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ABSTRACT 

Effects of Experimental Fascioliasis on Puberty and Comparison of Mounting Activity 

by Radiotelemetry in Pubertal and Gestating Beef Heifers.  

(August 2004) 

Melissa Jeanne Paczkowski, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. David Forrest 

 Angus-sired heifers were allotted by age (mean=4 mo), BW (mean=135 kg), and 

sire (n=4) to either a control (n=10) or infected group (n=11; 600 metacercariae of 

Fasciola hepatica, intraruminally) to test our hypothesis that puberty is delayed by 

experimental fascioliasis.  Blood samples were collected biweekly for analysis of steroid 

hormone concentrations.  At 2-wk intervals, BW was recorded, and samples were 

collected for analysis of liver enzymes and serum proteins and fecal egg counts.  A 

radiotelemetry system (HeatWatch®) was used to detect estrus and ovulation was 

confirmed by an elevation in serum progesterone (P4) after estrus.  Heifers were 

artificially inseminated (AI) at the second observed estrus.  Serum γ-glutamyl 

transpeptidase (GGT) and aspartate aminotransferase (AST) increased (p<0.0008) 

between day 0 and 112 in the infected group.  Serum estradiol (E2) and P4 concentrations 

did not differ (p>0.1) between treatment groups.  Mean age at puberty was 10 days later 

(p>0.1) in the infected group.  Conception rate did not differ between control and 

infected heifers.   
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 The HeatWatch® data were used to compare mounting activity during estrus in 

pubertal and gestating heifers.  Mean duration of estrus was longer (p<0.01) for the 

second than for the pubertal estrus, though total mount duration and number of mounts 

did not differ.  Number of mounts at second estrus was greater (p<0.05) for heifers that 

conceived (n=9).  Mean duration of estrus and total mount duration at second estrus were 

not associated with pregnancy outcome.  Estrus events were detected in all nine heifers 

during pregnancy (total=73).  A majority (75%) of the interestrus intervals during 

gestation was <17 d.  Number of mounts (p=0.035) and total duration of mounts 

(p=0.022) at second estrus were predictive of number of mounts during gestation.   

 Experimental infection of Fasciola hepatica did not alter serum steroid hormone 

concentration or delay pubertal development in heifers.  Estrus duration was longer for 

the second estrus compared to the pubertal estrus, and the number of mounts received 

during the second estrus was greater in heifers that did conceive to AI.  Estrus events 

were detected in each heifer during pregnancy; however, a normal interestrus interval 

occurred in only 10% of the estrus events.   
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CHAPTER I 

 INTRODUCTION  

 Livestock reproduction is an important aspect of the meat industry but was 

overlooked for years as nutrition and growth became the main focus for producing leaner 

cuts of meat for less.  As Zajac et al. [1] stated, “fertility in the beef herd has been shown 

to be the most important single factor in determining profitability in a beef cattle 

operation.”  Replacement heifers increase profitability of beef operations by enhancing 

the genetic pool, by allowing producers to select for specific traits with the use of 

artificial insemination, and by allowing producers to cull cows with poor reproductive 

performance.   

 The onset of puberty in heifers is a highly complex and timed process that is 

influenced by nutrition, genetics and endocrinology.  Studies have indicated that poor 

nutrition results in delayed puberty and reduced fertility, as determined by decreased 

pregnancy rates [2, 3].  Heifers need to conceive by 15 months of age in order to calve 

by 24 months.  Laster et al. [4] demonstrated breed influences puberty as a higher 

percentage of Angus heifers reached puberty by 15 months of age compared to their 

Hereford contemporaries.  Jones et al. [5] reported breed type influences age at puberty 

with Angus and Simmental heifers reaching puberty at a younger age.  Pubertal 

development is dependent upon the maturation of the endocrine system, primarily the 

hypothalamic-pituitary-ovarian axis.  During the peripubertal period, the inhibitory  

 
____________ 
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feedback of estrogen decreases allowing the release of gonadotropins, essential for 

follicular growth and ovulation.  Proper reproductive management which takes into 

consideration factors affecting the attainment of puberty can decrease age at puberty, 

resulting in an increased lifetime production of calves.   

 Estrus detection methods were developed to aid producers in determining the 

appropriate time for artificial insemination to increase conception rates.  Methods such 

as the K-mar, Bovine Beacon, and paint markers provide efficient means of detection; 

however, accuracy may be compromised as false mounting can occur leading to 

inaccurate insemination times and reduced conception rates.  These methods are also 

dependent upon the frequency of observation to determine the onset of estrus.  Use of 

systems such as time-lapse video recorders or radiotelemetry, allows for efficient and 

accurate detection of estrus by allowing for continuous monitoring of mounting activity.  

Radiotelemetry offers ease of identification of females in estrus, minimizes labor, and 

data retrieved is less tedious than for time-lapse recorders.  Therefore, radiotelemetry 

fulfills the requirements for accurate estrus detection systems as characterized by Senger 

[6]. 

 

Statement of Problem 

Experiment 1 

 Parasitic infection affects productivity of livestock operations by endangering the 

health and performance of animals.  Fasciola hepatica, also known as the liver fluke, 

infects ruminants after ingestion of metacercariae and causes liver trauma as the flukes 
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migrate through the parenchyma and tissue.  Fascioliasis, the disease caused by Fasciola 

hepatica infection, has been correlated with depressed appetite and weight gain, poor 

milk production, increased mortality, and liver condemnation resulting in economic 

losses in several countries.  Few controlled studies have quantified the effects of 

experimental infection on pubertal development, though it was hypothesized that 

Fasciola hepatica would alter age at puberty due to reduced metabolism of steroid 

hormones by the liver.  Fleming and Fetterer [7] and López-Díaz et al. [8] studied the 

effect of Fasciola hepatica infection on pubertal development in rams and heifers and 

their findings further supported this hypothesis.  López-Díaz et al. [8] observed elevated 

concentrations of estradiol in infected heifers while Fleming and Fetterer [7] reported 

normal concentrations of testosterone in prepubertal rams.   Though contrasting results 

were observed, Fleming and Fetterer [7] went on to report decreased ability of the liver 

to metabolize exogenous testosterone, indicating the metabolic clearance rate was altered 

and suggested compensatory mechanisms were maintaining normal ranges of  

circulating endogenous testosterone.   

 The current study utilized an experimental design similar to that of López-Díaz et 

al. [8] in order to test the hypothesis that Fasciola hepatica infection delays the onset of 

puberty and increases the concentration of estradiol in the circulation.  Improved estrus 

detection systems, sensitive steroid hormone analysis, increased sample size, and liver 

enzyme analyses were employed in the present study to correlate level of infection with 

age at puberty and with serum estradiol and progesterone concentrations. 
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Experiment 2 

 The HeatWatch® system was developed for continuous monitoring of estrus 

behavior, enabling the producer to view data on the number of mounts received, and 

mount and estrus duration.  Compared to conventional methods of visual inspection, 

both methods have high accuracy (low incidence of misdiagnosed estrus), though 

HeatWatch® is more efficient, detecting 100% of the estrus events in cattle compared to 

only 73% detected by visual inspection [9].  Stevenson et al. [9] stated heifers which 

received few mounts or had a short duration of estrus were more likely to be missed by 

visual inspection than by HeatWatch®.  As previously mentioned, producers intending 

to breed by 15 months of age need to be mated soon after puberty (first to fifth estrus 

events); however, no reports were found on mounting activity of pubertal heifers.  At 

this critical time, if heifers receive few mounts or are in estrus for a shorter duration 

during their pubertal estrus, they may not be detected by visual inspection. 

 Estrus, and the accompanying ovulation of a Graafian follicle, occurs on average 

every 21 days in non-pregnant cattle, though it has been reported that cattle have 

displayed signs of estrus throughout gestation without the occurrence of ovulation.  Erb 

and Morrison [10] reported that 5.6% of estrus events in dairy cattle occurred 21 days 

post-conception, adding complications to breeding programs.  Cattle misdiagnosed as 

non-pregnant due to displayed signs of estrus after conception, could abort if rebred or if 

synchronization protocols were used in the herd, primarily those that involve 

prostaglandin F2α.   
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 The second study was designed to quantify the mounting activity of heifers 

during their pubertal and second estrus events by comparing number of mounts, duration 

of mounts, and estrus duration.  Mounting activity and pregnancy outcome were 

analyzed to determine whether mounting activity at the time of insemination was 

correlated with pregnancy.  Heifers that conceived to artificial insemination were 

monitored to determine the rate of occurrence and interestrus interval of estrus activity 

post-conception.  Mounting activity was analyzed to determine if characteristics of 

estrus activity at the time of insemination were predictive of the mounting activity 

during post-conception estrus events.  
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CHAPTER II 

LITERATURE REVIEW 

Endocrine Mechanisms and External Factors Controlling Puberty and Normal 

Cyclicity in Cattle 

Defining Puberty 
 
 Puberty can be defined in several ways: first ovulation of a dominant follicle 

resulting in progesterone concentrations greater than one nanogram per milliliter, first 

observed estrus behavior, or the ability of an animal to reproduce oneself.  The latter 

definition is more accurate as research has indicated that first ovulation is not always 

followed by a behavioral estrus or by an adequate luteal phase (discussed further in this 

chapter) and observed estrus can occur without ovulation of an oocyte.  Genetic and 

environmental factors influence the onset of puberty, suggesting “puberty occurs at a 

specific physiological, as opposed to chronological age” [11]. 

 “Fertility in the beef herd has been shown to be the most important single factor 

in determining profitability in a beef cattle operation” [1].  Heifers reaching sexual 

maturity earlier than their contemporaries have a greater likelihood of producing more 

calves in their reproductive life.  Lesmeister et al. [12] reported that early calving heifers 

(as two-year-olds) continuously calved earlier in their reproductive life (p<0.05), 

produced more kilograms of calf (p<0.01), and had a higher annual calf production than 

heifers calving as three-year-olds.  Pope [13] reported that heifers calving as two-year-

olds produced 0.7 more calves in 6.5 years compared to three-year-olds.  Early calving 

heifers also produced heavier calves at weaning (p<0.01, 488 lbs. vs. 370 lbs) [12] and 
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cows that calved earlier (days 1 to 20, January 1 through 20) were less likely to fail to 

calve in the subsequent season than those that originally calved late (days 21 to 220) 

[14].  Marshall et al. [15] described that “early calving dams tended to be more efficient 

because a greater proportion of their annual production cycle was spent in a productive 

(lactating) mode, diluting maintenance costs as a fraction of total costs” indicating the 

earlier females reach puberty and conceive, the more productive and cost efficient it will 

be in her reproductive life. 

Factors Affecting Puberty: Breed and Nutrition 

 As stated previously, genetic and environmental factors, primarily breed type and 

nutritional status, influences the onset of puberty.  In a comparison of breed types, Jones 

et al. [5] reported that Angus (321 ± 7 d) and Simmental heifers (361 ± 5 d) on average 

reached puberty earlier than their Charolais (420 ± 27 d) and Braford counterparts (497 ± 

19 d; p<0.05).  Due to an earlier puberty date, Angus heifers weighed less at puberty 

(310 ± 8 kg) compared to the other purebred heifers (p<0.05; Simmental 359 ± 10 kg < 

Charolais 403 ± 19 kg ≈ Bradford 424 ± 13 kg).  Early onset of puberty and early 

calving is advantageous to the commercial producer by increasing the pounds of calf 

produced by each heifer; to produce a calf from a heifer around 24 months of age, the 

heifer must reach puberty by 15 months.  Breed type influenced the percentage of heifers 

that reached puberty by 15 months (p<0.005); for example, 91.7 ± 7.1% of Angus 

purebred heifers reached puberty by 15 months of age compared to Hereford purebred 

heifers (48.1 ± 6.8% by 15 months) [4].   
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 Different planes of nutrition have shown to significantly impact age at puberty; 

however, it has no impact on weight at puberty [2].  Heifers were separated into four 

treatment groups: continuous high plane of nutrition from birth to first calving (HH), 

high plane of nutrition for 44 weeks followed by a low plane until two months prior to 

calving (HL), continuous low plane of nutrition from birth to calving (LL), and low 

plane of nutrition for 44 weeks followed by a high plane until two months prior to 

calving (LH).  Weight at puberty was not significantly different between the nutritional 

planes (HH: 565 lb., HL: 548 lb., LL: 525 lb., LH: 567 lb.); however age at puberty was 

significantly affected by nutritional status (HH: 372 d, HL: 552 d, LL: 474 d, LH: 440 d; 

p<0.001) [2].  A recent study [16] reported that Zebu heifers fed high (19.17%), medium 

(13.37%) or low (8.3%) amounts of protein in the feed did affect weight at puberty 

(207.1 kg, 187.0 kg, 161.7 kg, respectively; p<0.05). 

 Short and Bellows [3] fed Angus x Hereford and Hereford x Angus heifers on 

three planes of nutrition (Low: 0.28 kg/d ADG, Medium: 0.45 kg/d, High: 0.52 kg/d) to 

determine the impact on age at puberty, percentage of heifers reaching puberty before 

and during the breeding season, and pregnancy rates.   Heifers fed at low and medium 

nutritional planes were delayed in the onset of puberty compared to the heifers on the 

high nutritional plane (L: 433 d, M: 411 d, H: 388 d; M vs. H and L vs. M and H, 

p<0.01).  At the beginning of the breeding season, only 7 and 24% of the heifers in the 

Low and Medium groups, respectively, reached puberty (H, 83%; M vs. H, p<0.01) and 

only 80% of the heifers in the Low group reached puberty before or during the breeding 

season (M: 97%, H: 100%; L vs. M and H, p<0.01).  Pregnancy rates were reduced in 
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heifers in the Low group (L: 63%, M and H: 90%, L vs. M and H, p<0.01) indicating 

that poor nutrition reduces fertility [3].   

