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Executive Summary

ASHRAE Guidelinel4P specifies guidelines for measuring energy savings from
building energy-conservation retrofits. A primary method for measuring retrofit savings
recommended by ASHRAE Guideline 14P involves identifying a regression model of
baseline, or pre-retrofit, energy use as a function of influential variables, such as weather
or occupancy, which may change between the pre and post retrofit periods. The
regression model is then used to predict how much energy the building would have
consumed in the post-retrofit period if it had not been retrofitted. Energy savings are
calculated as the difference between the model’s prediction of baseline energy use and
measured energy use in the post-retrofit period, or as the difference between baseline and
post-retrofit models applied to the same weather year.

This report summarizes the results of ASHRAE Research Project 1050: Development
of a Toolkit for Calculating Linear, Change-Point Linear and Multiple Linear Inverse
Building Energy Analysis Models. The Inverse Modeling Toolkit (IMT) is a FORTRAN
90 application for developing regression models of building energy use. IMT can
identify single and multi-variable least-squares regression models. It can also identify
variable-base degree-day and single and multi-variable change-point models, which have
been shown to be especially useful for modeling building energy use. This report
includes background information about IMT and the models, instructions for its
installation and operation, and the results of accuracy and robustness testing.

The report comes with an IMT CD-ROM. The IMT CD-ROM contains two folders:
‘Detailed Test Results’ and ‘IMT Software’. The results of extensive bounds and
accuracy tests, including the data files and IMT output, are in the ‘Detailed Test Results’
folder. IMT source and executable files, along with sample data and instruction files, are
in the ‘IMT Software’ folder. To install IMT:

1. Copy the ‘IMT Software’ folder from the IMT CD-ROM to your computer.

2. Open ‘Windows Explorer’ and select all files in the ‘IMT Software’ folder on your
computer.

3. Select the menu items: ‘File’, ‘Properties’

4. In the dialog box that appears, remove the ‘Read Only’ attribute and click the ‘Apply’
button.
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1.0 Introduction

1.1 Motivations for Measuring Savings
Energy conservation retrofits are typically initiated based on predictions of how much energy

and money a retrofit will save. However, predicted savings often differ substantially from

savings determined by measuring energy consumption before and after a retrofit. Nadel and

Keating (1991) showed that measured savings in several major residential energy conservation

programs were often less than half of predicted savings (Table 1). Similar discrepancies were

found in commercial building retrofit programs. In a study of over 1,700 commercial building

energy retrofits, fewer than one in six came within 20% of measured results (Greely et al., 1990).

Jamieson and Qualmann (1990) found that the mean deviation between predicted and measured

savings in a commercial building retrofit program was 165%, even after excluding buildings with

known changes in operations. Discrepancies such as these led Jamieson and Qualmann to

conclude that "utility concern regarding the reliability of model predictions for the purchase of

energy savings is well-founded". And Hirst et al. (1986) concluded that "large discrepancies

between predicted and actual energy use ... discourage efficiency investments".

Table 1. Measured and predicted savings in major residential energy conservation programs

(Nadel and Keating, 1991).

Program Program Description Measured/Predicted (%)
CMP Energy Manag. Assit. Low-income grants 40
CMP Pay As You Save Util. Grant and loan 47
CMP Energy Manag. Rebates Rebates 15
CMP Packaged Weatherization Standard weatherization 36
CMP Weatherization Low-income grants 22
GPU RECAP Performance contracting 22-44
NU Performance Contracting Performance contracting 22
BPA Residential Weatherization Comprehensive weatherization 40-58
Hood River Cons. Project Comprehensive weatherization 43
SCL HELP (multiplex) Comprehensive weatherization 117
NEES Partners - Residential Comprehensive weatherization 107

The large discrepancies between predicted and measured savings in early energy-conservation

programs highlighted the need to accurately measure energy savings. As the size and expense of

energy conservation programs grew throughout the 1980s, so did the emphasis on evaluation,
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which became an important part of program management. Measured savings were used to verify
the success of retrofits, guide the selection of future retrofits, and, in some cases, to identify and
correct operational and maintenance problems, which resulted in even greater savings (Claridge
et al., 1994). The importance of measured savings increased further in the late 1980s when state
regulatory agencies began granting shareholder incentives based on measured Demand Side
Management (DSM) program results (Fels and Keating, 1993).

In the 1990s, the move toward utility deregulation diminished the size and number of utility
DSM programs. However, a new type of retrofit funding mechanism, called performance
contracting, emerged in which payment for the retrofit is based on measured savings. The
growing popularity of performance contracting created new incentives for developing protocols
and standards for measuring savings. In response to this need, the National Association of
Energy Service Contractors developed protocols for the measurement of retrofit savings in 1992.
In 1994, ASHRAE began development of a guideline for measuring retrofit savings (GPC-14P).
In 1994, the US Department of Energy also initiated an effort that resulted in publication of the
North American Energy Measurement and Verification Protocols (USDOE, 1996a) and, later,
the International Performance, Measurement and Verification Protocols (USDOE, 1997: 2001).
In addition, the U.S. Federal Energy Management Program developed their own set of
Measurement and Verification Guidelines for Federal Energy Projects (USDOE, 1996b).

1.2 Overview of Methods for Measuring Savings

The most straightforward way to measure energy savings is to simply compare pre and post-
retrofit energy use. This method implicitly assumes that the change in energy consumption
between the pre-retrofit and post-retrofit periods is caused solely by the retrofit. However,
energy consumption in commercial buildings is also influenced by other factors including
weather conditions, occupancy, internal loads and building operating procedures -- all of which
may change between the pre and post-retrofit periods. If these changes are not accounted for,
savings determined by this simple method will be erroneous. Thus, more sophisticated methods
for measuring savings generally seek to adjust the pre-retrofit data, the post-retrofit data, or both,

to account for these changes.
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The most common adjustment discussed in the literature is for changing weather conditions
between the baseline and post-retrofit periods. Weather adjustments are critical in two
situations: 1) when less than a full year of energy data are available for defining the baseline
behavior of a building, and 2) when the energy data being analyzed vary from year to year
depending on the weather.

If a full year of baseline weather data are available, the importance of weather adjustment
depends on how much annual energy use varies with weather. Several factors affect the weather-
sensitivity of building energy use. One of the most important is the relative amount of weather-
dependent and weather-independent energy use in the measured data. For example, sub-metered
air-conditioning electricity use shows more weather variability than whole-building electricity
use. In addition, relative weather sensitivity, measured as a fraction of average energy use, is
generally greater when the average energy use is smaller. For example, relative heating energy
use typically varies more in Miami, where average heating energy use is small, than in Boston,
where the average heating energy use is more substantial. Finally, simulation studies indicate
that, in general, heating energy use shows more annual variability than cooling energy use and
that smaller buildings are more weather sensitive than larger buildings.

For example, in a study that simulated residential energy consumption with 20 years of
measured weather data from four U.S. cities, Kissock et al. (1999) reported that annual heating
gas use in northern US cities varied by up 29% while whole-building gas use varied by up to
22%. In southern US cities, annual heating gas use in northern US cities varied by up 93% and
whole-building gas use varied by up to 12%. Annual residential air-conditioning electricity use
varied by up 23% while whole-building electricity use varied by up to 8%. Because these
variations are often of the same magnitude of the expected savings from an energy-conservation
retrofit, the need for weather adjustment in residential buildings is clear.

Annual weather sensitivity is less pronounced in larger buildings, but may still be important.
For example, in a simulation study of commercial building energy use in five U.S. cites, Eto
(1988) reported that simulated gas consumption during cold years was 7.2% to 28.6% higher
than gas use during average weather years; and during warm years gas use ranged from 2.5% to
26.4% less than during average weather years. Variations in annual sub-metered commercial-

building cooling energy use may also be significant, but become almost invisible if weather-
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independent energy use is included in the measured data. For example, in the same study sited
above, Kissock et al. reported that simulated annual whole building electricity use in large
commercial buildings varied by only about 1% during the same 20 year period.

In general, two types of measured savings, actual and normalized, can be determined. Actual
savings (Kissock, 1993; Cowan and Schiller, 1997, etc.) are calculated as the difference between
the energy use predicted by the baseline model and measured post-retrofit energy use. Cowan

and Schiller (1997) describe the steps involved in measuring actual savings in buildings as:

1) measure energy use and influential variables during baseline period

2) create a mathematical model of baseline energy use as function of influential variables

3) measure energy use and influential variables during post-retrofit period

4) apply influential variables from the post-retrofit period to the baseline model to estimate
what energy use would have been without the retrofit

5) subtract predicted baseline energy use from measured post-retrofit energy use to estimate
savings

6) adjust the baseline model as needed to account for changing conditions

Actual savings appear to be the most common type of savings used in energy performance
contracting; however, under some circumstances, actual savings can give results that deviate
substantially from predicted savings even if the retrofit equipment performs exactly as predicted.
Consider, for example, the case where savings are predicted for a chiller retrofit by simulating
chiller performance using typical weather data. If the weather during the post-retrofit period is
substantially cooler than normal, the expected savings may never materialize even though the
new chiller performed exactly as predicted.

Normalized savings (Fels, 1986, Ruch and Claridge, 1992) estimate how much energy would
be saved during a ‘normal’ year. Calculating normalized savings requires developing a statistical
model of energy use as a function of influential variables for both the pre and post-retrofit
periods and then driving each model with "normal" conditions to calculate the normalized annual

consumption during each period. This method typically provides the best comparison between
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measured and predicted savings when predicted savings are generated from simulation models
using ‘normal’ or expected conditions.

Both actual and normalized savings require that measured energy use be characterized by one
or more mathematical or statistical models. In the building energy community, models derived
from measured energy use are called “inverse” models. The term “inverse” differentiates them
from “forward” models in which building energy use is predicted from engineering principles.
Claridge (1998) summarized the most common methods for developing inverse models of
measured energy use. The primary methods include variable-base degree-day (VBDD) models,
multivariate regression (MVR) models, change-point (CP) regression models, combination
CP/VBDD/MVR regression models, calibrated simulation models and artificial neural network
models. These methods are summarized in the following sections. Algorithms used in the
ASHRAE Inverse Modeling Toolkit (IMT) are noted.

1.3 Variable-Base Degree Day Models
During the 1980s, Fels (1986) adapted the VBDD method for use in measuring savings as the

PRInceton Scorekeeping Method (PRISM). The algorithm finds the base-temperature that gives
the best statistical fit between energy consumption and the number of variable-base degree-days
in each energy use period. PRISM was one of the first methods to include an estimate of the
standard error for all regression parameters (Goldberg, 1982). The method found widespread
use, especially in evaluation of residential energy conservation programs. Subsequently, PRISM
was found to provide adequate fits with commercial building billing data (Eto, 1988; Haberl and
Vajda, 1988; Haberl and Komer, 1990; Kissock and Fels, 1995); however, the physical
interpretation of the variable-base degree-day method does not apply to commercial buildings
with simultaneous heating and cooling (Rabl et al., 1992; Kissock, 1993).

The FASER (OmniComp, 1984) and Metrix Utility (Silicon Energy Corp., 2000) data
analysis programs have also adapted the VBDD method for baseline modeling. Both programs
use a manual search procedure to identify the balance-point temperature. Sonderegger (1998)
notes that, in his experience, the optimum is rather flat and that a fairly wide range of degree-day

base temperatures produce similar results.
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For the IMT VBDD model, a search procedure was developed to automatically identify the
balance-point temperature that produces the best-fit to the data.

1.4 Change-Point Models

In general, heating and cooling energy consumption in multi-zone commercial buildings tends
to vary with ambient temperature throughout the entire range of ambient temperatures
encountered. Thus, the VBDD method, which specifies a constant base energy usage below (or
above) the balance-point temperature, is not appropriate. In addition, linear two-parameter
regression models fail to capture the non-linear relationship between heating and cooling energy
use and ambient temperature caused by system effects, such as VAV control, or latent loads
(Kissock et al., 1998).

Change-point models, however, succeed at capturing both effects, and, as a consequence,
have found widespread use as baseline models for measuring energy savings (Haberl et al. 1994;
USDOE- IPMVP, 1997). In the statistical literature, these models are known as piece-wise
linear regression models or spline fits. In these models, the data are divided into intervals and
line segments fit to the data in each interval with the constraint that the line segments meet at a
common point between each interval (Hudson, 1966). Algorithms for piece-wise linear
regression have been developed for cases in which the change point between linear sections is
known in advance (Neter et al., 1989). When the change-point is not known in advance, it is
sometimes estimated by inspection (Maidment et al., 1985; Schrock and Claridge, 1989);
however this method does not guarantee a “best fit”.

The literature review identified three algorithms that may be applicable for best-fit change-
point models. The first algorithm was published by Crawford, Dykowski and Czajkowski
(1991). The procedure begins by dividing the data into n bins along the x axis. Developing
simple linear regression models for each bin would result in discontinuities between the linear
segments. To overcome this problem, the bin widths are varied until the lines intersect at the bin
boundaries. Identifying bin boundaries that meet the constraint of continuity between line
segments requires an iterative solution of two matrix equations. Testing of the procedure
indicated that the initial bin boundaries can affect whether convergence will occur and the values

at which convergence will occur. Although an algorithm was developed which assures
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convergence, the number of change-points cannot be determined in advance. Because of the
uncertainty of obtaining convergence, the inability to specify the number of change points, and
the reliance of the final result on the initial conditions, this method was not recommended for the
Inverse Modeling Toolkit.

The second method was published by Ruch and Claridge (1992). This method develops a
four-parameter change-point model of energy consumption, typically as a function of dry-bulb
temperature, along with accompanying error diagnostics for the model’s parameters. The
algorithm finds the optimal change-point by searching within an interval known to contain the
change-point. The first step is to split the data into two temperature regimes, fit ordinary least-
squared lines in each regime, and calculate the intersection of the lines. This is repeated for
numerous temperature regions. In the second stage, the change point is assumed and the model
is fit using linear regression. From the collection of fits in the two stages, the algorithm chooses
the one with the best least-squares fit. The reliability of the parameter estimated is then
calculated. The algorithm was coded into a computer program called 4P in the early stages of
the Texas LoanSTAR program. Unfortunately, the method did not prove to be robust when used
on actual measured energy data. In addition, the prescription of defining an acceptable region
for the change-point: 1) required that the data be pre-inspected and 2) created the possibility that
the true best-fit change point might lie outside of that region. For these reasons, this algorithm
was not recommended for the Inverse Modeling Toolkit.

The third set of algorithms identified were first described by Kissock et al. (1994) and
implemented in the EModel software. These algorithms use a two-stage grid search to identify
the best change point. In this method, the minimum x value is selected as the initial change point
in a standard piece-wise linear regression equation. The change-point is then incremented and the
regression is repeated across the range of x-values. The change point that results in the lowest
RMSE is selected as the best-fit change-point temperature. This method is then repeated with a
finer grid centered about the initial best-fit change point. The uncertainty with which the
change-point temperature is known can be approximated as the width of the finest grid. The
method is easily adaptable to three-parameter heating, three-parameter cooling and four-
parameter models. A similar algorithm for five-parameter models was developed by Kissock

(1996). These models have been used extensively with building energy data and have proven to
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be extremely robust (Haberl et al., 1998). Selected results from the regression engine have been
compared to results from SAS and were found to agree to within several significant figures of
precision (Kissock et al., 1994). Because of the simplicity, robustness and accuracy of these

algorithms, they were chosen for use in the Inverse Modeling Toolkit.

1.5 Multivariate Regression Models
Multivariate regression can incorporate more than one independent variable into a model of

building energy consumption, and as such can be a powerful tool (Forrester and Wepfer, 1984;
Leslie et al., 1986; Austin, 1997; Katipamula et al., 1998). Proper care must be taken, however,
when using MVR models to predict energy consumption. In general, the addition of independent
variables to the model will always increase the strength of the correlation; however, the relative
uncertainty (standard error) of each regression coefficient, and hence its predictive value, will
decrease. In addition, multicollinearity between independent variables increases the uncertainty
with which the values of the regression coefficients are known. Singular Value Decomposition
(Anderson, 1990) and Principle Component Analysis (Reddy and Claridge, 1994; Ruch et al.,
1993) have been shown to reduce the effects of multicollinearity.

The Inverse Modeling Toolkit uses standard multi-variable regression algorithms.

1.6 Combination CP-MVR and VBDD-MVR Models
CP and VBDD models have been shown to provide good fits between building energy use

and ambient temperature. However, other variables also influence building energy use.
Combination CP-MVR and VBDD-MVR models attempt to retain this ability to describe energy
use as a function of ambient temperature while including the effects of additional independent
variables. One approach reported in the literature (Rabl, 1992; Ruch et al. 1993; Sonderegger,
1997; Sonderegger, 1998) is to sequentially identify the change-point or base temperature and
then use this result in a MVR model. An alternative approach to is to use indicator variables to
produce separate CP or VBDD models for each operating or occupational mode (Austin, 1997;
Kissock et al., 1998).

To develop CP-MVR models for Inverse Modeling Toolkit, the change-point algorithms
developed by Kissock (1994; 1996) were extended to include multiple independent variables.
Using this approach, CP-MVR models can be identified in a single step, rather than sequentially,
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and without breaking up the data according to operational modes. The Inverse Modeling Toolkit
can also produce VBDD-MVR models by first running the VBDD model and then running the
MVR model on the VBDD residual file.

1.7 Calibrated Simulation Models

In some cases, complex interaction affects, a lack of specific end-use or pre-retrofit data, or
other reasons make it impractical or impossible to rely on a comparison of pre and post-retrofit
data to estimate savings. In these cases, simulation models can be calibrated to available data,
then adjusted to predict energy savings (Katapamula and Claridge, 1993; Wilson, 1998). The

Inverse Modeling Toolkit does not include calibrated simulation capabilities.

1.8 Artificial Neural Network Models

Artificial neural networks (ANN) attempt to mimic parts of the architecture of the brain. The
distributed parallel processing structure of the brain is simulated by arranging nodes in layers
such that each node is connected to all of the nodes in the adjacent layers. Each node sums the
inputs it receives and transmits an output signal to the other nodes to which it is connected. The
output signal of each node is multiplied by a weight that is varied during the learning process. A
learning algorithm trains an ANN to recognize patterns between input and output variables.

ANNSs have been shown to effectively model building energy use (Anstett and Kreider, 1993;
MacKay, 1994; Kissock, 1994; Feuston and Thurtell, 1994; Kreider et al., 1995) and improve
control of HVAC systems (Curtiss et al., 1996). They have also been proposed as baseline
models for measuring savings (Krarti et al., 1998). The Inverse Modeling Toolkit does not
include ANN models.

1.9 Uncertainty of Savings
Goldberg (1982) estimated the uncertainty of VBDD parameters in the PRISM method.

Cowan and Schiller (1997), among others, discuss the uncertainty of the estimated savings in
terms of the money, time and equipment required to reduce the uncertainty. Kissock et al. (1993)
and Katapamula et al. (1995) investigate how the length and timing and data time-periods of

baseline periods affect the prediction accuracy of the baseline regression models. Kissock et al.
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(1998) discuss the error in retrofit savings calculations due to varying indoor air temperature or
internal gains. A complicated algorithm for estimating error associated with linear models was
described by Ruch et al. (1999). The algorithm was translated into a computer code by Ruch and
Kissock and tested in development versions of EModel (1994). Unfortunately, the uncertainty
routines were sometimes unstable.

A simplified method of estimating the uncertainty associated with linear regression models
and the determination of savings have been described by Reddy et al. (1998) and Kissock et al.
(1998). In this method, the uncertainty epd associated with predicting E as function of an

independent variable T in a baseline model is:

v

TP

"()

epd = t(1-0/2, n-2) RMSE |1+— (1.1)

1
n

d=l

where:

RMSE = Root Mean Square Error = (1.2)

The t-statistic, t(1-0/2, n-p), is a function of the level of significance (o), the number of days in
the pre-retrofit period (n), and the number of parameters in the model (p). The level of
significance (0! indicates the fraction of predictions that are likely to fall outside of the
prediction uncertainty bands. In practice, the value of the t-statistic is close to 1.96 for a
reasonable number of pre-retrofit data points and a 5% significance (95% confidence) level. In

addition, the value of the parenthetic term is usually very close to unity. Thus, €pd can be

closely approximated as:

epd = 1.96 RMSE (1+2/n)""” (1.3)
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2.0 Installing and Running IMT

2.1 Installing IMT
IMT is a FORTRAN 90 application compiled to run on personal computers using the

Microsoft Windows operating systems. To install IMT:

1. Copy the ‘IMT Software’ folder from the IMT CD-ROM to your computer.

2. Open ‘Windows Explorer’ and select all files in the ‘IMT Software’ folder on your computer.
3. Select the menu items: ‘File’, ‘Properties’

4. In the dialog box that appears, remove the ‘Read Only’ attribute and click the ‘Apply’ button.

The IMT Software folder will contain the following files.

Executable version of toolkit: IMT.EXE

Source code version of the toolkit: IMT.F90

Example data files: DAILYDAT.TXT, VBDDDAT.TXT
Example instruction files: DAILYINS.TXT, VBDDINS.TXT
Required DLL files: SALFLIBC.DLL, FTN90.DLL

2.2 Running IMT

To run IMT, you can either 1) click on the IMT.EXE icon, or 2) open a DOS window and run
IMT from within the DOS window. When running IMT by clicking on the IMT.EXE icon, the
application will automatically open in a DOS window within the Microsoft Windows operating
system. When IMT finishes executing, the DOS window will close, returning you to the
Microsoft Windows operating system. When running IMT using this method, the only way to
access IMT output is to edit the output files IMT.OUT and IMT.RES.

Alternately, you can first open a DOS window and then run IMT from within the window.
This method of running IMT will keep the DOS window open between IMT executions and
allow you to see IMT output on the screen. To run IMT using this method, first locate the DOS
window application called CMD.COM or CMD.EXE. Either CMD.COM or CMD.EXE is
generally located in the CAWINDOWS\SYSTEM or CAWINNT\SYSTEM32 folders. A
shortcut icon to one of these applications may also be located in the Start, Programs menu. Open
the DOS window by double clicking on the CMD.COM or CMD.EXE icon. In the DOS
window, use DOS commands to operate IMT. First move to the directory in which you installed
IMT. For example, if you installed IMT in the folder C:\IMT, type:
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CD C\IMT

Before running IMT, you must have a properly formatted input data file. Input data files are
described in more detail in Chapter 2. To get you started, IMT comes with two sample data files.
The first is a uniform time-scale data file called DAILYDAT.TXT. DAILYDAT.TXT contains
daily ambient temperatures and energy consumption data from a commercial building. Use
DAILYDAT.TXT to run mean, 2P, 3P, 4P, 5P and MVR models. The second input data file is a
nonuniform-timescale file called VBDDDAT.TXT. VBDDDAT.TXT contains monthly energy
use and occupancy data, and daily ambient temperatures. Use VBDDDAT.TXT to run VBDD
models. These models are described more completely in Chapter 5.

You must give IMT instructions to locate the input data file, find the desired fields and
records in the input data file, and select the proper regression model. There are two ways to give
IMT operating instructions. The first is to direct it to an instruction file. To get you started, we
have included two sample instruction files, DAILYINS.TXT and VBDDINS.TXT. To run IMT
using the DAILYINS.TXT instruction file, type:

IMT DAILYINS.TXT

at the command prompt. You can also type:

IMT

at the command prompt, and then type:

DAILYINS.TXT

when prompted for the name of the instruction file. If the instruction file is in a different folder,

type the complete path and filename of the instruction file.
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The second way to give IMT operating instruction is through the keyboard. To use this

method, type:

IMT

at the command prompt. When prompted whether you would like to enter instructions from an

instruction file or through the keyboard, type:

0

To continue to enter instructions via the keyboard, respond to each prompt.

2.3 Running the Sample Input Data File: DAILYDAT.TXT
DAILYDAT.TXT is a uniform time-scale data file containing daily ambient temperatures and

energy consumption data from a commercial building. The fields are:

1: Site number

2: Month

3: Day

4: Year

5: Group field (1 for pre-retrofit period and 2 for post-retrofit period)
6: Cooling energy use (MBtu/day)

7: Heating energy use (MBtu/day)

8: Whole building electricity use (kWh/day)

9: Average ambient temperature (F)

The first five records in DAILYDAT.TXT are shown in Figure 2.1. Data files are described more

completely in Chapter 3.
114 10 16 90 1 61.8 27.23 -99 76
114 10 17 90 1 65.2 25.68 -99 79
114 10 18 90 1 44.2 35.21 -99 64
114 10 19 90 1 42.6 38.66 -99 62
114 10 20 90 1 52 32.76 -99 70

Figure 2.1. First five records from DAILYDAT.TXT input data file. The —99 values in the
second to last field are “no-data” flags that indicate that no data were available on these days.
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DAILYINS.TXT is an IMT instruction file that instructs IMT to generate a multivariable
regression (MVR) model of cooling energy use as a function of building electricity use and
ambient temperature. DAILYINS.TXT is shown in Figure 2.2. Instruction files are described

more completely in Chapter 4.

Path and name of input data file = DAILYDAT.TXT

Value of no data flag = -99

Column number of group field = 5

Value of valid group field =1

Residual file needed (1 yes, 0 no) =1

Model (l:Mean,2:2p,3:3pc,4:3ph,5:4p,6:5p,7:MVR,8:HDD,9:CDD) = 7
Column number of dependent variable = 6

Number of Y1 independent variables data file (0 to 6) = 2
Column number of X1 independent variable 8

Column number of X2 independent variable
Column number of X3 independent variable
Column number of X4 independent variable
Column number of X5 independent variable
Column number of X6 independent variable

o o onou
[« o3« I « Vo)

Figure 2.2. DAILYINS.TXT instruction file to generate a multivariable regression (MVR)
model of cooling energy use as a function of building electricity use and ambient temperature.

