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ABSTRACT

Linear Block Codes for Block Fading Channels

Based on Hadamard Matrices. (December 2005)

Spyros Spyrou, B.Eng., National Technical University of Athens

Chair of Advisory Committee: Dr. Costas N. Georghiades

We investigate the creation of linear block codes using Hadamard matrices for block

fading channels. The aforementioned codes are very easy to find and have bounded

cross correlation spectrum. The optimality is with respect to the metric-spectrum

which gives a performance for the codes very close to optimal codes. Also, we can

transform these codes according to different characteristics of the channel and can

use selective transmission methods.
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CHAPTER I

INTRODUCTION

The fading multipath channel has been the object of research for many years since it

serves as a model for signal transmission over many radio channels. Much research has

been done in the direction of exploiting the special characteristics of fading channels.

The main idea is to achieve diversity either by using multiple transmit and receive

antennas or by finding codes that can achieve this. Some past research on the first

idea has been done by [1, 2, 3] and it involves the capacity of such systems, the de-

grees of freedom and diversity and adaptive multiantenna transceiver for narrowband

reception.

This thesis deals with the second idea which is channel coding. The work of other

researchers in this area involves the efficient implementation of a maximum-likelihood

detector for space-time block coded systems (Quasi-static channel) in [4], some codes

for maximizing diversity by [5, 6] and some upper bounds on the probability of error

when we have capacity achieving signaling in [7].

In this work, which is an extension of the work done in [8, 9], we develop some

codes for the noncoherent block fading channel based on Hadamard matrices. The

aforementioned codes are very easy to find and have bounded cross correlation spec-

trum. That gives a performance for the codes very close to optimal codes. The

optimality is with respect to the metric-spectrum [8]. The metric spectrum is defined

as the set of all the values of the metric characterizing the pairwise error probabilities.

In more details Chapter II gives all the background for this work, such as fading

channels, block codes, union bound and optimal metric spectrum. In Chapter III

The journal model is IEEE Transactions on Automatic Control.
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we give the pairwise error probabilities for the block fading channel using different

number of blocks and the theoretical performance of such codes. In Chapter IV

we present codes for block fading channels created from Hadamard matrices with

the special characteristic that the maximum cross correlation is 1/2 and follow the

pairwise error probabilities of Chapter III. In Chapter V we introduce the selective

transmission scheme where the codes are used in a more efficient way. In Chapter

VI we present a wider area of codes with bounded maximum cross correlation and

finally in the last chapter we summarize our results.
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CHAPTER II

BACKGROUND

In this chapter we will briefly cover some definitions and background knowledge that

is useful for the understanding of the following material.

A. Fading Channels

A block fading channel is a time-varying channel with a fade level that is assumed to

be constant during a block of N bits and to vary between blocks according to a given

probability distribution. The channel model for the block fading channel is

r1 = α1x1 + ν1

r2 = α2x2 + ν2

...

rt = αtxt + νt (2.1)

where t is the number of the blocks and x =
√

Esd, d = [d1, d2, . . . , dt]
T . The fad-

ing variables αi are modelled as zero-mean, circularly symmetric, complex Gaussian

random variables of variance σ2
α and are independent of each other. The vectors vi

are i.i.d. zero mean, circularly symmetric complex Gaussian random variables with

variance σ2 = N0. Es is the energy per symbol. The modulation symbols dj take

values from the binary set {-1,1}. If t = 1 then we have the quasi-static channel

where the fading variable is constant for all the codeword. The fading variable α is

not known to the receiver (noncoherent detection).
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B. Narrowband-Wideband Channels and Sum of Sinusoids Simulator by Jake

The distinction between narrowband and wideband channels is due to different char-

acteristics of the receiving signal. In the case of the narrowband channel we are

interested in simulating the random process with Rayleigh probability density func-

tion and the Doppler spectrum. In the case of the wideband channel we want to

simulate the multipath effects on the signal.

1. Narrowband Channels

A way to simulate the Doppler spectrum is to use a sum of oscillators with different

frequencies in a way to get the wanted results. This was done by Jake in [10] using the

famous sum of sinusoids simulator (SOS). We will use this simulator to simulate the

performance of codes in flat Rayleigh channels and in a frequency selective channel.

A flat fading channel is when all frequency components of a received signal vary

in the same proportion simultaneously and frequency selective is when that does’t

happen. Although Jake’s model is for the flat fading channel it can be extended

for the frequency selective channel. The Jake simulator models the received lowpass

complex envelop of a flat fading channel under the assumption that there is no line of

sight. A suitable model for this channel is a complex Gaussian random process with

zero mean and uncorrelated real and imaginary parts. The Jake model gives a good

approximation of the analytical model using a number of low frequency oscillators.

The main characteristic of the procedure followed by Jake is to model a Gaussian

random process by using a sum of low frequency oscillators. This principle is a result

of the sum of sinusoids by Rice [11, 12, 13]. Before presenting the Jake simulator we

have to note that much research has been done on the aforementioned simulator and

some of the studies [14, 15, 16] presented weaknesses of the model concerning the
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assumptions that Jake used. What we present here is from the original work from

Jake [10]. Jake started by writing the received signal as:

E(t) = Re[T (t)eiωct] (2.2)

where

T (t) =
E0√
N

{√
2

N0∑

n=1

[ej(ωmt cos an+φn) + e−j(ωmt cos an+φ
−n)] + ej(ωmt+φN ) + e−j(ωmt+φ

−N )

}

(2.3)

and

N0 =
1

2

(
N

2
− 1

)
(2.4)

The term
√

2 is a normalizing factor. If N is large enough we can use the central

limit theorem so that T (t) is a good approximation of a Gaussian random process

and the envelop |T | is Rayleigh distributed. This approximation is good for N ≥ 6.

Then we get more information as far as N based on the autocorrelation of E(t):

R(τ) =< E(t), E(t + τ) >=
1

2
Re

[〈
T (t)T (t + τ)eiωc(2t+τ)

〉
+

〈
T ∗(t)T (t + τ)eiωcτ

〉]

(2.5)

and finally we have:

R(τ) =
b0

N
cos ωcτ

[
4

N0∑

n=1

cos

(
ωmτ cos

2π

N

)
+ 2 cos(ωmτ)

]
(2.6)

Equation 2.6 is of the form R(τ) = g(τ) cos ωcτ where g(τ) is a low frequency term

multiplied by a bandpass term. For the model that we use g(τ) = b0J0(ωmτ) applies

and we get:

4

N0∑

n=1

cos

(
ωmτ cos

2π

N

)
+ 2 cos(ωmτ) =

N

2
J0(ωmτ) (2.7)

So N0 low frequency oscillators that have frequencies equal to the Doppler shift

ωm cos(2π/N), n = 1, 2, . . . , N0 plus one more oscillator with frequency ωm are used
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to create signals with frequency deviation from the carrier frequency ωc signal. The

amplitudes of all these signals are equal to one except from the signal with frequency

ωm which has amplitude 1/
√

2.

The phases βn are chosen in a way that the probability density function is as

close as possible to a uniform distribution. The quadrature components are:

xc(t) = 2

N0∑

n=1

(
cos βn cos ωnt +

√
2 cos α cos ωmt

)
(2.8)

xs(t) = 2

N0∑

n=1

(
sin βn cos ωnt +

√
2 sin α cos ωmt

)
(2.9)

The phase of the final signal R̃(t) must be random and uniformly distributed from

0 to 2π. This can be done in many different ways given that < x2
c >≈< x2

s > and

< xc xs >≈ 0. Then

< x2
c >= N0 + cos2 α +

N0∑

n=1

cos2 βn (2.10)

< x2
s >= sin2 α + 2

N0∑

n=1

sin2 βn (2.11)

< xcxs >= 2

N0∑

n=1

sin βn cos βn + sin α cos α (2.12)

By choosing α = 0 and βn = πn/N0 we have that < xcxs >= 0 and < x2
c >=

N0 + 1, < x2
s >= N0. So R̃(t) is a narrow band signal over the carrier frequency

ωc with Rayleigh fading characteristics and autocorrelation function approximately

equal with the Bessel function.

2. Wideband Channels

For wideband channels the model of the statistical characteristics of the channel takes

place in the time domain by simulating the impulse response of the multipath channel
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based on statistical characteristics. The method that we will describe is based on a

mathematical model that describes the characteristics of the channel in the time

domain. This model is the tapped delay line with discrete paths with the same or

different delay. Every tap is a result of a number of multipath components (all the

components arrive in a short period and cannot be distinguished) so we have fading.

If s̃(t) is the complex envelop of the transmitted signal then the complex envelop of

the received signal is:

r̃(t) =
l∑

i=1

gi(t)s̃(t − τi) (2.13)

where l is the number of the paths and gi(t), τi are the complex gains and delays of

each path correspondingly. The impulse response of the channel is

g(t, τ) =
l∑

i=1

gi(t)δ(t − τi) (2.14)

and it can be fully described by the tap gain vector

g(t) = (g1(t), g2(t), . . . , gl(t)) (2.15)

and the tap delay vector

τ = (τ1, τ2, . . . , τl) (2.16)

Values for these vectors are formalized for different models like GSM or JTC. Different

models and the values for the above vectors can be found in Chapter 6 of [17]. To

summarize, the simulation of wideband channels is based on the extension of the SOS

simulator for narrowband channels by adding more delayed fading signals.
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C. Linear Block Codes

The binary (n, k) block code with cardinality M = 2k and block code length n is

described by a matrix of the form

CM,n =




c0,0 c0,1 . . . c0,n−1

c1,0 c1,1 . . . c1,n−1

...
. . . . . .

