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ABSTRACT

MCMC Methods for Wavelet Representations in Single Index Models. (August 2003)

Chun Gun Park , B.S., Kyonggi University, Korea;

M.A., ChungAng University, Korea

Co-Chairs of Advisory Committee: Dr. Jeffrey D. Hart
Dr. Marina Vannucci

Single index models are a special type of nonlinear regression model that are partially

linear and play an important role in fields that employ multidimensional regression models.

A wavelet series is thought of as a good approximation to any function in the L2 space.

There are two ways to represent the function: one in which all wavelet coefficients are used

in the series, and another that allows for shrinkage rules. We propose posterior inference

for the two wavelet representations of the function.

To implement posterior inference, we define a hierarchial (mixture) prior model on the

scaling(wavelet) coefficients. Since from the two representations a non-zero coefficient has

information about the features of the function at a certain scale and location, a prior model

for the coefficient should depend on its resolution level. In wavelet shrinkage rules we use

”pseudo-priors” for a zero coefficient.

In single index models a direction β affects estimates of the function. Transforming

β to a spherical polar coordinate θ is a convenient way of imposing the constraint ‖β‖ =

1. The posterior distribution of the direction is unknown and we employ a Metropolis

algorithm and an independence sampler, which require a proposal distribution. A normal

distribution is proposed as the proposal distribution for the direction. We introduce ways

to choose its mode (mean) using the independence sampler.

For Monte Carlo simulations and real data we compare performances of the Metropo-
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lis algorithm and independence samplers for the direction and two functions: the cosine

function is represented only by the smooth part in the wavelet series and the Doppler func-

tion is represented by both smooth and detail parts of the series.
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CHAPTER I

INTRODUCTION

1.1 Single index models

The classical regression model has the form,

yi = X iβ+ εi, i = 1, . . . ,n, (1.1)

where X i = (xi1, . . . ,xip), β = (β1, . . . ,βp)
T , and εi is a random variable with zero mean

and bounded variance, conditional on X i. In a variety of fields there are data which can-

not be analyzed with a straight line. For these data it is appropriate to allow for nonlinear

regression models, which, however, have the drawback of the curse of dimensionality (Bell-

man 1961). Here we consider single index models (Härdle, et al., 1993) which overcome

the drawback and are useful in applications to econometrics and biometrics, where mul-

tidimensional regression models are often employed. Single index models are a special

type of nonlinear regression models involving linear regression formulation (McCullagh

and Nelder, 1983) and exploit the dependence of a scalar variable yi upon a p-variate row

vector X i in the following form:

yi = r(X iβ)+ εi, i = 1, . . . ,n, (1.2)

where E(yi|X i) = r(X iβ), Var(yi|X i) < ∞, β is a p-column vector of unknown parameters,

‖β‖ = 1 and r(·) is an unknown function. The form (1.2) is equivalent to the traditional

This dissertation follows the style and format of the Journal of the American Statistical
Association.
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nonparametric regression where the scalar X iβ, called the index (Härdle, et al., 1993), is

given. Our goal is to estimate both β and r(·) in (1.2).

So far various methods have been developed in single index models. Among the

methods are kernel smoothing (Härdle, et al., 1993), local linear methods (Carroll, et al.,

1997), average derivatives (Stoker 1986; Härdle and Stoker 1989), and penalized splines

(Yu and Ruppert 2002). Most of the methods assume that the function is smoothed. Here

we introduce Baysian methods for wavelet series that do not require strong assumptions on

the function r(·).

1.2 Bayesian wavelet methods for single index models

(Non)parametric methods have been proposed for smooth functions r(·), but appear to be

inappropriate for discontinuities and functions with spikes. We consider a wavelet series

which provides a good approximation to any function in L2 space (1.1 in Appendix A).

The wavelet series consists of two basis functions, a scaling function φ(x) and a

wavelet function ψ(x). Translations and dilations of these two basis functions, {φ(2 jx−k)}

and {ψ(2 jx−k)} with j,k integers, are formed to represent the function r(·). Wavelet series

have the advantage of being localized.

Most of the wavelet contributions in the literature assume equally spaced data. In the

model (1.2), the indices are not equally spaced for all directions β. A possible solution to

this problem is to replace the unequally spaced data by equally spaced data and proceed

as in the equally spaced case. If there are only a few unequally spaced indices, removing

these indices to make the data equally spaced lead to efficient implementations (Antoniadis,

Gregoire and McKeague, 1994; Cai and Brown, 1997; Hall and Turlach, 1997; Sardy et

al., 1997).

We consider Bayesian methods, which require prior models for estimating the direc-

tion parameter β and the function. Two possible ways for representing the function based
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on a wavelet series are proposed: no shrinkage means all coefficients of a wavelet series are

used and shrinkage means some coefficients are set to zero. In both of these the prior mod-

els used for non-zero scaling(wavelet) coefficients are hierarchical, and since shrinkage

rules allow some wavelet coefficients to be zero, we propose using ”pseudo prior” models

for the vanishing coefficients (Müller and Vidakovic, 1999). For details, see section 3.2.

We transform the p-dimensional direction parameter β into the spherical polar coor-

dinates parameter θ, since this is a convenient way to impose the necessary constraint of

‖β‖= 1. The posterior distribution of the direction parameter is not known and we employ

a Metropolis algorithm and an independence sampler, which require proposal distributions.

A normal distribution is proposed as the proposal distribution for the direction parameter θ.

Its mode(mean) and/or variance may need to be chosen carefully. We suggest some simple

approaches for selecting these two values.

1.3 Outline of the dissertation

Chapter II describes Bayesian methods for the wavelet series with a single covariate. Chap-

ter III presents applications of wavelet-based Bayesian methods in the single index model.

Chapter IV presents simulation studies and an application to real data. Finally, Chapter V

discusses results and further work.
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CHAPTER II

BAYESIAN METHODS FOR WAVELETS

For several decades, wavelet analysis has been developed and applied to many fields such

as data compression, signal and image processing, numerical analysis, chemistry, and as-

tronomy. In nonparametric regression problems, wavelets are used to estimate an unknown

function r(x) under weak assumptions about the nature of r(x). The following sections

describe how to represent a function with a wavelet series and how to perform posterior

inference on the parameters of the wavelet series in the case of unevenly spaced data. For

details about wavelet theory see Daubechies (1992), Chui (1992), and Meyer (1992).

2.1 Wavelet series

The scaling function φ(x) and the wavelet ψ(x) play an important role in constructing a

wavelet series. They describe the smooth parts and the detail parts of the function r(x),

respectively. The generalized forms of φ and ψ use a dilation parameter j and a translation

parameter k as

φ j,k(x) = 2 j/2φ(2 jx− k), ψ j,k(x) = 2 j/2ψ(2 jx− k). (2.1)

The collections {φ j,k, ψ j,k} are an orthogonal basis:

∫
φ j,k(x)φ j,k′(x)dx = δk,k′

∫
ψ j,k(x)φ j′,k′(x)dx = 0

∫
ψ j,k(x)ψ j′,k′(x)dx = δ j, j′δk,k′
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where

δi, j =





1, i = j

0, i 6= j.

An orthogonal wavelet series is the following linear representation of the square integrable

function r(x):

r(x;mo) = ∑
k∈Z

cJ0,kφJ0,k(x)+
m0

∑
j=J0

∑
k∈Z

w j,kψ j,k(x), (2.2)

for any integer J0 where cJ0,k =
∫

r(x)φJ0,k(x)dx and w j,k =
∫

r(x)ψ j,k(x)dx. The function

r(·;m0) converges in mean square to r as m0 → ∞. In the representation (2.2) we will

assume J0 = 0 (Müller and Vidakovic, 1999).

The approximation (2.2) is analogous to an orthogonal Fourier series. However,

wavelet series are localized both in time and frequency, while the Fourier functions are

localized in frequency only. In addition, localization properties allow the representation

(2.2) to be parsimonious.

2.2 Bayesian approaches to wavelet series

A wavelet series provides a good approximation to any square integrable function. We

consider a Bayesian approach to wavelet series. To implement the posterior inference,

prior models for estimating the function r(x) are required. Adaptive shrinkage (Chipman,

Kolaczyk and McCulloch, 1997), multiple shrinkage (Clyde, Parmigiani and Vidakovic,

1998), and nonlinear shrinkage (Vidakovic, 1998) are Bayesian methods for wavelet series

with the assumption of equally spaced data.

Since localization allows for a parsimonious representation, we can consider two ways

to represent the wavelet series of the function r(x). First, all wavelet coefficients are kept in

the wavelet representation. Second, wavelet shrinkage rules are proposed to obtain model

parsimony. For both representations, since a coefficient has information about the features

of the function at a certain scale and location, a prior model for a non-zero scaling(wavelet)
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coefficient should depend on its resolution level. For example, a normal prior with vari-

ance dependent on a resolution level may be used. In wavelet shrinkage rules we follow

Carlin and Chib (1995) in using pseudo-priors for zero wavelet coefficients as explained in

subsection (3.2.2)

For equally spaced data, the coefficients are usually assumed to be a priori independent

(Yan and Kohn, 1999).
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CHAPTER III

BAYESIAN METHODS FOR WAVELET REPRESENTATIONS OF SINGLE INDEX

MODELS

3.1 Wavelet representations of single index models

We consider a wavelet series which is an approximation to the function r in single index

models. From (2.2) when a covariate x is replaced by a single index X iβ, a wavelet series

in single index models is

r(X iβ) = ∑
k∈Z

c0,kφ0,k(X iβ)+
m0

∑
j=0

∑
k∈Z

w j,kψ j,k(X iβ), (3.1)

where m0 is given.

Shrinkage rules can be implemented to take advantage of the parsimony of the wavelet

representation. To apply these to the wavelet series (3.1), we use indicators s j,k defined by

s j,k =





1, if w j,k is included in the wavelet series,

0, if w j,k is not included in the wavelet series.

We define a wavelet shrinkage model as

r(X iβ) = ∑
k∈Z

c0,k ·φ0,k(X iβ)+
m0

∑
j=0

∑
k∈Z

s j,k ·w j,k ·ψ j,k(X iβ), (3.2)

where m0 is given.

3.2 Likelihood function and prior distributions

To apply Bayesian methods we need the likelihood function and the prior of all parameters.

From (1.2), (3.1), (3.2) and assuming normality of the errors, the likelihood function is

P
(
Y |σ2,{c0,k},{w j,k},β,X,m0

)
=

n

∏
i=1

P
(
yi|σ2,{c0,k},{w j,k},β,X i,m0

)
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=
(
2πσ2)− n

2 exp

(
− 1

2σ2

n

∑
i=1

Q
(
yi
)
)

, (3.3)

where for the no shrinkage rule

Q
(
yi
)

= Q1
(
yi
)

=

[
yi − ∑

k∈Z

c0,kφ0,k

(
X iβ
)
−

m0

∑
j=0

∑
k∈Z

w j,kψ j,k

(
X iβ
)
]2

, (3.4)

or for shrinkage rules

Q
(
yi
)

= Q2
(
yi
)

=

[
yi − ∑

k∈Z

c0,k ·φ0,k

(
X iβ
)
−

m0

∑
j=0

∑
k∈Z

s j,k ·w j,k ·ψ j,k

(
X iβ
)
]2

. (3.5)

In single index models what we are interested in are the function r and the direction

β in (1.2). In particular, we can consider the direction as points on the circumference of a

unit circle in two dimensions, on the surface of a unit sphere in three dimensions and so on.