To run IMT using the DAILYINS.TXT instruction file and DAILYDAT.TXT data input file,
simply type:

IMT DAILYINS.TXT

at the command line in the DOS window. Another way to load start IMT and load the
instruction file is to click on the IMT.EXE icon in the Microsoft Windows operating system, and

then type:

DAILYINS.TXT

at the prompt asking for the instruction file. Either of these methods will cause IMT to produce a
multivariable regression model of pre-retrofit cooling energy use as a function of building
electricity use and ambient temperature in the DAILYDAT.TXT data input file. IMT output is
printed to the computer screen and also to ASCII data output files IMT.OUT and IMT.RES.
IMT.OUT is shown below.
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Output file name = IMT.Out

[ EEE RS EEE RS AR EE SRR EERE R R RS SRR R R R R REEEREE R R RE,]
Input data file name = DAILYDAT.TXT
Model type =
Grouping column No =
Value for grouping =
Residual mode =
# of X(Indep.) Var
¥l column number
X1 column number
X2 column number =
X3 column number
X4 column number
X5 column number (unused)

X6 column number 0 (unused)
RS E RS EE SRR RS RS ERREEE R R RS SRR E RS REREEEREEEE XX EEX,]

n
mMHP—‘U‘IE
o

(unused)

8
9
0 (unused)
0
0

Regression Results

N = 167
——————— R2 - o0.8a5
iRz - o.8as
"""" RMSE - 6.4314
cvemesE - 11.3288
_______ p=  o0.627
""""" DW= 0.740 (p0)
______ a-  -50.6026 (  5.8082)
""""" X1 = 0.0035 (  0.0007)
_____ X2 = 1.2576 (  0.0421)

DAILYINS.TXT can be modified using any text editor to run different models. To run a two-
parameter model of cooling energy use as a function of ambient temperature, modify
DAILYINS.TXT so that the model type is 2 (2P), the dependent Y variable is field 6, the number
of independent X variables is 1, and the independent X variable is field 9. Then type IMT
DAILYINS.TXT at the DOS command prompt to run IMT.
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To run a multivariable regression model of cooling energy use as a function of ambient
temperature and whole-building electricity use, modify DAILYINS.TXT so that the model type
is 7 (MVR), the dependent Y variable is field 6, the number of independent X variables is 2, the
independent X1 variable is field 9, and the independent X2 variable is field 8. Then type IMT
DAILYINS.TXT at the DOS command prompt to run IMT.

To run a four-parameter model of cooling energy use as a function of ambient temperature,
modify DAILYINS.TXT so that the model type is 5 (4P), the dependent Y variable is field 6, the
number of independent X variables is 1, and the independent X1 variable is field 9. Then type
IMT DAILYINS.TXT at the DOS command prompt to run IMT.

To run a four-parameter model of cooling energy use as a function of ambient temperature,
with whole-building electricity use as an additional independent variable, modify
DAILYINS.TXT so that the model type is 5 (4P), the dependent Y variable is field 6, the number
of independent X variables is 2, the independent X1 variable is field 9, and the independent X2
variable is field 8. Then type IMT DAILYINS.TXT at the DOS command prompt to run IMT.

In DAILYDAT.TXT, records associated with the pre-retrofit period have a value of 1 in the
Group Field, and records from the post-retrofit period have a value of 2 in the Group Field. The
value of the Grouping Variable in DAILYINS.TXT is 1; thus, DAILYINS.TXT instructs IMT to
model only the pre-retrofit data. To model post-retrofit data instead of the pre-retrofit data,
modify DAILYINS.TXT so that the value of the Grouping Variable is 2. To model all data
instead of the pre-retrofit data, modify DAILYINS.TXT so that the field number of the grouping
variable is 0. You can also use this feature to generate separate models for occupied and
unoccupied periods, weekdays and weekends, etc., or to exclude questionable data from the

model.

2.4 Running the Sample Input Data File: VBDDDAT.TXT
IMT creates VBDD models from nonuniform-timescale data files. VBDDDAT.TXT is a

nonuniform-timescale data file and contains monthly energy use and occupancy data, and daily
ambient temperatures. It is called a nonuniform-timescale input data file because the independent
and dependent variables have different time scales. The fields in VBDDDAT.TXT are:
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1: Month

2: Day

3: Year

4: Cooling energy use (units/month)

5: Group field (1 for pre-retrofit period and 2 for post-retrofit period)
6: Independent variable 1

7: Independent variable 2

8: Independent variable 3

9: Average daily ambient temperature (F)

The first 36 records in VBDDDAT.TXT are shown in Figure 2.3

12 30 1996 -99 -99 -99 -99 -99 -99
12 31 1996 -99 -99 -99 -99 -99 44
1 1 1997 215 1 30 20 5 41
1 2 1997 -99 -99 -99 -99 -99 52
1 3 1997 -99 -99 -99 -99 -99 57
1 4 1997 -99 -99 -99 -99 -99 60
1 5 1997 -99 -99 -99 -99 -99 47
1 6 1997 -99 -99 -99 -99 -99 25
1 7 1997 -99 -99 -99 -99 -99 23
1 8 1997 -99 -99 -99 -99 -99 20
1 9 1997 -99 -99 -99 -99 -99 20
1 10 1997 -99 -99 -99 -99 ~99 21
1 11 1997 -99 -99 -99 -99 -99 2
1 12 1997 -99 -99 -99 -99 -99 2
1 13 1997 -99 -99 -99 -99 -99 2
1 14 1997 -99 -99 -99 -99 -99 10
1 15 1997 -99 -99 -99 -99 -99 25
1 16 1997 -99 -99 -99 -99 -99 19
1 17 1997 -99 -99 -99 -99 -99 2
1 18 1997 -99 -99 -99 -99 -99 5
1 19 1997 -99 -99 -99 -99 -99 13
1 20 1997 -99 -99 -99 -99 -99 31
1 21 1997 -99 -99 -99 -99 -99 37
1 22 1997 -99 -99 -99 -99 -99 47
1 23 1997 -99 -99 -99 -99 -99 30
1 24 1997 -99 -99 -99 -99 -99 32
1 25 1997 -99 -99 -99 -99 -99 28
1 26 1997 -99 -99 -99 -99 -99 18
1 27 1997 -99 -99 -99 -99 -99 32
1 28 1997 -99 -99 -99 -99 -99 22
1 29 1997 -99 -99 -99 -99 -99 19
1 30 1997 -99 -99 -99 -99 -99 28
1 31 1997 -99 -99 -99 -99 -99 39
2 1 1997 268 1 35 30 3 39
2 2 1997 -99 -99 -99 -99 -99 39
2 3 1997 ~-99 -99 -99 -99 -99 -99

Figure 2.3. First 36 records of the nonuniform-timescale input data file VBDDDAT.TXT.

VBDDINS.TXT is an IMT instruction file that instructs IMT to generate a variable-base
cooling degree-day model of the whole-building electricity use in VBDDDAT.TXT.
VBDDINS.TXT is shown in Figure 2.4. Instruction files are described more completely in
Chapter 4.
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Path and name of input data file = VBDDDAT.TXT

Value of no-data flag = -99

Column number of group field = 5

Value of valid group field =1

Residual file needed (1 yes, 0 no) =1

Model (l:Mean,2:2p,3:3pc,4:3ph,5:4p,6:5p,7:MVR,8:HDD, 9:CDD) = 9
Column number of dependent variable Y = 4

Number of independent variables (0 to 6) =1

Column number of independent variable X1
Column number of independent variable X2
Column number of independent variable X3
Column number of independent variable X4
Column number of independent variable X5
Column number of independent variable X6 0

i w oun
OO O OoOVw

Figure 2.4. VBDDINS.TXT instruction file to generate a variable-base cooling degree-day
model of the whole-building electricity use in VBDDDAT.TXT.

To run a variable-base cooling degree-day model of building electricity use, simply type:
IMT VBDDINS.TXT

at the command line in the DOS window. Another way to start IMT and load VBDDINS.TXT is
to click on the IMT.EXE icon in the Microsoft Windows operating system, and type:

VBDDINS.TXT

at the prompt asking for the instruction file. Two IMT output files, IMT.OUT and IMT.RES
will be generated in the same directory as IMT.EXE.

2.4.1 Running Combination VBDD/MVR Models
IMT does not directly support combination variable-base degree-day, multiple-variable

regression (VBDD/MVR) models. However, combination VBDD/M VR models can be
constructed using two steps. First, determine the best-fit VBDD model using the procedure
described above. Next, use the residual file from the VBDD model as input to a MVR model.'
This will facilitate VBDD/MVR models since residual files from VBDD models always include

the degree-days in each energy data period computed to the best-fit base temperature.
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For example, to model monthly cooling energy use as a function of daily ambient
temperatures and another independent variable, run IMT using VBDDINS.TXT as the
instruction file. Next, modify VBDDINS.TXT so that the data input file is IMT.OUT, the model
type is 7 (MVR), the number of independent X variables is 2, the independent X1 variable is
field 10, and the independent X2 variable is field 6. Save it as NONUNIMVR.TXT. Then run
IMT again using NONUNIMVR.TXT as the instruction file. This procedure is demonstrated
using a real data file in Chapter 10.

2.5 IMT Qutput
Model coefficients and goodness of fit parameters are reported in the ASCII output file

IMT.OUT (Chapters 6 and 7). IMT.OUT is automatically created in the same directory as
IMT.EXE each time you run IMT; thus IMT.OUT will be overwritten each run. If you wish to
save IMT.OUT, it must be renamed. IMT.OUT can be viewed or printed using any text editor or

word processor. You may find it easiest to use the DOS Editor. To do so, type:

EDIT IMT.OUT

at the command prompt.

If instructed to, IMT will also create a file called IMT.RES that includes all input data,
predicted values of the dependent variable, and the difference between predicted and measured
values of the dependent variable. IMT.RES is created in the same directory as IMT.EXE; thus
IMT.RES will be overwritten each time you run IMT and instruct it to generate a residual file. If

you wish to save IMT.RES, it must be renamed.

2.6 Quitting IMT and Getting Help
To get help, type “?” at the prompt. To quit, type “Q” or “Quit” at the prompt.
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3.0 Input Data Files

3.1 Input Data File Format
IMT reads input data files in standard ASCH format. The data files should contain only

numeric data, and contain an equal number of fields (columns) in each record (row). Data fields

should be separated by one or more blank spaces.

3.2 Types of Input Data Files
IMT can read two types of input data files: uniform and nonuniform timescale. Uniform-

timescale data files are composed of records in which all fields are measured over the same
timescale. For example, a uniform-timescale data file would be one in which each record
includes the amount of energy consumed in an hour, as the dependent-variable field, and the
average occupancy and temperature over that hour, as independent-variable fields. IMT can
read uniform-timescale data files of any timescale: hourly, daily, weekly, monthly, yearly, etc.

An example of a uniform-timescale data-input file, DAILYDAT.TXT, is shown in Figure 3.1.
The fields are:

1: Site number

2: Month

3: Day

4: Year

5: Group field (1 for pre-retrofit period and 2 for post-retrofit period)

6: Cooling energy use (MBtu/day)

7: Heating energy use (MBtu/day)

8: Whole building electricity use (kWh/day)

9: Average ambient temperature (F)
114 10 16 90 1 61.8 27.23 -99 76
114 10 17 90 1 65.2 25.68 -99 79
114 10 18 90 1 44.2 35.21 -99 64
114 10 19 90 1 42.6 38.66 -99 62
114 10 20 90 1 52 32.76 -99 70

Figure 3.1. First five records from uniform-timescale DAILYDAT.TXT input data file. The -99
values in the second to last field are “no-data” flags that indicate that no data were available on
these days.
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To facilitate the use of variable-base degree-day (VBDD) models, IMT can read nonuniform-

timescale data files in which the dependent variable is energy use, measured over roughly a
monthly timescale, and the independent variable is ambient temperature measured on a daily
timescale. An example nonuniform-timescale data-input file, VBDDDAT.TXT, is shown in
Figure 3.2. The fields are:

1: Month

2: Day

3: Year

4: Monthly electricity use

5: Group field (1 for pre-retrofit period and 2 for post-retrofit period)
6: Dummy independent variable 1

7: Dummy independent variable 2

8: Dummy independent variable 3

9: Average daily temperature (F)

12 30 1996 -99 -99 -99 -99 -99 -99
12 31 1996 -99 -99 -99 -99 -99 44
1 1 1997 215 1 30 20 5 41
1 2 1997 -99 -99 -99 -99 -99 52
1 3 1997 -99 -99 -99 -99 -99 57
1 4 1997 -99 -99 -99 -99 -99 60
1 5 1997 -99 -99 -99 -99 -99 47
1 6 1997 -99 -99 -99 -99 -99 25
1 7 1997 -99 -99 -99 -99 -99 23
1 8 1997 -99 -99 -99 -99 -99 20
1 9 1997 -99 -99 -99 -99 -99 20
1 10 1997 -99 -99 -99 -99 -99 21
1 11 1997 -99 -99 -99 -99 -99 2
1 12 1997 -99 -99 -99 -99 -99 2
1 13 1997 -99 -99 -99 -99 -99 2
1 14 1997 -99 -99 -99 -99 -99 10
1 15 1997 -99 -99 -99 -99 -99 25
1 16 1997 -99 -99 -99 -99 -99 19
1 17 1997 -99 -99 -99 -99 -99 2
1 18 1997 -99 -99 -99 -99 -99 5
1 19 1997 -99 -99 -99 -99 -99 13
1 20 1997 -99 -99 -99 -99 -99 31
1 21 1997 -99 -99 -99 -99 ~99 37
1 22 1997 -99 -99 -99 -99 -99 47
1 23 1997 -99 -99 -99 -99 -99 30
1 24 1997 -99 -99 -99 -99 -99 32
1 25 1997 -99 -99 -99 -99 -99 28
1 26 1997 -99 -99 -99 -99 -99 18
1 27 1997 -99 -99 -99 -99 -99 32
1 28 1997 -99 -99 -99 -99 -99 22
1 29 1997 -99 -99 -99 -99 -99 19
1 30 1997 -99 -99 -99 -99 -99 28
1 31 1997 -99 -99 -99 -99 -99 39
2 1 1997 268 1 35 30 3 39
2 2 1997 -99 -99 -99 -99 -99 39
2 3 1997 -99 -99 -99 -99 -99 -99

Figure 3.2. First 36 records of the nonuniform-timescale input data file VBDDDAT.TXT.
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When creating VBDD models of nonuniform-timescale data sets, the independent variable,
temperature, is assumed to be on a daily time scale. The dependent variable, energy use, is
assumed to represent the total energy use from the current record to the previous energy use
record. Thus, in VBDDDAT.TXT, the energy use value of 268 on 2/1/1997 represents the
energy use between 1/2/1997 and 2/1/1997. The energy use value of 215 on 1/1/1997 is ignored
because IMT cannot recognize the beginning of the data period that it represents. Nonuniform-
timescale data files can contain any number of independent variables in addition to temperature
if they are listed on the same record as the energy value. Like energy, additional independent
variables are assumed to represent the total from the current record to the previous energy use

record.

3.3 Number of Input Data Files

All data used in a regression model must be included in a single data file.

3.4 Size of the Input Data Files
Data from the input data file are manipulated in arrays stored in the computer’s Random

Access Memory (RAM). Thus, the size of the input data file is limited only by the amount of
RAM available to the computer.

3.5 Data Grouping

The input data file may contain records that the user does not want to include in the model.
IMT will operate on only those records that the user specifies. If you wish to use a subset of the
data in the model, add a field (column) to the data input file that will indicate which records are
to be used in the model. This field is called the ‘Grouping Variable’. Place the same numeric
value in each record that you wish to be included in the model. You will then specify this field
as the “Grouping Variable” when giving IMT operating instructions. In the operating
instructions, you must also specify the value of the number in the grouping field that indicates
that a record is to be included in the model. Grouping fields can be used for weekday/weekend,

pre-retrofit/post-retrofit and other groups.
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3.6 No-Data Flag
If there exists no valid values for one or more fields in a data record, a “no-data” flag must be

placed in the appropriate field to indicate that this field should not be included in a regression
model. The user may select any numeric value for the no-data flag. The toolkit will ignore any
record that has a no-data flag in a field on which the model is to operate. In the example input
data files DAILYDAT.TXT and VBDDDAT.TXT (Figures 3.1 and 3.2), -99 is used at the no-
data flag.
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4.0 Operating Instructions

The user must enter instructions to the executable version of IMT. These instructions include

the path and filename of the data input file, the type of regression model, and the records and

fields in the data input file on which to operate. This chapter describes how to enter these

instructions.

4.1 Methods of Entering Operating Instructions

The toolkit accepts operating instructions by: 1) reading an instruction file, or 2) from the

keyboard as the user responds to prompts displayed on the computer screen.

4.2 Instruction File Format and Content

The instruction file must be a standard ASCII text file with 14 records. The information

required on each line of the instruction file, or when entering instructions by responding to

screen prompts through the keyboard, is shown in Table 4.1.

Table 4.1 Information required in the Instruction File or through keyboard entry.

Line Information Required
1 Path and name of input data file
2 Value of no data flag
3 Column number of group field
4 Value of valid group field
5 Residual file needed (1 yes, 0 no)
6 Model (l:Mean,2:2p,3:3pc,4:3ph,5:4p, 6:5p,7:MVR, 8:HDD, 9:CDD)
7 Column number of dependent variable
8 Number of Y1 independent variables data file (0 to 6)
9 Column number of X1 independent variable
10 Column number of X2 independent variable
11 Column number of X3 independent variable
12 Column number of X4 independent variable
13 Column number of X5 independent variable
14 Column number of X6 independent variable
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On Line 1, enter the path and name of the data-input file. If the data-input file is in the same
folder as IMT.EXE, the path need not be entered.

On Line 2, enter the value of the marker, called the ‘no-data flag’, used to denote missing
data. A typical value for the no-data flag is ‘-99°. IMT will not use data from the data-input file
in regression models if the data has the value of the no-data flag specified on Line 2.

On Line 3, enter the column number of the grouping field in the data-input file. The grouping
field is an optional column in the data-input file for indicating which records should be included
in the IMT regression model. If the data-input file does not have a grouping field, enter ‘0’.
Entering ‘0’ on Line 3 causes IMT to use all of the data in the input-data file in the regression
model.

On Line 4, enter the value of the data in the grouping field that indicates that this record
should be included in the regression model. For example, if the data-input file includes data
from both the pre-retrofit and post-retrofit periods, a grouping field could be added to the data-
input file with a value of ‘1’ for each pre-retrofit record and a value of ‘2’ for each post-retrofit
record. The column number of this field in the data-input file should be entered in the instruction
file on Line 3. To develop a regression model of pre-retrofit data, enter ‘1’ on Line 4 of the
instruction file. To develop a regression model of post-retrofit data, enter ‘2’ on Line 4 of the
instruction file.

On Line 5, enter ‘1’ if a residual output file, IMT.RES, is desired and “0” if no residual output
file is desired. Residual output files are described in more detail in Chapter 7.

On Line 6, enter the number 1 through 9 corresponding to the desired regression model. IMT
regression models are described in more detail in Chapter 5.

On Line 7, enter the column number in the data-input file of the dependent variable. For
example, to create a model of chiller energy use as a function of outdoor air temperature, chiller
energy use would be the dependent variable and outdoor-air temperature would be the
independent variable.

On Line 8, enter the number of independent variables to be used in the model. For example,
to create a model of chiller energy use as a function of outdoor-air temperature and outdoor-air

specific humidity, the number of independent variables would be ‘2°.
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On Lines 9-14, enter the column number(s) in the data-input file of the independent
variable(s). Enter ‘O’ for all unused independent variables. For example, to create a model of
chiller energy use as a function of outdoor-air temperature and outdoor-air specific humidity,
enter ‘2’ on Line 8 to indicate two independent variables. Then enter the column number in the
data-input file of outdoor-air temperature on Line 9 and the column number of outdoor-air
specific humidity on Line 10. Enter ‘0’ on Lines 11 — 14.

An example instruction file, DAILYINS.TXT, is shown in Figure 4.1. To create different
instruction files, we recommend modifying an existing instruction file by changing the values to
the right of the equal signs and saving the instruction file with a different name. This will retain
the field description information in the instruction file and make the instruction file easier to
understand. However, IMT only reads data to the right of the equal sign on each record. Thus,

the field description information to the left of, and including, the equal sign is optional.

Path and name of input data file = DAILYDAT.TXT

Value of no data flag = -99

Column number of group field = 5

Value of valid group field =1

Residual file needed (1 yes, 0 no) =1

Model (l:Mean,2:2p,3:3pc,4:3ph,5:4p,6:5p,7:MVR,8:HDD,9:CDD) = 7
Column number of dependent variable = 6

Number of Y1 independent variables data file (0 to 6) = 2
Column number of X1 independent variable 8

Column number of X2 independent variable
Column number of X3 independent variable
Column number of X4 independent variable
Column number of X5 independent variable
Column number of X6 independent variable

(=« i« I« o]

Figure 4.1. DAILYINS.TXT instruction file to generate a multivariable regression (MVR)
model of cooling energy use as a function of building electricity use and ambient temperature
using the DAILYDAT.TXT input data file shown in Figure 3.1.

The toolkit determines the type of input data file by the type of regression model. HDD and
CDD models require nonuniform-timescale data files. All other models require uniform-

timescale data files.

4.3 Entering Operating Instructions by Typing Responses to Screen Prompts
The toolkit also accepts operating instructions entered through the keyboard. The toolkit

provides the user with prompts asking for the appropriate information. The information

ASHRAE Inverse Modeling Toolkit: Final Report 26




requested by the screen prompts is the same as the information in the instruction file. The user

2 &6 66 2

can quit the program at any time by typing “Quit”, “Q”, “quit” or “q”.
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5.0 Regression Model Types

IMT supports several types of regression models since no single model type is appropriate for

all types of buildings or patterns of energy use. The types of models supported by the toolkit are

described below. The two-parameter and change-point models supported by the toolkit are

shown in Figure 5.1. The type of model is identified by the number of regression coefficients .

Cooling Heating
Energy Energy B
Use Use !
i)
B.
B,
Outside Outside
Temperature Temperature
Cooling Heating
Energy Energy B
Use | B Use
ﬂ| ﬂl
Bs Outside Bs Outside
Temperature Temperature
Cooling Heating B2
Energy B Energy
Use 3 Use
B, B, Bs
Bz |
Be Outside B Outside
Temperature Temperature
Cooing
Energy
Use &Uﬂ
3
B,
B B Ouside
Temperature

Figure 5.1 IMT change-point models. Top row: 2P cooling and heating models. Second row
from top: 3P cooling and heating models. Third row from top: 4P cooling and heating models.
Bottom row: SP heating and cooling model.
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5.1 Mean Model
IMT can calculate the arithmetic mean of the dependent variable. IMT mean models are
appropriate for modeling building energy use that does not vary in relation to other independent

variables.

5.2 Two-Parameter Model

IMT can find a simple linear regression model (2P) of type:

Y=B1+B2 X (5.1)

where P, and 3, are regression coefficients, X, is the independent variable and Y is the
dependent variable.

2P models are appropriate for modeling building energy use that varies linearly with another
single independent variable. For example, in some buildings, heating and cooling energy use
varies linearly with outdoor air temperature. In IMT output, B, is reported as “a”, and 3, is

reported as “X1”.

5.3 Three-Parameter Cooling and Heating Models
IMT can find best-fit three-parameter (3P) change-point models of the type described by

Kissock et al. (1994):

Yo = By + B2(Xi-B3)t (5.2)
Yu = B1 + B2 (Xi-Bs ) (5.3)

where P is the constant term, 32 is the slope term, and 3 is the change-point,. The ( )+ and ()
notations indicate that the values of the parenthetic term shall be set to zero when they are
negative and positive respectively.

3P models are appropriate for modeling building energy use that is varies linearly with an

independent variable over part of the range of the independent variable and remains constant
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over the other part. For example, 3PC models, using outside air temperature as the independent
variable, are often appropriate for modeling whole-building electricity use in residences electric
air conditioning. Similarly, 3PH models, using outside air temperature as the independent
variable, are often appropriate for modeling heating energy use in residences with gas or oil
heating.

IMT can also find combination three-parameter multi-variable regression models (3P-MVR),

with up to four independent variables, of the type:

Ye =By + B2 (Xi-Ba)t + BaXo + Bs X3 + Bs X (5.4)
Yo =B1 + B2(Xi-B3) + BaXo + Bs Xz + P Xa (5.5)

where X is typically temperature, and X X3 and X4 are optional independent variables.

In IMT output for 3PC models, B;, the Y change point coefficient, is reported as “Ycp”. B2,
the right slope coefficient, is reported as “RS”. P, the X change point coefficient, is reported as
“Xcp”. IMT output for 3PH models is the same as for 3PC models except that 3,, the left slope
coefficient, is reported as “LS”. In IMT output for 3P-MVR models, the additional independent
variable coefficients, B4, Bs and g, are reported as the number of the independent X variable,

“X2", “X3” and “X4“respectively.

5.4 Four-Parameter Model

IMT can find best-fit four-parameter (4P) change-point models of the type described by
Kissock et al. (1994):

Y =By + B2 X -Ba) + B3 (X, -Ba)?F (5.6)

where P is the constant term, B2 is the left slope, B3 is the right slope and (4 is the change

point. IMT can also find combination four-parameter multi-variable regression models (4P-

MVR), with up to three independent variables, of the type:
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Y =B+ B2 X -Ba) + B (X -Ba)t +BsXo + B X5 (5.7)

where X is typically temperature, and X, and X3 are optional independent variables.

Four-parameter models using outdoor air temperature as the independent variable are
appropriate for modeling heating and cooling energy use in variable-air-volume systems and/or
in buildings with high latent loads. In addition, these models are sometimes appropriate for
describing non-linear heating and cooling consumption associated with hot-deck reset schedules
and economizer cycles (Kissock, 1993).

In IMT output for 4P models, B;, the Y change point coefficient, is reported as “Ycp”. B , the
left slope coefficient, is reported as “LS”. P53, the right slope coefficient, is reported as “RS”.
B4 , the X change point coefficient, is reported as “Xcp”. In IMT output for 4P-MVR models,
the additional independent variable coefficients, s, and B¢, are reported as the number of the

independent X variable, “X,” and “X3”.

