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ABSTRACT

Modeling of Performance Behavior in Gas Condensate Reservoirs
Using a Variable Mobility Concept. (December 2003).
Benton Wade Wilson,

B.S., Georgia Institute of Technology
Chair of Advisory Committee: Dr. Thomas A. Blasingame

The proposed work provides a concept for predicting well performance behavior in a gas condensate
reservoir using an empirical model for gas mobility. The proposed model predicts the behavior of the gas
permeability (or mobility) function in the reservoir as condensate evolves and the gas permeability is
reduced in the near-well region due to the "condensate bank". The proposed model is based on
observations of simulated reservoir performance and predicts the behavior of the gas permeability over

time and radial distance. This model is given by:

2
-1r
k= kmin + Kmax —kmin) 1‘eXp|:;T:|

The proposed concept has potential applications in the development of a pressure-time-radius solution
for gas condensate reservoirs experiencing this type of mobility behavior. We recognize that the proposed
concept (i.e., a radially-varying gas permeability) is oversimplified, in particular, it ignores the diffusive
effects of the condensate (i.e., the viscosity-compressibility behavior). However, we have effectively
validated the proposed model using literature results derived from numerical simulation.

This new solution is presented graphically in the form of "type curves." We propose that the "time"
form of this solution be used for applications in well test analysis. Previous developments used for the
analysis of well test data from gas condensate reservoirs consider the radial composite reservoir model,
which utilizes a "step change" in permeability at some radial distance away from the wellbore. Using our
proposed solution we can visualize the effect of the varying gas permeability in time and radius (a suite of
(dimensionless) radius and time format plots are provided). In short, we can visualize the evolution of the
condensate zone as it evolves in time and radial distance.

A limitation is the simplified form of the k, profile as a function of radius and time — as well as the
dependence/appropriateness of the a-parameter. While we suspect that the a-parameter represents the
influence of both fluid and rock properties, we do not examine how such properties can be used to

calculate the a-parameter.
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CHAPTER |
INTRODUCTION

1.1 Research Problem

During the production of a gas reservoir, the associated pressure history can be used to estimate reservoir
properties and provide insight into well performance versus expectations. This pressure history, however;
may be difficult to categorize. Not only does the performance of a gas reservoir (and particularly, a gas
condensate reservoir) exhibit various types of depletion performance, but geological complexities (such as
faults and permeability variation) also yield variations in the production-pressure history. When
combined, such effects are very difficult to "uncouple" and may actually be indistinguishable from one
another (e.g., the solutions for a radial composite system and a sealing fault(s) can be very similar to one
another (even indistinguishable in extreme cases (such as a single sealing fault)).

Well testing is the primary means for establishing the presence of such features as gas condensate
performance effects, geological structures, etc — however, we must recognize that the problem of
"uniqueness" is perhaps the most difficult to overcome, and conventional analysis/interpretation tech-
niques may not be sufficient to properly characterize such effects. Hence, it is the motivation for this work
that we establish a new solution for the transient drawdown performance of gas condensate reservoirs.

We note that the current approach of using reservoir simulation to resolve such issues is more flexible
than the traditional well test analysis methods — however, the detail at which reservoir simulation is
performed may not address the physical phenomena being observed in the performance data. Simulation
can be scaled as finely or as coarsely as desired — but how does one "calibrate" the numerical model to
the physical problem without making limiting assumptions? On the other hand, an analytic (or semi-
analytic) solution is also simplified to fit conditions where it can be solved, but such solutions provide
insight into the characteristic behavior of the system.

The behavior of gas condensate reservoir systems can be difficult to model and predict. Specifically, in
many areas (e.g., the North Sea) the question often arises as to whether an unexpected decline in gas
production is a result of depletion, or if this is a result of condensate banking. Liquid condensate develops
as reservoir pressure declines below the dewpoint pressure — and the degree to which this occurs depends
on many factors such as the composition of the gas, and the reservoir conditions. Liquid condensate will

impede the flow of the gas phase, restricting production flowrate and adversely affecting recovery.

This thesis follows the style and format of the SPE Journal.



Examination of differential pressure data plotted with respect to radial distance from the wellbore
(generated using numerical simulation) will indicate the possibility of condensate banking. Roussennac'
proposes that three regions (or zones) typically exist in a gas condensate reservoir system — these regions

are described by Roussennac (and Fevang, as referenced by Roussennac) as follows:

® Region 1 — Condensate Bank: By definition, this region near the wellbore has a condensate (oil)
saturation that is high enough to permit the condensate fluid to flow. Obviously, the reservoir
pressure in this area is the lowest of the three regions. As noted by Roussennac, the overall com-
position of the flowing mixture in this region is essentially constant in this area (as indicated by a near
constant GOR) and is approximately the same composition as the single phase gas at the boundary of
Region 1 and Region 2. The specific criteria used to characterize the condensate phase is that there is
condensate flow in Region 1 (although the evolution of this "mobile" condensate is thought to be the
boundary section for Regions 1 and 2.
As shown schematically in Fig. 1.1, the oil saturation decreases as radial distance from the wellbore
increases — that is, the distribution of fluids near the well is relatively stable — "drying" to
essentially the original dry gas at distances from the wellbore. Fig. 1.1 suggests that there is a
"condensate" gradient in the near-well region, but that the gradient in this region is substantially less
than the one experienced in "Region 2" (i.e., the "condensate buildup" or "transition" zone). This
concept (validated by numerical simulation) suggests that Region 1 can be treated as a simple two-
phase region with constant phase mobilities. On the other hand, Region 2 is seen as a region of rapid
change in condensate saturation.

® Region 2 — Condensate Buildup Zone: This region differs from Region 1 in that the condensate is

believed to have a low mobility and while it will establish a gradient or transition zone, the con-
densate will not tend to flow. The outer edge of Region 2 is the point some radial distance from the
well where the first droplets of liquid evolve from the gas phase — therefore, the pressure at this
particular distance (which does continue to propagate) is the dewpoint pressure of the original reser-
Voir gas.

As noted by Roussennac, the gas phase composition "leans out" in Region 2, with the heavier
components being evolved as condensate. This phenomenon continues as we approach the wellbore
and the gas "leans out" to a minimum richness at the wellbore. It is worth noting that the condensate
saturation is substantially lower in Region 2 than Region 1, which does (conceptually) permit us to
consider Region 2 to be a single-phase gas region for the purpose of well testing (in some cases).
Roussennac (and others) have utilized the 3-region concept for the analysis of well test data from gas
condensate reservoirs with the objective of characterizing each region using a 3-zone radial composite
reservoir model. There are varying degrees of success with this concept, and many analysts prefer

using only a 2-zone model, while other analysts insist that the 3-zone model is more appropriate.



Finally, we repeat the premise that only gas is flowing in Region 2 — therefore, the intermediate and
heavier components evolve as condensate near the boundary of Regions 1 and 2. This provides the
condensate which forms the "bank" in Region 1.

® Region 3 — Original Dry Gas Region: By definition, no condensate exists in this region — only the

gas phase is present (i.e., the pressure is greater than the dewpoint pressure).

We note that the prevailing wisdom is that all three regions exist in a typical gas condensate reservoir.
Region 1 is likely to exist when p,.,<p.,, and Region 2 will always exist if Region 1 exists (i.e., there must
be a condensate gradient region). Region 3 exists during transient flow behavior, and if outer boundaries
are encountered then the reservoir pressure may drop below py.,, and Region 3 (i.e., the original dry gas

state may not exist).

Roussennac suggests that Region 2 may become negligible for the case of a very rich gas or near
critical gas condensate fluids. This phenomenon can be modeled with PVT experiments — however, if
this behavior existed, it would be difficult to distinguish from other conditions. We believe that the
"concept" of 3 regions is relevant (and perhaps appropriate) for many cases. Roussennac has proposed a
schematic diagram for this process (see Fig. 1.1) and we agree with this proposal as for as the reservoir
processes, we are less certain regarding well test analyses — but we acknowledge that, conceptually, Fig.
1.1 validates the application of the 2 or 3-zone radial composite reservoir model for the analysis of well

test data obtained from gas condensate reservoirs.
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Figure 1.1— Schematic diagram of gas condensate (liquid) behavior as a
function of distance in the reservoir (after Roussennac').

We also believe that applications in actual reservoirs will differ somewhat from the results of such

"idealized" studies — in particular, a gas condensate reservoir may not exhibit the expected condensate



bank and/or there could be other reservoir characteristics (e.g., geologic features) that impair or complicate
the analysis/interpretation of reservoir performance data from gas condensate reservoirs. The economic
aspects of this situation are relevant as well — future development strategies depend on a representative
characterization of the reservoir in question. This is one aspect of our motivation to address the problem
of variable mobility profile directly using a solution which explicitly incorporates this behavior.

Our proposed solution involves the identification of (liquid) condensate development with respect to
time and distance from the well. We present distinctive solutions in the form of "type curves" that can be
used to visually identify condensate evolution in terms of mobility behavior with respect to time and
radius. These type curves are developed using a new solution for the case of a changing effective
permeability (or mobility) as a function of dimensionless time and dimensionless radius and are presented
in three formats: a unified variable based on the dimensionless Boltzmann transform variable (ry’/(4p)),
dimensionless radius (7p), and dimensionless time(zp). As we cannot measure pressure in the reservoir, the
only practical tool for well test analysis is the family of type curves given in the dimensionless time (¢p)
format.

1.2 Research Objectives

The primary objectives of this work are:

® To develop an analytical representation of the pressure behavior in time and space for a reservoir

system with a varying mobility profile (see Fig. 1.2 for a schematic of a varying mobility profile for
a gas condensate reservoir system). The concept is based on an empirical model for the gas
mobility function. The model considers a varying gas permeability that assigns the maximum gas
permeability for the condition where only gas (no condensate) is present in the reservoir. The
minimum gas permeability is the value at the condition where the mobility of the gas has been
impeded by maximum condensate dropout. This mobility model is given as:

2
-lr
k=kml‘n +(kmax _kmin) l—exp ;T ........................................................................... (11)

The concept is based on the observation of minimum gas permeability (or mobility) near the
wellbore and the maximum (original) gas permeability in the "dry gas" portion of the reservoir.
The model predicts the permeability behavior during the transition regime between the two extreme
maximum and minimum permeability values. The model was constructed after considering
observations made from numerical simulation results where saturation, effective permeability, and

gas mobility are presented as functions of distance in the reservoir.



The secondary objectives of this work are:
® To utilize this new model as a mechanism to develop graphical solutions for the pressure derivative
in time and radial distance. This solution can be compared to other solutions (e.g., the 2 (or 3)-
zone radial composite reservoir model and various cases of the sealing fault model (time deriva-
tive), as well as the pressure and pressure derivative (radial derivative) as a function of radial
distance derived from numerical simulation).
® To use this model for the analysis of well test data from gas condensate reservoirs with the inten-
tion of developing solutions which include wellbore storage and skin effects.
® To propose applications for the analysis of well test data acquired from pressure drawdown or pres-
sure buildup tests.
1.3 Statement of the Problem and Summary of a Proposed Solution
This work is focused on the concept of using a functional form for the gas mobility profile (i.e., k/x) and

incorporating an empirically-derived model into the rigorous diffusivity equation for the liquid case.

Schematic Behavior of Gas Mobility as a Function of Radial Distance
Gas Condensate Reservoir (Modified from Roussennac (Fig. 2.7))
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Legend: Roussennac Simulation (Fig. 2.7)
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Figure 1.2— Gas mobility profiles for a gas condensate reservoir system (as
a function of time and radius) (adapted from Roussennac') —
note the comparison of the simulated performance and the pro-
posed models (i.e., the exp(x) and the erf (x) mobility models).



We wish to use this concept and the resulting flow model to represent the pressure behavior of the gas
condensate case with respect to time and radial distance from the wellbore. We treat this case as "liquid
equivalent," where we consider non-idealities (e.g., pressure-dependent PVT functions) by using the
conventional pseudofunctions (i.e. pseudopressure and pseudotime).

