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ABSTRACT 

Proportional and Non-Proportional Transfer  

of Movement Sequences. (December 2004) 
 

Heather Jo Wilde, B.S., Angelo State University; 
 

M.S., Texas Tech University Health Sciences Center 
 

Chair of Advisory Committee:  Dr. Charles H. Shea 
 
 

The ability of spatial transfer to occur in movement sequences is reflected upon in 

theoretical perspectives, but limited research has been done to verify to what extent 

spatial characteristics of a sequential learning task occur. Three experiments were 

designed to determine participants’ ability to transfer a learned movement sequence to 

new spatial locations. A 16-element dynamic arm movement sequence was used in all 

experiments. The task required participants to move a horizontal lever to sequentially 

projected targets. Experiment 1 included 2 groups. One group practiced a pattern in 

which targets were located at 20, 40, 60, and 80° from the start position. The other group 

practiced a pattern with targets at 20, 26.67, 60, and 80°. The results indicated that 

participants could effectively transfer to new target configurations regardless of whether 

they required proportional or non-proportional spatial changes to the movement pattern. 

Experiment 2 assessed the effects of extended practice on proportional and non-

proportional spatial transfer. The data indicated that while participants can effectively 

transfer to both proportional and non-proportional spatial transfer conditions after one 

day of practice, they are only effective at transferring to proportional transfer conditions 

after 4 days of practice. The results are discussed in terms of the mechanism by which 
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response sequences become increasingly specific over extended practice in an attempt to 

optimize movement production. Just as response sequences became more fluent and thus 

more specific with extended practice in Experiment 2, Experiment 3 tested whether this 

stage of specificity may occur sooner in an easier task than in a more difficult task. The 

2 groups in Experiment 3 included a less difficult sequential pattern practiced over either 

1 or 4 days. The results support the existence of practice improvement limitations based 

upon simplicity versus complexity of the task. 
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CHAPTER I 

INTRODUCTION 

Understanding the processes involved in the fluent production of sequential 

movements such as those involved in speech, handwriting, typing, drumming, or playing 

the piano has been the object of much scientific inquiry for a number of theoretical and 

applied reasons. From a theoretical perspective this class of movements is important 

because sequential movements are thought to be initially composed of a number of 

relatively independent elements, which through practice are concatenated, consolidated, 

or otherwise organized into what appear to be a smaller number of subsequences (termed 

motor chunks by Verwey, 1994). As early as 1951, Lashley proposed that sequential 

actions were structured such that the order of the movement elements was determined 

independent of the nature of the movement elements (also see Henry & Rogers, 1960; 

Klapp, 1995, Keele, Jennings, Jones, Caulton, & Cohen, 1995; Schmidt, 1975; 

Sternberg, Knoll, & Turock, 1990). This notion of hierarchical control of movement 

sequences was refined as a result of a series of experiments and theoretical models by 

Rosenbaum and colleagues (e.g., Rosenbaum, Kenny, & Derr, 1983; Rosenbaum, 

Saltzman, & Kingman, 1984; Rosenbaum & Saltzman, 1984; Rosenbaum, Hindorff, & 

Munro, 1986; Rosenbaum, 1990) in the 1980s and 90s. These models described 

hierarchical control of movement sequences in terms of an inverted tree/branch 

metaphor such that higher levels (nodes), which were thought to transmit sequence  
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information, branched into lower levels, where specific element/effector information was 

stored (also see Nissen & Bullemer, 1987, Povel & Collard, 1982). The internal 

representation of this information, which results in a stable movement structure, was 

thought to be retrieved, unpacked, parameterized, and/or edited (depending on the 

theoretical perspective) prior to execution so as to meet the specific environmental 

demands. These models seemed to account fairly well for, at least some of, the time 

delays between the discrete individual and/or grouped elements in the sequence.                            

     While the performance and learning of movement sequences has received a good bit 

of experimental attention, little if any focused attention has been directed at participants’ 

ability to transfer or modify movement sequences when faced with new environmental 

constraints. This is a critical practical issue because performers are often faced with the 

task of executing movement sequences under conditions different from those 

experienced during practice. The manner by which the original movement sequence is 

adapted is also of considerable theoretical interest because observing how performers 

change learned movement sequences when faced with new constraints should provide a 

window through which to observe the fundamental ways in which movement sequences 

are structured, stored, and executed. The primary long-term objective of this research is 

to identify the conditions under which learned movement sequences can be effectively 

transferred and the process whereby movement sequences are modified if they cannot be 

effectively transferred. By imposing new requirements on learned movement sequences, 

important new theoretical insights into the control and learning of movement sequences 

can be gained. Furthermore, determining the boundary conditions for effective transfer 
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and the conditions under which movement sequences can be effectively modified will 

allow for further theoretical development and may ultimately lead to more effective 

training and retraining protocols.  

Recently, theorists have viewed the processing of sequential movement in terms 

independent, perhaps parallel, processing mechanisms (e.g., Keele et al., 1995; Verwey, 

1994, 1996, 2001; also see Schmidt, 1975): one processing mechanism responsible for 

planning and organizing the elements in the sequence and the other responsible for the 

articulatory activities required to activate the specific effectors. Verwey (1994, 2001), 

for example, proposed a cognitive processor, which plans and represents the sequential 

organization of the action, and a motor processor, which formulates the specific 

commands required to carry out the desired sequence. An interesting feature of the 

Verwey’s dual processor model is the proposal that the cognitive and motor processing 

mechanisms are not only independent but can operate in parallel. Thus, when a learned 

movement sequence is represented and executed as a series of subsequences (motor 

chunks), the planning of the next subsequence can be carried out while the current 

subsequence is being executed. Interestingly, Verwey proposed that the slower execution 

of subsequences in multi-subsequence movements could occur because the cognitive 

processor is required for high level sequence control; whereas, in single element or 

single subsequence movements the cognitive processor can be allocated to sequence 

execution. The results should be that simpler sequences that do not require the cognitive 

processor to be allocated to higher level processing should be executed more rapidly 

than the same elements in a more complex sequence where the cognitive processor is 



 4

required. This is different from other more serial dual processor models (e.g., Keele et 

al., 1995; Klapp, 1995, 1996; Rosenbaum, Saltzman, & Kingman, 1984; Rosenbaum & 

Saltzman, 1984; Schmidt, 1975) where the processing related to the sequence 

organization is completed prior to the initiation of the movement sequence (i.e., 

preprogrammed), and therefore processing at one level is relatively independent of 

processing at other levels.  

Moreover, if sequence representation is, from a processing standpoint, independent 

of element production, performers should be able to effectively utilize the representation 

for a learned movement to produce variations of the original movement pattern. Shea 

and colleagues (e.g., Lai, Shea, Bruechert, & Little, 2002; Park & Shea, 2002, 2003, ; 

Whitacre & Shea, 2002) have demonstrated, for example, that performers can transfer a 

learned movement sequence, initially learned using one limb, to the contralateral limb or 

a different muscle group on the same limb. Remarkably, not only was the overall 

movement time maintained on the effector transfer test, but the movement structure 

(pattern of chunking sequence elements) was also preserved. Strong effector transfer 

results were found for relatively simple 3-element movement sequences as well as 

relatively complex 8- and 16-element sequences. The results of these experiments are 

consistent with the notion that sequence representation, at least initially, is represented in 

an abstract, effector independent manner. These results also suggest that movement 

sequences may be effectively transferred without disruption in the movement structure 

when other movement parameters (e.g., absolute time, absolute amplitude), besides the 

specific effectors, are changed.  
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Thus, the focus of the present experiments was to determine the extent to which 

movement sequences could be transferred when the spatial requirements of the sequence 

are changed – sequence order unchanged. It was predicted that participants can 

effectively transfer to new spatial requirements when the changes were proportional 

across the movement sequence, but not when the changes were non-proportional. 

Proportional in this context means that the relationships between elements in the 

sequence maintain the same proportional amplitudes to each other but that the overall 

scale of the movement sequence could be increased or decreased. Non-proportional 

changes involve changing the relationship between amplitudes of the elements. The 

movement structure that is developed over practice can be maintained in proportional 

transfer conditions by simply rescaling the movement sequence, but the movement 

structure must be altered to effectively produce a non-proportional change.  

To test this hypothesis, participants completed a 16-element movement task after 

receiving instructions to move the arm lever as quickly and as smoothly as possible to 

sequentially presented targets projected onto a tabletop (Park & Shea, 2002). Initially, 

participants reacted to the stimuli much as they would in a choice reaction time situation, 

but over practice with a repeated sequence they became less reactive to the visually 

presented targets because they anticipated the upcoming target in the sequence. The 

result of acquiring sequence knowledge is an increasingly more rapid and fluid sequence 

production. This task was chosen because previous research (e.g., Park, Wilde & Shea, 

2004) using this task demonstrated that participants “chunk” or “package” two or more 

elements together in such a way that the elements appear to be executed as relatively 



 6

independent subsequences. Generally these subsequences have been operationally 

defined as a relatively long movement time to a target (beginning of subsequence) 

followed by relatively short movement times to one or more of the following targets (see 

Nissen & Bullemer, 1987, Povel & Collard, 1982; Verwey, 1994). The delay prior to the 

first item in a subsequence was thought to occur because the subsequence had to be 

retrieved, programmed, and/or otherwise readied for execution. Subsequent elements in 

the subsequence are produced more rapidly than the first because processing related to 

their production was completed during the initial interval. Thus, the movement structure 

pattern of element durations that is adopted under one set of conditions can be 

determined so that changes, if any, can be observed on transfer tests. 

Povel & Collard (1982) demonstrate various ways that participants subsequence 

elements in a key press task that result in faster response execution rates for those 

sequences that participants organize into fewer subsequences. Experiments 1 and 2 will 

utilize a 16-element sequence that is relatively complex.  Previous research with this 

sequence found that participants require several practice sessions before performance 

asymptotes. Experiment 3 involves a 16-element arm movement sequence in which the 

elements were rearranged in an attempt to simplify the sequence.  This was done by 

organizing the elements so that the movement is more rhythmical and predictable. In this 

context, simple and complex will be defined on the basis of the number of movement 

subsequences and the element durations. That is, given the same elements, equal 

movement amplitude, and an equal number of reversals, a sequence structured into fewer 

subsequences and produced more rapidly will be considered the simpler response 
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sequence. Further, performance on a simpler sequence should asymptote earlier in the 

practice phase. This latter prediction arises from the notion that development of the 

movement structure for the simpler sequence will require less cognitive resources to 

develop and more resources can be allocated to optimizing the specific motor command. 

The result will be a higher level of specificity. 

