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ABSTRACT

Delineating Wetlands Using Geographic Information System and Remote Sensing

Technologies. (December 2005)

Julie Villeneuve, Dipl., Ecole Polytechnique Feminine

Chair of Advisory Committee: Dr. Ann Kenimer

During the last century wetlands have considerably decreased. The principal cause

is urbanization, especially in large urban regions such as the Houston area. In order

to protect the remaining wetlands, they have to be monitored carefully. However

monitoring wetland is a difficult and time-demanding task because it has to be done

repetitively on large areas to be effective. This study was conducted to determine if

Geographical Information System (GIS) and remote sensing technologies would allow

accurate monitoring of wetland as a less time-consuming method. With this idea,

a suitability model was developed to delineate wetlands in the Houston area. This

model combined GIS and remote sensing technologies. The data used for this study

were as high spatial resolution as possible and were generally easy to obtain. This

suitability model consisted of four submodels: hydrology, soil, vegetation and multi-

attribute. Each submodel generated a Wetland Suitability Index (WSI). Those WSI

were summed to obtain a general WSI. The suitability model was calibrated using

half of the study area. During calibration, the general model was evaluated as well as

each individual index. Generally, the model showed a lack of sensitivity to changes.

However, the model was slightly modified to improve the delineation of upland wet-

lands by increasing the weight of the soil submodel. This model was validated using

the second half of the study area. The validation results improved a bit compared to

the calibration results; however they remained weak. It was demonstrated that the

model does not favor riverine wetlands over upland wetlands, nor large size wetlands.
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The model ground truth data were evaluated and were sufficiently proven to be up to

date. Those results indicated that the weakness of the model must come from inac-

curacy in the input data. Therefore, the study showed that while existing computing

capacity supports remote delineation, spatial accuracy is still insufficient to perform

correct wetland delineation using remote sensing and GIS technologies.
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CHAPTER I

INTRODUCTION

During the last century wetlands have considerably decreased. In Texas the loss of

wetlands between the 1780’s and the 1980’s was estimated to be 52% [1]. The princi-

pal cause is urbanization, especially in large urban regions such as the Houston area.

Wetlands support biodiversity of both plants and animals. They shelter en-

dangered species and play a major role in water resource management by filtering

out chemicals and fertilizers [2]. They also act as buffers during storms and floods,

preventing downstream damage. Consequently, many conservation programs such

as the Texas Prairie Wetlands Project developed by the Texas Parks and Wildlife

Department have been created to better characterize, monitor, and preserve these

exceptional features.

The U.S. Army Corps of Engineers (USACE) and the Environmental Protec-

tion Agency (EPA) jointly define wetlands as: “Those areas that are inundated or

saturated by surface or ground water at a frequency and duration sufficient to sup-

port, and that under normal circumstances do support, a prevalence of vegetation

typically adapted for life in saturated soil conditions. Wetlands generally include

swamps, marshes, bogs, and similar areas” [3]. This definition is founded on three

major wetland characteristics: predominance of hydric soils, presence of hydrophytic

vegetation and specific hydrologic conditions (saturation with water during part of

the growing season) [4].

Those characteristics are defined as follow:

• Hydric Soils: Nationally, there are over 3,000 types of soil that can occur in

This thesis follows the style of IEEE Transactions on Automatic Control.
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a wetland. Those soils are called hydric soils and are defined by the Natural

Resources Conservation Service (NRCS) [5] as “soils that formed under condi-

tions of saturation, flooding, or ponding long enough during the growing season

to develop anaerobic conditions in the upper part of the soil”. When a soil is

flooded, water stops atmospheric oxygen from penetrating the soil. Soil mi-

crobes are, therefore, required to use other sources of oxygen such as reduction

of iron compounds. This reduction creates gray features that are characteris-

tics of hydric soils [6]. Hydric soils lists are provided by the NRCS [5]. These

lists were established using the criteria that were developed by the National

Technical Committee for Hydric Soils (NTCHS).

• Hydrophytic Vegetation: Plants that grow in wetland conditions are known

as hydrophytic vegetation and defined by the Environmental Laboratory [3]

as “the total sum of macrophytic plant life that occurs in areas where the

frequency and duration of inundation or soil saturation produce permanently or

periodically saturated soils of sufficient duration to exert a controlling influence

on the plant species present”. Because of adaptations that can be morphological,

physiological or reproductive these plants survive when submerged by water.

Hydrophytic plant lists are provided by the National Wetlands Inventory (NWI)

[2] nationally or regionally.

• Hydrology: The wetland delineation manual [3] identifies the term “wetland

hydrology” as including “all hydrologic characteristics of areas that are peri-

odically inundated or have soils saturated to the surface at some time during

the growing season.” More specifically, states of inundation and/or saturation

should occur for more than 12.5 percent of the growing season. The grow-

ing season is defined as: “the portion of the year when soil temperatures at
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19.7in (50cm) below surface are higher than biological zero (5oC). However, it

generally is to be determined by the number of killing frost-free days” [3].

Water saturation provokes soil reduction and plant adaptation. Hence, these

three wetland characteristics interact with each other. Therefore, to accurately de-

lineate wetlands all three characteristics have to be considered, as described in the

USACE Wetland Delineation Manual, Technical Report [3]. The USACE Wetland

Delineation Manual, Technical Report is the main reference used in wetland delin-

eation. It was originally created to provide guidelines and methods to determine

whether an area is a wetland for purposes of Section 404 of the Clean Water Act

(formerly known as the Federal Water Pollution Control Act). This act was ratified

by the US Congress in response to US waters degradation and seeks to maintain and

restore them. Section 404 of this act establishes a program to regulate the discharge

of dredged and fill material into waters, including wetlands. The wetland delineation

manual does not establish wetland classification.

Two other publications define major classifications for wetlands: Land Use And

Land Cover Classification System For Use With Remote Sensor Data [7] and Clas-

sification of Wetlands and Deepwater Habitats of the United States [4]. Anderson’s

classification was created to generally classify any type of land-use or land-cover in

the United States. The objective was to develop a homogeneous classification for

any location in the US while still keeping flexibility. This system uses a four-level

code to describe land-use and cover. The first two levels of the classification are de-

fined and the last two levels are free for any specialization. Wetlands are represented

in level one by the index 6. In level two, they are divided into forested wetlands

(index 61) and nonforested wetlands (index 62). Forested wetlands are defined as

“wetlands dominated by woody vegetation”. Nonforested wetlands are defined as
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“wetlands dominated by wetland herbaceous vegetation or nonvegetated” [7]. This

classification is the one used by the USGS to establish the National Land Cover Data

(NLCD) derived from images acquired by Landsat sensor. The NWI classification

was created by wetland ecologists along with private individuals and organizations

and local, state, and federal agencies. It is a classification specialized for wetlands

and deep water habitats. It was adopted by the NWI in 1977. It is divided into

Systems, Subsystems, Classes, Subclasses, and Dominance Types. The five systems

are: Marine, Estuarine, Riverine, Lacustrine and Palustrine [4]. This classification is

used by the NWI to establish wetland maps.

The NWI maps are commonly-used references for identification and location of

jurisdictional wetlands. Jurisdictional wetlands are identified using field indicators

and procedures determined by federal or local authorities such as the USACE [8].

In Texas, the NWI maps were developed from 1992, 1:65,000 scale photography and

thus represent wetlands status in 1992.

Monitoring and maintaining wetlands requires constant attention. The NWI

maps present wetlands status in 1992, but the situation has changed since. It is a

difficult task to monitor changes in wetland areas over time because it has to be done

repetitively on large areas to be effective. This implies processing a large amount

of geographic data which requires long processing times. Handling large amounts of

geographic data is the main function of Geographic Information System (GIS) and

remote sensing technologies. For that reason, they appear to be appropriate tools to

monitor wetlands.

The procedure applied to establish the NWI maps in 1992 used high-altitude

aerial photography as a primary data source rather than satellite imagery (Landsat).

The main arguments for this procedure were the lack of spatial accuracy at that time

and the prohibitively high cost of computers powerful enough for data processing and
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analysis [9]. However, this is no longer a problem since computers become more effi-

cient day by day. In the last few decades the number of GIS and remote sensing users

has increased considerably, resulting in data cost reduction and better data accuracy.

