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ABSTRACT 

 

Automatic History Matching in Bayesian Framework for Field-Scale Applications.  

(December 2004) 

Ahmed Mohamed Ibrahim Daoud, B.S., Cairo University, Egypt; 

M.S., Cairo University, Egypt  

Chair of Advisory Committee:  Dr. Akhil Datta-Gupta 

 

Conditioning geologic models to production data and assessment of uncertainty is 

generally done in a Bayesian framework. The current Bayesian approach suffers from 

three major limitations that make it impractical for field-scale applications. These are: 

first, the CPU time scaling behavior of the Bayesian inverse problem using the modified 

Gauss-Newton algorithm with full covariance as regularization behaves quadratically 

with increasing model size; second, the sensitivity calculation using finite difference as 

the forward model depends upon the number of model parameters or the number of data 

points; and third, the high CPU time and memory required for covariance matrix 

calculation. Different attempts were used to alleviate the third limitation by using 

analytically-derived stencil, but these are limited to the exponential models only.  

We propose a fast and robust adaptation of the Bayesian formulation for inverse 

modeling that overcomes many of the current limitations. First, we use a commercial 

finite difference simulator, ECLIPSE, as a forward model, which is general and can 

account for complex physical behavior that dominates most field applications. Second, 

the production data misfit is represented by a single generalized travel time misfit per 

well, thus effectively reducing the number of data points into one per well and ensuring 

the matching of the entire production history. Third, we use both the adjoint method and 

streamline-based sensitivity method for sensitivity calculations. The adjoint method 

depends on the number of wells integrated, and generally is of an order of magnitude 

less than the number of data points or the model parameters. The streamline method is 

more efficient and faster as it requires only one simulation run per iteration regardless of 
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the number of model parameters or the data points. Fourth, for solving the inverse 

problem, we utilize an iterative sparse matrix solver, LSQR, along with an 

approximation of the square root of the inverse of the covariance calculated using a 

numerically-derived stencil, which is broadly applicable to a wide class of covariance 

models.  

Our proposed approach is computationally efficient and, more importantly, the CPU 

time scales linearly with respect to model size. This makes automatic history matching 

and uncertainty assessment using a Bayesian framework more feasible for large-scale 

applications. We demonstrate the power and utility of our approach using synthetic cases 

and a field example. The field example is from Goldsmith San Andres Unit in West 

Texas, where we matched 20 years of production history and generated multiple 

realizations using the Randomized Maximum Likelihood method for uncertainty 

assessment. Both the adjoint method and the streamline-based sensitivity method are 

used to illustrate the broad applicability of our approach. 
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CHAPTER I 

INTRODUCTION 
 

1.1 Introduction 

Automatic history matching is to find the best model parameters that minimize the error 

between the observed data and that calculated from the model without significant 

manual intervention. However, to do that there will be three major questions that we 

should answer.1 The first question is how accurate is the observed data that we need to 

match, the second one is how accurate is the forward model response, in other words, 

does the forward model include all the physics of the problem or not. The last one is that 

we can find an infinite number of model parameters that can fit the observed data, so 

which one to select, in other words, what is the prior information about the model 

parameters that are independent of the data observed. Here comes the important of the 

statistics to quantify the uncertainties in both the model and the data and the importance 

of Bayes’ theory (1763) to get the model that honor both the prior information about the 

model parameter and at the same time honor the data.  

In petroleum reservoir engineering the main objective is to build a reservoir model 

that honors both the geological information and the production history of the reservoir. 

The conventional method to do so is the manual history matching process which 

involves changing some parameters manually to get a good match with the production 

history. The selection of this parameter is subjective and always depends upon the 

engineering sense. This process is very tedious and time consuming; the alternative is 

using the automatic history-matching concept. The concept of the automatic history 

matching under Bayes theory is based on selecting a Gaussian probability distribution 

for the prior model parameter and a Gaussian distribution of the error in the data 

required to being matched.  

 
The dissertation follows the style and format of SPE Journal.     
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Then using Bayes theory, we get the posterior distribution that honors both the 

uncertainty of the prior and the data error.  

The model parameter can be permeability or porosity or skin factor or relative 

permeability or all of them and the data to be matched might be gas oil ratio, water cut, 

bottom-hole pressure or rate or all of them. The model parameter that maximizes the 

posterior distribution is the model parameter that honors both the data and the prior 

information. The framework of this study is to get the best permeability realization that 

honors both the prior information about the permeability distribution in the reservoir and 

the production history using Bayesian formulation. 

 

1.2 Literature Review 

Conditioning geological models to production data typically requires the solution of an 

inverse problem. Such inverse problems are usually ill-posed and their solutions suffer 

from difficulties in existence, uniqueness, and stability. To remedy these problems, a 

regularization term, in the form of data-independent prior information is generally added 

to the objective function in the inverse problem. Two different approaches to incorporate 

the regularization term have been used extensively in reservoir characterization 

literatures. One of these approaches is the Bayesian2-8, and the other is the 

deterministic.9-12 Both approaches have been successfully applied for conditioning 

geological models to production history and comparison between the two approaches 

can be found in the literature.13,14 Unlike the deterministic approach, the Bayesian 

approach associates probability distribution to the prior models and is thus considered 

well-suited for post-data inference and uncertainty assessment by defining a posterior 

distribution of models and sampling multiple realizations from this distribution. That is 

why Bayesian approach is commonly used for uncertainty assessment during production 

forecasting.   

Typically any inverse problem requires an optimization algorithm. These 

optimization algorithms can be classified into gradient-based and gradient-free 

algorithm. The gradient-free algorithms like simulated annealing or genetic algorithms 



 3

are not competitive with the gradient-based algorithm and computationally prohibitive 

for large-scale field applications. For the gradient-based algorithms, it is classified 

according to its search direction15 into steepest descent, Newton, quasi-Newton, and 

conjugate gradient. The fastest among those are the Newton-type search as it has a 

quadratic rate of convergence in the vicinity of the solution compared to the quasi-

Newton method which has a super linear rate of convergence, conjugate gradient and 

steepest descent which have linear rate of convergence and can be very slow in difficult 

problems. As Gauss-Newton and Levenberg-Marquard15 are considered one of the 

Newton-type of search algorithms, they are commonly used to get the maximum a 

posteriori estimate (MAP) from the posterior distribution by knowing the sensitivity 

coefficients which measure the change in the production response due to the change in 

the model parameters. As calculation of sensitivity is considered the key step in 

conditioning geologic model to production data, most of the literature survey work is 

focusing on the different approaches used for sensitivity computation.   

Jacquard and Jain16 presented an analytical formula for the sensitivity of pressure to 

a small perturbation in a uniform permeability field which depends on the number of 

wells and required about 1+Nw (Nw is the number of wells) simulation runs. Their 

method based on the assumptions of reciprocity theory and the linear relationship 

between the model parameters and the production response. Jacquard and Jain16 

constructed estimates of two-dimensional permeability fields by history–matching 

single-phase flow pressure data by minimizing an objective function equal to the sum of 

squared pressure data mismatch terms. They used less than twenty parameters and they 

used an optimization procedure similar in spirit to the Levenberg-Marquardt algorithm to 

avoid the numerical instabilities that can arise when solving an ill-conditioned inverse 

problem. Jahns17 adapted the basic ideas of Jacquard and Jain16 to estimate both 

transmissibility and storage fields by matching single-phase flow pressure data. Jahns17 

used the perturbation method which requires M+1 (M is the number of the model 

parameters) simulation runs to construct the sensitivities required by Gauss-Newton 

optimization algorithm and he shows that his method is computationally efficient 
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compared to Jacquard and Jain’s when the number of parameters is less than twice the 

number of wells. Jahns17 during inversion applies a sequence of minimization starting 

from small number of parameters to a bigger one (coarse to fine scale inversion).  

After about ten years of the fundamental work discussed in the previous paragraph, 

Carter et al.18 published a mathematical derivation of an efficient method to calculate 

sensitivity coefficients based on Jacquard and Jain’s16 method  that require 1+Nw 

simulation runs for sensitivity computation. Carter et al.18 considered 2D single-phase 

flow problems with the same assumptions of Jacquard and Jain16. Their procedure gives 

the sensitivity of reservoir simulator grid block pressures to grid block transmissibility 

and storage. He et al.19 extended Carter et al.18 method for 3D single phase flow by 

estimating the sensitivity of the wellbore pressure with respect to the model parameter 

by using Peacman20 equation and a straightforward extension of Carter et al. sensitivities 

of grid block pressure with respect to the model parameters. The extension of Carter el 

al.18 method for 3D single phase reservoir models require a number of simulation runs 

equivalent to the number of the grid blocks penetrated by the well. However He et al.19 

developed an approximate procedure to estimate the sensitivity of the wellbore pressure 

with respect to the model parameters that still depends only on the number of wells 

regardless the number of the penetrated grid blocks by the wells. He at al. method 

assumed small vertical pressure gradient and is limited to single phase flow problems. 

The methods for the computation of sensitivity discussed to this point are applicable 

only for single phase flow problems.  

For multi-phase flow, the easiest and the least efficient is the perturbation and 

sometimes called finite difference method, where the sensitivities are computed by 

perturbing the value of the model parameter and estimating the change in the production 

response due to this perturbation. This method has been used by Jans17 and its 

difficulties rest on the fact that its accuracy is sensitive towards the selection of the 

amount of perturbation and it requires M+1 simulation runs, where M is the number of 

model parameters, which makes it impractical for field-scale applications with thousands 

of model parameters. A more efficient method for computation of sensitivity coefficients 



 5

is the method discussed in Yeh’s21 review of parameter identification methods in the 

hydrology literature under the name of “sensitivity equation method” and then later 

introduced to the petroleum literature by Anterion et al.22 under the name of “gradient 

simulator method” or “direct method”. In this method the sensitivity equation is derived 

by differentiating the flow equations with respect to a single model parameter to obtain a 

linear system of equation per each parameter. The solution of this system of equation 

will give the gradient of the primary variables (pressure and saturation) with respect to 

the specified model parameter. The right hand side of this system of equation can be 

extracted directly from the Jacobian matrix at the last Newton iteration during solving 

for the primary variables using fully implicit method. The left hand side of these linear 

equations consists of two parts; the first part can also be extracted directly from the first 

Newton iteration while the second part can be obtained numerically or analytically. In 

this method the left hand side of the equations is constant, only the right hand side of the 

equations should be changed with the change of the model parameter. After solving this 

system of equations M times (M is the number of model parameters) with multiple right 

hand sides, the sensitivity of the primary variables with respect to the model parameters 

at each grid block is obtained. This is considered as redundant information especially as 

one requires only the sensitivity of the primary variables at the grid block penetrated by 

the wells; hence this method is considered unattractive for large number of model 

parameters. Tang23 and Tang et al.24 introduced the GPST (Generalized Pulse Spectrum 

Technique) for computing the sensitivity of the primary variables (pressure and 

saturation) with respect to the model parameters. This method requires only two 

simulation runs and uses only the information of sensitivities at the well locations; hence 

it is computationally efficient. Tang23 and Tang et al.24 used Tikhonov regularization 

during parameters updating to alleviate the ill-posed problem and they tested their 

method for 2D single and two phase flow using permeability and porosity as the model 

parameters and the results reflect its good accuracy and high rate of convergence for 

inverting for permeability; however, it does not show good accuracy for porosity 

inversion. Also, the computation time for the GPST gives quadratic scaling with the 
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model size; hence it is impractical for field-scale applications. Chu et al.25 used the basic 

idea of Tang et al.24 and they develop the MGPST (Modified Generalized Pulse 

Spectrum Technique) to get the sensitivity of wellbore pressure to reservoir simulator 

grid block permeability and porosity.     

Chen et al.26 and Chavent et al.27 introduced the optimal control theory to estimate 

the gradient of the objective function with respect to the control variables (rock 

properties like porosity and permeability). This method is called optimal control or 

adjoint method and it only requires one simulation run in addition to the solution of 

linear system of adjoint equations, hence the sensitivity computation require time 

equivalent to two simulation runs. Chen et al.26 used both steepest descent and conjugate 

gradient while Chavent et al.27 used steepest descent as optimization algorithm for 

updating the control variables. However, those optimization methods suffer from slow 

convergence compared to the sensitivity-based optimization algorithm like Gauss-

Newton or Levenberg-Marquardt which have a quadratic convergence behavior.15 Both 

Chen et al.26 and Chavent et al.27 show the derivation of the adjoint system of equations 

and the gradient of the objective function using the flow equation in continuous form. 

Wasserman et al.28 apply the optimal control theory using the flow equation in semi-

continuous form by discretizing the right hand side of the flow equation leaving the left 

hand side in a continuous form. This is equivalent to converting the partial differential 

equation of flow in space and time into a set of ordinary differential equations in time 

which is more practical for field applications and they applied their method for three 

phase 2D field cases. Watson et al.29 show the application of optimal control theory 

using the flow equation in a complete discretized form and apply this method for 2D 

multi phase flow problems. All the applications of the optimal control theory up to this 

point suffer from one drawback which is the slow convergence as the method gives only 

the gradient of the objective function which force to the application of slow convergence 

optimization algorithms like steepest descent or conjugate gradient. However, the 

method is computationally efficient for the calculation of the gradient of the objective 

function as it require only two simulation runs and it is independent of the number of the 
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model parameters or the number of data or the number of wells. Wu et al.5 used the 

optimal control theory (adjoint method) to calculate the sensitivity of wellbore pressure 

and the water–oil ratio with respect to the grid block permeabilities and porosities for 2D 

two phase flow. This method requires one simulation run and a solution of a linear 

system of adjoint equations of Nd times (Nd is the number of data points). Li et al.6 used 

the optimal control theory to estimate the sensitivity coefficient of wellbore pressure, 

water-oil ratio, and gas-oil ratio to grid block permeability, porosity, well skin factor, 

and the parameters used to define the power law relative permeability curves for three 

dimension, three phase reservoir models. Zhang et al.7 used the same adjoint method to 

estimate the gradient of the objective function instead of the sensitivities especially for 

large scale problems where both the number of model parameters and the number of data 

are large. The difference between Zhang et al.7 work and the other works26-29 is that they 

used quasi-Newton optimization algorithm called LBFGS (Limited Memory Broyden-

Fletcher-Goldfarb-Shano) to minimize the objective function instead of the conjugate 

gradient or steepest descent that were used before. However, their method still lacks the 

quadratic convergence of Gauss-Newton and Marquardt-Levenberg optimization 

algorithms.15 Wu and Datta-Gupta8 used the approach of generalized travel time 

introduced by Luo and Schuster30 in the context of waveform inversion in seismology 

which reduces the data misfit into one point per well. This offer a significant advantage 

in reducing the computation burden of sensitivity using the adjoint method where it 

requires only one simulation run and solving the adjoint system of equations Nw times 

(Nw is the number of wells), hence, make the approach well-suited for large-scale field 

applications. However their method has been applied only for 2D two phase flow.       

Up to this point, all the previous discussions for sensitivity calculations are for finite 

difference models. Recently, streamline models show significant advantage in automatic 

history matching due to two main reasons; its high speed performance compared to finite 

difference models31,32 and the most important is its analytically-derived sensitivities 

using one single simulation run.9,10 Vasco et al.10 presented semi-analytical approach for 

sensitivity calculation of water cut and tracer response with respect to permeability and 
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porosity with a total number of 100,000 parameters. They used a two-step inversion 

approach by matching first the breakthrough time and then the amplitude (water cut or 

tracer response).  Their method based on the assumption that the streamline does not 

shift; however, for drastic change of flow geometry such as changing well conditions, 

infill drilling, pattern conversion the stationary streamline assumption is not valid. He et 

al.11 modified the sensitivity calculation for changing field conditions and used the 

approach of generalized travel time inversion introduced by Luo and Schuster.30 Due to 

the limitation of streamline models to account for compressible flow and complex 

physical mechanism, an approach that combine the advantage of streamline models in 

sensitivity calculations and at the same time using finite difference models has been 

introduced33,12 where the velocity field is obtained from the finite difference models 

which used to trace the streamline and calculate the time of flight required for sensitivity 

calculation.    

                                  

1.3 Objectives 

The main objective of this study is to use Bayes theory as a tool for integrating static and 

dynamic data and make it well-suited for field-scale applications and at the same time 

use the advantage of Bayes theory as a tool for uncertainty assessment. Accordingly, the 

specific objectives are as follows: 

 

 Generalize the application of the “generalized travel time” inversion to 3D two 

phase finite difference models by developing the sensitivity of the generalized 

travel time with respect to the model parameters using the adjoint method. 

 Introduce a new Bayesian formulation that is well-suited for field-scale 

applications with a numerically-derived stencil to compute the square root of the 

inverse of the covariance matrix required by the new formulation.  

 Apply the new and the conventional Bayesian formulation for integrating static and 

dynamic data from finite difference models using adjoint method-based sensitivity 

and streamline-based sensitivity.  
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 Study the computational efficiency with increasing the number of parameters for 

both the conventional and the new Bayesian formulation using finite difference 

models with sensitivity calculated from adjoint method and streamline. 

 Quantify the uncertainty of the estimate by sampling the posterior distribution 

resulted from the integration of static and dynamic data using Bayes theory. 

 Applications: different synthetic examples used to study the quality of the 

inversion and the scaling behavior for the new Bayesian compared to the 

conventional approach using sensitivity from both adjoint method and streamline 

method. Field example from Goldsmith San Andreas Unit is used to demonstrate 

the utility of the new Bayesian formulation using finite difference models with 

sensitivity calculated from streamline and adjoint method and also to assess the 

uncertainty during the production history matching. 

 

1.4 Dissertation Outline    

Chapter II gives a brief introduction about Bayes theory and its application as a tool for 

integrating static and dynamic data. It is well known that history matching of production 

(dynamic data) always yield non unique solution especially if the model parameters like 

permeability and porosity are greater than the data points. Moreover, the history 

matching problem of this kind is an ill-posed problem and some form of regularization is 

necessary to avoid instability. Thus incorporating the prior data in the history matching 

problem using Bayes theory stabilizes the solution and reduce the variability in the 

reservoir model parameters that provide an acceptable match to the production data. So, 

the first part of this chapter discusses the three important components of automatic 

history matching, which are the data misfit, the prior or the regularization, and the 

optimization algorithms. Those three components are very important and any 

improvement in one of those components leads to a significant contribution in the 

automatic history matching process. The second part of this chapter introduces one of 

the major parts of this dissertation, which is the reformulation of the Bayesian approach 

for field-scale applications with a special reference to a novel approach used to 
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approximate the square root of the inverse of the prior covariance matrix required by the 

new formulation. In addition we examine the scaling of the computational cost required 

by the conventional and new formulation with increasing the number of parameters. The 

third part of this chapter is devoted to the uncertainty assessment by briefly discussing 

the different methods to sample realizations from the posterior distribution for using in 

the uncertainty analysis.  

Chapter III represents the central part of this dissertation which is the sensitivity 

computation. The first part of this chapter gives a detailed formulation of the sensitivity 

of the generalized travel time with respect to the model parameter using adjoint method 

for 3D, two phase reservoir models. The second part shows briefly the sensitivity 

computation based on streamline for comparison purpose. The forward model used for 

the both parts is the finite difference models. 

Chapter IV presents applications of the procedures discussed in the previous three 

chapters using 2D and 3D synthetic examples to show the quality of the inversion and 

the computational time behavior versus the number of parameters for the new Bayesian 

approach compared to the conventional method using sensitivity from both adjoint 

method and streamline method. Also, a field example from the Goldsmith San Andreas 

Unit is used to demonstrate the utility of the new Bayesian formulation using finite 

difference models with sensitivity calculated from both streamline and adjoint method. 

We also generate different realizations from the posterior distribution for the uncertainty 

assessment in production history before and after incorporating production data.  

Chapter V summarizes the conclusions and recommendations from this study. 

There are three appendices in this dissertation. Appendix A shows the derivation of 

the Modified Gauss-Newton used in this work and the mathematical equivalence 

between the new Bayesian formulation and the conventional Gauss-Newton formulation. 