We have used the simulation cases presented by Roussennac' as a starting point for establishing a
model for gas mobility behavior as a function of radius and time for a gas condensate reservoir. We
recognize that simulated profiles are problematic (i.e., a different set of input data may yield a different
profile), but we believe that the cases presented by Roussennac offer an appropriate starting point as these
cases are well calibrated and verified

Using the results presented by Roussennac (see Fig. 1.2), we have established the following conceptual

model for representing the gas permeability as a function of radius and pressure:

2
k=kyin + ko —kmin)| 1- exp{_—l%} ("exponential" or exp(x) model)..........cccceereeunee (1.2)
a

We also compare the exponential model with the following erf(x) model:

2
k=kyin +Kmax —Kmin) erf[— %] ("error function" or erf(x) model)........c..cccceeeneeee. (1.3)

For the purposes of this work we will use the form given by Eq. 1.1 (i.e., the exp(x) model) and
presume a "liquid equivalent case" (i.e., k is simply a function of radius and time (not explicitly a function
of pres-sure)). The definition of the diffusivity equation for this case is given as:

li{k P

0.0002637

" L e, P (Field units) (1.4)
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Eq. 1.2 is used as the permeability model, and is coupled with the radial flow diffusivity equation for
this case (i.e., Eq. 1.4). We assume a well in an infinite-acting radial flow system produced at a constant
flowrate, and, as noted earlier, we specifically assume that permeability is an explicit function of radius
and time k=f{r,f). In order to solve the resulting differential equation, we use the Boltzmann transforma-

tion (based on the appropriate definition of dimensionless variables) (see Appendix A).

We provide different forms of the solution — forms in terms of the Boltzmann
variable (¢ p :rlzj /4tp) , as well as the dimensionless pressure and the dimensionless pressure derivative
functions in terms of the dimensionless radius and time variables. These forms will prove useful for
different applications — the radial distance forms are useful for validation of the new solution with
reservoir simulation results, while the time forms of the solution will have utility in the analysis of well

test and production data.
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"Pressure Derivative in Radial Distance"
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The most important issue to consider in evaluating Eqgs. 1.5-1.7 is that we have made no limiting
assumptions in this development — we have simply used the traditional solution approach based on the
Boltzmann transform.

We note that Eq. 1.5 cannot be expressed analytically and must be evaluated numerically. In our case
we have utilized the software Mathematica,” which is computationally flexible, as well as capable of
generating "near exact" results. Egs. 1.6 and 1.7 are "closed form" results which are essentially identical

in form. We note that comparison of Egs. 1.6 and 1.7 yield the following identity:

205 %D __, PD (1.8)

i D LT L

ot D 6I”D
As noted in Appendix A, Eq. 1.8 is uniquely valid for this case, as well as the homogeneous reservoir

solution (this result is a distinct identity for the case of an infinite-acting reservoir).

The o) parameter is the dimensionless form of the empirical a-parameter given in Egs. 1.2 and 1.3. A
physical definition or explanation of a cannot be made directly; and, for the purpose of this work, we treat
the a-parameter simply as a model parameter — in a similar fashion as permeability, skin factor, etc. We
believe that the a-parameter represents the aggregate behavior of the relative permeability functions and

the fluid properties (probably both gas and gas condensate).



Using the definitions of the dimensionless variables, we define ap in terms of « as:

ap =

1
0.0002637

@uc; a (conventional oilfield units)

For plotting the pressure derivative functions in both time and space we have defined the following
definitions: (which are derived by inspection of Egs. 1.6 and 1.7)

=tDQ ...........................................................................................................................

0
PDdt 2t
op
PDdr ='D 2
"D

In Fig. 1.3 we present a log-log format plot of the pp(&p) function plotted versus the modified

Boltzmann transform variable (r[z) /(e ptp)). This plot requires some orientation — for example, we can

use this plot to consider the pressure drop as a function of distance for a "snapshot" in time. Data from

numerical simulation can be compared to this plot as a mechanism to validate the analytical solution (as

we will show in a later section). This plot could also be used to consider data presented in terms of time

— however, the "1/¢" form given by the modified Boltzmann transform variable does not make Fig. 1.3

particularly convenient for the analysis/interpretation of pressure-time data. The "1/¢" format is rigorous,

but the current convention of using time (or #5) would make this plot less likely to be used in practice.

pple) from numerical integration of dpp(¢)/ds profile

Dimensionless Pressure Solution (pp(¢)) for a Variable Mobility Profile
(Computed from Boltzmann Transform Solution using Numerical Integration (Mathematica))
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Figure 1.3 — "Type curve" representation of the new model (pp(gp) formu-

lation (Eq. 1.5)). Solution is plotted versus the modified Boltz-
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mann transform variable (rp/(aptp)).



Irpdidrplpp )|

Radial Pressure Derivative Function, ppy,
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Time Pressure Derivative Function, ppy,

Dimensionless Radial Pressure Derivative Solution (in rp) for a Variable Mobility Profile
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Figure 1.4— "Type curve" representation of the new model (|7p dpp/drp|
formulation (Eq. 1.6)). Solution is plotted versus the modified
Boltzmann transform variable ( rlz) aptp)).
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Figure 1.5— "Type curve" representation of the new model (¢5(pp/ap) for-
mulation (Eq. 1.6)). Solution is plotted versus the inverse of
the modified Boltzmann transform variable ((aptp )/rlz) ).
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In Fig. 1.4 we present the radial derivative function pp,(&p) function plotted versus the modified
Boltzmann transform variable (rlz) laptp)). The ppa(ep) formulation represents the change in pressure
drop with respect to radius as we move out into the reservoir — clearly there are separate factors at issue
— the behavior of the |rp(pp/dp)| (or |r(p/dr)|) functions show the influence of the propagating
permeability profile. In particular, this formulation shows how pressure gradient decreases with distance
in the reservoir (as would be expected), but it clearly illustrates the "near well" and "reservoir" behavior of
the pressure gradient function. We will utilize Fig. 1.4 as a "validation plot" for data generated from
numeri-cal simulation. In particular, we will match simulated performance to the proposed reservoir
model.

Fig. 1.5 presents the time derivative function pp(&p) function (Eq. 1.10) plotted versus the inverse of
the modified Boltzmann transform variable ((apt D)/rlz)). In this plot we note that the pressure
derivative performance is dramatically influenced by the evolving radial distribution of permeability. It is
difficult to make an analogy with this behavior without referencing a particular reservoir model, but the
Ppa performance does appear to represent some sort of flow barrier/impediment at some radial distance.
In a later section of this work we will compare the trends shown on Fig. 1.5 with the responses from
several different reservoir models — in particular: the 2-zone radial composite model as well as a
sequence of sealing fault models. It is no surprise that these models (i.e., 2-zone radial composite
model/sealing fault models) are often used in the interpretation of well test data obtained from gas
condensate reservoirs — it is our goal to establish the proposed work as the appropriate standard for the

analysis of such data.
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CHAPTER I
LITERATURE REVIEW

2.1 Radial Composite Reservoir System

Historically, much work has been performed in the petroleum industry regarding the study of performance
behavior in a reservoir as this performance relates to pressure as a function of time and distance from a
vertical well. An accurate understanding of how a reservoir will perform over time in terms of pressure
and flowrate is essential for making optimal decisions regarding investment, exploration, and develop-
ment. In particular, the understanding of gas condensate reservoirs has been very challenging — and
study in this area has given the industry insight into this topic, but recent advances in data acquisition and
modelling have raised many questions regarding the analysis and interpretation of well performance data
obtained from gas condensate reservoirs.

Early work in the petroleum industry focused on the analogy of laminar fluid flow through porous
material with the conduction of heat in solids. The behavior of fluids undergoing Darcy (laminar) flow in
a radial flow geometry is governed by the radial diffusivity equation (Eq. 1.4). Many solutions of the
diffusivity equation for flow in porous materials can be obtained from analog cases in heat conduction
(Carslaw and Jaeger’), and some cases of "non-uniform" reservoir properties have already been proposed
in the heat conduction literature.

In 1970, Ramey” presented work which summarized efforts to date for developing practical solutions
for fluid flow in 2 and 3-zone radial composite reservoir systems. This work came at a time of intense
interest in developing useful and practical solutions for the case of water injection in oil reservoirs (in
particular, the development of solutions for injection/falloff tests in such reservoirs). It was Ramey's
intent (as implied in his introduction) to derive a class of solutions which contained only elementary
functions so that these solutions could be used for the purpose of analysis/interpretation of well test data.

Ramey used the radial diffusivity equation as a starting point, and then added the constraint of
two (or more) discrete zones (or "regions") of constant mobility (k/u) and hydraulic diffusivity (k/(guc)).
This approach gives each discrete region a constant permeability, viscosity, porosity, and compressibility
— where these properties can vary from region to region. Each region is homogeneous and isotropic, and
the change in properties for a particular zone occurs abruptly at the zonal boundary(s). While the physical
concept of concentric radial "rings" of differing reservoir properties can be debated, we will note that this

solution has been shown to represent a remarkably large number of field cases.
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2.2 General Concepts — p(r,t) Performance in Gas Condensate Reservoirs

In 1985, Jones® published a Ph.D. dissertation that presented a unified theory for the testing of gas
condensate reservoir systems, where this work was based on theory of flow for a slightly compressible
liquid as a model for multiphase flow behavior (i.e., the "equivalent liquid" concept). Pseudofunctions
(i.e., pseudopressure and pseudotime) were derived for pressure dependent parameters — and in this work
Jones developed the "reservoir integral" and "sandface integral" concepts for multiphase flow in porous
media. These integrals were adapted from steady-state theory and were the result of reducing the theo-
retical integrals taken over space and time to integrals taken over pressure. This work provided a
definition of pseudopressure that has since shown very good performance in estimating permeability and
skin from well tests performed in gas condensate reservoir systems.

In 1989, Boe, et al.® proposed a theoretical basis for the analysis of well test data obtained from
solution gas and gas condensate reservoir systems during the infinite-acting flow period. Boe, et al.
discuss the analysis and interpretation of pressure transient test data using solutions based on the liquid
analogy (i.e., the case of a single phase liquid with a small and constant compressibility and constant
viscosity). Al-Hussainy, et. al’ suggest that gas tests can be interpreted with this liquid analogy by the use
of a pseudopressure function (although as Agarwal® (pseudotime) later showed, a pseudotime function is
also required for the analysis of pressure buildup tests conducted in gas wells).

Boe, et al. utilize a pseudopressure formulation as well as the Boltzmann transform — where we note
that the Boltzmann transform is specifically valid for the infinite-acting period. When the Boltzmann
transform is violated by the boundary conditions (i.e., post-transient flow conditions exist), the proposed
solution deviates from the liquid analogy (shown in ref. 6). Boe, ef al. suggest that as long as infinite-
acting flow behavior is observed, the pseudopressure function can be evaluated using the correct pressure/
saturation relation at the wellbore. Our work is somewhat comparable in theme to that of Boe, et al. in
that we develop a Boltzmann transform solution and then validate the solution using numerical simulation
(obviously, the structure of our problem is different, but our approach is similar to that of Boe, et al.).

In 1999, Xu and Lee’ investigated the condensate gas problem with the intention of improving previous
solutions that considered the two-zone, radial composite case. Previous work by Raghavan, Chu, and
Jones'® considered steady-state flow in a two-zone composite model and found that their proposed
solutions worked well in cases where the reservoir pressure was substantially higher than dewpoint
pressure, and bottomhole flowing pressure in the well was much lower than the dewpoint pressure.
However, with the presence of a significant middle zone, where condensate develops, but has not reached
critical saturation (i.e., is immobile), the Raghavan, et al. solutions are not as accurate. The steady-state
flow assumption yields a relationship between condensate saturation in the reservoir and pressure —
where this relationship is not valid when flow is impeded by the immobile condensate dropout typically

found in Region 2 (i.e., the condensate drop-out zone).
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The work by Xu and Lee’ considers a three-zone radial composite reservoir model. The first zone near
the well assumes steady—state two phase flow. The second zone assumes an immobile condensate
saturation, but a mobile gas phase. The third zone assumes only dry gas exists in this region. The
behavior of these zones is the same as described in the work by Roussennac' (where some of Roussennac's
comments confirmed the observations put forth by Fevang and Whitson'").