A. Background

Delineating and classifying wetlands is a complicated task because wetlands are

widely spread across the landscape and sometimes difficult to access. Aerial pho-

tographs were initially used for this task [9], [10], [11]. They are easy to obtain, the

spatial and temporal resolutions can be chosen, and the prices are reasonable [9].

Their manual classification is very efficient because human beings can identify and

interpret context, edges, texture, and tonal variation in color [12]. An automated

classification cannot take advantage of all these characteristics. On the other hand,

manual classification is extremely time consuming and requires a well-trained opera-

tor [13], [14]. In addition, employing multiple operators might introduce undesirable

heterogeneity in results.

Automated classification of wetlands using satellite data may be a viable alter-

native to shorten processing time. When the NWI were first developed, satellite data

were too expensive, difficult to obtain, required large data storage resources and un-

usually powerful computers [9]. However, concurrent with the development of remote

sensing, computers and data storage capabilities improved and can now handle such

data. In addition, the number of satellites has increased and their technology has

improved, leading to cheaper prices and better data accessibility. Some of the lat-

est sensors are very promising. Hyperspectral sensors (e.g. AVIRIS) collect tens to

hundreds of narrow spectral bands nearly simultaneously. Such information could
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enable identification of individual wetland plant species and changes between plants

of the same specie, for example one subject to stress [15], [16]. Radar sensors (e.g.

ENVISAT, ERS, RADARSAT and JERS 1) are active sensors and have major ad-

vantages: they can acquire images both day and night, they function through clouds,

mist, fog or smoke, and they measure the physical characteristics and geometry of

the objects observed [17], [18], [19]. Sensors with very fine spatial resolution such

as IKONOS (one meter for panchromatic and four meter for multispectral) may also

prove useful for wetland delineation. However these latest systems are still emerging

and, therefore, their data are still very expensive.

The Landsat program has been in place for several years and its data have been

used with success in many studies [14], [11], [20], [21], [9], [22], [23]. Landsat data are

inexpensive or free in the United States, are not computer-demanding, and have fairly

respectable spatial accuracy (30m pixel). The Thematic Mapper (TM) bands relate

water penetration, discriminating vegetation type and vigor, plant and soil moisture

measurements [12]. Their classification has been shown adequate for wetland vegeta-

tion detection [21], [11]. The TM classification are varied and include unsupervised

[11], [14], supervised [22], hybrid [21] or tasseled cap [21], [20].

Wetlands have spatial characteristics such as low slopes or drainage proximity

that can be efficiently managed using GIS. Therefore, combining information derived

from Landsat classification with GIS data should improve remote wetland delineation.

Using soil data, Anger [14] indeed improved the accuracy of an unsupervised TM clas-

sification by eight percent. To delineate forest wetlands in Maine, Sader et al. [21]

improved an unsupervised TM classification by using NWI maps, soil data, Digital

Elevation Model (DEM) and drainage proximity data. However, by using NWI maps

as input data, the model no longer detected forested wetlands in the study area, but

it did determine which of the wetlands defined by the NWI maps were forested wet-
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lands. This GIS rule-based model was developed with ERDAS GISMO. It consisted

of four layers: one for each GIS data. Each layer had a weight assigned arbitrarily:

ten for the NWI maps, eight for the soils, six for slope less than five percent, and four

for locations within a 90m buffer around the water bodies. The TM classification was

given a weight of 100. These weights favored the vegetation factor, even though hydric

soils and hydrology are equally important factors in wetland delineation [21]. The

hydrology factor was represented by a 90m buffer around the water bodies. It might

have strengthened the model to consider flow accumulation in addition to drainage

proximity.

In 2000, Earley [24] developed a predictive GIS model to assess the extent of wet-

land loss in the Richmond catchment of New South Wales. The model consisted of a

multi-attribute, drainage proximity and flow accumulation submodels. The drainage

proximity submodel established a series of buffers (150, 300 and 450m) around wa-

ter bodies. The flow accumulation submodel used the hydrologic analysis functions

available in ArcGIS Spatial Analyst to select the areas with highest flow accumulation

(defined by flow accumulation values greater than one standard deviation above the

mean). The combination of the drainage proximity submodel and the flow accumula-

tion submodel presents a good hydrologic approach to wetland delineation. Earley’s

study [24], however, considered that the location of vegetation species was determined

by specific local physical characteristics and, therefore, neglected to use a vegetation

submodel. In conclusion, this predictive GIS model accentuated the hydrology factor

and underestimated the vegetation factor.
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B. Objectives

• The first objective of this study was to create a suitability model to delineate

wetlands in the Houston area. This model combined GIS and remote sensing

technologies. Joining these technologies was predicted to provide a faster and

easier way to delineate wetlands.

• A second objective was to establish if this methodology could provide satisfying

spatial accuracy and low cost processes. If this objective was not fulfilled, the

reasons why and the improvements necessary to fulfill the objective had to be

determined.

This overall goal was to delineate general wetlands. General wetlands are defined

using the three major characteristics of wetlands: soil, vegetation and hydrology.

However, field data are not used. General wetlands are not limited to jurisdictional

wetlands. To determine jurisdictional wetlands (e.g. NWI maps), field indicators are

necessary. With the absence of recent wetland location data in this study area, the

suitability model was calibrated and validated using 1999 wetland locations deter-

mined by the Spatial Science Laboratory.
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CHAPTER II

MODEL DEVELOPMENT

A. Synopsis

1. Study Area

The study area is located south of Houston, Texas as shown in Figure 1. It spans

three counties: Harris, Galveston and Chambers and three hydrologic units: Trinity-

San Jacinto (12040203), San Jacinto (12040104) and San Jacinto-Brazos (12040204).

The site lies between Houston, one of most urbanized and industrialized areas in the

nation, and Galveston Bay, the largest and most biologically productive estuary in

Texas. The annual mean temperature is 21.7oC and the annual total rainfall averages

102 cm. The Texas Gulf Coast has some of the most abundant and diverse wetlands in

the world [25]. Many conservation programs, such as the Urban Wetland Restoration

Program developed by the Texas Coastal Watershed Program have been established

to protect these resources. Monitoring wetlands efficiently in this area would be of

great help for conservation programs, regulatory agencies, and municipalities.

2. Suitability Model

The goal of this suitability model was to delineate wetlands in the Houston area.

Wetlands exhibit three major indicators: hydrology, soil and vegetation and some

implicit attributes (e.g. small slope). Therefore, combining multiple submodels was

assumed appropriate for wetland delineation. Such a modeling approach allowed

consideration of each of the wetland indicators individually and assignment to each

a wetland suitability index (WSI) of equal weight. This study combined four sub-
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Fig. 1. Location of the study area

models. Three of them were applied to the primary wetland indicators: hydrology

submodel, soil submodel and vegetation submodel. The fourth was a multi-attribute

submodel, designed to select the physical landscape features not compatible with

the existence of a wetland. Each submodel established a WSI. The final result of

this suitability model was a general WSI obtained by summing all of the individual

WSI. This model combined Remote Sensing and GIS technologies. Classifying remote

sensed data such as Landsat has been shown to be adequate for wetland vegetation

detection [21], [11]. Using GIS is adequate to provide accurate soil and hydrologic

data for wetland delineation [24]. Therefore, the vegetation submodel used a Landsat

ETM classification and the other models were GIS-based models.
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a. Hydrology Submodel

The hydrology submodel was based on combination of the flow accumulation and

drainage proximity submodels created by Earley [24]. The flow accumulation sub-

model was divided into two screening levels. The first level used the USGS National

Elevation Dataset (NED) (30m of spatial resolution) and the second level sharpened

the results using digital elevation model (DEM) data derived from LIght Detection

and Ranging (LIDAR) data (4.57m of spatial resolution). The first level used hydro-

logic analysis functions available in ArcGIS Spatial Analyst. First, sinks were filled in

the NED to remove imperfections in the data. A raster of flow direction from each cell

to its steepest downslope neighbor was created from those modified data. This raster

was processed to obtain a raster of accumulated flow to each cell [26]. Pixels with the

highest flow accumulation values were selected. These selected pixels were sharpened

using the DEM derived from LIDAR data. Flat areas with large accumulations of

flow are favorable to wetland location [24]. To model this, slope was calculated using

the DEM data, so that for each NED pixel selected in the first level, all nearby DEM

pixels with a slope inferior to a predefined slope (one percent or less) were considered

favorable to wetland location. Because wetlands are usually located near water bod-

ies [21], the drainage proximity submodel created buffers around water bodies and

these areas were considered favorable to wetland location. The flow accumulation

and drainage proximity submodels each established a wetland suitability index and

both indexes were summed to obtain a hydrology WSI.

