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ABSTRACT

The Flower Constellations -

Theory, Design Process, and Applications. (December 2004)

Matthew Paul Wilkins, B.S., M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Daniele Mortari
Dr. Kyle T. Alfriend

In this research, constellations of satellites all having orbits compatible with rotating

reference frames are considered. That is to say, no matter how many satellites are consid-

ered for the constellation, when viewed from an arbitrarily defined rotating reference frame

of interest, they all follow a single, identical relative trajectory. In this regard, one could

think of the relative trajectories as “space trajectories on a rotating reference frame.”

In particular, this research concerns itself with reference frames constrained to rotate

with the planet under consideration (e.g. the Earth Centered Earth Fixed (ECEF) frame,

a frame rotating with the Earth). When the axis of symmetry of these constellations is

aligned with the spin axis of the planet, then the ground track as projected onto the planet

surface will be repeating.

Flower Constellations are identified by eight parameters. Five are integer parameters:

the number of petals (Np), the number of sidereal days to repeat the ground track (Nd), the

number of satellites (Ns), and two integers to govern the phasing (Fn and Fd). Three are

orbit parameters that are generally equal for all satellites: the argument of perigee (ω), the

orbit inclination (i), and the perigee altitude (hp). Each of these parameters has a unique

effect on the overall design of a Flower Constellation.

Based upon specific choices of these parameters, some broad categories of constella-

tion types are presented along with some unique cases. Often, a large number of satellites
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are used to completely visualize these constellations. While Flower Constellations lend

themselves to micro- and nano-satellite constellations very easily, they are also readily scal-

able to any mission requirement. Also investigated are inverse design techniques where the

governing equations are solved for the Flower Constellation parameters to achieve a de-

sired final constellation or formation shape.

Flower Constellations present beautiful and interesting dynamical features that allow

us to explore a wide range of potential applications that include: telecommunications, Earth

and deep space observation, global positioning systems, and new kinds of formation flying

schemes among others. To demonstrate their potential, some specific Flower Constella-

tions are described and discussed. Finally, the effect of perturbations such as the Earth’s

oblateness are investigated and options for mitigating perturbations are discussed.
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CHAPTER I

THEORY OF THE FLOWER CONSTELLATIONS

In this research, constellations of satellites all having orbits compatible with rotating refer-

ence frames are considered. That is to say, no matter how many satellites are considered

for the constellation, when viewed from an arbitrarily defined rotating reference frame of

interest, they all follow a single, identical relative trajectory. In this regard, one could think

of the relative trajectories as “space trajectories on a rotating reference frame.”

In particular, this research concerns itself with reference frames constrained to rotate

with the planet under consideration (e.g. the Earth Centered Earth Fixed (ECEF) frame,

a frame rotating with the Earth). When the axis of symmetry of these constellations is

aligned with the spin axis of the planet, then the ground track as projected onto the planet

surface will be repeating.

It is important to emphasize here that the Flower Constellations can be made to be

compatible with ANY arbitrary rotating reference frame. For instance, one could establish

a Flower Constellation about the Earth, but synchronize the rotating reference frame such

that it spins at a multiple of the Earth’s rotation rate about the Sun. Therefore, keep in mind

that while the equations presented herein are often written from an Earth centered point of

view, they may be easily changed to other planets and other frames of reference with the

appropriate choice of constants.

Also note that ground tracks for a Flower Constellation that has been synchronized

with an arbitrary rotating reference frame will generally not be repeating as viewed by

the planet-bound observer. This has a distinct advantage in that resonant perturbations

stemming from oblateness effects will not be as much in evidence (See Chapter V). That

The journal model is the AIAA Journal of Guidance, Control, and Dynamics
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being said, the concept of repeat ground track constellations has been around for a number

of years. In the next section, a brief survey of those constellations is discussed on the way

to their generalization as the Flower Constellations.

A. Survey of Similar Satellite Constellations

Dating back to 1967, first reported in 1981 as part of the University of Rome/NASA San

Marco Project, Luigi Broglio conceptualized the Sistema Quadrifoglio (Four-Leaf Clover

System)1 as an equatorial constellation of four satellites, whose orbital parameters are given

in Table I along with a graphical depiction of the ECI orbits and the relative orbit can be

found in Figure 1. where T , Ω, ω, i, and M0 represent the orbital period, the right

Table I. The Sistema Quadrifoglio (Four-Leaf Clover System) with a � 20270�418 km and

e � 0�655747.

Satellite T Ω�ω i (rad) M0 (rad) ν0 (rad)

#1 Ts�3 0 0 0 0

#2 Ts�3 π�2 0 π�2 2�64546

#3 Ts�3 π 0 π π

#4 Ts�3 3π�2 0 3π�2 �2�64546

ascension of the ascending node (RAAN), the argument of perigee, the inclination, and the

mean anomaly at the initial time, respectively. Ts is the sidereal rotation rate of the Earth.

This constellation was originally proposed to observe and to guarantee continuous

measurement of the upper part of the atmosphere in the equatorial region. The purpose was

to find out the relationships between the physical properties of the equatorial troposphere

with the Solar and Geomagnetic activities. Broglio was interested in having continuous in-

formation at the perigee altitude. However, the beauty of the dynamics of this constellation
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(a) Polar View showing ECI orbits

(b) Polar View showing the relative orbit

Fig. 1. A snapshot of the Sistema Quadrifoglio (Four-Leaf Clover System) at initial time.
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can be better appreciated in an ECF system of coordinates by focusing the interest at the

apogees. The satellites each spend about six hours near apogee and two hours in transition

between successive apogees. Due to the phasing of the satellites in the orbits, three of the

satellites are always near apogee and the other is in transition to replace the spacecraft with

the largest mean anomaly (the one about to move quickly toward perigee). Finally, the

three spacecraft near apogee (about 120Æ apart) have line of sight visibility of each other

and each can observe well over 1/3 of the Earth’s surface. At present knowledge, there

exists only one known published paper dedicated to the Sistema Quadrifoglio,2 which pri-

marily analyzed the time history of the orbital parameters, and suggested that the perigee

altitude be raised to hp � 600 Km to reduce the atmospheric drag.

Since that time, a number of new constellation concepts similar in nature have been

developed. These constellations are based upon the many categories of satellite orbits

that exist today: Low Earth Orbits (LEO), Molniya [a subset of Highly Eccentric Orbits

(HEO)], TUNDRA orbits, Geosynchronous/Geostationary Earth Orbits (GEO), Interme-

diate Circular Orbits (ICO), APTS (Apogee Always Pointing to the Sun) orbits,3, 4 and

Multistationary Inclined Orbits (MIO). A number of the pertinent constellation concepts

are: Walker Constellations,5, 6 Beste Constellations,7 the “Gear array”,8 Ellipso,9 Multi-

regional Highly Eccentric Orbits (M-HEO),10 Juggler Orbit COnStellation (JOCOS),11

Loops in Orbit Occupied Permanently by Un-stationary Satellites (LOOPUS),12 SYstem

COmmunication MObile RElayed Satellite (SYCOMORES),13 UK T-SAT,14 and Com-

munications Orbiting Broadband Repeating Arrays (COBRA).15 Apparently, no one has

yet undertaken a generalization of these types of constellations.

These constellations have generated considerable interest in the telecommunications

industries for their ability to address certain specific needs, namely global and regional

telecommunications coverage.16, 17 To that end, the European Space Agency (ESA) com-

missioned a study called Archimedes beginning in the late 80’s and early 90’s,18 which
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included the major space agencies in Western and Eastern Europe. This study searched

for a constellation concept that would improve the poor reception from GEO satellites at

higher latitudes. For instance, due to the low grazing angle between a point on the ground

and a GEO satellite, buildings, terrain, and even trees often would disrupt cell phone use

in Europe making it difficult to provide continuous service to users. The Archimedes ef-

fort studied many of the aforementioned constellation concepts and settled upon two basic

designs based upon the Molniya (12 hour period) and TUNDRA (24 hour period) orbits.

Besides the Sistema Quadrifoglio, of particular interest are the HEO and MIO con-

stellation concepts. Within these categories, the JOCOS, LOOPUS, and COBRA concepts

have the most bearing, and we will consider the relative merits of these constellations. A

brief description of these concepts are given below.

1. HEO/MIO

Highly Eccentric Orbits typically have a perigee altitude at or above 500 Km and apogee

altitudes can be in excess of 7 Earth radii (refer to Table II). Often, as in the case of the

Molniya orbits, the orbits are inclined at 63�4Æ or 116�6Æ in order to minimize the movement

of the line of apsides and reduce orbit maintenance costs. Additionally, due to the high

eccentricity of these orbits, an individual satellite will spend about two thirds of the orbital

period near apogee, and, during that time, it appears to be almost stationary for an observer

on the earth (this is often referred to as apogee dwell).

Multistationary Inclined Orbit (MIO) constellations are extensions of HEO constel-

lations in that they generally refer to orbits which have repeating ground tracks. This,

combined with the long apogee dwell time, create constellations where satellites spend up

to two-thirds of their time over a particular region of the Earth.
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Table II. Parameters of HEO orbits.

Parameters MOLNIYA TUNDRA LOOPUS

Period (hour) 12 24 14.4

Eccentricity 0.65 0.2 0.6

Apogee height (Km) 39,400 44,220 41,700

Perigee height (Km) 2,900 27,350 5,642

2. JOCOS

The JOCOS concept involves the use of 8 hr, circular, inclined, repeating orbits. In that

regard, the apogee location becomes irrelevant, and an orbit inclination of 75Æ was chosen

to maximize Earth coverage. Six satellites are placed in orbits with nodes evenly arrayed.

The mean anomalies of the satellites are chosen such that three satellites will be in the

northern hemisphere and three will be in the southern. With only six satellites evenly ar-

rayed along the relative path, as the top three simultaneously descend, the bottom three will

simultaneously ascend to replace them. This is the special case of a Flower Constellation

called planar motion as discussed in Chapter II. This particular arrangement was chosen in

an attempt to ensure continued coverage of the Earth. However, this choice leaves gaps in

coverage at the highest points of the orbits during the exchange at the equator, and an extra

satellite must be placed into the mix to ensure complete coverage. For this reason, you will

often see JOCOS referred to as the 6+1 JOCOS constellation. The JOCOS constellation is

so named because it “juggles” 3 + 3 satellites simultaneously with three up and three down

at any given time. The Flower Constellation theory easily creates a JOCOS constellation

with appropriate choice of phasing parameters. Figure 2 graphically depicts a Flower Con-

stellation version of the 6+1 JOCOS constellation while Chapter III demonstrates how to
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Fig. 2. The Flower Constellation representation of a JOCOS 6+1 constellation. See Chapter

III for details.

re-create this constellation.

3. LOOPUS

LOOPUS (quasi-geostationary Loops in Orbit Occupied Permanently by Unstationary Satel-

lites) is a constellation constructed from circular or HEO orbits. The LOOPUS concept

focuses on solutions where loops are formed in the ground track. The satellites are arrayed

such that two satellites will reach the intersection of the loop (one entering and one leav-

ing) almost simultaneously where a communications hand-over is performed. As defined

by Peter Dondl in 1984, a LOOPUS system is described by the following parameters: the

number of LOOPUS positions n (i.e. the number of quasi-stationary points in the ECEF

reference frame), the number of satellites m, the satellite orbit period To, and the dwelling

time interval Td (i.e. how long the satellites will spend near apogee inside the loop).
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Fig. 3. The Flower Constellation representation of a LOOPUS constellation. See Chapter

III for details.

In general, for the non-circular orbits, the inclination is chosen to be the 63�4Æ critical

inclination. Thus, assuming values of n � 2, m � 3, T0 � 12 hr and Td � 8 hr, the LOOPUS

concept will create a system of satellites which are in a Molniya orbit and have equally

spaced nodes 120Æ apart. The name LOOPUS was chosen to recall the fact that the ground

track creates a loop at apogee where the satellites spend up to two thirds of their time.

Figure 3 graphically depicts a Flower Constellation version of one of Dondl’s LOOPUS

constellations.

As one reads the developments of this work, one will discover that the LOOPUS
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constellation concept is a subset of the Flower Constellation Set that require very specific

choices of FC design parameters. Chapter III covers in more detail about how to construct

a LOOPUS constellation using the Flower Constellations. One important point to note is

the vast opportunities provided in terms of satellite placement. Reading Dondl’s paper, it is

clear that there are severe limitations on the number of satellites that can be placed in any

one LOOPUS constellation. In fact, the physical size of the constellation orbits directly

affects the number of spots available in a LOOPUS constellation. In order to increase

the number of satellites, it appears that Dondl proposes to duplicate the original LOOPUS

constellation and either displace them about the Earth spin axis or appropriately shift the

initial mean anomalies of the satellites along the relative path. The Flower Constellation

theory has no such restriction as one will come to discover.

4. COBRA

The COBRA Teardrop concept involves two MIOs where the argument of perigee is not

90Æ or 270Æ, which would normally ensure that the location of the apogees is always over

the southern or northern hemispheres, respectively. By choosing other values for the argu-

ment of perigee, a lean is created in the ground track. By combining two repeat track orbits,

one with a right lean and the other with a left lean, a tear drop intersection is created. As

in the LOOPUS concept, the intersection points between the two relative paths, which can

be seen in Figure 4, are used to hand over communications responsibilities between satel-

lites in the constellation. Once again, the COBRA concept is encompassed by the Flower

Constellation theory. Chapter III demonstrates how to create a COBRA constellation using

Flower Constellations. Note that this is really just a demonstration of combining multiple

Flower Constellations to create a particular effect.
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Fig. 4. A Flower Constellation representation of a COBRA constellation. See Chapter III

for details.

B. Essential Theory of the Flower Constellations

This section introduces a methodology for generating the Flower Constellation Set that en-

compasses the Four-Leaf Clover System and other specific constellation types. Generally,

all the orbits in a given Flower Constellation:

� Have identical orbit shape: anomalistic period, argument of perigee, height of perigee,

and inclination.

� Are compatible: the orbital period is evaluated in such a way as to yield a perfectly

repeated ground track.

� Have equally displaced node lines along the equatorial plane for each satellite in

a complete Flower Constellation. Restricted or incomplete Flower Constellations

have orbits whose RAANs are equally displaced within a limited right ascension

range ∆Ω.
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1. Compatible Orbits

To begin, consider an orbit that can be designed such that its ground track will repeat after

one complete orbit around the Earth. Ideally, all that needs to be ensured is that the nodal

period of the orbit, TΩ, precisely matches the nodal period of Greenwich, TΩG.

Not only can the nodal periods be set equal, but also this concept can be extended to

a ground track that will repeat after the satellite completes Np revolutions over Nd days. If

Tr is the period of repetition, then

Tr � Np TΩ � Nd TΩG (1.1)

Note here that the value of Np, indicating the number of revolutions required to com-

plete one period of repetition, corresponds to the number of petals that appear about the

Earth in the ECF frame. Because of the flower petal-like shape of the orbits when viewed

from a relative frame, we refer to a constellation of satellites which all have the exact same

repeating ground track as a Flower Constellation. Clearly, Np and Nd must be positive non-

zero integer values (i.e. Np�Nd � � , which can also written as Np�Nd � ��. See Appendix

A.).

At this point, it is necessary to write Equation (1.1) in terms of the anomalistic orbit

period, T , of a satellite that belongs to the compatible orbit just defined. One can express the

nodal crossing period, TΩ, in terms of the anomalistic period (i.e. perigee to perigee). Once

T has been established, the semi-major axis, a, can then be determined. The eccentricity,

e, of the orbit can be determined from a and a specified perigee altitude hp. Once a and e

have been defined, the shape of the orbit is completely determined, and all that remains is

to specify its orientation in space.
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2. Finding the Nodal Period

To begin, examine the nodal period equations. Carter defines the nodal period of Greenwich

as19

TΩG �
2π

ω�� Ω̇
(1.2)

where ω� � 7�29211585530� 10�5 rad/sec is the rotation rate of the Earth and Ω̇ is the

nodal regression of a satellite’s orbit plane caused by perturbations such as the Earth’s

oblateness. By only considering orbits which repeat over a small fraction of a year, one can

generally ignore the nodal regression of Greenwich due to luni-solar effects.

Following the development presented in Vallado, one can also determine the nodal

period of the satellite as a function of its anomalistic period, T , as follows20

TΩ �
2π

Ṁ� ω̇
�

2π
n� Ṁ0 � ω̇

(1.3)

�
2π
n

�
1�

Ṁ0 � ω̇
n

��1

� T

�
1�

Ṁ0 � ω̇
n

��1

(1.4)

where n2 � µa�3 is the satellite’s mean motion, Ṁ0 is the rate of change in the mean

anomaly due to perturbations, and ω̇ is the rate of change in the argument of perigee due to

perturbations. One can find expressions for Ṁ0, ω̇, and Ω̇ from geopotential perturbation

theory. A more detailed discussion of the effect of perturbations can be found in Chapter

V.

Considering only second order zonal effects, then the following expressions are valid20

������
�����

ω̇ � ξn�4�5sin2 i�

Ω̇ ��2ξn cos i

Ṁ0 ��ξn
�

1� e2 �3sin2 i�2�

where ξ �
3R2

�J2

4p2 (1.5)

where R� � 6�378�1363 Km is the mean radius of the Earth, J2 � 1�0826269�10�3, p is

the orbit semi-parameter, and i is the orbit inclination. Vallado continues on by assuming
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circular orbits (i.e. e � 0). However, generally, the orbits under consideration in this re-

search can range from circular to highly elliptic. Thus, the following development keeps

the eccentricity terms. By substituting Equation (1.5) into Equation (1.3) and with some

algebraic manipulation, one obtains

TΩ � T
�

1�ξ
�
4�2

�
1� e2� �5�3

�
1� e2�sin2 i

	
�1
(1.6)

Substituting Equation (1.6) into Equation (1.1), obtain

T �
Nd

Np
TΩG

�
1�ξ

�
4�2

�
1� e2� �5�3

�
1� e2�sin2 i

	

(1.7)

Before substituting for the nodal period of Greenwich, rearrange Equation (1.2)

TΩG �
2π

ω�� Ω̇
�

2π
ω�

�
1� Ω̇

ω�

��1

(1.8)

and, substituting TΩG into Equation (1.7), obtain

T �
2π
ω�

Nd

Np

�
1�2ξ

n
ω�

cos i

��1�
1�ξ

�
4�2

�
1� e2� �5�3

�
1� e2�sin2 i

	

(1.9)

Equation (1.9) is the most general equation governing the anomalistic orbit period of the

Flower Constellation. This equation shows that the orbit period (equal for all the satellites

of the constellation) depends on the ratio

τ �
Nd

Np
(1.10)

This implies that Flower Constellations characterized by the same τ are identical and that

the parameters Np and Nd must be relatively prime (See Appendix A). Note that the change

in the node will cause a longitudinal shift in the orbit ground track. This shift in the node

can be completely absorbed by the appropriate choice of the anomalistic orbit period (i.e.

by solving Equation (1.9) including the J2 effect).
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3. Solving for a and e

Assuming that the orbit inclination has been specified, Equation (1.9) is essentially a single

equation in terms of a single unknown, the semi-major axis. All of the other variables

(n�ξ� p�T ) can be resolved in terms of a. The eccentricity can be written as a function of a

e � 1� R��hp

a
(1.11)

This allows us to write the semi-parameter only in terms of the unknown a

p � a�1� e2� � 2�R��hp�� �R��hp�
2

a
(1.12)

The anomalistic period and mean motion are given by

T �
2π
n

� 2π

�
a3

µ
(1.13)

where µ � 398�600�4415 Km3/sec2. Using any standard numerical solver, one can now

solve for the semi-major axis. Once the semi-major axis has been established, we can

obtain the required eccentricity and the anomalistic period.

4. Satellite Phasing

The phasing of the satellites in a Flower Constellation is critical to achieve the desired final

effect. This is obtained by introducing a direct relationship between the right ascension

of the ascending node Ω and the value of the mean anomaly at initial time M�0�. This

relationship is equal for every satellite belonging to the constellation. Let us identify a

given repeating ground track orbit, as observed in the ECI frame, which is characterized

by the orbital parameters Ω, ω, i, a, and e as O I1. Let OR1 be the relative orbit (as seen

from an ECF frame) as produced with an initial orbital position characterized by the mean

anomaly M1 (see Fig. 5).
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Fig. 5. Admissible locations for satellites in a 3-1 Flower Constellation.

Clearly, the orbiting satellite must belong to both the O I1 and the OR1 orbits. There-

fore, this satellite must be at one of the intersections of these two curves. Note that, in

the ECI frame, the OI1 orbit will appear fixed while the OR1 orbit will rotate in a counter-

clockwise fashion at the Earth’s angular spin rate. Looking at this motion in an ECF frame,

then the dynamics will be reversed, with the OR1 orbit that appears fixed while the O I1 orbit

is rotating, at the Earth’s angular spin rate, in a clockwise fashion.

Now, let us consider an orbit O I2 which is admissible with respect to the O I1 orbit,

where the word admissible means that the (ω� i�a�e) orbital parameters are identical for

OI2 and OI1 orbits. When two orbits are not admissible, then there is no way that the
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respective relative orbits can coincide. Two admissible orbits O I2 and OI1 differ only in

that they have different values of Ω (in particular, the orbit O I2 is associated with an Ω2

less than Ω1 of the OI1 orbit).

The problem then is to find the initial position M2�0� of a satellite belonging to O I2

that produces the same relative orbit (OR2 � OR1) of a satellite belonging to O I1 with initial

position M1�0�. This is identical to the problem of finding the position of the first satellite,

in the ECF, when the orbit O I1�t� will coincide with the orbit O I2�0�. Let Ω1 and Ω2 be the

RAANs of the two orbits. Then O I1�∆t� will reach OI2�0� after a time interval

∆t �
Ω1�Ω2

ω�� Ω̇
(1.14)

where ω� is the Earth spin rate and Ω̇ is the nodal precession rate of change due to pertur-

bations. Therefore, after a ∆t time the mean anomaly has increased its value by

∆M � �n� Ṁ0�∆t (1.15)

Therefore, in order for OI2 to be admissible with O I1, the satellite #2 should be located

with an initial mean anomaly

M2�0� � M1�0���n� Ṁ0�∆t � M1�0���n� Ṁ0�
Ω1�Ω2

ω�� Ω̇
(1.16)

Interestingly, one can examine the dynamics of a satellite placed at the various inter-

sections of the inertial and relative orbit. By rotating the OR1 orbit around the O I1 orbit,

each intersecting point has its own set of dynamics that may or may not be physically real-

izable. It is possible to demonstrate that, for a one day repeat ground track, only one among

all the intersecting points has the correct dynamics. That is to say, the angular momentum

(�r��v) is preserved at that point as required by the two-body problem.