The unit vector β is transformed to the surface of a (p−1)-dimensional hypersphere Sp−1

of unit radius and having its center at the origin.

In general, it is convenient to transform β to a spherical polar coordinate θ = (θ1, . . . ,

θp−1)
T , with

td(θ) = βd = sin(θd−1)
p−d

∏
j=0

cos(θp− j), d = 1, . . . , p, (3.6)

sin(θ0) = cos(θp) = 1, 0 < θ1 < 2π, and −π
2 < θl < π

2 , l = 2, . . . , p−1 (see Figures 1 and

2).

Using the spherical polar coordinate θ instead of the direction β, i.e., X iβ = X iT(θ)

where β = T(θ) =
(
t1(θ), . . . , tp(θ)

)T , we rewrite the likelihood function:

P
(
Y |σ2,{c0,k},{w j,k},θ,X,m0

)
= P

(
Y |σ2,{c0,k},{w j,k},β,X,m0

)
, (3.7)

where for the no shrinkage rule

Q
(
yi
)

= Q3
(
yi
)

=

[
yi − ∑

k∈Z

c0,kφ0,k

(
X iT(θ)

)
−

m0

∑
j=0

∑
k∈Z

w j,kψ j,k

(
X iT(θ)

)
]2

, (3.8)

or for shrinkage rules

Q
(
yi
)

= Q4
(
yi
)

=

[
yi − ∑

k∈Z

c0,k ·φ0,k

(
X iT(θ)

)
−

m0

∑
j=0

∑
k∈Z

s j,k ·w j,k ·ψ j,k

(
X iT(θ)

)
]2

. (3.9)
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3.2.1 Prior models for fixed resolution

To implement posterior inference, we require prior models from (3.3), (3.4), (3.6), and

(3.7), given the resolution m0. For notational simplicity, let ’∼’ mean ’distributed as’,

let N(µ,η) denote a normal distribution with mean µ and variance η, let IG(a,b) denote

an inverse gamma distribution with mean 1
(a−1)b and variance 1

(a−1)2(a−2)b2 , and let P(·)

generically denote a probability density function. We define a hierarchial prior model on

each coefficient c0,k or w j,k. We assume a normal distribution as a prior model for each

coefficient with a variance depending on the resolution level and a hyperparameter τ

c0,k|τ ∼ N(0,τ), w j,k|τ ∼ N(0,τ2− j). (3.10)

The scale factor 2− j is due to the factor 2 j/2 in the definition of ψ j,k(x) from (2.1). For

details, see Müller and Vidakovic (1998). We define prior models for σ2 and τ as

τ ∼ IG(aτ,bτ), σ2 ∼ IG(av,bv). (3.11)

A prior for the direction θ is uniform

P(θ) =
1

2π
(1

π
)p−2

, (3.12)

where θ is (p−1)×1 and 0 < θ1 < 2π,−π
2 < θd < π

2 , d = 2, . . . , p−1.

Let Ω1 =
[
{c0,k},{w j,k},τ,σ2,θ

]
and let ∝ mean ’proportional to’. From (3.10)-(3.12),

the joint prior distribution is

P
(
Ω1
)

= ∏
k

P
(
c0,k|τ

)
·∏

j,k
P
(
w j,k|τ

)
·P
(
τ|aτ,bτ

)
·P
(
σ2|av,bv

)
·P
(
θ
)
. (3.13)

3.2.2 Mixture priors for wavelet shrinkage

The wavelet series is a parsimonious representation, i.e., some coefficients at high levels

of detail are close to zero. To allow for wavelet shrinkage we need a prior model for a
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wavelet coefficient which is a hierarchical mixture model with a point-mass at zero and a

continuous distribution for non-zero values. We propose a prior for the indicator s j,k, i.e.,

j > 0

χ j = Pr(s j,k = 1) = α j, (3.14)

where Pr means ’probability’.

Our prior for a wavelet coefficient is defined as

w j,k|τ, s j,k = 1 ∼ N
(
0,τ2− j), (3.15)

w j,k|τ, s j,k = 0 ∼ h
(
w j,k

)
, (3.16)

the prior for a scaling coefficient is as in (3.10), and choices of h
(
w j,k

)
will be discussed

below.

In words, wavelet coefficients which are non-zero have decreasing probabilities χ j at

higher resolution levels. If s j,k = 0, then w j,k is not included in the orthogonal wavelet series

and in the likelihood function. To achieve posterior inference for the zero coefficients we

need to assume a ”pseudo-prior” h(w j,k), as described below.

Shrinkage rules make small coefficients shrink significantly more than large values,

because the (true) fine detail coefficients tend to be small, i.e., high level coefficients are

shrunk more strongly than low level coefficients. Thus, the prior probability χ j and the

scale factor 2− j have information on the rate of decay in the magnitude of the wavelet

coefficients and indirectly on the smoothness of the function r. Other methods of control-

ling the rate of decay are possible. For example, Abramovich, Sapatinas, and Silverman

(1998) used χ j = min[1,C2(1/2)λ1 j] and τ j = C1(1/2)λ2 j with C1 and C2 determined in an

empirical Bayes fashion, where λ1 and λ2 are smoothness indices. Chipman, Kolaczyk,

and McCulloch (1997) took χ j ∝ f j(1/2) j, where f j is the fraction of empirical wavelet

coefficients larger than a certain cutoff.
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A variable number of coefficients is implied by the prior model. This leads to a vari-

able dimension problem. To overcome this problem Carlin and Chib (1995) proposed to

set up artificial priors, i.e., ”pseudo priors” on coefficients which are not currently included

in the likelihood. The following pseudo prior h(w j,k) is proposed:

w j,k|s j,k = 0 ∼ N
(
ŵ j,k, σ̂2

j,k

)
, (3.17)

where ŵ j,k and σ̂2
j,k are some initial guesses of the marginal posterior mean and variance of

w j,k, respectively. Choosing ŵ j,k and σ̂2
j,k is discussed in Müller and Vidakovic (1999). In

this paper, after an initial burn-in period of T0, the values of ŵ j,k and σ̂2
j,k are computed by

the ergodic mean and variance of w j,k over the initial burn-in period.

To achieve the efficient implementation of MCMC schemes, it is important to have a

good choice of the pseudo prior h(w j,k), which changes the simulated Markov chain, but

not the asymptotic distribution. The asymptotic distribution is always dominated by the

posterior distribution, which is derived from the likelihood and the prior.

We complete the model with a hyperprior for α in (3.14):

α ∼ Beta(aα,bα). (3.18)

Let Ω2 =
[
{c0,k},{s j,k},{w j,k},α,τ,σ2,θ

]
. From (3.11), (3.12), and (3.14)-(3.18), the

joint prior is

P
(
Ω2
)

= ∏
k

P
(
c0,k|τ

)
·∏

j,k
P
(
s j,k|α

)
· ∏

s j,k∈{1}
P
(
w j,k|s j,k = 1,τ

)

× ∏
s j,k∈{0}

P
(
w j,k|s j,k = 0

)
·P
(
α|aα,bα

)
·P
(
τ|aτ,bτ

)
·P
(
σ2|av,bv

)

×P
(
θ
)

∝ ∏
k

P
(
c0,k|τ

)
·∏

j,k
P
(
s j,k

)
· ∏

s j,k∈{1}
P
(
w j,k|s j,k = 1,τ

)

× ∏
s j,k∈{0}

P
(
w j,k|s j,k = 0

)
·P
(
α|aα,bα

)
·P
(
τ|aτ,bτ

)
·P
(
σ2|av,bv

)
. (3.19)
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3.3 Posterior inference and MCMC schemes

We derive full conditional distributions to implement an MCMC scheme. Let Z = Xβ ∈

{zmin,zmax} which are computed based on the maximum(minimum) of Xβ (see Appendix

A) and let the boundaries of the translations k of the coefficients {c0,k, w j,k} be denoted

[a0, b0] and [a j, b j], j = 0, . . . ,m0 , respectively, (see Subsection 3.5.1).

3.3.1 Posterior inference for no shrinkage

Recall Ω1 =
[
{c0,k},{w j,k},τ,σ2,θ

]
and let Ω1

(
− ξ
)

denote Ω1 without the parameter ξ

which could be any of {c0,k}, {w j,k}, τ, σ2, or θ. We show the following calculations in

Appendix A. From (3.7), (3.8), and (3.13), the joint distribution of the data Y and the

parameters Ω1, conditional on X and the resolution m0 is

P
(
Y,Ω1|X,m0

)
= P(Y |σ2,{c0,k},{w j,k},θ,X,m0

)
·P
(
Ω1
)
. (3.20)

Then the posterior distribution of σ2, given Ω1
(
−σ2),Y,X and m0, is

σ2|Ω1(−σ2),Y,X,m0 ∼ IG


n

2
+av,

(
1
bv

+
1
2

n

∑
i=1

Q3
(
yi
)
)−1


 . (3.21)

The posterior distribution of τ, given Ω1
(
− τ
)
,Y,X and m0, is

τ|Ω1
(
− τ
)
,Y,X,m0 ∼ IG

[
s
2

+aτ,

(
1
bτ

+
1
2

b0

∑
a0

c2
0,k +

1
2

m0

∑
j=0

b j

∑
k=a j

w2
j,k

2− j

)]
, (3.22)

where s = b0 −a0 +1+
m0

∑
j=0

(
b j −a j +1

)
.

The posterior distribution of c0,k1 , given Ω1
(
− c0,k1

)
,Y,X and m0, is

c0,k1 |Ω1
(
− c0,k1

)
,Y,X,m0 ∼ N

(
µk1 ,σ

2
k1

)
, (3.23)

where µk1 and σ2
k1

are given in Appendix B.
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The posterior distribution of w j2,k2 , given Ω1
(
−w j2,k2

)
,Y,X and m0, is

w j2,k2 |Ω1
(
−w j2,k2

)
,Y,X,m0 ∼ N

(
µ( j2,k2),σ2

( j2,k2)

)
, (3.24)

where µ( j−2,k2) and σ2
( j2,k2) are given in Appendix B.

The posterior distribution of θ, given Ω1
(
−θ
)
,Y,X and m0, cannot be determined explic-

itly. See B-6 in Appendix B.

3.3.2 Posterior inference for wavelet shrinkage

Recall that Ω2 =
[
{c0,k},{s j,k},{w j,k},α,τ,σ2,θ

]
. We show the following calculations in

Appendix C. From (3.7), (3.9), and (3.19), the joint distribution of the data Y and the

parameters, conditional on X and the resolution m0, is

P
(
Y,Ω2|X,m0

)
= P(Y |σ2,{c0,k},{s j,k},{w j,k},θ,X,m0

)
·P
(
Ω2
)
. (3.25)

Then the posterior distribution of σ2, given Ω2
(
−σ2),Y,X and m0, is

σ2|Ω2(−σ2),Y,X,m0 ∼ IG


n

2
+av,

(
1
bv

+
1
2

n

∑
i=1

Q4
(
yi
)
)−1


 . (3.26)

The posterior distribution of τ, given Ω1
(
− τ
)
,Y,X and m0, is

τ|Ω2
(
− τ
)
,Y,X,m0 ∼ IG




s
2

+aτ,




1
bτ

+
1
2

b0

∑
k=a0

c2
0,k +

1
2

m0

∑
j=0

b j

∑
k=a j︸ ︷︷ ︸

j,k∈{s j,k=1}

w2
j,k

2− j







, (3.27)

where s = b0 −a0 +1+
m0

∑
j=0

b j

∑
k=a j

s j,k.

