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ABSTRACT 
 
 

Phenotypic and Genotypic Characterization of High Lysine Maize.  

(December 2004) 

Sandeep Bhatnagar, M.S., Texas A&M University; 

M.S., G.B. Pant University of Ag. and Tech., Pantnagar, U.P. India; 

B.S. University of Allahabad, U.P. India 

Chair of Advisory Committee: Dr. Javier F. Betrán 

 
 

Quality Protein Maize (QPM) with the mutant gene opaque-2 (o2), has higher 

lysine and tryptophan content and hard endosperm which is less susceptible to 

mechanical and biological damage. Three experiments were conducted to characterize the 

phenotypic and genotypic characteristics of high lysine maize. In the first experiment two 

separate diallels including 7 white and 9 yellow QPM inbreds were evaluated in five 

southern USA environments to estimate the general (GCA) and specific combining 

abilities (SCA) for grain yield and to identify potential heterotic relationships among 

them. QPM hybrids yielded less than commercial checks. GCA effects across 

environments were non-significant for grain yield but highly significant for secondary 

traits. Best yielding hybrids resulted from crosses among inbreds from different programs 

(CIMMYT, Mexico; University of Natal, South Africa and TAMU, USA). In the second 

experiment testcrosses between QPM inbreds and Tx804, were evaluated for agronomic 

performance, aflatoxin resistance and quality. QPM inbreds in testcrosses have similar 

flowering dates, plant height, ear height and test weights but lower grain yield than 

normal checks. Population 69 inbreds and their testcrosses were least susceptible to 

aflatoxin. Aflatoxin in testcrosses was positively correlated with endosperm texture 

(0.67) and kernel integrity (0.60) but negatively correlated with grain yield (-0.30) and 

silking date (-0.50). Tryptophan content was negatively correlated with endosperm 

modification. Amino acid levels of inbred lines were significantly correlated with those 

of hybrids, but with low predictive value. In the third experiment 92 high lysine maize 

inbreds with different origins [Stiff Stalk, Non Stiff Stalk, Pop 69, temperate (Tx802, 

Tx804, Tx806, B97, B104) and exotic subtropical lines (CML161, Do940y and Ko326y)] 
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were haplotyped on a cM scale utilizing 43 mapped SSR markers to characterize genetic 

diversity on chromosome 7, estimate linkage disequilibrium around opaque-2 locus and 

determine the parental contribution in some inbreds. Dendrograms of genetic similarity 

showed clusters in agreement with the different origin of inbreds. A total of 200 alleles 

were detected with an average of 4.7 alleles/locus. Significant linkage disequilibrium was 

detected around opaque-2 locus. Parental contributions of haplotypes showed segments 

of chromosome 7 exclusively contributed by one or the other parent.   
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CHAPTER I 

 

INTRODUCTION 

 

Maize (Zea mays L.) is ranked at the top among the world cereal crops in 

production and consumption (USDA-FAS, 2003). United States is the largest producer 

of maize in the world producing about 10.3 billion bushels per year valued at 30 billion 

dollars (USDA-FAS, 2003). Maize is also the chief export crop of the U.S. Most of the 

maize produced in the United States (95%) is of the yellow dent type of which almost 

58% is used primarily for livestock feeding. Other types of maize include popcorn, sweet 

maize, blue, white, high-oil, nutritionally dense, high-amylose and other types used in 

the production of food products such as maize bread and tortillas. Globally maize 

contributes 15% (representing more than 50 million tons) of the protein and 20% of the 

calories derived from food crops in the world's diet (National Research Council, 1988). 

In many developing countries in Latin America, Africa and Asia, maize is the staple 

food and sometimes the only source of protein in diet, especially in weaning food for 

babies. However, nutritional quality of maize protein is poor because of deficiencies of 

the essential amino acids lysine, tryptophan, and methionine (Glover and Mertz, 1987; 

Watson, 1988). Main reasons for poor quality of normal maize is the relatively high 

concentrations of prolamines or zeins storage proteins (50-60%) which are almost 

devoid of lysine and tryptophan causing maize to be nutritionally inferior in protein 

quality as compared with rice, wheat and other major cereals. The other storage proteins 

in the maize endosperm are albumins (3%), globulins (3%) and glutelins (30-45%) that 

have a relatively higher lysine content of 5-6%, 5-8% and 4-5%, respectively (Wilson, 

1991). Lysine is the first limiting amino acid followed by tryptophan and threonine in 

the diets of non-ruminants and humans (Shimada & Cline, 1974). Lysine could also be 

limiting in poultry diet if protein sources other than soybean meal are used (Johnson et 

al., 2001). Increasing the levels of these nutritionally limiting amino acids is an  
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important objective of plant breeding programs. It has been estimated that substituting 

normal maize with high lysine maize on an equal weight basis for growing pigs and 

sows can diminish the use of synthetic lysine in animal feeds to maintain proper amino 

acid balance. In the United States, where maize is mainly used for feeding animals some 

kind of additive has to be used, mainly soybean meal to supplement the lysine and 

trytophan requirements of animal diet. Since quality protein maize (QPM) has a much 

superior protein quality (82.1 % as percent casein) it is postulated that the food 

processing and animal industries of the state of Texas alone could benefit by almost $80 

million per year by replacing normal maize with QPM (TAES, 1990).  

Discovery of the opaque-2 gene (Mertz et al., 1964) and subsequent efforts by 

the International Center of Maize and Wheat Improvement (CIMMYT), to develop 

maize inbreds having the opaque-2 gene along with modifier genes that confer hard 

vitreous kernel texture and simultaneously selecting for superior agronomic 

characteristics have led to the development of QPM. Currently a wide variety of 

subtropical and tropical populations, pools and hybrids developed by CIMMYT are 

being used extensively in several countries including Brazil, China, India, Ghana and 

Central and South America, that have competitive yield and better quality. Texas A&M 

has an extensive QPM hybrid and inbred line development program. Currently several 

high lysine inbreds having different levels of endosperm hardness and adaptation to 

temperate Southern U.S. growing conditions have been developed. Main approaches 

used for development of QPM inbreds are selection within the CIMMYT germplasm, 

conversion of standard U.S. inbreds to QPM, and recycling of QPM inbreds. Major 

emphasis of the program is adaptation to temperate U.S. conditions, normal kernel 

phenotype, increased grain yield, and aflatoxin resistance.  

Several breeding programs outside the USA are actively developing QPM 

inbreds, predominantly at CIMMYT, Mexico and University of Natal, South Africa. 

Some of CIMMYT’s tropical and subtropical germplasm with intermediate and early 

maturity has desirable kernel quality characteristics and can significantly enhance the 

nutritional value of temperate maize germplasm for both food and feed purposes (Vasal, 
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2001). Furthermore, QPM hybrids have been reported to be less susceptible to aflatoxin, 

a potent carcinogen that causes losses worth millions of dollars in the southern USA, 

than current commercial hybrids (Bhatnagar et al., 2003). Despite the nutritional quality 

advantages and improved abiotic and biotic stress tolerance of exotic QPM, very little 

effort has been made to characterize and introgress exotic QPM germplasm into 

temperate U.S. maize germplasm. Characterization and selection for adaptation of these 

subtropical and tropical white and yellow QPM inbreds and a systematic introgression 

into temperate germplasm could enhance protein quality, increase genetic variability for 

quality, improve productivity, and be a source of valuable genes for abiotic and biotic 

stress resistance.  

Preharvest aflatoxin contamination during flowering and grain filling period is a 

major problem for maize growers in Texas. Aflatoxin is a potent carcinogen produced by 

a fungus Aspergillus flavus and are a serious risk to human and animal health causing 

liver cancer (Castegnaro and McGregor, 1998). The maximum acceptable level of 

aflatoxin contamination of grain maize for food purposes is 20 ppb and for feed to 

animals is 300 ppb. There is immense variability in response and aflatoxin accumulation 

of maize hybrids, inbreds and cultivars. Commercial hybrids have been reported to show 

differences in aflatoxin accumulation but none are available for cultivation under 

conditions conducive for disease. Prediction of the response of a hybrid is complicated 

by many factors such as differences in environmental conditions, planting date, harvest 

date and insect injury. In general it has been found that hybrids more adapted to the 

region of growing with a good husk coverage and insect resistance accumulate less 

aflatoxin. Limiting factors in breeding for aflatoxin resistance are the spatial and 

temporal variation in aflatoxin accumulation that requires inoculation and a high number 

of replications, the lack of a reliable and inexpensive screening methodology, and the 

low metabolic activity of maize plants after physiological maturity (Payne, 1992). 

CIMMYT QPM inbreds and hybrids have been reported to be good candidates for 

introgression of aflatoxin resistance genes into temperate germplasm (Betran et al., 

2002; Bhatnagar et al., 2003). 
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Understanding the genetic diversity of maize both at the phenotypic and 

genotypic level is crucial for plant breeders to develop efficient strategies for plant 

selection and introgression. Development of molecular markers has contributed 

extensively to the understanding of the genetic diversity of the maize genome and 

facilitated the study of the effects of past selection history, genetic drift, recombination, 

populations structures in maize germplasm, estimating genetic relationships between 

inbreds and the extent of haplotype sharing within diverse groups of maize inbreds when 

pedigree data is available. Inbreds in maize have also been a valuable resource in 

development of linkage maps and mapping quantitative trait loci. Currently efforts are 

on to map the maize genome at several laboratories and a great deal of information about 

mapped markers (SSR’s RFLPs and SNPs) has been deposited at 

(http://www.maizegdb.org) which is publicly available.  

 This study includes three different experiments that are discussed in chapters II, 

III and IV. In the first experiment (Chapter I), two diallel experiments were conducted to 

evaluate 7 white and 9 yellow maize inbreds from different breeding programs 

(CIMMYT, Mexico; University of Natal, South Africa and TAMU, USA) in five 

southern USA environments to estimate the general (GCA) and specific combining 

abilities (SCA) for grain yield and secondary traits and to identify potential heterotic 

relationships among them. In the second experiment (Chapter II), testcrosses developed 

from crossing high lysine maize inbreds developed at Texas A&M with Tx804 were 

evaluated for agronomic performance, resistance to aflatoxin and protein quality. In the 

third experiment (Chapter III), 92 high lysine maize inbreds were characterized for 

haplotype variations along chromosome 7, particularly around the opaque-2 locus, the 

level of genetic diversity of these inbreds in chromosome 7, extent of linkage 

disequilibrium around the opaque-2 locus and along chromosome 7, and parental 

contribution in some inbreds.  
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CHAPTER II 

 

COMBINING ABILITIES OF QUALITY PROTEIN MAIZE INBREDS* 

 

OVERVIEW 

 

Development and adoption of quality protein maize (Zea mays L.) (QPM) would 

increase the nutritional value of food and feed maize products.  Breeding programs at 

CIMMYT, Texas A&M University (TAMU), and South Africa (SA) have developed 

high lysine inbreds. Information about how elite QPM inbreds of different origins 

combine and perform in hybrids will facilitate the selection of parents and breeding 

strategies for hybrid development. Our objectives were to estimate the general (GCA) 

and specific combining abilities (SCA) for grain yield and secondary traits among high 

lysine inbreds from different sources and to identify potential heterotic relationships 

among them. Seven white and nine yellow QPM inbreds were evaluated in two separate 

diallel experiments in five southern USA environments. QPM hybrids yielded less than 

commercial checks. GCA effects across environments were non-significant for grain 

yield but highly significant for agronomic and kernel quality traits. Based on GCA 

effects, TAMU inbreds had earlier maturities, shorter plants, and less grain moisture 

content than more subtropical CIMMYT and SA inbreds.  The best yielding hybrids and 

highest SCA effects resulted from crosses among inbreds from different programs: 

TxX124 x CML 176, Tx811 x CML 181, Bo59w x CML 184 among the white hybrids, 

and Tx802 x Do940y among the yellow hybrids. QPM inbreds developed in different 

programs could represent potential heterotic groups for use in hybrid development and 

introgression of germplasm.  

 
* Reprinted with permission from “Combining abilities of quality protein maize inbreds” 
S. Bhatnagar, F.J. Betran and L.W. Rooney. Crop Sci. 44:1997-2005. 2004. Crop 
Science Society of America.  
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INTRODUCTION 

 

Globally maize contributes 15% (representing more than 50 million tons) of the 

protein and 20% of the calories derived from food crops in the world's diet (National 

Research Council, 1988). In many developing countries in Latin America, Africa, and 

Asia, maize is the staple food and sometimes the only source of protein in diet, 

especially in weaning food for babies. Normal maize, being deficient in amino acids 

lysine and tryptophan that are essential for monogastric animals and humans, is 

nutritionally poor with a biological value (BV) of 40 - 57% (Bressani, 1992). High 

lysine maize with homozygous embryo and endosperm for mutant alleles o2 at the α-

zeins regulatory gene opaque-2 shows about 60 to 100% increase in lysine and 

tryptophan and a higher BV (80% as compared with casein).  Substituting normal maize 

with high lysine maize on an equal weight basis for growing pigs and sows can diminish 

the use of synthetic lysine in animal feeds to maintain proper amino acid balance (Asche 

et al., 1985; Burgoon et al., 1992; Knabe et al., 1992). In the USA, doubling lysine 

content in maize alone can add an estimated annual gross value of $360 million per year 

and can go up to $480 million per year if protein also is increased (Johnson et al., 2001).  

There is an increasing number of elite exotic QPM inbreds being developed 

outside the USA. Therefore, characterization and selection for adaptation of these 

subtropical and tropical white and yellow QPM inbreds and a systematic introgression 

into temperate germplasm could enhance protein quality, increase genetic variability for 

quality, improve productivity, and be a source of valuable genes for abiotic and biotic 

stress resistance. Some of CIMMYT’s tropical and subtropical germplasm with 

intermediate and early maturity has desirable kernel quality characteristics and can 

significantly enhance the nutritional value of temperate maize germplasm for both food 

and feed purposes (Vasal, 2001).  Furthermore, QPM hybrids have been reported to be 

less susceptible to aflatoxin, a potent carcinogen that causes losses worth millions of 

dollars in the southern USA, than current commercial hybrids (Bhatnagar et al., 2003).  

Introgression of exotic germplasm into temperate adapted maize has been widely 
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emphasized as a method to expand genetic diversity of maize germplasm in the USA 

(Goodman et al., 2000). Despite the nutritional quality advantages and improved abiotic 

and biotic stress tolerance of exotic QPM, very little effort has been made to characterize 

and introgress exotic QPM germplasm into temperate U.S. maize germplasm. Major 

reasons for under-utilization of exotic germplasm, particularly QPM germplasm, are 

photoperiod sensitivity, poor standability, and low grain yield in comparison with 

temperate adapted germplasm (Bhatnagar et al., 2003).  Before incorporating exotic 

QPM germplasm into temperate areas, an initial evaluation of exotic germplasm is useful 

to determine their breeding potential (Geadelmann, 1984). Diallels between elite exotic 

and temperate QPM inbreds can help in introgression of useful quality traits from 

tropical high lysine maize into temperate germplasm will be to identify suitable parental 

inbreds that would combine well to make superior hybrids. Successful exploitation of 

heterosis, usually expressed as the superiority of F1 over some measure of performance 

of its parents, has been regarded as the primary factor for the success of modern 

commercial maize industry in the U.S. (Stuber, 1994b). Differences between the parents 

and their crosses are quantified as mid-parent or high-parent heterosis. Identifying 

heterotic groups and characterizing heterotic patterns among parents is perhaps one of 

the most costly and tedious activity in a maize breeding program.  A heterotic group has 

been defined as “a collection of germplasm that, when crossed with germplasm from an 

external group, tends to exhibit a higher degree of heterosis (on average) than when 

crossed with a member of its own group” (Lee, 1995).  

Information on agronomic performance, combining abilities, and heterotic 

relationships of elite subtropical and tropical QPM parents developed at CIMMYT and 

in South Africa with temperate inbreds adapted to southern USA environments will 

facilitate their incorporation and introgression.  Therefore, our objectives were to: (1) 

estimate GCA effects for grain yield and agronomic traits of QPM inbreds originated in 

subtropical (CIMMYT, Mexico and University of Natal, South Africa) and temperate 

(TAMU) breeding programs and (2) estimate SCA effects, and identify best hybrid 

combinations and possible heterotic relationships among these inbreds.  
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REVIEW OF LITERATURE 

 

Several authors have reviewed the dominant heterotic patterns prevalent in major 

maize production regions of the world (Wellhausen, 1978; Ron Parra and Hallauer, 

1997). Important and well-characterized heterotic patterns established over a period of 

extensive breeding history include the Reid Yellow Dent x Lancaster Sure Crop in the 

U.S. and European flint x U.S. dent in Europe. A step further in characterizing and 

classifying most of temperate maize in the U.S. based on varying regional breeding 

histories and heterotic patterns has given rise to several families and lineages (B73, 

Mo17, Oh43, C103) within the heterotic groups. In comparison, heterotic patterns in 

tropical maize are more diverse and only recently characterized between Tuxpeño and 

several other populations such as ETO composite, Suwan 1, Cateto, Coastal tropical 

flints, and Cuban flints (Wellhausen, 1978; Goodman, 1985; Hallauer et al., 1988) can 

help determine heterotic relationships among exotic and temperate QPM inbreds, which 

are at present relatively unknown, and identify the best hybrids for both production and 

breeding purposes. In the USA, more than 20 years ago after the discovery of o2 mutant 

effects, breeding programs converted normal inbreds and populations to their opaque-2 

soft counterparts (NTR1, NTR2, BSAA-o2, B73o2, SSSS-o2) (Mertz et al., 1964). After 

this initial effort, the interest in QPM or high lysine maize decreased and it has since 

remained low. To our knowledge, only Crow’s Hybrid Seed Company has continuously 

conducted a breeding program to improve high lysine maize. Texas A&M University has 

also maintained a breeding program to develop QPM inbreds and hybrids with normal 

seed appearance, competitive yield, and adaptation to southern USA (Betrán et al., 

2003c, 2003d, 2003e).  

The International Center for Maize and Wheat Improvement (CIMMYT) has 

developed QPM that has improved kernel quality characteristics over o2/o2 soft 

genotypes, by introducing modifier genes and selecting for a hard, vitreous endosperm in 

o2/o2 germplasm (Vasal, 2001). CIMMYT QPM populations, pools, inbreds, and 

hybrids adapted to subtropical and tropical environments are widely used in the 
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development of high lysine maize in Brazil, China, Ghana, India, and several Latin 

American countries (Vasal, 2001). The maize breeding program at the University of 

Natal, South Africa has developed high lysine white (e.g., Bo46W and Bo59W) and 

yellow inbreds (e.g., Do940y and Ho4664) that produce hybrids competitive in yield 

with normal hybrids and tolerant to diseases (Gevers and Lake, 1992). 

QPM germplasm, which are mostly tropical and subtropical in adaptation, are 

less adapted to temperate areas. Previous studies have shown that there is a significant 

yield gap between subtropical/tropical QPM and temperate adapted QPM hybrids, 

however white QPM hybrids in general are more competitive for yield in subtropical 

environments as compared to temperate environments (Bhatnagar et al., 2003). With 

increasing latitude and day length QPM hybrids tend to have more biomass, higher ear 

placements and higher grain moisture content at maturity.  Vasal (1993) in a 10-parent 

diallel study of tropical white QPM germplasm conducted in three environments in 

Mexico and USA reported similar results. Studies on combining ability of CIMMYT 

QPM lowland tropical and subtropical germplasm conducted in several environments 

(Mexico, Guatemala, Colombia, Philippines and U.S.) showed significant GCA effects 

for grain yield, plant height, days to silk and endosperm hardness (Vasal et al., 1993). 

SCA effects were non-significant for grain yield and endosperm hardness suggesting 

additive gene action for these traits. Similar results were reported by Beck et al. (1991). 

In contrast San Vincente et al. (1998) reported greater relative importance of non-

additive genetic effects than additive genetic effects (62% vs. 38%) for grain yield in 

tropical white populations. In a 10 parent diallel of five tropical late and 5 subtropical 

intermediate white endosperm QPM evaluated at eight locations significant GCA effects 

were observed for grain yield, endosperm hardness and tolerance to ear rot (Tolessa et 

al., 1999). Hybrids involving QPM lines CML 176, CML 142 and CML 186 showed 

high grain yields and GCA effects. High SCA effects were observed between tropical x 

subtropical hybrids for grain yield and endosperm hardness. Studies on combining 

ability of tropical QPM inbreds derived from five pools and populations (Pools 23Q, 

24Q, Pop.62, 63 and 64) showed on an average 14% higher grain yield and 60% more 



 

 

10 

tryptophan concentration in protein (Pixley and Bjarnason, 1993). Significant GCA 

effects were observed for grain yield, protein concentration in grain and tryptophan 

concentration in protein.  

 

MATERIALS AND METHODS 

 

Germplasm and environments 

Two separate diallel experiments for white and yellow QPM inbreds developed 

in three QPM breeding programs, viz., CIMMYT, University of Natal, and TAMU, were 

evaluated in the 1999 growing season (February to September) in five southern USA 

environments. Diallel crosses among the lines were made in 1998 summer at College 

Station, TX and 1999 winter at Homestead, FL.  Seeds from reciprocal crosses of the full 

diallel were bulked to form one set of hybrids because sufficient seed was not obtained 

for all the crosses. Twenty-one F1 crosses (Griffing’s method 4) among seven white 

QPM inbreds (Table 2.1), two commercial checks (Pioneer Brand P32H39 and Asgrow 

RX901W), and five experimental checks were evaluated at College Station, Weslaco, 

Castroville, Halfway, and Dumas, TX. Thirty-six F1 crosses (Griffing’s method 4) 

among nine yellow QPM inbreds (Table 2.1), four commercial checks, including Pioneer 

Brand hybrids P3223, P3394, and P32Y65 and DeKalb hybrid DK668, and eight 

experimental checks were evaluated at College Station, Corpus Christi, Granger, 

Wharton, and Dumas, TX. The characteristics of the environments and mean grain yield 

for both white and yellow diallels are described in Table 2.2. Standard cultural and 

agronomic practices generally used at all locations were applied. 

 

Field measurements 

Data were recorded on a plot basis for both white and yellow QPM diallel 

experiments on the following agronomic traits: grain yield (combine harvested grain 

weight expressed in Mg ha-1 and standardized to 155 g kg-1 moisture content), silking 

date (number of days from planting until 50% of the plants showing silks), plant height 
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(distance in cm from the ground to the top of tassel), ear height (distance in cm from the 

ground level to the main ear-bearing node), root lodging (% plants leaning at an angle 

greater than 30% from the vertical), stalk lodging (% plants with broken stalks at or 

below the main ear at maturity), grain moisture (g kg-1 moisture of grain at harvest), and 

test weight (recorded as g pint-1 by standard equipment and converted to kg m-3).   

 
 
Table 2.1. White and yellow maize inbreds involved in two diallel experiments 
evaluated in five southern USA environments during 1999.  
 

Parental line Source Adaptation 
White Inbreds 

CML 176  CIMMYT Subtropical 
CML 181 CIMMYT Subtropical 
CML 184     CIMMYT Subtropical 
TxX 124 Texas A&M Southern USA 
Tx807   Texas A&M Southern USA 
Tx811     Texas A&M Southern USA 
Bo59w     South Africa Subtropical 

Yellow Inbreds 
CML 190  CIMMYT Subtropical 
CML 193   CIMMYT Subtropical 
Tx802 Texas A&M Southern USA 
Tx814    Texas A&M Southern USA 
Tx818    Texas A&M Southern USA 
Tx820    Texas A&M Southern USA 
Do940y    South Africa Subtropical 
TxX 808 Texas A&M  Southern USA 
TxX 810   Texas A&M  Southern USA 

 

 

 

For white QPM hybrids, ear samples from competitive plants in a single 

replication per environment were collected at harvest time and used to measure the 

following kernel quality traits (Serna-Saldivar et al., 1991): 1000-kernel weight (in g), 

endosperm hardness (recorded as % of kernel weight removed using a tangential 

abrasive dehulling device (TADD) to remove the pericarp uniformly using 45 g samples 
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Table 2.2. Characteristics and mean grain yield for environments used to evaluate white and yellow QPM diallel 
hybrids and non-QPM checks in southern USA in 1999.  
 
 

Environments Code   Type of diallel
evaluated Latitude Longitude

 
Elevation

 
Plot area Water regime

   Grain yield
 White diallel

Grain yield 
 Yellow diallel

 
WESLACO, TX 

 
WE

 
White 

 
26o09’N

 
 97°59'W

m 
   22.5 

m2/plot 
11.85 

 
Irrigated 

Mg ha-1 
6.05 + 0.05 

Mg ha-1 
- 

CORPUS CHRISTI, TX CC Yellow 27o48’N  97°23'W    12.9 13.25 Rainfed - 3.82 + 0.09 
WHARTON,  TX WH Yellow 29o17’N  96°13'W    30.3 15.73 Rainfed - 6.03 + 0.06 
CASTROVILLE, TX CA White 29o21’N  98°52'W  228.2 14.26 Irrigated 4.98 + 0.09 - 
COLLEGE STATION, TX CS White & Yellow 30o37’N  96°20'W    96.0  9.95 Irrigated 4.92 + 0.18 5.96 + 0.09 
GRANGER, TX GR Yellow 30o43’N  97°26'W  172.4 15.00 Rainfed - 6.99 + 0.05 
HALFWAY, TX HA White 34o11’N 101°57'W 1071.0  9.60 Irrigated 3.70 + 0.26 - 
DUMAS, TX DU White & Yellow 35o51'N 101°58'W 1098.2 11.74 Rainfed 8.48 + 0.26 9.42 + 0.20 
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of whole kernels and dehulling in the TADD for 10 minutes); floaters (recorded as % 

kernels floating in a 1.275 g/cc sodium nitrate solution); pericarp removal (performed by 

cooking 25 g sample in a steam kettle containing 1% lime (calcium hydroxide) for 20 

minutes at boiling point, washing the samples and staining them with eosine and methyl 

blue solutions to differentiate between pericarp (blue-green) and endosperm (light pink). 

The samples were later rated on a scale of 1-5 (1 = complete removal and 5 = 100% 

pericarp retained) for the extent of pericarp removal. Endosperm hardness is related to 

the proportion of hard endosperm to soft endosperm and it is an important quality trait 

for the milling industry. Percent floaters and pericarp removal are related to endosperm 

hardness and cooking time for production of masa used in making tortilla and tortilla 

chips (Serna-Saldivar et al., 2001). 

 

Statistical analyses 

Both white and yellow diallel experiments were planted in 2-row plots following 

an alpha lattice experimental design with two replications per environment. Individual 

analyses of variance per environment and across environments were conducted using 

PROC GLM  (SAS Institute Inc., 1997). Hybrids were considered fixed effects, and 

environments and replications random effects. Significance of hybrid, GCA, and SCA 

mean squares were estimated with F tests using their interaction with the environment as 

error term.  General combining ability effects of the parents and SCA effects for the 

crosses as well as their mean squares at each environment and across environments were 

estimated following Griffing’s method 4 diallel analysis (Griffing, 1956) using a 

computer program originally written by Dr. S.G. Carmer (University of Illinois) and 

later modified and adapted by Dr. Hector Barreto at CIMMYT. 

Biplots were constructed for both white and yellow diallel crosses using mean 

grain yield across locations to visualize relationships among parental inbreds in hybrid 

combinations and identify possible heterotic associations among them. Since parental 

inbred per se were not included in the diallel analysis, mean grain yield of inbreds in 

hybrids was used as inbreds values for calculations. Biplots are commonly used to 
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analyze two-way data where rows and columns represent different experimental units 

(e.g., genotypes and environments, inbred A x Inbred B, etc.). In a diallel-cross data, 

both columns and rows represent the same parental inbreds, which are both an entry and 

a tester. Principal component scores (PC1 and PC2) were derived using PROC 

PRINCOMP (SAS Institute Inc., 1997), following methods described by Yan and Hunt 

(2002), and used to construct the biplot (Appendix A). A polygon was drawn connecting 

entries located furthest from the origin in each biplot. Subsequently, this polygon was 

divided into sectors by perpendiculars (A, B, C, and D) drawn from the origin to each 

side of the polygon. All testers and entries included in the same sector represent good 

hybrid combinations and potential heterotic groups for grain yield. The best hybrid in 

any sector is defined by the vertex entry and the tester that is located furthest from the 

origin.  SCA effects between entries and testers in any sector can be visualized by 

projecting an entry onto the vector of the tester or its extension.  

 

RESULTS AND DISCUSSION 

 

White hybrids 

Significant differences among hybrids across environments were observed for all 

traits (Table 2.3). Mean grain yield across environments was 5.62 Mg ha-1 for the 

hybrids, 5.70 Mg ha-1 for QPM hybrids, and 6.27 Mg ha-1 for non-QPM checks. 

Significant differences among the QPM crosses and non-QPM checks were observed for 

days to flowering, plant and ear height, and grain moisture.  QPM crosses, on average, 

flowered five days later (80.66 vs. 75.55 days), were taller (235.27 cm vs. 220.0 cm), 

had higher ear placement (98.92 cm vs. 80.38 cm), and higher grain moisture content 

(185.74 vs. 156.59 g kg-1) than non-QPM checks.   

Significant differences among diallel hybrids were observed for all traits, except 

grain moisture (Table 2.3). Significant differences among GCA effects were observed 

for all agronomic traits except grain yield, whereas SCA effects were significant for 

grain yield and stalk lodging. Hybrids x environment effects were significant for all 



 

    

 
15

Table 2.3.  A combined analysis of variance and means for grain yield and agronomic traits of white hybrids across five 
southern USA environments.  

 
Source of variation df  Mean squares 

 GY† SD PH EH RL SL GM 
  Mg ha-1 d cm cm % % g kg-1 
Environment      4 181.34** 5190.56** 125417.22** 55861.62** 5682.99** 7255.39** 289917.29** 
Reps/Env      5     4.25       0.41       259.43     118.91   206.78   140.66     1217.41 
Hybrids    27     4.30*     27.35**     1746.77**     966.58**   383.64*   200.69**     2506.21** 
        F1 diallel hybrids    20     3.24*     11.54**     1652.38**     812.00**   387.86*   177.34**     2152.14 
               GCA      6     1.18     31.72**     4810.64**   2373.22**   935.32*   281.97**     4983.92* 
               SCA    14     3.98**       2.90       304.76     141.23   152.66   131.98**       965.64 
        Checks      6     7.67     74.38**     1898.71**   1104.13**   421.99   306.91**     3906.18* 
        F1 diallel hybrids vs. checks      1     5.33     61.34**     2722.70**   3233.03**     69.11     30.44     1187.74 
Hybrids*Env   108     2.46**       2.91**       205.42**     145.94**   215.70**     69.54**     1209.47** 
        F1 diallel hybrids x Env     80     1.76       3.30**       183.61**     114.13**   204.31**     66.49*     1278.46** 
              GCA x Env     24     2.18*       5.16**       203.68**     106.06**   393.99**     64.08     1806.75** 
              SCA x Env     56     1.61       2.51**       173.55**     118.00**   122.96     67.66*     1043.01** 
        Checks x Env     24     4.75**       1.96*       213.81**     194.06**   282.49**     68.56*     1067.02** 
        F1 diallel hybrids vs. Checks x Env       4     1.77       0.57       393.87**     328.64**   868.92**     90.97       342.15 
Error   135     1.35       1.16         65.52       54.37     81.58     42.58       388.07 
Mean for all hybrids       5.62     80.39       236.28       98.16       7.19     10.79       184.42 
Mean for QPM hybrids       5.70     80.66       235.27       98.92       6.87     10.60       185.74 
Mean for non-QPM hybrids      6.27     75.55       220.00       80.38       3.19       5.93       156.59 
LSD (0.05)      1.03       0.95           5.03         6.52       8.95       5.50         20.53 
CV (%)      9.23       0.60           1.07         3.36     62.85     25.71           5.61 

 
*,** Significant at P < 0.05 and 0.01, respectively. 
† GY, grain yield; SD, silking date; PH, plant height; EH, ear height; RL, root lodging; SL, stalk lodging; GM, grain moisture.  
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Table 2.4.  A combined analysis of variance and means for kernel traits of white hybrids across five southern USA 
environments.  
 
 

  Mean squares 
Source of variation df     TW†   TKW   HD     F    PR 
      kg m-3       g    %     % scale 1-5 
Environment    4 13632.74** 16430.07** 286.95** 5742.65**   4.26** 
Hybrids   27   1279.61**   5419.77**   37.41**   985.68**   1.53** 
        F1 diallel hybrids   20   1280.24**   4278.03**   35.07** 1075.48**   1.18** 
               GCA     6   2921.32** 12466.18**   95.84** 2654.61**   3.46** 
               SCA   14     575.97**     770.21     9.12   398.72   0.21 
        Checks     6   1437.95**   8976.68**   33.43**   705.36**   2.56** 
        F1 diallel hybrids vs. checks     1     316.68   6913.37** 108.05**   871.49**   2.29* 
Hybrids*Env‡   108     208.69     618.10     5.17   213.11   0.25 
Means for all hybrids      754.31     284.04   40.01     44.84   3.88 
Means QPM crosses      753.02     281.84   40.09     45.34   3.85 
Means non-QPM checks      772.33     312.61   38.87     38.40   4.22 
LSD (0.05)        18.11       31.17     2.85     18.30   0.63 
CV (%)   1.92         8.75     5.68     32.56 12.89 

 
*,** Significant at P < 0.05 and 0.01, respectively.  
† TW, test weight; TKW, 1000-kernel weight; HD, endosperm hardness; F, floaters; PR, pericarp removal (1 = complete removal and 5 = 100% 
pericarp retained). 
‡ Hybrids*Env was used as the error term to estimate the significances of all the F tests.    
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Table 2.5. General combining ability effects of seven white inbreds for grain yield (per environment and across 
environments), agronomic and kernel traits across five southern USA environments. 
 

Inbreds Grain yield 
 CS†  WE CA HA DU Across
 -----------------------Mg ha-1 --------------------- 

CML 176   0.44 -0.09  0.32 -0.23  0.63  0.21 
CML 181 -0.17 -0.60** -0.84* -0.05  0.75 -0.19 
CML 184  -0.09 -0.19  0.41  0.01 -0.03  0.01 
TxX124  0.22  0.11  0.47  0.07  0.15  0.19 
Tx807   -0.23  0.54**  0.43 -0.17 -1.01 -0.09 
Tx811     -0.51  0.47** -0.08  0.07 -0.03 -0.03 
Bo59w      0.34 -0.24 -0.70*  0.29 -0.45 -0.13 

 

† CS, College Station; WE, Weslaco; CA, Castroville; DU, Dumas; HA Halfway. 

‡ SD, silking date; PH, plant height; EH, ear height; RL, root lodging; SL, stalk lodging; GM, grain moisture; TW, test weight; TKW, 1000-kernel 

weight; HD, endosperm hardness; F, floaters; PR, pericarp removal (1 = complete removal and 5 = 100% pericarp retained). 

 

Table 2.5. Continued 
SD‡ PH EH RL SL GM TW TKW HD F PR 

           
d cm      cm % % g kg-1 kg m-3 g    %     % scale 1-5 

 0.85*    7.05**    2.06  8.08* -0.89  20.1*  17.92** -17.91*  0.16   -6.88  0.49** 
 0.85*    1.13    6.35** -4.46  0.37 -16.7* -10.68**  22.85**  1.84**  15.16** -0.07 
-0.95*   -7.22** -10.24**  0.90 -2.64**    1.8    5.14    9.53 -0.40   -1.20  0.27* 
 0.05    9.16**    8.73** -5.08 -1.37   -0.1    8.04*  20.01* -3.98** -13.00** -0.25* 
-0.17 -17.15**   -5.88** -3.00 -1.64*   -0.5   -1.98 -36.93** -0.28   -6.52 -0.63** 
-1.09*   -2.40   -4.03* -0.78  1.98*   -6.2   -9.76* -10.83  1.44*  12.12** -0.01 
 0.49    9.43**    3.03  4.35  4.19**    2.5   -8.70*  13.17  1.20*    0.32  0.23 
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agronomic traits. GCA x environment effect was significant (P < 0.05) for grain yield 

and highly significant for all other agronomic traits (P < 0.01) except stalk lodging. SCA 

x environment effects were significant for silking date, plant height, ear height, and grain 

moisture. For quality traits, all GCA effects were significant whereas SCA effects were 

non-significant for all traits except test weight (Table 2.4).  

GCA effects for grain yield showed significant variation between and within the 

three different groups of parental lines (CIMMYT, TAMU and SA), in different 

environments (Table 2.5). Weslaco and Castroville were the only two environments with 

significant GCA effects. The highest GCA effect for grain yield across environments 

was observed for CML176 (0.21 Mg ha-1), but this was not significant. CML176 hybrids 

have shown high yield potential and low aflatoxin accumulation in Texas environments 

in previous studies (Betrán et al., 2002; Bhatnagar et al., 2003) and performed 

consistently well in trials conducted by CIMMYT across 29 locations in Latin America, 

Asia, and Africa (CIMMYT, 1999). CML176 and CML181 produced tall and late 

hybrids. CML176 has also an undesirable positive GCA effect for root lodging and an 

off-white grain color (data not shown).  CML184 had negative GCA effects for days to 

flowering, and plant and ear height, which indicates that it is more suited for temperate 

environments than CML176 and CML181. Inbreds Tx807 and Tx811 had significant 

negative GCA effects for days to flowering, plant and ear height across environments 

indicating early maturity, shorter plants and lower ear placements than exotic QPM 

lines. Inbred Bo59w had significant GCA effects for stalk lodging and plant height.  

Inbred CML176 had the most desirable significant GCA effect for test weight, 

CML181 for 1000-kernel weight, TxX124 for endosperm hardness and floaters, and 

Tx807 for pericarp removal (Table 2.5). Inbred TxX124 had the best combination of 

GCA effects for quality traits showing high GCA effects for test weight and 1000-kernel 

weight together with low GCA effects for endosperm hardness, floaters, and pericarp 

removal.  

The top five performing crosses having high positive significant SCA effects and 

high grain yields were Tx811 X CML181 (SCA = 1.01**, 6.53 Mg ha-1), Tx807 X  
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CML181 (0.87**, 6.30 Mg ha-1), Bo59W X CML184 (0.71**, 6.28 Mg ha-1), TxX124 X 

CML176 (0.69*, 6.82 Mg ha-1), and Bo59W X CML176 (0.41*, 6.18 Mg ha-1). The first 

two principal component axes in the biplot for mean grain yield of seven inbreds in entry 

x tester hybrids across environments explained 42.6 % and 35.6 % of the total variation, 

respectively (Fig. 2.1). Entries Tx811, CML176, Bo59W, and CML181, which are 

Fig. 2.1. Biplot for grain yield and putative heterotic relationships between seven 
white parental inbreds in hybrid combinations (entries   and testers   ) across five 
southern USA environments. 
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located furthest from the origin, defined a polygon that was divided into four sectors by 

perpendiculars A, B, C, and D. In sector AB, the best hybrid combination was the vertex 

entry Tx811 x tester CML181.  Another good hybrid in sector AB was Tx807 x 

CML181. In sector BC, the best hybrid was the vertex entry CML176 x Bo59W. Other 

good hybrids in this sector were CML176 x TxX124 and CML184 x Bo59W. Sectors 

CD and DA showed similar responses as observed for sectors AB and BC, respectively. 

Potential heterotic groups for southern USA could involve crosses between Texas 

inbreds (Tx811 and Tx807) and subtropical and tropical QPM inbreds (CML181, 

CML176, and CML184), and between CIMMYT lines CML176 and CML184, and SA 

inbred Bo59W.  

 

Yellow hybrids 

Significant differences among hybrids across environments were observed for all 

traits except root lodging (Table 2.6). Mean grain yield across environments was 6.44 

Mg ha-1 for all hybrids and 6.25 Mg ha-1 for QPM hybrids, which was significantly 

lower than that for non-QPM crosses (8.18 Mg ha-1). QPM hybrids across environments 

flowered approximately 3 days later (81.41 days vs. 78.55 days) and had higher grain 

moisture content (169.61 g kg-1 vs. 143.89 g kg-1) than non-QPM hybrids.  Vasal et al. 

(1993) found similar responses of subtropical yellow QPM populations for days to 

flowering and ear height in USA environments.  

GCA effects were significant for all traits except grain yield and root lodging. 

Highly significant differences for SCA effects were observed for grain yield, plant 

height, and test weight.  GCA x environment effects were highly significant for all traits, 

whereas SCA x environment effects were significant for all traits, except days to 

flowering, root lodging, and test weight.  

GCA effects for all yellow QPM inbreds varied significantly across 

environments (Table 2.7).  Inbreds CML190 and CML193 had negative GCA effects for 

grain yield in most environments except CML190 at Granger, indicating their lack of 

adaptation to USA environments. Texas inbreds had positive GCA effects in most  
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Table 2.6. A combined analysis of variance and means for grain yield and agronomic traits of yellow hybrids across five 
southern USA environments.  
 
 

Source of variation df Mean squares 
  GY† SD PH EH RL SL GM TW 
  Mg ha-1 d cm cm % % g kg-1 kg m-3 
Environment    4 327.28** 4986.93** 155869.58** 74939.46** 24007.74** 1275.35** 169403.90** 156000.27**
Reps/Env    5     1.15       1.16       520.96     122.42     202.49   150.98     2011.56     1560.23 
Hybrids   39     7.35**     26.41**       742.32**     270.38**     164.74   119.44*     2368.98**     2136.63**
        F1 diallel hybrids   35     3.38**     18.35**       771.61**     238.51**     156.12   122.09*     1943.58**     2176.38**
               GCA    8     4.46     67.76**     2172.83**     519.93*     468.14   325.90*     6718.57**     4750.27* 
               SCA   27     3.10**       3.72       356.39**     155.16*       64.34     61.61       499.96     1977.62**
        Checks    3   11.87**     30.96**       396.67     253.97     108.20     11.52*         96.13       311.38 
        F1 diallel hybrids vs. checks    1 132.55**   294.69**       754.84   1434.24     636.38   350.31   24076.69*     6250.88 
Hybrids x Env 156     1.74**       5.21**       279.74**     127.61**     145.98**     71.45**       731.25**     1068.31**
        F1 diallel hybrids x Env 140     1.70**       5.18**       236.26**     118.90**     135.65**     77.87**       723.91**     1086.53**
              GCA x Env   32     2.41**     11.74**       499.61**     227.99**     386.60**   143.52**     1602.95**     1782.18**
              SCA x Env 108     1.48*       3.25       158.19**       86.51*       61.13     58.45**       470.65**       740.37 
        Checks x Env   12     0.75       3.40       168.79       74.11     152.52**       2.73         75.55       642.64 
        F1 diallel hybrids vs. Checks x Env    4     6.14**     11.62**     2134.44**     594.64**     487.87**     52.82     2955.54**     1707.65* 
Error 195     1.08       2.03       100.90       66.31       62.03     34.38       259.08       703.93 
Mean for all hybrids       6.44     81.13       227.19       88.26         8.71       4.45       167.04       746.59 
Mean for QPM hybrids      6.25     81.41       227.00       88.90         9.13       4.76       169.61       745.30 
Mean for  non-QPM hybrids      8.18     78.55       228.93       82.59         4.93       1.64       143.89       758.04 
LSD (0.05)      1.15       1.26           8.19         6.37         5.17       4.09         12.22         24.07 
CV (%)      5.24       0.50           2.98         4.63       78.81     96.46           2.29           1.55 

 

† GY, grain yield; SD, silking date; PH, plant height; EH, ear height; RL, root lodging; SL, stalk lodging; GM, grain moisture; and TW, test weight.  