5.5 Five-Parameter Model
IMT can find best-fit five-parameter (5P) change-point models of the type described by
Kissock (1996):

Y = B+ B, (Xi-Ba) + By (Xi-Bs)* (5.8)

where f, is the constant term, 3, is the left slope, B, is the right slope, B, is the left change point,
and P, is the right change point.

IMT can also find combination five-parameter multi-variable regression models (SP-MVR),

with up to two independent variables, of the type:

Y =B+ B, (Xi-Ba) + B3 (Xi-Bs)t + B Xo (5.9)

where X is typically temperature and X is an optional independent variable.
Five-parameter models using outdoor air temperature as the independent variable are

appropriate for modeling energy consumption data that includes both heating and cooling, such
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as whole-building electricity data from buildings with electric heat-pumps or both electric
chillers and electric resistance heating. They are also appropriate for modeling fan electricity
consumption in variable-air-volume systems.

In IMT output for 5P models, B, the Y change point coefficient, is reported as “Ycp”. B2 , the
left slope coefficient, is reported as “LS”. B3, the right slope coefficient, is reported as “RS”.
B4, the left X change-point coefficient, is reported as “Xcpl”. Bs, the right X change-point
coefficient, is reported as “Xcp2”. In IMT output for SP-MVR models, the additional
independent variable coefficient B, is reported as the number of the independent X variable,

“X2”

5.6 Multiple-Variable Regression Model
IMT can find multiple-variable linear regression (MVR) models, with up to six independent

variables, of type:

Y =01 +B2Xi +B3Xo + BaXa+ PsXy + P Xs + B7Xe (5.10)

where B; through B; are regression coefficients, and X; through X are independent variables.
IMT does not test for multicollinearity.
In IMT output, B, is reported as “a”, the independent variable coefficients 8 to B, are

reported as the number of the independent X variables, “X;” to “Xe”.

5.7 Variable-Base Heating and Cooling Degree-Day Models
IMT can find best-fit variable-base degree-day models of type:

Y =B, + B, HDD(B:) (5.11)

Y =8, + B,CDD(Bs) (5.12)

where PB1 is the constant term, P2 is the slope term, and HDD(f3) and CDD(p3) are the number

of heating and cooling degree-days, respectively, in each energy data period calculated with base
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temperature 3. The number of heating and cooling degree-days in each energy data period of n

days is:

HDD(B) = Y (f3-T,)" (5.13)

CDD(Bs) = 'Z":(Ti - B3)* (5.14)

where Ti; is the average daily temperature.
In IMT output, B is reported as “A” and f3; is reported as “X;”. f3, the base temperature for
computing the degree days, is reported as “DD Base”.
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6.0 Model Uncertainty Parameters

Guideline-14P Working Draft 99.2, June 7, 1999 specifies that modeling uncertainty be

estimated using three indices:

1) Coefficient of Variation of the Standard Deviation (CVSTD)

CVSTD =100x[¥ (3, = y)* Kn—1)]"2 Iy 6.1)

2) Coefficient of Variation of the Root Mean Square Error (CVRMSE)

A

CVRMSE =100x[ Y (y, - y)? ln— p)I"* Iy 6.2)

3) Normalized Mean Bias Error (MBE)

Z(yi -Yi)
(m-p)*y

Where:

dependent variable of some function of the independent variable(s)

arithmetic mean of the sample of n observations

< > e 1 <

regression model’s predicted value of y

n number of data points or periods in the baseline period

p number of parameters or terms in the baseline model, as developed by a mathematical
analysis of the baseline data.

CVSTD (Equation 6.1) is a special case of CVRMSE (Equation 5.2) for mean models with one
parameter. Thus, to comply with Guideline-14P, the toolkit reports:

e CVSTD for mean models
e CVRMSE for 2 - 5 parameter and MVR models
NMBE for all models

IMT reports the following uncertainty statistics:
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e Standard Deviation, STD, for mean models:

STD =[Y.(y, - »)* ((n -1 (6.4)
STD is a measure of the spread of data from the mean.

e Root Mean Square Error, RMSE, for all regression models:

A
RMSE =[) (3, —¥)* /(n— p)I"? (6.5)
RMSE is a measure of the spread of data from the model.

e Coefficient of multiple determination, R2, for all regression models:

> i-3)
1_ n

R’=]- 22— (6.6)
Z(y i~ Vi )?
R2 can be interpreted as the fraction of variation explained by the model.
¢ Adjusted R?, AdjR?, for all MVR models:
AdjR? =1-M(I—R2) 6.7)
(N-p)

In MVR models, the addition of an independent variable will always result in an increase in
the model’s R>. Adjusted R? divides each sum of squares in R? by the associated degrees of
freedom, and is thus a measure of the actual improvement in predictive ability from adding
independent variables.

e Auto-correlation coefficient of residuals, p, for all regression models:

n
Z €,.1€,
_ _1=2
|y

3 ()
=2

Least-squares regression assumes that p is approximately zero. As p gets closer to one, this
assumption becomes suspect and the RMSE may underestimate the true uncertainty of the
model.

6.8)

e Durbin Watson statistic, DW, for all regression models:

ASHRAE Inverse Modeling Toolkit: Final Report 35



n

Z (er —€, )2

DW==2 6.9)

Z":(e, )?
=1

DW is used to test the hypothesis that p=0. Low DW values indicate that p > 0 and high
DW values indicate that p = 0.

e Standard error of each regression coefficient. The standard error of a regression coefficient
indicates the variance with which the coefficient is known. The standard error is defined
such that with a probability of 1-q, the true parameter will fall within the bounds:

Brrue = Pestimatea + t(1-002, n-p) s(B) (6.10)
where t is the t distribution and s(f) is the standard error of each regression coefficient:
s(B) = [MSE (X’X)'1° (6.11)

e The uncertainty of each change-point coefficients as given by the width of the final search
interval.

Together, these measures of uncertainty allow the user to assess the fit of the model to the
data, select appropriate independent variables, and to calculate the overall uncertainty of savings

using the methods described in Guideline 14P.
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7.0 Output Data Files

IMT reports model results by generating an output file, IMT.OUT, and an optional residual
file, IMT.RES, for each model run. Both output files are standard ASCII text files.

The output file IMT.OUT includes the information entered in the operating instructions,
model coefficients and goodness-of-fit parameters. A new copy of IMT.OUT is generated after
each model run.

The residual file IMT.RES includes the data from the data-input file, predicted values of the
dependent variable and model residuals. The residual file is generated only when requested in

the instruction file or through keyboard prompts.

7.1 Path and Filename of Output File IMT.QOUT

The output file IMT.OUT is placed in the same directory as the instruction file.

7.2 Content of Output File
The output file IMT.OUT includes:

e the output file name
e all information entered as operating instructions
e the regression results (defined in Chapter 6):
o N =number of observations used in the model
o R2 = coefficient of multiple determination
o AdjR2 = adjusted coefficient of multiple determination
o RMSE = root mean square error
o CV-RMSE = coefficient of variation of root mean square error
o p = auto-correlation coefficient
o DW = Durbin Watson coefficient
o model coefficients with standard errors
Model coefficients are specified using the convention:
DD Base = base temperature for degree-day calculation (F)

A =y intercept term
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XN = regression coefficient for the Nth independent variable
The value in parenthesis following the model coefficient is the standard error of the coefficient.

A sample output file is shown in Figure 7.1.

hhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhbhhhbhkhhhhkhkhkhhkhhbhkhhhkhhhkhhk

ASHRAE INVERSE MODELING TOOLKIT (1.9)

hkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkAhk kA hkhhddk

Output file name = IMT.Out
khkkhkhkhkkhkhkkkhkhkkhkkhkhkkhkhkhkhkhkhkhkhhkhkhhhhkhhkhhkhhkkhkhhkdhkkhkk

Input data file name VBDDDAT . TXT

Model type = CDD

Grouping column No = 5
Value for grouping = 1
Residual mode = 1

# of X(Indep.) Var = 1

Y1l column number = 4

X1 column number = 9

X2 column number = 0 (unused)
X3 column number = 0 (unused)
X4 column number = 0 (unused)
X5 column number 0 (unused)

X6 column number 0 (unused)
hkhkhkkhkkhkhkhkhkhhkhkkhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhkhkhkhkhhkhkhkhkhkhkhkkikkk

Regression Results

N = 12
______ R2= 0.0
" aagr2 = 0.0
'''' RuSE = 34.458
CcvemwsE = 1003138
''''''' b=  0.493
_______ Di = 0.854 (p0)
op Base = 41
""""" A - 258.0816 (15.3174)
'''''' XL = 0.1993 ( 0.0305)

Figure 7.1 Sample output file.

7.3 Path and Filename of Residual File

The residual file, IMT.RES, is placed in the same directory as the instruction file.
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7.4 Contents of Residual File

The difference between the observed, y, and predicted, y , values of the dependent variable is

called the residual and is defined as:

Residual=y - y (7.1)

7.4.1 Residual File from a Uniform-Timescale Data-Input File

Each record of the residual file for uniform-timescale data-input files includes:

e all fields from the data-input file

e the predicted value of the dependent variable

e the residual
Thus, residual files for uniform-timescale data-input files have the same number of records as the
data-input file and two more fields than the data-input file.

An example residual file from a uniform-timescale data-input file is shown in Figure 7.2.
The first 9 columns are from the data-input file. The dependent variable is in the 6™ column.
The predicted value of the dependent variable is in the 10" column and the residual is in the 11"

column.

114 10 16 1990 3 61.80 27.23 -99 76 45.65 16.15
114 10 17 1990 4 65.20 25.68 -99 79 48.19 17.01
114 10 18 1990 5 44.20 35.21 -99 64 35.50 8.70
114 10 19 1990 &6 42.60 38.66 -99 62 33.81 8.79
114 10 20 1990 7 52.00 32.76 -99 70 40.57 11.43
114 10 21 1990 1 44.80 41.29 -99 63 34.65 10.15
114 10 22 1990 2 36.80 44.20 -99 57 29.57 7.23
114 10 23 1990 3 -99 -99 -99 58 -99 -99
114 10 24 1990 4 41.00 39.66 -99 63 34.65 6.35
114 10 25 1990 5 41.80 37.66 -99 64 35.50 6.30
114 10 26 1990 &6 43.20 37.39 -99 62 33.81 9.39
114 10 27 1890 7 45.20 33.49 -99 65 36.34 8.86
114 10 28 1990 1 46.80 32.49 -99 68 38.88 7.92
114 10 29 1990 2 48.40 34.21 -99 68 38.88 9.52
114 10 30 1990 3 52.80 33.85 -99 67 38.04 14.76
114 10 31 1990 4 55.60 33.31 -99 68 38.88 16.72
114 11 1 1990 5 53.20 32.13 -99 68 38.88 14.32
114 11 2 1990 6 57.20 31.67 -99 70 40.57 16.63
114 11 3 1990 7 61.00 29.86 -99 75 44.80 16.20
114 11 4 1990 1 40.40 43.02 -99 57 29.57 10.83

Figure 7.2. First 20 records from a residual file from a uniform-timescale input data file.
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7.4.2 Residual File from a Nonuniform-Timescale Data-Input File

Nonuniform-timescale data-input files are used with VBDD models. These data files contain
observations of the dependent variable, typically energy use, which are usually measured over
several days, and observations of the independent variable, typically temperature, which are
usually measured on the daily timescale. Because residuals are calculated for each energy
observation, the residual file only includes records corresponding to energy observations in the
input data file. The residual file from a nonuniform-timescale data-input file includes:

e all fields from records in the data input file that have valid' energy values, except the
average daily temperature field. The average daily temperature field is replaced with the
average temperature over energy time-interval. This feature allows IMT to quickly and
accurately calculate the average billing-period temperature for use by 2P, 3P, 4P or 5P
models of monthly energy use.

e the number of degree days in the energy time-interval calculated to the best-fit reference
temperature

o the residual calculated as difference between the predicted and observed values of energy

usc

An example residual file generated from a nonuniform-timescale data-input file is shown in
Figure 7.3. The fields are month, day, year, average temperature during the energy period,
energy use, heating degree days during the energy use period, predicted energy use, and the

difference between observed and predicted energy use.

! Any value except the value of the no-data flag.
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1 4 1979
2 2 1979
3 6 1979
4 4 1979
5 4 1979
6 5 1979
7 5 1979
8 3 1979
9 4 1979
10 3 1979
11 2 1979
12 4 1979

37.
31.
27.
46.
53.
65.
69.
79.
76.
67.
55.
49.

0oL W00 N

2320
2930
2920
1530
1150
630
510
600
520
620
950
1210

148.
287.

0
0
0
0
0
.0
0
0
0
0
0
0

2,307.
2,626.
3,159.
1,484.
1,020.
589.
589.
589.
589.
599.
983.
1,353.

NNRPPRPPRPPUODOWONO

wn

13.
303.
-239.
46.
129.
40.
-79.
10.
-69.
20.
-33.
~-143.

UMD WPRPROVURLPOVUDOWKRO

Figure 7.3. Example residual file from a nonuniform-timescale data-input file.
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8.0 Toolkit Design and Model Algorithms

8.1 Programming [.anguage and Operating System
The toolkit is written in FORTRAN 90 and compiled using Numerical Algorithms Group,

Inc., NAGWare FTN90 Compiler v2.1x. (Salford, 1996) The executable version of the toolkit,
IMT.EXE runs in an MS DOS window of Microsoft Windows operating system. To run
IMT.EXE, the dynamic link library files SALFLIBC.DLL and FTN90.DLL must be in the same
directory as the IMT.EXE. The source code IMT.F90 is an ASCII text file and can be accessed

using any text editor.

8.2 Toolkit Design

IMT is composed of a main module and a series of subroutines. Program flow for the main
module is shown in Figure 8.1. Execution begins by calling the Process_Cmd_Line subroutine,
where user instructions about the type of model and input data file are read and checked for
errors. The Get_NumRowsCols subroutine reads the number of records and fields in the input
data file and uses these values to define the dimensions of an array that will hold the input data.
The Read_Data subroutine reads the input data file into the data array. If the data input file is
contains non-uniform time series data, the data array is restructured and refilled in the
FillDNonUni subroutine. In the Fill_XY subroutine, the subset of data selected by the user for
modeling is filtered and placed in X and Y arrays for regression. The X and Y arrays are then
passed to the appropriate subroutine for the model specified by the user. Model coefficients and
goodness of fit parameters are calculated in the MeanM, MVR, ThreePMVR, FourPMVR,
FivePMVR and VBDD subroutines. If the user specified a residual file, the file is created in the
Create_Resid_File subroutine. The output data file is then created in the Creat_Out_File
subroutine.

More detailed descriptions of program functionality are included in the IMT source code with

comments documenting the functionality of each subroutine and code block.
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Process_Cmd_Line

v

Get_NumRowCols

v

Read_Data

v

Non-uniform? )
Y

N ¢
FillDNonUni
Fill_XY

( Model Type? )
—> MeanM
—p MVR
—> ThreePMVR

P FourPMVR
— FivePMVR
VBDD

v

( Residual File? )
Y

v

N Create_Resid_File

v

Create_Out_File

Figure 8.1 IMT main module program flow.
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8.3 Least-Squares Regression Algorithm

All IMT model types except the mean model use least-squares regression to determine the
model coefficients. Program flow for the IMT least-squares regression algorithm is show in
Figure 8.2. Regression begins by calling the FillIXY subroutine, which removes records with no-
data flags and data that are not in the group specified by the grouping variable, then fills the
arrays X and Y. Next, the Reg subroutine calculates least-squares regression coefficients for
single or multiple independent variables. The Inf subroutine calculates inference statistics that
describe the goodness-of-fit of the model. The Reg and Inf subroutines are described in the

following paragraphs.

Fill_XY

v

Reg

v

Inf

Figure 8.2 Program flow for least squares regression algorithms.
Generalized least-squares regression seeks to estimate model coefficients that minimize the
sum of the squared error between predicted and actual observations. The Reg subroutine uses a
matrix algebra approach to least squares regression (Neter et al., 1989). In this approach, the
matrix of dependent observations, Y , is equal to the product of the matrix of independent
observations, X, and the matrix of estimated regression coefficients, (3, plus an error term, E.
Y=XB+E ®8.1)

Solving for B gives:

B=X"X)"'X"Y (8.2)
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The Reg subroutine solves Equation 8.2 by calling the Trans, Mult and Invert subroutines. The
Trans, Mult and Inverse algorithms are simply computational versions of standard matrix algebra
(Miller, 1981). In the Trans subroutine, the X matrix is transposed by interchanging the rows and
columns. The Mult subroutine performs matrix multiplication in which the elements from one row
of the first matrix are multiplied by the elements from the column of the second matrix, then
summed. The Invert subroutine finds the inverse matrix of the product of X"X.

Before operating on X, however, each X observation is normalized by the mean value of each
independent variable. This normalization process provides computational stability for the Invert
subroutine in cases where the values of the X observations are very large or very small.

Model residuals and inference statistics, such as R2, RMSE, CV-RMSE and the standard

errors of the regression coefficients, are calculated in the Inf subroutine. To calculate the model

residuals, the predicted values of the dependent variable, Y , are computed from:

Y=X8 (8.3)
The matrix of residuals, E, is then computed from:

E=Y-¥ (8.4)

The root mean squared error, RMSE, is computed from:

RMSE = Z(Y—W: Y'Y-87XTY ©5)
(n—p) (n-p)

where n is the number of data observations and p is the number of regression coefficients.

The matrix of the standard errors of the regression coefficients, S, is computed from:

S= RMSE«/(XTX)" (8.6)
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The squared correlation coefficient, R?, is computed from:

_wv\2
iz 2D 8.7)
Y1y

The adjusted R?, is computed from:

(n=DY (¥ -7)’
(n-p-DY.(¥-Y)

Adjusted R> = 1- (8.8)

8.4 Change-Point Model Algorithm
IMT uses the same algorithm for finding all change-point models, including combination

change-point multi-variable regression models (Kissock et al., 1994). The algorithm is
demonstrated for the 3P models in the following description.

IMT can find best-fit three-parameter (3P) change-point models of type:

Ye = B + B2 (Xi-By)* (89)
Yo = Bi+ B2 (Xi-Bs) (8.10)

where 1 is the constant term, 32 is the slope term, and 3 is the change-point,. The ( )+ and ()
notations indicate that the values of the parenthetic term shall be set to zero when they are
negative and positive respectively. Equation 8.9 represents a 3P-Cooling model and Equation
8.10 represents a 3P-Heating model.

The best-fit change-point temperature ;3 is identified using a two-part grid-search method
(Figure 8.3). In the grid-search method, the first step is to identify minimum and maximum
values of X1, and to divide the interval defined by these values into ten increments of width dx.
Next, the minimum value of X1 is selected as the initial value of B3 and the model is regressed

against the data to find B;, B, and RMSE. The value of B3 is then incremented by dx and the
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regression is repeated until B; has traversed the entire range of possible X values. The value of
f3; that results in the lowest RMSE is selected as the initial best-fit change-point. This method is
then repeated using a finer grid of width 2 dx, centered about the initial best-fit value of ;. The
uncertainty with which the final change-point temperature is known is reported as the twice the

width of the finest grid.
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v

Find X1min and X1max

v

Find dx = (X1max-X1min)/10

v

Set B3 = X1min

v

Regress Eqn 7.9, 7.10, 7.11 or 7.12

v

Record RMSEmin and B3best

Y

( B3 < X1min J
3
Set B3 = P3best

v

( Second Pass? )
T N

v

Y X1min = B3 -dx
X1max = 3 + dx

Regress Eqn 7.9, 7.10, 7.11 or 7.12

v

Report Results

Figure 8.3 Flow diagram of algorithm for finding the best-fit change-point model.

IMT can also find combination three-parameter multi-variable regression models (3P-MVR),

with up to four independent variables, of the type:

Y. = Bl + Bg(X1-B3)+ + B4X2 + B5X3 + B6X4 (8.11)
Yh=B1+B2(X1-B3)'+B4X2+B5X3+B6X4 (812)

ASHRAE Inverse Modeling Toolkit: Final Report 48



where X is typically temperature, and X, X3 and X4 are optional independent variables. The
algorithms for finding 3P and 3P-MVR models are identical, the only difference being that the
regression model is of the form of Eqns. 8.11 or 8.12 instead of Eqns. 8.9 or 8.10.

When regressing change-point models, the parenthetic + and — terms are computed with the
use of an indicator variable, I. For example, in Equation 8.9, the regression equation passed to

the Reg subroutine is:

Y=a+by (8.13)
Where ¥, represents ( X; - B3 )t . The numerical value of % is computed as:

x=1 (X;-PB3) whereI=0whenX; <P; and I=1 when X; >33 (8.14)

IMT uses the same algorithm for finding all best-fit change-point models; the only difference is
the form of the regression equation. For example, to find the best-fit 4P model, Equations 4.6 would

be substituted for Eqns. 8.9, 8.10, 8.11 or 8.12 in Figure 8.3.

8.5 Variable-Base Degree-Day Model Algorithm
IMT can find best-fit variable-base degree-day (VBDD) models of the type:

Y =B, + B, HDD(B;) (8.15)

Y =B, + B,CDD(Bs) (8.16)

where P is the constant term, B2 is the slope term, and HDD((33) and CDD(f5) are the number

of heating and cooling degree-days, respectively, in each energy data period calculated with base
temperature 3. The number of heating and cooling degree-days in each energy data period of n

days is:

HDD(y) = Y (A3-T,)' ®.17)
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CDD(Bs) = Y(T, - 53" (8.18)

where T is the average daily temperature.

To calculate VBDD models, IMT calls two subroutines: FillDNonUni and VBDD. The
FillDNonUni subroutine fills and returns the arrays HDD and CDD with the heating and cooling
degree days, respectively, for each energy period according to Eqns. 8.17 and 8.18. HDD(,j)
and CDD(,j) contain the number of degree days in each energy period (i) and for base
temperatures from 41 to 80 F (j). Thus, IMT’s VBDD model requires that daily temperatures are
reported in degrees Fahrenheit.

The best-fit VBDD model is identified using a search method (Figure 8.4) (Kissock, 1999).
In this search method, Eqn. 8.15 or 8.16 is regressed using the HDDs or CDDs in each energy
period for successive base temperatures, 3, from 41 F to 80 F. The base-temperature that
results in the model with the highest R? is recorded. Eqn. 8.15 or 8.16 is regressed once more
using the base-temperature that results in the model with the highest R?, and the results are

reported.
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Fill HDD(B3) and CDD(B3) for
B3 =41 to 80

v

Set 33 =40

v

B3=P3+1

v

Regress Eqn 7.15 or 7.16

v

Record R2max and (33best

N

Set B3 = B3best

v

Regress Eqn 7.15 or 7.16

v

Report Results

Figure 8.4 Flow diagram of algorithm for finding the best-fit variable-base degree-day model.
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9.0 Toolkit Testing

Two classes of testing were performed: bounds testing and accuracy testing. Bounds tests
were designed to identify the types of data sets the toolkit can reliably model. To determine
these bounds, toolkit models were subjected to: 1) datasets with as few as two and as many as
9,000 observations, 2) data sets containing very large and very small numbers, 3) data sets with a
variety of slopes. Section 9.1 describes these tests and summarizes the results.

To test the accuracy and determine the precision of IMT’s regression algorithms, IMT mean,
2P and MVR models were benchmarked against the statistical software SAS. IMT change-point
model results were compared to the data analysis software EModel and to known coefficients
from synthetic data sets. Finally, toolkit HDD and CDD models were compared to PRISM HO
and CO models. Section 9.2 describes these tests and summarizes the results.

Section 9.3 summarizes the robustness testing of the IMT’s change-point multivariable
regression (CP-MVR) and variable-base degree-day, multivariable regression (VBDD-MVR)
models.

A complete description of all test results, including a CD-ROM containing the test data sets,
IMT, EModel, PRISM, and SAS output is available from the Texas A&M University Energy
Systems Laboratory (Sreshthaputra, et al., 2001)

9.1 Bounds Testing
Three sets of ‘Bounds’ testing were performed. The first set of tests was designed to insure

that the toolkit could accurately model data sets containing very small and very large quantities
of data. The results of these ‘Quantity’ tests are summarized in Section 9.1.1. The second set of
tests was designed to insure that the toolkit could accurately model data sets containing very
small and very large numbers. The results of these ‘Magnitude’ tests are summarized in Section
9.1.2. The third set of tests was designed to determine whether the toolkit could model data sets

with a variety of slopes. The results of these ‘Slope’ tests are summarized in Section 9.1.3.
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9.1.1 Summary of Quantity Testing

IMT was designed to open and read data files containing between 1 and 10,000 records (lines)
of data. To test IMT’s ability to open and model large data sets, data sets containing 9,000
records were created and each model was tested to see if it could accurately model these data
sets. The tests showed that in all cases, valid models were generated. As an example of these
tests, the data from the 9,000-record data set are plotted in Figure 9.1, and the results of a 2P

model of this data set are shown in Figure 9.2.

2P_testd.dat (9000 point)

14
12
10
5 8
6
4
2 ]
0 r
0 2 4 6 8 10 12
X

Figure 9.1. 9,000-point data set for 2P model.
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ASHRAE INVERSE MODELING TOOLKIT (1.0)

Output file name = IMT.Out

Input data file name = 2P_test4.dat
Model type = 2P

Grouping columnNo= 0

Value for grouping= 0
Residual mode = 0

# of X(Indep.) Var= 1

Y1 column number= 2

X1 column number = 1

X2 column number = 0 (unused)
X3 column number = 0 (unused)
X4 column number = 0 (unused)
X5 column number = 0 (unused)
X6 column number = 0 (unused)

Regression Results

N= 9000
R2= 1.000
AdjiR2 = 1.000
RMSE = 0.000

CV-RMSE = 0.000%

p= 0876

DW= 0.248 (p>0)

a=  2.0000 ( 0.0000)

X1= 1.0000 ( 0.0000)

Figure 9.2. IMT 2P output for a data set with 9,000 observations.

