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ABSTRACT 

Inhibition of Cholesterol Biosynthesis under Hypoxia. (December 2005) 

Qiulin Tan, B.S., West China University of Medical Sciences; 

M.S., West China University of Medical Sciences 

Chair of Advisory Committee: Dr. Yanan Tian 

      Oxygen balance is very important and tightly regulated in mammals. Under 

hypoxia, hypoxia inducible factor 1β (HIF-1β) dimerizes with hypoxia inducible 

factor 1α (HIF-1 α) and activates expression of several genes. Using a 

mammalian two hybrid assay, we found that HIF-1 β interacted with sterol 

response element binding protein 1a (SREBP1a). SREBP1a regulates 

transcription of HMG-CoA reductase via binding to the sterol response element 

(SRE) in the promoter region. HMG-CoA reductase is the rate-limiting enzyme in 

cholesterol biosynthesis. The interaction between SREBP1a and HIF-1β 

suggests that HIF-1β may play an important role in regulation of cholesterol 

biosynthesis. We tested the effects of hypoxia on the HMG-CoA reductase. We 

found that hypoxia caused suppression of SRE-driven luciferase reporter gene 

expression. HMG-CoA reductase mRNA levels decreased under hypoxia in both 

hepatoma cells and mouse primary hepatocytes. Electrophoretic mobility shift 

assay showed that HIF-1β blocked binding of SREBP1a to the SRE sequence in 

vitro. Ectopic expression of HIF-1β suppressed the SRE- driven luciferase 

reporter gene expression in BPR cells (HIF-1β-/-). Our results suggest that 

hypoxia inhibits cholesterol biosynthesis by suppressing SREBP1a-regulated 
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gene expression and this suppression is caused by the blockage of SREBP1a 

binding to SRE sequence by HIF-1β. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Hypoxia signaling pathway 

 

      Oxygen balance in mammals is tightly regulated so as to maintain sufficient 

levels for oxygen-dependent processes, while minimizing the production of 

reactive oxygen species (ROS) that can cause oxidative damage to DNA, lipids 

and protein. Under hypoxia, where oxygen supplies are insufficient, a 

physiological response is induced which increases the capacity of blood to carry 

oxygen to tissues, and alters cellular metabolism. For example, anaerobic 

glycolysis is induced to produce more ATP to meet the energy demand 

(Wenger, 2000). The hypoxia-inducible factors (HIFs) are key transcriptional 

regulators in response to this hypoxic state in both adult and embryonic 

organisms. Under hypoxia, mammals increase the expression of a large variety 

of genes, including erythropoietin, vascular endothelial growth factor (VEGF), 

and glycolytic enzymes, to stimulate erythropoiesis, angiogenesis, and glycolysis 

(Bracken et al., 2003). 

       

 

____________ 
This thesis follows the style of Gene. 
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      HIF-1α (Hypoxia-induced factor-1α) protein stability can be regulated by 

oxygen levels (Jaakkola et al., 2001). Under normoxia, HIF-prolyl-4-

hydroxylases (HPH), also designated as prolyl    hydroxylase domain (PHD), 

hydroxylate specific proline residues of HIF-1α in an oxygen and iron-dependent 

manner. Hydroxylated HIF- α protein binds to the von-Hippel-Lindau (VHL) 

protein which is a component of an E3 ubiquitin ligase complex. HIF-α is 

subsequently ubiquitylated, and degraded by the proteasome (Wenger, 2002). In 

hypoxia, PHD/HPH activity is blocked because HIF-1α proline cannot be 

hydroxylated and bind to VHL protein due to oxygen insufficiency, and HIF-1α 

protein degradation is repressed.  

      The transcriptional activity of HIF-1α is also regulated by oxygen level 

(Jaakkola et al., 2001). Under normoxia, HIF-1α asparaginyl hydroxylase (FIH-1) 

binds and hydroxylates specific asparagine residues of HIF-1α in an oxygen and 

iron-dependent way. This blocks the recruitment of transcriptional coactivators 

(p300/CBP) by the carboxy-terminal transactivation domain (C-TAD), therefore 

resulting in transcriptional inactivation of HIF-1α (Lando et al., 2002). Under 

hypoxia, FIH-1 activity is blocked due to oxygen insufficiency, leading to 

asparagine hydroxylation deficiency, and thus enhancement of coactivator 

recruitment and target gene expression. 

      Under hypoxia, HIF-1α becomes stabilized, translocates to the nucleus, and 

dimerizes with HIF-1β, also known as the aryl hydrocarbon receptor nuclear 

translocator (ARNT) to induce gene expression (Gu et al., 2000). HIF-1α and 
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HIF-1β belong to a family of transcriptional factor basic helix-loop-helix 

(bHLH)/PAS proteins. HIF-1α / HIF-1β heterodimers bind to Hypoxia response 

elements (HREs) (A/G) CGTG in the regulatory regions of various target genes 

to activate gene expression (Figure 1). These target genes include 

erythropoietin (Semenza and Wang, 1992), vascular endothelial growth factor 

(Forsythe et al., 1996), insulin-like growth factor 2 (Feldser et al., 1999), glucose 

transporter-1 (Ebert et al., 1995) and  Differentially expressed in chondrocytes 

protein 1 (DEC1/) (Miyazaki et al., 2002), etc.  