Appendix B describes the computation of the derivatives in the adjoint system of 

equations for the adjoint method-based sensitivity. Appendix C represents the 

computation of the derivatives in the sensitivity coefficient calculation using the adjoint 

method-based sensitivity. 
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CHAPTER II 

BAYES THEORY AS A TOOL FOR DATA INTEGRATION AND 

UNCERTAINTY ASSESSMENT 
1 

This chapter gives brief introduction about Bayes theory as a tool for integrating static 

and dynamic data. Due to the ill-posedness of the history matching problems, a 

regularization term is required to remedy this problem and Bayes theory is considered an 

appropriate statistical tool that can incorporate the static and dynamic data where the 

static data serves as a regularization term during the history matching. This chapter 

consists of three parts; the first part of this chapter discusses the three important 

components of automatic history matching in Bayesian framework, which are the data 

misfit, the prior or the regularization, and the optimization. The second part of this 

chapter introduces the reformulation of the Bayesian approach which is well-suited for 

field-scale application. A novel approach is used to approximate the square root of the 

inverse of the prior covariance matrix required by the new formulation. Finally, we 

examine the computational work required in terms of number of multiplications by the 

conventional and the new formulation with increasing the number of parameters. The 

third part of this chapter is devoted to briefly discussing the methods used to sample 

different realizations from the posterior distribution for using them in the uncertainty 

analysis.  

 

2.1 Bayes Theory Background 

 

Bayes’ rule is given as follows:  
 
 

)(
/(

(
obs

obs
obs d

 ) md
  (m))d  /m

f
f

ff ⋅=                                                                …………(2.1) 

 
 
Where, m is a vector of the model parameters, dobs is a vector of the observed data,   
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f(m) is the prior probability distribution function of the model parameters, f(dobs/m) is 

the probability distribution of the observed data given the true model parameters is m, 

f(dobs) is the marginal probability distribution, which is given as 

(m)   ) md  m)(d obsobs ffdf ⋅= ∫ /(  , f(m/dobs) is the posterior probability distribution of 

the model parameters given the observed data.    

Assuming that the error in the data and the forward model and the uncertainty in the 

model parameters follow a multi-Gaussian distribution, the posterior probability 

distribution can be written as34: 
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Where, g(m) is the forward model that defines the non-linear relationship between the 

model parameters and the data, CD is the covariance operator combines both the error in 

the data and the forward model. If the errors in the data and the forward model are 

uncorrelated, CD will be a diagonal matrix. Also, CM is the covariance operator 

describing the estimated uncertainties in the prior model, mprior is a vector of the prior 

mean of the model parameter m.     

Bayes’ rule provide a natural framework for automatic history matching of reservoir 

models by combining the prior geologic model with the production data, where g(m) is 

the reservoir simulation model, which can be finite difference or streamline models, the 

dobs are the production data, and m and mprior can be the permeability or porosity or the 

skin factor or the relative permeability control parameters or any other reservoir control 

parameters assigned by a reservoir engineer.   

Eq. 2.2 gives the posterior distribution of the model parameter, where any sample from 

this distribution can be a plausible model consistent with the production history and the 

prior geological model. The best estimate of the parameter is the one that maximize the 

posterior distribution given by Eq. 2.2, or minimizing the following objective function: 
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2
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According to Eq. 2.3, the three important components for the automatic history 

matching process are the first term of Eq. 2.3, which is called “data misfit”, the second 

component is the second term of Eq. 2.3, which is called “regularization” or the “prior 

model” and the third component is the optimization algorithm used to minimize the 

objective function given by Eq. 2.3. The next section is devoted to discussing those three 

components. 

 

2.2 Data Misfit 

This section discusses three different types of data misfit and the formulation of one of 

those types that is used during this work which is the “generalized travel time misfit”. 

 

2.2.1 Types of Data Misfit  

 Three different ways used to represent the production data misfit, namely, the 

“amplitude misfit”, “travel time misfit”, and “generalized travel time misfit”. The 

most common one is the “amplitude misfit” (Fig. 2.1a), where the production data 

misfit is represented as follows 

( )∑ ∑
= =
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ji

cal
jijp tytywJ

1 1

2)()(                                                             ………..(2.4)                            

For djni ,...,1=  , wnj ,...,1=    

In Eq. 2.4, )( ij ty  denotes the production data for well j  at time ti, nw and ndj stand for 

the number of production wells and the number of observed data at each well, 

respectively and ijw  represents the data weights, which are the reciprocal of the variance 

at each data point under the assumption that the DC  is diagonal matrix, where the errors 

between the data points are uncorrelated.  
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The “travel time misfit” is represented as shown in Fig. 2.1b, where the misfit is 

obtained by lining up the observed and the predicted data at a reference time such as the 

breakthrough or the first arrival time. The disadvantage of travel time misfit is that it is 

only one time point match and it does not take into consideration all the points as in the 

amplitude misfit.  However, the travel time misfit has major advantages compared to the 

amplitude during inversion, first it has a quasi-linear properties compared to the high 

non linearity of the amplitude35 as a result the travel time inversion is robust and 

converge rapidly even if the initial model is far away from the solution. Second, it is 

computationally efficient because the number of travel-time is equal to the number of 

wells, regardless of the number of data points. This leads to considerable savings in 

computational time during the minimization.      
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Fig. 2.1−Illustration of different types of data misfit, (a) Amplitude misfit, (b) 
Travel time misfit, (c) & (d) Generalized travel time misfit 
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Fig. 2.1−Continued 
 

 

The “generalized travel-time misfit” ensures matching of the entire production 

history rather than single time point match and at the same time retaining most of the 

desirable properties of travel-time inversion. In “generalized travel time match” we 

seek an optimal time-shift at each well to minimize the production data misfit at the 

well. This is illustrated in Fig. 2.1c where the calculated water-cut response is 

systematically shifted in small time increments towards the observed response, and the 

data misfit is computed for each time increment. Taking well j as an example, the 

optimal shift will be given by the jt∆  that minimizes the misfit function, 
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Or, alternatively maximizes the coefficient of determination given by: 
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Thus, the generalized travel-time at well j is the ‘optimal’ time-shift jt~∆ that 

maximizes the )(2
jtR ∆  or minimizes pjJ  as shown in Fig. 2.1d. It is important to point 

out that the computation of the optimal time-shift does not require any additional flow 

simulations. It is carried out as a post-processing at each well after the calculated 

production response is derived using a flow simulation. The overall production data 

misfit can now be expressed in terms of a generalized travel-time misfit at all wells as 

follows  
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σ
                                                                                          …..…….(2.7)    

Where, 2
jσ  is the error variance of the generalized travel time at well j by assuming DC  

a diagonal matrix. It is worth to mention here that using the data misfit in the objective 

function given by Eq. 2.3 as the generalized travel time reduces the computational 

burden during the minimization by reducing the data covariance matrix to be of order 

ww NN ×  and the data misfit vector to be of 1×wN  which are always of order of 

magnitude lower than the number of data points, dN . Thus, the concept of generalized 

travel time shift as the data misfit is well-suited for field-scale application and is used 

during this study.  Accordingly, the objective function given by Eq. 2.3 using the 

generalized travel time as the data misfit, will be as follows: 
 

( ) ( ) ( )[ ]priorM
T

priorD
T CCO mmmmt∆t∆m −−+= −− 11 ~~

2
1

                                        ……...……(2.8) 

 
Where t~∆  is the generalized travel time that minimizes the difference between the 

calculated and the observed data as given by Eq. 2.3. A detailed formulation of the 

generalized travel time shift under different scenarios will be studied in the next section.   

It is important to mention that the selection of the standard deviation of the data error 

is subjective and it depends upon the data itself. However a good guideline for selecting 

this parameter is given by Wu et al.5 and Wu36. 
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2.2.2 Generalized Travel Time Formulation 

In this section, a formulation of a general formula for the generalized travel time with 

respect to the travel time for two cases is given. The first case is when shifting the 

calculated response towards the observed and the second is when shifting the observed 

towards the calculated response. 

Case1:  Shifting calculated towards the observed 

Figs 2.2a, 2.2b show situations when the calculated is to the left of the observed and the 

calculated to the right of the observed, respectively. The general formula for the 

generalized travel time as function of the travel time at each point that satisfies the two 

situations in the next figures is as follows: 

 

icalishifti ttt ,,
~ −=∆     dni ,..1=                                                                           …..…….(2.9)   

 

Where, for the first situation as shown in Fig. 2.2a, the sign of the generalized travel 

time is positive while for the other situation as shown in Fig. 2.2b, the sign is negative 

So, irrespective of the relative location of the calculated and the observed, Eq.2.9 

satisfies the both situation for the case of shifting the calculated towards the observed. 

As we are shifting all the points with the same amount of shift, so the generalized 

travel time shift can be written as the average of all the shift for all the points as follows: 
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In the vicinity of the solution or when the shape of the calculated response is close to 

that of the observed, shiftt  can be approximately equal to obst  as shown in Figs. 2.2a,b. 

Thus Eq.2.10 will be as follows: 
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Fig. 2.2−Illustration for the formulation of generalized travel time shift, (a) Shifting 
the calculated towards the observed: calculated to the right of the 
observed, (b) Shifting the calculated towards the observed: calculated to 
the left of the observed, (c) Shifting the observed towards the calculated: 
calculated to the right of the observed, (d) Shifting the observed towards 
the calculated: calculated to the left of the observed 
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Case2:  Shifting observed towards the calculated 

Figs 2.2c, 2.2d show situations when the calculated is to the left of the observed and the 

calculated to the right of the observed, respectively. The general formula for the 

generalized travel time as function of the travel time at each point that satisfies the two 

situations in the above figures is as follows: 

 

iobsishifti ttt ,,
~ −=∆    dni ,..1=                                                                          …..…….(2.12)   

 

Where, for the first situation as shown in Fig. 2.2c, the sign of the generalized travel 

time is positive while for the other situation as shown in Fig. 2.2d, the sign is negative.  

As we are shifting all the points with the same amount of shift, so the generalized 

travel time shift can be written as the average of all the shift for all the points as follows: 
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In the vicinity of the solution or when the shape of the calculated response is close to 

that of the observed, shiftt  can be approximately equal to calt as shown in Figs. 2.2c, d. 

Thus Eq.2.13 will be as follows: 
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Notice here the difference in the formulation of the generalized time shift, Eqs. 2.11 and 

2.14 for shifting the calculated towards the observed and the opposite.   

It should be mentioned that while using poor initial model, Eqs. 2.11 and 2.14 might not 

be good approximation. For example, situations might arise when there is observed 

water cut response and no calculated response and vise versa. Under such conditions, the 

generalized travel time shift is given by the difference between the breakthrough time 
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and the end of the observed response and vise versa. From our experience we have seen 

that during successive iterations the shape of the production response gets close to the 

observed and Eqs. 2.11 and 2.14 can be considered good approximate formulation for 

the generalized travel time misfit.       

 

2.3 Prior Model 

The prior model parameter (m ) used in this work is the permeability at each grid block 

which are modeled as correlated stationary Gaussian random fields with specified means 

( priorm ) and covariance, MC . The prior covariance is an auto covariance between the 

permeability at each grid block and it is calculated by knowing the variogram model 

which consists of three main components; the variogram model, the sill and the range.  

For more than one type of model parameter, for example permeability and porosity 

at each grid block, the covariance matrix will be as follows: 
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Where, KC  is the covariance matrix of permeability derived from the permeability 

variogram modeling, φC  is the covariance matrix of porosity obtained from the porosity 

variogram modeling, φ,KC and KC ,φ are the cross covariance matrix between porosity and 

permeability and is obtained by modeling the cross variogram or by using the screening 

hypothesis of Xu et al.37 During this study, the model parameter is the permeability at 

each grid block which is assumed to have a log normal distribution.   

It should be mentioned here that the covariance matrix is a full matrix of order M x M 

(M is the number of model parameters, i.e. M is equivalent to the number of grid 

blocks). So for field-scale applications with large number of grid blocks, a certain form 

of parameterization38 or approximations using the “stencil” concept34,39 is required 

during inversion. The approximation using stencil will be discussed later in this chapter. 
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2.4 Optimization Algorithms 

The minimization of Eq. 2.8 or Eq. 2.3 requires an efficient minimization algorithm 

especially for large field-scale applications where, the number of model parameters is 

usually high of the order of thousands to million grid block permeabilities or porosities. 

There are two different methods of minimization algorithms for unconstrained objective 

function like that given in Eq. 2.8 or Eq. 2.3; the gradient-based algorithms15 such as the  

steepest descent, Newton, Gauss-Newton, Levenberg-Marquardt, conjugate gradient    

and Variable metric (sometimes called quasi-Newton) and the non-gradient based 

algorithm like simulated annealing, genetic algorithm, Monte Carlo methods, and neural 

networks. The non gradient-based algorithms are not practical compared to the gradient 

algorithms for large number of parameters and thus, the gradient-based algorithms are 

the one that are commonly used in reservoir inverse problems.  

The rates of convergence of each type of the gradient-based algorithms are different. 

The Newton type of search algorithms like Newton, Gauss-Newton, and Levenberg-

Marquardt have quadratic rate of convergence in the vicinity of the solution compared to 

the super-linear rate of convergence of the variable-metric algorithm and the linear rate 

of convergence of steepest descent and conjugate gradient.15 However, the advantage of 

steepest descent, conjugate gradient, and variable metric is that the computation of 

sensitivity matrix is not required. Instead, the only requirement is the gradient of the 

objective function which can be obtained using adjoint method and need only one 

forward run and a solution of the adjoint system of linear equation only once 

independent of the number of data or the number of wells.7, 26-29 Due to the rapid 

convergence of the Newton type of search algorithms, the next sections will cover 

briefly the equations used during the minimization for Newton, Gauss-Newton, and 

Levenberg-Marquardt algorithms. 

 

2.4.1  Newton Algorithm 

The Taylor series of the objective function O(m), given by Eq. 2.8, is as follows: 

[ ] .....)()(
2
1)()()()( 0 +−−+−∇+= 0000m0 mmmmmmmmm HOOO TT         ….(2.16)    
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Where, )( 0m mO∇  is the gradient of the objective function with respect to the model 

parameter, m at m = m0 and H0 is the Hessian of the objective function at m = m0. 

Taking the gradient of Eq. 2.16,  

 

.....)()()( 0 +−+∇=∇ 00mm mmmm HOO                                                    ……….(2.17)   

 

Locating the point m at the optimum value of the O(m) is equivalent to locating the 

point where the gradient of O(m) vanishes. By setting )(mmO∇ = 0 in Eq. 2.17, Eq. 

2.16 becomes: 

 

 )(1
0m0 mmm OH o ∇−= −                                                                               …...…..(2.18)  

 

Eq. 2.18 is the Newton algorithm and is written in general form as: 

 

  )(1 l
m

l1l mmm OH l ∇−= −+                                                                        …………(2.19) 

                   

Where, (l) denotes the iteration level.       

Newton algorithm, Eq. 2.19, requires getting the Hessian and its inverse. For large scale 

problems, where number of model parameters is extremely high, the inverse of the 

Hessian matrix which is of order M x M is computationally difficult. In Variable metric 

method, the inverse of the Hessian in Eq. 2.19 is updated at each iteration. Zhang et al.7 

used the variable metric method with the gradient of the objective function calculated 

using adjoint method and they used LBFGS15 to update the inverse of the Hessian 

starting with the covariance matrix as the initial guess. However, their method can be 

computationally efficient if the updated Hessian remains positive definite at each 

iteration which is not the case in general.      
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2.4.2 Gauss-Newton Algorithm 

By taking the gradient of the objective function given by Eq. 2.8,  
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Where, lG  is the sensitivity matrix of the generalized travel time with respect to the 

model parameter and it is given as: 
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By taking the gradient of Eq. 2.20, 
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For small residual, lt∆
~ , or for quasi-linear problems, the first term in Eq. 2.22 can be 

neglected, thus Eq. 2.22 becomes: 

 
11 −− +≅ MlD

T
l CGCGH                                                                                       ……….(2.23)   

 

Substituting Eq. 2.20, and Eq. 2.23 in the Newton algorithm, Eq. 2.19, 
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Eq. 2.24 is the Gauss-Newton formula used during the minimization. The difficulties of 

Eq. 2.24, is that updating the model parameter at each iteration requires obtaining the 

inverse of the covariance matrix plus the inverse of the matrix [ ]11 −− + MlD
T
l CGCG   both of 

which are of order M x M. Tarantola34 and Chu et al.25 used a matrix inverse lemma to 

convert Eq. 2.24 in a form computationally efficient when the number of model 

parameters are greater than the number of data. This form is: 
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The form given in Eq. 2.25 is called Modified Gauss-Newton, Appendix A shows the 

derivation of the Modified Gauss-Newton formula. Eq. 2.25 and Eq. 2.24 are 

mathematically equivalent, but the computation time for both is completely different. 

Eq. 2.25 requires only the inverse of matrix  [ ]T
lMlD GCGC +  which is of order ww NN ×  

( wN is the number of wells) in using the generalized travel time as the data misfit.  

It is worth to mention here that starting an initial guess with poor model makes the 

residual too large and the approximation of the Hessian given by Eq. 2.23 will not be a 

valid assumption and this lead to a poor convergence of Gauss-Newton. Li40 shows that 

using Levenberg-Marquardt algorithm with high value of the damping factor at the 

initial iteration to damp the model changes can overcome the convergence problem of 

the high data misfit at the early iterations. Levenberg-Marquardt algorithm is discussed 

in the next section. 

  

2.4.3 Levenberg-Marquardt Algorithm 

Bi41 modified Levenberg-Marquardt formula for application to the inverse problems to 

be in the following form: 
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α is the damping factor and for large α, the change in the model parameters per iteration 

is small. Li40 use high value of α equal to 104 or 105 at the initial iteration for large 

residual to ensure reduction in the objective function and whenever there is a reduction 

in the objective function from one iteration to the other, the value of α decreased by a 

factor of 10 until it becomes close to zero, where Eq. 2.26 tends to the original Modified 

Gauss-Newton, Eq. 2.25 which is a good assumption at small residual.  

 

The minimization algorithm given by Eq. 2.25 requires knowledge about the 

sensitivity matrix, G which is a very critical step during minimization. Chapter III will 

be devoted to show the calculation of the sensitivity matrix using the finite difference 

simulator as forward model. 

 

2.5 Bayesian Formulation for Field-Scale Applications  

The central point for the second part of this chapter deals with reformulating the 

objective function, Eq. 2.8 resulting from the Bayesian approach and use the same 

approach of Gauss-Newton algorithm to reach to a system of equations for model 

updating in order to reduce the burden of matrix multiplications during the minimization 

process using the Modified Gauss-Newton, Eq. 2.25. Thus, reducing the computation 

time and making it well-suited for large-scale field applications.  

2.5.1 Bayesian Formulation  

The objective function in the Bayesian formulation given by Eq. 2.8 is re-written in the 

following from: 
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The minimization of the objective function given in Eq. 2.27 can be obtained by 

using Newton’s optimization algorithm given by Eq. 2.19 as follows: 

  

)(mmδ mOH −∇=                                                                                         ……….(2.29) 

 

Where,  )(mmO∇  is obtained from Eq. 2.27 as follows: 
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Letting the Jacobian, J, be as follows:   
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Substitute Eq. 2.31 in Eq. 2.30,  
 

eJO T=∇ )(mm                                                                                                                 ...……..(2.32)                                  

 

The Hessian is obtained by taking the gradient of Eq. 2.32 with respect to the model 

parameter (m): 
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Similarly, as Gauss-Newton, by neglecting the second term of Eq. 2.33, Eq. 2.33 

becomes: 

 

JJH T≅                                                                                                                              ……..(2.34)   
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The approximation for the Hessian, Eq. 2.34, is the same as that of the Gauss-Newton 

algorithm and is strictly valid near the solution (small misfit) or for quasilinear 

problems. Substituting Eqs. 2.32 and 2.34 in Eq. 2.29; 

 

eJJJ TT −=mδ                                                                                            ……….(2.35)                             

 

Eq. 2.35 is simply a least-squares solution to the following system of equations 

 

eJ −=mδ                                                                                                      ….……(2.36)   

 

Substitute Eqs. 2.28 and 2.31 in Eq. 2.36,  

 

( )













−

−
=















−

−

−

−

l
p

l

mm

t∆ 
mδ 

2
1

2
1

2
1

2
1 ~

M

D

M

lD

C

C

C

GC
                                                                  ………(2.37)  

 

Eq. 2.37 is mathematically equivalent to the Gauss-Newton formulation, Eq. 2.24 

and in turn equivalent to the Modified Gauss-Newton formulation, Eq. 2.25. Appendix 

A shows the mathematical equivalent between the two formulations, Eq. 2.37 and Eq. 

2.24.  

Eq. 2.37 represents a system of linear equations and we use an iterative sparse 

matrix solver, LSQR42 for solving this system. LSQR is well suited for highly ill-

conditioned systems and is widely used for large-scale tomographic problem in 

seismology.43 However, difficulties arise in the computation of the square root of the 

matrix inverse in Eq. 2.37. In practice, the data covariance matrix is assumed to be 

diagonal and is thus easy to manipulate. However, the covariance matrix for the model 

parameters can be full and in general, the calculation of 2
1−

MC  will be computationally 

prohibitive for large-scale inverse problems. Previous efforts to compute 2
1−

MC  

analytically have been limited to exponential covariance model14. Vega44 proposes an 
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approach to approximate the square root of the inverse of the covariance using a 

numerical stencil which is general for any covariance models. The next section will give 

brief overview for approximating the square root of the inverse of the prior covariance 

matrix using the numerically derived “stencil”.  