For these types of analyses (Fevang and Whitson, Xu and Lee, Roussennac, etc.), relationships had to
be developed to represent saturation and pressure for the calculation of the pseudopressure function. The
method requires Constant Volume Depletion (CVD) data (for use in modeling Region 2), gas and
condensate relative permeability, producing GOR (Region 1), and pressure transient data. Fevang and
Whitson'' proposed the following relationship for Region 1which relates the gas and condensate relative

permeability ratio with pressure:

kro(l’): l_rSRP |:ﬂ030]
krg(p)y (Rp—Rs)| tgBg

Using pseudopressure functions to approximate the reservoir integral developed by Jones and

2 as well as Jones, Vo, and Raghavan" ; Xu and Lee’ compute these pseudopressure functions

Raghavan'
using the pressure-saturation relationships for Regions 1, 2, and 3 (from whatever source(s) these data may
be derived (in most cases numerical simulation)). This procedure (analogous to methods in refs. 7, 14, and

15), allows for the estimation of initial reservoir pressure, formation permeability, and skin factor.

2.3 Other Solutions/Considerations
Wellbore Storage Effects

One of our goals in this work is to generate solutions that can be used for the analysis and interpretation of
well test data. In particular, we have chosen to develop "type curve" solutions for the case of wellbore
storage effects. Using the liquid analogy, we employed superposition to include the effects of wellbore
storage on drawdown solutions (recall that superposition is only valid for the case of linear partial dif-
ferential equations — where we have presumed that Eq. 1.4 meets these criteria). Blasingame, et al'®
provide the derivation and validation of analytical approximations for the case of "adding" wellbore
storage effects via the Laplace transformation. We have used the methods in ref. 16 to generate the

wellbore storage solutions presented in this work (the specific details are presented Appendix B).
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For this work we have used "Case 2" presented in ref. 16 (i.e., the case where the p,p(fp) function is

presumed to be linear near a particular time of interest). This result is given by:

0
Db :%(l—exp[—a)t[)])+—2(exp[—a)tD]+a)tD B T

@

The coefficients are @, w and 6 are derived using values of the pyp(tp) function

Appendix B. In summary, we are satisfied that the approach given in ref. 16 is robust

accurate for our present work — see Figs. 2.1 and 2.2, which are validations of Eq. 2.2

work for the case of an unfractured well producing in an infinite-acting reservoir.

Dimensionless Pressure Solution - Homogeneous, Radial Flow Case
with Wellbore Storage and Skin Effects (Comparison of Solutions)
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Figure 2.1 — Dimensionless pressure type curve for radial flow behavior

including wellbore storage and skin effects (p,p versus t,/Cp
format). This plot presents a comparison of the solution
generated using numerical inversion (as a surrogate for the
exact solution) and the approximate solution technique
proposed in ref. 16 and generated using Mathematica.

Pressure Behavior in Time (sealing faults and the 2-zone radial composite solution)

as described in

and sufficiently

prepared in this

Our new proposed solution for a varying mobility ratio must be compared to existing solutions used for

the analysis of pressure transient behavior for gas condensate reservoirs. As such, we consider two cases

which are often employed in such analyses — the sealing faults model (various cases) and the 2-zone

radial composite reservoir model.
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Figure 2.2 — Dimensionless pressure derivative type curve for radial flow

behavior including wellbore storage and skin effects (p,p’
versus #p/Cp format). This plot presents a comparison of the
solution generated using numerical inversion (as a surrogate for
the exact solution) and the approximate solution technique
proposed in ref. 16 and generated using Mathematica.

Dimensionless Time Pressure Derivative Type Curves for Sealing Faults
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Figure 2.3— Pressure derivative type curve for a vertical well producing at a

constant rate near a sealing fault in a homogeneous, infinite-
acting reservoir. (Solution from ref. 14)
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The "sealing faults" model is not intuitively applicable for the case of gas condensate reservoir systems
— however, the concept of a "flow constriction" or "flow barrier" has been suggested as an analog to the
gas condensate case. We do not advocate the use of the "sealing faults" models for the analysis and
interpretation of well performance data from gas condensate reservoir systems; we simply note that some
analysts have suggested similarity in the performance of the sealing faults models and the observed
performance from gas condensate reservoir cases.

In Fig. 2.3 we present the solution for a well in the vicinity of one or more sealing faults — this
presentation clearly indicates that the orientation and number of faults dramatically affects the behavior of
the pp, function. This solution was obtained from Stewart, et al™. In Fig. 2.4 we present the "unified"
plot (pp4 function) for multiple cases of the radial composite reservoir solution (refs. 15, 17). The most
important (and most relevant issue) is that the radial composite solution has fixed mobility and diffusivity
ratios (for the inner and outer zones) — by contrast to our solution which uses a permeability profile in
radius and time, but only a single value of diffusivity for the entire reservoir. As such, we will only

compare cases for the radial composite reservoir model where the diffusivity ratio is unity.

Type Curve for Well in a Radial Composite Reservoir (All 7, Cases)
(Inifinite-Acting Homogeneous Reservoir)

10" F——Trm T Ty
F |Legend: E
[ 7= (K1, dy.40,681) 1
-1
L - gp=1x10 1
- -2
3 =
92 10° " 1x10_3 (S
2 F| —=-e- 7y = 1x10
g [ |Veriables:
[ e )
& L| Ryp=ryir, = 500 20 o O
" 2 np=all
= -
S 107 E| o= (derfigede
B | A= tkaladikal )
< [
o
= L
o
= 1
C 10E
o E
2 E
=]
© L
2
2 L
a
(]
o 10 F
2 E
5 E
o E
@ I Undistorted .
a | Radial Flow i
) Behavior
A
E 10"t = E
E WL Solution from: E
F - 0 1.Raghavan, R.: Well Test Analysis, Prentice-| =
F \ - Hall, 1993, 154-158. E
L e 2.Tang, R.W. and Brigham, W.E.: Transient B
Pressure Analysis in Composite Reser-
r voirs, Topical Report SUPRI TR-31 {1982). -
10-2 - NIRRT - L - PRI - L ...mlz L ....ul3 AT \
10 10 10 10 2 10 10 10
t/Rp
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CHAPTER I

DEVELOPMENT OF AN ANALYTICAL PRESSURE SOLUTION
FOR THE CASE OF A PERMEABILITY PROFILE THAT VARIES IN TIME
AND RADIAL DISTANCE

3.1 Concept of a Mobility Profile That Varies in Time and Radial Distance
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As noted earlier, we have used the observation of the mobility/effective permeability profiles in radius and

time obtained from numerical simulation for the case of a gas condensate reservoir as the basis for our pro-

posed model for gas mobility as a function of radius and time. The original basis for this proposed model

was developed using the results published by Roussennac.! A sample case adapted from the Roussennac

work is shown below in Fig. 3.1.

Gas Mobility, md/cp

Schematic Behavior of Gas Mobility as a Function of Radial Distance
Gas Condensate Reservoir (Modified from Roussennac (Fig. 2.7))

40 ——rrr ——rr ——rrrr ——rr ———rrrr
351 -
C > % 3

30 [ Legend: Roussennac Simulation (Fig. 2.7) ]
L @ Mobility Profile at 0.00278 day J

o @ Mobility Profile at 0.0486 day e

r © Mobility Profile at 0.2083 day ]
25+ A Mobility Profile at 1 day .
o ® Mobility Profile at 19 day q

r — Mobility Model (exp(x) model} T

r === Mobility Model (erf(x) model) ]
20F .
o Mobility Model: (¢=25 ﬂzlday for this case) L

N Standard Form: (exp(x) model) ]

- 2 -
151 AgUr) = Ag,min * (ig,max - Agmin) [1-expl-r' [ agtll 7]
F Dimensionless Form: (exp(x) model) 1

2 4

10k Aglrpstp) = 1-(1 - A expl-(1ap) (rp 1tp)) R

where 8= g min/Ag,max

Alternate Mobility Model: {¢=25 ftzlday for this case)
Standard Form: (erf(x) model)

5k

[ Aght) = Ag min * {(Ag,max - Ag,min) e"f["‘zl( agt)]
0' M | M | M | M | L
10" 10° 10' 10? 10° 10*

Radial Distance, ft

Figure 3.1- Gas mobility profiles for a gas condensate reservoir system (as
a function of time and radius) (adapted from Roussennac') —

note the comparison of the simulate

d performance and the pro-

posed models (i.e., the exp(x) and the erf (x) mobility models).
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In Fig. 3.1 we present the following models for representing the gas permeability as a function of radius

and pressure — the "exp(x)" model is given as:

2
k =kpin + kmax —kmin) [ 1- exp{—1 %ﬂ ("exponential" or exp(x) model) .......c..ccevverrrennnnne. 3.D
a
and the "erf(x)" model is given by:
r2
k=kpin + ko —kmin) erf 7 ("error function" or erf(x) model).......c.cccoeveininirinennn (3.2)
a

3.2 Application of the Boltzmann Transformation to the Radial Diffusivity Equation — Develop-
ment of the Pressure Derivative Solutions

In this work we prefer the "exp(x)" model (i.e., Eq. 3.1) — primarily because of the mathematical simpli-

city of this model (i.e., this model is readily adapted to the Boltzmann transformation approach that is used

to develop the solution for this case). As noted in Chapter I, the definition of the diffusivity equation for

liquid flow (our base assumption) is given by:
10 op 1 p . .
——\kr—|=——— —— (FIeld UnNitS) ..ceeevirieieiiiiciniecrec et 33
r@r{ Gr} 00002637 7€t 5 (Field units) 3-3)

Assuming that the permeability is a function of radius and time k=f{r,f), we obtain the following

generalized dimensionless form of the diffusivity equation based on the Boltzmann transformation (details

in Appendix A):
2
A | D D (e (3.4)
ds}, |ép kp| dep ||dep
Given Eq. 3.4 in dimensionless form we note the definitions of the relevant dimensionless variables:
Ep =" [2)/ 4tp (dimensionless Boltzmann transform parameter)............c.ccccceuc.. (3.9
kp = klkyax (dimensionless permeability (note in terms of k,4,)) «vevververeeenenne (3.6)
1 kyah . .
= = dimensionless PreSSUIE) ........ccueuerrerenererereeieieneenene e 3.7
PD=1412 " 4By (ri-p) ( p ) (3.7
tp= 0.0002637M t (dimenSionless tME) .........c.eveveveveeeeeeeeeeeeeieeeeereeeeeees s (3.8)
Pucry
rp =riry, (dimensionless radits).......c.ccverveerieeieriesieieeie e eee s ereeaeenens 3.9)

Using these definitions, the dimensionless form of the permeability function (i.e., Eq., 3.1) is given by:

Jooos _
kD:I—{l—&}exp{—“gD} ............................................................................................. (3.10)
kmax ap
For convenience, we define the constants a and b as follows:
A= (LK ygin Kaaie ) weeeeeeveneememeeeeintet ettt ettt ettt (3.11)
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Substituting Eqs. 3.11 and 3.12 into Eq. 3.10 yields:
kp=l—aexp[-bep]
Substituting Eq. 3.13 into Eq. 3.4 and completing the solution (using the Boltzmann transformation pro-

cess), we obtain the following solutions: (again, the details of this derivation are given in Appendix A)