 

1.2   Cholesterol biosynthesis and sterol response element binding proteins 

(SREBPs) 

 

        Cholesterol homeostasis is very important for human or animals. 

Cholesterol must be supplied for many physiological functions such as cell 

membrane construction and biosynthesis of vital hormones. However, excess 

cholesterol must be avoided because it can form solid crystals which can be 

toxic to cells. Excess cholesterol can also cause many adverse effects such as 

atherosclerosis or neurological degenerative disease. Therefore, cholesterol 

biosynthesis must be tightly regulated and this is mainly achieved through an 

end-product feedback repression of genes including HMG-CoA reductase, HMG 

CoA synthase and low density lipoprotein (LDL) receptor  (Reinhart et al., 1987). 

These genes govern the synthesis of cholesterol or its receptor-mediated uptake 
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Fig. 1. Hypoxia signaling pathway. (Gu, et al., 2000). Under normoxia, HIF-1α protein is rapidly 

degraded through an oxygen and iron-dependent ubiquitin/proteasome pathway. Under hypoxia, 

HIF-1α protein is stabilized, translocates into nucleus and heterodimerize with ARNT. This 

complex associated with the coactivator (CBP/p300) binds hypoxia response element (HRE) in 

the promoter region of target genes and induces gene expression. 
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from plasma lipoproteins and the transcription of these genes are regulated by 

SREBPs. 

        SREBP is synthesized as precursor and this premature form is bound in the 

membranes of the endocytoplasmic reticulum (ER) and nuclear envelope in 

association with a regulatory membrane protein called SREBP cleavage 

activation protein (SCAP). In order to regulate transcription, the NH2-terminal 

domain of SREBPs must be released from the membrane so that it can enter the 

nucleus. This release is accomplished by a two-step proteolytic cascade 

regulated by sterols. Under sterol-depleted conditions, SCAP functions as a 

sensor for cholesterol levels and the SCAP-SREBP complex moves from ER to 

the Golgi apparatus where SREBPs are cleaved sequentially by site 1 protease 

and site 2 protease (Figure 2).  Then the N-terminal half of the SREBP precursor 

is released and migrates to the nucleus as the mature form of transcription factor 

(Wang et al., 1994; Brown and Goldstein, 1997; Sakai et al., 1998).  SREBP 

isoforms (Figure 3) vary in their relative tissue distributions, transcriptional 

potencies and promoter preferences. SREBP1a and 1c are produced from a 

single gene (human chromosome 17p11.2) via alternate transcription start sites 

encoding alternate first exons. The other form of the SREBP, designated 

SREBP2 is encoded by a separate gene (human chromosome 22q13) (Brown 

and Goldstein, 1997). 

        SREBP-1a is a more potent transcription factor than 1c and regulates 

genes responsible for both cholesterol and fatty acid synthesis. SREBP1c tends 
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to be more active in regulating genes for fatty acid synthesis and SREBP-2 up-

regulates several genes in cholesterol synthesis (Osborne, 2000). 

        SREBP1a, a member of bHLH/PAS   family, can bind the direct repeat 

sterol regulatory element (SRE) 5’-TCACNCCAC-3’ which are present in 

promoter regions of HMG-CoA reductase, HMG-CoA synthase, LDL receptor 

genes (Sanchez et al., 1995; Vallett et al., 1996; Dooley et al., 1998).  Through 

the transcriptional regulation of these genes, SREBP1a can regulate the 

synthesis of cholesterol or its receptor-mediated uptake from plasma 

lipoproteins. 

 
1.3 The crosstalk between hypoxia pathway and SREBP1a regulated pathway 

 

      HIF-1β is a core transcription factor that can dimerize with several related 

proteins. By using GST pull-down assay and yeast two-hybrid assay, our lab has 

found that HIF-1β could interact physically with SREBP1a, which regulates 

cholesterol biosynthesis. This interaction between HIF-1β and SREBP1a 

suggests the crosstalk between cholesterol biosynthesis and HIF-1β dependent 

pathway.  

