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ABSTRACT 

 

Nanoscale Electrostatic Actuators in Liquid Electrolytes: 

Analysis and Experiment. (December 2005) 

Doyoung Kim, B.S.; M.S., Korea University, Seoul, Korea 

Chair of Advisory Committee: Dr. James G. Boyd 

 

The objective of this dissertation is to analytically model a parallel plate 

electrostatic actuator operating in a liquid electrolyte and experimentally verify the 

analysis.  

 The model assumes the system remains in thermodynamic equilibrium during 

actuation, which enables the ion mass balance equations and Guass’ Law to be combined 

into the Poisson-Boltzmann equation. The governing equations also include the linear 

momentum equation including the following forces: the electric force, the osmotic force, 

the spring force, the viscous damping force, and the van der Waals force. Equations are 

also derived for the energy stored in the actuator. The analytical results emphasize the 

stored energy at mechanical equilibrium and the voltage versus electrode separation 

behavior including the instability. The analytical results predict that the system may not 

be a good actuator because the displacement has a very limited stable range, although the 

actuator would be suitable for bistable applications.  

The experiment consisted of a fixed flat gold electrode and a movable gold 

electrode consisting of a gold sphere several micrometers in diameter mounted on the 
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end of an Atomic Force Microscope (AFM) cantilever, which serves as the spring. The 

electrodes were separated by approximately 100nm of 1mM NaCl aqueous solution.  

The analytical results were not verified by the experiment. Relative to the analysis, 

the experiments did not show distinct critical points, and the experiments showed less 

electrode separation for a given applied electric potential. The experiments did show 

points at which the electrode separation versus electric potential rapidly changed slope, 

which may be instability points.  

It is suggested that this phenomenon may be due to coalesced gas bubbles on 

hydrophobic regions of the electrode surfaces, which are not included in the model. 

Although clean gold surfaces are hydrophilic, gold surfaces may become hydrophobic 

due to impurities.  
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I. INTRODUCTION 

 

A. Background 

Actuators are devices that convert nonmechanical energy into mechanical energy. 

Types of nonmechanical energy include electric, magnetic, chemical, and thermal energy. 

Electrostatic actuators are the most common type of actuator in Micro Electromechanical 

Systems (MEMS), for three reasons: 1) They are easy to manufacture using standard 

surface micromachining methods; 2) They are easily controlled and can be actuated at 

very high frequencies; and 3) The electrostatic force per unit area increases with 

decreasing size. The electrostatic force acting between two parallel plates of a capacitor 

is given by  

 

20
2

1
Force =-

2
A

h

εε ψ                                                          (1) 

 

where A is the electrode area, ε is the permittivity of the material between the two 

electrodes, h is the distance between the two electrodes, and ψ is the electric potential 

difference between the two electrodes.  

                                                 
This dissertation follows the style and format of Journal of Microelectromechanical 
Systems. 
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Note that the electrostatic force per unit area is proportional to the inverse of the square 

of the distance (h2) between the two electrodes. Standard surface micromachining 

technologies now enable the distance h to be approximately one micrometer. 

 Electrostatic MEMS actuators are usually made in one of two configurations: the 

parallel plate actuator and the comb drive actuator.  

MEMS comb drive actuators (Fig. 1) are used in rate gyroscopes [1], 

accelerometers [2], rotating mirrors for scanners in Micro Electrooptomechanical 

Systems (MOEMS) [3], and tunable capacitors [4].  

 

Fig. 1. Electrostatic comb drive from the Sandia National Laboratory [5]. 

 

MEMS parallel plate actuators are the most common method of actuating 

micromirrors that are used in optical scanners, including scanning confocal microscopes 

[6]. Economically, the largest success for parallel plate actuators is in the digital light 

processing chip made by Texas Instruments (Fig. 2), which is used in projection displays 

and is expected to become the industry standard for high definition televisions [7]. 

Electrostatic 
comb drive 
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Fig. 2. DLP (Digital Light Processing) from Texas Instruments [8]. 

 

The parallel plate actuators undergo a “snap-down” or “pull-in” instability in which 

the two electrodes spontaneously come into contact when the distance between the two 

actuators is less than 2/3 of the initial distance. This instability occurs because the force 

given by equation (1) results in two equilibrium values of h when one of the parallel 

plate electrodes is fixed and the other electrode is connected to a linear spring. The most 

recent and rigorous study of these “pull-in” instabilities is provided in the sequence of 

papers by Degani [9]-[13]. 

 A schematic of a parallel plate electrostatic actuator is shown in Fig. 3. When a 

potential difference ψ is applied between the two electrodes, the spring of constant K is 

stretched downward from its initial distance h0 to its current distance of h(t). 
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Fig. 3. Model of electrostatic actuator in gas. 

 

The mechanical equilibrium equation is given by  

 

20
2

1
0 ( )

2o
A

K h h
h

εε ψ= − − .                                           (2) 

 

Fig. 4 shows the elastic spring force and electrostatic force vs. electrode separation, 

h. In Fig. 4, when the applied potentials are below the critical potential (ψ < ψcri), there 

are two equilibrium positions of the free electrode. The one near the initial separation is 

the stable equilibrium position and the other is unstable. If the separation h is decreased 

below the stable equilibrium point (for a fixed potential), then the restoring spring force 

is greater than the attractive electric force. However, if the separation is decreased below 

the unstable equilibrium point (for a fixed potential), then the restoring force is less than 

the attractive force. At the critical potential, only one intersection exists, and it is critical 

������������	��


���	��������	��

h0 h(t) x 

K 

Gas 
ψ 
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point. When the applied potential is above the critical potential, the attractive 

electrostatic force is always greater than the elastic spring force and the free electrode is 

in contact with fixed electrode.  

 

 

Fig. 4. Elastic spring force and electrostatic force vs. distance of electrostatic  

actuator in the gas. 

 

The equilibrium equation yields the electric potential as a function of the electrode 

separation as 
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( ) ( )2
0

0

2K
h h h h

A
ψ

εε
= −                                              (3) 

 

which is plotted in Fig. 5.  

 

Fig. 5. Equilibrium position (h) of the free electrode vs. external potential (ψ)  

for a parallel plate electrostatic actuator.  

 

Fig. 6 shows the curves of the potential energy for the electromechanical device in 

gas with elastic spring force versus separation. The potential energy of the 

electromechanical system in gas is  

 

( )0
( ) ( ') ( ') '

h

s eh
U h F h F h dh= −� .                                          (4) 

2
3 oh

oh

Stable 
Unstable  

ψ

h

����
	����
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Fig. 6. Potential energy (U) vs. separation (h). 

 

The two intersections of the elastic spring force and electrostatic force below the 

critical pull-in potential in Fig. 5 correspond to the maximum and minimum point in the 

potential energy curve as shown in Fig. 6. The minimum point of these two equilibrium 

points in potential energy curve of Fig. 6 is the stable equilibrium, while the maximum 

point is the unstable equilibrium. Potential energy curves of the voltage above the 

critical pull-in potential have no maximum nor minimum point.  

 Actuators similar to parallel plate actuators have been extended to Nano 

Electromechanical Systems (NEMS). Kim in 1999 “nanotweezers” NEMS based on 

carbon nanotubes for manipulation and interrogation of nano-structures. The tweezers 

have two carbon nanotubes attached to a glass rod as electrodes. The potential difference 

U 

h h0 

ψ < ψcri 

ψ = ψcri 

ψ > ψcri 

× 

× 
× 

unstable 
equilibrium 

stable 
equilibrium 

Critical 
point 

2/3×h0 



 8 

between the two carbon nanotube tweezer arms produces an attractive electrostatic force 

that can overcome the elastic restoring force of the carbon nanotubes in closing the 

tweezers. Through experiment with carbon nanotubes (length = 5 µm, nanotube diameter 

= 45 nm, separation of two carbon nanotubes = 1 µm), the tweezer arms suddenly closed 

as the voltage was increased further to 8.5 V. An analytical approach with elastic energy 

and electrostatic energy was carried out to understand the response and sudden closure 

of the nanotweezers. They demonstrated the nanotweezer manipulation of polystyrene 

nanoclusters containing fluorescent dye molecules [14]. Akita in 2001 did similar 

experiments and analysis for nanotweezers consisting of carbon nanotubes in an AFM 

(Atomic Force Microscope). Two nanotube arms were fixed at the most appropriate 

position on the silicon cantilever tips used as the substratum of the nanotweezers for the 

AFM. Their length was 2.5 µm and the separation between their tips was 780 nm. They 

determined a pull-in voltage (or critical voltage) of 4.5 V at 500 nm separation [15]. 

Dequesnes in 2002 analytically studied the pull-in instability of carbon nanotube 

switches, using the parameterized continuum models for three coupled energy domains: 

the elastic energy domain, the electrostatic energy domain, and the van der Waals energy 

domain [16].  

Electrostatic actuators are typically used in gas or vacuum. Evidently, there has 

been little attempt to develop MEMS and NEMS actuators to operate in liquids. Sounart 

and Michalske (2003) did test a MEMS comb drive actuator in various liquids, including 

ethylene glycol, HeOH, isopropyl alcohol, EtOH, EG, H2O, and MeNO. Applied DC 

voltages were below the threshold that initiates electrolysis and electrochemical 
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reactions. It was demonstrated that minute concentrations of ionic impurities were 

sufficient to disable the actuators. However, when an AC voltage was applied, the 

actuators worked above a critical frequency that varied by four orders of magnitude 

among the liquids tested [17].  

A logical application for MEMS and NEMS actuators is in body fluids, which are 

typically 0.2 M ionic solutions, mainly NaCl or KCl. The design of nano 

electromechanical machines – such as actuators, switches, tweezers, valves, gears, 

linkages, etc. – that operate in liquid electrolytes must account for osmotic and electric 

forces due to the ions, as well as damping forces due to the liquids.  

In addition to biomedical applications, ionic liquid applications of MEMS and 

NEMS actuators may include fuel cells, batteries, supercapacitors, filters, electro-

osmotic pumping, storage of hydrogen, electroactive polymer actuators, electroosmosis, 

and electrocapillarity. 

Nanoscale electric and osmotic forces have been studied in detail in biochemistry 

and electrochemistry. But there has been almost no continuum mechanics effort to 

understand the dynamics of NEMS in liquid electrolytes, particularly with the 

motivation to develop nano scale machines.  

B. Objective and organization of the dissertation 

The objective of this dissertation is to analytically model a parallel plate 

electrostatic actuator operating in a liquid electrolyte and experimentally verify the 

analysis.  
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 There is no separate section for the literature review. Instead, the relevant literature 

is cited as needed within each section.   

The analytical model is presented in section II. A parallel plate actuator is chosen 

because it is easier to experimentally test the parallel configuration than the comb drive.  

The model assumes the system remains in thermodynamic equilibrium during actuation, 

which amounts to a quasi-static analysis with respect to the diffusion of ions. The 

governing equations include the ion mass balance and Gauss’ law combined in the 

Poisson-Boltzman equation, and the linear momentum equation including the following 

forces: the electric force, the osmotic force, the spring force, the viscous damping force, 

and the van der Waals force. Equations are also derived for the energy stored in the 

actuator. The analytical results are presented in section II, with an emphasis on the 

voltage-separation behavior, the instability, and the stored energy at mechanical 

equilibrium. 

 The experimental procedure and background are described in section III A, B and 

the experimental results are given in section III C and discussed in section III D.  

 Finally, conclusions and recommendations for future work are made in section IV. 

C. Contribution of the dissertation 

The contribution of this dissertation is to bring together the work of the colloidal 

science community and the MEMS and NEMS electrostatic actuator community. 

As discussed in various sections of this dissertation, researchers in colloidal science 

have analytically modeled the electric, osmotic, and van der Waals force between 
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surfaces in liquids, but these studies did not include the spring force that is necessary to 

make an actuator.  

Researchers in the MEMS and NEMS actuator communities have analytically 

modeled the electric, van der Waals, and spring force on actuators, but their analyses 

were for air or vacuum and did not include the effects of ions, which modify the electric 

field and introduce the osmotic force.  

 Experimentalists in the colloidal science community have measured the force versus 

separation curves between surfaces in liquid electrolytes, but to our knowledge, no one 

has experimentally determined the electric potential versus separation curves. 
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II. ANALYSIS 

 

A. Analytical model and governing equations 

 

Fig. 7. Model of Nano Electromechanical System (NEMS) in liquid electrolyte. 
 

An electrostatic actuator consists of two or more electrodes, one of which is free to 

move and connected to a spring which is fixed at its opposite end. Fig. 7 depicts the 

actuator model used in this research. The other electrode is fixed. The spring returns the 

actuator to its original position after actuation. Part of the spring constant can be 

Elastic Spring 
(Spring Constant: K) 

h0 

h(t) 

Free Electrode 

Fixed Electrode 

Liquid Electrolyte  

ψ2 = -ψ1 

Electric Double Layers 

ψ1 (>0) 

∆ψ1 

∆ψ1 

0 V  
 

x 

y 
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attributed to the external load against which the actuator is moving. Alternatively, an 

external load could be applied directly to the free electrode. In the relevant literature, 

there is usually no external load applied to the free electrode of the actuator model. The 

electrodes are assumed to be planar and parallel. The electrodes are separated by a 

distance h(t), where t is time. The initial separation is h(0). The volume between the two 

electrodes is filled with a liquid electrolyte, i.e. a liquid that does not conduct electricity 

by electronic conduction, but contains ions that can diffuse. The bulk electrolyte, far 

from the electrodes, is assumed to be at a potential of 0 volts. The fixed electrode is at a 

potential of ψ1 (>0), and the free electrode is at a potential of -ψ1 . The accumulation of 

ions of a given charge near (within a few nanometers) of an electrode is called a “double 

layer”. 

The following manipulation of the governing equations, including the derivation of 

the Poisson-Boltzmann equation, can be found in standard texts on electrochemistry 

[18] and colloidal science [19]. 