However, when one examines multiple day repeat ground tracks, one finds additional

valid intersecting points. In point of fact, for each day it takes to repeat a ground track there
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is one valid intersection which a satellite could be located. Figure 6 shows a 5-2 Flower

Constellation where two satellites have been placed in a single orbit. Yet, both satellites

also belong to the same relative orbit. By extension, if one places a number of satellites

that is an integer multiple of the number of days to repeat, then there will be one orbit for

every Nd satellites. In other words, for a Flower Constellation that repeats in Nd days, you

can not have more than Nd satellites per orbit. In this case, the Nd different initial locations

array on a single orbit, provided in terms of mean anomaly, are given by the relationship

Mk�1�0� � Mk�0��2π
�n� Ṁ0�

ω�� Ω̇
k � 1� � � � �Nd �1 (1.17)

Relative Orbit

Inertial Orbit

Admissible
Locations

Fig. 6. A 5-2 Flower Constellation can accept two satellites per orbit.
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a. Symmetric Schemes

The symmetric phasing scheme that has been adopted for use in the Flower Constellations,

characterized by Ns satellites, is obtained by the phasing rule

Ωk�1 � Ωk�2π
Fn

Fd
(1.18)

Mk�1�0� � Mk�0��2π
Fn

Fd

�
n� Ṁ0

ω�� Ω̇

�
(1.19)

where k � 1� � � � �Ns � 1, where Fn and Fd are two integer parameters that can be freely

chosen provided that Fn � � and Fd � � , and where M1�0� and Ω1 (which are assigned)

dictate the initial position of the first satellite and the angular shifting of the O R relative

orbit, respectively.1

However, Equation (1.19) has a more simplified form that allows for more extensive

analysis. To find this form, one must first solve Eq. (1.9) on page 13 for the mean motion,

n, in terms of the known parameters. To accomplish this, the mean motion must be isolated

on the left hand side of the equation, which leads to an equation of the following form:

n �
ω��1�A�ξ���1

τ�2ξ�1�A�ξ���1 cos i
� ω��1�A�ξ��

τ�2ξcos i
(1.20)

where

A�ξ� � ξ
�
4�2

�
1� e2� �5�3

�
1� e2�sin2 i

	
(1.21)

Note that the approximation given in Equation (1.20) results from two simplifications.

Terms that are O(ξ2) have been ignored, and the approximation, �1�x�n � 1�nx for suffi-

ciently small x, has been utilized. However, if one will consider higher order perturbations,

1Note that this choice can be somewhat limiting in that irrational numbers are excluded.
To avoid this limitation, Fn�Fd should be substituted by a single decimal parameter, F ,
where F ��. With this choice, all the currently known possible types of symmetric phasing
are encompassed. As more investigation is completed, additional symmetric schemes may
become apparent.
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such as J3 and J4 that are generally O(ξ2), then this simplification can not be made.

Next, the perturbative quantities Ω̇ and Ṁ0 can be expressed as a function of the J2

perturbation and known parameters by incorporating Equation (1.20):

Ω̇ ��2ξncos i� �2ξω��1�A�ξ��cos i
τ�2ξcos i

(1.22)

Ṁ0 ��ξn
�

1� e2�3sin2 i�2�� �ξω��1�A�ξ��
�

1� e2�3sin2 i�2�
τ�2ξcos i

(1.23)

Note that the simplified form of Equation (1.20) has been used because only the J2 effect

is being considered at this point.

By substituting Equation (1.22), Equation (1.23), and Equation (1.20) into Eq. (1.19)

on page 18, we obtain:

Mk�1�0� � Mk�0��
2πFn

τFd

�
�1�A�ξ���1�ξ

�
1� e2�3sin2 i�2��

1�4ξcos i�τ



(1.24)

or

Mk�1�0� � Mk�0��
2πFnNp

FdNd

�
1�A�ξ��ξ

�
1� e2�3sin2 i�2�

1�4ξcos i�τ



(1.25)

where in Equation (1.25) terms of O�ξ2� have been ignored. If perturbations are ignored,

then the most simplified version of the phasing relationships are given by

∆Ω ��2π
Fn

Fd
(1.26)

∆M0 � 2π
Fn

Fd

Np

Nd
��∆Ω

Np

Nd
(1.27)

Note that ∆Ω and ∆M as expressed in Equation (1.26) and Equation (1.27) are both

rational, constructible numbers (See Appendix A.). It becomes clear here that the maximum

number of satellites in a given Flower Constellation is

Ns�max � FdNd (1.28)

and that the right ascension of the ascending node will repeat Nd times. This is due to the
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fact that a single RAAN and mean anomaly value will be assigned in sequence to each

satellite in a unique pairing. Since the mean anomaly steps by FdNd , then it will take a

total of FdNd steps in order to complete the assignments. It follows from ∆ΩFdNd that the

unique values of ∆Ω will repeat Nd times. Note the Equation (1.28) is an upper bound on

the number of satellites. One is not required to completely fill out a Flower Constellation

but rather can selectively choose where to place satellites once the phasing scheme has been

established. Therefore,

Ns � FdNd (1.29)

b. Restricted Schemes

Consider now that, for some mission design reason, the RAAN angle is constrained to

fall within a certain range. These constellations are built with orbit node lines uniformly

distributed in a limited ∆Ω
Fn

Fd
range instead of 2π

Fn

Fd
. In this case, the phasing rules given

in Eqs. (1.18) and (1.19) are specialized as follows

Ωk�1 � Ωk�∆Ω
Fn

Fd
(1.30)

Mk�1�0� � Mk�0��∆Ω
Fn

Fd

�
n� Ṁ0

ω�� Ω̇

�
(1.31)

c. Non-symmetric Schemes

Building upon the concept of the restricted phasing scheme, the phasing relationships can

also be expressed as

Ωk�1 � Ωk�∆Ωk (1.32)

Mk�1�0� � Mk�0��∆Ωk

�
n� Ṁ0

ω�� Ω̇

�
(1.33)
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This implies that the difference in node value between any two satellites in the placement

sequence can be arbitrary provided that the mean anomaly is selected appropriately.

d. Incomplete Schemes

Based upon the developments of the previous section, it is clear that changing the number of

satellites in the constellation does not have any dramatic effect on the overall dynamics of

the Flower Constellation, which, in turn, is dictated by the overall structure (parameters Np

and Nd) and the phasing rules (parameters Fn and Fd). Once a desired dynamic is achieved

by a proper choice of the constellation parameters, then it becomes an easy task to find out

the minimum number of satellites required to accomplish a specific mission objective. If

it is desirable to remove a portion of the satellites but maintain the overall dynamics, one

must generate the Flower Constellation as if the complete number of satellites were going

to be placed and then selectively remove the undesirable number of satellites. That is to say,

once the orbit elements have been generated for all possible satellites, the mission designer

can selectively choose sets of parameters from the list. This procedure is necessary because

of the way that the phasing rules are mathematically constructed. Doing this leads to an

incomplete Flower Constellation.

5. Switched Flower Constellations

Any constellation can be characterized by the knowledge of the initial position and velocity

of each satellite. By switching the signs of all the initial velocities, a mirror-image constel-

lation can be built. However, this resulting switched constellation will be characterized by

prograde orbits (toward East) if the original orbits are retrograde (toward West), and vice

versa. The switched constellation idea allows one to keep the overall relative dynamics but

in a reverse mode.



22

6. Re-Orientation of a Flower Constellation

The Flower Constellation Set has a characteristic property that the axis of symmetry is

coincident with the Earth spin axis. Obviously, this is intimately related to the desire of

obtaining repeating ground tracks. However, if there is a particular Flower Constellation

that has a useful interplay between the satellites, then one can rigidly rotate all the satellite

orbits that will, in turn, move the axis of symmetry to some other desired direction. Note

that this is not a reconfiguration technique, but rather a mathematical technique to reori-

ent the Flower Constellation for placement at initial time. Keep in mind though that this

procedure will generally result in each satellite having different inclinations, nodes, and

arguments of the perigee. The fuel cost for maintaining a reoriented Flower Constellation

is generally prohibitive but is presented for completeness.

There are two consequences of re-orienting a Flower Constellation. First, the re-

peating ground track property is, in general, destroyed. Second, because all the orbits

which construct a Flower Constellation are identical except for a varying RAAN, each

orbit is subjected to identical perturbations due to the Earth’s oblateness. By re-orienting

the Flower Constellation, this dynamical symmetry with respect to the Earth is, in general,

completely lost. This implies that active control is then required to maintain the constel-

lation dynamics because the Earth gravitational perturbations now affect each orbit differ-

ently.

To re-orient a Flower Constellation, let rn and rp be unit vectors identifying the normal

and the perigee directions associated with a given orbit of the constellation. In particular,
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rn and rp can be expressed in terms of orbital parameters

rn �

������
�����

sin isinΩ

�sin icosΩ

cos i

������
�����

rp �

������
�����

cosωcosΩ� sinωsinΩcos i

cosωsinΩ� sinωcosΩcos i

sinωsin i

������
�����

(1.34)

Now, let

r �

������
�����

sinϑcosϕ

sinϑsinϕ

cosϑ

������
�����

(1.35)

be the new desired Flower Constellation axis. This implies that all the orbits of the Flower

Constellation must be rotated by the angle ϑ about the axis

ra �

������
�����
�sinϕ

cosϕ

0

������
�����

(1.36)

The matrix performing such a rigid rotation is

R�ra�ϑ� �

�
�����

cosϑcos2 ϕ� sin2 ϕ �cosϑ�1�sinϕcosϕ cosϕsinϑ

�cosϑ�1�sinϕcosϕ cosϑsin2 ϕ� cos2 ϕ sinϕsinϑ

�cosϕsinϑ �sinϕsinϑ cosϑ

�
����� (1.37)

Now, the rotated orbit will have new values for inclination, argument of perigee, and right
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ascension of ascending node that can be evaluated from the vectors

r�n �

������
�����

sin i� sinΩ�

�sin i� cosΩ�

cos i�

������
�����

� R�ra�ϑ�rn and

r�p �

������
�����

cosω� cosΩ�� sinω� sinΩ� cos i�

cosω� sinΩ�� sinω� cosΩ� cos i�

sinω� sin i�

������
�����

� R�ra�ϑ�rp

(1.38)

which are written in terms of the new orbital parameters similar to Eq. (1.34).

By substituting Eqs. (1.34), and (1.37) into Eq. (1.38), we obtain two equations that

allows us to unambiguously solve for ω�, Ω�, and i�. First, for each satellite, find its new

inclination.

cos i� � r�n�3� (1.39)

We can now solve for the new right ascension of the ascending node for each satellite using

the ����� function, where

sinΩ� �
r�n�1�
sin i�

and cosΩ� ��r�n�2�
sin i�

(1.40)

Finally, we can solve for the argument of the perigee, also using �����, for each satellite

sinω� �
r�p�3�

sin i�
and cosω� � r�p�1�cosΩ�� r�p�2�sinΩ� (1.41)

7. Flower Constellations about Other Planets and Frames of Reference

If one desires to build a Flower Constellation about another planet, all that is required is

to choose the appropriate values for the planet’s rate of spin, mean equatorial radius, and

gravitational constant. Table III provides these constants for the nine planets of our solar
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system. Note that if one desires to generate a Flower Constellation about an arbitrary

rotating frame of reference, then the choice of values for these parameters is largely up to

the mission designer.

Table III. Planetary constants.20

Planet 2π�ωp (Earth days) rp �km� µp �km3�s2�

Mercury 58.6462 2439. 2�2032�104

Venus -243.01 6052. 3�257�105

Earth 0.99726968 6378.1363 3�986004415�105

Mars 1.02595675 3397.2 4�305�104

Jupiter 0.41354 71492. 1�268�108

Saturn 0.4375 60268. 3�794�107

Uranus -0.65 25559. 5�794�106

Neptune 0.768 24764. 6�809�106

Pluto -6.3867 1151. 9�00�102

Sun 25.38 (Solar Days) 696,000.000 1�32712428�1011

C. Secondary Closed Paths - Existence and Uniqueness

In the previous sections, a method for generating a single closed path - the relative path - is

described. All the satellites belonging to a particular Flower Constellation belong to that

single relative path. In order for this to occur, each satellite is assigned a unique pairing

of RAAN and mean anomaly angles (Ωi, Mi�0�) while their remaining orbit parameters are



26

identical (a�e� i, and ω). Ignoring perturbations, Equation (1.26) and Equation (1.27) define

the allowable values for these pairs.

Considering Equation (1.27), the maximum value of M�0� is M f �0� � 2πFnNp. One

can also see that there are a maximum of FdNd unique mean anomaly angles. This is

graphically illustrated in Figure 7. Furthermore, examining Equation (1.26), one can see

that the maximum value of RAAN is 2πFn. However, since there are more available mean

anomaly angles to assign, the RAAN must cycle until a value has been assigned to each

corresponding value of the mean anomaly. Therefore, the final value of RAAN will be

Ω f � ∆ΩFdNd ��2πFnNd .

Ω

M(0)

0

0

-2πFnNd

2πFnNp

∆Ω

∆M(0)

{

{

Ωi

Mi(0)

FdNd steps

Fig. 7. Comparison of the sequence of allowable values for the RAAN and mean anomaly

angles. Each mark on the number line corresponds to a unique pair of RAAN and

mean anomaly angles that specifies a location for the ith satellite to be placed in an

orbit. All other orbit parameters have been specified by the design of the Flower

Constellation.

Now consider the possibility that the pairs of RAAN and mean anomaly angles will

repeat before (Ω f ,Mf �0�) is reached. In this case, there exists only a subset of angle pairs

that are unique. This subset of unique angle pairs is what is termed a secondary closed

path. If one were to continue placing satellites in the standard fashion, they would be

placed physically on top of one another. While this might be a mathematical possibility, it

is a physically unrealizable condition! Thus, the secondary closed path is a unique pattern
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of satellites that lies on top of the original relative path. A satellite belonging to a secondary

closed path also belongs to the original relative path.

A question is now posed. What values of the Flower Constellation design parameters

will cause a secondary closed path to occur?

Theorem C.1. For Np sufficiently large, a Flower Constellation secondary closed path

occurs when Nd � 1 or Fn � kNd for k � � .

Remark C.2 (Theorem C.1). Np is the number of “petals” in the relative path of a Flower

Constellation. In order for a secondary closed path to be distinguishable, the number of

petals must be large enough that they overlap sufficiently to allow for the closed path to

be obvious. The choice of Np and the relative merit of “sufficiently large” is left up to the

mission designer.

Proof. In order for the (Ωi, Mi�0�) pairs to repeat and form a unique subset, the mean

anomaly angle must be an integer multiple of 2π less than M f �0�. Assume that there are a

maximum of N�
s�max satellites in this subset. This leads to

∆Mm � 2πn2 (1.42)

Likewise, for the RAAN, one can write

∆Ωm � 2πn1 (1.43)

where m, n1 and n2 are unknown integers.

This can be written out in equation form as

�2πm
Fn

Fd
� 2πn1 (1.44)

2πm
Fn

Fd

Np

Nd
� 2πn2 (1.45)
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which reduces to

�m
Fn

Fd
� n1 (1.46)

m
Fn

Fd

Np

Nd
� n2 (1.47)

It has already been established that Fn and Fd must be relatively prime for a unique Flower

Constellation as must be Np and Nd . Examining Equation (1.46), one can immediately say

by the division lemma that, since Fn � Fd , Fd 	 m for n1 to be an integer (i.e. m � jFd for

j � �). The smallest integer value of Fd that divides m is required for a unique base pattern

due to the simple fact that multiples of m will only result in multiples of the base secondary

closed path. Therefore, m � Fd , and, consequently, n1 ��Fn.

Equation (1.47) can be analyzed in a similar way. Here, �FdNd� 	 �mFnNp�. However,

since it was just established that m�Fd , this reduces to Nd	 �FnNp�. From this condition and

the division lemma, one can easily see that either Nd � 1 or Nd 	Fn. In other words, a unique

secondary closed path is formed when Fn is an integer multiple of Nd (i.e. Fn � kNd for

k � �). When k � 1, then a unique set of multiple base paths will form. These requirements

are graphically depicted in Figure 8. Note that when Fn � Nd , then n1 � �Fn � �Nd and

n2 � Np. Likewise, when Nd � 1, n2 � FnNp.

Corollary C.3 (Theorem C.1). For Np sufficiently large, a Flower Constellation secondary

closed path can also occur when Fn 	 Nd (i.e. Nd � rFn where r � �) for r � � .

Proof. In Theorem C.1, it was shown that a secondary closed path occurs when Nd 	 Fn

which is equivalent to saying that Fn is an integer multiple of Nd . If one rearranges this

requirement to show that Fn�k � Nd , one can see immediately that Nd can only be an

integer when k 	 Fn. Therefore, a secondary closed path can also occur when Nd � rFn

where r � � .

One can see clearly now that the secondary closed path subset of RAAN and mean
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Ω

M(0)

0

0

-2πNd

2πNp

∆Ω

∆M(0)

{
{

Ωi

Mi(0)

Fd steps

(a) Fn � Nd

Ω

M(0)

0

0

-2π

2πFnNp

∆Ω

∆M(0)

{
{

Ωi

Mi(0)

Fd steps

(b) Nd � 1

Fig. 8. When specific choices of parameters are made, then the pattern of pairs of RAAN

and mean anomaly angles will repeat before the complete range is filled.

anomaly pairs will repeat after Fd pairs. Thus, the maximum number of satellites in a

secondary closed path is

N�

s�max � Fd (1.48)

Note that Ns � Fd with Ns � Fd in order to completely visualize the entire secondary

closed path. At this point, not much has been said about the actual values of Np, Nd ,

or Fd . From previous developments, Np and Nd determine the anomalistic orbit period

of the satellites. Thus, these values would generally be established by mission design

requirements.

Fd , however, has no such constraints and, in general, can be any non-zero positive
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integer (i.e. Fd � �). Furthermore, the value of Fd can be chosen in a specific way that

allows one to predict the resultant secondary path shape.

Theorem C.4. For Np sufficiently large, and assuming that Theorem C.1 has been satisfied,

the phasing denominator can be expressed as Fd � ANd �BNp where Fd � � , Np and Nd

are specified according to Flower Constellation theory and given arbitrary A�B � � such

that A and B have the physical meaning of the integer number of times the mean anomaly

and the RAAN are divisible by 2π.

Proof. Examine Equation (1.26) and Equation (1.27) now written for the specific case of

the secondary closed path:

∆Ω ��2πNd

Fd
(1.49)

∆M0 �
2πNp

Fd
(1.50)

In order to determine the form of Fd , it is sufficient to demonstrate the form of either

Equation (1.49) or Equation (1.50) can be constructed. First consider

∆M0 
C mod 2π (1.51)

	∆Ω	 
 D mod 2π (1.52)

where the symbol
 means congruent. According to the definition of congruency,

a
 c mod b� b 	 �a� c�� (1.53)

Therefore, one can write that

2π 	 �∆M0�C � � A (1.54)

2π 	 �	∆Ω	�D � � B (1.55)

where A and B are integers.
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From Equation (1.27), one can express ∆M in terms of ∆Ω. This leads to

2π 	
�
�∆Ω

Np

Nd
�C

�
� A (1.56)

2π 	 �	∆Ω	�D � � B (1.57)

which can also be written as

2πA �

�
�∆Ω

Np

Nd
�C

�
(1.58)

2πB � �∆Ω�D � (1.59)

where the absolute value of ∆Ω in Equation (1.59) has been dropped. Solving for 2π and

then equating to the two equations results in

A
B
�∆Ω�D� ��∆Ω

Np

Nd
�C (1.60)

Collecting terms,

∆Ω
�

A
B
�

Np

Nd

�
�

A
B

D�C (1.61)

Finding the common denominator of the term in parentheses,

∆Ω
�

ANd �BNp

BNd

�
�

A
B

D�C (1.62)

Multiplying through,

∆Ω�ANd �BNp� � ADNd �BCNd � �AD�BC�Nd (1.63)

which leads to

∆Ω �
�AD�BC�Nd

ANd �BNp
(1.64)

where it is now clear comparing Equation (1.64) to Equation (1.49) that Fd � ANd �BNp

and A and B represent the integer number of times that the RAAN and the mean anomaly
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are divisible by 2π.

What is most interesting is that the values selected for A and B have physical meaning.

One can think of B as the number of times the secondary closed path will intersect itself

or twist over onto itself. A is the whole number of times that the node angle will be swept

through 2π. One can see this clearly by plotting the RAAN (Ω) versus the mean anomaly

(M) in cartesian coordinates for various values of A and B. Figure 9 on page 33 shows 6

cases where �A�B� � ��0�3� �3�0� �2�3� �3�2� ��1�3� �3��1�
.
For an arbitrary choice of Fd , the plot of RAAN and mean anomaly can have a sparse

scatter-plot appearance. This is in large part due to the fact that the maximum number

of satellites is controlled by Fd (assuming Nd is a defined mission parameter). However,

when Fd is chosen to have the form given in Theorem C.4, then the scattered points will

coalesce into distinct bands. Therefore, it is important to consider that while Theorem

C.1 guarantees a secondary closed path will exist, Theorem C.4 determines in large part if

the secondary closed path is distinguishable to the human eye. The categories of Flower

Constellations given in Chapter II are merely human interpretations of a mathematical

phenomena.
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(f) A � �1�B �
3�Fd � 91

Fig. 9. By graphing the RAAN versus mean anomaly over mod(2π), one can see that as the

satellites are placed, distinct banding can appear depending upon the values of A and

B. A 38-23-Fd-23-Fd Flower Constellation is used for each plot where the naming

convention follows Np-Nd-Ns-Fn-Fd for the sake of brevity.
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(a) A � 3�B �
0�Fd � 69
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(b) A � 0�B �
3�Fd � 114
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Fig. 10. Here the RAAN is plotted versus mean anomaly over mod(2π) in a polar plot. Ω
is the angle and M is the radius on the polar plot. Notice the distinct branches

that appear for specific values of A and B as well as the direction of the branches

according the sign of A and B. A 38-23-Fd-23-Fd Flower Constellation is used for

each plot.



35

CHAPTER II

THE FORWARD DESIGN PROCESS

Consider briefly that, if one had two satellites in arbitrary orbits, one would need to specify

twelve separate parameters to completely locate the satellites in space. In particular, for the

satellites to have a common relative path, one would need to specify a common semi-major

axis, eccentricity, argument of the perigee, and inclination along with individual RAAN

and mean anomaly. Because the mean anomaly is specified through a phasing relationship

as a function of RAAN, there are five total parameters that must be set to establish the

orbits.

