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ABSTRACT 

 
Modeling of Performance Behavior in Gas Condensate Reservoirs 

Using a Variable Mobility Concept. (December 2003). 

Benton Wade Wilson, 

B.S., Georgia Institute of Technology 

Chair of Advisory Committee: Dr. Thomas A. Blasingame 

 
 

The proposed work provides a concept for predicting well performance behavior in a gas condensate 

reservoir using an empirical model for gas mobility.  The proposed model predicts the behavior of the gas 

permeability (or mobility) function in the reservoir as condensate evolves and the gas permeability is 

reduced in the near-well region due to the "condensate bank".  The proposed model is based on 

observations of simulated reservoir performance and predicts the behavior of the gas permeability over 

time and radial distance.  This model is given by: 
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The proposed concept has potential applications in the development of a pressure-time-radius solution 

for gas condensate reservoirs experiencing this type of mobility behavior.  We recognize that the proposed 

concept (i.e., a radially-varying gas permeability) is oversimplified, in particular, it ignores the diffusive 

effects of the condensate (i.e., the viscosity-compressibility behavior).  However, we have effectively 

validated the proposed model using literature results derived from numerical simulation. 

This new solution is presented graphically in the form of "type curves."  We propose that the "time" 

form of this solution be used for applications in well test analysis.  Previous developments used for the 

analysis of well test data from gas condensate reservoirs consider the radial composite reservoir model, 

which utilizes a "step change" in permeability at some radial distance away from the wellbore.  Using our 

proposed solution we can visualize the effect of the varying gas permeability in time and radius (a suite of 

(dimensionless) radius and time format plots are provided).  In short, we can visualize the evolution of the 

condensate zone as it evolves in time and radial distance. 

A limitation is the simplified form of the kg profile as a function of radius and time — as well as the 

dependence/appropriateness of the α-parameter.  While we suspect that the α-parameter represents the 

influence of both fluid and rock properties, we do not examine how such properties can be used to 

calculate the α-parameter. 
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CHAPTER I 
 

INTRODUCTION 
 
1.1 Research Problem 

During the production of a gas reservoir, the associated pressure history can be used to estimate reservoir 

properties and provide insight into well performance versus expectations.  This pressure history, however; 

may be difficult to categorize.  Not only does the performance of a gas reservoir (and particularly, a gas 

condensate reservoir) exhibit various types of depletion performance, but geological complexities (such as 

faults and permeability variation) also yield variations in the production-pressure history.  When 

combined, such effects are very difficult to "uncouple" and may actually be indistinguishable from one 

another (e.g., the solutions for a radial composite system and a sealing fault(s) can be very similar to one 

another (even indistinguishable in extreme cases (such as a single sealing fault)). 

Well testing is the primary means for establishing the presence of such features as gas condensate 

performance effects, geological structures, etc — however, we must recognize that the problem of 

"uniqueness" is perhaps the most difficult to overcome, and conventional analysis/interpretation tech-

niques may not be sufficient to properly characterize such effects.  Hence, it is the motivation for this work 

that we establish a new solution for the transient drawdown performance of gas condensate reservoirs. 

We note that the current approach of using reservoir simulation to resolve such issues is more flexible 

than the traditional well test analysis methods — however, the detail at which reservoir simulation is 

performed may not address the physical phenomena being observed in the performance data.  Simulation 

can be scaled as finely or as coarsely as desired — but how does one "calibrate" the numerical model to 

the physical problem without making limiting assumptions?  On the other hand, an analytic (or semi-

analytic) solution is also simplified to fit conditions where it can be solved, but such solutions provide 

insight into the characteristic behavior of the system.  

The behavior of gas condensate reservoir systems can be difficult to model and predict.  Specifically, in 

many areas (e.g., the North Sea) the question often arises as to whether an unexpected decline in gas 

production is a result of depletion, or if this is a result of condensate banking.  Liquid condensate develops 

as reservoir pressure declines below the dewpoint pressure — and the degree to which this occurs depends 

on many factors such as the composition of the gas, and the reservoir conditions.  Liquid condensate will 

impede the flow of the gas phase, restricting production flowrate and adversely affecting recovery. 

_________________________ 

 

This thesis follows the style and format of the SPE Journal. 
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Examination of differential pressure data plotted with respect to radial distance from the wellbore 

(generated using numerical simulation) will indicate the possibility of condensate banking.  Roussennac1 

proposes that three regions (or zones) typically exist in a gas condensate reservoir system — these regions 

are described by Roussennac (and Fevang, as referenced by Roussennac) as follows: 

 Region 1 — Condensate Bank:  By definition, this region near the wellbore has a condensate (oil) 

saturation that is high enough to permit the condensate fluid to flow.  Obviously, the reservoir 

pressure in this area is the lowest of the three regions.  As noted by Roussennac, the overall com-

position of the flowing mixture in this region is essentially constant in this area (as indicated by a near 

constant GOR) and is approximately the same composition as the single phase gas at the boundary of 

Region 1 and Region 2.  The specific criteria used to characterize the condensate phase is that there is 

condensate flow in Region 1 (although the evolution of this "mobile" condensate is thought to be the 

boundary section for Regions 1 and 2. 

As shown schematically in Fig. 1.1, the oil saturation decreases as radial distance from the wellbore 

increases — that is, the distribution of fluids near the well is relatively stable — "drying" to 

essentially the original dry gas at distances from the wellbore.  Fig. 1.1 suggests that there is a 

"condensate" gradient in the near-well region, but that the gradient in this region is substantially less 

than the one experienced in "Region 2" (i.e., the "condensate buildup" or "transition" zone).  This 

concept (validated by numerical simulation) suggests that Region 1 can be treated as a simple two-

phase region with constant phase mobilities.  On the other hand, Region 2 is seen as a region of rapid 

change in condensate saturation. 

 Region 2 — Condensate Buildup Zone:  This region differs from Region 1 in that the condensate is 

believed to have a low mobility and while it will establish a gradient or transition zone, the con-

densate will not tend to flow.   The outer edge of Region 2 is the point some radial distance from the 

well where the first droplets of liquid evolve from the gas phase — therefore, the pressure at this 

particular distance (which does continue to propagate) is the dewpoint pressure of the original reser-

voir gas. 

As noted by Roussennac, the gas phase composition "leans out" in Region 2, with the heavier 

components being evolved as condensate.  This phenomenon continues as we approach the wellbore 

and the gas "leans out" to a minimum richness at the wellbore.  It is worth noting that the condensate 

saturation is substantially lower in Region 2 than Region 1, which does (conceptually) permit us to 

consider Region 2 to be a single-phase gas region for the purpose of well testing (in some cases).  

Roussennac (and others) have utilized the 3-region concept for the analysis of well test data from gas 

condensate reservoirs with the objective of characterizing each region using a 3-zone radial composite 

reservoir model.  There are varying degrees of success with this concept, and many analysts prefer 

using only a 2-zone model, while other analysts insist that the 3-zone model is more appropriate. 
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Finally, we repeat the premise that only gas is flowing in Region 2 — therefore, the intermediate and 

heavier components evolve as condensate near the boundary of Regions 1 and 2.  This provides the 

condensate which forms the "bank" in Region 1. 

 Region 3 — Original Dry Gas Region:  By definition, no condensate exists in this region — only the 

gas phase is present (i.e., the pressure is greater than the dewpoint pressure). 
 

We note that the prevailing wisdom is that all three regions exist in a typical gas condensate reservoir.  

Region 1 is likely to exist when pres<pdew and Region 2 will always exist if Region 1 exists (i.e., there must 

be a condensate gradient region).  Region 3 exists during transient flow behavior, and if outer boundaries 

are encountered then the reservoir pressure may drop below pdew, and Region 3 (i.e., the original dry gas 

state may not exist). 
 

Roussennac suggests that Region 2 may become negligible for the case of a very rich gas or near 

critical gas condensate fluids.  This phenomenon can be modeled with PVT experiments — however, if 

this behavior existed, it would be difficult to distinguish from other conditions.  We believe that the 

"concept" of 3 regions is relevant (and perhaps appropriate) for many cases.  Roussennac has proposed a 

schematic diagram for this process (see Fig. 1.1) and we agree with this proposal as for as the reservoir 

processes, we are less certain regarding well test analyses — but we acknowledge that, conceptually, Fig. 

1.1 validates the application of the 2 or 3-zone radial composite reservoir model for the analysis of well 

test data obtained from gas condensate reservoirs. 

 
 

 
 

Figure 1.1 – Schematic diagram of gas condensate (liquid) behavior as a 
function of distance in the reservoir (after Roussennac1). 

 

We also believe that applications in actual reservoirs will differ somewhat from the results of such 

"idealized" studies — in particular, a gas condensate reservoir may not exhibit the expected condensate 
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bank and/or there could be other reservoir characteristics (e.g., geologic features) that impair or complicate 

the analysis/interpretation of reservoir performance data from gas condensate reservoirs.  The economic 

aspects of this situation are relevant as well — future development strategies depend on a representative 

characterization of the reservoir in question.  This is one aspect of our motivation to address the problem 

of variable mobility profile directly using a solution which explicitly incorporates this behavior. 

Our proposed solution involves the identification of (liquid) condensate development with respect to 

time and distance from the well.  We present distinctive solutions in the form of "type curves" that can be 

used to visually identify condensate evolution in terms of mobility behavior with respect to time and 

radius.  These type curves are developed using a new solution for the case of a changing effective 

permeability (or mobility) as a function of dimensionless time and dimensionless radius and are presented 

in three formats: a unified variable based on the dimensionless Boltzmann transform variable (rD
2/(4tD)), 

dimensionless radius (rD), and dimensionless time(tD).  As we cannot measure pressure in the reservoir, the 

only practical tool for well test analysis is the family of type curves given in the dimensionless time (tD) 

format. 