b. Soil Submodel

Using the Soil Survey Geographic (SSURGO) database and the list of hydric soils

developed by the Natural Resource Conservation Service (NRCS), all soils defined as
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hydric and with high frequency of flooding were assigned a favorable soil wetland

suitability index.

c. Vegetation Submodel

Landsat ETM data were classified using the software ENVI. An unsupervised

isodata classification was completed to detect six land cover classes: water, urban,

grassland, bare ground, forest and wetland. Areas showing presence of hydrophytic

vegetation were assigned a favorable vegetation indexes for wetland location.

d. Multi-Attribute Data Submodel

The multi-attribute data submodel was designed to select physical landscape fea-

tures that are not compatible with the existence of wetlands. Land-cover exclusive

to wetlands such as deep open water and urban area were excluded. Water bodies

excluded were extracted from the NHD data. The urban areas were defined by using

the results of Landsat classification developed in the vegetation submodel.

All the wetland suitability indexes (WSI) generated by these individual submod-

els were summed to obtain a general WSI.

3. Data Requirements

To implement the four submodels previously described, the following data were

required:

• Soil Survey Geographic (SSURGO) database: Developed by the United

States Department of Agriculture (USDA) Natural Resources Conservation Ser-

vice (NRCS), SSURGO provides the highest level of detail available for soils data

on a county-wide basis. The SSURGO data are available through the Soil Data
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Mart USDA website [27]. The 2004 version SSURGO data for Harris, Cham-

bers and Galveston counties were used in this study. Their format is ArcGIS

shapefile, their mapping scales range from 1:12,000 to 1:63,360, their datum is

NAD83, and their Projected Coordinate System (PCS) is UTM zone 15.

• Georeferenced File Format (GeoTIFF) from the sensor system Land-

sat 7 Enhanced Thematic Mapper-Plus (ETM+): It was useful for char-

acterizing vegetation and hydrology. Landsat data are available through the

TexasView’s website [28]. These data were developed in 2003. Their format is

GeoTIFF, their spatial resolution is 30m, their datum is WGS 1984, and their

PCS is UTM zone 15.

• Digital Orthophoto Quadrangles (DOQ): A DOQ is a computer-generated

image of an aerial photograph in which the image displacement caused by ter-

rain relief and camera tilt has been removed. The DOQ combines the image

characteristics of the original photograph with the georeferenced qualities of a

map. DOQs are black and white (B/W), natural color, or color-infrared (CIR)

images with one meter ground resolution. These data were developed in 2003.

They facilitated identification of vegetation and hydrology. DOQs are avail-

able through the National Center for Earth Resources Observation and Science

(EROS) website [29]. Their format is remote-sensing image, their datum is

NAD83, and their PCS is UTM zone 15.

• National Hydrography Dataset (NHD): NHD is “a comprehensive set of

digital spatial data that contains information about surface water features such

as lakes, ponds, streams, rivers, springs and wells.” NHD data are available

through the USGS website [30]. Their format is ArcGIS shapefile, their map-

ping scale is 1:100,000, their datum is NAD83, and their Coordinate Reference
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System (CRS) is Decimal degrees.

• Elevation data derived from an airborne LIDAR Topographic Map-

ping System (ALTMS): These data were created to be used as a highly

accurate, inexpensive way to create digital topographic vector and raster files

for implementation in GIS. These data supported computing accurate hydrol-

ogy and topography. They were developed in 2002 for the Houston Galveston

Area Council which shared them for this study. They have a raster format with

cell size 4.57m (15ft) and elevation value accuracy better than 15cm. Their

datum is NAD83, and their PCS is State Plane State Plane zone 5401 (Texas

South Central). Their horizontal units are feet.

• USGS National Elevation Dataset (NED): The NED dataset was devel-

oped in 1999 by merging the highest spatial resolution, best quality elevation

data available across the United States into a seamless raster format. These data

allowed computing accurate hydrology. The scale is 1:24,000 for the contermi-

nous US. They have a raster format with cell size 30m and elevation expressed

in centimeters. Their datum is NAD83, and their CRS is Decimal Degrees.

• National Wetland Inventories maps (NWI): These maps were developed

from 1992, 1:65,000 scale aerial photography. These aerial photos provide the

type and acreage of wetlands present in 1992. They represent wetlands status

in 1992 and will serve as the basis for comparison wetland evolution over time.

Their format is ArcGIS shapefile, their datum is NAD27, and their PCS is UTM

zone 15.

• 1999 wetlands location. In 2002, the Spatial Science Laboratory (SSL)

(Texas A&M University, College Station, TX) conducted a study entitled Eval-
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uating the Loss of Wetlands in the Galveston Bay Area [31]. It used data ex-

tracted from the 1992 NWI maps and data obtained by interpretation of 1999

aerial photography (0.5m spatial resolution) to establish a 1999 wetlands loca-

tion map. Its format is ArcGIS shapefile, its datum is NAD27, and its PCS is

UTM zone 14.

4. Calibration and Validation of the Suitability Model

Since the SSL data [31] were the most recent available, the suitability model

developed in this study was calibrated and validated by comparing its results with

the results from the SSL study.

5. Expected Results

The expectations of this study were multiple. First, this study aimed to de-

termine whether a low cost suitability model combining GIS and remote sensing

technologies could be created to delineate wetlands in the Houston area. Second, the

project attempted to demonstrate through model validation that this methodology

can provide spatial accuracy using low cost processes. Therefore, the project aimed

to demonstrate that this model was as capable of delineating general wetlands as a

manual delineation using high-altitude aerial photography as the primary data source.

B. Hydrology Submodel

As previously described, the hydrology submodel was based on drainage proxim-

ity and flow accumulation. First, the drainage proximity was modeled.
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1. Drainage Proximity

Three shapefiles were taken from the National Hydrography Dataset (NHD):

• Flowline: line shapefile that represents the streams, rivers, ditches and other

narrow water courses.

• Areas: polygon shapefile that represents wide reaches such as estuaries.

• Waterbody: polygon shapefile that represents water bodies including lakes or

seas.

As in Earley’s model [24], three buffers (150, 300 and 450m) were created around

water features. The three sets of buffers were unified using the ArcGIS union tool to

create a unique buffer feature as shown in Figure 2. In case of buffer superposition,

the buffer of smallest value was considered.

Using the editor tool, a field named index was added to the attribute table.

The 150, 300 and 450m buffers were assigned, respectively, a WSI of three, two and

one. Those values were arbitrarily chosen and were a main focus during the model

calibration. Afterward, the flow accumulation was modeled.

2. Flow Accumulation

The hydrologic analysis functions available in Spatial Analyst in ArcGIS were

used on the NED data for the full extent of the watershed.

The NED, shown in Figure 3, includes hydrologic units: 12040204 West Galve-

ston Bay, 12040203 North Galveston Bay, 12040202 East Galveston Bay, 12040201

Sabine Lake, 12040104 Buffalo-San Jacinto, 12040103 East Fork San Jacinto, 12040102

Spring, 12040101 West Fork San Jacinto and 12030203 Lower Trinity. Sinks were filled
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Fig. 2. Illustration of the drainage proximity submodel consisting of three buffers (150,

300 and 450m)

Fig. 3. NED of the watershed used for the flow accumulation submodel
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in the NED to remove imperfection in the data. Then, a raster of flow direction from

each cell to its steepest downslope neighbor, shown in Figure 4, was created from the

filled data using the flow direction function.

Using the ArcGIS Flow Accumulation function, this raster was processed to ob-

tain a raster of accumulated flow to each cell shown in Figure 5 [26].