The posterior distribution of c0,k1 , given Ω2
(
− c0,k1

)
,Y,X and m0, is

c0,k1 |Ω2
(
− c0,k1

)
,Y,X,m0 ∼ N

(
µk1 ,σ

2
k1

)
, (3.28)
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where µk1 and σ2
k1

are given in Appendix C.

The posterior distribution of w j2,k2 , given Ω2
(
−w j2,k2

)
,s j2,k2 = 1,Y,X and m0, is

w j2,k2|Ω2
(
−w j2,k2

)
,s j2,k2 = 1,Y,X,m0 ∼ N

(
µ( j2,k2),σ2

( j2,k2)

)
, (3.29)

where µ( j2,k2) and σ2
( j2,k2) are in Appendix C.

The posterior distribution of w j2,k2 , given Ω2
(
−w j2,k2

)
,s j2,k2 = 0,Y,X and m0, is

w j2,k2 |Ω2
(
−w j2,k2

)
,s j2,k2 = 0,Y,X ,m0 ∼ N(ŵ j,k, σ̂2

j,k), (3.30)

where ŵ j,k, σ̂2
j,k are initial guesses of the marginal posterior mean and variance of w j,k.

The posterior distribution of s j2,k2 , given Ω2
(
− s j2,k2

)
,Y,X and m0, is

s j2,k2 |Ω2
(
− s j2,k2

)
,Y,X

∼





Pr(s j,k = 0) ∝ pr0 = exp

(
− 1

2σ2

n

∑
i=1

Q4
(
Yi
)
)
(
1−α j2

)
h
(
w j2,k2

)
,

Pr(s j,k = 1) ∝ pr1 = exp

(
− 1

2σ2

n

∑
i=1

Q4
(
Yi
)
)
(
α j2
)
P
(
w j2,k2 |s j2,k2 = 1,τ

)
,

(3.31)

with probabilities Pr(s j,k = 0) = pr0/(pr0 + pr1) and Pr(s j,k = 1) = pr1/(pr0 + pr1).

The posterior distributions of α and θ, given Ω2
(
−α, −θ

)
,Y,X and m0, cannot be deter-

mined explicitly (see Appendix C).

3.3.3 MCMC schemes

We describe MCMC schemes for no shrinkage and shrinkage from Subsection 3.3.1 and

Subsection 3.3.2. Starting from initial values for the parameters Ω1 or Ω2, the parameters
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are updated, one at time. For details about the initialization see Subsection 3.5.2. The

posterior distributions for each step are calculated in Appendix B and Appendix C.

The graphical model of the single index model with no shrinkage is shown in Figure 3. For

no shrinkage, the MCMC scheme is as follows.

1 To update σ2, generate σ2 from the complete inverse gamma conditional distribution.

2 To update τ, generate τ from the complete inverse gamma conditional distribution.

3 To update c0,k1 , generate c0,k1 from the complete normal conditional distribution.

4 To update w j2,k2 , generate w j2,k2 from the complete normal conditional distribution.

5a Generate θ̃ from a normal proposal distribution with mean θ and variance σ̂2
1 , and

compute the acceptance probability

A
(

θ, θ̃
)

= min


1,

P
(

θ̃|Ω1(−θ)
)

P
(

θ|Ω1(−θ)
)


 .

5b Generate θ̃ from a normal proposal distribution with mean µθ and variance σ̂2
2, and

compute the acceptance probability

A
(

θ, θ̃
)

= min


1,

P
(

θ̃|Ω1(−θ)
)
·q
(

θ|µθ, σ̂2
2

)

P
(

θ|Ω1(−θ)
)
·q
(

θ̃|µθ, σ̂2
2

)


 .

Steps 1-4 are Gibbs sampling steps, that is, the parameters are updated by generations from

the complete conditional distributions. Steps 5a and 5b are a Metropolis step (Metropolis

et al., 1953) and an independence sampler step (Tierney, 1994), respectively. The values

µθ, σ̂2
1, σ̂2

2 are described below. We use a short primary run to find a suitable initial value

for the direction parameter.
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Figure 3. A single index model without shrinkage as a graphical model.
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The graphical model of the single index model with shrinkage is shown in Figure 4. For

shrinkage, the MCMC scheme uses the following steps.

1 To update σ2, generate σ2 from the complete inverse gamma conditional distribution.

2 To update τ, generate τ from the complete inverse gamma conditional distribution.

3 To update c0,k1 , generate c0,k1 from the complete normal conditional distribution.

4a To update w j2,k2 , given s j2,k2 = 1, generate w j2,k2 from the complete normal conditional

distribution.

4b To update w j2,k2 , given s j2,k2 = 0, generate w j2,k2 from the complete normal conditional

distribution.

5 To update each indicator s j2,k2 , generate the complete conditional posterior probabil-

ity.

6 Generate α2 ∼ N(α1,0.12), compute

A(α1,α2) = min


1,

αaα
2 (1−α2)

bα

αaα
1 (1−α1)bα

·∏
j,k

[
α j

2

α j
1

]s j,k
[

1−α j
2

1−α j
1

]1−s j,k

 ,

and with probability A(α1,α2) replace α1 by α2. Otherwise leave α1 unchanged.

7a Generate θ̃ from a normal proposal distribution with mean θ and variance σ̂2
1 , and

compute the acceptance probability

A
(

θ, θ̃
)

= min


1,

P
(

θ̃|Ω1(−θ)
)

P
(

θ|Ω1(−θ)
)


 .

7b Generate θ̃ from a normal proposal distribution with mean µθ and variance σ̂2
2, and

compute the acceptance probability

A
(

θ, θ̃
)

= min


1,

P
(

θ̃|Ω1(−θ)
)
·q
(

θ|µθ, σ̂2
2

)

P
(

θ|Ω1(−θ)
)
·q
(

θ̃|µθ, σ̂2
2

)


 .
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Figure 4. A single index model with shrinkage as a graphical model.
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Steps 1-5 are Gibbs sampling steps, that is, the parameters are updated by genera-

tions from the complete conditional distributions. Steps 6 and 7a(b) are a Metropolis step

(Metropolis et al., 1953) or an independence sampler step (see Subsection 5.3.4 in Gilks, et

al., 1996), respectively. We use a short primary run to find an initial direction with all s j,k’s

equal to 1. The values σ̂2
1 and σ̂2

2 are computed based on acceptance rates (see Subsection

3.5.2), and for µθ see Section 3.4.

3.4 An independence sampler for a normal proposal distribution

We propose a normal distribution as the proposal distribution for the direction θ. When an

independence sampler is used to generate samples of the direction θ from a normal distri-

bution, we need to specify its mode (mean). Here we introduce two ways to find the mode

(mean). Suppose that the target distribution of the direction θ is close to a normal distri-

bution (B-6 in Appendix B). The mode (mean) is a value which maximizes the posterior

distribution of the direction θ. We can use the Matlab function fminsearch which imple-

ments an unconstrained nonlinear optimization method, that is, a direct search method that

does not use numerical or analytic gradients. A limitation of fminsearch is that it often can

not handle a discontinuity, particularly if the discontinuity occurs near the solution. A new

approach to search for a mode (mean) is introduced as follows.

Suppose that the posterior distribution is unimodal. The steps to approximate a mode

(mean) for the posterior distribution are shown schematically in Figure (5). Suppose the

MCMC algorithm is being performed, and let p1 be the current value of the direction pa-

rameter and σ̂2
θ the variance of the proposal distribution. Let P(θ) denote the (known)

function that is proportional to the full conditional of θ. The slope of the line connecting

two points (θ0,P(θ0)), (θ1,P(θ1)) is

γ =
P(θ1)−P(θ0)

θ1 −θ0
.
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Step 1 - To see where the current p1 is relative to the mode, compare two slopes from 3

points: (p1 − σ̂θ,P(p1 − σ̂θ)), (p1,P(p1)), and (p1 + σ̂θ,P(p1 + σ̂θ)). If the slopes

are negative, the current direction is to the right of the mode (mean). On the other

hand, if the slopes are positive, the current direction is to the left of the mode (mean).

Step 2 - If the slopes are negative(positive), shift the previous p1 to left(right) p2 = p1 −

σ̂θ(p2 = p1 + σ̂θ), repeat Step 1 and shift until the signs of the two slopes are differ-

ent.

Step 3 - Consider the three points (L,P(L)), (p3,P(p3)), and (R,P(R)),where L = p3 − σ̂θ,

p3, R = p3 + σ̂θ, and the signs of the two slopes are different.

Step 4 - When P(L) is greater(less) than P(R), the middle point p3 is on the right side(left

side) of the true mode.

Step 5 - Calculate the slope γ of the line corresponding to the two points that are on the same

side of the mode. Construct a line passing through the point on the opposite side of

the mode and having slope −γ.

Step 6 - Define a candidate mode (mean) to be the abscissa at which the two lines intersect.

3.5 Computational issues

3.5.1 Range of translation parameters

We consider minimum phase Daubechies wavelets with compact support which ensure a

finite range of values. The supports of the scaling function φ(x) and the wavelet function

ψ(x) are
[
0,2N − 1

]
and

[
−N,N − 1

]
, respectively, where N is the number of vanishing

moments. We can easily calculate the supports of φ j,k(x),ψ j,k(x) and the range of the

translation parameter k for φ j,k(x),ψ j,k(x). The supports of φ j,k(x) and ψ j,k(x) are
[

k
2 j ,

2N −1+ k
2 j

]
,

[
1−N + k

2 j ,
N + k

2 j

]
. (3.32)
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Step 1
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3
,P(p

3
))

(R,P(R))

← θ1

Figure 5. Use three points to find a mode (mean). The dashed line is proportional to
the target distribution of the direction, given all other parameters.
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Thus, given x ∈ [a,b], we can calculate the range of k based on the supports corresponding

to the functions φ j,k(x) and ψ j,k(x) intersecting [a,b],

[
da2 je−2N +1,bb2 jc

]
,

[
da2 je−N,bb2 jc+N −1

]
, (3.33)

where bxc = max{n ∈ Z;n ≤ x}, and dxe = min{n ∈ Z;n ≥ x}.