1.2 Research Objectives 

The primary objectives of this work are: 

 To develop an analytical representation of the pressure behavior in time and space for a reservoir 

system with a varying mobility profile (see Fig. 1.2 for a schematic of a varying mobility profile for 

a gas condensate reservoir system).  The concept is based on an empirical model for the gas 

mobility function.  The model considers a varying gas permeability that assigns the maximum gas 

permeability for the condition where only gas (no condensate) is present in the reservoir.  The 

minimum gas permeability is the value at the condition where the mobility of the gas has been 

impeded by maximum condensate dropout.  This mobility model is given as: 
 

⎥
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⎦
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⎢
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...........................................................................(1.1) 

 

The concept is based on the observation of minimum gas permeability (or mobility) near the 

wellbore and the maximum (original) gas permeability in the "dry gas" portion of the reservoir.  

The model predicts the permeability behavior during the transition regime between the two extreme 

maximum and minimum permeability values.  The model was constructed after considering 

observations made from numerical simulation results where saturation, effective permeability, and 

gas mobility are presented as functions of distance in the reservoir. 
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The secondary objectives of this work are: 
 

 To utilize this new model as a mechanism to develop graphical solutions for the pressure derivative 

in time and radial distance.  This solution can be compared to other solutions (e.g., the 2 (or 3)- 

zone radial composite reservoir model and various cases of the sealing fault model (time deriva-

tive), as well as the pressure and pressure derivative (radial derivative) as a function of radial 

distance derived from numerical simulation). 

 To use this model for the analysis of well test data from gas condensate reservoirs with the inten-

tion of developing solutions which include wellbore storage and skin effects. 

 To propose applications for the analysis of well test data acquired from pressure drawdown or pres-

sure buildup tests. 

1.3 Statement of the Problem and Summary of a Proposed Solution 

This work is focused on the concept of using a functional form for the gas mobility profile (i.e., k/µ) and 

incorporating an empirically-derived model into the rigorous diffusivity equation for the liquid case. 

 
 

 
 

Figure 1.2– Gas mobility profiles for a gas condensate reservoir system (as 
a function of time and radius) (adapted from Roussennac1) — 
note the comparison of the simulated performance and the pro-
posed models (i.e., the exp(x) and the erf (x) mobility models). 
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We wish to use this concept and the resulting flow model to represent the pressure behavior of the gas 

condensate case with respect to time and radial distance from the wellbore.  We treat this case as "liquid 

equivalent," where we consider non-idealities (e.g., pressure-dependent PVT functions) by using the 

conventional pseudofunctions (i.e. pseudopressure and pseudotime).  

We have used the simulation cases presented by Roussennac1 as a starting point for establishing a 

model for gas mobility behavior as a function of radius and time for a gas condensate reservoir.  We 

recognize that simulated profiles are problematic (i.e., a different set of input data may yield a different 

profile), but we believe that the cases presented by Roussennac offer an appropriate starting point as these 

cases are well calibrated and verified 

Using the results presented by Roussennac (see Fig. 1.2), we have established the following conceptual 

model for representing the gas permeability as a function of radius and pressure: 

⎥
⎥
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α

 ("exponential" or exp(x) model)...........................(1.2) 

We also compare the exponential model with the following erf(x) model: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+=

t
rkkkk minmaxmin   

erf)(
2

α
 ("error function" or erf(x) model).........................(1.3) 

For the purposes of this work we will use the form given by Eq. 1.1 (i.e., the exp(x) model) and 

presume a "liquid equivalent case" (i.e., k is simply a function of radius and time (not explicitly a function 

of pres-sure)).  The definition of the diffusivity equation for this case is given as: 

t
p

c
r
p

rk
rr t ∂

∂
=⎥⎦

⎤
⎢⎣

⎡
∂
∂

∂
∂ φµ

0002637.0
1 1

 (Field units) .........................................................................(1.4) 

Eq. 1.2 is used as the permeability model, and is coupled with the radial flow diffusivity equation for 

this case (i.e., Eq. 1.4).  We assume a well in an infinite-acting radial flow system produced at a constant 

flowrate, and, as noted earlier, we specifically assume that permeability is an explicit function of radius 

and time k=f(r,t).  In order to solve the resulting differential equation, we use the Boltzmann transforma-

tion (based on the appropriate definition of dimensionless variables) (see Appendix A). 

We provide different forms of the solution — forms in terms of the Boltzmann 

variable , as well as the dimensionless pressure and the dimensionless pressure derivative 

functions in terms of the dimensionless radius and time variables.  These forms will prove useful for 

different applications — the radial distance forms are useful for validation of the new solution with 

reservoir simulation results, while the time forms of the solution will have utility in the analysis of well 

test and production data. 

)4/( 2
DDD tr=ε
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"Pressure Derivative in Time" 
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"Pressure Derivative in Radial Distance" 
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The most important issue to consider in evaluating Eqs. 1.5-1.7 is that we have made no limiting 

assumptions in this development — we have simply used the traditional solution approach based on the 

Boltzmann transform. 

We note that Eq. 1.5 cannot be expressed analytically and must be evaluated numerically.  In our case 

we have utilized the software Mathematica,2 which is computationally flexible, as well as capable of 

generating "near exact" results.  Eqs. 1.6 and 1.7 are "closed form" results which are essentially identical 

in form.  We note that comparison of Eqs. 1.6 and 1.7 yield the following identity: 
 

D
D

D
D
D

D r
pr

t
pt

∂
∂

−=
∂
∂ 2 ....................................................................................................................(1.8) 

 

As noted in Appendix A, Eq. 1.8 is uniquely valid for this case, as well as the homogeneous reservoir 

solution (this result is a distinct identity for the case of an infinite-acting reservoir). 

The αD parameter is the dimensionless form of the empirical α-parameter given in Eqs. 1.2 and 1.3.  A 

physical definition or explanation of α cannot be made directly; and, for the purpose of this work, we treat 

the α-parameter simply as a model parameter — in a similar fashion as permeability, skin factor, etc.  We 

believe that the α-parameter represents the aggregate behavior of the relative permeability functions and 

the fluid properties (probably both gas and gas condensate). 
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Using the definitions of the dimensionless variables, we define αD in terms of α as: 
 

αφµα   
00026370

1 tD c
.

=   (conventional oilfield units) ..................................................................(1.9) 

 

For plotting the pressure derivative functions in both time and space we have defined the following 
definitions: (which are derived by inspection of Eqs. 1.6 and 1.7) 
 

D
D

DDdt t
ptp
∂
∂

= ...........................................................................................................................(1.10) 

D
D

DDdr r
prp
∂
∂

= ..........................................................................................................................(1.11) 

 

In Fig. 1.3 we present a log-log format plot of the pD(εD) function plotted versus the modified 

Boltzmann transform variable   This plot requires some orientation — for example, we can 

use this plot to consider the pressure drop as a function of distance for a "snapshot" in time.  Data from 

numerical simulation can be compared to this plot as a mechanism to validate the analytical solution (as 

we will show in a later section).  This plot could also be used to consider data presented in terms of time 

— however, the "1/t" form given by the modified Boltzmann transform variable does not make Fig. 1.3 

particularly convenient for the analysis/interpretation of pressure-time data.  The "1/t" format is rigorous, 

but the current convention of using time (or t

))./(( 2
DDD tr α

D) would make this plot less likely to be used in practice. 
 
 

 
Figure 1.3 – "Type curve" representation of the new model (p (εD D) formu-

lation (Eq. 1.5)).  Solution is plotted versus the modified Boltz-
mann transform variable  ))./(( 2

DDD tr α
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Figure 1.4 – "Type curve" representation of the new model (|rD dpD/drD| 
formulation (Eq. 1.6)).  Solution is plotted versus the modified 
Boltzmann transform variable  ))./(( 2

DDD tr α
 
 

 
 

Figure 1.5 – "Type curve" representation of the new model (t (∂p /∂tD D D) for-
mulation (Eq. 1.6)).  Solution is plotted versus the inverse of 
the modified Boltzmann transform variable  ).)/(( 2

DDD rtα
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In Fig. 1.4 we present the radial derivative function pDdr(εD) function plotted versus the modified 

Boltzmann transform variable   The p))./(( 2
DDD tr α Ddr(εD) formulation represents the change in pressure 

drop with respect to radius as we move out into the reservoir — clearly there are separate factors at issue 

— the behavior of the |rD(∂pD/∂rD)| (or |r(∂p/∂r)|) functions show the influence of the propagating 

permeability profile.  In particular, this formulation shows how pressure gradient decreases with distance 

in the reservoir (as would be expected), but it clearly illustrates the "near well" and "reservoir" behavior of 

the pressure gradient function.  We will utilize Fig. 1.4 as a "validation plot" for data generated from 

numeri-cal simulation.  In particular, we will match simulated performance to the proposed reservoir 

model. 

Fig. 1.5 presents the time derivative function pDdt(εD) function (Eq. 1.10) plotted versus the inverse of 

the modified Boltzmann transform variable   In this plot we note that the pressure 

derivative performance is dramatically influenced by the evolving radial distribution of permeability.  It is 

difficult to make an analogy with this behavior without referencing a particular reservoir model, but the 

p

).)/(( 2
DDD rtα

Ddt performance does appear to represent some sort of flow barrier/impediment at some radial distance.  

In a later section of this work we will compare the trends shown on Fig. 1.5 with the responses from 

several different reservoir models — in particular: the 2-zone radial composite model as well as a 

sequence of sealing fault models.  It is no surprise that these models (i.e., 2-zone radial composite 

model/sealing fault models) are often used in the interpretation of well test data obtained from gas 

condensate reservoirs — it is our goal to establish the proposed work as the appropriate standard for the 

analysis of such data. 
 