The minimum number of valid data observations required to generate a valid model depends
on the model type. The minimum number of valid data observations required for Mean, 2P and
MVR models is equal to the number of regression parameters in the model, n, plus one. Thus,
the minimum number of observations required for the Mean model is two, and the minimum
number of observations for the 2P model is three. Similarly, the minimum number of
observations required for a MVR model of the form Y = a + bX1 + cX2 is four. To verify this,
the Mean, 2P and MVR regression models were tested with data sets containing n+1 data
observations. The results showed that in each case, a valid model was generated. As an example
of these tests, data from a three-record data set are plotted in Figure 9.3, with 2P model results in

Figure 9.4.
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2P_test4.dat (3 point)

_

1

b

Figure 9.3 Three-point data set for 2P model.

ASHRAE INVERSE MODELING TOOLKIT (1.0)

Output file name = IMT.Out

Input data file name = 3ptn.txt
Model type = 2P

Grouping columnNo= 0

Value for grouping = **

Residual mode = 0

# of X(Indep.) Var= 1

Y1 column number= 2

X1 column number = 1

X2 column number = 0 (unused)
X3 column number = 0 (unused)
X4 column number = 0 (unused)
X5 column number = 0 (unused)
X6 column number = 0 (unused)

Regression Results

N= 3

R2=1.000

AdiR2= 1.000

RMSE = 0.000

CV-RMSE = 0.000%

p= 0.118

DW= 0.857 (p>0)

a=  2.0000 (0.0000)

X1=  1.0000 ( 0.0000)
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The minimum number of valid data observations required for change-point models depends
on the distribution of the observations. This is because IMT change-point algorithms divide the
data into groups and attempt to fit 2P regression models through the data in these groups. Thus,
it is possible that, under some circumstances, a change-point model can be constructed from as
little as three observations. In most cases, however, the minimum number of observations
required by change-point models is five. In general, multi-variable change-point models require
four observations, plus one additional observation for every additional independent variable.

To verify that each change-point model could model small data sets, the 3P and 4P models
were tested with five observations and the 5P model was tested with seven observations. In each
case, valid models were generated. It should be noted, however, that even though a change-point
regression model can be identified with a very small number of observations, the model’s

predictive ability may be limited.

9.1.2 Summary of Magnitude Testing
IMT models were tested with numbers with absolute values as small as 3.3 x 10”7 and as

large as 1 x 10'®. In all cases, IMT ran correctly and produced output; however, IMT output
fields are FORTRAN F12.4 format. Thus, only values between 9,999,999.9999 and -
999999.9999 can be displayed. If a model produces a numerical result outside of this range, the
IMT will display stars in the output field. In addition, the smallest numerical result IMT can
display is the absolute value of 0.0001. Numerical results smaller than this are displayed as
0.0000. In cases where the numeric results cannot be properly displayed, it is recommended that
the user scale the input data to smaller values. For example, the user may want to report
1,000,000 kWh as 1,000 MWh.

9.1.3 Summary of Slope Testing
IMT models were tested using data sets with slopes ranging from zero to infinite. The data

sets used in slope testing are shown in Figures 9.5 - 9.7.
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2P, 3P, 4P, 5P (Slope A) 2P_test10.dat (Slope B)

2P_test12.dat (Slope D) 3PC_test10.dat (Siope B)

Figure 9.5. Slope testing for 2P and 3P models. IMT failed on Slope A, correctly modeled 2P-
Slope D and 3P-Slope D, and could not correctly identify the vertical slopes in 2P-Slope B, 3P-
Slope B and 3P-Slope C. IMT was able to correctly model data in the shapes shown in Figure
5.1.
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4P_test10.dat (Slope B)

4P_test12.dat (Slope D)

4P_test14.dat (Slope F}

4P_test16.dat (Slope H)

4P_test11.dat (Slope C)

4P_test13.dat (Slope E)

4P_test15.dat (Slope G)

Figure 9.6. Slope testing for 4P models. IMT correctly modeled Slope B and F, could not
correctly identify the vertical slopes in Slope C, D, G or H, and identified the equivalent of a 2P
model through the middle of Slopes E and L.
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5P_test10.dat (Slope B) 5P_test11.dat (Slope C)

17.5 175

Figure 9.7. Slope testing for SP models. IMT correctly modeled Slopes D, E and F, but could
not correctly identify the infinite slopes in Slope B and C. IMT was able to correctly model data
in the shapes shown in Figure 5.1.

In all cases, IMT successfully modeled data sets with non-zero and non-infinite slopes. In
general, however, data sets containing data with zero and infinite slopes cannot be modeled by
IMT. IMT closes without generating a useful error message when attempting to identify 2P or
change-point models from data that form a horizontal line with zero slope. When attempting to
identify a 2P model from data that form a perfectly vertical line (infinite slope), the reported
values for the intercept and slope are unreliable. Similarly, when attempting to identify a
change-point model from data that form a perfectly vertical line (infinite slope), the reported
value for the change point(s) is close to the actual change point(s); however the value reported
for the slope(s) is unreliable. Thus, as in all regression analysis, the user is advised to plot the

data before modeling it to identify data sets that are inappropriate for the regression models.
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9.2 Accuracy Testing

Four sets of accuracy and precision tests were performed. The first set of tests was designed
to test the accuracy and precision of IMT's computational and regression engines by comparing
IMT results with results from the widely used software SAS. The results of these tests are shown
in section 9.2.1. In the second set of tests, IMT 3P, 4P and SP change-point model results were
compared to model results from EModel. The primary purpose of this set of tests test was to
confirm that IMT is finding the same results as the well-tested EModel. The results of these tests
are summarized in section 9.2.2. The third set of accuracy tests was designed to see how closely
IMT change-point models could identify known change-points and slopes. These results are
described in section 9.2.3. In the fourth set of accuracy tests, IMT variable-base heating and
cooling degree-day models were compared to PRISM HO and CO models. These results are

summarized in section 9.2.4.

9.2.1 Comparisons with SAS
To test the accuracy and determine the precision of IMT’s regression algorithms, IMT mean,

2P and MVR models were benchmarked against the statistical software SAS (SAS, 2001).
Results from these tests are shown in Tables 9.8 — 9.10. The results show good agreement
between IMT and SAS to at least 4 significant figures in the regression parameters tested.

The data sets used in the mean, 2P, 3P, 4P and 5P comparison tests with SAS were from the
Texas LoanSTAR database (Haberl et al., 1998). The data sets contain daily energy
consumption, temperature, solar and humidity data. The data set used in the MVR comparison
with SAS was also from the Texas LoanSTAR database and contains hourly energy
consumption, temperature, solar and humidity data from the Texas A&M Zachry Engineering
Center. The data sets used in the HDD and CDD comparisons with PRISM are from a residence
in College Station, Texas and contains measured energy consumption and average daily

temperature data.
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Table 9.8. Mean model comparisons between IMT and SAS.

IMT SAS IMT SAS
|Data Set 711 711 963 963
IN 356 356 315 315
Mean 25409.281 25409.2809 1118.391 1118.39048
Std dev 2391.109 2391.1088 452.392 452.392131
Table 9.9. 2P model comparisons between IMT and SAS.
IMT SAS IMT SAS IMT SAS
[Data Set 226 226 201 201 952 952
IN 364 364 309 309 264 264
|R2 0.834 0.8338 0.691 0.6906 0.728 0.728
IRMSE 3082.120 3082.12038 5704.015 5704.01365 2065.280 2065.27929
A -10227.1260 -10229 68439.5078 68439 2338.5520 2338.41956
Std (a) 791.0164 791.03445 1764.5883 1764.58622 595.1532 595.14173
X1 470.2920 470.31234 -649.0869 -649.08587 212.1381 212.13968
Std (X1) 11.0378 11.03807 24.7934 24.79339 8.0110 8.01107
IMT SAS IMT SAS
|Data Set 207-2 207-2 207-3 207-3
N 361 361 309 309
IR2 0.861 0.8607 0.691 0.6906
IrmsE 577.486 577.48537 1932.921 1932.92099
A -5041.9448 -5041.74522 23192.1055 23192
Std (a) 154.5213 154.51887 597.9664 597.96592
X1 105.2378 105.23485 -219.9567 -219.95630
Std (X1) 2.2346 2.23459 8.4018 8.40175
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Table 9.10. MVR model comparison between IMT and SAS.

IMT SAS IMT SAS IMT SAS
[Data Set| MVR_1.dat | MVR 1.dat | MVR 2dat | MVR 2.dat | MVR 3.dat | MVR_3.dat
N 8423 8423 8423 8423 8423 8423
iR2 0.438 0.437626 0.873 0.873095 0.582 0.582490
ADJ R2 0.438 0.437425 0.873 0.873019 0.582 0.582242
A 473.3068 | 473.228982 | -2354.9236 | -2354.82060 | 1428.1320 | 1428.56701
Std (a) 6.8794 6.8800665 35.4836 35.482222 19.8274 | 19.8343238
X1 4.6356 4.637366 28.4639 28.47099 -12.9370 | -12.94613
Std(X1) | 0.1385 0.1384824 0.4889 0.488972 0.3020 0.3021457
X2 -1992.5603 | -1995.942269 | 72907.6406 | 72901.36995 |-16776.8887 | -16788.49610
Istd(x2) | 333.7043 | 3337266148 | 1024.9117 | 1024.973306 | 723.7756 | 724.0103164
X3 0.1754 0.175387 -0.0178 -0.01776 0.1297 0.12969
Std(x3) |  0.0045 0.0045264 0.0149 0.014853 0.0084 0.0084356
X4 1.8636 1.86297 -0.2883 -0.28844
Std (X4) 0.0327 0.032671 0.0219 0.0219256
X5 0.1787 0.17879 0.0591 0.05928
Std (X5) 0.0188 0.018829 0.0062 0.0062429

9.2.2 Comparison of Change-Point Models Parameters with EModel

The 3P, 4P and 5P change-point model results were compared to model results from EModel

(Tables 9.8-9.10). EModel was developed by the Texas A&M Energy Systems Laboratory and

has been used extensively in the Texas LoanSTAR program. Because IMT and EModel use

many of the same algorithms, good agreement between the results is expected. The primary

purposes of this test were: 1) to confirm that IMT is finding the same results as the well-tested

EModel, and 2) to understand how much the results would vary given that EModel is compiled
and executed in Visual Basic and IMT is compiled and executed in FORTRAN.

In version IMT Beta 1.6, the version used for this round of testing, the output field of the

standard errors of the coefficients was FORTRAN F7.4 format; hence standard errors with

values greater than 99.9999 were not printed. In IMT release version 1.0, standard errors use

FORTRAN F12.4 format, and standard errors between 9,999,999.999 and -9,999,999.999 can be

printed.
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Table 9.8. 3PC and 3PH model comparisons between IMT and EModel.

IMT EModel IMT EModel IMT EModel IMT EModel
[Data Set 706 706 208 208 707 707 208-h 208-h
IModeI 3PC 3PC 3PC 3PC 3PH 3PH 3PH 3PH
IN 358 358 358 358 365 365 357 357
|R2 0.339 0.34 0.855 0.854 0.934 0.93 0.951 0.95
IRMSE 870.641 870.64 4123.559 4123.56] 37331.309 37331.31f 1821.642 1821.64
Ycp 2417.5938 | 2417.5941 |11145.4775|11145.4541] 10248.5869 [10248.4245}6001.7227{6001.7111
Std (Yep) | 55.9475 55.9475 * 332.5046 ** 2671.7098 - 134.6210
LS 0.0000 0.0000 0.0000 0.0000 |]-8369.0127 |-8369.0158]-639.47531-639.4761
Std (LS) 0.0000 0.0000 0.0000 0.0000 ** 116.5216 | 7.6691 7.6692
IRS 87.6157 87.6158 | 945.5939 | 945.5957 0.0000 0.0000 0.0000 0.0000
Std (RS) 6.4898 6.4898 20.6595 20.6596 0.0000 0.0000 0.0000 0.0000
Xcp 56.76 56.76 59.7600 59.7600 61.6800 61.68 79.92 79.92
Std (Xcp) 1.6400 - 1.2600 - 1.6400 - 1.26000 -
Table 9.9. 4P model comparisons between IMT and EModel.
IMT EModel IMT EModel IMT EModel
|Data Set 706 706 975 975 201 201
[Model 4P 4P 4P 4P 4P 4P
IN 358 358 279 279 344 344
|R2 0.873 0.87 0.816 0.82 0.754 0.75
IrmsE 870.641 3861.0432 263.748 263.7481 8051.226 8051.2246
Ycp 17613.2813 17613.7419 1529.8441 1529.8660 27831.1035 27831.8523
Std (Ycp) o 1678.8280 ** 193.4880 - 4807.0528
ILS 343.6089 343.6469 16.8140 16.8142 562.6268 562.7605
Std (LS) 28.2882 28.2900 3.0282 3.0284 86.9673 86.9757
IRS 1081.8597 1081.8386 73.5243 73.5246 1278.6936 1278.6456
Std (RS) 61.3571 61.3601 5.7500 5.7504 bl 154.6463
Xcp 68.5800 68.5800 69.1200 69.12 61.6000 61.6000
Std (Xcp) 1.2600 - 1.1600 - 1.1000 -
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Table 9.10. 5P model comparisons between IMT and a development version of EModel which
includes a SP model.

IMT EModel IMT EModel
IData Set 710 710 . 210 210
IModel 5P 5P 5P 5P
IN 348 348 362 362
IR2 0.274 0.27 0.699 0.70
RMSE 2943.540 |2943.5408| 11259.003 | 11259.004
Xcp1 58.7007 | 58.7007 | 62.0000 62.0000
lstd (xcp1)]  3.0340 | 3.0370 2.3310 2.3333
Xcp2 61.7438 | 61.7438 | 69.0000 69.0000
kstd (Xcp2)|  3.034 3.0370 2.3310 2.3333
Yep 11665.7363|11665.7289}100499.6250] 100499.7043
kstd (Ycp) * 289.2256 - 966.8825
ILs -120.6786 | -120.6790 | -635.1901 | -635.1859
bstd(Ls) | 11.7461 | 11.7462 - 102.6701
Irs 47.0371 | 47.0376 | 2534.415 | 2543.4064
lstd (RS) | 36.6051 | 36.6051 | 90.1323 90.1324

9.2.3 Comparison of Change-point Model Parameters with Known Parameters
In the this set of tests, IMT change-point models were derived from synthetic data sets with

known slopes and change-points (Tables 9.11 — 9.13). Graphs of the synthetic data sets are
shown in Figures 9.5 - 9.7. In all cases, the change-point model parameters were close to the
known values, demonstrating IMT’s ability to accurately model these data sets. Precise
agreement is, of course, not expected because of the search and regression methods used by the
toolkit.

This set of tests also points out important information about how to interpret the standard
errors of the IMT change-point and slope coefficients. All IMT change-point algorithms use a
two-part grid-search method, in which regression models are identified for successive change-
points, until the model (and change point) that produced the lowest RMSE is identified. The
standard error of the X change point(s) reported by IMT is the one-half of the width of the finest
search interval. Thus, it is expected that the true value of the X change point(s) should be within
the region defined by the X change point(s) plus or minus the standard error of the X change
point(s). The testing reported here confirmed this expectation.

The standard errors of the other coefficients are computed using standard least-square

regression methods, and can be interpreted as indicating that with 68% confidence, the true value
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of the coefficient is within one standard error of the reported value. However, these methods
implicitly assume that the change point(s) is completely known. Thus, the standard errors on the
slope and Y change point coefficients reported by IMT reflect the uncertainty of the coefficient
due to the scatter of data around the regression line, but underestimate the true uncertainty with
which the coefficient is known since the true value of the change-point is not exactly known.

This result is demonstrated in following tests. Consider, for example, the test results from
Table 9.11 for the 3PC model. IMT reports the right slope as —1.0244 + 0.0028, even though the
true slope of —1 is outside of this interval. It is possible that the true slope may be outside of this
interval even if the change-point were precisely known. However, in most cases, the reason that
the standard errors of the slope and Ycp coefficients underestimate the true uncertainties is

because of the uncertainty of the X change point(s).

Table 9.11. 3PC and 3PH model comparison between IMT and synthetic data sets with known
slopes and change points. Data sets are identified by slope (S) and test (T). Thus, Data Set: S-D,
T-12 indicates slope D, test 12 for the indicated model. A graph of Data Set: S-D, T-12 is shown
in Figure 9.5.

IMT Known IMT Known
IData Set [s-D, T-12]s-D, T-12|S-D, T-12|S-D, T-12
[Model 3PC 3PC 3PH 3PH
IN 50 50 50 50
IR2 1.000 1.000
IRMSE 0.153 0.153
Ycp 249103 | 25 |249103]| 25
Istd (Yep) | .0270 .0270
ILs 0.0000 0 -1.0244 0
Istd (LS) | 0.0000 0.0028
Irs -1.0244 -1 0.0000 -1
Istd (RS) | 0.0028 0.0000
Xcp 26.7800 | 25 24.52 25
std (Xcp) | 0.9800 0.9800
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Table 9.12. 4P model comparison between IMT and synthetic data sets with known slopes and
change points. Data sets are identified by slope (S) and test (T). Thus, Data Set: S-B, T-10
indicates slope B, test 10 for the indicated model. Graphs of these data sets are shown in Figure
9.6.

IMT Known IMT Known
[Data Set |s-B, T-10 [S-B, T-10 |S-F, T-14 |S-F, T-14
[Model 4P 4P 4P 4P
IN 50 50 50 50
[R2 1.000 1.000
[RMSE 0.124 0.124
Ycp 247702 | 25 | o247498| 25
kstd (vcp) | 0.9989 0.0862
ILs 1.0156 1 -0.0156 0
lstd (LS) | 0.0028 0.0028
IrRs 0.0133 0 0.9867 1
kstd (RS) | 0.0056 0.0056
Xcp 245200 | 25 |245200] 25
kstd (Xcp) | 0.9800 - 0.9800 -

Table 9.13. SP model comparison between IMT and synthetic data sets with known slopes and
change points. Data sets are identified by slope (S) and test (T). Thus, Data Set: S-D, T-12
indicates slope D, test 12 for the indicated model. Graphs of these data sets are shown in Figure
9.7.

IMT Known IMT Known IMT Known
IData Set Is-D, T-121S-D, T-12|S-E, T-13 |S-E, T-13 IS-F, T-14 |S-F, T-14
[Model 5P 5P 5P 5P 5P 5P
IN 50 50 50 50 45 45
IR2 0.998 1.000 0.999
IRMSE 0.216 0.147 184
Xcp1 15.667 15 |156667] 15 |156667| 16
kstd (Xcp1)| 1.6280 1.6280 1.6280
Xcp2 303333 | 31 |303333] 30 [303333] 31
td (Xcp2)] 1.6280 1.6280 1.6280
Yep 15.2201 15 |151639] 15 |151626| 15
Istd (vcp) | 0.0457 0.0368 0.0390
lLs 0.9558 1 0.9502 1 -1.0169 -1
lstd (LS) | 0.0078 0.0063 0.0066
IRs -0.9582 -1 1.0159 1 -0.9501 -1
lstd (RS) | 0.0066 0.0053 0.0066
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9.2.4 Comparisons of HDD and CDD Models with PRISM
IMT finds the best-fit models between energy use and variable-base heating or cooling degree

days. Perhaps the most widely used method of correlating building energy use to variable-base
degree days is the PRISM method. In this section, we compare IMT HDD and CDD model
results to PRISM HO and CO model results.

Model parameters and coefficients for IMT and PRISM HDD and CDD runs are shown in
Table 9.14. The energy use data are from a residence in College Station, Texas. As can be seen,
all parameters and coefficients are in general agreement, considering the different algorithms
used by the two methods; however, some comments are called for. First, IMT finds the base
temperature to the nearest whole degree, whereas PRISM finds it to at least one decimal place.
In addition, PRISM results are reported with a maximum precision of 1 decimal place, thus it is
difficult to exactly compare the slopes in the HDD/HO models in Table 9.14. Finally, PRISM
units for base level energy use (A in IMT, alpha in PRISM) are ‘energy units per day’, whereas
IMT units are ‘energy units per period’. Thus, to compare IMT and PRISM output, base-level
energy use in IMT, A, is divided by the average days per billing period to generate a “corrected”
base level energy use A,c. The values for IMT Ac and std(Ac) should and do compare to the
PRISM’s alpha and std(alpha).

Table 9.14. Model parameters and coefficients for IMT and PRISM runs.

[HDD/HO mT | PRISM | IMT [ PRISM
IModel HDD HO CDD [o%e)
[Data Set 1308ngk | 1308ngk | 1308elk | 1308elk
In 12 12 12 12
IR2 0969 | 0977 | 0.897 | 0.901
IpD Base 73 71.8 70 70.0
X1 0.1368 0.1 1.9555 1.9
Std(X1) 0.0077 0.0 0.2092 0.6
A 18.2518 | 0.7 |476.1488] 16.0
Std(A) 2.7116 01 |53.0032] 2.1
A.C 0.5951 07 |156114| 16.0
Std(A,c) 0.0884 0.1 1.7378 2.1
days/period 30.67 30.50
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Over twenty other comparisons between IMT and PRISM heating and cooling models were

also run, with good agreement between IMT and PRISM on each run. These results are

summarized in Tables 9.15 and 9.16 below.

Table 9.15. Summary of IMT HDD and PRISM HO comparisons.

Test No. Data Type|Test| .INS file Data File |IMT1.6(PRISM
1 VBDD_HO| GAS |HDD{VBDD_HO0.ins|VBDD_H0.dat| OK | agree
2 |VBDD_H1| GAS |HDD|VBDD_H1.ins|VBDD_H1.datl OK | agree
3 |vBDD_H2| GAS |HDD|vBDD_H2.ins|VBDD_H2.datl OK | agree
4 |vBDD_H3| GAS |HDD|vBDD_H3.ins|VBDD_H3.datf OK | agree
5 |vBDD_H4| GAS [HDD|VBDD_H4.ins|VBDD_H4.dat| OK | agree
6 |vBDD_H5| GAS |HDD|VBDD_H5.ins|VBDD_H5.dat| OK [ close
7 VBDD_H6| GAS |HDD|VBDD_H6.ins|VBDD_H6.datl OK | agree

Table 9.16. Summary of IMT CDD and PRISM CO comparisons.

Test No. Data Type|Test| .INS file Data File [IMT1.6|PRISM
1 VBDD_CO| WBE |CDD|VBDD_CO.ins | VBDD_CO.dat| OK | agree
2 VBDD_C1| WBE |CDD|VBDD_Ci.ins | VBDD_C1.dat| OK | agree
3 VBDD_C2| WBE |CDD|VBDD_C2.ins | VBDD_C2.dat| OK | agree
4 VBDD_C3| WBE |CDD{VBDD_C3.ins | VBDD_C3.dat; OK | agree
5 VBDD_C4| WBE [CDD|VBDD_C4.ins | VBDD_C4.dat| OK | agree
6 VBDD_C5( WBE |CDD|VBDD_C5.ins | VBDD_C5.dat| OK | agree
7 VBDD_C6| WBE |CDD|VBDD_Cé6.ins | VBDD_C6.dat| OK | agree
8 VvBDD_C7|{ WBE |CDD|VBDD_C7.ins | VBDD_C7.dat| OK | agree
9 vBDD_C8| WBE |CDD|VBDD_C8.ins | VBDD_C8.dat| OK | agree
10 |vBDD_C9| WBE |CDD|VBDD_C9.ins|VBDD_C9.dat| OK | agree
11 |VBDD_C10| WBE |CDD|VBDD_C10.ins|VBDD_C10.dat| OK | agree
12 |vBDD_C11| WBE |CDD|VBDD_C11.ins|VBDD_C11.dat| OK | agree
13 |vBDD_C12| WBE |CDD|VBDD_C12.ins{VBDD_C12.dat| OK | agree
14 |VvBDD_C13] WBE |CDD|vBDD_C13.ins{VBDD_C13.dat| OK | agree
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9.3 Testing of CP-MVR Models
IMT’s change-point multi-variable regression (CP-MVR) models were tested for robustness,

to identify the maximum number of independent variables that can be used with each model, and
for their ability to model synthetic data sets with multiple independent variables. Robustness
testing is described in section 9.3.1. Testing to determine the maximum number of independent
variables is described in section 9.3.2. Testing with synthetic data sets with multiple

independent variables is described in section 9.3.3.

9.3.1 Robustness Testing of CP-MVR Models
For the robustness testing, the 3PC-MVR, 3PH-MVR, 4P-MVR and 5SP-MVR models were

run using a data set of hourly energy consumption and weather data from the Texas A&M
Zachry Engineering Center. The data set contains 8,423 records. Eleven 3P-MVR, eleven 4P-
MVR and five SP-MVR models were generated using different combinations of the independent

variables. In all cases, the CP-MVR models generated error-free results.

9.3.2 Maximum Number of Independent Variables Testing of CP-MVR Models

The maximum number of independent variables allowed by each CP-MVR model is equal to

the seven minus the number of change-point regression parameters.

For example, 3P-MVR models can be handle up to four independent variables; a 3P model is fit
to the first independent variable and linear regression coefficients are fit to the three additional
independent variables. Testing confirmed that the 3P-MVR models can handle four independent
variables, the 4P-MVR model can handle three independent variables, and the SP-MVR model

can handle two independent variables.

9.3.3 Synthetic Data Testing of CP-MVR Models

Building energy use frequently varies non-linearly with outside air temperature and is
affected by other variables such as occupancy and internal loads. IMT’s CP-MVR models were
designed to handle these cases. In this section, the 3P-MVR, 4P-MVR and 5SP-MVR models

were tested to determine if the CP-M VR models could indeed produce a better fit than either the
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CP or MVR models alone. The testing was performed using synthetic data sets to determine
how accurately the CP-MVR models could identify the true model parameters.