3.5.2 Initialization and hyperparameters settings

It is important to initialize the direction parameter θ since doing so affects the initialization

of the coefficients c0,k and w j,k. To obtain a good initial direction, we implemented pre-

liminary MCMC runs with 1000 iterations for several starting directions, where we choose

a direction from these directions by minimizing the residual sums of squares calculated

based on the estimated mean function corresponding to each starting direction. Motivated

by the orthogonality of wavelet functions we propose estimators of the coefficients that are

based on a ”quadrature” type estimate as follows (Hart, 1997):

ĉ0,k =
n

∑
i=1

yi(si − si−1)φ0,k

(
si + si−1

2

)

≈
n

∑
i=1

yi

∫ si

si−1

φ0,k(z)dz, (3.34)

and

ŵ j,k =
n

∑
i=1

yi(si − si−1)ψ j,k

(
si + si−1

2

)

≈
n

∑
i=1

yi

∫ si

si−1

ψ j,k(z)dz, (3.35)

where z(i) is the ith smallest of the ordered Xβ, s0 = z(1), si =
z(i)+z(i+1)

2 , i = 1, . . . ,n− 1,

sn = z(n), and si+si−1
2 =

z(i−1)+2z(i)+z(i+1)

2 for z(1) < · · · < z(n). The initial values of τ and

α are generated from the priors. An initial choice of a variance of the normal proposal

distribution for the direction parameter θ is

σ̂2
θ =

ζ
n−1

n

∑
i=1

(yi − r̂i)
2, (3.36)
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where ζ is arbitrary and r̂i is the wavelet series approximation corresponding to a starting

direction. With the initial direction given, the variance σ̂2
θ of the MCMC scheme is cho-

sen doing different sets of initial MCMC runs until a value of σ̂2
θ is found that yields an

acceptance rate around 60% for the Metropolis steps and over 70% for the independence

sampler.

The parameters av and aτ are fixed at av = aτ = 1/2 and the parameters bv and bτ

are fixed at bv = bτ = 1 so that the priors of σ and
√

τ have infinite means (Hart, 1997).

The parameters aα and bα are fixed at aα = bα = 1, meaning that α has a U(0,1) prior

distribution.
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CHAPTER IV

SIMULATION STUDIES AND AN APPLICATION

To calculate the ranges of the translation parameter k, we need the support of the indices

for the true direction. Since the true direction θ is unknown, we use a maximum support of

indices Z = XT (θ)(A-8 in Appendix A) or an adjusted support, [z(1),z(n)], obtained from

the indices of a direction updated by MCMC schemes.

We perform simulation studies on two non-linear functions, a cosine function which is

represented by only the smooth parts of the wavelet series, and a Doppler function which is

represented by the full wavelet representations. We compare performances of the Metropo-

lis algorithm and the independent samplers for the direction parameter θ.

In these simulation studies we repeat the MCMC schemes twice with the first T1 =

1000 iterations to initialize the direction parameter θ and the second T2 = 10000 iterations

including a burn-in period (1000 or 2000). We simulated 20 datasets for each of the two

functions.

4.1 Simulation study for fixed resolution

The cosine function is represented only by smooth parts in the wavelet series (3.1) and the

Doppler function is represented by the wavelet representations (3.1 or 3.2) with m0 = 5 or

6. In the cosine function the supports of the indices for all directions are very close to that

of the true direction. In the Doppler function we propose the maximum support and the

adjusted supports.

For notational simplicity, suppose that Z denotes Xβ where X =
(
X1, . . . ,Xp

)
is n× p,

β = (β1, . . . ,βp)
T is p× 1. The simulation data (zi,yi), i = 1, . . . ,n, are independent,

where yi = r(zi)+ εi, zi = X iβ = xi1β1 + · · ·+ xipβp, and εi
iid∼ N(0,σ2).
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Example 1. The number of observations is n = 200 and the direction parameter is 2× 1.

The function is r(zi) = cos(zi) and each covariate is independently generated from a normal

distribution with zero mean. Table 1 shows the results for the function, the error variance,

and the direction, with three different directions and three different error variances. Figures

6-11 show boxplots for the posterior means of the direction for the Metropolis algorithm

and two independence samplers over the 20 repetitions, and the estimates of the mean

function cos(zi). The posterior distributions of the wavelet coefficients c0,k are shown in

Figures 12-14 for one of the 20 repetitions.

Example 2. The number of observations is n = 200 and the direction parameter is 2× 1.

The function is r(zi) = 2
√

zi(1− zi)sin[(2.1π/(zi + 0.05)], i = 1, . . . ,n and n = 200, for

0 < zi < 1, and and each covariate is independently generated from a uniform distribu-

tion on [0,0.45]. Tables 2-3 show the results with one direction and three different error

variances for the Metropolis and two independence samplers with the maximum resolu-

tions m0 = 5 or 6 fixed. Figures 15-38 show the posterior means of the direction for the

Metropolis algorithm and two independence samplers for the 20 repetitions, the estimated

mean Doppler function, and the posterior distributions of the wavelet coefficients w4,k for

one of the 20 repetitions.

In all tables and all figures, for convenience, let θP denote a previous value, θL denote

a mode calculated based on the two lines in Figure 5 , and θM denote a mode calculated

based on the Matlab command fminsearch.
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Table 1. Simulation results for yi = cos(zi)+ εi where zi = X iT (θ). The values σ̂2
1 and σ̂2

2
are determined based on an acceptance rate (see Subsection 3.5.2).

Metropolis algorithm, N(θP, σ̂2
1)

(θ, σ) θ σ r
true value bias mse bias mse Ibias Imse

(0.35, 0.02) 2.12e-4 3.31e-6 8.52e-2 7.26e-3 3.63e-4 5.43e-5
(0.35, 0.5) 3.00e-3 2.29e-3 1.10e-2 8.12e-4 1.36e-2 1.26e-2
(0.35, 1) -6.24e-3 7.60e-3 2.37e-2 2.68e-3 -2.52e-3 5.79e-2

(2.54, 0.02) 4.26e-4 1.80e-6 8.52e-2 7.26e-3 3.40e-4 8.98e-5
(2.54, 0.5) 1.47e-2 1.39e-3 1.08e-2 7.84e-4 8.29e-3 1.43e-3
(2.54, 1) 1.78e-2 6.68e-3 1.87e-2 2.45e-3 -2.09e-2 5.54e-2

(4.72, 0.02) -2.34e-4 3.64e-6 8.50e-2 7.22e-3 3.30e-4 5.06e-5
(4.72, 0.5) -1.11e-2 1.66e-3 9.33e-3 8.21e-4 1.24e-2 1.37e-2
(4.72, 1) 8.76e-4 7.91e-3 2.76e-2 2.92e-3 -9.40e-4 6.01e-2

Independence sampler, N(θL, σ̂2
2)

(0.35, 0.02) 1.98e-4 1.68e-6 8.53e-2 7.28e-3 -2.10e-5 3.48e-5
(0.35, 0.5) 4.55e-3 2.28e-3 7.06e-3 6.91e-4 9.00e-3 1.09e-2
(0.35, 1) -1.24e-2 6.15e-3 9.51e-3 2.09e-3 -2.58e-3 5.78e-2

(2.54, 0.02) 7.46e-5 2.12e-6 8.51e-2 7.24e-3 -3.51e-5 3.89e-5
(2.54, 0.5) 1.21e-2 1.21e-3 6.13e-3 6.86e-4 8.40e-3 1.16e-6
(2.54, 1) 1.32e-2 7.26e-3 6.45e-3 2.00e-3 6.19e-3 4.77e-2

(4.72, 0.42) -1.69e-4 2.77e-6 8.50e-2 7.23e-3 -2.86e-5 3.09e-5
(4.72, 0.5) -1.24e-2 1.71e-3 5.64e-3 7.31e-4 8.60e-3 1.19e-2
(4.72, 1) -5.66e-3 6.93e-3 1.17e-2 2.16e-3 1.17e-2 4.32e-2

Independence sampler, N(θM, σ̂2
2)

(0.35, 0.02) 1.84e-4 1.70e-6 8.53e-2 7.28e-3 -2.09e-5 3.48e-5
(0.33, 0.5) 4.67e-3 2.29e-3 7.14e-3 6.94e-4 9.01e-3 1.09e-2
(0.35,1) -1.27e-2 6.13e-3 9.48e-3 2.09e-2 1.03e-2 4.51e-2

(2.54, 2.02) 6.47e-5 2.11e-6 8.51e-2 7.24e-3 -3.51e-5 3.89e-5
(2.54, 0.5) 1.21e-2 1.21e-3 6.14e-3 6.86e-4 8.40e-3 1.16e-2
(2.54, 1) 1.34e-2 7.24e-3 6.51e-3 2.02e-3 6.10e-3 4.77e-2

(4.72, 0.02) -1.61e-4 2.79e-6 8.51e-2 7.23e-3 -1.57e-5 3.10e-5
(4.72, 0.5) -1.24e-2 1.71e-3 5.64e-3 7.31e-4 8.63e-3 1.19e-2
(4.72, 1) 1.63e-1 4.58e-1 1.18e-2 2.18e-3 1.20e-2 4.34e-2
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Figure 6. Posterior estimated mean functions for the Metropolis algorithm( dotted
line), the independence sampler based on two lines (dashed line), and the independence
sampler based on the Matlab command fminsearch (dash-dot line), together with the true
curve(solid line) on the true direction θ = 0.35 and yi = cos(zi)+ εi, εi

iid∼ N(0,0.022).
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Figure 7. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and yi = cos(zi)+ εi, εi

iid∼ N(0,0.022). The box has lines at the lower
quartile, median, and upper quartile values.
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Figure 8. Posterior estimated mean functions for the Metropolis algorithm (dotted
line), the independence sampler based on two lines (dashed line), and the independence
sampler based on the Matlab command fminsearch (dash-dot line) together with the true
curve(solid line) on the true direction θ = 0.35 and yi = cos(zi)+ εi, εi

iid∼ N(0,0.52).
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Figure 9. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and yi = cos(zi)+ εi, εi

iid∼ N(0,0.52). The box has lines at the lower
quartile, median, and upper quartile values.
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Figure 10. Posterior estimated mean functions for the Metropolis algorithm (dotted
line), the independence sampler based on two lines (dashed line), and the independence
sampler based on the Matlab command fminsearch (dash-dot line) together with the true
curve(solid line) on θ = 0.35 and yi = cos(zi)+ εi, εi

iid∼ N(0,12).
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Figure 11. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and yi = cos(zi) + εi, εi

iid∼ N(0,12). The box has lines at the lower
quartile, median, and upper quartile values.
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Figure 12. Histograms for the posterior distribution of c0,k for the true direction θ =

0.35 and yi = cos(zi)+ εi, εi
iid∼ N(0,0.022), using the Metropolis algorithm. The scale on

the y-axis is frequency with the maximum frequency 9000.
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Figure 13. Histograms for the posterior distribution of c0,k for the true direction θ =

0.35 and yi = cos(zi)+ εi, εi
iid∼ N(0,0.52), using the Metropolis algorithm. The scale on

the y-axis is frequency with the maximum frequency 9000.
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Figure 14. Histograms for the posterior distribution of c0,k for the true direction θ =

0.35 and yi = cos(zi)+εi, εi
iid∼ N(0,12), using the Metropolis algorithm. The scale on the

y-axis is frequency with the maximum frequency 9000.



34

Table 2. Simulation results for yi = 2
√

zi(1− zi)sin
(

2.1π
zi+0.05

)
+ εi with the maximum

support and with no shrinkage where zi = X iT (θ). The values σ̂2
1 and σ̂2

2 are determined
based on an acceptance rate (see Subsection 3.5.2).