The scaling of the computation time with respect to the model parameters for the 

conventional Bayesian formulation, Eq. 2.25, and Eq. 2.37 will be studied in terms of 

the number of multiplications required by each formulation after discussing the concept 

of the numerical stencil.  

 

2.5.2 Square Root of the Inverse of the Covariance Using Numerically-Derived 

Stencil  

The exact analytical calculation of the square root of the inverse of the covariance can be 

done using the concept of matrix diagonalization.45 Since the covariance matrix is a 

symmetrical matrix so, its square root of the inverse can be calculated exactly using the 

following equation:  
 

UUC T
M  2/12/1 −− Λ=                                                                                             …….(2.38)    

 

Where U is the matrix, whose columns are the eigenvectors of MC , Λ  is the diagonal 

matrix whose diagonal elements are the eigenvalues of the covariance matrix MC . This 

computation is very difficult to handle especially for large field-scale cases where the 

covariance matrix is full and large. Another alternative is to use iterative algorithms like 

Newton method46 to get the square root of the inverse of the covariance matrix. 

However, this method requires the calculation of the inverse of the covariance per 

iteration, which makes it impractical for large-scale problems. Recent attempt used to 

approximate the square root of the inverse of the covariance matrix by obtaining 

analytically its stencil from the covariance kernel14 based on the previous works for 

calculating the inverse of the prior covariance matrix.34,39 However, the analytical 

approximation suffers from two major limitations; it is applicable only for the 
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exponential covariance and the ratio of the grid size to the range in the three directions 

need to be equal.  

Due to these limitations, Vega44 proposed a method that overcomes these limitations 

which based on two basic principles; First, the covariance matrix and the square root of 

its inverse can be constructed using their respective kernels, Second, the two kernels 

remain unchanged regardless of the size of the matrix.  

The following are the procedures used to approximate the square root of the inverse of 

the covariance matrix using a numerically-derived stencil. First, and the most important 

step, is choosing the size of the stencil, which depends mainly upon the ranges, the grid 

sizes and the number of gridblocks in the three directions. Selections of the stencil is a 

tradeoff between speed and accuracy and sensitivity study should be done to best select 

the stencil required depending upon the behavior of each problem. To make the method 

understandable, we assume that 5x5x5 stencil provide a good compromise between 

efficiency and accuracy, so a 5x5x5 stencil can be used to approximate the square root of 

the inverse of the covariance matrix. Second, the concept of matrix diagonalization, Eq. 

2.38, is used to get the square root of the inverse of the covariance for 5x5x5 grid block 

(125x125 covariance matrix) by knowing the kernel of the covariance. This is equivalent 

to getting the kernel of the square root of the inverse of any covariance function in a 

discretized or numerical form other than obtaining the kernel analytically as before.14 

Third, the set up of the 5x5x5 stencil is shown in Fig. 2.3. This stencil has only 27 

distinct elements due to symmetry. Any column or any row of the covariance matrix 

calculated from the second step can be used to get the magnitude of each stencil 

presented in Fig. 2.3. Column 63 is selected for convenience, as it is the middle column 

to construct the magnitude of each stencil. Table 2.1 shows the location of the stencil in 

the 125 x 125 matrix constructed in the second step, which in turn gives the magnitude 

of each stencil. Finally, the approximation of the square root of the inverse of the 

covariance for the model under study is obtained by using the stencil constructed in Fig. 

2.3 and its magnitude obtained from Table 2.1.   
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Fig. 2.3−5x5x5 stencil used for the numerical approximation of the square root of 
the inverse of the covariance 
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i+2, j, k+2

G(16)
i+1, j, k+2

G(10)
i, j, k+2

G(16)
i-1, j, k+2

G(21)
i-2, j, k+2

G(24)
i+2, j-1, k+2

G(19)
i+1, j-1, k+2

G(13)
i, j-1, k+2

G(19)
i-1, j-1, k+2

G(24)
i-2, j-1, k+2

G(26)
i+2, j-2, k+2

G(23)
i+1, j-2, k+2

G(22)
i, j-2, k+2

G(23)
i-1, j-2, k+2

G(26)
i-2, j-2, k+2

Layer K-2 Layer K-1 

Layer K

Layer K+1 Layer K+2 
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Table 2.1–Location of the numerical stencil terms from column 63 of the square root of 

inverse of covariance of 555 ×× grid 

Numerical Stencil Term Row Number in Column 63 
G(0) 63 
G(1) 62 
G(2) 58 
G(3) 38 
G(4) 33 
G(5) 57 
G(6) 37 
G(7) 32 
G(8) 61 
G(9) 53 

G(10) 13 
G(11) 52 
G(12) 56 
G(13) 8 
G14) 28 
G(15) 36 
G(16) 12 
G(17) 31 
G(18) 27 
G(19) 7 
G(20) 51 
G(21) 11 
G(22) 3 
G(23) 2 
G(24) 6 
G(25) 26 
G(26) 1 

 
 
 
2.5.3 Computational Scaling Properties: Conventional vs Field-Scale Bayesian 

Formulation 

In comparing the computation effort required by each formulation, we assume that the 

computational effort is directly proportional to the number of multiplications required by 

each formulation and our objective is to show how the number of multiplications for 

each formulation behaves with increasing the number of model parameters. For this 
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purpose we will assume that the sensitivity matrix required by the both formulation is 

full and covariance matrix is full in case of the conventional Bayesian, while in case of 

the new Bayesian formulation, we will use the concept of the stencil discussed before to 

approximate the square root of the inverse of the covariance. Thus the matrix will be 

sparse and we will use the maximum number of the non zero values for each row to be 

equal to the Ns (i.e. Ns is the maximum number of stencil, which is equal to 125 in case 

of using 5x5x5 stencil). 

 

Conventional Bayesian formulation 

  The conventional Bayesian formulation is given by Eq. 2.25. The number of 

multiplication per iteration required is calculated as follows: 

- Forming )p
l

lG m(m − : [ ] [ ]
1×× −⋅

Mp
l

MNl w
G mm   requires ( )MN w ⋅   

multiplications 

- Forming  T
lM GC :   [ ] [ ]

wNMMMMC ×× ⋅ T
lG   requires ( )2MN w ⋅  multiplications 

- Forming T
lMlD GCGC + : It requires the following multiplication 

[ ] [ ]
ww NMMNlG ×× ⋅ T

lMGC , which require ( )MN w ⋅
2  multiplications 

- Forming [ ] ( )[ ]p
l

l
T
lMlD GGCGC mmt∆ l −−+

− ~1 : It require solving a system of 

equations in the form of [ ] [ ] ( )[ ]
11

~
××× −−=⋅+

wwww Np
l

lNfNN
T
lMlD GgGCGC mmt∆ l  

      to get (gf). The LU Decomposition and LU back substitution is used to get (gf) 

      and this operation requires45  ( )3
wN  multiplications. 

- Forming [ ] ( )[ ]p
l

l
T
lMlD

T
lM GGCGCGC mmt∆ l −−+

− ~1 : 

[ ] [ ]
1×× ⋅

ww NfNM gT
lMGC requires ( )MN w ⋅  multiplications. 

Adding up all the above operations, results in the total number of multiplications per 

iteration required by the conventional Bayesian approach.  

 
322 2 wwwwGN NMNMNMNZ +++=                                                       …..…..(2.39)    
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Field-scale Bayesian formulation  

The field-scale Bayesian formulation is given by Eq. 2.37, by assuming that DC  is 

diagonal matrix, thus Eq. 2.37 can be written as:  

 

( )











−

−
=












−− l

p

l

mm

t∆ 
mδ 

2
1

2
1

~

MM

l

CC

G
                                                                ………(2.40)  

 

We used LSQR42 as an iterative sparse matrix solver to solve the above augmented 

system of equations. I followed the exact algorithm given by Paige and Saunders42 in 

counting the number of multiplication required by solving Eq. 2.40, which can be 

written in the following form: 

 

[ ] [ ] [ ] 1)1) ×+××+ = MMMM bA
ww (N(N x                                                                ……….(2.41)  

 

The following is the number of multiplications required at each step in the algorithm: 

1) Initializing: 

- Forming [ ] [ ] 1)1) ×+×+ = MM bu
ww (N(N1 : required the product of 

[ ] [ ]
1

2/1
××

− −⋅
MMMMC l

p mm , which requires ( )sNM ⋅  multiplications, where Ns is 

the maximum number of the stencil used to approximate the square root of the 

inverse of the covariance (i.e. maximum number of non zero values per each row 

of 2/1−
MC ). 

- Normalize [ ] 1)( ×+MNw
u1  and get β1 : require ( )MN w +  multiplications 

- Form [ ] [ ] [ ] 1)(1)(1 ×++×× = MNMNM
T

M ww
uAv1  : It is equivalent to find the product in 

the following form, [ ] [ ] [ ] [ ] [ ] 11
2/1

111 ``)(` ××
−

××× += MMM
T

MNNM
T

M uCuGv
ww1 , this 

require ( )sw NMMN ⋅+⋅  multiplications 

- Normalize [ ] 1×Mv1  and get α1 : require ( )M  multiplications 
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2) Start Iteration inside the LSQR loop for i=1,2,…..Niter, where Niter is the number 

of iteration 

3) Bidiagonalization 

- Form [ ] [ ] [ ] [ ] 1)(1)(1)( ×+××+×++ −= MNiiMiMMNMN www
uvAu α1i : require the following 

two products; 

a- [ ] 1)( ×+MNii w
uα : require ( )MN w +  multiplications 

            b- [ ] [ ] 1)( ××+ MiMMN vA
w

: is equivalent to forming the two products; 

                       [ ] [ ] 1×× MiMN vG
w

: require ( )MN w ⋅  multiplications 

                       [ ] [ ] 1
2/1

××
−

MiMMM vC : require ( )MN s ⋅ multiplications 

- Normalize [ ] 1)( ×++ MNw
u 1i  and get βi+1 : require ( )MN w +  multiplications 

- Form [ ] [ ] [ ] [ ] 111)(1)(1 ×+×+++××+ −= MiiMNiMNM
T

M vuAv
ww

β1i : require the following 

two products; 

a- [ ] 11 ×+ Mii vβ : require ( )M  multiplications 

            b- [ ] [ ] 1)(1)( ×+++× MNiMNM
T

ww
uA : It is equivalent to find the product in the following  

               form, [ ] [ ] [ ] [ ] 11
2/1

11 ``)(` ×+×
−

×+× + MiMM
T

MNiNM
T uCuG

ww
 ,  

               this require ( )sw NMMN ⋅+⋅  multiplications 

- Normalize [ ] 1×+ Mv 1i  and get αi+1 : require ( )M  multiplications 

4) Construct and apply next orthogonal transformation: in this step the number of 

multiplications is independent upon the number of gridblocks (M) or the number 

of wells (Nw), so its multiplications count is not considered as they are very 

trivial.  

5) Update [ ] 1×Mx , [ ] 1×Mw :  

- Update [ ] 1×Mx : require ( )M  multiplications 

- Update [ ] 1×Mw : require ( )M  multiplications 

6) End of the iteration 
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Adding the number of multiplications mentioned at each step and inside the LSQR 

iteration loop, the total number of multiplications will be: 

 

  [ ]MNNMMNN

MNMNNMZ

wswiter

wwsField

62)(2)(2

2)()(2

++⋅+⋅

+++⋅+⋅=

                                                
Bayesian scale   ....…….(2.42) 

 

Fig. 2.4 shows the behavior of each formulation with respect to the model size using Nw 

of 15 for the both formulation and using Ns and Niter for the field-scale Bayesian 

formulation to be 125, and 15 respectively. I assumed that the stencil used is 5x5x5, so 

the maximum value for Ns is 125.   
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Fig. 2.4−Computational scaling for field-scale Bayesian vs conventional Bayesian 

 

 

Clearly as shown from Eqs. 2.39 and 2.42 and from the figure above, the field-scale 

Bayesian formulation behaves linearly compared to the conventional Bayesian 
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formulation which behaves quadratically with respect to the model size. This shows that 

the new Bayesian formulation with the numerically calculated stencil is well suited for 

field-scale applications where the number of model parameters exceeds hundred 

thousands to millions. However, it is important to mention that the number of 

multiplications in the field-scale Bayesian formulation depend upon two additional 

parameters other than the conventional Bayesian. Those parameters are the inner 

iteration inside the LSQR loop, Niter and the number of stencil used, Ns. Selecting the 

stencil is the most important factor in choosing between the two formulations as for high 

Ns, the Field-scale Bayesian behaves close to the conventional Bayesian and due to the 

inner iterations inside the LSQR loop it might even behave worse than the conventional 

Bayesian formulation. That is why selecting the stencil used is the key in choosing 

which formula to use during the minimization.  

 

2.6 Bayesian Approach as a Tool for Uncertainty Assessment 

The Bayesian approach gives very distinct advantage in associating probability 

distribution known as the posterior distribution with its estimate. Sampling the posterior 

distribution to generate a suite of realizations provides a good tool to assess the 

uncertainty in reservoir variables. Moreover, one can predict the uncertainty in the future 

performance of the reservoir by constructing statistics for the set of outcomes obtained 

from the realizations generated from the posterior distribution. Accordingly, the correct 

sampling of the posterior is a vital issue in accurately quantifying the uncertainties and 

many research works are devoted to find an efficient way for accurately sampling the 

posterior distribution.  

In general, there are two different types of sampling. The first type belongs to the 

methods that is known to sample rigorously, such as inversion, rejection, sequential 

realization, Gibbs sampler, Markov Chain Mont Carlo (MCMC), and Genetic 

algorithms.34  The second type belongs to those that are known to sample 

approximately47,48  such as linearization about the maximum a posteriori estimate 

(LMAP), randomized maximum likelihood (RML)49, and pilot point (PP) method.  
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The most common method used to sample the posterior distribution rigorously is the 

MCMC method and many of the approximate methods are just an approximation from 

the MCMC under some specific conditions. In this section, a brief introduction about the 

MCMC as a rigorous way of sampling and Randomized Maximum Likelihood (RML) as 

an approximate way of sampling is given for completeness. 

 

2.6.1 Markov Chain Monte Carlo (MCMC)  

According to Cunha et al.50, a Markov chain is a sequence of random variables X(0), 

X(1),…X(n) where the probability distribution for X(n) is determined by the probability 

distribution of X(n-1). The set of all possible values for X(i) (i = 0,1,2,…n) is called the 

state space. The transition probability, Pij
n gives the probability of obtaining state j at the 

nth location in the sequence if the random variable is in state i at the n-1 location in the 

sequence.  

Let us denote a particular realization of a certain reservoir properties by mi, with the 

probability associated with it to be πi, where π is the posterior probability distribution 

that we want to sample from and πi is the probability of sampling mi from the posterior 

(i.e. π(mi)). The objective is to generate a new realization or new state mj with the 

probability associated with it to be πj
 such that the transition probability, Pij of obtaining 

the state mj from state mi satisfies the following conditions51, 

1- It is possible to get from any one state to another in a finite number of transitions, 

       2-  ∑=
i

ijij P ππ                                                                                      ………(2.43)    

Thus, the Markov chain will be stationary and ergodic (independent on initial 

conditions) and π will be the stationary distribution, which is the posterior distribution 

that we want to sample from. 

In Metropolis-Hasting algorithm, the transition probability, Pij is partitioned into two 

parts: ijijij qP  α= , where qij is the probability of proposing transition from state mi to 

state mj and αij is the probability of accepting the proposed transition mj as the next state 

in the Markov chain and it is given by: 
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











=
iji

jij
ij q

q
π
π

α ,1min                                                                                        ……….(2.44)    

Two important points should be taken into consideration in sampling the posterior 

distribution using MCMC. The first is selection of qij (i.e. the PDF used to sample for the 

new state, mj). If qij is close to the posterior distribution that we want to sample from, 

most of the transitions will be accepted and the chain converges quickly to the posterior 

distribution. The second point is the way of sampling, for example, whether the two-

point swapping, where two model parameter in two different grid blocks are swapped 

per each transition to the new state or the local perturbation, where one model parameter 

is perturbed per transition, or the global perturbation, where all the model parameters are 

perturbed once per transition. Oliver et al.51 shows that local perturbation is more 

efficient in generating independent realizations in the Markov chain for highly non-

linear problem, while global perturbation is efficient in linear to slightly non linear 

problems.      

 

2.6.2 Randomized Maximum Likelihood (RML)  

Oliver et al.49 propose a two step transition to a new state in MCMC that has a high 

probability of acceptance in the Metropolis-Hasting algorithm. The first step is to 

propose an unconditional realization from the prior probability distribution using any 

unconditional simulation technique, like sequential Gaussian simulation.52 The second 

step involves the history matching of the unconditional model to the production data that 

has noise added. The conditional model resulting from the history matching process will 

be a new state in the Markov chain. Because the acceptance rate was found very high 

(approximately 95% for a small highly non-linear problem), they suggested to accept all 

the new state proposed in the chain.  

In this study, we applied this method to generate realizations and assessing the 

uncertainty. The following is the algorithm for generating realizations from RML 

method: 
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1. Generate an unconditional realization of the reservoir model parameters, 

[ ]Mpu CmNm ,← , by assuming that the variogram of the prior model is known, this 

can be done by using sequential Gaussian simulation or any unconditional simulation 

technique 

2. Generate a realization of the data,  

      [ ]Dobsu CdNd ,←  , by adding a random noise to the observed data  

3. Compute the set of model variables, m , that minimizes the function: 

      ( ) ( ) ( ) ( )[ ] ( )[ ]uD
T

uuM
T

u dmgCdmgmmCmmmO −−+−−= −− 11

2
1

2
1            ………(2.45) 

 

2.7 Chapter Summary 

Bayes theory provides a good statistical tool to integrate static with dynamic data and 

assess the uncertainty associated with the estimate. This chapter consists of three major 

parts. The first part gives a brief introduction about Bayes theory and shows the three 

important components for automatic history matching in Bayesian framework. Those 

components are the data misfit, the prior term, and the optimization algorithm. For the 

data misfit, the general three types of the data misfit are explained, with special 

reference to the one that is used during this study which is the “Generalized Travel Time 

Misfit”. For the prior term, a brief introduction is given about the covariance matrix 

calculation in case of single type of model parameter, like permeability and different 

type of model parameters, for example permeability and porosity. For the optimization 

algorithm, a brief introduction about gradient-based and gradient-free algorithms with 

detailed overview about the gradient based algorithms especially; the Newton type 

algorithms are given.  

The second part of this chapter concerns with the new Bayesian formulation that is 

well-suited for field-scale applications. A numerical approximation of the square root of 

the inverse of the covariance using the stencil is required by the new formulation and is 

discussed. Finally the computational scaling in the form of the number of multiplication 

required by both the conventional and the field-scale Bayesian is investigated. From the 
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computational scaling it was found that the field-scale Bayesian scales linearly with the 

increase in the number of model parameters compared to the conventional Bayesian 

which scales quadratically. This makes the field-scale Bayesian well suited for field-

scale applications from the computational point of view.  

The last part of this chapter gives one of the most important applications of the 

Bayes theory which is the uncertainty assessment. In this part a brief introduction about 

different types of sampling from the posterior distribution for uncertainty assessment are 

given with a special reference to the rigorous one, which is the MCMC and the 

approximate one which is used during this study, the Randomized Maximum Likelihood 

(RML) method. 
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CHAPTER III 

SENSITIVITY COMPUTATION USING FINITE DIFFERENCE 

MODELS 

 
Sensitivity computation is a very critical step in automatic history matching process 

when using gradient-based optimization algorithm like Gauss-Newton or Levenberg-

Marquardt to minimize the objective function given in the previous chapter. The 

sensitivity is defined as the change in the production response due to a small change in 

the model parameter. Chapter I discusses in details the different methods for sensitivity 

computation using finite difference as the forward model. In this chapter, we  present the 

computation of the generalized travel time sensitivity with respect to the model 

parameter using the adjoint method (optimal control theory) and the streamline-based 

sensitivity for finite difference models. A complete detail for developing the generalized 

travel time sensitivity using adjoint method for 3D, two phase flow is given with a brief 

introduction for the generalized travel time sensitivity computation from streamline-

based sensitivity.  