 Similar outcomes were reported [17] when low levels of feed (0.43 kg/d ADG) 

resulted in only 61.3 ± 3.4% of heifers reaching puberty by the beginning of the breeding 

season compared to heifers fed high levels of nutrition (0.62 kg/d ADG, 70.9 ± 3.4% 

reached puberty; p<0.05).  Heifers receiving the lower ADG had on average less milk 

production (p=0.006) and produced calves that weighed less from 54 d to 153 d post-

calving (p<0.04). 

Hormonal Control of Cycling Females 

 The hypothalamic-pituitary-ovarian axis is the hormonal control system for the 

reproductive cycle in females.  The hypothalamus acts as a “puppeteer” of the endocrine 

system; its major function involves receiving and integrating messages from the body to 

control various aspects of hormonal function, as a puppeteer would control the functions 

and movements of a marionette.  In reproductive physiology, the hypothalamus focuses 

on the release of Gonadotropin Releasing Hormone (GnRH) into the hypothalamo-

hypophyseal portal system which connects the hypothalamus and the anterior pituitary.  

Gonadotropins, Follicle Stimulating Hormone (FSH) and Luteinizing Hormone (LH), 

are secreted from the anterior pituitary in response to GnRH pulses to promote follicular 

growth, and induce ovulation and luteinization of the follicle, respectively [18].   

 The effect of LH and FSH are concentrated on the ovary in the female, 

particularly the thecal and granulosal cells of the ovarian follicle which contain receptors 

specific for LH and FSH, respectively.  The hormone-receptor complex in the theca 
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interna cells initiates the steroid hormone pathway where cholesterol is enzymatically 

converted to pregnenolone in the mitochondria via cytochrome P450 side chain cleavage 

(P450SCC, CYP11A) [18, 19].  Outside the mitochondria, biosynthesis of estrogens 

involves the conversion of pregnenolone to progesterone and testosterone [18].  The 

conversion of testosterone to estradiol requires cytochrome P450 aromatase (P450AROM), 

which is not naturally found within the thecal cells.  Aromatase is localized within the 

granulosal cells of the follicle, requiring testosterone to passively diffuse out of the 

thecal cells and into the granulosal cells to be converted to estradiol [18]. 

 The estrous cycle in females refers to the interval from one estrus, or period of 

sexual receptivity, to the next (approximately 21 days in beef cattle) and is controlled by 

the hormones secreted by the hypothalamus, anterior pituitary, and ovary.  The estrous 

cycle is divided into two phases, the follicular and luteal phase, based on hormonal 

concentrations of estradiol and progesterone.   

 The systems in the body are controlled by a series of positive and negative 

feedback mechanisms to control homeostasis or the resting and control points of a 

system.  During proestrus, follicles undergo a process of recruitment and selection until 

one dominant follicle is produced.  Many follicles are randomly recruited for 

development and release estradiol to up regulate the release of FSH from the anterior 

pituitary in a positive feedback manner.  The majority of the smaller follicles will 

undergo apoptosis, or programmed cell death, during recruitment and selection until a 

dominant follicle is formed, the largest and most viable follicle which is preparing to 

ovulate (dominance).  Inhibin is secreted by the dominant follicle to down regulate the 
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release of FSH by a negative feedback mechanism to reduce the development of smaller 

follicles, causing them to undergo apoptosis; ensuring only one follicle will ovulate.  The 

increased concentrations of estradiol enhance LH release to create the hourly pulses and 

the preovulatory surge (>10 fold increase) of LH required for ovulation at the end of 

estrus.  After ovulation, the thecal and granulosal cells collapse and reform to produce 

the corpus luteum (CL), composed of progesterone-secreting luteal tissue.  Staining for 

P450SCC in mature corpora lutea demonstrated a high intensity for the enzyme which is 

required for the conversion of cholesterol to progesterone [20].  Progesterone down 

regulates the hypothalamic secretion of GnRH and pituitary secretion of LH to prevent 

ovulation of further developing follicles [18]. 

The “Gonadostat Theory” in Prepubertal Females 

  The hypothalamic-pituitary axis has been researched for more than 40 years to 

determine the events that occur in immature females as puberty approaches that allow 

the axis to switch from an inactive to an active state.  In prepubertal rats, the 

hypothalamus-pituitary axis was shown to be fully functional by Ramirez and McCann 

[21] by measuring ovarian ascorbic acid depletion (ascorbic acid is produced by the CL 

and depleted by concentrations of LH in plasma) [22].  Extracts from hypothalamic 

tissue from immature and adult males were administered to immature and adult female 

rats, resulting in similar levels of ovarian ascorbic acid deletion.  These data were then 

confirmed with ovariectomized immature and adult females, primed with progesterone 

and estrogen injections to enhance the negative feedback in order to block LH secretion 

from the anterior pituitary.  Administration of stalk-median eminence extract from 
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immature and adult male and female rats resulted in similar LH-releasing capabilities 

(immature rats: 18.2 ± 1.7% ascorbic acid depletion, adult rats: 18.7 ± 2.3% ascorbic 

acid depletion) [21].   

 Gonadectomized immature and adult rats were injected with estradiol benzoate 

(control rats were administered sesame oil) to determine the effects of estradiol on 

plasma LH concentrations based on ovarian ascorbic acid depletion.  At low doses of 

estradiol (0.002 µg/100g/day), immature rats had slightly reduced ovarian ascorbic acid 

depletion compared to the adult and control rats (immature rats: ~15% depletion, adult 

and control rats: ~17% depletion; p<0.02).  After administration of 0.04 µg/100g/day of 

estradiol, ovarian ascorbic acid depletion was not detectable, indicating that LH was not 

present in the plasma, while concentrations remained high in adult rats, albeit lower than 

the control (immature rats: ~0% depletion, adult rats: ~14%, control rats: ~17%).  

Estradiol concentrations of 0.12µg/100g/day resulted in less than 5% ascorbic acid 

depletion in both immature and adult rats, indicating that the high concentrations of 

estradiol was over physiologic levels and suppressing LH release.  These results indicate 

in immature rats the plasma concentration of LH is reduced due to low concentrations of 

estradiol exerting a negative feedback on the hypothalamus [21].   

 The “gonadostat theory” states that while the hormonal mechanisms are in place, 

the hypothalamus has a heightened sensitivity, shown to be about two to three times 

greater in immature rats compared to adults, due to the negative feedback from the low 

amounts of estrogen produced by the follicles [21].  This increase in sensitivity causes a 

decrease in LH synthesis and secretion by the pituitary, observed as reduced levels of 
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hypophysial and plasma LH, thus inhibiting the normal hormonal actions required for 

initiation of the estrous cycle [21, 23].   

 During the peripubertal period, the sensitivity of the hypothalamus is reduced 

allowing increased amounts of GnRH to be released and induce follicular development 

and ovulation, thus initiating puberty [21].  Day et al. [24] observed that there was a 

decline in the number of estradiol receptors located in the anterior hypothalamus (4.27 

fmol/mg at 88 d, 2.54 fmol/mg at 46 to 25 d prepubertal; p<0.05), medial basal 

hypothalamus (4.69 fmol/mg at 88 d, 3.20 fmol/mg at 46 to 25 d prepubertal; p<0.08), 

and anterior pituitary (128.37 fmol/mg at 88 d, 99.35 fmol at 46 to 25 d prepubertal; 

p<0.05) suggesting a possible mechanism for the decrease in the sensitivity of the 

hypothalamus to estradiol.  The concentration of GnRH receptors located in the anterior 

pituitary in the peripubertal and pubertal periods was not significantly different (93.70 ± 

6.76 fmol/mg in prepubertal heifers, 109.27 ± 15.11 fmol/mg in postpubertal heifers; 

p>0.50), indicating that the changes in sensitivity were influenced by changes in 

estradiol receptor concentration rather than changes in GnRH receptivity by the anterior 

pituitary [24].  Approximately eight days prior to the onset of puberty, estradiol 

concentrations peak (6.3 ± 1.3 ng/l; p<0.02), indicating that the inhibitory activity of 

estradiol on the hypothalamus is reduced [25].  

Ovarian Steroid Concentrations: Prepubertal, Peripubertal, and Pubertal 

 In the prepubertal heifer, peripheral plasma estradiol concentrations fluctuate but 

remain at basal levels, less than 4 ng/l, which is attributed to the secretion from growing 

antral follicles.  Concentrations increased during proestrus and estrus (maximum 
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concentration approximately 6.3 ± 1.3 ng/l), indicative of the preovulatory peak, as seen 

in normal cycling females prior to ovulation [25].  Similar findings were reported by 

Moran [26] with estradiol concentrations remaining less than 4 pg/ml prior to puberty 

[11] while Gonzalez-Padilla et al. [27] reported peripubertal concentrations of less than 

20 pg/ml.  

 Progesterone concentrations remain below one nanogram per milliliter in 

prepubertal heifers and rise as the first oocyte is ovulated, luteal tissue is formed and 

progesterone is secreted [28, 29, 30].  As stated previously, puberty can be defined in 

several ways including time of first ovulation and time of first observed estrus, neither of 

which may be an accurate definition.  First ovulation is generally followed by a transient 

increase in progesterone; however, this increase in concentration is shorter than the 

typical luteal phase, 15-17 days, and is not preceded by a behavioral estrus [31].  Heifers 

can show one or two transient increases in progesterone between ten and twenty days 

prior to the first observed estrus indicating active luteal tissue.  Progesterone levels were 

observed at concentrations lower than that of normal luteal function, 2.0 to 6.0 ng/ml 

compared to greater than 6.0 ng/ml, and were elevated for 7 ± 2 days [28, 32, 33].  

Gonzalez-Padilla et al. [27] originally hypothesized that the first increase in 

progesterone was produced by the adrenals since there was no hormonal evidence in the 

blood that would implicate ovarian function, while the second increase was of ovarian 

origin caused by the luteinization of follicles to form a CL after the priming peak of LH.  

Gross analysis of the ovaries indicated the elevations were of ovarian origin produced 
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from luteinized follicles or from a CL that had formed within the ovarian tissue and were 

undetectable during a rectal examination [27]. 

 

Estrus Behavior, Detection, and Activity for Artificial Insemination 

Behavior and Detection 

 During the estrus phase of the reproductive cycle, the female is sexually 

receptive to the male and will stand to be mounted; in beef cattle this averages 15 to 18 

hours.  The female will display behavioral signs of estrus which can be used to indicate 

the appropriate time for artificial insemination with fresh or frozen-thawed semen.  Well 

documented behavioral estrus signs include standing to be mounted, mounting of other 

females, swollen vulva, and cervical mucus discharge [34].  The onset of behavioral 

estrus is correlated to the steady rise and peak (range from 4.5 to 10.4 pg/ml) of estradiol 

concentrations during proestrus as well as the rapid decrease in concentration 

approximately 12 hours after the end of behavioral estrus [35].     

 Esslemont et al. [36] studied the behavioral activities (mounting, chin-resting, 

licking, rubbing, etc.) of heifers over 24 days to determine the ratio of activity frequency 

during estrus to the frequency during the 24 day study.  Heifers standing to be mounted, 

categorized by whether the bottom female received pelvic thrusts from the top heifer, 

resulted in the highest ratio of frequency (approximately a 1300 ratio with thrusts, 800 

without thrusts) compared to the other activities (the second highest, females receiving 

disoriented mounts, less than 100 ratio).  Based on these results, “it is evident that 

standing behavior is very highly diagnostic of oestrus” [36].   
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 Standing to be mounted by either a male or another female was determined the 

most reliable indicator of a female being in estrus; however, mounting activity is 

influenced by environmental conditions, mainly location, time of day, and total number 

of females in estrus.  In a comparison of barn-housed, drylot, or pastured dairy cows by  

visual inspection [37], location influenced the number of mounts received during estrus 

and the interestrus period (barn-housed: 8.7 ± 0.4 mounts, 36.7 ± 2.8 d interestrus; 

drylot: 6.1 ± 0.2 mounts, 29.5 ± 3.8 d interestrus; pasture: 5.5 ± 0.2 mounts, 29.5 ± 3.8 

interestrus; p<0.05).  Hurnik et al. [38] utilized a time lapse videorecorder and reported 

mounting events increased during nocturnal hours, suggesting the cause to be a decrease 

in distractions by human presence (6.0 ± 0.2 m/h in the morning vs. 7.7 ± 0.3 m/h in the 

evening, p<0.05 as determined by visual inspection) [37].  In the same study, Hurnik et 

al. [38] demonstrated that mounting activity increased when increased numbers of 

females in estrus were present (number of cows in estrus, one: 11.2 mounts, two: 36.6 

mounts, three: 52.6 mounts, four or more: 49.8 mounts).  