       Elevated serum cholesterol level is a well-established risk factor for 

hypertension and coronary heart disease. It’s important to reduce the incidence 

of cardiovascular disease world wide and drugs synthetically derived HMG-CoA 

reductase inhibitors such as iovastatin, pravastatin, and simvastatin have been 

developed for decreasing serum cholesterol levels. While this group of statin  
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Fig. 2. Model for two-site proteolytic cleavage of membrane SREBPs (Brown, et al., 

1997) 
 

 

 

 
 

Fig. 3. Domain structures of human SREBP-1a and SREBP-2. (Brown, et al., 1997) 
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drugs can lower the serum cholesterol concentrations, they have serious side 

effects. In addition to administration of the statins, some data suggest that the 

hypoxia also induces hypocholesterolemic effects. For example, reduced blood 

pressure and total serum cholesterol were achieved in hypercholesterolemia 

patients exposed to periodic hypoxia in a pressure chamber (Aleshin et al., 

1993). The effects of high altitude exposure on serum cholesterol were studied 

in mountaineers. In comparison to the baseline values at low altitude, a 

significant reduction in serum cholesterol (27%) was observed after the high 

altitude expedition (Ferezou et al., 1988). The hypoxic effects on cholesterol 

metabolism were also studied in cultured cells. For instance, it was shown that 

hypoxia caused decreased concentration of cholesterol in aortic endothelial cells 

(Arai et al., 1996). 

      Under hypoxia, the genes encoding enzymes involved in glycolysis were up-

regulated to produce more ATP for energy demands. However, cholesterol 

synthesis under hypoxia and its molecular mechanism are not well known. It was 

reported that the sterol synthesis in cultured rabbit skin fibroblast was repressed 

by measurement of the incorporation of 14C-acetate into sterol (Mukodani et al., 

1990). To investigate the effect of hypoxia on cholesterol biosynthesis in hepatic 

cells, we determined the expression of HMG-CoA reductase, the rate-limiting 

enzyme in cholesterol biosynthesis pathway, in human hepatoma cells under 

hypoxia. We found that hypoxia or hypoxia mimetics, such as CoCl2 could 

repress the SREBP1a regulated HMG-CoA reductase expression, and this 
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repression might be due to the blockage of SREBP1a binding to SRE sequence 

of HMG-CoA reductase by HIF-1β.  
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CHAPTER II  

MATERIALS AND METHODS 

 

2.1 Cell lines and culture 

 

      The human hepatoma line HepG2 was purchased from ATCC (American 

Type Culture Collection). The HepG2 cells were grown in Dulbecco Modified 

Eagle’s Medium (DMEM) (Sigma) containing 10% (v/v) fetal bovine serum and 

100ug/ml antibiotics/antimycotics (Invitrogen). The BPR cell is a mutant line from 

the murine hepatoma line, which is defective in HIF-1β. The BPR cells were 

maintained under the same condition as HepG2 cells. All cells were maintained 

as a monolayer cultures in a humidified 5% CO2 atmosphere at 37 0C. 

 

2.2 Plasmids 

      

      The pRed-luc and pSREBP1a were obtained from Dr. Timothy Osborne at 

the University of California, Irvine. The pRed-luc contains the wild-type hamster 

HMG-CoA reductase promoter from -277 to +20, which was fused to the 

luciferase coding sequence of the plasmid pGL2 basic. The pSREBP1a can 

express SREBP1a (1-490) from the cytomegalovirus promoter.  
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      The plasmid for the recombinant SREBP1a (1-490) protein expression was 

also from Dr. Timothy Osborne. Briefly, the amino-terminal truncation of 

SREBP1a was constructed by polymerase chain reaction with the wild type 

plasmid as template and the polymerase chain reaction product was subcloned 

into the pRSET expression vector from Invitrogen. 

 

2.3 Transient transfections 

  

      HepG2 cells were plated in 12-well plates and then incubated for 16-18 h. At 

50-80% confluent state, the dishes were transfected with the indicated plasmids 

by the lipofectamine method according to the manufacture’s protocols. The 

luciferase reporter construct pRed-luc (0.5 µg/well) under the control of promoter 

from HMG-CoA reductase, the expression vector pSREBP1a (0.2 µg/well) were 

mixed in 60 µl DMEM and then add 60ul DMEM containing 2.5 µl of 

lipofectamine reagent. 0.2 µg/well of pCMV-βGal encoding β-galactosidase was 

also added. The total amount of DNA in each transfection was adjusted to the 

same amount by addition of mock vector plasmid. After 20 min of incubation, 

480 µl of DMEM was added to the DNA/Lipofectamine mixture. The cells were 

washed with phosphate-buffered saline and supplied with 600 µl of the 

DNA/Lipofectamine mixture. The cells were transfected for 5 h with plasmid, 

then washed with phosphate buffered saline (PBS) and then grown in DMEM 

supplemented with 10% fetal bovine serum and 100 µg/ml antibiotic/antimycotic.  
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The cells were maintained under 21% O2, 5% CO2 (Normoxia) or 1% O2, 5% 

CO2 (Hypoxia). 

 

2.4 Enzyme assays 

 

     After 24 h, the cells were harvested and lysed by 200 µl of reporter lysis 

buffer (Promega) and cell debris was removed by centrifugation. Luciferase 

activities were measured using 10 µl of cell extract and 50 µl of luciferase assay 

reagent (Promega). β-galactosidase activities were determined according to the 

manufacture’s protocols (Applied Biosystems). The β-galactosidase activity was 

used to normalize for any variations in transfection efficiency. Each experiment 

point was performed in triplicate. The relative luciferase activities (mean +/-S.E., 

n=3) are shown. 