Mass transfer between the electrodes occurs due to diffusion, migration (ion drift), 

and convection. The flux s
iJ  of species s is given by  

  

 
s s

s s s
i i i

n D
J n V

RT
µ� �

= − ∇ +� �
� �

 (5) 

 
where ns, µs, and Dsare the concentration, electrochemical potential, and diffusion 

coefficient of species s, Vi is the velocity of the mass point in the fluid, R is the gas 
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constant, and T is the absolute temperature. For the case of an ideal solution, the 

electrochemical potential is given by  

 

0 lns s s sRT n z Fµ µ ψ= + +                                            (6) 

 

where µs0 is chemical potential at standard state, zs is the valence of species s, F is the 

Faraday constant, and ψ is the electric potential. Finally the flux s
iJ  of an ion of species 

s in electrolyte is governed by diffusion, drift, and convection like following equation, 

  

 ( ) ( )
s

s s s s s s
i i i i

z F
J D n D n n V

RT
ψ= −∇ + −∇ +  (7) 

 

where the first term on the right hand side represents ion diffusion arising from a 

concentration gradient, the second term represents migration (ion drift, conduction) 

arising from an electric field, and the third term  represents ion convection arising from 

motion of the bulk solution.  

The balance of species can be expressed as: 

 

 
s

s s
i i

n
J P

t
∂ + ∇ =
∂

 (8) 
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where ns is local concentration of species s and Ps is the molar rate of the production per 

unit volume due to the chemical reactions. In this research it is assumed that there are no 

chemical reactions, so Ps = 0, and (8)  

 

0
s

s
i i

n
J

t
∂ + ∇ =
∂

.                                                      (9) 

 

Gauss’ law is given by  

 

 f
i iD ρ∇ =  (10) 

 
where Di is the electric displacement and ρf is the free charge density. In electrostatics 

the electric field Ei is given by the electric potential as  

 

 
i iE ψ= −∇  (11) 

 
The electric permittivity ε  is the material property that relates the electric displacement 

to the electric field: 

 
0i iD Eεε=  (12) 

 

where the medium is assumed to be isotropic. The equations can be combined to yield, 

for a homogeneous medium,  
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0

f
i iεε ψ ρ∇ ∇ = −  (13) 

 

The free charge density arising from N ionic species can be expressed as  

 

 
1

N
f N Nez nρ =�  (14) 

 
With (13) and (14), Poisson equation for the excess charge density can be expressed as  

 

 
1

N
N N

i i ez nε ψ∇ ∇ = −�  (15) 

 
Assuming that convection vanishes, using the Nernst-Planck equation (7), the 

conservation of mass (9) can be expressed as:  

 

 
s s

s s s s s
i i i i i

n z F
J D n D n

t RT
ψ� �∂ = −∇ = ∇ ∇ + ∇� �∂ � �

. (16) 

 

We will limit the diffusion analysis to the case where the electrolyte is symmetrical, 

i.e., cations and anions have the same valence between two infinite flat plates. 

Furthermore, due to the symmetry of the problem, there is diffusion only in the x 

direction, i.e. normal to the plane of the electrodes: 
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2

0 2 ezn ezn
x
ψεε + −∂ = − +

∂
 (17) 

 

 n n zF
D n

t x x RT x
ψ+ +

+ +� �∂ ∂ ∂ ∂= +� �∂ ∂ ∂ ∂� �
 (18) 

 

 n n zF
D n

t x x RT x
ψ− −

− −� �∂ ∂ ∂ ∂= −� �∂ ∂ ∂ ∂� �
 (19) 

 

where n+ is ion concentration with positive valence and n- is ion concentration with 

negative valence. Equations (17), (18), and (19) are to be solved for the electric 

potential ψ and the ion concentrations n+ and n- as functions of time and space. The 

governing equations are completed by the three initial conditions (ψ(t = 0, x), n+(t = 0, 

x), n-(t = 0, x)) and the six boundary conditions   ( ), 0t xψ = , ( ),t x hψ = , ( ), 0J t x+ = , 

( ),J t x h+ = , ( ), 0J t x− = , ( ),J t x h− = . 

1) Thermodynamic equilibrium 

In thermodynamic equilibrium, the gradient of the electrochemical potential 

vanishes, and  

 

0,  0
s

sn
J

t
∂ = =
∂

                                                 (20) 
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Equations (18) and (19) reduce to 

 

 0
s s

sdn z F d
n

dx RT dx
ψ+ =                                            (21) 

 
Using above equation, we can derive the relationship between concentration and 

potential as 

 

 
s s

s

dn z F
d

n RT
ψ= −  

 

 
1ln

s
s z F

n C
RT

ψ= − +  

 

 exp exp
s s

s s sz F ez
n n n

RT kT
ψ ψ∞ ∞

� � � �
= − = −� � � �

� � � �
 

 

where zF ez
RT kT

= , and we have assumed that ( ), 0t xψ = ∞ = Therefore, for a 

asymmetrical electrolyte,  

 

 
2

0 2
1 1

exp
NN N

N N Nd ez
ez n ez n

dx kT
ψεε ψ∞

� �
= − = − −� �

� �
� �  
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2

0 2 exp exp
d ez ez

ezn ezn
dx kT kT

ψεε ψ ψ∞ ∞
� � � �= − − +� � � �
� � � �

 

 

 
exp exp

2
2

ez ez
kT kTezn

ψ ψ
∞

� � � �− −� � � �
� � � �= . 

 
Finally, the Poisson-Boltzmann equation can be obtained as 

 

 
2

2
0

2
sinh

eznd ez
dx kT

ψ ψ
εε

∞ � �= � �
� �

. (22) 

 
The principal assumptions thus far are that the electrolyte is an ideal solution with 

homogeneous dielectric and transport properties and the ions are point charges. The 

Poisson-Boltzmann equation provides very accurate results when electrolyte 

concentrations do not exceed 1 M and surface potentials are less than 200 mV [18]-[20].  

The Poisson-Boltzmann equation can be expressed in terms of non-dimensional 

variables:  

 

 

2

2 sinh
d
dX

φ φ=
 (23) 
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where the non-dimensional potential ez
kT

φ ψ= , non-dimensional distance X = κx, and 

0
2 2 2

1
2

kT
e z n
εε

κ ∞

= . 1/κ may be called Debye length or the thickness of the double layer and 

the center of gravity of the space charge coincides with this length. 

Under the condition where the potential is small (<25 mV), the Poisson-Boltzmann 

equation can be linearized (the Debye-Hückel approximation) to yield 

 

 
2 22

2
0

2
 

e z nd
dx kT

ψ ψ
εε

∞=  (24) 

 
which is called the Debye-Hückel equation. In non-dimensional form,  

 

2

2  
d
dX

φ φ= .                                                (25) 

 

For the general case of two dissimilar plates a distance h apart, the solution of (24) and 

(25) must satisfy the following boundary condition: i) ( ) 1, 0t xψ ψ= =  at ( ) 10Xφ φ= = , 

and ii) ( ) 2,t x hψ ψ= =  or ( ) 2X hφ ξ κ φ= = = . Applying these conditions, the general 

solutions of (24) and (25) become  

 

 2 1
1

cosh
cosh sinh

sinh
h

x x
h

ψ ψ κψ ψ κ κ
κ

−� �= +� �
� �

 (26) 
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or for non-dimensional form 

 

 2 1
1

cosh
cosh sinh

sinh
X X

φ φ ξφ φ
ξ

� �−= +� �
� �

. (27) 

 

2) Separation of time scales for diffusion and convection 

As shown in the chapter on analytical results, the electrode velocity dh
dt

and 

therefore the convection velocity Vi is very slow compared to the diffusion of each ion 

species. Therefore, the convection term of the Nernst-Planck equation can be neglected 

at this moment (nsVi = 0), and it can be assumed that the system remains in 

thermodynamic equilibrium when 0
dh
dt

≠ , i.e. the system is in thermodynamic 

equilibrium while the electrode is moving. Therefore, the Poisson-Boltzmann equation 

can be used to obtain the forces that will be used in the linear momentum equation to 

solve for h(t). 

3) Electrochemical force 

The forces due to the electric and concentration effects are composed of two parts: 

an electrical force Fe and a chemical (or osmotic) force Fc that results from the 

difference in concentration of any ionic species in the diffuse layer and in the bulk 

solution. The net force due to the double layer interaction FE can be expressed:  
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E c eF F F= + . (28) 

 

This net force is sometimes called the “double layer interaction” force. 

The electrochemical force is discussed in standard texts on colloidal science. 

Derjaguin in 1954 was the first researcher to analytically determine the electrochemical 

forces between surfaces at unequal potentials [21]. Nine years later, Devereux and de 

Bruyn in 1963 published extensive formulae and tables for the electrochemical forces 

acting between parallel plates at unequal potentials [22]. Two years after the work of 

Devereux and Bruyn, Hogg in 1965 used the linearized Poisson-Boltzmann (Debye-

Hückel equation) equation (Debye-Hückel equation) to derive forces between spheres of 

unequal size and potential [23].  

The chemical component of the interaction force is the difference in the osmotic 

pressure of the interstitial solution and the bulk solution with which it is in contact. The 

osmotic pressure of the interstitial solution acts in a positive direction and that of the 

bulk solution in a negative direction like 

 

 ( )c i oF P P A= − . (29) 

 

By combining the general expression for the osmotic pressure of an electrolyte solution 

 

 ( )iP n n kT+ −= +  (30) 
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exp
ez

n n
kT
ψ+

∞
� �= −� �
� �

 

 

exp
ez

n n
kT
ψ−

∞
� �= � �
� �

. 

 

Therefore,  

 

 
exp exp

exp exp 2
2i

ez ez
ez ez kT kTP n n kT n kT
kT kT

ψ ψ
ψ ψ

∞ ∞ ∞

� � � �− +� � � �� �� � � � � � � �= − + =� � � �� �
� � � �� �

 

 

 2 coshi

ez
P n kT

kT
ψ

∞
� �= � �
� �

.                                           (31) 

 
Also the osmotic pressure at the bulk solution with zero potential can be obtained  

 

 2oP n kT∞= . 

 
Then,  

 

 2 cosh 2c

ez
F n kT n kT A

kT
ψ

∞ ∞
� �� �= −� �� �

� �� �
 

 
or 
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 2 cosh 1c

ez
F n kTA

kT
ψ

∞
� �� �= −� �� �

� �� �
. (32) 

 
For non-dimensional variables, 

 

 ( )2 cosh 1cF n kTA φ∞= − . (33) 

 
If it is assumed that surface potential is small (<25mV), Fc can be changed using the 

Taylor series expansion only with the first non-zero term 

2 4 6

cosh 1
2! 4! 6!
φ φ φφ� �

= + + +� �
� �

� �

,  

 

 2
cF n kTAφ∞= . (34) 

 
The electrical force is given by  

 

 2
0

1
2eF AEεε= −  (35) 

 
The electric field can be obtained from the solution to the Poisson-Botzman equation as 

 

0

2
2cosh

n kTd ez
E C

dx kT
ψ ψ

εε
∞ � �= = ± +� �

� �
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where 
2

2cosh
d

C
dX

φ φ� �= −� �
� �

. 

  

0
0

21
2cosh

2e

n kT ez
F A C

kT
ψεε

εε
∞ � �� �= − +� �� �

� �� �
2cosh

ez
n kTA C

kT
ψ

∞
� �� �= − +� �� �

� �� �
 

 

 ( )
2

2coshe

d
F n kTA C n kTA

dX
φφ∞ ∞

� �= − + = − � �
� �

. (36) 

 

The total electrochemical force is now  

 

E c eF F F= +  

 

2 cosh 1 2cosh
ez ez

n kTA n kTA C
kT kT
ψ ψ

∞ ∞
� � � �� � � �= − − +� � � �� � � �

� � � �� � � �
 

 

( 2)n kTA C∞= − +  
2

2cosh
d

C
dX

φ φ
� �� �= −� �� �� �� �� �

�
 

 

2

2cosh 2
d

n kTA
dX

φ φ∞

� �� �= − − +� �� �� �� �� �

, 

 

therefore, 
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2

1
2 cosh 1

2E

d
F n kTA

dX
φφ∞

� �� �= − −� �� �� �� �� �

. (37) 

 

Also in case of small potentials at the boundaries, the electrochemical force can be 

reduced with the (34) and (36): 

 

 
2

2
E

d
F n kTA

dX
φφ∞

� 	� �= −
 �� �
� �
 �� 

. (38) 

 

The exact solution (27) of linearized Poisson-Boltzman equation can be used for the 

potential distribution and gradient of potential: 

 

2 1
1

cosh
cosh sinh

sinh
X X

φ φ ξφ φ
ξ

� �−= +� �
� �

, 

 

2 1
1

cosh
sinh cosh

sinh
d

X X
dX

φ φ ξφ φ
ξ

� �−= +� �
� �

. 

 

So the electrochemical force derived from the linearized Poisson-Boltzman equation can 

be obtained with theses three equations above: 

 

 ( )2 22
1 2 1 20

2

2 cosh

2 sinhE

hA
F

h

ψ ψ κ ψ ψεε κ
κ
− +

= , (39) 
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or for the non-dimensional variables, 

 

 
( )2

2 1 2 1
2

1 2

1
cosh 1

22
sinhEF n kTA

φ φ ξ φ φ
φ

ξ∞

� 	− +
� = . (40) 

 

4) Van der Waals force 

For a non-polar atom, the time average of its dipole moment is zero. At any instant, 

there exists a finite dipole moment given by the instantaneous positions of electrons 

about the nuclear protons. This instantaneous dipole generates an electric field that 

polarizes any nearby neutral atom, including a dipole moment in it. This resulting 

interaction between the two atoms, gives rise to instantaneous attractive force between 

the two atoms, and the time average of this force is finite [20]. Therefore the attractive 

van der Waals force arises because local fluctuations in the polarization within one 

particle induce, via the propagation of electromagnetic waves, a correlated response in 

the other. The associated free energy decreases with decreasing separation. Phase shifts 

introduced at large separations by the finite velocity of propagation reduce the degree of 

correlation, and, therefore, the magnitude of the attraction [19]. Like the gravitational 

force, van der Waals force is always present and acts between all atoms and molecules.  