 Senger [6] reported inadequate estrus detection resulted in an annual loss of over 

$300 million in the dairy industry indicating that accurate estrus detection was essential 

for proper reproductive management.  Misdiagnosis of estrus (artificial inseminations of 

cows not in estrus occurs up to 30% of total inseminations) [39] or failing to observe 

females in estrus results in a loss of profit due to increases in semen expenses and labor 

costs.  More importantly, the failure to detect estrus means a 21 day delay for females to 

be artificial inseminated, resulting in decreased pregnancy rates, an increase in the 
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number of females open at the end of the breeding season, and decreased number of 

calves produced per year.   

 Management considerations for selecting an appropriate detection system is 

based on herd size, location, labor, and most importantly, cost.  Estrus detection methods 

can be as simple as visual inspection of the herd for estrus behavior twice a day for 30 

minutes or more, to current sophisticated technology such as radiotelemetry requiring 

pressure-sensitive transponders and scientific computer software programs.  Estrus 

detection technologies should offer: “continuous (24 h/d) surveillance of the cow, 

accurate and automatic identification of cows in estrus, operation for the productive 

lifetime of the cow, minimize labor requirements and high accuracy in identifying 

appropriate physiological or behavioral events” [6].   

 Radiotelemetry utilizes electronic transmission for continuous monitoring of 

estrus activity.  The HeatWatch® system operates via miniaturized radiowave 

transponders linked to pressure sensors encapsulated within plastic cases.  The 

transponders are housed within water-resistant patches and glued to the tail head of the 

cow [40].  Cow identification number, unique transponder identification number, time 

and date of mount, and duration of mount are recorded when the pressure sensors are 

depressed for more than one second.  This information is transmitted to a receiver 

located within one mile of the herd and stored in a buffer until accessed by the 

HeatWatch® software.  Estrus is defined as three mounts with a duration of one second 

within a four hour interval, based on the software’s default setting which can be altered 

to include more stringent parameters [40, 41, 42].   
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 Visual inspection is the traditional form of detection and is highly accurate; 

however, the efficiency in detecting females in estrus is approximately 50-70% [43].  

During visual inspection twice a day for 45 minutes each, estrus activity was not 

detected in 11 out of 41 heifers (37%) as determined by mounting activity recorded by 

radiotelemetry [9].  Based on monitored data, heifers that received fewer mounts (19.3 

vs. 60.5; p<0.001) or whose estrus duration was shorter (8.4 vs. 15.6 h; p<0.001) were 

not detected by visual inspection.  The efficiency of estrus detection was greater when 

utilizing radiotelemetry (100%; p<0.05) compared to visual inspection (73%) [9].  In a 

similar study, visual inspection of the herd was done twice a day for 30 minutes and 

reported efficiency rates for estrus detection of 54.7 and 54.4% compared to rates of 71.7 

and 86.8% (depending on synchronized or spontaneous estrus, respectively) for 

HeatWatch® [41].  Data from these experiments reported continuous monitoring of 

estrus behavior determined by radiotelemetry is more efficient than visual inspection and 

suggested that longer duration of visual inspection is more efficient in detecting females 

in estrus (54% for 30 minute inspection vs. 73% for 45 minute inspection) [9, 41].  

  Radiotelemetric detection systems have demonstrated differences in estrus 

activities (number of mounts, duration of mounts and estrus duration) between dairy and 

beef herds.  Dairy cows receive on average between six and twelve mounts per estrus 

event with an average mount duration of 2.5 to 3.36 seconds (or average total mount 

duration from two herds of 29.0 seconds) [44] and estrus duration of 5.1 ± 3.8 to 10.6 ± 

6.8 hours [40, 41, 44]. In beef cows, however, number of mounts received during estrus 
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on average was 50.1 ± 6.4 mounts with estrus duration ranging from 2.6 to 26.2 hours [9, 

42].  

Estrus Behavior in Gestating Females 

 Estrus behavior observed after conception is problematic in today’s industry if 

estrus synchronization protocols are used, primarily those that incorporate prostaglandin 

F2α which are designed to lyse the CL.  Inaccurate pregnancy detection for animals 

displaying estrus behavior after conception can lead to abortion, culling and slaughter.  

In previous studies, ewes displayed estrus behavior after conception with an occurrence 

rate of 22% and 62% in Western and Rambouillet ewes, respectively, with interestrus 

intervals ranging from three to 40 days post-insemination.  On average, interestrus 

intervals were 21.61 ± 2.11 days, significantly different from the typical estrous cycle 

length for ewes [45].  The occurrence of estrus behavior in gestating Holstein-Friesian 

cows over a 30 year study was 5.6% of the 6,751 pregnancies ending in successful 

calving.  Estrus behavior increased to 18.3% out of 1,905 pregnancies in cows that had 

calved one or more times in her reproductive life with 17.5% of those females displaying 

estrus during more than one reproductive period.  Interestrus interval was on average 43 

± 1.9 days, while only 5.6% of estrus events occurred at 21 days [10].  During visual 

inspection of dairy and beef herds, it was found that 5.7% of the pregnant cows 

displayed behavioral estrus throughout gestation which were indistinguishable from 

estrus behavior from non-pregnant cows, with the exception the estrus duration was 

shorter (on average 5.6 hours) [46].  
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Artificial Insemination in Cattle 

 Artificial insemination (AI) involves depositing spermatozoa into the female 

reproductive tract by unnatural means.  The rectovaginal technique of AI for cattle 

involves guiding the annular rings of the cervix over the AI gun and depositing the 

frozen/thawed semen into the uterine body.  Pregnancy rates after AI or natural service is 

not significantly different in dairy cattle (57.5 and 58.0%, respectively) [47], while other 

studies have reported pregnancy rates after AI in dairy herds as low as 40% [40] and as 

high as 65% [44].  Insemination in beef cattle yielded higher pregnancy rates (between 

84.2% and 93%) after first service [42, 48].  Pregnancy rates were higher in pubertal 

heifers inseminated on the third estrus than on the pubertal estrus (78% vs. 57%; p<0.05) 

with the probability of becoming pregnant increasing with age (p<0.05) [49].  

 Appropriate timing of insemination has been proven critical for pregnancy rates.  

Herman [50] recorded the pregnancy rates and average number of inseminations of dairy 

cattle after artificial insemination 4-12 h, 12-14 h, 24-48 h, and 48-60 h after the onset of 

estrus, determined by visual inspection.  Cows bred 4-12 h after the onset of estrus had 

the highest pregnancy rate (536 settled/920 inseminations, 58% pregnancy rate) and 

required fewer inseminations (1.71 inseminations) before conceiving.  Trimberger and 

Davis [51] repeated Herman’s experimental design and further classified the stage of 

estrus at the time of insemination and recorded first service pregnancy rates in dairy 

cattle.  Pregnancy rates were highest when females were bred during the middle of estrus 

(82.5%) and then decreased to 62.5% when bred six hours after the end of estrus.  

Breeding more than six hours after the end of estrus resulted in low pregnancy rates (12 
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hours, 32%) [51].  Similar findings were reported using the HeatWatch® system in dairy 

cows; conception rates were highest four to 12 hours after the onset of estrus 

(approximately 51%) and then decreased 16 to 20 hours after insemination (28.1%) [40].  

 Appropriate timing of insemination is based on the time of ovulation and the 

approximate life spans of spermatozoa and ova.  Using the HeatWatch® system, dairy 

cattle were monitored for mounting activity and were evaluated by ultrasound at 12, 20 

and 24 hours after the onset of estrus, and then every two hours until ovulation.  Based 

on ultrasonography of follicular development and luteal formation, ovulation occurred 

27.6 ± 5.4 hours after the onset of behavioral estrus, with 78% of the dairy cows 

ovulating before 40 hours [52].  Viability of the oocyte after ovulation is relatively short, 

approximately six to eight hours [40, 53].  Studies indicate that spermatozoa require 

more than 8 hours before becoming capable of fertilizing ova [54] and are viable for 

more than 24 hours [55].  Beshlebnov [56] reported spermatozoa were 50% 

progressively motile within the female tract after 24 hours and observed the spermatozoa 

were viable and capable of fertilizing up to 30 hours after artificial insemination.   

 The AM/PM rule of breeding cattle states that females observed in estrus in the 

morning should be inseminated in the evening, and females observed in estrus in the 

evening should be inseminated the following morning, approximately 12 hours after the 

onset of estrus.  This rule was developed based on the previous studies for the optimum 

time of inseminating resulting in the highest pregnancy rates, approximately 4-12 hours 

after the onset of estrus, as well as the lifespan of the spermatozoa and ova.  Saacke [57] 

diagrammed pregnancy results based on time of insemination, while incorporating sperm 
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and egg lifespans.  Based on the combined data, inseminating too early will  result in 

reduced fertilization capabilities of spermatozoa by the time ovulation occurred leading 

to low fertilization rates but high embryo quality.  Inseminating too late, close to 

ovulation, however, will result in an aged ovum when the spermatozoa attained 

fertilization capabilities leading to high fertilization rates but low embryo quality [57].  

 

Fascioliasis in Livestock Species 

Fasciola hepatica: Hosts and Life Cycle 

 Infections of Fasciola hepatica, belonging to the family Fasciolidae, commonly 

known as the liver fluke, has been deemed the most significant trematode infecting 

domestic livestock [58].  Fasciola hepatica is an obligate parasite, needing two hosts for 

development and survival [59].  The pathogen requires an intermediate host, a species of 

snail in the genus Lymnaea, for maturation of the miracidium before infecting its final 

host, cattle, sheep and humans, for final development and reproduction [58].   

 There are seven species of Lymnaea important for transmission of Fasciola 

hepatica depending on region of habitation.  Lymnaea snails are amphibious and require 

water for breeding, but primarily live on dry land preferring a slightly acidic 

environment.  Even in droughts, this genus can survive for up to a year under mud 

coverings in an aestivated, or metabolically inactive, state.  Snails thrive in temperatures 

up to 26°C, however temperatures exceeding this results in cessation of development 

[58].    
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 Hatching of the miracidium, or embryo of Fasciola hepatica, from eggs excreted 

by the final host, requires proper hypertonicity and light, for secretion and release of 

enzymes essential for hatching, and temperature.  Optimum temperature for hatching is 

between 22 and 26°C, coincidently similar to that of its intermediate host.  Upon 

hatching, the miracidium is viable for 24 hours; however, its infective lifespan is only an 

hour and therefore must find an intermediate host within this time to be capable of 

penetrating the snail.  Within the snail, the miracidium develop into cercaria in 

approximately five to seven weeks.  Cercariae are excreted from the mouth of the snail 

in water and encyst on vegetation and form metacercariae ready for ingestion by the 

final host.  The metacercariae can remain viable even below freezing temperatures for 

over three months [58, 60, 61].   

 Within 24 hours after ingestion, the metacercariae excyst and penetrate the wall 

of the intestines and migrate within the peritoneal cavity for three to four days.  The 

metacercariae, considered an immature fluke, migrate through the liver tissue for 

approximately six weeks before entering a bile duct and maturing into an adult, fully 

capable of reproducing.  Adult flukes are hermaphroditic and produce eggs which are 

released into the intestines and excreted in the feces of the host [58].   

Liver Trauma and Clinical Signs 

 Severe damage to the parenchyma can be visualized three weeks post-infection 

(pi.) caused by abrasions from the spines of immature flukes during the migratory phase 

of development in the liver tissue [62].  Hemorrhagic plaques, or raised lesions, develop 

on the parenchyma three weeks pi. during the initial penetration and migration through 
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the liver tissue [59, 63].  Fibrosis, causing irregular contraction of the tissue, results as 

the liver undergoes repair around eleven weeks pi. when the initial onslaught from the 

flukes has ceased and have now entered the bile ducts [58].  Enlargement, calcification, 

and obstruction of the bile ducts occur between the seventh week and 23rd week pi. as 

the flukes finish migration and development and begin reproducing [63].  Fasciola 

hepatica adults secrete toxins within the final host which alters the structure of the bile 

duct and liver tissue walls, leading to distension and thickening of the bile ducts and 

lobules [60].   

 Fascioliasis, the disease caused by Fasciola hepatica infection, results in 

decreased body weight (described in further detail below) and other clinical signs.  

Animals continuously infected with low doses of Fasciola hepatica develop a chronic 

infection that is generally less severe (in terms of mortality losses and clinical signs) 

than acute forms [62, 64].  Infections of greater than 1000 metacercariae are generally 

required to initiate visible symptoms of fascioliasis in calves.  Mortality losses have been 

observed in cattle infected with infections of 10,000 metacercariae [62]. 

 Adult flukes feed on the blood of the final host [58, 60] at a rate of 0.2 to 0.5 ml 

per day per fluke [62] which leads to severe anemia.  Hypoalbuminaemia (reduction in 

albumin levels produced by the liver) and hyperglobulinaemia (increase in 

immunoglobulins synthesized by leucocytes) are common signs; extensiveness depends 

on the burden of the infection [58, 62, 64, 65].  With the obstruction of the bile ducts, 

jaundice ensues from the increased concentration of bilirubin [66], the yellow bile 

pigment produced as the by product of degenerating heme groups in red blood cells [67].  
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Intoxication from the secretion of toxins by the flukes alters the bile duct walls and liver 

tissue and can enter the vascular system, resulting in leukocytosis, anemia, emaciation, 

and excitation of the central nervous system [60].  In chronic infections, anorexia, 

depression, diarrhea, and gaseous swelling can occur, and in severe cases, fever and 

death [60]. 