Using the Flower Constellation parameter set, one will also find that six parameters

are needed among the two satellites: Np and Nd specify the common semi-major axis, hp

specifies the eccentricity in conjunction with Np and Nd , ω and i orient the orbit planes,

and Ω is specified for each satellite, which, in turn, specifies M through a functional re-

lationship. The difference here is that the semi-major axis is specified using two integer

parameters. Note that Ns�Fn� and Fd do not play a roll in positioning the satellites for the

Flower Constellations. Also note that a particular Flower Constellation is referred to as

a Np-Nd-Ns Flower Constellation or Np-Nd-Ns-Fn-Fd Flower Constellation for the sake of

brevity.

In summary, Flower Constellations are identified by eight parameters in total. Five

are integer parameters: the number of petals (Np), the number of sidereal days to repeat the

ground track (Nd), the number of satellites (Ns), and two integers that govern the phasing

(Fn and Fd). Three are orbit parameters which are equivalent for all satellites: the argument

of perigee (ω), the orbit inclination (i), and the perigee altitude (hp). However, keep in

mind that if a Flower Constellation has been reoriented, the orbit parameters ω�Ω� and i

will be different for each orbit. Therefore it is desirable in many cases to design a Flower
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Constellation such that its spin axis is aligned with the planet spin axis to obtain a useful

phasing arrangement that can then be reoriented as a final step.

Having laid the foundation of the Flower Constellations, this chapter provides some

guidelines for utilizing Flower Constellations as a design tool. There are some explicit

consequences of parameter selection on the resultant design of a Flower Constellation that

must be understood. In that regard, there are three groupings of parameters that will be

discussed: (i�ω�hp), (Np�Nd), and (Fn�Fd).

When reading this chapter, keep in mind that a large number of satellites is used to

completely visualize some of these constellations. Thus, many Flower Constellations lend

themselves easily to micro- and nano-satellite constellations. However, Flower Constella-

tions are readily scalable to any mission size and scope after the phasing scheme has been

established. That is to say, the mathematical formulation presented in this research fills out

complete constellations. One can arbitrarily choose to omit any satellite from the scheme.

Also keep in mind that Flower Constellations are characterized by an axis of sym-

metry that can be arbitrarily oriented. While the relative geometry and phasing of all the

satellites is preserved in a reoriented Flower Constellation, the identical repeat ground track

property is only present when aligned with the Earth spin axis. Thus, once a fundamental

design has been chosen, any FC can be reoriented as necessary.

Additionally, the Flower Constellations presented in this chapter were designed using

an ideal Earth. In general, incorporating geopotential perturbations result in a slight shift of

the mean anomaly angles and do not dramatically affect the overall design. For a discussion

of the impact of perturbations on phasing, consult Chapter V.
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A. Choosing a Flower Constellation

There are four basic steps to selecting a Flower Constellation. First, the orbit inclination,

argument of the perigee, and the height of perigee (i�ω�hp) must be specified. Second,

one must decide on an overall shape. Third, one must decide on the desired phasing of

the constellation. Lastly, to orient the Flower Constellation, an axis of symmetry must be

specified relative to the Earth’s spin axis.

(a) i � 0Æ (b) i � 63�4Æ

(c) i � 135Æ (d) i � 165Æ

Fig. 11. A 8-1-9 Flower Constellation with various choices of inclination. Refer to Table

XI on page 154 for phasing details.
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1. Shape Considerations

One of the first tasks in designing a Flower Constellation is to select the orbit inclination,

argument of perigee, and the height of perigee.

a. Inclination

In many cases, it is desirable to select the orbit inclination to be one of the critical inclina-

tions in an effort to freeze the Flower Constellation, which will prevent the line of apsides

from shifting over time. However, through experimentation, a number of unique constella-

tions have been discovered that only occur at specific inclinations. Figure 11 shows several

cases of a 8-1-9 Flower Constellation for varying inclinations. In each of these cases, the

only parameter that has been changed is the inclination.

Figure 11(a) depicts the 8-1-9 Flower Constellation in the equatorial plane. Whenever

the inclination is set to 0Æ, patterns are formed, which, in this case, is a five pointed star.

Each of the satellites moves in such a way that the star spins about the constellation axis

of symmetry while maintaining the overall configuration. Figure 11(b) depicts the 8-1-9

Flower Constellation with an inclination of 63�4Æ. As one can see, the pattern of satellites is

somewhat sparse and forms a rough figure eight. When the inclination is increased to 135Æ,

a tear-drop like constellation, shown in Figure 11(c), is formed. Finally, as the inclination is

increased even further to 165Æ, a roughly circular constellation is formed, which is depicted

in Figure 11(d). Unless otherwise stated, the default inclination that is used for figures in

this work is 63�4Æ.

b. Argument of the Perigee

Another important parameter is the argument of perigee. The constellations depicted in

Figure 11 all have ω set to 270Æ. If one were to set ω � 90Æ, then the constellations would
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(a) Polar View with ω �
270Æ

(b) Polar View with ω �
225Æ

(c) Isometric View with
ω � 270Æ

(d) Isometric View with
ω � 225Æ

Fig. 12. Two cases of a 4-1-4 Flower Constellation with the argument of perigee equal to

270Æ or 225Æ. Refer to Table XII on page 154 for phasing details.

be mirror images with respect to the Earth’s equator. Adjusting the argument of perigee

is one way of reorienting a Flower Constellation except that the axis of symmetry is still

coincident with the Earth’s spin axis.

Setting ω � 45Æ�135Æ�225Æ, or 315Æ results in a constellation that looks more like a

fan blade than a flower (See Figure 12). Thus, all other things being equal, one will notice

that adjusting ω has several ”critical” points: 90Æ and 270Æ create Flower Constellations

with the highest apogee altitudes, 0Æ and 180Æ create Flower Constellations that are sym-
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metric with respect to the plane perpendicular to the axis of symmetry (the equator in this

case) resulting in the lowest apogee altitudes, and 45Æ�135Æ�225Æ, or 315Æ result in a blend

between the two extremes. Unless otherwise stated, the default argument of perigee that is

used for figures in this work is 270Æ.

c. Height of Perigee

The last of the three orbit parameters, the height of perigee (hp), is intimately tied into the

determination of the orbit eccentricity. Recall from the Flower Constellation Theory that,

once we have determined the semi-major axis of the orbits, knowing the height of perigee,

we can solve for the eccentricity.

e � 1� R��hp

a

Essentially, for a fixed a, decreasing hp yields a more eccentric orbit while increasing hp

(a) Isometric View with
hp � 400 km

(b) Isometric View with
hp � 13892 km

Fig. 13. Two cases of a 3-1 Flower Constellation with different heights of perigee (hp).

Refer to Table XVI on page 156 for phasing details.

yields a more circular orbit. What this implies is that there are constraints on the overall
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size of a given Flower Constellation. Flower Constellations created with circular orbits

will have a relative orbit that is equidistant from the surface of the Earth, while Flower

Constellations created with highly eccentric orbits will tend to be more slender and narrow

with parts of the relative orbit extending far above the Earth. Figure 13 illustrates a 3-1

Flower Constellation with (a) a relatively low value for hp and (b) the maximum value of

hp for this case, which corresponds to circular orbits.

Additionally, hp has an impact on the maintenance of Flower Constellations. If hp is

set too low, the atmospheric drag will become a major concern in maintaining the overall

design of a given Flower Constellation. Castronuovo, Bardone and Di Ruscio2 have shown

that hp should be kept above 600 km to reduce drag effects. Therefore, unless otherwise

stated, the default value for the hp is 600 km.

2. Selecting Np and Nd

Referring back to Equation (1.10), recall that there is a ratio, τ, between two of the integer

parameters that roughly governs the overall size of a Flower Constellation.

τ
 Nd

Np
(2.1)

Referring back to Equation (1.9), one can see that if τ� 1, for instance, then the anomalistic

0 .01 .5 100 ∞

T (hrs)

.33 101

0 .24 12 2400 ∞8 24024

τ

Fig. 14. Varying τ has a direct impact on the anomalistic orbit period. A 3-1 Flower Con-

stellation has an 8 hr orbit period corresponding to τ � 0�3333.

orbit period will be 24 hours (not including perturbative effects).
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Note that it is important to keep the values of Np and Nd in proportion to one another.

For a given value of Nd , as Np � ∞, τ � 0, which means that the anomalistic orbit period

also goes to zero (which is physically unrealizable). Conversely, for a given value of Np,

as Nd � ∞, τ � ∞, which means that the anomalistic orbit period goes to infinity. This is

also generally unacceptable. Therefore, even though Np and Nd may individually be quite

large, provided that the overall ratio, τ is kept in a reasonable range (See Figure 14), the

resultant Flower Constellation will be plausible.

Table IV. Lower bound on τ as a function of minimum altitude.

hmin�km� τmin

90 6�0083�10�2

400 6�4454�10�2

600 6�7328�10�2

800 7�0243�10�2

1000 7�3050�10�2

10000 2�4209�10�1

Note that a lower bound for τ can be found as a function of some minimum allowable

perigee altitude. This lower bound can be expressed as

τ� ω�

�
�R��hmin�3

µ�
(2.2)

where hmin is the minimum altitude about the earth expressed in the same units as the mean

equatorial radius of the Earth, R�. Table IV shows the resultant minimum value for τ for

some specific values of the minimum altitude hmin.

Because Flower Constellations are geometrically symmetrical about the axis of sym-

metry, as the number of petals increases while the number of days to repeat the pattern
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(a) Case 1 Polar View (b) Case 2 Polar View

(c) Case 1 Isometric
View

(d) Case 2 Isometric
View

Fig. 15. Case 1: A 3-1 Flower Constellation, Case 2: A 769-257 Flower Constellation.

Refer to Table XVI on page 156 and Table XIII on page 155 for phasing details.

stays the same, the petals begin to overlap each other. As Np grows large, the relative orbit

begins to look less like distinct flower petals and more like a surface. Figure 16 shows two

cases to illustrate this point. The first case shows a Np � 3, Nd � 1 Flower Constellation

(τ � 0�3333) while the second case has Np � 769, Nd � 257 (τ � 0�3342).

Now, remove the relative orbits that are depicted in Figure 15 and, instead, increase

the number of satellites to fill out the pattern. When one views both of these cases from

the North pole of the Earth without the relative orbits (Figure 16), one will see something

rather unexpected. Both constellations look almost identical.

In fact, there is only one subtle difference between the two patterns of satellites. In
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(a) Case 1 Polar View (b) Case 2 Polar View

Fig. 16. Case 1: A 3-1 Flower Constellationwith 50 satellites, Case 2: A 769-257 Flower

Constellationwith 50 satellites. For both cases, each satellite has been placed into

its own orbit (i.e. Fn/Fd = 1/Ns).

Case 1, the pattern fits exactly on the relative path and, thus, is a closed path. In Case

2, there are two ”paths” for the satellites to follow. The first ”path” is the relative orbit

depicted in Figure 15. The secondary path is generated by the pattern that you see in

Figure 16. The secondary path, for this particular case, is open ended. That is, if you follow

a particular satellite from the starting point to the end point of the pattern, those points do

not coincide. As the number of petals is decreased (while maintaining the appropriate τ

ratio), this disconnect will become more and more pronounced.

Note that, in general, secondary paths can be closed or open. Part of the constellation

design process will focus on selecting patterns of satellites that are either on closed or open

secondary paths. Secondary open paths are formed when τ is perturbed slightly and all

other design parameters remain constant. Secondary closed paths result from a combination

of both the shape of the Flower Constellation and the selected phasing.

3. Phasing Considerations

There are two parameters which govern the phasing scheme of a Flower Constellation: Fn

and Fd . Before embarking upon a phasing analysis of a particular Flower Constellation,



45

there are a couple things to keep in mind.

Recall from Section I.B.4 that the number of available slots for satellites was limited

by the relationship

Ns � Fd Nd

What this implies is that as the number of days to repeat a given Flower Constellation in-

creases or as the phasing denominator increases, there are more slots open for satellites to

fill. Therefore, the potential number and kind of Flower Constellation types correspond-

ingly increases. Recall in the previous section that one could search for integer values of Np

and Nd given a decimal value for τ. Now, it becomes apparent that, if one perturbs τ slightly,

one can identify alternative Flower Constellations that might offer additional phasing pos-

sibilities. The consequence of this is that the alternative patterns might be a secondary path

that is rotating relative to the relative orbit, which may or may not be desirable.

Also recall that the number of satellites that could be placed into a single orbit belong-

ing to a Flower Constellation is equivalent to the number of days to repeat, Nd . If one starts

out with a base Flower Constellation design that has fewer available slots for satellites than

what you need, then perturb τ slightly to obtain a similar solution which allows for larger

values of Np and Nd . For example, if one desires to place four satellites per orbit, then

search for solutions where Nd � 4.

Fn and Fd are intimately related to the distribution of the right ascension of the ascend-

ing node, which leads to an interesting consequence that occurs for certain choices of said

parameters. Note that the ratio of Fn to Fd must be relatively prime for analysis purposes

(see Appendix A). By examining Eq. (1.26) on page 19, one can see that Fd determines the

number of physical orbits available to place satellites into. In other words, if one desires

to place satellites into four separate orbits, then Fd � 4. This holds for any value of Nd .

Figure 17 illustrates the effect of various values of Fd for given Flower Constellations.
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(a) A 3-1-4 FC with
Fn � 1�Fd � 4

(b) A 3-1-4 FC with
Fn � 1�Fd � 2

(c) A 3-2-4 FC with
Fn � 1�Fd � 2

(d) A 3-2-4 FC with
Fn � 1�Fd � 4

Fig. 17. This figure illustrates a polar view of ECI orbits and the effect of various choices of

Fn and Fd for a 3-1-4 and a 3-2-4 Flower Constellation with i� 63�4Æ and ω� 270Æ.

Refer to Table XVI on page 156 for phasing details.

Now consider that Nd � 1, what happens when Fd � Ns. The answer is that Eq. (1.18)

on page 18 will generate available orbit planes based upon the value of Fd regardless of

the number of satellites. For example, if one selects Fn � 1�Fd � 7 for a 3-1-4 Flower

Constellation, then one will get four satellites in four separate orbits that are arrayed as

if there were actually seven orbits (See Figure 18). An additional consideration is the

multiplicity of patterns. A particular pattern is considered to be unique provided that the

ratios of Np to Nd and Fn to Fd are relatively prime (See Appendix A). To create multiple
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Fig. 18. Increasing the value of Fd beyond Ns causes the spacing between ECI orbits to

shrink. When Fn � 1, Fd is the number of available orbit planes. Thus, empty orbit

planes are left when Fd � Ns. A polar view of a 3-1-4 Flower Constellation is

shown here with Fn � 1�Fd � 7.

instances of a unique pattern is very simple. By multiplying both the number of satellites

(Ns) and the phasing denominator (Fd) by a factor of k while keeping all other things equal,

then the resulting Flower Constellation will have precisely k equally spaced patterns about

the axis of symmetry. As k becomes large, then the duplicate patterns will begin to overlap.

Figure 19 demonstrates this procedure on a basic ”Figure 8” shaped Flower Constellation.

4. Some Consequences of Parameter Selection

In the Flower Constellation concept, there are two primary parameters which affect overall

shape and size of the constellation: the number of petals, Np, and the number of days to

repeat, Nd . Note that the number of satellites, Ns, is generally independent of these pa-

rameters and does not affect the design of the Flower Constellation other than to make a

constellation complete or not (See Section d). That being said, there is an interplay be-

tween these parameters and the phasing parameters Fn and Fd that have very interesting

consequences. These consequences can best be described by examining four defined rela-

tionships, τ, ηo, ηs�o, and φ. Previously, the parameter τ, introduced in Equation (1.10),

was discussed. This section looks a little closer at τ. Next, the parameter ηs�o is defined
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(a) Ns � 13 and Fd �
13

(b) Ns � 26 and Fd �
26

Fig. 19. The basic ”Figure 8” configuration is represented here by a 12-1-13 Flower Con-

stellationwith Fn � 1�Fd � 13, i � 116�6Æ,hp � 1666 km, and ω � 270Æ. By dou-

bling the number of satellites and the phasing denominator, we double the pattern

as seen in (b). Note that they are equally spaced about the axis of symmetry. Refer

to Table XVII on page 156 and Table XVIII on page 157 for phasing details.

that relates Fd to Ns followed by the parameter ηo that relates Nd to Ns. Lastly, the param-

eter φ is introduced that relates the four primary parameters Np�Nd�Fn� and Fd . Note that

τ is independent of the phasing parameters Fn and Fd and is solely related to the period of

the Flower Constellation.

a. Similitude of Flower Constellations

The complete set of Flower Constellations includes all positive integer values of Np and

Nd . However, in reality, there exists only a reduced set of unique Flower Constellations. To

determine which set of constellations is unique, one must look to the parameter τ. Recall

that

τ
 Nd

Np

If τ is identical for any two given Np-Nd Flower Constellations, then there is only one

unique relative orbit between them because the resultant orbit period is identical (see Eq.
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(1.9) on page 13). Therefore, the Flower Constellation with the lowest common denomina-

tor is the only unique constellation. For example, a 6-2 Flower Constellation will produce

an identical relative path as a 3-1 Flower Constellation. Likewise, a 9-6 Flower Constel-

lation is equivalent to a 3-2 Flower Constellation. In other words, Np and Nd must be

relatively prime in order for a Flower Constellation to be unique. In order for a proper

analysis of a Flower Constellation design to move forward, one must first ensure that this

condition is met.

b. Specifying the number of satellites per orbit

In determining the number of satellites per orbit, a relationship between the number of

satellites and the number of days to repeat is evident. It has already been established that

Nd specifies the number of allowable slots to place a satellite on any one given orbit (i.e.

the maximum number of satellites per orbit). It follows that if one multiplies the number

of orbits by the maximum number of satellites per orbit, one can write

ηs�o 

�

Ns

Fd

�
�

�
Ns

ηo

�
(2.3)

where ηo is the number of orbit planes and there will be exactly ηs�o satellites per orbit. The

floor function ��� is required here because there cannot be a fractional number of satellites

per orbit, only whole integer values. Note that Equation (1.29) must still be satisfied,

which leads to the lower bound on ηs�o, ηs�o � 1. As mentioned, the maximum number of

satellites per orbit is Nd . Therefore, 1� ηs�o � Nd .

c. Specifying the number of orbits

Eq. (1.26) on page 19 specifies how the RAAN is arrayed about 2π for a complete sym-

metric Flower Constellation. Provided that Fn and Fd are relatively prime, then Fd specifies

the number of allowable orbit planes. That is to say, if Ns � Fd , then there will be at least
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one satellite per allowable orbit plane. However, if Ns � Fd , there will only be Ns orbit

planes arrayed as if there were actually Fd orbit planes. The number of orbit planes can be

expressed as

ηo 

�

Ns

Nd

�
�

�
Ns

ηs�o

�
(2.4)

where ηs�o is the number of satellites per orbit. Once again, the floor function is utilized

to ensure a whole integer value for the number of orbit planes. This consequence can be

utilized, for example, to minimize launch costs by restricting the number of orbits into

which satellites must be placed.

d. Planes of Satellites

The number of satellites selected for a particular flower constellation has some interesting

consequences due to the phasing requirements described previously. When the phasing

denominator exactly equals or is an integer multiple of the number of petals, then what we

call planar motion results. In this configuration, the sequential juggling effect disappears

(See Section Bchap:examples for a complete description of the sequential juggling effect).

Consider Figure 20. In this case, a 3-1-6-1-6 Flower Constellation with ω � 270Æ

and icr � 63�4Æ is utilized. By selecting Fd � 2Np, two planes of satellites were created in

groups equivalent to the number of petals.

This leads to another interesting parameter

φ
 FdNd

FnNp
(2.5)

If φ is an integer (i.e. if FnNp	FdNd), then φ planes containing Np satellites per plane will

result. As Fd � ∞ (or the desirable separation between any two satellites reaches a limit),

then the constellation appears to be one continuous line of satellites moving about the

relative orbit. However, if one looks closely, one will still see distinct groups of Np satellites
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Fig. 20. In this case, an equatorial view of a 3-1-6-1-6 Flower Constellation with ω � 270Æ

and icr � 63�4Æ demonstrates satellites moving together in a planar fashion.

moving together in a plane. Note that this case is essentially an extension of the JOCOS

concept. If φ is not an integer, then planar motion will not result and the sequential juggling

effect will be evident again. Also note that η � 1 is required to completely visualize each

plane of satellites. η � 1 will result in satellites missing from the plane of motion.

B. Categories of Flower Constellations

This section describes some of the broad categories of Flower Constellations and gives

some insight into how to choose the Flower Constellation parameters to create these kinds

of constellations. These concepts provide a basic understanding of what can be done with

a single Flower Constellation. However, any one Flower Constellation can be combined in

a myriad of fashions with other Flower Constellations to create very dynamic constellation

types. Additionally, the satellites in a given Flower Constellation can be distributed around

the allowable orbit positions in a multitude of different ways. In essence, one is not con-
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strained to fill out every available slot nor is one constrained to fill them out in an evenly

distributed fashion.

1. Basic Flowers

The original foray into the Flower Constellation concept focused on what is now termed

”Basic Flowers.” These Flower Constellations generally are constellations of satellites

whose patterns are constructed by the relative orbit itself. Figure 12 on page 39 shows

an example of a Basic Flower. These relative orbits can be quite complicated, however.

Figure 2 on page 44 shows a relative orbit whose petals overlap to the point where it almost

appears to be a surface.

2. Secondary Open Paths

As mentioned in the previous section, one can begin to choose the number of petals and

the number of days to repeat by choosing τ such that a desired anomalistic orbit period

is generated. Particular values of Np and Nd might also be desirable while maintaining

an overall value of τ within some tolerance. Therefore, if one finds a basic flower, for

instance, that has all the desired phasing but the orbit period needs to be adjusted to account

say for perturbations, then a secondary open path can be created that is almost identical

to the original basic flower. This is done by choosing values of Np and Nd that closely

approximate the original value of τ that was used to generate the original constellation.

Figure 15 on page 43 shows an example where Np and Nd were adjusted while maintaining

a similar value of τ.

The following simple Matlab code allows one to specify the value of τ, will search

through k (Np�Nd) pairs, and then output up to kmax of the best pairs that approximate τ.