 

2.5 Northern blot 

 

      Total RNA from HepG2 cells was isolated using TRIzol reagent. The 

Northern blot was performed as described before (Tian et al., 2003). Twenty 

micrograms of total RNA from each sample were separated on a 1% 

agarose/formaldehyde gel and transferred overnight onto a nylon membrane. 

After UV-cross-linking, membrane was prehybridized for 4 h at 42 °C in 

prehybridization buffer (6 x SSC, 5x Denhardt’s reagent, 0.5% SDS, 100 µg/ml 
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denatured salmon sperm DNA), and then probed overnight at 42 °C with HMG-

CoA reductase cDNA probe labeled with [α-32P]dCTP using Radprime labeling 

systems (Invitrogen) at 1 x 106 cpm/ml hybridization buffer (6 x SSC, 0.5% SDS, 

100 µg/ml denatured fragmented salmon sperm DNA, 50% formamide). After 

hybridization, the membrane was washed 3 x 5 min in buffer I (2x SSC, 0.5% 

SDS), 1x 15 min in buffer II (2x SSC, 0.1% SDS), and then washed with buffer III 

(0.1% SSC, 0.1% SDS) at 65 °C until the background was low. The wet 

membrane was exposed at -80 °C overnight using Kodak film.  Human HMG-

CoA reductase cDNA was obtained using RT-PCR using total RNA from HepG2 

cells. The PCR primers were: GATGTCCATGAACATGTTCACC   and   

CGAAGCAGCACATGATCTCCA. The PCR product was inserted to pGEM-T 

easy vector (Promega). The EcoRI fragment of HMG-CoA reductase was used 

as template for labeling. 

 

2.6 Mammalian two hybrid assay 

 

     pBIND and pACT (Promega) are two hybrid plasmids containing Gal4 DNA 

binding domain and viral VP16 activation domain, respectively. HIF-1β was fused 

to Gal4 DNA binding domain as the bait and SREBP1a was fused to VP16 

activation domain as the prey.  CV1 cells were plated in 12-well plates and then 

incubated for 16-18 h. At 50-80% confluent state, the dishes were transfected 

with the pGal4-luc (0.1 µg/well), pACT-HIF-1β (0.5 µg/well) and/or pBIND-
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SREBP1a (0.5 µg/well) by the lipofectamine method according to the 

manufacture’s protocols described as before. After 24 h, the cells were 

harvested and luciferase activity was determined with a luminometer. 

 

2.7 Pulldown assay 

 

      [35S]-methionine labeled HIF-1β or luciferase protein were generated by in 

vitro transcription coupled to translation (TNT translation kit, Promega). 

SREBP1a (1-490) subcloned into the pRSET expression vector was expressed 

and purified according to the manufacture’s protocols (Invitrogen). The 

bacterially expressed and purified SREBP1a was dialyzed against PBS to 

remove the imidazole. One hundred μl dialyzed SREBP1a was incubated with 

10 μl either [35S]-methionine labeled HIF-1β or luciferase protein for 2 h at 40C. 

The protein complexes were co-precipitated with the Ni-NTA Agarose for 2 h at 

40C. Following the incubation, the beads were washed with PBS containing 

0.1% Triton (3x). The proteins were separated by SDS-PAGE and radioactive 

signals were visualized by autoradiography. 

 

2.8 Protein expression and purification 

 

     The baculovirus expression of HIF-1β was performed as described with 

modification (Chan et al., 1994). The SF-9 cells were grown in Grace’s medium 
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containing 10% fetal bovine serum and 100 µg/ml antibiotic/antimycotic at room 

temperature in a 500 ml spinner flask (Wheaton). Two hundred ml of cells were 

infected with baculoviral stocks of the HIF-1β recombinant virus. After 3 days, 

the cells were harvested at 800x g for 10 min at 4 ºC. After harvest, the cells 

were washed with cold PBS once. Then the pellet was resuspended in the 5 ml 

of lysis buffer  (20 mM Hepes, pH 7.6, 100 mM NaCl, 0.1% NP40, 15% gycerol) 

containing 2 mM mecaptoethanol, 50µg/ml aprotinin, and 1 mM 

phenylmethylsulfonyl fluoride. The cells were lysed by douncing with pestle A 5 

times before being centrifuged at 10,000g for 15 min at 4 0C. The supernatants 

were mixed with 1 ml of Ni-NTA-Sepharose (Qiagen) that had been pre-

equilibrated with the same buffer. The suspension was gently mixed at 4 0C for 2 

h with rotation. After the resin settled at 4 0C, the solution was passed through, 

and the column was washed with 10 ml lysis buffer containing 10 mM imidazole. 