 Damage to the liver tissue increases the auto-immune response of the host and 

directs eosinophils to the site of infection.  In sheep infected with 150 metacercariae, 

eosinophil concentrations were increased by two weeks pi. and were significantly higher 

by six weeks (p<0.05), showing a correlation between eosinophilia and the intensity of 

the fluke burden (~1400 eosinophil cells/mm3) [68].  In chronically infected cattle, 

lymphocyte concentration was reported to be highly correlated with fluke burden when 

measured at two and four weeks pi. and at slaughter, eight weeks pi. (p<0.01, R= 0.751) 

[69].  

Hepatic Enzyme Concentrations and Protein Analysis and Their Use in Diagnosis 

 Due to its prominent existence and infection in cattle, accurate diagnosis of 

fascioliasis is necessary to reduce the health and economical problems that can ensue.  

Fecal analysis is the most conventional method for diagnosing infection; however, it has 

two main drawbacks.  Due to the length of the life cycle for Fasciola hepatica, eggs are 

not detected in the feces until 10 to 21 wk post-infection [8, 70, 71, 72], after the 

immature fluke have reached the bile ducts, matured and reproduced.  Fecal analysis for 

Fasciola hepatica eggs results in an under diagnosis of the true infection [71, 73].  As 

the number of adult flukes in the liver increases, the number of eggs produced by each 
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adult decreases [71] and the number of eggs per gram reported reflects only the 

population of adult flukes [71, 73].  In a comparison of fecal analysis, both flotation and 

sedimentation analysis resulted in approximately 30% of the total eggs per gram being 

accounted for in each sample, indicating a low sensitivity for these experimental 

methods [74].   

 Serum enzyme concentrations and/or activity may be increased in response to 

liver trauma.  Damaged hepatic cells release enzymes into the blood circulation and 

plasma analysis for these hepatic concentrations can be utilized as an alternative 

diagnosis for Fasciola hepatica infection [72].  The use of aspartate aminotransferase 

(AST, previously known as glutamic oxaloacetic transaminase, SGOT), glutamate 

dehydrogenase (GD), and γ-glutamyl transpeptidase (GGT) concentrations in serum are 

common enzymes that have been examined for their use in diagnosis of Fasciola 

hepatica infection. 

 Increases in AST1 and GD concentrations in blood serum have been associated 

with the migratory phase of infection and resultant parenchymal damage [71, 72, 75] 

whereas increases in GGT have been correlated to hepatobiliary damage [71, 75, 76].  

Increased concentrations of AST in blood serum have been related to cellular tissue 

damage, such as skeletal tissue and cardiac muscle, possibly induced by handling, 

indicating a lack of liver specificity and a drawback for analysis of liver trauma [71, 75, 

77].  GGT and GD concentrations are considered liver specific and will provide a better 

determination of the extent of liver trauma [75, 77, 78].   

                                                
1 Normal blood serum concentrations for AST and GGT are 47-138 U/l and 11-39 U/l, respectively (Texas 
Veterinary Medical Diagnostic Laboratory System, Texas A&M University, College Station TX 77841) 
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 Friesian calves were experimentally infected with two doses of 500 

metacercariae by oral drenching and bled weekly to determine serum concentrations of 

GD, GGT, sorbitol dehydrogenase (SDH), ornithine carbamoyl transferase (OCT), 

lactate dehydrogenase (LDH) and AST.  The mean ratio of activity for the six enzymes 

of infected calves to controls was greatest for GD and GGT (17.6 and 13.8, respectively) 

with mean concentrations of 643 and 317 U/l, respectively, suggesting these two 

enzymes may be accurate diagnostic aids.  The mean ratio of activity was lowest for 

LDH and AST indicating their lack of liver specificity and suggesting their inadequacies 

in diagnosing Fasciola hepatica infection (2.2 and 2.1, respectively) [77].   

 When calves were infected with three doses at four week intervals for a total load 

of 1200 metacercariae, AST concentrations were increased by 66 days pi. (p<0.01) and 

reached maximum values (twice the pre-infection levels) by day 185 (p<0.01).  GGT 

concentrations were significantly higher 91 days pi. (p<0.01) and remained four to seven 

times higher than pre-infection levels until day 185 (p<0.05) and in some individuals, 

concentrations were up to 20 times higher [75].  Similar findings were observed by 

Wyckoff and Bradley [71] with Brahman calves infected with 1000, 100 or 10 

metacercariae in three doses, for a total infection load of 3000 (group 1), 300 (group 2) 

and 30 metacercariae (group 3).  AST concentrations were significantly increased by 

four weeks pi. (p<0.05) and remained elevated to 16 weeks, with maximum 

concentrations occurring between weeks five and 12 for group 1.  AST values for the 

lesser infected calves were not significantly greater, except on occasion in group 2.  For 

all infection groups, GGT concentrations increased by 9 weeks pi., however, only 



 28

concentrations for groups 1 and 2 were significantly increased (p<0.05).  This study 

demonstrated the relationship between infection level and liver damage by the relative 

differences in GGT concentrations between groups 1, 2 and 3 [71].  In the three previous 

studies, experimental infections were administered in few doses at high concentrations 

of metacercariae.  To simulate a “natural” infection, six month old beef calves were 

administered 5 metacercariae every other day for 80 days.  Even with a “natural” 

infection load, concentrations of AST and GGT followed suit with the trends observed 

from the high dose experiments [76], suggesting that hepatic damage is consistent 

between natural and experimental conditions.  Alkaline phosphatase (ALP) 

concentrations were analyzed and were not significantly different between the control 

and infected calves, consistent with Anderson et al.’s [77] findings.  At slaughter, livers 

from the infected calves were examined for fibrosis, biliary hyperplasia, and hyaline and 

eosinophilic deposits and grouped according to GGT responses.  In all infected calves, 

slight to marked fibrosis (5 slight, 7 moderate, and 7 marked) was observed [76].  

 Elevated concentrations for liver enzymes resulting from Fasciola hepatica 

infection are consistent across species.  Water buffalo infected with 60 metacercariae 

daily for 20 days exhibited increased (p<0.05) GD (6-21 wks pi.), GGT (8-26 wks pi.) 

and AST concentrations (6-23 wks pi.) [72].  At low doses of infection in sheep (25 

metacercariae daily for 6 days), GD and GGT concentrations increased after 20 and 40 

days pi., respectively (p<0.05) [79].  “Natural” infections in sheep (3, 8 or 14 

metacercariae for 5 days for 22 weeks) resulted in significant dose responses in GGT 
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and GD at 23, 12 and nine weeks and 32, 24 and 12 weeks pi, respectively.  AST 

concentrations were not correlated with dosage level [78].   

  In addition to hepatic enzyme analysis, serum protein concentrations can be 

measured to diagnose fascioliasis.  After infection with two doses of 500 metacercariae, 

albumin concentrations were significantly decreased from six to 17 weeks pi. (p<0.01), 

and globulin concentrations were significantly increased (p<0.01) from 12 to 17 wks pi. 

and at 23 wks pi. (p<0.001), albeit all concentrations remained within normal limits2.  

Bilirubin concentrations were not significantly increased [77].  Minor differences 

between infected and non-infected calves for albumin and bilirubin concentrations were 

also reported by Wyckoff and Bradley [71]. 

Prevalence 

 Fasciola hepatica is a trematode parasite that has been affecting beef 

productivity for years.  The number of cattle affected by Fasciola hepatica has been 

steadily increasing in some parts of the world.  Diagnosis of fascioliasis in England and 

Wales increased from 50 to almost 400 cases annually in the last decade [80].   Abattoirs 

in the United States have reported up to 140 flukes per condemned liver [65] and liver 

inspections of cattle from Argentina in 1979 and 1980 revealed 13% of slaughtered 

cattle were infected with Fasciola hepatica [81].  

 In the United States, fascioliasis affects livestock in the southern states of 

Florida, Louisiana, and Texas, the northwestern states of Oregon, Washington, Idaho, 

                                                
2 Normal concentrations for albumin, globulin and bilirubin are 3.1-4.3 g/dl, 2.5-6.1 g/dl, 0.1-0.5 mg/dl, 
respectively (Texas Veterinary Medical Diagonostic Laboratory, Texas A&M University, College Station, 
TX, 77841) 



 30

and Montana, and the western states of California, Nevada, and Utah [61].  As stated 

previously, optimum temperature for snail and Fasciola hepatica development is 26 °C 

(78.8 °F) making livestock in southern and western states highly susceptible to infection.  

Wet periods recorded high mortality rates caused by fascioliasis and periods of draught 

may reduce the incidence of infection, however, infected snails can prevail in draughts 

for up to a year [61].  High prevalence has been recorded on irrigated lands which may 

prolong the productivity of the parasite.  Young calves appear to be more susceptible to 

Fasciola hepatica infection than adult cattle.  Calves experimentally infected at 52 to 66 

days of age consistently had fewer eggs per gram in feces samples compared to calves 

infected at 1 to 27 days of age; however, upon slaughter, the older group on average had 

a significantly higher fluke count (21.25 flukes vs. 9.88 flukes; p<0.01) [82].  Bull 

calves, 60 to 90 d of age, experimentally infected with 1200 metacercariae had fluke 

counts ranging from two to 96 (average 53.7 flukes) and had values for liver enzymes, 

indicating trauma (AST and GGT), two and three to 20 times higher than normal values, 

respectively [75].  Adult livers obtained from slaughterhouses contained less than 33 

flukes and liver enzymes were not significantly increased [83].   

 In a few experimental studies of Fasciola hepatica infection, reports on cattle 

resistance have been observed based on the level of infection received.  In 

experimentally infected cattle, higher levels (5000 and 15,000) of metacercariae resulted 

in flukes becoming caught within the liver parenchyma and reducing the number of 

immature flukes reaching the bile ducts [84].  Dwinger et al. [81] found in a field study 

that fewer flukes were found in the liver of severely infected cattle (more hepatic 
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damage) than the moderately infected (22 flukes present vs. 32.5 flukes, respectively).  

In sheep and cattle it was suggested that fibrosis of the liver in severe infections may 

impede the migration of immature flukes and expel adult flukes from the bile ducts 

resulting in an acquired resistance [84, 85].   

Economical Implications: Direct and Indirect Losses 

 Chick [86] divided the economical significance of Fasciola hepatica infection in 

cattle into two primary categories, direct and indirect costs, based on completed 

questionnaires from Australian cattle graziers.  Direct costs can be classified as costs the 

producer loses to maintain normal productivity of the herd, including drenches, labor, 

anthelmintic treatments, and losses at slaughter, mainly in liver condemnation from 

Fasciola hepatica infection.  Only approximately 50% of the graziers questioned 

acknowledged a Fasciola hepatica infection in their herd and were using regular control 

action, estimated to cost $2.40 per head.  Labor for drenches was included in normal 

farm management and expenses were estimated to be close to zero [86].  Losses from 

treatment and prevention of cattle in Nigeria due to fascioliasis was estimated N30,0003 

(total annual loss, estimated N5 million) [87].   

 With only a 0.4% prevalence rate during liver inspection in Greece, Fasciola 

hepatica infection averaged cost of loss was 6500 GDR4 from condemned livers, 

                                                
3 Exchange Rate in 1980 for Nigerian Naira- N0.5587.  Information obtained from the United States 
Department of the Treasury Library.  
4 During the third quarter in 2002, the monetary unit of Greece (GDR) was replaced by the Euro.  
Exchange rates in 2002, 1st quarter- 382.39 GDR and 2nd quarter - 392.84 GDR, 3rd quarter- 1.0730 
EURO and 4th quarter - 1.0200 EURO.  Information obtained from the United States Department of the 
Treasury, Financial Management Service, Contact: Andrea Pearson 
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calculated from the average liver weight, 5 kg, by the market value per liver, 1300 GDR 

[88].  Theodoropoulos et al. [88] estimated the cost: benefit ratio of anthelmintic 

treatment by assuming (1) infected animals had not received proper treatment during 

production, (2) the loss of condemnable organs could have been avoided if treated, (3) 

treatments were administered twice annually, (4) average dosage of 150 kg treatment for 

cattle, and (5) cattle would be treated four times before slaughter.  The estimated cost: 

benefit ratio of anthelmintic treatment for Fasciola hepatica infection in calves less than 

three years of age was 113:1 indicating a substantial loss in profit for treated calves; 

however, the use of treatments could reduce overall indirect costs from production 

losses.  Treatment of Fasciola hepatica in beef heifers simultaneously infected with 

gastrointestinal nematodes (GIN, active GIN infection remaining after treatment) 

increased the average gross return per heifer from $507 (untreated heifers) to $516 

(calculated from the estimated sale value of the heifer and pregnancy rate) [89].   

 Foreyt and Todd [90] reported annual losses in the United States from the 1.2 to 

1.5 million liver condemnations from Fasciola hepatica infection to be approximately 

$10 million.  In 1981, the 1.4 million liver condemnations from cattle in the United 

States, equaled about 4.4% of all slaughtered animals, resulting in an annual loss of $7.2 

million (average liver price $5) [91].  The American Association of Veterinary 

Parasitologists [92] reported approximately 1.5 million cattle livers were condemned in 

the United States in 1983, indicating that numbers of condemnations were gradually 

increasing each year [65].  A 10 year study of slaughtered cattle in Kenya reported that 

8% of the animals slaughtered were infected with Fasciola hepatica, totaling 1,283,793 
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kg of condemned livers [93].  Annual and decennary monetary losses were calculated 

from the average weight of bovine livers, 3 kg, and market price, $2.00 in 2002.  