*,** Significant at P < 0.05 and 0.01, respectively. 
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Table 2.7. General combining ability effects of nine yellow inbreds for grain yield (per environment and across) and 
agronomic traits across five southern USA environments. 
 
 

Inbreds Grain yield  
 CS† CC GR WH DU Across

SD‡    PH  EH RL SL GM TW 

 -------------------------- Mg ha-1 -------------------------- d    cm   cm % % g kg-1 kg m-3 
CML 190    -0.41 -0.01  0.61* -0.67** -0.27 -0.15 -0.43 10.31**  2.24  1.91  1.80    2.33  21.24** 
CML 193   -0.38 -0.41  0.54* -0.33 -0.27 -0.38  1.19*  -1.78 -0.89  4.34 -0.30    5.93  10.81 
Tx802   0.40  0.51*  0.51*  0.17 -0.02  0.31 -0.50  -4.12 -0.83 -0.90 -1.41    6.84 -12.23* 
Tx814  0.28  0.38  0.07  0.43* -0.22  0.19 -0.40  -1.01 -1.65 -0.29 -2.83  10.53* -11.71* 
Tx818 -0.22 -0.85** -0.21  0.47* -0.87 -0.34 -0.37   1.41  2.51 -3.35  3.22*   -6.41    2.70 
Tx820     0.37  0.12  0.66* -0.14  0.21  0.24 -0.70   5.25  3.67 -3.11  0.78    6.10    1.29 
Do940y     0.34  0.41 -0.49*  0.16 -0.17  0.05  1.96**   2.01  1.98  2.72 -1.69   -1.13  11.71* 
TxX 808 -0.26 -0.04 -0.07  0.36*  0.66  0.13 -1.08*  -8.71** -4.46* -1.28  2.46 -22.21** -13.13* 
TxX 810   -0.12 -0.12 -0.54* -0.44*  0.95 -0.06  0.33  -3.36 -2.58 -0.04 -2.03   -1.98 -10.41 

 

† CS, College Station; CC, Corpus Christi; GR, Granger; WH, Wharton; and DU, Dumas. 

‡ SD, silking date; PH, plant height; EH, ear height; RL, root lodging; SL, stalk lodging; GM, grain moisture; and TW, test weight. 
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environments except Tx818, which showed significant negative GCA effects at Corpus 

Christi and Dumas. In general, Tx802, Tx820, and Tx814 showed high GCA effects for 

grain yield. Tx802 showed consistently high positive GCA effects for grain yield at most 

environments.  

Fig. 2.2. Biplot for grain yield and putative heterotic relationships between nine 
yellow parental inbreds in hybrid combinations (entries    and testers   ) across 
five southern USA environments. 

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Tx802 

Tx820 TxX810 

TxX808 

CML193 Tx818 

CML193 

TxX808 

TxX810 
Tx818 

Tx820 
CML 190 

Tx 814 

Tx814 
CML190 

PC 1 (47.3%) 

PC
 2

 (2
2.

4%
) 

Do940y 

Tx802 

A 

B 

C 

D 

Do940y 



 

 

24

CIMMYT inbreds showed variable GCA effects for agronomic traits across 

environments (Table 2.7). CML190 and Do940y had significant positive GCA effects 

for test weight and represent potential source germplasm to increase the test weight of 

Texas inbreds, such as Tx802 and Tx814 that had negative GCA effects for this trait. 

Texas inbreds, in general, had significant negative GCA effects for days to flowering 

(TxX808 and Tx820), plant height (Tx802 and TxX808), root lodging (Tx818 and 

Tx820), stalk lodging (Tx814), and grain moisture (TxX808). Do940y, a late maturing 

inbred, had significant positive GCA effect for days to flowering. The top three hybrid 

combinations having high positive SCA effects and high grain yields involved crosses 

between South African and Texas inbreds [Do940y X Tx802 (0.88**, 7.51 Mg ha-1), 

Do940y X Tx818 (0.75**, 6.69 Mg ha-1), and Do940y X Tx820 (0.66**, 7.24 Mg ha-1)]. 

The first two principal component axes in the biplot for mean grain yield for the nine 

yellow inbreds in entry x tester hybrids across environments explained 47.3 % and 22.4 

% of the total variation, respectively (Fig. 2.2).  Inbreds Do940y, Tx802, Tx820, Tx818, 

and CML193 defined a polygon that was divided into four sectors by the perpendiculars 

A, B, C, and D drawn to the sides of the polygon. In sector AB, the vertex entry Do940y 

showed a high positive response in hybrids with testers Tx802, Tx820, Tx818, and 

CML190. Sector BC showed similar relationships. The vertex entry CML193 in sector 

DA did not show any significantly high positive response with tester Tx814 that was 

located very close to the origin of the biplot.  Inbred TxX808 in sector DA and TxX810 

in sector AB, both derived from crosses between TAMU and SA inbreds, showed 

variable response with Texas lines. Two potential heterotic groups were identified in the 

biplot for yellow inbreds. The first group included Texas inbreds Tx802, Tx820, and 

Tx818, which combined well with SA inbred Do940y, and the second group included 

Do940y and CML190.  

Successful breeding approaches are a direct consequence of the gene action 

prevalent in the breeding population under consideration. The relative importance of 

additive vs. non-additive effects for grain yield in diallel crosses is an indication of the 

type of gene action (Baker, 1978).  In the two diallels reported here, the GCA effects for 
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grain yield across environments were not significant whereas SCA effects were highly 

significant (Table 2.3 and 2.6). An opposite trend was observed for quality and 

agronomic traits where GCA effects across environments were more important than 

SCA effects (Table 2.4). The type of more prevalent gene action for grain yield has been 

variable depending on the parents and environments under consideration in other studies. 

San Vincente et al. (1998) reported greater relative importance of non-additive genetic 

effects than additive genetic effects for grain yield in diallel crosses among improved 

tropical white endosperm populations. In contrast, additive genetic effects were 

prevalent in CIMMYT’s lowland tropical late and subtropical QPM germplasm (Vasal et 

al., 1993) and subtropical and temperate intermediate maturity germplasm (Beck et al., 

1991).   

The genetic interpretation of a diallel with a reduced number of parental inbreds, 

such as the ones in this study, can be biased by the lack of independent distribution of 

genes in the parental lines (Baker, 1978).  Therefore, combining abilities reported here 

could be biased by the correlation of gene frequencies and should be interpreted with 

caution. Despite this limitation, these diallels were useful to determine which QPM 

inbreds had the most desirable expression of relevant traits and to estimate the heterotic 

relationship among them. The biplot analysis helped visualize graphically the best 

hybrid combinations and the relationship among the parental inbreds. A potential 

constraint of the biplot method is that it may not explain all of the variation (Yan and 

Hunt, 2002). The amount of variation explained by the two principal components was 

greater than 72% in both cases.  In addition, the conclusions drawn from biplots were 

verified with the results from the conventional Griffing’s analysis.  

Both the white and yellow lines used in these diallels varied in adaptation (Table 

2.1).  CIMMYT and South African lines were mostly tropical and subtropical in 

adaptation whereas TAMU lines were more temperate adapted. The testing 

environments ranged in latitude from 26o N to 35o N representing a transition between 

subtropical and temperate areas of maize cultivation (Table 2.2). With increasing latitude 

and day length, QPM hybrids of subtropical lines tended to be late maturing with more 
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biomass, higher ear placement, and higher grain moisture content, as reflected by the 

GCA effects (Tables 2.5 and 2.7). Previous studies have shown that white QPM hybrids, 

in general, are more competitive for yield in subtropical environments as compared with 

temperate environments (Bhatnagar et al., 2003). Vasal (1993), in a 10-parent diallel 

study of tropical white QPM germplasm conducted in three environments in Mexico and 

USA, reported similar results. Overall, QPM hybrids yielded less than commercial 

checks. The gap in grain yield was greater in QPM yellow hybrids. Breeding efforts to 

enhance QPM hybrid performance in the USA should be devoted to increasing grain 

yield, standability, test weight, 1000-kernel weight, and to reducing ear placement, plant 

height, maturity, and grain moisture.  

The classification of inbreds into heterotic groups facilitates the exploitation of 

heterosis in maize, which can contribute to hybrid performance.  Vasal et al. (1993) 

reported information on the combining ability and heterotic patterns of CIMMYT’s 

subtropical QPM germplasm. Recently, CIMMYT started classifying QPM inbreds into 

heterotic groups (HG “A” and HG “B”) using two groups of testers (Cordova et al., 

2003). Similar efforts have been undertaken in other breeding programs (e.g., TAMU). 

The biplot analysis in both white and yellow diallels suggests positive heterotic response 

between temperate and subtropical QPM inbreds that have been used as testers in these 

programs (Fig. 2.1 and 2.2). Therefore, inbreds from diverse backgrounds and adaptation 

can be used for hybrid identification and incorporation of exotic germplasm into 

temperate adapted inbreds for southern U.S. environments. Based on these results, it 

seems plausible to characterize and classify QPM inbreds into heterotic groups and to 

determine the relationship among groups used in temperate and exotic QPM lines. In 

these diallels, the best hybrids were formed between parental inbreds originating from 

different breeding programs, which suggest that these inbreds can produce high yielding 

hybrids. In future line recycling and in the development of source breeding populations, 

crosses among QPM lines from the same group may enhance the heterotic response as it 

has been observed in yellow dent maize.  
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The information obtained from these experiments can facilitate the identification 

of hybrids that combine quality traits, such as endosperm quality and disease resistance, 

from some inbreds with the adaptation and yield potential of other inbreds. For example, 

in the white hybrids, a breeding objective would be to combine endosperm hardness 

from TxX124, high test weight from CML176, low grain moisture from CML181, and 

reduced plant height and lodging, and early maturity from Tx807. In yellow hybrids, it 

would be desirable to combine high test weight from CML190, high yield from Tx802, 

and early maturity, low grain moisture, and low plant height from TxX808. A trait of 

particular interest in QPM is endosperm hardness because it is associated with large 

flaking grits and low dry matter losses in alkaline processing of maize, and also with 

lower incidence of insect and pest damage and grain aflatoxin at maturity (Betrán et al., 

2002). Several modifier genes with additive gene action are involved in endosperm 

hardness in the opaque 2 background of QPM (Wessel-Beaver et al., 1985; Vasal et al., 

1993).  

Superior QPM hybrids are extremely valuable for the white-maize food industry 

and yellow maize for feed in animal nutrition. In the USA, where almost 55% of corn 

produced is utilized as feed for swine and poultry, development of well-adapted QPM 

germplasm will have tremendous value for the feeding industry (Johnson et al., 2001). 

We concluded that the nutritional value of maize for both food and feed would be 

significantly enhanced by appropriate breeding strategies that emphasize the 

combination of desirable traits from exotic and temperate QPM lines.  
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CHAPTER III 

 

AGRONOMIC, AFLATOXIN AND QUALITY ANALYSIS OF HIGH LYSINE 

MAIZE INBREDS AND TESTCROSSES 

 

OVERVIEW 

 

Quality Protein Maize (QPM) with the opaque-2 (o2o2) mutation is nutritionally 

superior to normal maize due to increased concentrations of essential amino acids lysine 

and tryptophan. QPM has hard endosperm texture due to the presence of modifier genes 

in the opaque-2 genetic background that make the maize kernel less susceptible to 

mechanical and biological damage. Texas A&M has developed a wide range of QPM 

inbreds by selecting and recycling several temperate high lysine inbreds and subtropical 

and tropical inbreds, populations and pools from other breeding programs (CIMMYT, 

México and University of Natal, South Africa). Agronomic evaluations of 48 inbreds 

derived from CIMMYT populations (65, 66, 69, 70) and pools (26, 33 and 34) in 

testcross combinations with Tx804 and checks were conducted across seven Texas 

locations. QPM inbreds in testcrosses have similar flowering dates, plant height, ear 

height and test weights but lower grain yield than normal checks. Testcrosses derived 

from QPM inbreds temperate x tropical high oil and populations 33 and 34 had 

comparable grain moisture content to normal checks. Repeatabilities on genotypic mean 

basis for grain yield were high in all seven environments (range from 0.73 to 0.92) and 

across all environments (0.67). The same testcrosses were evaluated for aflatoxin 

accumulation in a separate experiment in three environments in south and central Texas. 

Population 69 inbreds developed at CIMMYT that have a flinty orange texture were 

least susceptible to aflatoxin accumulation both in inbreds and testcrosses at all 

locations. Aflatoxin in testcrosses was positively correlated with endosperm texture 

(0.67) and kernel integrity (0.60) but negatively correlated with grain yield (-0.30) and 

silking date (-0.50). Quality evaluations of QPM germplasm to determine the levels of 
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amino acids tryptophan and methionine revealed negative correlations of tryptophan 

levels with endosperm translucence, a measure of kernel hardness.  On average, 

germplasm containing the o2/o2 mutation had lower methionine levels than O2/O2 

germplasm regardless of kernel hardness.  Evaluations of inbreds testcrossed to Tx804 

revealed a correlation of the amino acid levels of inbred lines with those of the hybrids, 

although the predictive value was low for methionine (R2 = 0.13)  and tryptophan (R2 = 

0.27).  Selection for hard endosperm texture negatively impacts the nutritional value of 

QPM due to reduction in both tryptophan and methionine levels. Simultaneous selection 

for both these amino acids and hard endosperm types may enhance the nutritional value 

of QPM.  

 

INTRODUCTION 

 

Maize is the primary source of energy in animal rations in the USA and is being 

increasingly utilized as feed for animals in many developing countries, especially parts 

of Asia where total consumption of maize as feed exceeds 50% of total production 

(FAO, 2000). This spurt in maize consumption as animal feed is linked to increased 

consumption of meat in the developing countries which has increased almost three times 

as much as it did in the developed world in the last decade (Pinstrup-Andersen, et al., 

1999). Most of this increased trend in meat consumption has occurred in Asia (Delgado 

et al., 1999).  However, nutritional quality of maize protein is poor because of 

deficiencies of the essential amino acids lysine, tryptophan, and methionine (Glover and 

Mertz, 1987; Watson, 1988). Main reasons for poor quality of normal maize is the 

relatively high concentrations of prolamines or zeins storage proteins (50-60%) which 

are almost devoid of lysine and tryptophan, as compared to other storage proteins 

albumins (3%), globulins (3%) and glutelins (30-45%) that have a relatively higher 

lysine content of 5-6%, 5-8% and 4-5%, respectively (Paulis et al., 1975; Sodek and 

Wilson, 1971; Wilson, 1991). Lysine is the first limiting amino acid followed by 

tryptophan and threonine in the diets of swine and humans (Shimada and Cline, 1974). 
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Lysine could also be limiting in poultry diet if protein sources other than soybean meal 

are used (Johnson et al., 2001). Increasing the levels of these nutritionally limiting amino 

acids is an important objective of plant breeding programs. Discovery of the opaque-2 

gene (Mertz et al., 1964) and subsequent efforts by CIMMYT to develop maize inbreds 

having the opaque-2 gene along with modifier genes that confer hard vitreous kernel 

texture and simultaneously selecting for superior agronomic characteristics have led to 

the development of Quality Protein Maize (QPM). Texas A&M has an extensive QPM 

hybrid and inbred line development program. Currently several high lysine inbreds 

having different levels of endosperm hardness and adaptation to temperate Southern U.S. 

growing conditions have been developed. Main approaches used for development of 

QPM inbreds are selection within the CIMMYT germplasm, conversion of standard U.S. 

inbreds to QPM, and recycling of QPM inbreds. Major emphasis of the program is 

adaptation to temperate U.S. conditions, normal kernel phenotype, increased grain yield, 

and aflatoxin resistance.  

Preharvest aflatoxin contamination of corn is a chronic problem in southern U.S.  

and causes high economic losses annually to maize growers. Aflatoxins are also a 

serious risk to human and animal health causing liver cancer (Castegnaro and McGregor, 

1998). There is immense variability in response and aflatoxin accumulation of maize 

hybrids, inbreds and cultivars but to date there has been no line reported to be 

completely resistance to aflatoxin under conditions conducive for disease. Limiting 

factors in breeding for aflatoxin resistance are the spatial and temporal variation in 

aflatoxin accumulation that requires inoculation and a high number of replications, the 

lack of a reliable and inexpensive screening methodology, and the low metabolic activity 

of corn plants after physiological maturity (Payne, 1992).   

In general, hybrids or cultivars that are well adapted to the region of cultivation, 

having good husk cover and resistance to insects accumulate less aflatoxin (Payne, 1992; 

Betran and Isakeit, 2004). Since natural infection is undependable and variable, 

successful screening is dependent on reliable inoculation methods that significantly 

differentiate among the aflatoxin accumulation of testing genotypes. Several artificial 
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methods, including pinbar inoculation (inoculating kernels through the husk), non 

wounding silk channel inoculation (Zummo and Scott, 1989), and infestation of corn 

ears with insect larvae infected with A. flavus conidia, have been tried with varying 

degrees of success (Tucker et al., 1986; Windham and Williams, 1998).  

Development of QPM at CIMMYT, México involved selection of genotypes 

resistant to ear rot and modified kernel texture while simultaneously improving 

agronomic characteristics. QPM germplasm represents a potential source of resistance to 

aflatoxin. White and yellow QPM hybrids have better husk cover, less ear rot, and less 

aflatoxin as compared with non-QPM commercial checks (Bhatnagar et al., 2003). The 

Texas A&M University maize breeding program has developed QPM inbreds adapted to 

temperate Southern U.S. growing conditions by selecting within CIMMYT QPM 

populations. The first set of inbreds with different backgrounds and origins is now 

available for testing for aflatoxin accumulation.  

We had three major objectives in this study utilizing inbred lines developed from 

different QPM temperate adapted populations and their testcrosses: 

(1) to evaluate testcrosses for grain yield and agronomic performance across Texas 

locations,  

(2) to estimate aflatoxin accumulation and expression of associated traits, 

repeatibilities and correlations of these traits, and relationship between inbred 

lines and their testcrosses for aflatoxin accumulation, 

(3) to characterize the variation in amino acids (tryptophan and methionine), effect 

of endosperm modification on tryptophan concentration, and estimate the 

relationship between inbred lines and their testcrosses for tryptophan and 

methionine levels. 
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REVIEW OF LITERATURE 

 

Agronomic evaluation 

 

Development and agronomic performance of quality protein maize 

International Center for Maize and Wheat Improvement (CIMMYT), México in 

the early 1980’s started a simultaneous conversion and population improvement program 

with multiple trait selection to accumulate modifiers, maintain improved protein quality, 

improved yield and resistance to ear rots and other agronomic traits. After several years 

of backcrossing-cum-recurrent selection most of CIMMYT’s subtropical and tropical 

pools and populations were converted to QPM that had yields comparable to the normal 

commercial maize varieties. Later CIMMYT initiated a hybrid development program in 

1985 with testing at locations worldwide in collaboration with National Agricultural 

Research Programs. Currently, CIMMYT is testing QPM hybrids, populations and 

inbreds in about 40 countries around the world. Excellent hybrids in both white and 

yellow QPM have been tested and released in many Latin American, African and Asian 

countries in the last three years. In 1999, CIMMYT evaluated superior subtropical and 

tropical QPM hybrids in more than 30 nations around the world. Results show that some 

of these hybrids had a yield advantage of one ton or more per hectare over the best 

normal maize hybrids (CIMMYT progress report, 1999). Results from Mexico showed 

the tropical x subtropical three-way cross hybrid [CML142 X CML150] X CML176 as 

one of the best hybrids yielding 8% more than the best normal commercial check. 

Another tropical white hybrid CML142 X CML146 in trials across 29 locations in Latin 

America, Asia and Africa yielded 6.7 t ha-1 in comparison to the normal commercial 

check that yielded 5.6 t ha-1. Some yellow tropical hybrids with parents CML161 and 

CML172 have yielded consistently better over the normal commercial checks at 

locations worldwide (CIMMYT progress report, 1999). In 2003 CIMMYT has identified 

three promising QPM hybrids ([CML144 x CML159] x CML182, [CML144 x 

CML159] x CML181, and [CML140 x CML146] x CML143) for the mid-altitude zones 
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of Ethiopia, a maize streak virus resistant hybrid [CML144 x CML159] x CML176 for 

southern Africa, a new QPM hybrid [CML161 x CML493] for Vietnam, and released 

two new QPM hybrids in India. CIMMYT also released in 2003 two yellow and two 

white QPM inbreds of which CML491 was reported to have excellent GCA for yield, 

protein quality, and ear rot and foliar disease resistance (CIMMYT progress report, 

2003).  

Texas A&M in the early 1990’s started evaluation of four white QPM hybrids 

selected from CIMMYT lines and some U.S. modified QPM lines. QPM hybrids were 

reported to out yield the best non-QPM commercial hybrid and in general had earlier 

flowering, excellent standability, good disease and insect resistance, and grain quality 

(Bockholt and Rooney, 1992). In the same study, yellow QPM hybrid (Tx802 x Tx814) 

was reported to have earlier silking, better standability and a yield of 0.13 tonnes more 

than the non QPM hybrid Conlee 202, however, the QPM hybrid had lower test weight 

and smaller seed size in comparison to the check hybrid. Bhatnagar et al. (2003) in 

evaluation of CIMMYT subtropical and tropical white and yellow QPM hybrids along 

with best commercial non QPM checks reported QPM hybrids to have bigger tassels, 

higher ear placements, longer flowering dates and in general lower yields across several 

Texas environments than non-QPM checks.  In the same study both white and yellow 

QPM hybrids were significantly less susceptible to aflatoxin than non-QPM checks and 

had superior nutritional quality measured as average lysine per protein content (41.73 g 

kg-1 for white QPM vs. 34.13 g kg-1 for commercial checks and 41.91 g kg-1 for yellow 

QPM hybrids vs. 29.71 g kg-1 for non-QPM hybrids).  

Most of the commercially grown temperate normal maize is represented by only 

a few elite lines (B14, B37, B73, B84, C103, Oh43, Mo17, and H99) (Troyer et al., 

1988; Lu and Bernardo, 2001) that has resulted in limited genetic diversity mainly 

because of the recycling of elite inbreds by seed companies (Hallauer, 1990; Troyer, 

1996). Introgression of desirable traits from exotic germplasm while practicing selection 

for adaptation to temperate growing conditions has been advocated to increase genetic 

diversity of temperate maize (Wellhausen, 1965; Michelini and Hallauer, 1993). Use of 
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tropical and subtropical germplasm has shown promise for introgression of desirable 

traits for quality and disease resistance that can be effectively utilized to broaden the 

genetic base of temperate maize and improve productivity (Goodman et al., 2000). 

Testcross evaluations of semiexotic inbreds derived from Latin American lines have 

shown lower grain yields in comparison to commercial hybrids but were competitive in 

grain moisture and lodging resistance (Tarter et al., 2003).  

Aflatoxin evaluation 

 

Aflatoxin contamination of maize grain 

Aflatoxins are produced by the fungi Aspergillus flavus (B1 and B2) and 

Aspergillus parasiticus (G1, G2 and B1, B2). Both species are extremely diverse 

genetically and comprise large numbers of vegetative compatibility groups (VCGs), 

even within a restricted geographic area (Bayman and Cotty, 1991; Horn and Greene, 

1995). Aflatoxins are highly toxic to livestock, poultry, and humans (Payne, 1998), 

particularly B1, which is the most carcinogenic and common aflatoxin in maize 

production in the U.S. and other parts of the world (Cullen and Newberne, 1994). 

Contamination of grain with mycotoxins causes accumulation of secondary metabolites 

that, if present in high concentrations, are extremely toxic resulting in death in humans, 

poultry and livestock. In lower concentrations it causes slow weight gain, or unthiftiness 

in animals and cancer of liver and esophagus in humans (Cheeke and Shull, 1985). In the 

U.S., aflatoxin contamination of maize has been reported in 23 states and is widely 

prevalent in the southeastern states where it has become a chronic problem (Payne, 

1992; Widstrom, 1996). As per the standard set by the U.S. Food and Drug 

Administration (2000), aflatoxin contamination of maize grain intended for feed for 

immature livestock, dairy animals and food for humans should be less than 20 ng g-1, for 

maize intended for feeding poultry less than 100 ng g-1, for maize intended for feeding 

finishing swine less than 200 ng g- 1 and for maize intended for finishing cattle should be 

less than 300 ng g-1. Maize grain exceeding these levels cannot enter interstate 
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commerce and in general should not be fed to young livestock, lactating animals, or to 

animals that produce meat.  

 

Factors contributing to high pre-harvest aflatoxin contamination 

Contamination of temperate maize in the Corn Belt by Aspergillus flavus is 

considered primarily due to storage problems and can be prevented by proper bin 

sanitation and storage of grain. Preharvest field infection by A. flavus have been 

documented mainly in southeastern U.S.A. where drought stress and high ambient 

temperatures during kernel filling are conducive to growth of the fungi in the maize silk, 

colonization and subsequent aflatoxin infection in the maize kernel (Vincelli et al., 1995, 

Payne, 1998). The effect of irrigation in general has been reported to reduce A. flavus 

infection and aflatoxin concentration in maize (Jones et al., 1981). Insufficient uptake of 

nutrients associated with drought stress or leaching of mineralized N from the root zone 

due to excessive rain are also important factors (Jones, 1979). Deficiency of any 

essential plant nutrient increases the susceptibility of the plant to several plant pathogens 

(Stromberg et al., 1999).  

Insect feeding activity has been found to be associated with fungal infection of 

maize grain and the subsequent production of mycotoxins in several ways such as, 

transport primary inoculum to the ears, move inoculum from the silks into the ears, 

disseminate inoculum within the ear, and facilitate colonization and infection of the 

kernels by injuring the kernels (Beti et al., 1995; Drepper and Renfro, 1990). Maize ears 

extensively damaged by European corn borer [Ostrinia nubilalis (Hubner)] and corn 

earworm [Heliothis zea (Boddie)] have been reported to show significantly higher levels 

of aflatoxin than undamaged ears (Lillehoj et al., 1975). McMillian et al. (1980) found 

that A. flavus sporulation and aflatoxin contamination increased in maize damaged by 

corn earworm and fall armyworm (Spodoptera frugiperda) feeding on the developing 

grain. 
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Management and control of pre-harvest aflatoxin contamination 

Sound management practices can reduce mycotoxin contamination in the field 

such as timely planting of well adapted hybrids, adequate use of nitrogenous fertilizers 

(Jones, 1979), avoiding drought stress during kernel filling, controlling certain insect 

pests and proper harvesting (Lisker and Lillehoj, 1991; Miller, 2001). Duncan et al. 

(1979) in studies conducted over two years in North Carolina, found a negative 

correlation between maize grain yields and preharvest aflatoxin contamination. Good 

management practices such as effective weed control can reduce the incidence of 

aflatoxin by eliminating stress due to competition to the growing maize plant (Lillehoj, 

1983). In Latin America, Africa and southern Asia incidence of mycotoxin 

contamination is more prevalent mainly due to lack of resources such as nitrogen, 

fertilizer, irrigation water, harvesting, transportation, handling and storage facilities. 

Unavailability of hybrids that are genetically more suitable to tolerate drought stress and 

susceptibility to insects and pests than open-pollinated cultivars in these countries 

aggravate the problem (Zuber et al., 1983).  

Recently newer techniques such as biological control have been applied utilizing 

intraspecific competition between nonaflatoxigenic strain that occupy the same 

ecological niche as native aflatoxigenic strains and effectively compete with them during 

initial infection under conditions favorable for aflatoxin contamination (Cotty, 1994; 

Dorner et al., 1998). However, recombination in A. flavus through parasexual cycle 

between an introduced nonaflatoxigenic biological control strain and native aflatoxigenic 

strains in the field is a concern (Geiser et al., 1998).  Competitive ability of strains can 

be affected by several other factors such as, enzyme production, growth rate, and 

capacity to survive in soil, that may be more important in determining the success of a 

biocontrol strain in inhibiting aflatoxin contamination within a crop (Horn et al., 2000). 
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Genetic control of resistance mechanism and breeding approaches to reduce pre-harvest 

A. flavus contamination 

Resistance to aflatoxin contamination is under genetic control (Scott et al., 1988; 

Widstrom et al., 1987). Aflatoxin has been associated with several plant traits that could 

influence or condition resistance to aflatoxin contamination and thereby affect the final 

aflatoxin accumulation such as husk coverage and tightness (McMillian et al., 1985; 

Lisker and Lillehoj, 1991; Odvody et al., 1997; Betrán and Isakeit, 2003), physical and 

chemical characteristics of the seed pericarp such as wax and cutin layers on maize 

kernels (Guo et al., 2001), drought and heat tolerance (Payne, 1992), resistance to insects 

(e.g., corn earworm) (Windham et al., 1999), kernel integrity (Odvody et al., 1997), 

maturity and adaptation to the local environments (Betrán and Isakeit, 2003), endosperm 

texture (Betrán et al., 2002), and resistance factors in kernels which reduce fungal 

development or aflatoxin formation (Brown et al., 2001). Genetically controlled 

enzymes or proteins have been identified that inhibit the growth of A. flavus in maize 

grain, such as an enzyme -1-3-Glucanase (Lozovaya, 1998), two proteins (100kDa and 

28kDa) present in kernels of a resistant strain Tex 6 (Huang et al., 1997) and a 14kDa 

trypsin inhibitor in resistant genotypes (Chen et al., 1998). There is genetic variation for 

the expression of these traits and subsequently, for the response of maize hybrids to 

aflatoxin contamination (Scott and Zummo, 1992; Campbell and White, 1995; Betrán et 

al., 2002).  Full-season hybrids have shown lower aflatoxin contents and better husk 

coverage than intermediate and early hybrids in Texas (Betrán and Isakeit, 2003). The 

correlation between silking date and aflatoxin accumulation was significant and negative 

(-0.59) and between husk cover and aflatoxin content was significantly positive (0.77).  

Diallel mating designs to determine the genetics of resistance of Aspergillus ear 

rot have reported significant GCA effects but non-significant SCA effects and have 

shown additive genetic effects to be more important than dominance effects in the 

identified sources of resistance (Widstrom et. al., 1984). Studies conducted on 

combining genes for resistance to Aspergillus flavus with genes for resistance to corn 

earworm have shown two lines, GT-A1 and GT-A2, from population GT-MAS:gk and 
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Mp313E to be resistant (Guo et al., 1998). It was suggested that preharvest aflatoxin 

contamination can be controlled by pyramiding resistance genes from these lines into 

desirable elite lines through a backcross breeding program along with the use of marker 

assisted selection to accelerate the selection process. Several other inbred lines that are 

naturally resistant to aflatoxin have been identified such as inbreds Mp420, Mp715, 

Mp720, LB31, CI2, and Tex6 (Scott and Zummo, 1990; Campbell et al., 1993; 

McMillian et al., 1993; White et al., 1997).  

Prediction of the response of a hybrid is complicated by many factors such as 

differences in environmental conditions, repeatability across different locations and 

years and a rapid and inexpensive method for measuring fungal infection and 

quantifying aflatoxin levels (Payne, 1992). Artificial inoculating techniques including 

kernel wounding to simulate insect injury, such as pinbar and razor blades have shown 

higher levels of aflatoxin levels (Calvert et al., 1978). Since kernel wounding techniques 

do not allow differentiation of genotypes on the basis of their natural attributes such as 

presence of aleurone layers or pericarp thickness have been replaced by non-wounding 

techniques such as silk channel inoculation (Jones et al., 1980; Zummo and Scott, 1989).   

Heritabilities or repeatabilities for aflatoxin accumulation have been variable 

depending on the material tested and the number and type of environments.  Betrán et al. 

(2002) in evaluations of inbred lines and hybrids under inoculation have reported 

repeatabilities at single locations higher than 0.50 when variation for aflatoxin 

accumulation was high. However, repeatabilities across locations have been generally 

low as a consequence of high genotype x environment interaction. The relationship 

between performance of inbred lines and their hybrids, and the degree of transmission to 

hybrids of the expression of traits in parental inbreds are important issues in hybrid 

development.  Genetic correlation between parental inbreds and hybrids depends on the 

trait and in general is relatively high for some traits (e.g., plant morphology, ear traits, 

maturity, quality characters, etc.) but low for grain yield (Hallauer and Miranda, 1988).  

Hence, hybrid testing is required to identify the inbreds with the best breeding values. 

There is not much information about the type of relationship between inbreds and their 
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hybrids for aflatoxin accumulation.  The amount of genetic variation among the inbreds 

tested and the type of tester may influence the correlation between line and testcross 

performance (Betran et al., 1997a). An aflatoxin resistant tester can reduce the 

correlation, likely due to favorable alleles masking effects of alleles present in lines, 

while a high susceptible tester can increase the genetic variation among testcrosses and 

the correlation. 

Transgenic maize hybrids containing a gene from Bacillus thuringiensis (Bt) 

Beliner expresses an endotoxin, Cry1A(b) Bt protein, that have been useful in 

controlling lepidopteran insects in the larval stage (Williams et al., 1998) and observed 

to experience less Fusarium infection due to the association between insect feeding and 

the pathogen (Munkvold et al., 1997). Odvody and Chilcutt (2003) in a study of the 

effect of Cry1A(b) Bt gene on the amount and type of insect injury, preharvest aflatoxin 

content at maturity and agronomic performance of near-isogenic pairs (Cry1A(b) 

Bt/nonBt) of commericial maize hybrids have reported significantly higher whorl and 

ear injury by insects and greater aflatoxin content in nonBt hybrids as compared to the 

Bt hybrids. They reported a consistent significant positive correlation between aflatoxin 

content (log 10) and insect ear injury and a negative correlation of aflatoxin content with 

yield at all locations and years for the nonBt hybrids. Transgenic cotton has been 

reported to accumulate lower levels of aflatoxin contamination (Cotty et al., 1997).   

 

Post-harvest control of aflatoxin contamination 

Field drying of maize grain is common in Midwest and southeastern U.S.A.  

Harvesting maize grain having a moisture content in the range of 255 to 200 mg g- 1 

followed by artificial drying to 155 mg g- 1, usually within 14-28 days post physiological 

maturity has been recommended for safe storage or for transportation (U.S. Food and 

Drug Administration, 2000; Bruns and Abbas, 2001). Over drying grains results in 

kernel breakage causing the grain to become more prone to fungal infection by grain 

storage molds (Vincelli and Parker, 2001). Safe practices during harvesting (cleaning 

combines thoroughly prior and after harvest) and storage (cleaning bins thoroughly, 
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treatment with insecticides, separate storing of old and new grain, and blending at safe 

equilibrium relative humidity can greatly minimize aflatoxin contamination (Sauer and 

Burroughs, 1980).  

 

Effects of nixtamalization in reducing aflatoxin toxicity to humans 

Aflatoxin contamination of maize grain is a serious problem for the tortilla 

making industry, especially in México where maize is a staple food. Nixtamalization of 

maize meant for making tortillas is a process of steeping maize in lime solution and 

cooking until the grain becomes soft and can be easily divested of the pericarp. 

Nixtamalization has been reported to reduce the toxicity of grain with aflatoxin 

contamination greater than 50 ppb by 75 – 90% (Guzman-de-Peňa et al., 1995). Other 

studies have found an apparent decrease of aflatoxin by up to 46% evaluated under 

different processing conditions. However, acidifying nixtamalized products has also 

been reported to cause some reformation of the toxin and increased toxicity (Price and 

Jorgensen, 1985). 

 

Detoxification of aflatoxins 

Detoxification of aflatoxins (more than 80% of AFB) by the use of a 

phyllosilicate clay (hydrated sodium calcium aluminosilicate or HSCAS) mixed with 

feed has been shown with rats and chickens (Phillips et al., 1988; Phillips et al., 1991). 

In another study confirming the results, no new metabolites were identified in groups 

treated with HSCAS, suggesting that the AFB-HSCAS complex was not significantly 

dissociated in vivo (Sarr et al., 1995). Another method of detoxification of aflatoxin is 

through using chemical methods such as ammoniation and reaction with sodium 

bisulfite. Ammoniation involves the hydrolysis of the lactone ring and chemical 

conversion of the parent compound aflatoxin B1 to numerous products that exhibit 

greatly decreased toxicity. Sodium bisulfite reacts with aflatoxins (B1, G1, and M1) 

under various conditions of temperature, concentration, and time to form water-soluble 

products.  
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Quality evaluation 

 

Maize endosperm protein characteristics  

A typical maize kernel averages about 9.5% protein in the endosperm and 18% 

protein in the embryo on a 15.5 % moisture content basis. Maize endosperm proteins are 

categorized into two major types; storage proteins and nonstorage proteins. Prolamins or 

zeins are the most abundant storage proteins representing about 50% of the total proteins 

in mature seed (Soave et al., 1981) and 62-74% of the endosperm proteins (Landry et al., 

2000; Hamaker et al., 1995). The other storage proteins comprise of glutelins (30-45%), 

albumins (3%), and globulins (3%). Zeins are specifically expressed during seed 

development being synthesized by membrane-bound polyribosomes and transported into 

the lumen of the endoplasmic reticulum where they are packaged in protein bodies 

during endosperm development (Larkins and Hurkman, 1978). Zein structural genes are 

represented by six “multigene families” that have been classified on the basis of their 

molecular weights into 4 distinct types, called alpha (19 and 22-kDa), beta (14-kDa), 

gamma (16 and 27-kDa) and delta (18 and 10-kDa) constituting 50-60%, 10-15%, 20-

30% and 1-5%, respectively, of the total zein fraction in the maize endosperm (Larkins 

et al., 1984). All the four types of zeins aggregate to form protein bodies that are stably 

retained within membrane vesicles. The main function of zeins is to store nitrogen in the 

developing seed.  

 

Amino acid composition of zeins 

Zeins have a characteristic amino acid composition with almost 60% of total 

residues consisting of hydrophobic glutamine, proline, leucine and alanine and a very 

low level of basic amino acids, especially lysine (0.2 gm lysine/100gms).  Almost all of 

the alpha zeins have been completely sequenced with the 19 and 22-kDa classes 

consisting of 210 and 245 residues, with true molecular weights of about 23,000-24,000 

and 26,000-27,000, respectively (Coleman et al., 1995). The chains of the 22-kDa and 

19-kDa proteins consist of several (9-10) serial, similar amino acid sequences. The 
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sequence analyses of alpha zeins have shown the presence of three unique domains 

(Pederson et al., 1982). The N-terminal domain consists of 36-37 residues and is 

followed by 10-11 tandem repeats having an average length of 20 residues and 

terminated by a C domain of 10 residues.  The size difference between 19 and 22-kDa 

zeins is due to an additional repeat in the C-terminal end of the protein which results in a 

total of 10 repeats in the 22-kDa zein as compared to 9 in the 19-kDa zein (Song et al., 

2001). The homologous domains are the products of gene sequences that originated by 

multiple duplication of a short original gene and that were subsequently combined in 

tandem to one gene. Numerous such cases have been described in animals. Zeins are 

impressing examples for the existence of this mechanism in plants.  

 

Glutelins 

Glutelins, are the next major source of lysine in maize endosperm protein (4-

5%), and have been proposed as an alternative to selection for high lysine maize (Lin et 

al., 1997; Yau et al., 1998).  Studies conducted at Texas A&M University on 29 inbred 

lines (Yau et al., 1998) revealed significant correlation between lysine content in six out 

of seven glutelin proteins (35, 43, 48, 84, 92 and 100 k-Da). The structure and amino 

acid sequence was determined of the maize endosperm glutelin-2 gene (Prat et al., 1985) 

and isolation and sequencing of a 28-kDa glutelin-2 gene has been done (Boronat et al., 

1986). Glutelins are a multigene family composed of 3 subunits, G1-204 (28-kDa), G1-

164 (16-kDa), G2 (15-kDa) and G3 (10-kDa). Complete cDNA sequences of the four 

genes amplified by PCR to determine the exact number of copies per genome showed 

that G1 has 5-10 copies, G2 has 1-2 copies and G3 has 2-3 copies per genome (Lazzari 

et al., 1993).  

 

Improvement in protein quality  

Several mutants in maize were identified over the past 30 years (opaque-2, 

floury-2, opaque-7, opaque-6, floury-3, mucronate, defective endosperm and opaque-11) 

which alter the amino acid profile of the maize endosperm proteins elevating the levels 
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of deficient amino acids lysine and tryptophan at the expense of the most abundant zeins 

(Vasal, 2001). All these mutants vary tremendously in their inheritance characteristics, 

use and value in protein quality improvement (Vasal, 2001). The most widely studied 

and utilized mutant has been the opaque-2, a regulatory gene that reduces transcription 

of 22-kDa and 19-kDa fractions of the zein genes thereby causing a concomitant 

proportional increase in other lysine rich fractions (Moro et al., 1996; Shotwell and 

Larkins, 1989). Thus the lysine content of the maize kernel increases on an average by 

40% making it more nutritively balanced (Moro et al., 1996). However, despite the 

nutritive advantages of the opaque-2 gene, it has been found to affect adversely some 

important agronomic characteristics and kernel phenotype of the maize plant such as 

reduced accumulation of dry matter, low grain yield, slower drying down, increased 

moisture content, lower weight and density of the kernel, poor kernel characteristics 

(soft, chalky and dull appearance) and greater susceptibility to ear rots and stored grain 

pests (Sreeramulu and Bauman, 1970; Vasal, 2001). In the past, several approaches to 

improve the protein content and kernel appearance of opaque-2 mutant were explored 

including combining double mutants opaque-2/floury-2 and opaque-2/sugary-2 mutants 

(Vasal, 2001). Both approaches met with little success as the opaque-2/floury-2 

combination did not result in translucent kernels and the opaque-2/sugary-2 combination 

resulted in a severe yield penalty of almost 20% over that of normal types. Another 

approach is to alter the germ-endosperm ratio that has the dual advantage of increasing 

both protein content and quality (Bjarnason and Pollmer, 1972; Poey et al., 1979; Vasal 

et al., 1980). The germ has almost double the amount of protein and is of better quality 

than the endosperm however, increasing the germ size contributes to poor shelf life of 

maize and will be an obstacle in some countries which throw away the germ before 

preparation of food products (Vasal, 2001).  

 

Lysine and tryptophan content of opaque-2 maize and QPM 

Variability for lysine content in diverse maize genotypes has been documented in 

several studies (Bressani et al., 1962; Gevers, 1979). Percentage of lysine content in the 
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endosperm could be affected by three factors viz. the free amino acid pool, the zein 

proteins and the non-zein proteins. It has been shown that the free amino acid pool 

increases by 2-5 fold in opaque-2 germplasm as compared to normal, however the 

percentage of total non-protein lysine in the endosperm is only 5% (Lopes and Larkins, 

1991). Lysine content has been shown to be positively correlated to the increase in the 

amount of non-zeins (r2 = 0.85), and is not associated with the over production of free 

amino acids in the opaque-2 germplasm (Moro et al., 1996). Determination of lysine 

content to distinguish high lysine maize inbreds and hybrids from normal maize is 

expensive and a severe limiting factor in most breeding programs (Mertz et al., 1974). 