...

cM−1,0 cM−1,1 . . . cM−1,n−1




. (2.17)

The block code is linear if it can be uniquely represented by a generator matrix G

where

CM,n = mG (2.18)

and m is the M × k matrix containing all possible M combinations of k bits. For our

work we use codes of the form CM,M = HM where HM is the Hadamard matrix created

by the Sylvester construction. The Sylvester construction works as follows: If there

exist Hadamard matrices HM and Hk = [hij] of orders M and k, respectively, then

the matrix obtained by replacing each hij = ±1 with ±HM is a Hadamard matrix of

order M × k. By this construction a Hadamard matrix,HM , of order M is a M × M

matrix with elements 1’s and -1’s such that HMHT
M = MIM . This implies that any

two distinct rows of HM are orthogonal and as a result these codes are optimal, in

the sense of the optimal cross correlation spectrum, for the quasi-static channel. But

their use in the block fading channel is not optimal and a reshuffling of the columns

is to be made. Since HT
M = HM a reshuffling of the columns means a reshuffling of

the rows and as a consequence the code is still optimal for the quasi-static channel.
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D. Union Bound

The probability of codeword error when we send one of the M equally likely trans-

mitted codewords is bounded using the union bound [8] as seen in Equation 2.19.

P (e) ≤ 2

M

∑

µ∈M
NµP2(µ) (2.19)

where M is the set of all pairwise values of µ and Nµ is the multiplicity of every µ.

E. Optimal Metric Spectrum

The metric that we use in our work is the absolute cross correlation metric. For a block

code with codewords d1, d2, . . . dM the metric is µ = |ρ| = 1
n
|dT

i dj| where i 6= j. So the

ρ-spectrum Sρ of an (n, k) binary block code with an increasing pairwise probability

of error with respect to ρ is the set of all pairs of absolute cross correlations and their

multiplicities, i.e.,

Sρ = {(0, N0), (1/n,N1/n), . . . , (ρmax, Nρmax)} (2.20)

The optimal ρ-spectrum S∗
ρ over all the possible spectra Sρ as defined in [8] is the one

for which one of the following is true:

• ρ∗
max < ρmax, or

• ρ∗
max = ρmax, and there exists some λ:λ/n = 0, 1/n, 2/n, . . . , ρmax, for which

N∗
λ/n < Nλ/n, N∗

(λ+1)/n = N(λ+1)/n, . . . , N
∗
ρmax

= Nρmax .
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CHAPTER III

PAIRWISE ERROR PROBABILITIES FOR THE NONCOHERENT BLOCK

FADING CHANNEL

In this chapter we present the pairwise error probabilities for the two, three and four

block fading channels. Since we use the Hadamard codes we cannot find optimal

codes for the three block fading channel but we give the probability for completeness.

First we present the channel model and then the pairwise error probabilities.

Here we give only the two block fading model since the others can easily be

derived by it. The discrete time vector model for the two block fading channel is:

r1 = α1x1 + ν1

r2 = α2x2 + ν2 (3.1)

where x =
√

Esd, d = [d1,d2]
T = [d10, d11, . . . , d1(n/2−1), d2n/2, . . . , d2(n−1)]

T . The

fading variables αi are modelled as zero-mean, circularly symmetric, complex Gaus-

sian random variables of variance σ2
α and are independent of each other. The vectors

νi are i.i.d. zero mean, circularly symmetric complex Gaussian random variables with

variance σ2 = N0. Es is the energy per symbol. The modulation symbols dj take

values from the binary set {-1,1}. The noncoherent maximum likelihood detector can

be shown to be (see Appendix E)

d̂ = arg max
d

|r1

H
d1|2 + |r2

H
d2|2 (3.2)

Just note that d1 and d2 belong to the same codeword. The pairwise error probability

can be shown to be (see Appendix A)

Pw
2 ≡ 1

2
− 3

4

√
Λ2(1 − ρ2)

Λ2(1 − ρ2) + 8Λ + 16
+

1

4

(√
Λ2(1 − ρ2)

Λ2(1 − ρ2) + 8Λ + 16

)3

(3.3)
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where Λ = σ2
a

σ2 nEs and ρ is the normalized cross-correlation of the first or the second

part of the codewords da and db, defined as

ρ =
2

n
da1

T
db1 =

2

n
da2

T
db2 (3.4)

Although we made the assumption that 2
n
da1

T
db1 = 2

n
da2

T
db2 for all the spectrum of

the code in order to find the pairwise probability of error and therefore optimal codes,

after simulations with optimal codes that don’t follow that restriction the performance

was the same as the aforementioned codes. The pairwise error probability for the three

block channel is in (3.5) and for the four block fading channel in (3.6).

Pw
2 ≡ 1

2
− 15

16
A +

5

8
(A)3 − 3

16
(A)5 (3.5)

where A =
√

Λ2(1−ρ2)
Λ2(1−ρ2)+12Λ+36

.

Pw
2 ≡ 1

2
− 35

32
A +

35

32
(A)3 − 21

32
(A)5 +

5

32
(A)7 (3.6)

where A =
√

Λ2(1−ρ2)
Λ2(1−ρ2)+16Λ+64

. Notice that 0 ≤ ρ2 ≤ 1 and from the above probabilities

of error we see that they are minimized when ρ2 = 0. Since ρ is the cross correlation

for every block, the optimal block codes are the ones that have optimal spectrum for

every block. In the next chapter we present codes with ρmax = 1/2.
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CHAPTER IV

NEW CODES FOR THE BLOCK FADING CHANNEL

This chapter deals with codes with spectrum of the form Sρ = {0, 1
2
}. These codes

are not optimal in any way but are very easy to find (no use of search methods) and

perform the same with optimal codes.

A. Codes with Minimum ρmax = 1/2 in a Two Block Fading Channel

In order to prove that we can always find a code with spectrum of the form Sρ =

{(0, N1), (1/2, N2)} where N1 and N2 are the multiplicities for every ρ, we decompose

the HM Hadamard matrix as in Fig. 1.

The use of a Hadamard matrix HM in the two block fading channel results to

the creation of two M × (M/2) blocks by selecting half of the columns of the original

Hadamard matrix for each new block. We start from the HM matrix and the selection

of the first block is going to be of the form




code 1{ M/2 × M/2}

code 2{ M/2 × n1 same columns M/2 × n2 opposite columns}




where the terms same and opposite refer to the relationship between the columns




HM/2 HM/2

HM/2 −HM/2




Fig. 1. HM Hadamard matrix decomposed in the lower level of Hadamard matrices
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


HM/2

First 3M/8 columns of HM/2 −HM/8

+HM/8

+HM/8

−HM/8




Fig. 2. Code created in one block when n2 = M/8

of code 1 and code 2. The optimum code 1 that we can find is the HM/2 which has

|ρmax| = 0. As a result code 2 has |ρmax| = 0 and we are interested in the absolute cross

correlations between the codewords of code 1 and code 2. If code 2 is the same with

code 1 (HM/2) then the codeword di from code 1 i = 1, 2, . . . ,M/2 has cross-correlation

equal to “1”(dH = 0) with the codeword di from code 2. The cross correlations of

the codeword di from code 1 and dj from code 2 j = 1, 2, . . . ,M/2 and i 6= j are

equal to zero (dH = M/4). To generalize, if we have a Hadamard matrix HM and we

add q Hadamard matrices (same or opposite) vertical in order to create an qM × M

code the new code has q absolute cross correlations equal to “1” and all the others

equal to zero. Now if we choose n2 = M/8 then we create a code like the one in

Fig. 2. From the above theory we conclude that every codeword from code 1 has

four absolute cross correlations equal to “1/2” with codewords from code 2 and all

the others are zero. The resulting code for every block has cross correlation spectrum

Sρ = {(0, M×(M−5)
2

), (1/2, 2M)}.

Since

|ρ| = |1 − 4dH

M
| (4.1)

the Hamming distance between two codewords in a block is either M/4 or M/8. For
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code 1 (Hadamard matrix) each pair of codewords has a Hamming distance equal to

M/4. As a result there is an easy way to find codes like this for the two block fading

channel.

Lemma 1 The selection of the first 3M
8

columns and the last M
8

columns from the

Hadamard matrix HM to create the first block (the remaining columns go to the second

block) results in a code with absolute cross correlation spectrum of the form Sρ =

{(0, M×(M−5)
2

), (1/2, 2M)} for each block for the two block fading channel.

Next we compare the performance of these codes with optimal codes for the

Hadamard matrices with M = 16, 32. In Fig. 3 we have the performance of the codes

H16 with cross correlation spectrums S∗
ρ = {(0, 40), (2/8, 64), (4/8, 16)} and Sρ =

{(0, 88), (4/8, 32)} for each block and the corresponding union bound. In Fig. 4 we

have the performance of the H32 codes with spectrum S∗
ρ = {(0, 48), (2/16, 256), (4/16, 192)}

and Sρ = {(0, 432), (8/16, 64)}.

It is obvious that the performance of the above codes is not very sensitive to

changes of the maximum absolute cross correlation.

B. Codes with Minimum ρmax = 1/2 in the Four Block Fading Channel

The use of a Hadamard matrix HM in the four block fading channel results to the

creation of four M × (M/4) blocks by selecting M/4 of the columns of the original

Hadamard matrix for each new block. We can still create codes with spectrum of

the form Sρ = {(0, N1), (1/2, N2)} for every block. The proof for this follows the

same line as the previous section. We choose as code 1 a M/2 × M/4 code that

has spectrum Sρ = {(0, N1), (1/2, N2)} and is constructed according the previous

section. Code 2 has the same spectrum. Then Fig. 2 becomes for the four block
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the union bounds



16




M/2 × M/4 code (code 1)

3M/16 columns of code 1 −M/16 columns of code 1




Fig. 5. Code created in one block when n2 = M/16




Block 1 Block 2 Block 3 Block 4

1, 2, . . . ,M/4 1, 2, . . . ,M/4 1, 2, . . . ,M/4 1, 2, . . . ,M/4




Fig. 6. Grouping of columns for the four block fading channel

fading channel the one in Fig. 5. The code that is created has a spectrum for each

block Sρ ={(0, M×(M−13)
2

), (1/2, 6M)}.