According to the Lifshitz theory used in this research, the atom structure is ignored 

and the forces between large bodies, now treated as continuous media, are derived in 

terms of such bulk properties as their dielectric constants and refractive indices. The 

continuum theory accounts naturally for many body effects by treating the particle and 
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the intervening fluid as individual macroscopic phases characterized by dielectric 

permittivities. All the expressions of conventional van der Waals interactions remains 

valid even within the framework of continuum theories. The only thing that changes in 

the way the Hamaker constant is calculated [20]. 

The van der Waals interaction potential is largely insensitive to variations in 

electrolyte concentration and pH, and so may be considered as fixed in a first 

approximation [20].  

The van der Waals force for two flat surfaces used in this research is following as: 

 

 
36

h
vdW

AA
F

hπ
= −  (41) 

 
 
where Ah is Hamaker constant. 

5) Viscous damping force 

The viscous damping force or squeeze-film damping force acts opposite to the 

direction of motion of the moving electrode and is particularly important when the 

separation of the two electrodes is very small compared to the length and width of the 

electrodes. 

In case of the solid circular plate and flat plate, viscous damping force  

 

2

3

3
2d

R A dh
F

h dt
µ= − ,                                                    (42) 



 29 

where µ is the viscosity of media, R is the radius of circle disk, A is area of circular disk, 

and h is the distance between circular disk and flat plate. 

6) Conservation of linear momentum  

Initially the moving electrode of NEMS in the liquid electrolyte will experience 

elastic spring forces, viscous damping forces and van der Waals force at the spring’s 

unstretched length ‘L’ as shown in Fig. 8. For the dynamic analysis, it is assumed that 

the electrodes remain parallel and the liquid between them is an incompressible 

Newtonian fluid. There are no potentials applied to the both electrodes in this case. 

Before potentials are applied to two electrodes, moving electrode goes to the first 

equilibrium position (h0). The linear momentum equation for this case is following as:  

 

 
2

2 s d vdW

d h
m F F F

dt
= + +  (43) 

 

where elastic spring force 
0( ) sF K h h= − − , and van der Waals force 

36
h

vdW

AA
F

hπ
= − .  

its initial gab distance, h0. 
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Fig. 8. Free body diagram in case of no external potentials. 

 

Elastic spring force, viscous damping force, and van der Waals force, which are 

mentioned before can be used for this linear momentum equation like: 

 

 ( )
2 2

2 3 3

3
2 6

hAAd h R A dh
m K L h

dt h dt h
µ

π
= − − − . (44) 

 

In equilibrium, 0
dh
dt

=  and 
2

2 0
d h
dt

= and the first equilibrium position (h0) of moving 

electrode can be calculated like: 

 

 ( )0 3
06

hAA
K L h

hπ
− = . (45) 

x 

Fs Fd 

L
h(t) 

Moving Electrode 

Fixed Electrode 

Liquid Electrolyte  

FvdW 

h0 
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Fig. 9. Free body diagram of a moving electrode after external potentials are applied. 

 

At the first equilibrium position of moving electrode, potentials are applied to two 

electrodes then the moving electrode experiences double layer interaction force together 

with elastic spring force, viscous damping force, and van der Waals force like Fig. 9. 

Therefore another linear momentum equation can be expressed like: 

 

 
2

2 s d vdW E

d h
m F F F F

dt
= + + +  (46) 

 

or 

 

x 

Fs Fd 

h0 
h(t) 

Moving Electrode 

Fixed Electrode 

Liquid Electrolyte  Electric Double Layers 

FE 
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 ( )
2 2

2 2
0 12 3 2 3

3 1 cosh
2 sinh 6

hAAd h R A dh h
m K L h A

dt h dt h h
µ κεε κ ψ

κ π
+= − − − − . (47) 

 
This linear momentum equation can be expressed with the first equilibrium position (h0) 

instead of initial separation (L) like: 

  

 ( )
2 2

2 2
0 0 12 3 2 3 3

0

3 1 cosh 1 1
2 sinh 6

hAAd h R A dh h
m K h h A

dt h dt h h h
µ κεε κ ψ

κ π
� �+= − − − − −� �
� �

 (48) 

 

The linear momentum equation including van der Waals force can be rearranged with 

the non-dimensional variables and non-dimensional parameters like: 

 

 ( )
( )2 3

*2 22 * *
0* *0

* * 2 ** *
0

1 cosh 1
1 1

sinh h

hd h dh
B h A

dt K hdt h

ξφ ξ
ξ

+ � �+ + = − − −� �
� �

 (49) 

 

where non-dimensional potential, 
1

ez
kT

φ ψ= , non-dimensional force 
2

m
B

Kτ
= , non-

dimensional spring constant ( )
2 2 2 3

* 00
0 2 2 2

0 0

e z KhA kT
K Kh

h ez k T A
εε

εε
� �� �= =� �� �� �� �� �

, non-dimensional 

initial distance
0 0hξ κ= , non-dimensional Hamaker constant 

( )*
03 4

0 06 6
hh

h

A AA A
A Kh

h Khπ π
� �

= =� �
� �

, non-dimensional separation *

0

h
h

h
= , Debye length , 

0
2 2 2

1
2

kT
e z n
εε

κ ∞

= , non-dimensional time, * tt τ= , time constant 
2

3

3
2

C R A
K h K

µτ = = , and 
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damping coefficient 
2

3

3
2
R A

C
h

µ= . In this case, this NEMS system has the dynamic 

characteristics of first order system, then non-dimensional time, * tt τ=  can be used for 

the dynamic analysis of this system instead of *
nt tω=  

n

K
m

ω
� �

=� �� �
� �

.  

7) Electrochemical stored energy  

The electrochemical free energy of the system (ΠF) is the amount of work to be 

performed in building up the double layers of the system by some reversible and 

isothermal process. The stored energy, (ΠE), has same magnitude as that of free energy 

with the negative sign (ΠE = -ΠF). First the free energy of a double layer system will be 

discussed and then stored energy will be obtained with this free energy. The work 

consists of a chemical part and electric part. 

If in the final equilibrium state there is an excess of one of the ion species in the 

surface, there is obviously a chemical preference of these ions for the surface above the 

solution. Hence, if the ions go from one medium to another, in each step of the process 

considered above a constant amount of free energy is gained, corresponding to the 

chemical free energy difference, ∆πF per ion. In the final state this free energy 

difference ∆πF  exactly outweighs the electric potential difference due to the double 

layer, and therefore equals -eψ1, or ∆πF  + eψ1 = 0. Eventually the chemical part of the 

free energy of the double layer is -eψ1 per ion, or -σ1ψ1 per m2 surface, in which σ1 is 

the surface charge density [24].  
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The previous discussion can also be understood in terms of (4) and (5), for the case 

in which there is no convection and the system is at thermodynamic equilibrium. In this 

case the gradient of the electrochemical potential is zero, and one obtains the result ∆πF  

+ eψ1 = 0 when it is assumed that the electric potential is zero at the second point at 

which this energy difference is calculated. Therefore, 

 

1 1Chemical free energy σ ψ= − .                                      (50) 

 

Calling the surface potential at an arbitrary stage of the charging process 
1ψ ∗  

( )1 10 ψ ψ∗< < , we observe that 
1ψ ∗  increases gradually from 0 to ψ1, and the electrical 

charge 
1σ ∗ , at 1 m2 surface in an analogous way from 0 to σ1. This potential 

1ψ ∗  

counteracts the ionic transport from of the solution to the particle surface. Hence, a 

gradually increasing amount of electric work has to be done 
1 1dψ σ∗ ∗  for each step, and 

for the whole charging process we find the purely electrical work quantity. 

 

1

1 10
Electric free energy d

σ
ψ σ∗ ∗= � .                                 (51) 

 

The electrochemical free energy (for 1 m2 surface) is given by 

 

1

1 1 1 10F d
σ

π σ ψ ψ σ∗ ∗= − + �  
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in which the first term (chemical part of free energy) is larger than the second term 

(electric part of free energy). By partial integration both terms can be summarized into 

one single term like: 

 

1

1 10F d
ψ

π σ ψ∗ ∗= −� . 

 

If the electric surface potential is small, so that the linear approximation can be applied, 

the above equation simplifies to: 

 

1 1

1
2Fπ σ ψ= − .                                                    (52) 

 

Also in this research, we have two electrodes: 

 

( )1 1 2 2

1
2Fπ σ ψ σ ψ= − + .                                         (53) 

 

With this free energy, the stored energy can be obtained like: 

 

 ( )1 1 2 2

1
2E A σ ψ σ ψΠ = +  (54) 
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Where  
1 0

0x

d
dx
ψσ εε

=

� �= − � �
� �

, 
2 0

x h

d
dx
ψσ εε

=

� �= � �
� �

, and 

2 1
1

cosh  
sinh  cosh  

sinh  
hd

h h
dx h

ψ ψ κψ ψ κ κ κ κ
κ

−= +  from the exact solution of the 

linearized Poisson-Boltzman equation. So, ( )1 0 2 1cos  coth  ech h hσ εε κ ψ κ ψ κ= − −  

 and ( )2 0 2 1cot  cos  h h ech hσ εε κ ψ κ ψ κ= − .  

Therefore, stored electrochemical energy between two plates with linearized PB 

equation can be obtained as  

 

 ( )2 20
E 1 2 1 2coth 2 cosech

2
A

h h
εε κ ψ ψ κ ψ ψ κ� 	Π = + −� 

. (55) 

 

For the non-dimensional variables,  

 

 ( )2 2
E 1 2 1 2coth 2 cos ech

n kTA φ φ ξ φ φ ξ
κ

∞ � 	Π = + −� 
. (56) 

 

8) Double layer interaction force from the electrochemical stored energy 

The double layer interaction force can also be derived from the electrochemical 

energy [25]. The potentials of the electrodes are kept constant as the position of the 

moving electrode is changed. These potentials can only be maintained constant if the 

charges on the electrodes are changed. But the charges can be changed only if some 

agent external to the electrodes (like a battery) provides the charge. If one of the 



 37 

electrodes is permitted a virtual displacement and an increment of mechanical work 

dW(mech) is done by the electrostatic forces in the process, additional work (dW(B)) must 

be done to maintain all the electrodes at a constant potential. This additional work 

(dW(B)) is equal to twice the change in the stored energy of double layer. So the total 

work by the external agents (-dW(mech)  + dW(B)) equals the increase in stored energy of 

double layer (energy balance equation): 

 

 ( ) ( )mech B
EdW dW d− + = + Π . (57) 

 

If the change in the charge on conductor m is called dQm, then 1
2E m md dQψΠ = �  and 

( )B
m mdW dQψ=�  at constant potential. Therefore the energy balance equation above 

can be calculated  

 

 ( ) ( ) 1 1
2 2

mech B
m m m m m mdW dW d dQ dQ dQψ ψ ψ− = − + Π = − + = −� � �  

 
  or 

 

 ( ) |mech
EdW d ψ= Π . (58) 
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If one of electrodes moves through a slight displacement dh under the influence of the 

double layer interaction force FE, then dW(mech)  = FE dh. The result of (58) leads to the 

expression: 

 

 E
E

d
F

dh ψ

Π= . (59) 

 

Therefore, double layer interaction force derived from the linearized PB equation can be 

obtained with (55) and (59): 

 

 ( )2 22
1 2 1 20

2

2 cosh

2 sinhE

hwb
F

h

ψ ψ κ ψ ψεε κ
κ
− +

= . (60) 

 

9) Van der Waals  energy 

The van der Waals energy between the two electrode plates is equal to the integral 

of the van der Waals force with respect to the separation, h, between the to plates [20]. 

In general, the van der Waals energy for the two flat plates is given by  

 

( ) 212
h

vdw

A A
h

hπ
Π = −                                                  (61) 
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where 
hA is Hamaker constant and A is area of flat plate. The difference of the van der 

Waals energy between h0 and h is given by  

 
( ) ( ) ( )0

2 2 2
0

1 1
               

12

vdw vdw vdw

h

h h h

A A
h h hπ

∆Π = Π − Π

� �
= −� �

� �

.                                      (62) 

 

10) Spring energy 

The elastic energy difference of the spring between positions from h0 to h is given by  

 

( ) ( )2
0

1
2s h K h h∆Π = − .                                         (63) 

 

11) Effect of the natural double layer 

In the real world, an electrode in a liquid electrolyte can have a charge on its 

surface naturally, i.e. without an externally applied potential. The charging of a surface 

in an electrolyte can come about in two ways: i) by the ionization or dissociation of 

surface groups and ii) by the adsorption (binding) of ions from solution onto a 

previously uncharged surface [20].  

With this charging process, two identical electrodes have the same charges on their 

surfaces in the same liquid electrolyte in the absence of an externally applied potential. 

The potential of the electrode due to these surface charges is the natural double layer 
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potential, ψnatural. So, initially, before the application of the external potential, the free 

electrode feels another repulsive force due to the same charges on two electrodes 

 
2

2 s d vdW E

d h
m F F F F

dt
= + + + .                                           (64) 

 

At equilibrium, the elastic spring force (Fs) and the viscous damping force (Fd) are 

canceled, and the linear momentum equation is given by 

 

( ) 2 2 0
0 03 2

0 0

cosh 1
6 sinh

h
natural

A A h
K L h A

h h
κεε κ ψ

π κ
−− = − .                          (65) 

 

After external potentials are applied to the two electrodes, the electrode surface 

potentials are ψ1 = ψnatural + ψ1’, and ψ2 = ψnatural - ψ1’. Therefore, the linear momentum 

equation at equilibrium after the external potentials are applied is expressed as 

 

( ) ( ) ( )2 2
12

03 2
0

cosh 1 ' cosh 1
0

6 sinh
naturalh h hA A

K L h A
h h

ψ κ ψ κ
εε κ

π κ
− − +

− − + = .          (66) 

 

where L is the separation  before the external potential is applied. Using (65) and (66), 

we can substitute the initial separation (L) with initial equilibrium distance (h0), and 

finally we can get the linear momentum equation like 
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κ κ κ
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� �

� �� 	−− +� �+ − − =� �
 �
� �� � �

.        (67) 

 

This equation was used in order to compare the experimental result with the analytical 

results. 