In these experiments, as in a number of other experiments involving repeated 

sequences (e.g., Keele et al., 1995; Park & Shea, 2002, 2003, ), participants periodically 

in acquisition perform blocks involving randomly presented elements. This is done in 

order to determine if differences arise between groups in terms of general performance 

capabilities unrelated to acquiring the repeated sequence. That is, improvements over 

practice or differences observed on the retention or transfer tests on the random sequence 

indicate general task improvements while the difference between the performance on the 

random blocks and the repeated blocks/tests indicate improvements resulting from 

sequence knowledge. Most importantly, from a design standpoint, the random blocks in 

retention/transfer using the various amplitude combinations, provide a reference upon 

which to determine the extent to which sequence knowledge (and the associated 

response structure) contributes to the increased sequence production speed. 

The proposed experiments impose new criteria onto learned movement sequences, 

identify conditions in which learned movement sequences are transferred, and 

distinguish conditions in which modifications must occur to transfer effectively. The 

primary purpose of the present experiments is to determine the extent to which 

participants can transfer a learned movement sequence to proportional and non-
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proportional transfer conditions after minimal (1 day) and more extensive (4 day) 

practice and whether this capability differs for simple and more complex sequences.  
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CHAPTER II 

EXPERIMENT 1 

Introduction 

 There are many instances where a learned movement sequence must be altered to 

meet external demands. In signing your name on a document, for example, you may be 

required to produce the action so that the strokes of the pen remain within a limited 

space, or in a classroom situation, you may be required to sign your name on the black 

board large enough for the whole room to view. Likewise, a pianist or typist may be 

required to use a keyboard in which the distances between the keys and/or the size of the 

keys are different from that typically used. These conditions require the proportional 

rescaling of the spatial aspects of the action sequence without changing the sequence 

order. Rescaling may require subtle changes in the actual pattern of effector activation or 

even the use of different effectors. Yet, in rescaling an entire movement sequence, the 

higher order aspects of the movement sequence, which are reflected in the movement 

kinematics, presumably, can remain intact. However, it may be more disruptive if some 

elements in the sequence are rescaled but not others. For example, it may be more 

problematic to write one or two letters in your signature larger relative to the other letters 

than to rescale the entire sequence. Likewise, it may be more problematic to shift one 

key on the keyboard than shifting all the keys proportionally. These non-proportional 

changes may require changes in the higher order sequence structure to effectively 

accommodate, while this structure should remain appropriate for proportional changes. 
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The purpose of Experiment 1 was to determine the extent to which participants can 

transfer a learned movement sequence to proportional and non-proportional transfer 

conditions. It is predicted that participants will experience little difficulty in transferring 

to conditions where the changes in the spatial conditions are proportional – that is, the 

required movement pattern has the same shape as the one practiced, but requires 

proportionally smaller or larger amplitude movements. Further, it is predicted that 

participants will experience difficulty in transferring to non-proportional transfer 

conditions. Effective performance under non-proportional transfer conditions may 

require a different higher order sequence structure and not just the rescaling of a learned 

sequence structure. A non-proportional transfer condition can be constructed by 

changing the shape of the movement pattern – that is, rescaling some but not all of the 

elements comprising the sequence. 

Method 

Participants 

College students (N=16), equal male and female, ages 18-28, volunteered to 

participate in the experiment. The participants had no prior experience with the 

experimental task and were not aware of the specific purpose of the study. All 

participants were right-hand dominant as determined by self-report prior to the 

experiment. Informed consent was obtained prior to participation in the experiment. 

Apparatus 

The apparatus consisted of a horizontal lever affixed at one end to a near frictionless 

vertical axle. The axle, which rotated freely in ball-bearing supports, allowed the lever to 
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move in the horizontal plane over the table surface. At the distal end of the lever, a 

vertical handle was attached. The position of the handle was adjusted so that, when the 

participant rested their forearm on the lever, their elbow aligned over the axis of rotation, 

so they could comfortably grasp the handle (palm vertical). The horizontal movement of 

the lever was monitored (100 Hz) by a potentiometer that was attached to the lower end 

of the axle. The data were used on-line to determine when target positions were achieved 

and were stored for later analysis on an IBM compatible computer. The targets and total 

movement time were displayed on the table top by a projection system mounted above 

the table. 

Procedure 

Prior to entering the testing room, participants were randomly assigned to one of two 

acquisition conditions. One practice condition used targets spaced at 20, 40, 60, and 80 

degrees from the start position. This was called the long condition. The other acquisition 

condition used targets spaced at 20, 26.67, 60, and 80 degrees from the start position. 

This was labeled the mixed condition. Note that only the second target (40 vs. 26.67 

degrees) was different in the two sequences. 

Upon entering the testing room, participants were seated in a chair facing a table on 

which the apparatus was mounted. The lever apparatus was adjusted so that the 

participant’s relative elbow angle was approximately 60 degrees at the starting position. 

Instructions were then given informing participants of how to perform the task. To begin 

each block participants were told to move the lever to the starting position (line on the 

table surface arbitrarily designed 0 degrees). When the start position was achieved the 
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outlines of the four circles (targets) were projected on the table top representing lever 

positions of 20, 40, 60, and 80 degrees or 20, 26.67, 60, and 80 degrees (see Figure 1, 

top-right and bottom right, respectively) from the start position, depending on the 

acquisition condition. The diameter of the targets represented 2 degrees of elbow 

extension/flexion. The presentation of the outlines of the targets indicated the block was 

about to begin. A short time later (2-5 s), a “start” tone was presented, and the first target 

was illuminated. Participants were instructed to move the lever as quickly as possible to 

the target. Upon “hitting” the target (i.e., passing into the target position) the 

illumination was “turned off”, and the next target was immediately illuminated until the 

sequence was completed. Participants were instructed to move the lever from one target 

to the next as quickly and smoothly as possible.  

A 16-element sequence (Targets 4, 7, 10, 7, 4, 7, 4, 1, 4, 7, 4, 7, 10, 7, 4, and 1) was 

repeated on 12 of 16 acquisition blocks. Blocks consisted of 10 repetitions of the 

sequence resulting in 160 targets. The repeated sequence was used on all but Blocks 1, 5, 

9, and 13. On these blocks the targets were illuminated in a random order. On all other 

acquisition blocks the repeated sequence was presented consecutively ten times. 

Participants were not provided any information about the random or repeated sequences. 

A rest interval of 30 s was provided after each block. 
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Figure 1.  Long (top), short (middle), and mixed (bottom) 16-element sequences used in 
Experiment 1. The left panel illustrates displacement traces representative of those for participants 
on the retention/transfer tests. The right panel illustrates the manipulandum/cursor and target 
positions used for the respective conditions. 
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Three delayed retention/transfer tests (long, short, and mixed) were conducted 

approximately 24 hrs after the completion of the acquisition session. The basic task and 

sequence for the tests were the same as on day one. The long test used targets located at 

20, 40, 60, and 80 degrees from the start position. This was a retention test for the long 

acquisition group and a transfer test for the mixed acquisition group. The short test 

involved targets located at 20, 26.67, 33.33, and 40 degrees (see Figure 1 right middle). 

This was a transfer test for both groups. More specifically, this was a proportional 

transfer test for the long group and a non-proportional transfer test for the mixed group. 

The mixed test involved targets positioned at 20, 26.67, 60, and 80 degrees. This was a 

retention test for the mixed acquisition group and a non-proportional transfer test for the 

long group. The order of the retention/transfer tests was counterbalanced. In addition 

three random sequence tests, one using each of the retention/transfer target 

configurations, were conducted. The random sequence tests were conducted 

approximately 5 min after the retention/transfer tests and were used as a reference for 

evaluating sequence performance on retention and transfer tests. The order of the 

random sequence tests was counterbalanced. 

Data Analysis

Data analysis was performed using Matlab (Mathworks, Natick, MA). The individual 

trial time series were used to compute lever displacement, velocity, and acceleration. To 

reduce noise the angular displacement time series was filtered with a 2nd order dual-pass 

Butterworth filter with a cutoff frequency of 10 Hz. A 3-point difference-algorithm was 

used to compute the velocity signal. The velocity signal was smoothed with a mobile 3- 
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point average algorithm before computing angular acceleration using a 3-point 

difference algorithm. Element response time was computed as the elapsed time from 

“hitting” (crossing the target boundary) the currently illuminated target to “hitting” the 

next illuminated target. Data analysis was identical for Experiment 1, 2, and 3. 

Results 

Examples of the movement kinematics (angular displacement, velocity, and 

acceleration) for the long and mixed sequences during acquisition and retention are 

provided in Figure 2. These data illustrate that movement speed, consistency, and 

fluidity increase over practice with the long sequence performed somewhat more quickly 

and with fewer zero crossing in the acceleration record than the mixed sequence early 

but not later in acquisition. Zero crossings indicate momentary delays or reversals in the 

movement sequence and are not directly related to movement speed. In the absence of 

any overt transitions between elements or subsequences and assuming no movement 

corrections resulting in reversals, each repetition of the sequence would be minimally 

composed of 8 zero crossings – each zero crossing representing the prescribed reversals 

in the sequence. This measure characterizes the extent to which a sequence is broken 

down into subsequences or conversely the fluency with which the sequence is produced. 

The sequence and element level analyses of element durations and acceleration zero 

crossings are provided below.  
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Acquisition  

Element duration and zero crossings on the acceleration records during acquisition 

were analyzed in separate 2 (Acquisition sequence - long and mixed) x Block (1-16) 

analysis of variance (ANOVA) with repeated measures on block. Mean element duration 

across acquisition and retention/transfer blocks are provided in Figure 3 (top) and zero 

crossings (bottom).  

Sequence Level Analysis of Element Duration. There was not a significant main 

effect of group F(1,14)=2.08, p>.05 showing that both acquisition groups performed 

similarly. However, the main effect of block F(15,255)=39.95, p<.01, was significant. 

Duncan’s new multiple range tests on block indicated that the random blocks (Blocks 1, 

5, 9, and 13) were responded to more slowly than adjacent repeated blocks. In terms of 

the random blocks, responses were slower in Block 1 than in Blocks 5, 9, and 13 which 

did not differ from each other. In terms of the repeated blocks, participants responded 

more slowly on Block 2 than all other repeated blocks and Blocks 3 and 4 were 

responded to more slowly than repeated blocks after Block 7. In addition, Blocks 6-8 

and 10 were responded to more slowly than repeated blocks after Block 12. The analysis 

also indicated a Group x Block interaction F(15,255)=2.07, p<.05. Simple main effects 

analysis confirmed that the random blocks were responded to more slowly than adjacent 

repeated blocks under both the long and mixed sequence conditions and that the mixed 

sequence was responded to more slowly than the long sequence on Blocks 1-8. The 

interaction accrues from the narrowing of the differences between the long and mixed 

sequence conditions on the repeated blocks over practice. 