Matlab v. 6.0 Code

function [ num, den ] = f2i( F, k, kmax ),
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% This function provides k approximate solutions of F=num/den
% where ”F” is any decimal number and ”num” and ”den” are two
% integer arrays of length k. Texas A&M, Mortari and Wilkins, 8-30-03
nmin = floor( 1 / F );
if ( nmin == 0 ), nmin = 1; end
den = nmin + [ 0 : k-1 ]’;
num = round( F * den );
X = abs( F - num./den );
[ Y, I ] = sort(X);
num = num(I); num = num( 1 : kmax );
den = den(I); den = den( 1 : kmax );

End Matlab v. 6.0 Code

This code can be used to solve for the numerator and denominator of any of the integer

ratios presented in this work. For example, if one desires an 8 hr orbit, then τ � 0�3342

based upon a sidereal period of 23 hr 56 min 4�09 s. The Matlab output is the following:

Matlab v. 6.0 Code

�� [Nd,Np] = f2i(.3342,1000,10);
�� [Nd Np Nd./Np]
ans =

257 769 3.3420e-001
129 386 3.3420e-001
258 772 3.3420e-001
128 383 3.3420e-001
256 766 3.3420e-001
259 775 3.3419e-001
255 763 3.3421e-001
130 389 3.3419e-001
260 778 3.3419e-001
127 380 3.3421e-001

End Matlab v. 6.0 Code

The results are sorted such that the best results are presented first. If one were to limit

the scope of the search to the first 100 integers, the code will find the more obvious, but not

as accurate, guesses such as (1,3), (2,6), (3,9), etc.
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3. Planar Patterns

When the orbit inclination is 0Æ or 180Æ, then what is termed Flower Constellation ”Planar

Patterns” results. These patterns tend to spin the most rapidly of all the categories of Flower

Constellations. In some cases, these patterns are of a fixed shape (i.e. they are secondary

closed paths) and merely rotate about the axis of symmetry. In other cases, the patterns start

out in one shape but then reform themselves into another in a never-ending cyclical process.

This is typical of secondary open paths or incomplete schemes. No specific method other

than that described for a secondary closed path is available for generating a planar pattern.

While practical applications of these patterns have yet to be found, they are very interesting

in their own right. Figure 21 shows four intermediate stages of a transforming pattern.

4. Helixes

Helical constellations are another interesting category of Flower Constellations. Helixes

are actually a general secondary closed path that is typically formed by one or more in-

tersections of the secondary path with itself. Generating a helix requires the appropriate

selection of the value of Fd . Recall that a secondary closed path is formed when Fn � Nd

and Fd � ANd �BNp. Helixes are formed when A � �1 and B represents the number of

intersections or “twists” in the secondary closed path. Figure 22 shows a 31-18-80-18-80

Flower Constellation where A � 1 and B � 2.

5. Figure 8’s

Another basic pattern that has been discovered is the ”Figure 8.” Figure 8’s are in reality a

helix with a single point of intersection in the closed path. Therefore, a Figure 8 is created

when A � �1 and B � 1. The uniform double lobes that one associates with a Figure 8

is created using circular orbits. Eccentric orbits combined with varying the argument of
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(a) Stage 1 (b) Stage 2

(c) Stage 3 (d) Stage 4

Fig. 21. This Planar Pattern, dubbed ”Tre Lacci”, is a 31-11-30 Flower Constellation with

Fn � 7�Fd � 10, i � 180Æ, hp � 9000 km, and ω � 270Æ. As time progresses, the

three groups of satellites curl in on themselves to form a ball before un-curling

back into the original formation depicted in (a). Refer to Table XIX on page 158

for phasing details.

perigee will create lobes that are larger on one half than the other.

Figure 19(a) on page 48 shows an example of a single Figure 8 that is very close to the

Earth’s surface. One can also design Figure 8’s that are much larger in scale. In addition to

single Figure 8’s, there are unique sets of parameters that generate multiple Figure 8’s as a

base configuration. Figure 23 shows an example with 3 Figure 8’s created by a 37-18-57-

6-19 Flower Constellation. Removing one third of the satellites from a base configuration

such as this will not remove a whole Figure 8. Instead, the satellites will be removed in

a distributed fashion from all of the Figure 8’s. One can double a pattern such as this to
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(a) Polar View (b) Equatorial View

(c) Isometric View

Fig. 22. This pattern contains a helix with two intersections in the secondary closed path

(i.e. A � 1 and B � 2). This constellation is generated with a 31-18-80-18-80

Flower Constellation with i � 63�4Æ, hp � 600 km, and ω � 270Æ.

obtain 6 equally spaced Figure 8’s.

6. Rings

One can also create rings of satellites. Figure 11(d) on page 37 depicts one such ring of

satellites. These rings are not necessarily perfect circles and their size and orientation can

be adjusted by tuning the various Flower Constellation parameters. An effort to produce

perfect circles will be the focus of future work. As mentioned earlier, Flower Constella-

tions can be multiplied. In Figure 24, the single inclined ring from Figure 11(d) on page 37
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(a) Polar View, Ns � 13
and Fd � 13

(b) Equatorial View,
Ns � 26 and Fd � 26

Fig. 23. This pattern contains 3 ”Figure 8’s” in it’s base configuration and is repre-

sented here by a 37-18-57 Flower Constellation with Fn � 6�Fd � 19, i � 63�4Æ,

hp � 19702 km, and ω � 270Æ. Note that by doubling this pattern, we will get 6

”Figure 8’s” that are equally spaced about the axis of symmetry. Refer to Table XX

on page 159 for phasing details.

has been multiplied into 10 rings rigidly rotating about the axis of symmetry. Rings such

as this are generated with Fd � Np �Nd (i.e. A � B � 1).

7. Nearly Straight Lines of Satellites

While not physically realizable due to the intersecting relative orbit path that ultimately

leads to this type of Flower Constellation, it is still mathematically possible to generate

a nearly straight line of satellites that rigidly rotates about the axis of symmetry. Figure

25 depicts one such line of satellites. Due to the very precise choice of inclination, the

satellites regularly meet at the intersections of the relative orbit as they rotate about the

Earth. This is what generates the appearance of a straight line of satellites but also makes

it physically impossible to put into practice.

These lines are formed basically by collapsing the ring formation in upon itself. By

making the inclination of a ring formation almost 180Æ and setting the height of perigee
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Fig. 24. An 8-1-90-1-90 Flower Constellation with i � 165Æ, hp � 3000 km, and ω � 270Æ.

These rings spin about their own axis of symmetry while rigidly rotating about the

Flower Constellation axis of symmetry.

such that circular orbits result, then one will get a straight line formation.

8. Spirals

One can also generate a single spiral that resemble a ”Slinky” toy as it collapses and ex-

pands about the Earth. Furthermore, one can generate multiple spirals that are either in-

tertwined or separate. These spirals are not closed paths. Figure 26 depicts a case where

two spirals are intertwined about the axis of symmetry. At perigee, the spirals will collapse

down into a flat ring before expanding back up towards apogee where they will once again

collapse into a flat ring in a cyclical process.

C. Spin Rate of Secondary Paths

It is important to note that only the relative path is fixed with respect to the Earth. The

secondary path depicted for Figure 2 on page 44, for instance and regardless of whether or

not the secondary path is closed or open, continuously spins about the axis of symmetry
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Fig. 25. A 4-1-5-1-5 Flower Constellation with i � 174�8Æ, hp � 10354 km, and ω � 270Æ.

A straight line of satellites rigidly rotates about the Earth. Due to a high collision

probability, this type of Flower Constellation is physically unrealisable. Refer to

Table XV on page 155 for phasing details.

while overlaid upon the fixed relative path. In general, the entire secondary path rotates

about the axis of symmetry at a constant rate. Consider the Lone Star Constellation once

again at two different instants of time. One would obtain something similar to that depicted

in Figure 27. The spin rate of the secondary path can be quantified by considering that the

path “moves” because individual satellites are approaching apogee in their individual orbits

in succession. Therefore, the apparent amount of time that it takes for the path to move is

ωI
s �

∆Ω
∆t

(2.6)

where ∆Ω is the angular spacing in radians between two successive orbit nodes, ∆t is the

amount of time between two satellites along the secondary path, and the superscript I means

that this angular velocity is expressed in the ECI frame. ∆Ω is already defined in Eq. (1.26)

on page 19. On initial inspection, one could use Kepler’s equation and write ∆t �
∆M0

n
where ∆M0 is defined in Eq. (1.27) on page 19. This leads to

ωI
s ��nτ (2.7)
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(a) Polar View (b) Equatorial View

Fig. 26. This pattern contains 2 intertwined spirals formed by a 15-7-49-23-49 Flower Con-

stellation with i � 63�4Æ, hp � 9000 km, and ω � 270Æ. These two spirals descend

from apogee and collapse in on themselves at perigee before spiraling back up to

apogee again in a cyclical process. Refer to Table XXI on page 160 for phasing

details.

where τ has been defined in Eq. (1.10) on page 13. The spin rate in the ECF frame can be

expressed as

ωF
s � ωI

s�ω� ��nτ�ω� (2.8)
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t = 0

t = ∆t

∆Ω

Fig. 27. The Lone Star Constellation is shown here at two different instants of time.
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CHAPTER III

APPLYING THE FC THEORY: EXAMPLE PROBLEMS

In Chapter II, specific choices for the various design parameters were investigated. One can

easily see the myriad of combinations among the parameters and the limitless possibilities

afforded by the Flower Constellation theory. In order to try and gain a better grasp on how

to use the Flower Constellation theory, this chapter will give some specific procedures and

examples on how to use the theory as a design tool. In particular, this chapter will recreate

some current constellation techniques utilizing Flower Constellation theory in addition to

showing new and never-before-seen constellations.

A. Basic Design Procedure

A general design procedure is outlined in Figure 28. From a mission design perspective,

usually one will have a good idea of the desired orbit period for the satellites. Knowing this,

the values of Np and Nd are specified via Equation (1.9). As discussed in previous chapters,

the values for Np and Nd can be adjusted as needed while still maintaining a particular value

for τ (See Section II.2).

Having specified the orbit period, the next step is to choose the height of perigee and

the orbit inclinations. The choice of inclination is coupled with the choice of height of

perigee. If circular orbits result, then the value of inclination can be chosen as needed to

affect the overall shape of the constellation. However, eccentric orbits will more than likely

require one of the critical inclinations to maintain the initial constellation geometry without

exerting undesirable levels of control effort.

The remaining orientation angle that needs to be established at this point is the ar-

gument of the perigee, ω. As discussed in the previous chapter, setting this value to 90Æ

or 270Æ will ensure that the line of apsides is pointing towards the northern or southern
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Using mission design parameters, 

establish the desired orbit period.  

From the orbit period, compute 

acceptable values for Np and Nd.

Specify the height of perigee, 

hp, and the orbit inclination, i.

Specify the argument

 of perigee, ω.

Specify the phasing 

parameters Fn and Fd.

Specify the desired number of 

satellites, Ns.

Reorient the FC as necessary.

No

Yes

Add 

additional 

FCs to create 

combined effects

as desired.

Add 

additional 

FCs to create 

combined effects 

as desired.

STOP

Fig. 28. This flowchart illustrates a basic FC design procedure.
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hemispheres, respectively. Varying the argument of the perigee will cause the shape of the

petals to alter.

Lastly, in order to obtain the final locations of each satellite in the Flower Constella-

tion, one must specify the phasing parameters Fn and Fd . Note that a given choice of Fn

and Fd may belong to more than one particular Flower Constellation. In other words, a

particular constellation design may have requirements that are satisfied simultaneously by

two or more particular design solutions. The following section describes some common

choices for the value of Fn and Fd .

B. Common Phasing Choices

As discussed previously, there are only a certain number of permissible locations for a

satellite to be placed in an orbit. Based upon this, it becomes apparent that each satellite in

the constellation will be assigned a unique (Ωk �Mk) pair. Otherwise, two satellites will be

impossibly placed in the same physical location. The choice of Fn and Fd directly impact

how these satellites are placed into the constellation.

Special interest is given when the choice of Fn and Fd fall into one of the following

three cases:

(1) When Fn � 1 and Fd � Ns, then the Ns satellites are uniformly distributed and the

so-called sequential juggling effect is apparent. See below for a description of this

effect.

(2) When Fn and Fd are relatively prime and Fd � Ns, then the Ns satellites are uniformly

distributed in Fd equally spaced orbits.

(3) When Fn � Nd and Fd � ANp �BNd where A and B are integers that can be freely

chosen, then a secondary closed path forms on top of the relative path.
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If the first phasing scheme is chosen with Fn � 1 and Fd � Ns, then the corresponding

complete Flower Constellation will have Ns satellites evenly distributed about the Earth

and evenly distributed along the relative path. In this case, the satellite with the largest true

anomaly is continuously replaced in what we call a sequential juggling effect. The sequen-

tial juggling effect is essentially an artifact of the phasing rule of Equation (1.19). While

a minimum of Np �Nd satellites are required to achieve the sequential juggling effect, any

number of satellites may be selected for the desired application. Choosing a number of

satellites below Np�Nd will result in having a number of petals remaining unoccupied for

a period of time. It is obvious that the stationarity and coverage increase with the number

of satellites. Consider that a (Np � 3� Nd � 1� Ns � 4) Flower Constellation with ω � 270Æ

and icr � 63�4Æ, requires only four satellites to achieve nearly complete coverage of the

northern hemisphere!9

For the second phasing scheme, the appropriate choice of Fn and Fd allows the flex-

ibility to specify precisely the number of orbits that will be used to construct the Flower

Constellation. Specifically, when Fn�Fd (i.e. GCD�Fn�Fd� � 1), one can specify the num-

ber of orbits by setting Fd to that desired number. Furthermore, one can utilize the param-

eter ηs�o to aid in the selection of Fd . However, as discussed previously, one distinct orbit

cannot accept more than Nd satellites and there is a maximum of FdNd satellites for a given

Flower Constellation. If more than Fd Nd satellites are required for a particular application,

then either Nd or Fd or both must be increased.

In the third phasing scheme, a secondary closed path in the shape of a regular figure

such as an ellipse, circle, or helix is formed. This secondary path is most distinguishable

when there are enough intersections between the flower petals (i.e. when the number of

flower petals is sufficiently large). Examples of the various categories of Flower Constel-

lations and the appropriate phasing choices are given in Chapter II. This can be a useful

design tool to satisfy specific mission criteria.
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C. Galileo Constellation Example

Consider that you would like to construct a constellation with a given number of satellites,

Ns, placed into a given number of orbit planes, ηo. The Galileo Constellation proposed by

the European Space Agency has 30 satellites (27 are active and 3 are spares arrayed along

with the other satellites) placed into 3 orbit planes.21 The orbits are circular with an altitude

of 23�616 km above the Earth inclined at 56Æ.

Using the definition of the parameter ηo (See Section II.A.4.c), it is clear that if Ns �

30 and ηo � 3, then Nd � 10. Furthermore, examining the definition of ηs�o (See Section

II.A.4.b), one can see immediately that Fd � 3.

Now that Nd and Fd have been specified, one needs to find the value of Np that will

achieve the required orbit altitude. To that end, solve Equation (1.9) with a� 29�994�1363 km,

n � 1�2153863� 10�4 rad�sec, T � 14�36 hr, Nd � 10, e � 0, i � 56Æ, and J2 � 1�08�
10�3. The result is a rational value for Np. Therefore, one must choose the integer value of

Np closest to that result.

In this case, the optimum integer value is Np � 17. This results in a semi-major axis

of 29�292 km, or an altitude of 22�913 km. A more precise solution can be obtained by

using a rational value for τ instead of selecting integer values for Np. Figure 29 shows the

3 inertial orbit planes in addition to the relative path that is generated.

D. JOCOS Example

In Pennoni and Bella,11 7 satellites are placed into circular orbits inclined at 75Æ at an

altitude of 13�900 km. The following orbit parameters are given: The given orbit altitude

can be used to compute the orbit period of approximately 8 hrs or τ � 1�3. This leads to

a basic choice for the number of petals and the number of days to repeat as Np � 3 and

Nd � 1. Examining Table V, one can see that the node values are spaced at 30Æ increments.
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(a) 30 Satellites in Three ECI Orbit Planes

(b) Relative Path

Fig. 29. The FC version of ESA’s Galileo Constellation - a 17-10-30-1-3 Flower Constella-

tion with i � 56Æ, and hp � 22�913 km.
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Table V. Orbital parameters given for the 6+1 JOCOS system.11

Satellite Ω M0

1 120Æ 90Æ

2 90Æ 180Æ

3 60Æ �90Æ

4 30Æ 0Æ

5 0Æ 90Æ

6 �30Æ 180Æ

7 �60Æ �90Æ

Based upon this, one finds that 360Æ�30Æ � 12. Thus, Fd � 12. In this case, Fn � 1 as the

simplest choice and the number of satellites, Ns, is 7. The initial values for the RAAN and

mean anomaly angles are set to Ω0 � 120Æ and M0 � 90Æ, respectively.

One can easily verify using Equation (1.26) and Equation (1.27) that the values given

in Table V are duplicated precisely. Using these values for the FC design parameters, the

resultant Flower Constellation is shown in Figure 30.

E. LOOPUS Examples

In Peter Dondl’s 1984 paper entitled LOOPUS Opens a New Dimension in Satellite Com-

munications,12 several examples of the LOOPUS concept are presented. In this section, the

Flower Constellation theory will be employed to duplicate two of the examples presented

as closely as possible based upon the information provided in the paper. Note that, in gen-

eral, to generate a LOOPUS type constellation, the Flower Constellation parameters have

the following relationship:

Nd � Np�1 (3.1)

where the number of LOOPUS positions (as described in Dondl’s work) equals the value

of 2Np (i.e. Np loops in both the northern and southern hemispheres).
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(a) Polar view showing the rela-
tive path

(b) Polar view showing the ECI orbits

(c) Equatorial View (d) Isometric View

Fig. 30. A 3-1-7-1-12 Flower Constellation is employed to re-create the 6+1 JOCOS con-

stellation.11 The Flower Constellation has i � 75Æ, hp � 13�900 km and ω � 270Æ.

The initial RAAN was set to Ω0 � 120Æ while the initial mean anomaly was set to

M0 � 90Æ
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Fig. 31. A 3-4-12-11-12 Flower Constellation is employed to duplicate the example prob-

lem presented in Dondl’s Section 5.2.12 i � 54�7Æ, hp � 44�165 km, ω � 270Æ.

1. Example from Dondl Section 5.2

In this example problem, Dondl specifies that there should be 6 LOOPUS positions in total

with 12 satellites in the constellation. The orbit inclination should be 54�7Æ, the orbit period

is 32 hrs, the period of repetivity is 96 hrs, and the height of perigee is to be greater than

44�000 km.

The Flower Constellation parameters Np and Nd follow easily from the the orbit period

information. In order to satisfy the above criteria, Np � 3 and Nd � 4. Note that Np � 3 will

generate 6 LOOPUS positions as required. Because the orbit inclination is set to something

other than the critical inclination, circular orbits are required, which results in a radius of

44�165 km that satisfies the orbit period requirements.

The phasing of the parameters of Flower Constellation was chosen to be Fn � 11 and

Fd � 12. This phasing arrangement spread the 12 satellites evenly about the relative ground

track. Note that this choice gives a total of 48 available slots for satellites to occupy in the
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Flower Constellation. Figure 31 shows the resulting Flower Constellation that duplicates

Dondl’s LOOPUS example problem.

2. Example from Dondl Section 6

This second LOOPUS example requires a 24 hr period of repetition with a 12 hr orbit

period. The orbit inclination is set to the critical inclination and the semi-major axis is

26�562 km. In this case, the values of the Flower Constellation parameters are easy to solve,

Np � 2 and Nd � 1. Note that these parameters do not follow the general guideline given

in Equation (3.1) because this example chosen by Dondl is essentially a set of Molinya

orbits that traditionally create a loop in their ground track because of their extremely long

dwell time near apogee. The phasing parameters were set to Fn � 1 and Fd � 3 to duplicate

Dondl’s system. However, the phasing parameters can be chosen at will to provide more

available slots to place satellites into. Figure 32 shows the resulting Flower Constellation.

Fig. 32. A 2-1-3-1-3 Flower Constellation is employed to duplicate the example problem

presented in Dondl’s Section 6.12 i � 63�4Æ, hp � 600 km, ω � 270Æ.
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F. COBRA Example

In this section, the Basic 6-Satellite Teardrop Array described in Table III of Draim et al.15

will be duplicated using the Flower Constellation theory. The common orbit parameters

given for each of the two repeat ground track orbits are a semi-major axis of 20�261 km,

eccentricity equal to 0.6458, and an inclination of 63�41Æ. The argument of perigee is set

to either 232Æ or 308Æ. The initial RAAN values are 138�5Æ and 100�2Æ.

To construct the equivalent Flower Constellation one will need to combine two Flower

Constellations. Each of the repeat ground track orbits of the COBRA Teardrop Array

has three satellites placed into it. Thus, Ns � 3 for both Flower Constellations. Also,

since three orbit planes are desired with one satellite per orbit, then it is clear that the

phasing parameters must be Fn � 1 and Fd � 3. From the semi-major axis and eccentric-

ity given, one can determine that the height of perigee for each of the COBRA orbits is

hp � a�1� e��R� � 800 km. The anomalistic orbit period is found to be T � 8 hrs. For

an 8 hr orbit, τ � 1�3, which leads to Np � 3 and Nd � 1 as a basic choice for the number

of petals and the number of days to repeat.

The values above are approximate calculations due to the lack of precision of the data

provided in Draim et al. and the fact that the final values depend upon the values used for

the equatorial radius of the Earth, R�, and the Earth’s gravitational parameter, µ�. That

being said, elsewhere in Draim et al. it is stated that the standard COBRA orbit period is

eight hours. Figure 33 shows the resultant Flower Constellation that re-creates the basic

6-satellite COBRA Teardrop Array.

G. Constructing Secondary Closed Paths

As discussed in Section I.C, there are specific requirements on the choice of parameters in

order to ensure that a secondary close path is formed. Figure 34 provides a sample of four
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(a) Polar view showing the relative path (b) Polar view showing the ECI or-
bits

(c) Equatorial View (d) Isometric View

Fig. 33. Two 3-1-3-1-3 Flower Constellations are employed to re-create the basic 6-satel-

lite COBRA Teardrop Array.15 Each Flower Constellation has i � 63�41Æ and

hp � 800 km. The argument of perigee is either ω � 232Æ or ω � 232Æ. The initial

RAAN was set to either Ω0 � 138�5Æ or Ω0 � 100�2Æ.
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(a) 8-1-90-1-90 FC, i � 165Æ,
ω � 270Æ, hp � 3000 km

(b) 31-18-57-6-19 FC,
i � 63�4Æ, ω � 270Æ,
hp � 22�967�988 km

(c) 15-2-18-1-18 FC, i � 180Æ,
ω � 270Æ, hp � 3000 km

(d) 8-1-90-1-90 FC, i � 165Æ,
ω � 270Æ, hp � 3000 km

Fig. 34. Secondary closed paths can form on top of the relative orbit. Generally, these sec-

ondary closed paths spin about the axis of symmetry. Only the relative path is fixed.
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constellations that have been generated using the concept of secondary closed paths.