Kithuka et al. reported annual losses ranging $0.2 to 0.3 million and decennary losses of 

$2.6 million from liver condemnations alone.  

 Overall losses in sheep from the Ethiopian highlands in 1993 were estimated to 

be 48.4 million Ethiopian Birr per year5.  Losses from mortality, productivity (weight 

loss and reproductive wastage) and liver condemnation equaled 46.5, 48.8 and 4.7% of 

the total estimated loss [94]. 

 Indirect losses in profits are primarily categorized as losses from reduced 

productivity, such as growth rate, milk production, fertility, and mortality [86].  Chick 

found that experimental infection with 600 or 1200 metacercariae of Fasciola hepatica 

resulted in decreased growth rate of 11.7 and 13.9%, respectively.  Dargie’s review [65] 

of production impacts from Fasciola hepatica infection in 1987, described previous 

findings on weight loss, primarily a notable less than 0.03 kg/week with low infection 

levels (45 flukes) and 0.13 to 0.30 kg/week with high infection levels (87 to 500 flukes).  

Loyacano et al.’s (89) comparison of beef heifers simultaneously infected with GIN and 

Fasciola hepatica, found an 8 kg difference in total weight gain for heifers treated for 

Fasciola hepatica compared to untreated heifers.   

 Decreases in milk production have been noted in cattle infected with Fasciola 

hepatica.  Ross [95] indicated that infections increased milk productivity loss depending 

on the severity of infection (8% loss from 100 flukes, greater than 23% loss from more 

                                                
5 Exchange rate in 1993 for Ethiopia-Birr- 5.175 Birr.  Infromation obtained from the United States 
Department of the Treasury, Financial Management Service, Contact: Andrea Pearson 
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than 500 flukes).  Taking into account percent of animals infected with an 8% 

production loss per head and current milk prices in 1970, Ross [95] estimated a loss of 

£756 for 50 head of cattle in three months when the prevalence of infection was high 

(January to April).   

 “One of the most important impediments to efficient livestock production is poor 

reproductive performance due to infertility, abortion, and embryonic and neonatal death” 

[96].  A herd of approximately 100 Angus cattle naturally infected with Fasciola 

hepatica with clinical signs (emaciation, anemia, hypoproteinemia, hypocalcemia, 

hypophosphatemia and hypoalbuminemia) in Idaho demonstrated reduced reproductive 

performance with a calf crop less than 50% [97].  Beef cows experimental infected with 

1000 Fasciola hepatica and 350 Fascioloides magna metacercariae produced on average 

fewer calves compared to the non-infected cows (80% vs. 95% calf crop, respectively) 

[97].   

 Prenatal invasion of the fetus by Fasciola hepatica was reported by Rees et al. 

[98] after the slaughter of newborn calves (one to three weeks of age) whose dams were 

naturally infected.  Livers of the newborns showed gross lesions, acute inflammation, 

fibrosis of the bile ducts, and accumulation of neutrophils and eosinophils.  A total of 

108 flukes was collected from 84 livers, and the flukes were estimated to be 

approximately 10-weeks-old, indicating invasion and infection of the fetus occurred in 

utero [98].  Abortions during all stages of gestation (one to eight months) were 

associated with natural infections of Fasciola hepatica in 25% of the pregnant dams.  

                                                
6 Exchange rate in 1970 for British Pounds- £0.4171.  Information obtained from the United States 
Department of the Treasury Library. 
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Cause of the abortion was suggested to be the production and/or release of toxins from 

the flukes which affected fetal circulation, damage to the fetus during prenatal invasion, 

or hypoglycaemia of the dam from liver trauma [99]. 

 Mortality rates of ewes naturally infected with Fasciola hepatica in 1966 to 1967 

were reported to be 14.3% from September and December (pregnancy unclassifiable) 

and 22.8% from January to April (7% pregnant and 15.8% barren; mortality rate p<0.01 

from pregnant vs. barren ewes).  Level of infection, based on mortality rate, and fertility, 

based on pregnancy rate, of infected ewes were negatively correlated (r= -0.83; p<0.001) 

[100].   Mortality rates in Nigeria in 1980 from cattle infected with Fasciola hepatica 

were an estimated 1% (approximately 1 million of the 10 million cattle population) [87].   

Effects of Experimental Infection on Puberty 

 Few studies have indicated the effect of Fasciola hepatica infection on fertility in 

livestock; though even fewer studies have explored the possible impact that infection 

could have on pubertal development.  Fleming and Fetterer [7] hypothesized liver 

trauma from Fasciola hepatica infection would alter the normal function of steroid 

catabolism, thus altering peripheral concentrations of steroids resulting in delayed 

puberty, short estrous cycles, and infertility of ewe lambs.  Prepubertal rams were 

infected orally with 50 Fasciola hepatica cysts and bled weekly to determine the 

concentration of circulating testosterone detected by radioimmunoassay.  Concentrations 

for infected rams were not significantly different from their non-infected contemporaries 

(p>0.05).   During the postpubertal period, the rams were administered a challenge dose 

of 50 mg of testosterone to determine metabolic clearance rate.  The infected rams 
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displayed a decreased ability to clear exogenous testosterone concentrations from 

circulation (p<0.05).  Hepatic damage from moderate fluke levels affected the 

catabolism rate of exogenous testosterone (metabolic clearance rate) but showed 

compensatory action to maintain endogenous concentrations within normal limits as 

compared to the non-infected rams, possibly from the negative feedback of testosterone 

on LH frequency [7].   

 López-Díaz et al. [8] explored the possibility of an altered metabolic clearance 

rate of steroidal hormones in the blood serum of prepubertal Friesian heifers 

experimentally infected with 600 metacercariae of Fasciola hepatica which may delay 

the onset of puberty.  At four months of age, thirteen heifers were designated to the 

infected (n=6) and control group (n= 7) based on weight and age.  Fecal samples were 

collected and analyzed starting at 8 week pi. and analyzed every 15 weeks to assess the 

level of infection received by each heifer.  Blood samples were collected biweekly and 

analyzed by a solid phase 125I assay and competitive enzyme linked immunosorbent 

assay (ELISA) for estradiol 17β (E2) and progesterone (P4) concentrations, respectively.  

Estrus activity was detected via heat-mount detectors (Kamar Inc., Steamboat Springs, 

CO) checked biweekly where a positive response indicated the heifer was in estrus 

within the previous three to four days.  The onset of puberty was determined by a 

positive response reading and confirmed by a second positive reading indicating the 

female was cyclic [8]. 

 In the experimental heifers, Fasciola hepatica eggs were not detected via fecal 

analysis until 12 weeks pi.  Average weight at puberty (age = 286 d) was substantially 
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different between the infected and control heifers (I: 215.4 ± 5.7 kg, C: 230.7 ± 9 kg; 

p>0.05), albeit the sample size was insufficient to reject the null hypothesis at p<0.05.  

Estrogen and progesterone concentrations were higher prior to first estrus (I: 10 ± 3 

pg/ml E2 and 0.26 ± 0.1 ng/ml P4, C: 4.4 ± 0.8 pg/ml E2 and 0.93 ± 0.3 ng/ml P4; p<0.05) 

and estrogen concentrations were continuously higher in the postpubertal period 

(p<0.05).  Fasciola hepatica infection in prepubertal heifers resulted in a 39 day delay in 

puberty (I: 325 ± 16 d, C: 286 ± 10 d; p<0.05).  López-Díaz et al. [8] hypothesized the 

delay in puberty was resultant from an alteration in the metabolic clearance rate of 

estrogen induced from the trauma of the migrating flukes as was seen in the prepubertal 

ram study by Fleming and Fetterer [7].  Consistent with the “gonadostat theory,” the 

increased estrogen concentrations suppress the release of GnRH thus inhibiting follicular 

development and ovulation [8]. 

 Though well detailed, the experiment by López-Díaz et al. [8] had several 

shortcomings.  The Kamar® system utilized for estrus detection involves a pressure-

sensitive patch glued to the tail head of the animal.  Unlike the HeatWatch® system 

which allows for multiple readings, once depressed, the pressure-sensitive patch changes 

from white to red, thus allowing for only one reading and several instances for false-

positives.  The heifers were checked twice weekly for positive responses, indicating the 

onset of estrus had occurred within the three to four days since the last check.  False 

positives from heifers false mounting or rubbing could not be accounted for using this 

style of estrus detection if the heifers were not monitored more frequently to associate a 

positive response with behavioral estrus.  Secondly, the onset of puberty was defined as 
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the occurrence of two positive responses without the authors’ mention of utilizing 

progesterone concentrations for confirmation. 

 As previously mentioned, average weights between infected and control heifers 

were noticeably different but were not significant at the 0.05 level.  As stated by the 

authors, the difference failed to reject the null hypothesis because of insufficient sample 

size (six infected and seven control heifers).  The authors inconsistently claim significant 

levels less than 0.05 for the delay in puberty and estrogen and progesterone 

concentrations although the experimental design and sample size remain unchanged.  

With no change in experimental design, the insufficient sample size would need to be 

accounted for in the analysis of puberty and steroid hormone concentrations as well.  

The authors may perhaps be leading to the assumption that the significance levels 

obtained could be indicative of significant effects from Fasciola hepatica infection; 

however, experimental infection with a larger sample size should be analyzed.   
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CHAPTER III 

EFFECTS OF EXPERIMENTAL FASCIOLIASIS ON PUBERTY 

Introduction 

 Fasciola hepatica infection alters normal liver function in cattle indicated by 

elevations in hepatic enzymes released into circulation as hepatic cells are damaged, and 

can be used in diagnosing infection earlier than the conventional fecal analysis [72].  

Reports demonstrate the severity of infection is dependent on dosage of metacercariae 

[78].  AST and GGT concentrations increased 66 and 91 days post-infection in calves 

infected with 1200 metacercariae from parenchymal and hepatobiliary damage, 

respectively [75].  In contrast, infection loads of 3000 metacercariae in Brahman calves 

resulted in an earlier elevation in AST and GGT concentrations at only 4 and 9 wks post-

infection [71].  “Natural” infection of calves administered low doses of metacercariae 

over an extended period of time resulted in similar elevations in AST and GGT 

concentrations [76], suggesting that findings from experimental infections mimic those 

normally observed in natural infections. 

 Numerous studies have reported the impacts of Fasciola hepatica infection on 

the economy by investigating the effect of fascioliasis on liver condemnation, weight 

gain, milk production, fertility and mortality. In contrast, few studies have investigated 

the impact of fascioliasis on pubertal development, a critical time in the production of 

livestock.  Fleming and Fetterer [7] observed concentrations of circulating testosterone 

within the normal range in prepubertal rams infected with Fasciola hepatica. However, a 

decreased ability to clear exogenous testosterone in the infected rams suggested that the 
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metabolic clearance rate of the hormone in the liver might be impaired.  López-Díaz et 

al. [8] observed an increase in circulating estrogen concentration and a 39-day delay in 

the onset of puberty in prepubertal heifers infected with Fasciola hepatica. 

 This experiment was designed to characterize the patterns in circulating steroid 

hormone concentrations and pubertal development after infection of 4-mo-old heifers 

with 600 metacercariae of Fasciola hepatica.  We used a larger sample size (eleven 

infected and eleven control heifers) to extend the observations of López-Díaz et al. [8] 

by incorporating hepatic enzyme and plasma protein analysis and improved estrus 

detection technology.   

Hypothesis:  Fasciola hepatica infection of 4-mo-old beef heifers will result in 

alterations of serum concentrations of ovarian steroid hormones and delay puberty. 

Objectives:  

1. Quantify the effects of Fasciola hepatica infection on: body weight, hepatic 

enzyme, ovarian steroid hormone, and protein concentrations in serum, and 

2. Determine the effects of Fasciola hepatica infection on the age and BW at 

puberty and first service conception rate.  

 

Materials and Methods 

Treatment Groups  

 Twenty-two Angus-sired heifers (born within a 28-d period), known to be free of 

Fasciola hepatica, were housed as a single group on a concrete surface.  Upon arrival to 



 41

the research facility (May 30, 2002), preliminary weights were obtained and heifers were 

administered CattleMaster 4+VL5, Vision 8 with SPUR, and Ivomec® Eprinex Pour-On  

 

Table 1.  Feed composition and percentage. 
 
Ingredient Name Percentage 
Corn 23.6% 
Cottonseed Meal 15% 
Beef Vit 6905 0.05% 
Beef TM 6962 0.05% 
Soybean Hulls 30% 
Cottonseed Hull 25% 
Ground Lime 0.8% 
Salt Mixing 0.5% 
Molasses Summer Blend 5% 

 

(150kg dose to ensure heifers were free of parasitic infections).  Vaccinations were 

repeated 4-wk later.  Heifers were allotted into two groups (control and infected) based 

on age, BW at 4 mo (± 2 wks) of age (average of 135 kg), and sire (n= 4).  On day 0 

(June 13, 2002), the infected group was administered 600 metacercariae of Fasciola 

hepatica (Baldwin Aquatics Inc., Monmouth, OR) intraruminally in a single dose.  

Heifers were individually fed a concentrate (Table 1) twice daily and hay to achieve an 

average daily gain of 0.68 kg per day.  On day 82, the heifers were assigned individual 

feeding chutes (Calan gate chutes) with unique electromagnetic access to ensure 

adequate and consistent consumption amongst the herd.  Chutes were assigned by 

preference after being observed for 53 days and trained to eat from their respective 

chutes.   
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Infection Levels 

 Fecal samples were collected twice monthly from each heifer to monitor fecal 

egg counts using two methods.  The Wisconsin Double Centrifugal Sugar Floatation 

[101] was used to determine the parasitic backgrounds of the heifers.  The “Flukefinder” 

(Visual Difference, Moscow, ID) was used to determine the number of liver fluke eggs 

per gram during the experiment.  