1.4 Outline of Thesis 
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 Wellbore Storage and Skin Effects 
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 Chapter IV ⎯ Validation of an Analytical Pressure Solution for the Case of a Permeability Profile 
that Varies in Time and Radial Distance — Gas Condensate Reservoirs 
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CHAPTER II 
 

LITERATURE REVIEW 
 
2.1 Radial Composite Reservoir System 

Historically, much work has been performed in the petroleum industry regarding the study of performance 

behavior in a reservoir as this performance relates to pressure as a function of time and distance from a 

vertical well.  An accurate understanding of how a reservoir will perform over time in terms of pressure 

and flowrate is essential for making optimal decisions regarding investment, exploration, and develop-

ment.  In particular, the understanding of gas condensate reservoirs has been very challenging — and 

study in this area has given the industry insight into this topic, but recent advances in data acquisition and 

modelling have raised many questions regarding the analysis and interpretation of well performance data 

obtained from gas condensate reservoirs. 

Early work in the petroleum industry focused on the analogy of laminar fluid flow through porous 

material with the conduction of heat in solids.  The behavior of fluids undergoing Darcy (laminar) flow in 

a radial flow geometry is governed by the radial diffusivity equation (Eq. 1.4).  Many solutions of the 

diffusivity equation for flow in porous materials can be obtained from analog cases in heat conduction 

(Carslaw and Jaeger3), and some cases of "non-uniform" reservoir properties have already been proposed 

in the heat conduction literature. 

In 1970, Ramey4 presented work which summarized efforts to date for developing practical solutions 

for fluid flow in 2 and 3-zone radial composite reservoir systems.  This work came at a time of intense 

interest in developing useful and practical solutions for the case of water injection in oil reservoirs (in 

particular, the development of solutions for injection/falloff tests in such reservoirs).  It was Ramey's 

intent (as implied in his introduction) to derive a class of solutions which contained only elementary 

functions so that these solutions could be used for the purpose of analysis/interpretation of well test data.   

Ramey used the radial diffusivity equation as a starting point, and then added the constraint of 

two (or more) discrete zones (or "regions") of constant mobility (k/µ) and hydraulic diffusivity (k/(φµc)).  

This approach gives each discrete region a constant permeability, viscosity, porosity, and compressibility 

— where these properties can vary from region to region.  Each region is homogeneous and isotropic, and 

the change in properties for a particular zone occurs abruptly at the zonal boundary(s).  While the physical 

concept of concentric radial "rings" of differing reservoir properties can be debated, we will note that this 

solution has been shown to represent a remarkably large number of field cases. 
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2.2 General Concepts — p(r,t) Performance in Gas Condensate Reservoirs 

In 1985, Jones5 published a Ph.D. dissertation that presented a unified theory for the testing of gas 

condensate reservoir systems, where this work was based on theory of flow for a slightly compressible 

liquid as a model for multiphase flow behavior (i.e., the "equivalent liquid" concept).  Pseudofunctions 

(i.e., pseudopressure and pseudotime) were derived for pressure dependent parameters — and in this work 

Jones developed the "reservoir integral" and "sandface integral" concepts for multiphase flow in porous 

media.  These integrals were adapted from steady-state theory and were the result of reducing the theo-

retical integrals taken over space and time to integrals taken over pressure.  This work provided a 

definition of pseudopressure that has since shown very good performance in estimating permeability and 

skin from well tests performed in gas condensate reservoir systems. 

In 1989, Bóe, et al.6 proposed a theoretical basis for the analysis of well test data obtained from 

solution gas and gas condensate reservoir systems during the infinite-acting flow period.  Bóe, et al. 

discuss the analysis and interpretation of pressure transient test data using solutions based on the liquid 

analogy (i.e., the case of a single phase liquid with a small and constant compressibility and constant 

viscosity).  Al-Hussainy, et. al7 suggest that gas tests can be interpreted with this liquid analogy by the use 

of a pseudopressure function (although as Agarwal8 (pseudotime) later showed, a pseudotime function is 

also required for the analysis of pressure buildup tests conducted in gas wells). 

Bóe, et al. utilize a pseudopressure formulation as well as the Boltzmann transform — where we note 

that the Boltzmann transform is specifically valid for the infinite-acting period.  When the Boltzmann 

transform is violated by the boundary conditions (i.e., post-transient flow conditions exist), the proposed 

solution deviates from the liquid analogy (shown in ref. 6).  Bóe, et al. suggest that as long as infinite-

acting flow behavior is observed, the pseudopressure function can be evaluated using the correct pressure/ 

saturation relation at the wellbore.  Our work is somewhat comparable in theme to that of Bóe, et al. in 

that we develop a Boltzmann transform solution and then validate the solution using numerical simulation 

(obviously, the structure of our problem is different, but our approach is similar to that of Bóe, et al.). 

In 1999, Xu and Lee9 investigated the condensate gas problem with the intention of improving previous 

solutions that considered the two-zone, radial composite case.  Previous work by Raghavan, Chu, and 

Jones10 considered steady-state flow in a two-zone composite model and found that their proposed 

solutions worked well in cases where the reservoir pressure was substantially higher than dewpoint 

pressure, and bottomhole flowing pressure in the well was much lower than the dewpoint pressure.  

However, with the presence of a significant middle zone, where condensate develops, but has not reached 

critical saturation (i.e., is immobile), the Raghavan, et al. solutions are not as accurate.  The steady-state 

flow assumption yields a relationship between condensate saturation in the reservoir and pressure — 

where this relationship is not valid when flow is impeded by the immobile condensate dropout typically 

found in Region 2 (i.e., the condensate drop-out zone). 
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The work by Xu and Lee9 considers a three-zone radial composite reservoir model.  The first zone near 

the well assumes steady—state two phase flow.  The second zone assumes an immobile condensate 

saturation, but a mobile gas phase.  The third zone assumes only dry gas exists in this region.  The 

behavior of these zones is the same as described in the work by Roussennac1 (where some of Roussennac's 

comments confirmed the observations put forth by Fevang and Whitson11). 

For these types of analyses (Fevang and Whitson, Xu and Lee, Roussennac, etc.), relationships had to 

be developed to represent saturation and pressure for the calculation of the pseudopressure function.  The 

method requires Constant Volume Depletion (CVD) data (for use in modeling Region 2), gas and 

condensate relative permeability, producing GOR (Region 1), and pressure transient data.  Fevang and 

Whitson11 proposed the following relationship for Region 1which relates the gas and condensate relative 

permeability ratio with pressure: 
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Using pseudopressure functions to approximate the reservoir integral developed by Jones and 

Raghavan12  as well as Jones, Vo, and Raghavan13 ; Xu and Lee9 compute these pseudopressure functions 

using the pressure-saturation relationships for Regions 1, 2, and 3 (from whatever source(s) these data may 

be derived (in most cases numerical simulation)).  This procedure (analogous to methods in refs. 7, 14, and 

15), allows for the estimation of initial reservoir pressure, formation permeability, and skin factor.   
 

2.3 Other Solutions/Considerations 
 

Wellbore Storage Effects 
 

One of our goals in this work is to generate solutions that can be used for the analysis and interpretation of 

well test data.  In particular, we have chosen to develop "type curve" solutions for the case of wellbore 

storage effects.  Using the liquid analogy, we employed superposition to include the effects of wellbore 

storage on drawdown solutions (recall that superposition is only valid for the case of linear partial dif-

ferential equations — where we have presumed that Eq. 1.4 meets these criteria).  Blasingame, et al16 

provide the derivation and validation of analytical approximations for the case of "adding" wellbore 

storage effects via the Laplace transformation.  We have used the methods in ref. 16 to generate the 

wellbore storage solutions presented in this work (the specific details are presented Appendix B). 
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For this work we have used "Case 2" presented in ref. 16 (i.e., the case where the psD(tD) function is 

presumed to be linear near a particular time of interest).  This result is given by: 

1)-](exp[-])exp[--(1
2 DDDwD tttp ωω

ω

θω
ω
ψ

++= .................................................................(2.2) 

The coefficients are ω , ψ  and θ are derived using values of the psD(tD) function as described in 

Appendix B.  In summary, we are satisfied that the approach given in ref. 16 is robust and sufficiently 

accurate for our present work — see Figs. 2.1 and 2.2, which are validations of Eq. 2.2 prepared in this 

work for the case of an unfractured well producing in an infinite-acting reservoir. 

 
 

 
 

Figure 2.1 – Dimensionless pressure type curve for radial flow behavior 
including wellbore storage and skin effects (pwD versus tD/CD 
format).  This plot presents a comparison of the solution 
generated using numerical inversion (as a surrogate for the 
exact solution) and the approximate solution technique 
proposed in ref. 16 and generated using Mathematica. 

 
Pressure Behavior in Time (sealing faults and the 2-zone radial composite solution) 
 

Our new proposed solution for a varying mobility ratio must be compared to existing solutions used for 

the analysis of pressure transient behavior for gas condensate reservoirs.  As such, we consider two cases 

which are often employed in such analyses — the sealing faults model (various cases) and the 2-zone 

radial composite reservoir model. 
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Figure 2.2 – Dimensionless pressure derivative type curve for radial flow 
behavior including wellbore storage and skin effects (pwD' 
versus tD/CD format).  This plot presents a comparison of the 
solution generated using numerical inversion (as a surrogate for 
the exact solution) and the approximate solution technique 
proposed in ref. 16 and generated using Mathematica. 

 

 
 

Figure 2.3 – Pressure derivative type curve for a vertical well producing at a 
constant rate near a sealing fault in a homogeneous, infinite-
acting reservoir.  (Solution from ref. 14) 
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The "sealing faults" model is not intuitively applicable for the case of gas condensate reservoir systems 

— however, the concept of a "flow constriction" or "flow barrier" has been suggested as an analog to the 

gas condensate case.  We do not advocate the use of the "sealing faults" models for the analysis and 

interpretation of well performance data from gas condensate reservoir systems; we simply note that some 

analysts have suggested similarity in the performance of the sealing faults models and the observed 

performance from gas condensate reservoir cases. 