B. Results 

1) Transient analysis 

Equation (48) in the Analysis chapter is a differential equation for the electrode 

separation h as a function of the time. The double layer force used in this equation is 

derived from the Poissson-Boltzmann equation, which assumes that the system is in 

thermodynamic equilibrium. Thus, implicit in this equation is the assumption that, after 

the electrode electric potential is changed, the time required to complete the diffusion is 

much faster than the time required to complete the motion of the movable electrode.  
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Fig. 10. Potential distribution between two electrodes (97 nm) with respect to time. 
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Fig. 11. Concentration of positive ion between two electrodes (97 nm)  

with respect to time 
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Fig. 12. Separation between two electrodes vs. time with respect to spring constant. 

 

To test this assumption, the transient diffusion equations (17), (18), and (19) were 

solved using a commercially available finite element software, FEMLab, for the 

following conditions: ψ1 = 0.025 V, h0 = 97 nm, ρAu = 19.3 × 103 Kg/m3, A (Area) = 

1.72 µm2 (from experiment, R (radius of gold sphere) = 2.83 µm, with Langbein 

approximation), mass = 2.0 × 10-11 kg (effective mass from experiment, R (radius of 

gold sphere) = 2.83 µm), n∞ = 0.001 M, T = 298 K D+ = 1.334 × 10-9 m2/s for Na+, D- = 

2.032 × 10-9 m2/s for Cl-. Fig. 10 shows the potential distribution between two electrodes 

with a separation of 97 nm. It shows potential distribution due to ionic diffusion is 
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completed in about 2×10-7 seconds. Fig. 11 shows that the concentration diffusion of 

positive ion is completed in about 2×10-7 seconds. For the same conditions, the linear 

momentum equation was solved using the using Runge-Kutta method, and the moving 

electrode reached its mechanical equilibrium in approximately 0.001 seconds in the case 

of an elastic spring constant of 0.3 N/m and 0.005 seconds in case of elastic spring 

constant of 0.03 N/m in Fig. 12. Thus, because the ion diffusion is so much faster than 

the mechanical motion, it is assume that the system remains in chemical equilibrium 

throughout its motion, and that the Poisson-Boltzmann equation may therefore be used. 

2) The double layer interaction force 

 The double layer interaction force per unit of electrode area is plotted in Fig. 13 

as a function of the initial (or “bulk”) ion concentration. The double layer interaction 

force rapidly decreases with increasing bulk ion concentration. Note that, for a given 

electrode potential, as the bulk ion concentration increases, both the electric and the 

osmotic forces increase. However, the osmotic force increases at a greater rate than the 

electric force. That means the derivative of osmotic force with respect to the bulk 

concentration is greater than that of electrostatic force with respect to the bulk 

concentration like 

 

c eF F
n n∞ ∞

∂ ∂>
∂ ∂

.                                                 (68) 

 

The osmotic force is repulsive, whereas the electric force is attractive. 
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Fig. 13. Double layer interaction force per unit area vs. bulk concentration  

for given h0 = 30 nm, ψ1 = 0.02 V. 

3) Pull-in instability 

At mechanical and chemical equilibrium, for the case that the electrode potentials 

are small (<25mV) and the potential ( )2ψ applied at the moving electrode has the same 

magnitude but opposite sign as that of fixed electrode ( )2 1ψ ψ= − , the equilibrium 

equation simplifies to  
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 ( ) 2 2
0 1 2 3 3

0

cosh 1 1 1
sinh 6

hA Ah
K h h A

h h h
κεκ ψ

κ π
� �+− = + −� �
� �

 (69) 

 
which can be non-dimensionalized as  

 

 ( ) ( )
( )

*2 2
0* *0

* *32 *
0

1 cosh 1
1 1

sinh h

h
h A

K hh

ξφ ξ
ξ

+ � �− = + −� �
� �

 (70) 

 

where φ is the non-dimensional potential, h*  is a non-dimensional electrode separation, 

K* is the non-dimensional elastic spring constant, *  hA  is the non-dimensional Hamaker 

constant, and ξ0  is the non-dimensional initial electrode separation. 

Fig. 14 shows the non-dimensional elastic spring force and the non-dimensional 

double layer interaction force plus the van der Waals force as functions of the electrode 

separation (h*). The non-dimensional spring force is  

 

( )* *1sF h= −  

 

and summation of non-dimensional double layer interaction force and van der Waals 

interaction force is 

 

( )
( )

*2 2
0* * *0

* *32 *
0

1 cosh 1
1

sinhE vdw h

h
F F A

K hh

ξφ ξ
ξ

+ � �+ = + −� �
� �

. 
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Fig. 14. Non-dimensional force vs. non-dimensional distance (h*) with respect to φ 

 for given ξ0 = 5, *
hA  = 0.2, and K* = 20. 

 

Intersections of the non-dimensional elastic spring force and summation of non-

dimensional double layer interaction force and van der Waals interaction force indicate 

the equilibrium positions. Only one equilibrium point can exist on summation of non-

dimensional double layer interaction force and van der Waals interaction force 

corresponding to the non-dimensional critical pull-in potential (φ), 0.525. Below this 

potential, the moving electrode has two equilibrium positions so moving electrode goes 

to a stable equilibrium position, that is one of two equilibrium positions; above this 

potential the attractive double layer interaction force dominates the elastic spring force 
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and the moving electrode goes to and contact the fixed electrode without equilibrium 

position.  

The non-dimensional potential can be obtained explicitly as 

 

 ( ) ( )
( )

2 **
0* *

2 *3 *
0 0

sinh1
1 1

1 coshh

hK
h A

h h

ξ
φ

ξ ξ
� �� �= − − −	 
� � +� �� �

. (71) 

 

Using above (71), potentials for the equilibrium position of moving electrode can be 

obtained for each non-dimensional parameter like Fig. 15, Fig. 18, or Fig. 21. The non-

dimensional critical distance ( )*
crih  can be obtained using derivative of non-dimensional 

potential with respect to non-dimensional distance like: 

 

 
* 0

d
dh

φ =  (72) 

 

Then the non-dimensional critical potential ( )criφ  can be obtained by substituting the  

non-dimensional critical distance ( )*
crih  into (71). 

In (71), the elastic spring force must be always greater than the van der Waals 

force, that is:  

 

 ( )0 3 3
0

1 1
6

hAA
K h h

h hπ
� �

− > −� �
� �

 (73) 
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or 

 

 ( )
1

* *
*3

1
1 1hA h

h

−
� �< − −� �
� �

. (74) 

 

The right hand side equation of the above inequality has the range from 0 to 1/3. 

Therefore, *
hA  must be less than 1/3. 

Fig. 15 shows the equilibrium position of moving electrode for the each potential as 

K* changes. The points having maximum non-dimensional potential are the critical 

points, and non-dimensional distances at these critical points are non-dimensional 

critical distances ( )*
crih . Fig. 16 shows *

crih  with respect to K* for given *
hA  and ξ0. K* 

has no effect on *
crih  for given *

hA  and ξ0. And *
crih  is function of *

hA  and ξ0. This 

phenomenon can be expected by following mathematical procedure:  
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* * 2 *3 *
0 0
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sinh1
1 1

1 cosh
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dh dh h h
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� �
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� �� �+� �� �

� �

� �
� �� �� �= − − − =	 
� �� �+� �� �

� �

. 

In the last parenthesis, there exist *
hA  and ξ0 as parameters. Therefore, *

crih  satisfied with 

this equality must be function of *
hA  and ξ0, not function of K*. Fig. 17 shows 

criφ  is 

proportional to the square root of K*  for fixed ξ0.  
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Fig. 15. Non-dimensional distance (h*) vs. non-dimensional potential (φ)  

with respect to K*  for given ξ0 = 2 and *
hA  = 0.2. 
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Fig. 16. Non-dimensional critical distance ( *
crih ) vs. non-dimensional spring constant 

(K*) for given *
hA  = 0.2, ξ0 = 2. 
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Fig. 17. Non-dimensional critical potential (
criφ ) vs. non-dimensional spring constant 

(K*) for given *
hA  = 0.2, ξ0 = 2. 

 

Fig. 18 show the equilibrium position of the moving electrode for the each potential 

as ξ0 changes for given K* and *
hA . The points having maximum non-dimensional 

potential are the critical points, and non-dimensional distances at these points are non-

dimensional critical distances. Fig. 19 shows *
crih  with that respect to ξ0. *

crih  does not go 

to 2/3, which is the same as the non-dimensional distance of a normal electrostatic 

capacitor, as ξ0 goes to zero because there exists attractive van der Waals force. *
crih  

increases as ξ0 increases. That means the motion range of moving electrode ( )0 crih h−  
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becomes smaller as the bulk concentration (n∞) increases for given initial distance. Fig. 

20 shows that 
criφ  increases for given *

hA  and K* as ξ0 increases.  

 

 

Fig. 18. Non-dimensional distance (h*) vs. non-dimensional potential (φ)  

with respect to ξ0 for given K* = 20 and *
hA  = 0.2. 
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Fig. 19. Non-dimensional critical distance ( *
crih ) vs. non-dimensional initial distance (ξ0) 

for given *
hA  = 0.2, K* = 20. 
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Fig. 20. Non-dimensional critical potential (
criφ ) vs. non-dimensional initial distance 

(ξ0) for given *
hA  = 0.2, K* = 20. 

 

Fig. 21 shows the electrode separation for each potential as *
hA  changes for given 

K* and ξ0. The points having maximum non-dimensional potential are the critical points, 

and non-dimensional separations at these points are non-dimensional critical separations. 

Fig. 22 shows that *
crih  increases because attractive van der Waals force increases as *

hA  

increases. The stroke of the moving electrode grows smaller as van der Waals force 

increases for given initial distance. Fig. 23 shows that 
criφ  decreases as *

hA  increases.  
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Fig. 21. Non-dimensional distance (h*) vs. non-dimensional potential (φ)  

with respect to *
hA  for given ξ0 = 2 and K* = 20. 
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Fig. 22. Non-dimensional critical distance ( *
crih ) vs. non-dimensional Hamaker constant 

( *
hA ) for given K* = 20, ξ0 = 2. 
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Fig. 23. Non-dimensional critical potential (
criφ ) vs. non-dimensional Hamaker constant 

( *
hA ) for given K* = 20, ξ0 = 2. 
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4) Stored energy 

Equation (55) was used for the electrochemical stored energy. Using this equation, 

the stored energy of a normal capacitor may be calculated assuming that the bulk 

concentration (n∞) goes to zero:  

 

(n =0) (n >0) (n >0)n 0 0
lim lim

κ∞ ∞ ∞→ →
Π = Π = Π  

( )2 2
1 2 1 20

lim cosh 2
2 sinh sinh
A

h
h hκ

ε κ κψ ψ κ ψ ψ
κ κ→

� �= + −� �� �
 

( )2 2
1 2 1 22

2
Aε ψ ψ ψ ψ= + −  

(n =0)∞
Π ( )2

1 2

1
2

A
h

ε ψ ψ= − . 

 

Equation (55) can be reduced because the boundary condition is that ψ2 =  -ψ1 in 

this paper:  

 

 ( )2
1 coth cos echE A h hεκ ψ κ κΠ = + . (75) 

 

Or for non-dimensional form, 

 

 ( ) ( )( )2 * *
1 0 0

2
coth cos ecE kTn h hφ ξ ξ

κ ∞Π = + . (76) 
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For a given potential and geometry, the electrochemical stored energy density (πE) 

increases as the bulk concentration (n∞) increases and the initial distance (h0) decreases 

as shown in Fig. 24. Also, the electrochemical stored energy density increases with the 

square root of the bulk concentration and exponentially increases as separation increases 

as shown in (75). With this analysis, we can conclude that the double layer capacitor 

may store more energy than a normal capacitor for a given geometry and potential at the 

boundary because a normal capacitor corresponds to a capacitor with zero bulk 

concentration. This energy is the same as the energy of a system which has two fixed 

electrodes with given separation, therefore the spring constant is not included in (76).  

 

 

Fig. 24. Electrochemical stored energy density (πE) in double layer system vs. bulk 

concentration (n∞) and initial distance (h0) for given ψ1 = 25 mV. 
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The electrochemical stored energy can be non-dimensionalized using the elastic 

spring energy at h0: 

 

 ( )
( ) ( ){ }2 * *

0 0
*

20
0

2
coth cos

1
2

E
E

s

kTAn h ech h

h Kh

φ ξ ξ
κ ∞ +ΠΠ = =

Π
. (77) 

 

The non-dimensional electrochemical stored energy has a maximum value at the 

critical point within stable region in Fig. 25, where a solid line represents the stable 

region and dotted line represents the unstable region. The electrochemical stored energy 

of system increases as the moving electrode goes to the fixed electrode up to the critical 

distance and as the potentials at the boundaries increase. In Fig. 25, the moving electrode 

can move toward the fixed electrode up to the critical distance and at this distance this 

system has the maximum stored energy within the stable region. As the potential at the 

fixed electrode increases, the moving electrode goes to the fixed electrode closely but 

above critical voltage it contacts the fixed electrode suddenly. Nano electromechanical 

systems in this paper for given geometry can have the maximum electrochemical stored 

energy at the critical distance and critical potential ( ),  cri crih h φ φ= =  because moving 

electrode can go to the fixed electrode with the equilibrium distance stably below critical 

potential or above critical distance as mentioned before while above critical potential or 

below critical distance, it can not.  
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Fig. 25. Non-dimensional electrochemical stored energy in double layer system at 

equilibrium ( )*
EΠ  vs. h* for given K* = 5, ξ0 = 2 and *

hA  = 0.2. 