 Blood samples were collected twice monthly and analyzed by the Texas 

Veterinary Medical Diagnostic Laboratory, at Texas A&M University, for a complete 

ruminant diagnostics panel.  Results for the hepatic enzyme (GGT and AST) and serum 

protein (bilirubin, albumin and globulin) concentrations received from the diagnostic test 

were used to assess changes induced by Fasciola hepatica infection. 

Ovarian Steroids 

 Blood samples were collected twice monthly from day 0 to day 60 via jugular 

venipuncture, and subsequent samples were collected twice weekly until the completion 

of the project.  After each collection, the blood serum was separated by centrifugation 

and frozen at -20° C for a subsequent radioimmunoassay (RIA).  Blood samples were 

collected from a pregnant cow (at approximately 8 mo gestation) and from an 

ovariectomized cow to serve as hormone controls in the RIA. 

 Concentrations of estradiol 17-β and progesterone were analyzed by RIA after 

the hormones were extracted from the serum, using the Ultra-sensitive Estradiol RIA 

DSL-4800 (sensitivity= 1 pg/ml; cross-reactivity of 2.40% and 0.21% for estrone and 

17α estradiol; Diagnostic Systems Laboratories, Inc., Webster, Texas) and the 
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progesterone assay as previously described (sensitivity= 0.2 ng/ml) [102], respectively.  

Intra- and inter-assay coefficients of variation (as determined by serum from the 

pregnant control cow) for estradiol were 3.10% and 3.41%, respectively, and for 

progesterone were 3.02% and 7.91%, respectively. 

Estrus Detection  

 To determine the onset of puberty, we used serum progesterone concentration 

and the HeatWatch® System (DDX, Inc., Denver, CO).  An elevation in progesterone 

concentration (>1 ng/ml of serum) in at least three consecutive samples was defined as a 

luteal phase resulting from initiation of estrous cyclicity accompanied by ovulation and 

formation of a corpus luteum.     

 The electronic HeatWatch® System was used to aid in the detection of estrus by 

continuously monitoring the mounting activity (number of mounts and duration) for each 

heifer. On day 165, transponders were assigned and fixed to the tail head of the heifers 

and the onset of puberty was determined by the occurrence of at least three mounts 

within a 4-hr interval, which was followed by an elevation in serum progesterone as 

described above. 

Artificial Insemination 

 After the onset of the second estrus (interval from pubertal estrus ranged between 

17 and 24 days), each heifer was artificially inseminated approximately 12 hr after the 

initiation of estrus.  A single technician used frozen-thawed semen from one Angus bull 

(29AN1458) to inseminate the heifers.   
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Statistical Analyses 

 The Mixed Procedures function of the SAS 8.1 program (SAS Institute Inc., 

Cary, NC) was used to determine if the rate of change of monitored variables was 

different between treatment groups.  This type of analysis is sometimes referred to as 

growth curve analysis [103].  Monitored variables included: (1) hepatic enzyme 

concentrations from day 0 to day 112 post-infection and the 16-wk interval preceding 

puberty, (2) estradiol and progesterone concentrations from day 0 to the end of the study 

(day 393) and the 8-wk interval preceding puberty, (3) serum protein analysis from day 0 

to day 393, and (4) average BW from day 0 to day 393 and the 16-wk interval preceding 

puberty.  Analysis of variance was used to analyze treatment effects on age and BW at 

first ovulation.  Correlations between age at puberty and the maximum concentration and 

area under the curve (AUC) for fecal egg counts and hepatic enzymes were analyzed 

using the General Linear Model.  AUC was calculated by taking the sum of all values for 

a given heifer across time, multiplied by a constant variable (14) for the length of time 

(days) between sample periods to find the area as described in equation (a) below.  

Conception rate was analyzed using a Chi-Square analysis. 

 Equation (a) AUC= 14 x concentration sum   

Medical Treatments 

 The following medications were administered during the project: 

1. Liquamycin (LA200) was administered to three control heifers and one infected 

heifer for pink eye infections (8/2/2002-9/20/2002). 
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2. Two control heifers developed abscesses from the Liquamycin injections and 

were administered Nuflor (6 mg/pound), Banamine and Dexamethasone 

(9/18/2002- 9/30/2002). 

3. Ringworm lesions were routinely treated with topical 2% iodine solution. 

4. Heifer #2 (control group) aborted her 6-mo-old fetus (6/10/2003) which was 

diagnosed to result from an infection with Listeria ivanovii.  Procaine Penicillin 

G was administered daily at 60 cc subcutaneously for 7 days and then at 30 cc for 

7 days.  She was isolated from the trial heifers to reduce the risk of transmission 

to the pregnant heifers.  The fetus and one milliliter of the heifer’s serum was 

submitted to the Texas Veterinary Medical Diagnostic Laboratory, Texas A&M 

University for an abortion screen.   

 

Results 

 One control heifer (No. 3) displayed progesterone concentrations over one ng/ml 

for the duration of the project.  Upon palpation, it was determined she was 

approximately 7-mo pregnant and had conceived prior to her arrival at the Texas A&M 

University research facility.  All blood samples and fecal samples collected from this 

heifer were excluded from the analyses.   

 Approximately 45 days post-conception, a control heifer (No. 17) experienced 

embryo loss as determined by reduced progesterone concentrations and a return to 

estrus.  On January 28, 2003, she was bred via artificial insemination and determined to 

be pregnant by elevated concentrations of progesterone (>1 ng/ml) to day 35.  By day 38 
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post-insemination, progesterone concentrations were below one ng/ml and she returned 

to estrus 42 days post-insemination, indicating embryonic loss.  Data from this heifer 

were incorporated into the analysis, and she was considered pregnant.  

 In the control group, one heifer (No. 2) aborted at six months of gestation 

(6/10/2003).  The fetus and one milliliter of the heifer’s serum were submitted to the 

Texas Veterinary Medical Diagnostic Laboratory, Texas A&M University for an 

abortion screen and were diagnosed as resultant from infection with Listeria ivanovii.   

Treatment Effects 

 Body weight, GGT, AST, bilirubin, albumin, globulin, and estradiol and 

progesterone concentrations were analyzed using the SAS Mixed Procedure to determine 

significant effects of Fasciola hepatica infection.  Treatment group did not affect BW or 

concentration of either estradiol or progesterone in serum during the study (Table 2).  

BW had a curvilinear effect over time (p=0.0003) that was not (p>0.1) modified by 

group (Table 2; Figure 1).  Estradiol had a quadratic effect with time (p<0.0001) that 

was not modified by group (p>0.1; Table 2; Figure 2).  Progesterone had a linear effect 

over time (p<0.0001) that was not modified (p>0.1) by group (Table 2; Figure 3).  Mean 

BW and mean serum concentration of estradiol and progesterone by treatment group on 

days 0 and 393 are presented in Table 3.  All heifers and blood samples, regardless of 

group designation, were handled in a similar manner and analyzed together.  After day 

112, there were decreases in serum GGT and AST concentrations.  Therefore, the 

growth curve model was used to analyze the changes in serum GGT and AST only  
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Table 2. Effects (probability level) of treatment group and time on body weight and 
concentration of estradiol and progesterone from day 0 through day 393. 
 

 Group Time Time*Group Time*Time Time*Time*Group
BW NS < 0.0001 NS 0.0003 NS 

Estradiol NS NS NS < 0.0001 NS 
Progesterone NS < 0.0001 NS NS NS 
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Figure 1.  Mean body weight by treatment group from day 0 to day 393. 

during the interval from day 0 to 112 when concentrations were either basal or 

increasing for control and infected heifers, respectively.  The analyses of GGT and AST 

from day 0 to day 112 resulted in significantly higher concentrations in the infected 

group at the beginning of the study (p=0.0009 and p=0.0002, respectively; Table 4).  

However, analyses of the enzyme concentrations in serum during the first 6 wk (day 0 to  
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Figure 2.  Mean serum concentration of estradiol by treatment group from day 0 to day 393. 
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Figure 3. Mean serum concentration of progesterone by treatment group from day 0 to day 393. 
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Table 3. Mean (± SE) body weight and mean (± SE) serum concentration of estradiol, 
progesterone, GGT, and AST on days 0 (start) and 393 (end) of the study. 
  
 Day 0 Day 393 
 Control Infected Control Infected 
Body Weight (kg) 152 ± 6 153 ± 3 422 ± 12 424 ± 13 
Estradiol (pg/ml) 1.85 ± 0.44 1.50 ± 0.46 4.98 ± 1.67 3.08 ± 

1.23 
Progesterone 
(ng/ml) 

0.08 ± 0.01 0.16 ± 0.03 5.32 ± 1.33 5.71 ± 
1.00 

GGT (U/l) 16 ± 1.0 16 ± 0.6 18 ± 1.5 18 ± 1.6 
AST (U/l) 62 ± 4.3 70 ± 6.4 59 ± 2.3 58 ± 3.9 

 

Table 4. Effects (probability level) of treatment group and time on GGT and AST concentrations 
in serum of heifers from day 0 through day 112. 
 

 Group Time Time*Group Time*Time Time*Time* 
Group 

GGT 0.0009 0.0008 0.002 NS NS 
AST 0.0002 0.0006 0.051 0.011 0.086 

 

day 42) indicated that the AST and GGT concentrations were not different between 

treatment groups at the beginning of the project (data not shown).  Based on the graphs 

in Figures 4 and 5 (illustrating GGT and AST concentrations from day 0 to 393), the 

increase in GGT and AST occurs after day 42, suggesting that the group analysis may be 

incorporating an interval rather than the specific time points at the beginning of the 

dataset.  GGT had different intercepts for treatment group (p=0.0009) and a linear effect 

with time (p=0.0008) that was also different between groups (p=0.002; Table 4).  AST 

intercepts differed between treatment groups (p=0.0002) and a linear effect tended to be 

different between groups (p=0.051).  AST had a curvilinear effect with time (p=0.011) 

that was not significantly (p=0.086) modified by group (Table 4).  Albumin had a 
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quadratic effect with time (p<0.0001) and globulin had a linear effect with time 

(p<0.0001).  Neither of the effects was modified by group (p>0.1 and p=0.071, 

respectively; Table 5; Figures 6 and 7).  Bilirubin was not related to time or to group 

(p>0.1; Table 5; Figure 8). 

Age and Weight at First Ovulation (Puberty) 

 Due to malfunction of the receiver unit of the Heat Watch System, we were 

unable to record mounting data for the first estrus (which occurred before day 165) from 

two control and two infected heifers.  For this analysis, we defined the onset of puberty 

by an elevation in serum progesterone concentration for 7 to 10 days (normal luteal 

function) which followed the pubertal ovulation.  Age and weight at puberty were not 

different (p>0.1) between the infected and control groups (Table 6).   

Intervals Preceding Puberty 

 To determine if body weight and GGT, AST, estradiol, and progesterone 

concentrations differed between groups prior to the onset of puberty, specific intervals 

were analyzed using the SAS Mixed Procedure.  Due to collection times, the interval 

prior to puberty for body weight, GGT and AST concentrations consisted of eight 

samples (16 wk) while the interval for estradiol and progesterone included 16 samples (8 

wk).  There were no differences (p>0.05) in body weight, serum enzyme concentrations 

or serum steroid hormone concentrations between groups in the 8- or 16- wk interval 

prior to puberty (Tables 7 and 8).  Both estradiol and progesterone had linear (p<0.001) 

effects over time but were not modified by group (p>0.1; Table 9; Figures 9 and 10).   
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Figure 4.  Mean serum concentration of GGT by treatment group from day 0 to day 393. 
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Figure 5.  Mean serum concentration of AST by treatment group from day 0 to day 393. 
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Table 5.  Effects (probability level) of treatment group and time on albumin, globulin, and 
bilirubin concentrations from day 0 through day 339. 
 

 Group Time Time*Group Time*Time Time*Time* 
Group 

Albumin NS NS NS <0.0001 NS 
Globulin 0.095 <0.0001 0.071 NS NS 
Bilirubin NS NS NS NS NS 
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Figure 6.  Mean serum concentration of globulin by treatment group from day 0 to day 393. 
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Figure 7.  Mean serum concentration of albumin by treatment group from day 0 to day 393. 
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Figure 8.  Mean serum concentration of bilirubin by treatment group from day 0 to day 393. 
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Table 6.  Mean (± SE) age and weight at first ovulation (puberty) by treatment group. 
 

 

Table 7.  Mean (± SE) estradiol and progesterone concentration in serum during the 8-wk 
period preceding puberty by treatment group. 
 

 Control Infected 
Estradiol (pg/ml) 1.73 ± 0.26 1.58 ± 0.15 

Progesterone (ng/ml) 0.46 ± 0.19 0.30 ± 0.13 
 

Estradiol had a quadratic effect (p=0.032) over time that was not significantly (p=0.064) 

modified by treatment group (Table 10).  Weight had a linear effect over time 

(p<0.0001) but was not modified by group (p>0.1; Table 10; Figure 11).  GGT was 

different between treatment groups (p<0.05) at the start of the 16-wk period prior to 

puberty but had no further change with time (p>0.1; Table 10; Figure 12).  AST was 

different (p<0.5) at the start of the 16-wk period prior to puberty and had a quadratic 

time effect (p<0.05).  Time effects were not significantly modified by group (p>0.1; 

Table 10; Figure 13).     