 18

Block (10 repetitions)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 L S M

E
le

m
en

t d
ur

at
io

n 
(m

s)

100

200

300

400

500

600

Long  - Repeated
Mixed - Repeated
Long  - Random tests
Mixed - Random tests

Block (10 repetitions)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 L S M

Ze
ro

 c
ro

ss
in

gs
 in

 a
cc

el
er

at
io

n

8

12

16

20

24

28

 

 

 

Figure 3. Mean element duration during acquisition (Blocks 1-16) and retention/transfer testing 
(L=long, S=short, and M=mixed sequences) in Experiment 1. The repeated sequence was presented 
on Blocks 2-4, 6-8, 10-12, 14-16, and on the retention and transfer blocks. Random sequences were 
presented on Blocks 1, 5, 9, and 13.  
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Sequence Level Analysis of Zero Crossings. The main effect of block 

F(15,256)=25.11, p<.01, was significant. However, the analysis did not indicate a main 

effect of group F(1,14)<1, p>.05. Duncan’s new multiple range tests on block indicated 

that the random blocks (Blocks 1, 5, 9, and 13) were responded to with more zero 

crossings than adjacent repeated blocks. In terms of the random blocks, there were a 

larger number of zero crossings in Block 1 than in Blocks 5, 9, and 13 which did not 

differ from each other. In terms of the repeated blocks, participants produced more zero 

crossings on Block 2 than all other repeated blocks and Blocks 3 and 4 were responded 

to with more zero crossings than repeated blocks after Block 7. The analysis also 

indicated a Group x Block interaction F(15,256)=2.81, p<.01. Simple main effects 

analysis confirmed that the random blocks were responded to with more zero crossings 

than adjacent repeated blocks under both the long and mixed sequence conditions and 

that the mixed sequence was responded to with more zero crossings than the long 

sequence on Blocks 2-3 and 14-16. The interaction appears to accrue from the finding 

that the mixed sequence was responded to with more zero crossings early in practice but 

fewer zero crossing late in practice as compared to the long sequence. 

Retention and Transfer  

The retention and transfer data were analyzed in two general ways. The first analysis 

was similar to that conducted for acquisition and was designed to determine sequence 

level differences between acquisition groups. The sequence level analysis was a 2 

(Acquisition sequence – long and mixed) x 2 (Sequence type – random or repeated) x 3 
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(Test – long, mixed, short) ANOVA with repeated measures on sequence type and test. 

This analysis was conducted on element duration and zero crossings in acceleration. In 

addition, element level analyses were conducted to determine if the pattern of element 

duration were similar on the repeated sequence retention and transfer tests. The element 

level analysis, which was conducted separately for the acquisition groups, were Test 

(long, mixed, short) x Element (1-16) ANOVAs with repeated measures on both factors. 

Sequence Level Analysis Element Duration. Participants performed the random 

sequences more slowly than the repeated sequences. Even though neither group had been 

provided practice on the short sequence, both acquisition groups performed this 

sequence more quickly than the other two. The analysis indicated main effects of type, 

F(1,14) = 26.05, p<.01, and sequence, F(2,28) = 128.85, p<.01. The main effect of 

acquisition group, F(1,14) = 0.03, p>.05, was not significant. All interactions also failed 

significance. 

Sequence Level Analysis of Zero Crossings. Participants performed the random 

sequences with more zero crossings than the repeated sequences. Even though neither 

group had been provided practice on the short sequence, both acquisition groups 

performed this sequence with fewer zero crossings than the other two. The analysis 

indicated main effects of type, F(1,14) = 37.94, p<.01, and sequence, F(2,28) = 8.16, 

p<.01. The main effect of acquisition group, F(1,14) <1, p>.05, was not significant. All 

interaction also failed significance. 

 Element Level Analysis of Element Duration. The Sequence x Element ANOVA 

indicated main effects of sequence, F(2, 329) = 178.99, p<.01, and element, F(15,329) = 



 21

14.32, p<.01. Importantly, the Sequence x Element interaction, F(30,329) = 2.50, p<.01, 

was also significant. Participants in the long acquisition group performed the long,mixed,  

and short repeated tests using approximately the same relative pattern of element 

durations although the long and mixed sequences were performed more slowly than the 

short pattern.  Participants in the mixed acquisition group also appeared to produce a 

common pattern of element durations (Figure 4). The ANOVA indicated main effects of 

sequence, F(2, 329) = 356.76, p<.01, and element, F(15,329) = 42.85, p<.01. The 

Sequence x Element interaction, F(30,329) = 4.20, p<.01, was also significant. 

Discussion 

Participants practiced one of two repeated sequences (long and mixed) that differed 

in terms of the spatial locations of one of the target positions – the spatial locations of 

the other three targets were the same for both sequences. The sequences were also 

identical in terms of the number of elements, reversals, and sequence order. Although 

the long sequence was performed more rapidly and fluidly than the mixed sequence 

early in acquisition, no differences in element duration or zero crossings were detected 

later in practice. Importantly, the performance on the random sequence blocks resulted 

in substantially higher element durations and higher number of zero crossings than 

observed on the repeated sequence blocks. This indicates that the sequence order and 

associated advance planning afforded through knowledge of the sequence order on the 

repeated sequence blocks account for the more efficient movement production. 

Probability effects related to the fact that the Targets 4 and 7 each occurred three times 

more often in the sequences than Targets 1 and 10 were accounted for in the random  
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Figure 4. Sample element duration profiles for 4 participants in the long acquisition condition 
(left) and mixed acquisition condition (right) on the retention/transfer tests in Experiment 1. 
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sequences. That is, the random sequences were comprised of the same proportion of 

targets as the repeated sequences. Interestingly, performance on the random sequences 

improved up to Block 9 and then leveled off – this was not the case for the repeated 

sequence blocks where improvements continued until the end of practice. 

The delayed retention and transfer tests were designed to determine the ability of the 

participants to produce the movement sequence practiced on Day 1 without the 

temporary effects related to the practice conditions or the aid of knowledge of results. 

Further, participants were tested on transfer sequences where the spatial locations of the 

targets were changed in a proportional or non-proportional manner. Although it was 

predicted that participants would exhibit faster and more fluid performance on the target 

configuration that they experienced during acquisition and on proportionally changed 

target configurations than on a transfer test where the targets were changed in a non-

proportional manner, participants were able to effectively produce all of the test 

sequences. Remarkably, the group that practiced the long target configuration performed 

the mixed target configuration as well as the group that practiced that configuration on 

Day 1. Conversely, the group that practiced the mixed target configuration was able to 

produce the long target configuration as effectively as the group that practiced that 

sequence on Day 1. These results suggest a great deal of spatial flexibility in response 

production at this stage of practice. These results are consistent with findings of strong 

effector transfer after one day of practice and the notion that the motor system exhibits a 

great deal of flexibility early in the learning process. 
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Particularly interesting was the relative coherence between element duration, which 

reflects the speed with which the movement sequences are produced, and zero crossings 

in the acceleration records, which reflect the reversal and momentary lapses in 

acceleration in otherwise fluid movement production patterns. Park and Shea (2002) 

have shown that zero crossings, other than the minimal number required to 

accommodate the required reversals, tend to cluster around points in the sequence where 

participants much transition from one subsequence to another. Thus, zero crossings may 

play a prime role in limiting the speed with which the movement sequences can be 

produced. 
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CHAPTER III 

EXPERIMENT 2 

Introduction 

The notion that the pattern of performance on transfer tests changes as a result of 

extended practice was proposed in the modular notion of sequence processing by Keele 

et al. (1995; also see Wulf & Shea, 2002; Park & Shea, 2003). In addition, Jordan (1995) 

advocated that despite the relatively abstract nature of response sequences early in 

practice, further improvements in performance occur through increased precision of the 

motor commands, which may lead to more effector specific task characteristics than 

would be observed early in the learning process. Studies have demonstrated the 

integration of the scaling of the movement parameters, such as the specific effector and 

its associated feedback characteristics, into the movement plan after extended practice 

(Proteau, Martiniuk, Girouard, & Dugas, 1987; Proteau, Marteniuk, & Levesque, 1992).  

In addition, Park and Shea (2003) recently provided additional evidence that 

extended practice results in increasingly specific and less effector independent response 

characteristics. This suggests, given additional practice, that movements become less 

adaptable to effector transfer conditions. However, it is not known whether the increased 

specificity is limited only to effector transfer or whether these limits restrict more 

general transfer performance. Thus, it is possible that the pattern of transfer effects, if 

any, observed early in practice (Experiment 1) may not be evident (or more selectively 

evident) after more extensive practice because the movement structure will become less 

adaptable to an altered spatial pattern. Alternatively, the transfer effects observed by 
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Park and Shea (2003) after extended practice may be limited to changes in the effectors 

used to produce the movement. Thus, the purpose of Experiment 2 was to determine if 

the pattern of transfer to new spatial requirements (proportional and non-proportional) 

changes as a result of extended practice. If the pattern of transfer is more restrictive after 

extended practice than earlier in practice, the results would suggest that the changes that 

occur over practice are not limited to lower level activities of the specific effectors but 

also to the higher level characteristics of the response. Like extended practice effects on 

effector transfer, it is predicted that extended practice will result in the development of 

increased precision and specificity of the sequential movement pattern and have 

detrimental effects on proportional and/or non-proportional transfer conditions.  

Method 

Participants 

College students (N=16), equal male and female, ages 19-28, volunteered to 

participate in the experiment. The participants had no prior experience with the 

experimental task and were not aware of the specific purpose of the study. All 

participants were right-hand dominant as determined by self-report prior to the 

experiment. Informed consent was obtained prior to participation in the experiment. 

Apparatus 

The apparatus was identical to that used in Experiment 1. 

Procedure 

The general procedures and sequences were identical to that used in Experiment 1. 

However, participants were randomly assigned to a 1-Day or 4-Day practice group. The  
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1-Day group was identical to the Long group in Experiment 1 and the 4-Day group was 

also treated in an identical manner with the exception that they received 3 additional 

days of practice (4 days total). The 16-element sequence (Targets 2, 7, 10, 7, 2, 7, 2, 1, 2, 

7, 2, 7, 10, 7, 2, and 1) was complete on target spaces at 20, 40, 60, and 80 degrees from 

the start.  The retention and transfer tests were administered approximately 24 hrs after 

the completion of last practice session, and the tests that were administered were 

identical to those used in Experiment 1. 