P ap | a+ty [ 4, 1.
€D D _ == (kpin'kmax) 4 exp) —ﬁln e 9D = =kpinlkmax) |+ — €D
dé‘D 2 4 (29}
(29} i ]
("derivative" form) ............... (3.14)
ap oo a+ 4y [ 4, ]
1 4 1 aD ap b 4
pp(ep) = 3 Kmin'kmax) ? exXp| — 4 In| e = (= kmin'kmax) |+ 7‘9D dep
ep| P & D
ap . |
("pressure" form).................. (3.15)
Alternate forms of Eq. 3.14, written in terms of rp and ¢ are given as:.
. @ | oary [ 4, . 2
7
—D PD _ (kmin'kmax) 4 eXp _% Inje 90 - (I=kmin'kmax) +—-D
aFD T ap 4ID
ap
("rp derivative" form)......... (3.16)
4
ap a+—) | _4, 5
0 1 e a b 4 7
D % = 2 kmin/kmax) & exp| = TDIH e P —(I=kpin/kmax) | + gﬁ
ap

("tp derivative" form) ......... (3.17)

Inspection of Eq. 3.12 (the "pressure" form of the solution) leads us to recognize that Eq. 3.12 can not
be resolved as a closed form solution — this result can only be evaluated numerically. As such, we have
elected to use Mathematica® to compute the pp and |&, dpp/dep| solutions. We present a variety of
solutions for the pp and |&p dpp/dep| functions in Figs. 3.2 and 3.3 — where the pp function is shown in

Fig. 3.2 and the |&p dpp/dep| function is presented in Figs. 3.3.
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Dimensionless Pressure Solution (pp(¢)) for a Variable Mobility Profile
(Computed from Boltzmann Transform Solution using Numerical Integration (Mathematica))

10* F— T T T T T T T T T,

E -3 Varying Permeability i Transform)

£ 3 Kmin/kmax= 1x10 o . o

b pple) = Intldppleldsp, cp==.ep}

Where pp(c} is in ica (numerical i
e 10 dpplidep
= &
2 = - (12) [11-2""P) (11 expl - { [(1+6)16] Infexplbrep)-al - bep) 1
g‘ The model parameters are defined as follows:
% a =1 -kpinlkmax b =4lap = rpHAtp)
a 2 il g
5.. 10 ility Model:
E kp =1-aexp{-bep)
S 2
5 or kp =1-[1 - kjnlkmax] expl-(1/ap) (rp Itp)]
2 g
g
g 1 E
E E
s T —— o]
£ \\~\\ ap= 1x10™
E 0 X T N
2 10 E \\\\\$§~ < <3
] E BN Ny, ~ ~3
£ [ |Legenda: RN N, g
g ffee o it = SN \, E o]
s [ = E RS . -
5 L ap 1X1°1 1x10° ‘§§;§§§§§\kmr,.lkmax= '\l \ 1x10
2 ot - ap=1x10° §S§§\\%§\ LY .
L { I WR " \

E ap = 1x10 SRR .

; ap=1x10" AN \

N p=1x \xg%\\%\

| 4 RN y E

- ap=1x10 ‘§&a0=mo° o’V 1o
102 PN YTV SR TTTY B U Ty BRI T AT EEGTIrPTTIT B NSIPRTTTT, PR NTTY SR
& 5 4 3 2 4 0 1 2 3 4
10 10 10 10 10 10 10 10 10 10 10

o {aptp) (or (@apep)

Figure 3.2 — "Type curve" representation of the pp(&p) solution (Eq. 3.12)).
Solution is 2plotted versus the modified Boltzmann transform
variable (rp/(aptp)).

In Fig. 3.2 we can view these trends as being the pressure drop (in dimensionless form) taken as
distance increases away from the wellbore as we hold time constant. We note the effect of the &,;,/kpax
ratio on the performance of the pp solution — and we observe that the ap-parameter is as a scaling
mechanism in the modified Boltzmann transform variable (rg/(a ptp)). We would describe this
situation physically as a decreasing pressure drop as we progress into the reservoir, noting that the &;,,;,,/k 4.
ratio controls the pressure drop near the well — and that the combination of the %,,;,/k;.. ratio and the ap-
parameter control the transition and "far field" pressure solutions.

Fig. 3.3 presents the dpp/dep solution for the same k,,;,/k,.c and ap cases shown in Fig. 3.2. In this
case we note the distinct similarity of the |&p dpp/dep| solution with the |rp dpp/drp| solution (Fig. 1.5) —
this is because these functions are simply "rescaled" (i.e., |rp dpp/drp| = 2 |&p dpp/dep| (comparing Eq. 1.7
with Eq. 3.11)). Fig. 3.3 is of relatively little practical utility unless we work in terms of the variable
n=1*/t (we note that we do present several comparisons in terms of 7, but for practical applications

solutions in ¢ (time) are of more direct use).
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Radial Pressure Derivative Function, ppy,

Dimensionless Pressure Derivative Solution (in gp) for a Variable Mobility Profile

4
10° T T Ty
F Varying Permeability Solution: (Boltzmann Transform)
F Py, = ép didep(pp)| ]
+ 1/b)
= (172) [(1-)""] expl - ( [(1+bVB] Infexp(bepi-al - bip) ]
3 3 where: o
10° F Knintkmax = 1x10 E
E o i a =1-Kkninfkmax b =4lap  sp=rpatp) E
10— — E
L 2 10.3 T, Permeability Model: ]
f——2x —_——— S =1- - bs)
E 3x10'3 \ kp =1-aexp(-bs) ) 4
102 E 5x10°> S or kp =1-[1- kin/kmax] expl-(1lap) (rp /tp)]
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ST S SR SR N, e S e ap=1x10 ]
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Figure 3.3 — "Type curve" representation of the |&p dpp/dep| solution (Eq.
3.11)). Solution is Elotted versus the modified Boltzmann
transform variable (rp/(aptp)).

Dimensionless Radial Pressure Derivative Solution (in rp) for a Variable Mobility Profile
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Figure 3.4— "Type curve" representation of the new model (|[rp dpp/drp|
formulation (Eq. 1.6)). Solution is plotted versus the modified
Boltzmann transform variable (» [2) aptp)).

22



23

Dimensionless Time Pressure Derivative Solution (in tp) for a Variable Mobility Profile

10°E T T T T T T T T s
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E 2 3 E
= El 2= 1-kmidkmax b = 4ap  «p = rp HAD) Kminfkmax = 1x10 - E
E'-a | Permeability Model: 1
5 [| &p =1-aexp(-bep — 210"
3 2 310 -]
3 107 HL7 40 =11 kminkmad expl- (1) rp 1) 5510
" E E
= E [Legend: ¢ k|
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Figure 3.5— "Type curve" representation of the new model (¢5(Gpp/Ap) for-
mulation (Eq. 1.6)). Solution is plotted versus the inverse of
the modified Boltzmann transform variable ((aptp )/ré ).

We also present the pressure derivative solutions plotted in terms of variables related to dimensionless
radius and time in Figs. 3.4 and 3.5 (we continue to use a modification of the dimensionless Boltzmann
transform variable). Fig. 3.4 (the radius format plot) will be used to validate simulated performance data
where we will have pressure values at a specific spatial grid as generated by numerical simulation.

We could use Fig. 3.5 as an analysis mechanism for pressure transient data — however, as we discuss
in the next section, for practical applications, the solution must be modified to include wellbore storage
effects. Fig. 3.5 will also be used in the validation portion of this work to compare against the existing
solutions which are often utilized in the analysis of pressure transient test data obtained from gas conden-

sate reservoir systems (namely, the 2-zone radial composite reservoir case and the "sealing faults" cases).

3.3 Wellbore Storage and Skin Effects
Addition of Wellbore Storage Effects — Drawdown Cases (Base Comparisons)

So far in this work we have only considered the case of an ideal well producing in an infinite-acting reser-
voir with a propagating permeability profile — where the well is produced at a single-constant flowrate.
In this section we provide a mechanism for adding wellbore storage effects to our new solution for a
propagating permeability profile. Wellbore storage is typically "added" to the base pressure solution using

convolution (or superposition) — where we believe that convolution should be valid for this problem
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because we have assumed that are no non-linearities in the governing differential equation (Eq. 4). As
such, the convolution for wellbore storage is written as:
tp d
PwD = 0 E[qubs(T)]psD(tD_T)dtD ................................................................................. (3.18)

Where the ¢gp function (dimensionless sandface rate profile) is given as follows for the wellbore storage
model:

qsf d
dDwbs = — =1—ch—[wa] ............................................................................................... (3.19)
D

sur
And the definition of the dimensionless pressure function which includes skin effects is given as:
DD = DD 8 eeeeemetititi e (3.20)
Egs. 3.18 and 3.19 can be discretized and combined to yield a "recursion relation" for the wellbore
storage dimensionless pressure, p,,, — however, this approach is tedious and prone to error propagation.
Typical implementations of Egs. 3.18 and 3.19 involve the use of the Laplace transformation —
unfortunately, our proposed solution (Eq. 3.14) is not suited to the use of the Laplace transform (i.e., this

solution can not be integrated analytically), and, as such, we must resort to another approach.

For convenience we employ the method by Blasingame, et al.'° for generating pressure solutions which

include wellbore storage and skin effects — the solution used in this work is given in Appendix B.

We provide Figs. 3.6a and 3.6b as validations for the Blasingame, et al. method — specifically for the
case of well producing in an infinite-acting homogeneous reservoir. The p,,p, function is computed using

the procedures given in Appendix B and the p,,p,; function is computed using the procedures given in
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Dimensionless Pressure Solution - Homogeneous, Radial Flow Case
with Wellbore Storage and Skin Effects (Comparison of Solutions)
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Figure 3.6a— Dimensionless pressure type curve for radial flow behavior

Pwpat = tpdidip(pyp)

10

10

10

including wellbore storage and skin effects (p,p versus 7,/Cp
format). This plot presents a comparison of the solution
generated using numerical inversion (as a surrogate for the
exact solution) and the approximate solution technique
proposed in ref. 16 and generated using Mathematica.

Dimensionless Pressure Derivative Solution - Homogeneous, Radial Flow Case
with Wellbore Storage and Skin Effects (Comparison of Solutions)
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Figure 3.6b— Dimensionless pressure derivative type curve for radial flow

behavior including wellbore storage and skin effects (p,.p’
versus #p/Cp format). This plot presents a comparison of the
solution generated using numerical inversion (as a surrogate for
the exact solution) and the approximate solution technique
proposed in ref. 16 and generated using Mathematica.

25



26

Appendix C (we note that we have used a polynomial regression (a 3-point formula) to calculate the
pwpa function). Excellent agreement exists between the "exact" solutions (i.e., the numerical inversion
solution) and the approximate solutions provided by the methods given in ref. 16. By extension, we will
apply the procedures given in Appendices B and C to our new solution for a radially propagating
permeability function.

In Figs. 3.7a-3.7f we provide a sequence of solutions for the specific case of C,=1x10* and for cases
where the kyin/kme: varies from 1x10° to 1x107. Individual plots consider a single value of the ap-
parameter, and the following cases of ap=1x10°, 107", 102, 107, 10, 10” are considered (Figs. 3.7a-3.71,
respectively). Figs. 3.7a-3.7f illustrate the "evolving" effects of the ap-parameter, and we note that non-
unique effects are possible (i.e., a particular case or trend which appears similar to another case, although
these cases have substantially different base properties (e.g., kpin/kmax> @p, €tc.)). Most of the cases in Figs.

3.7a-3.7f should be described as unique (although Figs. 3.7b and 3.7¢ do appear to be very similar).

Addition of Wellbore Storage Effects — Drawdown Cases (tp/Cp Format Plots)

Another objective for work in this section is to establish the general character/behavior of such results. In
Fig. 3.8 we present a "composite" plot of all p,,p, trends generated for C,=1x10°. We note distinct beha-
vior for each case and we suggest that the character in these wellbore storage solutions (for this particular
case) is both accurate and distinct. Similarly, in Fig. 3.9 we present the same suite of solutions for
Cp=1x10". The most obvious comment we can make is that virtually all of the trends generated for the
Cp=1x10" case are dominated by wellbore storage effects — i.e., the ap-parameter has virtually no in-

fluence on the response of the solution for the C, =1x10%° case.