Areas with a large value of accumulated flow are favorable to wetland location

[24]. The flow accumulation raster has values ranging from 0 to 19984592 with a

mean of 3055 and a standard deviation of 146512. The highest values of flow accu-

mulation match up more or less with rivers. However, in urban areas in which rivers

have been disturbed by human activity, the flow accumulation is important because

the river path has often been changed. Therefore, during rainfall events the original

path of the river may flood, and that is where wetlands are more likely located. For

optimization, the raster was cut to fit the study area. Pixels with the highest flow

accumulation values (more than the mean of 3055) were selected for sharpening using

the DEM derived from LIDAR data. This pixel selection was transformed into a line

shapefile using the ArcGIS Conversion Tools shown in Figure 6.

After flow accumulation was modeled,using Spatial Analyst on the DEM shown in

Figure 7, slopes were calculated (Figure 8). Then, using the classification tool, a new

raster was created containing only pixels having a slope value less than one percent.

Earley’s study [24] considered a slope of two percent. Because of the especially flat

nature of the study area (Figure 9) this value was decreased to one percent. Using

zonal statistics, approximately 47 percent of the pixels were found to have a slope

value less than one percent. Since such a large percentage was selected using one

percent, it was decided to use a slope of less than 0.25 percent for flow accumulation

modeling (Figure 10).

In order to determine the flat areas with large flow accumulation, a 100m buffer
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Fig. 4. Flow direction raster of the watershed obtained using the ArcGIS flow direction

function on the NED
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Fig. 5. Flow accumulation raster of the watershed obtained using the ArcGIS flow

accumulation function on the flow direction raster
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Fig. 6. Line shapefile of high flow accumulation (more than 3055) obtained from the

flow accumulation raster



22

Fig. 7. DEM derived from LIDAR data (15cm vertical precision) for the study area
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Fig. 8. Slope calculated using the ArcGIS slope function on the DEM derived from

LIDAR data in the study area
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was created around the flow accumulation line shapefile, and all pixel of slope less

than 0.25 percent contained in this buffer were extracted. Those pixels were assigned

a wetland suitability index of three. This value was arbitrary chosen and was a main

focus during model calibration.

Fig. 9. Slope derived from the DEM with dark areas representing a slope less than one

percent

Fig. 10. Slope derived from the DEM with dark areas representing a slope less than

0.25 percent
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Fig. 11. Illustration of the WSI for the hydrology submodel with values ranging from

zero to six

3. Wetland Suitability Index

Each of the hydrology submodels established a WSI. The two WSI were summed

to establish an WSI specific to the hydrology submodel. The summed value ranged

from zero up to six. Higher WSI values correspond to a greater probability that the

area is a wetland. The final result for the hydrologic submodel prior to calibration is

shown in Figure 11.

C. Soil Submodel

SSURGO data were downloaded from the Soil Data Mart USDA website [27]

for the three counties in the study area: Chambers (TX071 version 11/08/2004),

Galveston (TX167 version 10/27/2004) and Harris (TX201 version 11/05/2004). The
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exported files contained tabular and spatial data. Tabular data were imported in an

empty MS Access SSURGO template database. Spatial data were available in the

ArcView Shape File format.

1. Data Preparation

The SSURGO data have a complex structure established on three levels: map

unit, soil component, and horizon. Each polygon in the spatial data represents a

map unit. Each map unit can be composed of up to three components (unique soils

with individual properties). Each component can include up to six horizons (different

depths with individual properties) as shown in the Figure 12 [32].

The spatial data are developed at the map unit level, whereas the tabular data

can be developed at the map unit, component, or horizon levels depending on the

table chosen. The three main tables are map unit, component and horizon. These

tables contain data about map units, soil components and soil horizons respectively.

However a lot of other tables are contained in the SSURGO data. Some of these ta-

bles are specific to the map units, some to the components and some to the horizons.

In this study, the two levels considered were: map unit and component. The compo-

nents are characterized as hydric following the classification established by National

Technical Committee for Hydric Soils [5]. If a component is characterized as hydric

it is specified in the component table using a yes/no field called Hydric Rating. If

rated as hydric, the specific criteria met are listed in the component hydric criteria

table (cohydriccriteria). Since spatial data are only defined at the map unit level, it

was decided for this study to consider the percentage of hydric soil in the map unit

as the principal indicator to establish the WSI for the soil submodel. The map unit,

component and cohydriccriteria tables were imported into ArcGIS. The component

table was joined to the cohydriccriteria table using the cokey field, and to the map
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unit table using the mukey field. Using the comppct-r field (percentage of the map

unit’s component) from the component table and the hydriccriterion field from the

Component Hydric Criteria table, a third field was created named HYDPERCT that

contained the percentage of hydric soil in the map unit. This table was then joined

to the soilmu-a shapefile using the mukey index to visualize the results at the map

unit level.

Fig. 12. Conceptual representation of SSURGO data [32]

2. Wetland Suitability Index

The WSI values for the soil submodel ranged from zero up to six as shown in

Table I. The higher the WSI value, the higher the probability that the area was

a wetland. Values were arbitrary chosen and were a main focus during the model

calibration. The final result for the soil submodel are shown in Figure 13.
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Table I. WSI depending on the percentage of hydric soil in the map unit

% of hydric soil in the map unit WSI*

10-40 % 2

40-70 % 4

70-100 % 6

WSI*: Wetland Suitability Index

D. Vegetation Submodel

1. Image Preprocessing

Two Landsat 7 ETM+ images were downloaded from the TexasView website

[28]. Those images were taken on 23 March 2003. Their locations are coded 2539

(path 25 row 39) and 2540 (path 25 row 40) as shown in Figure 14.

Other dates were available for the same locations, however, data used were chosen

following the results of Hodgson et al. [33] who indicated wetlands could be better

defined on imagery acquired in spring when the water table was high. March 23 was

the closest available date to spring. Examination of the Texas climatologic data for

March 2003, however, show that precipitation in March 2003 was below normal which

might imply a low water table. The NOAA website [34] gives a precipitation depth for

March 2003 between 0.97 and 1.34 inches in the Houston area (data based on weather

stations at: Houston Bush International Airport, Houston Hobby Airport, Port of

Houston, and Houston HWSO), whereas the average precipitation depth from 1903

to 2003 is 1.76 inches for the month of March. Precipitation variation was considered

during interpretation of results.
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Fig. 13. WSI for the soil submodel, in the study area, with values ranging from zero

to six
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Fig. 14. Landsat 7ETM+ path and row image footprints for Texas, with study area

location coded 2539 and 2540 [28]

This level of correction of these data is Terrain Correction (Level 1T). The level

of correction is defined by the USGS [35] as including “radiometric, geometric, and

precision correction, as well as the use of a digital elevation model (DEM) to correct

parallax error due to local topographic relief. All Level 1T products are processed by

the National Land Archive Production System (NLAPS).”

The two images used in this study were imported into ENVI (Environment for

Visualizing Images, Research Systems, Inc.; Boulder, CO). First they were photo-

calibrated using the TM Calibration Tool. This process transformed the raw data,

constituted of digital numbers (DN), to exoatmospheric reflectance (reflectance above

the atmosphere) [36]. This procedure was necessary because the images were not

taken at the same time of the day and, therefore, the sun illumination was different.

Illumination differences could have strongly affected the DN. The images were then
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reprojected to change their datum from WGS to North American Datum (NAD) 83,

their PCS staying UTM zone 15. All the background values from band one (b1) were

converted from a negative value to a zero value. Next, the images were unified as

one picture using the Mosaic option in ENVI. The parameters for this function were

chosen as follows: the zero background value was ignored, a feathering distance of 50

pixels was selected to smooth the transition between the two images, and no color

balancing was selected. A Region Of Interest (ROI) consisting of four points located

at the four corners of the study area was created. Using this ROI, the Landsat image

was clipped. The resulting output image is shown in Figure 15. The preprocessing

procedure is illustrated by a flow chart in Figure 16.