In Fig. 2.3 we present the solution for a well in the vicinity of one or more sealing faults — this 

presentation clearly indicates that the orientation and number of faults dramatically affects the behavior of 

the pDdt function.  This solution was obtained from Stewart, et al.14.  In Fig. 2.4 we present the "unified" 

plot (pDdt function) for multiple cases of the radial composite reservoir solution (refs. 15, 17).  The most 

important (and most relevant issue) is that the radial composite solution has fixed mobility and diffusivity 

ratios (for the inner and outer zones) — by contrast to our solution which uses a permeability profile in 

radius and time, but only a single value of diffusivity for the entire reservoir.  As such, we will only 

compare cases for the radial composite reservoir model where the diffusivity ratio is unity. 

 
 

 
 

Figure 2.4 – Pressure derivative type curve for a vertical well producing at a 
constant rate in a composite radial system, various mobility 
(λ)/storativity (ω) cases.  (Solution from refs. 15,17) 
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CHAPTER III 
 

DEVELOPMENT OF AN ANALYTICAL PRESSURE SOLUTION 

FOR THE CASE OF A PERMEABILITY PROFILE THAT VARIES IN TIME 

AND RADIAL DISTANCE 
 
3.1 Concept of a Mobility Profile That Varies in Time and Radial Distance 

As noted earlier, we have used the observation of the mobility/effective permeability profiles in radius and 

time obtained from numerical simulation for the case of a gas condensate reservoir as the basis for our pro-

posed model for gas mobility as a function of radius and time.  The original basis for this proposed model 

was developed using the results published by Roussennac.1  A sample case adapted from the Roussennac 

work is shown below in Fig. 3.1. 

 
 

 
 

Figure 3.1– Gas mobility profiles for a gas condensate reservoir system (as 
a function of time and radius) (adapted from Roussennac1) — 
note the comparison of the simulated performance and the pro-
posed models (i.e., the exp(x) and the erf (x) mobility models). 
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In Fig. 3.1 we present the following models for representing the gas permeability as a function of radius 

and pressure — the "exp(x)" model is given as: 
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  ("exponential" or exp(x) model) .............................(3.1) 

and the "erf(x)" model is given by: 
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3.2 Application of the Boltzmann Transformation to the Radial Diffusivity Equation — Develop- 

ment of the Pressure Derivative Solutions 

In this work we prefer the "exp(x)" model (i.e., Eq. 3.1) — primarily because of the mathematical simpli-

city of this model (i.e., this model is readily adapted to the Boltzmann transformation approach that is used 

to develop the solution for this case).  As noted in Chapter I, the definition of the diffusivity equation for 

liquid flow (our base assumption) is given by: 
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Assuming that the permeability is a function of radius and time k=f(r,t), we obtain the following 

generalized dimensionless form of the diffusivity equation based on the Boltzmann transformation (details 

in Appendix A): 
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Given Eq. 3.4 in dimensionless form we note the definitions of the relevant dimensionless variables: 

DDD tr 4/2=ε  (dimensionless Boltzmann transform parameter)......................... (3.5) 

maxD kkk /=  (dimensionless permeability (note in terms of kmax)) ................... (3.6) 
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=  (dimensionless time) .................................................................... (3.8) 

wD rrr /=  (dimensionless radius).................................................................. (3.9) 
 

Using these definitions, the dimensionless form of the permeability function (i.e., Eq., 3.1) is given by: 
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For convenience, we define the constants a and b as follows: 
)/1( maxmin kka −= .................................................................................................................... (3.11) 

Db α/4= ..................................................................................................................................... (3.12) 
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Substituting Eqs. 3.11 and 3.12 into Eq. 3.10 yields: 
 

][1 DD bexpak ε−−= ................................................................................................................. (3.13) 
 

Substituting Eq. 3.13 into Eq. 3.4 and completing the solution (using the Boltzmann transformation pro-

cess), we obtain the following solutions: (again, the details of this derivation are given in Appendix A) 
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 ("pressure" form) .................. (3.15) 
 

Alternate forms of Eq. 3.14, written in terms of rD and tD are given as:. 
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Inspection of Eq. 3.12 (the "pressure" form of the solution) leads us to recognize that Eq. 3.12 can not 

be resolved as a closed form solution — this result can only be evaluated numerically.  As such, we have 

elected to use Mathematica2 to compute the pD and |εD dpD/dεD| solutions.  We present a variety of 

solutions for the pD and |εD dpD/dεD| functions in Figs. 3.2 and 3.3 — where the pD function is shown in 

Fig. 3.2 and the |εD dpD/dεD| function is presented in Figs. 3.3. 
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Figure 3.2 – "Type curve" representation of the p (εD D) solution (Eq. 3.12)).  
Solution is plotted versus the modified Boltzmann transform 
variable  ))./(( 2

DDD tr α
 
 

In Fig. 3.2 we can view these trends as being the pressure drop (in dimensionless form) taken as 

distance increases away from the wellbore as we hold time constant.  We note the effect of the kmin/kmax 

ratio on the performance of the pD solution — and we observe that the αD-parameter is as a scaling 

mechanism in the modified Boltzmann transform variable   We would describe this 

situation physically as a decreasing pressure drop as we progress into the reservoir, noting that the k

))./(( 2
DDD tr α

min/kmax 

ratio controls the pressure drop near the well — and that the combination of the kmin/kmax ratio and the αD-

parameter control the transition and "far field" pressure solutions. 

Fig. 3.3 presents the dpD/dεD solution for the same kmin/kmax and αD cases shown in Fig. 3.2.  In this 

case we note the distinct similarity of the |εD dpD/dεD| solution with the |rD dpD/drD| solution (Fig. 1.5) — 

this is because these functions are simply "rescaled" (i.e., |rD dpD/drD| = 2 |εD dpD/dεD| (comparing Eq. 1.7 

with Eq. 3.11)).  Fig. 3.3 is of relatively little practical utility unless we work in terms of the variable 

η=r2/t (we note that we do present several comparisons in terms of η, but for practical applications 

solutions in t (time) are of more direct use). 
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Figure 3.3 – "Type curve" representation of the |εD dpD/dεD| solution (Eq. 
3.11)).  Solution is plotted versus the modified Boltzmann 
transform variable  ))./(( 2

DDD tr α
 

 
 

Figure 3.4 – "Type curve" representation of the new model (|rD dpD/drD| 
formulation (Eq. 1.6)).  Solution is plotted versus the modified 
Boltzmann transform variable  ))./(( 2

DDD tr α
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Figure 3.5 – "Type curve" representation of the new model (t (∂p /∂tD D D) for-
mulation (Eq. 1.6)).  Solution is plotted versus the inverse of 
the modified Boltzmann transform variable  ).)/(( 2

DDD rtα
 
 

We also present the pressure derivative solutions plotted in terms of variables related to dimensionless 

radius and time in Figs. 3.4 and 3.5 (we continue to use a modification of the dimensionless Boltzmann 

transform variable).  Fig. 3.4 (the radius format plot) will be used to validate simulated performance data 

where we will have pressure values at a specific spatial grid as generated by numerical simulation. 

We could use Fig. 3.5 as an analysis mechanism for pressure transient data — however, as we discuss 

in the next section, for practical applications, the solution must be modified to include wellbore storage 

effects.  Fig. 3.5 will also be used in the validation portion of this work to compare against the existing 

solutions which are often utilized in the analysis of pressure transient test data obtained from gas conden-

sate reservoir systems (namely, the 2-zone radial composite reservoir case and the "sealing faults" cases). 
 

3.3 Wellbore Storage and Skin Effects 
 

Addition of Wellbore Storage Effects — Drawdown Cases (Base Comparisons) 
 

So far in this work we have only considered the case of an ideal well producing in an infinite-acting reser-

voir with a propagating permeability profile — where the well is produced at a single-constant flowrate.  

In this section we provide a mechanism for adding wellbore storage effects to our new solution for a 

propagating permeability profile.  Wellbore storage is typically "added" to the base pressure solution using 

convolution (or superposition) — where we believe that convolution should be valid for this problem 
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because we have assumed that are no non-linearities in the governing differential equation (Eq. 4).  As 

such, the convolution for wellbore storage is written as: 
 

[ ] DDsDDwbs
D

wD tdtpq
d
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p  )( )(
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τ

−=∫ .................................................................................(3.18) 
 

Where the qD function (dimensionless sandface rate profile) is given as follows for the wellbore storage 
model: 
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And the definition of the dimensionless pressure function which includes skin effects is given as: 
 

spp DsD += .....................................................................................................................................(3.20) 
 

Eqs. 3.18 and 3.19 can be discretized and combined to yield a "recursion relation" for the wellbore 

storage dimensionless pressure, pwD — however, this approach is tedious and prone to error propagation.  

Typical implementations of Eqs. 3.18 and 3.19 involve the use of the Laplace transformation — 

unfortunately, our proposed solution (Eq. 3.14) is not suited to the use of the Laplace transform (i.e., this 

solution can not be integrated analytically), and, as such, we must resort to another approach. 
 

For convenience we employ the method by Blasingame, et al.16 for generating pressure solutions which 

include wellbore storage and skin effects — the solution used in this work is given in Appendix B. 
 

We provide Figs. 3.6a and 3.6b as validations for the Blasingame, et al. method — specifically for the 

case of well producing in an infinite-acting homogeneous reservoir.  The pwDt function is computed using 

the procedures given in Appendix B and the pwDdt function is computed using the procedures given in  
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Figure 3.6a – Dimensionless pressure type curve for radial flow behavior 
including wellbore storage and skin effects (pwD versus tD/CD 
format).  This plot presents a comparison of the solution 
generated using numerical inversion (as a surrogate for the 
exact solution) and the approximate solution technique 
proposed in ref. 16 and generated using Mathematica. 

 

 
 

Figure 3.6b – Dimensionless pressure derivative type curve for radial flow 
behavior including wellbore storage and skin effects (pwD' 
versus tD/CD format).  This plot presents a comparison of the 
solution generated using numerical inversion (as a surrogate for 
the exact solution) and the approximate solution technique 
proposed in ref. 16 and generated using Mathematica. 