To elute the protein that was specifically bound to the resin, we passed 5 ml of 

the lysis buffer containing 200 mM imidazole through the column, and the eluate 

was collected in 1ml fraction. Western blot analysis of 10% SDS-PAGE was 

used to determine the quantity of HIF-1β. 

 

2.9 Western blot 

 

      Samples were resolved by 10% SDS-PAGE and then soaked in Towbling 

buffer (25 mM Tris.Cl, 200 mM glycine, 0.1% SDS, and 20% methanol) before 
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the proteins were transferred onto a nitrocellulose membrane using a large 

Semephor Transphor Unit (Amersham Pharmacia) for 1 h at constant current 50 

mA at room temperature. After transfer, the nitrocellulose membrane was 

blocked with TBST buffer (25 mM Tris.Cl, pH 7.6, 135 mM NaCl, 2.5 mM KCl, 

0.05% Tween 20) containing 5% (w/v) nonfat dry milk overnight at 4 0C.  The 

membrane was incubated with primary antibodies (Anti-HIF-1β (Santa Cruise), 

1:1,000) in TBST for 2 h at room temperature. Following this incubation, the 

membrane was washed with TBST (3x), incubated for 1 h with alkaline 

phosphatase-conjugated anti-rabbit IgG at 1:2,000 dilution in TBST, washed 

(3x), and then stabilized substrate of alkaline phosphatase was added. 

 

2.10 Electrophoretic mobility shift assay 

 

     Synthetic oligonucleotides were synthesized from Invitrogen. Each 

oligonucleotide pair was designed such that after hybridization there would be a 

four-nucleotide single-stranded tail of GATC on each 5’ end. The 

oligonucleotides are: 5’-GATCGAGAGATGGTGCGGTGCCCGTTCTCC-3’ and 

5’-GATCGGAGAACGGGCACCGCACCATCTCTC. Separate oligonucleotides 

for each strand were annealed as follows. Ten µg of each member of a pair 

were mixed with its partner in 50 µl solution containing 10 mM Tris.Cl (pH7.8), 1 

mM EDTA and 250 mM KCl. The mixture was boiled for 5 min and then 

incubated at 65 0C for 1 h. The water bath was turned off, and the hybridization 
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mixtures were allowed to cool slowly to room temperature. An aliquot of the 

mixture was endlabeled with γ-32P-ATP and T4 polynucleotide kinase (Promega).  

     Standard gel shift assays were performed as described (Osborne et al., 

1992).  DNA biding reaction were set up in a final volume of 20 µl containing 0.5 

µg of poly (dI.C), 5%(w/v) Ficoll, 25 mM Tris.Cl (pH7.9), 0.5 mM EDTA, 50 mM 

KCl, 5 mM MgCl2. After incubation for 30 min on ice, the samples were loaded 

onto a 5% polyacrylamide gel (29:1, acrylamide:bis) containing 5% glycerol in 

0.5x TBE. The gels were subjected to electrophoresis at 40C for 30 min prior to 

loading the samples, after which they were subjected to electrophoresis for 4-5 h 

at 200v at 40C. The gels were dried onto paper followed by autoradiography. 

 

2.11 In vitro transcription 

 

       By using HeLaScribe® Nuclear Extract in vitro Transcription Kit, in vitro 

transcription was performed according to the manufacture’s instruction 

(Promega). Briefly, the plasmid construct pRed-luc containing a reporter gene 

under the control of HMG-CoA reductase SRE segment was linearized with 

XbaI. One hundred ng linerized SRE-driven template was incubated with 0.2 μg 

SREBP1a protein in the presence of Hela nuclear extract which contained Pol II 

and other factors for the basic transcriptional machinery. The RNA products 

were obtained with phenol-chloroform extraction and analyzed with denaturing 

polyacylamide gel (29:1, acrylamide:bis) containing 7M urea in 1x TBE. The gels 
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were subjected to electrophoresis for 4 h at 200v at room temperature. The gels 

were dried onto paper followed by autoradiography. 
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CHAPTER III  

RESULTS 

 

3.1 Physical interaction between HIF-1β and SREBP1a 

 

      To determine the interaction between SREBP1a and HIF-1β, a mammalian 

two-hybrid assay was performed. Co-expression of pBIND-SREBP1a and pACT-

HIF-1β in CV-1 cells markedly activated luciferase reporter gene, indicating 

SREBP1a associates with HIF-1β (Figure 4A).  

       This interaction was also confirmed by pull-down assay (Figure 4B). The 

HIF-1β was pulled down by the Ni-NTA resin bound with SREBP1a (lanes 3 and 

4), indicating that SREBP1a specifically interacted with HIF-1β.  