 

The non-dimensional maximum electrochemical stored energy in the double layer 

system can be expressed with energy stored in elastic spring at h0 like: 
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( )*
EMax Π  is the ratio of maximum electrochemical stored energy in double layer 

system at the critical point to elastic energy stored in spring at h0. Using (71), ( )*
EMax Π  

can be function of *
crih , *

hA  and 0ξ , therefore can be simplified like: 

 

 ( ) ( ) ( )* * * *
0*3

0

2 1
1 1 sinhE cri h cri

cri

Max h A h
h

ξ
ξ
� �	 
� �Π = − − −� � �
� �� �� �

 (79) 

 

The non-dimensional energy difference stored in the elastic spring can be expressed 

with energy stored in elastic spring at h0 like: 

 

 
( )

( )2
2

0
*

20 0
0

1
2 1

1
2

cri
s cri

s
s

K h h h
h hKh

− 	 
∆Π∆Π = = = −� �Π � �
 (80) 

 
or  

 

 ( )2* *1s crih∆Π = − . (81) 

 

*
s∆Π  is the ratio of energy difference stored in elastic spring to energy stored in elastic 

spring at h0. 

Also, the non-dimensional van der Waals interaction energy can be obtained with 

energy stored in elastic spring at h0 like: 
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or 

 

 * *
*2

1
1vdw h

cri

A
h

	 

∆Π = −� �

� �
. (83) 

 

*
s∆Π  is the ratio of van der Waals interaction energy difference to energy stored in the 

elastic spring at h0. 

R1 is the ratio of the non-dimensional energy difference stored in the elastic spring 

to the non-dimensional maximum electrochemical stored energy, or energy difference 

stored in elastic spring to maximum electrochemical stored energy: 

 

 ( ) ( )
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( ) ( )

2**
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2 1
1 1 sinh

cris s

EE
cri h cri

cri

h
R
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h
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ξ
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. (84) 

 

As the bulk concentration and the Hamaker constant go to zero, R1 goes to 1/4 , 

which is the same result as a normal electrostatic capacitor,  
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. 

R2 is the ratio of the non-dimensional van der Waals interaction energy difference to 

non-dimensional maximum electrochemical stored energy, or the van der Waals 

interaction energy difference to maximum electrochemical stored energy: 

 

 ( ) ( ) ( ) ( )

*
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2 *
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1
1

2 1
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h
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EE
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. (85) 

 

R3 is the ratio of non-dimensional van der Waals interaction energy difference to the 

non-dimensional energy difference stored in the elastic spring, or the van der Waals 

interaction energy difference to energy difference stored in the elastic spring: 

 

 
( )

( )
( )

*
* **2*
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1
1

1

11

h
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s s cri cricri

A
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∆Π ∆Π −−
. (86) 

 

These non-dimensional energies and ratios are functions of 0ξ , *K , and *
hA  because 

*
crih  is function of these parameters. Fig. 26 shows ( )*

EMax Π  increase as 0ξ  increase. 

Physically, the more bulk concentration exists for given geometry, the much more 
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energy can be stored electrochemically. Fig. 27 shows that *K  has no effect on 

( )*
EMax Π  because *

crih  is not function of *K  for given *
hA  and 0ξ . Fig. 28 shows 

( )*
EMax Π  goes down as *

hA  increases because *
crih  increases and criφ  decreases as *

hA  

increases for given *K  and 0ξ . 

 

 

Fig. 26. Maximum non-dimensional electrochemical stored energy ( )( )*
EMax Π  vs. 0ξ  

for given *
hA  = 0.2, *K  = 20. 
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Fig. 27. Maximum non-dimensional electrochemical stored energy ( )( )*
EMax Π  vs. *K  

for given *
hA  = 0.2, 0ξ  = 2. 
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Fig. 28. Maximum non-dimensional electrochemical stored energy ( )( )*
EMax Π  vs. *

hA  

for given *K  = 20, 0ξ  = 2. 

 

In Fig. 29, ( ) ( )
*

1 *
  or s s

EE

R
MaxMax

	 
∆Π ∆Π
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 decreases because ( )*
EMax Π  increases and 

*
s∆Π  decreases as 0ξ  increases. As 0ξ  increases *

crih  increases and then it makes *
s∆Π  

decrease. The absolute value of ( ) ( )
*

2 *
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EE

R
MaxMax

	 
∆Π ∆Π
� �
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 decreases because 

( )*
EMax Π  increases and absolute value of *

vdw∆Π  decreases as 0ξ  increases. *
vdw∆Π  is 
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very dominant at the small 0ξ  region. The absolute value of 
*

3 *  or vdw vdw

s s

R
	 
∆Π ∆Π
� �∆Π ∆Π� �

 

increases as 0ξ  increases. R1, R2, and R3 are function of *
crih  for given *

hA  and 0ξ . And 

*
crih  is constant regardless of *K  for given *

hA  and 0ξ . So Fig. 30 shows that R1, R2, and 

R3 are constant with respect to *K . Fig. 31 shows that the absolute values of R2 and R3 

increase because of the large van der Waals interaction energy compared to the 

maximum stored energy in double layer system and the energy stored in elastic spring. 

And R1 decreases slightly as *
hA  increases. 

 

 

Fig. 29. R1, R2, and R3 vs. 0ξ  for given *
hA  = 0.2, *K  = 20. 
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Fig. 30. R1, R2, and R3 vs. *K  for given *
hA  = 0.2, 0ξ  = 2. 
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Fig. 31. R1, R2, and R3 vs. *
hA  for given *K  = 20, 0ξ  = 2. 
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III. EXPERIMENT  

 

A. Literature review 

Many experiments have been done in order to explain the double layer interaction 

forces in an aqueous electrolyte. These forces play an important role in physical 

chemistry, biology, engineering, and many industrial processes. Double layer forces 

stabilize colloids or emulsions, preventing the flocculation of particles. They are one of 

the reasons for the swelling of clays, and they influence the conformation and function 

of biomolecules. In addition, the double layer force contains valuable information about 

the behavior of the chemical nature double layer itself [26]. 

The advent of the atomic force microscope (AFM), modified to measure forces in 

liquids, has enabled easier studies of the structure and behavior of various 

electrochemical interfaces. Experimentalists have used the AFM to measure the force 

versus separation curves between surfaces in liquid electrolytes, but to our knowledge, 

no one has experimentally determined the electric potential versus separation curves [27]. 

For example, Ishino in 1994 controlled the electrical potential of a gold-coated 

cantilever and measured forces between the cantilever and the glass substrates covered 

with different monolayers [28]. Hillier in 1996 varied the potential of a gold substrate 

and measured its interaction with a silica particle, showing that forces followed 

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory; they also studied the relationship 
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between the point of zero force and the point of zero charge as a function of external 

potentials [29]. Raiteri in 1996 applied electrical potential on a gold substrate and 

measured its interaction with a nonconducting silicon nitride tip with high electric 

potentials in aqueous electrolyte solution using AFM. They investigated surfaces at high 

potentials and observed a very steep increase in forces over a small potential window 

[26]. Later Raiteri in 1997 measured the force between a gold sample and a gold sphere 

attached to the end of AFM cantilever to measure interaction forces between surfaces 

with same high electric potentials in aqueous electrolyte solutions [27]. A similar effect 

was seen by Arai and Fujihira (1996), who controlled the potential of both interacting 

surfaces; however, their theoretical fits indicated values of surface potential higher than 

expected [30]. Frechette and Vanderlick in 2001 studied force between mica and 

polycrystalline gold under potential control using SFA (Surface Force Apparatus). The 

interactions were a strong function of the applied electrode potential [31]. 

Doppenschmidt and Butt in 1999 measured interaction forces between surfaces of highly 

oriented pyrolytic graphite (HOPG), which served as the working electrode, and a 

silicon nitride tip with high electric potentials in aqueous electrolyte solution using AFM 

[32]. Barten in 2003 measured the electric double layer interactions between a gold 

electrode and a spherical silica probe using AFM. The double layer properties of the 

gold/solution interface were varied through the pH and salt concentration of the 

electrolyte, as well as by externally applying an electric potential [33]. Gold surfaces 

were studied in aqueous solutions by streaming potential measurements and colloidal-

probe AFM force measurement for understanding the effect of externally applied 
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potentials on the adsorption behavior of charged species [34]. The surface charge at the 

interface of an Au electrode with a KClO4 solution was measured by in situ AFM [35]. 

Ederth in 2001 studied long-range hydrophobic interactions with hydrophobic surfaces 

onto gold. For very stable hydrophobic surfaces the contact angle is sufficient to predict 

the presence of an attraction in excess of van der Waals, in which case the attraction is 

caused by the coalescence of microscopic bubbles on the surfaces. For the less-stable 

hydrophobic films, the properties of the adsorbed layer are important for the qualitative 

nature of the interaction. For such surfaces different-and as yet unknown-mechanism 

cause the attraction [36].  

In this study, we will study the electrostatic actuator in liquid electrolytes using 

AFM like Fig. 32 and find the critical separation and critical applied potential. The AFM 

cantilever, gold sphere on the AFM cantilever, and flat gold plate in experiment play 

same role in elastic spring, moving electrode, and fixed electrode. Nano scale separation 

between two electrodes can be obtained using the AFM. 
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Fig. 32. Schematic drawing of experiment. 

 

B. Experimental description 

The deflection at the end of AFM cantilever-applied potentials measurements in this 

study were performed using a DI (Digital instruments Inc., Santa Barbara, CA) 

Nanoscope III atomic force microscope equipped with a standard fluid cell and a piezo 

scanner “E” (x, y range 12.5 µm x 12.5 µm).  
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Generally AFM consists of a piezoelectric scanner, a probe, a laser, and a detection 

system like Fig. 33. The piezoelectric scanner may be considered the most important part. 

The capability of this scanner to move the sample in three directions at sub-nanometer 

resolution provides the basis of the AFM technique. The other key feature of the AFM is 

the probe or tip. In contrast to radiation-based microscopy techniques, like scanning 

electron microscopy or classical optical microscopy, where the resolution of the images 

is determined by the wavelength of the radiation, in AFM the resolution is determined 

mainly by the size and geometry of the tip. The magnitude of deflection of AFM can be 

measured with the standard beam-bounce system. A laser beam reflects off the back of 

the cantilever onto a position-sensitive photodetector (PSPD). As the cantilever bends, 

the position of the laser beam on the detector shifts. The PSPD itself can measure 

displacements of light as small as 10 angstroms. The ratio of the path length between the 

cantilever and the detector to the length of the cantilever itself produces a mechanical 

amplification. As a result, the system can detect sub-angstrom vertical movement of the 

cantilever tip. A fluid cell of AFM (Nanoscope III, Digital Instruments) is used. This 

fluid cell was composed of a lower plate mounted on the piezo scanner, an upper lid with 

a colloid probe, and a silicon O-ring in between.  
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Fig. 33. Diagram of the most common AFM set-up [37]. 

 

The spheres with appropriate diameters were produced using two gold wires 

connected to power supply and briefly creating a short circuit (40V, max. 0.2 A). This 

was done under nitrogen at atmospheric pressure to avoid chemical reactions and 

contamination. It could be caught in a small container and consisted of gold spheres with 

a wide size distribution in the micrometer range. The chamber, gold wire (0.5 mm 

diameter), and 20 mL beaker was cleaned using cleaner (20 mL Micro 20 and 1 L DI 

water). The chamber with 20 mL beaker inside and two Al electrodes was prepared. The 

electric wires and gas inlet and outlet were connected. The gold wires were connected to 

the ends of two Al electrodes. The cap was close. The nitrogen gas was flown in 10 

minutes and stopped at 1 atm. The potential (40 V, 0.2 A) was applied to two electrodes 
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using power supplier. The distance between two gold wires was controlled rotating two 

Al electrodes. Small spark was produced when two gold electrodes came closer. A small 

aerosol cloud will be produced in the spark. It can be caught in 20 mL beaker and 

consisted of cold spheres with a wide size distribution in the micrometer range. Acetone 

liquid was used to get together the gold spheres distributed everywhere on the beaker. 

Acetone liquid made the adhesion between gold spheres and beaker small. When the 

acetone liquid was stirred, the gold spheres in the acetone liquid got together in the 

middle of beaker. Acetone liquid was evaporated on the heater (100°C). Many gold 

spheres can be seen with optical microscope like Fig. 34. 

 

 

Fig. 34. Optical micrograph of the gold spheres. 
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Gold spheres were attached on the AFM cantilever (Veeco Instrument Inc., Santa 

Barbara, CA) using epoxy resin.  The glue used for this purpose was an epoxy resin, 

EPON 1004F (Shell) which has a melting point of about 100 °C and is highly insoluble 

in water.  

To glue a gold sphere to a cantilever, first a tungsten wire (0.25 mm diameter) was 

etched by immersing one end in 1 M KOH (1 L DI water and 56 g KOH) and applying 

an a.c. voltage of about 20 volts between the wire and a platinum circular electrode 

placed in the solution. The tungsten wire was etched at the surface of solution until the 

end was only about 2 �m thick like Fig. 34 (c). After etching the wire was rinsed in 

ethanol, dried in a stream of nitrogen and clamped in the micromanipulator like Fig. 35 

(b).  

A small heater was fixed between two glass slides using scotch tape like Fig. 35 (b). 