 

3.1 Adjoint Method-Based Sensitivity 

There are three different approaches presented in the literature for sensitivity formulation 

using the adjoint method. The first approach shows the sensitivity formulation starting 

from a complete continuous form of the flow equation26,27, the second approach shows 

the formulation starting from a semi-continuous form of the flow equation28,8, where 

only the left hand side of the flow equation is discretized leaving the right hand side in a 

continuous form. The third approach shows the formulation in a complete discretized 

form,5-7,29 where the flow equation is completely discretized. In this work, we will apply 

the third approach to develop the formulation of the generalized travel time sensitivity 

for 3D two phase flow problems.  

The sensitivity computation using the adjoint method requires the following three 

steps; the forward model formulation, adjoint system formulation, and finally the 
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sensitivity coefficient formulation. The next sections will describe these steps in more 

details. 

 

3.1.1 Forward Model Formulation 

In our work the forward model is IMPES finite difference simulator that is developed to 

handle 3D, two-phase, oil-water problems. Then later, we used a commercial simulator 

(viz. ECLIPSE53) for modeling fluid flow in porous media and the adjoint method-based 

sensitivity calculation for practical applications.   

The equations governing the two-phase flow equation in the reservoir after neglecting 

capillary pressure are as follows: 

Oil:  
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Water: 
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0.1=+ wo SS                                                                                                   ……..…(3.3)    

 

Where, 1C  equal 1.127x10-3, 2C  equal 5.615, mB  is the formation volume factor in 

bbl/STB for m  stands for o  (oil), w  (water),  rmK  is the relative permeability for 

phase m , mµ is the viscosity for phase m  in cp, [ K ] is the permeability tensor, 
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 xK , yK , zK  are the permeability in md, p is the pressure at x,y,z 
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location and at time t, φ  is porosity, ),,,(ˆ tzyxq is the source or the sink term per unit 

bulk volume, STB/ft3-day it is zero at all the locations except at the location of the wells. 

It is positive for production wells and negative for injection wells, mS  is the phase m  

saturation, mγ  is the specific weight of oil and water, and its unit is in psi/ft, and D  is 

the depth at x,y,z location. 

By multiplying Eqs. 3.1 and 3.2 by bulk volume, bV , of each grid block and using 

finite difference to discretize Eqs. 3.1 and 3.2, and neglecting the formation 

compressibility, the following discretized equations are formed: 

Oil: 
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Water: 
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Where, mq  is the phase m  rate in STB/day, mT  is the phase m  transmissibility in x, y, 

and z directions, mb  is the reciprocal of the formation volume factor of phase m , t∆  is 

the time step, and i = 1,2,……nx, j = 1,2,….ny, k = 1,2,….,nz.    

Eqs. 3.4, 3.5 with Eq. 3.3 are solved to calculate the pressure and water saturation at 

each grid block per each time step, in addition to the production history at each well. 

Since we are interested in matching only the water cut from the wells, so the production 

history reported is only the water cut at each well. Also, the pressure and water 

saturation at each grid block per each time step should be stored, as it will be used 

during sensitivity computation. 

 

3.1.2 Adjoint System Formulation 

In formulating the adjoint system of equations, the discretized flow equations, Eqs. 3.4 

and 3.5  are given in the following form:  

 

( ) ( )[ ]l
kjimm

l
kjimm

l
kjizyx

l
w

ll
m SbSbVKKKSpF ,,

1
,,

1
,,,

111 ),,,,( −= +++++
φ                    ………….(3.6)  

 

It is important to note that Eq. 3.6 gives the difference equations in fully implicit 

form, thus it is important that the simulator used to be in fully implicit form for 

consistency and for the pressure and water saturation calculated from the simulator to 

satisfy Eq. 3.6, which is used during our formulation of the adjoint system of equations 

as our forward model.        

Throughout, l  refers to time step index; 0, 1, 2,…… 1−L , where L  is the total time step 

index used in the forward model.  
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From this point on, we will assume that there are M simulator grid blocks that is 

ordered from 1,2,3,…,M and then 
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Pressure will be written in the vector form as: [ ]Tl
M

lll pppp 21=       .………(3.9) 

 

Saturation will be also written as: [ ]Tl
mM

l
m

l
m

l
m SSSS 21=                       .…...…(3.10) 

 

The reciprocal of the formation factor is also written in the vector form as:  

 

[ ]Tl
mM

l
m

l
m

l
m bbbb 21=                                                                              ...……..(3.11) 

 

The rate also can be written as: [ ]Tl
mM

l
m

l
m

l
m qqqq 21=                          ..……...(3.12) 

However, mq  vector is sparse as small numbers of grids, which are the well grid blocks 

are only have non zero mq       

Similarly porosity, φ , permeability, xK , yK , zK  will be written in the vector as shown 

in  Eqs. 3.9 – 3.12. 

Accordingly, Eq. 3.6 can be written in the following form:   

 
l
m

l
mzyx

l
w

ll
m AAKKKSPF −= ++++ 1111 ),,,,(                                                          ...…….(3.13) 

 

Where,  

 ( ) 11111 ),,( +++++ = l
mm

ll
w

ll
m SbVSPA φφ                                                                 …...…..(3.14) 

( )lmm
ll

w
ll

m SbVSPA 1),,( += φφ                                                                          ....…..…(3.15)     
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mF is independent of porosity and depends on permeability, while 1+l
mA  and l

mA  are 

porosity-dependent and permeability-independent. Accordingly the following equations 

hold: 

 

 [ ] Ο=∇ + Tl
mF )( 1

φ                                                                                            ……….(3.16) 

 

[ ] [ ] [ ] Ο=∇=∇=∇ +++ Tl
mK

Tl
mK

Tl
mK AAA

zyx
)()()( 111                                           ……….(3.17) 

 

[ ] [ ] [ ] Ο=∇=∇=∇ Tl
mK

Tl
mK

Tl
mK AAA

zyx
)()()(                                                 ...……..(3.18) 

 

Ο  in Eqs. 3.16 -3.18 is a null M x M matrix. 

  

Our objective is to get the sensitivity of the generalized travel time shift, t~∆ , at each 

well, let us denoted now by ),,,,,.......,,,.....,( 11 φzyx
l
ww

l KKKSSppg  subject to the set of 

constraint equations in the form of finite difference equations given by Eq. 3.13 at each 

grid block for each time step.  In other words, we want to see how the perturbation in Kx, 

Ky, Kz, and φ at each grid block will affect the generalized travel time at each well. So, a 

two M–dimensional vectors of Lagrange multipliers are used to adjoin g  with the finite 

difference equations to form the augmented objective function J , where M is the 

number of grid blocks, as follows:  

 

[ ]Tl
oM

l
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l
o

l
o λλλλ 21=                                                                            ...…….(3.19) 

 

[ ]Tl
wM

l
w

l
w

l
w λλλλ 21=                                                                         ….....….(3.20)     

  

Thus the equation after adjoining the g function with the constraint equations will be:  
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From Eq. 3.21 and Eq. 3.13, it is clear that J  and g  are equivalent. Thus, the partial 

derivative of J with respect to the model parameter is equivalent to the partial derivative 

of g . The g  function in our case is the generalized travel time shift for each well at the 

well location, but to keep the formulation general the adjoint equation will be formulated 

for any arbitrary function g, which is at certain location in reservoir.  

 

By taking the total differentiation of Eq. 3.21 with respect to the state variables, 

pressure and water saturation and with respect to the control variables, xK , yK , zK , 

andφ .    
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                                                                                                                       ………..(3.22) 

 

Where, BTL is calculated from the following equation: 
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wom
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,
)(λ                ……….(3.23)   

Since initially P, Sw are always known and the variation in the control variables m 

( xK , yK , zK , andφ ) will not have any effect on the initial pressure and water 

saturation at each grid block, thus, 
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   000 == wdSdp                                                                                             ……..…(3.24)  

 

Thus, any term multiplied by 0dp  and 0
wdS  had to be neglected from Eq. 3.22. 

Similarly, by taking the total differentiation of g  as it is also depend on state and control 

variables, thus the total differentiation of g will be: 
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Substituting Eq. 3.25 in Eq. 3.22,  
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                                                                                                                        ….……(3.26)    

 

Eq. 3.26 is very important to understand it physically. It shows how the change in 

the control variables m ( xK , yK , zK , andφ )  at each grid block affect the pressure and 

water saturation at each time step in each grid block. This in turn affect the augmented 

objective function (J) which is equivalent to the change in g (generalized travel time at 

each well) as seen from Eq. 3.21. 
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Since, the objective is to get the sensitivity of (g) with respect to the control 

variables, which are the permeability and porosity, thus to remove the dependency of J 

from pressure and water saturation, we choose the adjoint variables to insure that the 

coefficients of ldp and l
wdS  in Eq. 3.26 vanish. This will get the following adjoint 

system of equations.  
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Also, to remove the dependency of the change of pressure and water saturation at the 

end of simulation, Ldp and L
wdS  due to the change of the control variables, we set  

 

0== L
o

L
w λλ                                                                                                    …….…(3.29) 

 

This will be the initial condition to solve the adjoint system of equation, Eqs. 3.27 and 

3.28 backward in time, to get the Lagrange multipliers, mλ  at each grid block per each 

time step. The right hand side of Eq. 3.29 is M-dimensional column vector of zero 

values.  

Thus, from Eq. 3.23 and Eq. 3.29,  

 

0=LBT                                                                                                          ……….(3.30) 

     

From Eqs. 3.27, 3.28, and 3.30, the change in the augmented function J in Eq. 3.26, will 

be:  
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In our work, the (g) function is the generalized travel time shift at the well j , and 

according to the formulation given in the previous chapter assuming we are shifting the 

calculated towards the observed; the generalized travel time shift at well j  is given by: 
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Where, djn  are the number of data points for well j ,  (i) is the index for the data point at 

time it . The gradient of the scalar function g  in the adjoint system of equations, Eqs. 

3.27 and 3.28 are given by taking the gradient of Eq. 3.32 as follows: 
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It should be noted that Eqs. 3.33 and 3.34 are vectors of non zero elements at grid 

blocks containing producing wells only. At grid blocks of producing wells, the partial 
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derivatives of the generalized travel time with respect to pressure and water saturation 

are given as follows: 
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Where at time step index, l , that is corresponding to the same observed time, it , the 

derivatives of Eqs. 3.35 and 3.36 exist, otherwise, the derivative will vanish. So, strictly 

speaking in solving the adjoint system of equations backward in time the vectors of the 

source term or the right hand side of the adjoint system of equations will be null vectors 

except at the time corresponding to observed data point time, where the non zero 

elements in those vectors will be corresponding to the grid blocks containing producing 

wells only.  

The derivatives in the right hand side of Eqs. 3.35 and 3.36 are given as follows: 
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The change in permeability has opposite effect with respect to travel time and water cut; 

the increase in permeability leads to a decrease in travel time and increase in water cut, 

thus: 
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Substituting Eq. 3.37a in Eq. 3.37 
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Similarly, the derivative with respect to water saturation is as follows: 
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Where, l  in Eqs. 3.37b and 3.38 is corresponding to time, it  at the observed point (i) as 

mentioned before, while 1−l  is corresponding to time 1−lt  which is ( tt i ∆− ), where t∆  

is the time step used in the simulation. This is a backward finite difference 

approximation to get numerically the derivative of water cut with respect to time at 

time it assuming small t∆  used during simulation. It is important to mention that in 

general tt i ∆−  is not equal to 1−it  , which is the time for the next observed data point.   

The partial derivative of water cut with respect to pressure and water saturation is 

obtained as follows: 
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                                                                                                                        ……….(3.40) 

 

Where, K is the total number of layers opened for production for well (j), WIk,j  is the 

well index for layer k at well j, which is independent of pressure and water saturation, 
i
rwK  , i

roK  are the relative permeability to water and oil at the grid block of well (j) and at 

the observed point (i) corresponding to time it . i
wB , i

oB  are the water and oil formation 

volume factors at well j grid block and at the observed point (i) corresponding to time 
it . i

wµ , i
oµ  are the water and oil viscosity at well j grid block and at the observed time 

it . i
kjP ,  is the pressure at the well j grid block and at time it . i

jwfP ,  is the bottom hole 

pressure at well j grid block and at time it and it is assumed constant through the whole 

perforation intervals by neglecting the friction loss of the tubing across the perforation 

intervals. Appendix B shows a detailed derivative of Eqs. 3.39 and 3.40 with respect to 

pressure and water saturation at each individual grid block opened for production. 

It is important to mention that at each time step the adjoint system of equations, Eqs. 

3.27 and 3.28 are solved only nw times with the same matrix but with different right 

hand side. While in case of the conventional amplitude inversion the adjoint systems 

have to be solved nd (number of data points) times. This reduces the computational 

difficulties especially in large field-scale problems. 

 

3.1.2.1 Adjoint System Formulation in i,j,k Notation 

Till this point the adjoint system of equations are obtained in the form of M simulator 

grid blocks arranged from 1,2,3,.. M. The objective of this section to obtain the adjoint 

system of equations given by Eqs. 3.27 and 3.28 in a conventional form of i,j,k notation. 
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We will show the procedures for changing Eq. 3.27 into the i,j,k notation and similarly 

the same procedures will be for Eq. 3.28. Eq. 3.27 can be written in the following form: 
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Where, from Eqs. 3.4, 3.5, 3.6, and 3.7, l
of , l

wf  are given as follows: 
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The first term in Eq. 3.41 is given in matrix form as follows: 
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Similarly, we can write [ ]Tl
wp

fl∇ ,and [ ]Tl
mp

ql∇ , [ ]Tl
mp

Al∇ for m = o, w in the same form 

as given by Eq. 3.44. The source term of Eq. 3.41, glp
∇ , which is a vector is given before 

in Eq. 3.33. By substituting Eq. 3.44 and the gradients of the other terms of Eq. 3. 41 

and writing the rth row equation, the resultant equation will be: 
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For (r) corresponds to grid block i,j,k , so from Eq. 3.42 and 3.43 , the only terms of l
smf ,  

in the sums of Eq. 3.45 that depend on l
kjip ,,  are l

kjimf ,,1, − , l
kjimf ,1,, − , l

kjimf 1,,, − , l
kjimf ,,, , 

l
kjimf ,,1, + , l

kjimf ,1,, + , l
kjimf 1,,, + . Also for l

smq , the terms in the sums that depend on l
kjip ,,  is 

only l
kjimq ,,,  and for l

smA ,  the only term that depends on l
kjip ,, is l

kjimA ,,,  as seen from Eqs. 

3.14, 3.15, and 3.7. For the source term of the adjoint equation, as mentioned before the 

only term that is non zero is the term that at the same time corresponding to the time step 

index l  and at kjim ,,= .  

Thus Eq. 3.45 can be written in the i,j,k notation as follows: 
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 ….(3.46) 

 

Similarly, Eq. 3.28 can be written in the i,j,k notation as follows: 
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…(3.47) 

 

The derivative of the flow terms, l
kjimf ,,1, − , l

kjimf ,1,, − , l
kjimf 1,,, − , l

kjimf ,,, , l
kjimf ,,1, + , l

kjimf ,1,, + , 

l
kjimf 1,,, + , the accumulation terms, l

kjimA ,,, , the source/sink terms, l
kjimq ,,, , and the source 

term of the adjoint system of equations, l
kjig ,, , with respect to pressure and water 

saturation as required by Eq. 3.46 and 3.47 is shown in Appendix B. 
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3.1.3 Sensitivity Coefficients Formulation 

From the previous section, the adjoint variables λm, wom ,=  has been calculated for 

each grid block at each time step. This section gives the sensitivity coefficient 

calculation by knowing the adjoint variables calculated from the previous section.  

By considering J  in Eq. 3.21, as a function of xK , yK , zK , and φ, the total 

differentiation of J  will be: 
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Comparing Eq. 3.31 and Eq. 3.48, leads to the sensitivity coefficients calculation 

equations, which are: 
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In our work, the ( g ) function is the generalized travel time shift, which is given by 

Eq. 3.32. Since, t~∆  is not an explicit function of permeability and porosity so the last 

term in Eqs. 3.49 – 3.52 will vanish. As stated before from Eq. 3.21 and Eq. 3.13 that 

the ( J ) and ( g ) are equivalent, so jtJ ~∆=   ( j = 1,..nw ). 

By taking the transpose of Eqs. 3.49 – 3.52, the sensitivity of jt~∆ with respect to the 

model parameter will be: 
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It is important to mention that the adjoint system of equations given by Eqs. 3.46 and 

3.47 and the calculation of the sensitivity coefficients, given by Eqs. 3.53 – 3.56 has to 

be performed nw times to calculate the sensitivity matrix, G. This is a considerable 

savings in computation time compared to the conventional method using amplitude 

misfit, where the adjoint system of equations have to be solved nd times which can be  

order of magnitude larger than the number of wells. The sensitivity matrix for the 

generalized travel time with respect to xK  as an example is given as follows:  
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1
~t∆ , 2

~t∆ , … 
wnt

~∆ are the generalized travel time shift at well 1 ,2, …nw respectively. 
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3.1.3.1 Sensitivity Coefficients Formulation in i,j,k Notation 

The sensitivity coefficients formulation given by Eqs. 3.53 – 3.56 are obtained in the 

form of M simulator grid blocks arranged from 1,2,3,.. M. The objective of this section 

is to obtain the sensitivity coefficients in a conventional form of i,j,k notation. 

We will show the procedures for changing Eq. 3.53 into the i,j,k notation and similarly 

the same procedures will be applied for the rest of equations, Eqs. 3.54 – 3.56.  Eq. 3.53 

is given as follows: 
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Where, 1+l
of , 1+l

wf  are similar to that given before in Eqs. 3.42, and 3.43. The terms in 

Eq. 3.58 are given as follows: 
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Substituting Eqs. 3.59 – 3.61 in Eq. 3.58 and writing the rth row equation, the resulting 

equation will be: 
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For ( r ) corresponds to grid block i,j,k , so from Eq. 3.42 and 3.43 , the only terms of 
1

,
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smf , wom ,= , in the sums of Eq. 3.62 that depend on kjixK ,,,  are  1

,,1,
+
−

l
kjimf , 1

,,,
+l

kjimf , 

1
,,1,

+
+

l
kjimf , which are in the transmissibility terms 1

,,2/1,
+

+
l

kjimxT and 1
,,2/1,

+
−

l
kjimxT . Similarly, the 

terms that depend on kjiyK ,,, are  1
,1,,

+
−

l
kjimf , 1

,,,
+l

kjimf , 1
,1,,

+
+

l
kjimf ,  and those that depend on 

kjizK ,,,  are 1
1,,,

+
−

l
kjimf , 1

,,,
+l

kjimf , 1
1,,,

+
+

l
kjimf . Also for 1

,
+l

smq  the terms in the sums that depend on 

kjixK ,,,  is only 1
,,,

+l
kjimq  and similarly for the sensitivity with respect to kjiyK ,,,  and kjizK ,,, . 

Thus, Eq. 3.62 will be as follows: 
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As we are interested to get the sensitivity with respect to permeability only, the 

following two equations give the sensitivity formulation with respect to kjiyK ,,,  and 

kjizK ,,, as follows: 
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The derivative of the flow terms, 1
,,1,

+
−

l
kjimf , 1

,,,
+l

kjimf , 1
,,1,

+
+

l
kjimf , with respect to kjixK ,,, , 

the derivative of 1
,1,,

+
−

l
kjimf , 1

,,,
+l

kjimf , and 1
,1,,

+
+

l
kjimf with respect to kjiyK ,,, , the derivative of 

1
1,,,

+
−

l
kjimf , 1

,,,
+l

kjimf , 1
1,,,

+
+

l
kjimf  with respect to kjizK ,,, , and the derivative of the source/sink 

terms, 1
,,,

+l
kjimq  with respect to kjixK ,,, , kjiyK ,,, , kjizK ,,,  are given in Appendix C. 

 
3.2 Streamline-Based Sensitivity 

The streamline-based sensitivity calculation using finite difference as forward model 

follows the following steps: 
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i- Obtaining pressure, water saturation, and flux distribution from finite difference 

models: 

The pressure, water saturation and flux distribution are obtained at time steps 

corresponding only to the pressure update times due to changing filed conditions, like 

infill drillings, changing well conditions, etc. We use a commercial finite-difference 

simulator (viz. ECLIPSE53) for modeling flow in the reservoir to calculate the pressure, 

water saturation, and the flux distribution. The two-phase black oil model used here is 

completely general and includes comprehensive physical mechanisms such as 

compressibility, gravity effects and other cross-streamline fluxes such as mobility 

effects, rate changes, infill drilling etc. 

ii- Calculating the total velocity field 

The total velocity field is calculated from the fluxes distribution obtained from the 

previous step. 

iii- Tracing the streamline  

The streamline tracing takes place by knowing the velocity and calculating the time of 

flight according to the algorithm given by Datta-Gupta and King54. 

iv- Sensitivity calculation  

The generalized travel time sensitivity is calculated by knowing the velocity field and 

the streamlines traced along the grid blocks. A detailed discussion about the sensitivity 

computation is given in the next sections. 