The following algorithm is used to find the columns for each block using the

Hadamard matrix HM . First divide the Hadamard matrix HM into four blocks and

number the blocks (1 . . . 4) and the columns in every block (1 . . . M/4). Then pair two

consecutive blocks and select M/4 columns using the results of the previous section.

This procedure is presented in Fig. 6.

Then for every pair of two blocks, let’s say block i and block i + 1 change the

last M/32 columns of the i block with columns from the i + 2 block that have the

same number and the first M/32 columns of the i + 1 block with columns from i + 3

block that have the same number. This is repeated for i = 1 . . . 4 in order to find the

columns for the four blocks. For the four block fading channel we compare two codes

created by H32. The optimal code has spectrum S∗
ρ = {(0, 112), (2/8, 256), (4/8, 128)}

and the other code Sρ = {(0, 304), (4/8, 192)}. The results are in Fig. 7 where we can

see that the performance of these codes is the same.
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C. Performance of Codes with Different Rate or Diversity Gain in the Block Fading

Channel

This section deals with the effect of a rate change or a diversity gain change on

the performance of a code. Diversity gain changes when the channel characteristics

change. For the block fading channel that is the time that the fading variable is

constant. The performance of optimum codes from [8] in the quasi-static channel

with the change of the rate of the codes is presented in Fig. 8. We can see that

although we have a significant reduction of the rate the change on the performance

is very small. In Fig. 9 we see the performance of codes with ρmax = 1/2 in the 2,4-

block fading channel. Compared with the optimum code in the quasi-static channel

the change in performance that we get by increasing the number of the blocks is very

significant. So the next step is to find a way to transform these codes in order to get

advantage of the diversity gain.

1. Codes Created by HM (constant rate) When the Size of the Block Changes

For the N -block fading channel we assume that fading is constant for a block of M
N

bits.

We want to see how the absolute cross correlation spectrum of these codes changes

with N where N = 2, 4. The creation of a code for the 4-block fading channel accord-

ing to section B results to a code with spectrum Sρ = {(0, M×(M−13)
2

), (1/2, 6M)} for

every block. The possible Hamming distances are dH = 2, 4, 6 (n=M/4). So if we cre-

ate a 2-block code from a 4-block code (the code is the same but we use it in the 2-block

channel) the possible Hamming distances are dH = 4, 6, 8, 10, 12 (n=M/2) i.e. ρ =

0, 1/4, 1/2. The 2-block code has a spectrum Sρ = {(0, M×(M−11)
2

), (1/4, 4M), (1/2,M)}.

So if we want to keep the overall rate of the code constant k/M , a code created for

the 4-block channel can be used for the 2-block channel (block size doubles) and
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ρmax = 1/2 for every block in any case.

2. Same Number of Blocks, Different Rate Codes

In order to use a code in the 2-block fading channel M/2 must be greater than k. As

a result the higher rate code that we can use in the 2-block channel is the one created

by H8. For the 4-block fading channel M/4 must be greater than k. The code created

by H32 is the higher rate code that we can use in the 4-block channel. In this section

when the size of the block changes we change the rate of the code in order to keep the

number of blocks the same. First we present a recursive way to create codes starting

with the higher rate code. For the 2-block fading channel we have:

• Starting from the lower order Hadamard matrix that can be used (H8) create a

code for the 2-block fading channel with rate k/M using the method in section

A .

• To create the rate k + 1/2M code for the 2-block channel add to each block

the corresponding columns from the second half of H2M (for every column

i select and add the i + M column). The new code has spectrum Sρ =

{(0, M×(M−5)
2

), (1/2, 2M)}.

For the 4-block fading channel we have:

• Starting from the lower order Hadamard matrix that can be used (H32) create a

code for the 4-block fading channel with rate k/M using the method in section

B .

• To create the rate k + 1/2M code for the 4-block channel add to each block

the corresponding columns from the second half of H2M (for every column
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rate 3/8 code

(
1,2,3,8 4,5,6,7

)

↓

rate 4/16 code

(
1,2,3,8,9,10,11,16 4,5,6,7,12,13,14,15

)

↓

rate 5/32 code

(
1,2,3,8,9,10,11,16,17,18,19,24,25,26,27,32 4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31

)

...

Fig. 10. Grouping of columns for the 2-block fading channel with rate change

i select and add the i + M column). The new code has spectrum Sρ =

{(0, M×(M−13)
2

), (1/2, 6M)}.

This procedure is presented for the 2-block channel in Fig. 10 and for the 4-block

channel in Fig. 11. The numbers represent the columns of the Hadamard matrix

created by the Sylvester construction.

Using these recursive methods to create codes for either the 2-block fading chan-

nel or the 4-block fading channel gives us the following advantage. Let’s say that we

create a k/M code and the size of the block reduces to half of what it was, then by

removing half (last half) of the columns from each block we have a rate k − 1/(M/2)

code with the same number of blocks. If the block size doubles then we do one more

step of the above method and we get a rate k + 1/2M code with the same number of

blocks.
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rate 5/32 code

(
1,2,3,4,5,22,31,16

)

↓

rate 6/64 code

(
1,2,3,4,5,22,31,16,33,34,35,36,37,54,63,48

)

↓

rate 7/128 code

(
1,2,3,4,5,22,31,16,33,34,35,36,37,54,63,48,65,66,67,68,69,86,95,80,97,98,99,100,101,118,127,112

)

...

Fig. 11. Grouping of columns for the 4-block fading channel with rate change (only

one block)
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rate 4/16 code

(
1,2,3,4,5,6,15,16 7,8,9,10,11,12,13,14

)

↓

rate 5/32 code

(
1,2,3,4,5,22,31,16 7,9,10,11,12,13,24,30 15,17,18,19,20,21,6,32 23,25,26,27,28,29,8,14

)

Fig. 12. Transform of a code from the 2-block channel to the 4-block channel with rate

change

3. Different Numbers of Blocks, Different Rate Codes

In the case that we want to improve the diversity gain and the block size is constant

in order to go from a 2-block channel to a 4-block channel we have to change the rate.

So if we use a rate k/M code in a 2-block fading channel and we change the rate to

k+1/2M the block size is the same but now the codeword size is double and the code

is used in the 4-block fading channel. In order to do this we modify the algorithm in

section 2. The method used to find the code for the 2-block fading channel is the one

in section A.

We start from a rate k/M code in the 2-block channel. Use only the first step of

the algorithm in section B to find the columns for the first block. Since the number of

columns is the same per block we only have M/8 changed columns from the previous

code per block. For the other blocks just add M/2 mod 2M to the previous block

column numbers. The transition from a rate 4/16 code for the 2-block channel to a

5/32 for the 4-block channel is in Fig. 12.



25

16 18 20 22 24 26 28 30 32
0.4

0.5

0.6

0.7

0.8

0.9

1

n

ρ m
ax

Fig. 13. M=64 (rate 6/n codes) ρmax for our codes for one block (2-block channel)

4. Small Rate Changes

The codes described in section 2 perform very well when the rate of the code increases.

More specific for the 2-block fading channel and for a k/M code for changes of n =

M/2,M/2− 2, . . . , 5M/16 + 2 (for one block) the min ρmax = ⌈n/2⌉
n

(see APPENDIX

C). In Figs. 13,14 and 15 we can see how the min ρmax of our codes changes with

the rate change for k = 6, 7, 8.

The performance of codes with different rates in the 2-block fading channel for

k = 6, 7 is presented in Figs. 16 and 17. As we can see the performance of these codes

does not change much with the change of the rate for the 2-block fading channel. For

the 4-block fading channel the performance of codes with different rate is presented in
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Fig. 16. Performance of 6/n codes in the 2-block fading channel

Figs. 18 and 19 for k = 6 and 7 respectively. This is the same result that we had for

the quasi static channel. The advantage that we have though is that when the time

slot that the fading is constant changes we can easily change the rate of the code and

keep the performance at the same levels. For the 4-block fading channel the change

of min ρmax per block is presented in Figs. 20,21 and 22 for k = 8, 9, 10.
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Fig. 21. M=512 (rate 9/n codes) ρmax for our codes for one block (4-block channel)

D. Performance of ρmax = 1/2 Codes in Fading Multipath Channels

In this section we present the performance of the rate 5/32 code in a flat or frequency

selective channel with slow or fast fading. Small scale fading is characterized by two

factors

• Time spread of the signal transmitted through the channel

• Frequency spread due to time variations in the structure of the medium.

The first factor determines the distortion of the signal due to inter-symbol interference

(ISI) at the receiver and the second determines how fast the behavior of the channel

changes. The two factors that effect small scale fading are independent so we have 4

kinds of small scale fading. The factors that determine the kind of fading that we have

are the bandwidth of the signal, the specific environment of multipath propagation,

the speed of the receiver and the speed of the objects around the receiver.
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In order to quantify the multipath delay spread we use the multipath spread

of the channel Tm which is the time period that the autocorrelation function of the

channel is non-zero [18] and in the frequency domain the coherence bandwidth Bc

which is the bandwidth that the channel is flat (constant gain and linear phase). The

reciprocal of the multipath spread is the coherence bandwidth. That is,

Bc ≈
1

Tm

(4.2)

So if the bandwidth of the transmitted signal is large compared to the coherence

bandwidth then the channel is said to be frequency selective. On the other hand, if

the signal bandwidth is small compared to the coherence bandwidth then the channel

is said to be frequency nonselective or flat.