Metropolis algorithm, N(θP,σ2
1)

(θ, σ) θ σ r
resolution true value bias mse bias mse Ibias Imse

(0.35, 0.02) -6.54e-3 4.31e-5 1.67e-1 2.80e-2 3.92e-4 1.80e-2
m0 = 5 (0.35, 0.5) -5.84e-3 5.96e-5 3.16e-2 1.53e-3 8.10e-3 5.40e-2

(0.35, 1) -6.25e-4 2.63e-4 4.12e-3 2.42e-3 7.57e-3 1.45e-1
(0.35, 0.02) 1.06e-4 1.00e-7 1.06e-1 1.11e-2 -1.22e-4 2.64e-4

m0 = 6 (0.35, 0.5) 2.11e-3 2.26e-5 2.45e-3 5.14e-4 6.81e-3 6.55e-2

Independence sampler, N(θL,σ2
2)

(0.35, 0.02) -6.45e-3 4.17e-5 1.68e-1 2.81e-2 3.91e-4 1.80e-2
m0 = 5 (0.35, 0.5) -5.70e-3 5.84e-5 3.18e-2 1.55e-3 8.10e-3 5.42e-2

(0.35, 1) -4.94e-4 2.01e-4 3.64e-3 2.39e-3 7.41e-3 1.47e-1
(0.35, 0.02) 7.52e-5 7.72e-8 1.06e-1 1.11e-2 -1.22e-4 2.64e-4

m0 = 6 (0.35, 0.5) 2.32e-3 2.40e-5 2.69e-3 5.12e-4 6.74e-3 6.63e-2

Independence sampler, N(θM,σ2
2)

(0.35, 0.02) -6.46e-3 4.19e-5 1.68e-1 2.81e-2 3.91e-4 1.80e-2
m0 = 5 (0.35, 0.5) -5.71e-3 5.87e-5 3.18e-2 1.55e-3 8.09e-3 5.43e-2

(0.35,1) -7.63e-4 2.04e-4 3.48e-3 2.40e-3 7.47e-3 1.47e-1
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Figure 15. Posterior estimated mean functions for the Metropolis algorithm (dotted
line), the independence based on two lines (dashed line), and the independence based on
the Matlab command fminsearch (dash-dot line) together with the true curve (solid line) on
the true direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the
maximum support and no shrinkage and the maximum resolution m0 = 5.
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Figure 16. Posterior estimated mean functions for the Metropolis algorithm (dotted
line), the independence based on two lines (dashed line), and the independence based on
the Matlab command fminsearch (dash-dot line) together with the true curve (solid line) on
the true direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the
maximum support and no shrinkage and the maximum resolution m0 = 6.
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Figure 17. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the maximum
support and no shrinkage and the maximum resolution m0 = 5. The box has lines at the
lower quartile, median, and upper quartile values.

Metropolis Independence(L)
0.3494

0.3497

0.35

0.3503

0.3506

di
re

ct
io

n(
θ 1)

Figure 18. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the maximum
support and no shrinkage and the maximum resolution m0 = 6. The box has lines at the
lower quartile, median, and upper quartile values.
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Figure 19. Posterior estimated mean functions for the Metropolis algorithm (dotted
line), the independence based on two lines (dashed line), and the independence based on
the Matlab command fminsearch (dash-dot line) together with the true curve(solid line) on
the true direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.52 for the
maximum support and no shrinkage and the maximum resolution m0 = 5.
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Figure 20. Posterior estimated mean functions for the Metropolis algorithm (dotted
line), the independence based on two lines (dashed line), and the independence based on
the Matlab command fminsearch (dash-dot line) together with the true curve(solid line) on
the true direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.52 for the
maximum support and no shrinkage and the maximum resolution m0 = 6.
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Figure 21. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.52 for the maximum
support and no shrinkage and the maximum resolution m0 = 5. The box has lines at the
lower quartile, median, and upper quartile values.
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Figure 22. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.52 for the maximum
support and no shrinkage and the maximum resolution m0 = 6. The box has lines at the
lower quartile, median, and upper quartile values.
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Figure 23. Posterior estimated mean functions for the Metropolis algorithm (dotted
line), the independence sampler based on two lines (dashed line), and the independence
sampler based on the Matlab command fminsearch (dash-dot line) together with the true
curve(solid line) on the true direction θ = 0.35 and the Doppler function in Example 2 with
σ2 = 12 for the maximum support and no shrinkage and the maximum resolution m0 = 5.
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Figure 24. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 12 for the maximum
support and no shrinkage and the maximum resolution m0 = 5. The box has lines at the
lower quartile, median, and upper quartile values.
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Figure 25. Histograms for the posterior distribution of w4,k for the true direction
θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the maximum support
and no shrinkage and the maximum resolution m0 = 5, using the Metropolis algorithm. The
scale on the y-axis is frequency with the maximum frequency 9000.
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Figure 26. Histograms for the posterior distribution of w4,k for the true direction
θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.52 for the maximum support
and no shrinkage and the maximum resolution m0 = 5, using the Metropolis algorithm. The
scale on the y-axis is frequency with the maximum frequency 9000.
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Figure 27. Histograms for the posterior distribution of w4,k for the true direction
θ = 0.35 and the Doppler function in Example 2 with σ2 = 12 for the maximum support
and no shrinkage and the maximum resolution m0 = 5, using the Metropolis algorithm. The
scale on the y-axis is frequency with the maximum frequency 9000.
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Table 3. Simulation results for yi = 2
√

zi(1− zi)sin
(

2.1π
zi+0.05

)
+ εi with the adjusted

support and with no shrinkage where zi = X iT (θ). The values σ̂2
1 and σ̂2

2 are determined
based on an acceptance rate (see Subsection 3.5.2).

Metropolis algorithm, N(θP,σ2
1)

(θ, σ) θ σ r
resolution true value bias mse bias mse bias mse

(0.35, 0.02) -6.54e-3 4.31e-5 1.67e-1 2.80e-2 3.92e-4 1.80e-2
m0 = 5 (0.35, 0.5) -5.84e-3 5.96e-5 3.16e-2 1.53e-3 8.10e-3 5.40e-2

(0.35, 1) -6.25e-4 2.63e-4 4.12e-3 2.42e-3 7.57e-3 1.45e-1
m0 = 6 (0.35, 0.02) 1.47e-4 1.13e-7 1.06e-1 1.11e-2 -1.77e-4 2.44e-4

Independence sampler, N(θL,σ2
2)

(0.35, 0.02) -6.45e-3 4.17e-5 1.68e-1 2.81e-2 3.91e-4 1.80e-2
m0 = 5 (0.35, 0.5) -5.70e-3 5.84e-5 3.18e-2 1.55e-3 8.10e-3 5.42e-2

(0.35, 1) -4.94e-4 2.01e-4 3.64e-3 2.39e-3 7.41e-3 1.47e-1
m0 = 6 (0.35, 0.02) 1.60e-4 8.74e-7 1.06e-1 1.11e-2 -2.03e-4 2.40e-4

Independence sampler, N(θM,σ2
2)

(0.35, 0.02) -6.46e-3 4.19e-5 1.68e-1 2.81e-2 3.91e-4 1.80e-2
m0 = 5 (0.35, 0.5) -5.71e-3 5.87e-5 3.18e-2 1.55e-3 8.09e-3 5.43e-2

(0.35,1) -7.63e-4 2.04e-4 3.48w-3 2.40e-3 7.47e-3 1.47e-1
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Figure 28. Posterior estimated mean functions for the Metropolis (dotted line), the
independence sampler based on two lines (dashed line), and the independence sampler
based on the Matlab command fminsearch (dash-dot line) together with the true curve(solid
line) on the true direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022

for the adjusted support and no shrinkage and the maximum resolution m0 = 5.
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Figure 29. Posterior estimated mean functions for the Metropolis (dotted line), the
independence sampler based on two lines (dashed line), and the independence sampler
based on the Matlab command fminsearch (dash-dot line) together with the true curve(solid
line) on the true direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022

for the adjusted support and no shrinkage and the maximum resolution m0 = 6.
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Figure 30. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the adjusted
support and no shrinkage and the maximum resolution m0 = 5. The box has lines at the
lower quartile, median, and upper quartile values.
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Figure 31. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the adjusted
support and no shrinkage and the maximum resolution m0 = 6. The box has lines at the
lower quartile, median, and upper quartile values.
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Figure 32. Posterior estimated mean functions for the Metropolis algorithm (dotted
line), the independence sampler based on two lines (dashed line), and the independence
sampler based on the Matlab command fminsearch (dash-dot line) together with the true
curve(solid line) on the true direction θ = 0.35 and the Doppler function in Example 2 with
σ2 = 0.52 for the support adjusted and no shrinkage and the maximum resolution m0 = 5.
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Figure 33. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.52 for the support
adjusted and no shrinkage and the maximum resolution m0 = 5. The box has lines at the
lower quartile, median, and upper quartile values.
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Figure 34. Posterior estimated mean functions for the Metropolis algorithm(dotted
line), the independence sampler based on two lines(dashed line), and the independence
sampler based on the Matlab command fminsearch (dash-dot line) together with the true
curve(solid line) on the true direction θ = 0.35 and the Doppler function in Example 2 with
σ2 = 12 for the adjusted support and no shrinkage and the maximum resolution m0 = 5.
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Figure 35. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 12 for the adjusted
support and no shrinkage and the maximum resolution m0 = 5. The box has lines at the
lower quartile, median, and upper quartile values.
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Figure 36. Histograms for the posterior distribution of w4,k for θ = 0.35 and the
Doppler function in Example 2 with σ2 = 0.022 for the adjusted support and no shrinkage
and the maximum resolution m0 = 5, using the Metropolis algorithm. The scale on the
y-axis is frequency with the maximum frequency 9000.
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Figure 37. Histograms for the posterior distribution of w4,k for θ = 0.35 and the
Doppler function in Example 2 with σ2 = 0.52 for the adjusted support and no shrinkage
and the maximum resolution m0 = 5, using the Metropolis algorithm. The scale on the
y-axis is frequency with the maximum frequency 9000.
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Figure 38. Histograms for the posterior distribution of w4,k for θ = 0.35 and the
Doppler function in Example 2 with σ2 = 12 for the adjusted support and no shrinkage and
the maximum resolution m0 = 5, using the Metropolis algorithm. The scale on the y-axis is
frequency with the maximum frequency 9000.
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4.2 Simulation study for wavelet shrinkage

To implement the parsimony of the wavelet representations, we can consider the Doppler

function in Example 2 and represent it by the wavelet shrinkage series (3.5). Tables 4 and

5 show the results with one direction and three different error variances for the Metropolis

and two independence samplers with the maximum resolutions m0 = 5 or 6 fixed. Figures

39-60 show the posterior means of the direction for the Metropolis algorithm and two

independence samplers for the 20 repetitions, the estimated mean Doppler function, and

the posterior distributions of the indicators s4,k for one of the 20 repetitions.

Table 4. Simulation results for yi = 2
√

zi(1− zi)sin
(

2.1π
zi+0.05

)
+ εi with the maximum

support and with shrinkage where zi = X iT (θ). The values σ̂2
1 and σ̂2

2 are determined
based on an acceptance rate (see Subsection 3.5.2).