Results 

Examples of the movement kinematics (angular displacement, velocity, and 

acceleration) for the long and mixed sequences during acquisition and retention are 

provided in Figure 5. These data illustrate that movement speed, consistency, and 

fluidity continue to increase over the additional days of practice. As in Experiment 1, the  

number of zero crossings on the acceleration record was determined. The sequence and 

element level analyses of element durations and acceleration zero crossings are provided 

below.  

Acquisition   

Mean element duration (Figure 6, top) and zero crossings in the acceleration record 

(Figure 6, bottom) during acquisition were analyzed in two ways. First, 2 separate  

(Acquisition group – 1-Day or 4-Day) x 16 (Block 1-16) ANOVAs with repeated 

measures on block was conducted to determine if differences on the first day of practice 

existed between the 1- and 4-Day acquisition groups. Second, the data for the 4-Day  
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Figure 6. Mean element duration during acquisition (Days 1-4, Blocks 1-16) and retention/transfer 
testing (L=long, S=short, and M=mixed sequences) in Experiment 2. The repeated sequence was 
presented on Blocks 2-4, 6-8, 10-12, 14-16, and on the retention and transfer blocks. Random sequences 
were presented on Blocks 1, 5, 9, and 13.  
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practice group were analyzed in a 4 (Day 1-4) x 16 (Block 1-16) ANOVA with repeated 

measures on both factors.  

Sequence Level Analysis of Element Duration. The analysis failed to indicate main 

effect of group F(1,14)=2.08, p>.05. However, the main effect of block F(15,255)=39.95, 

p<.01, was significant. Duncan’s new multiple range tests on block indicated that the 

random blocks (Blocks 1, 5, 9, and 13) were responded to more slowly than adjacent 

repeated blocks. In terms of the random blocks, responses were slower in Block 1 than in 

Blocks 5, 9, and 13 which did not differ from each other. In terms of the repeated blocks, 

participants responded more slowly on Block 2 than all other repeated blocks and Blocks 

3-7 were responded to more slowly than repeated blocks after Block 10. The Group x 

Block interaction F(15,255)=2.07, p>.05, was not significant. 

The second analysis was conducted to determine if performance changes occurred 

across the four days of acquisition. The analysis detected main effects of day, 

F(3,441)=333.69, p<.01, and block, F(15,441)=69.98, p<.01. Duncan’s new multiple 

range tests indicated that mean element duration significantly decreased on each of the 

four days of acquisition. The multiple range test on block indicated that the random 

blocks (Blocks 1, 5, 9, and 13) resulted in higher element durations than all repeated 

blocks. In addition, repeated blocks 2-7 resulted in higher element durations than 

observed on Blocks 10-16. The analysis also indicated a Day x Block interaction, 

F(45,441)=1.98, p<.01. Simple main effect analyses on the random blocks indicated 

decreases in element durations across blocks on Days 1 and 2, but no further decreases 

were observed from Block 5 on Day 3 till the end of acquisition. Simple main effects 
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analysis also detected decreases in element durations across repeated blocks on all days 

of practice. 

Sequence Level Analysis of Zero Crossings. The analysis of zero crossing for the 1- 

and 4-Day groups on the first day of practice failed to indicate main effect of group 

F(1,14)=1.02, p>.05. However, the main effect of block F(15,255)=43.21, p<.01, was 

significant. Duncan’s new multiple range tests on block indicated that the random blocks 

(Blocks 1, 5, 9, and 13) were responded to with more zero crossings than adjacent 

repeated blocks. In terms of the random blocks, more zero crossings were observed in 

Block 1 than in Blocks 5, 9, and 13 which did not differ from each other. In terms of the 

repeated blocks, participants responded more slowly on Block 2 than all other repeated 

blocks and Blocks 3-4 were responded to more slowly than repeated blocks after Block 6. 

The Group x Block interaction F(15,255)<1, p>.05, was not significant. 

The second analysis detected main effects of day, F(3,511)=105.35, p<.01, and block, 

F(15,511)=42.02, p<.01. Duncan’s new multiple range tests indicated that mean element 

duration significantly decreased on each of the four days of acquisition. The multiple 

range test on block indicated that the random blocks (Blocks 1, 5, 9, and 13) resulted in 

higher element durations than all repeated blocks. In addition, repeated Blocks 2-7 

resulted in higher element durations than observed on repeated Blocks 10-16. The 

analysis also indicated a Day x Block interaction, F(45,511)=1.44, p<.01. Simple main 

effect analyses on the random blocks indicated decreases in zero crossings across blocks 

on Days 1 and 2, but no further decreases were observed. Simple main effects analysis  
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also detected decreases in element durations across repeated blocks on Days 1 and 2 but 

not on Days 3 and 4. 

Retention and Transfer   

The retention and transfer data were analyzed in two ways. The first analysis was 

similar to that conducted for acquisition and was designed to determine sequence level 

differences between the 1- and 4-Day acquisition groups on the repeated and random test 

sequences. This analysis was conducted on element duration and zero crossing. The 

sequence level analyses were 2 (Acquisition group – 1- and 4-Day) x 2 (Sequence type – 

repeated or random) x 3 (Test – long, mixed, short) ANOVA with repeated measures on 

sequence type and test. In addition, element level analyses were conducted to determine 

if the pattern of element durations were similar on the repeated sequence tests. The 

element level analysis, which was conducted separately for the 1- and 4-Day acquisition 

groups, were 3 (Test - long, mixed, short) x 16 (Element 1-16) ANOVAs with repeated 

measures on both factors. 

Sequence Level Analysis of Element Duration. Participants performed the random 

sequences more slowly than the repeated sequences. Even though neither group had been 

provided practice on the spatial configuration required for the short sequence, both 

acquisition groups performed this sequence more quickly than the other two test 

sequences. The analysis indicated main effects of test, F(2,28)=115.17, p<.01, and type, 

F(1,14)=74.13, p<.01. The main effect of acquisition group, F(1,14)=1.90, p>.05, was 

not significant. However, the Group x Test, F(2,28)=4.46, p<.01, and the Group x Test x 

Type, F(2,28)=3.37, p<.05, interactions were significant. Simple main effect analysis 



 33

failed to detect any differences between the 1- and 4-Day groups performance on the 

random sequence tests or between random tests. However, differences between the 1- 

and 4-Day groups were detected on the long and short repeated sequences, but not the 

mixed repeated sequence. 

Sequence Level Analysis of Zero Crossings. Participants performed the random 

sequences with nearly twice the number of zero crossings than the repeated sequences. 

The additional practice on the long repeated sequence resulted in decreased zero 

crossings for not only the long repeated sequence but also the short repeated sequence. 

No benefit of the additional practice was observed on the mixed repeated test. The 

analysis indicated main effects of test, F(2,28)=4.43, p<.05, and type, F(1,14)=75.33, 

p<.01. The main effect of acquisition group, F(1,14)<1, p>.05, was not significant. 

However, the Group x Test x Type, F(2,28)=4.46, p<.05, interaction was significant. 

Simple main effect analysis failed to detect any differences between the 1- and 4-Day 

groups performance on the random sequence tests. However, differences between the 1- 

and 4-Day groups were detected on the long, short, but not the mixed repeated sequences. 

Element Level Analysis of Element Duration. Participants in the 1-Day acquisition 

group performed the long and short repeated tests using approximately the same relative 

pattern of element durations although the long and mixed sequences were performed 

more slowly than the short pattern. The mixed pattern, although requiring a non-

proportional movement pattern, did not deviate from the other two. The analysis 

indicated main effects of test, F(2,329)=38.87, p<.01, and element, F(15,329)=10.64, 
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p<.01. Importantly, the Test x Element interaction, F(30,329)=2.29, p<.01, was also 

significant. 

Participants in the 4-Day acquisition group did not appear to produce a common 

pattern of element durations on the three repeated test sequences. The ANOVA indicated 

main effects of test, F(2,329)=119.48, p<.01, and element, F(15,329)=21.92, p<.01. The 

Test x Element interaction, F(30,329)=5.04, p<.01, was also significant. Simple main 

effects analysis indicated that similar movement patterns were used for the long and 

short spatial configurations, but not for the mixed sequence configuration (Figure 7). 

Discussion 

Participants practiced the long movement sequence used in Experiment 1 for either 1 

day (160 repetitions of the sequence/ 2560 targets) or 4 days (640 repetitions of the 

sequence/10,240 targets). The 1-Day group was included in order to replicate the 

findings from Experiment 1, assure that there were no fundamental differences between 

groups, and to provide a baseline from which to assess the improvements that accrue 

with additional practice. The sequence and element level acquisition results after 1 day 

of practice very closely replicated the acquisition findings from Experiment 1 and failed 

to detect any differences between the 1- and 4-Day groups on repeated or random tests.  

The retention and transfer results of Experiment 1 indicated great flexibility in 

adapting the movement sequence to changes in spatial requirements. Contrary to the 

initial predictions, this ability was not limited to proportional transfer conditions but was 

equally evident on the non-proportional transfer sequence. The primary objective of 

Experiment 2 was to determine if this pattern of results would be replicated by the 1-Day 
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 Figure 7. Average element duration profiles for participants in the 4-Day acquisition condition 
on the retention/transfer tests in Experiment 2. The top panel illustrates element duration 
profiles on the long and short sequences. The bottom panel illustrates the element duration 
profiles for the mixed sequence. 
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group and whether this flexibility persisted after 4 days of practice. As in acquisition the 

retention and transfer results of the 1-Day group closely replicated the retention and 

transfer results from Experiment 1. After only 1 day of practice participants could 

effectively transfer from the long spatial configuration to both the mixed and short 

spatial configurations. Thus, it appears clear that at this stage of practice participants 

utilize an abstract sequence representation that is not dependent on specific effector 

commands or otherwise optimized in specific ways. This finding is consistent with 

recent research on effector transfer (e.g., Lai et al., 2002; Park & Shea, 2002; Whitacre 

& Shea, 2002) and demonstrations that movement production flexibility is not limited to 

changes in effector (e.g., Park, Wilde, & Shea, 2004; Shapiro, 1977; Whitacre & Shea, 

2000), but rather that the perceptual motor system exhibits a great deal of 

flexibility/adaptability early in practice. 

The delayed retention and transfer test results of the 4-Day group, however, 

indicated a different pattern of transfer. Substantial improvements resulting from the 

additional practice with the long configuration were observed on the retention test and 

the short transfer test, but not on the mixed transfer test. Importantly, the short transfer 

test, where improvements occurred, was considered a proportional transfer condition 

because the transitions between consecutive targets were all reduced by the same 

amplitude (from 20 degrees to 6.67 degrees). It was initially hypothesized that 

participants would be capable of this type of transfer because the higher order processes 

that define the movement sequences could be rescaled to meet the transfer requirements. 