Dimensionless Pressure and Time Pressure Derivative Functions
for the Variable Mobility Model (Cp = 1x10°, ap = 1x10")
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Figure 3.7a— Type curve plot (p,p and p,,p’ versus t,/Cp) — Cp = 1x10°, ap
= 1x10°, various k,,;,/k,... cases.

Dimensionless Pressure and Time Pressure Derivative Functions

for the Variable Mobility Model (Cp = 1x10°, ap = 1x10™)
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Figure 3.7b— Type curve plot (p,,p and p,,p’ versus t,/Cp) — Cp = 1x10°, o)
= 1x10’1, various K,/ knax cases.
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Dimensionless Pressure and Time Pressure Derivative Functions
for the Variable Mobility Model (Cp = 1x10°, ap = 1x107%)
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Figure 3.7c— Type curve plot (p,,p and p,,p’ versus t,/Cp) — Cp = 1x10°, o
= 1x10’2, various K,/ knax cases.
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Figure 3.7d— Type curve plot (p,,p and p,,p’ versus t,/Cp) — Cp = 1x10°, o)
= 1x10’3, various K,/ knax cases.



Pup and pypyy = tp didip(py,p )

Pup and pypyy = tpd/dip(pyp )

Dimensionless Pressure and Time Pressure Derivative Functions
for the Variable Mobility Model (Cp = 1x103, ap = 1x10-4)
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Dimensionless Time Pressure Derivative Functions for the Variable
Mobility Model (Cp = 1x10°, ap= 1x10™, 10™, 102 103, 10, 10%)
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CHAPTER IV
VALIDATION OF AN ANALYTICAL PRESSURE SOLUTION
FOR THE CASE OF A PERMEABILITY PROFILE THAT VARIES IN TIME
AND RADIAL DISTANCE — GAS CONDENSATE RESERVOIRS

4.1 Comparison of the New Solution and Solutions for the Sealing Faults and Radial Composite
Reservoir Cases

Pressure Behavior in Time

Our goal is to provide a qualitative comparison of the new proposed solution (the result given in terms of
time) and the 2-zone radial composite reservoir model — where we note that the radial composite model is
the most commonly used reservoir model for the interpretation and analysis of well test data from gas
condensate reservoirs. We also present a comparison of the proposed model with the model for a well in
the vicinity of one or more "sealing faults" — where our goal is to simply compare the influence of our
new model as a "flow constriction" or "flow barrier." We are not advocating the use of the "sealing faults"
models for the analysis and interpretation of well performance data in gas condensate reservoir systems;

we are simply making a qualitative (graphical) comparison of the solutions.

Dimensionless Time Pressure Derivative Type Curves for Sealing Faults
(Inifinite-Acting Homogeneous Reservoir)
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Figure 4.1— Pressure derivative type curve for a vertical well producing at a
constant rate near a sealing fault in a homogeneous, infinite-act-
ing reservoir.
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In Fig. 4.1 we present the solution for a well in the vicinity of one or more sealing faults — this
presentation clearly indicates that the orientation and number of faults dramatically affects the behavior of
the ppy function. In Fig. 4.2 we present the "unified" plot (ppg function) for multiple cases of the radial
composite reservoir solution. The most important, and most relevant issue is that the radial composite
solution has fixed mobility and diffusivity ratios (for the inner and outer zones). This use of fixed
mobility and diffusivity ratios is in direct contrast to our solution which uses a permeability profile in
radius and time, but only a single value of diffusivity for the entire reservoir. As such, we will only com-

pare cases for the radial composite reservoir model where the diffusivity ratio is unity.

Type Curve for Well in a Radial Composite Reservoir (All 7, Cases)
(Inifinite-Acting Homogeneous Reservoir)
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Figure 4.2 — Pressure derivative type curve for a vertical well producing at a
constant flowrate in a 2-zone radial composite reservoir system,
various mobility (2)/storativity (®) cases.

In Fig. 4.3 we present a combined plot of all three reservoir cases: the sealing faults case, the 2-zone
radial composite reservoir case, and our proposed reservoir model for a permeability profile which varies
in time and radial distance. We note surprising similarity for the results shown in Fig. 4.3 — despite the
fact that the reservoir models shown have little in common. One interpretation could be that this behavior
is a cause for concern since the models are distinctly different — yet produce similar behavior. Another

interpretation could be that the 2-zone (fixed) radial composite reservoir model and the new propagating
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permeability profile model have, at least in concept, a common denominator of 2 dominant permeabilities
(i.e., the "near well" and "reservoir" permeabilities).

In fact, as we note from Fig. 4.3, the radial composite and propagating permeability solutions converge
at "late times," — i.e., when the reservoir permeability dominates the pressure response. This is an
important validation as the models do agree uniquely at late times. We conclude that this comparison
suggests utility of our new model for the analysis of well test data in gas condensate reservoirs — with the
caveat that we noted earlier regarding the fact that our proposed model uses a single value of diffusivity,
and the 2-zone composite reservoir model uses 2 distinct diffusivities (i.e., the "near well" and the
"reservoir” diffusivi-ties).

The issue of the "sealing faults" model is somewhat more complex — we will simply suggest that a
"flow barrier" (i.e., a sealing fault) and a flow contrast (i.e., the 2-zone radial composite reservoir model
and the propagating permeability model) have similar (though not identical) behavior because the flow
barrier/ contrast affects the pressure behavior in a similar fashion. This conclusion is somewhat inductive,

but we believe it is both plausible and relevant.

Comparison of Model Performance: Radial Composite Reservoir Model,
Sealing Fault Models, and the New Model for a Radially Varying Mobility Profile
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Figure 4.3— Combined pressure derivative type curve for the following
cases: sealing faults, a single radial composite region, and the
proposed model for a radially-varying mobility profile.
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4.2 Validation of the New Solution — Literature Data

Pressure Behavior in Radial Distance — Literature Data (Roussennac ref. 1)

Case 1: Roussennac Fig 2.7 — our starting point for comparisons of literature data is the case presented as
Fig. 2.7 by Roussennac,' where this particular case was for a pressure drawdown sequence performed in
an infinite-acting gas condensate reservoir. In order to make a proper comparison of our new model with
the data presented by Roussennac, we must utilize the pseudopressure function to account for variations in
fluid properties at a function of pressure. Specifically, we will only utilize the pseudopressure formulation
for the case of a dry gas — this approach would be the typical one employed in practice (i.e., for well test
analysis) and our goal is to establish our new (equivalent liquid) solution as a practical mechanism for
analysis.

The definition of pseudopressure that we employ for the case of a dry gas is given as:

_ Hgizi P p

Pp pi HoZ

Phpase

In evaluating Eq. 4.01 we require the z-factor and the gas viscosity as functions of pressure. We
present the z-factor as a function of pressure in Fig. 4.4a and the gas viscosity as a function of pressure in
Fig. 4.4b. In Figs. 4.4a and 4.4b we have provided both the original fluid property data provided by
Roussennac (generated using an equation of state (EOS)) for this fluid mixture ("Mix 2"), as well as "dry
gas" properties generated using simplified correlations. We note a reasonably good correlation of these
functions and we comment that our purpose in generating the "dry gas" trends was to provide sufficient
data for the calculation of the pseudopressure function (Roussennac only gave 5 data points for the gas
density and gas viscosity functions for this case).

In Fig. 4.4c we provide the pseudopressure function computed using Eq. 4.01 and the z-factor and gas
viscosity data obtained from the dry gas correlations. We note a very consistent trend for the pseudo-
pressure function and we also observe that for the pressures greater than 3000 psia that Ap,~1.002 Ap —
which clearly is a coincidence, one would not expect a near 1:1 ratio for these functions. This observation
potentially simplifies our analysis/comparison of the data for this case (i.e., we could simply use Ap data
instead of Ap, data) — however, we would like to provide as rigorous an analysis as possible, so we will
use the Ap, data functions. We again note that this situation (i.e., Ap,~1.002 Ap) is a coincidence, and we
should not generalize any such observations. We will utilize the Ap, data functions for all cases in this

work (with the possible exception of cases where fluid property data are simply unavailable).



z-Factor-Pressure Profile for Roussennac Mix 2
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Figure 4.4a — z-factor profiles for the Roussennac' data case (Mix 2) —
includes Roussennac EOS (simulation) data and data from dry
gas correlation.

Gas Viscosity-Pressure Profile for Roussennac Mix 2
{(Computed using correlations:
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Figure 4.4b — Gas viscosity profiles for the Roussennac' data case (Mix 2) —
includes Roussennac EOS (simulation) data and data from dry
gas correlation.
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Pseudopressure-Pressure Profile for Roussennac Mix 2
(Computed using correlations:
yg=0.92 (air=1.0, 7=260 deg F, p=4428 psia)
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Figure 4.4c — Pseudopressure trend for the Roussennac' data case (Mix 2) —
generated using the z-factor and gas viscosity data obtained
from the dry gas correlations, and the pseudopressure definition
given by Eq. 4.01.

To initiate the comparison of data cases, we first present a plot of p, versus r in Fig. 4.5, where the
pressure data were acquired using electronic digitization of Roussennac Fig. 2.7. We note that 5 separate
cases are provided by Roussennac (i.e., data trends for = 0.0667, 1.1667, 5, 24, and 456 hours). We
observe an apparent "propagation” of the pressure distribution into the reservoir — at this scale it is clear
that the near-well pressure behavior is not linear with respect to the logarithm of radius (as are the results
for the liquid case (see Fig. 4.6)) — we presume that this is an effect of the propagating radial profile of
ko/ 1, as well as the "compressibility effects" of the dry gas and gas condensate fluids. Regardless, we
recognize that this particular plot cannot be "reconciled" with the liquid case.

Our next comparison is that of the Ap, and |77 dAp,/d 7| functions versus 7 (7=r*/1) (Fig. 4.7), where we
note that use of the 7-variable makes this plot consistent with our "type curves" (i.e., Figs. 3.2 and 3.3).
As we noted earlier, it would not be typical for the 7-variable (77=r7/f) to be used in practice (we are
generally only interested in "¢ behavior) — however, for the purposes of comparison for pressure distri-
butions taken in the reservoir, use of the 7-variable is logical (and preferred). In Fig. 4.7 we note that the

|7 dAp,/dn| function suffers somewhat because we have used the entire data trend (i.e., Ap, as a function

of 7).



Roussennac Example Drawdown Simulation Case Using the Variable Mobility Solution
"Pseudopressure Drop" Type Curve Match - All Data (Data from Roussennac thesis (Fig. 2.7))

(ref. 18).
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Pseudopressure Drop as a Function of Radius for a
Gas Condensate Reservoir (Data from Roussennac thesis)
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Figure 4.7 — Ap, and |5 dAp,/dn| functions versus 7 for Roussennac Fig. 2.7
(7=r*/1). The scatter in the |7 dAp,/dn| function is due to the
Ap, data not being uniquely "line source" in character (i.e.,
these are numerical simulation results, and are not bound to the
"line source" criterion).

Radial Pseudopressure Derivative Comparison with Model Response
Gas Condensate Reservoir (Data from Roussennac thesis)
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Figure4.8 — Ap, and |5 dAp,/dn| functions versus 7 (7=1*/1) (data from
Roussennac Fig. 2.7, model trends are derived from the new
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The "noise" in the |77 dAp,/d7| function is due to "incomplete" conversion of the numerical results to
the "line source" case (i.e., using the 7-variable should convert "line source" data to a single trend —
however, if the data are not perfectly line source data (as these simulated results are not), then the Ap, - 7
trend will not be a perfect correlation (nor will the |7 dAp,/dn| - 1 trend)). This is not a major issue,
simply a matter that requires explanation/orientation.