In particular, recall that Fn � Nd or Nd � 1 is required for a secondary closed path

to form. Also, to completely visualize the secondary path, Ns � Fd . This section will

examine how to create an example secondary closed path that is called the The Lone Star

Constellation. Looking at Figure 35(a) on page 76, one can see that this constellation forms

the shape of a five pointed star. This constellation closely resembles the star on flag of the

State of Texas, hence the name. When viewing this constellation in motion, one would see

the whole star spin about the axis of symmetry, which in this case is the spin axis of the

Earth. Figure 35(b) and Figure 35(c) show the relative orbit and the Earth Centered Inertial

(ECI) orbits, respectively, for this constellation.

Based upon the developments previously described, the construction of the Lone Star

Constellation is relatively simple. In this case, five secondary petals are desired to form

on top of the relative path already in place. To effect this design, the value of Fd must be

chosen appropriately based upon the value of τ. In particular,

Fd � 5Nd �Np (3.2)

The values of Nd and Np can be freely chosen to achieve a desired value of τ. In order to

make the points of the star fairly sharp, Nd � 23 and Np � 38 were found to be acceptable,

which leads to Fd � 5�23�� 38 � 77. This particular constellation is rather large, smaller

stars can be found by adjusting the values of Nd and Np.

H. Potential Applications

1. Global Navigation Systems

One potential application of Flower Constellations is in the arena of Global Navigation

Systems. The current GPS system and the Galileo constellation proposed by the European
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(a) North Pole view of the satellites
only

(b) North Pole view of the relative or-
bit

(c) North Pole view of the ECI orbits (d) Isometric view of the relative orbit

Fig. 35. The Lone Star Constellation - a 38-23-77-23-77 Flower Constellation with

i � 0Æ� ω � 270Æ, and hp � 1300 km.
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Geostationary
Satellite

Upper GNS
Flower

Constellation

Lower GNS
Flower

Constellation

Fig. 36. ECF View of a double 3-1-5 Flower Constellation with icr � 63�4Æ and either

ω � 90Æ or 270Æ. The rectangles indicate satellites available to the geostationary

satellite based upon a 55Æ cone angle. The orbits were generated by the Flower

Constellation Visualization and Analysis Tool (FCVAT) and the accessibility was

computed in AGI’s STK. The access information was added for clarity. The FCVAT

will eventually be able to import data from STK.

Union and the European Space Agency consists of large numbers of satellites in a Walker

constellation (circular orbits). This creates a sphere of satellites surrounding the Earth,

which is ideal for broadcasting navigation signals down to the Earth’s surface and LEO.

However, this system is ill suited to sending signals to MEO, HEO and GEO orbits. It may

be possible to develop future global navigation systems using the Flower Constellation

concepts that have the capability to broadcast signals not only to the planet surface but also

to other orbiting satellites. This also may require antennae that broadcast in a wider cone

than normally used for standard global positioning satellites.

Figure 36 shows a double 3-1-5 Flower Constellation with icr � 63�4Æ and ω � 90Æ

or 270Æ along with a test case geo-stationary satellite. Using STK software, the access
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intervals between the geo-stationary satellites and the double Flower Constellation were

computed. Each of the satellites were given a sensor with a 55Æ cone angle. While this sen-

sor angle is arbitrary at the moment, future work will incorporate realistic sensor models.

With this configuration, a minimum of 4 and up to 6 accesses were found to be available

to the geo-stationary satellite at all times. Thus, obtaining a position fix is assured because

of the quasi-stationary property of the Flower Constellations. More work is needed to de-

termine sensor requirements and optimal number of petals and satellites. However, it has

been shown that a global navigation system devised using a Flower Constellation that is

uniformly distrubted in mean anomaly has superior GDOP and ADOP properties to that of

every current system based upon preliminary analysis.22

2. Formation Flying Schemes

Some Flower Constellations can provide interesting opportunities in the field of formation

flying. In particular, some new concepts in formation flying schemes can be introduced.

The inclined ring formation is one example where future study into the relative motion of

satellites belonging to a secondary closed path could prove useful (See Figure 11(d) on

page 37). Some other examples of what could be considered formation flying is given in

the following sections.

a. Follow the Leader

An interesting scenario arises when one selects a retrograde Flower Constellation. In Fig-

ure 37, a 4-1-51-5 Flower Constellation with ω � 270Æ and icr � 116�6Æ is depicted. In this

case, a follow the leader type of situation is generated.

Looking at the formation from a polar perspective, the satellites rotate clockwise about

the Earth. In this manner, the formation appears to maintain almost a straight line as it

rotates about the constellation axis of symmetry (i.e. the satellites appear to trace the outline
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of square path). However, when viewed from an equatorial viewpoint, one will see that the

tail satellite will descend towards perigee only to reappear on the opposite side of the Earth

in the lead position. Likewise, the next to last satellite will then descend and reappear in

the lead. Flower Constellations that form regular polygon shapes when viewed from one

of the cardinal directions can be useful in Earth observation missions where gridding of

information is a concern and will be subject of further study.

b. Asymmetric Flower Constellations

Another intriguing possibility is the use of restricted Flower Constellations for formation

flying. By placing a number of satellites within a given range of RAAN values, we can

bunch the satellites together in such a way as to act as a formation. Figure 38 shows an

example of this. In this figure, both the relative orbit and the 5 inertial orbits of each satellite

are shown. Additionally, one could consider having multiple Flower Constellations with

multiple chains of satellites all placed within close proximity of each other.

c. Extreme Flower Constellations

Recently investigations have been conducted into the various choices for the number of

petals and the number of days to repeat. Provided that Np and Nd are increased on a relative

scale to one another, Flower Constellationswith reasonable periods and apogee heights can

still be generated. However, as the number of petals becomes large, the relative path is no

longer particularly relevant. Figure 39 shows one such “Extreme” Flower Constellation.

In this particular case, an apparent secondary path is formed on the relative path that

resembles a 4 petal Flower Constellation. Interestingly, this apparent 4 petal constellation

has groups of two satellites flying in formation. This can only be achieved because the

number of petals is so large. Because of the large number of petals in this FC, the relative

orbit is so dense that is has been omitted for clarity. Furthermore, by adding multiples
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(a) View from North Pole (b) Isometric View

(c) Equatorial View (d) Equatorial View

Fig. 37. 3 ECF cardinal views (a,c,d) and an isometric view (b) of a 4-1-5 Flower Constel-

lation with ω � 270Æ and icr � 116�6Æ. These graphics were generated with AGI’s

STK software.
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ECI Orbits

ECF Relative Orbit

Fig. 38. A restricted Flower Constellation based upon a 3-1 Flower Constellation. Five

satellites were placed with nodes evenly arrayed in a 45Æ range. The mean anoma-

lies were then computed using the standard phasing rules.

of 51 satellites to this constellation, another satellite will be added to each group. Thus,

to have groups of 3 satellites, all one must do is change the number of satellites to 153.

Remember, though, that this is merely a method for generating the orbit parameters. In an

actual mission design scenario, one would more than likely choose a single set of satellites

flying in formation. The maximum number of satellites possible in this particular FC is

Ns�max � FdNd � 26�707.
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(a) View from North Pole (b) Equatorial View

(c) Isometric view showing only the
satellites

(d) Isometric view also showing the
ECI orbits

Fig. 39. An “extreme” 2099-1571 Flower Constellation with 102 satellites. Curiously, this

constellation appears to be a 4 petal flower. However, the relative path is completely

different from that of a standard 4-1 FC. In this case, there are sets of two satellites

flying in close formation with each other as they travel along the relative path.
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CHAPTER IV

CONSTELLATION DESIGN VIA PROJECTION OF AN ARBITRARY SHAPE ONTO

A FLOWER CONSTELLATION SURFACE

The inverse design of a Flower Constellation is a non-trivial process. One can reduce the

complexity of the problem by specifying a number of the parameters a priori. Because

the Flower Constellations are defined by eight parameters, if one were to leave all the pa-

rameters free in addition to adding other mission design constraints that might be unrelated

to the Flower Constellation parameters themselves, then the process of finding a Flower

Constellation that is optimal in some sense becomes exceedingly difficult. In that regard,

the inverse design process on a single Flower Constellation is the subject of future work.

In particular, genetic algorithms might be investigated as a potential way of specifying a

cost function and obtaining an optimal solution of the Flower Constellation parameter set.

The inverse design process described in this chapter entails projecting an arbitrary

shape onto a Flower Constellation surface and then computing the intersection. The choice

of Flower Constellation specifies a�e� i, and ω. Then, based upon a set of discrete inter-

section points, one can then compute the required right ascension of the ascending node

(RAAN) and mean anomaly (MA) angles for each satellite to fix their location in space.

The Flower Constellation surface is defined by selecting a base Flower Constellation and

then revolving the relative orbit about the constellation axis of symmetry, which, in the case

shown here, is the inertial K̂ axis. Figure 40 shows an example of a 5-2 Flower Constella-

tion that has been revolved to form a surface.

Essentially, if one were to select a point on this surface, it would belong to a 5-2

Flower Constellation with a specific RAAN value. Thus, this surface can be thought of

as an infinite set of identical Flower Constellations except for having differentially small

variations in the RAAN. The objective, then, is to select a set of points on this surface that
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Fig. 40. A 5-2 Flower Constellation with i � 63�4Æ� ω � 270Æ, and hp � 1500 km that has

been revolved about the ECI K̂ axis to form a surface. A section has been removed

for clarity.

form a desired shape.

To that end, one needs to precisely locate the satellite on the specific Flower Con-

stellation. Thus, for each RAAN selected, there will need to be a corresponding mean

anomaly (MA) value chosen. In previous chpaters, there was a specific relationship be-

tween the RAAN and MA that was determined through physical constraints imposed by

orbital dynamics. However, in this chapter, there is no physical relationship between the

RAAN and MA but rather an algebraic one. This is due to the fact that each point selected
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will, in general, belong to independent Flower Constellations. Thus, in this chapter, we

will develop sets of equations where the RAAN and the MA are unknown variables that

must be solved for simultaneously.

Ω

n

i

υ

ω

r

perigee
J^

K^

I^

Fig. 41. The Earth Centered Inertial Frame and orbit parameters.

A. Projection from an Arbitrary View Plane

1. Some Definitions

First, begin with the inertial reference frame where the orbit parameters of the satellite are

defined. Figure 41 depicts the right ascension of the ascending node (RAAN), Ω, the orbit

inclination, i, the argument of perigee, ω, and the true anomaly, ν.

Denote the Earth Centered Inertial Frame by a superscript I with components of vec-

tors expressed as:

I : � Î Ĵ K̂ 
 (4.1)
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Fig. 42. The Camera Placement Frame and the View Frame.

For the purposes of this chapter, assume that the following orbit parameters have been

properly selected to achieve the desired Flower Constellation shape: a�e� i, and ω. Chapter

I describes how to solve for or select these orbit parameters based upon the Flower Con-

stellation design parameters. A reference frame called the ”Camera Placement” Frame in

which we will orient the ”View” Frame (See Figure 42) is defined. The Camera Placement

Frame (CPF) is displaced from the Inertial frame by some predefined vector quantity. The

CPF is constructed to be aligned with the inertial frame and will be described in more detail

later. The View Frame is constructed by selecting two ”viewing angles”, λV and φV , which

define the view normal, n̂V .

n̂V �

�
�����

cosφV cosλV

cosφV sinλV

sinφV

�
����� (4.2)



87

Based upon this view normal, place a viewing plane perpendicular to the view normal at a

distance of 	R	 from the origin of the inertial reference frame. Thus, we can define

R � 	R	n̂V (4.3)

where 	R	 is some predetermined value.

Vectors in the camera placement frame are denoted with a superscript P and vector

components can be expressed in the camera placement frame as:

P : � p̂1 p̂2 p̂3 
 (4.4)

Vectors in the View Frame are denoted with a superscript V and vector components

can be expressed in the View Frame as:

V : � n̂V ŝ t̂ 
 (4.5)

Mapping from the View Frame to the camera placement frame is accomplished using

the following transformation:

RPV � RT
3 �λV �R

T
2 �φV �R

T
1 �αs� (4.6)

β

rc

t̂

ŝn
V

ˆ

Fig. 43. The vector rc is defined in the ŝ-t̂ plane such that it is a function of the angle β.
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where αs is an angle that can be used to spin the view plane about the view normal if

desired.

Having established the View Frame and the viewing plane, one can draw an arbitrary

shape to project onto the Flower Constellation surface. One method is to define a vector

rc in the ŝ-t̂ plane such that it is a function of the angle β (See Figure 43). The number of

discrete values of β corresponds to the desired number of satellites in the final constellation

or formation.

rV
c � 	rc	

�
�����

0

cosβ

sinβ

�
����� (4.7)

where 	rc	 
 f �β�.

2. Solving for the Unknowns

Having established the requisite reference frames, the problem can can be constructed.

Figure 44 shows an example of projecting a circle from the ŝ-t̂ viewing plane onto a Flower

Constellation surface.

For each discrete value of β, a vector rc is drawn from the origin of the View Frame.

Then, the vector rpro j is constructed as the projection from rc to the point of intersection

with the Flower Constellation surface. This projection is perpendicular to the viewing

plane; therefore, write the projection vector, rpro j, in the V frame as

rV
pro j � 	rpro j	

�
�����
�1

0

0

�
����� (4.8)

where 	rpro j	 is an unknown quantity.

Now, construct an equation in the View Frame which is nothing more than a vector
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Fig. 44. Here we see that each satellite is located by projecting the shape from the ŝ-t̂ plane

to the surface of the Flower Constellation.

sum:

RV � rV
c � rV

pro j� rV
k � 0 (4.9)

where rV
k is the unknown vector from the origin of the Camera Placement Frame to the

point of intersection on the Flower Constellation surface expressed in the View Frame.

We can express RV in this frame by

RV � 	R	

�
�����

1

0

0

�
����� (4.10)
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Fig. 45. This figure shows the relationship between the Camera Placement Frame and the

Inertial Frame.

Substituting into the above equation, obtain:

	R	

�
�����

1

0

0

�
������ 	rc	

�
�����

0

cosβk

sinβk

�
������ 	rpro j	k

�
�����
�1

0

0

�
������ rV

k � 0 (4.11)
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which can be reduced down to

rV
k �

�
�����
	R	� 	rpro j	k
	rc	cosβk

	rc	sinβk

�
����� (4.12)

To express this vector in the Inertial Frame, use the transformation

rI
k � RIPrP

k �∆pI � RIPRPV rV
k �∆pI (4.13)

Recall that the Inertial and Camera Placement Frames are not rotated with respect to each

other. Because the view plane can be arbitrarily oriented, rotating the CPF becomes unnec-

essary. Thus, these two frames are only separated by a linear displacement, RIP � I. One

can also express the vector rI
k in the Inertial Frame as (See Figure 45):

rI
k � 	rI

k	

�
�����

cosαk cosλk

cosαk sinλk

sinαk

�
����� (4.14)

where

	rI
k	�

a�1� e2�

1� ecosνk
� (4.15)

αk � tan�1

�
� �sin isinθk�

cosθ2
k � sinθ2

k cos i2

�
� � (4.16)

θk � νk �ω� (4.17)

λk � tan�1
�

r̃�2�
r̃�1�

�
� (4.18)

r̃ � RIV �rV
c �βi��RV ��∆pI (4.19)
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This leads to

	rI
k	

�
�����

cosαk cosλk

cosαk sinλk

sinαk

�
������ RPV

�
�����
	R	� 	rpro j	k
	rc	cosβk

	rc	sinβk

�
������∆pI (4.20)

Here there are three equations in terms of two unknowns, νk and 	rpro j	k. The parameters

a�e� i, and ω are defined by the choice of the Flower Constellation surface. One must solve

these equations simultaneously for each discrete value of β to find the intersection points.

To do this, one can use the Matlab Release 13 routine fsolve,23 which attempts to find the

solution to a non-linear set of equations. Thus, one can solve Equation (4.20) for the (λk�νk)

pairs for each intersection point. The value of 	rpro j	k is only needed for the solution of the

equations and won’t be considered from this point on.

3. Finding the RAAN and MA

Now that the (λk�νk) pairs for each intersection point are known, a method to convert those

to (Ωk�Mk) pairs is desired. To that end, examine a vector expressed in two different ways

in the Inertial frame:

rI
k � RIO

�
�����
	rI

k	
0

0

�
������ 	rI

k	

�
�����

cosαk cosλk

cosαk sinλk

sinαk

�
����� (4.21)

where

RIO � RT
3 �Ωk�R

T
1 �i�R

T
3 �θk� (4.22)
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By expanding out the components of RIO, find the following relationships:

f1�Ωk� � cosΩk cosθk� sinΩk sinθk cos i� cosαk cosλk � 0 (4.23)

f2�Ωk� � sinΩk cosθk � cosΩk sinθk cos i� cosαk sinλk � 0 (4.24)

f3�Ωk� � sinθk sin i� sinαk � 0 (4.25)

The third equation contains no useful information. Thus, one can solve the first two

equations simultaneously, again using Matlab’s fsolve routine. Because there are two valid

equations with only one unknown, solving only one of the equations might not optimally

satisfy the other. Therefore, a composite function is constructed to solve based upon the

sum square of both equations:

f �Ωk� �

 
1
2
� f1�Ωk�2 � f2�Ωk�2� � 0 (4.26)

This was done to insure that both equations would be satisfied. Alternatively, one could

algebraically combine the two equations into a single equation. Note that there are two

possible solutions for the right ascension angle that are diametrically opposed to one an-

other (corresponding to the ascending and descending nodes). To determine which value

is correct, we employ a sanity check. Clearly, from Figure 41 on page 85, the value of the

RAAN angle must be less than the current value of λk. In this way, we can select the only

valid value of the Ωk.

Now, standard classical equations are used to solve for the mean anomaly.

tan�
Ek

2
� �

 
1� e
1� e

tan�
νk

2
� (4.27)

Mk � Ek � esinEk (4.28)
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(a) Overview (b) Initial Formation

(c) Formation starts to deform (d) At Apogee

(e) Formation begins to reform (f) Formation repeats process to
perigee

Fig. 46. A 10-1 Flower Constellation surface with i � 63�4Æ and ω � 270Æ was used to

generate this triangle formation. As the formation approaches apogee and perigee,

it collapses to a line before reforming. The original shape is formed twice on each

petal. However, the shape inverts as it crosses from one side of the globe to the

other. This figure was generated using AGI’s Satellite Tool Kit software package

and a two-body propagator.
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4. A Triangle Formation Example

At this point, all of the orbit parameters required to precisely place each satellite in the

formation have been determined. Each satellite has a common a�e� i, and ω that were set

based upon the desired Flower Constellation surface that the formation shape was being

projected upon. Additionally, a technique for finding the requisite (Ωk�Mk) pairs for each

satellite to generate the desired formation shape was developed.

In this section, a triangle formation shape is created where the base of the triangle is

desired to be 1000 km and the height is 500 km. The following design parameters were

established:

	R	� 15�000 km i � 63�4Æ ω � 270Æ hp � 1500 km

Np � 10 Nd � 1 Ns � 10 λV � 0Æ φV � 0Æ

where i, ω, and hp were used to establish the shape and orientation of the FC surface and

Np�Nd , and Ns are FC design parameters used to establish the number of “petals”, the

number of days to repeat, and the number of satellites in the constellation.

Based upon these parameters and using the Flower Constellation theory,24 the semi-

major axis and eccentricity of the FC surface are computed:

a � 9083�995 km e � 0�23688

To construct the desired constellation/formation shape, a function is defined in Matlab

v.6 to compute rc as a function of β.

Matlab v. 6.0 Code

function [rc] = triangleshape(beta,a,b,c,h);
% These components are expressed in the view frame (n,s,t)
% a,b,c are vectors locating the vertices of the triangle
% h is the height of the triangle
alpha = atan2(b(2),b(1))+2*pi; %central angle from x axis to point b
gamma = atan2(a(2),a(1)); %central angle from x axis to point a
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if (alpha � 0)
alpha = alpha + 2*pi;

end
if (gamma � 0)

gamma = gamma + 2*pi;
end
if ((beta �� 0 && beta �� pi/2) —— (beta �� alpha && beta �� 2*pi))

slopebc = (b(2)-c(2))/b(1); % slope of line segment bc
yintbc = c(2); % y-intercept of line segment bc
x1 = c(2)/(tan(beta)-slopebc); % x coordinate of satellite
y1 = slopebc*x1 + yintbc; % y coordinate of satellite
rc = [ 0 x1 y1 ]’;

elseif (beta � pi/2 && beta �� gamma)
slopeac = (a(2)-c(2))/a(1); % slope of line segment ac
yintac = c(2); % y-intercept of line segment ac
x2 = c(2)/(tan(beta)-slopeac); % x coordinate of satellite
y2 = slopeac*x2 + yintac; % y coordinate of satellite
rc = [ 0 x2 y2 ]’;

elseif (beta � gamma && beta �� 3*pi/2)
rc = [ 0 -h/(3*tan(beta-pi)) -h/3 ]’;

elseif (beta � 3*pi/2 && beta � alpha)
rc = [ 0 h/(3*tan(beta-3*pi/2)) -h/3 ]’;

else
rc = [0 0 0]’;

end

End Matlab v. 6.0 Code

Having established all the required parameters and set up a function to compute rc, one can

now ready to solve for the RAAN and MA pairs for each satellite.

Table VI has the results for an 10 satellite triangle formation. When these orbit pa-

rameters are input into AGI’s Satellite Toolkit software package,25 one can visualize the

formation. Figure 46 on page 94 shows a sequence of images demonstrating the deforma-

tion and reformation of the triangle formation as it moves from the equator to apogee and

then back to the equator. A similar sequence is found when the satellites approach perigee.

Note that, since this formation is non-symmetric, the shape inverts as it crosses from one

side of the globe to the other.

Many design considerations go into the selection of the base Flower Constellation sur-



97

Table VI. Satellite phasing for a 10 satellite triangle formation based upon a 10-1 Flower

Constellation.