Metropolis algorithm, N(θP,σ2
1)

(θ, σ) θ σ r
resolution true value bias mse bias mse bias mse

(0.35, 0.02) -6.32e-3 4.02e-5 1.71e-1 2.92e-2 4.64e-4 1.80e-2
m0 = 5 (0.35, 0.5) -5.95e-3 6.17e-5 3.62e-2 1.87e-2 8.45e-3 5.36e-2

(0.35, 1) -3.93e-4 2.68e-4 1.42e-2 2.65e-3 7.94e-3 1.43e-1
m0 = 6 (0.35, 0.02) -1.76e-4 1.25e-7 1.46e-1 2.14e-2 -2.50e-4 2.84e-4

Independence sampler, N(θL,σ2
2)

(0.35, 0.02) -6.51e-3 4.25e-5 1.70e-1 2.90e-2 7.94e-4 1.82e-2
m0 = 5 (0.35, 0.5) -5.77e-3 6.13e-5 3.67e-2 1.91e-3 8.50e-3 5.39e-2

(0.35, 1) -4.09e-4 2.36e-4 1.28e-2 2.52e-3 7.75e-3 1.45e-1
m0 = 6 (0.35, 0.02) 1.61e-4 1.77e-7 1.45e-1 2.11e-2 -2.20e-4 2.77e-4

Independence sampler, N(θM,σ2
2)

(0.35, 0.02) -6.45e-3 4.18e-5 1.72e-1 2.94e-2 4.56e-4 1.80e-2
m0 = 5 (0.35, 0.5) -5.68e-3 6.21e-5 3.67e-2 1.91e-3 8.43e-3 5.41e-2

(0.35,1) 5.96e-4 1.13e-3 1.81w-2 2.80e-3 5.97e-3 1.44e-1
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Figure 39. Posterior estimated mean functions for the Metropolis algorithm(dotted
line), the independence sampler based on two lines(dashed line), and the independence
sampler based on the Matlab command fminsearch(dash-dot line) together with the true
curve(solid line) on the true direction θ = 0.35 and the Doppler function in Example 2 with
σ2 = 0.022 for the maximum support and shrinkage and the maximum resolution m0 = 5.
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Figure 40. Posterior estimated mean functions for the Metropolis algorithm(dotted
line), the independence sampler based on two lines(dashed line), and the independence
sampler based on the Matlab command fminsearch(dash-dot line) together with the true
curve(solid line) on the true direction θ = 0.35 and the Doppler function in Example 2 with
σ2 = 0.022 for the maximum support and shrinkage and the maximum resolution m0 = 6.
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Figure 41. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the maximum
support and shrinkage and the maximum resolution m0 = 5. The box has lines at the lower
quartile, median, and upper quartile values.
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Figure 42. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the maximum
support and shrinkage and the maximum resolution m0 = 6. The box has lines at the lower
quartile, median, and upper quartile values.
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Figure 43. Posterior estimated mean functions for the Metropolis algorithm(dotted
line), the independence sampler based on two lines(dashed line), and the independence
sampler based on the Matlab command fminsearch(dash-dot line) together with the true
curve(solid line) on the true direction θ = 0.35 and the Doppler function in Example 2 with
σ2 = 0.52 for the maximum support and shrinkage and the maximum resolution m0 = 5.
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Figure 44. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.52 for the maximum
support and shrinkage and the maximum resolution m0 = 5. The box has lines at the lower
quartile, median, and upper quartile values.
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Figure 45. Posterior estimated mean functions for the Metropolis algorithm(dotted
line), the independence sampler based on two lines(dashed line), and the independence
sampler based on the Matlab command fminsearch(dash-dot line) together with the true
curve(solid line) on the true direction θ = 0.35 and the Doppler function in Example 2 with
σ2 = 12 for the maximum support and shrinkage and the maximum resolution m0 = 5.
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Figure 46. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 12 for the maximum
support and shrinkage and the maximum resolution m0 = 5. The box has lines at the lower
quartile, median, and upper quartile values.
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Figure 47. Histograms for the posterior probability of s4,k for the true direction θ =
0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the maximum support and
shrinkage and the maximum resolution m0 = 5, using the metropolis algorithm. The scale
on the y-axis is frequency with the maximum frequency 8000.



57

0 1

4000

8000

663

7337

s
4,−25

0 1

4000

8000

662

7338

s
4,−24

0 1

4000

8000

653

7347

s
4,−23

0 1

4000

8000

619

7381

s
4,−22

0 1

4000

8000

622

7378

s
4,−21

0 1

4000

8000

612

7388

s
4,−20

0 1

4000

8000

597

7403

s
4,−19

0 1

4000

8000

606

7394

s
4,−18

0 1

4000

8000

650

7350

s
4,−17

0 1

4000

8000

626

7374

s
4,−16

0 1

4000

8000

625

7375

s
4,−15

0 1

4000

8000

610

7390

s
4,−14

0 1

4000

8000

580

7420

s
4,−13

0 1

4000

8000

689

7311

s
4,−12

0 1

4000

8000

606

7394

s
4,−11

0 1

4000

8000

606

7394

s
4,−10

0 1

4000

8000

620

7380

s
4,−9

0 1

4000

8000

592

7408

s
4,−8

0 1

4000

8000

611

7389

s
4,−7

0 1

4000

8000

637

7363

s
4,−6

0 1

4000

8000

622

7378

s
4,−5

0 1

4000

8000

627

7373

s
4,−4

0 1

4000

8000

621

7379

s
4,−3

0 1

4000

8000

604

7396

s
4,−2

0 1

4000

8000

661

7339

s
4,−1

0 1

4000

8000

787

7213

s
4,0

0 1

4000

8000

812

7188

s
4,1

0 1

4000

8000

318

7682

s
4,2

0 1

4000

8000

337

7663

s
4,3

0 1

4000

8000

0

8000

s
4,4

0 1

4000

8000

0

8000

s
4,5

0 1

4000

8000

163

7837

s
4,6

0 1

4000

8000

636

7364

s
4,7

0 1

4000

8000

585

7415

s
4,8

0 1

4000

8000

691

7309

s
4,9

0 1

4000

8000

592

7408

s
4,10

Figure 48. Histograms for the posterior probability of s4,k for the true direction θ =
0.35 and the Doppler function in Example 2 with σ2 = 0.52 for the maximum support and
shrinkage and the maximum resolution m0 = 5, using the metropolis algorithm. The scale
on the y-axis is frequency with the maximum frequency 8000.
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Figure 49. Histograms for the posterior probability of s4,k for the true direction θ =
0.35 and the Doppler function in Example 2 with σ2 = 12 for the maximum support and
shrinkage and the maximum resolution m0 = 5, using the metropolis algorithm. The scale
on the y-axis is frequency with the maximum frequency 8000.
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Table 5. Simulation results for yi = 2
√

zi(1− zi)sin
(

2.1π
zi+0.05

)
+ εi with the adjusted

support and with shrinkage where zi = X iT (θ). The values σ̂2
1 and σ̂2

2 are determined
based on an acceptance rate (see Subsection 3.5.2).

Metropolis algorithm, N(θP,σ2
1)

(θ, σ) θ σ r
resolution true value bias mse bias mse bias mse

(0.35, 0.02) -6.36e-3 4.06e-5 1.81e-1 3.26e-2 4.93e-4 1.79e-2
m0 = 5 (0.35, 0.5) -6.63e-3 7.32e-5 5.45e-2 3.70e-2 9.26e-3 5.27e-2

(0.35, 1) 3.14e-4 1.71e-4 1.54e-2 2.93e-3 7.95e-3 1.36e-1
m0 = 6 (0.35, 0.02) -3.41e-4 6.20e-7 3.17e-1 1.01e-2 -1.00e-2 3.36e-4

Independence sampler, N(θL,σ2
2)

(0.35, 0.02) -6.46e-3 4.19e-5 1.79e-1 3.18e-2 4.63e-4 1.79e-2
m0 = 5 (0.35, 0.5) -6.25e-3 6.71e-5 5.44e-2 3.68e-3 9.20e-3 5.29e-2

(0.35, 1) -2.23e-3 2.55e-4 3.99e-2 4.19e-3 8.92e-3 1.42e-1
m0 = 6 (0.35, 0.02) 2.02e-4 4.92e-7 3.12e-1 9.77e-2 -7.11e-4 3.34e-3

Independence sampler, N(θM,σ2
2)

(0.35, 0.02) -6.77e-3 4.71e-5 1.77e-1 3.14e-2 4.63e-4 1.79e-2
m0 = 5 (0.35, 0.5) -6.29e-3 6.80e-5 5.39e-2 3.64e-3 9.05e-3 5.30e-2

(0.35,1) -3.04e-3 2.65e-4 4.15e-2 4.69e-3 8.92e-3 1.42e-1
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Figure 50. Posterior estimated mean functions for the Metropolis algorithm(dotted
line), the independence based on two lines(dashed line), and the independence based on
the Matlab command fminsearch(dash-dot line) together with the true curve(solid line) on
the true direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the
adjusted support and shrinkage and the maximum resolution m0 = 5.
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Figure 51. Posterior estimated mean functions for the Metropolis algorithm(dotted
line), the independence based on two lines(dashed line), and the independence based on
the Matlab command fminsearch(dash-dot line) together with the true curve(solid line) on
the true direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the
adjusted support and shrinkage and the maximum resolution m0 = 6.
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Figure 52. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the adjusted
support and shrinkage and the maximum resolution m0 = 5. The box has lines at the lower
quartile, median, and upper quartile values.
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Figure 53. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the adjusted
support and shrinkage and the maximum resolution m0 = 6. The box has lines at the lower
quartile, median, and upper quartile values.
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Figure 54. Posterior estimated mean functions for the Metropolis algorithm(dotted
line), the independence based on two lines(dashed line), and the independence based on
the Matlab command fminsearch(dash-dot line) together with the true curve(solid line) on
the true direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.52 for the
adjusted support and shrinkage and the maximum resolution m0 = 5.
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Figure 55. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.52 for the adjusted
support and shrinkage and the maximum resolution m0 = 5. The box has lines at the lower
quartile, median, and upper quartile values.
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Figure 56. Posterior estimated mean functions for the Metropolis algorithm(dotted
line), the independence based on two lines(dashed line), and the independence based on
the Matlab command fminsearch(dash-dot line) together with the true curve(solid line) on
the true direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 12 for the
adjusted support and shrinkage and the maximum resolution m0 = 5.
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Figure 57. Boxplots for the posterior means of the direction parameter for the true
direction θ = 0.35 and the Doppler function in Example 2 with σ2 = 12 for the adjusted
support and shrinkage and the maximum resolution m0 = 5. The box has lines at the lower
quartile, median, and upper quartile values.
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Figure 58. Histograms for the posterior distribution of w4,k for the true direction
θ = 0.35 and the Doppler function in Example 2 with σ2 = 0.022 for the adjusted support
and shrinkage and the maximum resolution m0 = 5, using the Metropolis algorithm. The
scale on the y-axis is frequency with the maximum frequency 8000.
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Figure 59. Histograms for the posterior distribution of w4,k for θ = 0.35 and the
Doppler function in Example 2 with σ2 = 0.52 for the adjusted support and shrinkage and
the maximum resolution m0 = 5, using the Metropolis algorithm. The scale on the y-axis is
frequency with the maximum frequency 8000.
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Figure 60. Histograms for the posterior distribution of w4,k for the true direction
θ = 0.35 and the Doppler function in Example 2 with σ2 = 12 for the adjusted support and
shrinkage and the maximum resolution m0 = 5, using the Metropolis algorithm. The scale
on the y-axis is frequency with the maximum frequency 8000.
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4.3 A real data example

We used the data from (Yu and Ruppert, 2002) on the relationship of ozone with the co-

variates solar radiation, wind speed, and temperature. There are 111 days of observations

from May to September 1973 in New York. We apply a single index model using the

Bayesian approach and the smooth part from (3.1), since adding the detail parts increased

residual sums of squares in the MCMC simulations. Measurements of daily ozone con-

centration in parts per billion(ppb), solar radiation in Langleys(langleys), wind speed in

miles/hour(mph), and daily maximum temperature in degrees Fahrenheit(F).