Lysine levels have also been shown to be correlated with tryptophan levels, so rapid 

chemical methods to measure tryptophan are used to assess amino acid balance in plant 

breeding programs (Hernandez and Bates, 1969). The relationship between lysine and 

endosperm modification has been studied more thoroughly, and it has been determined 

that lysine levels in hard endosperm o2 breeding germplasm were intermediate between 

o2 and wild type germplasm (Ortega and Bates, 1983) and that lysine levels are 

negatively correlated with endosperm hardness (Wessel-Beaver et al., 1985). A study of 

several traits, including tryptophan levels and endosperm modification in QPM hybrids 

and open pollinated cultivars concluded that tryptophan levels and level of endosperm 

modification are not correlated, and that tryptophan levels are very stable across 

environments (Pixley and Bjarnason, 2002).  In a study of tryptophan content in o2, 

modified endosperm o2 and wild-type versions of inbred lines, the level of tryptophan 

was found to be reduced on average in the modified endosperm o2 lines relative to the 

unmodified o2 lines (Gentinetta et al., 1975).    

Studies conducted to evaluate the effect of nitrogen fertilization on the nutritional 

value of grain protein in QPM and opaque-2 maize showed a linear increase in grain 

protein and lysine content of opaque-2 maize, however, protein content was observed to 

increase more rapidly than the lysine content as N fertilization increased that resulted in 

a net linear decrease of lysine expressed as a percentage of protein (Cromwell et al., 

1983).  
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Methionine content of normal maize 

Generally methionine is the first limiting amino acid in standard maize soybean 

diets for laying hens and young turkey (Bertram and Schutte, 1992; National Research 

Council, 1994). Increasing dietary methionine has been associated with greater egg 

production, higher egg weight (Harms et al., 1998) and increased efficiency of dietary 

protein utilization (Schutte, 1989). Attempts to identify maize inbreds high in 

methionine have been done in the past. Studies conducted on maize inbred line BSSS-53 

that has high levels of kernel methionine (Phillips et al., 1981) have revealed a 10-kDa 

zein protein (Phillips and McClure, 1985) the structural gene for which designated as 

dzs10, is regulated posttranscriptionally by a trans-acting regulatory gene, dzr1 which 

maps on chromosome 4 while the structural gene is located on chromosome 9 (Benner et 

al., 1989; Cruz-Alvarez et al., 1991; Chaudhuri and Messing, 1995).  The dzr1 BSSS53 

allele is recessive to the dzr1 Mo17 allele that accumulates low levels of 10-kDa zein 

(Schickler et al., 1993; Chaudhuri and Messing, 1994). Chaudhury and Messing (1991) 

showed increased expression of 10kDa zein in the line BSSS-53 to be responsible for its 

higher seed methionine content in comparison to other lines. The 18-kDa high-

methionine delta-class zein gene from maize has been cloned, and its regulation, 

structure, and map position studied (Swarup et al., 1995). There studies have shown the 

18-kDa and the related 10-kDa zein gene to be coordinately regulated, but their products 

accumulate to different levels in a genotype-dependent manner and also that zein genes 

may contain tryptophan and lysine codons.  

 

Transgenic approaches to increasing lysine content in maize  

Wallace et al. (1988) inserted Lysine (Lys) and Tryptophan (Trp) residues in 

different positions in the 19-kDa α-zein cDNA by nucleotide substitution and 

oligonucleotide insertion, later injecting the mRNA transcripts into frog oocytes, 

demonstrated that the modifications did not affect the synthesis, processing, stability, 

and deposition of the modified proteins into protein body oocytes and the Lys-rich α-

zeins could also be produced in transgenic tobacco seeds like the normal zein. However, 
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the newly synthesized modified and normal zeins were both unstable and degraded 

(Ohtani et al., 1991). In another study Torrent et al. (1997) inserted Lys-rich (Pro-Lys)n 

residues in the Pro-Xaa region of the γ-zein and showed that the modified Lys-rich γ-

zeins were accumulated to high levels in protein bodies and co-localized with the 

endogenous α- and γ-zeins in the transiently transformed maize endosperms. However, 

these mutated proteins were post-translationally modified in transgenic Arabidopsis 

plants, resulting in missorting and secretion to the leaf cell wall, while the normal γ-

zeins were correctly targeted to the endoplasmic reticulum (ER) of the transgenic 

Arabidopsis leaf cells (Alvarez et al., 1998). Coleman et al. (1997c) transferred and 

expressed a mutant α-zein in maize that resulted in a floury2 mutation phenotype in the 

seeds. Recently a transgenic maize line expressing a chimeric 10-kDa zein storage 

protein gene has been produced with enhanced mRNA stability through overcoming 

post-transcriptional regulation (Lai and Messing, 2002). 

 

Genetical and biochemical basis of selection for lysine content in high quality protein 

maize 

Major challenges facing breeders in successful introgression of multiple traits 

like opaque-2 genotype and modifier genes while maintaining high lysine content are the 

expression of opaque-2 gene only in the mature kernel and long duration in conversion 

of elite maize lines to QPM that usually requires at least 7-12 generations depending on 

the efficiency of backcrossing and selection. Several methods have been developed to 

facilitate genetic screening such as amino acid composition analysis, zein 

electrophoresis, enzyme-linked immunosorbent assay (ELISA) of alpha and gamma 

zeins (Wallace et al., 1990) chromatography analysis (Paulis et al., 1992) and dye 

binding capacity (Mossberg et al., 1969).  However, due to the variable expression of the 

modifier genes in different backgrounds these techniques are not reliable and also delay 

the selection process until harvest.  Recent molecular techniques such as DNA 

fingerprinting analysis utilizing genetic markers such as RFLP, AFLP, RAPD, SSR or 

SNP markers could obviate the need for testcrossing to identify the heterozygous 
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genotypes for backcrossing.  An effective and accurate RFLP marker assay method of 

identifying plants with O2/O2, O2/o2 and o2/o2 genotypes from juvenile leaf DNA 

samples has been developed by the use of Opaque-2 cDNA as a probe on HindIII-

digested genomic DNA (Kata et al., 1994). Studies conducted on the association of other 

genes having effect on non-zein proteins such as EF 1-α, a lysine rich protein (10%) 

which binds the aminoacyl-tRNAs to the ribosome, has been found to be directly and 

significantly correlated to total lysine content of the endosperm protein that could 

facilitate indirect estimation of lysine content in maize endosperm (Habben et al., 1995). 

Other studies focused on the use of immunoassays based on glutelins, which are the next 

major source of lysine in maize endosperm protein (4-5%), as an alternative selection 

criteria have revealed significant correlation between lysine content in six out of seven 

glutelin proteins viz. 35, 43, 48, 84, 92 and 100-kDa (Lin et al., 1997; Yau et al., 1998). 

CIMMYT has initiated large scale fingerprinting of inbreds utilizing SSR molecular 

markers that are highly reliable and reproducible (Warburton et al., 2002).  

To facilitate quick screening of high lysine germplasm a reliable method of 

estimating the relative contents of tryptophan and methionine has been proposed by 

Scott et al., (Maydica, in press) using a microbiological method suited to the high-

throughput needs of plant breeding programs.  In this method 10 mg of finely ground 

kernels are hydrolyzed in one-hundred microliters of 50 mM KCL adjusted to pH 2.0 

with HCL containing 0.2 mg of pepsin. The reactions are then inoculated with a bacterial 

strain auxotrophic for either tryptophan or methionine in a suitable media. After 

incubation, the concentrations of amino acids are measured by scattering 595 nm light in 

a microplate reader. 

 

Food and feed properties of high quality protein maize 

Studies conducted to compare the wet milling properties of QPM and regular 

dent maize with contrasting endosperm textures have reported QPM and feed maize to 

have higher water solubility and faster water penetration than normal food maize, 

presumably due to less dense and softer endosperm texture (Gomez et al., 1992). Wet 
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milling properties of QPM evaluated on the basis of yields of germ, fiber, starch and 

gluten have shown QPM to compare favorably to that of food and feed maize. In 

addition to having high quality protein, QPM lines were found to have higher amount of 

fat in the germ, bran and gluten with almost equal amounts of starch in comparison with 

the food and feed maize. These observations suggest that they can economically replace 

regular maize in wet milling processes (Gomez et al., 1992).  

A comparison of yield from dry-milled fractions of five QPM samples compared 

with three normal dent maize revealed higher yields of total grits and prime products 

(total grits + low fat meal + low fat flour) for QPM in comparison with the dent maize 

(Wu, 1992). Also QPM could be easily degermed and roller milled normally thereby 

indicating their suitability in producing dry milled products of high nutritive value. 

Studies on alkaline processing properties of white and yellow QPM indicate that 

excellent tortillas and chips can be made with slight alteration in the cooking conditions 

due to smaller kernel size (Sproule et al., 1988).  QPM tortillas and tortilla chips fried 

from QPM have been reported to possess excellent flavor, rollability, color and retained 

higher amounts of dietary fiber due to incomplete pericarp removal with a shelf life 

comparable to that of normal maize chips (Serna-Saldivar et al., 1992).  

In animal feed trials conducted to evaluate the nutritional value of QPM, pigs fed with 

QPM based diet had a higher utilization of feed and grew faster than pigs fed food and 

feed maize diets containing the same level of soybean meal supplementation (Knabe et 

al., 1992).  Nitrogen retention expressed as percent N absorbed, was also highest (P < 

0.05) for the same pigs fed with QPM diets, presumably due to higher content of lysine 

and tryptophan.  
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MATERIALS AND METHODS 

 

Agronomic evaluation 

 

Germplasm  

A total of forty-eight inbreds and their testcrosses with Tx804 (Appendix B, 

Table B.1), a soft endosperm o2 temperate inbred, were evaluated in seven locations in 

south and central Texas: College Station (CS), Weslaco (WE), Granger (GR), Bardwell 

(BA), Castroville (CA), Wharton (WH) and Springlake (SP) during year 2002.  The 

inbreds were developed from the following CIMMYT QPM populations: 2 from 

Population 65 (yellow flint), 2 from Population 66 (yellow dent), 16 from Population 69 

(temperate yellow flint), 7 from Population 70 (temperate yellow dent), 2 from Pool 26 

(tropical late yellow dent), 2 from Pool 33 (subtropical intermediate yellow flint), 3 from 

Pool 34 (subtropical intermediate yellow dent), and 14 from Temperate x Tropical High-

Oil population. These lines represent a group of yellow QPM lines selected for 

temperate adaptation. They were advanced and selected in Texas maize nurseries 

(summer nursery at College Station, TX, and fall-winter nursery at Weslaco, TX) based 

on endosperm modification, maturity, grain color, grain yield, lodging, lysine content 

and plant characteristics.  Three inbreds Tx802 (Betran et al., 2003e), CML161 and 

Tx804 were used as checks in the inbred line evaluation.  Five hybrids Pioneer Brand 

31B13 and 32R25, Dekalb DK668 and DK667, and Asgrow RX897 were used as 

commercial checks in the testcross trial. In addition, three high lysine hybrids from 

Crow’s Hybrid Company, SR470, SL53 and SR660, and 4 QPM hybrids 

(Do940y/Tx804, CML161/Tx804, (Do940y/Tx802)/Tx804, and Do940y/Tx802) were 

added to the experiment to complete a sixty entry trial.  

 

Field management and measurements 

Experiments at all environments were planted following alpha-lattice design 

(Patterson and Williams, 1976) with 2 replications. Characteristics of individual 
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environments are presented in Appendix B, Table B.2. Standard cultural and agronomic 

practices were followed at each environment. Data were recorded on a plot basis on the 

following agronomic traits: grain yield (combine harvested grain weight expressed in 

Mg ha-1 and standardized to 155 g kg-1 moisture content), silking date (number of days 

from planting until 50% of the plants showing silks), plant height (distance in cm from 

the ground to the top of tassel), ear height (distance in cm from the ground level to the 

main ear-bearing node), root lodging (% plants leaning at an angle greater than 30% 

from the vertical), stalk lodging (% plants with broken stalks at or below the main ear at 

maturity), grain moisture (g kg-1 moisture of grain at harvest), and test weight (recorded 

as g pint-1 by standard equipment and converted to kg m-3).   

 

Statistical analysis 

Analyses of variance and adjusted means were derived for each experiment 

following SAS procedures GLM and MIXED (SAS, 1997). Adjusted means that had the 

lowest standard errors were used for calculating means across locations. Entry means 

were estimated considering genotypes (testcrosses or inbreds) fixed effects and 

replications and environments as random effects. Repeatability (genotypic-mean basis) 

for individual experiments was calculated as:   

R = 

r
V

V

e
g

g

2σ
+

 

where, Vg is the variance of differences among genotypic means, 2
eσ  is the error 

variance, and  r is the number of  replications.  Broad sense repeatability estimates 

across environments were calculated as: 

ree
V

V
R

ege
g

g
22 σσ

++
=   where, Vg, 2

eσ  and r are same as above, 2
geσ  is genotype x 

environment interaction variance and e is the number of  environments.  Since inbreds 

were selected during their development and do not represent a population, therefore 
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repeatabilities instead of heritabilities were estimated. Pearson phenotypic correlation 

coefficients of grain yield with associated traits were computed for inbred and 

testcrosses at individual environments and across environments.   

 

Aflatoxin evaluation 

 

Germplasm 

Sixty entries including 48 QPM inbreds with their testcrosses with Tx804 as 

described in the agronomic evaluation section previously, were evaluated in three 

locations in south and central Texas: College Station (CS), Weslaco (WE), and Corpus 

Christi (CC) during year 2002. Four non-QPM commercial hybrids, Pioneer Brand 

31B13 and 32R25, Dekalb DK668 and Asgrow RX897 were used as checks in the 

testcross trial. QPM hybrids were the same as evaluated before in the agronomic trials 

except (CML 161 x CML 170) that was added to complete a sixty entry trial. The checks 

were commercial hybrids with different response to aflatoxin in previous evaluations.  

 

Maize inoculation and aflatoxin quantification 

Aspergillus flavus isolate NRRL3357, colonizing autoclaved maize kernels, was 

placed on the soil surface between treatment rows when the first hybrids reached mid-

silk stage.  The inoculum was distributed at the rate of 1 kg (noncolonized dry seed 

equivalent) per 200 foot of row (Odvody, personal communication).  All the ears in the 

plot at three locations were hand harvested after kernel moisture in all hybrids was 

below 150 g kg–1.  Ears were husked, rated for insect injury and visible fungi 

colonization, dried, and shelled. The kernels were bulked within plots. The whole kernel 

samples were ground using a Romer mill (Union, MO).  Quantification of aflatoxin was 

conducted in 50 g subsamples from each plot with monoclonal antibody affinity columns 

(Aflatest) and fluorescence determination using the Vicam fluorometer system 

(Watertown, MA).  Aflatoxin content was expressed in ng g-1 (i.e., ppb).   
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Field management and measurements 

Alpha-lattice field experimental design with 4 replications at CS and WE, and 3 

replications at CC was used.  Plots at CS and WE were 6.40 m long and 0.75 m apart, 

and 7.90 m long and 0.96 m apart at CC.  No insecticides were applied after planting.  

Trials were planted at regular times in WE (middle of February) and CS (early March).  

Drought and heat stress was induced by late planting at CC (4 weeks later than usual 

planting time, which is the middle of February), and by limited irrigation at WE and CS.  

In addition to aflatoxin content, the following secondary traits were measured: grain 

yield  (hand harvested dried grain weight expressed in Mg ha-1), female flowering (FF) 

as days from planting to 50% of the plants in one plot with emerged silks, visual rating 

for kernel integrity (1= all ears without splits kernels or damaged by insects to 5 = most 

of the ears with splits and/or insect damage), endosperm texture as visual rating from 1 

(flint = round crown kernel and vitreous appearance) to 5 (dent = kernels with 

pronounced dentation and high proportion of floury endosperm).  

 

Statistical analysis 

Aflatoxin contents in ng g-1 were transformed to log (ng g-1) to equalize variance.  

This transformation is commonly used for aflatoxin contents. Both logarithmic and 

untransformed aflatoxin values were used in the analysis and presentation of results.  

Individual analyses of variance and computation of means were conducted for each 

experiment following GLM and MIXED procedures from SAS (SAS, 1997), and with 

AS-REML software that contains spatial analysis (Gilmour et al, 1997).  Adjusted means 

calculated applying spatial analysis were the ones with the lower standard error and they 

were used in all the subsequent calculations.  To estimate entry means, genotypes 

(testcrosses or inbreds) were considered fixed effects.  

Repeatability on a genotypic-mean basis was calculated in the same way for 

individual experiments as described in the agronomic evaluation, except that in the 

calculation of broad sense repeatability estimates across environments, r’ the harmonic 

mean of replications was used instead of r.  
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 Pearson phenotypic correlation coefficients among aflatoxin and associated traits 

were computed for inbred and testcrosses at individual environments and across 

environments.  To estimate the relationship between inbreds and testcrosses simple 

regression of testcross means across locations on means for inbreds at Weslaco for 

aflatoxin accumulation, grain yield, silking date, endosperm texture, and kernel integrity 

was computed using REG procedure in SAS (SAS, 1997).  

 

Quality evaluation 

 

Germplasm 

Evaluations were conducted on three sets of germplasm with each set containing 

about 80 accessions (Appendix C, Tables C.1-C.3): (1) Inbreds 1: QPM lines developed 

from CIMMYT QPM populations 65, 66, 69, 70 and Temperate x Tropical High-Oil, 

and QPM lines from CIMMYT Pools 26, 33, and 34 (2) Testcrosses: Inbreds in set 1 

crossed with Tx804 a soft endosperm o2/o2 inbred, and (3) Inbreds 2: Opaque-2 (o2/o2) 

soft endosperm lines developed from Crow’s Seed Company segregated populations that 

are classified as Iowa Stiff Stalk Synthetic (SS) or non Stiff Stalk (NSS) groups, and 

QPM lines with hard endosperm texture that were advanced and selected in Texas 

nurseries based on endosperm modification, maturity, grain color, grain yield, lodging, 

lysine content and plant traits.  High lysine inbreds (Tx802, CML161, Do940y, B73 

o2/o2, and Tx804), and normal inbreds (Tx772, NC300, FRB73, FR2128, B104, and 

Tx601y) were included as checks in the inbred line evaluations.  Commercial hybrids 

Crow’s SL53, Pioneer Brand 31B13 and 32R25, Dekalb DK668 and DK687, and 

Asgrow RX897 were included as checks in the evaluation of testcrosses.  

All three sets of germplasm were advanced in single plots at Texas A&M 

University during the summer of 2002 at CS, except for grain used in analyzing the 

relationship of Trp and Lys, which was produced in 2001 at CS.  Plots were irrigated and 

fertilized with 350 kg ha-1 of 32-0-0 and 6 units of Zn before planting and 180 kg ha-1 of 

32-0-0 at V6 stage. All ears in a line or testcross used in this study were self pollinated 
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by hand, harvested, bulked within genotypes, and the grain dried to approximately 12% 

moisture. Endosperm modification ratings (opaque = 1, semi-vitreous = 3, and vitreous 

translucent = 5) for 50 kernels per genotype were visually measured on a light box using 

a weighted average per genotype.  

 

Quantification of amino acids 

Lysine was quantified using the AOAC standard method for determination of 

lysine levels in grain (AOAC, 1990). Separation and analysis of amino acids were done 

with a Beckman 6300 Amino Acid Analyzer (Elk Grove, GA) equipped with a high 

performance cation-exchange resin column, and amino acid detection was done with a 

post-column ninhydrin derivation. Norleucine was used as the internal standard.  

Tryptophan and methionine were quantified using a microbiological method 

described by Scott et al. (Maydica 2004, in press) as follows: kernels from bulked ears 

were finely ground, mixed and 10 mg of the resulting powder was weighed into a 

randomly assigned well of a 96-well plate.  Ten wells were not filled to accommodate 

standards.  In order to extract and hydrolyze protein in the ground grain, one-hundred 

microliters of 50 mM KCL adjusted to pH 2.0 with HCL containing 0.2 mg of pepsin 

were added to each well and the plate was shaken 16 hours at 37○C.  The plate was then 

centrifuged at 3000 x g for 20 minutes, and 4 µl of the supernatant for methionine 

analysis or 7 µl of the supernatant for tryptophan analysis was transferred to the 

corresponding well of a second plate for analysis.  Five microliters of standards 

consisting of commercially obtained (Sigma, St. Louis, Mo) methionine or tryptophan in 

the concentrations of 0.1 to 0.8 mM and 0.1 to 0.6 mM, respectively, were added to the 

empty wells of the plate.  This plate was inoculated with a bacterial strain auxotrophic 

for either tryptophan (CAG 18455, Singer et al., 1989) or methionine (P4X, Jacob and 

ollman, 1961) in 100 µl M9 minimal media.  This plate was incubated with shaking at 

37○C for 20 h for tryptophan analysis or 16 hours for methionine analysis.  Following 

incubation, the 595 nm light scattered by the culture was measured in a microplate 

reader.  
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Statistical methods 

Each ground sample was analyzed in three replications (3 independently 

randomized 96-well plates) following a randomized complete block design with each 

plate representing a block. The methionine and tryptophan concentration in each analysis 

was calculated using linear regression onto a line fitted to the standards.  The predicted 

value of each sample was calculated from the three individual measurements using a 

linear ANOVA model with the plate considered a fixed effect. Relationship between 

amino acid levels on inbreds and their testcrosses was computed using simple regression 

of testcross means on means for parental inbreds following the REG procedure in SAS. 

 

RESULTS AND DISCUSSION 

 

Agronomic evaluation 

 

Agronomic performance 

 The results for agronomic performance of testcrosses between high lysine 

inbreds with different origins and Tx804 and hybrid checks across all locations are 

presented in Table 3.1. Significant differences in flowering dates were observed across 

all locations that varied according to the origin of testcrosses, QPM, opaque and normal 

checks. Testcrosses of opaque inbreds flowered almost 4 days earlier (71.03) than the 

average flowering date across all locations (73.80 days), whereas testcrosses of QPM 

inbreds flowered almost 3 days later than average (76.38 days). Testcrosses of 

populations 69 and 70, pools 33 and 34, temperate x tropical high oil and normal checks 

had intermediate flowering dates. Average plant height and ear height across all 

locations were 213.88 cm (range from 204.92 to 222.19 cm) and 80.48 cm (range from 

74.13 to 87.38 cm), respectively. Testcrosses derived from population 70, pool 33 and 

34 and temperate x tropical high oil showed significantly shorter plant heights and lower 

ear placements than QPM and normal checks that were taller and had higher ear 

placements. QPM inbreds CML 161 developed at CIMMYT, Mexico and Do940y 
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Table 3.1. Means and their standard errors for agronomic traits of testcrosses between high lysine inbreds with 
different origins and Tx804 and hybrid checks across all locations in 2002. 
 
 

Hybrid Origin Number Grain Silking Plant Ear Root Stalk Grain Test 
 of Hybrids Yield Date Height Height Lodging Lodging Moisture Weight 
  Mg ha-1 days cm cm % % g kg-1 kghl-1 

P65 and 66 4 6.28±0.18 75.20±0.39 219.76±2.63 83.61±1.57 1.72±0.23 37.10±0.23 156.00±1.14 76.82±0.52 
P69 16 6.35±0.09 73.94±0.20 219.18±1.32 82.88±0.79 1.93±0.11 52.25±0.11 154.72±0.57 76.39±0.26 
P70 7 5.65±0.14 73.45±0.30 204.92±1.99 77.82±1.19 2.17±0.17 32.38±0.17 145.72±0.87 75.34±0.39 
P26 2 5.77±0.26 74.27±0.55 219.92±3.72 82.62±2.22 2.85±0.32 35.68±0.32 155.04±1.62 74.47±0.74 
P33 and 34 5 5.37±0.16 73.77±0.35 207.25±2.35 74.13±1.41 2.09±0.20 33.65±0.20 143.60±1.02 72.77±0.47 
Temp. x Trop. High-Oil 14 5.37±0.10 72.90±0.21 206.70±1.41 76.22±0.84 2.38±0.12 28.55±0.12 138.83±0.61 73.20±0.28 
QPM 4 6.69±0.18 76.38±0.39 224.31±2.63 87.38±1.57 1.98±0.23 38.94±0.23 164.58±1.14 75.18±0.52 
Opaque Crow's 3 7.11±0.21 71.03±0.45 210.21±3.04 79.75±1.82 2.06±0.26 36.17±0.26 111.28±1.32 68.71±0.60 
Checks 5 8.71±0.16 74.60±0.35 222.19±2.35 86.45±1.41 1.54±0.20 46.89±0.20 132.94±1.02 75.68±0.47 
Means across locations 60 6.20±0.05 73.80±0.10 213.85±0.68 80.48±0.41 2.07±0.06 39.15±0.06 145.77±0.30 74.66±0.13 
LSD for all 60 entries  0.59 1.72 11.02 7.40 1.13 27.82 6.79 2.42 
CV (%)  4.83 1.18 2.61 4.67 27.70 35.89 23.69 1.65 
Correlation with GY   0.23 0.48 0.55 -0.39 -0.10 -0.12 74.52 
Min  5.37 71.03 204.92 74.13 1.54 9.78 111.28 68.71 
Max  8.71 76.38 224.31 87.38 2.85 70.84 164.58 76.82 
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Table 3.2. Mean grain yield, repeatabilities and their standard errors of testcrosses per location and across locations in 
QPM inbred and their testcrosses in 2002. 
  

*CS=College Station, WE=Weslaco, CA=Castroville, WH=Wharton, GR=Granger, BA=Bardwell, SP=Springlake 

 

 

 

Hybrid Origin Number  
of hybrids 

CS* WE CA WH GR BA SP Across 

  ………………………………………………..Mg ha-1……………………………………………….. 
Pop 65 and 66 4 9.27±0.42 5.63±0.16 7.39±0.20 6.05±0.40 5.44±0.20 6.62±0.14 3.60±0.32 6.28±0.18 
P69 16 9.01±0.21 5.90±0.08 7.67±0.10 5.30±0.20 5.47±0.10 7.07±0.07 4.03±0.16 6.35±0.09 
P70 7 7.77±0.32 4.76±0.12 7.14±0.15 4.58±0.31 4.76±0.15 6.04±0.10 4.48±0.24 5.65±0.14 
PO26 2 9.44±0.60 4.84±0.23 7.32±0.29 3.35±0.57 4.98±0.28 6.47±0.19 3.96±0.45 5.77±0.26 
Pool 33 and 34 5 8.03±0.38 4.65±0.14 6.08±0.18 4.02±0.36 3.96±0.18 6.16±0.12 4.72±0.28 5.37±0.16 
HO 14 7.11±0.23 4.14±0.09 6.62±0.11 4.30±0.22 4.04±0.11 6.30±0.07 5.13±0.17 5.37±0.10 
QPM 4 10.43±0.42 5.50±0.16 8.03±0.20 6.45±0.40 5.44±0.20 6.29±0.14 4.72±0.32 6.69±0.18 
Opaque Crow's 3 8.74±0.49 5.91±0.19 8.05±0.23 6.68±0.47 5.13±0.23 7.15±0.16 8.10±0.37 7.11±0.21 
Checks 5 12.01±0.38 8.15±0.14 9.67±0.18 8.75±0.36 6.72±0.18 8.17±0.12 7.48±0.28 8.71±0.16 
Mean 60 8.72±0.32 5.36±0.12 7.42±0.15 5.36±0.31 5.01±0.15 6.70±0.10 4.94±0.24 6.20±0.05 
LSD for all 60 entries  2.42 1.09 1.19 2.34 1.17 0.76 1.82 0.59 
Min  7.11 4.14 6.08 3.35 3.96 6.04 3.60 5.37 
Max  12.01 8.15 9.67 8.75 6.72 8.17 8.10 8.71 
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developed at University of Natal, South Africa are both subtropical in origin and 

consequently show late maturities, are tall with high ear placements in more temperate 

Texas environments. Bhatnagar et al. (2003) in an evaluation of subtropical and tropical 

QPM hybrids have reported similar results. No significant differences were observed in 

root and stalk lodging across locations among different testcrosses, QPM and normal 

checks. Significant differences for grain moisture content were observed among different 

testcrosses, QPM and normal checks. Grain moisture across locations averaged 145.77 g 

kg-1 with a range of 111.28 g kg-1 for temperate opaque inbreds to 164.58 g kg-1 for 

QPM inbreds.  Testcrosses derived from populations 65, 66, 69 and pool 26 had 

significantly higher grain moisture content, whereas the checks had significantly lower 

grain moisture content than average. Test weight across locations averaged 74.66 kg hl-1 

ranging from 68.71 kg hl-1 for opaque inbreds that have more floury endosperm texture 

to 76.82 kg hl-1 for testcrosses derived from populations 65, 66 and 69 that have flinty 

and hard endosperm texture.  

 Grain yield across locations varied significantly for all testcrosses between high 

lysine inbreds with different origins and Tx804 and hybrid checks and averaged 6.20 Mg 

ha-1 (Table 3.2). Average grain yield for hybrid checks across locations was 8.71 Mg ha-1 

as compared to opaque-2 testcrosses (7.11 Mg ha-1). Average grain yield across locations 

for QPM testcrosses varied from 5.37 Mg ha-1 for pools 33, 34 and temperate x tropical 

high oil testcrosses to 6.69 Mg ha-1 for testcrosses with TAMU QPM inbreds. Average 

grain yield per location ranged from 8.72 Mg ha-1 for environment CS to 4.94 Mg ha-1 

for environment SP. In general, normal checks yielded highest followed by opaque and 

QPM, both per location and across locations.  

  The testing environments in this experiment ranged in latitude from 26o N to 35o 

N representing a transition between subtropical environments in southern Texas to more 

temperate environments of maize cultivation in U.S.A. Subtropical hybrids and inbreds 

originating in CIMMYT, Mexico and University of Natal, SA are less adapted to 

temperate environments of U.S.A. and in general mature later, grow taller and have 

higher grain moisture content (Bhatnagar et al., 2003). However, QPM inbreds 
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developed in Texas from populations 65, 66 and 69 showed proper maturity, were flinty 

hard endosperm types and had high test weights and endosperm quality that are useful 

traits for introgression into temperate normal germplasm. It has also been observed that 

inbreds from CIMMYT and University of Natal, SA have excellent combining abilities 

with temperate Texas inbreds (Bhatnagar et al., 2004). Breeding efforts directed to 

characterize further the heterotic pattern of inbreds derived from high lysine populations 

and pools included in this experiment can combine excellent grain quality traits of these 

germplasm with high yield, standability and early maturity of temperate germplasm.   

Repeatabilities on genotypic mean basis for grain yield and agronomic traits are 

presented in Table 3.3. In general repeatabilities for grain yield were high ranging from 

0.73 for environment Wharton to 0.92 for environment Weslaco. Repeatability across 

environments was moderately high (0.67). The inbreds included in this experiment 

varied greatly in their origin, subtropical hard flinty types (population 65, 66 and 69), 

temperate x tropical high oil, QPM, opaques from Crow’s hybrids Co., and normal corn 

belt dent commercial checks. As such high genetic variability in these experimental 

inbreds could be the cause of high repeatabilities observed for grain yield. 

Repeatabilities for plant height and ear height were low for environment CS (0.44, 0.09) 

and across all locations (0.45, 0.33) but moderately high for other environments. 

Repeatabilities for silking date were moderately high for environments WE (0.65), WH 

(0.70) and across all locations (0.57). For grain moisture repeatabilities were high for all 

environments except GR (0.52). Repeatabilities for test weight were high for most 

environments except for WE (0.40), GR (0.26) and across all locations (0.45). 
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Table 3.3. Family based repeatabilities and their standard errors for grain yield and other agronomic traits per 
location and across locations of QPM testcrosses between high lysine inbreds with different origins and Tx804 and 
hybrid checks.   
 
 
 

Traits  CS WE CA WH GR BA SP AC 

Grain Yield Mg ha-1 0.79±0.06 0.92±0.03 0.86±0.04 0.73±0.08 0.83±0.05 0.89±0.03 0.80±0.06 0.67±0.05 
Plant Height cm 0.44±0.15 0.78±0.07 - - 0.77±0.07 - 0.60±0.11 0.45±0.07 
Ear Height cm 0.09±0.24 0.78±0.07 0.65±0.10 - - - 0.74±0.07 0.33±0.06 
Silking Date days - 0.65±0.09 - 0.70±0.09 - -  0.57±0.08 
Root Lodging % - - - 0.21±0.21 0.35±0.17 -  0.13±0.08 
Stalk Lodging % - - - - - - 0.60±0.10 - 
Grain Moisture g kg-1 - 0.96±0.01 0.97±0.01 0.91±0.03 0.52±0.12 0.76±0.07 0.95±0.01 0.71±0.05 
Test Weight Kg hl-1 0.81±0.06 0.40±0.16 0.86±0.04 0.85±0.04 0.26±0.19 0.99±0.01 0.92±0.02 0.45±0.06 
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Aflatoxin evaluation 

 

Aflatoxin and plant traits in inbreds and testcrosses 

Significant differences were detected for all traits in both inbreds and testcrosses. 

Aflatoxin accumulation in inbreds at WE averaged 286.3 ng g-1 ranging from 12.5 ng g-1 

to 2133.0 ng g-1 (Table 3.4). Grain yield for inbreds was relatively low (0.4 Mg ha-1 

average) due to severe drought stress induced in the experiment.  The levels of aflatoxin 

contamination for testcrosses averaged 596.78 ng g-1 at CC ranging from 268.5 to 2063.2 

ng g-1, 325.12 ng g-1 at WE ranging from 85.2 ng g-1 to 948.2 ng g-1, and 105.72 ng g-1 at 

CS ranging from 75.4 to 229.5 ng g-1 (Table 3.5). These levels of aflatoxin 

contamination at CC and WE are similar or relatively higher compared with other 

studies (Betrán et al., 2002; Widstrom et al., 1984; Scott and Zummo, 1988).  The 

ground inoculation with colonized kernels was effective to expose maize ears to A. 

flavus particularly in these two locations by increasing the amount of inoculum available 

for natural infection.  

The response to aflatoxin and the expression of associated traits such as 

endosperm texture and kernel integrity was significantly different among the groups of 

inbreds based on their origin. Testcrosses of inbreds derived from Population 69 were 

most resistant to aflatoxin accumulation both in inbreds and testcrosses at all locations 

(Table 3.4 and 3.5, Fig. 3.1). These Population 69 inbreds have flinty endosperm, orange 

grain color, intermediate maturities, and dark green leaves. Testcrosses of inbreds 

derived from Temperate x Tropical High-Oil population and opaque commercial hybrids 

SR470, SL53 and SR660 showed highest aflatoxin accumulation. Larger embryo size 

and higher oil content of these inbreds, as compared with the rest of the inbreds, could 

be a factor associated with greater aflatoxin accumulation. Opaque-2 mutants were more 

susceptible to aflatoxin contamination and infection by A. flavus in another study 
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Table 3.4. Means and standard errors for aflatoxin content and associated traits in inbreds with different origins at 
Weslaco, TX in 2002. 
 

 

 

 Trait 

Inbred Origin 
Number of 

inbreds 
Aflatoxin Aflatoxin Grain Yield Endosperm 

Texture 
Kernel 

Integrity 
Silking date 

  log ng g-1 ng g-1 Mg ha-1 1 to 5  1 to 5  
 

days 

QPM Inbreds 

P65&66 
4 1.2 ± 0.19 128.0 ± 138.4 0.3 ± 0.08 1.2 ± 0.11 3.0 ± 0.12 81.4 ± 0.34 

P69 16 0.9 ± 0.09 113.1 ± 69.2 0.4 ± 0.04 1.1 ± 0.06 2.7 ± 0.06 81.4 ± 0.17 
P70 7 1.9 ± 0.14 238.1 ± 104.6 0.7 ± 0.06 1.3 ± 0.08 2.8 ± 0.09 80.2 ± 0.26 
P26 2 1.8 ± 0.27 165.2 ± 195.8 0.3 ± 0.11 1.9 ± 0.16 3.2 ± 0.17 81.7 ± 0.48 
P33&34 4 1.5 ± 0.19 193.6 ± 138.4 0.3 ± 0.08 1.4 ± 0.11 3.0 ± 0.12 80.3 ± 0.34 
Temp. x Trop. High-Oil 14 2.1 ± 0.10 612.9 ± 74.0 0.5 ± 0.04 2.6 ± 0.06 3.7 ± 0.07 79.6 ± 0.18 

 
Checks Inbreds 

CML161 1 0.6 ± 0.38 158.4 ± 276.9 0.3 ± 0.15 1.2 ± 0.22 2.5 ± 0.24 82.8 ± 0.68 
Tx802 1 2.3 ± 0.38 321.5 ± 276.9 0.3 ± 0.15 2.0 ± 0.22 4.3 ± 0.24 81.0 ± 0.68 
Tx804 1 1.7 ± 0.38 161.8 ± 276.9 0.5 ± 0.15 2.9 ± 0.22 4.2 ± 0.24 80.3 ± 0.68 

 
Mean of All Inbreds 

All inbreds 50 1.5 ± 0.05 286.3 ± 39.2 0.4 ± 0.02 1.7 ± 0.03 3.1 ± 0.03 80.1 ±0.10 
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Table 3.5. Means and standard errors for aflatoxin content and associated traits of testcrosses between high lysine 
inbreds with different origins and Tx804 and hybrid checks across three Texas locations, and means at single locations 
in 2002. 

 Trait 

Hybrid Origin 
Number of hybrids Aflatoxin Aflatoxin Grain Yield Endosperm Texture Kernel Integrity Silking date

  log ng g-1 ng g-1 Mg ha-1 1 to 5  1 to 5  days 
 

Testcrosses across locations 
P65&66 4 1.92 ± 0.07 273.30 ± 43.4 2.28 ± 0.07 2.15 ± 0.07 2.85 ± 0.09 74.38 ± 0.20
P69 16 1.67 ± 0.03 199.35 ± 21.7 2.40 ± 0.03 2.23 ± 0.04 2.80 ± 0.04 74.18 ± 0.10
P70 7 2.07 ± 0.05 355.67 ± 32.8 2.09 ± 0.05 2.18 ± 0.05 3.18 ± 0.07 73.90 ± 0.15
P26 2 2.01 ± 0.09 438.29 ± 61.4 2.05 ± 0.09 2.60 ± 0.10 2.94 ± 0.12 74.53 ± 0.29
P33&34 5 1.96 ± 0.06 339.63 ± 38.8 2.22 ± 0.06 2.35 ± 0.06 2.95 ± 0.08 73.82 ± 0.18
Temp. x Trop. High-Oil 14 2.21 ± 0.04 496.14 ± 23.2 2.06 ± 0.04 3.36 ± 0.04 3.16 ± 0.05 73.61 ± 0.11

 
Check Hybrids 

QPM 5 1.72 ± 0.06 230.60 ± 38.8 2.18 ± 0.06 2.02 ± 0.06 2.70 ± 0.08 75.24 ± 0.18
Opaque Crow's 3 2.17 ± 0.08 621.33 ± 50.1 2.56 ± 0.08 4.12 ± 0.08 3.09 ± 0.10 73.35 ± 0.24
Checks 4 1.93 ± 0.07 310.55 ± 43.4 3.19 ± 0.07 2.75 ± 0.07 2.53 ± 0.09 75.20 ± 0.20

 
Means across locations 

All Hybrids 60 1.94 ± 0.02 342.53 ± 11.2 2.29 ± 0.02 2.62 ± 0.02 2.94 ± 0.02 74.12 ± 0.05
 

Means at Single Location 
College Station, TX 60 1.1 ± 0.05 105.72 ± 13.1 2.2 ± 0.03 2.5 ± 0.04 2.8 ± 0.06 . 
Weslaco, TX 60 2.1 ± 0.03 325.12 ± 24.0 3.0 ± 0.03 2.7 ± 0.02 3.1 ± 0.04 75.8 ± 0.11
Corpus Christi, TX 60 2.56 ± 0.02 596.78 ± 38.3 1.72 ± 0.03 . . 72.4 ± 0.06
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Fig. 3.1. Aflatoxin content for testcrosses of inbred lines with different origin across three Texas locations in 2002. 
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 (Nielsen et al., 2002). Aflatoxin accumulation for standard non-opaque commercial 

hybrids was higher on average (310.5 ng g-1) than for Population 69 (199.4 ng g-1) and 

QPM hybrids (230.6 ng g-1) (Table 3.5).  These results suggest that there is enough 

variation among high lysine QPM inbreds to select for less susceptibility to aflatoxin 

than current commercial hybrids. Similar results were obtained with subtropical QPM 

hybrids by Bhatnagar et al. (2003) in evaluations at the same locations using the silk 

channel inoculation technique.    

Average grain yields for testcrosses were 1.7 Mg ha-1 at CC, 3.0 Mg ha-1 at WE, 

and 2.2 Mg ha-1 at CS.  Both the inbreds and their testcrosses showed significant 

variation for endosperm texture, kernel integrity, and maturities (Table 3.4 and 3.5).  

QPM inbreds and their testcrosses, except that inbreds from the Temperate x Tropical 

High-Oil population had flint endosperms, comparable to commercial hybrids and much 

harder than opaque-2 commercial hybrids from Crow’s. This indicates that it is feasible 

to develop high lysine lines with normal degree of endosperm modification. Inbreds 

from Population 69 and CML161 had the best rating for kernel integrity both in inbreds 

and testcrosses, whereas inbreds and hybrids with softer endosperm had the worst kernel 

integrity. We have observed a positive association between flint endosperm and better 

kernel integrity.  Inbreds flowered in 80 days on average, 5 days later than their 

testcrosses (76 days) at WE.  QPM hybrids had similar flowering dates than commercial 

hybrids (Table 3.5). These QPM inbreds are adapted to Southern US temperate 

environments and did not show photoperiod sensitivity in the testing environments.   

 

Repeatabilities for aflatoxin and secondary traits in testcrosses and inbred lines 

All the repeatibilities were significantly different from 0 (Table 3.6).  

Repeatibilities for aflatoxin (R = 0.67) and its logarithmic transformation (R = 0.92) in 

inbreds were relatively high compared with previous estimations (Betran et al., 2002) 

possibly due to higher amount of genetic variation present in this set of lines.  

Repeatibility estimates for aflatoxin accumulation in testcrosses measured across 

locations was 0.54 and showed a higher mean and range for aflatoxin accumulation at  



 

 

66

Table 3.6. Family base repeatabilities and their standard errors for aflatoxin and 
associated traits per location and across locations in QPM inbred and their 
testcrosses. 
 

 

 

 

WE (0.62), and CC (0.66) as compared to CS (0.38). Higher repeatability values 

observed at WE and CC could be due to more favorable environmental conditions 

prevailing at these environments for aflatoxin contamination in the testcrosses thereby 

increasing the amount of genetic variation among them. Greater genetic variation among 

the testing genotypes has been associated with greater repeatabilities (Falconer and 

Mackay, 1996; Betran et al., 2003b). Higher genetic variation among testcrosses could 

be due to lower frequency of favorable alleles in the tester (Smith, 1986). The tester 

Tx804 is an opaque soft endosperm inbred with open husks that has shown susceptibility 

in hybrid combination in previous evaluations, suggesting that the frequency of alleles 

for resistant factors to aflatoxin is low in Tx804.  Another factor contributing to the 

genetic variance observed is that the lines used had an estimated coefficient of 

inbreeding greater than 0.97 after several generations of continuous selfing. The greater 

the inbreeding level of the testing inbreds, the greater is the genetic variation among 

Aflatoxin Aflatoxin Grain Yield Endosperm Texture Kernel Integrity Silking date
log ng g-1 ng g-1 Mg ha-1 1 to 5  1 to 5  days 

 
Repeatabilities for Inbreds at Weslaco, TX 

0.92 ± 0.11 0.67 ± 0.16 0.25 ± 0.41 0.65 ± 0.16 0.60 ± 0.26 0.67 ± 0.16 
 

Repeatabilities for Testcrosses at Single Locations 
Weslaco, TX 

0.81 ± 0.04 0.62 ± 0.08 0.86 ± 0.03 0.95 ± 0.01 0.80 ± 0.04 0.62 ± 0.08 
College Station, TX 

0.45 ± 0.12 0.38 ± 0.14 0.64 ± 0.08 0.86 ± 0.03 0.48 ± 0.12 . 
 