Sat # Ω (deg) M (deg) ν (deg)

1 1.27 74.84 90.00

2 1.20 73.67 88.80

3 1.13 72.50 87.59

4 359.92 73.67 88.80

5 358.72 74.84 90.00

6 357.53 76.00 91.20

7 358.81 76.00 91.19

8 359.45 76.00 91.19

9 0.08 76.00 91.19

10 1.35 76.00 91.20



98

face. However, the choice of a 10-1 Flower Constellation for this example was essentially

arbitrary. By selecting a Flower Constellation that has multiple apogees arrayed around the

Earth, the amount of time that the formation spends in the deformed state is reduced. Also,

given that these formations are based upon repeating ground tracks, the multiple “petals”

allows for better coverage of Earth. Choosing fewer petals means the formation would pass

over a smaller region of the Earth. Therefore, the mission designer will need to experiment

with all the options available for optimum results.

B. Projection From the Mercator Map

In this technique, the projection is made along radial lines from the center of the Earth

through a set of geocentric latitude and longitude coordinates upward to the FC surface.

Alternatively, the projection is made from the surface of the Earth such that each line of

projection is parallel with each other. In this case, a centroid point is typically chosen to

set the normal direction of the projection (e.g. a particular geodetic latitude and longitude

coordinate where you would like to fix the surface normal direction). Again, once the

intersection of the projected shape with the FC is found, the RAAN and MA pairs can be

determined.

1. Geocentric Projection With a Circle Formation Example

For the geocentric projection case, one can express a vector from the origin of the ECF

frame to the satellite in terms of either the geocentric latitude and longitude coordinates or

in terms of the orbit elements. Note that the angle α in Eq. (4.16) on page 91 is equivalent

to the geocentric latitude, φgc, expressed in terms of the satellite orbit elements. Thus, one
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(a) Overview (b) Initial Formation

(c) Formation starts to deform (d) At Apogee

(e) Formation begins to reform (f) Formation repeats process to
perigee

Fig. 47. A 10-1 Flower Constellation surface with i � 85�0Æ and ω � 270Æ was used to

generate this circle formation. Note that the ground track has significantly longer

straight sections as compared to those of Figure 46. Therefore, the formation main-

tains its geometry much longer on each pass. This figure was generated using AGI’s

Satellite Tool Kit software package and a two-body propagator.
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can write

tanα � tanφgc

�sin isinθ�
cos2 θ� sin2 θcos2 i

� tanφgc (4.29)

Rearrange Equation (4.29) to obtain:

f � sin isinθk � tanφgc

�
cos2 θk � sin2 θk cos2 i (4.30)

Recall from Eq. (4.17) on page 91 that θk � νk �ω. By specifying the desired geocentric

latitude coordinate and knowing the base FC parameters, Equation (4.30) can be solved for

νk with Matlab’s fsolve routine. Once ν has been determined for each satellite, one can find

the RAAN and MA values using the techniques described in Section A.3.

The geocentric latitude and longitude points can be specified directly or, for instance,

one could use the Mercator Map equations:26

x � R�λgc (4.31)

y � R� ln

!
tan

�
φgc

2
�

π
4

�"
(4.32)

where λgc and φgc are geocentric longitude and latitude coordinates.

A circle formation shape is created based upon a circle with a 1000 km radius. The

following parameters were established:

i � 85�0Æ ω � 270Æ hp � 1500 km

Np � 10 Nd � 1 Ns � 8

As in the triangle formation example, using the Flower Constellation theory,24 obtain
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Table VII. Satellite phasing for a 8 satellite circle formation based upon a 10-1 Flower Con-

stellation.

Sat # Ω (deg) M (deg) ν (deg)

1 9.38 74.83 90.00

2 6.97 68.73 83.64

3 180.00 66.27 81.02

4 353.03 68.73 83.64

5 350.62 74.83 90.00

6 353.03 81.12 96.36

7 180.00 83.76 98.98

8 6.97 81.12 96.36

the semi-major axis and eccentricity. the following:

a � 9083�995 km e � 0�132745

Figure 47 on page 99 shows the resulting formation based upon the computed RAAN

and mean anomaly angles listed in Table VII. The sequence of images shows the deforma-

tion and reformation of the shape. Note that because the shape is symmetrical, it does not

invert, per se, as in the case of the triangle formation.

2. Parallel Projection

For the parallel projection case, we modify our approach slightly compared the the geo-

centric projection technique. Here, a desired unit normal direction, n̂, is prescribed first as

shown in Figure 48. Then a vector, r1 from the origin of the ECF frame is constructed to

the discrete latitude and longitude coordinate points on the surface of the Earth. From that
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Fig. 48. For the parallel projection case, each of the satellites are positioned by projecting

upwards from the surface of the Earth in a proscribed normal direction, n̂.
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point, another vector, r2 is constructed from the Earth’s surface to the intersection point

with the FC surface. This second vector has the same unit normal as the desired nominal

direction and has an unknown magnitude, 	rp	, that must be determined. These two vectors

can be written as follows:

r1 � R�

�
�����

cosλgc cosφgc

cosλgc sinφgc

sinλgc

�
����� (4.33)

r2 � 	rp	n̂ (4.34)

Now recall Eq. (4.14) on page 91:

rI
k � 	rI

k	

�
�����

cosαk cosλk

cosαk sinλk

sinαk

�
�����

Using vector algebra, we can construct the following equation that must be solved for νk

and 	rp	:

rI
k � r1 � r2

	rI
k	

�
�����

cosαk cosλk

cosαk sinλk

sinαk

�
������ R�

�
�����

cosλgc cosφgc

cosλgc sinφgc

sinλgc

�
������ 	rp	n̂ (4.35)
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where Equations 4.15 through 4.19 are repeated here for convenience:

	rI
k	�

a�1� e2�

1� ecosνk
�

αk � tan�1

�
� �sin isinθk�

cosθ2
k � sinθ2

k cos i2

�
� �

θk � νk �ω�

λk � tan�1
�

r̃�2�
r̃�1�

�
�

r̃ � RIV �rV
c �βi��RV ��∆pI

Finally, we can compute the RAAN and MA for each satellite using the technique described

in Section A.3. As this case is very similar to the geocentric projection, a graphical example

has been omitted for brevity.

C. Other Examples

Any desired shape can be created using the techniques outlined in this chapter. Figure

49(a) shows a rectangular formation. One could even write text using satellites flying in

formation. Figure 49(b) is an example of just that. The letters N, A, S, and A are spelled

out using 44 satellites. While this formation is impractical for most purposes, it serves to

demonstrate the flexibility and capabilities of this constellation/formation design technique.

D. Reorientation of the Constellation/Formation

In the previous examples given, the formation always collapsed to a line at apogee, which

was always located in the northern hemisphere. However, this may not be desirable for

some mission profiles. Thus, one can use a technique to reorient the base Flower Constel-

lation surface as discussed in Chapter I. In this way, it is possible to rigidly reorient entire
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(a) A rectangular formation on a 5-2 FC surface. This figure was gener-
ated using AGI’s Satellite Tool Kit software package.

(b) Here, the text ”NASA” is written on a 10-1 Flower
Constellation surface using 44 satellites. This figure
was generated using AGI’s Satellite Tool Kit software
package.

Fig. 49. Two examples of other kinds of constellations and formations that can be created

with this technique.
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constellations/formations. Note that this is a mathematical exercise and will generally be

fuel prohibitive to maintain. Also note that this is not a reconfiguration, but rather a method

for generating the required orbit elements at initial time.

Using this reorientation technique, the triangle formation from Figure 46 on page 94

was reoriented such that the original axis of symmetry was rotated 90Æ away. Table VIII

shows the new orbital parameters for each satellite in the formation. Figure 50 on page 108

shows a sequence of images as the formation orbits the Earth.

Note that in this particular case, the inclination is for a retrograde orbit. This can be

changed to a prograde orbit through a different selection of the reorientation angles. Also

note that the inclination is no longer one of the critical inclinations. In general, reoriented

FC’s will require control to combat geopotential perturbations in order to maintain the

integrity of the formation/constellation.
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Table VIII. New orbital parameters for a 10 satellite triangle formation originally based

upon a 10-1 Flower Constellation that has been reoriented 90Æ from the original

axis of symmetry.

Sat # i (deg) ω (deg) Ω (deg) M (deg) ν (deg)

1 100.54 155.54 23.65 63.12 90.01

2 100.60 155.56 23.67 61.97 88.75

3 100.65 155.58 23.70 60.83 87.48

4 101.64 155.88 24.15 61.97 88.75

5 102.62 156.18 24.60 63.12 90.01

6 103.60 156.47 25.05 64.27 91.25

7 102.55 156.15 24.57 64.25 91.24

8 102.03 156.00 24.32 64.25 91.24

9 101.51 155.84 24.09 64.25 91.24

10 100.48 155.52 23.62 64.27 91.25
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(a) Overview (b) Formation at apogee near the
equator

(c) Formation nears perigee (d) At perigee

(e) Formation begins to deform
as it approaches the equator
again

(f) Formation repeats process
from the equator

Fig. 50. The 10 satellite triangle formation from Figure 46 on page 94 has been reoriented

90Æ from the original axis of symmetry. Note that the location where the formation

collapses to a line is no longer at the north pole, but rather at the equator. These

figures were generated using AGI’s Satellite Tool Kit software package.
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CHAPTER V

PERTURBATION THEORY AND ITS EFFECT ON FC DESIGN

Because the Earth is an oblate spheroid, there are perturbations induced upon an orbit that

cause it to shift position and alter shape over time. Among the primary perturbations affect-

ing orbits in general are the J2 effect (the first zonal component of the Earth’s geopotential

expansion), atmospheric drag, solar radiation pressure, and third-body interactions with

other massive bodies in our solar system (e.g. luni-solar effects).

Atmospheric drag is of concern to many satellites that fall into the near Earth regime.

There is some debate about the extent of this regime but it is generally held that above

1000 km in altitude, atmospheric drag is of little to no consequence. Earlier in Chapter I,

it was pointed out that 600 km was a good threshold for a minimum altitude to ensure that

atmospheric drag would not dominate the motion of the satellites in the constellation under

consideration.

Other perturbations such as solar radiation pressure and third-body effects need to

be evaluated on a case-by-case basis as they are strongly dependent upon the epoch time

and the resultant orbit size. This chapter will look at summarizing the effects of solar

radiation pressure and third-body interactions to give the constellation designer a guideline

for choosing Flower Constellation parameters judiciously. For detailed analysis, refer to

the cited literature.

The Joint Goddard Earth Model-2 (JGM-2) geopotential model, is one of the most

accurate geopotential models today.27 Currently there are on the order of 70� 70 terms

that have been evaluated through experiment. From this model, J2 ��1�08262692�10�3

and is of the order of 10�3 while the remaining zonal terms are of the order 10�6 or less.20

Therefore, in many instances, it is feasible to neglect zonal terms beyond the J2 term and

still obtain acceptable simulation accuracy.
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However, this is not necessarily true for orbits that happen to have periods commen-

surate with the Earth’s rotation rate. In this case, smaller tesseral harmonics can produced

large amplitude oscillations in the orbit elements over time that might become unacceptable

to the mission profile. The period of these motions varies depending upon the particular

resonance that is excited. The next section in this chapter will examine in detail the problem

of resonance as it pertains to the Flower Constellations.

A. Resonance Concerns

Flower Constellations have an additional concern regarding the Earth’s geopotential field

because many of these orbits are commensurate with the Earth’s spin rate (i.e. the satellite

mean motion is an integer multiple of the Earth’s spin rate). In this situation and in cases

of near commensurability, resonance effects created by the longitude dependent tesseral

harmonics of the geopotential field must also be taken into account.

The disturbing potential introduced by Kaula in 1966 is given by:28

U �
µ
r

∞

∑
l�2

l

∑
m�0

l

∑
p�0

∞

∑
q��∞

µ
a

�
R�
a

�l

Flmp�i�Glpq�e�Slmpq�ω�M�Ω�θGMST� (5.1)

where the S functions contain the gravitational coefficients

Slmpq�ω�M�Ω�θGMST � �

���
��

Cl�m cosΘlmpq�Sl�m sinΘlmpq

�Sl�m cosΘlmpq �Cl�m sinΘlmpq

if �l�m� is even

if �l�m� is odd
(5.2)

where

Θlmpq � �l�2p�ω��l�2p�q�M�m�Ω�θGMST � (5.3)
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The F and G functions are expressed as functions of the inclination and eccentricity:

Flmp�i� �
min�p� k�

∑
t�0

!
�2l�2t�!

t!�l� t�!�l�m�2t�!22l�2t sinl�m�2t�i�

�
m

∑
s�0

�
#�m

s

�
$�coss�i�∑

c

�
#�l�m�2t � s

c

�
$�
�
#� m� s

p� t� c

�
$���1�c�k

�
�� (5.4)

where k is the integer part of �l�m��2 and c is summed for all values for which the

coefficients are not equal to zero.

Glpq�e� �
1

�1� e2�l�1�2

p�
�1

∑
d�0

�
#� l�1

2d � l�2p�

�
$�
�
#�2d � l�2p�

d

�
$�%e

2

&2d�l�2p�

(5.5)

where p� � p if p� l�2 and p� � l� p if p� l�2.

Θ̇lmpq � �l�2p�ω̇��l�2p�q�Ṁ�m�Ω̇� θ̇GMST �

� �l�2p�ω̇��l�2p�q�n�m�Ω̇�ω�� (5.6)

Repeat ground track resonance occurs for terms where the condition q � 0 is satisfied or

when Θ̇lmpq � 0. This implies that

Θ̇lmpq � 0� �l�2p��ω̇� Ṁ�� m
'
θ̇GMST � Ω̇

(
� m�ω�� Ω̇� (5.7)

which can be expressed as the ratio

P
Q
� ω̇� Ṁ

ω�� Ω̇
�

m
l�2p

(5.8)

The values of l�m� and p that satisfiy the resonance condition are m � jP and jQ � l�2p

where j � 1�2�3� � � �. These terms are considered critical because their rates vanish and

lead to resonance oscillations with long periods. Based upon the above developments, the
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resonance parameter, εΘ is defined

εΘ � Q�ω̇� Ṁ��P�ω�� Ω̇� (5.9)

Note that when Θ̇lmpq � 0, then exact resonance occurs (i.e. εΘ � 0). When εΘ is small,

then deep resonance occurs that leads to large amplitude oscillations with long periods.

When εΘ is large, then shallow resonance occurs that have smaller motion amplitudes and

shorter periods. The period of the resonance is

Tres �
2π
	εΘ	 (5.10)

Similarly, to determine whether or not tesseral harmonics will be a dominating factor,

Garfinkel29 introduced the resonance parameter, R.

R �
Tc

T
� 1�

so

∆s
(5.11)

where Tc is the circulation period (often called the beat period) defined by

Tc �
2π�m

�s0�∆s��θ̇� Ω̇�
� (5.12)

m is one of four summation indices in the standard potential function,28 and T is the anoma-

listic orbit period. s0 and ∆s can be found from the following definition

s
 P
Q

� s0 �∆s (5.13)

where s is the ratio of the nodal period of the satellite and the Earth’s rotation rate and s0 is

the integer nearest s. Note that ∆s � 1 and, when ∆s � 0, the orbit is exactly commensurate

with the Earth’s rotation rate. When ∆s is small, we say that the orbit is nearly commensu-

rate. A fundamental resonance occurs when m (Equation (5.12)) equals s0 and very weak

higher overtones are apparent when m is an integer multiple of s0. Thus, Equation (5.11) is

derived for fundamental resonances.
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Fig. 51. A comparison of the resultant value of s for various values of Np and Nd .

Recall from Equation (1.3) and Equation (1.2) that

TΩG � 2π
'
ω�� Ω̇

(�1

TΩ � 2π
'
Ṁ� ω̇

(�1

Combining these two, one can write

TΩ
TΩG

�

'
Ṁ� ω̇

('
ω�� Ω̇

( (5.14)

where one can see from Equation (5.8) that

P
Q

�
TΩ
TΩG

(5.15)

Clearly now from Equation (5.15) and Equation (1.1) one can write that
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Fig. 52. Gedeon’s resonance parameter can be used to determine whether or not resonance

effects can be safely ignored. Values of R less than 10 have negligible resonance

effects, R values in the low tens are in the shallow resonance regime, and R values

in the high tens and hundreds are in the deep resonance regime. The spikes in

this graph are located at an Np�Nd pair where ∆s � 0 and a fundamental resonance

exists.
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P
Q

�
Np

Nd
(5.16)

Thus, for the purposes of the Flower Constellations,

s
 1
τ
�

Np

Nd
(5.17)

where τ is defined in Eq. (1.10) on page 13. Figure 51 graphically displays the variation in

s for 1� Np � 100 and 1� Nd � 100.

According to Gedeon, when the resonance parameter, R, is less than 10, then reso-

nance effects are insignificant may be ignored. However, when R reaches values in the tens

or higher, perturbations stemming from one or more critical tesseral harmonics becomes

appreciable. This is called the shallow resonance regime. As ∆s� 0, R can reach into the

hundreds and the orbit is said to be in deep resonance. Figure 52 depicts the resonance pa-

rameter for 1� Np � 100 and 1� Nd � 100. For the Flower Constellations, a fundamental

(deep) resonance occurs, for example, when Nd � 1 or when Nd 	 Np ( i.e. s � � ).

1. Station Keeping in the Presence of Resonance Effects for Nearly Circular Orbits

Resonance can affect all the orbit parameters in one way or another. However, the most

pronounced effect caused by the resonance described in this chapter is found in what is

termed the “stroboscopic mean node” 1,

λN �
1
s0
�M�ω�� �θGMST �Ω� (5.18)

The classical method for controlling this effect is given by Gedeon30 where he describes the

stroboscopic mean node by introducing a “mean satellite” that “illuminates” the Earth with

a stroboscopic flash light and crosses the equator at a longitude of λN � Ω�θGMST . After

Q (or Nd) days, the mean satellite will be in the same position provided that λ̇N � 0 or will

1Gedeon30 attributes this name to the suggestion of Dr. Boris Garfinkel
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be
�

λ̇Ndt away if λ̇N �� 0. Therefore, λN only has physical meaning at integer multiples of

Q (or Nd) days, which leads to the concept of a “stroboscopic mean node”.

Bear in mind that the tesseral harmonic perturbations cause an acceleration in Ω�ω,

and M and in order to determine λN , one must integrate the following second order differ-

ential equation that was derived by Gedeon:30

λ̈N � Ω̈�
1
s0
�M̈� ω̈� (5.19)

�
n2

s2
0
∑
)

1�A
mλ̇N �qω̇

n

*
1

mP2
lmpq

� sinm�λn�λlm��O�J2
lm� (5.20)

where

Plmpq �
1
m

!
�a�a��l

3	Flmp�i�Glpq�e�	Jlm

"1�2

(5.21)

λlm � λlm �
2πk
m

�

���
��

�1�ξ� π
2m

ξ π
2m

���
��

�l�m�even

�l�m�odd

�
q
m

ω (5.22)

ξ �

���
��

�1

�1

���
�� if Flmp�i�Glpq�e�

���
��

�

�

���
��0 (5.23)

A �� so

3m

)
2�l�1��

e�1� e2�1�2

1��1� e2�1�2

G�

G
�

s0� cos i

�1� e2�1�2 sin i

F �

F

*
(5.24)

and summation is performed over all critical indices. Note that λlm is the longitude of the

stable node, which rotates at an angular velocity of �qω̇�m� in the equatorial plane.

The motion of the longitude of the mean node can be controlled by establishing a

deadband region of �∆λ that is centered away from a stable node by the amount βlm. For

small deadbands, Gedeon found that the amount of ∆V required on an annual basis can be

computed as:
δV�V

T
�

n�s0

3

�
Vc

V

�2

∑ 1

mP2
lmpq

sinmβlm (5.25)
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where n is the mean motion expressed in radians per year, Vc is the circular orbit velocity,

V is the velocity at the point of application of the orbit correction, and the summation is

performed over all critical terms contributing to the resonance phenomena.

The stable node locations move depending upon the number and kind of critical terms

included in the analysis. In order to determine βlm, one must first locate the stable node by

solving for those values of λ0 that satisfy the following relationship:

µ
a ∑
%a�

a

&l
JlmFlmp�i�Glpq�e�

���
��
�sin

cos

���
��

�l�m�even

�l�m�odd

�m�λN�λm��qω� � 0 (5.26)

where, once again, the summation is performed over all critical indices.

2. Station Keeping in the Presence of Resonance Effects for Eccentric Resonant Orbits

The station keeping method presented by Gedeon was largely developed assuming very

small orbit eccentricities. Ely and Howell31 found that if one were to apply this method

to highly eccentric orbits, then the method has the potential to become unstable. Ely and

Howell addressed this issue by constructing a new method for east-west station-keeping

for eccentric orbits called the EOSK algorithm. The EOSK algorithm is suitable for orbits

that are nearly commensurate and also includes luni-solar effects. For complete details

regarding the EOSK method, please refer to their paper.

3. Resonance and the Critical Inclination

It should also be mentioned that Delhaise and Henrard32 showed that for 12 hr and 24 hr

orbits that are inclined at the critical inclination chaotic motion can result. Their work was

performed as part of a preliminary mission analysis for ESA’s Archimedes project (See

Section I.A). They looked at the Hamiltonian averaged over the mean motion and included
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terms due to the Earth’s geopotential, which is shown here up to the 2nd order zonal term:

H �� µ2

2L2 �ω�H� µ4

L6

R2
�J2

4

�
3

H2

G2 �1

��
L
G

�3

� µ6

L10

R4
�J2

2

4
�A�L�G�H�cos2g�C�L�G�H��

� ∑
l�m�p�q

Blmpq

���
��

cosθl�m�p�q

sinθl�m�p�q

���
��

for l�m even

for l�m odd
(5.27)

where

θl�m�p�q � m�x3�λlm���l�2p�g (5.28)

A�L�G�H� �� 3
16

�
L5

G5 �
L7

G7

��
1�16

H2

G2 �15
H4

G4

�
(5.29)

C�L�G�H� �
15
32

L5

G5

�
1� 18

5
H2

G2 �
H4

G4

�

�
3
8

L6

G6

�
1�6

H2

G2 �9
H4

G4

�

� 15
32

L7

G7

�
1� 18

5
H2

G2 �
H4

G4

�
(5.30)

Blmpq �
µ
a

�
R�
a

�l

Flmp�i�Glpq�e�Jlm (5.31)

Note that λlm is the longitude of the major axis of symmetry of the �l�m� spherical har-

monic, �l�g�h�L�G�H� are the Delaunay variables with respect to an Earth Centered Earth

Fixed (ECEF) frame, the inclination and eccentricity functions Flmp�i� and Glpq�e� have

already been given in Section V.A, and Jlm are the tesseral (l �� m) and sectorial (l � m)

geopotential spherical harmonic coefficients. The canonical variables used in Delhaise and

Henrard’s analysis can be written in terms of the Flower Constellation parameters as:

x1 � l x2 � g x3 �
Nd

Np
l �Ω�ω�t (5.32)

y1 � L� Nd

Np
H y2 � G y3 � H (5.33)



119

The equilibrium points of the Hamiltonian can be found by solving

dxi

dt
�

∂H
∂yi

� 0 (5.34)

dyi

dt
��∂H

∂xi
� 0 for i � 2�3 (5.35)

where the terms A�Bl�m�p�q, and C are assumed to be constant, the values of the semi-

major axis and eccentricity are determined as described in the Flower Constellation theory,

and the inclination is a critical inclination. By expanding the total Hamiltonian about the

equilibrium points up to quadratic terms and separating into a perturbed and non-perturbed

form, one can obtain

H � Ho�x3�y3�x2�� εH1�x3�y3�x2�y2� (5.36)

with

H0 �
1
2
�y3� y�3�

2 ∂H 2

∂y2
3

++++
y�i

� ∑
l�m�p�q

Blmpq

���
��

cosθl�m�p�q

sinθl�m�p�q

���
��

for l�m even

for l�m odd
(5.37)

H1 �
1
2
�y2� y�2�

2 ∂H 2

∂y2
2

++++
y�i

��y2� y�2��y3� y�3�
∂H 2

∂y2∂y3

++++
y�i

(5.38)

� µ6

L�10

R4
�J2

2

4
A�y�i �cos2x2

By modifying the new separable form of the total Hamiltonian using the classical action

angle variables �ψ�J�, one can create a quasi-integral J. This quasi-integral can now be

used to look at the level curves for canonical coordinate pairs �x2�y2� and �x3�y3�. “Choatic

motion is expected in the regions where level curves cross the separatrix associated with

the resonance in mean motion.”32

The tesseral terms employed in their analysis for the Molinya and Tundra type orbits

are given in Table IX.
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Table IX. Tesseral terms used by Delhaise and Henrard32 to study the problem of resonance

in mean motion for critically inclined orbits.