 



26

 

Appendix C (we note that we have used a polynomial regression (a 3-point formula) to calculate the 

pwDdt function).  Excellent agreement exists between the "exact" solutions (i.e., the numerical inversion 

solution) and the approximate solutions provided by the methods given in ref. 16.  By extension, we will 

apply the procedures given in Appendices B and C to our new solution for a radially propagating 

permeability function. 

In Figs. 3.7a-3.7f we provide a sequence of solutions for the specific case of CD=1x103 and for cases 

where the kmin/kmax varies from 1x100 to 1x10-3.  Individual plots consider a single value of the αD-

parameter, and the following cases of αD=1x100, 10-1, 10-2, 10-3, 10-4, 10-5 are considered (Figs. 3.7a-3.7f, 

respectively).  Figs. 3.7a-3.7f illustrate the "evolving" effects of the αD-parameter, and we note that non-

unique effects are possible (i.e., a particular case or trend which appears similar to another case, although 

these cases have substantially different base properties (e.g., kmin/kmax, αD, etc.)).  Most of the cases in Figs. 

3.7a-3.7f should be described as unique (although Figs. 3.7b and 3.7c do appear to be very similar). 
 

Addition of Wellbore Storage Effects — Drawdown Cases (tD/CD Format Plots) 
 

Another objective for work in this section is to establish the general character/behavior of such results.  In 

Fig. 3.8 we present a "composite" plot of all pwDdt trends generated for CD=1x103.  We note distinct beha-

vior for each case and we suggest that the character in these wellbore storage solutions (for this particular 

case) is both accurate and distinct.  Similarly, in Fig. 3.9 we present the same suite of solutions for 

CD=1x1020.  The most obvious comment we can make is that virtually all of the trends generated for the 

CD=1x1020 case are dominated by wellbore storage effects — i.e., the αD-parameter has virtually no in-

fluence on the response of the solution for the CD=1x1020 case. 
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Figure 3.7a – Type curve plot (pwD and pwD' versus tD/CD) — CD = 1x103, αD 
= 1x100, various kmin/kmax cases. 

 

 
 

Figure 3.7b – Type curve plot (pwD and pwD' versus tD/CD) — CD = 1x103, αD 
= 1x10-1, various kmin/kmax cases. 
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Figure 3.7c – Type curve plot (pwD and pwD' versus tD/CD) — CD = 1x103, αD 
= 1x10-2, various kmin/kmax cases. 

 

 
 

Figure 3.7d – Type curve plot (pwD and pwD' versus tD/CD) — CD = 1x103, αD 
= 1x10-3, various kmin/kmax cases. 
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Figure 3.7e – Type curve plot (pwD and pwD' versus tD/CD) — CD = 1x103, αD 
= 1x10-4, various kmin/kmax cases. 

 

 
 

Figure 3.7f – Type curve plot (pwD and pwD' versus tD/CD) — CD = 1x103, αD 
= 1x10-5, various kmin/kmax cases. 
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Figure 3.8 – Drawdown type curve plot (pwD' versus tD/CD) — CD = 1x103, 
αD = 1x100, 10-1, 10-2, 10-3, 10-4, 10-5, various kmin/kmax = 1x100, 
10-1, 10-2, 10-3. 

 

 
 

Figure 3.9 – Drawdown type curve plot (pwD' versus tD/CD) — CD = 1x1020, 
αD = 1x100, 10-1, 10-2, 10-3, 10-4, 10-5, various kmin/kmax = 1x100, 
10-1, 10-2, 10-3. 
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CHAPTER IV 
 

VALIDATION OF AN ANALYTICAL PRESSURE SOLUTION 

FOR THE CASE OF A PERMEABILITY PROFILE THAT VARIES IN TIME 

AND RADIAL DISTANCE — GAS CONDENSATE RESERVOIRS 
 
4.1 Comparison of the New Solution and Solutions for the Sealing Faults and Radial Composite 

Reservoir Cases 
 

Pressure Behavior in Time 
 

Our goal is to provide a qualitative comparison of the new proposed solution (the result given in terms of 

time) and the 2-zone radial composite reservoir model — where we note that the radial composite model is 

the most commonly used reservoir model for the interpretation and analysis of well test data from gas 

condensate reservoirs.  We also present a comparison of the proposed model with the model for a well in 

the vicinity of one or more "sealing faults" — where our goal is to simply compare the influence of our 

new model as a "flow constriction" or "flow barrier."  We are not advocating the use of the "sealing faults" 

models for the analysis and interpretation of well performance data in gas condensate reservoir systems; 

we are simply making a qualitative (graphical) comparison of the solutions. 
 
 

 
 

Figure 4.1 – Pressure derivative type curve for a vertical well producing at a 
constant rate near a sealing fault in a homogeneous, infinite-act-
ing reservoir. 
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In Fig. 4.1 we present the solution for a well in the vicinity of one or more sealing faults — this 

presentation clearly indicates that the orientation and number of faults dramatically affects the behavior of 

the pDdt function.  In Fig. 4.2 we present the "unified" plot (pDdt function) for multiple cases of the radial 

composite reservoir solution.  The most important, and most relevant issue is that the radial composite 

solution has fixed mobility and diffusivity ratios (for the inner and outer zones).  This use of fixed 

mobility and diffusivity ratios is in direct contrast to our solution which uses a permeability profile in 

radius and time, but only a single value of diffusivity for the entire reservoir.  As such, we will only com-

pare cases for the radial composite reservoir model where the diffusivity ratio is unity. 

 
 

 
 

Figure 4.2 – Pressure derivative type curve for a vertical well producing at a 
constant flowrate in a 2-zone radial composite reservoir system, 
various mobility (λ)/storativity (ω) cases. 

 

In Fig. 4.3 we present a combined plot of all three reservoir cases: the sealing faults case, the 2-zone 

radial composite reservoir case, and our proposed reservoir model for a permeability profile which varies 

in time and radial distance.  We note surprising similarity for the results shown in Fig. 4.3 — despite the 

fact that the reservoir models shown have little in common.  One interpretation could be that this behavior 

is a cause for concern since the models are distinctly different — yet produce similar behavior.  Another 

interpretation could be that the 2-zone (fixed) radial composite reservoir model and the new propagating 
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permeability profile model have, at least in concept, a common denominator of 2 dominant permeabilities 

(i.e., the "near well" and "reservoir" permeabilities). 

In fact, as we note from Fig. 4.3, the radial composite and propagating permeability solutions converge 

at "late times," — i.e., when the reservoir permeability dominates the pressure response.  This is an 

important validation as the models do agree uniquely at late times.  We conclude that this comparison 

suggests utility of our new model for the analysis of well test data in gas condensate reservoirs — with the 

caveat that we noted earlier regarding the fact that our proposed model uses a single value of diffusivity, 

and the 2-zone composite reservoir model uses 2 distinct diffusivities (i.e., the "near well" and the 

"reservoir" diffusivi-ties). 

The issue of the "sealing faults" model is somewhat more complex — we will simply suggest that a 

"flow barrier" (i.e., a sealing fault) and a flow contrast (i.e., the 2-zone radial composite reservoir model 

and the propagating permeability model) have similar (though not identical) behavior because the flow 

barrier/ contrast affects the pressure behavior in a similar fashion.  This conclusion is somewhat inductive, 

but we believe it is both plausible and relevant. 

 
 

 
 

Figure 4.3 – Combined pressure derivative type curve for the following 
cases: sealing faults, a single radial composite region, and the 
proposed model for a radially-varying mobility profile. 
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4.2 Validation of the New Solution — Literature Data 
 

Pressure Behavior in Radial Distance — Literature Data (Roussennac ref. 1) 

Case 1: Roussennac Fig 2.7 — our starting point for comparisons of literature data is the case presented as 

Fig. 2.7 by Roussennac,1 where this particular case was for a pressure drawdown sequence performed in 

an infinite-acting gas condensate reservoir.  In order to make a proper comparison of our new model with 

the data presented by Roussennac, we must utilize the pseudopressure function to account for variations in 

fluid properties at a function of pressure.  Specifically, we will only utilize the pseudopressure formulation 

for the case of a dry gas — this approach would be the typical one employed in practice (i.e., for well test 

analysis) and our goal is to establish our new (equivalent liquid) solution as a practical mechanism for 

analysis. 
The definition of pseudopressure that we employ for the case of a dry gas is given as: 
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In evaluating Eq. 4.01 we require the z-factor and the gas viscosity as functions of pressure.  We 

present the z-factor as a function of pressure in Fig. 4.4a and the gas viscosity as a function of pressure in 

Fig. 4.4b.  In Figs. 4.4a and 4.4b we have provided both the original fluid property data provided by 

Roussennac (generated using an equation of state (EOS)) for this fluid mixture ("Mix 2"), as well as "dry 

gas" properties generated using simplified correlations.  We note a reasonably good correlation of these 

functions and we comment that our purpose in generating the "dry gas" trends was to provide sufficient 

data for the calculation of the pseudopressure function (Roussennac only gave 5 data points for the gas 

density and gas viscosity functions for this case). 

In Fig. 4.4c we provide the pseudopressure function computed using Eq. 4.01 and the z-factor and gas 

viscosity data obtained from the dry gas correlations.  We note a very consistent trend for the pseudo-

pressure function and we also observe that for the pressures greater than 3000 psia that ∆pp≈1.002 ∆p — 

which clearly is a coincidence, one would not expect a near 1:1 ratio for these functions.  This observation 

potentially simplifies our analysis/comparison of the data for this case (i.e., we could simply use ∆p data 

instead of ∆pp data) — however, we would like to provide as rigorous an analysis as possible, so we will 

use the ∆pp data functions.  We again note that this situation (i.e., ∆pp≈1.002 ∆p) is a coincidence, and we 

should not generalize any such observations.  We will utilize the ∆pp data functions for all cases in this 

work (with the possible exception of cases where fluid property data are simply unavailable). 
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Figure 4.4a – z-factor profiles for the Roussennac1 data case (Mix 2) — 
includes Roussennac EOS (simulation) data and data from dry 
gas correlation. 