Copus Christi, TX 
0.76 ± 0.05 0.66 ± 0.08 0.70 ± 0.07 . . 0.54 ± 0.11 

 
Repeatabilities for Testcrosses at Across Locations 

0.72 ± 0.07 0.54 ± 0.10 0.87 ± 0.03 0.95 ± 0.01 0.66 ± 0.10 0.54 ± 0.16 
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testcrosses (Hallauer and Miranda, 1988). Sufficient genetic variation was observed 

among these QPM lines with different origins for aflatoxin and associated traits 

suggesting that further selection among these inbreds can be effective. 

Grain yield had the lowest repeatability in inbreds (R = 0.25).  Grain yield 

repeatabilities in testcrosses were relatively high: 0.64 at CS, 0.86 at WE, 0.70 at CC, 

and 0.87 across locations.  Endosperm texture had the highest repeatability at each 

location (0.86 at CS and 0.95 at WE) and across the two locations (R = 0.95). 

Endosperm texture is a trait that has shown consistent response across environments and 

high repeatabilities and heritabilities (Hallauer and Miranda, 1988).  Visual rating for 

kernel integrity had a repeatability of 0.54 across locations. The causes of losing kernel 

integrity across locations can be different as the insect pressure and environmental 

conditions are different but in our study the ratings across replicates in one location and 

across the two locations were consistent enough to provide repeatabilities greater than 

0.50.  Silking date had a repeatability across locations of 0.54, which was relatively 

lower as compared with other reports (Hallauer and Miranda, 1988).  

 

Correlations between secondary traits and aflatoxin contents 

Significant phenotypic correlations were observed between aflatoxin and 

secondary traits for both inbreds and testcrosses across locations except for the 

correlation of grain yield and silking date with aflatoxin in inbreds (Table 3.7).  In 

inbreds, aflatoxin was positively correlated with endosperm texture, kernel integrity, and 

grain yield, and negatively correlated with silking date.  Less aflatoxin accumulations 

were associated with flinty endosperm texture, better kernel integrity, lower grain yield, 

and later maturities.  In testcrosses across locations, aflatoxin was positively correlated 

with endosperm texture and kernel integrity, and negatively correlated with grain yield 

and silking date.  The sign of correlations for inbreds and testcrosses was similar for all 

the traits except for grain yield.  Less aflatoxin was associated with greater grain yields 

in testcrosses. Repeatabilities for grain yield in testcrosses were greater than 
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repeatability of grain yield in inbreds indicating more accurate estimates for association 

in the testcrosses. Similar results have been reported earlier (Betran et al., 2002). 

 

 

Table 3.7. Phenotypic correlations for grain yield, grain texture, kernel integrity 
and silking date with aflatoxin content in inbreds at Weslaco and testcrosses across 
locations in 2002. 
 

 
  Inbreds Testcrosses 

Trait Units Aflatoxin Aflatoxin Aflatoxin Aflatoxin 

  log ng g-1 ng g-1 log ng g-1 ng g-1 

Grain Yield Mg ha-1 0.40** 0.16 -0.32** -0.30* 

Endosperm Texture 1 to 5 0.53** 0.41** 0.49** 0.67** 

Kernel Integrity 1 to 5 0.53** 0.37** 0.74** 0.60** 

Silking date days -0.38** -0.15 -0.35** -0.50** 

 

 

Both inbreds and testcrosses showed a similar trend for the correlations based on 

aflatoxin values and its logarithmic transformation suggesting that transformation did 

not change greatly the correlations (Table 3.7).  The correlations among these traits 

reported here are valid only for this group of genotypes and environments. High 

correlations observed between aflatoxin and other agronomic traits such as endosperm 

texture, kernel integrity and silking date that have high repeatability could be useful in 

indirect selection for reducing aflatoxin contamination or combined in selection indices 

(Falconer and Mackay, 1996). Indirect selection can be more effective than direct 

selection when secondary traits show greater heritabilities (i.e., repeatabilities) than the 

primary trait and high correlations between secondary and target traits are present, or if 

greater selection intensities can be applied to the secondary trait.  This is the case for 

traits such as endosperm texture and kernel integrity that are easy to screen in big 

populations and have high repeatabilities. The second approach would be to combine 
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information from several traits in selection indices (Baker, 1986; Lin, 1978). The 

incorporation of associated traits to aflatoxin contamination with high genotypic 

correlation with it such as endosperm texture, silking date, kernel integrity, husk 

coverage into the selection process can increase the rate of progress in developing less 

susceptible maize hybrids. Grain yield, stalk lodging and other agronomic characteristics 

can be added to the selection indices in order to select genotypes less susceptible to 

aflatoxin together with a desirable agronomic package that facilitates the deployment 

and use of sources of resistance. 

 

Regressions of testcrosses on parental inbred lines 

 A total of 47 inbreds and their 47 corresponding testcrosses were used to estimate 

the relationship between inbreds and testcrosses through regression.  Regressions of 

testcross values on inbred values were significant for all the traits.  The slope was 

positive for all the traits except for grain yield (data not shown).  Multiple R-values, 

equivalent to correlation between inbreds and testcrosses, were 0.78 for aflatoxin 

logarithmic transformation and 0.53 for aflatoxin (Fig. 3.2), and 0.20 for grain yield, 

0.84 for endosperm texture, 0.48 for kernel integrity, and 0.60 for silking date (data not 

shown).  These values indicate that except for grain yield the expression of endosperm 

texture, kernel integrity, silking date, and also aflatoxin in inbreds had predictive value 

for the expression of these traits in testcrosses.  For this set of genotypes it seems 

plausible to select the less susceptible material based on the response of inbreds to 

aflatoxin contamination.  Different results have been reported in other studies where the 

correlation between inbred and hybrids have been of low predictive value (Betran et al., 

2002). The relationship between inbreds and testcrosses for associated traits is consistent 

with other studies that show that ear and kernel characteristics such as grain texture and 

kernel integrity have high correlation, while grain yield have low correlation (Hallauer 

and Miranda, 1988).  Another important relationship is between the expression of 
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Fig. 3.2. Regression of aflatoxin and its logarithmic transformation across locations 
in testcrosses on means for inbreds at Weslaco, 2002. 
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Fig. 3.3. Regression of aflatoxin across locations in testcrosses on means for 
associated traits in inbreds at Weslaco, 2002. 
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associated traits in inbreds and the response to aflatoxin of their testcrosses.  Aflatoxin in 

testcrosses was significantly associated with endosperm texture (R2=0.62), silking date 

(R2=0.44), and kernel integrity (R2=0.39) (Fig. 3.3). This suggests that for this material, 

selection for harder endosperm, late maturity, and good kernel integrity in parental 

inbreds can reduce the susceptibility to aflatoxin of their hybrids. The possibility to use 

inbred line information, as indicative of hybrid performance is desirable to reduce the 

number of hybrid evaluations.  The predictive value of inbred line performance as 

indicative of hybrid performance can be variable depending on the environment, degree 

of inbreeding, lines and tester used, and the traits considered.  Nevertheless, selection for 

additively inherited traits, such as maturity, endosperm texture, kernel integrity, and 

husk coverage would impact the response to aflatoxin contamination more than others 

(e.g., grain yield).    

 

Quality evaluation 

 

Relationship of tryptophan level with lysine content and endosperm modification  

 Tryptophan content in grain showed a significant and positive correlation with 

lysine content measured in all the inbreds and testcrosses (Fig. 3.4). These results 

indicate that in this set of germplasm measurement of tryptophan could be efficient in 

evaluating the amino acid quality of grain. Similar relationship between lysine and 

tryptophan has been reported earlier (Hernandez and Bates, 1969; Gentinetta et al., 

1975). In all three sets of germplasm, tryptophan and endosperm modification showed a 

negative correlation (p<0.01) (Fig. 3.5). Wessel-Beaver et al., (1985) have reported 

similar negative correlations between tryptophan and endosperm modification. 

Furthermore, on grouping accessions within each set according to their level of 

endosperm modification as o2o2 (endosperm modification < 3) or QPM (endosperm 

modification > 3), the mean tryptophan levels of the o2o2 group was significantly (p > 

0.05) greater than the QPM group in two of the three sets (Fig. 3.6). These observations 

are contrary to those reported by Pixley and Bjarnason, (2002) but similar to those 
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reported by Ortega and Bates (1983) and Robutti et al., (1974). Our study included a 

wide range of QPM, opaque and non-QPM germplasm, and consequently we had a 

greater range of endosperm modification values that helped us determine a better 

correlation. A negative correlation between tryptophan or lysine levels and endosperm 

modification could mean that selection for modified endosperm slightly reduces the 

beneficial effects of the o2 mutation.  This observation underscores the importance of 

monitoring amino acid levels throughout the breeding process, as has been suggested 

(Wessel-Beaver et al., 1985).   

 

 

 

 
Fig. 3.4. Relationship between tryptophan (Trp, relative values) and lysine (Lys, 
mg/100 mg sample) for 28 maize genotypes (5 QPM hybrids, 6 QPM white inbreds, 
10 QPM yellow inbreds, 4 normal inbreds and 1 normal hybrid).   
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Fig. 3.5. Relationships between tryptophan and maize endosperm modification (1 = 
opaque, 5 = translucent) for inbreds 1 (A), testcrosses (B) and inbreds 2 (C).  
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Fig. 3.6. Mean tryptophan (Trp) (A) and methionine (Met) (B) levels of 
QPM/opaque-2 and normal checks of inbreds (set 1) and testcrosses of QPM and 
opaque-2 inbreds with Tx804. 
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Fig. 3.7. Relationships between methionine and maize endosperm modification (1 = 
opaque, 5 = translucent) for inbreds 1 (A), testcrosses (B) and inbreds 2 (C).  
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Methionine evaluation in high lysine germplasm  

Methionine is the third limiting amino acid in maize used in non-ruminant diets 

after lysine and tryptophan, and it is the first limiting amino acid in the legumes.  An 

analysis of methionine content in inbreds that were grouped as non QPM checks and 

QPM or opaque-2 (o2/o2) for each set of inbreds 1 and testcrosses (Fig. 3.6) revealed 

non QPM checks to be significantly higher in methionine levels as compared to the o2o2 

or QPM genotypes.  Our results indicate that selection for modified endosperm does not 

significantly effect methionine levels, as was evident from the similar levels of 

methionine in both o2o2 and QPM germplasm in all the three sets of germplasm 

evaluated (data not shown).  Therefore, it may be possible to select simultaneously for 

both lysine and methionine levels to develop more nutritionally enhanced maize. Lastly 

no statistically significant relationship was observed between methionine levels and 

endosperm modification (Fig. 3.7). 

 

Tryptophan and methionine levels in parental inbreds and their testcrosses 

The predictive values of tryptophan and methionine levels of inbred lines for 

tryptophan and methionine levels of testcross hybrid of each inbred with a common 

tester, Tx804, a NSS o2/o2 tester with high lysine levels was examined.  Regressions of 

tryptophan and methionine levels in 80 hybrids on o2/o2 parental inbred lines with a 

range of endosperm modification were highly significant (p > 0.01) with R2 values of 

0.11 for tryptophan and 0.10 for methionine (Fig. 3.8).  This indicates that the amino 

acid levels of parental inbreds have a low value for predictive amino acid levels in their 

hybrids.  Most of the inbred parents (Inbreds 1) used in the regressions had vitreous 

endosperms (Fig. 3.5A and 3.7A), while Tx804 has soft endosperm. The testcrosses have 

a greater segregation of endosperm modification (F2 seeds between QPM x soft crosses) 

than their parents (Fig. 3.5B and 3.7B).  

 

 

 



 

 

78

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8. Relationship between tryptophan contents (A) and methionine contents (B) 
in QPM inbred lines and their corresponding testcrosses with Tx804. 
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Fig. 3.9. Comparison of endosperm translucence between maize kernels from self-
pollinated ears of parental inbreds and corresponding F2 kernels of their crosses 
with o2/o2 inbred and Tx804. 
 
 

Sixty-eight percent of the inbreds examined had fully vitreous kernels, but the F2 

kernels derived from crosses of these inbreds with Tx804 gave a wider range of 

endosperm modifications scores (Fig. 3.9). There was no statistically significant 

correlation between the endosperm modification scores of the inbred lines with 

endosperm modification scores less than 5 and the F1 kernels derived from crosses of 

these inbreds with Tx804.  We conclude that inbred line performance per se was not a 

good predictor of hybrid performance with a common o2/o2 tester for tryptophan and 

methionine levels.  However, it is feasible to evaluate different testers with variable 

levels of endosperm modification and amino acid levels and thereby develop a better 

understanding of the gene action controlling these traits. In QPM breeding programs, the 

majority of the effort is often devoted to altering the physical properties of the 

endosperm, maintaining the o2 mutation, and improving agronomic traits. Our results 

indicate that it may be possible to further increase the nutritional value of QPM by 

selecting genotypes having both vitreous endosperm and high levels of these amino 

acids by careful monitoring the tryptophan and methionine levels during breeding.  
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CHAPTER IV 

 

GENETIC DIVERSITY AND HAPLOTYPING OF MAIZE CHROMOSOME 7 

IN opaque-2 HIGH LYSINE INBREDS 

 

OVERVIEW 

 

Opaque-2 (O2) locus located on maize chromosome 7 regulates the transcription 

of 22-kDa alpha zein genes. Mutations at this gene (o2) increase lysine and tryptophan 

contents in maize endosperm. Our objectives were (i) to characterize haplotype 

variations along chromosome 7 of high lysine maize inbreds, particularly around the 

opaque-2 locus (ii) to assess the level of genetic diversity of these inbreds in 

chromosome 7, (iii) to estimate the extent of linkage disequilibrium around the opaque-2 

locus and along chromosome 7, and (iv) to determine the parental contribution in some 

inbreds. Ninety-two inbreds with different origins [Stiff Stalk, Non Stiff Stalk, Pop 69 

(CIMMYT), and combinations of temperate (Tx802, Tx804, Tx806, B97, B104) and 

exotic subtropical lines (CML 161 from CIMMYT and Do940y, Ko326y from South 

Africa)] were haplotyped on a cM scale utilizing 43 mapped SSR markers that were 

distributed uniformly along chromosome 7 but with more density of markers around the 

O2 locus. In general, inbreds having common origin shared great proportion of similar 

haplotypes. Haplotypes around the opaque-2 locus were similar between donor and 

converted lines. A total of 200 alleles were detected with an average of 4.7 alleles/locus 

(range 2 to 17). Dendrograms of genetic similarity estimates using the UPGMA method 

showed clusters in agreement with the different origin of inbreds. Significant linkage 

disequilibrium was detected around opaque-2 locus spanning several cMs suggesting 

high selection pressure during the conversion of normal lines to opaque-2. Estimation of 

parental contribution identified haplotypes segments of chromosome 7 that were 

exclusively contributed by one or the other parent.  These results can be useful in 

parental selection to create breeding populations that enhance genetic variation along 
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chromosome 7, and identification of parental inbreds that maximize heterozygosity in 

hybrid combinations.  

 

INTRODUCTION 

 

 Maize (Zea mays L.) is a segmental allotetraploid that diverged more than 11 

million years ago from two progenitor genomes (Gaut and Doebley, 1997; Gaut et al., 

2000). The present maize genome came into existence through extensive segmental 

genome duplication that ranges from a few centimorgans (cM) to almost half of the 

chromosome (SanMiguel et al., 1998). The size of the maize genome is approximately 3 

x 109 bp, which is roughly the same size as that of the human genome. However, 

genome size varies considerably by almost 50% within the species (Rayburn et al., 1985). 

It has been shown that inbred strains may differ considerably in transposon identity and 

copy number due to both hypervariable intergenic regions that are unrelated between 

inbreds, as well as highly variable genic regions (Fu and Dooner, 2002; Martienssen et 

al., 2004). Development of molecular markers has contributed extensively to the 

understanding of the complexities of the maize genome and facilitated the evaluation of 

genetic diversity in maize germplasm. Currently efforts are on to map the maize genome 

at several laboratories and a great deal of information about mapped markers (SSR’s 

RFLPs and SNPs), which has been deposited at database (http://www.maizegdb.org) and 

is publicly available.  

Genetic variation in the pattern and level of expression of gene products has been 

considered as one of the important factors contributing to diversity and adaptation of 

plants (Powell and Amato, 1984). Regulatory genes have been the focus of studies 

related to understanding of the process of diversification (Doebley, 1993).  The opaque-

2 mutant gene (o2o2), suppresses the transcription of the 22-kDa fraction (Burr and Burr, 

1982; Pederson et al., 1982; Kodrzycki et al., 1989), which results in a decreased rate of 

transcription of the 22-kDa class of α-zeins. As a result there is an overall reduction in 

the proportion of α-zeins, a predominant fraction (60-75%) among the four major 
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classes of endosperm storage proteins, other fractions being albumins (3%), globulins 

(3%) and glutelins (34%). The zeins are almost devoid of essential amino acids lysine 

and trytophan, causing maize to be nutritionally inferior in protein quality as compared 

with rice, wheat and other major cereals. The reduced synthesis of α-zeins causes a 

concomitant increase in the proportion of other classes of storage proteins, albumins, 

globulins and glutelins, which are rich in lysine and hence better nutritional quality of 

maize with the mutant opaque-2 gene. The opaque-2 locus in maize has been shown to 

be highly polymorphic in both non-coding regions as well as protein-coding regions of 

the gene with evidence of high recombination rates and unequal distribution of 

polymorphism within the opaque-2 sequence (Henry and Damerval, 1997).   

The exploitation of opaque-2 mutant gene in animal and human nutrition has 

recently gained importance and priority in the developing countries, where malnutrition 

in babies is a chronic problem (Vasal, 2001). Previous attempts to popularize high lysine 

maize carrying the opaque-2 mutant gene were unsuccessful due to several agronomic 

deficiencies associated with the expression of opaque-2 gene, such as lower grain yield, 

increased susceptibility to insects and pests in storage, poor kernel phenotype and lower 

kernel integrity (Vasal 2001). The International Center for Maize and Wheat 

Improvement, CIMMYT, developed Quality Protein Maize (QPM) that had higher 

yields, vitreous and harder endosperm and greater resistance to insects and pests by 

selecting simultaneously for modifiers conferring hard vitreous endosperm texture, 

higher tryptophan content and desirable agronomic properties. Currently a wide variety 

of subtropical and tropical populations, pools and hybrids with competitive yield and 

better quality are being used extensively in several countries in Asia, Africa and Central 

and South America. Texas A&M University (TAMU) has maintained a breeding 

program to develop QPM inbreds and hybrids with normal seed appearance, competitive 

yield and adaptation to Southern USA (Betrán et al., 2003 c,d,e). Selection has been 

conducted on diverse germplasm sources ranging from subtropical and tropical (from 

CIMMYT, México and University of Natal, South Africa) to temperate elite maize 
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inbreds that were previously converted to high lysine or were recycled to improve yield 

and adaptation to temperate growing conditions. The objectives of this experiment were:  

(i) to assess genetic diversity in chromosome 7 among 92 inbreds representing 

diverse origins using SSR markers  

(ii) to characterize haplotype variations along chromosome 7 of high lysine maize 

inbreds, particularly around the opaque-2 locus,  

(iii) to estimate the extent of linkage disequilibrium around the opaque-2 locus 

and along chromosome 7, and  

(iv) to determine the parental contribution in some inbreds. 

 

REVIEW OF LITERATURE 

 

Several maize mutants that affect protein quality have been identified over the 

past 30 years. A summary list of these mutants, their inheritance patterns, effect on zein 

accumulation, genetic map bin number, map coordinate position and source of map are 

presented in Table 4.1. Bins are sectors of genetic maps defined as “the interval of 

chromosomal segment that includes all loci from the topmost core marker to the next 

core marker (approximately 20 centimorgams apart) that define the bin boundary (locus 

or probe)” (Gardiner et al., 1993). Placement of a locus to a bin is dependent on the 

precision of mapping data and the resolution (the number of markers) of the map. 

 

Table 4.1. Mutant genes, their inheritance patterns, effect on zein accumulation, 
bin no., coordinate position on map, and the source map type (Motto et al., 2003). 
 

Locus Inheritance Effect on zein accumulation Bin no., coordinate 

and source map 

Opaque-1 (o1)  Recessive unknown 4.07, 118, Genetic 4 

Opaque-2(o2) Recessive 22-kDa elimination 

20-kDa reduction 

7.1, 122.0 IBM  
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Table 4.1. Continued. 
Locus Inheritance Effect on zein accumulation Bin no., coordinate 

and source map 

Opaque (os1) Recessive unknown 2.0, 43.1, Pioneer 

Composite 1999 2 

Opaque-5(o5) Recessive Similar to o1 7.02, 58.10, Pioneer 

Composite 1999 7 

Opaque-6(o6) Recessive General reduction unknown 

Opaque-7(o7) Recessive 20-kDa reduction unknown 

Opaque-15(o15) Recessive 27-kDa reduction Reduction in 

γ-zein 

7.5, 136.6, Pioneer 

Composite 1999 7  

Opaque-2 modifier1 

(gzr1)  

Semidominant 27-kDa overproduction 7.5, 152.0, Pioneer 

Composite 1999 7  

Floury-2(fl2) Semidominant General reduction 4.0, 203.7, IBM 

neighbors v.2 4 

Floury-3(fl3) Semidominant General reduction unknown 

Defective Endosperm 

B30 (De*B30) 

Dominant 22-kDa reduction 7.01, 37.5, Pioneer 

Composite 1999 7 

Mucronate (Mc1) Dominant General reduction unknown 

zp22 Recessive 22-kDa alpha zein gene cluster 4.02, 27.3,  Pioneer 

Composite 1999 4 

Zp27 Recessive 27-kDa zein protein cluster 

Regulated by gzr1. Identified 

by p-umc1216 (via SSR PCR) 

7.02, 28.4, 

W64A/tester x tester 7 

Zpr10(22) Recessive 10-kDa reduction 4.02, 25.3, Pioneer 

Composite 1999 4 

Ask1 Recessive  Threonine overproduction, 

regulated by O2 

7.01, 44.0, Pioneer 

Composite 1999 7 

Ask2 Recessive Threonine overproduction, 

regulated by O2 

2.06, 114.10, Pioneer 

Composite 1999 2 

 

 

Hunter et al., (2002) characterized the protein and amino acid composition, and 

mRNA transcript profiles, of nearly isogenic inbred lines of W64A o1, o2, o5, o9, o11, 
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Mucuronate (Mc), Defective endosperm B30 (DeB30), and fl2 mutants in an effort to 

study the relationship between the phenotypes of these mutants and their biochemical 

bases. Their results indicated that the largest reductions in zein protein synthesis occur in 

the W64A o2, DeB30, and fl2 mutants, which have almost 35 to 55% of the wild-type 

level of storage proteins. In the same study the pattern of gene expression in normal and 

mutant genotypes was assayed by profiling endosperm mRNA transcripts at 18 days after 

pollination with an Affymetrix GeneChip containing >1400 selected maize gene 

sequences. The results indicated increased expression of genes associated with 

physiological stress, and unfolded protein response, which were common features of the 

opaque mutants. All the mutants were classified into four major phenotypic groups based 

on their global patterns of gene expression viz.W64A+ and o1; o2; o5/o9/o11; and Mc 

and fl2. Studies conducted on dek mutants have reported nutritional, mechanical, and 

biotic stresses to also result in an opaque phenotype (Lyznik and Tsai, 1989; Neuffer et 

al., 1997).  

 

The Opaque-2 gene 

To date about 18 mutants affecting endosperm protein storage synthesis in maize 

have been identified that alter zein synthesis and cause protein bodies with abnormal 

morphology, size, or number, and result in kernels with a soft, starchy texture. The first 

of these mutants identified was opaque-2 (Mertz et al. 1964), a recessive gene located on 

short arm of chromosome 7 (bin no. 7.1, coordinate 122.0), which specifically eliminates 

the 22-kDa and reduces the 20-kDa α-zein fractions. The mutation opaque-2 (o2) results 

in small, unexpanded protein bodies (Geetha et al., 1991). The Opaque-2 gene, a 

regulatory gene on chromosome 7, was isolated by transposon tagging and was found to 

encode a transcriptional activator of the basic leucine-zipper family of genes (Hartings et 

al., 1989; Schmidt et al., 1990). The O2 protein was shown to activate the transcription 

of the 22 kDa α-zein (Schmidt et al., 1992), the 14 kDa β-zein genes (Cord Neto et al., 

1995), b-32 (Lohmer et al., 1991), and cyPpdk1 (one of two cytosolic isoforms of 

pyruvate orthophosphate dikinase) genes (Maddaloni et al., 1996). A comparison of wild 
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type O2 allele and several variants of the recessive allele o2 showed hypervariable 

regions in the N-terminal part of the gene with some variants (e.g., o2-Crow) showing 

large deletions in the coding region of the gene (lacking the zipper region and the C-

terminal part of the gene) that results in a frame shift mutation and causes a premature 

termination of the polypeptide (Hartings et al., 1995). The defective or truncated opaque-

2 protein results in significant reduction in the total zeins (almost eliminates the 22-kDa 

fraction and reduces the 20-kDa fraction) and consequently causing a pleiotropic 

increase in the amount of non-zeins proteins but not an increase in the lysine 

concentration of the non-zeins per se (Damerval and de Vienne, 1993; Habben et al., 

1993; Moro et al., 1996).  

Lohmer et al. 1991 showed that the opaque-2 gene in developing endosperm also 

controls the expression of structural genes encoding an abundant albumin, termed b-32 

and activates in vivo the promoter of the b-32 gene. Their studies also showed that the 

information necessary for this activation resides in a 440 bp DNA fragment containing 

five O2 binding sites (GATGAPyPuTGPu), of which two sites reside in copies of the 

'endosperm box', a motif involved in endosperm-specific expression, which is also 

represented in 22 kd zein promoters. The O2 protein is also shown to be capable of 

binding in vitro and activating in vivo its own promoter.  

 

Opaque-2 gene structure 

The core of the Opaque-2 (O2) gene known as the structural gene consists of 

1311 nucleotides that specify the composition of a transcription factor containing 437 

amino acids (Schmidt et al., 1990). In the sequence published by Maddaloni et al. (1989), 

the nucleotide series is broken into six exons and five introns (Fig. 4.1). Both sequences 

published by Schmidt et al. (1990) and Maddaloni et al. (1989) differ in two main 

features: Maddaloni et al. (1989) characterized a sequence of 1548 nucleotides, whereas 

the upstream region of Schmidt et al. (1990) had only 258 nucleotides, and the length of 

the resulting protein sequence, which according to Schmidt et al. (1990) is a polypeptide 

with 437 amino acids, while Maddaloni et al. (1989) reported 453 amino acids. 
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Differences in the reported sequences may have occurred due to the methods used to 

isolate genes, the sequencing procedure, interpretation of the sequences and the genetic 

variation in the germplasm characterized. 

 

 

 
Fig. 4.1. Structure of the Opaque-2 gene of maize. [Intron sequences are indicated 
by a horizontal heavy line; exon sequences are represented by boxes. The three 
heavy lines within exon 1 denote the three uORFs in the leader sequence. The start 
codon (ATG) is indicated and the asterisk represents the TATA box. Hatched boxes 
represent the region encoding the basic domain and leucine zipper of the 
transcription factor. Nucleotide positions are numbered according to the sequence 
published by Maddaloni et al. (1989)]. 
 

 

Opaque-2 endosperm modifiers 

Quality Protein Maize (QPM) genotypes have been reported to contain increased 

amounts of cysteine rich 27-kDa gamma zeins (Ortega and Bates, 1983; Wallace et al., 

1990; Lopes and Larkins, 1991) and have enhanced levels of mRNA (Geetha et al., 

1991) that is regulated post-transcriptionally (Or et al., 1993). In a genetic analysis of F2 

segregating seeds from crosses of opaque-2 by QPM (modified opaque-2) genotypes, 

Lopes et al. (1995) indicated that the activity of opaque-2 is affected by the background 

of the parent. Their results also indicated that enhanced accumulation of gamma zeins in 

the endosperm are highly correlated with seed density (r2 = 0.82), P < 0.01) and that 

degree of seed modification coupled with increased deposition of gamma-zeins were 

dosage dependent and directly correlated. Their results also indicated the presence of at 

least two complex modifier loci acting codominantly, one of which was mapped near the 

centromere of chromosome 7 and the other mapped near the telomere of chromosome 
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7L. The second locus called gamma zein modifier1 (gzr1) has been mapped in the 

Pioneer Composite 1999 7 Map at bin number 7.5 and coordinate 152.0 

(http//:www.maizegdb.org). These two loci affecting endosperm modification, were 

associated with enhanced synthesis of gamma-zeins. This results in a vitreous phenotype 

caused by the formation of a larger number of protein bodies that creates an extensive 

proteinaceous matrix around the starch grains (Burnett and Larkins, 1999). However, 

further genetic analysis has revealed that although the gamma-zein locus may be 

necessary it is not sufficient to effect complete modification of the opaque-2 phenotype 

(Dannenhofer et al., 1995; Lopes et al., 1995; Lopes and Larkins, 1995). Recently a 

proteomic analysis of several QPM lines showed increased levels of granule-bound 

starch synthase I in the soluble nonzein protein fraction that was correlated with a 

change in starch structure, due to shorter amylopectin branches and increased starch-

granule swelling. Gibbon et al. (2003) have reported alterations in starch structure 

associated with interconnections between starch granules to result in a vitreous kernel 

phenotype.   

Yau et al. (1998) proposed the use of glutelins, which are the next major source 

of lysine in maize endosperm protein (4-5%), as an alternative to selection for high 

lysine maize. They reported significant correlation between lysine content in six out of 

seven glutelin proteins (35, 43, 48, 84, 92 and 100 k-Da). Glutelins are a multigene 

family composed of 3 subunits, G1-204 (28-kDa), G1-164 (16-kDa), G2 (15-kDa) and 

G3 (10-kDa). Complete cDNA sequences of the four genes amplified by PCR to 

determine the exact number of copies per genome showed that G1 has 5-10 copies, G2 

has 1-2 copies and G3 has 2-3 copies per genome (Lazzari et al., 1993). The structure 

and amino acid sequence of the glutelin-2 gene has been determined (Prat et al., 1985) 

and isolation and sequencing of a 28-kDa glutelin-2 gene has been done (Boronat et al., 

1986).  
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Other major genes identified in maize chromosome 7 and their main characteristics 

Opaque endosperm15 (o15) – It causes small opaque poorly viable kernel, abnormal 

seedling and plant (dwarf, ear in tassel) and reduces the 27-kDa gamma zein mRNA and 

protein. The opaque-15 mutation maps near the telomere of chromosome 7L, coincident 

with an opaque-2 modifier locus and appears to be a mutation of the opaque-2 modifier 

gene (gzr1). This locus has been mapped at bin no. 7.5, coordinate 136.6 in the Pioneer 

Composite map 1999 7. The o15 mutant that reduces -zein synthesis leads to a smaller 

number of protein bodies (Dannenhoffer et al., 1995). In QPM there is overproduction of 

-zein that enhances protein body number and result in the formation of more vitreous 

endosperm (Lopes et al., 1995; Moro et al., 1995). 

Defective Endosperm B30 (De*B30) – It is a mutant dominant allele that causes opaque, 

high lysine endosperm (Balconi et al., 1998) that has been mapped in the Pioneer 

Composite 1999 7 map at bin number 7.01 and coordinate 37.5. The Defective 

endosperm B30 (DeB30), along with other opaque mutants, such as floury2 (fl2) and 

Mucuronate (Mc), are associated with irregularly shaped protein bodies (Fontes et al., 

1991; Coleman et al., 1997c). 

Opaque endosperm5 (o5) – It causes opaque kernel, light yellow endosperm and 

sometimes modified to shrunken-like sh1 or sugary-like su1. Seedlings are virescent to 

yellow or white, depending on allele with some being lethal. This locus has been 

mapped in the Pioneer Composite 1999 7 map at bin number 7.02 and coordinate 58.10. 

Opaque endosperm (o1) - The o1 mutation has little effect on zein synthesis (Nelson et 

al., 1965), yet results in a soft, starchy endosperm. This mutation has been mapped at bin 

no. 4.07 and coordinate 118 on Genetic 4 map.  

Locus 27-kDa zein protein (zp27) – This mutant allele has been mapped on the short 

arm of chromosome 7 (coordinate 28.40 and bin number 7.02) in the population 

W64A/tester x tester 7 (Esen, 1982).  
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Lysine biochemical and catabolism pathway 

The aspartate pathway has been studied in detail that leads to increase in lysine 

production (Azevedo et al., 1997). The first regulatory enzyme in the pathway is 

aspartate kinase (AK) that leads to the biosynthesis of lysine, methionine, threonine and 

isoleucine. The Ask1 gene encodes an AK isoenzyme sensitive to lysine inhibition and is 

regulated by O2 causing alterations in the level of soluble amino acids, total amino 

acids, storage proteins and enzyme activity (Azevedo et al., 1990; Brennecke et al., 

1996). Genetic analysis showed that both genes are linked on chromosome 7 (Azevedo 

et al., 1990). Another gene Ask2 that encodes an aspartate kinase and is also sensitive to 

lysine inhibition could be a QTL for free amino acid content in o2 mutants (Wang and 

Larkins, 2001; Wang et al., 2001).  

Lysine catabolism via the saccharopine pathway is the major route for lysine 

degradation in plants (Azevedo and Lea, 2001). Studies on investigation of activity of 

LKR (lysine-ketoglutarate reductase) and SDH (saccharopine dehydrogenase), the first 

two enzymes in the pathway of lysine degradation via aminoadipic acid, respectively, in 

homozygous normal and opaque-2 versions of two inbreds (ML649 and L438) revealed 

LKR activity of L438 opaque-2 endosperm to be three times lower than the activity for 

L438 normal and almost no enzyme activity in the ML649 opaque-2 inbred line, 

whereas there was no change in the activity of SDH due to opaque-2 gene (Arruda et al., 

2000). They concluded that the decrease in LKR activity of opaque-2 endosperm 

resulted in decrease in rate of lysine degradation and was not due to the presence of an 

enzyme inhibitor in the mutant endosperm. In another study, it was shown that the first 

two enzymatic steps are catalyzed by lysine-oxoglutarate reductase (LOR) and 

saccharopine dehydrogenase (SDH) as two parts of a bifunctional polypeptide 

(LOR/SDH) and the LOR activity was decreased by a factor of 2 to 3 in o2 mutants as 

compared to wild-types (Brochetto-Braga et al., 1992). Sequencing the cDNA 

corresponding to LOR/SDH revealed that the SDH activity was encoded by the C-

terminal part of the messenger, while the N-terminal sequence encoded the LOR enzyme 

(Kemper et al., 1999). The genomic sequence of the gene and its 5' regulatory regions 
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have revealed the presence of O2 boxes in the upstream promoter (Arruda et al., 2000), 

that cause transcriptional control of the Lor/Sdh gene by O2. In a study of activities of 

enzymes of the aspartate pathway and lysine catabolism in two QPM, an o2 mutant, and 

a wild-type O2 varieties, higher AK activity and a lower LOR and SDH activity was 

observed in the QPM as compared to the wild-type and mutant o2 genotypes. This 

suggests the role of modifier genes in enhancing the effects of o2o2 on the LOR/SDH 

(Gaziola et al., 1999). Studies conducted on the association of other genes having effect 

on non-zein proteins showed EF 1-α, a lysine rich protein (10%) which binds the 

aminoacyl-tRNAs to the ribosome to be directly and significantly correlated (r2= 0.9) to 

total lysine content of the endosperm protein (Larkins et al., 1996; Habben et al., 1995).  

A list of maize proteins that are affected by opaque-2 (o2) mutation, their 

function and type of regulation is presented in Table 4.2.  

 

Table 4.2. Maize proteins that are affected by opaque-2 (o2) mutation, their 
function and type of regulation (Motto et al. 2003). 
 

Protein Function Up/down 

regulation a 

Transcriptional 

Regulation 

22-kDa zein Storage protein Down Yes 

b-32 TypeI ribosome-inactivating 

protein 

Down Yes 

b-70 HSC70 homologue Down No 

Cytosolic PPDK Amino acid 

interconversions 

Down Yes (unknown) 

Aspartate 

aminotransferase  

Amino acid 

interconversions  

Down unknown 

Acetohydroxy-acid 

synthase 

Synthesis of branched chain 

amino acids 

Down unknown 

Glyceraldehyde 3P-

dehydrogenase 

Stress-induced glycolysis Up unknown 

Aspartic proteinase 

precursor 

Proteolysis during 

germination 

Up unknown 
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Table 4.2. Continued. 
Protein Function Up/down 

regulation a 

Transcriptional 

Regulation 

Lysine ketoglutarase reductase Lysine catabolism Down unknown 

Aspartate kinase Lys, Met, Thr synthesis Down unknown 

Elongation factor 1 alpha (EF 

1-α ) 

Translation, mRNA-

cytoskeleton association 

Up unknown 

a Changes relative to normal 

 

 

Genetic diversity in maize 

Genetic diversity is a measure of variability among individuals determined by a 

specific method or a combination of methods (Mohammadi and Prasanna, 2003). 

Understanding genetic relationships and diversity, at different levels such as germplasm 

pools and populations or inbreds in maize is critical to maximize efficiency in any maize 

breeding program. Recent applications of molecular markers in the assessment of 

genetic diversity have facilitated diverse studies in maize and have been valuable in 

diverse applications for crop improvement strategies (Betran et al., 2003a). Genetic 

diversity can be estimated in inbred lines (homozygous genotypes) and populations 

(mixture of genotypes with variable degree of heterozygosity). The genetic diversity 

present in both inbreds and populations is affected by several genetic phenomena such as 

linkage, migration, inbreeding and population substructure. Genetic diversity measures 

in populations are dependent on several factors such as number of individuals sampled, 

number of loci, mating system, genotypic and allelic frequencies, and the effective 

population size (Weir, 1996b).    

Genetic diversity has been studied in detail using diverse data sets in the past, eg. 

pedigree data (Bernardo, 1993), morphological data (Smith and Smith, 1992), isozyme 

data (Hamrick and Godt, 1997), and recently DNA based (RFLP’s, AFLP’s, SSR’s 

SNP’s) data (Bhattramakki and Rafalski, 2001). Diversity studies using pedigree data 
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have utilized Malecot’s (1948) coefficient of coancestry (f), which is the probability of 

two random alleles sampled from each of two individuals to be identical in descent. 

However, this measure fails to take into account common violations of assumptions in 

plant breeding programs such as genetic drift due to small population size, selection and 

ambiguity in pedigree records (Messmer, et al., 1993). Variation in isozymes has been 

used to estimate genetic distance in 31 maize lines that was consistent with pedigree data 

(Stuber and Goodman, 1983), however the discriminatory power of isozymes as markers 

is limited mainly due to few polymorphic loci reported in plants.  The development and 

use of molecular markers has facilitated greatly the assessment of genetic diversity at the 

DNA level (Melchinger and Gumber, 1998). Genetic divergence studies utilizing 

RFLP’s as DNA markers have been reported to provide accurate measures of genetic 

distance that are consistent with pedigree information (Lee et al., 1989 and Melchinger, 

1990) and analyzing relationship between genetic distance and heterosis (Stuber, 1989; 

Smith et al., 1990; Boppenmeier et al., 1992; Dudley, 1994; Dubreuil et al., 1996), 

however, their effective utilization is limited by the labor intensive and time consuming 

nature of RFLP analyses. Studies conducted at Texas A&M by Kata et al. (1994) 

reported an effective and accurate marker assay method for identifying plants with 

O2/O2, O2/o2 and o2/o2 genotypes from juvenile leaf DNA samples by using Opaque-2 

cDNA developed from RFLPs as a probe on HindIII-digested genomic DNA. 

 

Use of single sequence repeats (SSR’s) or microsatellites in maize 

 Microsatellites or single sequence repeats (SSRs) are short (2 to 6 nucleotides) 

tandemly arranged DNA sequences. Microsatellites, PCR based codominant markers 

abundant in several species including maize (Powell et al., 1996), are highly 

polymorphic (Smith et al., 1997; Beckmann and Soller, 1990; Senior and Heun, 1993; 

Matsuoka et al., 2002), easy to analyze by automated systems (Sharon et al., 1997), 

highly accurate and repeatable (Heckenberger et al., 2002), and have been mapped 

extensively over the entire maize genome (Chin et al., 1996; Taramino and Tingey, 

1996).  In diversity studies utilizing mapped SSR’s is advantageous in uniform and 
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controlled sampling of the genome, which is important in avoiding possible 

overrepresentation of the genome leading to inaccurate estimation of genetic distances 

(Menz et al., 2004). Further the efficiency of SSR based genetic analyses can be 

increased by multiplexing reactions using automatic electrophoretic conditions (Mitchell 

et al., 1997). In a comparative study of different types of markers (AFLPs, RAPDs, 

SSRs, and RFLPs) in classifying 33 inbred lines, SSRs identified twice the number of 

alleles than AFLPs and RAPDs, and were 40% more informative than RFLPs (Pejic et 

al., 1998). 

 Analyzing molecular diversity at any level has been useful in understanding past 

selection history, genetic drift, recombination and populations structures in maize 

germplasm. Inbreds in maize have been a valuable resource in diversity studies, such as 

development of linkage maps (Burr et al. 1988), quantitative loci mapping (Edwards et 

al., 1987; Austin et al. 2001), molecular evolution (Henry and Damerval, 1997; Ching et 

al., 2002), developmental genetics (Poethig, 1988; Fowler and Freeling, 1996), 

classification into heterotic groups (Stuber, 1989; Lee et al., 1989; Boppenmeir et al., 

1992; Melchinger, 1993; Betran et al., 2003a) and in evaluating linkage disequilibrium 

and association genetics in maize (Remington et al., 2001; Thornsberry et al., 2001).       

Several studies have focused on analyzing the genetic diversity in maize inbred 

lines developed in breeding programs around the world utilizing molecular markers. 

Commonly used temperate inbreds in both public and private breeding programs in the 

USA have been classified on the basis of molecular markers into two major heterotic 

groups (Iowa Stiff Stalk Synthetic (BSSS), and Non-BSSS) and a third group of 

unrelated lines to either group (Mumm and Dudley, 1994; Dubreuil et al., 1996; 

Dubreuil and Charcosset, 1999; Gethi et al., 2002). Liu et al. (2003) estimated the 

genetic structure and diversity in an analysis of 260 maize inbred lines, including many 

of the known publicly available temperate, tropical and subtropical maize lines using 94 

SSRs. Five major groups were identified representative of major breeding groups 

(temperate Stiff Stalk, temperate Non Stiff Stalk, tropical and subtropical germplasm, 



 95

popcorn and sweet corn) with greater number of alleles identified in the tropical and 

subtropical germplasm in comparison to temperate germplasm.  