Table 6 summarizes the results. Figure 61 shows three curve estimates and the box

plots of the direction parameter for the Metropolis algorithm and two independence sam-

plers.

Table 6. Results on air pollution data
Radiation (β1) Wind (β2) Temperature (β3)
mean std. mean std. mean std.

Metropolis 0.0236 0.0072 -0.7895 0.0808 0.5997 0.0994
Independence(L) 0.0236 0.0072 -0.7860 0.0831 0.6036 0.1017
Independence(M) 0.0238 0.0072 -0.7833 0.0877 0.6061 0.1038

We conclude from Table 6 and Figure 61 that there is not a substantial difference

between the Metropolis algorithm and the two independence samplers in estimating the

parameters and the function in the single index model considered. As shown in Figure 62,

the error terms exhibit no obvious pattern and their distribution appears to be approximately

normal. The posterior samples of the coefficients c0,k are shown in Figures 63-65.
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Figure 61. The estimated function and the boxplots of the direction parameter for
the Metropolis algorithm and two independence samplers. The box has lines at the lower
quartile, median, and upper quartile values.



69

0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

Y estimated

R
es

id
ua

ls

Metropolis

0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

Y estimated

R
es

id
ua

ls

Independence sampler(L)

0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

Y estimated

R
es

id
ua

ls

Independence sampler(M)

−5 0 5
−1.5

−1

−0.5

0

0.5

1

1.5

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 R
es

id
ua

ls

−5 0 5
−1.5

−1

−0.5

0

0.5

1

1.5

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 R
es

id
ua

ls

−5 0 5
−1.5

−1

−0.5

0

0.5

1

1.5

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 R
es

id
ua

ls

Figure 62. Residuals for the Metropolis algorithm and two independence samplers.



70

−10 −5 0 5 10
0

5000

10000

c
0,−9

−10 −5 0 5 10
0

5000

10000

c
0,−8

−10 −5 0 5 10
0

5000

10000

c
0,−7

−10 −5 0 5 10
0

5000

10000

c
0,−6

−10 −5 0 5 10
0

5000

10000

c
0,−5

−10 −5 0 5 10
0

5000

10000

c
0,−4

−10 −5 0 5 10
0

5000

10000

c
0,−3

−10 −5 0 5 10
0

5000

10000

c
0,−2

−10 −5 0 5 10
0

5000

10000

c
0,−1

−10 −5 0 5 10
0

5000

10000

c
0,0

−10 −5 0 5 10
0

5000

10000

c
0,1

Figure 63. Histograms of the coefficients c0,k for the Metropolis algorithm after the
burn-in period. The scale on the y-axis is frequency with the maximum frequency 9000.
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Figure 64. Histograms of the coefficients c0,k for the independence sampler based on
two lines after the burn-in period. The scale on the y-axis is frequency with the maximum
frequency 9000.
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Figure 65. Histograms of the coefficients c0,k for the independence sampler based
on the Matlab command fminsearch after the burn-in period. The scale on the y-axis is
frequency with the maximum frequency 9000.
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CHAPTER V

CONCLUSIONS

5.1 Summary

A Bayesian approach to single index models has proposed. Since a function r(·) is un-

known, a wavelet series is thought of as a good approximation to any function r(·) in the

L2 space. We have considered two types for representing the function: no shrinkage and

shrinkage rules. A hierarchical mixture model for wavelet coefficients is proposed and

for the wavelet shrinkage representation a ”pseudo prior” is used. Since the direction β is

confined to the unit vector, it is convenient to transform β to a spherical polar coordinate θ.

To implement posterior inference we proposed a Metropolis algorithm and an indepen-

dence sampler for the direction parameter θ, since the posterior distribution is not known.

We introduce simple ways to choose variances and a mode (mean) of a proposal distribution

for the direction θ. The real data analysis and the Monte Carlo study of a consine function

and a Doppler function with three variances of errors illustrate that the performances of the

two samplers for estimating the direction and the two functions are not different, but the

Metropolis algorithm is faster than the independence sampler from section (3.4) and the

independence sampler based on the matlab command fminsearch is slowest.

5.2 Future work

So far the resolution m0 is fixed. Because of this, from the Monte Carlos study the results

of the direction did not include the true value (see Boxplots of the direction for the Doppler

function with σ2 = 0.022). So we require to apply a full posterior inference to single index

models, i.e., the resolution is regarded as a parameter.
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APPENDIX A

NOTATION AND SOME USEFUL PROPERTIES

A.1 L2 space

Definition A.1. A function r is in the L2[a,b] space if r is square integrable, i.e.,

‖r‖ =

[∫ b

a
|r(z)|2dz

]1/2

< ∞. (A-1)

A.2 Matrices

Since we use matrices in Appendix A, we now introduce some matrix notation. For nota-

tional simplification, matrices are represented by boldface upper case letters, e.g., A, X, R.

Their elements are represented by small letters with subscripts. Row(column) vectors are

written as capital letters with superscripts(subscripts).

Notation A.1. Let A denote an n× p matrix

A =




a11 a12 · · · a1p

a21 a22 · · · a2p

...
... . . . ...

an1 an2 · · · anp




=
(
ai j
)
, (A-2)

where ai j is the element in row i and column j of the matrix A, i = 1, . . . ,n; j = 1, . . . , p.

Notation A.2. We write the rows(the columns) of the matrix A

A =
[
A1 A2 . . . Ap

]
=




A1

A2

...

An




, (A-3)

where Ai =
[
ai1 . . . aip

]
and A j =

[
a1 j . . . an j

]T , i = 1, . . . ,n; j = 1, . . . , p.
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Definition A.2. Let A be a p× p matrix. Suppose that E is a nonzero vector in R
p and

λ a number(possibly zero) such that

AE = λE. (A-4)

Then E is called an eigenvector of A, and λ is called an eigenvalue of A.

Theorem A.1. Let A be a p × p symmetric matrix. Then the maximum of βT Aβ

subject to

βT β = ‖β‖2 = 1, (A-5)

is attained when β is the eigenvector of A corresponding to the largest eigenvalue of A.

Thus if λ1 is the largest eigenvalue of A, then subject to the constraint (A-5),

max
β

βT Aβ = λ1. (A-6)

Proof Let A = EDET be a spectral decomposition of the symmetric matrix A. Let Z = ET β.

Then ZT Z = βT EET β = βT β, and what we wish to prove is equivalent to

max
Z

ZT DZ = max
Z

∑λiz2
i subject to ZT Z = 1. (A-7)

If the eigenvalues are written in descending order then (A-7) satisfies

max∑λiz2
i ≤ λ1 max∑z2

i = λ1.

When β = E1, then βT Aβ = ET
1 EDET E1 = λ1, where E1 is the eigenvector of A corre-

sponding to λ1, and hence the maximum of λ1 is attainable. This complete the proof.

Corollary A.1. The maximum of |Xβ|, where X is (1× p) and β (p× 1), subject to

(A-5), is
[
XXT ]1/2

. (A-8)

Proof Apply Theorem A.1 with βT Aβ =
(
Xβ
)2

= βT
(
XT X

)
β.
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APPENDIX B

CALCULATIONS OF POSTERIOR DISTRIBUTIONS FOR NO SHRINKAGE

Let Z = Xβ ∈ {z(1),z(n)} be given and the boundaries of the translations k of the coeffi-

cients {c0,k, w j,k} be denoted as [a0, b0] and [a j, b j], j = 0, . . . ,m0 , respectively, where all

boundaries are integers. For no shrinkage, let Ω1 =
[
{c0,k},{w j,k},τ,σ2,θ

]
and let Ω1

(
−ξ
)

denote Ω1 without the parameter ξ, which could be any of {c0,k}, {w j,k}, τ, σ2, or θ.

From (3.7), (3.8), and (3.13), the conditional distributions of the parameters Ω1 are as

listed.

• The joint distribution of the data Y and the parameters Ω1, conditional on X and the

resolution m0, is

P
(
Y,Ω1|X,m0

)
= Likelihood× Joint prior

= P(Y |{c0,k},{w j,k},σ2,θ,X,m0
)
·P
(
Ω1
)

∝
(
σ2)− n

2 exp

(
− 1

2σ2

n

∑
i=1

Q3
(
yi
)
)
·
[

b0

∏
k=a0

τ−
1
2 exp

(
−

c2
0,k

2τ

)]

×
[

m0

∏
j=0

b j

∏
k=a j

τ−
1
2 exp

(
−

w2
j,k

2−( j−1)τ

)]
· τ−(aτ+1) exp

(
− 1

τbτ

)

× σ2−(av+1)
exp
(
− 1

σ2bv

)

∝
(
σ2)−( n

2 +av+1) exp

(
− 1

2σ2

n

∑
i=1

Q3
(
yi
)
− 1

σ2bv

)
τ−
(

s
2 +aτ+1

)

× exp

(
− 1

τbτ
−

b0

∑
k=a0

c2
0,k

2τ
−

m0

∑
j=0

b j

∑
k=a j

w2
j,k

2−( j−1)τ

)
, (B-1)
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where s = b0 −a0 +1+
m0

∑
j=0

(b j −a j +1).

• The conditional distribution of σ2 is

P
(
σ2|Ω1

(
−σ2),Y,X,m0

)
∝
(
σ2)−ν1 exp

[
−ν2

σ2

]

∝ IG
(
ν1 −1,1/ν2

)
, (B-2)

where ν1 = n
2 +av +1 and ν2 = 1

bv
+ 1

2

n

∑
i=1

Q3
(
yi
)
.

• The conditional distribution of τ is

P
(
τ|Ω1

(
− τ
)
,Y,X,m0

)
∝ τ−ν3 exp

[
−ν4

τ

]

∝ IG
(
ν3 −1, 1/ν4

)
, (B-3)

where ν3 = s
2 +aτ +1 and ν4 = 1

bτ
+ 1

2

b0

∑
k=a0

c2
0,k +

1
2

m0

∑
j=0

b j

∑
k=a j

w2
j,k

2− j .