As Fig. 35 (c) is shown, an epoxy resin particle, a cantilever and a lot of gold spheres are 

prepared within 5mm x 5mm area on the glass slide, which was placed on the small 

heater under the microscope. The heating glass slide was kept at a temperature of about 

150 °C (a.c. 65 V), sufficient to melt the glue particles. It takes almost 30 minutes. Using 

the micromanipulator the sharp tungsten wire was dipped into one of the small glue 

droplets on the glass slide and some glue is attach to sharp end of the tungsten wire. The 

amount of glue on the wire can be reduced by letting it touch a clean part of the glass 

slide. This was repeated until only a tiny amount of glue was left on the wire. Now, the 

cantilever was rubbed with the glue-loaded wire tip exactly on the spot where the 

particle will be placed. In this way some of the glue on the wire was transferred to the 
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cantilever. Even if there was no glue visible on the cantilever under the microscope, 

there was probably enough present to hold a particle. The next step is to bring a small 

number of colloidal probe particles onto a clean glass slide under the microscope. The 

micromanipulator provided with another tungsten wire was used to bring a single 

particle to the cantilever. Generally, the particle was readily picked up when touched as 

a result of capillary adhesion between the thin water films on the wire and the particle, 

which are always present under ambient conditions. But in my experiment, the particle 

was hard to pick up and place because the particle moves away from the tungsten wire 

on the hot glass slide surface.  

 

 

(a) 

Fig. 35. (a) The set-up used to glue particles to the end of the AFM cantilever, (b) closer 

view under the optical microscope, and (c) microscope view 
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(b) 

 

(c) 

Figure 35 continued. 

 

Next, the particle was carefully maneuvered onto the glue on the cantilever where it 

sticks. Finally, the cantilever was removed from the heating stage, after which the glue 
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hardens. It is important to attach a sphere at the same location on the cantilever tip for 

the excellent reproducibility. Fig. 36 shows the AFM cantilever with a gold sphere. 

Roughly 10 nm of gold is sputtered onto the cantilever and the attached sphere in 

order to create a conductive path to the metallic spring clip, which holds the cantilever 

clip. Care was taken to avoid coating the reflective gold side of the cantilever.  

A well-defined geometry simplifies the modeling of the probe/sample interaction 

(the main drawback is a loss in lateral resolution). The Langbein approximation is used 

for the effective area. The Langbein approximation is valid when the radius of gold 

sphere is much larger than the separation between the gold sphere and gold flat plate.  

 

  

(a) 

Fig. 36. (a), (b) Scanning electron micrographs, (c) optical micrograph of gold particles 

attached to AFM cantilevers. 
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(b) 

 

(c) 

Figure 36 continued. 

 

According to Langbein approximation, the effective area will be 2�Rh0 (R is the 

radius of gold sphere, h0 is the initial separation between two electrodes).  
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The cantilevers used throughout this work were obtained from Digital Instruments 

(Santa Barbara CA, USA). The cantilevers are mounted on a substrate or chip. Four 

types of cantilevers are provided on one substrate: 100 µm long wide-legged, 100 µm 

long narrow-legged, 200 µm long wide-legged, and 200 µm long narrow-legged. Digital 

Instruments specifies the spring constants of the various cantilever types, but the values 

provided are only approximate. Some variations in thickness, width, and length of the 

cantilever may results into large differences in the spring constants of cantilevers of the 

same type. Therefore, for accurate force measurements and comparison with theory is 

necessary to precisely determine the spring constant of each individual cantilever.  

In this research, the Cleveland method was used for the spring constant K of each 

AFM cantilevers [38]. The V-shaped cantilevers can be well approximated by two 

rectangular beams in parallel. Two obvious sources are the measurement of the gold 

sphere diameters and the fact that the spheres were only positioned within 20 µm of the 

integrated tip (where forces will be applied during imaging). Both these errors could be 

minimized by the use of precalibrated masses (e.g., monodisperse spheres) and more 

careful positioning [38]. The spring constant of an end-loaded cantilever beam of 

rectangular cross section is given by 
3

34
Et w

K
l

= , where E is the elastic modulus, t is 

thickness, w is the width, and l is the length. This effective mass is * 0.24 bm m≈  where 

mb is the mass of the beam. When an end mass M is added, the resonant frequency is 

given by *

1
2 2

K
v

M m
ϖ
π π

= =
+

 or ( ) 2 *2M K v mπ −= − . This equation shows that if 
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several known end masses are added to a cantilever and the new resonance frequencies 

are measured, a linear plot of added masses versus ( ) 22 vπ −  should give a straight line, 

the slope being the spring constant and the negative y intercept the effective mass. The 

unloaded resonant frequency (M = 0) can be written using bm wtlρ= , 

1 1
2 2

0 2 24 0.24 2
t E t E

v
l lπ ρ π ρ
� � � �

≈ ≈� � � �
� � � �

. Using measurements of the unloaded resonant 

frequency v0 and the resonant frequency v1 with one added mass M1, these two equations, 

( ) 2 *
00 2K v mπ −= −  and ( ) 2 *

1 12M K v mπ −= −  are obtained. Finally spring constant and 

effective mass can be determined like, ( ) ( )
2 1

2 2
1 0

4
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−
 and 

2
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v
m M

v v
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−
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In principle, measuring the resonance frequencies of the unloaded cantilever and the 

loaded cantilever for just on value of M would suffice to calculate K. However, in 

practice more measurements are needed to reduce the effect of experimental errors, in 

particular those related to determine the precise size of the gold particle. The resonance 

frequency of the cantilever can be easily determined making use of the NanoScope 

software. First the resonance frequency v0 of the unloaded cantilever is determined. After 

this a particle of known mass is attached to the cantilever, and the resonance frequency 

is again measured. Attaching the end mass is done in much the same way as with the 

colloidal probes, only this time no glue is used (in air the particles stick due to capillary 

adhesion). As end masses, gold spheres with diameters in the range 7 ~ 25 �m were used. 

The masses of the gold spheres were calculated from the sphere radii and the density of 

gold (19.3×103 kg/m3). The diameter of each gold sphere was measured using optical 
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microscope (Hirox microscope, 600× magnification) in the lab. 5 resonance frequencies 

for 5 different gold spheres were obtained, and then the spring constants of each AFM 

cantilever were determined. Fig. 37 shows an example of typical cantilever calibration 

plot. 

 

y = 0.1628x + 5E-13
R2 = 0.9969

0.00E+00

2.00E-11

4.00E-11

6.00E-11

8.00E-11

1.00E-10

1.20E-10

1.40E-10

0 2E-10 4E-10 6E-10 8E-10 1E-09

 

E
nd

 m
as

s 
(k

g)

( ) 2
2 vπ −

 

Fig. 37. Typical cantilever calibration plot for a standard 115 µm narrow-legged Vecco 

cantilever. Spring constant 0.163 N/m and correlation coefficient 0.9969. 

 

Flat gold electrode surfaces were prepared by evaporating about 5 nanometers of 

chromium to prevent gold detaching from the silicon substrate (100) in water and 50 

nanometers of gold over silicon substrate like Fig. 38. Gold source (Au 99.999%) is 

from CERAC. In order to apply the external potentials, 200 �m conducting wire was 

connected to each flat gold electrode using conducting epoxy. 
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Fig. 38. Flat gold samples. 

 

The surface roughness of the flat gold electrode surfaces and the gold sphere was 

measured using an AFM. To measure the surface roughness of gold spheres, 10 nm gold 

surface on the dummy silicon (100) was used instead of the surfaces of gold spheres. 

This gold surface was deposited at the same condition as the thin gold layer was 

deposited using sputtering. The surface roughness was determined by AFM in imaging 

mode and defined as the root mean square (rms) of the height differences on the surface 

over an area of 1 �m2. The AFM image indicated that the root-mean-square roughness 

over a 1 × 1 µm2 area was about 1 nm for the relatively flat gold surfaces and the peak-

to-peak roughness was about 20 nm. Fig. 39 shows an example of a gold surface 

roughness and in this case, rms roughness is about 1 nm and peak from the average 

height is about 7.4 nm. 
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(a) 

 

(b) 

Fig. 39. A example of roughness analysis of flat gold surface. (a) 2-D view, (b) 3-D view. 

Scan area: 1 µm2, rms roughness: 1.063 nm, peak from average height: 7.366 nm. 
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An aqueous solution of 1 mM salt (NaCl) and deionized pure water were used. 

Nitrogen was bubbled through the solution for at least 30 minutes to deaerate the 

solution and to remove dissolved CO2 which would decrease the pH. After this, the 

measured pH was 5.7 ± 0.05 at 25 ºC (298 K). Approximately 10 mL of the solution was 

rinsed through the AFM cell, after which the inlet and outlet of the cell were closed.  

The Teflon tubing and the electrochemical cell were rinsed with ethanol and DI 

water. The flat gold surfaces were cleaned by immersion into a piranha solution, i.e., a 

hot mixture of 30 % H2O2 and concentrated H2SO4, for 2 mins, which resulted in a 

surface with a zero contact angle with water. To avoid detachment of the gold-coated 

particles from the cantilever, these were not cleaned with piranha solution but in plasma 

cleaner. The flat gold surfaces and the cantilever with the gold sphere were put under the 

UV light (254 nm) in the clean room for at least 15 minutes then were washed in 

distilled ethanol, rinsed with purified water and then blown dry with nitrogen.  

The zero of force was chosen where the deflection was constant (where the particle 

and flat were far apart), and the zero of distance was chosen to occur when the cantilever 

deflection was linear with respect to sample displacement assuming there is no 

interaction between the particle and flat sample (in real, there exist always repulsive or 

attractive interaction between them). As the sample is driven toward the sphere, the 

cantilever deflects, and this is registered by the photodiode. At some point, the output of 

the diode becomes a linear function of the sample displacement because the particle is in 

contact with the surface and thus the changes in displacement of the sample are equal to 

changes in deflection of the cantilever. This linear region of deflection is called the 
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region of constant compliance. In this experiment, the zero of distance was chosen by 

the intersection of the extended line of the region of constant compliance and the 

extended line of the zero of force.  

A platinum counter electrode and an Ag/AgCl (in 3 M KCl) reference 

microelectrode will be put into the inlet and outlet of the AFM fluid cell and connected 

to the bipotentiostat (Model 700B series Electrochemical Analyzer, CH instruments Inc., 

Austin, TX) like Fig. 40. The first working electrode was connected to the flat gold plate 

on the AFM cantilever and the second electrode was connected to the gold sphere. The 

purpose of the reference electrode is to maintain a constant reference potential regardless 

of change in pH or other ionic activity in the solution. All the potentials applied to an 

electrode can only be referred to a reference electrode. In experiments where iRs may be 

high, a three-electrode cell arrangement is preferable. In this arrangement the current is 

passed between the working electrode and a counter electrode. The device used to 

measure or monitor the potential difference between the working electrode and the 

reference electrode has high input impedance so that a negligible current is drawn 

through the reference electrode. Since essentially no current is passed through the 

reference electrode, its potential will remain constant and equal to its open-circuit value. 
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(a) 

(b) 

Fig. 40. (a) Experimental set up picture, (b) schematic drawing of experimental set up, 

and (c) AFM and electrodes. 
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(c) 

Figure 40 continued. 

 

First, without external potentials, the continuous force measurements with a 

frequency of 5 Hz to get the position of gold sphere on the AFM cantilever from the flat 

inlet tube outlet tube 

reference electrode 

counter electrode 
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gold sample and deflection sensitivity which represents the cantilever deflection signal 

versus voltage applied to the piezo and is normally set from the force plot mode in AFM.  

During force measurements in the AFM, the tip (with or without a colloidal probe) 

and a flat surface are continuously brought into contact and separated again. The piezo 

element moves only in the z-direction; the x and y positions are fixed. Since the flat 

surface was mounted on the piezo element, the flat surface was brought towards the 

cantilever rather than the cantilever towards the surface. Forces acting between the 

surfaces will cause the cantilever to deflect. The deflection of the cantilever was 

monitored and plotted in a graph is shown in Fig. 41. On the vertical axis the output of 

the photodiode was plotted and horizontal axis gives the position of the piezo. The curve 

I-II-III gives the interaction on approach and the other (with the deep minimum) 

corresponds to the interaction upon retraction. At large distance (I) no force acts on the 

particle. When bringing the surface closer the particle feels an attraction or a repulsion 

which causes the cantilever to bend towards or away from the surface (II) (in Fig. 41, an 

attraction is depicted). When the particle and flat surface have come into contact 

(provided the surfaces do not indent – or do not indent anymore), the particle movement 

complies to the movement of the piezo. This implies that when the piezo is moved 

upwards over a certain distance the probe is moved upwards over the same distance (III). 

Consequently, the measured deflection is linear with the piezo movement which shows 

up as a linear region in the force plot. This part of the curve is called the constant 

compliance region. At the end of this constant compliance region the piezo movement is 

reversed. If there is an adhesion between the surfaces a force is needed to separate them. 
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This is illustrated in Fig. 41: on retraction the surfaces are in contact beyond the point 

where initial contact was made (IV). As the piezo is moved further downwards the 

surfaces are separated again. At larger distances the force between the tip or probe and 

the surface is again zero (V) [37].  

 

 

Fig. 41. A typical force graph in which the deflection of the cantilever is plotted against 

the piezo position. On the right, the position of the colloidal probe and the flat surface on 

the piezo are shown for several points of the curves, indicated by Roman numerals [37]. 

 

The deflection sensitivity is equal to the slope of the force curve when the cantilever 

is in contact with the sample surface. So, this sensitivity can be expressed in terms of the 

photodiode voltage versus the distance traveled by the piezo, or the photodiode voltage 

versus the voltage applied to the piezo. Therefore we can know how many voltages of 

deflection signal are produced by a given deflection of the cantilever tip. The sensitivity 

will change for different cantilever lengths and styles and with the position of laser on 
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the cantilever and the quality of the laser beam reflection from the cantilever. During the 

acquisition of a force curve and deflection of end of cantilever, the measured 

experimental parameters are the output signal of the photodiode (in volts) which is 

directly related to the tip deflection. This can be calibrated by comparing the detector 

signal to the piezo displacement in the constant compliance region and the substrate 

displacement in nanometers [33]. This sensitivity was measured 10 times for each 

experiment and the average was used for the deflection sensitivity. Using the step motor 

of AFM, initial separation between gold sphere on the AFM cantilever and flat gold 

sample was set and then the ramp size of AFM scanner under the flat gold sample was 

set to zero to get the fixed electrode. With these processors, we have two electrodes, that 

was, a gold sphere on the AFM cantilever as movable electrode and a flat gold plate as 

fixed electrode with separation, h0.  