 

 
 

Figure 4.4b – Gas viscosity profiles for the Roussennac1 data case (Mix 2) — 
includes Roussennac EOS (simulation) data and data from dry 
gas correlation. 
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Figure 4.4c – Pseudopressure trend for the Roussennac1 data case (Mix 2) — 
generated using the z-factor and gas viscosity data obtained 
from the dry gas correlations, and the pseudopressure definition 
given by Eq. 4.01. 

 
 

To initiate the comparison of data cases, we first present a plot of pp versus r in Fig. 4.5, where the 

pressure data were acquired using electronic digitization of Roussennac Fig. 2.7.  We note that 5 separate 

cases are provided by Roussennac (i.e., data trends for t= 0.0667, 1.1667, 5, 24, and 456 hours).  We 

observe an apparent "propagation" of the pressure distribution into the reservoir — at this scale it is clear 

that the near-well pressure behavior is not linear with respect to the logarithm of radius (as are the results 

for the liquid case (see Fig. 4.6)) — we presume that this is an effect of the propagating radial profile of 

kg/µg as well as the "compressibility effects" of the dry gas and gas condensate fluids.  Regardless, we 

recognize that this particular plot cannot be "reconciled" with the liquid case. 

Our next comparison is that of the ∆pp and |η d∆pp/dη| functions versus η (η=r2/t) (Fig. 4.7), where we 

note that use of the η-variable makes this plot consistent with our "type curves" (i.e., Figs. 3.2 and 3.3).  

As we noted earlier, it would not be typical for the η-variable (η=r2/t) to be used in practice (we are 

generally only interested in "t" behavior) — however, for the purposes of comparison for pressure distri-

butions taken in the reservoir, use of the η-variable is logical (and preferred).  In Fig. 4.7 we note that the 

|η d∆pp/dη| function suffers somewhat because we have used the entire data trend (i.e., ∆pp as a function 

of η). 
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Figure 4.5 – pp versus r for the Roussennac case of Fig. 2.7 — the pressure 
data were digitized and later converted to pseudopressure (pp) 
using the transformation shown in Fig. 4.4c. 

 

 
 

Figure 4.6 – Example case of p versus r for liquid flow — presented by Lee 
(ref. 18). 

 



38

 

 
 

Figure 4.7 – ∆pp and |η d∆pp/dη| functions versus η for Roussennac Fig. 2.7 
(η=r2/t).  The scatter in the |η d∆pp/dη| function is due to the 
∆pp data not being uniquely "line source" in character (i.e., 
these are numerical simulation results, and are not bound to the 
"line source" criterion). 

 

 
 

Figure 4.8 – ∆pp and |η d∆pp/dη| functions versus η (η=r2/t) (data from 
Roussennac Fig. 2.7, model trends are derived from the new 
model for a varying mobility profile). 
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The "noise" in the |η d∆pp/dη| function is due to "incomplete" conversion of the numerical results to 

the "line source" case (i.e., using the η-variable should convert "line source" data to a single trend — 

however, if the data are not perfectly line source data (as these simulated results are not), then the ∆pp - η 

trend will not be a perfect correlation (nor will the |η d∆pp/dη| - η trend)).  This is not a major issue, 

simply a matter that requires explanation/orientation.  

In Fig. 4.8 we present the ∆pp and |η d∆pp/dη| data functions versus η (η=r2/t), and then superimpose 

the “match” solution for ∆pp and |η d∆pp/dη| generated using our new variable-mobility model.  We note 

very good agreement in the ∆pp functions (with the noted exception of the off-trend (i.e., non-line source) 

data.  Further, we also note reasonable agreement in the |η d∆pp/dη| model and data functions — where 

we again remark that the "scatter" in the |η d∆pp/dη| data function is due to our use of all of the ∆pp data in 

the derivative calculation (we did not edit out the off-trend data).  Regardless of the data issues, we find a 

very reasonable overall match of the ∆pp and |η d∆pp/dη| functions — and we conclude that our model 

does appropriately represent the data for this particular case. 

Case 2: Roussennac Fig 2.9 — We provide another validation of the new solution by comparison another 

data case presented by Roussennac (ref. 1).  In this particular, this case includes a "skin zone" developed 

using a zone of altered permeability near the well.  We note immediately that our solution does not include 

such a feature, and is not likely to reproduce such a feature (if even by coincidence, such an interpretation 

would be incorrect).  Our goal is to demonstrate the utility of our new solution against another data case — 

in this particular case (as opposed to the previous data case) the only major change is the addition of the 

near-well skin zone.  For reference, this case uses exactly the same fluid properties as the previous case 

(i.e., Roussennac "Mix 2"), as such, the pseudopressure transformation for this case is identical to that of 

the previous case. 

In Fig. 4.9a we present the pD — ∆pp match for this case and the pDdr — |r(d∆pp /dr)| match is shown in 

Fig. 4.9b.  With the exception of the behavior near the well, we note an excellent match of the data with 

the proposed solution.  The behavior at small values of r is dominated by the "skin zone" — where the 

"skin zone" is actually a region of specified permeability used to provide the effect of near-well damage.  

As noted, we do not consider the existence of a "near-well damage" zone, we simply model a propagating 

permeability profile as shown in Fig. 1.2. 
 



40

 

In Fig. 4.10 we present the ∆pp and |r(d∆pp/dr)| data along with the ∆pp and |r(d∆pp/dr)| functions com-

puted using our new reservoir model.  Using Fig. 4.10 we have attempted to identify/classify the flow 

regimes which were observed during this simulation.  We note that this comparison provides a strong 

validation of our proposed solution for the case of a variable mobility profile. 
 

 
 

Figure 4.9a – Match of Roussenac1 data (digitized) and the new variable 
mobility model (type curve match) — pD(εD) versus (αDtD)/rD

2 
format. 

 
Pressure Behavior in Radial Distance — Literature Data (Vo ref. 19) 

Case 3: Vo19 Fig 3.1 — As with the cases presented by Roussennac, we use the literature case presented 

by Vo to validate our proposed solution for the case of a radially varying mobility profile.  This case 

presented by Vo does not include skin effects and should be modeled well by our proposed solution.  As 

with the cases presented by Roussennac, we use the pseudopressure function to account for variations in 

fluid properties at a function of pressure.  We again use the pseudopressure formulation for the case of a 

dry gas (see Figs. 4.11a-4.11c) — where the pseudopressure function (Fig. 4.11.c) is computed using z-

factor data (Fig. 4.11.a) and gas viscosity data (Fig. 4.11.b) obtained from the equation-of-state (EOS) 

that Vo used to model this fluid mixture (i.e., Vo "Fluid 2" (ref. 19)). 
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Figure 4.9b – Match of Roussenac1 data (digitized) and the new variable 
mobility model (type curve) — |rD(∂pD/∂tD)| versus (αDtD)/rD

2 
format. 

 

 
 

Figure 4.10 – Match of Roussenac1 data (digitized) and the new variable 
mobility model (data/model match) — ∆p and r|dp/dr| versus r2 
format. 
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Figure 4.11a – z-factor profiles for the Vo19 data case (Fluid 2) — Vo EOS 
(simulation) data. 

 

 
 

Figure 4.11b – Gas viscosity profiles for the Vo19 data case (Fluid 2) — Vo 
EOS (simulation) data. 
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Figure 4.11c – Pseudopressure trend for the Vo19 data case (Fluid 2) — 
generated using the z-factor and gas viscosity data obtained 
from Vo EOS calculations, and the pseudopressure definition 
given by Eq. 4.01. 

 
 

In Fig. 4.12 we present the ∆pp and |r(d∆pp/dr)| data for the Vo case along with the ∆pp and |r(d∆pp/dr)| 

model functions computed using our new reservoir model (this plot illustrates the "best match" of the Vo 

data with our new model).  As for the Roussennac cases, we again identify/classify the flow regimes 

which were observed during this simulation for the Vo case.  We note an exceptional match of all data and 

model functions for the Vo case, providing further validation of our new model for the case of a radially 

varying mobility model. 
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Figure 4.12 – Match of Vo19 data (digitized) and the new variable mobility 
model (data/model match) — ∆pp and ε|d∆pp/dε| versus η (η= 
r2/t) format.  (s=0). 
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CHAPTER V 
 

SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS FOR FUTURE WORK 
 
5.1 Summary 
 

We have developed and validated a new solution for the case of a radially varying permeability profile in 

an infinite-acting reservoir.  We believe that this result can be applied towards the analysis and inter-

pretation of reservoir performance data obtained from wells in gas condensate reservoirs. 

Our validation of this new solution utilized comparisons with reference data (numerical simulation 

results) obtained from the petroleum literature.  We used pressure-radius data which illustrate the 

development of the condensate bank and we also computed auxiliary functions such as pseudopressure and 

the pressure derivative functions in order to enhance/illustrate certain characteristic features. 

We also compared our new model to pressure derivative—time profiles for wells in radial composite 

reservoir systems and for wells in systems with one or more sealing faults.  These comparisons were used 

to establish the similarity of the pressure derivative functions for certain cases with the pressure derivative 

functions given by our new solution.  For orientation with field data, we also generated a variety of cases 

which include wellbore storage effects.  These cases are designed to illustrate the relative impact of 

wellbore storage effects on the solution for a radially varying mobility profile — our primary conclusion is 

that wellbore storage and varying mobility influences generate responses which could be confused with 

other reservoir features (e.g., dual porosity reservoir effects). 
 

5.2 Conclusions 
 

The following conclusions are made based on the results obtained from this work 
 

1. New Solution: We have proposed, developed, and verified new solutions (for pressure and the 

pressure derivative functions in terms of radial distance and time) for the case of a well producing 

at a constant flowrate from an infinite-acting radial flow system where the permeability varies in 

radial distance and time (see Eq. 1.1). 
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Eq. 1.1 is proposed based on observations of well performance behavior derived from numerical 

simulation of the gas phase for a radial gas condensate reservoir system. 
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The relevant results developed in this work are given by Eqs. 3.14 and 3.15: 
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 ("pressure" form) ................  (3.15) 
 

We note that Eq. 3.15 cannot be resolved beyond the integral formulation as presented.  As such, all 

results for Eq. 3.15 are generated using numerical integration of Eq. 3.14 performed in 

Mathematica.  The derivative formulation given by Eq. 3.14 is a closed form result — and is 

computationally efficient. 
 