To quantify the time variations in the channel we use the Doppler spread Bd

of the channel which is the bandwidth for which the Doppler power spectrum of the

channel is non zero [18] and coherence time Tc. Again

Tc =
1

Bd

(4.3)

So if the bandwidth of the transmitted signal is small compared to the Doppler spread

then the channel is said to be fast fading. On the other hand, if the signal bandwidth

is large compared to the Doppler spread then the channel is said to be slow fading.

To summarize, a signal with bandwidth Bs and symbol duration Ts is under flat

fading if

Bs ≪ Bc (4.4)

and

Ts ≫ Tm (4.5)
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A signal is under frequency selective fading if

Bs ≻ Bc (4.6)

and

Ts ≺ Tm (4.7)

A signal is under fast fading if

Bs ≺ Bd (4.8)

and

Ts ≻ Tc (4.9)

and under slow fading if

Bs ≫ Bd (4.10)

and

Ts ≪ Tc (4.11)

In Figs. 23 and 24 we can see the four kinds of fading that can occur according to

the time duration of every symbol and the bandwidth of the signal correspondingly.

For our simulations we used the Jake SOS simulator for Rayleigh flat fading due

to multipath propagation. According to Jake’s model the received signal is given by

r(t) = x(t) + jy(t) =

=
[√

2
N1+1

∑N1

n=1 cos
(

πn
N1

)
cos

{
2πfd cos

(
2πn
N

)
t
}

+ 1√
N1+1

cos(2πfd)
]
+

+j
√

2
N1

∑N1

n=1 sin
(

πn
N1

)
cos

{
2πfd cos

(
2πn
N

)
t
}

(4.12)

where N/2 is odd and

N1 =
1

2

(
N

2
− 1

)
(4.13)
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38

According to equation 4.12 the following apply

E[x2(t)] = E[y2(t)] = 1
2

E[x(t)y(t)] = 0
(4.14)

When N1 is large enough r(t) is a good approximation of a complex Gaussian

random process and as a result has Rayleigh envelop and uniform phase in [0, 2π]. We

multiply the data with the Rayleigh envelop and we do not take into consideration

the phase which implies that the phase is slow changing and can be detected by the

receiver.

In Fig. 25 we present the performance of the rate 5/32 code in a flat Rayleigh

channel (one path) when we change the Doppler spread fd. This means that for small

values of fd the channel is slow fading (quasi-static) and for larger values the channel

becomes fast fading (block channel) and as a result we have better performance due

to the advantage of diversity in a fast fading channel. In Fig. 26 we present the

performance of the same code in a frequency selective channel (two path fading)

when we change the Doppler spread fd. We still have a great improvement in the

performance due to diversity gain. The transmission rate used for these simulations

is 256 kbits/s. Fig. 27 presents the performance of the same code in a slow frequency

selective channel with different number of paths. A root raised cosine pulse shaping

filter is used at the transmitter and at the receiver to avoid the effects of inter symbol

interference and we can see that for more than four paths the diversity gain is the

same.
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CHAPTER V

PERFORMANCE OF NEW CODES USING SELECTIVE TRANSMISSION

This chapter deals with the performance of the new codes using selective transmission.

Selective transmission is the procedure where we transmit only the number of blocks

necessary (we transmit part of the codeword) according to a reliability measure in

order to get a performance as good as the code that transmits all the codeword.

The idea behind this is very simple. Since these codes are created for the block

fading channel (every block has independent fading) every block of the code can be

used independent as a new code. So if we transmit only the first block of a codeword

and according to a reliability measure (we deal with the reliability measure later in

this chapter) at the receiver there are no errors then we can uniquely decide which was

the transmitted codeword and we use less energy to do that. If the receiver decides

that the received codeword has errors then we send the next block. This procedure

continuous until we either have no errors or we send all the codeword. So this system

uses less energy, has higher throughput efficiency and less computational complexity

compared to the same code without selective transmission. Furthermore, it still gets

advantage of the diversity that we have from the independent blocks in a block fading

channel. The drawback is that the receiver has to store the results of every decoding

until the final decision and there is a delay between the transmission of the blocks.

This idea of course is not new and past work using different codes and channels has

been done by [19, 20, 21].

The maximum likelihood decoder for a k/n code used in the N-block fading

channel N = 2, 4 is given by:

d̂ = arg max
d

(∣∣rH
1 di1

∣∣2 +
∣∣rH

2 di2

∣∣2 + . . . +
∣∣rH

N diN

∣∣2
)

(5.1)
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where i = 1, 2, . . . ,M . For the same code if selective transmission is used the decoding

procedure is the following:

1. Set j = 1

2. Send the jth block of the codeword

3. The receiver calculates the M dimensional vector
[∣∣rH

j d1j

∣∣2 ,
∣∣rH

j d2j

∣∣2 , . . . ,
∣∣rH

j dMj

∣∣2
]

and then creates the M dimensional vector

V =

[
j∑

q=1

∣∣rH
j d1q

∣∣2 ,

j∑

q=1

∣∣rH
j d2q

∣∣2 , . . . ,

j∑

q=1

∣∣rH
j dMq

∣∣2
]

(5.2)

to make a decision where dij is the jth block of the ith codeword. The maximum

value of V gives the decoded codeword. According to a reliability measure the

receiver evaluates the decision made. Let’s say that the maximum likelihood

detector decides in favor of the mth codeword. If the decision is good then the

decoded codeword is the mth codeword from the k/n code and j = N . If the

decision is not good enough then the receiver requires a transmission of the next

block and saves in a buffer the vector V .

4. If j = N then transmit the next codeword or else set j = j + 1 and return to

step 2.

The above procedure is presented in a flow chart form in Fig. 28.

As mentioned before this method of selective transmission uses less energy (al-

ways compared to a same rate code,same channel and without selective transmission

scheme), has higher throughput efficiency and performs as well as a no-ST code. The

factor that controls all these is the reliability measure that the receiver implements.

It is obvious that there is a trade off between energy-performance and throughput

efficiency. The goal is to achieve good performance with high throughput efficiency.
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Whenever a block arrives at the receiver an M dimensional vector like in (5.2) is

created and the decision is made in favor of the largest value. The reliability measure

(RM) that we used is the normalized difference and is given by

RM =
(maximum value of V ) − (second largest value of V )

(maximum value of V ) − (minimum value of V )
(5.3)

In Figs. 29 and 30 we present the values of the reliability measure for a 5/32

code in the 4-block fading channel for the correct decisions of the receiver and for the

erroneous, respectively. We send 10000 codewords with average signal to noise radio

per information bit 10 db and observe the values of the normalized difference.

It is obvious that if we want to choose a threshold that includes (all the values

less than the threshold) all the error decisions in a transmission that would be 0.6.

But that would also mean that we would include almost all of the correct decision

codewords. A threshold that includes 90 % of the erroneous decisions let’s say 0.3
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Fig. 30. Values of normalized difference for erroneous decisions

includes around 20 % of the right decisions. Using these graphs we found good values

for the threshold of the normalized difference. So for every value of the normalized

difference under the threshold the receiver requests for a transmission of the next

block or else makes a decision based on the maximum value of the current V vector.

Note here that these graphs are presented here just to give an inside of the trade off

between throughput and performance. For constant signal to noise ratio the variations

are very small of the order of ±0.1. In higher signal to noise ratios where fewer errors

occur the threshold should be such that extra block transmission is requested for all

the erroneous blocks. In Fig. 31 we present the performance of the 5/32 code in the

4-block fading channel using different thresholds for the selective transmission (ST).

For lower rate codes the performance is in Figs. 32,33 and 34 for the 6/64,7/80 and

7/128 rate codes respectively. As the SNR increases there is a point, for any value of

the threshold, that the slope of the performance changes for the worst. That happens
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Fig. 31. Performance of a rate 5/32 code in the 4-block fading channel using selective

transmission

because the number of the errors that take place when the receiver does not request

a transmission of another block becomes comparable with the total number of errors.

In Fig. 31 the code with threshold 0.6 has better performance for higher SNR and

the threshold 0.5 for lower SNR. Adaptive transmission (AT) is what we call when

we use a different threshold for different values of SNR. For the threshold with value

0.7 we have the same performance to the code with no selective transmission since

this thresholds results to the transmission of all the codeword on the average. The

optimum selective transmission (the transmitted codeword is used at the receiver)

which is used just as a lower bound on the performance for high SNR achieves an

improvement on the performance close to the value of ≈ 6 db. That value is maximum
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transmission
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since in the best case scenario we transmit only one of the four blocks. The scheme

with one threshold achieves an improvement on the performance of the order of 3 db

at high SNR. That is not satisfactory and that is why later in the chapter we use a

second threshold.

As mentioned before we need codes with good performance and high throughput

efficiency. The performance of the codes was just presented so the next thing that

we deal with is throughput efficiency. The definition of throughput efficiency that we

use is a bit different that the one used in [20].

Let N be the total number of blocks transmitted which compose a codeword

and U the average number of blocks transmitted in order to get a codeword without

errors (unless we transmit all the codeword). Then the throughput efficiency of our

scheme is given by

η ,
N

E[U ]

k

n
(5.4)

where E[U ] is the expectation of U and k/n is the rate of the code. The code with

rate k/n in the N-block fading channel with no selective transmission has constant

throughput efficiency equal to the code rate k/n. Let Ac
1, A

e
1 be the events that the

first block of a codeword when it is transmitted contains no error and contains errors,

respectively. Let Bc
i , B

e
i denote the events that the transmission of i blocks contains

no error and contains errors, respectively. Then

Pr(Ac
1) + Pr(Ae

1) = 1 (5.5)

Pr(Bc
i ) + Pr(Be

i ) = 1

The average number of blocks transmitted is

E[U ] = 1.P r(Ac
1) + 2.P r(Ae

1B
c
2) + . . . + N.Pr(Ae

1B
c
N) (5.6)
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Fig. 35. Throughput efficiency of the rate 5/32 code

If any of the above events have errors or not is decided by the receiver using a

reliability measure. The joint probabilities in (5.6) are hard to evaluate so we present

the throughput efficiencies for the previous codes based on simulations. The lower

bound for the throughput efficiency is given by the rate k/n code (=k/n) with no

selective transmission and the upper bound by the same code using ideal selective

transmission. For the previous codes with rates 5/32,6/64,7/80 and 7/128 we present

the throughput efficiency plots in Figs. 35,36,37 and 38, respectively.