Then potentials are applied to electrodes using staircase among bipotentiostat 

functions. The positive potential to the movable electrode has initial potential of zero, 

increment of potential of each step of 10 mV or 50 mV, and a potential step period of 

100 seconds. The negative potential to fixed electrode has initial potential of zero, 

decrement of potential of each step of 10 mV or 50 mV, and a potential step period of 

100 seconds. These potentials are with respect to the Ag/AgCl reference electrode. The 

output voltage of the deflection of each applied potential was measured and this output 

voltage was converted into the deflection using deflection sensitivity. Finally, the 

deflections of the end of the AFM cantilever versus the applied potentials for different 

AFM cantilevers and different gold spheres on the AFM cantilever were measured. 
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All the potentials applied to an electrode can only be referred to a reference 

electrode. On the other hand, in the analytical calculation, the surface potential, which is 

referred to the bulk of the solution, is relevant.  

There are systematic errors and errors in the data analysis presented here which 

limit the resolution. Therefore, a sensitivity analysis of the individual parameters was 

performed. In this experiment, the spring constant of the AFM cantilever, distance 

between gold sphere and flat gold plate, potentials applied to two electrodes, and radius 

of gold sphere are very important parameters rather than other parameters like 

permittivity of water, valence of each ions, temperature and bulk concentration, which 

have very small errors.  

The true value of a measurand is the real world value. Because our instruments do 

not perfectly measure this real world value, the true value of the measurand is never 

known. The indicated value of the measurand is the value given by the instrument. The 

error is the difference between the indicated value and the true value. Because the true 

value is never known, the error is also never known. Therefore, we define a term called 

the uncertainty, which is a range in which we believe the error to lie.  

Given the uncertainty in the measurands, we must calculate the uncertainty in a 

function of those measurands, i.e. we must calculate how the uncertainty propagates. 

Generally, the uncertainty of the measurement is estimated analytically using uncertainty 

propagation methods [39]. This method is a special application of Taylor’s series and 

can be expressed as 
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where the xn’s are variables and the ∆xn’s are determined or assumed incremental 

variations in the respective xn’s. The higher-order terms are neglected. This equation can 

be rewritten, changing the ∆xn’s to un’s merely to represent uncertainties better: 
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Equation (88) evaluates the overall maximum uncertainty of the function. 

First, a scanning electron microscope was used to measure the radii of each gold 

sphere attached on the AFM cantilever. Three times measurements of radii were always 

the same to within the 2.5 % resolution.  

Distance (h = D.S × Vout) between the gold sphere and the flat gold plate is equal to 

the deflection sensitivity (D.S) times the output voltage of the photodiode (Vout). 

Therefore, maximum relative uncertainty of distance with respect to measured distance 

(Uh/h) is like 

 

.

.
h D S vout

out

u u u
h D S V

= +  



 99 

where uD.S is uncertainty of deflection sensitivity and uvout is uncertainty of output 

voltage of photodiode. The relative uncertainty of the deflection sensitivity (UD.S / D.S) 

is about 6 %. The relative uncertainty of the output voltage of the photodiode (Uvout / 

Vout) is about 0.3 %. So, the maximum relative uncertainty of distance is about 6.3 %. 

For the spring constant (K) of the AFM cantilever, the Cleveland method was used 

and the method of least squares was used for the data analysis. Therefore, the spring 

constant can be expressed like 
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where xi = (2πνi)-2 and yi =  3/4πRi
3ρAU from the Cleveland method, N is the number of 

data and ρAU is the density of gold. So, the spring constant is a function of ith radius of 

gold sphere (Ri) and ith resonant frequency (νi) and maximum relative uncertainty of 

spring constant (uK / K) can be expressed like 
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where 
iRu  is uncertainty of ith radius of gold sphere and uνi is uncertainty of ith resonant 

frequency. Relative uncertainty of the radius of gold sphere is within 2.5 % and the 
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relative uncertainty of the resonant frequency is within 0.63 %. As a result, maximum 

relative uncertainty of spring constant of AFM cantilever is about 5.74 %. 

C. Results 

1) Natural double layer repulsion 

Fig. 42 shows a cantilever deflection-distance curve of gold-gold interaction in 1 

mM NaCl electrolyte without externally applied electric potentials. In Fig. 42, the 

deflection (y-axis) is calculated using the multiplication of the displacement sensitivity 

(nm/V) and photodiode output (V). With this curve, the distance between the gold sphere 

on the AFM cantilever and flat gold sample can be obtained, and the deflection versus 

this actual electrode separation is shown in Fig. 43. 

The gold sphere on the AFM cantilever encountered a repulsive force that decayed 

exponentially with decay length similar to the Debye length because two gold surfaces 

have same negative charges and same negative potentials with respect to that of bulk 

concentration in the same liquid electrolytes. 
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Fig. 42. The raw deflection-separation curve of gold-gold interaction in 1 mM NaCl 

electrolyte without external applied potential. 

 

Fig. 43. The deflection versus electrode separation curve converted from Fig. 42. 
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The results reported herein are qualitatively similar to other results [33]. But there is 

a quantitative difference between our results and published results. Giesbers in 2002 

mentioned that the charge and the potential of gold surfaces in solution are determined 

by specific ion adsorption and are highly dependent on the solution composition and 

presence of impurities. Furthermore, the preparation and cleaning procedure of a gold 

surface may affect its chemical properties (presence of oxide layers) and clean gold 

surfaces readily adsorb contaminants from the air. It is therefore no surprise that in 

literature practically no consistent data on the potential of gold surface can be found [33]. 

In principle, one can find the spring force from the cantilever deflection, and then 

set this force equal to the sum of the van der Waals force and electrochemical force like 

(65) in the analysis section to solve for the electric potential on the electrode. This 

potential is the natural potential between gold and the electrolyte. However, this is not 

possible in this case because our mechanical equilibrium analysis is based on the 

linearized Poisson-Boltzmann equation, which assumes small potentials. The natural 

double layer potentials of the gold surface are larger than the maximum potential of 

linearized Poisson-Boltzmann equation. 

2) Results with externally applied electric potential 

Fig. 44, Fig. 45, Fig. 46, and Fig. 47 show the deflections of the AFM cantilever 

versus the externally applied electric potentials, including both experimental results and 

the analytical results for the conditions matching the experiments.  

Part (b) of these figures, the separation vs. external potentials, were obtained from 

analytically using the linear momentum equation at equilibrium (67). The potentials 
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analytically applied to electrode 1 and electrode 2 are given by ψ1 = -215 + ψ1’ and ψ2 = 

-215 - ψ1’, where ψ1’ is the experimentally applied external potential. The shift of 

potential by -215mV accounts for two phenomena: the natural double layer potential, 

and the effect of the Ag/AgCl electrode used in the experiment. 

Ducker and Ederth measured the natural double layer potential to be –65mV for Au 

electrodes in 1mM NaCl aqueous solution [40], [36]. In the experiment we apply 

electrode potentials with respect to the Ag/AgCl electrode, whereas in the analysis we 

apply the electrode potentials with respect to the bulk solution potential. Barten in 1993 

mentioned in his research that all potentials applied with respect to the Ag/AgCl 

reference electrode are shifted by –150 mV to express these with respect to the potential 

of the bulk solution [33]. Therefore, we use -215mV (= -65mM – 150mV) in the 

analytical model. 
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(b) 

Fig. 44. The separation-external potential curve in case that K = 0.2748 N/m, h0 = 97 nm, 

and R = 2.83 µm. (a) experimental result, (b) analytical result. 
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(b) 

Fig. 45. The separation-external potential curve in case that K = 0.1134 N/m, h0 = 142 

nm, and R = 9.94 µm. (a) experimental result, (b) analytical result. 
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(b) 

Fig. 46. The separation-external potential curve in case that K = 0.2092 N/m, h0 = 176 

nm, and R = 8.60 µm. (a) experimental result, (b) analytical result. 
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(b) 

Fig. 47. The separation-external potential curve in case that K = 0.1628 N/m, h0 = 177 

nm, and R = 12.51 µm. (a) experimental result, (b) analytical result. 
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In Fig. 44 (a), we measured spring constant of 0.2748 N/m, initial separation 

between the gold sphere and the flat gold sample of 97 nm, and a radius of gold sphere 

on the AFM cantilever of 2.83 µm with which we can get the effective area of 1.7 µm2 

using the Langbein approximation. In the experiment, the critical point, where the 

moving electrode collapses onto the fixed electrode, cannot be found but the point at 

which the slope changes exists. This point might be the critical point and occurs around 

the 0.18 V and 64.04 nm. Fig. 44 (b) shows the analytical result on same conditions (K = 

0.1134 N/m, R = 2.83 µm, h0 = 142 nm, Ah = 40×10-20 J for gold-water-gold, εε0 = 78 

for water, and n∞ = 1 mM) and critical potential of 0.98 V and critical separation of 87.5 

nm. In this curve, the solid lines represent the stable equilibrium separations and the 

dotted lines represent the unstable separations.  

In Fig. 45 (a), measured spring constant is 0.1134 N/m, initial separation is 142 nm, 

and radius of gold sphere on AFM cantilever is 4.97 µm (effective area is 4.4 µm2). And 

the slope-changing point is around 0.16 V and 71.65 nm. Fig. 45 (b) shows the critical 

potential is 4.08 V, and critical separation is 132.4 nm on same condition of experiment. 

In Fig. 46 (a), measured spring constant is 0.2092 N/m, initial separation is 176 nm, 

and radius of gold sphere on AFM cantilever is 4.3 µm (effective area is 4.75 µm2). And 

the slop-changing point is around 0.84 V and 143.6 nm. Fig. 46 (b) shows the critical 

potential is 31.07 V, and critical separation is 166.4 nm. 

In Fig. 47 (a), measured spring constant is 0.1628 N/m, initial separation is 177 nm, 

and radius of gold sphere on AFM cantilever is 6.26 µm (effective area is 7.0 µm2). And 
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the slop-changing point is around 0.27 V and 160.48 nm. Fig. 47 (b) shows the critical 

potential is 23.86 V, and critical separation is 167.4 nm. 

In the same condition, the analytical results show that the critical potential is higher 

and the stable separation range from the initial separation to the critical separation is 

smaller compared the experimental results. And the critical points of the analytical 

results are apparent but those of experimental results are not. 

C. Discussion of results 

The analytical results were not verified by the experiments. Relative to the analysis, 

the experiments did not show distinct critical points, and the experiments showed less 

electrode separation for a given applied electric potential. The experiments did show 

points at which the separation versus potential plots rapidly changed slope, which may 

be instability points. The following discussion will attempt to explain the difference 

between the analytical and experimental results.  

1) The Poisson-Boltzmann equation 

The Poisson-Boltzmann equation assumes an ideal solution, meaning a dilute 

solution. But near the electrode there is a very high concentration of ions. In addition, 

the Poisson-Boltzmann equation assumes that the ions are infinitesimal points, which are 

infinitesimally small. In reality, of course, the ions have some finite size. 

The analytical results are based on the linearized Poisson-Boltzmann equation. 

However, in Figures 44 (b) though 47 (b), the critical potentials are greater than 200mV, 
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which is too large for the linear theory to be valid. Approximately 25 mV is the 

limitation of linearized Poisson-Boltzmann equation.  

However, the analysis will deviate from the experiments even more if the nonlinear 

Poisson-Botlzmann equation is used. With the nonlinear Poisson-Boltzmann equation, 

the critical potential and critical separation will increase because the double layer 

interaction force from the nonlinear Poisson-Boltzmann equation is smaller than that 

from the linearized Poisson-Boltzmann, as indicated in Table I. In Table I, the double 

layer interaction force is proportional to C + 2 according to FE = -n∞kTA(C+2). C + 2 of 

the nonlinear Poisson-Boltzmann equation can be obtained using the thesis by Devereux 

and Bruyn [22] and that of linearized Poisson-Bolzmann equation can be obtained with 

the solution of linearized Poisson-Boltzmann equation (28) and 
2

22
d

C
dX

φ φ� �+ = −� �
� �

.  

 

Table I. Comparison of C + 2 from the nonlinear Poisson-Boltzmann equation and 

the linearized P-B equation. 

C + 2 Potential in case ξ 
= 10 (or n∞ = 1 
mM, h = 96 nm) 

General P-B equation Linearized P-B equation 

2.6 mV 0 0.000002 

15.5 mV 0.00006 0.000065 

25.9 mV 0.00017 0.000182 

129.3 mV 0.00209 0.00454 

258.6 mV 0.00283 0.018162 

517.2 mV 0.00291 0.072646 
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2)  The bulk potential is unknown 

In the model, the electrode potentials are applied with respect to the bulk potential, 

which is assumed to be zero. But in the experiment, the applied electrode potentials are 

with respect to the Ag/AgCl reference electrode, and the bulk potential is unknown. 

3)  Surface roughness and asperities 

Surface roughness is not taken into account in traditional (Derjaguin-Landau-

Verwey-Overbeek) DLVO theory even though most surfaces and colloid particles, 

including our electrodes, have a certain degree of roughness. As described in a recent 

review by Walz, divergence between DLVO theory and experiments involving rough 

particles is often explained by surface roughness [41]. Generally rough surfaces between 

two conductors make the attractive electrostatic force decrease. So, the double layer 

interaction force in the analytical study is greater than that in the experiment. But 

asperities due to conducting particles deposited during evaporation makes electrostatic 

interaction increase. Therefore we can explain our experimental results not with surface 

roughness effect but with existence of asperities [41], [42].  