Researchers at International Center for Maize and Wheat Improvement 

(CIMMYT), Mexico have utilized molecular markers extensively to characterize 

subtropical and tropical germplasm and assigning breeding lines and populations into 

heterotic groups using DNA finger printing techniques (Warburton et al., 2002; Reif et 

al., 2003; Reif et al., 2004). DNA finger printing is a powerful technique for assessing 

genetic diversity at the DNA level in plants (Melchinger and Gumber, 1998) and genetic 

distances based on molecular marker data in conjunction with phenotypic data is 

extremely useful in classifying heterotic groups and identifying promising heterotic 

patterns among maize genotypes (Melchinger, 1999). Genetic characterization of Asian 

maize inbred lines utilizing molecular markers classified the inbreds developed in China 

and Indonesia into 6 majors groups with lines developed from CIMMYT germplasm 

falling into separate category (George et al., 2004).  

Molecular markers, especially SSR’s owing to their high reproducibility have 

been also utilized in estimating genetic relationships between inbreds and the extent of 

haplotype sharing within diverse groups of maize inbreds when pedigree data is 

available (Romero-Severson et al., 2001).    

 
Statistical methods and software’s to analyze genetic diversity 

Several commonly used measures to analyze genetic diversity include: 

Genetic distance (GD) – It is defined as “any quantitative measure of genetic difference, 

at the sequence level, allele frequency level, that is calculated between individuals, 

populations or species” (Beaumont et al., 1998). Genetic distance has been used 

extensively in plant breeding to group inbreds, populations or cultivars. Genetic 

similarity (GS), the opposite of GD (GS = 1-GD), is commonly used in clustering plant 

inbreds, populations and cultivars utilizing molecular markers (SSRs, AFLPs, RFLPs, 

SNPs). A binary matrix of 1 (presence of allele) and 0 (absence of allele) is used in 

several statistical methods such as Nei and Li’s (1979) coefficient, Jaccard’s coefficient 

(1908), simple matching coefficient (Sokal and Michener, 1958), and Modified Roger’s 
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distance to estimate GD. Mohammadi and Prasanna (2003) have reviewed the 

commonly used methods employed in analyzing genetic diversity. 

Multivariate methods – Several methods used in analyzing genetic diversity and 

classifying plant populations, inbreds and cultivars are:  

(1) Cluster analysis that are either distance based methods (further classified as 

hierarchical or nonhierarchical) or model based methods (maximum-likelihood based or 

Bayesian based methods). Most commonly used methods used in hierarchical clustering 

are UPGMA (Unweighted Paired Group Method using Arithmetic averages) (Sneath and 

Sokal, 1973) and Ward’s minimum variance method (Ward, 1963).  

(2) Ordination methods such as principal component analysis and principal coordinate 

analysis are methods of data reduction by linear transformation of the original variables 

into a set of new uncorrelated variables known as principal components (PCs) (Johnson 

and Wichern, 1992). Generally one or more PCs are used to generate 2 or 3-dimensional 

scatter plots to establish the genetic distance between individuals.  

(3) Multidimensional scaling methods in which molecular marker data can be 

conveniently viewed in 2 or 3-dimensions using similarity or distance matrix (Schiffman 

et al., 1981; Beebe et al., 1995).     

 Several software’s are currently available to analyze molecular marker data 

analysis in diversity studies with applications in estimating common diversity measures, 

infer population structure, perform clustering, test for Hardy-Weinberg and multilocus 

equilibrium and calculating other population statistics. Commonly used programs are 

NTSYS, TFPGA, FSTAT, PHYLIP Arlequin, GDA, Genepop, Genestrut, Popgene, 

Structure, Tassel, Powermarker etc. (Appendix D) for analyzing population structure, 

phylogenetic analysis and performing association analysis.  

 

Linkage disequilibrium (LD) and association studies in maize 

 Linkage disequilibrium is defined as the “non random association of alleles at 

different loci”. High LD exists whenever there is linkage or the population is subject to 

selection, genetic drift or admixture. Linkage disequilibrium is greatly influenced by 
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several factors such as population structure, recombination hot spots and mating system. 

Typically, LD mapping can provide a resolution of 1-2 centimorgan around the gene of 

interest, however, it can be increased by population-based studies (Devlin and Risch, 

1995). Several measures to study LD have been used (Hedrick, 1987 and Jorde, 2000), 

however the two most common measures used are D’ (Lewontin, 1988) and r2 (Hill and 

Weir, 1994). Lewontin’s D’ is calculated as:  

 

|D’| = (Dab)2/min(pApb,papB) for Dab < 0; 

|D’| = (Dab)2/min(pApB,papb) for Dab > 0 

 

The square of the standardized measure (r2) is calculated as:  

r2 = Dab
 2/(pA+pB+pa+pb) 

In both the measures Dab is calculated as  

Dab = (pAB – pApB) 

In association studies commonly r2 values are used as D’ values are strongly 

affected by small population sizes giving biased values when comparing alleles with low 

frequencies. Linkage disequilibrium studies have been used extensively in humans to 

identify genetic regions associated with a particular disease, eg. cystic fibrosis gene 

(Kerem et al., 1989). Several studies have analyzed LD and its patterns in plants 

particularly in Arabidopsis (Nordborg et al., 2002)  

In maize several studies have investigated patterns of LD over a wide range of 

populations and marker types ranging from SNPs within sequenced genes to SSRs 

across the genome. Remington et al. (2001) in a survey of six candidate genes using 

SNPs reported rapid decline of intragenic LD (r2 < 0.1 within 1500 bp) indicating large 

effective population sizes in maize during evolution and high levels of recombination. In 

the same study they used 47 SSR markers among 102 diverse inbred lines and reported a 

strong evidence of genome-wide LD that could be reduced by grouping the lines into 

three empirically determined subpopulations. Palaisa et al. (2003), in the study of effects 

of selection on sequence diversity and LD at two phytoene synthase loci (Y1 and PSY2), 
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reported rapid decline in pairwise LD measured as r2 (0.1 within 1000 bp) in white 

endosperm lines for the Y1 locus, whereas in the yellow endosperm observed r2 levels 

decreased rapidly within 250 bp. Similar observations have been reported by Tenaillon 

et al. (2001) in a study of sequence diversity in 21 loci distributed along chromosome 1 

of maize. In their study LD (measured as expected value of r2) decayed rapidly over a 

short distance on average (0.15 within 500 bp).     

However, Rafalski (2002) found contrasting evidence of persistent LD in regions 

of DNA greater than 100 kb for adh1 and y1 loci in elite maize populations and in a 

similar study found no decay in LD in 300-500 bp range. These differences in LD decay 

could be possible due to several reasons including population history and low rates of 

recombination in repetitive regions of the maize chromosome (Flint-Garcia et al., 2003).   

Ching et al. (2002) in a study of the frequency and distribution of DNA polymorphisms 

at 18 maize genes in 36 maize inbreds, that represented most of the genetic diversity in 

U.S. elite maize breeding pool reported no rapid decline of linkage disequilibrium within 

a few hundred base pairs in the elite maize germplasm, which was consistent with the 

effects of breeding-induced bottlenecks and selection on elite germplasm pool. Their 

results indicated large genetic distance between haplotypes, which is indicative of an 

ancient gene pool and of possible interspecific hybridization events in maize ancestry. 

 

Estimation of parental contribution in breeding lines 

Parental contribution defined as the “proportion of the genome derived from the 

recombinant inbred from its parental inbreds” is a useful method in determining the 

genetic relatedness between inbreds utilizing molecular markers (Bernardo, 2002). A 

comparison of molecular (RFLP, SSR) and pedigree data (coefficient of coancestry) was 

done to evaluate parental contribution of inbreds to their progeny (Bernardo et al., 

(2000). Their results revealed significant differences between the molecular and pedigree 

data estimates but no significant differences were observed between the two molecular 

marker estimates. In both molecular estimates the sum of the parental contributions did 

not equal 1.0 due to non-parental bands, which could be due to several factors such as: 
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residual heterozygosity, contamination, mutation or recombination within a band. RFLP 

bands showed more non parental bands than SSR markers.    

Romero-Severson et al. (2001) utilized genetic similarities and haplotype sharing 

within a diverse set of inbreds from North America and Europe including Iodent, Iowa 

Stiff Stalk Synthetics (BSSS) Lancaster Surecrop, flint types, sweet corn and popcorn. 

The iodents showed shared haplotypes on several chromosomes (1,3,4 and 10). The B73 

group, popcorns and flint corns showed extensive haplotype sharing on chromosome 9 

with a high proportion in a 20 cM region on chromosomes 3 and 10.    

 

MATERIALS AND METHODS 

 

Plant material 

Ninety high lysine maize inbreds developed at the Maize Breeding and Genetics 

Program, Texas A&M and two inbreds developed at CIMMYT, Mexico (CML 161) and 

University of Natal, South Africa (Do940y) were included in this study (Appendix D, 

Table D.1). These inbreds representing a wide range of genetic backgrounds have 

different origins: Temperate Stiff Stalk and Non Stiff Stalk germplasm, CIMMYT QPM 

Populations 65, 69, 70 and temperate x tropical high oil, temperate inbreds (Tx802, 

Tx804, T220o2, B73o2), tropical exotic inbreds CML 161 and Do940y, and inbreds 

derived from crosses between temperate and exotic germplasm.  

Phenotypic data for endosperm modification was estimated using a weighted 

average following a 1 to 5 scale (opaque = 1, semi-vitreous = 3, and vitreous translucent 

= 5).  Genotypes with o2/o2 grain with a score greater than 3 were defined as QPM. 

 
DNA extraction 

Ten seeds of each inbred were germinated in 90 mm petri dishes on filter papers 

saturated with a weak fungicide solution (captan) and incubating them in dark at 280C 

for 1 week. A 50 mg sample of freshly emerging coleoptiles were harvested and bulked 

in 1.5 ml microcentrifuge tubes and DNA was extracted from this tissue following the 

DNAzol protocol as described below with modifications described by Emani et al. 
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(unpublished). Tissues were suspended in 350µl sucrose buffer (11.89% sucrose, 

100mM Tris-HCl [pH 8.0], 5 mM EDTA[ph 8.0]), 7 µl β-mercaptoethanol and 7 µl  of 

10 mg/ml RNAase A solution. Tissues were ground in Genogrinder for 30 seconds after 

which 350 µl of Plant DNAzol reagent (Invitrogen) was added and the mixture was 

gently inverted for 10 min. The suspensions were extracted with an equal volume of 

chloroform and supernatant was collected by centrifugation. DNA was precipitated with 

0.75 vol. absolute ethanol and pelleted by centrifugation. The pellets were sequentially 

washed for 5 min each with 150 µl of DNAzol-ethanol (0.6:0.4) wash solution and 500 

µl of 75% ethanol, air dried to remove the ethanol and dissolved in 30 µl 10 mM Tris-

HCl (pH 8.0). DNA was quantified using Fluorometer TD-360 (Turner Designs Inc.) and 

diluted to a final concentration of 100 ng µl-1.        

 
SSR genotyping 

Forty three SSR markers were selected from the MAIZEGDB database 

(http://www.maizegdb.org/cgi-bin/mappedelements.cgi?type=s&chrom=7) based on 

repeat unit and bin location in order to provide a uniform coverage of chromosome 7 

(Appendix D, Table D.2). Care was taken to avoid as many dinucleotide repeats as 

possible because of difficulty in allele sizing and to include more markers around the 

opaque2 locus (bin no. 7.122) to obtain a better coverage of this area. Thirty nine SSR 

markers that had fluorescent forward primers labeled at 5' end with either 6-

carboxyfluorescein (6-FAM) or hexachloro-6-carboxyfluorescein (HEX) purchased 

synthesized by Genosys, USA were used for sizing alleles with ABI Prism 3100 DNA 

sequencing system (Applied Biosystems, Foster City, CA). To check the error rate for 

allele sizing 4 inbreds were duplicated making a total of 96 samples. PCR reactions were 

performed in a 96 well plate with 10µl volume/well containing 10 ng template DNA, 1X 

PCR buffer, 0.8 µl of 25mM MgCl2, 1.0 µl 10 mM dNTPs, 0.08 µl of Taq DNA 

polymerase, 1.0 µl of 2 pM of primer pair and amplified in a GeneAmp PCR system 

2700 (Applied Biosystems) with amplification conditions of 940C for 2 min; followed by 

40 cycles of 940C for 30 s, X0C for 1 min, and 720C for 1 min; followed by extension at 

720C for 20 min. The X stands for annealing temperatures used for amplification for 
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individual markers, which was determined either from published sources or using Primer 

Express software. Expected sizes of alleles were determined from published sequence 

information on MAIZEGDB (http://www.maizegdb.org). A 5µl sample of PCR product 

was checked on 2% agarose gel for the presence of band. Successful PCR reactions (1.0 

µl) from both FAM and HEX were multiplexed with ROX-500 internal size standard on 

an ABI Prism 3100 DNA sequencer and analyzed by Genotyper version 3.6 (Applied 

Biosystems). Four SSR markers labeled with IR fluorescent dyes were run on a dual-dye 

LI-COR 4200 IR2 gel detection system (LI-COR Inc., Lincoln, NE) and bands scored 

visually. 

  

Data analyses 

Data were transformed to a binary code based on the presence (1) or absence (0) 

of each allele with columns representing the inbreds and rows the different SSR markers. 

The resulting matrix was analyzed with NTSYS-pc version 2.1 software package (Exeter 

Software, Setauket, NY) to estimate the genetic similarities among all pairs of inbreds 

using Dice's coefficient of similarity as follows: 

 

GSij = 2 Nij/(Ni + Nj), 

 

where Nij is the number of alleles (scored bands) shared by lines i and j, and Ni and Nj 

are the total number of scored bands in lines i and j, respectively. A dendrogram on the 

basis of similarity matrix was generated following unweighted pair group method with 

arithmetic average (UPGMA) (Sneath and Sokal, 1973). Estimates of confidence limits 

for the grouping were performed with 1000 boostrap resamplings using Winboot (Yap 

and Nelson, 1996). The polymorphic index content (PIC) for each SSR marker was 

calculated as  

PIC = 1 - Σpi
2 

where pi
2 is the frequency of the ith allele in a locus with i alleles.  
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A graphic display of chromosome 7 linkage group for all 92 inbreds was 

generated by SupergeneTM software. Alleles obtained for each SSR marker were 

numbered 1-n with missing values assigned a zero. Each marker loci was color-coded 

according to their numerical score.   

Pairwise LD values were calculated as the square of the standardized measure 

(r2) on excel spreadsheet as: 

 

r2 = Dab
 2/(pA+pB+pa+pb) 

where, Dab is calculated as  

Dab = (pAB – pApB). 

Calculated r2 values were plotted against map distance in cM to display graphically the 

pattern of LD on the short arm and a comparative distance on long arm of maize 

chromosome 7.    

Parental contributions for derived lines was estimated (Bernardo et al., 2000) as: 

 

λa   =  (Sai – Sbi Sab)/ 1- (Sab)2  and 

λb   =  (Sbi – Sai Sab)/ 1- (Sab)2
 

 

where, Sai and Sbi are the marker similarities between inbreds a and b with their progeny 

i, and Sab is the marker similarity between the two inbreds a and b. 

 

RESULTS AND DISCUSSION  

 

Genetic diversity and classification of maize inbreds 

The 43 SSR loci identified a total of 200 alleles in the 92 inbreds studied with an 

average number of 4.7 alleles per locus (a/l) and a range of 2 -17 (Table 4.3). The 

number of alleles identified for the different SSR loci varied widely. Single sequence 

repeat loci with dinucleotide, trinucleotide, tetranucleotide and more complex nucleotide  
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Table 4.3. Single Sequence Repeats (SSRs, types of repeat motif, map positions, 
number of alleles identified and the polymorphic information content (PIC). 
 
 

SSR Repeat Sequence type and no. Map position No. of alleles PIC 
Dinucleotides 

p-bnlg2132 (AG)21 7.0533 9 0.48 
p-bnlg1292 (AG)14 7.0795 6 0.70 
p-umc1159 (AG)8 7.0920 4 0.59 
p-umc2160 (AG)10 7.1185 4 0.09 
p-bnlg1367 (AG)42 7.1278 4 0.28 
p-bnlg2160 (AG)27 7.1286 5 0.45 
p-bnlg1200 (AG)24 7.1424 3 0.47 
p-umc1016 (CT)25 7.1558 7 0.60 
p-umc1138 (AC)6 7.2477 2 0.05 
p-mmc0411 (CT)29 7.2927 9 0.72 
p-bnlg1805 (AG)29 7.3921 17 0.85 
p-bnlg1666 (AG)34 7.4305 15 0.84 
p-bnlg2259 (AG)17 7.4892 6 0.70 
p-bnlg2328 (AG)33 7.5174 2 0.16 

Average   7 0.50 
Trinucleotides 

p-umc1480 (GAA)4 7.0200 3 0.56 
p-umc2364 (GGA)7 7.1077 3 0.52 
p-umc2392 (GGC)5 7.1147 2 0.02 
p-phi057 (GCC)4 7.1224 3 0.05 

p-umc1401 (CCA)4 7.1530 4 0.49 
p-phi034 (CCT)4 7.1799 4 0.60 

p-umc2098 (CAG)5 7.2000 2 0.41 
p-umc2142 (AGG)4 7.2463 4 0.61 
p-umc1787 (CGG)4 7.2524 2 0.16 
p-umc1585 (TGG)7 7.2636 4 0.68 
p-umc1567 (AGA)4 7.3084 6 0.62 
p-umc1408 (CGG)5 7.3654 3 0.54 
p-umc1134 (AGC)7 7.3812 3 0.04 
p-umc1710 (CTG)5 7.4105 4 0.64 
p-umc1782 (GAC)4 7.4539 3 0.20 

p-phi328175 AGG 7.4729 5 0.66 
p-phi069 GAC 7.5452 3 0.55 
p-phi051 AGG 7.64414 4 0.61 
Average   3 0.44 

Tetranucleotides 
p-umc1545 (AAGA)4 7.0055 4 0.52 
p-umc2327 (TCTC)5 7.158 6 0.64 
p-umc1456 (AACC)5 7.33424 7 0.74 
p-phi114 (GCCT)3 7.37161 4 0.47 

p-umc1406 (CTCA)4 7.5989 3 0.33 
p-phi116 ACTG/ACG*** 7.61150 7 0.67 
Average   5 0.56 

Higher Repeats 
p-umc1241 (GTCTTTG)4 7.0138 3 0.38 
p-umc1426 (AGAGG)4 7.0478 3 0.35 
p-umc1066 (GCCAGA)5 7.12245 3 0.06 
p-umc1577 (CTTGGC)4 7.1252 2 0.07 
p-umc1068 (GAAAA)6(GAA)2 7.132 3 0.15 
Average   3 0.20 
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repeat motifs identified an average of 6.64 a/l (range 2-17), 3.33 (range 2-6), 4.8 a/l 

(range 3-7) and 2.8 a/l (range 2-3), respectively. Markers p-bnlg1805 and p-bnlg1666, 

that were both dinucleotide repeats showed 17 and 15 alleles, respectively. Previous  

studies have reported similar averages of 4.9 a/l among 40 U.S. maize inbreds analyzed 

by 83 SSR loci (Lu and Bernardo, 2001), 5.0 a/l among 94 temperate inbreds utilizing 70 

SSR loci (Senior et al., 1998) and 5.9 a/l (Dubreuil et al., 1996).  Liu et al. (2003) 

reported an average of 21.7 a/l in a study of 260 diverse maize inbred lines including 

temperate, tropical, popcorn and sweet corn lines using 94 SSR loci.  The discriminatory 

power of the markers measured as PIC showed average values of 0.50 (range 0.05 – 

0.84), 0.44 (range 0.02 – 0.68), 0.56 (range 0.33 – 0.74), and 0.20 (range 0.06 – 0.38) for 

di, tri, tetra and more complex repeat motifs, respectively. In general, dinucleotide repeat 

motifs have been reported to identify a greater proportion of alleles and a higher PIC 

value due to higher number of repeat motifs and frequent indels in the flanking 

sequences (Smith et al., 1997; Senior et al., 1998; Liu et al., 2003). However, a 

comparison of dinucleotide repeats arranged according to their map positions with 

number of alleles (Fig. 4.2) and PIC values (Fig. 4.3) showed lower number of alleles 

and lower PIC values around the opaque-2 region (Bin 7.122). These results support the 

intense selection pressure for the opaque-2 gene and characteristics for modified 

endosperm expression during the development of high lysine maize germplasm that 

define this unique set of inbreds.  In a study of genetic diversity under stress and non 

stress environments, Betran et al. (2003f) reported reduced diversity in chromosomal 

segments associated with QTL’s identified for plant response to drought stress due to 

effects of selection and genetic drift.  
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Fig. 4.2. Relationship of genetic distance and number of alleles for dinucleotide SSR 
markers. 
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Fig. 4.3. Relationship of genetic distance and polymorphic information content 
(PIC) for dinucleotide SSR markers. 
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 A dendrogram for all 92 high lysine maize inbreds studied utilizing 43 SSR loci 

based on their GSij estimates identified four major groups that were in agreement with 

the known pedigrees of these lines (Fig. 4.4). Initially, the choice of selection of SSR 

loci was done on the basis of their bin number to get a uniform coverage of chromosome 

7.  Greater density of markers were used around the opaque-2 locus than in the rest of 

the chromosome to get a better coverage of that region. The first cluster comprised all 

eight inbreds derived from population 69 that were almost identical in their allelic 

composition (average GS > 0.95). Two inbreds derived from tropical lines G26Qc x 

CML 161 and one inbred derived from population 65 grouped together with population 

69 (average GS = 0.70), which is in agreement with their origin and past selection 

history. The second cluster grouped most of the NSS temperate germplasm that included 

eight NSS early and nine NSS late germplasm. However, inbreds NSE196B3 and 

NSE196B1 that were NSS in origin grouped with SS late germplasm.  Several factors 

could be responsible for this discrepancy, such as complex breeding history of temperate 

maize inbreds (Gerdes et al., 1993), often inaccurate or incomplete pedigree information 

(Liu et al., 2003), and selection and genetic drift during inbreeding. The third cluster 

comprised of inbreds derived from two-way and multiple crosses between temperate 

QPM lines (Tx802 and Tx806), temperate opaque lines (B73o2 and Mo17o2), 

subtropical CIMMYT inbred CML 161, subtropical South African inbreds (Do940y and 

Ko326y) and temperate non QPM inbreds (B97, B104, Tx714, NC300 and Tx770). 

Despite their complex pedigrees there was clear differentiation between this cluster of 

derived lines from other major clusters, which reflects their unique characteristics and 

allelic composition, having been derived from introgression of subtropical germplasm 

into temperate germplasm, but adapted to southern U.S. environments. Inbred derived 

from population 70 and temperate x tropical high oil QPM grouped loosely with derived 

lines(GS<0.55). Similarly, inbreds Tx802 and a derived line from a cross between 

(Do940y x Tx802) that were almost identical (GS > 0.95), together grouped loosely with  



 107

0.34 0.51 0.67 0.84 1.00

P69Q/193MW

 P69B18 
 P69B47 
 P69B52 
 P69B22 
 P69B16 
 P69B212 
 P69B35 
 G26cB4 
 G26cB1 
 P65 
 NSE125 
 NSE123 
 NSL89 
 NSL89 
 NSE177B2 
 NSL771 
 NSE161B2 
 NSL103 
 NSL87 
 NSE161B1 
 NSE31 
 NSE71B1 
 NSE7 
 NSL45 
 NSL71 
 NSL105 
 NSL772 
 JdBoNCMo 
 Ja770c 
 a/Ko(e) 
 Ko/d/c 
 806(d) 
 e/c 
 e/e/c 
 161(c) 
 f/c/e 
 a/c 
 J/bNC/c 
 NC/gc(h) 
 Ko/d(f) 
 Do(b) 
 K/e714/f 
 J/f/NCa1 
 J/f/f/NC 
 Ja/NCc 
 J/f/NCa3 
 K/e 
 f/104(K) 
 J/f/NC/c 
 P70 
 HighOil 
 802(a) 
 b/a(g) 
 JdBoNCh 
 P69Q/193 
 SSL40 
 SSL39 
 SSL29 
 SSL44 
 SSL5 
 SSL24 
 SSL71B1 
 SSL71B2 
 SSL76 
 SSE22 
 SSL18 
 SSL12 
 SSL108 
 SSL46 
 SSE19 
 SSL62 
 SSL66 
 SSL81 
 SSL22 
 SSL89 
 NSE196B3 
 SSL103 
 SSL38 
 SSL61 
 SSL68 
 K/L/K/a 
 B73o2(L) 
 NSE196B1 
 a/K25 
 a/Ko21 
 a/Ko212 
 J/b 
 a/K18 
 SSL64 
 804 
 T220o2 
 B97(J)ah 

 
 

 

Fig. 4.4. Dendrogram of 92 high lysine maize inbreds as revealed by cluster analysis 
of genetic similarities of 43 SSR markers. 
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high oil and population 70 inbreds. One inbred derived from a complex cross involving 

multiple lines [B97, Tx806, Tx802, inbreds from South Africa (Bo395y and Do940y) 

and NC300] grouped loosely with the previous two inbreds, Tx802 and inbred derived 

from (Do940y x Tx802). The fourth cluster included 2 SS early inbreds, 23 SS late 

inbreds and some derived lines from crosses between B73o2, Tx802, B104, B97 and 

Ko326y. Some inbreds such as Tx804, T220o2, and a derived line involving complex 

multiple crossing between several inbreds (B97, Tx802, NC300 and Do940y) did not 

group with any other inbred. Altogether the 43 SSR loci used to characterize all 92 

inbreds were highly efficient in discriminating four major clusters in this study that were 

consistent with known pedigree information and origin.  Confidence intervals derived 

using 1000 permutations of bootstrap analysis were in general moderately high for 

individuals within major groups except for SS inbreds, where they were very low (< 

50%) due to several possibilities of grouping within this cluster that reflects the low 

inherent genetic diversity within the SS group.  

 

Characterization of haplotypes on chromosome 7 

 Chromosomal haplotypes of all 92 inbreds based on SSR loci map position from 

lowest (7.0055) to highest (7.64414) bin numbers and arranged according to their 

clustering pattern derived from UPGMA dendrogram is illustrated in Fig. 4.5. Twenty 

two SSR markers were selected on the short arm of chromosome 7 with a high density of 

markers around the opaque-2 gene (17 markers placed within a distance of 

approximately 21 cM), while the remaining 21 markers were selected on the long arm of 

chromosome 7 providing a uniform coverage. The haplotypes of all 92 inbreds including 

17 markers around the opaque-2 gene (bin no. 7.07952 – 7.2) were expanded to show 

more clarity in allelic diversity in this region (Fig. 4.6). Haplotypes for inbreds derived 

from population 69 were extremely identical showing only three different haplotypes 

that were due to two different alleles (bin no. 7.10765 on the short arm and bin no. 

7.5452 on the long arm) out of 43 SSR loci spanning about 640 cM. The other three 

inbreds derived from tropical lines G26Qc x CML 16 and population 65 showed more  
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Fig. 4.5. Chromosome 7 haplotypes for 92 high lysine maize inbreds. 
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Cluster I Cluster II Cluster III Cluster IV

Fig. 4.6. Short arm of chromosome 7 haplotypes for 92 high lysine maize inbreds. 
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allelic differences that were more prevalent in the top part of the short chromosome (bin 

no. 7.0055 – 7.07952) and the long arm of chromosome 7. Three different alleles were 

identified in bin no. 7.07952 and one different allele in bin no. 7.1558 in the region 

surrounding the opaque-2 gene (Fig. 4.6).  

A comparison of the allelic differences between the NSS and SS clusters was 

done to determine the genetic diversity between these two groups. In the opaque-2 

region (bin no. 7.092 – 7.2) 13/17 NSS haplotypes were different with only 3 

predominant types as compared to 6/20 different SS haplotypes with 6 predominant 

haplotypes (Fig. 4.6). In a corresponding 10 cM window on the long arm of chromosome 

7 (bin no. 7.36 – 7.47) there were 11/17 different NSS haplotypes with only 3 

predominant haplotypes as compared to 7/20 different haplotypes in the SS cluster with 

9 predominant haplotypes (Fig. 4.5). A comparison of the NSS and SS group was also 

done with respect to the number of alleles per marker at all the loci (Fig. 4.7) and the 

frequency of the predominant allele per marker (Fig. 4.8). In general in the NSS group 

more number of alleles occurred for most marker loci (range from 1-5), whereas in the 

SS group there were fewer alleles identified (range from 1-3) (Fig. 4.7).  A great 

diversity in the pattern of the frequency of predominant alleles was observed per loci 

between the NSS group and SS group (Fig. 4.8). Some regions of the chromosome 7 

showed similar trends of lower frequency of alleles for both SS and NSS groups 

(markers 3, 14-15, 19-20 and 33-35), whereas contrasting trends were observed in other 

regions (markers 6, 20-21, 27-28, 36-37). These results indicate that NSS inbreds are 

more variable than SS inbreds with regards to their allelic compositions in both opaque-

2 region as well as the long arm of chromosome 7. This difference can be the 

consequence of different selection history and variable degrees of linkage drag 

associated with the conversions to opaque-2 versions of both SS and NSS lines. Stiff 

stalk lines have been selected to perform well with NSS lines and these two groups have 

reduced allelic diversity in different chromosomal segments. Furthermore, the original 

narrow genetic base for SS inbreds, mainly originated from B73,B37 and B84 could 

explain the lower genetic variability of SS inbred in general as compared to NSS inbreds.  
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Fig. 4.7. Number of alleles per loci for 43 SSR markers on chromosome 7 of maize. 
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Fig. 4.8. Frequency of predominant alleles per loci for 43 SSR markers on chromosome 7 of maize. 
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However, this variability is drastically reduced in both NSS and SS inbreds as we move 

closer to the opaque-2 gene (bin no. 7.122) with only 5 different alleles identified across 

all inbreds (Fig. 4.6). Strong selection pressure to maintain the opaque-2 phenotype has 

reduced diversity and increases LD in the surrounding region. Persistence of strong LD 

across at least 5 cM (an order of several hundred megabases) genetic distance indicates a 

strong selective sweep for the opaque-2 region. Almost similar and striking trend of 

artificial selection on diversity and LD has been reported by maize Y1 locus (y1 allele 

governs white endosperm color and Y1 allele yellow endosperm). The yellow allele has 

been reported to be almost 20 times less diverse than the corresponding white allele, a 

fact that is consistent with strong continuing selection for the yellow endosperm color 

(Palaisa et al., 2003; Rafalski and Morgante, 2004) in temperate maize. Romero-

Severson et al., (2001) have reported similar observations in a study of genetic 

similarities and shared haplotypes within closely related groups of elite U.S. and 

European temperate maize.  

 The derived lines showed a contrasting trend with 11 different haplotypes in the 

region around the opaque-2 gene as compared to 20 different haplotypes in the lomg arm 

of chromosome 7 with 8 and 3 predominant haplotypes, respectively. These results 

indicate that the derived lines showed fewer different haplotypes in this chromosome 

possibly due to selection for alleles of one predominant inbred. Lines derived from 

crosses between normal wild type O2 lines and opaque o2 lines have haplotypes similar 

to the o2 lines around the opaque2 gene. This is consistent with a selection for the 

opaque phenotype during line development.   

 

Parental contribution in shared haplotypes 

 A sample of derived lines to estimate parental contribution in shared haplotypes 

is illustrated in Fig. 4.9. The proportion of common alleles and the parental contributions 

of inbreds to derived lines are presented in Fig.4.9. The parental contributions of inbreds 

Tx802, CML 161 to the derived line from the cross of these two parents were 0.06 and 

0.82, respectively. In this set CML161 showed similar alleles for 33 markers  
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Parental contributions: 
Set 1 λ (Tx802 →Tx802/CML161 = 0.06), λ (CML161 →Tx802/CML161 = 0.82) 

Set 2 λ (Tx802 →Do940y/Tx802 = 0.92), λ (D0940y →Do940y/Tx802 = 0.06) 

Set 3 λ (CML161 →[Ko326y/Tx806]/CML161 = 0.53) 

         λ (Ko326y/Tx806 →[Ko326y/Tx806]/CML161 = 0.40 

Set 4 λ (CML161 →[Tx802/Ko326y]/CML161= 0.46  

         λ (Tx802/Ko326y →[Tx802/Ko326y]/CML161= 0.46) 

Set 5 λ (Do940y/Tx802 →[NC300/[Do940y/Tx802]/[Tx770/CML161]= 0.33) 

         λ (CML161→[NC300/[Do940y/Tx802]/[Tx770/CML161]= 0.57) 

 Fig. 4.9. Parental contributions of six sets of inbreds to their derived lines. 

Set1 
Set2 Set3 Set4 

Set5 Set6 
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out of 43 total markers, predominantly in the long arm of chromosome 7. In the second 

set the parental contributions of Tx802 and Do940y were 0.92 and 0.06, respectively.  

Do940y showed similar alleles for 41 markers out of 43 markers. In the third set the 

parental contribution of CML 161 and (Ko326y/Tx806) was 0.53 and 0.40, respectively. 

In the fourth set the parental contributions of CML161 and (Tx802/Ko326y) were equal 

being 0.46 for both inbreds. In the fifth set the parental contributions of (Do940y/Tx802) 

and CML161 were 0.33 and 0.57, respectively. The last set (6) consisted of Tx802 and 

sister lines derived from cross of Tx802 x B104. Four alleles were identified that were 

contributed by Tx802 exclusively to at least one of the derived line. The sister lines 

derived from the same cross showed extensive dissimilarity among themselves, with one 

sister line (Tx802 x B104[1]) showing 4 alleles that were not present in any other line. 

Considering intense selection practices resorted to in the development of elite temperate 

germplasm, fixing segments of chromosomes and consequently alleles, may result in 

extensive haplotype sharing among inbreds derived from common progenitors (Romero-

Severson et al., 2001).  

Four alleles were identified in the first set that were contributed by neither parent 

to the derived line. It is possible that they could have arisen due to de novo mutation or 

were present on a different chromosome but were identified by the same SSR due to vast 

duplications in segments of chromosomes 2 and 7. Although these results are based on a 

single chromosome, nevertheless have implications in tracking alleles in derived lines or 

crosses for quality traits in high lysine germplasm and possibly of greater significance in 

identifying potential parents for breeding crosses. Tracking parental contributions in 

parents and their derived inbreds or crosses is a unique method of identifying segments 

of chromosomes that have undergone fixation due to selection or have been subject to 

genetic drift, phenomena common in small size breeding populations. Utilizing 

molecular markers obviates the use of calculating inbred progeny statistics and visibly 

identifies regions of chromosomes that are actually transferred from one parent to the 

progeny. SSR markers are especially suitable for this study owing to their properties of 

high reproducibility and abundant polymorphism in plant species, especially maize.  
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Linkage disequilibrium 

Linkage disequilibrium calculated as square of the standardized measure (r2) 

were plotted against map distance in cM to display graphically the pattern of LD on the 

short arm and a comparative distance on long arm of maize chromosome 7 (Fig. 4.10). 

In the short arm of chromosome 7, LD was found to increase exponentially (range 0.01 – 

0.9) as genetic distance increased from 7.05 cM to 7.12 cM. Specifically, in the opaque-

2 region (7.10 cM to 7.122 cM) r2 values were beyond the expected range of 0 to 1, as 

the markers were almost monomorphic. Linkage disequilibrium values decreased rapidly 

in the cM range 7.15 to 7.18 and then increased slightly towards the centromeric region 

of the chromosome.  

 In contrast in the long arm of chromosome 7 LD values in general remained low 

(< 0.31) for a considerable range of genetic distance. Linkage disequilibrium values 

increased rapidly to a maximum of 0.48 near the telomeres of the long arm of 

chromosome 7, where the gamma-zein gene gzr1 is mapped. These results indicate 

different degrees of LD along chromosome 7, which is consistent with intense selection 

pressure for o2 (in the opaque-2 region) and possibly for genes involved in endosperm 

modification.  

 Linkage disequilibrium pattern is largely governed by recombination and decays 

with genetic distance. However, many historical, selection bottleneck, genetic drift, 

introgression of germplasm, and population genetic factors also influence LD (Nordborg 

and Tavare, 2002). Studies to evaluate and understand the patterns of LD in plant 

genomes have attracted recent interest because it controls the resolution and 

practicability of association-mapping studies (Remington et al., 2001). Literature 

suggests that increased LD in selected regions of genome can be efficiently used to 

pinpoint selective sweeps even in the absence of selective signatures detectable by 

traditional selection tests (Saunders et al., 2002). Although in our study there was little 

or no evidence that LD decayed rapidly within a small range of genetic distance, the 

pattern of LD observed was consistent with the intense selection of opaque-2 and 

modified opaque-2 genes. It may be further possible to conduct association genetics 
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using phenotypic data for endosperm modification ratings and LD estimates to 

tentatively map important genes on maize chromosome 7 affecting this trait (Flint-

Garcia et al., 2003).  

 

 

 

 

 

 

 

 

 

Fig. 4.10. Pattern of linkage disequilibrium comparing short arm and long arm of 
maize chromosome 7. 
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CHAPTER V 

 

SUMMARY AND CONCLUSIONS 

 

EXPERIMENT 1: COMBINING ABILITIES OF QUALITY PROTEIN MAIZE 

INBREDS 

QPM hybrids yielded less than commercial checks. Although GCA effects across 

environments were non-significant for grain yield but were highly significant for 

agronomic and kernel quality traits. Based on GCA effects, TAMU inbreds had earlier 

maturities, shorter plants, and less grain moisture content than more subtropical 

CIMMYT and SA inbreds.  The best yielding hybrids and highest SCA effects resulted 

from crosses among inbreds from different programs: TxX124 x CML 176, Tx811 x 

CML 181, Bo59w x CML 184 among the white hybrids, and Tx802 x Do940y among 

the yellow hybrids. It was concluded that QPM inbreds developed in different programs 

could represent potential heterotic groups for use in hybrid development and 

introgression of germplasm.  

 
EXPERIMENT 2: AGRONOMIC, AFLATOXIN AND QUALITY ANALYSIS OF 

HIGH LYSINE MAIZE INBREDS AND TESTCROSSES 

 
Repeatibilities for grain yield were in general high per environment and across 

all environments. Population 69 inbreds developed at CIMMYT that have a flinty orange 

texture were least susceptible to afaltoxin accumulation both in inbreds and testcrosses at 

all locations. Aflatoxin in testcrosses was positively correlated with endosperm texture 

(0.67) and kernel integrity (0.60) but negatively correlated with grain yield (-0.30) and 

silking date (-0.50). Tryptophan and methionine content of QPM inbreds and hybrids 

revealed a negative correlation with endosperm translucence, which is a measure of 

kernel hardness.  In general the o2/o2 germplasm had lower methionine levels than the 

wild type germplasm regardless of kernel hardness, suggesting that methionine levels 
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could be reduced by the o2/o2 mutation. Evaluations of inbreds testcrossed to Tx804 

revealed significant correlations of the amino acid levels of inbred lines with those of the 

hybrids, although the predictive value was low (R2= 0.13 and 0.27 for methionine and 

tryptophan, respectively).  The reduction in tryptophan during conversion to the hard-

kernel phenotype and the reduction in methionine in o2 germplasm both reduce the 

nutritional value of QPM.  It may be possible to correct these deficiencies by selection 

for tryptophan and methionine levels during breeding. 

 

EXPERIMENT 3: GENETIC DIVERSITY AND HAPLOTYPING OF MAIZE 

CHROMOSOME 7 IN OPAQUE-2 HIGH LYSINE INBREDS 

Evaluation of genetic diversity among 92 inbreds using SSR markers detected 

overall 200 alleles with an average of 4.7 alleles/locus (range 2 to 17). Dendrograms of 

genetic similarity showed clusters in agreement with the different origin of inbreds.  In 

general, inbreds having common origin shared great proportion of similar haplotypes. 

Haplotypes around the opaque-2 locus were more similar between donor and converted 

lines. Significant linkage disequilibrium was detected around opaque-2 locus spanning 

several cMs suggesting high selection pressure during the conversion of normal lines to 

opaque-2. Estimation of parental contribution identified haplotypes segments of 

chromosome 7 that were exclusively contributed by one or the other parent and showed 

high estimates.  These results can be useful in parental selection to create breeding 

populations that enhance genetic variation along chromosome 7, and identification of 

parental inbreds that maximize heterozygosity in hybrid combinations.  

 



 120

REFERENCES 

 

Alvarez, I., M.G. Isabel, E. Pimentel, D. Ludevid, and M. Torrent. 1998. Lysine-rich a-

zeins are secreted in transgenic Arabidopsis plants. Planta 205:420–427. 

Arruda, P., E.L. Kemper, F. Papes, and A. Leite. 2000. Regulation of lysine catabolism 

in higher plants. Trends Plant Sci. 5:324-330. 

Asche, G.L., A.J. Lewis, E.R. Poe, Jr., and J.D. Crenshaw. 1985. The nutritional value of 

normal and high lysine corns for weanling and growing-finishing swine when fed 

at four lysine levels. J. Anim. Sci. 60:1412-1428. 

Association of Official Analytical Chemists (AOAC). 1990. Method 15; 982.30 E (a, b, 

c). Official methods of analysis. 15th edition., Washington, DC. 

Austin, D., F.M. Lee, and L.R. Veldboom. 2001. Genetic mapping in maize and hybrid 

progeny across testers and generations: plant height and flowering. Theor. Appl. 

Genet. 102:163-176. 

Azevedo, R.A. and P.J. Lea. 2001. Lysine metabolism in higher plants. Amino Acids 

20:261–279. 

Azevedo, R.A., J.L. Arana, and P. Arruda. 1990. Biochemical genetics of the interaction 

of the lysine plus threonine resistant mutant Ltr*19 with opaque-2 maize mutant. 

Plant Sci. 70:81–90. 

Azevedo, R.A., P. Arruda, W.L. Turner, and P.J. Lea.  1997. The biosynthesis and 

metabolism of the aspartate derived amino acids in higher plants. Phytochemistry 

46:395-419. 

Baker, R.J. 1978. Issues in diallel analysis. Crop Sci. 18:533–536. 

Baker, 1986. Selection indices in plant breeding. CRC Press, Boca Raton, FL  

Balconi, C., N. Berardo, A. Reali, and M. Moro. 1998. Variation in protein fractions and 

nitrogen metabolism of developing normal and opaque endosperm mutants of 

maize. Maydica. 43:95–203. 



 121

Bayman, P. and P.J. Cotty, 1991. Genetic variation and vegetative compatibility in the 

Aspergillus flavus population in a single field. Canadian Journal of Botany 

69:1707-1711.  

Beaumont, M.A., K.M. Ibrahim, P. Boursot, and M.W. Bruford. 1998. Measuring 

genetic distance. p. 315–325. In A. Karp et al. (ed.) Molecular tools for screening 

biodiversity. Chapman and Hall, London. 

Beck, D.L., S.K. Vasal, and J. Crossa. 1991. Heterosis and combining ability among 

subtropical and temperate intermediate maturity maize germplasm. Crop Sci. 

31:68–73. 

Beckmann, J.S., and M. Soller. 1990. Toward a unified approach to genetic mapping of 

eukaryotes based on sequence tagged microsatellite sites. Bio/Technology 8:930-

932. 