In Figs. 35,36,37 and 38 the codes that use threshold = 0.6 achieve high through-

put efficiency only for high SNR. In Fig. 39 we presented the improvement on the

throughput efficiency of a 6/64 rate code with selective transmission that we have for

low SNR when we use different threshold.

The selective transmission scheme compared to the non selective transmission

scheme uses less energy for better performance. The average number of blocks trans-
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Fig. 36. Throughput efficiency of the rate 6/64 code
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Fig. 37. Throughput efficiency of the rate 7/80 code
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Fig. 38. Throughput efficiency of the rate 7/128 code
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Fig. 39. Throughput efficiency of 6/64 code-constant threshold vs adaptive threshold
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Fig. 40. Normalized energy of 5/32 code

mitted is given in (5.6). For the N-block fading channel N = 2, 4 and for the k/n rate

code every codeword has energy Ec = k
n
Eb where Eb is the energy per information

bit. Every block has energy Ec/N . If the average number of blocks transmitted is

close to one then such a system can perform as well as the system that spends four

times more energy. In Figs. 40,41 and 42 we present the average number of blocks

transmitted over the total number (=4). The code with no selective transmission uses

4 blocks to transmit every codeword which means constant energy equal to one and

the optimal selective transmission scheme uses the less energy.

An even greater increase of the throughput efficiency can result from increasing

the complexity at the receiver by adding a second reliability measure. The receiver in

this case must compute two reliability measures and compare each one with the cor-

responding threshold. The second reliability measure that we used is the normalized

difference multiplied by the variance of the vector V ((5.2)). The values of the second
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Fig. 43. Performance of the 6/64 rate code using two reliability measures

threshold that we used for our simulations are 0.3, 0.4 and 0.5. We used an adaptive

first threshold with constant the second threshold for all signal to noise ratios. The

performance of the rate 6/64 code when we use two thresholds is in Fig. 43. When the

second threshold is 0.5 we have a very good performance. The throughput efficiency

and the normalized energy of the same code are in Figs. 44 and 45, respectively. It is

obvious now that the second reliability measure increases significantly the throughput

efficiency compared to one reliability measure.

To end this chapter the selective transmission scheme is used on 2-block fading

codes. Although the expected maximum gain is 3 db any improvement of the perfor-

mance without a trade off is welcome. In Figs.46, 47 and 48 we have the performance,
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the throughput efficiency and normalized energy, for the rate 5/32 code, respectively.

For high SNR the use of two thresholds gives an even better performance than one

threshold as in Fig. 49. The normalized energy for the same code with two thresholds

is in Fig. 50. Finally in Figs. 51 and 52 we have the performance and normalized

energy of a rate 6/64 code in the 2-block fading channel.

To sum up, in this chapter we presented the selective transmission scheme. We

start with the transmission of one block and by using one or two reliability measures

at the receiver we evaluate the received data. Accordingly the receiver decodes or

requests for the next block. The selective transmission scheme with two reliability

measures performs very close to a lower bound of an optimum retransmission scheme

for high SNR.
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Fig. 51. Performance of the 6/64 rate code in a 2-block fading channel
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CHAPTER VI

CODES WITH ρmax 6= 1 FOR THE 2-BLOCK FADING CHANNEL

Although in the previous chapters we found easy ways to create codes sometimes for

fast or big changes on the channel we need to find a code with ρmax 6= 1. By plotting

the pairwise error probability we can see that the performance is not very sensitive

to changes of ρmax. It is very easy to show which codes are not optimal which means

which combination of columns is to be avoided in order to get a good code. These

codes have the worse performance according to the above probability of error because

they have absolute cross correlations equal to one. So from now on, the term non

optimal code refers to codes with some cross correlations between the codewords equal

to one.

Since we are dealing with the two block fading channel we must divide the

Hadamard matrix into two blocks. What we are trying to do is to select M
2

columns

from the Hadamard matrix to create a new first block and of course the remaining

columns create the second block. What applies for the first block applies for the

second block too due to construction(as far as metric spectrum). Any reshuffling of

the columns in a block results to a reshuffling of the rows, i.e. the code is the same.

The following algorithm gives all the combinations of columns that result to a non

optimal code.

1. We start with the Hadamard matrix HM divided as follows:

HM =

(
M
2

· · · 8 4 2 2

)
(6.1)

where the numbers note the number of columns involved in this grouping. Then

select one of the two columns from the group at the right and move to the left

by selecting the corresponding or complementary columns from the block to the
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Table I. Algorithm for the H16 matrix

Step 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Step 2 8 7 6 5 4 3 2 1

Step 3 4 3 2 1

Step 4 2 1

left. This involves k-1 steps to the left and a multiplication factor of two because

at every step we can choose either the corresponding or the complementary

columns. This step gives 2k−1 non optimal codes. By the terms corresponding

and complementary columns, we mean that if we choose the right column from

the most right block then from the next block to the left we can choose either

the right column(corresponding) or the left(complementary).

2. Repeat the previous step but first group the previous matrix into blocks of two

columns and consider each block as a column. Stop when there are only two

columns in the final matrix.

In Table I we see how the algorithm works for the H16 matrix. The vertical lines show

the grouping of the columns according to (6.1).

Using this algorithm we present in Table II as an example the non optimal codes

using the H8 Hadamard matrix. Unfortunately some of the combinations include

the systematic codes. The systematic columns of the Hadamard matrix HM are

M/2,M/4,. . .,2,1st (counting starts from zero).

As far as the rest of the codes in the case of the H8 matrix are all optimal. In

Fig. 53 we see how the pairwise error probability changes with ρ. In Fig. 54 we can

see the performance of an optimal code in the quasi-static channel and in the two

block fading channel. The achieving diversity is a result of the exploitation of the
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Table II. Non-optimum codes using the H8 Hadamard matrix

1st block 2nd block

1234 5678

1256 3478

1278 3456

1357 2468

1368 2457

1458 2367

1467 2358

independent fading between the first and the second part of the codeword.

In Figs. 55 and 56 we present the pairwise error probability of an optimum code

and the pairwise error probability of the worst code (from the codes with ρmax 6= 1).

If we avoid codes that have absolute cross correlations equal to one then all the other

codes achieve diversity but not all of them in an optimal way. The search for optimal

codes is sometimes very difficult due to complexity.
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Fig. 53. Pairwise error probability for all the values of ρ when n=16
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Fig. 55. Pairwise error probability of a code with ρmax = 0.25 (optimum) and

ρmax = 14/16 where k = 5
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CHAPTER VII

CONCLUSIONS

This work deals with the design and analysis of linear block codes based on Hadamard

matrices for block fading channels. Codes that are easy to find without search meth-

ods are presented. Codes with ρmax = 1/2 or with bounded ρmax achieve diversity by

exploiting the special characteristics of the block fading channel.

Analytically, codes that can be derived only by a simple selection of columns

from Hadamard matrices are presented. These codes do not have optimum metric

spectrum but their performance is very close. Furthermore easy transformations of

these codes can take place in order to use the code in different channel (quasi-static,2-

block or 4-block) with different rates.

Then we present a selective transmission scheme that exploits the diversity that

the code achieves in a block fading environment and improves the performance and

throughput efficiency of the code.
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APPENDIX A

PROOF OF THE PAIRWISE PROBABILITY FOR THE 2-BLOCK FADING

CHANNEL

The maximum likelihood detector of the problem can be shown to be

l (d) = arg max
d

(∣∣r1

H
d1

∣∣2 +
∣∣r2

H
d2

∣∣2
)

(A.1)

where the indexes 1 and 2 are for the first and second block of the codeword respec-

tively. Supposing the qth codeword dq was transmitted, the pairwise error probability

is the probability that the detector will choose say the dm codeword. So

Pw
2 = P

(
l (dq) − l (dm) < 0|dq transmitted

)
=

P

(∣∣r1
H

dq1

∣∣2 +
∣∣r2

H
dq2

∣∣2 −
∣∣r1

H
dm1

∣∣2 −
∣∣r2

H
dm2

∣∣2 < 0|dq transmitted

)

(A.2)

This is a problem solved in [18] with

D =

∣∣∣∣∣∣
r1

H
dq1︸ ︷︷ ︸

X1

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣
r2

H
dq2︸ ︷︷ ︸

X2

∣∣∣∣∣∣

2

−

∣∣∣∣∣∣
r1

H
dm1︸ ︷︷ ︸

Y1

∣∣∣∣∣∣

2

−

∣∣∣∣∣∣
r2

H
dm2︸ ︷︷ ︸

Y2

∣∣∣∣∣∣

2

(A.3)

and

Pb = Q1(α, b) − I0(αb)exp[−1

2
(α2 + b2)] (A.4)

+
I0(αb)exp

[
−1

2
(α2 + b2)

]

(1 + υ2/υ1)3

1∑

k=0




3

k




(
υ2

υ1

)k

where
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Q1(α, b) =

∫ ∞

b

xexp[−1

2
(α2 + x2)]I0(αx)dx (A.5)

I0(x) =
∞∑

k=0

(x/2)2k

(k!)2
, x > 0 (A.6)

In our case

υ1 =
√

Eσ2
a

4u2 + 1
n2u(1−ρ2)

− Eσ2
a

2u

υ2 =
√

Eσ2
a

4u2 + 1
n2u(1−ρ2)

+ Eσ2
a

2u

(A.7)

and

α = b = 0 (A.8)

where u = Enσ2σ2
α + 2σ4. Now from A.4 we get

Pw
2 =

1

2
− 3

4

√
Λ2 (1 − ρ2)

16 + 8Λ + Λ2 (1 − ρ2)
+

1

4

(√
Λ2 (1 − ρ2)

16 + 8Λ + Λ2 (1 − ρ2)

)3

(A.9)

where Λ = σ2
α

σ2 nE
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APPENDIX B

ρmax = 1/2 CODES

In this appendix we present some of the rate k/M block codes for the 2,4-block fading

channel using method 1 (sections A,B) and method 2 (subsection 2). The codes are

presented in the form of a row vector that contains the indices of HM .