4)  Hydrophobic effects 

Long-range attractive hydrophobic force exists between hydrophobic surfaces. 

Clean gold is a hydrophilic surface. It has a small contact angle (<70 degrees), meaning 

that water will spread onto its surface.  Therefore, hydrophobic forces were not included 

in the analytical model.  However in the lab, gold surfaces may become hydrophobic 

because of organic films depositing onto the surface from the environment.  So clean 
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surfaces are hydrophilic, but some gold surface sitting around can become 

hydrophobic.  Gold surfaces cleaned in piranha solution are hydrophilic, but organic 

films get on the clean gold spontaneously from the air.  There are organics in the air and 

then they stick to the clean gold surface.  Also, Biggs in 1994 mentioned that gold 

surfaces are notoriously hard to clean and during the experiments readsorption of 

organic contaminant did take place [43]. Therefore, the gold sphere and the flat gold 

surface may be hydrophobic in our experiment. 

The interaction force between hydrophobic surfaces in water has been a debated 

issue for a long time because the strength and range do not coincide among a large 

number of experimental data, although the force has been confirmed to be long-ranged 

and strongly attractive. Much to the wonder of many scientists, ensuing experiments 

with different types of hydrophobized surfaces generated not only quantitatively 

different results, but also interactions that were qualitatively different [44]. 

Doppenschmidt in 1999 observed one surprising result at positive sample potentials. The 

decay length of the attractive force was significantly larger than the Debye length. Such 

a large decay length cannot be explained by the double layer interaction force. They 

suspected that a hydrophobic force acts between surfaces of large contact angle. A 

possible explanation of the long-range attraction is an indirect hydrophobic effect: It 

could be possible that the sample became hydrophobic at positive potentials. This could 

be due to hydrocarbon-containing contaminants, which might selectively absorb at 

positive potentials. Alternatively, the surface might become hydrophobic due to 

electrochemical reactions [32]. Two hydrophobic surfaces in water attract each other 
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over a long-range up to several hundred nm. Highly Oriented Pyrolytic Graphite 

(HOPG) is hydrophobic. Silicon nitride should be hydrophilic. Even in this 

unsymmetrical situation (HOPG and silicon nitride) hydrophobic attraction is expected. 

In addition, any tiny amount of hydrocarbons adsorbed to the surface might cause a 

significant increase of the hydrophobic attraction. The decay length of roughly 15 nm 

was significantly larger than the Debye length. Doppenschmidt has yet no explanation or 

interpretation for this long-range attraction [32]. Raitai in 1996 observed a long-range 

attractive force between a platinum or gold sample and a silicon nitride tip at high 

positive potentials. This component could be fitted with an exponential function with 

typical decay lengths of 50 nm. They have yet no explanation or interpretation for this 

long-range attraction. Only the long-range hydrophobic force is of significant magnitude 

at such large separations. At high positive sample potentials the cantilever was bent 

away from the sample by typically a few tens of nanometers. An attractive force that 

decayed with the Debye length was never observed in their experiment. Instead, a long-

range attraction was observed that could not be explained with Poisson-Boltzmann 

theory [26]. Hillier in 1996 observed the attractive forces between silica sphere and gold 

electrode when the electrode is made positive. In 1 mM solutions, the force vs. 

separation interaction extends past 30 nm separation, while in 10 mM solutions, the 

interaction force decays within the first 8 nm from the electrode surface. This behavior is 

consistent with the difference in the calculated Debye length for these solutions, κ-1 = 

9.62 nm at 1mM and κ-1 = 3.04 nm at 10 mM [29]. Ducker and Senden in 1992 found 

the attractive force between a gold sphere and a flat gold plate at large separation even 
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though they have same negative charges on their surface. They considered several 

possible reasons for this: 1) the effective radius may be smaller than the radius of 3.5 µm 

obtained from SEM, 2) organic material has probably adsorbed at the gold surface, 

possibly producing hydrophobic interactions, and 3) some of the charge on each surface 

may be situated at a negative surface separation Although most of the charge on a 

conducting surface would be concentrated on the asperities, charge on adsorbed material 

may lie beyond the point of closest approach [40]. Aston and Berg in 2000 observed the 

long-range attraction between hydrophobic materials in aqueous media has long been 

exploited in separations. There appears at present to be no established theory that 

completely explains the collective results in a unified manner. Though a single 

explanation would be desirable, the most reasonable arguments suggest there may be 

several ‘hydrophobic effects’, distinctly different the mechanism for long-range non-

DLVO interactions. Significantly long-range attractions are often measured that these 

seem to be influenced more by surface structure or mobility rather than macroscopic 

hydrophobicity [45].  Also, Butt in 1995 measured monotonic attractive forces of longer 

range (100 nm) and greater magnitude than van der Waals forces. These occur between 

surfaces which generally exhibit high water contact angles (e.g. hydrocarbon and 

fluorocarbon surfaces) and are usually known as hydrophobic forces [46].  

The theoretical understanding of the long-ranged exponentially decaying interaction 

is still unsatisfactory, although some progress has been made. A current list of possible 

mechanisms includes solvent structuring (the self-association of water being the most 

common), dipolar-van der Waals and electrostatic correlation forces, submicroscopic 
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bridging bubbles, cavitation, bridging macromolecules, and contact region capillary 

condensates [45].  

Submicroscopic bridging bubbles cannot be dismissed as a possible hydrophobic 

interaction mechanism, where the range of attraction would be essentially fixed by the 

size of the bubble. A pre-formed bubble can pull two hydrophobic surfaces together in 

aqueous media. Sufficiently large gas bubbles trapped on submerged surfaces may 

persist for hours or even months without careful de-aeration, though any bubbles of 

colloidal dimensions are predicted to dissolve within microseconds and could not be a 

cause for attraction [45]. As for hydrophobized surfaces dried in air, it was found 

recently that nanobubbles are attached to surfaces and cannot be removed completely by 

immersing them in water. When two surfaces are so close that bubbles remaining on 

surfaces coalesce each other a gas bridge will be formed between them like Fig. 48. The 

long-range and strong attraction is then generated between surfaces, because of the 

surface tension at the gas-water interface and the low gas pressure [44].  

Tyrrell in 2001 obtained images of nanobubbles on hydrophobic glass surfaces in 

water with tapping mode AFM (Atomic Force Microscopy). These images show that 

these hydrophobic surfaces are covered with soft domains, apparently nanobubbles 

which have a radius of curvature of the order of 100 nm, and height above the substrate 

of 20 – 30 nm. Also they estimated the adhesion of these nanobubbles as 64 – 102 nN 

from the jump-out distance of the retract force curves. This is consistent with a capillary 

adhesion for a bubble between a flat and a sphere with contact angles of 101° and 80°-

82° respectively. So, these images coupled with force curves provide powerful evidence 
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of the existence of nanobubbles and of their bridging as the cause of the long-range 

attractions measured between macroscopic hydrophobic surfaces [47]. 

 

 

 

 

 

Fig. 48. Formation of gas-bridge. 

 

Generally, the roughness of the gold substrate causes scatter in the adhesion data, 

because the effective surface area upon contact varies over the surfaces due to presence 

of the gas-bridge, but it might also have implications for the hydrophobic forces. The 

effect of roughness on the interactions between hydrocarbon layers covalently attached 

to the gold has been discussed previously, with particular emphasis on the role of surface 

imperfections at grain boundaries as nucleation sites or traps for gas bubbles. The 

surface imperfections might work more like traps for air bubbles, rather than as bubble 

nucleation sites [36]. At present there is no clear understanding of the mechanism of 

these forces. The large magnitude and range and the lack of theoretical understanding 

make the study of hydrophobic forces important in surface science. 

Christenson and Claesson in 1988 suggest that the results of long-range attractive 

hydrophobic force can be ordered in the following three major categories: 1) strongly 

attractive forces between stable surfaces, 2) attractions of varying strength and range 

Gas bridge 

Liquid 
electrolyte Gas bubble 
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caused by bridging of bubbles, and 3) long-range attractive forces with exponential 

decay. The surfaces are stable and have high contact angles (generally � 100°), but the 

variation of the force onset separation with distance is significant, from about 10 nm to 

about 200 nm. Even though the Poisson-Bolzmann theory predicts the same decay length 

for repulsive and attractive electrostatic force, a significantly longer decay length in the 

attractive regime observed [36].  

First, the long-range attractive hydrophobic force makes the critical separation 

smaller than the critical separation without hydrophobic forces (Fig. 49). In Fig. 49, Fs is 

the elastic spring force, FE is the double layer interaction force, Fvdw is the van der Waals 

force, and Flrh is the long range hydrophobic force. Below the critical potential, there are 

two intersections of the elastic spring force and other external forces. These two 

intersections are equilibrium points; one near the initial separation is stable the 

equilibrium point and another far away from the initial separation is the unstable 

equilibrium point. Fig. 49 (a) shows the short decay length of the summation of double 

layer interaction force and van der Waals force from the analytical study. This short 

decay length is the Debye length and this phenomenon makes the stable region of the 

free electrode from the initial separation to critical separation short even though the 

critical potential is high. But Fig. 49 (b) shows the long-range decay length of the 

summation of the double layer force, van der Waals force, and long-range hydrophobic 

force. According to some literature, this long-range length is from several tens of 

nanometer to several hundreds nanometers. This situation makes the critical separation 

at the lower critical potential far away from the initial separation and the stable region of 
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free electrode larger. This phenomenon can explain why all our experimental results 

have the much larger stable region from the initial separation to critical separation than 

that of analytical results. 

 

 

 

 

 

 

 

                                   (a)                                                                      (b) 

Fig. 49. (a) Short decay length (analysis) and (b) large decay length with strong 

attractive force (experiment). 

 

Second, there exists another “strong” attractive force (long-range strong attractive 

hydrophobic force) in the experiment. That means critical points can occur with the 

small summation of double layer interaction force and van der Waals force and this 

means critical points can occur with small external potential because of long-range 

“strong” attractive hydrophobic force. So, the critical potential, ψcri’, in the experimental 

results is much smaller than the critical potential, ψcri, in the analytical results like Fig. 

49. This phenomenon and long-range decay phenomenon can explain the reason our 

experimental results have much smaller critical potentials than those of analytical results. 
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5)  Van der Waals force 

Generally speaking, the charging mechanism of the gold surface probably depends 

on how the gold surface was prepared and cleaned, and on solution conditions and the 

presence of impurities. The lack of an abrupt collapse of the separation in the experiment 

may be due to a weaker than expected van der Waals force. Because of the limited 

thickness of the gold films, the van der Waals attraction between these surfaces is much 

lower than between bulk gold objects [34]. Most probably the van der Waals forces are 

obscured by non-DLVO short-range interactions, in particular repulsive hydration forces, 

and by surface roughness effects. These repulsive forces at small separation also might 

play a role in disappearance of collapsing two electrodes in unstable region.   
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IV. CONCLUSIONS AND FUTURE WORK 

 

A. Conclusions 

The objective of this dissertation is to analytically model a parallel plate 

electrostatic actuator operating in a liquid electrolyte and experimentally verify the 

analysis.  

The analytical model consisted of an electrochemical force derived from the 

linearized Poisson-Boltzmann equation, a linear spring force, and van der Waals force. 

The electrode separation versus applied electric potential is a function of the non-

dimensional spring constant K*, non-dimensional separation ξ0, and non-dimensional 

Hamaker constant Ah
*. 

1. The non-dimensional spring constant K* has no effect on the critical 

separation. The critical potential is proportional to the square root of K*. 

2. The critical separation and critical potential increase as the non-

dimensional separation ξ0 increases. 

3. The critical separation increases and the critical potential decreases as the 

non-dimensional Hamaker constant Ah
* increases. 
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4. The free electrode has a small stable displacement relative to their initial 

electrode separation. Thus, it may be impossible to effectively use parallel 

plate electrostatic actuators in liquid electrolytes. 

5. The maximum stored energy in the system occurs at the critical point 

where the potential applied to the two electrodes is maximum and the 

separation between two electrodes is minimum in the stable region.  

6. The maximum stored energy increases as the non-dimensional separation 

ξ0 increases and the non-dimensional Hamaker constant Ah
* decreases. The 

non-dimensional spring constant has no effect on the maximum stored 

energy. 

 

The analytical results were not verified by the experiment. Relative to the analysis, 

the experiments did not show distinct critical points, and the experiments showed less 

electrode separation for a given applied electric potential. The experiments did show 

points at which the separation versus potential plots rapidly changed slope, which may 

be instability points.  

This phenomenon may be due to long-range attractive hydrophobic forces which 

exist in the experiment, but not in the model. Although clean gold surfaces are 

hydrophilic, gold surfaces may become hydrophobic due to impurities. For 

hydrophobized surfaces dried in air, nanobubbles could be attached to the surfaces. 

When two surfaces are so close that bubbles on the surfaces coalesce, a gas bridge will 

be formed between them. The long-range and strong attraction could be then generated 



 122 

between surfaces, because of the surface tension at the gas-water interface and the low 

gas pressure.  

B. Future work 

Future work should consider the following ways to make the model more closely 

match the experiment: 

1) The model should include chemical potentials for non-ideal solutions. 

2) The model should include a numerical solution of the nonlinear Poisson-

Boltzmann equation. 

3) The model should include the effects of finite ion size. 

4) The model should include the effects of attraction between hydrophobic surfaces. 

 

Future experiments should: 

 1) Ensure than the gold electrode surfaces are hydrophilic during use. 

2) Develop a method to ensure that no gas remains on the electrode surfaces. 

 3) Attempt to measure the electric potential of the bulk electrolyte during the 

experiment. 

 

In general, the research reported herein in near the limit of the contributions that 

can be made by someone with a classical continuum mechanics education. Future work 

towards designing electrostatic actuators to work in liquid electrolytes should be 

performed with a team consisting of persons with the following skills: continuum 

mechanics, electrochemistry, and molecular hydrodynamics.  
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