The first test compares 2P and MVR models to provide a point of reference for comparisons
between CP, MVR and CP-MVR models. To test the 2P and MVR models, a data set was
synthesized to represent a building in which chilled water energy use, CW, varies linearly with
outside air temperature, T, and whole building electricity use, WBE. The specific relation used

to synthesize the data was:

CW=-25+1.0T + 0.003 WBE 9.1

Outside air temperature T was varied from 40 to 95. WBE was set to 7,000 for five observations
then 3,000 for two observations, corresponding to a weekday/weekend pattern of electricity use.
A plot of the synthetic chilled water energy use CW versus outside air temperature T is shown in

Figure 9.8. The weekday/weekend pattern of chilled water use is clearly evident.
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Figure 9.8 Synthesized CW versus T in a 2P-MVR pattern.
Next, a 2P model using only T, and a MVR model using both T and WBE as independent

variables were run. The results demonstrate that the MVR model provided a superior fit to the

data and was able to approximate the true model coefficients with good accuracy (Table 9.17).
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Table 9.17. Comparison of 2P and MVR models using synthetic data.

Synthetic Coefficients 2P Model MVR Model
R2 0.894 1.000
CV-RMSE % . 9.146 0.000
Constant -25 -5.2137 (3.1527) -24.9995 (0.0001)
T 1.0 0.9672 (.0454) 1.0000 (0.0000)
WBE 0.003 0.003 (0.0000)

To test the 3P-MVR models, data sets were synthesized to represent buildings in which
whole-building electricity use, WBE, varies in 3P patterns with outside air temperature, T, and,
in addition, also varies linearly with some other measure of occupancy, OCC. The specific

relations used to synthesize the data were:

WBE = 50 + 1.0 (T-67)* + 0.003 OCC 9.2)
WBE =50 + -1.0 (T-67) + 0.003 OCC 9.3)

As before, outside air temperature T was varied from 40 to 95. OCC was set to 7,000 for five
observations then 3,000 for two observations, corresponding to a weekday/weekend pattern of
occupancy. The first data set (as generated by Eqn. 9.2) could represent a building with electric
air conditioning and non-electric heating, and the second data set (as generated by Eqn. 9.3)
could represent a building with electric heating and no air conditioning. Plots of the synthetic
whole building electricity use WBE versus outside air temperature T are shown in Figure 9.9.

The weekday/weekend patterns of energy use are clearly evident.
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Figure 9.9. WBE versus T data in a 3PC-MVR pattern (upper figure) and a 3PH-MVR pattern
(lower figure).

Next a 3P model using temperature, a MVR model using temperature and occupancy, and a
combination 3P-MVR model using temperature and occupancy as independent variables were
run on each data set. The results show that neither the 3P or MVR models provided as good as
fit as the combination 3P-MVR models (Tables 9.18 and 9.19). In addition, the 3P-MVR models

were able to approximate the true model coefficients with good accuracy.
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Table 9.18. Comparison of 3PC, MVR and 3PC-MVR models using synthetic data.

Synthetic 3PC MVR 3PC-MVR
Coefficients
R2 0.725 0.846 1.000
CV-RMSE (%) 7.352 5.551 0.216
Ycp 50 67.8155(0.9411) | 22.5180 (3.1344) | 50.0435 (0.0767)
RS 1.0 0.9266 (0.0777) 5.135 (0.0345) 1.0216 (0.0024)
Xcp 67 66.4000 (1.1000) 67.5000 (1.1000)
OoCC 0.003 0.0030 (0.0003) | 0.0030 (0.0000)

Table 9.19. Comparison of 3PH, MVR and 3PH-MVR models using synthetic data.

Synthetic 3PC MVR 3PC-MVR
Coefficients
R2 0.749 0.859 1.000
CV-RMSE (%) 7.397 5.589 0.217
Ycp 50 67.3199 (0.9186) | 89.5176 (3.1344) | 49.8460 (0.0740)
LS -1.0 -1.0837 (0.0854) | -0.4865 (0.0345) | -0.9784 (0.0024)
Xcp 67 66.4000 (1.1000) 67.5000 (1.1000)
OCC 0.003 0.0030 (0.0003) | 0.0030 (0.0000)

To test the 4P-M VR model, a data set was synthesized to represent a building in which chilled

water energy use, CW, varies in a 4P pattern with outside air temperature T, and linearly with

whole building electricity use WBE. The relation used to synthesize the data was:

CW =50 + 0.5 (T-67) + 1.5 (T-67)"+ 0.003 WBE

9.4)

Outside air temperature T was varied from 40 to 95. WBE was set to 7,000 for five observations

then 3,000 for two observations, corresponding to a weekday/weekend pattern of electricity use.

A plot of the synthetic chilled water energy use CW versus outside air temperature T is shown in

Figure 9.10. The weekday/weekend pattern of CW use is clearly evident.
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Next a single 4P model using only T, a single MVR model using both T and WBE, and a
combination 4P-MVR model using both T and WBE as independent variables were run. The
results demonstrate that the 4P-MVR model provided a much superior fit to the data than either

the 4P model or MVR model run separately, and was able to approximate the true model
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coefficients with good accuracy (Table 9.20).

Figure 9.10 Synthesized CW versus T data in a 4P-MVR pattern.

Table 9.20. Comparison of 4P, MVR and 4P-MVR models using synthetic data.

Synthetic 4P MVR 4P-MVR
Coefficients
R2 .902 0.945 1.000
CV-RMSE (%) 7.387 5.533 0.170
Ycp 50 66.9314 (9.3845) | -10.9819 (3.1344) | 50.4310 (0.6055)
LS 0.5 0.4448 (0.1075) 1.0135 (0.0345) | 0.5135 (0.0024)
RS 1.5 1.4568 (0.2128) 0.0030 (0.0003) | 1.5135 (0.0048)
Xcp 67 66.4000 (1.1000) 67.5000 (1.1000)
WBE 0.003 0.0030 (0.0000)

To test the SP-MVR model, a data set was synthesized to represent a building in which Whole

Building Electricity Use, WBE, varies in a 5P pattern with outside air temperature, T, and
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linearly with some other measure of occupancy, OCC. The specific relation used to synthesize

the data was:

WBE = 50 + -0.5 (T-60) + 1.5 (T-75)"+ 0.003 OCC 9.5)

Outside air temperature T was varied from 40 to 95. OCC was set to 7000 for five observations
then 3,000 for two observations, corresponding to a weekday/weekend pattern of electricity use.
A plot of the Whole Building Electricity Use, WBE, versus outside air temperature, T, is shown
in Figure 9.11. The weekday/weekend pattern of Whole Building Electricity Use, WBE, is

clearly evident.
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Figure 9.11 Synthesized WBE versus T in a SP-MVR pattern.

Next a single SP model using only T, a single MVR model using both T and WBE, and a
combination SP-MVR model using both T and WBE as independent variables were run. The
results demonstrate that the SP-MVR model provided a much superior fit to the data than either
the 4P model or MVR model run separately, and was able to approximate the true model

coefficients with good accuracy (Table 9.21).
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Table 9.21. Comparison of 5P, MVR and 5P-MVR models using synthetic data.

Synthetic 5PC MVR 5PC-MVR
Coefficients
R2 0.696 0.497 1.000
CV-RMSE (%) 7.355 7.1027 0.200
Ycp 50 67.4120 (1.1114) | 37.4066 (5.3599) | 49.8923 (0.0720)
LS -0.5 -0.5577 (0.1283) | 0.3031 (0.5900) | -0.4984 (0.0035)
RS 1.5 1.4123 (0.1283) 0.0029 (0.0005) 1.4716 (0.0035)
Xcpl 60 60.3683 (2.0350) 60.3683 (2.0350)
Xcp2 75 74.6317 (2.0350) 74.6317 (2.0350)
WBE 0.003 0.0030 (0.0000)

9.4 Testing of VBDD-MVR Models

IMT’s ability to generate variable-base degree-day, multi-variable regression (VBDD-MVR)
models was also tested. First, heating degree-day (HDD) and cooling degree-day (CDD) models
of building energy use were generated. Next, the residual files from the HDD and CDD runs
were used as input to the MVR model to generate HDD-MVR and CDD-MVR models. Five
CDD-MVR and five HDD-MVR tests demonstrated the robustness of the method.

IMT’s ability to generate variable-base degree-day, multi-variable regression (VBDD-MVR)
models was also tested. First, heating degree-day (HDD) and cooling degree-day (CDD) models
of building energy use were generated. Next, the residual files from the HDD and CDD runs
were used as input to the MVR model to generate HDD-MVR and CDD-MVR models. Five
CDD-MVR and five HDD-MVR tests demonstrated the robustness of this method.
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10.0 Example of Model Development

Building energy use is frequently influenced by the weather and other variables. In this
chapter, we describe the development of 3PC-MVR and VBDD-MVR regression models of
grocery store electricity consumption as a function of outdoor air temperature and a sales

indicator.

10.1 Development of a 3PC-MVR Model
One year of monthly electricity use, outdoor air temperature and sales-indicator data for a

grocery store in the Cleveland, Ohio region are shown in Figure 10.1. The data fields are:

1) Month
2) Day
3) Year

4) Electricity Use (kWh/month)
5) Average Outdoor Air Temperature (F)
6) Sales indicator

1 1 2001 10335 20.7 1100
2 1 2001 9137 26.7 900
3 1 2001 7634 31.8 700
4 1 2001 9760 33.8 900
5 1 2001 9143 52.0 800
6 1 2001 114438 59.4 950
7 1 2001 10560 68.1 900
8 1 2001 9422 71.0 850
9 1 2001 12096 72.0 950
10 1 2001 10947 61.1 900
11 1 2001 8144 52.8 750
12 1 2001 9074 47.1 950

Figure 10.1. One year of monthly electricity use, outdoor air temperature and sales-indicator
data for a grocery store in the Cleveland, Ohio region.

The grocery store is cooled during summer months by electric air conditioning units. No
cooling is required during the winter and no electricity is used for heating. Thus, a 3PC model
of electricity use versus outdoor air temperature appears to be warranted. A graph of
electricity use versus outdoor air temperature, with a 3PC model, is shown in Figure 10.2.
IMT output from a 3PC model is shown in Figure 10.3. As expected, the electricity use

increases in the summer and the 3PC model captures that effect; however there is still
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significant scatter in the data, including high electricity use during the coldest month of the

year December.
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Figure 10.2. Monthly electricity use versus outdoor air temperature, with a 3PC model, for a
grocery store in the Cleveland, Ohio region.
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ASHRAE INVERSE MODELING TOOLKIT (1.9)

Output file name = IMT.Out

Iﬂput data file name = xx.dat

Model type = 3P Cooling
Grouping column No= 0
Value for grouping = 1
Residual mode = 0

# of X(Indep.) Var= 1

Y1 column number= 4

X1 column number = 5

X2 column number = 0 (unused)
X3 column number = 0 (unused)
X4 column number = 0 (unused)
X5 column number = 0 (unused)
X6 column number = 0 (unused)

Regression Results

N= 12
R2= 0372
AdjR2= 0372

RMSE = 1096.1925

CV-RMSE= 11.176%

p= -0.244

DW= 2.326 (p>0)

Nl= 5

N2= 7

Yep= 9192.1963 ( 405.1517)

LS= 0.0000( 0.0000)

RS= 972335 ( 39.9271)

Xcp= 51.4800( 1.0260)

Figure 10.3. IMT output from a 3PC model of grocery store electricity use versus outdoor air

temperature.

According to store management, sales increase during the holiday season in December,
during the Easter holiday and in the summer. The sales volume appears to have a significant

effect on store electricity use. A 3PC-MVR model that includes a sales indicator has a much

improved fit (R* = 0.78) compared to the simple 3PC model (R* = 0.37) (Figure 10.4).
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ASHRAE INVERSE MODELING TOOLKIT (1.9)

Output file name = IMT.Out

Input data file name = xx.dat

Model type = 3P Cooling MVR
Grouping column No= 0

Value for grouping= 1

Residual mode = 0
# of X(Indep.) Var= 2
Y1 column number= 4

X1 column number= 5
X2 column number= 6
X3 column number = 0 (unused)
X4 column number = 0 (unused)
XS column number = 0 (unused)
X6 column number = 0 (unused)

Regression Results

N= 12
R2=0.783
AdjR2= 0.783

RMSE = 679.4354

CV-RMSE= 6.927%

p= 0072

DW= 1.707 (p>0)

Nl= 4

N2= 8

Yep= 1835.2264 ( 1749.9713)

LS= 0.0000( 0.0000)

RS= 73.1916( 20.1322)

Xcp= 46.3500( 1.0260)

X2= 82093( 1.9590)

Figure 10.4. IMT output from a 3PC-MVR model of grocery store electricity use versus
outdoor air temperature and a sales indicator.

10.2 Development of a VBDD-MVR Model
Similar modeling results can be achieved using IMT’s VBDD and MVR models. To do

so, the electricity use, outdoor air temperature and sales indicator data are reformatted into a

non-uniform timescale data file (Figure 10.5). The data fields are:

1) Month
2) Day
3) Year
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4) Average Daily Outdoor Air Temperature (F)
5) Electricity Use (kWh/month)
6) Sales indicator

—

2000 193 -9 99
1995 40.3 10335 1100
1995 212 -99 99
1995 194 -99 -99
1995 131 -99 -99
1995 7.7 99 99
1995 21 -99 -99
1995 294 -99 -99
1995 23 -99 -99
1995 218 99 -9
10 1995 195 -99 -99
11 1995 314 -99 -99
12 1995 49.7 99 99
13 1995 581 -99 -99
14 1995 551 -99 -99
15 1995 499 -99 -99
1995 322 -99 -99
17 1995 292 -99 -99
18 1995 333 99 -99
19 1995 414 -99 -99
20 1995 397 -99 -99
21 1995 297 99 -99
22 1995 215 -99 -99
23 1995 193 -99 -99
24 1995 234 -99 -99
25 1995 204 -9 -99
26 1995 221 99 99
27 1995 18 -99 -99
28 1995 265 -9 -99
29 1995 206 -99 -99
30 1995 242 -99 -99
31 1995 207 -99 -99
1 1995 304 9137 900
2 1995 31.1 -99 -99

V1AWV HEWN—W

NN—-—-—-—-—-—-—-'—-—'-—'-—-'—-—-'—-'—"—-'—-—"—-—-—-—-—-—-—"—-'—-'—-—'-—'-—".:;
—
[}

Figure 10.5. Part of a non-uniform timescale data file of monthly electricity use, daily
outdoor air temperature and sales-indicator data for a grocery store in the Cleveland, Ohio
region.

IMT output from a CDD model of these data is shown in Figure 10.6. The CDD model has
a fit (R? = 0.34) and model coefficients similar to the 3PC model in Figure 10.3.
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ASHRAE INVERSE MODELING TOOLKIT (1.9)

Output file name = IMT.Out

Input data file name = xxnu.dat
Model type = CDD
Grouping column No= 0
Value for grouping = 1

Residual mode = 1
# of X(Indep.) Var= 1
Yl column number= 5

X1 column number= 4

X2 column number = 0 (unused)
X3 column number = 0 (unused)
X4 column number = 0 (unused)
X5 column number = 0 (unused)
X6 column number = O (unused)

Regression Results
N= 12
R2= 0340
AdjR2=0.340

RMSE = 1124.2397

CV-RMSE= 11.462%

p= 0274

DW= 2.348 (p>0)

DD Base = 43

A = 9058.4063 ( 463.2720)

Xl= 20580( 0.9072)

Figure 10.6. IMT output from a CDD model of grocery store electricity use versus outdoor
air temperature.

To incorporate the sales indicator into this model, the residual file from the CDD model
(Figure 10.7) is used as input to the IMT’s MVR model. The data fields of the residual file
from the CDD model are:

1) Month
2) Day
3) Year

4) Average Daily Outdoor Air Temperature (F)

5) Actual Electricity Use (kWh/month)

6) Sales indicator

7) Cooling Degree Days (F-days/month)

8) Predicted Electricity Use (kWh/month)

9) The residual [Actual Electricity Use — Predicted Electricity Use] (kWh/month)
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1.00 1.00 1995.00
2.00 1.00 1995.00
3.00 1.00 1995.00

400 1.00 1995.00

500 1.00 1995.00

6.00 1.00 1995.00

7.00 1.00 1995.00

8.00 1.00 1995.00

9.00 1.00 1995.00
10.00 1.00 1995.00
11.00 1.00 1995.00
12.00 1.00 1995.00

20.95 10335.00 1100.00 0.00 9058.41 1276.59
28.16 9137.00 900.00 40.80 914237 -5.37

25.02 7634.00 700.00 0.00 9058.41 -1424.41

40.49 9760.00 900.00 110.40 9285.61 474.39
46.17 9143.00 800.00 139.00 9344.46 -201.46
58.63 11448.00 950.00 484.40 10055.29 1392.71
70.32 10560.00 900.00 819.70 10745.33 -185.33
73.49 9422.00 850.00 945.20 11003.61 -1581.61
74.01 12096.00 950.00 961.30 11036.74 1059.26
60.35 10947.00 900.00 520.50 10129.58 817.42
53.09 8144.00 750.00 315.60 9707.90 -1563.90
34.99 9074.00 950.00 35.90 9132.29 -58.29

Figure 10.7. Residual file from the CDD model run.

IMT output for an MVR model of electricity use versus cooling degree-days and a sales
indicator is shown in Figure 10.8. The combination CDD-MVR model has a fit (R?2=.77)
similar to the fit of the 3PC-MVR model (R? = .78) in Figure 10.4.
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ASHRAE INVERSE MODELING TOOLKIT (1.9)

Output file name = IMT.Out

Input data file name = genu.res
Model type = MVR
Grouping column No= 0
Value for grouping = 1

Residual mode = 0
# of X(Indep.) Var= 2
Y1 column number= 5

X1 column number= 7
X2 column number= 6
X3 column number = 0 (unused)
X4 column number = 0 (unused)
XS column number = 0 (unused)
X6 column number = 0 (unused)

Regression Results

N= 12

R2= 0.768

AdjR2= 0768

RMSE = 701.9841

CV-RMSE= 7.157%

p= 0.105

DW= 1.659 (p>0)

a= 1770.7170 ( 1809.3533)

Xl= 19492( 0.5671)

X2=82562( 2.0234)

Figure 10.8. IMT output from a MVR model of grocery store electricity use versus cooling
degree-days and a sales indicator.
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11.0 Glossary

Dependent variable: a variable that responds to independent variables.
Field: an individual value or piece of data from a data input file.

Grouping variable: a variable whose value indicates if the given record should be included in the
model.

Independent variable: a variable used to predict the response of a dependent variable.

Instruction file: an ASCII text file containing instructions for the toolkit about the data input file
and the desired type of model.

No-data flag: a numeric value inserted as a placeholder for missing or erroneous data in a data
input file.

Nonuniform-timescale data file: an ASCII text file composed of records in which the dependent
variable and the independent variables are measured over different timescales.

Record: one row in a data input file.

Residual: the difference between the observed value y and a model’s predicted value y ,
(Residual =y - y).

Space delimited: a file in which each field in a record is separated by one or more empty spaces.

Uniform-timescale data file. an ASCII text file composed of records in which all fields are
measured over the same timescale.

Weight indicator: a value used to represent the relative weight to be assigned to each observation
for use in a weighted regression.
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1.0 Functional Description

The objective of this research project is to develop a toolkit of well-documented FORTRAN 90
computer source code for calculating linear, change-point linear and multiple-linear regression
models. The intended use of these regression models is to quantify the relationship between
building energy use and one or more independent variables.

One application for the regression models would be to estimate savings from energy
conservation retrofits in buildings. To do this, measured energy consumption data from the pre-
retrofit, or baseline, period would be regressed against variables that influence energy
consumption. The resulting “baseline” regression model could be used to estimate pre-retrofit
energy consumption under post-retrofit conditions. The baseline model’s estimate of pre-retrofit
energy use could then be compared to measured post-retrofit energy use to determine savings
from the retrofit.

To perform these functions, the toolkit shall be able to:

1)  Read a data input file containing building energy use data and variables that may
influence the building energy use data.

2)  Read instructions from the user concerning the name and type of data input file,
which data from the data input file to use, and the type of regression model to fit
to the data.

3)  Generate a statistical model of building energy use and find the best-fit estimates
of the model parameters

4)  Find the uncertainty of each model parameter, and the uncertainty of the overall
model.

5)  Report results to the user.
Specific requirements for each these functions are described in Chapters 2- 6.

Some users may want to incorporate parts of the toolkit into their own software applications.

Other users may want a ready-to-run tool. To accommodate these different uses, the toolkit shall
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consist of both the source and executable code. The software requirements of the toolkit, and a
proposed design for the main module are discussed in Chapter 7.

The toolkit shall be tested using data sets from the developers and from the Project
Monitoring Subcommittee. Toolkit testing requirements are described in Chapter 8.

To assist in the use of the toolkit, and as a guide to understanding the models, the toolkit shall
be accompanied by documentation. Toolkit documentation requirements are described in
Chapter 9.
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2.0 Input Data Requirements

2.1 Input Data File Format
The toolkit shall read input data files in standard ASCII format. The files shall contain

numeric data only. The input data files shall be space delimited with an equal number of fields

(columns) in each record (row).

2.2 Types of Input Data Files
The toolkit shall be able to read two types of input data files: uniform and nonuniform

timescale. Uniform-timescale data files are composed of records in which all fields are
measured over the same timescale. For example, a uniform-timescale data file would be one in
which each record includes the amount of energy consumed in an hour, as the dependent-
variable field, and the average occupancy and temperature over that hour, as independent-
variable fields. The toolkit shall be able to read uniform-timescale data files of any timescale:
hourly, daily, weekly, monthly, yearly, etc. An example of a uniform-timescale data-input file is

shown in Figure 2.1

114 10 16 90 1 61.80 27.23 6036 76
114 10 17 90 1 65.20 25.68 6145 79
114 10 18 90 1 44.20 35.21 6623 64
114 10 19 90 1 42.60 38.66 6778 ~-99
114 10 20 90 1 52.00 32.76 6426 70
114 10 21 90 1 44.80 41.29 6651 63
114 10 22 90 1 36.80 44.20 6597 57

Figure 2.1. First seven records of a uniform-timescale data file. The fields are building id,
month, day, year, grouping variable, cooling energy use, heating energy use, electricity use and
ambient temperature.

Nonuniform-timescale data files are composed of records in which the dependent variable and
the independent variables are measured over different timescales. Because of the widespread use
of variable-base degree-day models, the toolkit shall be able to read nonuniform-timescale data
files in which the dependent variable is energy use, measured over roughly a monthly timescale,
and the independent variable is ambient temperature measured on a daily timescale. An example

of a nonuniform-timescale data-input file is shown in Figure 2.2.
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12 1 1996 233 26
12 2 1996 -99 36
12 3 1996 -99 38
12 4 1996 -99 31
12 5 1996 -99 32
12 6 1996 -99 36
12 7 1996 -99 40
12 8 1996 -99 32
12 9 1996 -99 30
12 10 1996 -99 41
12 11 1996 -99 56
12 12 1996 -99 42
12 13 1996 -99 38
12 14 1996 -99 37
12 15 1996 -99 43
12 16 1996 -99 38
12 17 1996 -99 36
12 18 1996 -99 22
12 19 1996 -99 13
12 20 1996 -99 -99
12 21 1996 -99 -99
12 22 1996 -99 -99
12 23 1996 -99 45
12 24 1996 -99 43
12 25 1996 -99 22
12 26 1996 -99 29
12 27 1996 -99 37
12 28 1996 -99 52
12 29 1996 -99 50
12 30 1996 -99 -99
12 31 1996 -99 44
1 1 1997 215 41
1 2 1997 -99 52
1 3 1997 -99 57

Figure 2.1. First 34 records of a nonuniform-timescale data file. The fields are month, day, year,
monthly electricity use and daily temperature.

2.3 Number of Input Data Files

All data used in a regression model shall be included in a single data file.

2.4 Size of the Input Data Files

Data from the input data file shall be manipulated in arrays stored in the computer’s Random
Access Memory (RAM). Thus, the size of the input data file shall be limited only by the amount
of RAM available to the computer.

2.5 Data Grouping
The input data file may contain records that the user does not want to include in the model.

The toolkit shall be able to operate on only those records that the user specifies.
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2.6 No-data Flag

If there exists no valid values for one or more fields in a data record, a “no-data” flag shall be

placed in the appropriate field to indicate that this field shall not be included in a regression
model. The user may select any numeric value for the no-data flag. The toolkit shall ignore any

record that has a no-data flag in a field on which the model is to operate.
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3.0 Operating Instruction Requirements

The user must enter instructions to the executable version of the toolkit. These instructions
include the path and filename of the data input file, the type of regression model, and the records

and fields in the data input file on which to operate.

3.1 Methods of Entering Operating Instructions
The toolkit shall accept operating instructions 1) by reading an instruction file, or 2) from the

keyboard as the user responds to prompts displayed on the computer screen.

3.2 Instruction File Format and Content

The instruction file shall be a standard ASCII text file. The instruction file shall consist of 15
records of a single field each. The information required in each record shall be as shown in
Table 3.1.
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Table 3.1 Description of operating instruction file.

Record Number Record Description
1 Path and name of data input file
2 Value of no-data flag
3 Field number of weight indicator
4 Field number of grouping variable
5 Value of grouping variable for record to be included in model
6 Residual output file
7 Regression model type [Mean, 2P, 3PC, 3PH, 4P, 5P, MVR, HDD,

or CDD]

8 Field number of dependent (y) variable
9 Number of independent (x) variables
10 Field number of x1

11 Field number of x2

12 Field number of x3

13 Field number of x4

14 Field number of x5

15 Field number of x6

An example instruction file is shown in Figure 3.1.