1. Method 1

• 2-block codes

- k=3

c3 = [1, 2, 3, 8, 4, 5, 6, 7] (B.1)

- k=4

c4 = [1, 2, 3, 4, 5, 6, 15, 16, 7, 8, 9, 10, 11, 12, 13, 14] (B.2)

- k=5

c5 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 31, 32, 13, 14, 15, 16, (B.3)

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]

- k=6

c6=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,

23,24,57,58,59,60,61,62,63,64,25,26,27,28,29,30,31,32,33,34,

35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56]

(B.4)
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- k=7

c7=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,

113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,49,

50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,

73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,

96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112]

(B.5)

- k=8

c8=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,

24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,

46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,

68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,

90,91,92,93,94,95,96,225,226,227,228,229,230,231,232,233,234,235,

236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,

252,253,254,255,256,97,98,99,100,101,102,103,104,105,106,107,108,

109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,

125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,

141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,

157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,

173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,

189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,

205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,

221,222,223,224]

(B.6)
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• 4-block codes

- k=5

c5=[1,2,3,4,5,22,31,16,9,10,11,12,13,30,7,24,17,18,19,20,21,6,

15,32,25,26,27,28,29,14,23,8]
(B.7)

- k=6

c6=[1,2,3,4,5,6,7,8,9,10,43,44,61,62,31,32,17,18,19,20,21,22,23,

24,25,26,59,60,13,14,47,48,33,34,35,36,37,38,39,40,41,42,11,12,

29,30,63,64,49,50,51,52,53,54,55,56,57,58,27,28,45,46,15,16]

(B.8)

- k=7

c7=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,85,86,87,88,

121,122,123,124,61,62,63,64,33,34,35,36,37,38,39,40,41,42,43,44,45,

46,47,48,49,50,51,52,117,118,119,120,25,26,27,28,93,94,95,96,65,66,

67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,21,22,23,24,57,

58,59,60,125,126,127,128,97,98,99,100,101,102,103,104,105,106,107,

108,109,110,111,112,113,114,115,116,53,54,55,56,89,90,91,92,29,30,31,32]

(B.9)
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- k=8

c8=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,

25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,169,170,171,172,173,

174,175,176,241,242,243,244,245,246,247,248,121,122,123,124,125,126,

127,128,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,

85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,233,

234,235,236,237,238,239,240,49,50,51,52,53,54,55,56,185,186,187,188,

189,190,191,192,129,130,131,132,133,134,135,136,137,138,139,140,141,

142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,

159,160,161,162,163,164,165,166,167,168,41,42,43,44,45,46,47,48,113,

114,115,116,117,118,119,120,249,250,251,252,253,254,255,256,193,194,

195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,

212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,

229,230,231,232,105,106,107,108,109,110,111,112,177,178,179,180,181,

182,183,184,57,58,59,60,61,62,63,64]

(B.10)

2. Method 2

• 2-block codes

- k=3

c3 = [1, 2, 3, 8, 4, 5, 6, 7] (B.11)

- k=4

c4 = [1, 2, 3, 8, 9, 10, 11, 16, 4, 5, 6, 7, 12, 13, 14, 15] (B.12)
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- k=5

c5=[1,2,3,8,9,10,11,16,17,18,19,24,25,26,27,32,4,5,6,7,12,13,14,

15,20,21,22,23,28,29,30,31]
(B.13)

- k=6

c6=[1,2,3,8,9,10,11,16,17,18,19,24,25,26,27,32,33,34,35,40,41,42,

43,48,49,50,51,56,57,58,59,64,4,5,6,7,12,13,14,15,20,21,22,23,28,

29,30,31,36,37,38,39,44,45,46,47,52,53,54,55,60,61,62,63]

(B.14)

- k=7

c7=[1,2,3,8,9,10,11,16,17,18,19,24,25,26,27,32,33,34,35,40,41,42,

43,48,49,50,51,56,57,58,59,64,65,66,67,72,73,74,75,80,81,82,83,88,

89,90,91,96,97,98,99,104,105,106,107,112,113,114,115,120,121,122,

123,128,4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31,36,37,38,39,44,

45,46,47,52,53,54,55,60,61,62,63,68,69,70,71,76,77,78,79,84,85,86,87,

92,93,94,95,100,101,102,103,108,109,110,111,116,117,118,119,124,125,

126,127]

(B.15)
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- k=8

c8=[1,2,3,8,9,10,11,16,17,18,19,24,25,26,27,32,33,34,35,40,41,42,43,

48,49,50,51,56,57,58,59,64,65,66,67,72,73,74,75,80,81,82,83,88,89,90,

91,96,97,98,99,104,105,106,107,112,113,114,115,120,121,122,123,128,

129,130,131,136,137,138,139,144,145,146,147,152,153,154,155,160,161,

162,163,168,169,170,171,176,177,178,179,184,185,186,187,192,193,194,

195,200,201,202,203,208,209,210,211,216,217,218,219,224,225,226,227,

232,233,234,235,240,241,242,243,248,249,250,251,256,4,5,6,7,12,13,14,

15,20,21,22,23,28,29,30,31,36,37,38,39,44,45,46,47,52,53,54,55,60,61,

62,63,68,69,70,71,76,77,78,79,84,85,86,87,92,93,94,95,100,101,102,

103,108,109,110,111,116,117,118,119,124,125,126,127,132,133,134,135,

140,141,142,143,148,149,150,151,156,157,158,159,164,165,166,167,172,

173,174,175,180,181,182,183,188,189,190,191,196,197,198,199,204,205,

206,207,212,213,214,215,220,221,222,223,228,229,230,231,236,237,238,

239,244,245,246,247,252,253,254,255]

(B.16)

• 4-block codes

- k=5

c5=[1,2,3,4,5,22,31,16,9,10,11,12,13,30,7,24,17,18,19,20,21,6,

15,32,25,26,27,28,29,14,23,8]
(B.17)

- k=6

c6=[1,2,3,4,5,22,31,16,33,34,35,36,37,54,63,48,9,10,11,12,13,30,

7,24,41,42,43,44,45,62,39,56,17,18,19,20,21,6,15,32,49,50,51,52,

53,38,47,64,25,26,27,28,29,14,23,8,57,58,59,60,61,46,55,40]

(B.18)
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- k=7

c7=[1,2,3,4,5,22,31,16,33,34,35,36,37,54,63,48,65,66,67,68,69,86,

95,80,97,98,99,100,101,118,127,112,9,10,11,12,13,30,7,24,41,42,43,

44,45,62,39,56,73,74,75,76,77,94,71,88,105,106,107,108,109,126,103,

120,17,18,19,20,21,6,15,32,49,50,51,52,53,38,47,64,81,82,83,84,85,70,

79,96,113,114,115,116,117,102,111,128,25,26,27,28,29,14,23,8,57,58,

59,60,61,46,55,40,89,90,91,92,93,78,87,72,121,122,123,124,125,110,119,104]

(B.19)

- k=8

c8=[1,2,3,4,5,22,31,16,33,34,35,36,37,54,63,48,65,66,67,68,69,86,

95,80,97,98,99,100,101,118,127,112,129,130,131,132,133,150,159,

144,161,162,163,164,165,182,191,176,193,194,195,196,197,214,223,

208,225,226,227,228,229,246,255,240,9,10,11,12,13,30,7,24,41,42,

43,44,45,62,39,56,73,74,75,76,77,94,71,88,105,106,107,108,109,126,

103,120,137,138,139,140,141,158,135,152,169,170,171,172,173,190,

167,184,201,202,203,204,205,222,199,216,233,234,235,236,237,254,

231,248,17,18,19,20,21,6,15,32,49,50,51,52,53,38,47,64,81,82,83,

84,85,70,79,96,113,114,115,116,117,102,111,128,145,146,147,148,149,

134,143,160,177,178,179,180,181,166,175,192,209,210,211,212,213,

198,207,224,241,242,243,244,245,230,239,256,25,26,27,28,29,14,23,

8,57,58,59,60,61,46,55,40,89,90,91,92,93,78,87,72,121,122,123,

124,125,110,119,104,153,154,155,156,157,142,151,136,185,186,187,

188,189,174,183,168,217,218,219,220,221,206,215,200,249,250,251,

252,253,238,247,232]

(B.20)
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APPENDIX C

RATE CHANGE FOR ρMAX = 1/2 CODES

First we prove that the codes created in section 2 have cross correlations ρ = {0, 1/2}

and then prove that with rate change the ρmax stays close to 1/2. For the 2-block

fading channel in order to create a k/M rate code (we present the procedure only for

the first block) we start from the (k − 1)/(M/2) rate code and the first block is

code2 =




code1 code1

code1 −code1


 (C.1)

where code1 is the first block of the rate (k − 1)/(M/2) code with dimensions M/2×

M/4 and code2 is the first block of the rate k/M code. Code1 has cross correlations

ρ = {0, 1/2} and corresponding Hamming distances dH = {M/8, {M/16, 3M/16}}.