Beebe, S.E., I. Ochoa, P. Skroch, J. Nienhuis, and J. Tivang. 1995. Genetic diversity 

among common bean breeding lines developed for Central America. Crop Sci. 

35:1178–1183. 

Benner, M.S., R.L. Phillips, J.A. Kirihara, and J.W. Messing. 1989. Genetic analysis of 

methionine-rich storage protein accumulation in maize. Theor. Appl. Genet. 

78:761-767. 

Bernardo, R. 1993. Estimation of coefficient of coancestry using molecular markers in 

maize. Theor. Appl. Genet. 85:1055-1062. 

Bernardo, R., J. Romero-Severson, J. Ziegle, J. Hauser, L. Joe,  G. Hookstra, and R.W. 

Doerge. 2000. Parental contribution and coefficient of coancestry among maize 

inbreds: pedigree, RFLP, and SSR data Theor. Appl. Genet. 100:552–556. 

Bernardo, R. 2002. Breeding for quantitative traits in plants. Stemma Press, Woodbury, 

MN.    

Bertram, H.L., and J.B. Schutte. 1992. Evaluation of the sulfur containing amino acids in 

laying hens. p. 606–609. In Proc. of the 19th World’s poultry congress, 

Amsterdam, The Netherlands. 19–24 Sept. 1992. Ponsen and Looijen, 

Wageningen, The Netherlands. 



 122

Beti, J.A., T.W. Philips, and E.B. Smalley. 1995. Effects of maize weevils (Coleoptera 

Curculionidae) on production of aflatoxin B1 by Aspergillus flavus in stored 

corn. J. Econ. Entomol. 88:1776–1782.  

Betrán, F.J., D. Beck, M. Bänziger, J.M. Ribaut, and G.O. Edmeades. 1997a. Breeding 

for drought tolerance in tropical maize. pp.169-177.  In A.S. Tsaftaris (ed.) 

Genetics, biotechnology and breeding of maize and sorghum. Royal Soc. 

Chemistry, Cambridge, UK. 

Betrán, F.J., M. Bänziger, G. Edmeades and D. Beck. 1997b. Relationship between line 

and topcross performance under drought and non-stressed conditions in tropical 

maize. In G.O. Edmeades et al. (ed.) Developing drought and low-N tolerant 

maize. Proceedings of a Symposium, March 25-29, 1996. CIMMYT, El Batan, 

México. 

Betrán, F.J., T. Isakeit, and G. Odvody. 2002. Aflatoxin accumulation of white and 

yellow maize inbred lines in diallel crosses. Crop Sci. 42:1894-1901.  

Betrán, F.J., M. Bänziger, and M. Menz. 2003a. Corn Breeding. In W. Smith, F.J. Betrán 

and E. Runge (ed.) Corn: origin, history, technology, and production.  John 

Wiley & Sons, New York. 

Betrán, F.J., D. Beck, M. Bänziger, and G.O. Edmeades. 2003b. Genetic analysis of 

grain yield in inbreds and hybrids under stress and non-stress environments in 

tropical maize.  Crop Sci. 43:807-817. 

Betrán, F.J., A.J. Bockholt, F. Fojt III, and L. Rooney. 2003c. Registration of Tx811 

maize line. Crop Sci. 43:1893-1894.  

Betrán, F.J., A.J. Bockholt, F. Fojt III, and G. Odvody. 2003d. Registration of Tx807 

maize line. Crop Sci. 43:1892-1893. 

Betrán, F.J., A.J. Bockholt, F. Fojt III, and R. Waniska. 2003e. Registration of Tx802 

maize line. Crop Sci. 43:1891-1892. 

Betrán, F.J., J.M. Ribaut, D. Beck, and D. Gonzales de León. 2003f. Genetic diversity, 

specific combining ability, and heterosis in tropical maize under stress and 

nonstress environments. Crop Sci. 43:797-806.  



 123

Betrán, F.J., and T. Isakeit. 2004. Aflatoxin accumulation in maize hybrids of different 

maturities. Agron. J. 96:565-570. 

Bhatnagar, S., F.J. Betrán, and D.K. Transue. 2003. Agronomic performance, aflatoxin 

accumulation and protein quality of subtropical and tropical QPM hybrids in 

southern USA. Maydica 48:113-124.  

Bhatnagar, S., F.J. Betrán, and L.W. Rooney. 2004. Combining abilities of quality 

protein maize inbreds. Crop Sci. 44:1997-2005. 

Bhattramakki, D., and A. Rafalski. 2001. Discovery and application of single nucleotide 

polymorphism markers in plants. p. 179-192. In R.J. Henry (ed.) Plant 

genotyping. The DNA fingerprinting of plants. CABI Publishing, Wallingford, 

UK.  

Bjarnason, M., and W.G. Pollmer. 1972. The maize germ: its role as a contributing 

factor to protein quality and quantity. Z.  Pflanzenzuecht. 68:83-89.  

Bjarnason, M., and S.K. Vasal. 1992. Breeding of quality protein maize. p 181-216. In J. 

Janick (ed.) Plant breeding reviews. vol. 9. Avi. Pub. Co., Westport. CT. 

Bockholt, A.J. and L.W. Rooney. 1992. Hybrids for the United States. p. 49-78. In E.T. 

Mertz (ed.) Quality protein maize. Am. Assoc. Cereal Chem. Inc., St. Paul, MN. 

Boppenmeier, J., A.E. Melchinger, E. Brunklaus-Jung, H.H. Geiger, and R.G. 

Herrmann. 1992. Genetic diversity for RFLPs in European maize inbreds: I. 

Relation to performance of flint x dent crosses for forage traits. Crop Sci 32:895-

902.  

Boronat, A., M.C. Martinez, M. Reina, P. Puigdomenech, and J. Palau. 1986. Isolation 

and sequencing of a 28 kD glutelin-2 gene from maize. Common elements in the 

5' flanking regions among zein and glutelin genes.  Plant Sci. 47:95-102.  

Brennecke, K., A.J. Souza Neto, J. Lugli, P.J. Lea, and R.A. Azevedo. 1996. Aspartate 

kinase in the maize mutants ask1-lt19 and opaque-2. Phytochemistry. 41:707-

712.  



 124

Bressani, R., A.T. Valiente, and C. Tejada. 1962. All vegetable protein mixtures for 

human feeding. VI. The value of combinations of lime-treated corn and cooked 

black beans. J. Food Sci., 27:394-400. 

Bressani, R. 1992. Nutritional value of high-lysine maize in humans. p. 205-224. In E.T. 

Mertz (ed.) Quality protein maize. American Association of Cereal Chemists, St. 

Paul, MN.  

Brochetto-Braga, M., A. Leite, and P. Arruda. 1992. Partial purification and 

characterization of lysine-ketoglutarate reductase in normal and opaque-2 maize 

endosperms. Plant Physiol. 98:1139 1147.  

Brown, R.L., T.E. Cleveland, Z. Chen, S.V. Gembeh, A. Menkir, S. Moore, D. Jeffers, 

K. E. Damann, and D. Bhatnagar. 2001. The identification of maize kernel 

resistance traits through comparative evaluation of aflatoxin-resistant with 

susceptible germplasm. Mycopathologia 155:77. 

Bruns, H. A., and H.K. Abbas. 2001. Effects of harvest date on yield and agronomics of 

maize in the Mid-South [CD-ROM computer file], Agron Absts, ASA–CSSA–

SSSA Annual Meetings, Charlotte,NC, Oct., 21–25, American Society of 

Agronomy, Madison, WI.  

Burgoon, K.G., J.A. Hansen, D.A. Knabe, and A.J. Bockholt. 1992. Nutritional value of 

quality protein maize for starter and finisher swine. J. Anim. Sci. 70:811-817. 

Burnett, R.J., and B.A. Larkins. 1999. opaque2 modifiers alter transcription of the 27-kD 

g -zein genes. Mol. Gen. Genet. 261:908-916.  

Burr, B., F.A. Burr, K.H. Thompson, M.C. Albertson, and C.W. Stuber. 1988. Gene 

mapping with recombinant inbreds in maize. Genetics 118:519–526. 

Burr, B., and F.A. Burr. 1991. Recombinant inbreds for molecular mapping in maize: 

theoretical and practical considerations. Trends Genet. 7:55–60. 

Burr, F.A., and B. Burr. 1982. Three mutations in Zea mays affecting zein accumulation. 

J. Cell Biol. 94:201-206.  



 125

Calvert, O.H., E.B. Lillehoj, W.F. Kwolek, and M.S. Zuber. 1978. Aflatoxin B1 and G1 

production in developing Zea mays kernels from mixed inocula of Aspergillus 

flavus and A . Parasiticus. Phytopathology  68:501-506. 

Campbell, K.W., D.G. White, and J. Toman. 1993. Sources of resistance in F1 corn 

hybrids to ear rot caused by Aspergillus flavus . Plant Dis. 77:1169. 

Campbell, K.W., and D.G. White. 1995. Evaluation of corn genotypes for resistance to 

Aspergillus ear rot, kernel infection, and aflatoxin production. Plant Disease 

79:1039-1042. 

Cardon, L.R., and J.I. Bell. 2001. Association study designs for complex diseases. Nat. 

Rev. Genet. 2:91-99.  

Castegnaro, M., and D. McGregor. 1998. Carcinogenic risk assessment of mycotoxins. 

Rev. Med. Vet. 149:671-678.  

Chaudhuri, S., and J. Messing. 1991. Physical mapping of Zpr10/22, a regulatory locus 

controlling the expression of methionine-rich 10kD zein. Maize Genetics 

Conference Abstracts 33.  

Chaudhuri, S., and J. Messing. 1994. Allele-specific parental imprinting of dzr1, a post-

transcriptional regulator of zein accumulation. Proc. Natl. Acad. Sci. (USA) 

91:4867–4871. Madison, WI.  

Chaudhuri, S., and J. Messing. 1995. RFLP mapping of the maize dzr1 locus, which 

regulates methionine-rich 10 kDa zein accumulation. Mol. Gen. Genet. 246:707–

715. 

Cheeke, P.R., and L.R. Shull. 1985. Natural toxicants in feeds and poisonous plants. 

AVI Publishing Company, Inc., Westport, CT. 492.  

Chen, Z.Y., L.R. Brown, A.R. Lax, B.Z. Guo, T.E. Cleveland, and J.S. Russin. 1998. 

Resistance to Aspergillus flavus in corn kernels is associated with a 14 kDa 

protein. Phytopathology 88:276–281.  

Chin, E.C., M.L. Senior, H. Shu, and J.S. Smith. 1996.  Maize simple repetitive DNA 

sequences: abundance and allele variation. Genome 39:866-873. 



 126

Ching, A.K., S. Caldwell, M. Jung, M. Dolan, O.S. Smith, S. Tingey, M. Morgante, and 

A.J. Rafalski. 2002. SNP frequency, haplotype structure and linkage 

disequilibrium in elite maize inbred lines. BMC Genetics. 3:1-14. 

CIMMYT. 1999. The improvement and promotion of quality protein maize in selected 

developing countries. Progress report. International maize testing program, 

CIMMYT, El Batan, Mexico, D.F., Mexico. 

CIMMYT. 2003. The development and promotion of quality protein maize in sub-

Saharan Africa. Progress report. International maize testing program, CIMMYT, 

El Batan, Mexico, D.F., Mexico. 

Coleman, C.E., M.A. Lopes, J.W. Gillikin, R.S. Boston, and B.A. Larkins. 1995. A 

defective signal peptide in the maize high-lysine mutant floury 2. Proc Natl Acad 

Sci USA 92:6828-6831 

Coleman, C.E., A. M. Clore, J. P. Ranch, R. Higgins, M.A. Lopes, and B.A. Larkins. 

1997a. Expression of a mutant a -zein creates the floury2 phenotype in transgenic 

maize. Proceedings of the National Academy of Sciences USA. 94:7094-7097. 

Coleman, C.E., J. Dannenhoffer, and B.A. Larkins. 1997b. The prolamin proteins of 

maize, sorghum and coix. p. 257-288. In B.A. Larkins and I.K. Vasil, (ed.) 

Advances in cellular and molecular biology of plants, Dordrecht, The 

Netherlands: Kluwer Academic Publishers. 

Coleman, C.E., A.M. Clore, J.P. Ranch, R. Higgins, M.A. Lopes, and B.A. Larkins. 

1997c. Expression of a mutant alpha-zein creates the floury2 phenotype in 

transgenic maize. Proc. Natl. Acad. Sci. USA 94:7094–7097. 

Cord Neto,  G., J.A. Yunes, J. DaSilva, A.L. Vettore, P. Arruda, and A. Leite. 1995. The 

involvement of opaque-2 on beta-prolamin gene regulation in maize and coix 

suggests a more general role for this transcriptional activator. Plant Mol. Biol. 

27:1015–1029. 

Cordova, H.S., S. Trifunovic, N. Vergara, A. Ramirez, M. Sierra, and G. Avila. 2003. 

Hybrid ability and yield stability of tropical quality protein maize white lines. 



 127

CIMMYT. p.110-111. In Book of abstracts. Arnel R. Hallauer International 

Symposium on Plant Breeding. An International Symposium. 

Cotty, P.J. 1994. Influence of field application of an atoxigenic strain of Aspergillus 

flavus on the populations of A. flavus infecting cotton bolls and on the aflatoxin 

content of cottonseed. Phytopathology 84:1270–1277. 

Cotty, P.J., D.R. Howell, C. Bock, and A. Tellez. 1997. Aflatoxin contamination of 

commercially grown transgenic BT cottonseed, Proc. Beltwide Cotton Prod Res 

Conf.,  National Cotton Council of America, Memphis, TN. 108–110.  

Cromwell, G.I., M.J. Bitzer, T.S. Stahly, and T.H. Johnson. 1983. Effects of soil 

nitrogen fertility on the protein and lysine content and nutritional value of normal 

and opaque-2 corn. J. Ani. Sci. 57:1345-1351. 

Cruz-Alvarez, M., J.A. Kirihara, and J.W. Messing. 1991. Post-transcriptional regulation 

of methionine content in maize kernels. Mol. Gen. Genet. 225:331–339. 

Cullen, J.M., and P.M. Newberne. 1994. Acute hepatotoxicity of aflatoxins. p. 3-26. In 

D.L. Eaton and J.D. Groopman (ed.) The toxicology of aflatoxins: human health, 

veterinary, and agricultural significance. Academic Press, San Diego, CA. 

Damerval, C., and D. de Vienne. 1993. Quantification of dominance for proteins 

pleiotropically affected by opaque-2 in maize. Heredity 70:38-51.  

Dannenhofer, J.M., D.E. Boswick, E. Or, and B.A. Larkins. 1995. Opaque-15, a maize 

mutation with properties of a defective opaque-2 modifier. Proc. Natl. Acad. Sci, 

USA. 92:1931-1935. 

Delgado, C., M. Rosegrant, H. Steinfeld, S. Ehui, and C. Courbois. 1999. Livestock to 

2020: The next food revolution. 2020 vision for food, agriculture, and the 

environment discussion Paper 28. International Food Policy Research Institute, 

Washington, DC.  

Devlin, B., and N. Risch. 1995. A comparison of linkage disequilibrium measures for 

fine-scale mapping. Genomics 29:311-322. 



 128

Doebley, J.F., and A. Stec. 1993. Inheritance of the morphological differences between 

maize and teosinte - comparison of results for 2 F2 populations. Genetics 

134:559-570. 

Dorner, J.W., R.J. Cole, and P.D. Blankenship. 1998. Effect of inoculum rate of 

biological control agents on preharvest aflatoxin contamination of peanuts. Biol. 

Contr. 12:171–176. 

Drepper, W.J., and B.L. Renfro. 1990. Comparison of methods for inoculation of ears 

and stalks of maize with Fusarium moniliforme. Plant Dis. 74:952–956.  

Dubreuil, P., P. Dufour, E. Krejci, M. Causse, D. de Vienne, A. Gallais, and A. 

Charcosset. 1996. Organization of RFLP diversity among inbred lines of maize 

representing the most significant heterotic groups. Crop Sci. 36:790-799. 

Dubreuil, P., and A. Charcosset. 1998. Genetic diversity within and among maize 

populations: A comparison between isozyme and nuclear RFLP loci. Theor. 

Appl. Genet. 96:577-587. 

Dudley, J.W. 1994. Comparison of genetic distance estimators using molecular marker 

data. p. 3–7. In Analysis of molecular marker data. Proc Joint Symp Am Soc 

Hort Sci/Crop Sci Soc Am, 5–6 Aug 1994, Corvallis, Oregon, USA.  

Duncan, H.E. 1979. Current information on aflatoxins in corn, N.C. Agric. Ext. Serv. 

Bull., Ag. 167:11  

Edwards, M.D., C.W. Stuber, and J.F. Wendel. 1987. Molecular-marker facilitated 

investigations of quantitative trait loci in maize. I. Numbers, genomic distribution 

and types of gene action. Genetics 116:113-125.  

Esen, A., J.A. Bietz, J.W. Paulis, and J.S. Wall. 1982. Tandem repeats in the N’terminal 

sequence of a proline’rich protein from corn endosperm. Nature. 296:678-679. 

Falconer, D.S., and T.F. Mackay. 1996. Introduction to quantitative genetics. 4th edition, 

Longman Group, London. 

Fehr, W. 1987. Principles of cultivar development. Macmillan, London.  

Fitzsimmons, R.C., and P.E. Waibel. 1962. Determination of the limiting amino acids in 

corn-soybean oil meal diets for young turkeys. Poult. Sci. 61:260–268. 



 129

Flint-Garcia, S.A., J.M. Thornsberry, and E.S. Buckler IV. 2003. Structure of linkage 

disequilibrium in plants. Annu. Rev. Plant Biol. 54:357–374. 

Fontes, E.P., B. Shank, R. Wrobel, S.P. Moose, G.R. OBrian, E. Wurtzel, and R.S. 

Boston. 1991. Characterization of an immunoglobulin binding protein homolog 

in the maize floury-2 endosperm mutant. Plant Cell 3:483-496. 

Food and Agriculture Organization of the United Nations (FAO), Global Perspectives 

Unit. 2000. Agriculture: Towards 2015/30. Technical Interim Report. Rome: 

FAO.  

Fowler, J.E. and M. Freeling. 1996.  Genetic analysis of mutations that alter cell fates in 

maize leaves: dominant Liguleless mutations. Dev. Genet. 18:198-222. 

Fu, H., and H.K. Dooner. 2002. Intraspecific violation of genetic colinearity and its 

implications in maize. Proc. Natl. Acad. Sci. USA. 99:9573–9578. 

Galili, G. 2002. New insights into the regulation and functional significance of lysine 

metabolism in plants. Annu. Rev. Plant Biol. 53:27–43. 

Gardiner, J., E. Coe, Jr., S. Melia-Hancock, D. Hoisington, and S. Chao. 1993. 

Development of a core RFLP map in maize using an Immortalized-F2 

population. Genetics 134:917-930. 

Gaut, B.S., and J.F. Doebley. 1997. DNA sequence evidence for the segmental 

allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA.  94:6809-6814. 

Gaut, B.S., M. Le Thierry d'Ennequin, A.S. Peek, and M.C. Sawkins. 2000. Maize as a 

model for the evolution of plant nuclear genomes. Proc. Natl. Acad. Sci. USA. 

97:7008-7015. 

Gaziola, S.A., E.S. Alessi, P.E.O. Guimara˜es, C. Damerval, and R.A. Azevedo. 1999. 

Quality protein maize: a biochemical study of enzymes involved in lysine 

metabolism. J. Agric. Food Chem. 47:1268–1275. 

Geadelmann, J.L. 1984. Using exotic germplasm to improve northern corn. Proc. Annu. 

Corn Sorghum Res. Conf. 36:98-110. 



 130

Geetha, K.B., C.R. Lending, M.A. Lopes, J.C. Wallace, and B.A. Larkins. 1991. 

Opaque-2 modifiers increase gamma-zein synthesis and alter its distribution in 

maize endosperm. Plant Cell 3:1207-1219. 

Geiser, D.M., J.I. Pitt, and J.W. Taylor. 1998. Cryptic speciation and recombination in 

the aflatoxin-producing fungus Aspergillus flavus. Proc. Natl. Acad. Sci. USA. 

95:388–393.  

Gentinetta, E. 1975. Protein studies in 46 opaque-2 strains with modified endosperm 

texture. Maydica 20:145-164. 

George, M.L.C., E. Ragalado, W. Li, M. Cao, M. Dahlan, M. Pabendon, M.L. 

Warburton, X. Xianchun, and D. Hoisington. 2004. Molecular characterization of 

Asian maize inbred lines by multiple laboratories. Theor. Appl. Genet. 109:80-

91. 

Gerdes, J.T., and W.F. Tracy. 1993. Pedigree diversity within Lancaster Sure Crop 

heterotic group of maize. Crop Sci. 33:334–337. 

Gethi, J.G., J.A. Labate, K.R. Lamkey, M.E. Smith, and S. Kresovich. 2002. SSR 

variation in important U.S. maize inbred lines. Crop Sci. 42:951-957. 

Gevers, H.O. 1979. High lysine maize in South Africa. Breeding Progress. p. 33-36. In 

H.O. Gevers (ed.) Proceedings of the second South African Maize Breeding 

Symposium. Dep. Of Agric. Tech. Services. Tech. Comm. 142. Pretoria. 

Republic of South Africa. 

Gevers, H.O., and J.K. Lake. 1992. Development of modified opaque-2 maize in South 

Africa. p. 111-121. In E.T. Mertz (ed.) Quality protein maize. American 

Association of Cereal Chemists, St. Paul, MN. 

Gibbon, B.C., X. Wang, and B.A. Larkins. 2003. Altered starch structure is associated 

with endosperm modification in Quality Protein Maize. Proc. Natl. Acad. Sci. 

100:15329–15334. 

Gilmour, A.R., B.R. Cullis, and A.P. Verbyla. 1997. Accounting for natural and 

extraneous variation in the analysis of field experiments. J. Agric. Biol. Env. 

Stat. 2:269-293. 



 131

Glover, D.V., and E.T. Mertz. 1987. Corn. p. 183-336. In R.A Olson, and K.J. Frey (ed.) 

Nutritional quality of cereal grains: genetic and agronomic improvement. 

Agronomy Monograph 28, Madison, WI. 

Gomez, M.H., S.O. Serna-Saldivar, J.I. Corujo, A.J. Bockholt, and L.W. Rooney. 1992. 

Wet milling properties of quality protein maize and regular corn. p. 239-260. In 

E.T. Mertz (ed.) Quality protein maize. Am. Assoc. Cereal Chem. Inc., St. Paul, 

MN. 

Goodman, M.M. 1985. Exotic maize germplasm: Status, prospects, and remedies. Iowa 

State J. Res. 59:497–527. 

Goodman, M.M., J. Moreno, F. Castillo, R.N. Holley, and M.L. Carson. 2000. Using 

tropical maize germplasm for temperate breeding. Maydica 45:221-234. 

Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel   

crossing systems. Aust. J.  Biol. Sci. 9:463-493. 

Guo, B.Z., J.S. Russin, T.E. Cleveland, R.L. Brown, and N.W. Widstrom. 1995. Wax 

and cutin layers in maize kernels associated with resistance to aflatoxin 

production by Aspergillus flavus. J. Food Prot. 58:296–300.  

Guo, B.Z., R.L. Brown, A.R. Lax, T.E. Cleveland, J.S. Russin, and N.W. Widstrom 

1998. Protein profiles and antifungal activities of kernel extracts from corn 

genotypes resistant and susceptible to Aspergillus flavus. J. Food Protect. 61:98- 

102. 

Guo, B.Z., N.W. Widstrom, C.C. Holbrook, R.D. Lee, and R.E. Lynch. 2001. Molecular 

genetic analysis of resistance mechanisms to aflatoxin formation in corn and 

peanut. Mycopathologia 155:78. 

Guzmán de Peňa, D., L. Trudel, and G.N. Wogan. 1995. Corn nixtamalization and the 

fate of radiolabelled aflatoxin B1 in the tortilla making process. Bulletin of 

Environmental Contamination and Toxicology 55:858–864. 

Habben, J.E., A.W. Kirlies, and B.A. Larkins. 1993. The origin of lysine-containing 

proteins in opaque-2 maize endosperm. Plant Mol. Biol. 23:825-838. 



 132

Habben, J.E., G.L. Moro, B.G. Hunter, B.R. Hamaker, B.A. Larkins. 1995. Elongation 

factor 1 alpha concentration is highly correlated with the lysine content of maize 

endosperm. Proc. Natl. Acad. Sci., USA. 92:8640-8644. 

Hallauer, A.R., W.A. Russell, and K.R. Lamkey. 1988. Corn breeding. p. 463-564. In 

G.F. Sprague and J.W. Dudley (ed.) Corn and corn improvement. Crop Science 

Society of America. Madison, WI.  

Hallauer, A.R., and J.B. Miranda, Fo. 1988. Quantitative genetics in maize breeding. 2nd 

edition, Iowa State Univ. Press, Ames, IA. 

Hallauer, A.R. 1990. Methods used in developing maize inbreds. Maydica 35:1-16. 

Hamaker, B.R., A.A. Mohamed, C.P. Huang, J.E. Habben and B.A. Larkins. 1995. An 

efficient procedure for extracting maize and sorghum kernel proteins reveals 

higher prolamin contents than the conventional method. Cereal Chem. 72:583-

588. 

Hamrick, J.L. and M.J.W. Godt. 1997. Aloozyme diversity in cultivated crops. Crop Sci. 

37:26-30. 

Hancock, J.D., E.R. Peo, Jr., A.J. Lewis, K.R. Kniep, and S.C. Mason. 1988. Effects of 

irrigation and nitrogen fertilization of normal and high lysine corn on protein 

utilization by the growing rat. Nutr. Rep. Int. 38:413-421. 

Harms, R.H., G.B. Russell, H. Harlow, and F.J. Ivey. 1998. The influence of methionine 

on commercial laying hens. J. Appl. Poult. Res. 7:45–52. 

Hartings, H., M. Maddaloni, N. Lazzaroni, N. Di Fonzo, M. Motto, F. Salamini, and T. 

Thompson. 1989. The O2 gene which regulates zein deposition in maize 

endosperm encodes a protein with structural homologies to transcriptional 

activators. EMBO J. 8:2795-2801.  

Heckenberger, M., A.E. Melchinger, J.S. Ziegle, L.K. Joe, J.D. Hauser, M. Hutton, and 

M. Bohn. 2002. Variation of DNA fingerprints among accessions within maize 

inbred lines with regard to the identification of essentially derived varieties. I. 

Genetic and sources of variation in SSR data. Mol. Breed. 10:181–191. 



 133

Hedrick, P.W. 1987. Gametic disequilibrium measures: proceed with caution. Genetics 

117:331–341. 

Henry, A.M., and C. Damerval. 1997. High rates of polymorphism and recombination at 

the Opaque-2 locus in cultivated maize. Mol. Gen. Genet. 256:147-157. 

Hernandez, H., and L.S. Bates. 1969. A modified method for rapid tryptophan analysis 

of maize. p. 1-7. CIMMYT Res. Bull. 13. CIMMYT, México City, México.  

Hill, W., and B. Weir. 1994. Maximum likelihood estimation of gene location by linkage 

disequilibrium. Am. J. Hum. Genet. 54:705-714. 

Horn, B.W., and R.L. Greene. 1995. Vegetative compatibility within populations of 

Aspergillus flavus, A. parasiticus, and A. tamari from a peanut field. Mycologia 

87:324–332. 

Horn, B.W., R.L. Greene, and J.W. Dorner. 2000. Inhibition of aflatoxin B1 production 

by Aspergillus parasiticus using nonaflatoxigenic strains. Role of vegetative 

compatibility. Biological Control 17:147–154. 

Huang, Z., D.G. White,, and G.A. Payne. 1997. Corn seed proteins inhibitory to 

Aspergillus flavus and aflatoxin biosynthesis. Phytopathology 87:622–627.  

Hunter, B.G., M.K. Beatty, G.W. Singletary, B.R. Hamaker, B.P. Dilkes, B.A. Larkins 

and R. Jung. 2002. Maize opaque endosperm mutations create extensive changes 

in patterns of gene expression. Plant Cell 14(10):2591-612. 

Jaccard, P. 1908. Nouvelles researches sur la distribution florale. Bull. Soc. Vaudoise 

Sci. Natl. 44:223–270. 

Jacob, F., and E. Wollman, 1961. Analyse de groupes de liaison genetique de differentes 

souches donatrices d'Escherichia coli. Comptes rendus de l'Academie des 

Sciences de Paris 245:1840-1843. 

Johnson, A.R., and D.W. Wichern. 1992. Applied multivariate statistical analysis. 3rd 

edition, Prentice-Hall, Englewood Cliffs, NJ. 

Johnson, L.A., C.L. Hardy, C.P. Baumel, T.H. Yu, and J.L. Sell. 2001. Identifying 

valuable corn quality traits for livestock feed. Cereal Foods World 46:472-481. 



 134

Jones, R.K. 1979. The epidemiology and management of aflatoxins and other 

mycotoxins. p. 381-392. In J. G. Horsfall and E. B. Cowling, (ed.) Plant disease, 

Vol. IV. Academic Press, New York. 

Jones, R.K., G.A. Payne, and K.J. Leonard. 1980. Factors influencing infection by 

Aspergillus flavus in silk-inoculated corn. Plant Dis. 64:859-863. 

Jones, R.K., H.E. Duncan, G.A. Payne, P.B. Hamilton. 1981. Planting date, harvest date, 

and irrigation effects on infection and aflatoxin production by Aspergillus flavus 

in field corn. Phytopathology 66:75–677. 

Jorde, L.B. 1995. Linkage disequilibrium as a gene mapping tool. Am. J. Hum. Genet. 

56:11-14.  

Jorde, L.B. 2000. Linkage disequilibrium and the search for complex disease genes. 

Genome Res. 10:1435-1444. 

Kata, S.R., B.H. Taylor, A. J. Bockholt, and J.D. Smith. 1994. Identification of opaque-2 

genotypes in segregating populations of quality protein maize by analysis of 

restriction fragment length polymorphisms. Theor. Appl. Genet. 89:407-412. 

Kemper, E.L., G. Cord-Neto, F. Papes, Z. Martinez, K.C. Moraes, A. Leite, and P. 

Arruda. 1999. The role of opaque-2 on the control of lysine degrading activities 

in developing maize endosperm. Plant Cell 11:1981–1994. 

Kerem, B.S., J.M. Rommens, J.A. Buchanan, D. Markiewicz, T.K. Cox, A. Chakravarti, 

M. Buchwald, and L.C. Tsui. 1989.  Identification of the cystic fibrosis gene: 

genetic analysis. Science 245:1073–1080. 

Knabe, D.A., J.S. Sullivan, K.G. Burgoon, and A.J. Bockholt. 1992. QPM as a swine 

feed. p. 225-238. In E.T. Mertz (ed.) Quality protein maize. Am. Assoc. Cereal 

Chem. Inc., St. Paul, MN. 

Kniep, K.R., and S.C. Mason. 1991. Lysine and protein content of normal and opaque-2 

maize grain as influenced by irrigation and nitrogen. Crop Sci. 31:177-181. 

Kodrzycki, R., R.S. Boston, and B.A. Larkins. 1989. The opaque-2 mutation of maize 

differentially reduces zein gene transcription. Plant Cell 1:105–114. 



 135

Lai, J. S., and J. Messing. 2002. Increasing maize seed methionine by mRNA stability. 

Plant J. 30:395–402. 

Landry, J., S. Delhaye, and C. Damerval. 2000. An improved method for isolating and 

quantitating aplha’amino nitrogen as non’protein, true protein, salt’soluble 

proteins, zeins and true glutelins in maize endosperm. Cereal Chem. 78:620-628. 

Larkins, B.A., and W.J. Hurkman. 1978. Synthesis and deposition of zein protein bodies 

of maize endosperm. Plant Physiol. 62:256-263. 

Larkins, B.A., K. Pedersen, M.D. Marks, and D.O. Wilson. 1984. The zein proteins of 

maize endosperm. Trends Biochem Sci 9:306-308. 

Larkins, B.A., C. Coleman, R.J. Burnett, G. Moro, J. Habben, Y. Sun, A. Clore, and J. 

Dannenhoffer. 1996. Developing Quality Protein Maize. Maize Genetics 

Conference Abstracts 38 14-17 March, ST Charles, IL. 

Lazzari, B., F. Sparvoli, L. Bernard, and  A. Viotti. 1993. Molecular characterization of 

Zea mays glutelin genes and proteins. MNL. 67:78-80.  

Lee, M., E.B. Godshalk, K.R. Lamkey, and W.W. Woodman. 1989. Association of 

restriction fragment length polymorphisms among maize inbreds with the 

agronomic performance of their crosses. Crop Sci. 29:1067-1071. 

Lee, M. 1995. DNA markers and plant breeding programs. Adv. Agron. 55:265-344. 

Lewontin, R. 1964. The interaction of selection and linkage. I. General considerations; 

heterotic models. Genetics 49:49–67 

Lewontin, R. 1988. On measures of gametic disequilibrium. Genetics 120:849-852. 

Lillehoj, E.B., and M.S. Zuber. 1974. Aflatoxin problem in corn and possible solutions, 

Proc. Annu. Corn & Sorghum Res. Conf. 1974, Chicago, IL, American Seed 

Trade Association, Alexandra, VA. 230–250.  

Lillehoj, E. B., W.F. Kwolek, D.I. Fennell, and M.S. Milburn. 1975. Aflatoxin incidence 

and association with bright greenish-yellow fluorescence and insect damage in a 

limited survey of freshly harvested high-moisture corn. Cereal Chem. 52:403–

412.  



 136

Lillehoj, E.B. 1983. Effect of environmental and cultural factors on aflatoxin 

contamination of developing corn kernels, Aflatoxin and Aspergillus flavus in 

corn. Southern Coop. Ext. Ser. Bull., Auburn University, AL. 279:27–34.  

Lin, C.Y. 1978. Index selection for genetic improvement of quantitative characterers. 

Theor. Appl. Genet. 52:49-56. 

Lin, K., A.J. Bockholt, and J.D. Smith. 1997. Utilization of molecular probes to facilitate 

development of quality protein maize. MNL. 71:22-23.  

Lisker, N., and E.B. Lillehoj. 1991. Prevention of mycotoxin contamination (principally 

aflatoxins and fusarium toxins) at the preharvest stage. p. 689–719.  In J.E. Smith 

and R.S. Henderson (ed.) Mycotoxins in animal foods, CRC Press, Boca Raton, 

FL.  

Liu, J., 2002 Powermarker - a powerful software for marker data analysis. North 

Carolina State University Bioinformatics Research Center, Raleigh, NC 

(www.powermarker.net). 

Liu, K., M. Goodman, S. Muse, J.S. Smith, E. Buckler, and J. Doebley. 2003. Genetic 

structure and diversity among maize inbred lines as inferred from DNA 

microsatellites. Genetics 165:2117-2128.   

Lohmer, S., M. Maddaloni, M. Motto, N. DiFonzo, H. Hartings, F. Salamini, and R.D. 

Thompson, 1991. The maize regulatory locus opaque-2 encodes a DNA binding 

protein which activates the transcription of the B-32 gene. EMBO J. 10:617–624. 

Lopes, M.A., and B.A. Larkins. 1991. Gamma-zein content is related to endosperm 

modification in quality protein maize. Crop Science. 31:1655-1662.  

Lopes, M.A., K. Takasaki, D.E. Bostwick, T. Helentjaris, and B.A. Larkins. 1995. 

Identification of two opaque-2 modifier loci in quality protein maize. Mol. Gen. 

Genet. 247:603-613.  

Lopes, M.A., and B.A. Larkins. 1995. Genetic analysis of opaque-2 modifier gene 

activity in maize endosperm. Theor. Appl. Genet. 91:274-281.  



 137

Lozovaya, V.V. 1998. Beta-1,3-Glucanase and resistance to Aspergillus flavus infection 

in maize, Crop. Sci. 38:1255–1260.  

Lu, H., and R. Bernardo. 2001. Molecular marker diversity among current and historical 

maize inbreds. Theor. Appl. Genet. 103 613–617. 

Lyznik, L.A. and C.Y. Tsai. 1989. Protein synthesis in endosperm cell cultures of maize 

(Zea mays L.) Plant Sci 63:105-114. 

Maddaloni, M., N. Di Fonzo, H. Hartings, N. Lazzaroni, F. Salamini, R.D. Thompson, 

and M. Motto. 1989. The sequence of the zein regulatory gene opaque-2 (O2) of 

Zea mays. Nucl. Acid. Res. 17:7532-7535.  

Maddaloni, M., G. Donini, C. Balconi, E. Rizzi, P. Gallusci, F. Forlani, S. Lohmer,  R. 

Thompson, F. Salamini, and M. Motto. 1996. The transcriptional activator 

Opaque-2 controls the expression of a cytosolic form of pyruvate orthophosphate 

dikinase-1 in maize endosperms. Mol. Gen. Genet. 250:647–654. 

Malècot, G. 1948. Les mathematiques de l’heredite. Masson et Cie, Paris. 

Martienssen, R.A., P. D. Rabinowicz , A. O’Shaughnessy and W. R. McCombie. 2004. 

Sequencing the maize genome. Current Opinion in Plant Biology. 7(2):102-107. 

Matsuoka, Y., Y. Vigouroux, M.M. Goodman, G.J. Sanchez, E. Buckler and J. Doebley. 

2002. Microsatellites in Zea - variability, patterns of mutations, and use for 

evolutionary studies. Theor. Appl. Genet. 104:436–450. 

McMillian, W. W., D.M. Wilson, N.W. Widstrom, and R.C. Gueldner. 1980. Incidence 

and level of aflatoxin in preharvest corn in South Georgia in 1978, Cereal Chem. 

57:83–84.  

McMillian, W.W., N.W. Widstrom, and D.M. Wilson. 1985. Insect damage and 

aflatoxin contamination in preharvest corn: influence of genotype and ear 

wetting. J. Entomol. Sci., 20:66–68.  

McMillian, W.W., N. W. Widstrom, and D. M. Wilson. 1993. Registration of GT-MAS: 

gk maize germplasm. Crop Sci. 33:882. 

Melchinger, A.E. 1990. Use of molecular markers in breeding for oligogenic disease 

resistance. Plant Breed Z Pflanzenzücht 104:1-19.  



 138

Melchinger, A.E. 1993. Use of RFLP markers for analyses of genetic relationships 

among breeding materials and prediction of hybrid performance. p. 621-628. In 

D.R. Buxton et al. (ed.) International crop science I. Crop Science Society of 

America, Madison, WI. 

Melchinger, A.E., and R.K. Gumber. 1998. Overview of heterosis and heterotic groups 

in agronomic crops. p. 29–44. In K.R. Lamkey and J.E. Staub (ed.) Concepts and 

breeding of heterosis in crop plants. CSSA Spec. Publ. 25. Crop Science Society 

of America, Madison, WI. 

Melchinger, A.E. 1999. Genetic diversity and heterosis. p. 99-118. In J.G. Coors and S. 

Pandey (ed.) The genetics and exploitation of heterosis in crops. Agronomy 

Society of America, Madison, WI.  

Menz, M.A., R.R. Klein, N.C. Unruh. W.L. Rooney, P.E. Klein, and J.E. Mullet. 2004. 

Genetic diversity of public inbreds of sorghum determined by mapped AFLP and 

SSR markers. Crop Sci. 44:1236-1244. 

Mertz, E.T., L.S. Bates, and O.E. Nelson. 1964. Mutant gene that changes protein 

composition and increases lysine content of maize endosperm. Science 145:279-

280. 

Mertz, E.T., P.S. Misra, and R. Jambunathan. 1974. Rapid ninhydrin color test for 

screening high-lysine mutants of sorghum, barley, and other cereal grains. Cereal 

Chem. 51:304 307.  

Messmer, M..M., A.E. Melchinger, R.G. Herrmann, and J. Boppenmaier. 1993. 

Relationships among early European maize inbreds: II. Comparison of pedigree 

and RFLP data. Crop Sci. 33:944–950. 

Michelini, L.A., and A.R. Hallauer. 1993. Evaluation of exotic and adapted maize (Zea 

mays L.) germplasm crosses. Maydica 38:275-282. 

Miller, J.D. 2001. Factors that affect the occurrence of fumonisin, Environ. Health 

Perspect. 102:321–324.  

Mitchell, S.E., S. Kresovich, C.A. Jester, C.J. Hernandez, and A.K. Szewc-McFadden. 

1997. Application of multiplex PCR and fluorescence-based, semiautomated 



 139

allele sizing technology for genotyping plant genetic resources. Crop Sci. 

37:617–624. 

Mohammadi, S.A., and B.M. Prasanna. 2003. Analysis of genetic diversity in crop 

plants-salient statistical tools and considerations. Crop Sci. 43:1235-1248. 

Moro, G.L., M.A. Lopes, J.E. Habben, B.R. Hamaker and B.A. Larkins. 1995. 

Phenotypic effects of opaque2 modifier genes in normal maize endopserm. 

Cereal Chemistry 72:94-99. 

Moro, G.L., J.E. Habben, B.R. Hamaker, and B.A. Larkins. 1996. Characterization of 

the variability in lysine content of maize endosperm. Science 145:279-280.  

Mossberg, R. 1969. New approaches to breeding for improved plant protein. Proc. Panel 

Rostanga 1968. IAEA Vienna 151-160.  

Motto, M., H. Hartings, and V. Rossi. 2003. Gene discovery to improve the maize grain 

cell factory. Part 1. Biotechnology. 60.  

Mumm, R.H., and J.W. Dudley. 1994. A classification of 148 U.S. maize inbreds: 1. 

Cluster analysis based on RFLPs. Crop Sci. 34:842-851. 

Munkvold, G.P., R.L. Hellmich, and W.B. Showers. 1997. Reduced Fusarium ear rot 

and symptomless infection in kernels of maize genetically engineered for 

European corn borer. Phytopathology 87:1071–1077.  

National Research Council. 1988. Quality protein maize. National Academy Press, 

Washington, DC.  

National Research Council. 1994. Nutritional requirements of poultry. 9th edition, 

National Academy Press, Washington, DC. 

Nei, M., and W. Li. 1979. Mathematical model for studying genetic variation in terms of 

restriction endonucleases. Proc. Natl. Acad. Sci. USA. 76:5256-5273. 

Nelson, O.E., E.T. Mertz, and L.S. Bates. 1965. Second mutant gene affecting the amino 

acid pattern of maize endosperm proteins, Science, 150:1469-1470. 

Neuffer, M.G., E. Coe, and S. Wessler. 1997. Mutants of maize. Cold Spring Harbor 

Laboratory Press, Cold Spring Harbor, NY. 



 140

Nielsen, K., M. Kirst, R.S. Boston, and G. Payne. 2002. Protection of kernels from 

infection by Aspergillus flavus is decreased in Opaque-2 mutants of maize. In 

Proceedings of the 15th aflatoxin elimination workshop. San Antonio, TX, 

October 2002.  

Nordborg, M., and S. Tavare. 2002. Linkage disequilibrium: what history has to tell us. 

Trends Genet. 18:83–90. 

Nordborg, M., J.O. Borevitz, J. Bergelson, C.C. Berry, J. Chory, J. Hagenblad, M. 