2. Image Enhancement

To increase the efficiency of the classification and decrease error sources, some

image enhancement algorithms were used as illustrated in Figure 17. The results

of these image enhancements were stacked together to form a seven band composite

image which was used for classification. The image enhancements chosen were two

vegetation indexes and the Principal Component Analysis (PCA). These enhance-

ments are described in the following text.

a. Vegetation Indexes: Infrared Index and Tasseled Cap

Vegetation indexes have been used in remote sensing since the 1960s. There are

more than twenty of them commonly in use [37]. Their function is to extract from

remotely sensed data an index that will maximize the variance between different

types of vegetation or increase the sensitivity to certain vegetation properties, such

as chlorophyll content, or water content in the leaves. Many of the indexes are

redundant [37]. One of the most well known vegetation indexes is the Normalized
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Fig. 15. Preprocessed image obtained by the mosaic of two landsat 7 ETM+ images

and then adjustment to the study area
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Landsat row 39 Landsat row 40

Preprocessed Image

Calibration

Projection

Band Math

Mosaic

Clip

Fig. 16. Flow chart illustrating the preprocessing procedures for the vegetation sub-

model
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Preprocessed Image

II PCA

II band Brightness 1st PC 2nd PC 3rd PC

Stacking

Unsupervised
Classification

Vegetation
Suitability Index

Wetness Wetness

Tasseled Cap

Fig. 17. Flow chart illustrating the image enhancement procedures for the vegetation

submodel
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Difference Vegetation Index (NDVI), developed in 1974 by Rouse et al. [38]:

NDV I = (NIR−Red)/(NIR + Red) (2.1)

Where NIR is band four in ETM+ and Red is band three in ETM+. NDVI reduces

noise coming from such sources as atmospheric haze or difference in solar exposure

(especially for mountainous areas) [8]. Currently NDVI is used around the world to

provide crop forecasts. It has also been proven useful in monitoring of wet grassland

area [22]. NDVI was, therefore, considered for this study. However, Hardisky et al.

[39] found that for wetlands the Infrared Index was more responsive to variations in

plant biomass and water stress than was NDVI [12]. The Infrared Index (II) (shown

in Figure 18) seemed a better choice for this study and was calculated using the Band

Math tool.

II = (NIR−MidIR)/(NIR + MidIR) (2.2)

Where NIR is band four in ETM+ and MidIR is band five in ETM+. The second

vegetation index applied was the tasseled cap transformation developed by Kauth and

Thomas in 1976 [40]. The value of the tasseled cap transformation in wetland detec-

tion or classification has been extensively demonstrated [20], [33], [21]. The ENVI

Tassled Cap tool was used to perform this transformation. For Landsat 7 ETM+

data, this tool required calibrated reflectance. This tasseled cap transformation pro-

duces six output bands: Brightness, Greenness, Wetness, Fourth (Haze), Fifth, Sixth.

In this study only the Brightness (Figure 19), Greenness (Figure 20), and Wetness

(Figure 21) bands were considered in the classification.



36

Fig. 18. Infrared index used in the seven band composite image of the vegetation

submodel



37

Fig. 19. Brightness band, result of the tasseled cap transformation, used in the seven

band composite image of the vegetation submodel
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Fig. 20. Greenness band, result of the tasseled cap transformation, used in the seven

band composite image of the vegetation submodel
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Fig. 21. Wetness band, result of the tasseled cap transformation, used in the seven

band composite image of the vegetation submodel
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b. Principal Components Analysis

The PCA creates bands that are linear combinations of raw sensor data. Those

bands are uncorrelated and noise is extracted from them. The PCA has the ability

to reduce dimensionality to two or three bands and still keep all the information

content [12]. In this study, the three first components (Figures 22 to 24) were used

for the classification. Those seven bands were stacked together using the ENVI Layer

Stacking tool.

3. Image Classification

The three major types of classifications are hard classifications (such as super-

vised and unsupervised), classifications applying fuzzy logic, and hybrid classifications

[12]. Hard classifications establish a membership to a unique class (usually land cover)

for each pixel, whereas fuzzy logic established membership grades to multiple classes.

In this study, there was no need to consider multiple memberships because the only

concern was the wetland class, so fuzzy logic was not used. In supervised classifica-

tion, some training areas are first delineated by the analyst; therefore, an a priori

knowledge of the study area is required. Then, using these training areas as refer-

ences, the computer established memberships to a unique land cover for all pixels. In

unsupervised classification, the computer first extracts clusters of spectrally similar

pixels. Then, the analyst defines the type of land cover represented by each clus-

ter. Hybrid classifications combine supervised and unsupervised classifications [21].

Considering that the study area was not well known and that no precise wetland

locations (such as GPS points) or other field data were available; it was decided to

use an unsupervised classification.

The isodata classification was applied with a five percent threshold, a maximum
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Fig. 22. 1st principal component, result of the PCA, used in the seven band composite

image of the vegetation submodel
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Fig. 23. 2nd principal component, result of the PCA, used in the seven band composite

image of the vegetation submodel
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Fig. 24. 3rd principal component, result of the PCA, used in the seven band composite

image of the vegetation submodel
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of 40 iterations, a minimum of 40 pixels in a class, a minimum of 30 classes, and a

maximum of 40 classes. The classification was produced using ENVI. Two classifica-

tions were achieved, the first using the Landsat data without enhancement and the

second using the seven band composite image. This process helped in evaluating the

value of the enhancements. In both cases a total of 30 classes were created. Those

classes were combined in six land cover classes: water, urban, grassland, bare ground,

forest and wetland. Those images were then converted in GRID format and exported

in ArcGIS. All classes other than wetland were given a WSI value of zero and the

wetland pixels were given a WSI value of six. The wetland location extracted from

the landsat image and the seven band composite image are shown in Figure 25 and

Figure 26.

E. Multi-Attribute Submodel

The Multi-Attribute Data Model was designed to select physical landscape fea-

tures that were not compatible with the existence of wetlands. Land-cover exclusive

to wetlands such as deep open water and urban area were excluded. Also areas with

high slope were excluded.

1. Open Water

Open water areas were extracted from the NHD data. All open water areas were

simply cut out from the study area. As previously described, NWI and the SSL study

results [31] were applied to wetlands and open waters. In this study, the focus was

only wetlands.
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Fig. 25. Wetland vegetation location extracted from Landsat without enhancement
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Fig. 26. Wetland vegetation location extracted from the seven band composite image
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2. High Value Slope

The slope was calculated from the DEM derived from LIDAR. Wetlands are

usually located in very flat areas; therefore, it was decided to exclude all areas that

had a slope greater than five percent. This value was arbitrary and was intended to

be examined during the model calibration. All pixels with a slope greater than five

percent were given a Nodata value that would cancel all other WSI. Not knowing the

real efficiency of such exclusion, it was decided to use this index only if the type II

error was high.

3. Urban Area

Urban areas were defined by classification of satellite images. Using the Landsat

classification defined in the vegetation submodel, pixels qualified as urban were given

a negative WSI of -9 (1.5 times the weight of the other WSI. However, by doing this,

wetlands located in urban area that were too small to be detected by the 30m Landsat

data would be eliminated. Moreover those wetlands might be the ones that are most

threaten by human activities. Therefore, it was decided to use this index only if the

type II error was unacceptably high.

F. Combination of Submodels

All the submodels were converted in raster of pixel size 4.572m to match the

LIDAR format. Then all the WSI were summed using the ArcGIS map algebra

function.
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CHAPTER III

CALIBRATION

A. Synopsis

1. Calibration Area

Half of the study area was chosen for use in model calibration and the other half was

reserved for model validation. The calibration area was determined by dividing the

study area into quarter quads and by choosing half of the quarter quads using the

Excel random function. The calibration area is shown in Figure 27.

2. Wetland Suitability Indexes

Two main objectives of the calibration were to establish pertinent WSI values

for each model and to determine a minimum value requirement for the final WSI that

would allow areas to be defined as wetland. During model development, arbitrary

WSI values were defined for each submodel. Initially equal weight was given to each

submodel. For each submodel, the minimum WSI had been fixed to zero and the

maximum WSI had been fixed to six. The WSI arbitrarily set at the beginning of

calibration are shown in Table II.

3. Model Evaluation

To evaluate the results of the suitability model, resulting predictions were com-

pared to 1999 wetland locations identified in a study made by the Spatial Science

Laboratory (SSL) entitled Evaluating the Loss of Wetlands in the Galveston Bay

Area [31] (Figure 28). These data were obtained by interpretation of 1999 aerial pho-

tography (0.5 meter spatial resolution). The result of the SSL study was an update
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Fig. 27. Calibration area composed of half of the study area chosen randomly

Table II. WSI values used for model version one

Drainage proximity Flow accumulation Soil Vegetation

WSI* (buffer size) WSI* WSI* (% of hydric soil) WSI*

1 (150m) 2 (10-40%)

2 (300m) 3 4 (40-70%) 6

3 (450m) 6 (70-100%)

*WSI: Wetland Suitability Index
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of the NWI map. Hereafter, these 1999 wetland locations are referred as 1999 NWI.