12 hr Orbit 24 hr Orbit

l m p q l m p q l m p q l m p q

2 2 0 -1 2 2 1 1 2 2 0 0 2 2 1 2

3 2 1 0 3 2 2 2 3 2 0 -1 3 2 1 1

5 2 2 0 4 4 1 0 3 2 2 3 4 2 1 0

4 4 2 2 5 4 2 1 3 3 0 0 3 3 1 2

5 4 3 3 6 4 3 2 3 3 2 4 4 3 0 -1

6 6 2 1 6 6 3 3 4 3 1 1 4 3 2 3

7 6 3 2 7 6 4 4 4 4 1 2 5 5 1 2

8 6 4 3 9 8 4 3

B. Variation of the Orbit Elements

The orbit elements for each individual satellite in a Flower Constellation will vary based

on the perturbations induced upon them. These variations can be classified as secular,

short-period, and long-period effects. The classic orbit elements can be written as

a � ā�∆aSP�∆aLP

e � ē�∆eSP �∆eLP

i � ī�∆iSP�∆iLP (5.39)

ω � ω̄� ω̇sec∆t �∆ωSP �∆ωLP

Ω � Ω̄� Ω̇sec∆t �∆ΩSP�∆ΩLP

M � M0 � Ṁ0�sec∆t �∆MSP �∆MLP
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Secular effects (SEC) are the most pronounced in that the elements will grow as a linear

function of time. Note that the elements a�e� and i, have no secular effects. Short-period

(SP) and long-period (LP) perturbations give rise to bounded sinusoidal motions. A com-

mon practice is to average out the short period and long period effects so that only secular

effects remain. This allows one to see the big picture of how perturbations are impacting

orbit elements over time.

Analytic and semi-analytic theories studying secular, short-period, and long-period

perturbations have been around since the 1960’s. Brouwer,33 Kozai,34, 35 Lyddane,36 Mer-

son,37 and Deprit,38 have all written classic works on treating orbit element propagation

under the influence of geopotential perturbations in an analytic fashion. Some of these

analytic theories include effects up to J6; however, higher order terms beyond J6 become

extremely computationally expensive and are best reserved for modern automated symbolic

manipulation.

From Vallado,20 the secular rates of Ω�ω� and M0 originally derived by Merson,37

including the first six zonal harmonics, can be expressed as:

Ω̇sec �
dΩ
dt

�� 3J2R2
�ncos i

2p2 �
3J2

2R4
�ncos i

32p4

,
12�4e2� �80�15e2�sin2 i

-
�

15J4R4
�ncos i

32p4

,
8�12e2� �14�21e2�sin2 i

-
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�ncos i

1024p6

,
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��264�660e2 �495e4�sin4 i
-

(5.40)



122

ω̇sec �
dω
dt

�
3nJ2R2

�

4p2

,
4�5sin2 i

-
�

9nJ2
2R4

�

384p4

,
56e2 ��760�36e2�sin2 i� �890�45e2�sin4 i

-
� 15J4R4

�n

128p4

,
64�72e2� �248�252e2�sin2 i��196�189e2�sin4 i

-
�

105J6R6
�n

2048p6

,
256�960e2�320e4� �2048�6880e2�2160e4�sin2 i

��4128�13080e2�3960e4�sin4 i� �2376�14520e2�2145e4�sin6 i
	

(5.41)
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(5.42)

where p � a�1� e2�, n2a3 � µ, and J2 � 1�0826269� 10�3, J4 � �1�62042999� 10�6,

and J6 � 5�408436161399631�10�7 are the zonal harmonic expansion coefficients given

by the JGM-2 geopotential model.20 Equation (5.40) was extended up to O�J14� by King-

Hele, Cook, and Rees.39 Note that only even zonal terms cause a secular drift. Also,

Kozai included J3
2 terms and the coupled terms for J2J4.35 Furthermore, using Brouwer’s

averaging method, the secular variation of the RAAN and argument of perigee due to the
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J2
2 term can be expressed as
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Kozai used a different method of averaging and generated secular variations due to the J2
2

term as

Ω̇J2
2
�

3J2
2R4

�ncos i

32p4

�
�216�24e2 �288

�
1� e2 �

%
240�30e2�432

�
1� e2

&
sin2 i
	

(5.45)
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(5.46)

1. Numerical Simulations

The secular drift rates for the right ascension of the ascending node, the argument of

perigee, and the mean anomaly are critical to the overall integrity of a Flower Constel-

lation. These drift rates are a function of the geopotential harmonic coefficients, eccentric-

ity, inclination, and the semi-major axis. Here the secular drift rates will be plotted as a

function of τ instead of semi-major axis.

Figures 53 through 55 show the secular drifts at the critical inclination of 63�4Æ. What

is important to note here is the choice of τ and eccentricity as it pertains to the three orbit

elements. For the change in RAAN depicted in Figure 53 on page 126, as τ � ∞ cou-

pled with circular and nearly circular orbits a large shift over one year is created. Highly

eccentric orbits appear to have the smallest shift in RAAN.
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The shift in the argument of perigee, as expected, is very small. Only a close approx-

imation of the true critical inclination was used (i.e. only one decimal of precision). As

one can see once again in Figure 54 on page 127, large values of τ lead to large changes

in the argument of perigee. Also note that in this truncated perturbation expansion where

only J2 zonal terms are considered(See Equation (5.41)), as the eccentricity goes to one,

the perturbation goes to zero.

For the mean anomaly at the critical angle, the smallest secular change occurs in highly

eccentric orbits and for small τ. This is shown in Figure 55 on page 128. Figures 56 through

58 shows the same scenario as before except that even zonal terms up to J6 have been

included. Note that qualitatively, incorporating higher harmonics has very little change in

the overall secular drift rate.

Now consider the secular drift rates when the orbit inclination is some other desired

inclination besides the critical inclination. Figures 59 through 61 depicts the secular drift

rate for orbits at an inclination of 27�5Æ and includes up to J6 zonal harmonics along with

Kozai’s J3
2 and J2J4 terms. Here one will notice that there is a significant change in the

argument of perigee drift and the mean anomaly drift. The right ascension of the ascending

node is unaffected by inclination for all intents and purposes. The inclusion of the higher

order harmonics changes the qualitative results only slightly. The major shift occurs due to

the orbit inclination being something other than a critical inclination.

In general, the perturbation of the argument of the perigee and the mean anomaly is

the most critical to the Flower Constellations. A secular drift in the RAAN is not critical

for most Flower Constellations because it has no effect on the overall shape or character

of the Flower Constellation. The Flower Constellation merely spins about the axis of

symmetry (reoriented Flower Constellations require additional analysis). The shift in the

argument of perigee, however, will cause the line of apsides to rotate. The effect on the

relative path is somewhat akin to a flower“wilting” in the sun. Perturbations of the mean
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anomaly will cause the carefully orchestrated and synchronized patterns to deviate creating

a potential for collision. Therefore, the mission designer must decide upon an orbit period

knowing that certain values of τ will cause significant changes in the phasing and that

inclination choices other than the critical inclination will most likely require a consistent

level of control throughout the constellation lifetime.

2. Incorporating Higher Order Zonal Harmonics

In Section I.2, the anomalistic orbit period was determined as a function of the semi-major

axis, the height of perigee, the orbit inclination, and J2. However, if one is wanting to per-

form a more detailed analysis using higher order perturbations, then these must be included

into the computation of the nodal period as well.

Eq. (1.9) on page 13 can be written in the more general form

TΩ �
Nd

Np

�
2π

ω�� Ω̇

��
1�

Ṁ0 � ω̇
n

�
(5.47)

One can now substitute in the 6th order perturbative terms given in Eqs. (5.40) through

(5.46) and solve for the semi-major axis just as was done in Section I.B.3. Given that this

system of equations is highly nonlinear, a good initial guess for the semi-major axis would

be the solution containing only the J2 term.

C. Effects of Third-Body Interactions

Satellites that are in medium to high Earth orbits will more than likely require the inclusion

of perturbative effects stemming from the gravitational pull of the moon and Sun. These

so-called luni-solar effects in particular and third-body effects in general can cause long

term changes to the orbit elements of a satellite. Third-body effects only evidence secular

perturbations in the RAAN and argument of perigee while long-period perturbations can be
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Fig. 53. The change in the RAAN over one year is plotted for various values of τ and ec-

centricity at the critical orbit inclination of 63�4Æ. Only the J2 zonal term has been

included.
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Fig. 54. The change in the argument of the perigee over one year is plotted for various values

of τ and eccentricity at the critical orbit inclination of 63�4Æ. Only the J2 zonal term

has been included.
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Fig. 55. The change in the mean anomaly over one year is plotted for various values of τ
and eccentricity at the critical orbit inclination of 63�4Æ. Only the J2 zonal term has

been included.
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Fig. 56. The change in the RAAN over one year is plotted for various values of τ and ec-

centricity at the critical orbit inclination of 63�4Æ. Zonal terms up to J6 have been

included.
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Fig. 57. The change in the argument of the perigee over one year is plotted for various values

of τ and eccentricity at the critical orbit inclination of 63�4Æ. Zonal terms up to J6

have been included.
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Fig. 58. The change in the mean anomaly over one year is plotted for various values of τ
and eccentricity at the critical orbit inclination of 63�4Æ. Zonal terms up to J6 have

been included.
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Fig. 59. The change in the RAAN over one year is plotted for various values of τ and ec-

centricity at an orbit inclination of 27�5Æ. Zonal terms up to J6 have been included

along with Kozai’s J3
2 and J2J4 terms.
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Fig. 60. The change in the argument of the perigee over one year is plotted for various values

of τ and eccentricity at an orbit inclination of 27�5Æ. Zonal terms up to J6 have been

included along with Kozai’s J3
2 and J2J4 terms.



134

10
−5

10
0

10
5 0

0.5
1

10
−15

10
−10

10
−5

10
0

10
5

Eccentricity
τ = N

d
 / N

p

∆ 
M

0 (
ra

d)

Fig. 61. The change in the mean anomaly over one year is plotted for various values of τ
and eccentricity at an orbit inclination of 27�5Æ. Zonal terms up to J6 have been

included along with Kozai’s J3
2 and J2J4 terms.
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seen in the eccentricity, orbit inclination, RAAN, and argument of the perigee. Resonance

can also occur when the time rate of change of the arguments of periodic terms approaches

zero.40

Assuming that the third body is in a general eccentric orbit, Smith41 determined that

the secular rate of change of for the RAAN and argument of the perigee can be expressed

as

Ω̇sec �
3µ3�1� e2�3�1�5e2��2�3sin2 i3�

8r3
3n�1� e2

3

3�2

cos i (5.48)

ω̇sec �
3µ3�1� e2�3�2�3sin2 i3�

16r3
3n�1� e2

3�
3�2

!
4�5sin2 i�5e2

�
3� 7

2
sin2 i

�"
(5.49)

where variables with the subscript 3 refer to the third body and variables without subscripts

refer to the satellite.

Kamel, Ekman, and Tibbitts42 presented a method for analyzing east-west station-

keeping requirements for nearly synchronous satellites under the influence of luni-solar

perturbations. A two maneuver approach was presented that keeps important tesseral har-

monic terms. The authors found that the initial semi-major axis of the satellite deviates in

a fashion dependent upon the initial relative position of the satellite to the Moon and Sun.

D. Effect of Solar Radiation Pressure

Solar radiation pressure (SRP) can become a significant factor in a perturbation analysis for

a satellite at an altitude above 800 km. Above this altitude, solar radiation pressure forces

can exceed those of atmospheric drag. The periodic variations of the orbit parameters as

induced by solar radiation pressure can have periods of up to one year due to the Earth’s

yearly rotation about the Sun. SRP is generally very small for most satellites except for

those with large surface areas and a low overall mass (e.g. Solar Sails). Satellites that pass

into and out of shadow as they orbit the Earth can have complex periodic effects.
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The rate of change of the orbit elements due to SRP effects for a satellite in sunlight

for its entire orbit can be expressed as20

ȧ � 0 (5.50)

ė �
3
�

1� e2

2na
SP (5.51)

ṙp ��a�̇e� (5.52)

i̇ �
3Wecosω

2na
�

1� e2
(5.53)

Ω̇ �� 3Wesinω
2na

�
1� e2 sin i

(5.54)

ω̇ ��
.

3
�

1� e2

2nae
Rp� Ω̇cos i

/
(5.55)
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where

RP � FSR
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and FSR is the SRP disturbing acceleration, λ� is the ecliptic longitude of the Sun, and

ε � 23�5Æ. Note that a resonance occurs when ω̇� Ω̇� λ̇� � 0 or when ω̇� Ω̇ � 0. For a

complete discussion of the effects of solar radiation pressure including detailed equations

for when a satellite moves into and out of sunlight, please refer to Vallado,20 Burns et al.,43

and Cook.40
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E. Frozen Orbits

In general, all of the perturbations discussed in this chapter prevent the orbit ground track

from repeating precisely in addition to destroying carefully planned constellation geometry.

While the symmetry of the Flower Constellation will be maintained (each orbit essentially

experiences identical perturbations), the original design of the Flower Constellation will

be lost. By judicious choice of the orbit parameters, one can attempt to eliminate and/or

minimize the effect of some of the geopotential perturbations. In that regard, when we

choose a parameter such that it will eliminate a known perturbation, the orbit is said to be

frozen.

The J2 effect can be characterized by linearizing the aspherical gravitational potential

equation. From this, we find that J2 perturbation affects only Ω, ω, and the mean anomaly

M. The secular equations resulting from this linearization are given in the previous section

in Eq. (1.5). More extensive analysis can be done to include not only the zonal harmonics,

but also tesseral and sectorial harmonics. However, the resulting equations will be much

more complex and are beyond the scope of this section.

The change in the argument of the perigee will cause the line of apsides to move.

While the symmetry of the Flower Constellation will be maintained (each orbit experi-

ences identical perturbations), the original design of the Flower Constellation will be lost.

The argument of perigee can be frozen by selecting one of the critical inclinations, specifi-

cally i � 63�4Æ or i � 116�6Æ. Note that the choice of critical inclination will have a major

impact upon both the shape and behavior of the Flower Constellation. However, any in-

clination can be selected provided that the control effort required to maintain the Flower

Constellation falls within acceptable limits for the mission.

For the specific case that the orbit inclination is a critical inclination, icr, Equation
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(1.9) can be simplified because ω̇ is now zero, which results in

T �
2π
ω�

Nd
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�
1�2ξ

n
ω�
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��1�
1�ξ

�
�2�3sin2 icr�

�
1� e2

	

(5.60)

Equation (5.60) governs the anomalistic period for a Flower Constellation under the influ-

ence of the J2 perturbation when the inclination is a critical inclination.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

The fundamental theory of Flower Constellations has been presented. The concepts of

the Broglio Clover, LOOPUS, and JOCOS systems among others have been extended to

a general method for generating constellations of satellites with orbits that are compatible

with a rotating reference frame. Based upon the phasing scheme adopted in this work,

it was shown that unique Flower Constellations can be generated using what is termed

“secondary closed paths.” The existence and uniqueness of secondary closed paths were

proved and the specific choices of Flower Constellation parameters that create secondary

paths were derived.

A new, and more general, phasing scheme is being considered for future work. Eq.

(1.27) on page 19 will be expressed in the following way

∆M0 � 2π
Fn

Fd

Np

Nd
�

2πFh

Nd
(6.1)

where Fh is a new phasing parameter that allows the placement of satellites be shifted. This

is an effort to alleviate the requirement that satellites be placed sequentially. Incorporating

this new phasing parameter will require a new study of secondary closed paths.

Guidelines for designing a constellation of satellites using the Flower Constellation

technique have also been presented. A variety of categories of Flower Constellations that

could be achieved above and beyond the simple flower petals that were originally conceived

when this work first began were also presented. Examples of how to generate currently

known constellation types were demonstrated using the Flower Constellation theory.

Future work will focus on the inverse process whereby a designer would specify the

desired shape and then the required Flower Constellation parameters to generate that con-

stellation would be determined. While not explicitly presented herein, creating an arbitrar-
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ily defined shaped onto a single relative trajectory proved to be enormously difficult. Thus,

future work will be necessary to formalize an optimal method of Flower Constellation

parameters. One such technique under consideration is genetic algorithms.

One inverse design technique based upon the Flower Constellation concept is pre-

sented. Using a number of methods, an arbitrarily prescribed shape is projected onto a

Flower Constellation surface which is constructed from an infinite set of relative trajecto-

ries that are differentially separated in RAAN. The intersection of the projected shape and

the Flower Constellation surface is computed, and then the satellites are placed at these

intersection points to create a constellation/formation. These formations collapse to a line

at apogee, but reform twice on each “petal”. Non-symmetric formations will invert as they

cross from one side of the globe to the other.

Further work needs to be performed in the application of Flower Constellations to

telecommunications, coverage, global navigation, and formation flying. While telecommu-

nications and coverage have been explored over the last decade or so to a certain extent,

there are other unique applications of Flower Constellations that have not yet been fully

exploited. Additionally, the lifetime of Flower Constellations and the cost to launch these

kinds of constellations versus more traditional ones needs to be investigated.

Perturbations due to the Earth’s oblateness, solar radiation pressure, third-body ef-

fects, and resonance were explored. Much work has already been done in the literature

regarding the perturbation and control of resonant orbits. Because there are an infinity of

Flower Constellations that all have varying choices for the orbit parameters, performing a

perturbation study is very difficult if one desires to try and convey some sense of generality

for all Flower Constellations. Therefore, encapsulated results for the various perturba-

tions were presented with appropriate citations so that the mission designer can perform a

perturbation analysis on a particular Flower Constellation of interest.



142

REFERENCES

1Broglio, L., “Una Politica Spaziale per il Nostro Paese, Prospettive del Progetto San
Marco: Il Sistema Quadrifoglio,” Centro di Ricerca Progetto San Marco, Internal Report,
1981.

2Castronuovo, M. M., Bardone, A., and Ruscio, M. D., “Continuous Global Earth
Coverage By Means of Multistationary Orbits,” Advances in the Astronautical Sciences,
Vol. 99, 1998, pp. 1021–1039.

3Turner, A. E., “Non-Geosynchronous Orbits for Communications to Off-Load Daily
Peaks in Geostationary Traffic,” American Astronautical Society, AAS Paper 87-547, 1987.

4Nugroho, J., Draim, J., and Hudyarto, “A Satellite System Concept for Personal
Communications for Indonesia,” Paper Presented at the United Nations Indonesia Regional
Conference on Space Science and Technology, Bandung, Indonesia, 1993.

5Walker, J., “Some Circular Orbit Patterns Providing Continuous Whole Earth Cov-
erage,” British Interplanetary Journal, Vol. Soc. 24, 1971, pp. 369–384.

6Walker, J., “Satellite Constellations,” British Interplanetary Journal, Vol. Soc. 37,
1984, pp. 559–572.

7Beste, D., “Design of Satellite Constellations for Optimal Continuous Coverage,”
IEEE Transactions on Aerospace and Electronic Systems, Vol. 14(3), 1978, pp. 466–473.

8Proulx, R., Smith, J., Draim, J., and Cefola, P., “Ellipso Gear Array - Coordinated
Elliptical/Circular Constellations,” American Astronautical Society, AAS Paper 98-4383,
1998.

9Draim, J., “Elliptical Orbit MEO Constellations: A Cost-Effective Approach for
Multi-Satellite Systems,” Space Technology, Vol. 16, No. 1, 1996.

10Solari, G. and Viola, R., “M-HEO: The Optimal Satellite System for the Most
Highly Populated Regions of the Northern Hemisphere,” Integrated Space/Terrestrial Mo-
bile Networks Action Final Summary, ESA COST 227 TD(92)37, 1992.

11Pennoni, G. and Bella, L., “JOCOS: A Triply Geosynchonous Orbit for Global Com-
munications An Application Example,” Tenth International Conference on Digital Satellite
Communications, Vol. 2, 1995, pp. 646–652.

12Dondl, P., “LOOPUS Opens a Dimension in Satellite Communications,” Interna-
tional Journal of Satellite Communications, Vol. 2, 1984, pp. 241–250, First published
1982 in German.



143

13Rouffet, D., “The SYCOMORES System [Mobile Satellite Communications],” IEE
Colloquium on ‘Highly Elliptical Orbit Satellite Systems’ (Digest No.86), pp. 6/1-6/20,
1989.

14Norbury, J., “The Mobile Payload of the UK T-Sat Project,” IEE Colloquium on
‘Highly Elliptical Orbit Satellite Systems’ (Digest No.86), pp. 7/1-7/7, 1989.

15Draim, J. E., Inciardi, R., Cefola, P., Proulx, R., and Carter, D., “Demonstration
of the COBRA Teardrop Concept Using Two Smallsats in 8-hr Elliptic Orbits,” 15th An-
nual/USU Conferece on Small Satellites, SSC01-II-3, 2001.