 

3.2 Hypoxia suppresses HMG-CoA reductase gene expression 

 

      Plasmids containing luciferase reporter gene driven by HMG-CoA reductase 

and SREBP1a were cotransefected into HepG2 cells. The cells were then kept in 

normoxia (5% CO2, 21% O2), hypoxia (5% CO2, 1% O2) or normoxia with 

indicated concentration of CoCl2 for 24 h. The cells were harvested and 

luciferase activity was determined with a luminometer. 
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Fig. 4. Interaction between HIF-1β and SREBP1a.  (A) Mammalian two hybrid assay.  CV-1 cells 

were maintained in DMEM containing 10 % FBS. The cells were co-transfected with the 

indicated plasmid constructs. After 24 h, the cells were harvested and luciferase activity was 

determined with a luminometer. (B) In vitro pulldown assay.  The bacterially expressed and 

purified SREBP1a was incubated with either [35S]-methionine labeled HIF-1β or luciferase 

protein. The protein complexes were co-precipitated with the Ni-NTA Agarose and the proteins 

were separated by SDS-PAGE followed by autoradiography. Lanes 1, 2 were 1/10 of the input of 

HIF-1β and luciferase proteins, respectively.   Lane 5, molecular mass marker; lane 6, affinity 

purified SREBP1a protein (Coomassie blue stain).   
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      The result shows that hypoxia or hypoxia mimetic, CoCl2 can repress SRE-

driven luciferase reporter gene expression in HepG2 cells (Figure 5A). The 

repression of luciferase activity by CoCl2 is dose dependent (lane 2, 3, 4, 5). And 

the hypoxia treatment significantly decreases the luciferase activity. (Lane 2, 7).  

       The effect of hypoxia on HMG-CoA reductase SRE driven luciferase 

reporter gene expression was also investigated in mouse primary cells. 

Following co-transfection with pRed-luc and pSREBP1a, the mouse primary 

cells were kept under normoxia or hypoxia and the luciferase activity was 

determined after 16 h. The luciferase gene expression was repressed 

significantly under hypoxia (Figure 5B).  

       To determine the effect of hypoxia on the HMG-CoA reductase expression 

level, HepG2 cells were grown in DMEM containing lipid-depleted FBS under 

normoxia (5% CO2, 21% O2) or hypoxia (5% CO2, 1% O2) at different time-point. 

Total RNA was prepared and Northern Blot was performed (Figure 6A.). The 

data shows that HMG-CoA reductase mRNA expression is suppressed under 

hypoxia or by CoCl2 treatment. The repression by hypoxia in HepG2 cells or 

mouse primary cells was further confirmed by real-time PCR (Figure 6B, C.).  
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Fig. 5.  HMG-CoA reductase SRE driven reporter gene expression under hypoxia. A. HepG2 

cells were grown in DMEM containing 10% FBS and then transiently transfected with the 

indicated plasmid constructs. The cells were then maintained under normoxia (5% CO2, 21% 

O2), hypoxia (5% CO2, 1% O2) or normoxia with CoCl2 for 24 h. The cells were harvested and 

luciferase activity was determined with a luminometer. The asterisks represent values significant 

different from normoxia (P<0.05). B. Mouse primary hepatocytes were transiently transfected 

with pSREBP1a and pRed-luc. The cells were then maintained under normoxia (5% CO2, 21% 

O2) or hypoxia (5% CO2, 1% O2) for 16 h. The cells were harvested and luciferase activity was 

determined with a luminometer. The asterisk represents a value that is significant different from 

normoxia (P<0.05) 
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Fig. 6. Regulation of HMG-CoA reductase gene expression by hypoxia or CoCl2.  A.  HepG2 cells 

were kept under hypoxia (1% O2, 5% CO2), or under normoxia (21% O2, 5% CO2) in the 

presence of 100 µM CoCl2. Total RNA was prepared at indicated time after treatment. Northern 

blot analysis was performed. Even loading on the lanes was monitored by staining the gel with 

ethidium bromide.   
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Fig. 6. Continued. B. HepG2 cells were kept under normoxia (5% CO2, 21% O2) or hypoxia (5% 

CO2, 1% O2). mRNA levels were analyzed by real-time PCR.  β-Actin RNA was used as internal 

standard.  The asterisk represents a value that is significant different from normoxia (* 

0.05<P<0.1, **P<0.05) C. Mouse primary hepatocytes were grown in DMEM containing lipid-

depleted FBS under normoxia (5% CO2, 21% O2) or hypoxia (5% CO2, 1% O2) for 6 h. mRNA 



 25

levels were analyzed by real-time PCR.  β-Actin RNA was used as internal standard.  The 

asterisk represents a value that is significant different from normoxia (P<0.05) 

 
3.3 HIF-1β blocks the SREBP1a binding to the SRE in the promoter region of 

HMG-CoA reductase  

 

      Hypoxia can repress the expression of HMG-CoA reductase. Based on the 

interaction between SREBP1a and HIF-1β, we hypothesize that this repression 

is caused by the blockage of SREBP1a binding to SRE by HIF-1β.   To 

determine the effect of HIF-1β on SREBP1a binding to the SRE sequence in 

vitro, electrophoretic mobility shift assay (EMSA) was performed using in vitro 

expressed SREBP1a. The HIF-1β was obtained by baculovirus expression and 

the quality of the protein was determined by SDS-PAGE and Western blot assay 

(Figure 7B.). The result shows that HIF-1β can block the SREBP1a binding to 

the SRE in the promoter region of HMG-CoA reductase gene (Figure 7A. lane 1, 

3, 4.). 