Open waters were dissociated from the wetlands and, therefore, were not considered

in this study’s model calibration or validation. The total area of the updated 1999

NWI considered for the calibration was 30.476 km2.

B. Model Version One

1. Qualitative Analysis

Output of model version one is shown in Figure 29. It appears that this model

was particularly sensitive to riverine wetlands but did not detect upland wetlands well.

Higher WSI were located around rivers and water bodies as illustrated in Figure 30.

Conversely, the upland wetland areas generated low WSI as illustrated in Figure 31.

The most sensitive submodel to upland wetlands seemed to be the soil submodel as

illustrated in Figure 32. Consequently it was decided to give a bit more weight to the

soil submodel and multiply its WSI by 1.5.

2. Quantitative Analysis

To evaluate this model, two parameters were considered. Defining the null hy-

pothesis as: area identified as wetland in the 1999 NWI. The first parameter was

determined as (1 - (type I error)) expressed in percent and named “wetland detected

in %”. It was equivalent to the percentage of 1999 NWI wetland area detected by

this model. The second parameter, called “model accuracy”, was the type II error

expressed in percent and was equivalent to the 1999 NWI wetland area detected by

this model over the total area detected by this model. Those results (Table III) were

obtained using the zonal statistic tool.

The percentage of wetland detected was unacceptably low. Therefore, it
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Fig. 28. Wetland locations identified in the SSL study [31] used for calibration
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Fig. 29. Final WSI values for model version one
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Fig. 30. Illustration of the presence of the highest WSI values around streams and

waterbodies

Fig. 31. Illustration of low WSI values of for upland wetlands
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Fig. 32. Illustration of good sensitivity of the soil submodel with higher WSI values

for upland wetlands

Table III. Calibration results for model version one

WSI* Wetland detected in % Model accuracy in %

≥ 15 4.4 59.2

≥ 12 10.0 45.7

≥ 9 27.2 27.8

≥ 6 55.0 14.3

≥ 1 94.2 7.7

*WSI: Wetland Suitability Index
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was decided to introduce the slope index and the urban index to the multi-attribute

submodel. The goal of this change was to reduce type II error.

C. Model Version Two

After multiplying the weight of the soil submodel by 1.5 (i.e. WSI values from

three to nine) to improve upland wetland detection, and including all the components

of the multi-attribute submodel ( i.e. slope and urban) to improve the accuracy of

the model; model version two used the WSI values shown in Table IV.

Table IV. WSI values used for model version two

Drain. prox. Flow acc. Soil Veg. Slope Urban

WSI* (buffer size) WSI* WSI* (% of hydric soil) WSI* WSI* WSI*

1 (150m) 3 (10-40 %)

2 (300m) 3 6 (40-70 %) 6 -9 nodata

3 (450m) 9 (70-100 %)

*WSI: Wetland Suitability Index
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Fig. 33. Final WSI values for model version two
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1. Qualitative Analysis

Output of model version two is shown in Figure 33. Riverine wetlands were still

well detected. In addition, there was an improvement in the detection of upland

wetlands as shown in Figure 34 . Therefore, the weight of 1.5 on the soil WSI was

kept.

2. Quantitative Analysis

Model modifications slightly improved model accuracy as shown in Table V.

However, the urban and slope indexes excluded 6.3% of wetlands. This percentage

was considered too high. For this reason, and also considering the model’s lack of

sensitivity to changes, it was decided to evaluate each individual index independently

of the whole model.

Fig. 34. Detection of the upland wetlands
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Table V. Calibration results for model version two

WSI* Wetland detected in % Model accuracy in %

≥ 18 4.6 64.7

≥ 15 10.7 49.0

≥ 12 22.9 34.9

≥ 9 50.1 19.3

≥ 6 56.9 13.6

≥ 1 88.9 9.5

*WSI: Wetland Suitability Index

3. Indexes Evaluation

The methodology used for the model evaluation was the same as that used to

evaluate the model outputs. However, in this case each index was evaluated one by

one and independently of the model. For this, each index was formatted as a raster

of pixel size 4.572m (matching the LIDAR data format) and the 1999 NWI was kept

as a polygon shapefile. As for the model, two parameters were calculated using the

zonal statistic tool. Defining the null hypothesis as: area identified as wetland in

the 1999 NWI. The first parameter was determined as 1 - (type I error) expressed in

percent and named “wetland detected in %”. The second, called “index accuracy”,

was the type II error expressed in percent. The results are displayed in the Tables VI

to IX.

As expected, percentage of wetland detected and index accuracy were inversely
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Table VI. Evaluation of the soil index

Soil Wetland detected in % Index accuracy in %

≥ 70% hydric 46.2 17.0

≥ 40% hydric 48.5 11.3

≥ 10% hydric 61.8 9.4

Table VII. Evaluation of the flow accumulation index

Flow accumulation Wetland detected in % Index accuracy in %

Slope ≤ 0.25% 3.5 77.4

Slope ≤ 0.35% 15.5 13.0

Slope ≤ 0.5% 28.0 10.9

Table VIII. Evaluation of the drainage proximity index

Drainage proximity Wetland detected in % Index accuracy in %

Buffer of 150m 40.1 10.3

Buffer of 300m 59.9 8.5

Buffer of 450m 73.5 7.7
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Table IX. Evaluation of the vegetation index

Vegetation Wetland detected in % Index accuracy in %

Landsat 33.1 31.5

seven bands composite 30.0 32.2

Tasseled cap 22.7 46.7

Infrared index 13.6 52.4

correlated. However, such poor values for the index accuracies were not expected.

In fact, except for flow accumulation, all accuracies were less than 35%.

The soil index was quite efficient, so it was decided to keep it with a higher

weighting compared to other indexes. The flow accumulation had a very good relia-

bility for a slope threshold less than 0.25%, but it dropped drastically for higher slope

values. So while the percent of wetland detected was low (3.5%), it was decided to

keep it at 0.25% of slope threshold.

The drainage proximity index proved insensitive to variation between buffers

widths. Therefore, it was decided to dissolve the three buffers into one single buffer

of 450m. In addition, it was decided not to keep both hydrologic indexes at equal

weight. The flow accumulation index was given a WSI value of four and the drainage

proximity index was lowered to two. This change was made to reduce type II error.

The vegetation index provided unsatisfactory wetland prediction. First, the per-

centage of wetland detected was low (less than 40%). Moreover, the seven bands

composite image did not improve the classification. It appears individual enhance-

ments may have canceled each other out or that some part of the information was lost
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during enhancement. Therefore, it was decided to classify the tasseled cap transform

and the Infrared Index to determine if the Landsat classification could be improved

using a single enhancement. The results are shown in Table IX . The results for

single enhancement are not as good as the ones obtained by classifying the Landsat

data directly; therefore, it indicates that information was lost during enhancement.

Considering the poor results of the enhancement techniques, it was decided to use

the classification directly from the Landsat image.

The multi-attribute submodel indexes (urban and slope) were evaluated in a

slightly different way. The purpose of those indexes was to reject or lower the to-

tal WSI for areas that are exclusive to wetland. Consequently, two attribute values

were calculated using the zonal statistic tool. The first value was the percentage of

non-wetland areas that had been rejected. The second value was the percentage of

wetland areas that had been rejected. The results are displayed in the Tables X and

XI .

The urban index rejected 26.9% of non-wetland, which was considered good.

However it also rejected 12.4% of wetland. This percentage was unacceptably high

especially considering that those wetlands may be the most endangered by human

activities and require more monitoring. Therefore, the weight of 1.5 was decreased to

one for this index.

The LIDAR slope index proved to be a poor predictor of wetlands. The percent-

age of wetland rejected was about the same as the percentage of non-wetland rejected.