Alternatively, participants in the 4-Day group were relatively ineffective in producing 
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the mixed transfer sequence where the positions of the targets were changed in a non-

proportional manner. Indeed, the difference between the 1- and 4-Day groups on the 

mixed transfer test was not significant. That is, additional practice with the long spatial 

configuration resulted in additional improvements both in terms of movement speed and 

movement fluency for the proportional transfer condition, but not in the non-

proportional transfer condition. 
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CHAPTER IV 

EXPERIMENT 3 

Introduction 

A number of researchers (e.g., Povel & Collard, 1982; Rosenbaum, Kenny, & Derr, 

1983; Rosenbaum, Saltzman, & Kingman, 1984; Rosenbaum & Saltzman, 1984; Wilde, 

Magnuson, & Shea, 2004) have demonstrated that the way in which individual 

movement elements are hierarchically organized or “chunked” can play an important 

role in determining how effective the sequence is produced. Given the same elements, 

responses organized into fewer subsequences typically result in faster movement times, 

and thus, are considered easier, relative to responses comprised of more subsequences. 

Povel and Collard (1982), for example, demonstrated that 6-element key press sequences 

were chunked into 2 or 3 subsequences depending on the order in which the elements in 

the sequence were arranged. Accordingly, the 2 subsequence responses were executed 

substantially faster than the 3 subsequence response sequences. This result was recently 

replicated by Wilde et al. (2004) and is consistent with recent findings by Park and 

colleagues (2003), using arm movement sequences.  

In addition, Wright and Shea (2001) predicted that decreasing the difficulty of the 

response structure would allow additional cognitive/motor resources to be “freed-up”. 

These resources could be reallocated from organizing the response structure to refining 

the motor commands that produce the individual elements. The notion that cognitive 

resources can be reallocated to assist in the element production in simple movement 

sequences has been proposed by Verwey (2001). If this is the case, refinements in motor 
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commands (Jordan, 1995; Park & Shea, 2003) would be expected to occur earlier in 

practice when the response structure is simpler and later when the response structure is 

more complex. This proposal, which also suggests that the movement structure should 

be developed prior to specific enhancement to the direct movement commands, is also 

consistent with the findings of Lai et al. (2002). They found that practice conditions that 

facilitated the development of the response structure should occur before practice that is 

aimed at enhancing movement parameters. Clearly, the time course for the learning 

progression for simple response sequences may not be the same for more complex motor 

sequences (also see Wulf & Shea, 2002, for a review of simple and complex skill 

learning). 

Experiment 2 found that a 16-element response sequence became increasingly 

specific over extended periods of practice such that the benefits of additional practice 

were only observed on the specific task practiced and not on transfer tests. It was 

hypothesized that the increased specificity of the sequence production was a result of 

attempts by the performer to optimize movement production. Presumably, the process of 

optimizing the motoric aspects of the sequence was not possible earlier in practice 

because it was necessary to first learn the sequence order and develop the sequence 

structure. Experiment 3 was designed to assess whether a “less difficult/easy” sequence, 

a sequence that could be organized into fewer subsequences and performed more rapidly, 

could be effectively structured earlier in practice. If the sequence order and organization 

of subsequences were completed earlier, the optimization process would also begin 
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earlier in practice. One result would be that increased movement specificity would also 

be observed earlier in practice.  

To test this notion, two groups, which were differentiated in terms of the amount of 

practice provided (1 or 4 days), attempted to learn a sequence that was designed using 

the same elements as in the earlier experiments but with elements arranged so that the 

pattern included essentially two repeated sequences. This sequence order would likely be 

more quickly acquired and the sequence more quickly produced than the sequences used 

in earlier experiments. Given the same elements, the same total movement displacement, 

and the same number of reversals as the prior experiments, it is hypothesized this 

“simpler” sequence could be structured into fewer subsequences due to the arrangement 

of elements in the sequence. This “simpler” sequence was also more symmetrical 

containing predictable, paired movement amplitudes. Thus, it is predicted that the 

“simpler” sequential pattern would be learned more quickly, organized into fewer 

subsequences, and would be produced faster than the sequences used in Experiments 1 

and 2. Importantly, if participants developed sequence structure with less practice than 

the prior experiments, then the optimization process would also begin early in the 

practice phase. This latter prediction arises from the notion that development of the 

movement structure for the simpler sequence will require less cognitive resources to 

develop and more resources can be allocated to optimizing the specific motor commands. 

The result would be a higher level of specificity after one day of practice with the 

“simpler” sequence and, accordingly, a reduced ability to transfer task performance to a 

different spatial pattern. 
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More specifically, it is predicted that the movement structure for the simple sequence 

will be learned more quickly than that of a “more difficult” sequence such as in 

Experiments 1 and 2. The “simpler” pattern will likely result in faster learning of the 

sequence order and a faster development of the sequence structure. This will allow 

additional resources to focus on optimizing the specific characteristics of the motor 

commands. It is expected that the simple sequence will be produced more quickly both 

during the acquisition and retention testing phases of the experiment. It is anticipated 

that participants who have practiced the simple sequence for only 1 day will not be able 

to perform the non-proportional transfer test as well as the retention test (practiced task). 

This prediction is contrary to the findings for the more difficult sequence. This 

prediction, however, arises from the notion that development of the movement structure 

for the “simpler” sequence will require less cognitive resources to develop and more 

resources can be allocated to optimizing the specific motor command. The result will be 

a higher level of specificity on the practiced task, but a decreased ability to perform non-

proportional transfer tasks. 

Method 

Participants 

College student (N=20) volunteers, equal male and female, ages 18-28, participated 

in the experiment. The participants had no prior experience with the experimental task 

and were not aware of the specific purpose of the study. All participants were right-hand 

dominant as determined by self-report prior to the experiment. Informed consent was 

obtained prior to participation. 
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Apparatus  

The apparatus is identical to that used in Experiment 1. For Experiment 3, 2 groups 

learned a “simpler” movement pattern, with a sequence containing paired, predictable 

movement amplitudes designed to be subsequenced or grouped into fewer chunks than 

the “more difficult” sequential pattern of Experiments 1 and 2. Group 1 performed the 

“simpler” pattern in 1 day of practice. Group 2 performed the “simpler” pattern 

practicing 4 consecutive days. Both groups were tested upon completion of practice with 

a 24-hour delayed retention test, 2 transfer tests, and their equivalent random sequence 

tests. 

Procedure 

  Prior to entering the testing room, participants were randomly assigned to a 1-Day 

or a 4-Day practice group. The acquisition, retention, and transfer testing protocols were 

similar to that used in Experiment 1. The 1-Day group was identical to the 4-Day group 

with the exception that the 4-Day group received 3 additional days of practice (4 days 

total). Both groups practiced a “simple,” rhythmical sequence (Targets 4, 7, 4, 7, 4, 7, 10, 

7, 4, 1, 4, 7, 10, 7, 4, 1). This sequence is illustrated in Figure 8. As in the earlier 

experiments, random sequence blocks were interspersed during acquisition and tested as 

equivalents to each retention/transfer phase. One day of practice (16 blocks of 160 

targets) was provided for Group 1, and 4 days of practice (64 total blocks of 160 targets 

per block) were provided for Group 2 with the retention and transfer tests administered 

24 hours after the completion of the last practice block. The retention test required   
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Figure 8. Long (top), short (middle), and mixed (bottom) 16-element sequences used in Experiment 3. 
The left panel illustrates displacement traces representative of retention/transfer tests. The right panel 
illustrates the manipulandum/cursor and target positions used for the respective conditions. 
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participants to produce the sequence order and spatial target locations used during 

practice as quickly as possible without feedback of total execution time.  

The transfer tests consisted of a proportional/ “easy” short and a non-proportional/ 

“easy” mixed sequence test phase. The proportional transfer test was the same simple 

pattern, but a proportionally compressed condition such that the displacement between 

targets was 6.67 degrees rather than the 20 degrees between targets as during acquisition 

and retention testing (Figure 8, middle). Another transfer test included the “easy” mixed 

version of the same pattern creating a non-proportional spatial transfer in that the second 

target was displaced nearer the first target to create an asymmetrical/nonproportional  

distance between targets as in Experiment 1. An equivalent random sequence test was 

conducted for each of the retention and transfer tests using the respective target 

configurations at either 6.67 degrees or 20 degrees. The random sequence tests were 

used to provide a baseline for assessing improvements in performance due to the 

sequence knowledge acquired over practice versus improvements due to physically 

practicing the task. 

    

 

 

Results 

Examples of the movement kinematics (angular displacement, velocity, and 

acceleration) for the “easy” long sequences during acquisition and retention are provided 

in Figure 9 for the 1-day practice group and in Figure 10 for the 4-day, extended practice 

group. These data illustrate that movement speed, consistency, and fluidity continue to 

increase over the additional days of practice. As in Experiment 1, Experiment 3 zero  
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Figure 9. Sample plots for Participant WSF in the simple sequence condition early in practice 
(Block 2, top), late in practice (Block 16, middle), and on the retention test (bottom). Note that 8 
zero crossings would be minimally required to complete the response sequence; one for each 
reversal in direction. Additional zero crossings indicate unnecessary reversal and/or momentary 
pauses. 
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momentary pauses in sequence production. 
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crossings are included on Figures 9 and 10 . The sequence and element level analyses of 

element durations and acceleration zero crossings were also determined. 

Acquisition   

Mean element duration (Figure 11, top) and zero crossings in the acceleration record 

(Figure 11, bottom) during acquisition were analyzed in two ways. First, 2 separate  

(Acquisition group – 1-Day or 4-Day) x 16 (Block 1-16) ANOVAs with repeated 

measures on block were conducted to determine if differences on the first day of practice 

existed between the 1- and 4-Day acquisition groups. Second, the data for the 4-Day 

practice group were analyzed in a 4 (Day 1-4) x 16 (Block 1-16) ANOVA with repeated 

measures on both factors. 

Sequence Level Analysis of Element Duration. The analysis failed to indicate main 

effect of group F(1,14)=2.08, p>.05 to indicate similar performance of the 2 acquisition 

groups. However, the main effect of block F(15,255)=39.95, p<.01, was significant. 