 

3.2.1 Generalized Travel Time Sensitivity without Pressure Update 

The formulation for the generalized travel time shift is given in the previous chapter for 

two different cases; shifting the calculated towards the observed and the opposite. In this 

section, we will assume that we are shifting the calculated towards the observed, so the 

sensitivity of the generalized travel time shift for well j with respect to the model 

parameter, m , is given as follows11:  
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The sensitivity of travel time at producing well j can be obtained in terms of the 

streamline time of flight as discussed by He et al.11, 

Considering two-phase incompressible flow of oil and water in a non-deformable 

permeable medium. The transport equation can be written in the streamline time of flight 

coordinates as follows 
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Rearranging Eq. 3.67, 
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In the above expression, τ  represents the streamline time of flight which is the travel 

time of a neutral tracer along a streamline10, 

 

dxs∫
∑

= )(xτ     ………(3.69) 

where, the integral is along the streamline trajectory, Σ , and )(xs is the ‘slowness’ 

defined as the reciprocal of the total interstitial velocity10 
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Where tλ  represents the total phase mobility, if we assume that the streamlines do not 

shift because of small perturbations in reservoir properties, then the changes in the water 

saturation at the outlet node of a streamline is given by 
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The propagation of a fixed saturation can be expressed by simply setting 0=wSδ  as 

follows 
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We can now combine Eq. 3.72 with Eq. 3.68 in order to obtain the following expression 

for travel time sensitivity with respect to a model parameter 
i

m  in terms of the 

streamline time of flight, 
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In the above expression, the fractional flow derivatives are computed at the 

saturation of the outlet node of the streamline. The time of flight sensitivities can be 

obtained analytically in terms of simple integrals along streamline from Eq. 3.69 by 

assuming no shift of streamline due to change in reservoir parameters as mentioned 

before, so the change in time of flight can be expressed in terms of slowness as follows:   
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ψ
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As the slowness is a composite function involving reservoir properties, its first order 

variation is as follows: 
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where, the partial derivatives are 
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Accordingly, from Eq. 3.74 – 3.77, the time of flight sensitivities can be obtained 

analytically in terms of simple integrals along streamline. For example, the time of flight 

sensitivity with respect to permeability will be given by 
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where the integrals are evaluated along the streamline trajectory. It is to be noted that the 

quantities in the sensitivity expressions are either contained in the initial reservoir model 

or are produced by a single simulation run regardless of the number of parameters or the 

number of data points. 
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3.2.2 Generalized Travel Time Sensitivity with Pressure Update 

The travel time sensitivities derived before assume a stationary streamline, for the cases 

of changing field conditions or infill drillings this assumption is no longer valid and a 

new sensitivity equation should be derived to account for pressure updating and 

remapping of water saturation. According to He et al.11, the sensitivity of the travel time 

will be as follows: 
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In the above equation, i
n mt ∂∂ /  is the travel time sensitivity at the beginning of the 

pressure update. For multiple pressure updates, mt n ∂∂ /  will correspond to that of the last 

update. Again, all the quantities in Eq. 3.79 can be obtained analytically from a single 

forward simulation. Thus the sensitivity computations are extremely efficient and do not 

require any additional simulations regardless of the number of data points or the number 

of parameters.  

 

3.3 Chapter Summary 

In this chapter, we give a detailed discussion about calculating generalized travel time 

sensitivity using the adjoint method with a brief overview of the streamline-based 

sensitivity using finite difference models. For the adjoint method, the sensitivity 

calculation per minimization iteration require one forward simulation run and solving 

2M adjoint system of equations each time step for Nw times to get the Lagrange 

multipliers. For the streamline-based sensitivity, the sensitivity calculation requires one 

simulation run and retracing the streamline and updating the sensitivity calculation each 

pressure update. So, the major computational advantages of streamline-based sensitivity 

computation compared to the adjoint method are in two points. First, the streamline 
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requires retracing the streamline and updating the sensitivity calculation each pressure 

update, which is far less than the time steps used to solve the 2M adjoint system of 

equations. The second point, which is most important, is that all the information required 

to calculate the sensitivity can be obtained from only one simulation run. So it is 

independent of the number of wells, compared to the adjoint method where for 

sensitivity calculation, the adjoint system of equations are required to be solved Nw times 

to get all the information for sensitivity calculation. To improve the adjoint method to be 

comparable to the streamline-based sensitivity is to solve the adjoint system of equation 

using larger time step55, for example equivalent to the number of pressure update used in 

streamline; however, still the second advantage of streamline-based sensitivity makes it 

superior compared to the adjoint method or any other rigorous sensitivity calculation 

method. 
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CHAPTER IV 

APPLICATIONS 

 
In this chapter we shows applications for automatic history matching on Bayesian 

framework using two different approaches of sensitivity calculation required by any 

gradient based optimization algorithms, those are adjoint method-based sensitivity and 

streamline-based sensitivity which discussed before in Chapter III. Also, we used two 

different approaches to include the regularization term in the objective function, one 

based on the conventional approach of using the full covariance and the other based on 

the approximation of the square root of the inverse of the covariance using numerical 

stencil which is well suited for field-scale applications. In addition, we use two different 

techniques during the minimization process for updating the mode parameter, one is the 

exact calculation of the model parameter update during the minimization using the 

conventional Gauss-Newton with full covariance, and the other is using LSQR as a 

sparse matrix solver for calculating the model parameter update with an approximation 

of the square root of the inverse of the covariance using numerical stencil which 

discussed before in Chapter II.  

Fig. 4.1 and Fig. 4.2 show a flow chart for the automatic history matching process in 

Bayesian framework used during this work for adjoint method-based sensitivity and 

streamline-based sensitivity, respectively. 

The first part of this chapter gives the comparison between the travel time sensitivity 

obtained from the perturbation with that obtained from adjoint method after we 

formulate it to 3D, two phase flow problems and using commercial simulator (viz. 

Eclipse53) as a forward model.   

 The second part shows two different synthetic examples to test the accuracy of the 

history matching using adjoint method-based sensitivity with two different approaches 

used during the minimization process, one with Gauss-Newton with full covariance, 

which we call it “conventional Bayesian Approach” and the other with LSQR as sparse 

matrix solver with an approximation of the square root of the inverse of the covariance  
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Fig. 4.1−Flowchart for automatic history matching process using adjoint method-
based sensitivity 
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Fig. 4.2−Flowchart for automatic history matching process using streamline-based 
sensitivity 
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using numerical stencil, which we call it “Field-scale Bayesian Approach” as it is well 

suited for field-scale applications. 

The third part of this chapter shows the CPU time scaling with increasing the model 

parameters for both the conventional and field-scale Bayesian approach using four 

synthetic cases of model size ranges from 8000 to 80,000 grid blocks and also shows a 

comparison between the CPU time required for the sensitivity calculation using both 

adjoint and streamline-based sensitivity. 

The fourth part of this chapter shows a field case application taken from Goldsmith 

San Andreas unit in West Texas using both adjoint method-based sensitivity and 

streamline- based sensitivity with the field-scale Bayesian approach during the 

minimization process. 

Finally, the last part of this chapter uses the Randomized Maximum Likelihood to 

generate multiple realizations from the posterior distribution which can be further used 

to assess the uncertainty in the production forecast for Goldsmith field case. 

 

4.1 Sensitivity Comparison 

 

In this section we show the comparison between the travel time sensitivity obtained from 

perturbation and that obtained using adjoint method for 3D two phase flow as formulated 

before in Chapter III. The only different between the generalized travel time sensitivity 

given before in chapter III and the travel time sensitivity is in the way of formulating the 

source term (g) in the adjoint system of equations given by Eqs. 3.27 and 3.28, where 

the source term is given as: 

 
i

jcaltg ,=                                                                                                           ………..(4.1) 

 

Where, i
jcalt ,  is the travel time at well j and at observed point it , which is one single 

point on the production response. The gradient of i
jcalt ,  with respect to pressure and 

water saturation is obtained in the same manner as given by Eqs. 3.33 and 3.34 by 
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replacing generalized travel time with travel time. At grid blocks of producing wells and 

at the observed time it  corresponds to the simulation time index lt  , the partial 

derivatives of the travel time with respect to pressure and water saturation are given as 

follows: 
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Similarly as mentioned before, the change in permeability has opposite effect with 

respect to travel time and water cut, thus: 
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Substituting Eq. 4.3 in Eq. 4.2 
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Similarly, the derivative with respect to water saturation is as follows: 
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Where, l  in Eqs. 4.4 and 4.5 is corresponding to time, it  at the single observed point (i) 

selected to get the travel time sensitivity, while 1−l  is corresponding to time 1−lt  which 

is ( tt i ∆− ), where t∆  is the time step used in the simulation.   
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The derivative of water cut with respect to pressure and water saturation is given 

before in Eqs. 3.39 and 3.40.  

The sensitivity of travel time with respect to horizontal permeability from 

perturbation is obtained by perturbing the permeability in x and y direction at each grid 

and getting the change in the travel time with respect to the change in permeability at 

certain specified water cut value. So for M grid blocks we need to run the forward model 

M+1 times to obtain the sensitivity matrix. The amount of perturbation used is 5% of the 

amount of the permeability at each grid block.   

The example shown here to show the comparison between the sensitivity from 

perturbation and that obtained from adjoint method is quarter five spot of 15x15x2 

where we used a homogenous permeability of (Kx = Ky = 244.7 md) and Kz = 15 md, 

The porosity is homogenous of 0.22. The producer is at grid block (3,3) and produced 

from the two layers with constant production rate of 500 STB/D while the injector is at 

grid block 13,13 and injected water in two layers with constant bottom hole pressure of 

6100 psi. The initial reservoir pressure used is 5500 psi and the initial water saturation is 

0.2. The simulation time used is 950 days and the water breakthrough at the producer 

occurs after 300 days of production.   

Figs. 4.3 a and b show the travel time sensitivity from perturbation and from adjoint 

method, respectively. It can be easily shown that the travel time sensitivity from adjoint 

method has the same trend and the locations of the high and low values matches well 

with the travel time sensitivity from perturbation. It is important to mention that 

including the injectors and using the formula given by Eq. B.51 to model it and getting 

its derivative with respect to pressure and water saturation required by the adjoint system 

of equations and getting its derivative with respect to permeability required by the 

sensitivity equations always overestimate the sensitivity values at the injectors compared 

to the perturbation and by not including the injectors the results getting better as shown 

in Fig. 4.3b. This might be due to the reason that the formula used to model the rate 

allocation from the injectors use the total mobility not only the water mobility so that if 

the injectors is placed in grid block that water saturation is at connate water saturation,  
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                                   (a)                                                                   (b) 

 
             Fig. 4.3−Comparison of travel time sensitivity with respect to horizontal 

permeability from the two layers, (a) perturbation, (b) Adjoint 
method     

 

 

the mobility of water will be zero while the mobility of oil is not, thus using total 

mobility to model the rate allocation from injectors will ensure that always water is in 

mobile status even if the water saturation at the injection grid block is still at connate 

water saturation.  In fact in solving the adjoint equation backward in time the water 

saturation at late time will not be at connate water saturation anymore so using the 

formula given by Eq. B.51 with total mobility will definitely overestimate the 

sensitivity. So, clearly additional work should be done in this area to see how we can 

include the injectors in the sensitivity calculation so that we can get reasonable result 

with perturbation. 

 

The comparison of streamline sensitivity with perturbation can be found 

elsewhere10,11  
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4.2 Synthetic Examples Using Adjoint Method-Based Sensitivity 

The objective of these synthetic examples is to test the accuracy of the inversion and to 

test its practical application using adjoint method-based sensitivity for 3D two phase 

reservoirs under two different approaches; one is for full covariance with Gauss-Newton, 

the other is with LSQR with the approximation of the square root of the inverse of the 

covariance using numerical stencil.  

 

4.2.1 Example 1: Reservoir of Three Permeability Regions 

This example is 15x15x2, Table 4.1 summaries the data used for this example and Fig. 

4.4 shows the relative permeability data. The well pattern is five spot, with four 

producers at the four corners and one injector at the middle. The four producers produce 

from the two layers with constant total rate of 100 STB/Day and the injector injects in 

the two layers with constant bottom hole pressure of 6100 psi. The location of the 

producing wells 1, 2, 3, and 4 are at grid blocks (3,3), (13,3), (13,13), (3,13), 

respectively, while the injector is at grid block (8,8).  

The true horizontal permeability field is given in Fig. 4.5a, where it consists of three 

different zones of permeability at the upper and lower layer. The prior mean and the 

initial horizontal permeability are the same and it is given in Fig. 4.5b which is a 

uniform permeability of 244.7 md at the upper layer and 54.6 md at the lower layer. The 

vertical permeability is kept constant and it is equal to 15 md. The observed water cuts 

at the four producers are generated by running the simulator for the true permeability 

distribution given in Fig. 4.5a.  

The inversion is done using two different approaches that discussed before in 

Chapter II, which are “Conventional Bayesian” and “Field-scale Bayesian”.   

I-  For conventional Bayesian approach 

Fig. 4.6a shows the final permeability after inversion along with the true permeability in 

Fig.4.6b for comparison purpose. Fig. 4.7 shows the water cut match from the initial and 

the MAP estimate for the four producers and Fig. 4.8 shows the “generalized travel 

time” misfit and the conventional “amplitude” misfit as function of number of iterations 
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and it is clearly seen that the reduction in the misfit from both generalized travel time 

and amplitude are in good consistent with each other.    

 

Table 4.1−Data for example 1  

Grid Blocks 15x15x2 

Grid Size ftx 40=∆ , fty 40=∆ , ftz 30=∆  

Porosity 0.22 

Oil and Water Viscosity cpo 82.0=µ ,  cpw 0.1=µ  

Oil and Water Compressibility 00001.0=oc ,  000004.0=wc  

Initial Water Saturation 0.2 

Initial Pressure 5500 psi 

Oil Formation volume factor, oB  at iP  1.24 bbl/stb 

Water Formation volume factor, wB  at iP  1.0 bbl/stb 

Prior Variogram Model Exponential 

Ranges in x, y, z direction 160 ft 

Sill for ln K 5.0ln =Kσ  
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Fig. 4.4−Relative permeability data for example 1 
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                                  (a)                                                                   (b) 

                

 
Fig. 4.5−(a)True permeability, (b)Initial and prior mean permeability for example 1 

 

   
                            (a)                                                                       (b) 

 
Fig. 4.6−(a) Final permeability using conventional Bayesian approach,  

(b) True permeability for example 1   
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Fig. 4.7−Water cut match for the four producers using conventional Bayesian 
approach for example 1 
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Fig. 4.8−Misfit reduction for example 1 using conventional Bayesian approach 
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It is clear from the final permeability given in Fig. 4.6a that most of the changes 

takes place around well 3 and 4 and this is shown from the water cut match for those 

wells, where the match has been improved compared to the initial model, while for the 

other wells, well 1 and 2 the match was quite good from the initial model that is why no 

changes occurs around those wells.  

 

II-For field-scale Bayesian approach  

In this approach we use 5x5x5 stencil to approximate the square root of the inverse of 

the covariance using numerical stencil as discussed in Chapter II and then use LSQR as a 

sparse matrix solver for updating the model which is the permeability at each grid block 

to minimize the objective function given by Eq. 2.8 or Eqs. 2.27 and 2.28.  

Fig. 4.9 shows the comparison between the exact covariance which is used in the 

conventional Bayesian approach and the covariance obtained from using 5x5x5 stencil in 

order to see how accurate is our choice of 5x5x5 stencil in approximating the full 

covariance. The covariance from the stencil is obtained using the same way of 

approximating the square root of the inverse of the covariance, where instead of using 

column 63 after getting the square root of the inverse of the 125x125 matrix generated 

form the 5x5x5 stencil, we used directly column 63 from the 125x125 covariance matrix 

and populate the full matrix using the same technique of the numerical stencil. In Fig. 

4.9 we show the comparison for one of the row of the full size covariance matrix which 

is the middle row (row 225), as it is difficult to show the comparison row by row for  

450 x450 full covariance matrix used in Example 1. As seen from the comparison that 

however the ranges of variogram used in example 1 extend to four grid blocks in the x, y 

directions and five grid blocks in the z direction, while the 5x5x5 stencil extend only to 

two grid blocks in the x, y, and z direction and any correlation between any two 

permeabilities that has distance more than two grid blocks will be zero, the comparison 

of the covariance obtained from the stencil shows good agreement with the exact 

covariance especially for the values of high magnitude.  
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Fig. 4.9−Comparison between the exact covariance and covariance from 5x5x5 

stencil at row 225 for example 1  
 

 

Similarly as done before for the conventional Bayesian, Fig. 4.10a shows the final 

permeability after inversion along with the true permeability in Fig.4.10b for 

comparison purpose. Fig. 4.11 shows the water cut match from the initial and the MAP 

estimate for the four producers and Fig. 4.12 shows the “generalized travel time” misfit 

and the conventional “amplitude” misfit as function of number of iterations and also 

both the amplitude and the generalized travel time misfit are in good consistent with 

each other. 

It is clearly seen from the final permeability and the water cut match from the both 

approaches that there is no big difference, only the filed scale Bayesian approach take 

more iteration to converge to the same value as obtained by the conventional approach, 

however the computation time taken for the field-scale Bayesian approach is far less 

than that for the conventional approach especially for field-scale applications where the 

number of model size can exceed thousands to millions grid blocks as will be shown in 

the next part of this chapter that compares the computation time required by the both 

approaches for field-scale applications.  
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                                  (a)                                                                   (b) 

 
Fig. 4.10−(a) Final permeability using field-scale Bayesian approach,  

(b) True permeability for example 1   
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  Fig. 4.11−Water cut match for the four producers using field-scale Bayesian 
approach for example 1 
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Fig. 4.11−Continued 
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Fig. 4.12−Misfit reduction for example 1 using field-scale Bayesian approach 
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4.2.2 Example 2: Heterogeneous Reservoir       

The purpose of this example is to test our formulation of the generalized travel time 

sensitivity using adjoint method for heterogeneous case. The example used is 15x15x3, 

the data used for this example and the relative permeability is the same as that given for 

example 1 in Table 4.1 and Fig. 4.4.  Also, the well pattern is 5 spot with the location of 

the producers and the injectors the same as given in Example1 with the only exception 

that the producers and injectors are completed in the three layers.      

The true horizontal permeability field is given in Fig. 4.13a, the true permeability is 

generated using Sequential Gaussian Simulation52 and characterized by high 

permeability in the lower right quadrant for both layer 1 and 3, while layer 2 is 

characterized by its low permeability compared to the upper and lower permeability with  

high permeability on the right half of the layer and single high permeability streak on the 

left part of the layer. The prior mean and the initial horizontal permeability are the same 

and it is given in Fig. 4.13b which is a uniform permeability of 387.5 md (ln k = 5.95) 

in the upper layer, 119.2 md (ln k = 4.78) in the middle layer and 419.32 md (ln k = 

6.03) in the lower layer. The vertical permeability is kept constant and it is equal to 15 

md. The observed water cuts at the four producers are generated by running the 

simulator for the true permeability distribution given in Fig. 4.13a.  

Similarly, the inversion is done using two different approaches that discussed before 

in Chapter II, which are “Conventional Bayesian” and “Field-scale Bayesian”.   

I- For conventional Bayesian approach 

Fig. 4.14a shows the final permeability after inversion along with the true permeability 

in Fig.4.14b for comparison purpose. Fig. 4.15 shows the water cut match from the 

initial and the MAP estimate for the four producers and Fig. 4.16 shows the “generalized 

travel time” misfit and the conventional “amplitude” misfit as function of number of 

iterations and as it is clearly seen that the reduction in the misfit from both generalized 

travel time and amplitude are in good consistent with each other as shown before for 

example 1.    
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(a)              (b) 

 
Fig. 4.13−(a) True permeability, (b) Initial and prior mean permeability for 

example 2 
 

 
        (a)                                                                        (b) 

 
Fig. 4.14−(a) Final permeability using conventional Bayesian approach,  

(b) True permeability for example 2   
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Fig. 4.15−Water cut match for the four producers using conventional Bayesian 
approach for example 2 
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Fig. 4.16−Misfit reduction for example 2 using conventional Bayesian approach 
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As It is clear from the final permeability given in Fig. 4.14a that most of the changes 

from the initial takes place around the producing wells 1, 2, and 3 and the injectors to 

match the water cut data and this shows also in the water cut match shown in Fig. 4.15 

where the water cut has been changed completely for wells 1, 2, and 3 to match the 

water cut data. However, between the producing well 4 and the injectors, no significant 

changes take place as the water cut match from the initial model was quite satisfactory.  