It was decided that LIDAR was not efficient in this case study and this index was

not used further. Not using the LIDAR data was a step back in this study. Other

data were large scale data: 1:12,000 to 1:63,360 for SSURGO, 1:100,000 for NHD,

1:24,000 for NED, 1:65,000 for NWI. The small scale presented by LIDAR and the

15cm vertical accuracy added a unique level of detail to the model.
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Table X. Evaluation of the urban index

Urban % of non-wetland rejected % of wetland rejected

Landsat 26.9 12.4

Table XI. Evaluation of the slope index

LIDAR slope % of non-wetland rejected % of wetland rejected

≥ 5% 12.4 8.6

≥ 10% 5.1 3.7

≥ 15% 3.0 2.1

D. Model Version Three

For model version three, the drainage proximity buffers were dissolved as one

450m buffer of WSI two, the WSI of the flow accumulation submodel was increased

to four, the soil submodel and the vegetation submodel were kept as they were in

version two, the slope submodel was not used, and the urban submodel was given a

WSI of -6. The indexes for model version three are presented in Table XII.

1. Qualitative Analysis

Output of model version three is shown in Figure 35. The results looked very

similar to model version two results. This model appeared to be reluctant to change.

However, the model cannot provide very accurate outputs if the individual indexes

constituting the model are not very accurate as demonstrated previously.
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Fig. 35. Final WSI values for model version three
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Table XII. WSI values used for model version three

Drain. prox. Flow acc. Soil Veg. Urban

WSI* WSI* WSI* (% of hydric soil) WSI* WSI*

3 (10-40 %)

2 4 6 (40-70 %) 6 - 6

9 (70-100 %)

*WSI: Wetland Suitability Index

2. Quantitative Analysis

Model accuracy improved clearly for the highest WSI values as shown in Ta-

ble XIII. However, the results were very similar to those of model version two. There

was poor sensitivity to the changes. It appears that, without LIDAR data, the other

data had too large a scale to delineate wetlands correctly.

Table XIII. Calibration results for model version three

WSI* Wetland detected in % Model accuracy in %

≥ 18 0.7 82.8

≥ 15 17.2 50.7

≥ 12 18.0 45.3

≥ 9 45.7 19.5

≥ 6 58.5 14.7

≥ 1 88.8 8.8

*WSI: Wetland Suitability Index
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E. Model Version Four

In a final effort, a 2004 infrared DOQ of one meter pixel was used. This DOQ

was obtained compressed as a MrSid file and, therefore, a bit of data accuracy was

lost. However, considering that all the other model data were broad scale data, this

DOQ still remained in comparison as a high spatial accuracy data. This DOQ was not

considered for use during model development because LIDAR was expected to provide

this study with sufficient accuracy for wetland delineation. Second, this DOQ offered

only three bands, whereas Landsat offered seven bands particularly band five that is

used for vegetation indexes such as the Infrared Index. The 2004 DOQ for Harris

county was clipped to fit the study area as shown in Figure 36. Then, the resulting

image was classified. As with the Landsat image, an unsupervised classification was

used. The isodata classification was applied with a five percent threshold, a maximum

of ten iterations, a minimum of 50 pixels in a class, a minimum of 30 classes, and a

maximum of 40 classes. Thirty classes were created. Those classes were combined

into six land cover classes: water, urban, grassland, bare ground, forest and wetland.

Those images were then converted in GRID format and exported in ArcGIS.

The urban land cover class was used in the multi-attribute submodel with a WSI

value of -6. The wetland land cover class was used in the vegetation submodel with

a WSI value of six. Apart from these two modifications, this model kept the same

configuration as model version three.

1. Qualitative Analysis

The two new indexes developed using the DOQ were vegetation index and urban

index. With the 2004 DOQ, two considerable problems were encountered. First, the

DOQ’s metadata did not provide the date at which the pictures were taken during
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Fig. 36. 2004 DOQ (one meter pixel) clipped to fit the study area
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the year 2004. Historically in Texas, DOQ pictures are usually taken at the end of

the summer to increase chances for a cloud free sky. However, the best time to detect

wetlands is at the beginning of the spring when the water table is high. Therefore, the

DOQ used may not have been capable of appropriately detecting wetlands. Second,

the DOQ was obtained as one main file for all of Harris County. To obtain 1m pixel

data, this file had to be developed from a large number of smaller pictures. Those

pictures were taken at different times of the day and on different days. This im-

plied that the sun position changed. The resulting illumination difference could have

greatly affected the DN as it was seen previously for the Landsat data. Unfortunately,

no photo-calibration could be undertaken because the time at which the individual

pictures were taken was unknown and the pictures were already unified into one file.

This problem became evident during classification. It appeared that urban pixels in

the north-west of the study area had the same spectral signature as water pixels in

the south-east of the study area. Those pixels could not be differentiated. Even after

trying to minimize this problem, the classification yielded many pixels in the estuary

that were detected as urban. Such large error was not acceptable for a satisfying

land-cover classification.

2. Quantitative Analysis

The results of model version four using the DOQ were, as suspected, poor as

shown in Table XIV. The wetland detected were about ten percent less than when

using the Landsat data. Thus, using high scale data such as DOQ was not enough to

improve the suitability model results. In fact, remote sensing data used for land-cover

classification need to be corrected. Correcting them involves radiometric, geometric,

precision, and exoatmospheric corrections. The DOQ was not corrected in such ways,

and, therefore, was not accurate enough. Moreover, since this DOQ constituted of
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only three bands, it did not provide as much spectral information as the Landsat

consisting of seven bands. This reduction of information was certainly important in

the loss of accuracy of the indexes developed using the DOQ. Consequently, use of

the DOQ was discontinued.

Table XIV. Calibration results for model version four using the 2004 DOQ

WSI* Wetland detected in % Model accuracy in %

≥ 18 0.6 82.5

≥ 15 16.7 53.2

≥ 12 17.4 39.3

≥ 9 44.7 16.9

≥ 6 54.5 11.9

≥ 1 90.6 8.2

*WSI: Wetland Suitability Index

F. Results and Conclusions

Model version three was chosen as the final model for validation. The accuracy

of this model was improved during its development; however its performance was gen-

erally not satisfying. Theoretically, it would be acceptable to consider as wetlands

those areas that present at least two of the three major wetland characteristics: pre-

dominance of hydric soils, presence of hydrophytic vegetation and specific hydrologic

conditions. This correlates with a WSI value of at least nine. For model version three

with a WSI value greater or equal to nine provided detection of 45.7% and accuracy
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of 19.5%. This percentage of wetland area detected was not enough; less than half of

the 1999 NWI wetland area. In addition, the accuracy demonstrated was quite low.

These results demonstrated that there was still too much error in the model. This

error could have been coming from the indexes. Did error come from the scale of the

data used to generate the indexes? The data scales were quite large and might have

favored the detection of large wetlands. Did error come from the imprecision of the

data used to generate the indexes? The broader the scale, the higher the imprecision

might be. Did it come from an incorrect calibration of the indexes? This model

would then be more sensitive to certain types of wetland such as riverine or upland.

This error could also have come from ground truth data (1999 NWI wetland loca-

tions). The 1999 NWI map was produced to represent the state of wetlands in 1999

in the Houston area. However there might have been some changes between 1999 and

the present. Could wetland change over time explain some of the difference between

the 1999 NWI wetland location and the outputs of this model? The validation was

performed with those questions in mind.
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CHAPTER IV

VALIDATION

A. Synopsis

1. Validation Area

The second half of the study area was used to perform model validation. The valida-

tion area is shown in Figure 37.

Fig. 37. Validation area composed of half of the study area chosen randomly
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2. Model Evaluation

As with calibration, to evaluate the results of our suitability model, we compared

model results to the 1999 NWI wetland locations presented in Figure 38. The total

area of 1999 NWI considered for the validation was of 46.980 km2.

B. Model Version Three

1. Qualitative Analysis

Visual inspection of the calibration results indicated that the partition of riverine

versus upland wetlands was quite similar to that obtained during the calibration. Both

appeared to be well detected, and the model did not particularly favor a certain type

of wetland.

2. Quantitative Analysis

Model results, shown in Table XV, were better than calibration results, in fact

the total wetland area detected (for a WSI value of one) was 5.1% greater than that

observed during calibration as shown in Figure 39. However the results of the model

remained weak; in fact, with a WSI value greater or equal to nine the wetland area

detected was 56.2% and the accuracy was 28.2%. As with calibration, the origin of

the model error remained unidentified.