• The conditional distribution of c0,k1 is

P
(
c0,k1 |Ω1

(
− c0,k1

)
,Y,X,m0

)
∝ exp

(
− 1

2σ2

n

∑
i=1

Q3
(
yi
)
− 1

2

b0

∑
k=a0

c2
0,k

τ

)

where

− 1
2σ2

n

∑
i=1

Q3
(
yi
)
− 1

2

b0

∑
a0

c2
0,k

τ

= − 1
2σ2

n

∑
i=1

(
E i

(−k1) − c0,k1φ0,k1

(
X iT (θ)

))2
− 1

2τ
c2

0,k1
− constant1

= −1
2

[
1

σ2

(
c2

0,k1

n

∑
i=1

φ2
0,k1

(
X iT (θ)

)
−2c0,k1

n

∑
i=1

φ0,k1

(
X iT (θ)

)
E i

(−k1)

)

+
1
τ

c2
0,k1

]
− constant2
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= −1
2

[
c2

0,k1

(
1

σ2

n

∑
i=1

φ2
0,k1

(
X iT (θ)

)
+

1
τ

)
− 2

σ2 c0,k1

n

∑
i=1

φ0,k1

(
X iT (θ)

)
E i

(−k1)

]

−constant3

= − 1
2σ2

k1

(
c0,k1 −µk1

)2 − constant4,

and

µk1 =
σ2

k1
σ2

n

∑
i=1

φ0,k1

(
X iT (θ)

)
·E i

(−k1),
1

σ2
k1

= 1
σ2

n

∑
i=1

φ2
0,k1

(
X iT (θ)

)
+ 1

τ , and E i
(−k1) = yi−

b0

∑
k=a0
k 6=k1

c0,kφ0,k

(
X iT (θ)

)
−

m0

∑
j=0

b j

∑
k=a j

w j,kψ j,k

(
X iT (θ)

)
for k1 ∈ [a0,b0].

Therefore

P
(
c0,k1 |Ω1

(
− c0,k1

)
,Y,X,m0

)
= N(µk1 ,σ

2
k1
). (B-4)

• The conditional distribution of w j2,k2 is

P
(
w j2,k2 |Ω1

(
−w j2,k2

)
,Y,X,m0

)
∝ exp

(
− 1

2σ2

n

∑
i=1

Q3
(
yi
)
− 1

2

m0

∑
j=0

b j

∑
k=a j

w2
j,k

2− jτ

)

where

− 1
2σ2

n

∑
i=1

Q3
(
yi
)
− 1

2

m0

∑
j=0

b j

∑
k=a j

w2
j,k

2− jτ

= − 1
2σ2

n

∑
i=1

(
E i

(− j2,k2) −w j2,k2ψ j2,k2

(
X iT (θ)

))2
− 1

2−( j2−1)τ
w2

j2,k2
− constant1

= −1
2

[
1

σ2

(
w2

j2,k2

n

∑
i=1

ψ2
j2,k2

(
X iT (θ)

)
−2w j2,k2

n

∑
i=1

ψ j2,k2

(
X iT (θ)

)
E i

(− j2,k2)

)

+
1

2− j2τ
w2

j2,k2

]
− constant2

= −1
2

[
w2

j2,k2

(
1

σ2

n

∑
i=1

ψ2
j2,k2

(
X iT (θ)

)
+

1
2− j2τ

)
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− 2
σ2 w j2,k2

n

∑
i=1

ψ j2,k2

(
X iT (θ)

)
E i

(− j2,k2)

]
− constant3

= − 1
2σ2

( j2,k2)

(
w j2,k1 −µ( j2,k2)

)2 − constant4,

and

µ( j2,k2) =
σ2

( j2,k2)

σ2

n

∑
i=1

ψ j2,k2

(
X iT (θ)

)
·E i

(− j2,k1),
1

σ2
( j2,k2)

= 1
σ2

n

∑
i=1

ψ2
j2,k2

(
X iT (θ)

)
+ 1

2− j2 τ , and

E i
(− j2,k2) = yi −

b0

∑
k=a0

c0,kφ0,k

(
X iT (θ)

)
−

m0

∑
j=0

j 6= j2

b j

∑
k=a j
k 6=k2

w j,kψ j,k

(
X iT (θ)

)
for j2 ∈ [0,m0] and

k2 ∈ [a j,b j].

Therefore

P
(
w j2,k2|Ω1

(
−w j2,k2

)
,Y,X,m0

)
= N(µ j2,k2,σ

2
j2,k2

). (B-5)

• The conditional distribution of θ on the p−1 dimensional unit sphere is

P
(
θ|Ω1

(
−θ
)
,Y,X,m0

)
∝ exp

(
− 1

2σ2

n

∑
i=1

Q3
(
yi
)
)

. (B-6)

Since r(Z) is in L2, given Z ∈
[
z(1),z(n)

]
, there are constants C1, C2 such that

[
r(X iT (θ∗))− r̂(X iT (θ))

]2 ≥ C1
[
X iT (θ∗)−X iT (θ)

]2

≥ C2
∥∥θ−θ∗

∥∥2
,

where θ∗ is a mode (mean) direction and r̂ is estimated from the MCMC scheme.

Hence there are c1, . . . ,cp−1 such that

P
(
θ|Ω1

(
−θ
)
,Y,X,m0

)
≤ exp

[
− 1

2σ2

(
c1(θ1 −θ∗1)

2 + · · ·

+cp−1(θp−1 −θ∗p−1)
2) ] . (B-7)
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APPENDIX C

CALCULATIONS OF POSTERIOR DISTRIBUTIONS FOR WAVELET SHRINKAGE

For wavelet shrinkage, let Ω2 =
[
{c0,k},{w j,k},α,τ,σ2,θ

]
. From (3.7), (3.9), and (3.19),

the conditional distributions of the parameters Ω2 are as listed.

• The joint distribution of the data Y and the parameters Ω2, conditional on X and the

resolution m0, is

P
(
Y,Ω2|X,m0

)
= Likelihood× Joint prior

= P(Y |{c0,k},{s j,k},{w j,k},σ2,θ,X,m0
)
·P
(
Ω2
)

∝
(
σ2)− n

2 exp

(
− 1

2σ2

n

∑
i=1

Q4
(
yi
)
)
·
(
σ2)−(av+1)

exp
(
− 1

σ2bv

)

× τ−(aτ+1) exp
(
− 1

τbτ

)
·
[

b0

∏
k=a0

τ−
1
2 exp

(
−

c2
0,k

2τ

)]

×




m0

∏
j=0

b j

∏
k=a j︸ ︷︷ ︸

j,k∈{s j,k=1}

τ−
1
2 exp

(
−

w2
j,k

2−( j−1)τ

)


·




m0

∏
j=1

b j

∏
k=a j︸ ︷︷ ︸

j,k∈{s j,k=0}

h
(
w j,k

)




×
[

m0

∏
j=1

b j

∏
k=a j

(
α j)s j,k

(
1−α j)1−s j,k

]
·α(aα−1)

(
1−α

)(bα−1)

∝
(
σ2)−( n

2 +av+1) exp

(
− 1

2σ2

n

∑
i=1

Q4
(
yi
)
− 1

σ2bv

)
τ−
(

s
2 +aτ+1

)
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× exp



− 1

τbτ
−

b0

∑
k=a0

c2
0,k

2τ
−

m0

∑
j=0

b j

∑
k=a j︸ ︷︷ ︸

j,k∈{s j,k=1}

w2
j,k

2−( j−1)τ




×
[

m0

∏
j=1

b j

∏
k=a j

(
α j)s j,k

(
1−α j)1−s j,k

]
·α(aα−1)

(
1−α

)(bα−1)

×




m0

∏
j=1

b j

∏
k=a j︸ ︷︷ ︸

j,k∈{s j,k=0}

h
(
w j,k

)




, (C-1)

where Q4
(
yi
)

=

[
yi −

b0
∑

k=a0

c0,kφ0,k

(
X iG(θ)

)
−

m0
∑
j=0

b j

∑
k=a j

s j,kw j,kψ j,k

(
X iG(θ)

)
]2

and s =

b0 −a0 +1+
m0

∑
j=0

b j

∑
k=a j

s j,k.

• The conditional distribution of σ2 is

P
(
σ2|Ω1

(
−σ2),Y,X,m0

)
∝
(
σ2)−ν1 exp

[
−ν2

σ2

]

∝ IG
(
ν1 −1,1/ν2

)
, (C-2)

where ν1 = n
2 +av +1 and ν2 = 1

bv
+ 1

2

n

∑
i=1

Q4
(
yi
)
.

• The conditional distribution of τ is

P
(
τ|Ω1

(
− τ
)
,Y,X,m0

)
∝ τ−ν3 exp

[
−ν4

τ

]

∝ IG
(
ν3 −1, 1/ν4

)
, (C-3)

where ν3 = s
2 +aτ +1 and ν4 = 1

bτ
+ 1

2

b0

∑
k=a0

c2
0,k +

1
2

m0

∑
j=0

b j

∑
k=a j

s j,kw2
j,k

2− j .

• The conditional distribution of c0,k1 is

P
(
c0,k1 |Ω1

(
− c0,k1

)
,Y,X,m0

)
∝ exp

(
− 1

2σ2

n

∑
i=1

Q4
(
yi
)
− 1

2

b0

∑
k=a0

c2
0,k

τ

)
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where
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))2
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∑
i=1
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(
X iT (θ)

)
E i

(−k1)
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1
τ
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0,k1

]
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1
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∑
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φ2
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(
X iT (θ)

)
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1
τ

)
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]
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= − 1
2σ2
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and
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)
·E i
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1
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= 1
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∑
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(
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∑
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(
X iT (θ)
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−
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∑
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X iT (θ)
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(
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(
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)
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)
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2
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). (C-4)

• The conditional distribution of w j2,k2

∣∣s j2,k2 = 1 is

P
(
w j2,k2|Ω1

(
−w j2,k2

)
,s j2,k2 = 1,Y,X,m0

)
∝ exp

(
− 1

2σ2

n

∑
i=1

Q4
(
yi
)

− 1
2
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∑
j=0

b j

∑
k=a j

w2
j,k

2− jτ
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where
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∑
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]
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∑
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(
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)
−
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∑
j=0
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∑
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k 6=k2
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(
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Therefore

P
(
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(
−w j2,k2

)
,Y,X,m0

)
∝ N(µ j2,k2 ,σ

2
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). (C-5)

• The conditional distribution of w j2,k2

∣∣s j2,k2 = 0 is

P
(
w j2,k2 |Ω1

(
−w j2,k2

)
,s j2,k2 = 0,Y,X,m0

)
∝ h
(
w j2,k2

)
. (C-6)
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where h
(
w j2,k2

)
is defined by (3.30).

• The conditional probability of α is

P
(
α|Ω2

(
−α
)
,Y,X,m0

)
∝

[
m0

∏
j=1

b j

∏
k=a j

(
α j)s j,k

(
1−α j)1−s j,k

]

×α(aα−1)
(
1−α

)(bα−1) (C-7)

• The conditional probability of s j2,k2 is

P
(
s j2,k2 |Ω2

(
− s j2,k2

)
,Y,X,m0

)

∝





exp

(
− 1

2σ2

n

∑
i=1

Q4
(
Yi
)
)
(
1−α j2

)
h
(
w j2,k2

)
, s j2,k2 = 0,

exp

(
− 1
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Q4
(
Yi
)
)
(
α j2
)

exp
(
− w2

j2,k2
22− j2 τ

)
, s j2,k2 = 1,

(C-8)

for j2 ∈ [1,m0] and k2 ∈ [a j,b j].

• The conditional distribution of θ on the p−1 dimensional unit sphere is

P
(
θ|Ω1

(
−θ
)
,Y,X,m0

)
∝ exp

(
− 1

2σ2

n

∑
i=1

Q4(yi)

)
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