Duncan’s new multiple range tests on block indicated that the random blocks (Blocks 1, 

5, 9, and 13) were responded to more slowly than adjacent repeated blocks. In terms of 

the random blocks, responses were slower in Block 1 than in Blocks 5, 9, and 13 which 

did not differ from each other. In terms of the repeated blocks, participants responded 

more slowly on Block 2 than all other repeated blocks and Blocks 3-7 were responded to 

more slowly than repeated blocks after Block 10. The Group x Block interaction 

F(15,255)=2.07, p>.05, was not significant. The second analysis was conducted to 

determine if performance changes occurred across the 4 days of acquisition. The analysis 

detected main effects of day, F(3,441)=333.69, p<.01, and block, F(15,441)=69.98,  
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Figure 11. Mean element duration during acquisition (Days 1-4, Blocks 1-16) and retention/transfer 
testing (L=long, S=short, and M=mixed sequences) in Experiment 3. The repeated sequence was 
presented on Blocks 2-4, 6-8, 10-12, 14-16, and on the retention and transfer blocks. Random 
sequences were presented on Blocks 1, 5, 9, and 13.  
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 p<.01. Duncan’s new multiple range tests indicated that mean element duration 

significantly decreased on each of the four days of acquisition. The multiple range test 

on block indicated that the random blocks (Blocks 1, 5, 9, and 13) resulted in higher 

element durations than all repeated blocks. In addition, repeated blocks 2-7 resulted in 

higher element durations than observed on Blocks 10-16. The analysis also indicated a 

Day x Block interaction, F(45,441)=1.98, p<.01. Simple main effect analyses on the 

random blocks indicated decreases in element durations across blocks on Days 1 and 2, 

but no further decreases were observed from Block 5 on Day 3 until the end of 

acquisition. Simple main effects analysis also detected decreases in element durations 

across repeated blocks on all days of practice. 

Sequence Level Analysis of Zero Crossings. The analysis of zero crossings for the 1- 

and 4-Day groups on the first day of practice failed to indicate main effect of group 

F(1,14)=1.52, p>.05 to indicate similar performances by the 2 acquisition groups at this 

time in practice. However, the main effect of block F(15,255)=62.36, p<.01, was 

significant. Duncan’s new multiple range tests on block indicated that the random blocks 

(Blocks 1, 5, 9, and 13) were responded to with more zero crossings than adjacent 

repeated blocks except Block 2. In terms of the random blocks, more zero crossings 

were observed in Block 1 than in Blocks 5, 9, and 13 which did not differ from each 

other. In terms of the repeated blocks, participants responded more slowly on Block 2 

than all other repeated blocks. Blocks 3-7 were responded to more slowly than repeated 

blocks after Block 8. The Group x Block interaction F(15,255)<1, p>.05, was not 

significant. 
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The second analysis detected main effects of day, F(3,511)=11.99, p<.01, and block, 

F(15,511)=88.82, p<.01. Duncan’s new multiple range tests indicated that zero crossings 

significantly decreased from Day 1 to Day 2 with no further decrease thereafter. The 

multiple range test on block indicated that the random blocks (Blocks 1, 5, 9, and 13) 

resulted in higher element durations than all repeated blocks. There were no differences 

in the repeated blocks.  

Retention and Transfer   

Sequence Level Analysis of Element Duration. Participants performed the random 

sequences more slowly than the repeated sequences. While additional practice enhanced 

performance on the “easy” long and the “easy” short sequences, the additional practice 

did not benefit performance on the “easy” mixed sequence or any of the random blocks. 

The analysis indicated main effects of test, F(2,28)=56.05, p<.01, and type, 

F(1,14)=78.37, p<.01. The main effect of acquisition group, F(1,14)<1, p>.05, was not 

significant. However, the Test x Type, F(2,28)=11.98, p<.01, and the Group x Test x 

Type, F(2,28)=3.75, p<.05, interactions were significant. Simple main effect analysis 

failed to detect any differences between the 1- and 4-Day groups for performance on the 

random sequence tests. However, differences between the 1- and 4-Day groups were 

detected on the “easy” long and “easy” short repeated sequences, but not the easy 

“mixed” repeated sequence. 

Sequence Level Analysis of Zero Crossings. Participants performed the random 

sequences with nearly twice the number of zero crossings than the repeated sequences. 

The additional practice on the “easy” long repeated sequence resulted in decreased zero 
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crossings for not only the “easy” long repeated sequence but also the “easy” short 

repeated sequence. No benefit of the additional practice was observed on the “easy”  

mixed repeated test. The analysis indicated main effects of test, F(2,28)=4.43, p<.05, and 

type, F(1,14)=75.33, p<.01. The main effect of acquisition group, F(1,14)<1, p>.05, was 

not significant. However, the Group x Test x Type, F(2,28)=4.46, p<.05, interaction was 

significant. Simple main effect analysis failed to detect any differences between the 1- 

and 4-Day group performance on the random sequence tests. However, differences 

between the 1- and 4-Day groups were detected on the long and short, but not the mixed 

repeated “easy” sequences. 

Element Level Analysis of Element Duration.  Participants in the 1-Day acquisition 

group performed the long and short repeated tests using approximately the same relative 

pattern of element durations although the long sequence was performed more slowly 

than the short sequence. The mixed pattern, however, was produced more slowly and 

was not produced using the same pattern of element durations as the long and short 

sequences. The analysis indicated main effects of test, F(2,329)=154.92, p<.01, and 

element, F(15,329)=15.71, p<.01. Importantly, the Test x Element interaction, 

F(30,329)=2.71, p<.01, was also significant. 

Participants in the 4-Day acquisition group did not appear to produce a common 

pattern of element durations for all three repeated test sequences. Although practice 

increased the speed with which the long and short sequences could be produced, the 

pattern of element durations used after 1 day of practice were similar to that used after 4  
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Figure 12. Average element duration profiles for participants in the 4-Day acquisition condition on 
the retention/transfer tests in Experiment 3. The top panel illustrates element duration profiles on 
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days of practice.  The ANOVA indicated main effects of test, F(2,329)=360.32, p<.01, 

and element, F(15,329)=9.67, p<.01. The Test x Element interaction, F(30,329)=5.34,  

p<.01, was also significant. Simple main effects analysis indicated that participants  

performed the long and short repeated tests using approximately the same relative  

patterns for both the long and short spatial configurations but not for the mixed sequence 

movement  configuration (Figure 12). 

Discussion 

Participants practiced the simple movement sequence for either 1 day (160 

repetitions of the sequence/ 2560 targets) or 4 days (640 repetitions of the 

sequence/10,240 targets). The 1-Day group was included in order to provide a baseline 

from which to assess the improvements that may occur with additional practice. The 

sequence and element level acquisition results after 1 day of practice failed to detect any 

differences between the 1- and 4-Day groups on repeated or random tests.  

The retention and transfer results of the 1-Day practice group indicated limited  

flexibility in adapting the movement sequence to changes in spatial requirements. As 

opposed to Experiment 1 results, Experiment 3 participants completed the “easy” long 

and short sequences but were not as successful at completing the “easy” mixed pattern. 

The primary objective of Experiment 3 was to determine if a “simpler” pattern produced 

similar trends as the “more complex” pattern demonstrated in Experiment 2, that is, a 

diminished flexibility regarding motor sequencing completion with practice. The 

retention and transfer results of participants in Experiment 3 demonstrated their ability to 

effectively transfer from the “easy” long spatial configuration practiced to the “easy” 
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short spatial configuration but not to the “easy” mixed spatial configuration after either 1 

or 4 days of practice. Thus, it appears that in as early as the initial stages of practice in 

“simpler” sequencing tasks, the specifics of the movement structure become tightly 

linked to the elements such that a change non-proportionally in target spatial 

configuration results in poor transfer ability. This finding is consistent with recent 

predictions by Shea & Wulf (2004) that completing relatively “easier” motor skills 

results in different learning principles than “more complex” skills. The authors further 

describe the idea that the more complexity in a task the more information processing and 

practice that are likely to be required for that task to become specific.  The principles 

regulating generalizeable qualities of actions may indeed change over practice, and this 

change appears to occur even earlier with “simpler” motor tasks learned by the 

participants. Therefore, limited flexibility regarding sequence learning forms at initial 

stages of practice with the “easier” task.  This limited flexibility results in a sequence 

representation dependent on specific effector commands that creates optimization in 

specific ways.  
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CHAPTER V 

GENERAL DISCUSSION 

The primary purpose of the present experiments was to determine the extent to which 

a response sequence learned under one spatial configuration could be effectively 

transferred to an unpracticed spatial configuration and whether the ability to transfer was 

mediated by the amount of practice or the complexity of the sequential pattern. More 

specifically, it is predicted, based on results of motor program theory research on 

parameter transfer (e.g., Shapiro, 1977; Whitacre & Shea, 2000) and recent effector 

transfer research using both simple (e.g., Lai et al., 2002; Whitacre & Shea, 2002) and 

more complex (e.g., Park & Shea, 2002; Park, Wilde, & Shea, 2004) sequences that 

participants would be capable of adapting the movement pattern to unpracticed, but 

proportional spatial transfer conditions. This type of transfer would be effective because 

the relative pattern of muscle activation would only have to be rescaled to satisfy the 

changed spatial requirements. However, it is predicted that transfer would be less 

effective when the unpracticed spatial conditions required non-proportional changes in 

the movement pattern. In this situation, the practiced muscle activation pattern could not 

be simply rescaled but would need to be restructured to optimally meet the demands of 

the changed spatial requirements. 

The data from Experiment 1, which involved 1 day of practice prior to retention and 

transfer testing, demonstrated participants could successfully transfer to both 

proportional and non-proportional transfer conditions. Indeed, contrary to initial 

predictions, performance on the non-proportional transfer test was as effective as the 
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group that practiced with that spatial configuration on Day 1. This suggests that 

participants at this stage of practice were relying primarily on sequence order 

information and had not yet  fully structured the sequence and/or optimized the motor 

commands to the specific movement requirements. This finding is consistent with recent 

effector transfer findings where effector transfer performance was as effective after 1 

day of practice as performance using the effectors used during the practice phase 

(Whitacre & Shea, 2002; Park & Shea, 2002). However, in Experiment 2, after 4 days of 

practice, participants were only effective in transferring to the proportional transfer 

condition. Performance on the non-proportional transfer test after 4 days of practice was 

no better than transfer after 1 day of practice in Experiment 2. That is, additional practice 

incremented performance on the proportional transfer tests, but not the non-proportional 

transfer tests. Consistent with the findings of effector transfer experiments, these results 

demonstrated that the specificity of the sequence production increases over practice, but 

that participants remain capable of rescaling the spatial characteristics of the movement 

sequence even after extended practice.  

Experiment 3 observed transfer performance after practicing a “less difficult” 

dynamic arm movement task.  Based on results of effector transfer research with simple 

(e.g., Lai et al., 2002; Whitacre & Shea, 2002) and more complex (e.g., Park & Shea, 

2002; Park, Wilde, & Shea, 2004) sequences, it is predicted that participants will learn 

the sequence order and begin to structure the sequence early in the practice sessions.  