16Berretta, G., “The Place of Highly Elliptical Orbit Satellites in Future Systems,”
IEE Colloquium on ‘Highly Elliptical Orbit Satellite Systems’ (Digest No.86), pp. 1/1-1/4,
1989.

17Girolamo, S. D., Luongo, M., and Soddu, C., “Use of Highly Elliptic Orbits for New
Communication Services,” RBCM - J. of the Braz. Soc. Mechanical Sciences, Vol. XVI,
1994, pp. 143–149, AAS 98-172.

18Stuart, J. and Smith, D. J., “Review of the ESA Archimedes Study 1,” IEE Collo-
quium on ‘Highly Elliptical Orbit Satellite Systems’ (Digest No.86), pp. 2/1-2/4, 1989.

19Carter, D., “When is the Groundtrack Drift Rate Zero?” CSDL Memorandum ESD-
91-020, 1991, Cambridge, MA: Charles Stark Draper Laboratory.

20Vallado, D. A., Fundamentals of Astrodynamics and Applications, McGraw-Hill,
New York, 2nd ed., 2001.

21European Space Agency (ESA), “What is Galileo?” http://www.esa.int/esaNA/GG-
GMX650NDC index 0.html, Accessed October 15, 2004.

22Park, A., Wilkins, M. P., and Mortari, D., “Uniformly Distributed Flower Constella-
tion Design Study for Global Navigation System,” American Astronautical Society, AAS
Paper 04-297, Maui, HI, February 8-12, 2004.

23“Matlab Release 13,” The Mathworks, Natick, MA, http://www.mathworks.com,
Accessed October 15, 2004.

24Mortari, D., Wilkins, M. P., and Bruccoleri, C., “The Flower Constellations,” John
L. Junkins Astrodynamics Symposium, AAS Paper 03-274, College Station, TX, May 24,
2003.

25“Satellite Tool Kit 5.0,” Analytical Graphics, Inc., Exton, PA, http://www.agi.com,
Accessed October 15, 2004.

26Snyder, J. P., “Map Projections Used by the U.S. Geological Survey,” U.S. Geolog-
ical Survey Bulletin 1532, 1982, 2nd ed.



144

27Vetter, J. R., “The Evolution of Earth Gravity Models Used in Astrodynamics,” APL
Technical Digest, Vol. 15, No. 4, pp. 319–335, Johns Hopkins University, Laurel, MD.

28Kaula, W. M., Theory of Satellite Geodesy, Blaisdell Publishing Company,
Waltham, MA, 1966.

29Garfinkel, B., “Tesseral Harmonic Perturbations of an Artificial Satellite,” The As-
tronomical Journal, Vol. 70, 1965, pp. 784–786.

30Gedeon, G., “Tesseral Resonance Effects on Satellite Orbits,” Celestial Mechanics,
Vol. 1, 1969, pp. 167–189.

31Ely, T. A. and Howell, K. C., “East-West Stationkeeping of Satellite Orbits With
Resonant Tesseral Harmonics,” Acta Astronautica, Vol. 46, No. 1, 2000, pp. 1–15.

32Delhaise, F. and Morbidelli, A., “The Problem of Critical Inclination Combined
with a Resonance in Mean Motion in Artificial Satellite Theory,” Celestial Mechanics and
Dynamical Astronomy, Vol. 55, 1993, pp. 261–280.

33Brouwer, D., “Solutions of the Problem of Articifical Satellite Theory Without
Drag,” Astronomical Journal, Vol. 64, No. 1274, 1959, pp. 378–397.

34Kozai, Y., “The Motion of a Close Earth Satellite,” Astronomical Journal, Vol. 64,
No. 1274, 1959, pp. 367–377.

35Kozai, Y., “Second-Order Solution of Articifical Satellite Theory Without Drag,”
Astronomical Journal, Vol. 67, 1962, pp. 446.

36Lyddane, R. H., “Small Eccentricities of Inclinations in the Brouwer Theory of the
Artificial Satellite,” Celestial Mechanics, Vol. 36, No. 2, 1963, pp. 191–205.

37Merson, R. H., “The Motion of a Satellite in an Axi-Symmetric Gravitation Field,”
Geophysical Journal of the Royal Astronomical Society, Vol. 4, No. 17, 1961.

38Deprit, A., “The Main Problem in the Theory of Artificial Satellites to Order Four,”
Journal of Guidance and Control, Vol. 4, No. 2, 1981, pp. 201–206.

39King-Hele, D., G. E. C. and Rees, J. M., “Determination of the Even Harmonics in
the Earth’s Gravitational Potential,” Geophysical Journal of the Royal Astronomical Soci-
ety, Vol. 8, No. 119, 1963.

40Cook, G. E., “Luni-Solar Perturbations of the Orbit of an Earth Satellite,” Geophys-
ical Journal of the Royal Astronomical Society, Vol. 6, No. 271, 1962.

41Smith, M. S. and Service, C. R., “Space Debris: A Growing Problem,” CRS Report
for Congress, The Library of Congress, 1991.



145

42Kamel, Ahmed, D. E. and Tibbits, R., “East-West Stationkeeping Requirements of
Nearly Synchronous Satellites Due to Earth’s Triaxiality and Luni-Solar Effects,” Celestial
Mechanics, Vol. 8, 1973, pp. 129–148.

43Burns, R., Gabor, M. J., McLaughlin, C. A., and Luu, K. K., “Solar Radiation Pres-
sure Effects on Formation Flying of Satellites with Different Area to Mass Ratios,” AIAA
Paper 2000-4132, 2000.

44Weisstein, E. W., “Algebraic Numbers,” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/AlgebraicNumber.html, Accessed October 15,
2004.

45Weisstein, E. W., “Rational Numbers,” From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/RationalNumber.html, Accessed October 15, 2004.

46Weisstein, E. W., “Counting Numbers,” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/CountingNumbers.html, Accessed October 15,
2004.

47Weisstein, E. W., “Constructible Numbers,” From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/ConstructibleNumber.html, Accessed October 15,
2004.

48Weisstein, E. W., “Congruence,” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Congruence.html, Accessed October 15, 2004.

49Weisstein, E. W., “Greatest Common Divisor,” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/GreatestCommonDivisor.html, Accessed Octo-
ber 15, 2004.

50Weisstein, E. W., “Extended Greatest Common Divisor,” From MathWorld–A
Wolfram Web Resource. http://mathworld.wolfram.com/ExtendedGreatestCommonDivis-
or.html, Accessed October 15, 2004.

51Weisstein, E. W., “Divides,” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Divides.html, Accessed October 15, 2004.

52Weisstein, E. W., “Relatively Prime,” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/RelativelyPrime.html, Accessed October 15, 2004.

53Weisstein, E. W., “Division Lemma,” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/DivisionLemma.html, Accessed October 15, 2004.

54Weisstein, E. W., “Floor Function,” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/FloorFunction.html, Accessed October 15, 2004.



146

55Weisstein, E. W., “Ceiling Function,” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/CeilingFunction.html, Accessed October 15, 2004.

56Weisstein, E. W., “Euclidean Algorithm,” From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/EuclideanAlgorithm.html, Accessed October 15,
2004.



147

APPENDIX A

SOME MATHEMATICAL CONCEPTS AND DEFINITIONS

Algebraic Numbers

Consider the equation

anxn �an�1xn�1 � � � ��a1x1 �a0x0 � 0 (A.1)

where the ai’s are integers and where a root of Equation (A.1) is r such that r satisfies no

similar equation of degree � n, then r is an algebraic number of degree n. r is an algebraic

integer when r is an algebraic number and an � 1.

Furthermore, consider

bnxn �bn�1xn�1 � � � ��b1x1 �b0x0 � 0 (A.2)

where the bi’s are now algebraic numbers themselves, then any root r of Equation (A.2) is

also an algebraic number. Any number that is not algebraic is termed transcendental (e.g.

the numbers e and π are both transcendental).44

Rational Numbers

A rational number is any number that can be expressed as the ratio of two integers p and q

where p is the numerator, q is the denominator, and q �� 0. Trivially, any rational number

is also an algebraic number.45
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Table X. Integer symbols.

Example Set Name Symbol

�� � � ��2��1�0�1��2� � � �
 Integers �

�1�2�3� � � �
 Positive Integers � or ��

�0�1�2�3� � � �
 Non-negative Integers ��

�0��1��2��3� � � �
 Non-positive Integers �0
���

��1��2��3� � � �
 Negative Integers ��

Counting Numbers

A number of non-standard terms exist that all refer to the set of integers. Counting numbers,

natural numbers, and whole numbers are being used interchangeably in the literature. Table

X gives the notation that is used for this work when referring to integers.46

Constructible Numbers

A constructible number is any number that can be represented by a finite number of addi-

tions, subtractions, multiplications, divisions, and finite square root extractions of integers.

These numbers fall on a line segment that can be constructed using only a straightedge

and a compass. “All rational numbers are constructible, and all constructible numbers are

algebraic numbers.”47

Congruence

Given two arbitrary numbers a and b, if one can demonstrate that their difference a-b is

an integral multiple of a divisor c (i.e. c 	 �a� b�), then a and b are said to be congruent

modulo c.48 c is called the modulus and the statement a is congruent to b modulo c can be
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expressed as

a
 b� mod c� (A.3)

Note that the symbol 
 represents congruency and should not be confused with the equiv-

alence sign. If c � �a� b�, then a is not congruent with b modulo c, which is expressed

as

a �
 b� mod c� (A.4)

Greatest Common Divisor

For any two positive integers a and b, the greatest common divisor, expressed as GCD�a�b�,

is the largest divisor common to both a and b.49 GCD�a�b� is can also be written simply as

�a�b�. For example, GCD�10�5� � 5, GCD�2�3� � 1, and GCD�30�36� � 6.

If �a�b� � c, then c is the largest possible integer that satisfies

a � cx (A.5)

b � cy (A.6)

where x and y are positive integers. One can therefore state that there exists an integer

relationship between a and b of the form

ay�bx � 0 (A.7)

Furthermore, one can employ the Euclidean algorithm to find the greatest common divisor

of two integers.

The greatest common divisor can be computed using prime factorization (i.e. con-
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structed using factors that are prime). The prime factorizations of a and b are

a � ∏
i

pαi
i (A.8)

b � ∏
i

pβi
i (A.9)

where pi are the prime factors. Therefore,

GCD�a�b� � ∏
i

pmin�αi�βi�
i (A.10)

where min represents the minimum. For example, consider GCD�30�36� � 6.

30 � 21 �31 �51

36 � 22 �32 �50

which leads to

GCD�30�36� � 21 �31 �50 � 6

The GCD is commutative, associative, distributive, and idempotent:

GCD�na�nb� � nGCD�a�b� (A.12)

GCD�a�b�c� � GCD�GCD�a�b��c� � GCD�a�GCD�b�c�� (A.13)

GCD�ab�cd� �GCD�a�c�GCD�b�d�

�GCD�
a

GCD�a�c�
�

d
GCD�b�d�

�GCD�
c

GCD�a�c�
�

b
GCD�b�d�

� (A.14)

GCD�a�b� � GCD�b�a� (A.15)

GCD�a�a� � a (A.16)
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Extended Greatest Common Divisor

The greatest common divisor of two integers a and b that also satisfies the constraint that

GCD�a�b� � ra� sb where r and s are given integers is called the extended greatest com-

mon divisor.50

Divides

If a and b are both integers and the ratio a�b is also an integer, then b is said to divide a.

This can be written b 	 a and read as b divides a. Furthermore, one can say that a is divisible

by b and that b is a divisor of a.51

Relatively Prime

Two integers are considered relatively prime if they have no common positive divisors or

factors between them.52 The notation for greatest common divisor is given as �a�b� (See

Section A.A). If two integers a and b are relatively prime, then �a�b� � 1. Coprime and

stranger are two terms also used to describe relatively prime integers. Relatively prime

integers can be written as a� b.

Division Lemma

When ac is divisible by a number b that is relatively prime to a (i.e. b 	 ac where b � a),

then c must be divisible by b.53

Floor and Ceiling Function

The greatest integer function �x�, or the floor function, provides the largest integer that is

less than or equal to x.54 Alternatively, the smallest integer function �x�, or the ceiling
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function, provides the smallest integer that is greater than or equal to x.55

Euclidean Algorithm

An algorithm is find the greatest common divisor of two numbers a and b is called the Eu-

clidean Algorithm or, sometimes, Euclid’s Algorithm.56 Let a � bq� r then find a number

u such that divides both u 	 a and u 	 b (i.e. a � su and b � tu). Based upon this, u 	 r since

r � a�bq � su�qtu � �s�qt�u (A.17)

One can also find a number v such that v 	 b and v 	 r (i.e. b � s�v and r � t �v) since

a � bq� r � s�vq� t �v � �s�q� t ��v (A.18)

Hence, all common divisors of a and b are also common divisors of b and r from which the

Euclidean Algorithm can be written

q1 �
2a

b

3
a � bq1 � r1 r1 � a�bq1 (A.19)

q2 �

�
b
r1

�
b � q2r1 � r2 r2 � b�q2r1 (A.20)

q3 �

�
r1

r2

�
r1 � q3r2 � r3 r3 � r1�q3r2 (A.21)

q4 �

�
r2

r3

�
r2 � q4r3 � r4 r4 � r2�q4r3 (A.22)

qn �

�
rn�2

rn�1

�
rn�2 � qnrn�1 � rn rn � rn�2�qnrn�1 (A.23)

qn�1 �

�
rn�1

rn

�
rn�1 � qn�1rn �0 rn �

rn�1

qn�1
(A.24)

For integer solutions, the Euclidean Algorithm terminates when qn�1 	 rn�1 exactly making

rn the greatest common divisor of a and b (i.e. GCD�a�b� � rn).
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APPENDIX B

THE Flower Constellation VISUALIZATION AND ANALYSIS TOOL

Flower Constellations have many potential applications. To aid in the analysis of this

potential, it is important to be able to properly visualize the constellation. For many Flower

Constellations, viewing these orbits on a Mercator projection does not adequately represent

the complete shape. Major software applications such as AGI’s Satellite Tool Kit (STK)25

are available that allows one to view three dimensional graphics of satellite orbits. Until

very recently when AGI released version 5.0, STK could only show ECF relative orbits

in a static way (i.e. the camera can not be easily moved to view the relative orbits from

any angle). Also, STK at the time did not allow one to view the relative and inertial orbits

simultaneously.

Therefore, our group undertook the task of creating a JAVA application that would sim-

plify the task of design and study of Flower Constellations that is now called The Flower

Constellation Visualization and Analysis Tool (FCVAT). Thanks to the efforts of Christian

Bruccoleri, a 3D animation and analysis tool that allows the user to input the basic parame-

ters of a Flower Constellation along with specifying the phasing requirements is available

for use. Because JAVA is relatively platform independent it is also possible to make this

software available to other users as a web-based application. It is virtually impossible to

fully understand the implications of complex constellations without a visualization tool of

this nature. At the time of this writing, our group is in active discussions with companies

such as AGI to integrate the FCVAT as either a third-party add on or as an integral part of

existing commercial software.
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APPENDIX C

EXAMPLE CONSTELLATION PHASING DATA

Table XI. Satellite Phasing for a 8-1-9-1-9 Flower Constellation.
a� 10541�042 km e� 0�1577554 hp � 2500�000 km

Sat # Node (deg) Mean Anom (deg) True Anom (deg)
1 0.00 0.00 0.00
2 40.00 40.00 53.54
3 80.00 80.00 98.12
4 120.00 120.00 134.10
5 160.00 160.00 165.20
6 200.00 200.00 194.80
7 240.00 240.00 225.90
8 280.00 280.00 261.88
9 320.00 320.00 306.46

Table XII. Satellite phasing for a 4-1-4-1-4 Flower Constellation.
a� 16732�862 km e� 0�5829681 hp � 600�000 km

Sat # Node (deg) Mean Anom (deg) True Anom (deg)
1 0.00 0.00 0.00
2 90.00 0.00 0.00
3 180.00 0.00 0.00
4 270.00 0.00 0.00
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Table XIII. Satellite phasing for a 769-257-4-1-4 Flower Constellation.
a� 20305�549 km e� 0�6661929 hp � 400�000 km

Sat # Node (deg) Mean Anom (deg) True Anom (deg)
1 0.00 0.00 0.00
2 90.00 87.90 150.73
3 180.00 178.60 179.61
4 270.00 269.30 208.10

Table XIV. Satellite phasing for a 3-1-4-1-7 Flower Constellation.

a � 20270�418 km e � 0�6557478 hp � 600�000 km

Sat # Node (deg) Mean Anom (deg) True Anom (deg)

1 0.00 0.00 0.00

2 205.71 102.86 156.60

3 257.14 308.57 229.79

4 308.57 154.29 172.85

Table XV. Satellite phasing for a 4-1-5-1-5 Flower Constellation.
a� 16732�862 km e� 0�0000434 hp � 10354�000 km

Sat # Node (deg) Mean Anom (deg) True Anom (deg)
1 0.00 0.00 0.00
2 72.00 72.00 72.00
3 144.00 144.00 144.00
4 216.00 216.00 216.00
5 288.00 288.00 288.00
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Table XVI. Satellite phasing for a 3-1-4 and 3-2-4 Flower Constellation.
a� 20270�418 km e� 0�6557478 hp � 600�000 km

Sat # (a) Node (deg) (a) Mean Anom (deg) (b) Node (deg) (b) Mean Anom (deg)
1 0.00 0.00 0.00 0.00
2 90.00 90.00 180.00 180.00
3 180.00 180.00
4 270.00 270.00

Sat # (c) Node (deg) (c) Mean Anom (deg) (d) Node (deg) (d) Mean Anom (deg)
1 0.00 0.00 0.00 0.00
2 0.00 180.00 90.00 45.00
3 180.00 90.00 180.00 270.00
4 180.00 270.00 270.00 135.00

Table XVII. Satellite phasing for a 12-1-13-1-13 Flower Constellation.
a� 8044�321 km e� 0�0000 hp � 1666�000 km

Sat # Node (deg) Mean Anom (deg) True Anom (deg)
1 0.00 0.00 0.00
2 27.69 27.69 27.69
3 55.38 55.38 55.39
4 83.08 83.08 83.08
5 110.77 110.77 110.77
6 138.46 138.46 138.46
7 166.15 166.15 166.15
8 193.85 193.85 193.85
9 221.54 221.54 221.54
10 249.23 249.23 249.23
11 276.92 276.92 276.92
12 304.62 304.62 304.61
13 332.31 332.31 332.31
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Table XVIII. Satellite phasing for a 12-1-26-1-26 Flower Constellation.
a� 8044�321 km e� 0�0000229 hp � 1666�000 km

Sat # Node (deg) Mean Anom (deg) True Anom (deg)
1 0.00 0.00 0.00
2 13.85 193.85 193.85
3 27.69 27.69 27.69
4 41.54 221.54 221.54
5 55.38 55.38 55.39
6 69.23 249.23 249.23
7 83.08 83.08 83.08
8 96.92 276.92 276.92
9 110.77 110.77 110.77
10 124.62 304.62 304.61
11 138.46 138.46 138.46
12 152.31 332.31 332.31
13 166.15 166.15 166.15
14 180.00 360.00 360.00
15 193.85 193.85 193.85
16 207.69 27.69 27.69
17 221.54 221.54 221.54
18 235.38 55.38 55.39
19 249.23 249.23 249.23
20 263.08 83.08 83.08
21 276.92 276.92 276.92
22 290.77 110.77 110.77
23 304.62 304.62 304.61
24 318.46 138.46 138.46
25 332.31 332.31 332.31
26 346.15 166.15 166.15
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Table XIX. Satellite phasing for a 31-11-30-7-10 Flower Constellation.
a� 21133�149 km e� 0�2723216 hp � 9000�000 km

Sat # Node (deg) Mean Anom (deg) True Anom (deg)
1 0.00 0.00 0.00
2 0.00 261.82 233.54
3 0.00 163.64 170.24
4 36.00 291.27 259.81
5 36.00 193.09 187.80
6 36.00 94.91 123.85
7 72.00 320.73 294.96
8 72.00 222.55 205.92
9 72.00 124.36 145.48
10 108.00 350.18 342.28
11 108.00 252.00 226.05
12 108.00 153.82 164.29
13 144.00 281.45 250.28
14 144.00 183.27 181.95
15 144.00 85.09 115.60
...

...
...

...
25 288.00 301.09 270.31
26 288.00 202.91 193.71
27 288.00 104.73 131.51
28 324.00 330.55 309.39
29 324.00 232.36 212.33
30 324.00 134.18 151.97
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Table XX. Satellite phasing for a 37-18-57-6-19 Flower Constellation.
a� 26080�990 km e� 0�0000327 hp � 19702�000 km

Sat # Node (deg) Mean Anom (deg) True Anom (deg)
1 0.00 0.00 0.00
2 18.95 221.05 221.05
3 18.95 101.05 101.06
4 18.95 341.05 341.05
5 37.89 202.11 202.10
6 37.89 82.11 82.11
7 37.89 322.11 322.10
...

...
...

...
53 341.05 18.95 18.95
54 341.05 258.95 258.94
55 341.05 138.95 138.95
56 360.00 240.00 240.00
57 360.00 120.00 120.00
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Table XXI. Satellite phasing for a 15-7-49-23-49 Flower Constellation.
a� 25367�718 km e� 0�3937911 hp � 9000�000 km

Sat # Node (deg) Mean Anom (deg) True Anom (deg)
1 0.00 0.00 0.00
2 7.35 35.69 75.28
3 14.69 71.37 116.71
4 22.04 4.20 10.47
5 29.39 39.88 81.57
6 36.73 75.57 120.28
7 44.08 8.40 20.74
8 51.43 44.08 87.39
9 58.78 79.77 123.66
10 66.12 12.59 30.66
11 73.47 48.28 92.79
12 80.82 83.97 126.89
13 88.16 16.79 40.09
14 95.51 52.48 97.81
15 102.86 88.16 129.97
...

...
...

...
30 213.06 6.30 15.64
31 220.41 41.98 84.54
32 227.76 77.67 121.99
33 235.10 10.50 25.75
34 242.45 46.18 90.14
35 249.80 81.87 125.29
36 257.14 14.69 35.44
37 264.49 50.38 95.34
38 271.84 86.06 128.45
39 279.18 18.89 44.59
40 286.53 54.58 100.19
41 293.88 90.26 131.46
42 301.22 23.09 53.15
43 308.57 58.78 104.71
44 315.92 94.46 134.36
45 323.27 27.29 61.11
46 330.61 62.97 108.96
47 337.96 98.66 137.15
48 345.31 31.49 68.48
49 352.65 67.17 112.95
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