Kreitman, J.N. Maloof, T. Noyes, P.J. Oefner, E.A. Stahl, and D. Weigel. 2002. 

The extent of linkage disequilibrium in Arabidopsis thaliana. Nat. Genet. 

30:190–193. 

Odvody, G.N., N. Spencer, and J. Remmers. 1997. A description of silk cut, a stress-

related loss of kernel integrity in preharvest maize. Plant Disease 81:439-444. 

Odvody, G.N. and C.F. Chilcutt. 2003. Aflatoxin and insect response of near-isogenic 

non-Bt and Cry1A(b) (Mon810 and Bt11) commercial corn hybrids in south 

texas in 2001-2002. Proceedings of the 3rd fungal genomics, 4th fumonisin, and 

16th aflatoxin elimination workshops. October 13-15, Savannah, Georgia, USA.  

Ohtani, T., G. Galili, J.C. Wallace, G.A. Thompson, and B.A. Larkins. 1991. Normal 

and lysine-containing zeins are unstable in transgenic tobacco seeds. Plant Mol. 

Biol. 16:117-128. 

Or, E., S.K. Boyer, and B.A. Larkins, 1993. opaque2 modifiers act post-transcriptionally 

and in a polar manner on gamma-zein gene expression in maize endosperm. Plant 

Cell 5:1599-1609.   

Ortega, E.I., and L.S Bates, 1983. Biochemical and agronomic studies of two modified 

hard-endosperm opaque-2 maize (Zea mays L.) populations. Cereal Chem. 

60:107-111. 

Palaisa, K., M. Morgante, M. Williams, and A. Rafalski. 2003. Contrasting effects of 

selection on sequence diversity and linkage disequilibrium at two phytoene 

synthase loci. Plant Cell 15:1795–1806. 



 141

Park, D.L., and B. Liang. 1993. Perspectives on aflatoxin control for human food and 

animal feed, Trends Food Sci. 4:334–342.  

Patterson, H.D , and E.R. Williams. 1976. A new class of resolvable incomplete block 

designs. Biometrika 63:83-89. 

Paulis, J.W., J.A. Bietz and J.S. Wall. 1975. Corn protein subunits: molecular weights 

determined by SDS-PAGE. J. Agr. Food Chem. 23:197-201.  

Paulis, J.W., J.A. Bietz, T.P. Bogyo, T.C. Nelsen, L.L. Darrah, and M.S. Zuber. 1992. 

Expression of A/B zeins in single and double maize endosperm mutants. Theor. 

Appl .Genet. 85:407-414. 

Payne, G.A. 1992. Aflatoxin in maize. Crit. Rev. Plant Sci. 10:423-440. 

Payne, G.A. 1998. Process of contamination by aflatoxin-producing fungi and their 

impact on crops. In K.K. Sinha and D. Bhatmayas (ed.) Mycotoxins in 

agriculture and food supply. Marcel Dekkar, New York.  

Pedersen, K., J. Devereux, D.R. Wilson, E. Sheldon, and B.A. Larkins. 1982. Cloning 

and sequence analysis reveal structural variation among related zein genes in 

maize. Cell 29:1016-1026.  

Pejic, I., P. Ajmone-Marsan, M. Morgante, V. Kovumplick, P. Castiglioni, G. Taramino, 

and M. Motto. 1998. Comparative analysis ofgenetic similarity among maize 

inbred lines detected by RFLPs,  RAPDs, SSRs, and AFLPs. Theor. Appl. Genet. 

97:1248–1255. 

Phillips, R.L., P.R. Morris, F. Wold, and B.G. Gengenbach. 1981. Seedling screening for 

lysine-plus-threonine resistant maize. Crop Sci. 21:601–607. 

Phillips, R.L., and B.A. McClure. 1985. Elevated protein-bound methionine in seeds of a 

maize line resistant to lysine plus threonine. Cereal Chem. 62:213–218.  

Phillips, T.D., Kubena, L.F., Harvey, R.B., Taylor, D.R. and Heidelbaugh, N.D. 1988.  

Hydrated sodium calcium aluminosilicate: a high affinity sorbent for aflatoxin. 

Poultry Sci. 67:243-247. 

Philips, T.D., A.B. Sarr, and B.A. Clement. 1991. Prevention of aflatoxicosis in farm 

animals via selective chemisorption of aflatoxin. p. 223-237. In G.A. Bray and 



 142

D.H. Ryan (ed.) Mycotoxins, cancer and health, Vol. 1, Pennington Center 

Nutrition Series, Louisiana State University Press, Baton Rouge, LA. 

Pinstrup-Anderson, P., R. Pandya-Lorch, and M.W. Rosegrant. 1999. World 

foodprospects: Critical issues for the early twenty-first century [Online]. 

Available at http://www.ifpri.org/pubs/fpr/fpr29.pdf (verified 24 Nov. 2003). 

Food Policy Statement 29. Int. Food Policy Res. Inst., Washington, DC.  

Pixley, K.V. and M.S. Bjarnason. 1993. Combining ability for yield and protein quality 

among modified-endosperm opaque-2 tropical maize inbreds. Crop Sci. 33:1229-

1234.  

Pixley, K.V., and M.S. Bjarnason, 2002. Stability of grain yield, endosperm 

modification, and protein quality of hybrid and open-pollinated quality protein 

maize (QPM) cultivars. Crop Sci. 42:1882-1890. 

Poethig, R.S. 1988.  Heterochronic mutations affecting shoot development in maize. 

Genetics 119:959-973. 

Poey, F.R., R. Bressani, A.A. Garcia, M.A. Garcia, and L.G. Elias. 1979. Germ-

endosperm relationship in the nutritional improvement of maize grain. p. 369.  In 

Seed protein improvement in cereals and grain legumes. International Atomic 

Energy Agency, Vienna.   

Powell, J.R., and G.D. Amato. 1984. Population genetics of drosophila amylase. v. 

genetic background and selection on different carbohydrates. Genetics 106:625-

629. 

Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey, and A. Rafalski. 

1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers 

for germplasm analysis. Mol. Breed. 2:225–238. 

Prat, S., J. Cortadas, P. Puigdomenech, and J. Palau. 1985. Nucleic acid (cDNA) and 

amino acid sequences of the maize endosperm protein glutelin-2. Nucl. Acid. 

Res. 13:1493-1504  



 143

Price, R.L., and K.V. Jorgensen. 1985. Effects of processing on aflatoxin levels and on 

mutagenic potential of tortillas made from naturally contaminated corn. J. of 

Food Science 50:347–357. 

Rafalski, A. 2002. Applications of single nucleotide polymorphisms in crop genetics. 

Current Opinion on Plant Biology 5:94-100. 

Rafalski, A., and M. Morgante. 2004. Corn and humans: recombination and linkage 

disequilibrium in two genomes of similar size. Trends in Genetics. 20(2):103-

111.  

Rayburn, A.L., H.J. Price, J.D. Smith and J.R. Gold. 1985. C-band heterochromatin and 

DNA content in Zea mays Am. J. Bot. 72:1610-1617.   

Reif, J.C., A.E. Melchinger, X.C. Xia, M.L. Warburton, D.A. Hoisington, S.K. Vasal, G. 

Srinivasan, M. Bohn, and M. Frisch. 2003. Genetic distance based on simple 

sequence repeats and heterosis in tropical maize populations. Crop Sci. 43:1275–

1282. 

Reif, J.C., X.C. Xia, A.E. Melchinger, M.L. Warburton, D.A. Hoisington, D. Beck, M. 

Bohn, and M. Frisch. 2004. Genetic diversity determined within and among 

CIMMYT maize populations of tropical, subtropical, and temperate germplasm 

by SSR markers. Crop Sci. 44:326–334. 

Remington, D.L., J.M. Thornsberry, Y. Matsuoka, L.M. Wilson, S.R. Whitt, J. Doebley, 

S. Kresovich, M.M. Goodman, and E.S. Buckler IV. 2001. Structure of linkage 

disequilibrium and phenotypic associations in the maize genome. Proc. Natl. 

Acad. Sci. USA. 98:11479–11484. 

Robutti, J., R.C. Hoseney, and C.W. Deyoe, 1974.  Modified opaque-2 corn endosperms. 

I. Protein distribution and amino acid composition. Cereal Chem. 51:163-172. 

Romero-Severson, J., J.S.C. Smith, J. Ziegle, J.L. Hauser, and G. Hookstra. 2001.  

Pedigree analysis and haplotype sharing within diverse groups of Zea mays L. 

inbreds. Theor. Appl. Genet. 103:567-574. 

Ron Parra, J., and A.R. Hallauer. 1997. Utilization of exotic maize germplasm. Plant 

Breed. Rev. 14:165–187. 



 144

Russin, J.S., B.Z. Guo, K.M. Tubajika, R.L. Brown, T.E. Cleveland, and N.W. 

Widstrom. 1997. Comparison of kernel wax from corn genotypes resistant or 

susceptible to Aspergillus flavus. Phytopathology 87:529–533.  

SanMiguel, P., B.S. Gaut, A. Tikhonov, Y. Nakajima and J.L. Bennetzen, 1998. The 

paleontology of intergene retrotransposons of maize. Nat. Genet. 20:43–45. 

San Vincente, F.M., A. Bejarano, C. Marin, and J. Crossa. 1998. Analysis of diallel 

crosses among improved tropical white endosperm maize populations. Maydica 

43:147-153.  

Sarr, A.B., K. Mayura, L.F. Kubena, R.B. Harvey, and T.D. Phillips. 1995. Effects of 

phyllosilicate clay on the metabolic profile of aflatoxin B1 in Fischer-344 rats. 

Toxicology Letters 75:145-151. 

SAS Institute. 1997.  SAS proprietary software, release 6.12 edition, SAS Institute Inc., 

Cary, NC.  

Sauer, D.B., and R. Burroughs. 1980. Fungal growth, aflatoxin production, and moisture 

equilibration in mixtures of wet and dry corn. Phytopathology 70:516–521.  

Saunders, M.A., M. F. Hammer, and M.W. Nachman. 2002. Nucleotide variability at 

G6pd and the signature of malarial selection in humans. Genetics 162:1849-

1861. 

Schickler, H., M. Benner, and J. Messing. 1993. Repression of the high-methionine zein 

gene in the maize inbred line Mo17. Plant J. 3:221-229. 

Schiffman, S.S., M.L. Reynold, and F.W. Young. 1981. Introduction to 

multidimensional scaling: theory, methods and applications. Academic Press, 

New York. 

Schmidt, R.J., F.A. Burr, M.J. Aukerman, B. Burr. 1990. Maize regulatory gene opaque-

2 encodes a protein with a “leucine zipper” motif that binds to zein DNA. Proc. 

Natl. Acad. Sci. USA. 87:46 50. 

Schmidt, R.J., M. Ketudat, M.J. Aukerman,  and G. Hoschek. 1992. Opaque-2 is a 

transcriptional activator that recognizes a specific target site in 22-kD-zein genes. 

Plant Cell 4:689-700.  



 145

Schutte, J.B. 1989. Practical application of (bio)synthetic amino acids in poultry and pig 

diets. p. 75–88. In E.J. vanWeerden and J. Huisman (ed.) Nutrition and digestive 

physiology in monogastric farm animals. Centre for Agricultural Publ. and 

Documentation, Wageningen, The Netherlands. 

Scott, G.E. and N. Zummo. 1988. Sources of resistance in maize to kernel infection by 

Aspergillus flavus in the field. Crop Sci. 28:504-507. 

Scott, G.E., and N. Zummo. 1990. Registration of Mp313E parental line of maize. Crop 

Sci.  30:1378. 

Scott, G.E. and N. Zummo. 1992. Registration of Mp420 germplasm line of maize. Crop 

Sci. 32:1296. 

Scott, P.M., S. Bhatnagar, and J. Betrán. Tryptophan and methionine levels in quality 

protein maize breeding germplasm. (unpublished). 

Seitz, L.M., D.B. Sauer, and H.E. Mohr. 1982. Storage of high-moisture corn: fungal 

growth and dry matter loss, Cereal Chem. 59:100–105.  

Senior, M.L., and M. Heun. 1993.  Mapping maize microsatellites and polymerase chain 

reaction confirmation of the targeted repeats using a CT primer. Genome 36:884-

889. 

Senior, M.L., J.P. Murphy, M.M. Goodman, and C.W. Stuber. 1998. Utility of SSRs for 

determining genetic similarities and relationships in maize using an agarose gel 

system. Crop Sci. 38:1088–1098. 

Serna-Saldivar, S.O., H.D. Almeida-Dominguez, M.H.  Gomez, A.J. Bockholt, and L.W. 

Rooney. 1991.  Method to evaluate ease of pericarp removal on lime-cooked 

corn kernels.  Crop Sci. 31:842-844.   

Serna-Saldivar, S.O., M.H. Gomez, A.R. IslasRubio, A.J. Bockholt, and L.W. Rooney. 

1992. The alkaline processing properties of quality protein maize. p. 273-294. In 

E.T. Mertz (ed.) Quality protein maize. The American Society of Cereal 

Chemists. St. Paul, MN. 



 146

Serna-Saldivar, S.O., M.H. Gomez, and L.W. Rooney. 2001. Food uses of regular and 

specialty corns and their dry-milled fractions. p. 303-338. In A.R. Hallauer (ed.) 

Specialty corns. CRC Press, New York.  

Sharon, E.M., S. Kresovich, C.A. Jester, C.J. Hernandez, and A.K. Szewc-McFadden. 

1997. Application of multiplex PCR and fluorescence-based, semi-automated 

allele sizing technology for genotyping plant genetic resources. Crop Sci. 

37:617-624.  

Shimada, A., and T.R. Cline. 1974. Limiting amino acids of triticale for the growing rat 

and pig. J. Anim. Sci. 38:941-946. 

Shotwell, M.A. and B.A. Larkins. 1989. The molecular biology and biochemistry of seed 

storage proteins. p. 297-345. In A. Marcus (ed.) The biochemistry of plants: a 

comprehensive treatise. vol. 15. Academic Press, San Diego, CA. 

Singer, M., T.A. Baker, G. Schnitzler, S.M. Deischel, M. Goel, W. Dove, K.J. Jaacks, 

A.D. Grossman, J.W. Erickson, C.A. Gross. 1989. A collection of strains 

containing genetically linked alternating antibiotic resistance elements for 

genetic mapping of Escherichia coli. Microbiol. Rev. 53:1-24. 

Smith, J.S., E.C.L. Chin, H. Shu, O.S. Smith, S.J. Wall, M.L. Senior, S.E. Mitchell, S. 

Kresovitch, and J. Ziegle.  1997. An evaluation of the utility of SSR loci as 

molecular markers in maize (Zea mays L): comparisons with data from RFLPS 

and pedigree. Theor. Appl. Genet. 95:163-173. 

Smith, O.S. 1986. Covariance between line per se and testcross performance. Crop Sci. 

26:540-543. 

Smith, O.S., J.S.C. Smith, S.L. Bowen, R.A. Tenborg, and S.J. Wall. 1990. Similarities 

among a group of elite maize inbreds as measured by pedigree, F1 grain yield, 

grain yield, heterosis, and RFLPs. Theor. Appl. Genet. 80:833-840. 

Smith, O.S., and J.S.C. Smith. 1992.  Measurement of genetic diversity among maize 

hybrids-a comparison of isozymic, RFLP, pedigree, and heterosis data. Maydica 

37:53-60. 

Sneath, P.H.A., and R.R. Sokal. 1973. Numerical taxonomy. Freeman. San Francisco. 



 147

Soave, C., L. Tardani, N. Di Fonzo, and F. Salamini. 1981. Zein level in maize 

endosperm depends on a protein under control of the opaque-2 and opaque-6 

loci. Cell 27:403-410. 

Sodek, L., and C.M. Wilson. 1971. Amino acid composition of proteins isolated from 

normal, opaque-2 and floury-2 corn endosperms by a modified Osborne 

procedure. J. Agric. Food Chem. 19:1144-1150.  

Sokal, R.R., and C.D. Michener. 1958. A statistical method for evaluating systematic 

relationships. Univ. Kansas Sci. Bull. 38:1409–1438. 

Song, R., V. Llaca, E. Linton, and J. Messing. 2001. Sequence, regulation, and evolution 

of the maize 22-kD alpha zein gene family. Genome Res. 11:1817-1825. 

Sproule, A., S.O. Serna-Saldivar, A.J. Bockholt, L.W. Rooney, and  D.A. Knabe. 1988. 

Nutritional evaluation of tortillas and tortilla chips from quality protein maize. 

Cereal Foods World 33:233-236. 

Sreeramulu, C., and L.F. Bauman. 1970. Yield components and protein quality of 

opaque-2 maize and normal dialles of maize. Crop Sci. 10:262-265. 

Stromberg, E.L., E.S. Hagood, A.G. Hager, and D.G. White. 1999. Noninfectious or 

abiotic diseases. p. 64. In D.G. White (ed.) Compendium of corn diseases 3rd 

edition, APS Press, The American Phytopathological Society, St. Paul, MN.  

Stuber, C.W., and M.M. Goodman. 1983. Allozyme genotypes for popular and 

historically important inbred lines of corn. Zea mays L. USDA. Agr. Res. 

Results, Sothern Ser., no. 16.  

Stuber, C.W. 1989. Marker-based selection for quantitative traits. p. 31-49. In G. 

Robbelen (ed.) Proc XII Congr. EUCARPIA. Parey, Berlin. 

Stuber, C.W. 1994a. Enhancement of grain yield in maize hybrids using marker-

facilitated introgression of QTLs. p. 44-46. In Analysis of molecular marker data. 

ASHS and CSSA Symposium, Corvalis, OR. 

Stuber, CW. 1994b. Heterosis in plant breeding. In J. Janick (ed.) Plant Breed Rev. 

12:227-247.  



 148

Swarup, S., M.C. Timmermans, S. Chaudhuri, and J. Messing. 1995. Determinants of the 

high-methionine trait in wild and exotic germplasm may have escaped selection 

during early cultivation of maize. Plant J. 8:359–368. 

Taramino, G., and S. Tingey. 1996. Simple sequence repeats for germplasm analysis and 

mapping in maize. Genome 39:277-287. 

Tarter, J.A., M.M. Goodman, and J.B. Holland. 2003. Testcross performance of 

semiexotic inbred lines derived from Latin American maize accessions. Crop Sci. 

43:2272-2278. 

Tenaillon, M.I., M.C. Sawkins, A.D. Long, R.L. Gaut, J.F. Doebley, and B.S. Gaut. 

2001. Patterns of DNA sequence polymorphism along chromosome 1 of maize 

(Zea mays ssp. mays L.). Proc. Natl. Acad. Sci. USA. 98:9161-9166. 

Texas Agricultural Experiment Station (TAES). 1990. Five year plan, 1990-1995. Texas 

A&M University, College Station, TX. 

Thornsberry, J.M., M.M. Goodman, J. Doebley, S. Kresovich, D. Nielsen, and E.S. 

Buckler IV. 2001. Dwarf8 polymorphisms associate with variation in flowering 

time. Nat Genet. 28:286–289 

Tolessa, B., H.S. Cordova, S. Castellanos, and G. Srinivasan. 1999. Combining ability 

and stability analysis of quality protein maize inbred lines and hybrids. Amer. 

Soc. Agron. Annual Meeting Abstracts 91:85. Salt Lake City, UT.   

Torrent, M., I. Alvarez, M.I. Geli, I. Dalcol, and D. Ludevid. 1997. Lysine-rich mediated 

zeins accumulate in protein bodies of transiently transformed maize endosperms. 

Plant Mol. Biol. 34:139–149. 

Troyer, A.F., S. Openshaw, and K.H. Knittle. 1988. Measurement of genetic diversity 

among popular commercial corn hybrids. Crop Sci. 28:481-485. 

Troyer, A.F. 1996. Breeding widely adapted, popular maize hybrids. Euphytica 92:163-

174. 

Tucker, D.H. Jr., L.E. Trevathan, S.B. King, and G.E. Scott. 1986. Effect of four 

inoculation techniques on infection and aflatoxin concentration of resistant and 



 149

susceptible corn hybrids inoculated with Aspergillus flavus. Phytopathology 

76:290-293.  

Tuite, J., C. Koh-Knox, R. Stroshine, F.A. Cantone, and L.F. Bauman. 1985. Effect of 

physical damage to corn kernels on the development of Penicillium species and 

Aspergillus glaucus in storage. Phytopathology, 75:1137–1140.  

USDA, Foreign Agriculture Service (USDA-FAS). 2003. Grain: World Markets and 

Trade, Jan. 13. 2003. 

U.S. Food and Drug Administration. 2000. Action Levels for Poisonous or Deleterious 

Substances in Human Food and Animal Feed. [Online] at 

http://www.cfsan.fda.gov/~lrd/fdaact.html (verified 16 Oct. 2004).  

Vasal, S.K., E. Villegas, M. Bjarnason, B. Gelaw, and P. Goertz. 1980. Genetic 

modifiers and breeding strategies in developing hard endosperm opaque-2 

materials. p. 37. In W.G. Pollmer, and R.H. Phipps (ed.) Improvement of quality 

traits of maize for grain and silage use, Nighoff, The Hague, The Netherlands. 

Vasal, S.K., G. Srinivasan, S. Pandey, F. Gonzalez, J. Crossa, and D. L. Beck. 1993. 

Heterosis and combining ability of CIMMYT’s quality protein maize germplasm 

I. Lowland tropical. Crop Sci. 33:46-51. 

Vasal, S.K. 2001. High quality protein corn. p. 85-129. In A.R. Hallauer (ed.) Specialty 

corns. CRC Press, Boca Raton, FL. 

Vincelli, P., G. Parker, and S. McNeill. 1995. Aflatoxins in corn, Ky. Agric. Exp. Stn., 

ID-59.  

Vincelli, P., and G. Parker. 2001. Mycotoxins in corn produced by Fusarium fungi, Ky. 

Agric. Exp. Stn., ID-121  

Wallace, J. C., G. Galili, E.E. Kawata, R.E. Cuellar, B.A. Shotwell, and B.A. Larkins. 

1988. Aggregation of lysine-containing zeins into protein bodies in Xenopus 

oocytes. Science 240:662–664.  

Wallace, J.C., M.A. Lopes, E. Paiva, and B.A. Larkins. 1990. New methods for 

extraction and quantitation of zeins reveal a high content of γ-zein in modified 

opaque-2 maize. Plant Physiol. 92:191–196. 



 150

Wang, X. and B.A. Larkins. 2001. Genetic analysis of amino acid accumulation in 

opaque-2 maize endosperm. Plant Physiol. 125:1766–1777. 

Wang, X., D.K. Stumpf, and B.A. Larkins. 2001. Asparate kinase 2. A candidate gene of 

a quantitative trait locus influencing free amino acid content in maize endosperm. 

Plant Physiol. 125:1778-1787. 

Warburton, M.L., X. Xiachun, J. Crossa, J. Franco, A.E. Melchinger, M. Frisch, M. 

Bohn, and D. Hoisington. 2002. Genetic characterization of CIMMYT inbred 

maize lines and open pollinated populations using large scale fingerprinting 

methods. Crop Sci. 42:1832-1840. 

Ward, J.H., Jr. 1963. Hierarchical grouping to optimize an objective function. J. Am. 

Statist. Assoc. 58:236–244. 

Watson, S.A. 1988. Corn marketing, processing, and utilization. p. 881-940. In G.F. 

Sprague, and J. W. Dudley (ed.) Corn and corn improvement. 3rd edition, Amer. 

Soc. Agron., Madison, WI. 

Weir, B.S. 1996a. Intraspecific differentiation. p. 385–403. In D.M. Hillis et al. (ed.) 

Molecular systematics. 2nd edition, Sinauer Associates, Sunderland, MA. 

Weir, B.S. 1996b. Genetic data analysis II. Sinauer Associates, Sunderland, MA. 376 pp. 

Weiss, K.M. and A.G. Clark. 2002. Linkage disequilibrium and the mapping of complex 

human traits. Trends Genet. 18:19–24. 

Wellhausen, E.J. 1965. Exotic germplasm for improvement of Corn Belt maize. Proc. 

Annu. Corn Sorghum Res. Conf. 35:234–249. 

Wellhausen, E.J. 1978. Recent developments in maize breeding. p.59-84. In D.B. 

Walden (ed.) Maize breeding and genetics. John Wiley & Sons, New York. 

Wessel-Beaver, L., R.J. Lambert, and J.W. Dudley. 1985. Genetic variability and 

correlations in a modified endosperm texture opaque-2 maize population. Crop 

Sci. 25:129-132.   

White, D.G., T.R. Rocheford, A.M. Hamblin, and A.M. Forbes. 1997. Inheritance of 

molecular markers associated with, and breeding for, resistance to Aspergillus 

ear rot and aflatoxin production in corn using Tex6. In J. Robens and J. Dorner, 



 151

(ed.) Aflatoxin elimination workshop: a decade of research progress 1988-97, 61. 

Food Safety and Health, USDA/ARS, Beltsville MD. 

Widstrom, N.W., D.M. Wilson and W.W. McMillian. 1984. Ear resistance of maize 

inbreds to field aflatoxin contamination. Crop Sci. 24:1155-1157. 

Widstrom, N.W., W.W. McMillian, and D.M. Wilson. 1987. Segregation for resistance 

to aflatoxin contamination among seeds on an ear of hybrid maize. Crop Sci. 

27:961-963. 

Widstrom, N.W. 1996. The aflatoxin problem with corn grain. Advances in agronomy 

56:2129-280. 

Williams, W. P., P.M. Buckley, J.B. Sagers, J.A. Hanten. 1998. Evaluation of transgenic 

corn for resistance to corn borer (Lepidoptera: Noctuidea), fall armyworm 

(Lepidoptera: Noctuidea), and southwestern corn borer (Lepidoptera: Cambidae) 

in laboratory bioassay, J. Agric. Entomol., 15:105–112.  

Wilson, C.M. 1991. Multiple zeins from maize endosperms characterized by reverse-

phase high performance liquid chromatography. Plant Physiol. 95:777-786. 

Windham, G.L., and W.P. Williams. 1998. Aspergillus flavus infection and aflatoxin 

accumulation in resistant and susceptible maize hybrids. Plant Dis. 82:281-284. 

Windham, G.L., W.P. Williams, and F.M. Davis. 1999. Effects of the southwestern corn 

borer on Aspergillus flavus kernel infection and aflatoxin accumulation in maize 

hybrids. Plant. Dis. 83:535-540. 

Wu, Y.V. 1992. Dry milling of quality protein maize p. 261-272. In E.T. Mertz (ed.) 

Quality protein maize. The American Society of Cereal Chemists, St. Paul, MN. 

Yan, W., and L.A. Hunt. 2002. Biplot analysis of diallel data. Crop Sci. 42:21-30. 

Yap, I.V., and R.J. Nelson. 1996. WinBoot: A program for performing bootstrap 

analysis of binary data to determine the confidence limits of UPGMA-based 

dendograms. International Rice Research Institute. Manila, Philippines.  



 152

Yau, J., A.J. Bockholt, J.D. Smith, L.W. Rooney, and R.D. Waniska. 1998. Maize 

endosperm proteins that contribute to endosperm lysine content. Cereal Chem. 

76:668-672. 

Zuber, M.S., L.L. Darrah, E.B. Lillehoj, L.M. Josephson, A. Manwiller, G.E. Scott, R.T. 

Gudauskas, E.S. Horner, N.W. Widstrom, D.L. Thompson, A.J. Bockholt, and 

J.L. Brewbaker. 1983. Comparison of open-pollinated maize varieties and 

hybrids for preharvest aflatoxin contamination in the southern United States, 

Plant Dis., 67:185-188. 

Zummo, N. and G.E. Scott. 1989. Evaluation of field inoculation techniques for 

screening maize genotypes against kernel infection by Aspergillus flavus in 

Mississippi. Plant Dis. 73:313-316. 

 

 

 

 



 153

APPENDIX A 
 

SAS program for running the analysis for biplot for grain yield for white and yellow 
diallel crosses using mean grain yield across locations to visualize relationships among 
parental inbreds in hybrid combinations. 

 
 

OPTIONS PS=500 LS=78; 
DATA DLL; 
INFILE 'C:/sandy/sas data/GYdata.prn/' FIRSTOBS=2; 
INPUT ENTRY $ A B C D E F G H I; 
PROC PRINT; 
PROC PRINCOMP COV OUT=PCAOUT N=2; 
PROC PRINT; 
ID ENTRY; 
VAR PRIN1 PRIN2; 
RUN; 

 
The SAS System Output                               
                                                                              
  Obs  ENTRY    A      B      C      D      E      F      G      H      I      
                                                                               
   1     A    6.107  6.048  6.566  5.998  5.568  6.074  6.608  6.214  5.902    
   2     B    6.048  5.864  6.454  6.138  5.780  6.428  4.716  6.190  5.572    
   3     C    6.566  6.454  6.579  6.232  5.418  6.368  7.508  6.864  6.792    
   4     D    5.998  6.138  6.232  6.436  6.500  6.594  6.324  7.166  6.424    
   5     E    5.568  5.780  5.418  6.500  5.907  5.428  6.694  5.914  6.320    
   6     F    6.074  6.428  6.368  6.594  5.428  6.493  7.236  7.134  6.474    
   7     G    6.608  4.716  7.508  6.324  6.694  7.236  6.293  5.324  5.976    
   8     H    6.214  6.190  6.864  7.166  5.914  7.134  5.324  6.379  6.142    
   9     I    5.902  5.572  6.792  6.424  6.320  6.474  5.976  6.142  6.193    
                                 
                                                                               
                            The PRINCOMP Procedure                             
                                                                               
                           Observations           9                            
                           Variables              9                            
                                                                               
                                                                               
                              Simple Statistics                                
                                                                               
                   A             B             C             D             E   
                                                                               
  Mean   6.120555556   5.910000000   6.531222222   6.423555556   5.947666667   
  StD    0.320248775   0.532984990   0.558763764   0.334574024   0.464537942   
                                                                               
                              Simple Statistics                                
                                                                               
                    F                 G                 H                 I    
                                                                               
   Mean   6.469888889       6.297666667       6.369666667       6.199444444    
   StD    0.535994507       0.876972348       0.599186949       0.358275422    
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                              Covariance Matrix                                
                                                                               
                A              B              C              D              E  
                                                                               
 A   0.1025592778   -.0273012500   0.1420034861   -.0112234722   0.0049527083  
 B   -.0273012500   0.2840730000   -.1418685000   0.0322495000   -.1871482500  
 C   0.1420034861   -.1418685000   0.3122169444   0.0039246111   0.0942692083  
 D   -.0112234722   0.0322495000   0.0039246111   0.1119397778   0.0158708333  
 E   0.0049527083   -.1871482500   0.0942692083   0.0158708333   0.2157955000  
 F   0.1196288194   -.0828242500   0.2592421528   0.0678231944   0.1076442083  
 G   0.0451029583   0.1320262500   -.1029925417   -.0555336667   -.1341708750  
 H   -.0131410417   0.2775645000   -.1126685417   0.0298925833   -.1221163750  
 I   0.0117143472   0.0925997500   -.0523554861   0.0288302222   -.0358132083  
                                                                               
                              Covariance Matrix                                
                                                                               
                   F                 G                 H                 I     
                                                                               
    A   0.1196288194      0.0451029583      -.0131410417      0.0117143472     
    B   -.0828242500      0.1320262500      0.2775645000      0.0925997500     
    C   0.2592421528      -.1029925417      -.1126685417      -.0523554861     
    D   0.0678231944      -.0555336667      0.0298925833      0.0288302222     
    E   0.1076442083      -.1341708750      -.1221163750      -.0358132083     
    F   0.2872901111      -.1524280417      -.0232245417      -.0271358194     
    G   -.1524280417      0.7690805000      0.1825963750      0.2484570417     
    H   -.0232245417      0.1825963750      0.3590250000      0.1275340417     
    I   -.0271358194      0.2484570417      0.1275340417      0.1283612778     
                                                                               
                        Total Variance    2.5703413889                         
                                                                               
                     Eigenvalues of the Covariance Matrix                      
                                                                               
                 Eigenvalue    Difference    Proportion    Cumulative          
                                                                               
            1    1.21508539    0.64000614        0.4727        0.4727          
            2    0.57507925                      0.2237        0.6965          
                                                                               
                                Eigenvectors                                   
                                                                               
                                  Prin1         Prin2                          
                                                                               
                        A      -.054928      0.326007                          
                        B      0.355852      -.245106                          
                        C      -.308829      0.497258                          
                        D      -.027015      -.030634                          
                        E      -.268628      0.158885                          
                        F      -.281225      0.370787                          
                        G      0.646039      0.617385                          
                        H      0.377176      -.101968                          
                        I      0.251734      0.176492                          
                                                                               
                                The SAS System                                
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                        ENTRY      Prin1       Prin2                           
                                                                               
                          A       0.33083    -0.06006                          
                          B      -1.17153    -1.15312                          
                          C       1.44801     0.72099                          
                          D       0.37056    -0.13654                          
                          E       0.74428    -0.78452                          
                          F       1.32939     0.24731                          
                          G      -1.62023     1.40728                          
                          H      -0.84601    -0.26676                          
                          I      -0.58530     0.02542                          
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APPENDIX B  
 
Table B.1. QPM testcrosses between high lysine maize inbreds with different origins 
and Tx804 and hybrid checks evaluated in 2002 for agronomic evaluation and 
aflatoxin resistance.    
 
 

Entry Pedigree 
1 Pop. 65 Yellow Flint QPM-B-B-B1-3/TX804 
2 Pop. 65 Yellow Flint QPM-B-B-B4-1/TX804 
3 Pop. 66 Yellow Dent QPM-B-B-B3-1/TX804 
4 Pop. 66 Yellow Dent QPM-B-B-B4-2/TX804 
5 Pop. 69 Templado Amarillo QPM-B-B-B1-1/TX804 
6 Pop. 69 Templado Amarillo QPM-B-B-B2-2/TX804 
7 Pop. 69 Templado Amarillo QPM-B-B-B2-7/TX804 
8 Pop. 69 Templado Amarillo QPM-B-B-B2-10/TX804 
9 Pop. 69 Templado Amarillo QPM-B-B-B3-5/TX804 

10 Pop. 69 Templado Amarillo QPM-B-B-B3-6/TX804 
11 Pop. 69 Templado Amarillo QPM-B-B-B3-10/TX804 
12 Pop. 69 Templado Amarillo QPM-B-B-B4-2/TX804 
13 Pop. 69 Templado Amarillo QPM-B-B-B4-7/TX804 
14 Pop. 69 Templado Amarillo QPM-B-B-B4-11/TX804 
15 Pop. 69 Templado Amarillo QPM-B-B-B5-4/TX804 
16 Pop. 69 Templado Amarillo QPM-B-B-B5-7/TX804 
17 Pop. 69 Templado Amarillo QPM-B-B-B5-12/TX804 
18 Pop. 69 Templado Amarillo QPM-B-B-B5-13/TX804 
19 Pop. 69 Templado Amarillo QPM-B-B-B6-3/TX804 
20 Pop. 69 Templado Amarillo QPM-B-B-B6-8/TX804 
21 Pop. 70 Templado Amarillo Dentado QPM-B-B-B2-1/TX804 
22 Pop. 70 Templado Amarillo Dentado QPM-B-B-B2-7/TX804 
23 Pop. 70 Templado Amarillo Dentado QPM-B-B-B2-10/TX804 
24 Pop. 70 Templado Amarillo Dentado QPM-B-B-B3-2/TX804 
25 Pop. 70 Templado Amarillo Dentado QPM-B-B-B3-3/TX804 
26 Pop. 70 Templado Amarillo Dentado QPM-B-B-B3-4/TX804 
27 Pop. 70 Templado Amarillo Dentado QPM-B-B-B3-7/TX804 
28 Pool 26 Tropical Late Yellow Dent QPM-B-B-B3-1/TX804 
29 Pool 26 Tropical Late Yellow Dent QPM-B-B-B8-2/TX804 
30 Pool 33 Subtropical Intermediate Yellow Flint QPM-B-B-B1-2/TX804 
31 Pool 33 Subtropical Intermediate Yellow Flint QPM-B-B-B2-1/TX804 
32 Pool 34 Subtropical Intermediate Yellow Dent QPM-B-1-B-1/TX804 
33 Pool 34 Subtropical Intermediate Yellow Dent QPM-B-2-B-1/TX804 
34 Pool 34 Subtropical Intermediate Yellow Dent QPM-B-7-B-1/TX804 
35 Temperate x Tropical High-Oil QPM-B-3-B-1/TX804 
36 Temperate x Tropical High-Oil QPM-B-5-B-1/TX804 
37 Temperate x Tropical High-Oil QPM-B-5-B-4/TX804 
38 Temperate x Tropical High-Oil QPM-B-6-B-3/TX804 
39 Temperate x Tropical High-Oil QPM-B-6-B-8 Floury/TX804 
40 Temperate x Tropical High-Oil QPM-B-6-B-9 Floury/TX804 
41 Temperate x Tropical High-Oil QPM-B-7-B-4/TX804 
42 Temperate x Tropical High-Oil QPM-B-7-B-5/TX804 
43 Temperate x Tropical High-Oil QPM-B-7-B-9/TX804 
44 Temperate x Tropical High-Oil QPM-B-8-B-1/TX804 
45 Temperate x Tropical High-Oil QPM-B-8-B-5/TX804 
46 Temperate x Tropical High-Oil QPM-B-8-B-6/TX804 
47 Temperate x Tropical High-Oil QPM-B-8-B-7/TX804 
48 Temperate x Tropical High-Oil QPM-B-8-B-9/TX804 
49 Do940y-B/TX804 
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Table B.1. Continued.  
 

Entry Pedigree 
50 CML161-B/TX804 
51 Do940y/Tx802/TX804 
52 Do940y x Tx802 
53 SR470 
54 SL53 
55 SR660 
56 P31B13 
57 P32R25 
58 RX897 
59 DK668 
60 DK687 

 
For Aflatoxin evaluation an additional hybrid (CML161 x CML170) was tested instead of 
DK 667. 
 

 

Table B.2. Characteristics of environments used to evaluate QPM testcrosses 
between inbreds with different origins and Tx804 and hybrid checks in 2004.  
 
 

Locations Code Latitude Elevation 
(m) 

Plot area 
(m2/plot) Water regime 

COLLEGE STATION, TX CS 30○37’ 96 9.50 Irrigated 

WESLACO, TX WE 26○09’ 22.5 11.85 Irrigated 

CASTROVILLE, TX CA 29○21’ 228.2 14.76 Irrigated 

BARDWELL, TX BA 32○17’ 126.4 14.78 Rainfed 

WHARTON,  TX WH 29○17’ 30.3 13.86 Rainfed 

GRANGER, TX GR 30○42’ 172.4 15.00 Rainfed 

SPRINGLAKE, TX SP 34○13’ 1122.3 12.60 Rainfed 
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APPENDIX C 
 
Table C.1. QPM lines (inbreds 1) evaluated for endosperm modification, average 
methionine and average tryptophan of inbred lines evaluated in 2002.  
 
 

Entry Inbred lines End. Mod. Average Average 
 Pedigree from Selfing Rating Methionine Tryptophan
  scale 1(op)-5(mod) relative relative 

1 Pop. 65 Yellow Flint QPM-B-B-B1-3-B-B 5.0 0.11 0.29 
2 Pop. 65 Yellow Flint QPM-B-B-B2-4-B 5.0 0.10 0.40 
3 Pop. 65 Yellow Flint QPM-B-B-B4-1-B-B 5.0 0.10 0.41 
4 Pop. 65 Yellow Flint QPM-B-B-B4-2-B-B 5.0 0.13 0.33 
5 Pop. 66 Yellow Dent QPM-B-B-B3-1-B-B 5.0 0.12 0.39 
6 Pop. 66 Yellow Dent QPM-B-B-B4-2-B-B 5.0 0.13 0.40 
7 Pop. 69 Templado Amarillo QPM-B-B-B1-1-B-B 5.0 0.12 0.42 
8 Pop. 69 Templado Amarillo QPM-B-B-B1-6-B-B 5.0 0.12 0.47 
9 Pop. 69 Templado Amarillo QPM-B-B-B1-8-B-B 5.0 0.13 0.46 

10 Pop. 69 Templado Amarillo QPM-B-B-B2-2-B-B 5.0 0.13 0.40 
11 Pop. 69 Templado Amarillo QPM-B-B-B2-7-B-B 5.0 0.13 0.49 
12 Pop. 69 Templado Amarillo QPM-B-B-B2-10-B-B 5.0 0.13 0.44 
13 Pop. 69 Templado Amarillo QPM-B-B-B3-1-B-B 5.0 0.12 0.39 
14 Pop. 69 Templado Amarillo QPM-B-B-B3-5-B-B 5.0 0.12 0.36 
15 Pop. 69 Templado Amarillo QPM-B-B-B3-6-B-B 5.0 0.12 0.43 
16 Pop. 69 Templado Amarillo QPM-B-B-B3-7-B-B 5.0 0.13 0.42 
17 Pop. 69 Templado Amarillo QPM-B-B-B3-8-B-B 5.0 0.13 0.41 
18 Pop. 69 Templado Amarillo QPM-B-B-B3-9-B-B 5.0 0.12 0.39 
19 Pop. 69 Templado Amarillo QPM-B-B-B3-10-B-B 5.0 0.11 0.43 
20 Pop. 69 Templado Amarillo QPM-B-B-B4-2-B-B 5.0 0.13 0.39 
21 Pop. 69 Templado Amarillo QPM-B-B-B4-4-B-B 5.0 0.12 0.39 
22 Pop. 69 Templado Amarillo QPM-B-B-B4-7-B-B 5.0 0.13 0.44 
23 Pop. 69 Templado Amarillo QPM-B-B-B4-9-B-B 5.0 0.12 0.42 
24 Pop. 69 Templado Amarillo QPM-B-B-B4-11-B-B 5.0 0.12 0.40 
25 Pop. 69 Templado Amarillo QPM-B-B-B5-4-B-B 5.0 0.12 0.38 
26 Pop. 69 Templado Amarillo QPM-B-B-B5-5-B-B 5.0 0.13 0.46 
27 Pop. 69 Templado Amarillo QPM-B-B-B5-6-B-B 5.0 0.13 0.43 
28 Pop. 69 Templado Amarillo QPM-B-B-B5-7-B-B 5.0 0.12 0.38 
29 Pop. 69 Templado Amarillo QPM-B-B-B5-12-B-B 5.0 0.12 0.38 
30 Pop. 69 Templado Amarillo QPM-B-B-B5-13-B-B 5.0 0.13 0.45 
31 Pop. 69 Templado Amarillo QPM-B-B-B6-3-B-B 5.0 0.13 0.40 
32 Pop. 70 Templado Amarillo Dentado QPM-B-B-B2-6 5.0 0.11 0.42 
33 Pop. 70 Templado Amarillo Dentado QPM-B-B-B2-7 5.0 0.12 0.37 
34 Pop. 70 Templado Amarillo Dentado QPM-B-B-B2-8 5.0 0.11 0.43 
35 Pop. 70 Templado Amarillo Dentado QPM-B-B-B2-10 5.0 0.11 0.42 
36 Pop. 70 Templado Amarillo Dentado QPM-B-B-B3-2 5.0 0.11 0.42 
37 Pop. 70 Templado Amarillo Dentado QPM-B-B-B3-3 5.0 0.12 0.42 
38 Pop. 70 Templado Amarillo Dentado QPM-B-B-B3-4 5.0 0.12 0.43 
39 Pop. 70 Templado Amarillo Dentado QPM-B-B-B3-5 5.0 0.12 0.44 
40 Pop. 70 Templado Amarillo Dentado QPM-B-B-B3-7 5.0 0.10 0.38 
41 Pool 26 Tropical Late Yellow Dent QPM-B-B-B2-1-B 5.0 0.10 0.36 
42 B73 o2-B 1.0 0.13 0.64 
43 CML161-B-B 1.0 0.10 0.30 
44 Pool 26 Tropical Late Yellow Dent QPM-B-B-B8-2-B-B 3.0 0.10 0.42 
45 Pool 33 Subtropical Intermediate Yellow Flint QPM-B1-2 5.0 0.11 0.48 
46 Pool 33 Subtropical Intermediate Yellow Flint QPM-1-4 5.0 0.11 0.39 
47 Pool 33 Subtropical Intermediate Yellow Flint QPM-B2-1 5.0 0.12 0.41 
48 Pool 34 Subtropical Intermediate Yellow Dent QPM-1-1 5.0 0.12 0.42 
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Table C.1. Continued. 
 