Thus, the optimization process can also occur early in practice. The optimization should 

lead to a connection or linkage between the movement structure and the individual 
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elements with a greater degree of response specificity. Therefore, it was predicted that 

the development of response specificity would occur in the “easier” task earlier than in 

the “more difficult” task. In this regard, Verwey (2001) has proposed that in simpler 

tasks, relative to a more complex task, the cognitive processor can be allocated to assist 

with the motor components of execution earlier in practice than in more difficult tasks. 

Sequence Representation and Transfer 

Numerous theoretical perspectives have proposed that the structure of a movement 

sequence is determined independently of the articulatory activities that result in the 

specific activation of the effectors. These movement dimensions have been variously 

labeled relative and absolute (e.g., Schmidt, 1975), invariant and variant (Schmidt, 1985, 

1988), structural and metrical (Kelso, 1981), higher and lower order (e.g., Fowler & 

Turvey, 1978), and essential and non-essential (Gelfand & Tsetlin, 1971; Kelso, Putnam, 

& Goodman, 1983; Langley & Zelaznik, 1984). These distinctions imply that the 

movement structure dimension, variously labeled the relative, invariant, higher order, or 

essential depending on the theoretical perspective, is more abstract, involves 

independent representations/processing and, thus, is potentially scalable in various 

superficial dimensions (see Schmidt, 1975; for a recent review see Shea & Wulf, 2004). 

This is in contrast to the other movement dimension, variously labeled the absolute, 

variant, lower order, or non-essential dimension depending on the theoretical perspective, 

which is thought to involve more specific processing activities that produce the 

individual elements of the sequence. More directly, Keele et al. (1995; also see Verwey, 

1994) proposed that one processing module is responsible for the organization of 
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sequential movements (cognitive processor) and another independent module is 

responsible for generating the specific articulatory commands associated with producing 

the individual elements in the sequence (motor processor). In support of the notion of an 

abstract sequence representation, Keele et al. (1995) found SRT tasks involving discrete 

key pressing to be effector independent. That is, transfer to the contralateral hand/fingers 

or voice activated responses were produced as effectively as when the participant used 

the same set of muscles as used in practice. Similarly, Lai et al. (2002) found timing 

sequences produced by alternately tapping with the left and right hand to be equally well 

performed when the roles the hands played in the sequence were reversed or a single 

finger, as opposed to alternating fingers, was used to tap the sequence. These results 

clearly demonstrate that the movement structure is independent of the specific 

articulatory activities that generate the specific commands to the effectors. 

Recently, Park and Shea (2002), in an attempt to extend the recent effector 

independence findings to a dynamic movement sequence, allowed participants to 

practice producing a force-time waveform using one set of effectors and then compared 

delayed retention performance using the same set of effectors with performance on a 

transfer test where a different set of effectors was required. In Experiments 1 and 2, 

contralateral or ipsilateral effector transfer tests were conducted. The contralateral test 

involved transfer to the opposite limb while the ipsilateral effector transfer test involved 

transfer where the agonist and antagonist muscle switched roles. In Experiment 3, 

participants practiced the static, force production task used in Experiments 1. After 

completing the delayed retention test, participants were asked to produce a dynamic 



 59

version of the task. This transfer condition involved considerably different muscle 

activation patterns, but the relative timing and relative force requirements were the same. 

The results were remarkably similar across the three experiments regardless of whether 

transfer was to a new limb (see Figure 5), a different muscle group on the same limb, or 

whether transfer was from static to dynamic versions of the task. Interestingly, this result 

has been replicated by Park and Shea (2003) using the long 16-element arm movement 

sequence used in the present experiments. After one day of practice with the right limb, 

participants were able to effectively produce the movement pattern with their left limb.  

These results provided strong empirical support for the notion of effector 

independence at least with respect to the movement structure. These findings are also 

consistent with the proposal that independent computational modules are responsible for 

sequence and element production (Keele et al., 1995), and the notion of independent 

cognitive and motor processing mechanisms (Verwey, 1996). Both perspectives argue 

that the computational module or processing mechanism responsible for organizing the 

sequence characteristics of the response do so in a more abstract manner than the module 

or mechanism responsible for formulating the specific motor commands. Similarly, 

Kelso and Zanone (2002; also see Buchanan, 2004; Criscimagna-Hemminger, Donchin, 

Gazzaniga, & Shadmehr, 2003) have argued that coordination dynamics and associated 

changes in task-level attractor states are represented at an abstract, effector independent 

level of system functioning. Regardless of the theoretical perspective, the bottom line is 

that at least some characteristics of movements are represented in an abstract, effector 

independent manner. 
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While the effector transfer findings are consistent with the notion of an abstract 

sequence representation that governs the sequential organization of movement, few 

experiments have systematically determined the extent to which sequential movements 

can be transferred across other movement dimensions. If the response structure is indeed 

represented in an abstract manner, as has been proposed, one would predict 

transferability when circumstances dictate changes in force, timing, and/or spatial 

requirements. The ability to rescale simple, usually one or two element, movement 

sequences to changed force (e.g., Whitacre & Shea, 2000, 2002) and/or timing (e.g., 

Wulf, 1992; Wulf & Lee, 1993; Wulf, Lee, & Schmidt, 1994) requirements have been 

demonstrated. These experiments were conducted in an attempt to test predictions of 

motor program theory (e.g., Schmidt, 1975, 1985, 1988). Schema theory, for example, 

proposed that a generalizable motor program defined a set of invariant features of a 

motor program (e.g., relative time, relative force, sequence of elements) which could be 

rescaled in various superficial movement dimensions in response to specific movement 

demands. In general, this research provided strong support for both the notion that the 

motor program which specified the sequential features of the movement was represented 

in an abstract manner and the notion that because of the abstract nature of the sequence 

representation that the movement structure could be easily rescaled. Importantly, 

rescaling of the movement sequence resulted in proportional changes in the movement  

pattern such that relative timing, relative force, and/or relative spatial characteristics of 

the movement remained intact. 
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Consistent with the effector transfer experiments, the findings from Experiments 1 

and 2 demonstrated that after 1 day of practice the movement structure of complex, 

dynamic movement sequences could be effectively transferred to unpracticed spatial 

configurations. This finding, coupled with previous effector transfer findings, provides 

strong support for the notion that the movement representation is stored in an abstract 

manner which is independent of the specific muscle activation sequences, at least at this 

stage of learning. In addition to Experiment 1 and Experiment 2 with a more complex 

dynamic task, Experiment 3 found evidence of transfer ability of proportional sequences 

after 1 day of practice in a simple, dynamic arm task. Thus, it appears that the 

perceptual-motor system is designed to accommodate change. The design feature that 

permits the fluid transition from one set of conditions to another is the separation 

(independence) of higher – more general features of the to be learned sequence and 

lower – more specific features related to the activation of the specific muscles. 

Practice and Movement Sequence Transfer 

While a number of recent studies (e.g., Experiment 1; Park & Shea, 2002, 2003) 

have demonstrated that movement sequences could be effectively transferred to new 

muscle groups or to changed spatial configurations, it was not clear whether this transfer 

ability was a pervasive characteristic of the motor system or was somehow limited to 

performance relatively early in the practice. Clearly a perceptual motor system which 

permits a great deal of movement flexibility early in the learning processing, but is 

capable of optimizing movement specifics with additional practice, has a great deal of 

intuitive appeal. Park and Shea (2003), for example, conducted an experiment to 
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determine the effect of practice on the extent to which simple response sequences 

practiced using one set of effectors could be effectively produced using an unpracticed 

set of effectors. Given additional practice, it is possible that in an attempt to optimize 

movement production, effector information becomes more directly linked to the 

response structure than was observed early in practice (e.g., Park & Shea, 2002). This 

general phenomenon has been termed coarticulation (Jordan, 1995) and has been shown 

to influence the production of well-learned movement sequences in speech (e.g., 

Benguerel & Cowan, 1974; Sternberg, Monsell, Knoll, & Wright, 1978), key pressing 

(Verwey & Wright, 2004), and in skilled typing (e.g., Gentner, Larochelle, & Grudin, 

1988). The effect of additional practice, then, would be a more effective response when 

the same muscles and activation patterns were required but of little additional benefit 

when a new set of effectors or activation patterns were required. In the extended practice 

experiment (Park & Shea, 2002) delayed contralateral and ipsilateral effector transfer 

tests were compared to a delayed retention test (effector transfer tests counterbalanced). 

In contrast to transfer after 1 day of practice, after extended practice the movement 

structure was not effectively transferred to the unpracticed effectors. This suggests that, 

as the movement sequence was refined during the additional practice, the movement 

structure became more effector dependent than it was earlier in practice (see Shapiro, 

1977 for alternative finding).  

Park and Shea (2003), using the long sequence from the present experiment, also 

provide evidence, that after extended practice, participants structured their response 

(consolidated or concatenated elements) on an effector transfer test differently than on 
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the retention test. This was not the case after one practice session. In fact, the sequence 

organization that was used on the effector transfer test after extended practice was 

similar to that observed much earlier in practice. Additional practice resulted in a more 

refined and better scaled movement sequence, which was also less adaptable to effector 

transfer conditions. When faced with producing the response using a different set of 

effectors, the additional practice resulted in no additional benefit in terms of the response 

structure and the specification of force. The Park and Shea (2003) results are remarkably 

similar to that found in Experiment 2 and 3, in the extended practice groups, where the 

spatial characteristics of the response sequence were changed, rather than the effectors. 

In Experiment 2 and 3, additional practice incremented performance on the retention test 

and the proportional transfer test but not the non-proportional transfer test. Presumably, 

the movement characteristics that were enhanced through additional practice were such 

that they could be rescaled to accommodate the changed spatial conditions. However, 

when the spatial movement requirements were changed in a non-proportional manner the 

additional practice failed to provide improvement in transfer performance over that 

observed after only one day of practice. Clearly the additional practice enhanced transfer 

abilities when the changes in the requirements were proportional because the refined 

movement structure could be rescaled, but not when they were non-proportional. Indeed, 

it appeared that participants had to abandon the movement structure developed over the 

four days of practice when the changes were non-proportional in order to accommodate 

the subtle change in the position of one of the targets in the sequence. In Experiment 3, 

participants learned a “less difficult” sequential pattern and demonstrated at even earlier 
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stages of practice a structural and individual element linkage after just one day of 

practice that lended toward successful proportional transfer and less ability to transfer to 

a non-proportional spatial pattern. With extended practice, the non-proportional transfer 

was unchanged relative to transfer after 1 day of practice. These findings suggest that the 

principles of transfer early in practice are quite different from those later in practice and 

vary depending on complexity of the task. 