In Fig. 4.8 we present the Ap, and |7 dAp,/dn| data functions versus 7 (17=1*/1), and then superimpose

the “match” solution for Ap, and |77 dAp,/dn| generated using our new variable-mobility model. We note
very good agreement in the Ap, functions (with the noted exception of the off-trend (i.e., non-line source)
data. Further, we also note reasonable agreement in the |7 dAp,/dn| model and data functions — where
we again remark that the "scatter" in the |77 dAp,/d 7| data function is due to our use of all of the Ap, data in
the derivative calculation (we did not edit out the off-trend data). Regardless of the data issues, we find a
very reasonable overall match of the Ap, and |7 dAp,/dn| functions — and we conclude that our model
does appropriately represent the data for this particular case.
Case 2: Roussennac Fig 2.9 — We provide another validation of the new solution by comparison another
data case presented by Roussennac (ref. 1). In this particular, this case includes a "skin zone" developed
using a zone of altered permeability near the well. We note immediately that our solution does not include
such a feature, and is not likely to reproduce such a feature (if even by coincidence, such an interpretation
would be incorrect). Our goal is to demonstrate the utility of our new solution against another data case —
in this particular case (as opposed to the previous data case) the only major change is the addition of the
near-well skin zone. For reference, this case uses exactly the same fluid properties as the previous case
(i.e., Roussennac "Mix 2"), as such, the pseudopressure transformation for this case is identical to that of
the previous case.

In Fig. 4.9a we present the pp— Ap, match for this case and the pp,;,—[F(dAp, /dr)| match is shown in
Fig. 4.9b. With the exception of the behavior near the well, we note an excellent match of the data with
the proposed solution. The behavior at small values of » is dominated by the "skin zone" — where the
"skin zone" is actually a region of specified permeability used to provide the effect of near-well damage.
As noted, we do not consider the existence of a "near-well damage" zone, we simply model a propagating

permeability profile as shown in Fig. 1.2.
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In Fig. 4.10 we present the Ap, and [+(dAp,/dr)| data along with the Ap, and [(dAp,/dr)| functions com-

puted using our new reservoir model. Using Fig. 4.10 we have attempted to identify/classify the flow

regimes which were observed during this simulation. We note that this comparison provides a strong

validation of our proposed solution for the case of a variable mobility profile.

ppls) from numerical integration of dpp(=)/d: profile

Data Match for Roussennac Simulation Case Using the Variable Mobility Solution
"Pressure Drop" Type Curve Match (Data from Roussennac thesis (Fig. 2.9))
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Figure 4.9a — Match of Roussenac' data (digitized) and the new variable
mobility model (type curve match) — pp(ep) versus (aptp)/rp’
format.

Pressure Behavior in Radial Distance — Literature Data (Vo ref. 19)

Case 3: Vo' Fig 3.1 — As with the cases presented by Roussennac, we use the literature case presented

by Vo to validate our proposed solution for the case of a radially varying mobility profile. This case

presented by Vo does not include skin effects and should be modeled well by our proposed solution. As

with the cases presented by Roussennac, we use the pseudopressure function to account for variations in

fluid properties at a function of pressure. We again use the pseudopressure formulation for the case of a

dry gas (see Figs. 4.11a-4.11c) — where the pseudopressure function (Fig. 4.11.c) is computed using z-

factor data (Fig. 4.11.a) and gas viscosity data (Fig. 4.11.b) obtained from the equation-of-state (EOS)

that Vo used to model this fluid mixture (i.e., Vo "Fluid 2" (ref. 19)).
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Figure 49b — Match of Roussenac' data (digitized) and the new variable
mobility model (type curve) — |rp(pp/dp)| versus (aptp)/rp*
format.

Radial Pressure Derivative Comparison with Model Response
Gas Condensate Reservoir (Data from Roussennac thesis (Fig. 2.9))

Ap and r|dp/dr, psi

F|Legend: Varying Permeability Solution:
| o !
| a ;:(pdpjdnl (L=02) Influence of |rdidrtp ) = (58) [(1-a)' "] expl - { [(1+bYB] Infexp(bsg)-a) - bap) ]
Jl— Ap Model Response va(:"ﬁ;mm where 58 (psl) is the scale change for pg-Ap, and
10 -=* I dpldr)] Model Response (i.e., the condensate region) a=1-Kkpinlkmax b= 4dlup

2
sp=rp Ndip)

r R = : | rp=rirg (ry =053 ft)
r N N i/ ¥max =025 ap=1x10" tp=1.38x10°
&
i
N E
P — N 3
F N Y 3
prosomeneeee D === l\‘ E
N Skin Zone Trans- N N Li
2 Ir: ine Source Response
10 F ition Near-Well  [] =
3 N N (i.e., effect of ap and 1 3
E \ NN mobily ' i 3
E N N 3
r N Influence of 1
F N \ N Reservoir permeability E
1 N {or mobility)
10 E \ N {i.e., dry gas zone) 3
E N 3
r N bl By b
F N Comment: The skin effect is modelled using a physical zone of )
N aitered permeability from r,, (0.53 ft) < r < ry (~1.5 ft) )
N N {from R This pi an artifact [ 3
b that is not captured in the radially-varying permeability \ 3
[y
N profile. ] b
u & \ E
rw (083 rg(~1.5f) 5 1
'
-1 s s asisnl PR | PEFIERRTTH | FEFETERTTT BTSSR | MR | MR | T | P | PRI
10 2 1 L] 1 2 3 4 L3 3 7 8
10 10 10 10 10 10 10 10 10 10 10
2
rf

Figure 4.10— Match of Roussenac' data (digitized) and the new variable
mobility model (data/model match) — Ap and rldp/dr| versus »*
format.



z-Factor-Pressure Profile for Vo Fluid 2
EOS Results (Vo): ;/g=0.94 (air=1.0, T=280 deg F, p=4300 psia)
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Figure 4.11a— z-factor profiles for the Vo'’ data case (Fluid 2) — Vo EOS
(simulation) data.

Gas Viscosity-Pressure Profile for Vo Fluid 2
EOS Results (Vo): ;/g=0.94 (air=1.0, T=280 deg F, p=4300 psia)
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Figure 4.11b— Gas viscosity profiles for the Vo' data case (Fluid 2) — Vo
EOS (simulation) data.
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Pseudopressure-Pressure Profile for Vo Fluid 2
EOS Results (Vo): ;/g=0.94 (air=1.0, T=280 deg F, p=4300 psia)
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Figure 4.11c— Pseudopressure trend for the Vo'’ data case (Fluid 2) —
generated using the z-factor and gas viscosity data obtained
from Vo EOS calculations, and the pseudopressure definition
given by Eq. 4.01.

In Fig. 4.12 we present the Ap, and |r(dAp,/dr)| data for the Vo case along with the Ap,, and |r(dAp,/dr)|
model functions computed using our new reservoir model (this plot illustrates the "best match" of the Vo
data with our new model). As for the Roussennac cases, we again identify/classify the flow regimes
which were observed during this simulation for the Vo case. We note an exceptional match of all data and
model functions for the Vo case, providing further validation of our new model for the case of a radially

varying mobility model.



Radial Pressure Derivative Comparison with Model Response

Gas Condensate Reservoir (Data from Vo dissertation (Fig. 3.1))
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#/f) format. (s=0).
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CHAPTER V
SUMMARY, CONCLUSIONS, AND
RECOMMENDATIONS FOR FUTURE WORK

5.1 Summary

We have developed and validated a new solution for the case of a radially varying permeability profile in
an infinite-acting reservoir. We believe that this result can be applied towards the analysis and inter-
pretation of reservoir performance data obtained from wells in gas condensate reservoirs.

Our validation of this new solution utilized comparisons with reference data (numerical simulation
results) obtained from the petroleum literature. We used pressure-radius data which illustrate the
development of the condensate bank and we also computed auxiliary functions such as pseudopressure and
the pressure derivative functions in order to enhance/illustrate certain characteristic features.

We also compared our new model to pressure derivative—time profiles for wells in radial composite
reservoir systems and for wells in systems with one or more sealing faults. These comparisons were used
to establish the similarity of the pressure derivative functions for certain cases with the pressure derivative
functions given by our new solution. For orientation with field data, we also generated a variety of cases
which include wellbore storage effects. These cases are designed to illustrate the relative impact of
wellbore storage effects on the solution for a radially varying mobility profile — our primary conclusion is
that wellbore storage and varying mobility influences generate responses which could be confused with

other reservoir features (e.g., dual porosity reservoir effects).

5.2 Conclusions
The following conclusions are made based on the results obtained from this work
1. New Solution: We have proposed, developed, and verified new solutions (for pressure and the
pressure derivative functions in terms of radial distance and time) for the case of a well producing
at a constant flowrate from an infinite-acting radial flow system where the permeability varies in

radial distance and time (see Eq. 1.1).

2
-1r
k=kpyin + kmax —kmin)| 1-€xp || (1.1

Eq. 1.1 is proposed based on observations of well performance behavior derived from numerical

simulation of the gas phase for a radial gas condensate reservoir system.
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The relevant results developed in this work are given by Egs. 3.14 and 3.15:

4 _
" ap | (e |ty A
d_D = —— (kmin'kmax) 4 exp _TDIH e 90 —(1- kmin'kmax) |+ —— €D
€D 2 T ap
ap _ i
("derivative" form) ............. (3.14)
1 ap o a+-4 4 | ,
pp(ep) :E (kpin/kmax) 4 J‘ —eXp| — 4 ZD_Inje %0 - (= kmin/kmax) | +—¢p | |dep
ep| P = ap
ap i |
("pressure" form)................ (3.15)

We note that Eq. 3.15 cannot be resolved beyond the integral formulation as presented. As such, all
results for Eq. 3.15 are generated using numerical integration of Eq. 3.14 performed in
Mathematica. The derivative formulation given by Eq. 3.14 is a closed form result — and is

computationally efficient.

Alternate forms of Eq. 3.14, written in terms of rp and #p are given as:.

4 4
%p (I+—) -—c 2
0 4 a D 4
-D al;D = (kpin/kmax) * exp _TDIH e P —(1=kpin/kmax) +a 4?
D . D ™D
ap
("rp derivative" form)......... (3.16)
4
ap +—) | -4, )
5 1 4 a b 4 r
tD% :E(kmin/kmax) 4 exp _%ln e 9P — (= kmin/kmax) +gﬁ
ap
("tp derivative" form) ......... (3.17)

. Comparison/Validation: The proposed solution is presented in comparison to numerical simulation

results (for the pp/dp formulation). The Jpp/dp formulation is compared to the 2-zone radial
composite model as well as simplified cases of "sealing faults" — the comparisons indicate that the
proposed solution does produce similar features and suggests the model would be an effective
interpretation tool for well test analysis.

Our presentation of the p,p(#p) and p,p.(tp) functions (which include wellbore storage and skin
effects) indicate that the influence of the « (or ap) parameter and the k,,;,/k,... ratio is substantive
and unique for certain cases (e.g., low values of Cp), while for higher values of Cj, wellbore storage
effects dominate the response. This is analogous to say, the case of well performance in a dual

porosity/naturally fractured reservoir.
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3. Pressure Buildup Case: This is a case for future investigation, our efforts to resolve the pressure

buildup case using conventional methods yielded inconclusive results. This situation may be a
product of using (or misusing) the superposition theorem, and/or some other mitigating factor(s).

Regardless, this topic (i.e., the pressure buildup case) warrants further investigation.

5.3 Limitations and Recommendations
Limitations:
1. The major limitation of our new solution is that the pressure buildup case must be addressed.
Our attempts to date (using superposition) are not sufficient — we must incorporate the change in

rate (and the change in the k,(r,?) profile) directly in the solution formulation.

2. While we do address the k4(r,?) profile directly in this work, we also need to address the changes

in diffusivity (k/(#uec,)) which occur in terms of both radius and time.

Recommendations:

1. Future work should address the pressure buildup case and the variation in diffusivity.

2. Well testing practices should be implemented with an emphasis on acquiring the most repre-
sentative pressure data possible. Diagnosis of the condensate bank using near-well saturations
(from well logs) remains elusive, so we must continue to rely (primarily) on pressure informa-

tion.



NOMENCLATURE

Field Variables (Pressure, Formation, and Fluid Properties)

B = Formation volume factor, RB/STB

¢, = Gas compressibility, psi’!

c = Isothermal compressibility, psi’

¢, = Pore compressibility, psi!

