,j,k (Axin,Hl,j,k + AleKx,i,j,k )
imilar
Similarly,
!
ame,i—l/Z,j,k _ A)C'iI{)c,i—l,J',l( T[ (C 30)
- * Wlx,i—l/z,j,k cee e .
aI{x,i,j,k Kx,i,j,k (Axi—le,i,j,k + Axi[(x,i—l,j,k)
!
6Tmy,i,j+1/2,k B ijKy,i,jJrl,k 7! C31
aK - K (A K A K ) my,i, j+1/2,k  reeseeeees ( . )
ik ik Y e TRV Ky
!
aTmy,i,j—l/Z,k _ ijKy,i,j—l,k T (C.32)
- my,i,j—1/2,k .......... .
aKy,i,j,k Ky,i,j,k (ij—le,i,j,k + ijKy,i,j—l,k )
!
6Tmz,i,_j,k+1/2 _ AZsz,i,_j,kH 7! C33
oK K (AZ K Az K ) mzijk+1/2 e (C.33)
z,i, ],k z,i,j.k k> z,0,j,k+1 + k+17* 20,7,k
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6Trrlzz,i,_j,k—1/2 _ AZkK
oK K

z,i,j,k—1 /

. z P
f Fy ‘ k' mz,i,j,k—1/2
( k=1"%z,i,j .k + k> z,0,j,k-1 )

e (C34)

z,i, ],k z,i, .,k
At the boundaries, the transmissibilities are zeros, thus the derivatives of the

transmissibilities are zeros:

! !
aT'mx,l/Z,_j,k _ aT

/ 1
mxn 41/ 2,7k aTmy,i,l/Z,k _ aTmy,i,nwl/Z,k

a1<x,i,j,k aKx,i,j,k aKy,i,j,k a1<y,i,j,k (C 35)
; L e .
_ aT'mz,i,j,l/Z _ aT'mz,i,j,nZJrl/2 _
aKZJJ,k aKZ,i,_/,k

C.2 Derivatives of the Source/Sink Terms in the Sensitivity Coefficients Equations
In this section, we compute the derivative of the source and sink terms with respect to

the control variables (permeabilities in x, y, z direction).

3- Production wells

The oil and water rates allocation modeling from layer k£, produced from well jare

given before by Eqs. B.38, and B.39 and repeated here as follows:

1

K. .
I ro.j.k, (1 _ pl )_ 1 (1 _ pl )
Qoju, =Wl ;= i Pra, = Puy )= Wh ;M a, \Bry, = Pupy) e (C.36)
/’l(),_/,ku 0,j.k,
!
gL =W R (p_pt Yo oyt (P —p ) (C.37)
w.jk, ko 1 1 ok, wf'sJj ko w.jk, \" ok, wf.j) et :
Wik, W, j ok,

The derivatives of qi, ;4 and q’W, ;4 With respect to permeability at well ;j and layer

k are as follows:

At k=k,,
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oq' . owiI, .

alq;’j’kﬂ -m!,, (P - ‘ff’j).ﬁK ko] ceeeeen(C.38)
x,j,k x,j,k

og’ owli

aquw,j,k vlvjk (P/lk wl»ff)aK " (C39)
x,j,k, x,j,k

oq' . owI

Do.jk, i ,(szk _ éff). bod (C.40)

aKy’j’k , ; aI<y,j,1f

oq' . owI

Dojt, _ - ,(szk _ »f,f,)' el (C.41)

aKy:./,ka o - . 8Ky,.i,k

As the layer production does not explicitly depend on K % 5o the derivative with

z,i, ],k

respectto K _, ., is as follows:

/
_ aqw,j,ku — O
oK

agcl),j,kU
oK

2, ).k, z.j.k,

Where, the derivatives of the well index with respect to permeabilities are obtained from

Eqs. B.40 and B.41 as follows™:

owI, 0.00708Az,,

K, s, B 2[1n(r oy |1 w:ko,j)”ko,jjx

oo (C.43)

Aviy

x, /5Ky Ky,j,ka

\] Ky,j,ko ( 1 J
NS ln(r oy | T )+ Sk,.j

\/ Ky,j,kn

2 2 -
A Ky e, T A K,

\/ Kok, * \/ Ky,
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oni, 0.00708Az

K, s B Z[In(r oty | w,ka,./)+ska,.fJX
e

ey 1 ' (C.44)

K . ln(ro,k,,,j/rw,k,,,j)+Sk,,,j el

V,Jik,

At k#k,,
aq(l;,j,ko _ aq(l;,j,k,, _ aq(l;,j,k,, _ aqiv,j,ko _ aq‘lm,ko _ aqi‘%j’ko =0 (C.45)
oK., OK,, OK ,, 0K , OK, , OK,

4- Injection wells
The injection rate allocation modeling for water is given before in Eq. B.51 for well j

injected in layer k, and is repeated here as follows:

-1 /
Kro,_/',ka K"Wﬁjako
/ /
I _ WI . /’lo,j,ka ’LIW,]"ko
Dinj.jk, ="k, B

w,j.k,

[P;,k{, -p fo,j ]

The derivatives of qfvmj’ ;4 With respect to permeability at well ; and layer & are as

follows:

Atk=Fk,,
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Krl(),j,kn Krlw,_j,k
! i i
aninj,j,kD | Mok, Mo jik, [p; 3 p; ] 8W1k0 J (C.47)
= " il == .
aI{x,j,k Bvlv,j,k ’ ’ aI{x,j,k
K){o,j,ku Kiw,j,ku
1 ! !
8qwmj,j’kﬂ | Mok, Mo jik, [pl —pl ] aW]k{,,j (C.48)
= 1 i ~Dwi =" .
oK Vsisko B w,j.k, oK Vadk,
The term qfvmj, ;& does not explicitly depends on K, | %0 thus its derivative is:
oq'.
Hwiniik, _ e (C49)
oK. s,
owI, . owI, .
Where, %/ and %/ are obtained from Eqgs. C.43 and C.44, respectively.
aKx,J,kU aKy,j,ku
At k#k,,
! l l
O i ; 1, _ O ving s 1, _ O vin. ., -0 (C.50)
oK, ;. oK, i« oK.
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