Entry Inbred lines End. Mod. Average Average 

 Pedigree from Selfing Rating Methionine Tryptophan
  scale 1(op)-5(mod) relative relative 

49 Pool 34 Subtropical Intermediate Yellow Dent QPM-1-2 4.7 0.11 0.48 
50 Pool 34 Subtropical Intermediate Yellow Dent QPM-1-3 3.6 0.11 0.39 
51 Pool 34 Subtropical Intermediate Yellow Dent QPM-2-1 5.0 0.10 0.36 
52 B73 o2 1.0 0.13 0.63 
53 Temperate x Tropical High-Oil QPM-B-3-B-1-B 5.0 0.10 0.49 
54 Temperate x Tropical High-Oil QPM-B-5-B-1-B-B 4.6 0.12 0.45 
55 Temperate x Tropical High-Oil QPM-B-5-B-3-B-B 3.0 0.12 0.55 
56 Temperate x Tropical High-Oil QPM-B-5-B-4-B-B 4.6 0.13 0.56 
57 Temperate x Tropical High-Oil QPM-B-6-B-3-B-B 5.0 0.11 0.42 
58 Temperate x Tropical High-Oil QPM-B-6-B-8 Floury 3.6 0.13 0.60 
59 Temperate x Tropical High-Oil QPM-B-6-B-9 Floury 1.4 0.11 0.54 
60 Temperate x Tropical High-Oil QPM-B-7-B-4 2.4 0.10 0.43 
61 Temperate x Tropical High-Oil QPM-B-7-B-5 2.3 0.11 0.49 
62 Temperate x Tropical High-Oil QPM-B-7-B-9 3.3 0.11 0.48 
63 Temperate x Tropical High-Oil QPM-B-8-B-1 4.0 0.09 0.36 
64 Temperate x Tropical High-Oil QPM-B-8-B-2 5.0 0.10 0.37 
65 Temperate x Tropical High-Oil QPM-B-8-B-4 5.0 0.10 0.39 
66 Temperate x Tropical High-Oil QPM-B-8-B-5 4.9 0.09 0.33 
67 Temperate x Tropical High-Oil QPM-B-8-B-6-B 3.0 0.10 0.38 
68 Temperate x Tropical High-Oil QPM-B-8-B-7 1.0 0.10 0.44 
69 Do940y-B-B 2.8 0.11 0.39 
70 Temperate x Tropical High-Oil QPM-B-8-B-9-B 5.0 0.49 0.32 
71 Tx802-B-B 1.0 0.11 0.43 
72 (Tx806 x Bo395y)-5-1-1-1-1-B-B-B-B-B 4.9 0.13 0.49 
73 (Tx802 x Ko326y)-18-1-1-1-B-B-B-B-B 5.0 0.12 0.42 
74 (Ko326y x Tx806)-2-2-1-1-B-B-B-B-B 5.0 0.11 0.38 
75 (Ko326y x Tx806)-6-1-1-1-B-B-B-B-B 1.4 0.12 0.44 
76 Do940y-B-B 2.8 0.11 0.37 
77 CML161-B-B 1.0 0.11 0.33 
78 Tx804-B 2.6 0.12 0.46 
79 Tx806-B-B-B 1.0 0.11 0.37 
80 B73 o2-B 1.0 0.13 0.64 
81 Tx772 5.0 0.13 0.28 
82 NC300-B-B 5.0 0.12 0.28 
83 Tx601y 5.0 0.13 0.28 
84 FRB73 3.0 0.17 0.32 
85 B104 5.0 0.21 0.32 
86 FR2128 5.0 0.14 0.26 

 Mean 4.2 0.12 0.42 
 Std Dev 1.35 0.04 0.07 
 Correl. End. Mod. with Met. And Trypt. - 0.10 -0.34 
 Correl Methionine with Trypt. - -0.12 - 
 Min 1.0 0.09 0.26 
 Max 5.0 0.49 0.64 
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Table C.2. QPM test crosses between inbreds with different origins and Tx804 and 
hybrid checks evaluated for endosperm modification, average methionine and 
tryptophan content in 2002.    
 
 
 
Entry Testcrosses with Tx804 End. Mod. Average Average 

  Ratings Methionine Tryptophan 

  scale 1(op)-5(mod) relative relative 
1 Pop. 65 Yellow Flint QPM-1-3/TX804 4.06 0.14 0.20 
2 Pop. 65 Yellow Flint QPM-2-4/TX804 3.80 0.21 0.27 
3 Pop. 65 Yellow Flint QPM-4-1/TX804 4.84 0.17 0.22 
4 Pop. 65 Yellow Flint QPM-4-2/TX804 4.98 0.23 0.14 
5 Pop. 66 Yellow Dent QPM-3-1/TX804 3.62 0.20 0.23 
6 Pop. 66 Yellow Dent QPM-4-2/TX804 3.78 0.19 0.24 
7 Pop. 69 Templado Amarillo QPM-1-1/TX804 2.96 0.22 0.23 
8 Pop. 69 Templado Amarillo QPM-1-6/TX804 3.14 0.21 0.26 
9 Pop. 69 Templado Amarillo QPM-1-8/TX804 4.00 0.20 0.21 

10 Pop. 69 Templado Amarillo QPM-2-2/TX804 4.04 0.19 0.25 
11 Pop. 69 Templado Amarillo QPM-2-7/TX804 3.58 0.21 0.23 
12 Pop. 69 Templado Amarillo QPM-2-10/TX804 3.32 0.23 0.29 
13 Pop. 69 Templado Amarillo QPM-3-1/TX804 4.58 0.15 0.20 
14 Pop. 69 Templado Amarillo QPM-3-5/TX804 4.52 0.19 0.21 
15 Pop. 69 Templado Amarillo QPM-3-6/TX804 3.22 0.19 0.21 
16 Pop. 69 Templado Amarillo QPM-3-7/TX804 4.74 0.22 0.25 
17 Pop. 69 Templado Amarillo QPM-3-8/TX804 4.42 0.19 0.21 
18 Pop. 69 Templado Amarillo QPM-3-9/TX804 4.56 0.19 0.27 
19 Pop. 69 Templado Amarillo QPM-3-10/TX804 4.44 0.26 0.29 
20 Pop. 69 Templado Amarillo QPM-4-2/TX804 4.72 0.22 0.26 
21 Pop. 69 Templado Amarillo QPM-4-4/TX804 4.68 0.18 0.22 
22 Pop. 69 Templado Amarillo QPM-4-7/TX804 4.44 0.25 0.27 
23 Pop. 69 Templado Amarillo QPM-4-9/TX804 3.92 0.23 0.23 
24 Pop. 69 Templado Amarillo QPM-4-11/TX804 4.28 0.22 0.25 
25 Pop. 69 Templado Amarillo QPM-5-4/TX804 4.58 0.19 0.26 
26 Pop. 69 Templado Amarillo QPM-5-5/TX804 4.50 0.18 0.22 
27 Pop. 69 Templado Amarillo QPM-5-6/TX804 3.26 0.17 0.20 
28 Pop. 69 Templado Amarillo QPM-5-7/TX804 4.42 0.19 0.27 
29 Pop. 69 Templado Amarillo QPM-5-12/TX804 4.28 0.24 0.26 
30 Pop. 69 Templado Amarillo QPM-5-13/TX804 3.84 0.27 0.32 
31 Pop. 69 Templado Amarillo QPM-6-8/TX804 3.64 0.22 0.27 
32 Pop. 70 Templado Amarillo Dentado QPM-2-6/TX804 4.70 0.19 0.30 
33 Pop. 70 Templado Amarillo Dentado QPM-2-7/TX804 4.70 0.19 0.25 
34 Pop. 70 Templado Amarillo Dentado QPM-2-8/TX804 4.52 0.16 0.16 
35 Pop. 70 Templado Amarillo Dentado QPM-2-10/TX804 4.04 0.22 0.27 
36 Pop. 70 Templado Amarillo Dentado QPM-3-2/TX804 4.08 0.18 0.24 
37 Pop. 70 Templado Amarillo Dentado QPM-3-3/TX804 4.42 0.21 0.22 
38 Pop. 70 Templado Amarillo Dentado QPM-3-4/TX804 3.70 0.19 0.28 
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Table C.2. Continued. 
 
Entry Testcrosses with Tx804 End. Mod. Average Average 

  Ratings Methionine Tryptophan 

  scale 1(op)-5(mod) relative relative 
39 Pop. 70 Templado Amarillo Dentado QPM-3-5/TX804 4.14 0.18 0.21 
40 Pop. 70 Templado Amarillo Dentado QPM-3-7/TX804 3.50 0.17 0.30 
41 Pool 26 Tropical Late Yellow Dent QPM-2-1/TX804 4.30 0.16 0.21 
42 Pool 26 Tropical Late Yellow Dent QPM-2-2/TX804 4.34 0.20 0.21 
43 Pool 26 Tropical Late Yellow Dent QPM-3-1/TX804 2.88 0.17 0.25 
44 Pool 26 Tropical Late Yellow Dent QPM-8-2/TX804 3.30 0.19 0.29 
45 Pool 33 Subtropical Inter. Yellow Flint QPM-2/TX804 4.82 0.22 0.27 
46 Pool 33 Subtropical Inter. Yellow Flint QPM1-4/TX804 4.68 0.15 0.20 
47 Pool 33 Subtropical Inter. Yellow Flint QPM2-1/TX804 4.84 0.16 0.23 

48 
Pool 34 Subtropical Inter. Yellow Dent QPM-1-
1/TX804 1.42 0.23 0.27 

49 
Pool 34 Subtropical Inter. Yellow Dent QPM-1-
2/TX804 2.44 0.18 0.23 

50 
Pool 34 Subtropical Inter. Yellow Dent QPM-1-
3/TX804 2.86 0.16 0.20 

51 
Pool 34 Subtropical Inter. Yellow Dent QPM-2-
1/TX804 4.60 0.21 0.26 

52 
Pool 34 Subtropical Inter. Yellow Dent QPM-7-
1/TX804 2.68 0.22 0.26 

53 Temperate x Tropical High-Oil QPM-3-1/TX804 3.38 0.16 0.25 
54 Temperate x Tropical High-Oil QPM-5-1/TX804 3.58 0.26 0.38 
55 Temperate x Tropical High-Oil QPM-5-3/TX804 3.68 0.15 0.25 
56 Temperate x Tropical High-Oil QPM-5-4/TX804 3.52 0.20 0.29 
57 Temperate x Tropical High-Oil QPM-6-3/TX804 2.32 0.26 0.28 
58 Temperate x Tropical High-Oil QPM-6-8 Floury/TX804 3.08 0.20 0.25 
59 Temperate x Tropical High-Oil QPM-6-9 Floury/TX804 2.18 0.19 0.34 
60 Temperate x Tropical High-Oil QPM-7-4/TX804 2.96 0.16 0.30 
61 Temperate x Tropical High-Oil QPM-7-5/TX804 2.74 0.15 0.24 
62 Temperate x Tropical High-Oil QPM-7-9/TX804 2.78 0.19 0.27 
63 Temperate x Tropical High-Oil QPM-8-1/TX804 3.24 0.25 0.26 
64 Temperate x Tropical High-Oil QPM-8-2/TX804 3.74 0.19 0.23 
65 Temperate x Tropical High-Oil QPM-8-4/TX804 3.52 0.13 0.21 
66 Temperate x Tropical High-Oil QPM-8-5/TX804 3.64 0.17 0.24 
67 Temperate x Tropical High-Oil QPM-8-6/TX804 3.12 0.17 0.26 
68 Temperate x Tropical High-Oil QPM-8-7/TX804 4.12 0.17 0.35 
69 Temperate x Tropical High-Oil QPM-8-8/TX804 2.88 0.19 0.28 
70 Temperate x Tropical High-Oil QPM-8-9/TX804 4.02 0.10 0.18 
71 Tx802/TX804 3.62 0.15 0.22 
72 (Tx802 x Ko326y)-18-1-1-1-/TX804 3.90 0.24 0.26 
73 (Ko326y x Tx806)-6-1-1-1-/TX804 4.24 0.20 0.22 
74 B73o2o2/TX804 2.14 0.17 0.16 
75 Do940y/TX804 3.52 0.20 0.25 
76 CML161/TX804 3.86 0.20 0.27 
77 Do940y/Tx802/TX804 3.32 0.18 0.23 
78 Do940y/Tx802/TX804 2.86 0.18 0.23 
79 CML161/(Tx802 x Ko326y)-18-1-1-1/TX804 4.48 0.15 0.20 
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Table C.2. Continued. 
 

Entry Testcrosses with Tx804 End. Mod. Average Average 
  Ratings Methionine Tryptophan 

  scale 1(op)-5(mod) relative relative 
80 CML161/(Tx806 x Bo395y)-5-1-1-1-1/TX804 3.92 0.19 0.19 
81 SL53 1.82 0.18 0.22 
82 P31B13 5.00 0.24 0.16 
83 P32R25 5.00 0.28 0.12 
84 RX897 4.56 0.22 0.11 
85 DK668 5.00 0.23 0.14 
86 DK687 5.00 0.32 0.11 

 Mean 3.82 0.20 0.24 
 Std Dev 0.81 0.04 0.05 
 Correl  0.15 -0.33 
 Min 1.42 0.10 0.11 
 Max 5.00 0.32 0.38 

 
 
Table C.3. Opaque-2 (o2o2) and QPM inbreds (inbreds 2) evaluated for endosperm 
modification, average methionine and tryptophan contents in 2002. 
 
 
Entry Pedigree of opaque-2 and QPM lines End. Mod. Average Average  

  Rating Methionine Tryptophan 
  scale 1(op)-5(mod) relative relative 

1 CML161/Do940y 5.0 0.21 0.27 
2 CML161/Tx802 5.0 0.27 0.32 
3 (CML161/(Ko326y x Tx806)-2-2-1-1-)B 5.0 0.24 0.29 
4 (CML161/(Tx806 x Bo395y)-5-1-1-1-1) 5.0 0.25 0.27 
5 (SH-OILQc15HC51-2-3-1-1 X CML 193) 4.7 0.28 0.30 
6 Tx802 /CML161-3 4.8 0.25 0.29 
7 ((Tx802/CML161)x(Do940/CML161))-3 5.0 0.20 0.24 
8 ((Tx802/CML161)x(Do940/CML161))-4 5.0 0.23 0.23 
9 (Tx802 x Ko326y)-18-1-1-1/CML161-3 4.7 0.26 0.26 

10 (Tx802 x Ko326y)-18-1-1-1/CML161-4 5.0 0.25 0.29 
11 ((Tx802xKo326y)-18-1-1-1/CML161)x(Tx802/CML161))-1 5.0 0.19 0.20 
12 ((Tx802xKo326y)-18-1-1-1/CML161)x(Tx802/CML161))-2 4.4 0.25 0.36 
13 (Ko326y x Tx806)-2-2-1-1/CML161-1 5.0 0.20 0.29 
14 ((Ko326y x Tx806)-6-1-1-1/CML161)x(Tx802/CML161))-2 4.3 0.19 0.28 

15 
((Tx802 x Ko326y)-18-1-1-1/CML193)x((Tx802 x Ko326y)-18-
1-1-1/CML161))-4 5.0 0.26 0.27 

16 (G26Qc18MH134-4-3-#-#-#-#-2 X CML 161)-1 5.0 0.32 0.31 
17 (G26Qc18MH134-4-3-#-#-#-#-2 X CML 161)-4 5.0 0.28 0.27 
18 (P69Qc3HC107-1-1#-4-2#-4-1-4 X CML 193)-2 5.0 0.26 0.34 
19 ((Tx808 x Ko326y)-6-1-1-1/Do940y)-1 4.5 0.24 0.27 
20 ((Tx808 x Ko326y)-6-1-1-1/Do940y)-2 4.6 0.26 0.29 
21 Temp. SSEarly (B14,A632,A635,B73) B-22 1.3 0.48 0.34 
22 Temp. SSLate (B37,B73,B84) B-24-1 2.7 0.45 0.33 
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Table C.3. Continued. 
 
Entry Pedigree  of opaque-2 and QPM lines End. Mod. Average Average  

  Rating Methionine Tryptophan 
  scale 1(op)-5(mod) relative relative 

23 Temp. SSLate (B37,B73,B84) B-32-3 1.8 0.43 0.32 
24 Temp. SSLate (B37,B73,B84) B-38 2.0 0.50 0.35 
25 Temp. SSLate (B37,B73,B84) B-54-1  (1 ear) 1.3 0.43 0.36 
26 Temp. SSLate (B37,B73,B84) B-55-2 1.3 0.40 0.39 
27 Temp. SSLate (B37,B73,B84) B-62 2.2 0.41 0.30 
28 Temp. SSLate (B37,B73,B84) B-67 2.4 0.37 0.37 
29 Temp. SSLate (B37,B73,B84) B-68 1.3 0.45 0.42 
30 Temp. SSLate (B37,B73,B84) B-71-2 5.0 0.37 0.33 
31 Temp. SSLate (B37,B73,B84) B-76-2 2.9 0.35 0.30 
32 Temp. SSLate (B37,B73,B84) B-81-1 1.2 0.30 0.32 
33 Temp. SSLate (B37,B73,B84) B-81-2 4.0 0.33 0.31 
34 Temp. SSLate (B37,B73,B84) B-82-2 2.4 0.33 0.34 
35 Temp. SSLate (B37,B73,B84) B-86 4.5 0.30 0.26 
36 Temp. SSLate (B37,B73,B84) B-89-2 4.4 0.43 0.28 
37 Temp. SSLate (B37,B73,B84) B-97-2 1.0 0.32 0.32 
38 Temp. SSLate (B37,B73,B84) B-103 3.0 0.28 0.27 
39 Temp. NSSEarly B-31-1 1.1 0.25 0.29 
40 Temp. NSSEarly B-71-1 1.0 0.23 0.30 
41 Temp. NSSEarly B-161-2 1.2 0.25 0.29 
42 Temp. NSSEarly B-189-2 3.8 0.36 0.34 
43 Temp. NSSEarly B-196-1 3.5 0.60 0.28 
44 Temp. NSSEarly B-196-3 3.2 0.45 0.29 
45 Temp. NSSLate B-33 1.5 0.29 0.26 
46 Temp. NSSLate B-77-1 3.2 0.30 0.27 
47 Temp. NSSLate B-77-2 1.2 0.22 0.32 
48 Temp. NSSLate B-89-2 1.0 0.28 0.30 
49 Temp. NSSLate B-103-2 1.0 0.22 0.28 
50 Temp. NSSLate B-105 1.2 0.29 0.28 
51 Temp. NSSLate B-117-2 4.1 0.30 0.33 
52 Temp. NSSEarly B-69 1.0 0.27 0.30 
53 (Tx802/B104)-1-2-1 1.0 0.34 0.36 
54 (Tx802/B104)-1-2-3 1.5 0.42 0.37 
55 (Tx802/B104)-2-51-1 5.0 0.50 0.26 
56 (Tx802/B104)-3 OPAQUE-6-3 1.0 0.27 0.46 
57 (Tx802/B104)-3 OPAQUE-8-2 1.0 0.23 0.30 
58 (Tx802/B104)-3 OPAQUE-121-3 1.5 0.28 0.36 
59 (Tx802/B104)-3 OPAQUE-122&3-2 1.0 0.20 0.28 
60 ((NC300/(Do940y x Tx802)-4-2-1-1-1)x(Tx770/CML161))-2 1.0 0.25 0.34 
61 ((Ko326y x Tx806)-6-1-1-1/NC300)x(Tx770/CML193))1 1.1 0.24 0.34 
62 (B97/Tx802)x(NC300/(Do940y x Tx802)-4-2-1-1-1)--2 5.0 0.31 0.22 
63 (B97/Tx802)x(NC300/Do940y)1 1.6 0.22 0.26 
64 (B97/Tx802)x(NC300/CML161)-2 1.7 0.21 0.27 
65 (B97/Do940y))-1 1.4 0.17 0.25 
66 (B97/Do940y)x(NC300/CML161)2-2 2.0 0.19 0.26 
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Table C.3. Continued. 
 

Entry Pedigree  of opaque-2 and QPM lines End. Mod. Average Average  
  Rating Methionine Tryptophan 
  scale 1(op)-5(mod) relative relative 

67 (B97/(Ko326y x Tx806)-6-1-1-1)x(NC300/Tx802) 4.7 0.31 0.23 
68 (B97/(Ko326y x Tx806)-6-1-1-1)x(NC300/Tx802)-3 1.3 0.22 0.29 

69 
(B97/(Ko326y x Tx806)-6-1-1-1)x((Ko326y x Tx806)-6-1-1-
1/NC300)13 1.3 0.21 0.29 

70 (B97/(Ko326y x Tx806)-6-1-1-1)x(NC300/CML161)-1 1.0 0.24 0.28 
71 (B97/(Ko326y x Tx806)-6-1-1-1)x(NC300/CML161)-2 1.0 0.22 0.34 
72 ((B104/B73 o2o2)x(B104/Tx802))2-2 1.0 0.23 0.33 
73 ((B104/B73 o2o2)x(Tx714/CML193))(Tx714/CML193))-1 1.0 0.21 0.28 
74 ((B73 o2/o2 /B104)x(Tx714/(Ko326y x Tx806)-6-1-1-1))-2 1.0 0.30 0.33 
75 (B104-1/(Tx802 x Ko326y)-18-1-1-1))-2 1.5 0.30 0.37 
76 (B104-1/(Tx802 x Ko326y)-18-1-1-1))-3 1.0 0.27 0.30 
77 (B104-1/(Tx802 x Ko326y)-18-1-1-1))-4 1.1 0.28 0.31 

78 
((B104/(Tx802 x Ko326y)-18-1-1-1)x(Tx714/(Ko326y x 
Tx806)-6-1-1-1))1 1.1 0.30 0.41 

79 
((B104/(Tx802 x Ko326y)-18-1-1-1)x(Tx714/(Ko326y x 
Tx806)-6-1-1-1))2 3.4 0.26 0.28 

80 ((B104-1/CML 193)x(Tx714/(Ko326y x Tx806)-6-1-1-1)) 1.0 0.29 0.36 
81 ((Ko326y x Tx806)-6-1-1-1/B104)) 1.0 0.29 0.38 
82 ((Ko326y x Tx806)-6-1-1-1/B104)) 1.0 0.25 0.32 
83 ((Tx770/CML161)x(B97/Do940y)-1 1.0 0.24 0.35 
84 B73 o2 1.2 0.33 0.42 
85 CML161 5.0 0.22 0.22 
86 FRB73 1.5 0.49 0.23 

 Mean 2.6 0.30 0.31 
 Std Dev 1.7 0.09 0.05 
 Correl. End. Mod. with Met. And Trypt. - -0.02 -0.46 
 Min 1.0 0.17 0.20 
 Max 5.0 0.60 0.46 
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APPENDIX D 
 
Table D.1. Pedigree of 92 high lysine maize inbred lines used in diversity analysis of 
chromosome 7. 
 

Entry Code Pedigree 
1 802(a) Tx802 
2 804 Tx804 
3 b/a(g) (Do940y/Tx802)-4-2-1-1-1 
4 a/Ko(e) (Tx802/Ko326y)-18-1-1-1 
5 Ko/d(f) (Ko326y/Tx806)-6-1-1-1 
6 Do(b) Do940y 
7 161(c) CML161 
8 806(d) Tx806 
9 B73o2(L) B73 o2 

10 T220o2 T220 o2 
11 a/c (Tx802-B /CML161)-B-3-B 
12 e/c ((Tx802/Ko326y)-18-1-1-1/CML161)-B-4-B 
13 Ko/d/c ((Ko326y/Tx806)-2-2-1-1/CML161)-B-1-B 
14 f/c/e ((Ko326y/Tx806)-6-1-1-1/CML161)/(Tx802/CML161))-1-B 
15 e/e/c ((Tx802/Ko326y)-18-1-1-1/CML193)/((Tx802 x Ko326y)-18-1-1-1/CML161))-4 
16 G26cB1 (G26Qc18MH134-4-3-#-#-#-#-2/CML 161)-1-B 
17 G26cB4 (G26Qc18MH134-4-3-#-#-#-#-2/CML 161)-4-B 
18 P69Q/193 (P69Qc3HC107-1-1#-4-2#-4-1-4-B/CML 193)-2-B 
19 P65 Pop. 65 Yellow Flint QPM-B4-2-B 
20 P69B16 Pop. 69 Templado Amarillo QPM-B1-6-B 
21 P69B18 Pop. 69 Templado Amarillo QPM-B1-8-B 
22 P69B22 Pop. 69 Templado Amarillo QPM-B2-2-B 
23 P69B212 Pop. 69 Templado Amarillo QPM-B2-12-B 
24 P69B35 Pop. 69 Templado Amarillo QPM-B3-5-B 
25 P69B47 Pop. 69 Templado Amarillo QPM-B4-7-B 
26 P69B52 Pop. 69 Templado Amarillo QPM-B5-2-B 
27 P70  Pop. 70 Templado Amarillo Dentado QPM-B2-8-B 
28 HighOil Temperate x Tropical High-Oil QPM-B-7-B-9-B 
29 NC/gc(h) ((NC300/(Do940y/Tx802)-4-2-1-1-1)/(Tx770-B/CML161))-2 
30 B97(J)ah (B97/Tx802)/(NC300/(Do940y/Tx802)-4-2-1-1-1)-2 
31 Ja/NCc (B97/Tx802)/(NC300/CML161)-1 
32 Ja770c (B97/Tx802)/(Tx770-B/CML161)-1 
33 JdBoNCMo  (B97/(Tx806/Bo395y)-5-1-1-1-1)/(NC300/Mo17 o2)-2 
34 JdBoNCh (B97/(Tx806/Bo395y)-5-1-1-1-1)/(NC300/(Do940y/Tx802)-4-2-1-1-1)-2 
35 J/b (B97/Do940y))-B-1 
36 J/bNC/c (B97/Do940y)/(NC300/CML161)-B2-B-2 
37 J/f/NCa1 (B97/(Ko326y/Tx806)-6-1-1-1)/(NC300/Tx802)-1 
38 J/f/NCa3 (B97/(Ko326y/Tx806)-6-1-1-1)/(NC300/Tx802)-3 
39 J/f/f/NC (B97/(Ko326y/Tx806)-6-1-1-1)/((Ko326y x Tx806)-6-1-1-1/NC300)-B1-B-2 
40 J/f/NC/c (B97/(Ko326y/Tx806)-6-1-1-1)/(NC300/CML161)-2 
41 K/L/K/a ((B104/B73 o2o2)/(B104/Tx802))-B2-B-2 
42 K/e ((B104-1/(Tx802/Ko326y)-18-1-1-1))-B-3 
43 K/e714/f ((B104/(Tx802/Ko326y)-18-1-1-1)/(Tx714/(Ko326y/Tx806)-6-1-1-1))-2 
44 f/104(K) ((Ko326y/Tx806)-6-1-1-1/B104))-B 
45 a/K18 (Tx802-B/B104)-1-18-B-1 
46 a/K25 (Tx802-B/B104)-2-5-B1-1 
47 a/Ko21 (Tx802-B/B104)-3 OPAQUE-2-B-1 
48 a/Ko212 (Tx802-B/B104)-3 OPAQUE-12-B2&3-2 
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Table D.1. Continued. 
 
Entry Code Pedigree 

49 SSE19 Temp. SSEarly (B14,A632,A635,B73) B-19-B 
50 SSE22 Temp. SSEarly (B14,A632,A635,B73) B-22-B 
51 SSL5 Temp. SSLate (B37,B73,B84) B-5-B-2 
52 SSL12 Temp. SSLate (B37,B73,B84) B-12-B-2 
53 SSL18 Temp. SSLate (B37,B73,B84) B-18-B 
54 SSL22 Temp. SSLate (B37,B73,B84) B-22-B 
55 SSL24 Temp. SSLate (B37,B73,B84) B-24-B-1 
56 SSL29 Temp. SSLate (B37,B73,B84) B-29-B 
57 SSL38 Temp. SSLate (B37,B73,B84) B-38-B 
58 SSL39 Temp. SSLate (B37,B73,B84) B-39-B 
59 SSL40 Temp. SSLate (B37,B73,B84) B-40-B 
60 SSL44 Temp. SSLate (B37,B73,B84) B-44-B 
61 SSL46 Temp. SSLate (B37,B73,B84) B-46-B-3 
62 SSL61 Temp. SSLate (B37,B73,B84) B-61-B-2 
63 SSL62 Temp. SSLate (B37,B73,B84) B-62-B 
64 SSL64 Temp. SSLate (B37,B73,B84) B-64-B-3 (1 ear) 
65 SSL66 Temp. SSLate (B37,B73,B84) B-66-B 
66 SSL68 Temp. SSLate (B37,B73,B84) B-68-B 
67 SSL71B1 Temp. SSLate (B37,B73,B84) B-71-B-1 
68 SSL71B2 Temp. SSLate (B37,B73,B84) B-71-B-2 
69 SSL76 Temp. SSLate (B37,B73,B84) B-76-B-2 
70 SSL81 Temp. SSLate (B37,B73,B84) B-81-B-2 
71 SSL89 Temp. SSLate (B37,B73,B84) B-89-B-1 
72 SSL103 Temp. SSLate (B37,B73,B84) B-103-B 
73 SSL108 Temp. SSLate (B37,B73,B84) B-108-B 
74 NSE7 Temp. NSSEarly B-7-B-1 
75 NSE31 Temp. NSSEarly B-31-B-1 
76 NSE71B1 Temp. NSSEarly B-71-B-1 
77 NSE123 Temp. NSSEarly B-123-B-1 
78 NSE125 Temp. NSSEarly B-125-B-2 
79 NSE161B1    Temp. NSSEarly B-161-B-1 (1 ear) 
80 NSE161B2 Temp. NSSEarly B-161-B-2 
81 NSE177B2 Temp. NSSEarly B-177-B-2 
82 NSE196B1 Temp. NSSEarly B-196-B-1 
83 NSE196B3 Temp. NSSEarly B-196-B-3 
84 NSL45 Temp. NSSLate B-45-B 
85 NSL71 Temp. NSSLate B-71-B 
86 NSL771 Temp. NSSLate B-77-1 
87 NSL772 Temp. NSSLate B-77-2 
88 NSL87 Temp. NSSLate B-87-B-1 
89 NSL89 Temp. NSSLate B-89-B-1 
90 NSL89 Temp. NSSLate B-89-B-2 
91 NSL103 Temp. NSSLate B-103-B-2 
92 NSL105 Temp. NSSLate B-105-B 

 
Legend: B = Bulk of selfs, SS = Stiff Stalk, NSS = Non Stiff Stalk. 
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Table D.2. Bin no. of single sequence repeats, repeat sequence, primer sequence, 
annealing temperature and expected allele size in base pairs used in diversity 
analysis of chromosome 7 in maize.  
 
 

Bin no. SSR Repeat 
Sequence Primer Sequence Annealing 

Temp. 
Allele 
Size 

7.0055 umc1545 (AAGA)4 GAAAACTGCATCAACAACAAGCTG // 
ATTGGTTGGTTCTTGCTTCCATTA 55 80 

7.0138 umc1241 (GTCTTTG)4 TGAAGCAAGTCACTGGTAAGAGCA // 
TGACACACCCATACTTCCAACAAG 55 159 

7.02 umc1480 (GAA)4 AATGAAGGTGGATGTGCTGCTACT // 
CTTCCCCATCTCCTCTTGAAGATT 55 144 

7.0478 umc1426 (AGAGG)4 TAGGGTCGATTCTGGATTGTCTG // 
TGTAAAACAGAAAGCATGCGAGTC 54 136 

7.0533 bnlg2132 (AG)21 GGCGAGAGAGGCAAAGTTAA // 
GTCGCACAAGGGGATCAC 51 200-

250 

7.07952 bnlg1292 (AG)14 GGCGCGCACATAGCTC // 
GCCTGGGCTGGCTTCA 52 200-

250 

7.092 umc1159 (AG)8 TTCCCATGTTCATTTCAGGTTCTT//  
TCATGGGTTTTGAGGCTGTATTTT  53 144 

7.10765 umc2364 (GGA)7 AACCTCAAGATCACCAACATCCTC// 
CACCCTGCTGTCAGATGGATACTT 57 - 

7.11468 umc2392 (GGC)5 CAGAGACCTCGACTTCGACCAC//CTTCT
GCTTCTGCTCGACCTTCT 58 142 

7.1185 umc2160 (AG)10 TAAAACCTTTACCCCATCCAGCAT//TGTG
CTCGTGCTTCTCTCTGAGTA 57 160 

7.1224 phi057 (GCC)4 CTCATCAGTGCCGTCGTCCAT // 
CAGTCGCAAGAAACCGTTGCC 58 154 

7.12245 umc1066 (GCCAGA)5 ATGGAGCACGTCATCTCAATGG // 
AGCAGCAGCAACGTCTATGACACT 56 156 

7.1252 umc1577 (CTTGGC)4 TTTCCCTTCTTGGCAGGAGC // 
AAGAACTCCTTCAAGCTGCCG 55 296 

7.12782 bnlg1367 AG(42) CGACGGCGTACAGAGAGAG // 
GGTCGCCACCCCACCT 52 125-

140 

7.1286 bnlg2160 AG(27) GAAGCAACCCATTTTCATCC // 
AGATTGGATTCCTGCCTCCT 51 110-

150 

7.132 umc1068 (GAAAA)6(G
AA)2 

AGTCGTTTTCAAAGGCTGCTGATA // 
TGAGTCACCTCATTTCTTCTGGTTC 55 136 

7.14243 bnlg1200 (AG)24 CGTCCTCGTTGTTATTCCGT // 
GTTCCCTCTCTCCCTCCCTC 52 226 

7.153 umc1401 (CCA)4 CTCTGGTCCATCCTCATCGACT // 
TCTCTTGATCACATATCGATCCCA 54 151 

7.1558 umc1016 (CT)25 GTGATACCGGGTAATCTGGTGC // 
GATGATGGGTGATCATCGGTTC 55 129 

7.158 umc2327 (TCTC)5 GATCGATGCTAATGTGAAGAGCCT // 
CCAGCAGCATATGTACACAAATCA 54 76-97 

7.1799 phi034 (CCT)4 TAGCGACAGGATGGCCTCTTCT // 
GGGGAGCACGCCTTCGTTCT 58 120-

141 

7.2 umc2098 (CAG)5 GGTGAACAAGATCTCTTTGTCTACTGT // 
CCTTCTCGGCCATTATTGCT 53 93 

7.2463 umc2142 (AGG)4 ATGGATCAGGGGAAAGAGCAA // 
CCTCCTCGTCCTCCTTCTTGAT 55 124 

7.2477 umc1138 (AC)6 ATCAGCATCCTCCATTCACACAT // 
CGGGAAATGCTAGAATTATGCTGA 55 110 

7.2524 umc1787 (CGG)4 TGTAGTCCATGGAGCTCTTCTCCT // 
CTTTTTCACACTCTGCACCTCCTC 55 86 

7.26355 umc1585 (TGG)7 CGGCCTATGTAACAATCCCTAGC // 
AAGGGAAAGAATAATCCAACCGTC 55 137 

7.2927 mmc0411 (CT)29 CGATGCAAGAGTGTCAAGTA // 
ACTCCCTAGTGCAAAAATCA 46 152-

181 

7.3084 umc1567 (AGA)4 GCGGCAGGAGTACTCACTATATGC // 
GTCCGAGAATAAGATCGTTGATGG 55 142 
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Table D.2. Continued. 
 

Bin no. SSR Repeat 
Sequence Primer Sequence Annealing 

Temp. 
Allele 
Size 

7.33424 umc1456 (AACC)5 GCCACAGCTCACTAGCTCAAAAGT // 
CTCTGTGTGTTTGCTTGATTGCTT 55 142 

7.3654 umc1408 (CGG)5 GATCCGTCTCTTGCCGTGGTA // 
ATGAGCTTGCGGTCCTCCTC 56 160 

7.37161 phi114 (GCCT)3 CCGAGACCGTCAAGACCATCAA // 
AGCTCCAAACGATTCTGAACTCGC 58 135-

166 

7.3812 umc1134 (AGC)7 AAAACTAACAGGCAGCAGACCAAC // 
ATCAGCAAGTGACTGAATTCCTCC 55 86 

7.3921 bnlg1805 AG(29) GCCCGTTTGCTAAGAGAATG // 
TGTTCGAGCATTTGCTCTTG 51 275-

300 

7.4105 umc1710 (CTG)5 ACTTTGCAACTACCGTACATGGGT // 
TTCGACTGCACGTGAAAATCTATC 55 93 

7.4305 bnlg1666 (AG)34 GCTGGTAGCTTTCAGATGGC // 
TGTCCCTCCTCCAGTTTCAC 51 100-

150 

7.45391 umc1782 (GAC)4 CGTCAACTACCTGGCGAAGAA // 
TCGCATACCATGATCACTAGCTTC 54 135 

7.4729 phi328175 AGG GGGAAGTGCTCCTTGCAG // 
CGGTAGGTGAACGCGGTA 51 101-

130 

7.4892 bnlg2259 (AG)17 ACCATTGATTTCATGGTATTGG // 
GCGGATAATGACATTGGGTC 51 160-

180 

7.51741 bnlg2328 (AG)33 AGCAGTGAGGAAGAAGCAGG // 
TTACCCTCCCTTGTCGTGAC 51 110-

160 

7.5452 phi069 GAC AGACACCGCCGTGGTCGTC // 
AGTCCGGCTCCACCTCCTTC 57 197-

206 

7.5989 umc1406 (CTCA)4 AGAGGAGACAGGAGGTCGGTAGTT // 
TGTGGTGTGGTCTTCTCTCTTCTG 55 106 

7.6115 phi116 ACTG/ACG*
** 

GCATACGGCCATGGATGGGA // 
TCCCTGCCGGGACTCCTG 59 154-

173 

7.64414 phi051 AGG GGCGAAAGCGAACGACAACAATCTT // 
CGACATCGTCAGATTATATTGCAGACCA 61 140-

150 

 
 
 
List of genetic analysis software.  

 
1. Arlequin -- http://anthropologie.unige.ch/arlequin/ see Excoffier  
2. Assignment tests -- Paetkau/Brzustowski 

http://www.biology.ualberta.ca/jbrzusto/Doh.html Based on Paetkau et al. 1995. 
Mol. Ecol. 4: 347 (Msat refs.doc) Cornuet, J.-M. 
http://www.ensam.inra.fr/campus/index-recherche.html 

3. BLAST -- NIH site for finding related DNA sequences  
http://www.ncbi.nlm.nih.gov/BLAST/ 

4. Bottleneck -- -- Cornuet, J.-M. http://www.ensam.inra.fr/campus/index-
recherche.html 

5. Cervus -- Marshall, T. 
http://helios.bto.ed.ac.uk/evolgen/cervus/cervusregister.html 

6. ClustalX -- sequence alignment software  
http://innprot.weizmann.ac.il/software/ClustalX.html 
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7. Excel Microsatellite Toolkit Park, Stephen. Smurfit Institute of Genetics, Trinity 
College, Dublin 2,Ireland spark@tcd.ie / sdepark@hotmail.com; Tel: +353 (0)1 
608 3538/1265http://acer.gen.tcd.ie/~sdepark/ms-toolkit/ 

8. FSTAT -- Goudet:    (see also Raymond & Rousset GENEPOP) 
http://www.unil.ch/izea/softwares/fstat.html see Goudet  

9. GDA -- Lewis, P.O. http://lewis.eeb.uconn.edu/lewishome/software.html 
10. GENECLASS -- Cornuet, J.-M. http://www.ensam.inra.fr/campus/index-

recherche.html 
11. GENEPOP -- Raymond M. & Rousset F, 1995. GENEPOP (version 3.3): 

population genetics software for exact tests and ecumenicism. J. Heredity, 
86:248-249ftp://ftp.cefe.cnrs-mop.fr/pub/pc/msdos/genepop 

12. GeneStat Lewis, P.O. http://lewis.eeb.uconn.edu/lewishome/software.html  
13. Goudet: http://www.unil.ch/izea/softwares/fstat.html 
14. PHYLIP – Felsenstein http://evolution.genetics.washington.edu/ 
15. PowerSSR - Liu, J. http://www.stat.ncsu.edu/~kliu2/index.htm 
16. Structure  - Pritchard, J.K., M. Stephens, and P. Donnelly. 2000. Inference of 

population structure using multilocus genotype data. Genetics 155: 945-959. 
http://pritch.bsd.uchicago.edu/  

17. TFPGA Miller, Mark P. Tools for Population Genetic Analyses TFPGA ASU 
post-doc 
 Mark.Miller@cnr.usu.edu http://bioweb.usu.edu/mpmbio/ 

18. TreeView -- Page, Rod. http://taxonomy.zoology.gla.ac.uk/rod/treeview.html 
19. WINAMOVA -- Michalakis & Excoffier 

http://acasun1.unige.ch/LGB/Software/Windoze/amova  
 

Measures produced:   
Alignment of DNA sequences:  ClustalX 
Cavalli-Sforza distances:    PHYLIP, TFPGA (?) 
F-statistics:    FSTAT, GDA, GenePop, GeneStat, Genetix.   
Gene diversity (D):   GeneStat, TFPGA, Genetix.   
Gene frequencies:   (from genotypic data) FSTAT, Relatedness, others.   
GST:     GeneStat, FSTAT, TFPGA.   
Hardy-Weinberg fit:  GenePop, FSTAT, TFPGA, Arlequin.   
Mantel tests:   Genetix, TFPGA, McMantell.   
Ne (effective pop. size):  Migrate, Misat.   
Nei’s distance('72, '78):  GeneStat, GDA, FSTAT, TFPGA (PHYLIP Nei's 1972 only).   
Nested clade   GeoDis 
PCA:    Principal comp. Analysis w/ PCP, PCAGen, MiniTab 
Relatedness   Relatedness, Identix, SPAGeDi 
RST:     FSTAT, Genetix, RSTCalc.   
Rogers’ distance:    TFPGA, GeneStat.  
Theta (Θ):    GDA, FSTAT.  (Cockerham & Weir F-stat) 
Tree diagrams:   TreeView 
Θ:    PowerSSR, GDA, FSTAT, Genetix.  (Cockerham & Weir F-
stat) 
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