 

3.4 Ectopic expression of HIF-1β represses SRE driven luciferase reporter gene 

expression in BPR cells 

 

     To detect the effects of HIF-1β on the SRE driven luciferase reporter gene 

expression, BPR cells which are HIF-1β deficient were co-tansfected with pRed-

luc, pSREBP1a and pHIF-1β. The data showed that the reintroduction of HIF-1β 
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repressed the HMG-CoA reductase SRE driven reporter gene expression 

(Figure 8, lane 2, 3, 4). 

 

 

A. 
SREBP1a + + + + - - - 

Anti-SREBP1a - + - - - - - 

HIF-1β - - + +
+ 

- + +
+

                              
                                                                                    B. 
 
                                                                                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                1   2   3    4   5    6   7 
 
 
Fig. 7. HIF-1β suppresses SREBP1a binding to SRE site. A. Electrophoretic mobility shift assay 

(EMSA) was performed using in vitro expressed SREBP1a. Lane1 shows the SREBP1a binding 

to SRE, lanes 3 and 4 show the suppression of SREBP1a binding to SRE in the presence of 

HIF-1β. Lanes 5, 6 and 7 is the same as lanes 1, 3 and 4, respectively except that no DNA 

template was in the in vitro translation. B. Baculovirus expression and affinity-purified HIF-1β. 

Crude: crude lysate. FT: flow through. W: wash. E1: fraction 1 of eluate. E2: fraction 2 of eluate. 

      SRREBP1a/SRE 

N.S

Free probe 
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Fig. 8.  HIF-1β suppresses SRE-driven reporter gene expression. BPR cells (HIF1ß-/-) were 

grown in DMEM containing 10% FBS and transiently co-tansfected with the indicated plasmid 

constructs. After 18 h, cells were harvested and luciferase activity was determined with a 

luminometer. The asterisk represents a value that is significant different from lane 2 (P<0.05). 
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3.5 In vitro transcription 

 

        To further determine the effect of HIF-1β on expression of SREBP1a-

regulated gene, in vitro transcription will be performed. In vitro transcription is a 

useful technique for the study of the regulation of gene transcription. By using 

HeLaScribe® Nuclear Extract in vitro Transcription Kit from Promega, some pilot 

experiments have been done. RNA yield from in vitro transcription increased 

significantly in presence of transcriptional factor (SREBP1a) (Figure 9, lanes 3 

and 4).  In the future study, the HIF-1β protein will be added and allowed to 

incubate with SREBP-1a and the chromatin template during in vitro transcription. 

 

3.6 Hypoxia or CoCl2 induces DEC1 gene expression   

 

        Our result suggests that hypoxic repression of HMG-CoA reductase 

expression is mediated by interaction of SREBP1a and HIF-1β. Also we 

speculate that hypoxia induced transcriptional repressor might be involved in this 

repression. In this study, the expression of hypoxia-regulated DEC1, which is a 

transcriptional repressor, was determined by using real-time PCR. The data 

showed that DEC1 expression was enhanced after 3-6 h under hypoxia or CoCl2 

treatment in HepG2 cells (Figure 10). 
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                                     1                 2    3    4 
 
Fig. 9.  In vitro transcription. SRE-driven template plasmid was incubated with SREBP1a protein 

in the presence of Hela nuclear extract. The RNA products were extracted and analyzed with 

denaturing polyacylamide gel. The arrow shows the RNA product incorporated with α-32P-UTP. 

Lane 1 shows molecular weight marker 

Lane 2: Positive control  

Lane 3: SRE driven template 

Lane 4: SRE driven template + SREBP1a 
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Fig. 10. Regulation of DEC1 gene expression by hypoxia or CoCl2. HepG2 cells were kept under 

hypoxia (1% O2, 5% CO2), or under normoxia (21% O2, 5% CO2) in the presence of 100 µM 

CoCl2. Total RNA was prepared at indicated time after treatment. The cDNA was obtained by 

reverse transcription and real-time PCR was performed. 
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CHAPTER IV  

CONCLUSION AND DISCUSSION 

 

       Our results show that the hypoxia can repress expression of HMG-CoA 

reductase, which is the rate-limiting enzyme in the cholesterol biosynthesis 

pathway. Transient transfection assays shows that hypoxia or hypoxia mimetic, 

CoCl2 can repress SRE-driven luciferase reporter gene expression. In addition, 

HMG-CoA reductase mRNA levels are repressed under hypoxia and this 

suppression is observed most significantly between 3-6 h after hypoxia 

treatment (Figure 6B). Based on results of gel shift assays, we suggest that this 

suppression is caused by inhibition of the SREBP1a binding to the SRE 

sequence by HIF-1β, which can physically interact with SREBP1a. 