Alternate forms of Eq. 3.14, written in terms of rD and tD are given as:. 
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 ("rD derivative" form) .........  (3.16) 
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 ("tD derivative" form) .........  (3.17) 
 

2. Comparison/Validation: The proposed solution is presented in comparison to numerical simulation 

results (for the ∂pD/∂rD formulation).  The ∂pD/∂tD formulation is compared to the 2-zone radial 

composite model as well as simplified cases of "sealing faults" — the comparisons indicate that the 

proposed solution does produce similar features and suggests the model would be an effective 

interpretation tool for well test analysis. 

Our presentation of the pwD(tD) and pwDd(tD) functions (which include wellbore storage and skin 

effects) indicate that the influence of the α (or αD) parameter and the kmin/kmax ratio is substantive 

and unique for certain cases (e.g., low values of CD), while for higher values of CD wellbore storage 

effects dominate the response.  This is analogous to say, the case of well performance in a dual 

porosity/naturally fractured reservoir. 
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3. Pressure Buildup Case: This is a case for future investigation, our efforts to resolve the pressure 

buildup case using conventional methods yielded inconclusive results.  This situation may be a 

product of using (or misusing) the superposition theorem, and/or some other mitigating factor(s).  

Regardless, this topic (i.e., the pressure buildup case) warrants further investigation. 
 

5.3 Limitations and Recommendations 
 

Limitations: 
 

1. The major limitation of our new solution is that the pressure buildup case must be addressed.  

Our attempts to date (using superposition) are not sufficient — we must incorporate the change in 

rate (and the change in the kg(r,t) profile) directly in the solution formulation. 
 

2. While we do address the kg(r,t) profile directly in this work, we also need to address the changes 

in diffusivity (kg/(φµgcg)) which occur in terms of both radius and time. 
 

Recommendations: 
 

1. Future work should address the pressure buildup case and the variation in diffusivity. 
 

2. Well testing practices should be implemented with an emphasis on acquiring the most repre-

sentative pressure data possible.  Diagnosis of the condensate bank using near-well saturations 

(from well logs) remains elusive, so we must continue to rely (primarily) on pressure informa-

tion. 
 



48

 
 

NOMENCLATURE 
 
Field Variables (Pressure, Formation, and Fluid Properties) 
 

 B = Formation volume factor, RB/STB 

 cg = Gas compressibility, psi-1 

 c = Isothermal compressibility, psi-1 

 cf = Pore compressibility, psi-1 

 ct = Total compressibility, psi-1 

 h = Net pay thickness, ft 

 k or kg = Effective permeability for gas, md 

 kmax = Maximum effective permeability to gas, md 

 kmin = Minimum effective permeability to gas, md 

 pi = Initial reservoir pressure, psia 

 pres = Reservoir pressure, psia 

 pdew = Dewpoint pressure, psia 

 pwf = Flowing pressure, psia 

 pws = Shut-in pressure, psia 

 pp = Pseudopressure, psia 

 q = Flowrate, STB/D 

 qsf = "Sandface" flowrate, STB/D 

 qsur = "Surface" flowrate, STB/D 

 rw = Wellbore radius, ft 

 r = Radial distance, ft 

 t = Time, hr 

 tp = Production time, hr 

 ∆t = Shut-in Time, hr 

 α = Scaling term for pressure behavior, (cp-psi-1)/md  

 ε = Boltzmann transform variable (r2/(4t)) 

 µ = Viscosity, cp 

 φ  = Porosity 

 λ = Mobility (mD/cp) 

 Rp = Cumulative Gas Oil Ratio, (scf(gas)/stb(oil)) 

 Rs = Solution (Dissolved) Gas Oil Ratio, (scf(gas)/stb(oil)) 
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DimensionlessVariables 
 

 CD = Dimensionless wellbore storage coefficient 

 kD = Dimensionless permeability function  

 pD = Dimensionless pressure (generic) 

 pDdr = Dimensionless pressure derivative function in radial distance (Eq. 8) 

 pDdt = Dimensionless pressure derivative function in time (Eq. 7) 

 psD = pD+s, Dimensionless pressure with skin effects 

 pwD = Dimensionless pressure with wellbore storage and skin effects 

 pwDdt = Dimensionless pressure derivative function in time including wellbore storage and skin effects 

 qDwbs = Dimensionless flowrate for wellbore storage 

 rD = Dimensionless radius 

 tD = Dimensionless time 
 

 tpD = Dimensionless production time 

 ∆tD = Dimensionless shut-in time 

 εD = Dimensionless Boltzmann transform variable 

 aD = Dimensionless empirical scaling term for pressure behavior 

 s = Skin factor, dimensionless 
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APPENDIX A 
 

DERIVATION OF THE PRESSURE DERIVATIVE FUNCTIONS WITH 

RESPECT TO TIME AND RADIUS FOR THE CASE OF A RADIALLY 

VARYING PERMEABILITY PROFILE (EQUIVALENT LIQUID CASE) 
 
In this Appendix, we derive two expressions for the pressure derivative (time and radial distance 

formulations) that consider the changing effective (or relative) permeability of the retrograde gas as 

condensate evolves with decreasing pressure.  
 

This derivation begins with the base diffusivity equation — i.e., the partial differential equation which 

describes the flow of a single phase fluid in a porous medium with respect to time and distance.  The 

effective permeability to gas in such cases will not be constant, but is dependent on the PVT and rock-

fluid properties.  The primary contribution of this work is the development of a closed form analytical 

solution for the case of a radially varying mobility (or effective permeability) function in a reservoir 

system.  The subordinate contribution (which is, in some ways, more important than the solution) is our 

proposal of a simple functional relationship to represent the time and space-dependency of the gas 

mobility (or permeability) function. 
 

The base form of the diffusivity equation that considers a varying permeability with respect to radius is 

given as: 
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As mentioned above, we have proposed a general model for the behavior of the permeability to gas as a 

function of time and radius.  Our proposed model is given in its 2 most basic forms as: 
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We note that the α-parameter in Eqs. A.2a and A.2b is an empirical constant, most likely related to the 

PVT characteristics of the reservoir fluid, as well as the rock-fluid proper-ties.  Our goal is not to assess 

the nature of the α-parameter, but rather, to use this as a mechanism to represent a complex process with a 

simple model.  Eq. A.2b is the primary form used in this Appendix, and we will note that Eqs. A.2a and 
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A.2b have been validated conceptually via comparison with simulated performance for a gas condensate 

reservoir system. 
 

We consider the Boltzmann transform, which allows us to relate dimensionless time and distance: 
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Substituting Eq. A.3 and Eq. A.4 into Eq. A.2b yields: 
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Defining a "dimensionless" permeability, kD, we have: 
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or, in terms of the permeability, we obtain: 
 

Dmaxkkk =  
 

We note that we will use the terms "permeability" and "effective permeability" interchangeably in this 

derivation — however, the variable in question is always effective permeability. 
 

Substituting the definition of "dimensionless" permeability (i.e., Eq. A.6) into Eq. A.5 gives us: 
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We need to transform Eq. A.1 into dimensionless form — hence; we state the dimensionless variables 

used in this work are as follows: (Field units formulation) 
 

Dimensionless Pressure: 
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Dimensionless Time: 
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Dimensionless Radius: 
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Substituting Eqs A.9 and A.10 into Eq. A.4 and solving for the αD parameter, we have:  
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Or, 
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From Eq. A.11 we note that the α-parameter has the units of inverse diffusivity (i.e., diffusivity (k/(φµct)) 

has the units of (md/(cp-psi-1) — field units formulation) — therefore, α has the units of (cp-psi-1)/md.  

Physically, we assign the properties of the fluid and rock-fluid interaction to the α-parameter — however, 

we consider α to be an empirical parameter, and, as such, we should not attempt to quantify the 

components of α, but rather, we should simply use α to qualify the influence of the fluid on the 

permeability profile. 
 

Substituting Eqs A.6, A.8-.10 into Eq. A.1 and rearranging yields the diffusivity equation in dimensionless 
form: 
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We note that for the case where k = kmax, Eq. A.12 reverts to the conventional diffusivity equation for a 

constant permeability.  We also note that we have assumed a slightly compressible fluid (i.e., a liquid) in 

the derivation of the diffusivity equation for radial flow (i.e., Eq. A.1).  The assumption of a "liquid" may 

seem incompatible with the concept of a gas case — however, we are deriving a formulation for a "liquid" 

that will, in turn, be used for gases where the conventional gas pseudo-functions will be employed (i.e., 

pseudopressure and pseudo-time).  Simply put, this case represents an "equivalent" liquid, modifications 

will be addressed using pseudofunctions that "convert" the case in question to the "equivalent" liquid case. 
 

Utilizing the Boltzmann transform we derive a relationship for pressure with respect to time and radius 

which includes the prescribed varying permeability model (i.e., Eq. A.2 or A.7). 
 

For convenience, we define the constants a and b as follows: 
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Substituting Eqs. A.13 and A.14 into Eq. A.7 yields: 
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Applying the product rule to the left-hand-side (LHS) of Eq. A.12 we have: 
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Multiplying through the left-hand-side by 1/rD gives: 
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Collecting like terms and consolidating the kD terms: 
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Utilizing the chain rule to transform the rD and tD terms into the Boltzmann variable, εD, we have the 

following general formulation: 
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Applying the chain rule on a term-by-term basis: 
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Substituting these results into Eq. A.16 and rearranging, we have: 
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Combining like terms, 
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Collecting like terms and isolating, 
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Dividing through by ,
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The required derivatives of the Boltzmann transform variable (εD) are given as follows: 
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Substitution of Eqs. A.18-20 into Eq. A.17 yields, 
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Cancelling and collecting like terms, we obtain: 
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Where a slightly more compact form of this result is given by: 
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At this point we recognize that Eq. A.22 (or A.21) is the fundamental governing relation for fluid flow in 

our system where the mobility/permeability function is permitted to vary as a function of time and 

distance.  Eq. A.22 is a completely general result — no assumptions have been made at this point. 
 