Here we do not take into account the multiplicity of every Hamming distance (how

many times a specific Hamming distance occurs between two codewords). We only

want to prove that the cross correlations between codewords of code2 remain 0 and

1/2.

The codewords of code2 di, i = 1, 2, . . . M/2 or the codewords dj, j = M/2 +

1,M/2+2, . . . M between them have Hamming distances dH = {M/4, {M/8, 3M/8}}

and from ρ = |1 − 4dH/M | the cross correlations are ρ = {0, 1/2}. It is obvious that

the Hamming distance between any codeword with i numbering and any codeword

with j numbering is dH = M/4 and as a result ρ = 0. So code2 has a spectrum

ρ = {0, 1/2}.
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To prove how ρmax changes with the rate of the code we start from the code




code1

code1


 (C.2)

which has ρmax = 1 and we add two columns at a time until we create code2.

This means we start from a rate k/(M/4) code and go to k/(M/2) rate code per

block. Since the procedure that we use here is recursive and starts with code1 =

first block of H8 if we divide the code into blocks of 4 columns the Hamming

distances between codewords are dH = {1, 2, 3} and if two codewords have one of

those values in one block then they have the same value in the other block too.

By taking this into consideration let’s divide the second half of code2 into blocks

of four columns and t is the number of columns added to the code in C.2. So

4m ≤ t ≤ 4(m + 1),m = 0, 1, . . . ,M/16 − 1.

Again we split the analysis to the code with codewords from code2 with di = 1, 2, . . . ,M/2

and dj = M/2 + 1,M/2 + 2, . . . ,M (the cross correlation spectrum of these codes

is the same) and the cross correlation spectrum between codewords with i and j

numbering. For the first case and for a random m (t = 4m) the Hamming distances

are dH = {M/16 + m,M/8 + 2m, 3M/16 + 3m} and from ρ = |1 − 2dH/n| we get

ρ = {1/2, 0, 1/2} respectively. For t = 4m + 2 the minimum Hamming distances are

dH = {M/16 + m,M/8 + 2m, 3M/16 + 3m} and

ρ =

{∣∣∣∣1 − M + 16m

2(M + 16m + 8)

∣∣∣∣ ,

∣∣∣∣1 − M + 16m

(M + 16m + 8)

∣∣∣∣ ,

∣∣∣∣1 − 3(M + 16m)

2(M + 16m + 8)

∣∣∣∣
}

(C.3)

For t = 4(m + 1) the Hamming distances are dH = {M/16 + m + 1,M/8 +

2(m + 1), 3M/16 + 3(m + 1)} and ρ = {1/2, 0, 1/2}. For the case of codewords with

i and j numbering the Hamming distances are for every addition of two columns
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dH = {0, 2, 4, . . . ,M/4} and the corresponding cross correlations are

ρ = {1, |1 − 16/(M + 8)|, |1 − 32/(M + 16)|, . . . , 0} (C.4)

Combining the previous results in order to find ρmax we get the figures 13,14 and

15.
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APPENDIX D

MATLAB CODES

1. This program creates codes for the 2-block fading channel using method-1 and

method- 2 for k=7 and n=88

close all;

clear;

k=7;

M=2^k;

n=M/2;

cor=44; %number of columns per block

H=hadamard(M)*-1;

%************************method-1************************

u=1;

for i=1:3*M/8

colnmd1b1(u)=i;

colnmd1b2(u)=mod(i+M/2,M);

u=u+1;

end

for i=(M-M/8+1):M

colnmd1b1(u)=i;

colnmd1b2(u)=mod(i+M/2,M);

u=u+1;

end
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colnmd1b2=sort(colnmd1b2);

for i=1:length(colnmd1b1)

codemd1b1(:,i)=H(:,colnmd1b1(i));

codemd1b2(:,i)=H(:,colnmd1b2(i));

end

code788md1=[codemd1b1,codemd1b2];

%**********************************************************

%Kf:all the 2^k binary combinations of length k

for i=2:M K(i)=i-1;end

K=dec2bin(K,k);

for i=1:M

for j=1:k

Kf(i,j)=str2double(K(i,j));

end

end

%**************************method-2*************************

M2=8;

u=1;

for i=1:3*M2/8

colnmd2b1(u)=i;

colnmd2b2(u)=mod(i+M2/2,M2);

u=u+1;

end

for i=(M2-M2/8+1):M2

colnmd2b1(u)=i;

colnmd2b2(u)=mod(i+M2/2,M2);



87

u=u+1;

end

colnmd2b2=sort(colnmd2b2);

for j=1:k-3

help1=colnmd2b1+M2;

colnmd2b1=[colnmd2b1,help1];

help2=colnmd2b2+M2;

colnmd2b2=[colnmd2b2,help2];

M2=M2*2;

end

for i=1:length(colnmd2b1)

codemd2b1(:,i)=H(:,colnmd2b1(i));

codemd2b2(:,i)=H(:,colnmd2b2(i));

end

codemd2b1=codemd2b1(:,1:cor);

codemd2b2=codemd2b2(:,1:cor);

code788md2=[codemd2b1,codemd2b2];

%************************************************************

%creates the generator matrix

codeb=(code788md2+1)/2;

for i=1:M

if sum(Kf(i,:))==1 [a,b]=max(Kf(i,:));g788md2(b,:)=codeb(i,:);end;

end

2. This program creates codes for the 4-block fading channel using method-2 for

k=7 and n=96
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close all;

clear;

k=7;

M=2^k;

n=M/4;

cor=24; %number of columns per block

H=hadamard(M)*-1;

%******************************************************

%Kf:all the 2^k binary combinations of length k

for i=2:M K(i)=i-1;end

K=dec2bin(K,k);

for i=1:M

for j=1:k

Kf(i,j)=str2double(K(i,j));

end

end

%*************************method-2*********************

%results from method 1 for k=4

block1=[1,2,3,4,5,22,31,16];

block2=[9,10,11,12,13,30,7,24];

block3=[17,18,19,20,21,6,15,32];

block4=[25,26,27,28,29,14,23,8];

M2=32;

for j=1:k-5

help1=block1+M2;
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block1=[block1,help1];

help2=block2+M2;

block2=[block2,help2];

help3=block3+M2;

block3=[block3,help3];

help4=block4+M2;

block4=[block4,help4];

M2=M2*2;

end

for i=1:length(block1)

codeb1(:,i)=H(:,block1(i));

codeb2(:,i)=H(:,block2(i));

codeb3(:,i)=H(:,block3(i));

codeb4(:,i)=H(:,block4(i));

end

codeb1=codeb1(:,1:cor);

codeb2=codeb2(:,1:cor);

codeb3=codeb3(:,1:cor);

codeb4=codeb4(:,1:cor);

code796md2=[codeb1,codeb2,codeb3,codeb4];

%*****************************************************

%creates the generator matrix

codeb=(code796md2+1)/2;

for i=1:M if sum(Kf(i,:))==1

[a,b]=max(Kf(i,:));g796md2(b,:)=codeb(i,:);end;

end
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3. This program simulates the performance of the code with k=7 and n=88 in a

2-block fading channel

close all;

clear;

k=7;

n=88;

M=2^k;

%******************************************************************

load code788bf2m;

load g788bf2m;

code=code788bf2m;

codeb=(code+1)/2;

g=g788bf2m;

%******************************************************************

avsnrb = 0:5:25;

snrb = 10.^(avsnrb./10);

rate=k/n;

var1 = 1;

var2= snrb.*rate;

nloop=10000;

for u=1:length(snrb)

%******************** START CALCULATION 7/88 code******************

nloop=nloop; % Number of simulation loops
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werror=0;

for iii=1:nloop

%******************** Data generation ***********************

data=rand(1,k)>0.5; % rand: built in function

data=mod(data*g,2);

%******************** BPSK Modulation ***********************

data1=data.*2-1;

%********************** Fading channel **********************

fader = sqrt(var2(u))*randn(1);

fadei = sqrt(var2(u))*randn(1);

fade = fader+fadei*j;

ifadea = fade.*data1(1:n/2);

fader = sqrt(var2(u))*randn(1);

fadei = sqrt(var2(u))*randn(1);

fade = fader+fadei*j;

ifadeb = fade.*data1(n/2+1:n);

%************ Add White Gaussian Noise (AWGN) ***************

awgnch1 = sqrt(var1)*randn(1,n);

awgnch2 = sqrt(var1)*randn(1,n);

awgnch = awgnch1+awgnch2*j;

data4a=ifadea+awgnch(1:n/2);

data4b=ifadeb+awgnch(n/2+1:n);

%***************** Maximum likelihood decoding **************

for i=1:M

h11(i)=abs(data4a*transpose(code(i,1:n/2)))^2;
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h12(i)=abs(data4b*transpose(code(i,n/2+1:n)))^2;

h1(i)=h11(i)+h12(i);

end

[Q,W]=max(h1);

demodata=codeb(W,:);

%******************** Word Error Rate (WER) *****************

noe2=sum(abs(data-demodata)); % sum: built in function

if noe2~=0 werror=werror+1;end

end % for iii=1:nloop

%********************** Output result ***********************

wer = werror/nloop; wer788bf2m(u)=wer; end

%******************** end of file ***************************

4. This program simulates the performance of the code with k=7 and n=96 in a

4-block fading channel

close all;

clear;

k=7;

n=96;

M=2^k;

%****************************************************************

load code796bf4m;

load g796bf4m;

code=code796bf4m;
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codeb=(code+1)/2;

g=g796bf4m;

%****************************************************************

avsnrb = 0:5:20;

snrb = 10.^(avsnrb./10);

rate=k/n;

var1 = 1;

var2= snrb.*rate;

nloop=10000;

for u=1:length(snrb)

%****************** START CALCULATION 7/96 code*****************

nloop=nloop; % Number of simulation loops

werror=0; for iii=1:nloop

%******************** Data generation ***********************

data=rand(1,k)>0.5; % rand: built in function

data=mod(data*g,2);