Line 1: Name of data file (aaaaaaa.aaa) = winsave.dat
Line 2: Value of no data flag = -99

Line 3: Column number of weight indicator = 0

Line 4: Column number of group field = 5

Line 5: Value of valid group field =1

Line 6: Residual file needed (1 yes, 0 no) = 0

Line 7: Regression model (1 to 9) =7

Line 8: Column number of dependent variable = 6

Line 9: Number of Y1 independent variables data file (0 to 6) = 2
Line 10: Column number of X1 independent variable = 8
Line 11: Column number of X2 independent variable = 9
Line 12: Column number of X3 independent variable = 0
Line 13: Column number of X4 independent variable = 0
Line 14: Column number of X5 independent variable = 0
Line 15: Column number of X6 independent variable = 0

Figure 3.1. Example instruction file to generate a multivariable regression (MVR) model of
cooling energy use as a function of building electricity use and ambient temperature using the
sample data set shown in Figure 2.1.
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The toolkit shall determine whether the type of input data file by the type of regression model.
HDD and CDD models require nonuniform-timescale data files. All other models require

uniform-timescale data files.

3.3 Entering Operating Instructions by Typing Responses to Screen Prompts

The toolkit shall also accept operating instructions entered through the keyboard. The toolkit
shall provide the user with prompts asking for the appropriate information. The information
requested by the screen prompt shall be the same as the information in the instruction file. The

(3} ]

user shall be able to quit the program at any time by typing “q”.

3.4 Error Checking

The toolkit shall check operating instructions entered by the user. If a non-valid instruction is
entered from the keyboard, the toolkit shall prompt the user to enter a valid instruction. If a non-
valid instruction is entered through the instruction file, the output file will report the error.

Errors in the input data file may cause errors in the execution of toolkit algorithms. The
toolkit shall be designed to report useful information about the source of the error to the user

whenever possible.
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4.0 Model Types Supported by Toolkit

The toolkit shall include several types of regression models since no single empirical model is
appropriate for all types of measured building energy use data. The types of regression models

supported by the toolkit are described below.

4.1 Mean Model

The toolkit shall be able to calculate the arithmetic mean of the dependent variable.

4.2 Two-Parameter Model

The toolkit shall be able to find a simple linear regression model (2P) of type:

Y =B+ B2 X, 4.1)

where B, and B, are regression coefficients, X, is the independent variable and Y is the

dependent variable.

4.3 Three-Parameter Cooling and Heating Models
The toolkit shall be able to find best-fit three-parameter (3P) change-point models of type:

Ye = B1 + B2 (X -B3)* 4.2)
Yo = B1 + B2(Xi-B3) 4.3)

where B is the constant term, B2 is the slope term, and B3 is the change-point,. The ( )+ and ()
notations indicate that the values of the parenthetic term shall be set to zero when they are
negative and positive respectively.

The toolkit shall also be able to find combination three-parameter multi-variable regression

models (3P-MVR), with up to four independent variables, of the type:
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Yc=Bl +B2(X1-B3)++B4X2+B5X3+B6X4 (44)
Yh=Bl+BZ(XI‘BS)-+B4X2+BSX3+B6X4 (45)

where X is typically temperature, and X, X3, and X, are optional independent variables.

4.4 Four-Parameter Model

The toolkit shall be able to find best-fit four-parameter (4P) change-point models of type:
Y =B+ Ba(X;-Ba) + Bs (X, -Ba)?* (4.6)
where 1 is the constant term, B2 is the left slope, B3 is the right slope and B4 is the change

point. The toolkit shall also be able to find combination four-parameter multi-variable regression

models (4P-MVR), with up to three independent variables, of the type:

Y =81 + B2 (X -Ba) + B (X, -Ba)t + BsXo + B6 X @4.7)

where X is typically temperature, and X, and X3 are optional independent variables.

4.5 Five-Parameter Model

The toolkit shall be able to find best-fit five-parameter (SP) change-point models of type:

Y =B+ B,Xi-Ba) + Bs(Xi-PBs)* 4.8)

where B is the constant term, B2 is the left slope, B3 is the right slope, B4 is the left change
point, and B3 is the right change point.

The toolkit shall also be able to find combination five-parameter multi-variable regression

models (SP-MVR), with up to two independent variables, of the type:

Y =B+ B,(Xi-Ba) + B3 (Xi-Bs)t + Bs X 4.9)
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where X is typically temperature and X is an optional independent variable.

4.6 Multiple Variable Regression Model
The toolkit shall be able to find a multiple-variable linear regression (MVR) models, with up

to six independent variables, of type:
Y =B+ BaXi +B3Xo+ BaXas+ BsXa + BsXs + B1Xs  (4.10)
where f; through B; are regression coefficients, and X; through X are independent variables.

4.7 Variable-Base Heating and Cooling Degree-Day Models
The toolkit shall be able to find best-fit variable-base degree-day models of type:

Y =B, + B, HDD(B;) @.11)

Y =B, + B,CDD(Bs) @.12)

where ] is the constant term, B2 is the slope term, and HDD(f33) and CDD(f33) are the number
of heating and cooling degree-days, respectively, in each energy data period calculated with base
temperature 3. The number of heating and cooling degree-days in each energy data period of n

days are:

HDD(B) = 3 (3-T,)" @.13)
i=l

CDD(B:) = Y(T, - B3)° (4.14)
i=l

where T is the average daily temperature.
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5.0 Model Uncertainty Parameters Reported by Toolkit

GPC-14P Working Draft 99.2, June 7, 1999 specifies that modeling uncertainty be estimated

using three indices:

1) Coefficient of Variation of the Standard Deviation (CVSTD)

CVSTD =100x[3 (3, - )2 (n—1]"2 1y (5.1)

2) Coefficient of Variation of the Root Mean Square Error (CVRMSE)

A

CVRMSE=100x[D_(y;, - y,)* l(n— p)}'"*/ y (5.2)

3) Normalized Mean Bias Error (MBE)

Z()’i -Yi)
NMBE=——*]00 (5-3)
(n-p)*y

Where:

dependent variable of some function of the independent variable(s)

arithmetic mean of the sample of n observations

< > w1 %

regression model’s predicted value of y

n number of data points or periods in the baseline period

p number of parameters or terms in the baseline model, as developed by a mathematical
analysis of the baseline data.

CVSTD (Equation 5.1) is a special case of CVRMSE (Equation 5.2) for mean models with one
parameter. Thus, to comply with GPC-14P, the toolkit shall report:

e CVSTD for mean models
e CVRMSE for 2 - 5 parameter and MVR models
NMBE for all models

In addition, the toolkit shall report the following uncertainty statistics:
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e STD for mean models

STD =[3(y, - ) n D] 54

e RMSE for all regression models

A

RMSE =[> (3, - y,)* l(n— p)]'" ' (5.5)
e R for all regression models

20—
R?=1-—— (5.6)

2., -7

e Adjusted R? for all MVR models
AdjR? =1-—(N—'—1)-(1—R2) (5.7)

(N-p)

In MVR models, the addition of an independent variable will always result in an increase in
the model’s R% Adjusted R? divides each sum of squares in R? by the associated degrees of
freedom, and is thus a measure of the actual improvement in predictive ability from adding
independent variables.

e Standard error of each regression coefficient. The standard error of a regression coefficient
indicates the variance with which the coefficient is known. The standard error is defined
such that with a probability of 1-a., the true parameter will fall within the bounds:

Btrue = Bestimated + t(1-0/2, n-p) S(B) (5.8)
where t is the t distribution and s(B) is the standard error of each regression coefficient:
s(B) = [MSE (X’X)"1” (5.9)

¢ The uncertainty of each change-point coefficients as given by the width of the final search
interval.

Together, these measures of uncertainty will allow the user to assess the fit of the model to
the data, select appropriate independent variables, and to calculate the overall uncertainty of

savings using the methods described in GPC 14P.
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6.0 Output Data Requirements

The toolkit shall report model results by generating an output file, and an optional residual file,
for each model run. Both output files shall be standard ASCII text files.

The output file shall include the information entered in the operating instructions, model
coefficients and goodness-of-fit parameters. An output file shall be generated after each model
run.

The residual file shall include the data from the data input file, predicted values of the dependent
variable and model residuals. A residual file shall be generated only if requested in the

instruction file or through keyboard prompts.

6.1 Path and Filename of Qutput File

The output file shall be placed in the same directory as the instruction file. The output filename

shall have the same prefix as the instruction file and a file name extension ‘.out’.

6.2 Content of Output File
The output file shall include:

e all information entered as operating instructions

e the number of observations used in the model

e the value and standard error of each regression coefficient

e the model goodness-of-fit parameters specified in Chapter 5.

A sample output file is shown in Figure 6.1
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khkkkkhkkhkkkhkkhkkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkkkkkhkhkkkkkkkk

ASHRAE INVERSE METHOD TOOLKIT (1.2)

khkkkkkkhkkhkhkkkhkkhkkhkkkhkhkhkhkkhkhkhkhkhkkkkkkkkkkkkkkkkx

Output file name = IMT.Out

khkkkkhkkhkkdhkdhkhhkhkdhdkhkdhkhdhkdkkdhdhdhkhkdhkdhkhkdhkhkdkdhkkikdhkkikhkkk

Input Data file name winsave.dat
Regression type = 2
Weight column No =
Grouping column No =
Value for grouping =
Residual mode =

# of X(Indep.) Var =
Yl column number =

X1 column number = 1
X2 column number =

X3 column number =

X4 column number =

X5 column number =

X6 column number =

(unused)
(unused)
(unused)
(unused)
(unused)

[oNeNeoNoNell ol leNeNe NN BN

khkhkhkhkkkhkhkhkkhkhkhkkkhkkhkhkkdkhkkhhkkhdhkdhkhkkdhkhkdkkhkkkdhkkkikkk

Regression Result
hkhkhkkkkhkhkhkhkkkkhkkkkkhkkkkkhkhkhkhhkkhkkhkhkhkhkhhkkkkihkikikik

File name = IMT.Out

dodk ok ok ok ok ok ok kok kodk ok ok ok ok ok ko okkodkkohohkkkhkkkkkkkkkkkkkkkk

Model = 2P
"""" N- 66
“““ yint =  -18.6454 ( 3.0841)
""""" XL = 0.8460 ( 0.0440)
"""" R2= 0.3
 adjR2 = 036
""" RMSE = 15.16
cv-mmsE - 38.28%
"""""" b= o092
""""" W= 0.17(050)

Figure 6.1 Sample output file.

6.3 Path and Filename of Residual File
The residual file shall be placed in the same directory as the instruction file. The output

filename shall have the same prefix as the instruction file and a file name extension ‘.res’.
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6.4 Contents of Residual File
Each record of the residual file shall include the data from the data input file, the predicted

value of the dependent variable, and the difference between the observed and predicted values of
the dependent variable. The difference between the observed and predicted values of the
dependent variable is called the residual and is defined as:

Residual =y - y 6.1)

6.4.1 Residual File from a Uniform-Timescale Data-Input File

An example residu20al file generated from a from a uniform-timescale data-input file is
shown in Figure 6.2. The first 9 columns are from the data input file. The dependent variable is
in the 6™ column. The predicted value of the dependent variable is in the 10™ column and the

residual is in the 11" column.
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114 10 16 1990 3 61.80 27.23 -99 76 45.65
16.15

114 10 17 1990 4 65.20 25.68 -99 79 48.19
17.01

114 10 18 1990 5 44.20 35.21 -99 64 35.50
8.70

114 10 19 1990 6 42.60 38.66 -99 62 33.81
8.79

114 10 20 1990 7 52.00 32.76 -99 70 40.57
11.43

114 10 21 1990 1 44.80 41.29 -99 63 34.65
10.15

114 10 22 1990 2 36.80 44.20 -99 57 29.57
7.23

114 10 23 1990 3 -99 -99 -99 58 -99 -99
114 10 24 1990 4 41.00 39.66 -99 63 34.65
6.35

114 10 25 1990 5 41.80 37.66 -99 64 35.50
6.30

114 10 26 1990 6 43.20 37.39 -99 62 33.81
9.39 .

114 10 27 1990 7 45.20 33.49 -99 65 36.34
8.86

114 10 28 1990 1 46.80 32.49 -99 68 38.88
7.92

114 10 29 1990 2 48.40 34.21 -99 68 38.88
9.52

114 10 30 1990 3 52.80 33.85 -99 67 38.04
14.76

114 10 31 1990 4 55.60 33.31 -99 68 38.88
16.72

114 11 1 1990 5 53.20 32.13 -99 68 38.88
14.32

114 11 2 1990 6 57.20 31.67 -99 70 40.57
16.63

114 11 3 1990 7 61.00 29.86 -99 75 44.80
16.20

114 11 4 1990 1 40.40 43.02 -99 57 29.57
10.83

Figure 6.2. First 20 records from a residual file from a uniform-timescale input data file.

6.4.2 Residual file from a Nonuniform-Timescale Data-Input File

Nonuniform-timescale data files are used with VBDD models. These data files contain

observations of the dependent variable, typically energy use, which are usually measured over
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several days, and observations of the independent variable, typically temperature, which are
usually measured on the daily timescale. Because residuals are calculated for each energy
observation, the residual file shall only include records corresponding to energy observations in
the input data file. The residual file from a nonuniform-timescale data-input file shall include:
e all fields from records in the data input file which have valid' energy values, except the
average daily temperature field. The average daily temperature field shall be replaced
with the average temperature over energy time-interval
e the number of degree days in the energy time-interval calculated to the best-fit reference
temperature

o the difference between the predicted and observed values of energy use

An example residual file generated from a nonuniform-timescale data-input file is shown in
Figure 6.3. The fields are month, day, year, average temperature during the energy period,
energy use, heating degree days during the energy use period, predicted energy use, and the

difference between observed and predicted energy use.

1 4 1979 37.2 2320 645.0 2,307.0 13.0
2 2 1979 31.6 2930 765.0 2,626.6 303.4
3 6 1979 27.8 2920 965.0 3,159.3 -239.3
4 4 1979 46.7 1530 336.0 1,484.0 46.0
5 4 1979 53.8 1150 162.0 1,020.5 129.5
6 5 1979 65.8 630 0.0 589.1 40.9
7 5 1979 69.9 510 0.0 589.1 -79.1
8 3 1979 79.1 600 0.0 589.1 10.9
9 4 1979 76.5 520 0.0 589.1 -69.1
10 3 1979 67.8 620 4.0 599.7 20.3
11 2 1979 55.8 950 148.0 983.2 -33.2
12 4 1979 49.8 1210 287.0 1,353.5 -143.5

Figure 6.3. Example residual file from a nonuniform-timescale data-input file.

! Any value except the value of the no-data flag.
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7.0 Software Requirements

7.1 Programming Language and Operating System
The toolkit shall be written in FORTRAN 90. The toolkit shall consist of both source and
executable code. The executable version of the toolkit shall run in an MS DOS window of

Microsoft Windows operating system.

7.2 Toolkit Design

The toolkit shall be composed of a main module and a series of subroutines. The source code
shall be documented with comments describing the functionality of each subroutine and code
block.

Proposed logic for the main module is shown in Figure 7.1.
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Figure 7.1 Flow chart of logic in toolkit’s main module.
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8.0 Toolkit Testing Requirements

The toolkit shall be tested for accuracy and robustness.

8.1 Accuracy of Regression Results

The accuracy of the regression routines shall be tested by comparing simple and multiple
linear regression results from 20 sets of measured energy and temperature data to regression
results from the widely-used statistical software SAS. The 20 test data sets shall be selected so
that they include both very small and very large values, and as few as 3 and as many as 9,000

data records. The PMS may also contribute test data sets.

8.2 Accuracy of Change-Point Models
The accuracy of the change-point algorithms shall be tested using synthetic data with pre-

defined change-points. The test data sets will be constructed to vary the position of the change-
points relative to the range of x and y values, and to vary the spacing between data points. Ten
sets of synthetic data will be generated for each type of change-point model. The change-points
determined by the models will be compared to the synthetic change-points.

The values from an example synthetic data set used to test the 5P model are plotted below.
The values in the data set were selected such that they fall on one of three line segments. The
line segments have known slopes and are joined at change-points x = 30 and x = 60. The 5P
model is tested by comparing the model’s estimates of the slopes and change-points to the

known slopes and change points in the synthetic data set.
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Figure 8.1 Example of synthetic data set used to test SP model.

8.3 Robustness of Algorithms

Robustness testing shall be conducted by running 20 test sets of measured energy and
temperature data through each of the regression algorithms. Problems will be noted. The PMS

may contribute test data sets or test robustness as they see fit.
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9.0 Toolkit Documentation Requirements

The toolkit software shall be accompanied by documentation. A proposed table of contents

for the documentation is shown in Figure 9.1.

Proposed Toolkit Documentation Outline

Abstract
1.0 Introduction
Motivation for Work
Brief Description of Sections to Follow
2.0 Review of Published Algorithms and Selection of Algorithms for the Toolkit
3.0 Description of Input Data
Description of Input Data Format
Description of Error Checking Algorithm
Use of Executable Program
Example Application
Source Code
4.0 Description of Least-Squares Regression Routines and Goodness-of-Fit Parameters
Description of Method
Description of Algorithms
Source Code
5.0 Description of Models
Mean model
Physical Basis for Model
Description of Algorithm
Use of Executable Program
Example Application
Source Code
2P Model
Physical Basis for Model
Description of Algorithm
Use of Executable Program
Example Application
Source Code
3P-Heating and 3P-Cooling Models
Physical Basis for Model
Description of Algorithm
Use of Executable Program
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Source Code

4P Model ample Application
Physical Basis for Model
Description of Algorithm
Use of Executable Program
Example Application
Source Code

5P Model
Physical Basis for Model
Description of Algorithm
Use of Executable Program
Example Application
Source Code

MVR Model
Physical Basis for Model
Description of Algorithm
Use of Executable Program
Example Application
Source Code

VBDD Models
Physical Basis for Models
Description of Algorithm
Use of Executable Program
Example Application

Source Code
6.0 Comparison of Regression Results with Reference Statistical Software

Figure 9.1. Proposed table of contents for software documentation.
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10.0 Glossary

Dependent variable: a variable that responds to independent variables.
Field: an individual value or piece of data from a data input file.

Grouping variable: a variable whose value indicates if the given record should be included in the
model.

Independent variable: a variable used to predict the response of a dependent variable.

Instruction file: an ASCII text file containing instructions for the toolkit about the data input file
and the desired type of model.

No-data flag: a numeric value inserted as a place holder for missing or erroneous data in a data
input file.

Nonuniform-timescale data file: an ASCII text file composed of records in which the dependent
variable and the independent variables are measured over different timescales.

Record: one row in a data input file.

Residual: the difference between the observed value y and a model’s predicted value y,
(Residual =y - y).

Space delimited: a file in which each field in a record is separated by one or more empty spaces.

Uniform-timescale data file: an ASCII text file composed of records in which all fields are
measured over the same timescale.

Weight indicator: a value used to represent the relative weight to be assigned to each observation
for use in a weighted regression.
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APPENDIX II: ANNOTATED BIBLIOGRAPHY

The primary search mechanism employed was the Compendex database. Journals and
proceedings searched are shown in Table 1. Each journal was searched using key words related
to regression analysis and energy savings. Key words searched are shown in Table 2. Some
publications from outside of these sources were also identified and included. Over one hundred
papers referenced these terms. After a review of the abstracts, over 70 papers were obtained and
are briefly summarized in the Annotated Bibliography.

The papers were grouped by primary subject area (Table 3). Please note, however, that there
is much overlap and many papers discuss topics related to several of the groups. A summary of

the findings, organized by group, is presented in the section entitled Summary of Finding.

Table 1. Journals and conference proceedings searched.

ACEEE Summer Study on Energy Efficiency in | ASME Solar Engineering Conference

Buildings

ASHRAE Journal Energy and Buildings

ASHRAE Transactions Cool Sense National Forum on Integrated Chiller
Retrofits

ASME Journal of Solar Energy Engineering Society for Industrial and Applied Mathematics

Table 2. Keywords searched.

Regression Energy Prediction
Energy Savings Energy Utilization
Inverse Modeling Energy Conservation
Modeling Mathematical Models
Whole Building Energy Use Numerical Analysis
Algorithms Statistical Methods
Outdoor Air Temperature Retrofits

Calibration Buildings
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Table 3. Subject groups for selected papers.
Motivations for Measuring Savings
Overview of Methods for Measuring Savings
Variable-Base Degree-Day Models
Change-Point Models

Multivariate Regression Models
Combination VBDD/CP/MVR Models
Calibrated Simulation Models

Artificial Neural Network Models
Advanced Regression Techniques
Uncertainty of Savings

Motivations for Measuring Savings
Hirst, E., Clinton, J., Geller, H. and Kroner, W., 1986, Energy Efficiency in Buildings: Progress

and Promise, American Council for an Energy Efficient Economy, Washington, D.C.

Greely, K., Harris, J., and Hatcher, A., 1990, "Measured Savings and Cost-Effectiveness of

Conservation Retrofits in Commercial Buildings", Lawrence Berkeley Laboratory Report -
27586, Berkeley, CA.

LBL report on BECA database of over 1,700 commercial building retrofits.

Jamieson, D. and Qualmann, R., 1990, "Computer Simulation Energy Use Metering or Can We

Count On Energy Savings Estimates In Designing Demand Side Programs", Proceedings of the
ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, August, pp. 10.105
- 10.114.

Account of commercial building retrofit program in which savings were predicted based on
DOE?2 simulations and compared with measured results.

Nadel S. and Keating, K., 1991. "Engineering Estimates vs. Impact Evaluation Results: How Do
They Compare And Why?" Energy Program Evaluation Conference, Chicago, pp. 24-33.
Comparison of predicted and actual savings in several large DSM programs and discussion of
reasons for the discrepancies.

Fels, M. and Keating, K., 1993, “Measurement of Energy Savings from Demand-Side

Management Programs in US Electric Utilities”, Annual Review of Energy and Environment,
18:57-88.

Describes history of DSM program evaluation. General description of methods for measuring
savings including PRISM, Multiple Variable Regression, Conditional Demand Analysis and
Engineering Models.

Claridge, D., Haberl, J., Liu, M., Houcek, J., and Aamer, A., 1994, “Can You Achieve 150% of

Predicted Retrofit Savings? Is It Time for Recommissioning?”, Proceedings of the ACEEE 1994
Summer Study on Energy Efficient Buildings, Pacific Grove, CA, August, pp. 5.73-5.87.
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Describes use of measured data to identify operational and maintenance problems in the Texas
LoanSTAR program, and how correction of these problems has led to savings in excess of those
predicted for the retrofits.

United States Department of Energy, 1996a. "North American Energy Measurement and

Verification Protocol", DOE/EE-0081, U.S. Department of Energy, Washington, D.C.
General guidelines for measurement and verification.

United States Department of Energy, 1996b. "Measurement and Verification Guidelines for

Federal Energy Projects ", DOE/GO-10096-248, U.S. Department of Energy, Washington, D.C.
General guidelines for measurement and verification.

United States Department of Energy, 1997. "International Performance Measurement and

Verification Protocol”, U.S. Department of Energy, Washington, D.C.
General guidelines for measurement and verification.

Overview of Methods for Calculating Savings

Eto, J., 1988, "On Using Degree-days to Account for the Effects of Weather on Annual Energy .

Use in Office Buildings", Energy and Buildings, Vol. 12, No. 2, pp. 113 - 127.
Simulates energy consumption in a commercial building in five US cities and models it using

variable-base degree-day method.

Kissock, J.K, Claridge, D.E., Haberl, J.S. and Reddy, T.A., 1992. "Measuring Retrofit Savings
For the Texas LoanSTAR Program: Preliminary Methodology and Results", Solar Engineering,
1992: Proceedings of the ASME-JSES-SSME International Solar Energy Conference, 1.ahaina
HI, April.

Describes method of calculating savings from measured data using change-point models for
weather adjustment.

Ruch, D. and Claridge, D., 1992, "NAC for Linear and Change-Point Energy Models,"
Proceedings of the 1992 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific

Grove, CA, August, pp. 3.263 - 3.273.
Describes calculation of Normalized Annual Consumption using linear and change-point models.

Kissock, J.K., 1993. "A Methodology to Measure Energy Savings in Commercial Buildings",

Ph.D. Dissertation, Mechanical Engineering Department, Texas A&M University, College
Station, TX, December.

Describes method of calculating savings from measured data using change-point models for
weather adjustment. Includes the physical basis for change-point models in commercial
buildings, algorithms for change-point models, and a method to estimate the uncertainty of
savings.

Cowan, J. and S. Schiller. 1997. "Measuring’ Energy Savings for Modernization Projects”,
ASHRAE Journal, August, pp. 60-62.
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Describes basic method for measuring savings:

e measure energy use and influential variables during baseline period

e create mathematical model of baseline energy use as function of influential variables

e measure energy use and influential variables during post-retrofit period

e apply post-retrofit influential variables to base-line model to estimate what energy use would
have been without retrofit

e subtract estimated baseline energy use for post-retrofit energy use to estimate savings

Discusses uncertainty of savings versus cost of monitoring and analysis. Recommends that cost

for determining savings be no more than 5% of actual savings. Discusses baseline period, utility

prices, and how to structure ESPC.

Claridge, D. 1998. "A Perspective On Methods For Analysis Of Measured Energy Data From
Commercial Buildings", ASME Journal of Solar Energy Engineering, Vol. 120, No. 3, pp. 150-

155.

Introduction to series of articles of measuring savings. Provides historical information on
methods for measuring energy use. It summarizes the capabilities and uncertainties associated
with regression modeling. Neural networks, Fourier series and spectral analysis are described.
Prism technique is an adaptation of the Variable-Base Degree-Day method. Measured monthly
consumption data and daily average temperature data is used to "calibrate” the model using
regression analysis. Temperature dependent baselines for most commercial buildings, however,
require a more general change point line. Katipamula's "Multivariate Analysis for Retrofit
Savings" discusses the added complexities using multivariate analysis.

Kissock, K., Joseph, H., 1999. "Synthesizing Hourly Meteorological Data to Improve the
Accuracy of Calibrated Simulation Models"”, Proceedings of the ASME International Renewable

and Advanced Energy Systems for the 21% Century Conference, Lahaina, HI, April 11-15.