To answer some of the questions relating to error, three extra analyses were

performed. The first assumed an incorrect calibration of the indexes could have po-

tentially favored riverine wetlands over upland wetlands or vice versa. The second

assumed the broad scale of the data supporting the indexes might have favored de-

tection of large size wetlands. The third assumed there might be some difference

between the ground truth data (1999 wetland locations) and 2004 wetland locations.
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Fig. 38. Wetland locations identified in the SSL study used for the validation
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Table XV. Validation results for model version three

WSI* Wetland detected in % Model accuracy in %

≥ 18 0.2 71.9

≥ 15 15.3 50.5

≥ 12 15.4 48.9

≥ 11 31.3 47.6

≥ 9 56.2 28.2

≥ 6 63.9 24.8

≥ 1 93.9 13.2

*WSI: Wetland Suitability Index

3. Alternative Analysis

a. Riverine Wetlands versus Upland Wetlands

To determine if the model favored riverine wetlands, all wetlands not located in

a 500m buffer around any water landscape element were ignored from the ground

truth data. Through this action, 20% of the wetland area was ignored. Then, as with

the earlier analysis, results were obtained by zonal statistics. These results are shown

in Table XVI. It appeared that riverine wetlands were not favored by the model.

Riverine wetlands are better detected for WSI greater or equal to 12, however with a

WSI greater or equal to nine the wetland area detected was 54.3% and the accuracy
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%

Fig. 39. Comparison of calibration results and validation results for model version

three

was 23.4%. The difference between riverine wetland detection and general wetlands

detection was about 1% on average. This difference was negligible.

b. Large Size Wetlands

To determine if the model favored large size wetlands, all wetlands with an area

less than three hectares were ignored from the ground truth data. Through this

action, 20% of the wetland area was ignored. Results were again obtained by zonal

statistics (Table XVII). It appeared that large size wetlands were only very slightly

favored by the model. The difference between large size wetland detection and general

wetlands detection is about one percent on average. This difference is negligible.
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Table XVI. Validation results for model version three for riverine wetlands

WSI* Wetland detected in % Model accuracy in %

≥ 18 0.6 72.0

≥ 15 17.6 42.5

≥ 12 17.5 34.5

≥ 9 57.2 23.4

≥ 6 65.3 22.2

≥ 1 96.1 10.8

*WSI: Wetland Suitability Index

Table XVII. Validation results for model version three for large size wetlands

WSI* Wetland detected in % Model accuracy in %

≥ 18 0.2 59.1

≥ 15 16.0 39.1

≥ 12 15.9 46.7

≥ 9 57.7 27.3

≥ 6 65.2 24.8

≥ 1 95.0 12.0

*WSI: Wetland Suitability Index
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c. Ground Truth Data Accuracy

This case analysis was based on the idea that human activity expanded so quickly

in the study area that 1999 NWI ground truth data were out of date. Thus, two

quarter quads were chosen randomly from within the study area (Figure 40). For

both quarter quads, some wetlands had been totally or partially urbanized. Therefore

for both quarter quads the 1999 NWI wetland locations were updated manually using

the 2004 DOQ. As before, results were obtained by zonal statistics. Tables XVIII and

XIX compare those results using the 1999 NWI data as ground truth data to results

using manually updated 2004 data as ground truth data. The difference between

those two sets of results was always within two percent; therefore, the 1999 NWI

data accuracy was considered to still be good.

Table XVIII. Evaluation of the 1999 NWI ground truth data for quarter quad 13

Wetland detected in % Wetland detected in %

WSI* of total wetland using of total wetland using Difference in %

1999 NWI data updated data

≥ 18 0.9 0.9 0.0

≥ 15 9.0 9.0 0.0

≥ 12 9.2 9.3 0.1

≥ 11 23.5 23.7 0.2

≥ 9 30.3 30.6 0.3

≥ 6 43.4 44.2 0.4

≥ 1 89.8 90.2 0.4

*WSI: Wetland Suitability Index
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Fig. 40. Location of the quarter quads 13 and 23 randomly chosen for evaluation of

the ground truth data
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Table XIX. Evaluation of the 1999 NWI ground truth data for quarter quad 23

Wetland detected in % Wetland detected in %

WSI* of total wetland using of total wetland using Difference in %

1999 NWI data updated data

≥ 18 0.8 0.8 0.0

≥ 15 23.0 24.2 1.2

≥ 12 23.5 24.7 1.2

≥ 9 54.1 55.1 1.0

≥ 6 65.4 67.2 1.8

≥ 1 91.7 94.3 2.6

*WSI: Wetland Suitability Index

C. Results and Discussion

The validation results improved over calibration, however, the model performance

remained weak. Results demonstrated that there was still too much error in the

model. The alternative analyses just described indicated that the primary source of

error was neither bad calibration of the model favoring riverine wetlands over upland

wetlands, from the broad scale of the data constituting the indexes, nor from a lack

of accuracy of the ground truth data. By elimination, there remained one more

possibility: the error might have come from the inaccuracy of the broad scale data

making up the indexes. This hypothesis is is supported by the scale of the data:

1:12,000 to 1:63,360 for SSURGO, 1:100,000 for NHD, 1:24,000 for NED, 1:65,000

for NWI. The problem of scale data was supported by many remote sensing oriented

studies [10], [41], [11], [42]. Miyamoto et al. [10] used scale problems to justify

the use of scale-independent remote sensing platforms such as kites and balloons to
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monitor wetlands. In these studies, only remote sensing data were used, not GIS data.

Therefore, the focus was more on the scale of data itself rather than the inaccuracy

coming from large scale data.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

A wetland suitability model was developed to delineate wetlands in the Houston area.

This model combined GIS and remote sensing technologies. The data used for this

study had to be as high scale as possible and easily accessible. This suitability model

consisted of four submodels: hydrology, soil, vegetation and multi-attribute. The hy-

drology submodel was composed of two indexes: the drainage proximity index and the

flow accumulation model. The drainage proximity index was made of a 450m buffer

around all water bodies. The flow accumulation consisted of all areas of high flow

accumulation with a slope less than 0.25%. The soil submodel was based on map

units that presented a certain minimum percentage of hydric soil in the SSURGO

database. The vegetation submodel was obtained by classification of Landsat im-

ages. The multi-attribute submodel was made of two indexes: the open water index

and the urban index. The open water index cut all open water area from the study

area. The urban index was determined using Landsat classification. Each one of the

submodels generated a WSI. Those individual WSI values were summed to obtain a

general WSI.

This model was calibrated using half of the study area. During calibration, the

general model was evaluated as well as each index individually. Generally, the model

showed a lack of sensitivity to changes. However, five model modifications were made

during calibration. The first was to use a soil submodel with a weight 1.5 times the

weight of the other submodels to improve the delineation of upland wetlands. The

second was to have in the hydrology submodel a single 450m buffer for the drainage

proximity index. The third was to use Landsat data for the vegetation submodel.

The fourth was to use the urban index in the multi-attribute submodel. The fifth
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and final was to eliminate the slope index from the multi-attribute submodel. While

all the models obtained weak results, model version three was selected for validation.

This model was validated using the remaining half of the study area. Validation

results improved a bit compared to calibration results; however they remained weak.

To determine the origin of this weakness, some alternative analyses were performed.

Those analyses indicated that the model does not favor riverine wetlands over upland

wetlands, nor large size wetlands. In addition, the model ground truth data were

found to be in good agreement with current conditions. Results of the alternative

analysis indicated that the weakness of the model must come from inaccuracy of the

input data.

Results of this study indicate, 15 years after Tiner [9] and with high-power com-

puters, that the lack of spatial accuracy was too high to perform correct wetland de-

lineation using remote sensing and GIS technologies. However such results as 77.4%

accuracy on the flow accumulation index, obtained using high accuracy LIDAR data,

gave us reason to hope that data can and will improve in the near future. Such im-

provements could allow automatic wetland delineation. For future studies, it would be

recommended to improve spatial accuracy for soil and vegetation data. Also spectral

accuracy could be improved for vegetation data by using hyperspectral sensors.
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