%******************** BPSK Modulation ***********************

data1=data.*2-1;

%********************** Fading channel **********************

fader = sqrt(var2(u))*randn(1);

fadei = sqrt(var2(u))*randn(1);

fade = fader+fadei*j;

ifadea = fade.*data1(1:n/4);

fader = sqrt(var2(u))*randn(1);

fadei = sqrt(var2(u))*randn(1);

fade = fader+fadei*j;
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ifadeb = fade.*data1(n/4+1:n/2);

fader = sqrt(var2(u))*randn(1);

fadei = sqrt(var2(u))*randn(1);

fade = fader+fadei*j;

ifadec = fade.*data1(n/2+1:3*n/4);

fader = sqrt(var2(u))*randn(1);

fadei = sqrt(var2(u))*randn(1);

fade = fader+fadei*j;

ifaded = fade.*data1(3*n/4+1:n);

%************ Add White Gaussian Noise (AWGN) *************

awgnch1 = sqrt(var1)*randn(1,n);

awgnch2 = sqrt(var1)*randn(1,n);

awgnch = awgnch1+awgnch2*j;

data4a=ifadea+awgnch(1:n/4);

data4b=ifadeb+awgnch(n/4+1:n/2);

data4c=ifadec+awgnch(n/2+1:3*n/4);

data4d=ifaded+awgnch(3*n/4+1:n);

%************* Maximum likelihood decoding *****************

for i=1:M

h11(i)=abs(data4a*transpose(code(i,1:n/4)))^2;

h12(i)=abs(data4b*transpose(code(i,n/4+1:n/2)))^2;

h13(i)=abs(data4c*transpose(code(i,n/2+1:3*n/4)))^2;

h14(i)=abs(data4d*transpose(code(i,3*n/4+1:n)))^2;

h1(i)=h11(i)+h12(i)+h13(i)+h14(i);

end

[Q,W]=max(h1);
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demodata=codeb(W,:);

%***************** Word Error Rate (WER) ****************

noe2=sum(abs(data-demodata)); % sum: built in function

if noe2~=0 werror=werror+1;end

end % for iii=1:nloop

%********************** Output result **********************

wer = werror/nloop; wer796bf4m(u)=wer; end

%******************** end of file **************************

5. This program simulates the performance of the code with k=6 and n=64 in a 4-

block fading channel using the selective transmission scheme with two thresholds

close all;

clear;

k=6;

n=64;

M=2^k;

%*****************************************************************

load code664bf4m;

load g664bf4m;

code=code664bf4m;

codeb=(code+1)/2;

g=g664bf4m;

%*****************************************************************

avsnrb = 0:5:20;
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snrb = 10.^(avsnrb./10);

rate=k/n;

var1 = 1;

var2= snrb.*rate;

nloop=100000000;

thresh=[0.3 0.4 0.5 0.6 0.6];

thresh2=[3000 3000 3000 4000 5000];

%*****************************************************************

for u=1:length(snrb)

%****************** START CALCULATION 6/64 code*******************

nloop=nloop; % Number of simulation loops

werror=0; for iii=1:nloop

%******************** Data generation ***********************

data=rand(1,k)>0.5; % rand: built in function

data=mod(data*g,2);

%******************** BPSK Modulation ***********************

data1=data.*2-1;

%********************** Fading channel **********************

fader = sqrt(var2(u))*randn(1);

fadei = sqrt(var2(u))*randn(1);

fade = fader+fadei*j;

ifadea = fade.*data1(1:n/4);

fader = sqrt(var2(u))*randn(1);

fadei = sqrt(var2(u))*randn(1);

fade = fader+fadei*j;

ifadeb = fade.*data1(n/4+1:n/2);
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fader = sqrt(var2(u))*randn(1);

fadei = sqrt(var2(u))*randn(1);

fade = fader+fadei*j;

ifadec = fade.*data1(n/2+1:3*n/4);

fader = sqrt(var2(u))*randn(1);

fadei = sqrt(var2(u))*randn(1);

fade = fader+fadei*j;

ifaded = fade.*data1(3*n/4+1:n);

%************ Add White Gaussian Noise (AWGN) **************

awgnch1 = sqrt(var1)*randn(1,length(ifadea));

awgnch2 = sqrt(var1)*randn(1,length(ifadea));

awgnch = awgnch1+awgnch2*j;

data4a=ifadea+awgnch;

awgnch1 = sqrt(var1)*randn(1,length(ifadeb));

awgnch2 = sqrt(var1)*randn(1,length(ifadeb));

awgnch = awgnch1+awgnch2*j;

data4b=ifadeb+awgnch;

awgnch1 = sqrt(var1)*randn(1,length(ifadec));

awgnch2 = sqrt(var1)*randn(1,length(ifadec));

awgnch = awgnch1+awgnch2*j;

data4c=ifadec+awgnch;

awgnch1 = sqrt(var1)*randn(1,length(ifaded));

awgnch2 = sqrt(var1)*randn(1,length(ifaded));

awgnch = awgnch1+awgnch2*j;

data4d=ifaded+awgnch;

%**************** Maximum likelihood decoding *****************
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%********************** 1-block *******************************

for i=1:M

h11(i)=abs(data4a*transpose(code(i,1:n/4)))^2;

h1(i)=h11(i);

end

help1=sort(h1);

help2=(help1(M)-help1(M-1))/(help1(M)-help1(1));

help3=(help1(M)-help1(M-1))/(help1(M)-help1(1))*cov(h1);

if help2<thresh(u) & help3<thresh2(u) noe2=1;else noe2=0;end

[Q,W]=max(h1);demodata=codeb(W,:);

noe3=sum(abs(data(1:n/4)-demodata(1:n/4)));

%********************** 2-blocks *******************************

if noe2~=0

for i=1:M

h12(i)=abs(data4b*transpose(code(i,n/4+1:n/2)))^2;

h1(i)=h11(i)+h12(i);

end

help1=sort(h1);

help2=(help1(M)-help1(M-1))/(help1(M)-help1(1));

help3=(help1(M)-help1(M-1))/(help1(M)-help1(1))*cov(h1);

[Q,W]=max(h1);demodata=codeb(W,:);

noe3=sum(abs(data(1:n/2)-demodata(1:n/2)));

if (help2<thresh(u) & help3<thresh2(u) ) noe2=1;

else noe2=0;end

end

%*************************** 3-blocks *************************
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if noe2~=0

for i=1:M

h13(i)=abs(data4c*transpose(code(i,n/2+1:3*n/4)))^2;

h1(i)=h11(i)+h12(i)+h13(i);

end

help1=sort(h1);

help2=(help1(M)-help1(M-1))/(help1(M)-help1(1));

help3=(help1(M)-help1(M-1))/(help1(M)-help1(1))*cov(h1);

[Q,W]=max(h1);demodata=codeb(W,:);

noe3=sum(abs(data(1:3*n/4)-demodata(1:3*n/4)));

if (help2<thresh(u) & help3<thresh2(u) ) noe2=1;

else noe2=0;end

end

%**************************** 4-blocks ***********************

if noe2~=0

for i=1:M

h14(i)=abs(data4d*transpose(code(i,3*n/4+1:n)))^2;

h1(i)=h11(i)+h12(i)+h13(i)+h14(i);

end

[Q,W]=max(h1);demodata=codeb(W,:);

noe3=sum(abs(data(1:n)-demodata(1:n)));

end

%******************** Word Error Rate (WER) ******************

if noe3~=0 werror=werror+1;end

end % for iii=1:nloop
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%********************** Output result ************************

wer = werror/nloop; wer664w2thr(u)=wer; end

%******************** end of file ****************************
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APPENDIX E

NONCOHERENT MAXIMUM LIKELIHOOD DETECTOR FOR THE TWO

BLOCK FADING CHANNEL

The discrete time vector model for the two block fading channel is according to 3.1:

r1 = α1x1 + ν1

r2 = α2x2 + ν2 (E.1)

where x =
√

Esd, d = [d1,d2]
T = [d10, d11, . . . , d1(n/2−1), d2n/2, . . . , d2(n−1)]

T . The

fading variables αi are modelled as zero-mean, circularly symmetric, complex Gaus-

sian random variables of variance σ2
α and are independent of each other. The vectors

νi are i.i.d. zero mean, circularly symmetric complex Gaussian random variables with

variance σ2 = N0. Es is the energy per symbol. The modulation symbols dj take

values from the binary set {-1,1}. The maximum likelihood detector is given by

m̂ML = arg max
x

[ln p(r/x)] (E.2)

where p(r/x) = p(r1/x1)p(r2/x2) and

p(ri/xi) = c exp

[
−1

2
(ri − µri/xi

)HCov(ri/xi)
−1(ri − µri/xi

)

]
(E.3)

where c is a constant and i = 1, 2. Then

ln p(r/x) = −(r1 − µr1/x1
)HCov(r1/x1)

−1(r1 − µr1/x1
) (E.4)

−(r2 − µr2/x2
)HCov(r2/x2)

−1(r2 − µr2/x2
)

with µri/xi
= 0 and Cov(ri/xi) = N0In/2 + xiσ

2
αxi

H . Using the matrix inversion
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lemma we have for the inverse of the covariance matrix:

Cov(ri/xi)
−1 =

In/2

N0

− σ2
α

N0

xi

[
In/2N0 + xi

Hσ2
αxi

]
xi

H (E.5)

Then the detector is of the form

ln p(r/x) = −r1

H (c1 − c2x1x1

H) r1 − r2

H (c3 − c4x2x2

H) r2 (E.6)

After dropping all the terms that are not sequence dependent we get

d̂ = arg max
d

|r1

H
d1|2 + |r2

H
d2|2 (E.7)
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