 

II-For field-scale Bayesian approach  

Similarly, as mentioned before in Example 1, we use 5x5x5 stencil to approximate the 

square root of the inverse of the covariance using numerical stencil as discussed in 

Chapter II and then use LSQR as a sparse matrix solver for updating the model which is 

the permeability at each grid block to minimize the objective function given by Eq. 2.8 

or Eqs. 2.27 and 2.28. Fig. 4.17 shows the comparison between the exact covariance 

which is used in the conventional Bayesian approach and the covariance obtained from 

using 5x5x5 stencil in the same manner that was done before in order to test the 

accuracy of the 5x5x5 stencil in constructing accurate covariance which in turn gives 

accurate square root of the inverse of the covariance required by the LSQR solver during 

the minimization.  

Fig. 4.17 compares row number 338 of the full covariance which is of order 675x675 

for this example with the covariance obtained from the stencil, as it is clear that the 

covariance from the stencil shows perfect agreement with the exact covariance for the 

values of higher magnitude, however the ranges used in the stencil covers only 2 grid 

blocks in the three directions, while the actual ranges used in this example covers four 

grid blocks in the x, and y direction and five grid blocks in the z direction. 
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Fig. 4.17−Comparison between the exact covariance and covariance from 5x5x5 

stencil at row number 338 for Example 2  
 

 

Similarly as done before for the conventional Bayesian, Fig. 4.18a shows the final 

permeability after inversion along with the true permeability in Fig.4.18b for 

comparison purpose. Fig. 4.19 shows the water cut match from the initial and the MAP 

estimate for the four producers and Fig. 4.20 shows the “generalized travel time” misfit 

and the conventional “amplitude” misfit as function of number of iterations and also 

both the amplitude and the generalized travel time misfit are in good consistent with 

each other. 
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                                 (a)                                                                     (b)      

 
Fig. 4.18: (a) Final permeability using field-scale Bayesian approach, 

(b) True permeability for example 2 
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Fig. 4.19−Water cut match for the four producers using field-scale Bayesian 

approach for example 2 
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Fig. 4.19−Continued 

 
 

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25

No. of Iterations

G
en

er
al

iz
ed

 T
ra

ve
l T

im
e 

M
is

fit
   

   
   

   
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Am
pl

itu
de

 M
is

fit
   

   
   

   
   

   
 

Genralized Travel Time

Amplitude

 
Fig. 4.20−Misfit reduction for example 2 using field-scale Bayesian approach 

 

 

From the comparison between the final permeability and the water cut match 

obtained from the field-scale Bayesian and the conventional Bayesian, it is clearly no big 

changes due to the good approximation of the 5x5x5 stencil compared to the exact as 

shown from Fig. 4.17. However, using the concept of the stencil reduces the 
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computation required as mentioned before especially for large sale field applications. 

The only notice which also takes place in Example 1 is that the reduction of the misfit 

using the Field-scale Bayesian needs more iteration to converge to the same values used 

by Gauss-Newton.     

 

4.3 Scaling Comparison 

The primary purpose of this section is to examine the CPU time required during the 

minimization process and updating the permeability using Gauss-Newton with full 

covariance (Conventional Bayesian) and LSQR with the square root of the inverse of the 

covariance approximated using numerical stencil (Field-Scale Bayesian) in order to 

validate the findings in Chapter II, where we found that the number of multiplications, 

which is directly proportion to the CPU time, for the conventional Bayesian approach 

scales quadratically compared to the linear scale of the Field-scale Bayesian.  The 

second purpose is to show a comparison between the CPU times for the sensitivity 

calculation from Adjoint method and streamline method and finally, to show the scaling 

properties of the conventional and field-scale Bayesian through the whole iteration 

process using adjoint method-based sensitivity and streamline-based sensitivity. 

To achieve those purposes, we generated four 2D synthetic cases using Sequential 

Gaussian Simulation52 with grid blocks ranges from 8000 to 80,000. Table 4.2 

summaries the different cases used in this study. The well configuration for the four 

synthetic cases is multi pattern water flooding as shown in Fig. 4.21 with 27 producers 

and 15 injectors and we are integrating the water cut response from 5 producers.  

 

Table 4.2−Grid block size for the synthetic cases 

Cases Nx Ny M 

1 128 64 8192 

2 150 80 12000 

3 200 100 20000 

4 400 200 80000 



 91

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.21−Well configuration for the synthetic examples, showing the location of the 
producers, the injectors and the producers whose water cut are integrated during 

the history matching 
 

 

It is important to mention that in using the conventional Bayesian approach with full 

covariance, we used to save the covariance matrix row by row in a binary file to 

overcome the memory allocation problem of the covariance matrix for large model sizes. 

Fig. 4.22 shows the CPU time comparison per iteration for the conventional and field- 

scale Bayesian during the minimization process as function of the number of grid blocks. 

It is clear that the conventional Bayesian shows a quadratic scaling compared to the 

linear scaling of the field-scale Bayesian and this confirms the formulation of the 

number of multiplications for each approach that shown before in Chapter II.  
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Fig.4.22−CPU time comparison during the minimization process between the 

conventional and field-scale Bayesian  
 

 

The second objective of this section is to compare the sensitivity calculation from 

adjoint method and streamline-based sensitivities. Fig. 4.23 shows this comparison, 

where both shows almost linear trend with increasing the model size, however the rate of 

increase of the CPU time with increasing the model size is small in case of streamline-

based sensitivity compared to the adjoint method-based sensitivity. The most important 

is the CPU time different between the two methods, where the CPU time in case of 

adjoint method is about two logarithmic cycles more than the streamline-based 

sensitivities. This is because the adjoint method-based sensitivity using generalized 

travel time concept depends upon the number of integrated wells which are 5 wells in 

these synthetic cases and if the number of integrated wells increase, the CPU time 

different between the both methods will obviously increase.   
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CPU Time Comparison for Sensitivity Calculation
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Fig.4.23−CPU time comparison for sensitivity calculation between the adjoint 

method and streamline-based sensitivity  
 

 

The third objective of this section is to show the CPU time per iteration for the whole 

iteration process for both the conventional and field-scale Bayesian using adjoint 

method-based sensitivity and streamline-based sensitivity, Fig. 4.24 a, and b show the 

CPU time comparison for the both sensitivity method, respectively. It is clearly shown 

that the CPU time per iteration in case of adjoint method-based sensitivity and 

streamline-based sensitivity gives a linear trend in case of Field-scale Bayesian. While in 

case of conventional Bayesian the CPU time per iteration in case of streamline-based 

sensitivity shows a quadratic trend as expected while the adjoint method-based 

sensitivity shows a nearly linear trend. This is because the CPU timing of the whole 

process in case of adjoint method is highly affected by the sensitivity calculation timing, 

this can be noticed form a comparison between the timing taken during the minimization 

for the conventional Bayesian (Fig. 4.22) and that during the sensitivity calculation from 

the adjoint method (Fig. 4.23), thus the total CPU time per iteration for the whole 

process using adjoint method-based sensitivity is highly affected by the linear trend of 

the sensitivity calculation, that is why it shows nearly linear trend with increasing the 

model size. The opposite situation takes place in case of streamline-based sensitivity for 
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the conventional Bayesian, where most of the operation timing is highly affected by the 

timing of the minimization process which behaves quadratically with increasing the 

model size, that is why the streamline-based sensitivity shows quadratic trend in case of 

conventional Bayesian.         

 

CPU Time Comparison for the whole process: Adjoint Method
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(a) (b) 

Fig. 4.24−CPU time per iteration for the whole inversion process for (a) adjoint 
method-based sensitivity; (b) streamline-based sensitivity 

 

 

4.4  Field Application: Goldsmith San Andreas Unit 

In this section we show a field application taken from Goldsmith San Andreas unit in 

west Texas using the field-scale Bayesian approach with our formulation of the 

generalized travel time sensitivity from adjoint method and from streamline-based 

sensitivity.  

Goldsmith is a CO2 pilot project area in the Goldsmith San Andres Unit (GSAU), a 

dolomite formation in west Texas. The pilot area consists of nine inverted 5-spot 

patterns covering around 320 acres with average thickness of 100 ft and has over 50 

years of production history prior to CO2 project initiation in Dec 1996.  We used the 
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waterflood production history prior to the CO2 injection.  Fig. 4.25 shows the CO2 pilot 

project site in the GSAU. The extended study area is shown in Fig. 4.26 with 11 water 

injectors and 31 producers. Among the producers within the study area, 9 wells showed 

significant water-cut response before the initiation of the CO2 injection and are used for 

data integration. These 9 producers are specified with well name in Fig. 4.26. The 

producing wells have changing productions rates and some producers were shut in and 

some others are converted to injectors during the production period, a summary of the 

well schedules indicating infill drilling, well conversions and also well shut in is 

discussed by He et al.11 For adjoint method-based sensitivity, it is important to know the 

well schedules during the production period especially the conversions of the wells from 

producers to injectors or shut in or for introducing new wells to account for the source 

and sink term in the adjoint system of equations and in the sensitivity calculation. For 

streamline-based sensitivity, it is important to account for the changing production rates 

and different starting times of the injection and production wells by saving the fluxes, 

pressures and water saturation for sensitivity calculation at the those times from 

ECLIPSE. We used 11 pressure updates to retrace the streamline and updating the 

sensitivity calculation from streamline-based sensitivity. The study area is discretized 

into a 58x53x10 mesh or a total of 30,740 grid cells. The porosity field, Fig. 4.27, was 

generated from log data using sequential Gaussian simulation.52 It was not allowed to 

change during the inversion. The initial permeability which is also the prior mean in 

using the field-scale Bayesian approach is generated via a cloud transform based on 

porosity-permeability relationship and is given in Fig. 4.28. 

As we are using the field-scale Bayesian approach with 5x5x5 stencil as an 

approximation of the square root of the inverse of the covariance during the 

minimization for both adjoint method-based sensitivity and streamline-based sensitivity, 

thus it is important to see how accurate is this approximation taken into consideration 

that the variogram model used is exponential with sill of (Ln k) of 13, and the ranges in 

the x, y, and z directions are 1000, 1000, and 14 ft respectively. These ranges cover 

about 10 grid blocks in the x and y direction and about two grid blocks in the z-direction. 
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Fig. 4.29 shows a comparison between the exact covariance and the covariance obtained 

from the stencil using the same technique used before in the synthetic cases of the two 

examples shown in the adjoint method-based sensitivity. 

 

    
Fig. 4.25−Goldsmith field – Co2 pilot project area   
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Fig. 4.26−Well configuration of Goldsmith case study area 
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Fig. 4.27−Goldsmith field - porosity distribution 

 

 
Fig. 4.28−Initial and the prior mean permeability for Goldsmith case in log scale 

 

 

Fig. 4.29−Comparison between exact covariance and covariance from 5x5x5 stencil 
at row 15370 for Goldsmith case  
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It can be seen from Fig. 4.29 that the covariance from the stencil always in a perfect 

agreement with the covariance of high magnitude, but due to the fact that the 5x5x5 

stencil covers only 2 grid blocks in the x, y, z directions only compared to the 10 grid 

blocks in case of the exact covariance in case of x and y direction, so some of the high 

values in exact covariance are not in good agreement with the covariance from the 

stencil. Since the covariance from the stencil covers the same number of grid blocks as 

that of the exact in the z direction so clearly for better accuracy, the size of the stencil 

should be increased in the x and y direction to 21x21x5 but this will increase the 

computation time, so a tradeoff between accuracy and computational efficiency should 

be taken place to select the most suitable stencil to use. We used 5x5x5 stencil in 

Goldsmith case during dynamic data integration using both adjoint method-based 

sensitivity and streamline-based sensitivity. 

 

4.4.1 Field Application: Adjoint Method-Based Sensitivity with Field-Scale 

Bayesian Approach 

Fig. 4.30 a and b  shows the water cut response from the initial and final permeability, 

respectively compared to the observed water cut for the nine producing wells during the 

20 years of production history and Fig. 4.31 a, and b shows the final and change in the 

permeability form the initial, respectively. Fig. 4.32 shows the reduction in the misfits 

versus the number of iterations during the inversion.  

As seen from the water cut match, most of the wells are in good agreement with the 

observed water cut especially wells 3, 7, and 9. From Fig. 4.31 b, we can see that most 

changes in the permeability from the initial are at high X and Y values which are at the 

locations of the nine integrated wells.    
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                                  (a)                                                            (b) 

Fig. 4.30−Water cut match for Goldsmith case using adjoint method-based 
sensitivity, (a) Match from initial permeability model, (b) Match from the final 

permeability model 
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(a) (b) 

 
Fig. 4.31−(a) Final permeability, (b) Permeability changes from initial (in Log 

scale) using adjoint method-based sensitivity 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.32−Amplitude and generalized travel time misfit reduction using adjoint 
method-based sensitivity for Goldsmith case 
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4.4.2 Field Application: Streamline-Based Sensitivity with Field-Scale Bayesian 

Approach 

 Fig. 4.33 a and b show the water cut response from the initial and final permeability, 

respectively compared to the observed water cut for the nine producing wells during the 

20 years of production history and Fig. 4.34 shows the change in the permeability form 

the initial, where the initial model used is the same as the initial model used in the 

adjoint method-based sensitivity and is given in Fig. 4.28. Fig. 4.35 shows the reduction 

in the misfits versus the number of iterations during the inversion.  

As seen from the water cut match, most of the wells are in good agreement with the 

observed water cut especially wells 1, 3, 4, 7, and 9.  From a comparison between the 

changes in the permeability from both adjoint and streamline-based sensitivity (Fig. 

4.31b and Fig. 4.34), we can notice the similarity in the locations of the changes, which 

indicates that both methods are successful in resolving the changes in the permeability 

however streamline-based sensitivity is much faster than the adjoint method by several 

order of magnitude due to the dependency of the adjoint method on the number of 

integrated wells, where for goldsmith case we need one simulation run and solving 2M 

by 2M (61480 x 61480) adjoint system of equations Nw (number of integrated wells, 9) 

times to get the sensitivity per iteration. While for the streamline-based sensitivity, we 

only need one forward run and analytical sensitivity calculation along the streamline, 

where all the information required during this calculation can be obtained from one 

single forward run per iteration, so it is independent on the number of integrated wells 

and this makes it several orders of magnitude faster than the adjoint method-based 

sensitivity. 
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                                  (a)                                                               (b) 

Fig. 4.33−Water cut match for Goldsmith case using streamline-based sensitivity,  
(a) Match from initial permeability model, (b) Match from the final permeability 

model 
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Fig. 4.34−Permeability changes from initial (in Log scale) using streamline-based 

sensitivity 
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Fig. 4.35−Amplitude and generalized travel time misfit reduction using streamline-
based sensitivity for Goldsmith case 
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4.5 Multiple Realizations from Posterior Distribution for Uncertainty Assessment : 

Goldsmith Field Application 

The main objective of this section is to apply our proposed approach that we used in 

history matching to generate multiple realizations that sample the posterior distribution 

using one of the approximate sampling methods which is Randomized Maximum 

Likelihood that discussed before in Chapter II. These realizations can be further used to 

assess the uncertainty in the production forecast.   

In sampling multiple realizations from the posterior distribution we use the field-

scale Bayesian approach along with streamline-based sensitivity using generalized travel 

time inversion concept due to its robustness and less computation time required 

compared to the adjoint method-based sensitivity.  In addition we use the Randomized 

Maximum Likelihood which accepts all the transition to the new state in the Markov 

chain, thus reduce the computation time in proposing transitions that have low 

acceptance rate in the Metropolis Hasting algorithm.  We follow the same steps showed 

before in Chapter II in sampling multiple realizations from the posterior distribution. 

The first step, we used cloud transform based on permeability-porosity relationship to 

generate four different unconditional realizations of the model parameter. For the four 

unconditional realization of the permeability field we used the same variogram model 

used for Goldsmith case, which is the exponential variogram with ranges in the x, y, and 

z directions, respectively equal to 1000, 1000, 14 ft and with the variance of horizontal 

log permeability of 13.0 in order to honor the prior information of Goldsmith field. The 

second step, we generated four different realizations of the observed data by adding a 

randomly generated Gaussian error with a standard deviation of 0.03 to the observed 

water-cut data. The last step, we computed the conditional realization using the same 

process of history matching the Goldsmith field case that shown in the previous section 

with the only difference that the regularization is with respect to unconditional 

realizations of the model and the data instead of the prior model and the observed data. 

These conditional realizations are considered as a new state in Markov chain, where all 

are accepted using Randomized Maximum likelihood method.    
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The resulting unconditioned permeability fields for the four realizations are shown in 

Fig. 4.36a to Fig. 4.39a. We used our proposed approach to integrate the entire 7800 

days of production history using the four unconditional permeability realizations as the 

prior means and the four unconditional water cut as the observed data in our proposed 

field-scale Bayesian approach. Fig. 4.40 a, and b to Fig. 4.48 a, and b shows the 

unconditioned and conditioned water cuts, respectively for each of the four realizations 

for the nine wells. The corresponding four conditioned permeability fields are shown in 

Fig. 4.36 b to Fig. 4.39 b. Fig. 4.36 c to Fig. 4.39 c shows the difference between the 

unconditional and the conditional realization. Upon comparison of the unconditioned to 

the conditioned ensemble of water cut realizations, we found that match has been 

improved compared to the unconditional realizations, however some conditional 

realizations does not show good match for all the wells this due to the poor 

unconditional realizations used. So, for better uncertainty assessment in the production 

forecast, many unconditional realizations should be used so that we can select the best 

conditional realizations that give good match with the water cut history to be used in 

quantifying the uncertainty on the production forecast. The other way is to improve the 

way of generating the unconditional realizations to ensure that many conditional 

realizations will have good match with the production history.  Additional work has been 

done for improving the unconditional realizations and thus improving the production 

match from the conditional realizations and uses them for assessing the uncertainty in 

the production forecast for Goldsmith case, but it is not presented here as the main 

objective of this section is to test the applicability of our proposed field-scale Bayesian 

approach along with the generalized travel time sensitivity obtained using streamline- 

based sensitivity for fast and efficient uncertainty assessment using Randomized 

Maximum Likelihood.  
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                       (a)                                              (c)                                         (b) 
 

Fig. 4.36−Permeability field, realization 1.  (a) Unconditioned, (b) Conditioned,  
(c) Different. (Five out of ten layers, all in log scale)   

 
 

     
                       (a)                                           (c)                                      (b) 
 

Fig. 4.37−Permeability field, realization 2.  (a) Unconditioned, (b) Conditioned, 
(c) Different. (Five out of ten layers, all in log scale)   
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                    (a)                                        (c)                                           (b) 
 

Fig. 4.38−Permeability field, realization 3.  (a) Unconditioned, (b) Conditioned,  
(c) Different. (Five out of ten layers, all in log scale)   

  
 
 

 
                     (a)                                         (c)                                        (b) 
 

Fig. 4.39−Permeability field, realization 4.  (a) Unconditioned, (b) Conditioned,  
(c) Different. (Five out of ten layers, all in log scale)   
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(a) (b) 

Fig. 4.40−Water cut, well 1.  (a) Unconditioned, (b) Conditioned 
 
 
 

    
(a)                                                                   (b) 

Fig. 4.41−Water cut, well 2.  (a) Unconditioned, (b) Conditioned 
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(a)                                                            (b) 

Fig. 4.42−Water cut, well 3.  (a) Unconditioned, (b) Conditioned 
 
 
 
 

    
(a)                                                              (b) 

Fig. 4.43−Water cut, well 4.  (a) Unconditioned, (b) Conditioned 
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(a)                                                                  (b) 

Fig. 4.44−Water cut, well 5.  (a) Unconditioned, (b) Conditioned 
 
 
 

    
(a)                                                             (b) 

Fig. 4.45−Water cut, well 6.  (a) Unconditioned, (b) Conditioned 
 
 
 



 111

 
 
 

  
(a)                                                                (b) 

Fig. 4.46−Water cut, well 7.  (a) Unconditioned, (b) Conditioned 
 
 
 

  
(a)                                                                     (b) 

Fig. 4.47−Water cut, well 8.  (a) Unconditioned, (b) Conditioned 
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(a)                                                             (b) 

Fig. 4.48−water cut, well 9.  (a) Unconditioned, (b) Conditioned 
 

 

4.6 Chapter Summary 

This chapter presents applications from automatic history matching in Bayesian frame 

work using two different ways of sensitivity calculations, adjoint method-based 

sensitivity and streamline-based sensitivity, and two different approaches during the 

minimization process, namely the conventional Bayesian with full covariance and the 

field-scale Bayesian with an approximation of the square root of the inverse of the 

covariance required by LSQR using numerical stencil. We first present a comparison of 

the sensitivity of travel time with respect to permeability form perturbation with our 

formulation using adjoint method-based sensitivity for 3D two phase flow. Then, we 

tested the robustness and the utility of our proposed field-scale Bayesian approach along 

with the conventional Bayesian approach using synthetic cases with a commercial finite 

difference simulator (ECLIPSE) as forward model and generalized travel time sensitivity 

using adjoint method. The use of commercial finite difference simulator as a forward 

model extends the application of generalized travel time sensitivity using adjoint method 

to more practical applications. The third part of this chapter shows the CPU time scaling 

comparison between our proposed field-scale Bayesian approach and the conventional 
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Bayesian approach for increasing the number of model parameters and the results shows 

the linear scaling of the field-scale Bayesian compared to the quadratic scaling of the 

conventional Bayesian, this leads the field-scale Bayesian approach to be well-suited for 

field-scale applications.  The fourth part shows field application from Goldsmith San 

Andreas unit using our proposed field-scale Bayesian approach along with generalized 

travel time sensitivity using both adjoint and streamline-based sensitivity with 

commercial finite difference simulator (viz ECLIPSE) as the forward model. To the best 

of our knowledge, this is the first field case application using our proposed field-scale 

Bayesian approach with generalized travel time sensitivity obtained from both adjoint 

method and streamline-based sensitivity and with finite difference simulators as the 

forward model. The last part of this chapter shows the applicability of our approach for 

uncertainty assessment by generating multiple realizations using RML to be used for the 

uncertainty quantification of the production forecast for Goldsmith field case.      
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 
5.1 Conclusions 

Automatic history matching in Bayesian framework especially for field-scale 

applications requires the following: first, a stable and general forward model that can 

handle field applications with complex physical mechanism, second, a computationally 

efficient way for representing the data misfit in the objective function, third, an efficient 

way of including the regularization term in the objective function for stable inversion, 

and finally, a proper optimization method that is well-suited for field-scale applications.  