Describes:

e annual variation in weather

e simulation study of annual variation in energy use in a residence and large commercial
building due to variation in weather
method of synthesizing hourly meteorological data from average daily temperatures
compares calibration error from using TMY?2 data rather than real or synthetic weather data.
concludes that calibration error from using TMY2 data is small in large commercial
buildings but is large in small buildings.

Variable-Base Degree-Day Models

Goldberg, M., 1982. "A Geometrical Approach to Nondifferentiable Regression Models as
Related to Methods for Assessing Residential Energy Conservation", Ph.D. Dissertation,

Department of Statistics, Princeton University, Princeton, NJ.
Mathematical basis of PRISM model with uncertainty analysis.

Herendeen, R., N. Hegan and L. Stiles. 1983. "Measuring Energy Savings Using Personal Trend
Data", Energy and Buildings, Vol. 5, pp. 289-296.

Examples of energy savings for 12 houses in central Illinois after insulation retrofit. Savings
based on NAC calculations.
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Fels, M. 1986. "PRISM: An Introduction", Energy and Buildings, Vol. 9, pp. 5-18.
A houses heating system is modeled by when the outside temperature drops below a certain

value a constant amount of heating fuel is required for each drop in temperature. An iterative
procedure based on Newton’s method is used to find the best heating reference temperature.

This occurs when heating degree-days vs. rate of energy consumption is most nearly a straight
line. T is found when the mean-squared error is minimized, or equivalently the R2 value is the
highest. NAC is a reliable and stable index of consumption, the other PRISM parameters provide
physically meaningful indicators, whose change may not be statistically meaningful but can
often suggest a reason for a change in consumption. Addresses buildings in heating-dominated
climates. For cooling dominated climates and for a large solar component, more research is
needed. The derivation of the physical model underlying PRISM is given along with the
computation of group savings estimates and standard errors of savings estimates.

Stram, D. and M. Fels. 1986. "The Applicability of PRISM to Electric Heating and Cooling",
Energy and Buildings, Vol. 9, pp. 101 - 110.

The use of PRISM to measure energy savings in electrically heated houses is discussed in this
paper. The heating model applied to electrically heated houses without cooling performs as well
as it has for gas-heated and oil-heated houses. The heating-plus-cooling model works well on
houses with relatively strong cooling, while houses with erratic or weak cooling will require an
alternative approach. The average cooling reference temperature estimated by the model is
found to be well above the average heating reference temperature. Overall, the NAC index as
the basis for savings estimated appear highly reliable for electrically heated houses. To model a
house with heating and cooling both heating degree-days and cooling degree-days are used.

Fels, M. and D. Stram. 1986. "Does PRISM Distort the Energy Signature of Heat-pump
Houses?", Energy and Buildings, Vol.9, pp. 111 - 118.

The behavior of PRISM applied to electrically heated houses with heat pumps is investigated.
The nonlinear response of energy consumption to outside temperature leads to systematic
distortion in the model parameters. The most important effect is on the heating reference
temperature, which is reduced from the true value by about 3 degrees Celsius. The overall model
performance using PRISM was found to remain high for houses using heat pumps.

Fels, M., J. Rachlin and R. Socolow. 1986. "Seasonality of Non-heating Consumption and Its
Effect on PRISM Results", Energy and Buildings. Vol. 9, pp.139 - 148.

The effect of seasonality to non-heating energy consumption is investigated.

Non-heating fuel consumption can be modeled by a sine curve with the highest non-heating
consumption in winter and the lowest in summer. The effect of non-heating energy consumption
does not call for changes in the scorekeeping model.

Rachlin, J., M. Fels and R. Socolow. 1986. "The Stability of PRISM Estimates", Energy and
Buildings, Vol 9, pp. 149 - 157.

The effect of missing energy data to PRISM models is discussed. Twelve monthly readings are
optimal for the most reliable results. The NAC index is far less sensitive to missing or
insufficient data than are the individual parameters. If data is available for over a one-year
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period but less than another whole year, it is best to reduce the data to one full year. Energy
consumption patterns change over a period of a year and including only a portion of a year will
compromise the results. Missing readings are troublesome and the longer the gap the greater the
problem.

Rabl, A., Norford, L. and Spadaro, J., 1992. "Steady State Models for Analysis of Commercial
Building Energy Data", Proceedings of the ACEEE Summer Study on Energy Efficiency in

Buildings, Pacific Grove, CA, August, pp. 9.239-9.261.
Examines PRISM's suitability for modeling commercial building energy use. Cautions against
standard interpretation of VBDD parameters when used to model commercial buildings.

Fels, M., Kissock, J.K. and Marean, M., 1994. "Model Selection Guidelines for PRISM (Or:
Now That HC PRISM Is Coming, How Will I Know When to Use It?)", Proceedings of the

ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, August.
Describes method for determining when to use HC models.

Kissock, J.K. and Fels, M., 1995. "An Assessment of PRISM's Reliability for Commercial

Buildings", Proceedings of the National Energy Program Evaluation Conference, Chicago, IL,

August.
Uses PRISM to model commercial building energy use. Finds adequate fits to monthly data.

Fels, M., Kissock, J.K., Marean, M. and Reynolds, C.. 1995. "PRISM (Advanced Version 1.0)

Users Guide", Center for Energy and Environmental Studies, Princeton University, Princeton,

NJ, January.
Documentation for advanced version of PRISM with data graphics, Heating and Cooling model

and automated model selection routine.

Change-Point Models

Neter, J. Wasserman, W. and Kutner, M., 1989, "Applied Linear Regression Models", Irwin
Press, Boston, MA.

Statistical text. Describes general least-squares regression including piece-wise linear regression
models.

Crawford, R., Dykowski, R. and Czajkowski, S., 1991, "A Segmented Linear Least-Squares
Modeling Procedure for Nonlinear HVAC Components", ASHRAE Transactions. Vol. 97, Pt. 2,
pp. 11-18.

Describes a segmented linear least-squares modeling procedure for deriving continuous, single-
input, single-output models for HVAC equipment. The procedure begins by dividing the data
into n bins along the x axis. Developing simple linear regression models for each bin would
result in discontinuities between the linear segments. To overcome this problem, the bin widths
are varied until the lines intersect at the bin boundaries. Identifying bin boundaries that meet the
constraint of continuity between line segments requires an iterative solution of two matrix
equations. Testing of the procedure indicated that the initial bin boundaries can affect whether
converge will occur and the values at which converge will occur. Although an algorithm was
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developed which assures convergence, the number of change-points cannot be determined in
advance.

Ruch and Claridge, 1992. "A Four-Parameter Change-Point Model for Predicting Energy
Consumption in Commercial Buildings", ASME Journal of Solar Energy Engineering. Vol. 114,
No. 2, pp. 77 -83.

This paper develops a four-parameter change-point model of energy consumption as a function
of dry-bulb temperature, along with accompanying error diagnostics for the model’s parameters.
The model is a generalization of the widely used three-parameter, or variable-base degree-day
method. The algorithm used to fit the model to the data finds the optimal change-point
temperature by searching within an interval known to contain Tcp. The first stage is to split the
data points into two temperature regimes, fit ordinary least-squared lines in each regime, and
calculate the intersection of the lines. This is repeated for numerous temperature regions. In the
second stage, the T, is assumed and the model is fit using linear regression. From the collection
of fits in the two stages, the algorithm chooses the one with the best least-squares fit. The
reliability of the parameter estimated is then discussed. This four-parameter model is very
comparable to the PRISM three-parameter model above the change-point, however, below the
change-point the results vary significantly.

Ruch and Claridge, 1993. "A Development and Comparison of NAC Estimates for Linear and
Change-Point Energy Models for Commercial Buildings", Energy and Buildings, Vol. 20, No. 1,

pp. 87-95.

This paper develops the statistically rigorous methods for estimating NAC with four-parameter
change-point and linear regression models. A rigorous statistical error analysis for NAC is also
developed. The importance of a models goodness-of-fit and way of measuring it are discussed.
The variable-base degree-day model incorporated in PRISM is basically a linear model of energy
consumption as a function of temperature except that it assumes that the consumption is constant
at a non-zero value to one side of a reference temperature. It is noted that NAC is linear in T
rather than the average number of degree-days because the relationship between temperature and
energy consumption does not break down at a reference temperature. The four-parameter
change-point energy model is then given and discussed. The NAC for this model is also
developed. The standard error and confidence intervals for NAC is calculated. Three models
used to measure energy consumption are discussed and compared. These models include linear,
PRISM, and four-parameter change-point.

Kissock, J.K, Xun W., Sparks, R., Claridge, D., Mahoney, J. and Haberl, J., 1994. "EModel
Version 1.4de", Copyright Texas A&M University, Energy Systems Laboratory, Department of
Mechanical Engineering, Texas A&M University, College Station, TX, December.
Documentation for first release version of EModel with mean, two-parameter, three-parameter
heating, three-parameter cooling, four-parameter, and multiple linear regression models.
Includes accuracy testing against SAS.

Kissock, J.K., 1996, "Development of Analysis Tools in Support of the Texas LoanSTAR
Program", University of Dayton, Department of Mechanical and Aerospace Engineering,
Dayton, OH, August.
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Describes new algorithm for five-parameter change-point model. Functional code is included.

Reddy, T., Saman, N., Claridge, D., Haberl, J., Tumer, W. and Chalifoux, A., 1997, "Baselining

methodology for facility level monthly energy use - Parts I and II", ASHRAE Transactions, Vol.
103, Pt. 2. pp. 336-347. 348-359.

Describes the use of change-point and variable-base degree-day models to determine weather
dependent baseline energy use at large multi-building facilities.

Kissock, J.K., 1997. "Tracking Energy Use and Measuring Chiller Retrofit Savings Using

WWW Weather Data and New ETracker Software", Cool Sense National Forum on Integrated
Chiller Retrofits, San Francisco, CA, June 23-24.

Describes software that automatically selects four or five-parameter model for weather
adjustment then estimates retrofit savings.

Haberl, Thamilseran, Reddy, Claridge, O'Neal, and Turner, 1998. "Baseline Calculations For

Measurement And Verification Of Energy And Demand Savings In A Revolving Loan Program
In Texas", ASHRAE Transactions Vol. 104, Pt. 2. pp. 841-858.

Measured hourly data are used to construct a baseline model. The data can then be used to
predict building consumption had the retrofit not taken place. Measured post-retrofit data are
compared to predicted data to determine savings. Two generic groupings of the basic modeling
approach are regression models and calibrated engineering models. Regression models consist
of billing and/or monitored data, utilized in one-, two-, three-, four-, or five-parameter change-
point models, or MLR models. Discusses MLR, Change-point models. Discusses a large portion
of one of the methods in question.

Kissock, Reddy and Claridge, 1998. "Ambient-Temperature Regression Analysis for Estimating
Retrofit Savings in Commercial Buildings", ASME Journal of Solar Energy Engineering, Vol.

120, No. 3, pp. 168-176.

Describes a procedure for estimating weather-adjusted retrofit savings using ambient-
temperature regression models. Selecting ambient-temperature as the sole independent
regression variable is discussed. An approximate method for determining the uncertainty of
savings is explained. The appropriate use of both linear and change-point models for measuring
energy savings is also discussed. Ambient-Temperature is used as the single independent
variable because both it eliminates problems associated with multi-collinearity problems and
reduces data collection to a single easily acquired parameter. Paper discusses mathematical
approach in measuring uncertainty of weather adjustment along with the best time scale to use
for the data. Two- to Five-point regression models are presented to model weather-dependent
energy use. The paper directly explains an algorithm used to measure energy savings. Search
methods are used to model energy consumption data and the best-fit model according to
statistical methods is found. This method dominates the literature found on the subject.
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Multivariate Regression Models

Forrester, J. and Wepfer, W., 1984, "Formulation of a L.oad Prediction Algorithm for a Large
Commercial Building", ASHRAE Transactions, Vol. 90, Pt 1. pp. 536 - 551.

Describes adaptive multivariate regression model of electrical demand for a large commercial
building. Uses model to reduce peak demand.

Omnicomp, 1984, Omnicomp. Inc., State College, PA.
Energy accounting software with VBDD modeling capability.

Metrix, SRC Systems Inc., Berkeley, CA.
Energy accounting software with VBDD modeling capability.

Leslie, N., G. Aveta and B. Sllwinski, 1986. "Regression Based Process Energy Analysis
System", ASHRAE Transactions, Vol. 92, Pt. 1A., pp, 93-102.

The results of an investigation are presented to determine which weather, production, and time-
related parameters exert significant influence on energy consumption. The regression model
shows that energy consumption in general depends on heating degree-days, production level, and
labor force strength. Extensive gathering of production data and energy data was performed.
Data gathered included production level by product class, heating degree-days, cooling degree-
days, energy consumed by fuel type, labor force, direct and indirect man hours, etc. The best
predictors among competing parameters were selected based on maximizing the adjusted
multiple correlation coefficient. In general, heating degree-days and cooling degree-days are the
most important parameter for predicting total energy consumption, with labor force strength and
production level providing additional explanatory power.

Anderson, D., 1990, "Electrical Usage Predictors Based on the Singular Value Decomposition
Algorithm", M.S. Thesis, Civil, Environmental and Architectura] Engineering Department,

University of Colorado at Boulder.
Uses singular value decomposition to reduce the effects of multicollinearity in a multivariate

regression analysis of electricity use.

Ruch, Chen, Haberl and Claridge, 1993. "A Change-Point Principal Component Analysis

(CP/PCA) Method for Predicting Energy Usage in Commercial Buildings: The PCA Model",
ASME Journal of Solar Energy Engineering, Vol. 115, No. 2, pp. 77-84.

This method utilizes a Principal Component Analysis of intercorrelated influencing parameters
(e.g., dry-bulb temperature, solar radiation and humidity) to predict electricity consumption in
conjunction with a change-point model. This paper describes the PCA procedure and presents
the results of its application in conjunction with a change-point regression, to predict whole-
building electricity consumption. Comparison of the results with a traditional MLR analysis
indicates that this method is a better predictor than a MLR analysis and offers more insight into
the environmental and operational driving forces that influence energy consumption. The PCA
method transforms the original variables into an uncorrelated set of orthogonal variables that are
linear combinations of the original variables. These new variables, called principal components,
retain all of the information of the original variables. Therefore, MLR can be used without
compromise associated with variable correlation.
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Reddy, T. and D. Claridge. 1994. "Using Synthetic Data To Evaluate Multiple Regression And

Principal Component Analyses For Statistical Modeling Of Daily Building Energy
Consumption", Energy and Buildings, Vol. 21, No.1, pp. 35-44.

Discusses multiple regression modeling and principle component analysis. MRA has been
faulted as a means of predicting energy use because of the multicollinearity between the
regressor variables. PCA has the potential to overcome this drawback of MRA. This paper
gives a broad evaluation of each technique and some guidelines under which one approach is
preferable. When using more than one climatic variable, PCA can remove the multicollinear
effects in the regressor variables. Can be applied to a general discussion of measuring energy
consumption in buildings.

Austin, S. 1997. "Regression Analysis for Savings Verification". ASHRAE Journal, Vol. 39.
Describes linear, polynomial, multiple linear regression and use of dummy variables to group

data into categories. Examples include regression of chiller efficiency versus percent load and
condensor water temperature, compressor output versus air temperature and washing cycles, and
utility load versus time. Mentions splitting data into groups to get better fit, but not how to force
lines to meet at group division (i.e. change-point model).

Katipamula, S., T. Reddy and D. Claridge. 1998. "Multivariate Regression Modeling". ASME
Journal of Solar Energy Engineering, Vol. 120, No. 3, pp. 177-184.

As a result of energy consumption in large commercial buildings being a complicated function,
MLR provides better accuracy than a single variable model for modeling energy consumption.
This paper also addresses the best time resolution of data to adopt to make the regression most
accurate. Many independent variables have been used to perform an MLR model including,
cooling-degree days, heating-degree days, wind speed and direction, humidity, refrigeration type,
exhaust air, supply air, average shading in winter, average shading in summer and so on.
Different buildings used different independent variables, some up to ten others as few as two.
MLR models based on engineering principles are difficult to develop because they require
knowledge of the HVAC system operation and how it related to other building systems. Another
disadvantage of MLR is the variables should be independent of each other, which is not the case
in reality.

MLR models for cooling energy consumption with DDCV systems and DDVAV systems are
presented. For these models it has been determined that collinearity is not significant between
T, Tap+ and q; at daily and hourly time scales, but is significant between T, and g0 Five
buildings in central Texas were modeled using piecewise MLR. Stepwise regression, used to
show the contribution of each individual variable, is presented for the buildings that were used.
The outside dry-bulb temperature is shown to account for over 87% of the cooling energy use for
the DDCV model and 83% for the DDVAYV model. Time scales used were monthly, daily,
hourly, and HOD. Advantages and disadvantages of different time scales for modeling effort,
metering and monitoring, data needed for robust modeling, applicability to savings
measurements, prediction uncertainty, O&M opportunities detection and dynamic control are
presented.

The MLR method is capable of measuring retrofit energy savings and identifying O&M
problems.
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Combination VBDD/CP/MVR Models

Rabl, A and A, Rialhe. 1992. "Energy Signature Models for Commercial Buildings: Test With
Measured Data And Interpretation”, Energy and Buildings, Vol. 19, No. 2, pp. 143 - 154.

This paper discusses the advantages of including occupancy as an additional variable to the
energy signature model PRISM.

Sonderregger, R. 1997. "Energy Retrofits in Performance Contracts: Linking Modeling and
Tracking". Cool Sense National Forum on Integrated Chiller Retrofits, San Francisco

September 23-24.

Paper begins by describing an energy accounting method for modeling utility billing data. In this
method, monthly energy use from the "tuning" (baseline or pre-retrofit) period is regressed
against variable base heating and cooling degree days and other independent variables. A
method for predicting savings based on modifying the regression coefficients from the tuning
period, and the limitations of this method, are described. The attributes and limitations of
simulation models predict energy savings are described. A method to calibrate simulation results
using the previous regression method is described. In this method, simulation results are
regressed against the same independent variables as utility bills. The simulation results are
acceptable when the ratios of coefficients from the simulation regression are similar to the ratios
of coefficients from the utility regression. Savings can then be predicted from the percent
change of the simulation regression coefficients.

Sonderegger, R. A., 1998. "Baseline Model for Utility Bill Analysis Using Both Weather and
Non-Weather-Related Variables", ASHRAE Transactions, Vol. 104, No. 2 ., pp. 859-870.

Paper:

e discusses how to determine tuning (or baseline) period, even in the presence of plug creep.

e proposes a general baseline regression equation using utility billing data as the dependent
variable and period length, variable-base heating and cooling degree days and other
influential parameters as the independent variables
describes a method for fitting other influential data to utility billing periods.

describes least squares regression, good-ness of fit and how to use the t statistic to find if a
coefficient should be included in the model.

e describes sequential method of regression where degree-day base temperatures are selected
first, then additional independent variables are added as needed.
describes how large ranges of base-temperatures will produce the same goodness of fit.
shows equivalence of VBDD models and mean temperature models when mean temperature
models are used with daily temperatures.

e shows examples where additional non-weather variables increase the goodness-of-fit.

Kissock, J., 1999, "VBDDSave", University of Dayton, Dayton, OH.
Software to integrate utility billing and temperature data, calculate the best base temperature for
a VBDD model, and use these VBDD in a MVR model.
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Calibrated Simulation Models

Katipamula, S. and D. Claridge. 1993. "Use of Simplified System Models to Measure Retrofit
Energy Savings", ASME Journal of Solar Energy Engineering, Vol. 115, No. 2, pp. 57-68.

This paper describes a method that can be used to calculate energy savings when no pre-retrofit
data are available. The method is based on use of simplified calibrated system models. A VAV
model was developed based on the ASHRAE TC 4.7 Simplified Energy Analysis Procedure and
calibrated with post-retrofit data from a building in central Texas. Climate data, building data,
and HVAC data are used to simulate the post-retrofit system. In the absence of pre-retrofit data,
savings can be estimated by predicting the pre-retrofit system behavior with the use of an hourly
simulation model.

Wilson, J., 1998. "The Significant Role of Energy Calculations in the Success of Long-Term
Energy Guarantees. ASHRAE Transactions, Vol. 104, No.2, pp. 880-894.

Situations can arise that change the energy consumption behavior of a building. When this
happens, changes in the pre-retrofit baseline need to be made to ensure the integrity of a
performance contract. This paper discusses a calculated baseline adjustment to provide an
effective method of accommodating the change while still retaining the basic tenants of the
original energy guarantee. This paper presents examples of these types of situations and how to
adjust the baseline calculation.

Artificial Neural Networks

Anstett, M. and J. Kreider, 1993. "Application of Neural Networking Models to Predict Energy

Use". ASHRAE Transactions, Vol. 99, Pt. 1, pp. 505-517.
Discusses the application of an artificial neural network model to predict energy use in a

complex institutional building without the need for a data acquisition system. Discussion of
general building energy consumption techniques will discuss neural networks.

MacKay, D., 1994. "Bayesian Nonlinear Modeling for the Prediction Competition", ASHRAE

Transactions, Vol. 100, No.2, pp. 1053-1062.
Winner of the 1993 energy prediction competition. Removed autocorrelation from independent

variables using principle component analysis. Then used neural network method with automatic
relevance determination for the regression parameters.

Feuston, B. and J. Thurtell. 1994. "Generalized Nonlinear Regression With Ensemble Of Neural
Nets: The Great Energy Predictor Shootout", ASHRAE Transactions, Vol. 100, No. 2, pp. 1075-

1080.

Discusses the use of neural networks to model whole building electric, chilled water, and hot
water. Five independent parameters are used: time stamp, dry-bulb temperature, humidity ratio,
solar flux, and wind speed. The technique prediction compared to actual consumption is
presented. Can be applied to a general discussion of measuring energy consumption in
buildings.
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Kissock, J.K., 1994. "Modeling Commercial Building Energy Use with Artificial Neural
Networks", Proceedings of the 29th Intersociety Energy Conversion Engineering Conference,

Vol. 3, pp. 1290-1295, Monterey, CA, August.
General description of neural network method and comparison of simple neural networks with
regression modeling.

Kreider, Claridge, Curtiss, Dodier, Haberl and Krarti, 1995. "Building Energy Use Prediction
and System Identification Using Neural Networks" ASME Journal of Solar Energy Engineering,

Vol. 117, No. 3, pp. 161-166.
This paper addresses the difficult task of predicting energy consumption well into the future

without knowledge of immediately past energy consumption. Discussion of general building
energy consumption techniques will discuss neural networks.

Curtiss, P., G. Shavit and J. Kreider. 1996. "Neural Networks Applied To Buildings - A Tutorial
And Case Studies In Prediction And Adaptive Control". ASHRAE Transactions, Vol. 102, No. 1,

pp. 1141-1146.
The paper discusses the use of neural networks to predict building energy use and measure

retrofit savings. Produces small RMS errors. Use for broad discussion of measuring energy
savings.

Krarti, M., J. Kreider, D. Cohen and P. Curtiss. 1998. "Estimation of Energy Savings for
Building Retrofits Using Neural Networks", ASME Journal of Solar Energy Engineering, Vol.
120, No. 3, pp. 211-216.

Overviews the use of neural networks to estimate energy and demand savings from retrofits of
commercial buildings. Also included is a brief background on neural networks along with three
case studies to demonstrate how to successfully implement neural networks. Neural networks
provide superior accuracy for predicting energy use in buildings. Weather data, occupancy
profiles, and day types are generally considered as inputs into NN's to predict building energy
use. Neural networks consist of several layers of neurons that are connected to each other via
transport links. Connection strengths (weights) between the neurons are adjusted to produce the
desired outcome.

Can be used to demonstrate other non-regression type methods of predicting building energy use.

Advanced Regression Techniques

Ionides, G., 1984. “Effect of Statistical Measuring Errors on the Goodness of Fit in Linear
Regression”. Tappi Journal. Vol. 67, No. 11, pp. 114-115.

The degree of dependence of the dependent variable on one or more independent variables is
influenced both by the extent to which variables are physically related and by the precision with
which the variables are measured. A technique is described in which the influence on R of
statistical measuring errors in the dependent and independent variables can be separated out.

Efron, B., 1988. “Computer-Intensive Methods in Statistical Regression”. SIAM Review. Vol. 30,
No. 3, pp. 421-449.

This is a survey of modern developments in statistical regression. Topics discussed include
robust regression, bootstrap measures of variability, local smoothing and cross-validation,
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projection pursuit, Mallows’ C, criterion, Stein estimation, generalized regression for Poisson
data, and regression methods for censored data.

Neri, F., 1989. “An Accurate And Straightforward Approach To Line Regression Analysis Of

Error-Affected Experimental Data”. Journal of Physics. Vol 22, pp. 215-217.
Regression technique using the minimization of the shortest distance between each experimental

point and the theoretical line.

Itakura, H., 1993. “A Solution to Multiple Linear Regression Problems With Ordered
Attributes”. Computers Mathematical Applications. Vol. 25, No. 2, pp. 47-57.

A class of multiple linear regression techniques is discussed, in which the order of magnitude is
constrained among regression coefficients. The problem to be solved is reduced to a quadratic
programming problem in which the objective function is the residual sum of the squares in
regression, and the constraints are linear ones imposed on the regression coefficients.

Nievergelt, Y., 1994. “Total Least Squared: State-of-the-Art Regression in Numerical Analysis”.
SIAM Review. V36, n2, pp. 258 - 263.

Classroom notes for regression analysis. Includes elementary algorithm for total least squares
fits in numerical and applied analysis.

lijima, M., K. Takagi, R. Takeuchi and T. Matsumoto. 1994. "Piecewise-Linear Regression On
The ASHRAE Time-Series Data", ASHRAE Transactions, Vol. 100, Pt. 2. pp. 1088-1095.

Using piecewise-linear regression in the ASHRAE Building Energy Prediction Shootout.

Can be applied to a general discussion of measuring energy consumption in buildings.

There is a distinct difference between energy consumption on workdays and that on holidays or
weekends.