      Under hypoxia, HMG-CoA reductase mRNA levels significantly decreased in 

3-6 h. However, mRNA levels were back to normal after 24 h (Figure 6B). This 

might be due to a negative feedback mechanism. The transcription of HMG-CoA 

reductase is tightly controlled by the mature form of SREBP1a.  Under 

cholesterol-depleted conditions, the premature form of SREBP1a is processed 

through a two-step cleavage. The N-terminal half of the SREBP1a is released 

and enters the nucleus as the mature form of transcriptional factor. After 3-6 h of 

hypoxia treatment, the HMG-CoA reductase expression is repressed and the 

cholesterol levels are decreased. Decreased cholesterol levels activate the 

maturation process of SREBP1a, this will increase the HMG-CoA reductase 
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expression. The microarray studies show several hundred of genes were down-

regulated under hypoxia in mouse fibroblasts (Vengellur et al., 2003; Greijer et 

al., 2005). However, the repression of HMG-CoA reductase was not observed. 

In these studies, the cells were treated under hypoxia for at least 24 h. No 

pronounced effect on HMG-CoA reductase expression after long period of 

exposure to hypoxia might be due to this feedback mechanism. 

     Hypoxia represses the expression of the HMG-CoA reductase and this 

repression might be mediated by interactions between SREBP1a and HIF-1β. 

HIF-1β is a transcriptional factor which can also dimerize with the Ah receptor 

(AhR) in response to AhR ligand such as TCDD. Therefore, the TCDD might 

also regulate the expression of HMG-CoA reductase through a similar pathway. 

Some preliminary studies in our lab have shown some hypocholesterolemic 

effects of TCDD in C3H/HeNCr mice. For example, the mice were fed with 

“Western diet”, which is high in fat. TCDD treatment caused significant 

suppression of serum cholesterol. To determine if this hypocholesterolemic 

effect induced by TCDD is mediated by the repression of HMG-CoA reductase 

expression, the effects of TCDD on mRNA levels in cells will be further 

determined.  

       Our data show that HIF-1β can interact physically with SREBP1a. Results of 

the gel shift assay suggest that this interaction lead to blockage of the SREBP1a 

binding to the SRE sequence in vitro. To determine if SREBP1a binding to the 

SRE sequence of the HMG-CoA reductase promoter region is repressed in vivo 
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under hypoxia, the chromatin immunoprecipitaion (ChIP) assay will be 

performed. 

       In addition to this HIF-1β mediated transcriptional repression, other 

molecular mechanisms may also be involved.  Some studies showed that the 

hypoxia regulated transcriptional repressors such as Bach-1 might be involved in 

transcriptional repression by hypoxia. For example, hypoxia induced 

suppression of heme oxygenase 1 (HO-1) has been associated with induction of 

Bach-1, a heme-regulated transcriptional repressor (Kitamuro et al., 2003). In 

ovarian carcinoma cells, hypoxia induce down-regulation of E-cadherin via up-

regulation of the transcriptional repressor SNAIL (Imai et al., 2003).  

       The HIF-1α regulated gene DEC1/Stra13, a novel bHLH transcriptional 

factor (BHLHB), represses PPARγ2 promoter activation and functions as an 

effector of hypoxia-mediated inhibition of adipogenesis (Yun et al., 2002). 

DEC1/Stra13 mRNA expression is induced under hypoxia or CoCl2 treatment in 

293T, Hela and ATDC cells (Miyazaki et al., 2002) and the functional hypoxia 

response element (HRE) has been identified in DEC1/Stra13 promoter region. 

Our results suggest that DEC1 expression is also induced by hypoxia in HepG2 

cells (Figure 10.). The DEC1/Stra13 can function as a transcription repressor 

through interaction with TATA binding protein (TBP) or RNA polymerase II 

complex thus interacting with the basal transcriptional machinery (Boudjelal et 

al., 1997). The DEC1/Stra13 can also repress transcription via histone 

deacetylase (HDAC)-dependent pathway (Sun and Taneja, 2000). The Effect of 
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induced DEC1 by hypoxia on HMG-CoA reductase expression needs to be 

further studied.  

         Also, it was reported that the α–fetoprotein (AFP) expression in hepatoma 

cells could be repressed under hypoxia. Under hypoxia, the negative factor 2 

(NC2) α or β protein is stabilized, therefore block the transcription by association 

with DNA-bound TFIID and inhibit the preinitiation complex assembly (PIC) 

formation (Denko et al., 2003). So the role of NC2 α/β in repression of HMG-CoA 

reductase expression under hypoxia will be explored in the future study. 
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