 

 

 Treatment Group  
 Control Experimental P-value 

Age At First Ovulation (days) 329 ± 19.48 339 ± 18.57 NS 
Weight At First Ovulation (kg) 290.0 ± 12.25 300.0 ± 11.57 NS 
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Table 8.  Mean (± SE) body weight and mean (± SE) concentration of GGT and AST during 
the 16-wk period preceding puberty by treatment group. 
 

 Control Infected 
Body Weight (kg) 240 ± 8 249 ± 8 

GGT (U/l) 18 ± 0.3 58 ± 4.5 
AST (U/l) 73 ± 1.3 87 ± 3.6 

 

Table 9.  Effects (probability level) of treatment group and time on serum ovarian steroid 
hormone concentrations during the 8-wk period preceding puberty. 
 

 Group Time Time*Group Time*Time Time*Time* 
Group 

Estradiol 0.083 <0.0001 NS 0.032 NS 
Progesterone NS 0.0009 NS 0.064 NS 
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Figure 9.  Mean serum concentration of estradiol during the 8-wk period preceding puberty by 
treatment group. 
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 Figure 10.  Mean serum concentration of progesterone during the 8-wk period preceding  
 puberty by treatment group. 
 

Table 10.  Effects (probability level) of treatment group and time on body weight and serum 
GGT and AST concentrations during the 16-wk period preceding puberty. 
 

 Group Time Time*Group Time*Time Time*Time* 
Group 

Weight NS <0.0001 NS 0.081 NS 
GGT 0.047 NS NS NS NS 
AST 0.045 NS NS 0.03 NS 
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 Figure 11.  Mean body weight during the 16-wk period preceding puberty by treatment group. 
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Figure 12.  Mean serum concentration of GGT during the 16-wk period preceding puberty by 
treatment group. 
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Figure 13.  Mean serum concentration of AST during the 16-wk period preceding puberty by 
treatment group. 
 

Table 11. Correlation coefficients and probability level for age at puberty with maximum values 
or area under the curve for GGT, AST, or fecal egg counts in the infected group. 
 

  Maximum Value Area Under the Curve 
  

GGT 
 

AST 
Fecal 
Egg 

Count 

 
GGT 

 
AST 

Fecal 
Egg 

Count
R2 0.027 0.24 0.067 0.012 0.13 0.091 

 
Age at    
Puberty 

p-value 0.63 0.13 NS 0.75 0.28 NS 
 

Hepatic Enzymes and Fecal Egg Counts 

  There were no significant correlations for age at puberty of infected heifers with 

maximum value for GGT, AST, or fecal egg counts (p>0.1; Table 11).  There were no 
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significant correlations for age at puberty of infected heifers with area under the curve for 

GGT, AST, or fecal egg counts (p>0.1; Table 11).  Mean maximum value and area under 

the curve for GGT, AST, and fecal egg counts for infected heifers are listed in Table 12.   

 

Table 12.  Mean (± SE) for the maximum value and area under the curve for GGT, AST, and 
fecal egg counts in the infected group. 
 

 Mean Maximum Value Mean Area Under the 
Curve (Units) 

GGT (U/l) 292 ± 20.6 18358 ± 20.8 
AST (U/l) 168 ± 18.2 31742 ± 19.6 

Fecal Egg Count (eggs/gm) 20 ± 20.2 975 ± 19.9 
 

First Service Conception Rates 

  A Chi-Square analysis was utilized to determine the effects of Fasciola hepatica 

infection on the conception rates of heifers.  There was no significant difference in 

conception rate between the control and infected heifers (Table 13).   

 

Table 13.  Number of heifers that did or did not conceive to a single AI service by treatment 
group. 
 

 Control Infected 
Pregnant 5 5 

Non-pregnant 5 6 
Chi-Square (α= 0.05, df= 1) 0.00263 
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Discussion 

Precocious Puberty and Pre- and Perinatal Mortality 

 Hypothalamic sensitivity to estrogens in the prepubertal female inhibits the 

release of gonadotropins by the anterior pituitary; however, during the first few months 

after birth, the hypothalamus is non-responsive, allowing for follicular growth.  Prior to 

the onset of heighten sensitivity, estrogen concentrations can induce ovulation and result 

in estrous cyclicity [104].  If exposed to a bull during this period, the female can become 

pregnant.  Wehrman et al. [105] defined precocious puberty as the occurrence of luteal 

function in prepubertal females prior to 300 days of age.  In 120 beef heifers, Wehrman 

et al. [105] observed precocious puberty in 16.6% of the heifers over two years and bull 

exposure did not significantly affect the rate of occurrence.  Precocious puberty occurred 

at an average of 194 ± 12.4 days of age, and those heifers had normal luteal function for 

65 ± 10.5 d.  The inhibitory response of the hypothalamus resumed at this time, and the 

heifer became anestrous (260 ± 15.3 days of age on average) until the typical age for 

puberty [105].  In the current study, puberty occurred by 120 d of age in one heifer that 

conceived by natural service. 

 Embryonic mortality refers to the death of a conceptus during the embryonic 

period, the time from conception to the end of differentiation, approximately 45 days 

[106].  The embryonic mortality rate in Holstein-Friesian heifers observed over a 30-

year period was greater for heifers during their first reproductive cycle compared to 

cows in their second or third (15.0% versus 8.6% returning for service on day 45) [107].  
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Diskin and Sreenan [108] further classified the incidence of embryonic mortality and 

observed decreased embryo survival rates 12 (56%), 16 (66%), and 42 (53%) days post-

insemination (p<0.001).  In the current study, we observed a 90% (9/10) embryo 

survival rate by day 45 (based on serum progesterone profiles) which is higher than the 

findings of Diskin and Sreenan [108].  Embryo mortality rates in the current study (10%) 

by day 45 are similar to the findings observed by Erb and Holtz [107].  

 Listeria infection in gestating ruminants results in placentitis and abortion, and 

infected animals show symptoms of depression, increased temperature, retained placenta 

and fetid uterine discharge [109].  These signs were observed in one heifer that 

contracted listeriosis and aborted at approximately 6 months of gestation.  Sergeant et al. 

[110] stated, “outbreaks of listeriosis are generally associated with periods of cold, wet 

weather, nutritional stress and sometimes with the feeding of silage,” none of which 

were associated with this project.   

 Comparison of Studies 

  This study was designed to quantify the effects of Fasciola hepatica infection on 

the reproductive performance of prepubertal beef heifers and was designed to extend the 

results of previous work by López-Díaz et al. [8].  Our objective was to determine 

whether Fasciola hepatica delayed puberty and if a delay in puberty was associated with 

increased estradiol and decreased progesterone concentrations.  Puberty was defined more 

precisely in the current study with the use of an advanced estrus detection system 

(HeatWatch®) and confirmation of the onset of the pubertal estrus with progesterone 

concentrations.  López-Díaz et al. [8] used heat mount detectors (Kamar®) for 
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determining the onset of estrus and patches were checked twice a week, a positive 

response indicated the heifer had reached puberty within the previous 3 to 4 days.  The 

heat detectors were replaced after the first estrus to ensure cyclicity.  The use of the 

HeatWatch® system allowed for continual observance of mounting activity and reduced 

the risk of false positives in estrus detection by analyzing the number and duration of 

mounts received.   

 Comparison of the two assays used to analyze the estradiol concentrations 

indicated similar specificity and intra-assay coefficients of variation (1.1 and 0.16% 

cross reactivity for estrone and estradiol-17α, respectively, and less than 4.7% CV) [8].  

The RIA used in the current study was one pg/ml more sensitive (1 pg/ml versus 2 

pg/ml, respectively) than the solid phase 125I used by López-Díaz et al. [8]; however, the 

difference does not account for the high estradiol concentrations reported in the previous 

study.  López-Díaz et al. [8] reported average estradiol concentrations of 10 ± 3 pg/ml 

and 4.4 ± 0.8 pg/ml (p<0.05) for infected and control heifers, respectively, from the day 

of infection to first estrus, though these concentrations are within normal ranges, as 

reported by previous studies [25, 27].  Mean estradiol concentration during elevations 

prior to puberty was 34 ± 15 pg/ml for the control heifers over the 65 day interval prior 

to puberty, higher than the mean concentration reported by Gonzalez-Padilla et al. [27] 

during the same time interval (18.3 ± 1.9 pg/ml from -64 to -39 days and less than 10 

pg/ml from -38 to 0 days before first estrus).  Mean estradiol concentration during the 8 

week period prior to puberty in the current study for control and infected heifers was less 
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than 2 pg/ml (1.73 ± 0.26 pg/ml and 1.58 ± 0.15 pg/ml, respectively), lower than 

reported by Gonzalez-Padilla et al. [27].  

  Maximum and mean estradiol concentrations during elevations prior to puberty 

for the infected heifers were 152 ± 45 pg/ml and 109.8 ± 30 pg/ml, respectively [8], well 

over normal concentrations.  After extensive research, we are unable to locate further 

studies on sex steroid hormone concentrations after infection with Fasciola hepatica; 

however, sex steroid hormone concentrations have been reported during investigations of 

liver damage due to cirrhosis, though the results are variable.  Shaaban et al. [111] 

reported decreased estradiol concentration in amenorrhic women with advanced liver 

cirrhosis, though average concentrations did not differ from the control group (61 ± 17 

pg/ml and 84 ± 9 pg/ml, respectively).  Maximum concentration (137 pg/ml) was similar 

to that reported by López-Díaz et al. [8]; however, the extent of the range (17 to 137 

pg/ml) reduced the mean to less than the normal limits [111].  Protein analysis for 

bilirubin and globulins, and albumin revealed increases and decreases, respectively, 

compared to the normal limits in some patients [111].  Similar trends were reported in 

amenorrhic women with alcoholic and non-alcoholic cirrhosis, non-cirrhotic alcoholics 

and patients with other liver disease; 65% of the patients had an estradiol concentration 

below the normal range, yet the averages were similar (0.07 ± 0.07 to 0.10 ± 0.08 nmol/l; 

normal range- 0.08 to 0.11 nmol/l; p-value not given) [112].  The high elevations reported 

by López-Díaz et al. [8] are plausible, though the mean concentration reported could be 

skewed by the low sample size. 
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  The lower concentration of progesterone in the infected heifers before first estrus 

was hypothesized to be a consequence of the high estradiol concentrations, initiating a 

negative feedback on the hypothalamus resulting in a failure to ovulate [8].  In the current 

study, mean progesterone concentration did not differ between control and infected 

groups before puberty. 

Puberty Analysis 

 Though the study was well designed in comparison to the previous study on 

pubertal development, the results from this experiment lead us to the conclusion that we 

may not have induced a high enough level of infection to have altered the normal 

metabolic functions of the liver.  Our findings from the hepatic enzyme (AST and GGT) 

and fecal analysis are consistent with previous experiments; however, we were unable to 

induce clinical signs associated with fascioliasis.  In the current study, hepatic enzyme 

analysis for GGT and AST indicated concentrations were significantly higher in infected 

heifers by day 56 (data not shown) and analysis from day 0 to day 112 resulted in a 

linear response (p=0.0023 and p=0.051, respectively) indicating infection of 600 

metacercariae induced liver damage.  Even though trauma to the liver is evident, normal 

liver function may not have been altered to an extent in this study which could have 

delayed the onset of puberty by impairing the metabolic clearance rate of estradiol 

(described below). 

 The conclusion that we may not have markedly altered normal liver function is 

supported by serum protein analysis for bilirubin, globulin, and albumin.   Increased 

concentrations of bilirubin and globulin, and decreased concentrations of albumin are 
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common signs of chronic fascioliasis [58, 62, 64, 65]; albeit, protein concentrations were 

not significantly different between groups in this study, indicating we may have only 

achieved a sub-clinical level of infection.  Though not affected by treatment group, 

linear and curvilinear decreases in globulin and albumin, respectively, were found.  In 

contrast, a previous report indicated these proteins increase and remained unchanged as 

age increases, respectively; however nutrition was not taken into consideration in the 

study [113].  A recent study on metabolic profiles in prepubertal dairy heifers reported 

that an ADG of 0.7 kg (comparable to the ADG in this study) resulted in decreased 

globulin levels compared to heifers fed a moderate diet (ADG= 0.9 kg) [114], suggesting 

that dietary level in the current study may have negatively impacted serum globulin 

concentrations.  Similar findings were observed in cattle with seasonal malnutrition; 

decreases in concentrations of total protein and its components (albumin and gamma-

globulins) were noted [115].   

 A decrease in body weight normally associated with parasitic infection [65] was 

not evident in the infected heifers.  Previous studies by Lacau-Mengido et al. [116], 

Larson et al. [117], Loyacano et al. [89], and Zajac et al. [1] all reported increased 

weight gains in beef heifers naturally infected with parasites after ivermectin treatment.   

 Increases in estradiol concentrations are associated with age [118] and growth of 

the dominant follicle during the mid- and late-follicular phase [119].  Concentrations are 

higher for the last non-ovulatory and first ovulatory follicular waves than for the non-

ovulatory waves 9 to 12 wks prior to puberty which can be associated with the increase 

in follicular diameter [120].  Melvin et al. [121] observed an increase in concentration 3 
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mo to 1 mo prior to puberty (p<0.03).  Similar to the findings observed by Evans et al. 