Our goal is to solve Eq. A.22 for an appropriate set of initial and boundary conditions.  The particular case 

where the Boltzmann transform applies is the case of a uniform initial pres-sure profile in the reservoir 

(i.e., pD(rD,tD≤0) = 0) and the case of an "infinite-acting" outer boundary (i.e., pD(rD→∞,tD) = 0). 
 

Recalling the definition of the Boltzmann transform variable, εD, we have: 
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The initial and outer boundary conditions are expressed in terms of rD, tD, and εD as follows: 
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Outer Boundary Condition: 
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We note that in using the Boltzmann transformation, the initial and outer boundary conditions collapse to a 

single relation: 
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This result is a unique product of the Boltzmann transformation — for this particular case.  We will 

proceed with this result and next we consider the case of a constant flowrate at the well. 
 

Inner Boundary Condition: (Constant Rate) 
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Where Eq. A.23 is written directly from Darcy's law for a radial flow geometry.  Isolating the r(∂p/∂r) 

term, we have: 
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Substituting the definitions of dimensionless pressure, radius, and permeability (i.e., Eqs. A.6, A.8, and 

A.11) into Eq. A.25, and rearranging, gives us the following result: 
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At the well (i.e., r=rw), we have the cylindrical source form: 
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However, for our problem we will assume that the well is a mathematical "line source" (i.e., we consider 

the behavior at r=0), this gives: 
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Using the chain rule and the definition of the Boltzmann trans-form, we obtain the following form of the 

inner boundary condition: 
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Collecting terms gives us: 
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Recalling our governing relation (i.e., Eq. A.22) we have: 
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Recalling the unified outer boundary/initial condition (derived using the Boltzmann transform), we have: 
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Recalling the inner boundary condition given in terms of the Boltzmann variable, εD, gives us: 
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In order to develop a solution for Eq. A.22 we will utilize a "variable of transformation" that reduces the 

differential equation to a more convenient form.  At this point we note that Eqs. A.22 and A.29 are only a 

function of the Boltzmann transform variable, εD.  As Eq. A.29 is a second order ordinary differential 

equation, we can surmise that a solution can be obtained by twice integrating the differential equation.  

This will be our path, but we will also use a variable of transformation to reduce the complexity for the 

integration of Eq. A.22. 
 

Our "variable of transformation," ν, is given as: 
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Making these substitutions into Eq. A.22 gives us the following "compact form" of the differential 

equation.  We then will solve Eq. A.30 by integration for the ν-variable. 
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Substituting Eq.A.31 into Eq. A.30 yields, 
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Isolating/separating the relevant terms we have: 
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Setting up the integration of Eq. A.32 gives us: 
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Expanding the right-hand-side integral gives: 
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Completing the integration, we have: 
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We note that the β-term is a constant of integration which results from the indefinite integration.  The 

integral that can not be resolved in simple terms must be addressed using tables of integrals, substitution 

methods, or a symbolic integration product (in this case, we used Mathematica (ref. 2)). 
 

From Mathematica we obtained the following result for the remaining integral: 
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Substituting this result into the solution, we have: 
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Exponentiating the solution, we obtain: 
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Defining our constant of integration as c1=exp[β], and substituting this result into the solution, along with 

the definition ν=dpD/dεD, we have: 
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Our next task is to determine the constant of integration, c1, where this can be  

accomplished using the inner boundary condition (i.e., Eq., A.29).  Multiplying through  

Eq. A.33 by the Boltzmann transform variable, εD, we have: 
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Taking the limit of Eq. A.34 as εD→ 0 yields,  
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Which reduces to: 
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Returning to the inner boundary condition, we have: 
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Equating these results: 
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And solving for the constant of integration, c1, we have: 
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Substitution of the constant of integration, c1, (Eq. A.35) in the solution (Eq. A.33) gives: 
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Definite integration of Eq. A.36 yields the solution in terms of pD(εD) — this result is given as: 
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Reversing the limits of integration in Eq. A.37 eliminates the (-) sign and puts the result in a more 

traditional form. 
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Unfortunately, Eq. A.38 can only be integrated numerically — we have also employed Mathematica as the 

mechanism to compute the numerical integration of Eq. A.38 for the cases considered in this work. 
 

We can, however, use Eq. 36 as given as a mechanism for modelling the pressure derivative behavior in 

time and radial space.  In order to develop these results we require the following identities derived using 

the chain rule: 
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Recalling Eqs. A.17 and A.18, we have: 
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Substituting Eq. A.18 into Eq. A.39, and solving for ∂pD/∂tD, we have: 
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Similarly, substituting Eq. A.19 into Eq. A.40, and solving for ∂pD/∂rD, we obtain: 
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The ∂pD/∂tD result is obtained by substitution of Eq. A.36 into Eq. A.41 — this gives: 
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Substituting the definition of the Boltzmann transform variable, , into Eq. A.43 gives the 

final form in terms of r

)4/(2
DDD tr=ε
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The ∂pD/∂rD result is obtained by substitution of Eq. A.36 into Eq. A.42 — this gives: 
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Substituting the definition of the Boltzmann transform variable, , into Eq. A.45 gives the 

final form in terms of r

)4/(2
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D and tD: 
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Where we recall that the constants a and b are given by Eqs. A.13 and A.14, respectively: 
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While we can utilize Eqs. A.44 and A.46 in the given forms, we note that the following forms may be 

more convenient: 
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And, 
 

"Pressure Derivative in Radial Distance" 
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Where we recognize that the right-hand-sides (RHS) of Eqs. A.47 and A.48 are identical (except for the 

1/2 multiplier in Eq. A.47) — as such, equating Eqs. A.47 and A.48 gives the following identity: 
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....................................................................................................................................................  (A.49) 
 

We note that the identity given by Eq. A.49 is also obtained for the "homogeneous" case where kD = 1.  In 

fact, for the case of kD = 1, the entire sequence of results reverts to the "traditional" line source solution for 

a homogeneous, infinite-acting reservoir. 
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We also note that Eq. A.48 is typically applied as the absolute value of this result for comparative/ 

illustrative plots (obviously the ∂pD/∂rD term is negative). 
 

Finally, we will also define the dimensionless pressure which includes skin effects as: 
 

spp DsD += .....................................................................................................................................  (A.50) 
 

Where s is the skin factor. 
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APPENDIX B 
 

AN APPROXIMATE TECHNIQUE FOR THE DIRECT ADDITION 

OF WELLBORE STORAGE AND SKIN EFFECTS 
 
In this Appendix, we present a simple, approximate technique for adding wellbore storage to 

dimensionless pressure solutions.  This result is taken from Blasingame, et al.17

 

The required result from (ref. 4) is given as: 
 

1)-](exp[-])exp[--(1 2 DDDwD tttp ωω
ω

θω
ω
ψ

++= ........................................................................... (B.1) 

 

Where the ω, θ, and ψ parameters in Eq. B.1 are given by: 
 

âC
b̂C

D
D+

=
1ω .................................................................................................................................... (B.2) 

 

DC
1

=ψ .......................................................................................................................................... (B.3) 

 

DCâ
b̂

=θ ........................................................................................................................................ (B.4) 

 

Where the  and bâ ˆ  parameters in Eqs. B.2 and B.4 are given by: 
 

sDdsD ppâ −= ............................................................................................................................... (B.5) 
 

D
sD

dt
dpb̂ = ........................................................................................................................................ (B.6) 

 

And, 
 

D
sD

DsDd dt
dptp = .............................................................................................................................. (B.7) 

 

Eq. B.1 should provide results which are accurate to within 1-2 percent of the exact solution — for the pwD 

and the pwDd functions (where pwDd=tD(dpwD/dtD)). 
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APPENDIX C 
 

A QUADRATIC FORMULA FOR NUMERICAL DIFFERENTIATION 
 
Presuming a general quadratic polynomial, we have: 

2
210 tataay ++= ............................................................................................................................ (C.1) 

 

The coefficients of an interpolating LaGrange collocation polynomial are stated as follows: 
 

)(0 ityc = ........................................................................................................................................ (C.2) 
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Where we note that we have used a "backward" sampling for the coefficients (i.e., in terms of ti, ti-1, and ti-

2) — this is for convenience in our present work.  Alternatively, we could use forward or central sampling 

with no loss in generality. 
 

The a0, a1, and a2 coefficients for Eq. C.1 are defined in terms of the coefficients of the collocation 

polynomial as follows: 
 

12100    −+−= iii ttctcca ..................................................................................................................... (C.5) 
 

)( 1211  −+−= ii ttcca ......................................................................................................................... (C.6) 
 

22 ca = ........................................................................................................................................... (C.7) 
 

The derivative of Eq. C.1 is: 
 

taa
dt
dy

21 2+= ................................................................................................................................. (C.8) 
 

Given a table of t and y(t) values, Eqs. C.2-C.7 are used to compute the required coefficients.  Eq. C.8 is 

used to compute the desired derivative. 
 



68

 
 

VITA 
 
 

Name: Benton Wade Wilson 
 

Born: 18 September 1964 
 Shreveport, Louisiana (United States of America) 

 

Permanent Address: 27210 Cherokee Lane 
 Magnolia, TX 77354 
 United States of America 
 (wade.wilson@bakeratlas.com) 
 

Education: Georgia Institute of Technology 
 Bachelor of Science Degree in Civil Engineering 
 July 1991 
 

 Texas A&M University, College Station, Texas, USA 
 Master of Science Degree in Petroleum Engineering 
 December 2003 
 