¢, = Total compressibility, psi”

h = Net pay thickness, ft

kork, = Effective permeability for gas, md

knee = Maximum effective permeability to gas, md
knin = Minimum effective permeability to gas, md
p; = Initial reservoir pressure, psia

Pres = Reservoir pressure, psia

Paew = Dewpoint pressure, psia

Pw = Flowing pressure, psia

pws = Shut-in pressure, psia

pp = Pseudopressure, psia

qg = Flowrate, STB/D

gy = "Sandface" flowrate, STB/D
qsr = "Surface" flowrate, STB/D
r, = Wellbore radius, ft

r = Radial distance, ft

t = Time, hr

t, = Production time, hr

At = Shut-in Time, hr

a = Scaling term for pressure behavior, (cp-psi”)/md
e = Boltzmann transform variable (+*/(4))

i = Viscosity, cp

¢ = Porosity

/= Mobility (mD/cp)

R, = Cumulative Gas Oil Ratio, (scf(gas)/stb(oil))

=

= Solution (Dissolved) Gas Oil Ratio, (scf(gas)/stb(oil))

48
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DimensionlessVariables

Cp = Dimensionless wellbore storage coefficient
kp = Dimensionless permeability function
pp = Dimensionless pressure (generic)

Ppar = Dimensionless pressure derivative function in radial distance (Eq. 8)

ppar = Dimensionless pressure derivative function in time (Eq. 7)

psp = ppts, Dimensionless pressure with skin effects

pwp = Dimensionless pressure with wellbore storage and skin effects

Pwpar = Dimensionless pressure derivative function in time including wellbore storage and skin effects

gpwes = Dimensionless flowrate for wellbore storage

rp = Dimensionless radius
tp = Dimensionless time
t,p = Dimensionless production time

Atp = Dimensionless shut-in time
¢p = Dimensionless Boltzmann transform variable
ap = Dimensionless empirical scaling term for pressure behavior

s = Skin factor, dimensionless
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APPENDIX A

DERIVATION OF THE PRESSURE DERIVATIVE FUNCTIONS WITH
RESPECT TO TIME AND RADIUS FOR THE CASE OF A RADIALLY
VARYING PERMEABILITY PROFILE (EQUIVALENT LIQUID CASE)

In this Appendix, we derive two expressions for the pressure derivative (time and radial distance
formulations) that consider the changing effective (or relative) permeability of the retrograde gas as

condensate evolves with decreasing pressure.

This derivation begins with the base diffusivity equation — i.e., the partial differential equation which
describes the flow of a single phase fluid in a porous medium with respect to time and distance. The
effective permeability to gas in such cases will not be constant, but is dependent on the PVT and rock-
fluid properties. The primary contribution of this work is the development of a closed form analytical
solution for the case of a radially varying mobility (or effective permeability) function in a reservoir
system. The subordinate contribution (which is, in some ways, more important than the solution) is our
proposal of a simple functional relationship to represent the time and space-dependency of the gas

mobility (or permeability) function.

The base form of the diffusivity equation that considers a varying permeability with respect to radius is

given as:
10 op 1 p .. .
_— k —_— == — (FIELA UNIES) et Al
P 8}’{ r@r} 0.0002637 1t 5 (Field units) 1)

As mentioned above, we have proposed a general model for the behavior of the permeability to gas as a

function of time and radius. Our proposed model is given in its 2 most basic forms as:

2
-1r
k =kyin + ko —kmin )[ 1- exp{;Tﬂ .............................................................................. (A.2a)
-1 r2
k= ko = ko — kmin) €Xp ;T ...................................................................................... (A.2b)

We note that the a-parameter in Eqs. A.2a and A.2b is an empirical constant, most likely related to the
PVT characteristics of the reservoir fluid, as well as the rock-fluid proper-ties. Our goal is not to assess
the nature of the a-parameter, but rather, to use this as a mechanism to represent a complex process with a

simple model. Eq. A.2b is the primary form used in this Appendix, and we will note that Eqs. A.2a and
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A.2b have been validated conceptually via comparison with simulated performance for a gas condensate

reservoir system.

We consider the Boltzmann transform, which allows us to relate dimensionless time and distance:

2

-

D
) T ettt e e —————e e e et ee——————taeeeea———————taeeeeaa———————taeeeaaa———taaeeeeanaraaaaeeeeannnraes A3
D yrs (A3)
2 2
DD oo et (A.4)
at  aptp

Substituting Eq. A.3 and Eq. A.4 into Eq. A.2b yields:

-4
k =kyax — oy — kmin) exp{— ED:| ...................................................................................... (A.5)
ap

Defining a "dimensionless" permeability, kp, we have:

or, in terms of the permeability, we obtain:
k = kmaxkp
We note that we will use the terms "permeability" and "effective permeability" interchangeably in this

derivation — however, the variable in question is always effective permeability.

Substituting the definition of "dimensionless" permeability (i.e., Eq. A.6) into Eq. A.5 gives us:

ko _
kp :1—{1—ﬂ}exp{—4(‘sD} .............................................................................................. (A7)
kmax ap

We need to transform Eq. A.l into dimensionless form — hence; we state the dimensionless variables

used in this work are as follows: (Field units formulation)

Dimensionless Pressure:

1 kpygeh
e (e ) e e e e e ettt e e et s A8
PD=1i12 yBul (pi—p) (A.8)

Dimensionless Time:
tp= 0.0002637km—“x2 b e et e e e e e e e e —ee e e e e e ea—teeeateeeanreeaan (A.9)
Pucry,
Dimensionless Radius:

7

Substituting Eqs A.9 and A.10 into Eq. A.4 and solving for the «p parameter, we have:

2 2
_p ta— 1 1 Bucyry,

Cp2ip 00002637 42 kypgy

ap
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R (A.11)
0.0002637 Ky

ap

From Eq. A.11 we note that the a-parameter has the units of inverse diffusivity (i.e., diffusivity (k/( guic;))
has the units of (md/(cp-psi”') — field units formulation) — therefore, & has the units of (cp-psi”)/md.
Physically, we assign the properties of the fluid and rock-fluid interaction to the a-parameter — however,
we consider @ to be an empirical parameter, and, as such, we should not attempt to quantify the
components of ¢, but rather, we should simply use « to qualify the influence of the fluid on the
permeability profile.

Substituting Eqs A.6, A.8-.10 into Eq. A.1 and rearranging yields the diffusivity equation in dimensionless
form:

0 0
Lo {kDrD pD}: DD e eneneeene e (A.12)
rp 8}’D 6rD 8ID

We note that for the case where k = k.., Eq. A.12 reverts to the conventional diffusivity equation for a
constant permeability. We also note that we have assumed a slightly compressible fluid (i.e., a liquid) in
the derivation of the diffusivity equation for radial flow (i.e., Eq. A.1). The assumption of a "liquid" may
seem incompatible with the concept of a gas case — however, we are deriving a formulation for a "liquid"
that will, in turn, be used for gases where the conventional gas pseudo-functions will be employed (i.e.,
pseudopressure and pseudo-time). Simply put, this case represents an "equivalent" liquid, modifications

will be addressed using pseudofunctions that "convert" the case in question to the "equivalent" liquid case.

Utilizing the Boltzmann transform we derive a relationship for pressure with respect to time and radius

which includes the prescribed varying permeability model (i.e., Eq. A.2 or A.7).

For convenience, we define the constants a and b as follows:

A= (L= Ky Ky ) eoeeeeeemeemeenmeeine ettt sttt sttt (A.13)
T (A.14)
ap
Substituting Egs. A.13 and A.14 into Eq. A.7 yields:
KD S1=@OXPLDED T oottt e (A.15)

Applying the product rule to the left-hand-side (LHS) of Eq. A.12 we have:

1|, op%p . dp op tkprp 0 {@UD H
aVD

rp aVD aVD arD aVD a}"D

_%p
8tD

Multiplying through the left-hand-side by 1/rp gives:



55

6I’D aI’D D aI”D % B ot D

okp pp  kp dpp ,, 0 {apD}_ opp
al”D

Collecting like terms and consolidating the &, terms:

%p %p _, | @ %p 1 op|_0op
arD aI’D al‘D

@VD aI’D rp aI’D

Utilizing the chain rule to transform the rp and 7, terms into the Boltzmann variable, gp, we have the

following general formulation:

Oy _0Oep dy

ox Ox dep

Applying the chain rule on a term-by-term basis:
Okp Oep dkp
orp Orp dep
dpp _9¢p dpp
orp Orp dep
dpp _ O¢p dpp
ot D ot D de D

Substituting these results into Eq. A.16 and rearranging, we have:

{agD dkp, }[agl) dpD}

8rD dé‘D 8rD dSD
aé‘D 0 &9D dpD 1 83D dpD
+kD +—
aI”D aé‘D 5FD dé‘D rp aI’D dé‘D
_|%pdpp |_,
6tD dED

Combining like terms,

oep [ dkp dpp .
al’D d&‘D d&‘D
6‘50 0 65D dpD
Orp Oep | Orp dep

D =
+L 6€D dpD _ 1 5€D dpD
kp

D al”D dé‘D kp 8tD d&‘D

Applying the product rule to the _0 | %p dpp term,
oe D aVD de D



aé‘D 2 6kD dpD i
arD aé‘D d{;‘D

aé‘D 5£‘D dzpD +dpD 5£‘D 0 aé‘D
8)’]_) al”D d&‘%) d&‘D a}’D agD 87’]_)

[ Gep dpp |1 [22p dpp
D 8)’]_) dé‘D kD _8tD dé‘D

kp =0

Collecting like terms and isolating,

2
[2e0] [dzpD .
2
orp ng |
kD 0 aSD +L88D =0
6I’D a}’D rp 6}’D dpD
2

L oep [oep | 1 dkp |
kD atD 6rD kD d&‘D

2
Dividing through by kp {ag—D} ,
5VD

2

d”pp
2
dep,

al”D

I 1

%p rp
arD
1 Oogp

I B [agD}
|:88D:|2 aI"D al"D

+
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{a@r op
kp

aI”D

1 dkp

kD d&‘D

The required derivatives of the Boltzmann transform variable (&p) are given as follows:

o€ -1

D i 2 5 BT LT T P P PP PPN
alD tp
oe 2

D S 3 ) T S P PR ON
6}”D rpD
82€D 2

e 23 T T P PP

P 2 2

"o D

Substitution of Eqs. A.18-20 into Eq. A.17 yields,



1

2|72
2¢p D
D

ZED

1 1
2 2ep 1y
d*pp ,| “B'D dpp _
. -
8812) D dep
1 SD +

CTaen P
kD|:2€D:|
D
1 dp
kD dSD
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Cancelling and collecting like terms, we obtain:

D) -
dpD+ 1

2
ng

A, v 1 dkp dpp _
_ED kD kD dé‘D

d&‘D

Where a slightly more compact form of this result is given by:

dzpD I 1
2
ng

LI
| ép  kp

l+dk—D}
d&‘D

At this point we recognize that Eq. A.22 (or A.21) is the fundamental governing relation for fluid flow in

our system where the mobility/permeability function is permitted to vary as a function of time and

distance. Eq. A.22 is a completely general result — no assumptions have been made at this point.

Our goal is to solve Eq. A.22 for an appropriate set of initial and boundary conditions. The particular case

where the Boltzmann transform applies is the case of a uniform initial pres-sure profile in the reservoir

(i.e., pp(rp,tp<0) = 0) and the case of an "infinite-acting" outer boundary (i.e., pp(rp—0,tp) = 0).

Recalling the definition of the Boltzmann transform variable, gp, we have:

_b

&
D 4tD

The initial and outer boundary conditions are expressed in terms of rp, #p, and &p as follows:

Initial Condition:

pp(rp.tp <0)=0
fOI'tD —0,ep >

pp(ep > ®©)=0
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Outer Boundary Condition:
pprp > ®,tp)=0
forrp > w,ep >
pp(ep > ©)=0
We note that in using the Boltzmann transformation, the initial and outer boundary conditions collapse to a

single relation:

PDED 7> 0) =0 ittt (A.23)
This result is a unique product of the Boltzmann transformation — for this particular case. We will

proceed with this result and next we consider the case of a constant flowrate at the well.