In this study we proposed an approach to improve all the above factors for fast and 

efficient automatic history matching in a Bayesian framework. First, we used a 

commercial finite difference simulator (viz ECLIPSE) to model fluid flow in the porous 

media. The simulator is general and can account for complex physical behavior that 

dominates most of the field applications. Second, the data misfit is represented by a 

single generalized travel time misfit for each well, thus reducing the number of data 

points into one per well and at the same time ensuring the matching of the entire 

production history. This saves computation time required during the minimization and 

makes this approach well-suited for field-scale applications. In addition, using the 

generalized travel time misfit reduces the computational effort of calculating the 

sensitivities required by any gradient-based optimization algorithm. We have used both 

adjoint method-based sensitivity and streamline-based sensitivity during this study. 

Third, we proposed a field-scale Bayesian approach that utilizes an approximation of 

the square root of the inverse of the covariance using numerical stencil. This leads to 

large savings in computation time and memory compared to the calculation of the full 

covariance required by the conventional Bayesian approach. Finally, we used the LSQR 

method as the sparse matrix solver for updating the model parameters during 

minimization. The approach is stable when dealing with large-scale applications and also 

using LSQR along with the approximation of the square root of the inverse of the 
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covariance using numerically derived stencil shows a linear trend with respect to the 

increase in the model parameters compared to the quadratic scaling of the conventional 

Bayesian with the full covariance matrix. This makes the field-scale Bayesian approach 

well-suited for large-scale field applications.  We applied our approach on different 

synthetic cases and field case from Goldsmith San Andreas unit to demonstrate the 

applicability of our approach for history matching and also for generating multiple 

realizations for uncertainty assessment.  

 

The major conclusions of this study are summarized as follows: 

 

1- Use of a commercial finite difference simulator as the forward model    

The use of commercial finite difference simulator (ECLIPSE) during this study as a 

forward model helps in obtaining a more general and stable solution especially in 

dealing with field-scale applications with complex physical mechanisms. For adjoint 

method-based sensitivity, we save the pressure, water saturation, and bottom hole 

pressure at each time step, which are required during the sensitivity calculations. For 

streamline-based sensitivity, we utilize the pressure, water saturation, and fluxes at each 

pressure update time to retrace the streamline and update the sensitivity calculation. 

 

2- Formulation of the generalized travel time and travel time sensitivity with 

respect to permeability using adjoint method for 3D, two phase flow 

The generalized travel time and travel time inversion provide a unique advantage over 

the conventional amplitude inversion as it depends only on the number of wells and not 

the number of data points as in amplitude inversion. This makes the generalized travel 

time sensitivity more computationally efficient than the conventional amplitude 

sensitivity especially in using adjoint method-based sensitivity. This makes it well-suited 

for field-scale applications. The source term in the adjoint system of equation has been 

formulated to account for the generalized and travel time sensitivity for 3D, two phase 

flow problems. 
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3- Formulation of the field-scale Bayesian approach with approximate calculation 

of the square root of the inverse of the covariance using a numerically-derived 

stencil 

The Bayesian approach is formulated in the form of a system of equations and we use 

the LSQR method as a sparse matrix solver. The approach is practical for large-scale 

problems for updating the model parameters by knowing the square root of the inverse 

of the covariance matrix. The numerically-derived stencil, which is applicable for any 

covariance model, is used to approximate the square root of the inverse of the covariance 

using 5x5x5 stencil. The use of 5x5x5 stencil reduces the computation time and memory 

required compared to the conventional Bayesian with full covariance, thus making the 

field-scale Bayesian well-suited for field-scale applications. 

 

4- CPU time scaling with respect to the number of grid blocks using both 

conventional and field-scale Bayesian approach        

Two formulas for the number of multiplications required by the conventional and field- 

scale Bayesian approach during the minimization step have been developed. The 

conventional Bayesian approach shows a quadratic behavior while the field-scale 

Bayesian approach shows a linear behavior with respect to the number of grid blocks. 

Four synthetic cases with number of gridblocks ranging from 8000 to 80,000 are used to 

validate the above results by comparing the CPU time per iteration during the 

minimization step for the two approaches. This proves the computational efficiency of 

the field-scale Bayesian for large-scale applications.  

 

5- Synthetic and field applications     

Different 3D synthetic examples used to compare the accuracy of the estimate from both 

the conventional and the field-scale Bayesian approach and at the same time to test the 

applicability of our formulation of the generalized travel time sensitivity for 3D, two 

phase flow using adjoint method-based sensitivity. The results show the success of our 

sensitivity formulation in directing the objective function towards the minimum and also 
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the estimate from the both approaches look very similar; however the computation time 

for the field-scale Bayesian is order of magnitude less than the conventional Bayesian 

especially for large-scale applications where the model size exceeds thousands to 

millions gridblocks.             

Goldsmith San Andreas unit in west Texas is used to test the applicability of our 

approach for field-scale applications using both adjoint and streamline-based sensitivity. 

The results demonstrate the practical feasibility of our approach with significant 

improvement in the water cut match from most of the producing wells. 

 

6- Sampling multiple realizations from the posterior distribution for uncertainty 

assessment     

One of the practical applications of the Bayesian approach other than history matching is  

uncertainty assessment. We used our field-scale Bayesian approach along with the 

generalized travel sensitivity calculated using streamlines with commercial finite 

difference simulators (ECLIPSE) as forward model. Multiple realizations were 

generated from the posterior distribution using Randomized Maximum likelihood 

(RML) for the Goldsmith field case to be further used in the uncertainty assessment of 

the production forecast. Thus, get the benefit of our proposed approach that is 

computationally efficient for field-scale applications and use the Randomized Maximum 

Likelihood that reduces the computational burden by avoid rejecting any proposed state 

in the Markov chain. 

 

5.2 Recommendations 

The following recommendations are suggested to improve our current approach: 

1- The current field-scale Bayesian approach suffers from two limitations in 

assuming that 5x5x5 stencil is a good approximation for the covariance matrix. 

First, the calculation requires getting the square root of the inverse of 5x5x5 

stencil, which is a 125x125 matrix using spectral value decomposition, where the 

eigen values and eigen vectors of the 125x125 matrix have to be obtained to get 
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the square root of the inverse and this computation might be computationally 

inefficient for using more than 5x5x5 stencil. Second, using LSQR, which is an 

iterative solver, for model updating depends upon the number of iteration which 

is subjective and inaccurate estimation might take place if the number of 

iterations selected is not sufficient enough, in addition to the time it takes during 

these iterations compared to the exact calculation of the model update using the 

conventional Bayesian approach with modified Gauss-Newton as the 

optimization algorithm. To overcome these limitations, we suggest an approach 

that gets the benefit of using the numerical stencil to get an approximation of the 

covariance matrix instead of the inverse of the covariance matrix. Thus there is 

no need to use the spectral value decomposition to get the approximation of the 

square root of the inverse. Second, gets the benefit of the modified Gauss-

Newton by exactly calculating the model update using the approximate of the 

covariance matrix from the numerical stencil. This is computationally efficient if 

using the generalized travel time inversion concept, where we only need to get 

the inverse of NwxNw matrix as given by Eq. 2.25. So, the steps for applying this 

approach will be as follows: 

i- Use 5x5x5 stencil and calculate the 125x125 covariance matrix 

ii- Use column 63, which is the middle column of the 125x125 

covariance matrix to get the stencil. This is similar to use column 63 

of the square root of the inverse of the 125x125 matrix 

iii- Populate the exact size of the covariance matrix using the stencil 

calculated from step 2 and save only the non-zero values of the exact 

size of the covariance. This is the same way of populating the exact 

size of the square root of the inverse of the covariance matrix that is 

used in the current approach 

iv- Use Modified Gauss-Newton with the approximation of the 

covariance from step 3 to get an exact solution of the model update. 
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            In fact, on checking the accuracy of the 5x5x5 stencil for the synthetic and field 

cases used in this study, we applied the first three steps above to get the 

covariance from the stencil and compare it with the exact covariance. So, the 

only change required is to modify the current code of the Modified Gauss-

Newton to get the non-zero values of the covariance from the stencil instead of 

calculating the full covariance exactly.  

2- In our current approach, we used 5x5x5 stencil to approximate the covariance 

matrix; however selecting the best size of the stencil depends upon the ranges 

and the grid block size used to model the reservoir under study and this may vary 

from one reservoir to another. So, sensitivity study should be done to select the 

best stencil size to represent the reservoir, which is a tradeoff between the 

accuracy and the computational efficiency and it depends upon personal 

judgment. 

3- In generating multiple realizations for uncertainty assessment of Goldsmith case, 

some conditional realizations show good match with production history and 

some do not. So, we suggest either to generate a lot of priors so that we can have 

variety to select only the conditioned realizations that show better match or to 

improve the priors used to obtain conditional realizations that most of them will 

match well the production history to be further used for uncertainty assessment 

of the production forecast.  

4- From a preliminary result of solving the adjoint system of equations at one 

particular time step using LSQR and Bi-conjugate gradient method which is 

currently used for large-scale problems, we found that the LSQR gives more 

stable results within few iterations compared to the Bi-Conjugate gradient. So, 

we highly suggest using LSQR as a solver in solving the adjoint system of 

equations backward in time especially in large-scale problems. 

5- In comparing the travel time sensitivity from adjoint method with perturbation, 

we found that including the injectors in the adjoint system of equations and in the 

sensitivity calculation always overestimate the sensitivity compared to the 
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perturbation due to the reason mentioned before in Chapter IV. Further study 

should be done to investigate this problem. 

6- During our work with the adjoint method-based sensitivity, it was found that 

using large time step higher than the time step used in the forward simulator in 

solving the adjoint system of equations backward in time does not have much 

effect in the final estimate. Clearly additional study should be done to select the 

best time step to be used during solving the adjoint system of equations. This will 

have a tremendous saving in computation time compared to the current approach, 

where we are solving the adjoint system of equations backward in time using the 

same time steps used in the forward simulator.  

7- Streamline-based sensitivity has unique advantage in term of its fast sensitivity 

calculation compared to the adjoint method-based sensitivity. However, in highly 

depleted reservoirs where frequent pressure updates are required for accurate 

sensitivity calculation, streamline might not be the good candidate. In adjoint 

method-based sensitivity, however we are using the generalized travel time 

inversion, which makes the adjoint method-based sensitivity depends only on the 

number of wells compared to the conventional approach which depends on the 

number of data points, still its computation time is unsatisfactory especially for 

large-scale applications. So, we suggest using the same concept of generalized 

travel time and using the adjoint method to obtain the gradient of objective 

function as has been done in the past, thus we need only one simulation run and 

one solution of adjoint system of equations. Using the generalized travel time 

inversion will reduce the computational burden during the minimization and 

using the gradient of the objective function will allow us to solve the adjoint 

system of equation backward in time only once to get the gradient of the 

objective function. The draw back of this approach is the rate of convergence of 

the optimization algorithms that used the gradient of the objective function, like 

conjugate gradient or LBFGS will be small compared to Newton-type of search 

algorithms like Gauss-Newton or Modified Gauss-Newton used in this study.                     
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NOMENCLATURE 

 

t~∆  = Vector of Generalized travel time shift 

Λ = Diagonal matrix whose diagonal are the eigen values of the 

covariance matrix 

α = Damping factor used in Marquardt Levenberg algorithm  

τ = Time of flight 

πi  = Probability of sample state mi from the posterior 

αi,j = Probability of accepting transition in the Markov Chain 

σj
2 = Error variance of generalized travel time at well j 

µm = Viscosity of (m) phase, m stands for oil and water  

γm = Specific weight of (m) phase, m stands for oil and water  

λm  = Lagrange multipliers for phase m, m stands for oil and water 

ρm = Density of phase m, m stands for oil and water 

ρmsc  = Density of phase m at standard conditions 

λt = Total mobility ratio 

∆t = Time step 

∆tj  = Time shift at well j 

∆xi, ∆yj, ∆zk = Cartesian grid block sizes 

Am = Accumulation term of phase m, m stands for oil and water 

Bm = Formation volume factor, m stands for oil and water 

Cd = Data covariance matrix  

CK = Prior covariance matrix of permeability 

CM = Prior covariance matrix of the model parameter 

Cφ = Prior covariance matrix of porosity 

Cφ,K  or Ck,φ  = Cross covariance between porosity and permeability 

D = Depth 
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dobs = Column vector with observed data 

du = Unconditional realization of data 

e = Residual of the objective function O(m) 

f(dobs) = Marginal probability distribution 

f(dobs/m)  = Likelihood probability distribution given the prior distribution 

f(m)  = Prior probability distribution 

f(m/ dobs) = Posterior probability distribution given the observed data 

fl
wcal,j  = calculated water cut at well j and at time step index l 

fm = flow term of phase m, m stands for oil and water 

Fw = Fractional flow of water 

g = Source term in the adjoint system of equations 

g(m) = Column vector with calculated reservoir performance data 

Gl = Sensitivity matrix 

H = Hessian of the objective function O(m) 

I = Identity matrix 

J = Jacobian of the objective function O(m). Gradient of e 

Jp = Production data misfit 

Jpj = Production data misfit at well j 

tJ ~∆  = Generalized travel time misfit 

K = Permeability 

Krm = Relative permeability to phase (m); m stands for oil or water  

Kx,Ky, Kz  = Permeability in the x, y, and z direction 

L = Last time step (last data point) 

M = Number of model parameters 

m = Column vector of the reservoir parameter  

MAP = Maximum a Posteriori estimate 

MC = Markov Chain 

MCMC = Markov Chain Monte Carlo 

Mo, Mw = Oil and Water Mobility 
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mp = Column vector with prior knowledge of reservoir parameter  

mu = Unconditional realization of reservoir model parameters 

nd = Number of data points 

Nd =Number of data points 

Ndj = Number of data points at well j 

Niter =Number of iteration inside the LSQR loop 

Ns = Maximum number of stencil 

nw = Number of wells 

Nw = Number of wells 

Nx, Ny, Nz = Number of grid blocks in the x, y, and z direction  

O(m) = Objective function of Bayesian formulation 

P = Pressure 

Pl
wf,j  = Bottom hole pressure at well j and time step index l 

qij = Probability of proposing transition to another state in the Markov 

Chain 

qm = rate of m phase, m is for oil and water 

mq̂  = rate per bulk volume, m stands for oil and water 

R2 = Coefficient of determination 

RML = Randomize Maximum Likelihood 

s = Slowness 

Sk,j = Skin factor at well j and layer k 

Sm = Saturation of m phase, m stands for water and oil 

t = Time 

Ti,j = travel time at well j and observed point i 

Tmx = Transmissibility of m phase in the x-direction, m stands for oil and 

water  

Tmy = Transmissibility of m phase in the y-direction, m stands for oil and 

water  
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Tmz = Transmissibility of m phase in the z-direction, m stands for oil and 

water  

U = Matrix whose column are the eigen vectors of the covariance 

Vb = Bulk volume 

wi,j = Data weight for each data point (i) and at well (j)  

WIk,j = Well index at well j, produced from layer k 

yj
cal = Calculated data at well j 

yj
obs = Observed data at well j 
obs
jy  = Average of observed data 

Zfieldscalebayesian  = Number of multiplications in field-scale Bayesian formulation 

ZGN = Number of multiplications in Gauss-Newton Iteration 

φ = Porosity 
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APPENDIX A 

MODIFIED GAUSS-NEWTON AND MATHEMATICAL 

EQUIVALENT BETWEEN GAUSS-NEWTON AND FIELD-SCALE 

BAYESIAN FORMULATION 

 
A.1 Modified Gauss-Newton  

Gauss- Newton formulation as given by Eq. 2.24 and is repeated here is as follows: 

 

[ ] [ ])(~ 111111
p

l
l mmt∆mm −++−= −−−−−+

MD
T
lMlD

T
l

ll CCGCGCG                          …….….(A.1) 

 

The inverse of the matrix [ ]11 −− + MlD
T
l CGCG  and the covariance matrix, MC  which are of 

order of MM × makes the formulation given by Eq. A.1 inefficient for field-scale 

application where M can be of order of thousands or millions. So, the modification to 

this formulation can be done by using the following matrix inverse lemma56: 

 

[ ] [ ] 1111111 −−−−−−− +−=+ ADBADCBAADCBA                                            …..……(A.2) 

 

Where, A , C , and [ ]BADC 11 −− +   must be non-singular square matrix.  

So, by letting, 

 

l

D

T
l

M

GD
CC

GB

CA

=
=

=

=

−

−

1

1

                                                                                                         …...……(A.3)  

 

By substituting Eq. A.3 in Eq. A.2, 
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[ ] [ ] Ml
T
lMlD

T
lMMMlD

T
l CGGCGCGCCCGCG    1111 −−−− +−=+                          ….…….(A.4)  

 

Multiplying Eq. A.4 by 1−
MC , 

 

[ ] [ ]    l
T
lMlD

T
lMMMlD

T
l GGCGCGCICCGCG 11111 −−−−− +−=+                             …...…..(A.5)  

 

From the following identity34: 

 

[ ] [ ] T
lMMlD

T
l

T
lMlDD

T
l

T
lMlD

T
l

T
l GCCGCGGCGCCGGCGCGG 1111 −−−− +=+=+    ….…….(A.6)  

 

From the matrix identity given by Eq. A.6, 

 

[ ] [ ] T
lMMlD

T
l

T
lMlDD

T
l GCCGCGGCGCCG 111 −−− +=+                                         …….…..(A.7) 

 

Multiply Eq. A.7 from left by  [ ] 111 −−− + MlD
T
l CGCG  and from right by [ ] 1−

+ T
lMlD GCGC  , 

 

[ ] [ ] 11111 −−−−− +=+ T
lMlD

T
lMD

T
lMlD

T
l GCGCGCCGCGCG                                     ………..(A.8)    

 

It is important also to mention that from the identity given by Eq. A.6, one can reach to 

Eq. A.5 with simple matrix manipulation.   