Evidence of the integrity of the movement structure in Experiment 1, 2, and 3 is most 

clearly observed in the zero crossings in the acceleration traces that demonstrate the 

controlled rhythmicity of the movement pattern. While after limited practice the 

movement sequence appeared as discrete steps transitioning from target to target, 

(resulting in numerous zero crossings) more extended practice allowed the participants 

to increase the speed of movement by generating a more fluid – rhythmical movement 

pattern that did not dwell at the various targets/elements, but rather moved continuously 

between reversal points. This type of transition from discrete to more cyclical movement 

has also been observed recently in continuous Fitts’ type tasks by Buchanan and 

colleagues (Buchanan, Park, Ryu, & Shea, 2003; Buchanan, Park, & Shea, ; also see 

Pew, 1974). They argue that this transition from discrete to cyclical over practice 

indicates the nervous system’s propensity for cyclical movement. Indeed, they observed 

increases in harmonicity over practice even for indexes of difficulty initially requiring 

relatively discrete movement. 

The rhythmical qualities that appeared with extended practice in Experiment 2 were 

acquired earlier in practice in Experiment 3 with the simpler task. Since participants 
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seemed to reach the continuous, fluid stage sooner with the simple pattern in Experiment 

3, the cognitive, more abstract processor may have been freed up more rapidly to assist 

with the motor processing duties and to create faster execution time. This is consistent 

with the notion of dual, parallel processors responsible for the production of sequential 

motor tasks (Verwey, 2001). Consistent with Verwey’s dual, parallel processor model, 

the simpler sequence in Experiment 3 may have allowed the participants to reallocate the 

cognitive processor to assist in motor processing demands after less practice in order to 

create the most efficient movement possible.  

One might conclude, then, that in the simple task participants would be able to group 

a larger number of elements into each subsequence/chunk. The result would be fewer 

subsequences and faster execution times.  However, the data from Experiment 3 

demonstrates otherwise. In fact, it appears as though there is a limit to the number of 

elements that can be grouped into a “chunk” or subsequence. Regardless of sequence 

difficulty, this is consistent with Verwey’s (1996) proposal that the amount of 

information that can be held in the motor buffer is limited. He proposed that no more 

than 3-4 elements can be chunked together to form a subsequence. In Experiment 3, 

even through extended practice, participants tended to only chunk 3-4 items together. It 

is possible, however, that the simple pattern allowed participants to reach the 3-4 

element limit sooner than a more complex task.   

The results of these experiments suggest that the independence of the movement 

structure and movement scaling may be lost over practice with the movement structure 

and the force characteristics becoming more closely integrated. This can occur at an 
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even earlier stage in practice with a relatively “simpler” sequence. It seems reasonable 

that after practice with this type of task that participants attempt to exploit the unique 

characteristics of the specific effectors.  It also seems reasonable that this exploitation 

benefits response production when the same effectors are used but increasingly limits the 

extent to which the response sequence is effector independent (also see Proteau, 

Marteniuk, Girouard, & Dugas, 1987; Proteau, Marteniuk, & Levesque, 1992), but not 

the ability to rescale the entire sequence.  

Although the theoretical proposals of Klapp (1995), Keele et al. (1995), and Verwey 

(1994) do not make specific predictions about proportional or non-proportional transfer, 

Schmidt (1975) and Rosenbaum et al. (1984) do make relatively specific predictions 

about transfer. The general findings of Experiment 2 and 3 are consistent with the 

predictions of both Schmidt (1975) and Rosenbaum et al. (1984). Schmidt (1975) 

proposed that a generalizable motor program (GMP) could be rescaled along various 

parameter dimensions such as amplitude, force, or time. A parameter change in a 

movement would result in a proportional change across the entire movement sequence 

while the relative or proportional features of the movement remain intact.  The present 

data is consistent with Schmidt’s proposal and suggest that these tasks could also be 

scaled effectively in terms of time and force. Schmidt’s (1975) predictions are limited, 

though, because the tasks Schmidt utilized to reach his conclusions were rapid actions 

thought to be based upon a single motor program.  Shea and Wulf (2004), however, 

concluded in a re-evaluation of Schmidt’s schema theory that these rules also apply to a 

broader range of tasks as long as the movement is governed by a stable structure even if 
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the movement is not controlled by a single motor program.  Similarly, Rosenbaum et al. 

(1984) described an inverted tree branch metaphor to describe the production of 

movement sequences. He suggested that as long as the learned structure can be used, 

then effective transfer should occur.  This idea supports the proportional transfer success 

in the current experiments.  Thus, the findings from Experiments 1, 2, and 3 provide 

support for these theoretical perspectives. However, the examination of proportional and 

non-proportional transfer under various parameter conditions requires further 

consideration in terms of the generalizability of movement skills as well as the effects of 

the practice specificity. 
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CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

In summary, the present findings suggest that the way in which dynamic movement 

sequences are represented in memory and executed changes across practice and with the 

degree of complexity. Early in practice the response structure appears to be represented 

in a highly abstract way resulting in effector and parameter independent performance 

capabilities. Later in practice, as specific characteristics of the motor system are 

exploited in an attempt to refine the movement pattern, the movement sequence becomes 

more precisely represented resulting in enhanced performance when the same effectors 

and relative movement pattern is required, but less effective when circumstances require 

the response to be executed using different effectors or different relative movement 

patterns. Similar practice effects occur when the pattern is simple, but these effects 

appear at an earlier stage in practice.  

The dynamic arm movement task is one method of studying sequence learning. 

However, my recommendations for future studies include incorporating a multi-joint 

comparison of transfer. For instance, how does sequential motor learning transfer to and 

from the wrist and elbow or elbow and shoulder?  Are spatial transfer tendencies, 

proportional and non-proportional, consistent across ipsilateral joints?  Experiments 1, 2, 

and 3 tested normal adults, but future studies could expand into effects on pediatric and 

geriatric cohorts as well as clinical populations such as Parkinson’s Disease or 

cerebrovascular accidents to further identify how components of sequential learning 

tasks are affected with injury to specific anatomical locations. In a previous study 
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including the same dynamic arm movement task, Shea, Park, and Wilde (2004) found 

that older participants did not necessarily have slower execution rates, as random 

sequences were performed with no differences between age groups. The older age group 

was, however, limited by their ability to form and utilize an efficient structure of the 

repeated sequence that resulted in slower execution times for the repeated sequence trials. 

Thus, one would predict that an attempt to transfer the relative characteristics of the 

pattern without maximizing the use of a structure for the sequence that normally occurs 

with practice would also create limitations in transfer.  

The next step along these same lines of research would be to assess other parameters 

besides the spatial features, moving into timing and force parameter changes both 

proportionally and non-proportionally. Another follow up study to the current 

experiments would be to create a more implicit learning task. Participants in my 

experiments volunteered information and verbalized that a pattern existed and what the 

pattern was or when it changed to a random sequence. Participants, thus, demonstrated 

explicit memory ability and relatively soon in practice. Experiment 3 participants 

verbalizing the pattern sooner than participants in Experiments 1 and 2. With this in 

mind, future studies could test participants with a more implicit version of the arm 

movement task. For example, participants could practice the same sequence with random 

targets between each repeated target. This would likely be a more implicit task in which 

researchers can observe how spatial transfers are affected by a more implicit level of 

learning.  
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Much is yet to be understood about the learning and utilization of sequential motor 

tasks. The theoretical perspectives regarding spatial transfer of sequences in motor 

learning will require the development of further empirical support. These experiments 

have begun such as process as well as identified some novel observations regarding the 

spatial transfer of movement sequences. 
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CONSENT FORM FOR ADULTS 
 
Title: Parameter Change Arm Movement Task 
              
 
I have been asked to participate in this study, which determines the time course and the extent to which 
sequence information is learned and how these sequences are represented in memory.   I was selected to 
be a possible participant because I responded to a posted bulletin.  This study will involve 80 individuals 
who will be tested in the Human Performance Laboratory at Texas A& M University.  If I agree to be in 
this study, I will participate in two to five sessions separated by 24-hour time intervals. The first through 
fourth sessions will last approximately 40 minutes and the final session will last approximately 30 
minutes.  In each session, I will sit on a chair and move a lever across a tabletop with the right arm from 
target to target as quickly and accurately as possible.  The arm movement requires minimal force or 
straining of the arm in normal ranges similar to reaching to touch an object and pulling the arm back 
toward the body.  In the first through fourth practice sessions, I will perform 16 blocks and in the final 
session 12 blocks each with 160 targets per block.  The purpose of this experiment is to determine the 
extent to which sequence information is learned and is represented in memory. 

 
Participation in this experiment entails low risk for me. In rare cases, I may experience some elbow 
and/or shoulder fatigue. I understand that participation in this experiment is voluntary. I can withdraw 
participation at any time without consequence.  I understand that I will not be paid for my participation 
but my parking ticket from the Koldus garage will be validated.  There are no personal benefits to the 
participant.  I understand that NO medical treatment will be provided if injury should occur.  However, 
in the unlikely event that I might be injured, the experimenter will call 911.  

 
My results will remain confidential.  The researcher has earned a Certificate of Confidentiality.  No 
identifiers linking me to the study will be included in any sort of report that might be published.  
Research records will be stored securely and only Heather Wilde and Dr. Charles Shea will have access 
to the records.  My decision whether or not to participate will not affect my current or future relations 
with Texas A&M University.  If I decide to participate, I am free to refuse to answer any of the 
questions that may make me uncomfortable.  I can withdraw at any time without my relations to the 
university, my job, my benefits, etc., being affected.  I can contact Dr. Charles Shea and Ms. Heather 
Wilde with any questions about this study. 

 
I understand that this research study has been reviewed and approved by the Institutional Review Board-
Human Subjects in Research, Texas A& M University. For research-related problems or questions 
regarding subjects’ rights, I can contact the Institutional Review Board through Dr. Michael W. Buckley, 
Director of Research Compliance, Office of Vice President for Research at (979) 845-8585 
(mwbuckley@tamu.edu). 

 
I have read and understand the explanation provided to me.  I have asked questions and have received 
answers to my satisfaction.  I have been given a copy of this consent form for my records.  By signing 
this document, I consent to participate in the study 

 
______________________________________             ________________________ 
Signature of Participant     Date 
                          
Signature of Investigator     Date 

 
If you have any questions regarding the study, please contact Heather Wilde, Texas A&M University, 
845-5637, ptwildeone@hlkn.tamu.edu or Dr. Charles Shea, Texas A & M University, 845-4802, 
cshea@hlkn.tamu.edu. 
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