Inner Boundary Condition: (Constant Rate)

B (A24)

p
141.2 Bu or
Where Eq. A.23 is written directly from Darcy's law for a radial flow geometry. Isolating the »(Op/or)

term, we have:

Substituting the definitions of dimensionless pressure, radius, and permeability (i.e., Eqs. A.6, A.8, and

A.11) into Eq. A.25, and rearranging, gives us the following result:

T o (A.26)
L 6VD 1 kD

D

At the well (i.e., r=r,,), we have the cylindrical source form:

Lo (A.27)
arD =1 kD

However, for our problem we will assume that the well is a mathematical "line source" (i.e., we consider

the behavior at 7=0), this gives:

rp PD. S (A.28)
arD r -0 kD

Using the chain rule and the definition of the Boltzmann trans-form, we obtain the following form of the

inner boundary condition:

P {58_0@_0} _ { {i }dP_D} __
D = "D €D =
aI’D d&‘D rD_)() rp d&‘D ED—>0 kD

Collecting terms gives us:
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{g dp—D} T (A.29)
d&‘D P N 2 kD
Recalling our governing relation (i.e., Eq. A.22) we have:
2
d%ju L+L{1+””‘—D} DD G e (A.22)
dey, |¢p kp| dep]|dep

Recalling the unified outer boundary/initial condition (derived using the Boltzmann transform), we have:

PDED 7> 0) =0 i et (A.23)
Recalling the inner boundary condition given in terms of the Boltzmann variable, &p, gives us:
d
|:€D pD} L (A.29)
ng Ep —0 kD

In order to develop a solution for Eq. A.22 we will utilize a "variable of transformation" that reduces the
differential equation to a more convenient form. At this point we note that Eqs. A.22 and A.29 are only a
function of the Boltzmann transform variable, ¢5. As Eq. A.29 is a second order ordinary differential
equation, we can surmise that a solution can be obtained by twice integrating the differential equation.
This will be our path, but we will also use a variable of transformation to reduce the complexity for the

integration of Eq. A.22.

Our "variable of transformation," v, is given as:

dpp

dep
where
v _d’pp
dep - dglz)
Making these substitutions into Eq. A.22 gives us the following "compact form" of the differential

equation. We then will solve Eq. A.30 by integration for the v~variable.

v, {i + L{l + % ﬂv 20 e ee oo (A.30)
d&'D d

Using Eq. A.15 in the € 1+ dkp term from Eq. A.30:
kD d&‘D

1 1+ dkp | 1+abexp[-bep]
kp dep l—aexp[-bep]
Substituting Eq.A.31 into Eq. A.30 yields,
dv N L+ 1+ abexpl-bep] =0

dep |ep 1—aexp[-bep]
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Isolating/separating the relevant terms we have:
L B ) N T (A.32)
ep l—aexp[-bep]

Setting up the integration of Eq. A.32 gives us:

J' . J' JLrabewl-bepl ],
ED 1 aexp[-bep]

Expanding the right-hand-side integral gives:

I dv— I_d J‘1+abexp[ bgD] de
l—aexp[-bep]
Completing the integration, we have:

1+ abexp[-bep]

In[v]=-— ln[gD]—J- dep+p

l—aexp[-bep]
We note that the Sterm is a constant of integration which results from the indefinite integration. The

integral that can not be resolved in simple terms must be addressed using tables of integrals, substitution

methods, or a symbolic integration product (in this case, we used Mathematica (ref. 2)).

From Mathematica we obtained the following result for the remaining integral:

_j 1+ abexp[-bep] de
l-aexp[-bep]

_ [(l;b)l[ “bep g1 bgD}

Substituting this result into the solution, we have:

a+b) Zb) ln[e_bgD —al-bep |+

In[v]=—-In[ep]-

Exponentiating the solution, we obtain:

_ eXP[,H] exp|:_ _M ln[e_bgD —a]—bgD_:|
ep L b —

Defining our constant of integration as c;=exp[ /], and substituting this result into the solution, along with
the definition v=dpp/dep, we have:

drp = 1 exp{ —Mln[e_bgl’ —a] +b£D}
dSD ED b

Our next task is to determine the constant of integration, c;, where this can be
accomplished using the inner boundary condition (i.e., Eq., A.29). Multiplying through

Eq. A.33 by the Boltzmann transform variable, &p, we have:



Taking the limit of Eq. A.34 as gp— 0 yields,

lim |ep dpp =
ED—)O ng

lim {Cl exp{ —@ln[e_bgi’ —a] +b£Dﬂ

ED—)O

Which reduces to:

lim |:€D dp—D}
&p—0 dep
[ _(1+b)
=c; lim |exp ln[(e_bgD —a) b ]
25)) -0

_(1+b)

=¢; lim (e_bgD —a) b
&p -0

_(1+h)
=ci(l-a) b

Returning to the inner boundary condition, we have:

D
2 5p0| 1-aepl-bep]
11
2 (1-a)

Equating these results:
_(1+p)

1
cql-a) b =

2 (1-a)
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And solving for the constant of integration, ¢, we have:

. . (1+b)
= 1- b
4= Y
(1+b)

=—%(l—a)'1(l—a) b

. 1
———(1=-q)b
> (1-a)
.................................................................................................................................................... (A.35)
Substitution of the constant of integration, ¢;, (Eq. A.35) in the solution (Eq. A.33) gives:
1
dp L (1-a)b Lexp{ —Mln[e_bgD —a]+bgD}
d&‘D 2 €D b
.................................................................................................................................................... (A.36)
Definite integration of Eq. A.36 yields the solution in terms of pp(gp) — this result is given as:
Pp =
1
2(ép
—l(l—a)bj { ! [ —%hﬂab% —a]+bgDﬂng
o0
.................................................................................................................................................... (A.37)

Reversing the limits of integration in Eq. A.37 eliminates the (-) sign and puts the result in a more

traditional form.

Unfortunately, Eq. A.38 can only be integrated numerically — we have also employed Mathematica as the

mechanism to compute the numerical integration of Eq. A.38 for the cases considered in this work.

We can, however, use Eq. 36 as given as a mechanism for modelling the pressure derivative behavior in
time and radial space. In order to develop these results we require the following identities derived using

the chain rule:

dpp _Otp dpp (A.39)

dé‘D 6.9[) alD

oD O D DD (A.40)
dé‘D 6.9[) 6rD
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Recalling Eqgs. A.17 and A.18, we have:

B (A.18)
Otp tp

D e (A.19)
al"D I"D

Substituting Eq. A.18 into Eq. A.39, and solving for pp/dp, we have:

dpp _%ép dpp __ 1 . dpp
atD 61‘[) d&‘D tp d&‘D

Similarly, substituting Eq. A.19 into Eq. A.40, and solving for gpp/dp, we obtain:

%p _9%pdpp _ 2 . dpp
orp  orp dep  rp D dep

The pp/p result is obtained by substitution of Eq. A.36 into Eq. A.41 — this gives:
1
Pp :L(l—a)b exp[ —%ln[e_b% —a]+b8D}
Substituting the definition of the Boltzmann transform variable, ¢ = rlz)/(4t p), into Eq. A.43 gives the

final form in terms of rp and ¢p:

Pp _
al‘D
2
,
2 —b-L- 2
,
L(l—a)b exp —Mln[e 4ip —a]+bi
2tp b 4tp

The &pp/drp result is obtained by substitution of Eq. A.36 into Eq. A.42 — this gives:

1
p __ 1 (1-a)b exp{ —@ln[e_b‘% —a]+bgD}
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Substituting the definition of the Boltzmann transform variable, ¢ = rl%/(4zD), into Eq. A.45 gives the

final form in terms of rp and #p:

Pp _
8rD
; Ly, b 5
' r
L a—ayb exp| D e 40 _g145 D
19) 4lD
.................................................................................................................................................... (A.46)
Where we recall that the constants a and b are given by Eqgs. A.13 and A.14, respectively:
A= (L Kgin/Kapan) «oereeeeeemeneeene ettt (A.13)
e (A.14)
ap

While we can utilize Eqs. A.44 and A.46 in the given forms, we note that the following forms may be

more convenient:

"Pressure Derivative in Time"

4 4 2
o 1 o = -2 4 P2
D 2D - [kmin/kmax] 4 x exp| —=——F—=1In[e “P o (1 = kmin/kmax )] + — LD
6tD 2 i ap 4[D
ap
.................................................................................................................................................... (A.47)
And,
"Pressure Derivative in Radial Distance"
; a {1 + 4} 4 )
P 4 2D 4 T
—-rD =D - [kmin/kmax] 4 x exp| —————In[e ap 4p = (L= kminkmax )]"'_i
orp 4 ap 4p
ap
.................................................................................................................................................... (A.48)

Where we recognize that the right-hand-sides (RHS) of Eqs. A.47 and A.48 are identical (except for the
1/2 multiplier in Eq. A.47) — as such, equating Eqs. A.47 and A.48 gives the following identity:

2y 9PD _ . 9PD
otp orp

S

We note that the identity given by Eq. A.49 is also obtained for the "homogeneous" case where kp = 1. In
fact, for the case of kp = 1, the entire sequence of results reverts to the "traditional" line source solution for

a homogeneous, infinite-acting reservoir.
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We also note that Eq. A.48 is typically applied as the absolute value of this result for comparative/

illustrative plots (obviously the ¢pp/dp term is negative).

Finally, we will also define the dimensionless pressure which includes skin effects as:
DD = DD 8 ettt ettt et e s e (ASO)

Where s is the skin factor.
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APPENDIX B

AN APPROXIMATE TECHNIQUE FOR THE DIRECT ADDITION
OF WELLBORE STORAGE AND SKIN EFFECTS

In this Appendix, we present a simple, approximate technique for adding wellbore storage to

dimensionless pressure solutions. This result is taken from Blasingame, et al."”

The required result from (ref. 4) is given as:

PwD :z(l_exp[_th])_q_%(exp[_a)[D]-{-a)tD—1) ........................................................................... (Bl)
@ @

Where the w, €, and w parameters in Eq. B.1 are given by:

DD (B.2)
Cpa
1
ettt eeee e B.3
v CD (B.3)
0 D e (B.4)
aCD

d:pSD_pSDd ............................................................................................................................... (B 5)
B TPSD e e (B.6)
dtD
And,
d
PsDd :tD%) .............................................................................................................................. (B.7)

Eq. B.1 should provide results which are accurate to within 1-2 percent of the exact solution — for the p,,p

and the p,,p, functions (where p,,p;~tp(dp,.p/dtp)).
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APPENDIX C

A QUADRATIC FORMULA FOR NUMERICAL DIFFERENTIATION

Presuming a general quadratic polynomial, we have:

y:a0+a1t+a2t2 ............................................................................................................................ (C.l)

The coefficients of an interpolating LaGrange collocation polynomial are stated as follows:

€0 = W(E}) wovreeeeeeeeeee e eeeee oo oo (C2)

= ZUEDTI) e (C3)
li-1—4

0y 2 XU ZCO A =l e (C.4)

(ti—2 =t;)ti—2 = ti—1)
Where we note that we have used a "backward" sampling for the coefficients (i.e., in terms of ¢, #,, and #;.
») — this is for convenience in our present work. Alternatively, we could use forward or central sampling

with no loss in generality.

The ay, a;, and a, coefficients for Eq. C.1 are defined in terms of the coefficients of the collocation

polynomial as follows:

Q) T CO = CLLi F QL L] cevnrenniiiiiiiii e (CS)
I TR s X (2 T 70 1) I N (C.6)
() = € wooeeeeseeeseseee s ee e eee oo e oo et ee et (C.7)

Given a table of ¢ and y(¢) values, Eqgs. C.2-C.7 are used to compute the required coefficients. Eq. C.8 is

used to compute the desired derivative.
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