Dhar,A., Reddy, T.A., Claridge, D., 1988. "Modeling Hourly Energy Use in Commercial
Buildings with Fourier Series Functional Forms", ASME Journal of Solar Energy Engineerin

Vol. 120, No. 3, pp. 217-223.

Uncertainty of Savings

Reddy, T.A, Kissock, J.K. and Claridge, D.E., 1992. "Uncertainty Analysis in Estimating
Building Energy Retrofit Savings in the Texas LoanSTAR Program", Proceedings of the ACEEE
Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, August.

Describes methods to estimate the uncertainty of savings from linear regression models.

Kissock, J., T. Agami, D. Fletcher and D. Claridge. 1993. "The Effect of Short Data Periods on

the Annual Prediction Accuracy of Temperature-Dependent Regression International Solar
Engineering Conference, pp. 455 - 463.

Ideally, a full year or more of energy use and weather data should be used for empirical energy
consumption models. Sometimes a full year of data is not available and one is constrained to
develop a model using the ideal full year of data. This paper examines how temperature
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dependent regression models of energy use based on periods of less than one-year compare to
models developed using a full year’s worth of data. Models using data sets of one, three and five
months were explored.

Models based on three months of data for the case of chilled water consumption varied from
4% to 20%, however, heating energy use varied as much as 400%. These results are based off
buildings located in central Texas. The degree of error is therefore climate dependent. Models
based off of short data periods are shown to have the potential of being severally erroneous. Use
data periods of a year or more.

Katipamula,S., T. Reddy and D. Claridge. 1995. Effect of Time Resolution on Statistical
Modeling of Cooling Energy Use in Large Commercial Buildings, ASHRAE Transactions,

Vol.101, Pt. 2, pp. 172-185.

The question arises as to the best time resolution is most accurate when hourly monitored data
are available. This paper addresses this question by comparing monthly, daily, hourly and
individual hourly or hour-of-day multiple linear regression models when applied to measured
cooling consumption in commercial buildings. The advantages and disadvantages associated
with each model are also presented. The outdoor dry-bulb and dew-point temperatures account
for most of the variation in a buildings energy consumption. Monthly models had higher model
R2 then daily, hourly, and HOD models. However, daily and HOD models proved more accurate
in determining cooling energy consumption. Monthly and daily time scales are preferred
because some operational parameters such as internal heat gain that change on an hourly basis is
constant on a daily basis. They also require less effort in data collecting. Modeling a large
commercial building using monthly data requires 12 months or more of data. Daily time scale
models are most advantageous for retrofit savings determination. The HOD time scale best
models O&M.

Reddy, T., J. Kissock and D. Ruch. 1998. Uncertainty In Baseline Regression Modeling And In
Determination Of Retrofit Savings. ASME Journal of Solar Energy Engineering, Vol. 120, No.
3. pp. 185-192.

The various sources of uncertainty inherent in the estimation of measuring energy savings from
baseline models and the statistics involved in determining the uncertainty is presented.
Improper model residuals along with how model predictions are effected by incomplete data
periods not allowing for the entire range of variation of climatic conditions are addressed.

Kissock, K., H. Joseph and J. McBride. 1998. "The Effects of Varying Indoor Air Temperature
and Heat Gain on the Measurement of Retrofit Savings" ASHRAE Transactions", Vol. 104, Pt.

2., pp. 895-900. :

Many methods used to measure energy savings between a pre- and post-retrofit period use
weather dependent variables for the model. These implicitly assume that the indoor air set-point
temperature and internal gains are the same before and after the retrofit. This paper develops
expressions that suggest that retrofit savings are highly sensitive to minor indoor air temperature
changes and internal heat gains. Many baseline energy models use only outside air temperature
as an indicator of weather conditions because of the relative magnitudes of the conduction and
sensible air-conditioning loads and because of the high correlation between outside air
temperature and other environmental variables. In simple buildings, the accuracy of estimated
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savings could be significantly improved by adding indoor air-temperature in the baseline model.
This paper explains how varying inside air temperature and internal heat gain affect estimated
savings.

Ruch, D.K., Kissock, J.K. and Reddy, T.A., 1999. "Model Identification and Prediction
Uncertainty of Linear Building Energy Use Models with Autocorrelated Residuals ", ASME

Journal of Solar Energy Engineering , Vol.121, No.1, pp. 63-68.
Autocorrelated residuals from regression models of building energy use present problems when

attempting to estimate retrofit energy savings and the uncertainty of the savings. The causes of
autocorrelation in energy use models and methods of dealing with autocorrelation are discussed.
To accurately predict energy use and give realistic uncertainty estimated a hybrid of ordinary
least squares (OLS) and autoregressive models (AR) is used. The hybrid OLS-AR model has
been proven to provide more accurate uncertainty estimated than the OLS estimate. The presence
of autocorrelation causes statistical problems. Estimated prediction error bounds will be too
small, leading to undue confidence being placed on the accuracy of predicted energy use.
Outside temperature is an easily measured variable, whereas, humidity and internal loads are
difficult and sometimes expensive to measure. Therefore, the omission of important predictor
variables from the model and the consequent autocorrelation of model residuals may be
unavoidable. The hybrid approach to predicting pre-retrofit energy consumption in the post-
retrofit period benefits from the prediction accuracy of OLS regression coefficients but does not
use the standard OLS error diagnostics that are inaccurate when autocorrelation is present. For
many buildings it may not be possible to eliminate autocorrelation through model redesign,
therefore, a hybrid model is used. The derivation of this model is provided along with error

discussion.
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PREFACE

This CD-ROM contains detailed test results of the Inverse Modeling Toolkit software (IMT),
which was developed for ASHRAE Research Project 1050-RP. The test files included in the CD-
ROM are divided into 15 subdirectories with their names referring to the types of models that
were tested (i.e., 1P, 2P, 3P_COOL, 3P_HEAT, 3P_MVR, 4P, 4P_MVR, 5P, 5SP_MVR, CDD,
CDD_MVR, HDD, HDD_MVR, MVR, and Site_test). Each test that was performed consists of
four different IMT file types, which include: 1) IMT instruction file (INS), 2) IMT data file
(.DAT), 3) IMT output file (IMT.OUT), and 4) IMT residual file (IMT.RES). The residual files
are included for those tests that needed further testing or error checking, which is the case of
CDD-MVR and HDD-MVR tests.

Some tests were performed to compare the results against those calculated by other programs,
which include EModel (Kissock et al., 1996), SAS (SAS Institute Inc., 2001), and PRISM (Fels,
M. et al., 1986). Each EModel test contains three files, including a data file (DAT), an
instruction file (DVN), and an output file (DOC). IMT and EModel share the same data file
(.DAT). Each SAS run contains a procedure file (.SAS) and an output file ((LST) and also shares
the same data file as IMT. For each PRISM run, there are three files included: a weather file
(.TPS), a data file or meter file (MTR), and an output file (DOC).

This report is named "summary.doc" and it is located in the main directory of the CD-ROM. The
IMT program is also included in this CD in the "IMT" subdirectory.
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ABSTRACT

This is the detailed test report for the ASHRAE 1050-RP project. This report presents the
detailed results of the testing of IMT (Inverse Modeling Toolkit). Two kinds of testing were
performed, bounds testing and accuracy testing. The bounds testing is performed in order to
identify what types of data sets the IMT program can model reliably. A variety of data sets were
used to test the limits of the program: 1) Data sets with as few as two and as many as 9,000 data
points, 2) Data sets with very large and very small numbers, 3) Data set with a variety of slopes,
and 4) Data sets with tightly packed and widely scattered observations.

In terms of accuracy test, 1P, 2P and MVR models were benchmarked against the statistical
software SAS (SAS Institute Inc., 2001). The change-point model results (3P and 4P) were
compared to those calculated by the data analysis software EModel (Kissock et al., 1996).
Finally, the IMT's HDD and CDD models were compared to PRISM HO and CO models (Fels,
M. et al., 1986).
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1. CD-ROM CONTENTS

The followings are the tests contained in this CD-ROM. X: is assumed to be the CD-ROM
drive.

1.1 Mean Model, synthetic data sets (X:\1P)

1-Point (1P_test0)
2-Point (1P_test1)
Scattered (1P_test2)
Packed (1P_test3)
9,000-Point (1P_test4)
Large numbers (1P_test5)
Small numbers (1P_test6)

e e e e e N )
el el el e e e N )
N AN PSD W=

1.2 Two-Parameter Model, synthetic data sets (X:\2P)

1.2.1 2-Point (2P_test0)

1.2.2 3-Point (2P_testl)

1.2.3 Scattered (2P_test2)

1.2.4 Packed (2P_test3)

1.2.5 9,000-Point (2P_test4)
1.2.6 Large numbers (2P_testS)
1.2.7 Small numbers (2P_test6)
1.2.8 Maximum X (2P_test7)
1.2.9 Maximum Y (2P_test8)
1.2.10 Slope A (2P_test9)

1.2.11 Slope B (2P_test10)
1.2.12 Slope C (2P_test11)
1.2.13 Slope D (2P_test12)

1.3 Three-Parameter Change-Point Cooling Model, synthetic data sets (X:\3P_COOL)

1.3.1 3-Point (3PC_test0)

1.3.2 5-Point (3PC_testl)

1.3.3 Scattered (3PC_test2)

1.3.4 Packed (3PC_test3)

1.3.5 9,000-Point (3PC_test4)
1.3.6 Large numbers (3PC_test5)
1.3.7 Small numbers (3PC_test6)
1.3.8 Maximum X (3PC_test7)
1.3.9 Maximum Y (3PC_test8)
1.3.10 Slope A (3PC_test9)

1.3.11 Slope B (3PC_test10)
1.3.12 Slope C (3PC_test11)
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1.3.13 Slope D (3PC_test12)

14 Three-Parameter Change-Point Heating Model, synthetic data sets (X:\3P_HEAT)

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

3-point (3PH_test0)
5-Point (3PH_test1)
Scattered (3PH_test1)
Packed (3PH_test3)
9,000-Point (3PH_test4)
Large numbers (3PH_test5)
Small numbers (3PH_test6)
Maximum X (3PH_test7)
Maximum Y (3PH_test8)

1.4.10 Slope A (3PH_test9)

1.4.11 Slope B (3PH_test10)
1.4.12 Slope C (3PH_test11)
1.4.13 Slope D (3PH_test12)

1.5 Three-Parameter Change-Point with Multiple Variable Regression Model (X:\3P_MVR)

15.1
1.5.2
153
1.54
1.5.5
1.5.6

1.5.7
1.5.8
1.5.9

WBCOOL VS Temperature (3PC_Mvrl)

WBCOOL VS Humidity Ratio (3PC_Mvr2)

WBCOOL VS Solar Radiation (3PC_Mvr3)

WBCOOL VS WBHEAT (3PC_Mvr4)

WBCOOL VS WBE (3PC_Mvr5)

WBCOOL VS Temperature, humidity ratio, solar radiation, WBH, and WBE
(BPC_Mvr6)

WBCOOL VS Temperature, humidity ratio, solar radiation, and WBH (3PC_Mvr7)
WBHEAT VS Temperature (3PH_Mvrl)

WBHEAT VS Humidity Ratio (3PH_Mvr2)

1.5.10 WBHEAT VS Solar Radiation (3PH_Mvr3)
1.5.11 WBHEAT VS Temperature, humidity ratio, solar radiation (3PH_Mvr4)

1.6 Four-Parameter Change-Point Model, synthetic data sets (X:\4P)

1.6.1
1.6.2
1.6.3
164
1.6.5
1.6.6
1.6.7
1.6.8
1.6.9

3-Point (4P_test0)
5-Point (4P_test1)
Scattered (4P_test2)
Packed (4P_test3)
9,000-Point (4P_test4)
Large numbers (4P_test5)
Small numbers (4P_test6)
Maximum X (4P_test7)
Maximum Y (4P_test8)

1.6.10 Slope A (4P_test9)
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1.6.11 Slope B (4P_test10)
1.6.12 Slope C (4P_test11)
1.6.13 Slope D (4P_test12)
1.6.14 Slope E (4P_test13)
1.6.15 Slope F (4P_test14)
1.6.16 Slope G (4P_testl5)
1.6.17 Slope H (4P_test16)
1.6.18 Slope I (4P_test17)

1.7 Four-Parameter Change-Point with Multiple Variable Regression Model (X:4P_MVR)

1.7.1 WBCOOL VS Temperature (4PC_Mvrl)

1.7.2  WBCOOL VS Humidity Ratio (4PC_Mvr2)

1.7.3 WBCOOL VS Solar Radiation (4PC_Mvr3)

1.7.4 WBCOOL VS WBHEAT (4PC_Mvr4)

1.7.5 WBCOOL VS WBE (4PC_Mvr5)

1.7.6 ' WBCOOL VS Temperature, humidity ratio, solar radiation, WBH, and WBE
(4PC_Mvr6)

1.7.7  WBCOOL VS Temperature, humidity ratio, and solar radiation (4PC_Mvr7)

1.7.8  WBHEAT VS Temperature (4PH_Mvrl)

1.7.9 WBHEAT VS Humidity Ratio (4PH_Mvr2)

1.7.10 WBHEAT VS Solar Radiation (4PH_Mvr3)

1.7.11 WBHEAT VS Temperature, humidity ratio, solar radiation (4PH_Mvr4)

1.8 Five-Parameter Change-Point Model, synthetic data sets (X:\5P)

1.8.1 4-Point (5P_test0)

1.8.2 7-Point (5P_testl)

1.8.3 Scattered (5P_test2)

1.8.4 Packed (S5P_test3)

1.8.5 9,000-Point (5P_test4)
1.8.6 Large numbers (5P_test5)
1.8.7 Small numbers (5P_test6)
1.8.8 Maximum X (5P_test7)
1.8.9 Maximum Y (5P_test8)
1.8.10 Slope A (5P_test9)

1.8.11 Slope B (5P_test10)
1.8.12 Slope C (5P_test11)
1.8.13 Slope D (5P_test12)
1.8.14 Slope E (5P_test13)
1.8.15 Slope F (5P_test14)

1.9 Five-Parameter Change-Point with Multiple Variable Regression Model (X:\5SP_MVR)

1.9.1 MCC VS Temperature (5P_Mvrl)
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1.9.2
193
1.94
1.9.5

MCC VS Humidity Ratio (SP_Mvr2)

MCC VS Solar Radiation (5P_Mvr3)

MCC VS Temperature, humidity ratio, and solar radiation (5SP_Mvr4)
MCC VS Temperature and humidity ratio (SP_Mvr5)

1.10  Variable-Base Cooling Degree-Day Model (X:\CDD)

1.10.1 Whole Building Electricity Use Per Day
1.10.2 Whole Building Electricity Use Per Billing Period

1.11 Variable-Base Cooling Degree-Day with Multiple Variable Regression Model
(X:\CDD_MVR)

1.11.1 WBCOOL VS Temperature (CDD_Mvrl)

1.11.2 WBCOOL VS Humidity ratio (CDD_Mvr2)

1.11.3 WBCOOL VS Solar radiation (CDD_Mvr3)

1.114 WBCOOL VS Temperature, humidity ratio, and solar radiation (CDD_Mvr4)

1.11.5 WBCOOL VS Temperature, humidity ratio, and solar radiation using the CDD
residual file as input to the MVR model to produce CDD-MVR capabilities
(CDD_Mvr$5)

1.12 Variable-Base Heating Degree-Day Model (X:\HDD)

1.12.1 Whole Building Heating Energy Use Per Day

1.12.2 Whole Building Heating Energy Use Per Billing Period

1.13 Variable-Base Heating Degree-Day with Multiple Variable Regression Model

(X:\\HDD_MVR)

1.13.1 WBHEAT VS Temperature (HDD_Mvrl)

1.13.2 WBHEAT VS Humidity ratio (HDD_Mvr2)

1.13.3 WBHEAT VS Solar radiation (HDD_Mvr3)

1.134 WBHEAT VS Temperature, humidity ratio, and solar radiation (HDD_Mvr4)

1.13.5 WBHEAT VS Temperature, humidity ratio, and solar radiation using the HDD
residual file as input to the MVR model to produce HDD-MVR capabilities
(HDD_Mvr5)

1.14 Multiple Variable Regression Model (X:\MVR)

1.14.1 Synthetic data (MVR_0)

1.14.2 WBE VS Temperature, humidity ratio, and solar radiation (MVR_1)

1.14.3 WBCOOL VS WBE, WBHEAT, temperature, humidity ratio, and solar radiation

(MVR_2)
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1.144 WBHEAT VS WBE, WBCOOL, temperature, humidity ratio, and solar radiation
(MVR_3)

1.15 LoanSTAR Data Sets (X:\Site_test)

1.15.1 Mean Model (1P_Comp)

1.15.2 Two-Parameter Model (2P_Comp)

1.15.3 Three-Parameter Cooling Model (3PC_Comp)
1.15.4 Three-Parameter Heating Model (3PH_Comp)
1.15.5 Four-Parameter Cooling Model (4P_Comp)
1.15.6 Five-Parameter Cooling Model (5P_Comp)
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2. SUMMARY

The results of each test are generally presented in two tables. One table, for example

Table 1.1, contains a list of files used in performing the test, including types of data sets and tests
and general comments about the results.

The "Data Type" column shows types of data sets and testing. The files with .INS and

.DAT extensions are the IMT instruction and data files respectively. EModel and IMT share the
same input data files, .DAT files, which are formatted, space-delimited ASCII text files. The
.DOC files are the EModel output files, which are MS WORD document files. The files in the
"SAS" column are the SAS input (.SAS) and output files (.LST), which can be opened with any
text editor program. In addition, if PRISM was used in performing the test, for each PRISM run,
there are three files included: a weather file (. TPS), a data file or meter file (MTR), and an
output file (.DOC). The “Status” column summarized the results of IMT as compared to other
programs used.

In Table 1.2, the detailed results from the IMT bounds testing are shown, along with the

comparison testing with other programs (e.g., EModel, PRISM, and SAS).

Table 1.1 contains a list of the files used in performing one-parameter (1P) and two-
parameter (2P) tests of IMT against EModel and SAS. The input data for IMT are
synthetic and generated with known values and coefficients in order to perform accuracy
tests of IMT. The results indicate that the minimum number of observations for the Mean
model is two data points. In terms of magnitude, IMT ran correctly and produced output
of the numbers with absolute values as small as 3.3 x 10 and as large as 1 x 10'8, Each
model was successfully tested using 9,000 observations. For the 2P model, IMT
successfully modeled data sets with slopes greater than or less than zero, and slopes less
than infinity (i.e., vertical). Following Table 1.1 is Table 1.2, which contains the detailed
outputs from the three programs. Generally, IMT, EModel, and SAS produced outputs in
good agreement with each other.

Table 2.1 contains a list of the files used in performing three-parameter change-point
cooling (3PC) and heating (3PH) model tests of IMT against EModel. The input data for
IMT are synthetic and generated with known values and coefficients in order to perform
accuracy tests of IMT. The results indicate that the minimum number of observations for
the 3P model is five. In terms of magnitude, IMT ran correctly and produced output of
the numbers with absolute values as small as 3.3 x 10”7 and as large as 1 x 10'®, Each
model was successfully tested using 9,000 observations. For the 3P model, IMT
successfully modeled data sets with slopes greater than or less than zero, and slopes less
than infinity (i.e., vertical), but it failed to identify flat slopes (i.e., Slope A). Following
Table 2.1 is Table 2.2, which contains the detailed outputs from the two programs.
Generally, IMT and EModel produced outputs in good agreement with each other.

Table 3.1 contains a list of the files used in performing four-parameter change-point (4P)
models tests of IMT, also against EModel. The input data for IMT are synthetic and
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generated with known values and coefficients in order to perform accuracy tests of IMT.
The results indicate that the minimum number of observations for the 4P model is five. In
terms of magnitude, IMT ran correctly and produced output of the numbers with absolute
values as small as 3.3 x 10”7 and as large as 1 x 10'%, Each model was successfully tested
using 9,000 observations. For the 4P model, IMT successfully modeled data sets with
slopes greater than or less than zero, and slopes less than infinity (i.e., vertical), but it
failed to identify flat slopes (i.e., Slope A). Following Table 3.1 is Table 3.2, which
contains the detailed outputs from the two programs. Generally, IMT and EModel
produced outputs in good agreement with each other.

e Table 4.1 contains a list of the files used in performing the IMT tests of five-parameter
change-point (5P) and five-parameter with multiple variable regression models
(5P/MVR). For the SP model, the input data for IMT are synthetic and generated with
known values and coefficients. The results indicate that the minimum number of
observations for the 5P model is seven. In terms of magnitude, IMT ran correctly and
produced output of the numbers with absolute values as small as 3.3 x 10”7 and as large
as 1 x 10'®. Each model was successfully tested using 9,000 observations. For the 5P
model, IMT successfully modeled data sets with slopes greater than or less than zero, and
slopes less than infinity, but it failed to identify flat slopes (i.e., Slope A).

For the five-parameter change-point with multiple variable regression models (SP/MVR),
the input data were obtained from the LoanSTAR database. The building used for these
tests was the Zachry Engineering Center, Texas A&M University for the period of 1/1/99
to 12/31/99. The dependent variable is the energy consumption of the VAV motor control
center (MCC). The independent variables include outdoor temperature, humidity ratio,
and solar radiation. The results indicated that the maximum number of independent
variables is two. Following Table 4.1 are Table 4.2 and Table 4.3, which contain the
detailed outputs from IMT. No comparison tests were run for the SP/MVR model.

e Table 5.1 contains a list of the files used in performing the IMT tests of three-parameter
change-point with multiple variable regression models (3P/MVR). The input data were
obtained from the LoanSTAR database. For the 3PC/MVR model, the dependent variable
is the whole-building cooling energy consumption (WBC). The independent variables
include outdoor temperature, humidity ratio, solar radiation, whole-building heating
energy (WBH), and whole-building electricity consumption (WBE). For the 3PH/MVR
model, the dependent variable is the whole-building heating energy consumption (WBH).
The independent variables include outdoor temperature, humidity ratio, and solar
radiation. The results indicated that the maximum number of independent variables is
four. Following Table 5.1 is Table 5.2, which contains the detailed outputs from IMT. No
comparison tests were run for the 3P/MVR model.

e Table 6.1 contains a list of the files used in performing the IMT tests of four-parameter
change-point with multiple variable regression models (4P/MVR). The input data were
obtained from the LoanSTAR database. For the 4PC/MVR model, the dependent variable
is the whole-building cooling energy consumption (WBC). The independent variables
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include outdoor temperature, humidity ratio, solar radiation, whole-building heating
energy (WBH), and whole-building electricity consumption (WBE). For the 4PH/MVR
model, the dependent variable is the whole-building heating energy consumption (WBH).
The independent variables include outdoor temperature, humidity ratio, and solar
radiation. The results indicated that the maximum number of independent variables is
three. Following Table 6.1 is Table 6.2, which contains the detailed outputs from IMT.
No comparison tests were run for the 4P/MVR model.

e Table 7.1 contains a list of the files used in performing the IMT tests against EModel and
SAS of real data using several models (e.g., 1P, 2P, 3PC, 3PH, 4P, and 5P). The input
data were obtained from several LoanSTAR buildings. The "Data Type" column shows
LoanSTAR building ID and data channels that were used. Generally, IMT, EModel, and
SAS produced outputs in good agreement with each other. Following Table 7.1 is Table
7.2, which contains the detailed outputs from IMT, EModel, and SAS.

e Table 8.1 contains a list of the files used in performing the IMT tests of the Variable-
Base Cooling Degree-Day Model (CDD) and the CDD with multiple variable regression
model (CDD/MVR). For the CDD model, IMT was benchmarked against PRISM. The
utility data that were used as input data for IMT were obtained from a residential building
located in College Station, Texas. In order to compare with PRISM CO model, the input
data were prepared for two data sets. One contains energy use per billing periods (Q) to
match the slope coefficients, and the other contains energy use per day (Q/day) to match
the base use coefficients. Table 8.2 contains all detailed output values from the two
programs. Generally, IMT and PRISM produced outputs in good agreement with each
other.

For the CDD model with multiple variable regression model (CDD/MVR), the CDD
model was run, then a residual file was used as input to the MVR model in order to
produce CDD-MVR capabilities. The input data were obtained from a LoanSTAR
building. The dependent variable is the whole building cooling energy consumption
(WBC). The independent variables include outdoor temperature, humidity ratio, and solar
radiation. Table 8.3 contains the detailed outputs from the IMT program. No comparison
tests were performed for this model.

e Table 9.1 contains a list of the files used in performing the IMT tests of the Variable-
Base Heating Degree-Day Model (HDD) and the HDD with multiple variable regression
model (HDD/MVR). For the HDD model, IMT was benchmarked against PRISM. The
utility data that were used as input data for IMT were obtained from a residential building
located in College Station, Texas. In order to compare with PRISM HO model, the input
data were prepared for two data sets. One contains energy use per billing periods (Q) to
match the slope coefficients, and the other contains energy use per day (Q/day) to match
the base use coefficients. Table 9.2 contains the detailed outputs from the two programs.
Generally, IMT and PRISM produced outputs in good agreement with each other.
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For the HDD model with multiple variable regression model (HDD/MVR), the HDD
model was run, then a residual file was used as input to the MVR model in order to
produce HDD-MVR capabilities. The input data were obtained from the LoanSTAR
database. The dependent variable is the whole-building heating energy consumption
(WBH). The independent variables include outdoor temperature, humidity ratio, and solar
radiation. Table 9.3 contains the detailed outputs from the IMT program. No comparison
tests were performed for this model.

e Table 10.1 contains a list of the files used in performing the IMT tests against EModel
and SAS using the Multiple Variable Regression Model (MVR). The input data are both
synthetic and real data. For real data testing, the input data were obtained from the
LoanSTAR database. IMT ran and produced outputs successfully without error. EModel
failed to run the MLR model with the real data sets. Following Table 10.1 is Table 10.2,
which contains the detailed outputs from the three programs. Generally, IMT, EModel,
and SAS produced outputs in good agreement with each other.
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