  

Gauss-Newton equation, Eq. A.1, can be written as: 

 

[ ]
[ ] )(

~

1111

11111

p
l

l

mm-              

t∆mm

−+

+−=
−−−−

−−−−+

MMlD
T
l

D
T
lMlD

T
l

ll

CCGCG

CGCGCG
                                                   …….….(A.9) 
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Substituting Eqs. A.5 and A.8 in Eq. A.9, gives the Modified Gauss-Newton 

formulation: 

 

[ ] [ ])(~11
p

l
l

T
lMp mmt∆GC-mm −−+=

−+
l

T
lMlD

l GGCGC                          …….….(A.10) 

 

The Modified Gauss-Newton formula given by Eq. A.10 requires only the inverse of 

matrix  [ ]T
lMlD GCGC +  which is of order Nw x Nw (Nw is the number of wells) in using 

the generalized travel time as the data misfit which is of order of magnitude less than the 

number of model parameters. This makes the Modified Gauss-Newton more efficient for 

field-scale applications. 

 

A.2 Mathematical Equivalent of Gauss-Newton and Field-Scale Bayesian 

Formulation  

In order to prove the mathematical equivalency between Gauss-Newton formulation and 

the field-scale Bayesian formulation, it is easy to compare the Newton equation for 

model updating used by the both method as they both used the same Newton equation 

for model updating which is given as: 

 

)(mmδ mOH −∇=                                                                                       …..……(A.11)  

 

Where, the Hessian matrix, H , is equivalent to 11 −− + MlD
T
l CGCG  given by Eq. 2.23 in 

using Gauss-Newton and is equivalent to JJ T given by Eq. 2.34 using the field-scale 

Bayesian formulation. While the gradient of the objective function, )(mmO∇ , is 

equivalent to )(~ 11
p

l
l mmt∆ −+ −−

MD
T
l CCG  given by Eq. 2.20 in using Gauss-Newton, and 

is equivalent to eJ T  given by Eq. 2.32 in using the field-scale Bayesian formulation. 

Thus to prove that Gauss-Newton and field-scale Bayesian formulation are 

mathematically equivalent is to prove that: 
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i- 11 −− += MlD
T
l

T CGCGJJ  , and  

ii- )(~ 11
p

l
l mmt∆ −+= −−

MD
T
l

T CCGeJ  

 

First: J  is given by Eq. 2.31 as follows:  

 





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


=

−

−

2/1

2/1

M

lD

C
GC

J
 

                                                                                               ……..(A.12) 

 

Thus, JJ T  is given as follows: 

( ) ( )[ ] 







⋅=

−

−
−−

2/1

2/1
2/12/1

M

lDT
M

T
D

T
l

T

C
GC

CCGJJ                                                   …….…..(A.13) 

 

As, DC  and  MC are symmetric matrices, thus, 

 

( )
( ) 2/12/1

2/12/1

−−

−−

=

=

M
T

M

D
T

D

CC

CC
                                                                                           …..……(A.14) 

 

Substitute Eq. A.14 in Eq. A.13 and multiply, we get the first requirement. 

 
11 −− += MlD

T
l

T CGCGJJ                                                                                     ….…..(A.15)  

 

Second: e  is given by Eq. 2.28 as follows: 

 

( )





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



−
=

−

−

p
l

l
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2
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M

D

C

C
e                                                                                      …..…..(A.16)  

 

So, eJ T  is given as: 
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From Eqs. A. 15 and A.17, it can be easily seen that the Gauss-Newton and the field- 

scale Bayesian formulation are mathematically equivalent.  
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APPENDIX B 

COMPUTATION OF THE DERIVATIVES IN THE ADJOINT 

SYSTEM OF EQUATIONS 
 

The adjoint system of equations is given in i,j,k notations by Eqs. 3.46 and 3.47, in this 

appendix, we give the derivative of the flow terms, l
kjimf ,,1, − , l

kjimf ,1,, − , l
kjimf 1,,, − , l

kjimf ,,, , 

l
kjimf ,,1, + , l

kjimf ,1,, + , l
kjimf 1,,, + , the accumulation terms, l

kjimA ,,, , the source/sink terms, 

l
kjimq ,,, , and the source term of the adjoint system of equations, l

kjig ,, , with respect to 

pressure and water saturation, where m  stands for oil, o , and water, w , phase. 

 

B.1 Derivative of the Flow Terms in the Adjoint System of Equations  

The oil and water flow term equations are given by Eqs. 3.42 and 3.43, which are 

repeated here for convenience, 
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this section gives the derivative of the seven stencil flow terms used in the adjoint 

system of equations, which are l
kjimf ,,1, − , l

kjimf ,1,, − , l
kjimf 1,,, − , l

kjimf ,,, , l
kjimf ,,1, + , l

kjimf ,1,, + , 

l
kjimf 1,,, +  with respect to pressure and water saturation at grid block i,j,k.  

 

1- Derivatives of Flow terms in grid block ( )kji ,,1± : 

From Eqs. B.1 and B.2, the derivatives of the flow terms at grid block ( )kji ,,1±  with 

respect to l
kjip ,,  ( for wom ,= ) are as follows:  
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Similarly, the derivatives of l
kjimf ,,1, ±  with respect to l

kjiwS ,,,  (for wom ,= ) are as 

follows: 
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2- Derivatives of Flow terms in grid block ( )kji ,,1, ± : 

Similarly, the derivatives of oil and water flow terms, l
kjimf ,1,, ±  with respect to l

kjip ,,  for 

wom ,=  are as follows: 
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The derivatives of l
kjimf ,1,, ±  with respect to kji

l
wS ,,,  for wom ,=  are:  
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3- Derivatives of Flow terms in grid block ( )1,, ±kji : 

Similarly, the derivations of the flow terms at grid block ( )1,, ±kji  with respect to l
kjip ,,  

for wom ,= are as follows:  
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 The derivatives of oil and water flow terms l
kjimf 1,,, ±  with respect to water saturation 

l
kjiwS ,,,  are:               
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 4- Derivatives of flow terms in grid block (i,j,k) 

From Eqs. B.1, B.2 and from the derivatives of the other flow terms, it can be easily 

noticed that the derivatives of the flow terms at grid block (i,j,k) for wom ,=  are: 
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As seen from Eqs. B.3 to B.10, to calculate the derivatives of flow terms with respect to 

state variables, kjip ,, ,  and kjiwS ,,, , we need to calculate the derivatives of the 

transmissibility terms (T ) & gravity terms (γ ) with respect to these state variables. The 

following provides the details of the calculation of these derivatives. 

 

5- Derivatives of Transmissibility, T : 

The transmissibility can be written as: 
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For wom ,= , i =1,2,……. ,1−xn  and 1c  is 1.127x10-3.  

For no-flow boundary conditions, the transmissibilities  at the boundaries are   
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For wom ,= and j =1,2,……. 1−yn   and 
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Also, transmissibilities in the vertical direction are given by  
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For wom ,= and k =1,2,……. 1−zn   and 
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During this work, the kjirmK ,,2/1, + , kjirmK ,2/1,, +  ,  2/1,,, +kjirmK  ,  kjimB ,,2/1, +   , kjimB ,2/1,, + , 

2/1,,, +kjimB  , kjim ,,2/1, +µ , kjim ,2/1,, +µ , 2/1,,, +kjimµ  are evaluated by upstream weighting , for 

example , for l
rmk , 
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The derivatives of the transmissibilities with respect to pressure are  

 













∂

∂
⋅+

∂

∂

×−=
∂

∂

+
+

+
+

++

++

l
kjiml

kji

l
kjiml

kjiml
kji

l
kjim

l
kjim

l
kjim

l
kjimx

l
kji

l
kjimx

B
pp

B

B
T

p
T

,,2/1,
,,

,,2/1,
,,2/1,

,,

,,2/1,

,,2/1,,,2/1,

,,2/1,

,,

,,2/1,

µ
µ

µ

                                   

        ………(B.20) 



 141













∂

∂
⋅+

∂

∂

×−=
∂

∂

+
+

+
+

++

++

l
kjiml

kji

l
kjiml

kjiml
kji

l
kjim

l
kjim

l
kjim

l
kjimy

l
kji

l
kjimy

B
pp

B

B
T

p
T

,2/1,,
,,

,2/1,,
,2/1,,

,,

,2/1,,

,2/1,,,2/1,,

,2/1,,

,,

,2/1,,

µ
µ

µ

                           

                ………(B.21) 

 













∂

∂
+

∂

∂

×−=
∂

∂

+
+

+
+

++

++

l
kjiml

kji

l
kjiml

kjiml
kji

l
kjim

l
kjim

l
kjim

l
kjimz

l
kji

l
kjimz

B
pp

B

B
T

p
T

2/1,,,
,,

2/1,,,
2/1,,,

,,

2/1,,,

2/1,,,2/1,,,

2/1,,,

,,

2/1,,,

µ
µ

µ

                         

                ..……..(B.22) 

 

The derivatives of transmissibilities at boundaries are all equal to 0. 

 

The formation volume factor ( )B and viscosity ( )µ are evaluated by upstream weighting, 

so the derivatives of these terms are given by:  
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The derivatives, 
kji

l
kjim

p
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∂µ
can be evaluated from PVT correlations or table.  
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Similarly, the derivatives of the transmissibilities with respect to water saturation are 

evaluated as follows: 
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The derivative is evaluated at upstream grid block as according to Eqs. B.17 to B.19, 
l

kjirmK ,,2/1, +  , l
kjirmK ,2/1,, + , and l

kjirmK 2/1,,, + are evaluated by the upstream weighting. The 

derivatives of l
kjiw

l
kjirm

S
K

,,,

,,,

∂

∂
 are computed by using correlation or from the relative 

permeability table. 

 

6- Derivatives of gravity terms  

The specific weights l
mγ  are defined as follows:  
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Similarly, for l
kjim ,2/1,, ±γ  and l

kjim 2/1,,, ±γ . The phase density l
kjim ,,,ρ terms for two phase 

flow problems are given as: 
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Where, l
scm,ρ  is the density of oil and water at standard conditions, the density unit is 

lbm/ft3. 

 

From Eqs. B.28 and B.29, the derivatives of specific weight terms are given as follows:  
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As mentioned before the derivatives of 
kji

l
kjim

p
B
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∂

∂
 for wom ,= can be evaluated from PVT 

correlations or table.  

 

B.2 Derivative of the Accumulation Terms in the Adjoint System of Equations  

The definition of accumulation terms are given in Eqs. 3.14, 3.15, and 3.17, and it is 

repeated here as follows: 
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Accordingly, the derivatives of water accumulation term with respect to pressure and 

water saturation are given as follows: 
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Similarly, the derivatives of oil accumulation term with respect to pressure and water 

saturation are given as follows: 
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As mentioned before, l
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table. 

 

B.3 Derivative of the Source/Sink Terms in the Adjoint System of Equations  

In this section, we compute the derivative of the source and sink terms with respect to 

the state variables (pressure and water saturation).  
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1- Production wells  

We assume the producing wells are completed in a total of K  connections, so the rate 

allocation modeling for oil and water is given by57: 
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Where, l
kjo o

q ,, is the oil rate from layer ok at well j  at time step l , l
kjw o

q ,, is the water rate 

from layer ok at well j  at time step l , jko
WI ,  is the well index of layer ok  for well j , 

l
kjo o

M ,, and l
kjw o

M ,,  are the water and oil mobility ratio at layer ok  for well j  at time step 

l , l
kj o

P , is the pressure at well j and layer ok at time step l , and l
jwfP ,  is the bottom hole 

pressure at well j and it is assumed constant throughout the producing intervals by 

neglecting the friction loss of tubing through the producing intervals.  

 

It is important to mention here, that by using commercial simulator as the forward 

model, we can get the l
jwfP ,  directly from the simulator at each time step regardless the 

wells are producing with constant rate or constant pressure or switched between both 

during the simulation run. Thus, help us to prevent the tedious way of calculating the 
l

jwfP ,  when the wells are produced with constant rate or switched from constant rates to 

constant bottom hole pressures and the opposite during the simulation run. This is 

considered one of the major advantages of adjoining the adjoint method-based sensitivity 

with a commercial simulator as a forward model. 
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The well index term, jko
WI ,  is given as follows: 
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Where, the equivalent radius, jkor ,, , obtained from Peaceman’s equation as follows: 
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jkwr ,,  is the well bore radius of well j  at layer k  and the jks ,  is the skin factor for well 

j  at layer k . It is worth to mention that jkWI ,  is independent of pressure and water 

saturation. 

   

The derivatives of l
kjo o

q ,, and l
kjw o

q ,, with respect to pressure and water saturation at 

well j  and layer k  are as follows: 

At okk = , 
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At okk ≠ , 
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The derivatives of l
kjo o

B ,, , l
kjw o

B ,, , l
kjro o

K ,, , l
kjrw o

K ,, with respect to pressure and water 

saturation can be obtained  as mentioned before by knowing the correlation or from PVT 

and relative permeability table.  

 

2- Injection wells  

We assume the water injection wells are completed in a total of K  connections, so the 

injection rate allocation modeling for water is given by57, 58: 
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Where, l
kjwinj o

q ,, is the water injection rate to layer ok , l
jwfp , is the bottom hole pressure 

for well j at time step l , which is assumed constant by neglecting the friction loss as 

discussed before in case of producing wells.  It is important also to mention that by using 

the commercial simulator as the forward model, l
jwfp ,  is obtained directly from the 

simulator at each time step without any tedious way of calculating the bottom hole 

pressure for the injectors of constant injection rates.     

 

The derivatives of l
kjwinj o

q ,, with respect to pressure and water saturation at well j  

and layer k  are as follows: 

At okk = , 
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At okk ≠ , 
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The derivatives of l
kjw o

B ,, , l
kjro o

K ,, , l
kjrw o

K ,, with respect to pressure and water saturation 

can be obtained  as mentioned before from correlations or from PVT and relative 

permeability table.  

   

B.4 Derivative of the Source Term in the Adjoint System of Equations 

As shown from Eqs. 3.32 – 3.38, the derivative of the source term, g with respect to 

pressure and water saturation is reduced to getting only the derivative of the water cut 

with respect to the state variables at observed time, it equivalent to simulation time step, 
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l .  In this section, we give the derivative of the water cut with respect to pressure and 

water saturation for producing wells. 

  

The water cut for producing well j  is obtained as follows: 
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 By substituting Eqs. B.38 and B.39 in Eq. B.60, the water cut will be as follows: 
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The derivatives of water cut given by Eq. B.56 with respect to pressure and water 

saturation at well j  and layer ok , where ok  is one of the layers completed for well j , 

are as follows: 
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The derivatives of l
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APPENDIX C 

COMPUTATION OF THE DERIVATIVES IN THE SENSITIVITY 

COEFFICIENTS EQUATIONS 
 

The sensitivity of generalized travel time with respect to permeability in the x, y, and z 

directions is given by Eqs. 3.63, 3.64, and 3.65. In this appendix, we show the 

computation of the derivative of the flow terms 1
,,1,

+
−

l
kjimf , 1

,,,
+l

kjimf , 1
,,1,

+
+

l
kjimf , with respect to 

kjixK ,,, , the derivative of 1
,1,,

+
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,,,
+l

kjimf , and 1
,1,,

+
+

l
kjimf with respect to kjiyK ,,, , the 

derivative of 1
1,,,

+
−

l
kjimf , 1

,,,
+l

kjimf , 1
1,,,

+
+

l
kjimf  with respect to kjizK ,,, , and the derivative of the 

source/sink terms, 1
,,,

+l
kjimq  with respect to kjixK ,,, , kjiyK ,,, , and kjizK ,,,  for wom ,=   

 

C.1 Derivatives of the Flow Terms in the Sensitivity Coefficients Equations  

The oil and water flow term equations are given by Eqs. 3.42 and 3.43, which are 

repeated here as follows: 
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As shown from Eqs. C.1 and C.2, the only terms that depend on kjixk ,,, are 

1
,,1,

+
−

l
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l
kjimf , those that depend on kjiyK ,,,  are 1

,1,,
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−
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kjimf , and 

finally, those that depend on kjizK ,,,  are 1
1,,,

+
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l
kjimf , 1

,,,
+l

kjimf , 1
1,,,

+
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l
kjimf . In this section we give 

the derivatives of those terms with respect to permeability in the x, y, and z directions. 

    

1- Derivatives of flow terms in grid block  ),,1( kji ± with respect to kjixk ,,,   

From Eqs. C.1 and C.2, the derivatives of the flow terms at grid block ( )kji ,,1±  with 

respect to kjixk ,,,  ( for wom ,= ) are as follows:  
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2- The derivatives of flow terms in grid block  ),1,( kji ± with respect to kjiyk ,,,  

Similarly, the derivatives of the flow terms with respect to kjiyk ,,,  are as follows:  
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3- The derivatives of flow terms in grid block  )1,,( ±kji with respect to kjizK ,,,   
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4- The derivatives of flow terms in grid block  ),,( kji with respect to kjixk ,,, , kjiyk ,,, , 

and kjizK ,,,   

The derivative of Eqs. C.1, and C.2 with respect to kjixk ,,, , kjiyk ,,, , and kjizK ,,,  are as 

follows: 
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 wom ,for = , where all the derivatives in Eqs. C.9 – C.11 are obtained before from Eqs. 

C.3 – C.8. 
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As noticed from Eqs. C3 – C11, all the derivatives depend upon the derivatives of the 

transmissibilities with respect to permeability in x, y, z direction. These derivatives are 

obtained as follows: 

 

5- Derivatives of the transmissibility with respect to kjixk ,,, , kjiyk ,,, , and kjizK ,,,   

The transmissibility equations are given before in Appendix B, Eqs. B.11–B.16 and are 

repeated here as follows: 
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For wom ,= , i =1,2,……. ,1−xn  and 1c  is 1.127x10-3.  

For no-flow boundary conditions, the transmissibilities at the boundaries are   
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Similarly, 
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For wom ,= and j =1,2,……. 1−yn   and 
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Also, transmissibilities in the vertical direction are given by  
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For wom ,= and k =1,2,……. 1−zn   and 
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The permeabilities at grid block interfaces are computed as harmonic averages as 

follows:  
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At the boundary,  
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Thus, the derivative of Eqs. C.18-C.20 with respect to kjixK ,,, are as follows:   

For i = 1,2,3,.., 1−xn , 
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While at the boundary,  
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Similarly, kjixK ,,2/1, − is given as follows: 
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The derivative of Eq. C.23 with respect to kjixK ,,,  is as follows: 

For i = 2,3,.., xn , 
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At the boundary the derivatives are the same as that given by Eq. C.22.  

 

Similarly, the derivatives of kjiyK ,2/1,, +  and kjiyK ,2/1,, −  with respect to kjiyK ,,,  are: 
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Similarly, the derivatives of 2/1,,, +kjizK  and 2/1,,, −kjizK  with respect to kjizK ,,,  are: 
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The derivative of Eq. C.12 with respect to kjixK ,,, is as follows: 
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Similarly,  
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At the boundaries, the transmissibilities are zeros, thus the derivatives of the 

transmissibilities are zeros: 
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C.2 Derivatives of the Source/Sink Terms in the Sensitivity Coefficients Equations  

In this section, we compute the derivative of the source and sink terms with respect to 

the control variables (permeabilities in x, y, z direction).  

 

3- Production wells  

The oil and water rates allocation modeling from layer ok  produced from well j are 

given before by Eqs. B.38, and B.39 and repeated here as follows: 
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The derivatives of l
kjo o

q ,, and l
kjw o

q ,, with respect to permeability at well j  and layer 

k  are as follows: 

At okk = , 
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As the layer production does not explicitly depend on kjizK ,,,
40, so the derivative with 

respect to kjizK ,,,  is as follows: 
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Where, the derivatives of the well index with respect to permeabilities are obtained from 

Eqs. B.40 and B.41 as follows40: 
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At okk ≠ , 
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4- Injection wells  

The injection rate allocation modeling for water is given before in Eq. B.51 for well j 

injected in layer ok and is repeated here as follows: 
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The derivatives of l
kjwinj o

q ,, with respect to permeability at well j  and layer k  are as 

follows: 

At okk = , 



 162

[ ]
o

o

o

o

o

o

o

o

o

o

kjx

jkl
jwf

l
kjl

kjw

l
kjw

l
kjrw

l
kjo

l
kjro

kjx

l
kjwinj

K
WI

pp
B

KK

K
q

,,

,
,,

,,

,,

,,

,,

,,

,,

,,

∂

∂
⋅−




















+

=
∂

∂ µµ
                                 …..…..(C.47)  

 

[ ]
o

o

o

o

o

o

o

o

o

o

kjy

jkl
jwf

l
kjl

kjw

l
kjw

l
kjrw

l
kjo

l
kjro

kjy

l
kjwinj

K
WI

pp
B

KK

K
q

,,

,
,,

,,

,,

,,

,,

,,

,,

,,

∂

∂
⋅−




















+

=
∂

∂ µµ
                                 …...….(C.48) 

The term l
kjwinj o

q ,, does not explicitly depends on kjizK ,,,
40, thus its derivative is: 
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At okk ≠ , 
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