[120] and Melvin et al. [121], a linear and curvilinear increase in estradiol concentration 

was observed during the 8-wk interval prior to puberty (p<0.0001 and p=0.032, 

respectively); however, concentrations were not influenced by infection of Fasciola 

hepatica (p>0.1).   

 During the peripubertal period, transient increases in progesterone are observed 

due to subfertile ovulations and are typically lower, shorter in duration than a normal 

luteal phase, and do not follow an observed estrus [28, 31, 32, 33].  The linear increase 

in progesterone during the 8-wk interval prior to puberty, in our study, can be explained 

by transient increases in progesterone from ovulations of follicles not resulting in 

sustained luteal function.  Although the heifers experienced ovulation and increased 

progesterone concentrations, onset of puberty date was not recorded until progesterone 

concentrations were elevated for three consecutive samples.    

 Changes to the experimental design that could have altered the outcome are 

described below: 

Management 

  In the current study, the control and infected heifers were maintained in dry lots 

(on concrete surfaces) and fed a mixed ration, supplemented with coastal Bermuda grass 

hay instead of being raised on pastures and fed supplements to support growth, which is 

routine in traditional livestock management.  As stated previously, the average daily gain 

was 0.68 kilograms which is considered an average to high plane of nutrition.  Fasciola 

hepatica infection may exert a negative impact on puberty when nutrition is marginal, 
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suggested by the analysis completed by Larson et al. [117].  In this previous study, 

treatment with ivermectin hastened the onset of puberty and improved pregnancy rates in 

heifers that were maintained on a marginal plane of nutrition (pastured on tallgrass 

prairie) and naturally infected with parasites [117].  Heifers on pasture may be more 

susceptible to the potential effects of fascioliasis under the conditions of a restricted 

nutritional plane compared to heifers developed under optimal nutrition.  However, 

effects of Fasciola hepatica infection on puberty would need to be analyzed taking into 

consideration heifers fed a low nutritional plane may alter the onset of puberty due to 

decreased body conditioning; hence, the low weight gain of the heifers may be more 

influential in delaying the onset of puberty than the infection. 

Dosage of Metacercariae 

  The infected group in our study was administered 600 metacercariae 

intraruminally in a single bolus to induce a subclinical fascioliasis infection based on the 

increase of hepatic enzyme concentrations in circulation.  In comparison to previous 

experiments, the effect of acute alteration in liver function at lower doses may not 

simulate the effects of chronic exposure to Fasciola hepatica received by cows on 

pasture.  Previous experiments have been conducted at various doses of administered 

metacercariae in sheep and cattle to determine the impact that infection has on several 

enzyme concentrations.  Sykes et al. [78] experimentally infected 5-month-old sheep with 

3, 8, or 14 metacercariae daily, 5 times a week for 22 weeks, or with a single dose of 200 

metacercariae.  It was reported that GGT and GD (glutamate dehydrogenase, also known 

as GLDH) concentrations were associated with dosage; however AST concentration was 
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not related to the dose of metacercariae [78].  Heifer and bull calves (4 to 5 months of 

age) were experimentally infected with 1000, 100 or 10 metacercariae in three doses 

(total infection of 3000, 300, 30 metacercariae) and then sacrificed to determine the 

number of flukes in the liver [71].  It was determined that the number of flukes present in 

the liver was a more accurate indicator of infection than hepatic enzyme concentrations, 

reporting the mean number of flukes found at necropsy was 211, 78, and 10 at dose levels 

of 3000, 300, and 30 metacercariae, respectively [71].  Ross [84] showed massive 

infection levels of metacercariae resulted in considerable destruction of liver tissue in 

cattle.  At infection levels of greater than 2500 metacercariae (2500, 5000, or 15,000), 

there was a greater extent and severity of cirrhosis of the liver outside of the bile duct.  

Livers from cattle infected with 1300 metacercariae had a greater extent of fibrosis in the 

bile duct than the higher dose levels [84].   

  Throughout the study, we based the level and severity of Fasciola hepatica 

infection on the concentration of hepatic enzymes released in the circulation, plasma 

protein concentrations and fecal egg counts.  Previous studies have noted that beyond 

these findings, clinical signs of fascioliasis were not observed to indicate the true severity 

of the infection (indicated in this study) [72, 75, 79].  In two of these studies, postmortem 

analysis of the livers indicated enlarged fibrotic and calcified bile ducts and cell 

destruction [72, 75].  Overall the condition of the liver after severe fascioliasis infection 

includes plaque formation, fibrosis, and cellular destruction.  In our study we estimated 

the severity of the infection achieved based on serum analyses, but we do not know the 

true extent of liver trauma since we did not euthanize the heifers or obtain a liver biopsy. 
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  There is evidence to support the hypothesis that natural infections in cattle (i.e. 

raised on pasture) show more severe signs of fascioliasis than experimental infections due 

to the development of a chronic infection.  Several studies state experimental infection 

achieved a sub-clinical level of fascioliasis (indicated in this study) [72, 77]; whereas 

natural infections reached acute, subacute and chronic levels [64].  To reach a chronic 

level of infection normally observed in cattle [64], metacercariae of Fasciola hepatica 

could be administered in low doses for extended periods of time to induce a sustained 

infection; for example, 5 metacercariae every other day for an 80-day period [76]. 

Hepatic Enzyme Analysis 

  Hepatic enzymes are released as hepatic cells are damaged, hence its diagnostic 

use as an indicator for liver trauma [72]; however not all hepatic enzymes can be utilized 

for accurate diagnosis of fascioliasis.  Wyckoff and Bradley [71] reported the lack of 

sensitivity for liver function associated with concentrations of serum albumin, total 

protein and bilirubin, as well as the lack of liver specificity associated with AST 

concentrations [75, 77].  Increased concentrations of AST could be related to cellular 

tissue damage, such as skeletal tissue and cardiac muscle, possibly induced by handling 

[71, 75, 77].  GGT and GD are more sensitive indicators of Fasciola hepatica infection 

[75, 77, 78] and it has been reported that markedly increased concentrations are related to 

liver damage by the flukes [72, 77, 78].  The use of another liver specific enzyme, such as 

GD, might show more definitive levels of infection in conjunction with GGT.  

Future Studies: Hormones Affected by Fasciola hepatica Infection during Puberty 
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 Estradiol 17β concentrations in prepubertal and pubertal heifers were 

investigated in this experiment; however, alterations in the metabolic clearance rate 

(MCR) of estradiol in the liver was not explored.  Fleming and Fetterer [7] demonstrated 

a decreased ability of the liver to metabolize exogenous testosterone in infected 

postpubertal rams, even though endogenous concentrations were not different between 

infected and control rams during the prepubertal period, suggesting that compensatory 

mechanisms were maintaining concentrations in normal ranges.  López-Díaz et al. [8] 

suggested the increase in estradiol concentrations observed in prepubertal heifers 

infected with Fasciola hepatica was a result of decreased MCR.  In our experiment we 

did not observe this increase in endogenous estradiol concentration after infection.  

Fleming and Fetterer [7] suggested the possibility that exogenous estradiol administered 

to prepubertal heifers could have the same effect, a decrease in the metabolic clearance 

rate by the liver, masked by compensatory mechanisms to maintain normal 

concentrations. 

 Insulin-like growth factor-1 (IGF-1) is produced by the liver [67] and was found 

to elicit a dose-related increase of GnRH (LHRH) from the hypothalamus in rats [122], 

suggesting its role in the timing of puberty.  Further study showed increases in 

circulating concentration of IGF-1 during the late proestrus phase (p<0.001) and 

administrations of exogenous IGF-1 to immature rats induced LH release and advanced 

the onset of puberty as determined by vaginal opening (34 ± 0.36 days of age vs. 38.9 ± 

0.40 days of age; p<0.001) [123].  Similar observations were made in sheep; IGF-1 
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concentrations were greater at 252 days of age in pubertal females (326 ± 16 ng/ml vs. 

249 ± 8 ng/ml; p<0.01) [124].   

  Estrogen treatment for growth-hormone deficiency prevents the rise of IGF-1 

suggesting that abnormal estrogen metabolism, observed in some patients with chronic 

liver disease [125], could decrease the concentration of circulating IGF-1 [126].  Findings 

from Stuver et al. [127] supports this hypothesis after noting reduced concentrations of 

IGF-1 in humans suffering from hepatocellular carcinoma and metastatic liver cancer, 

which has been attributed to parenchymal damage.  As mentioned previously, elevated 

concentrations of AST are correlated with damage of the liver parenchyma during the 

migratory phase of the adult form of Fasciola hepatica [71, 75].  These findings suggest 

that IGF-I concentrations might be altered after Fasciola hepatica infection if the 

parenchyma is extensively damaged.   

 Growth hormone (GH) regulates growth and protein metabolism by stimulating 

the release of IGF-I from the liver [5, 67].  Moderate increases in GH have been detected 

at the onset of puberty [5, 67]; it was noted that GH concentrations were lower at 40 

days than at 17 days prior to puberty in heifers [5].  Liver trauma from Fasciola hepatica 

infection could damage the GH and GH-receptor interactions, resulting in increased 

circulatory concentrations of GH and decreased concentrations of IGF-1.  Patients with 

chronic hepatitis (CH) had GH concentrations 15 times greater than control patients (161 

± 271.9 µU/L vs. 10.9 ± 4.4 µU/L; p<0.01).  As expected, CH patients had reduced 

concentrations of IGF-1 compared to control patients (14.9 ± 9.7 nmol/L vs. 37.6 ± 14.9 

nmol/L; p<0.001) [128], suggesting that this hypothesis is plausible.   
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  Leptin is synthesized and secreted by adipose tissue and evidence indicates that it 

may play a role in the hypothalamo-pituitary-gonadal axis [129].  It has been shown that 

leptin concentration increases during puberty in humans [129]; and in prepubertal heifers, 

serum concentration of leptin increased beginning 16 weeks prior to the onset of puberty 

(3.8 ± 0.4 ng/ml vs. 6.4 ± 0.4 ng/ml; p<0.0001) [130].  If adipose tissue deposition is 

delayed by Fasciola hepatica infections due to decreased body conditioning, a common 

sign of fascioliasis, then age at puberty could be increased due to depressed serum leptin 

concentration. 

 

Conclusion 

 Infection loads of 600 metacercariae of Fasciola hepatica did not alter steroid 

hormone concentrations in prepubertal heifers from day 0 to day 393 post-infection or 

during the eight week interval prior to the onset of puberty.  Heifers in the infected group 

were on average 10 days older at puberty; however, age and weight at puberty and 

conception rate after artificial insemination were not significantly different from control 

heifers.  Administration of a single bolus of metacercariae of Fasciola hepatica to 4-mo-

old heifers induced liver trauma but did not induce clinical signs of fascioliasis.  The 

effects of fascioliasis on altered liver function were associated with an elevation in 

circulating GGT and AST during a 3-mo-period (between two and five months post-

infection); however, typical clinical signs associated with chronic fascioliasis (increased 

concentrations of plasma bilirubin and globulin and decreased albumin concentration) 

were not observed.  Although low numbers of fluke eggs were detected in the feces of 
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some heifers for several months following infection, there were no differences in either 

performance or the physiological traits between the infected and control groups.  These 

results suggest that we may not have achieved a level of infection with 600 

metacercariae to substantially alter liver function and steroid hormone concentrations.  

Further studies are warranted to determine whether chronic exposure to Fasciola 

hepatica (which simulates pasture conditions) or experimental infection in larger or 

more frequent boluses during the prepubertal period will significantly alter steroid 

hormone concentrations and delay the onset of puberty in heifers. 
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CHAPTER IV 

MOUNTING ACTIVITY IN PUBERTAL AND GESTATING HEIFERS 

Introduction  

 Radiotelemetry provides continuous monitoring of estrus behavior for 

determining the appropriate time for artificial insemination.  Studies have reported use of 

radiotelemetry to detect estrus activity (number of mounts, total duration of mounts, and 

estrus duration) for adult cattle [9, 42].  However, few studies were found that used 

radiotelemetry to monitor estrus activity in beef heifers and none were found that used 

radiotelemetry to quantify estrus activity in pubertal heifers.  Identifying pubertal estrus 

is economically beneficial to producers, in that producing a first calf by 24 months of 

age requires breeding of the heifer on one of its first few estrus events.  Thus, there is a 

need to document the characteristics of estrus behavior in peripubertal heifers utilizing 

radiotelemetry and compare differences in behavior during the pubertal and second 

estrus, and to estimate the predictability of these activities on pregnancy outcome.   

 Estrus activity in gestating females has been reported in sheep [45] and cattle 

[10, 46]; though with low occurrence rates, misdiagnosis of true pregnancy can lead to 

serious complications and economic loss.  Over a 30-year period, Erb and Morrison [10] 

observed the mounting activity of gestating dairy heifers and cows and determined the 

rate of occurrence by visual inspection.  Erb and Morrison [10] reported an incidence 

rate of 5.6% in cows with 55% of the estrus activities occurring 35 days post 

insemination.  Therefore, assessment of estrus activity by radiotelemetry in beef heifers 
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after artificial insemination can provide useful information concerning the frequency of 

estrus activity and interestrus intervals that occur during gestation. 

 Hypotheses:  Estrus activity (number of mounts, total duration of mounts and 

duration of estrus) will be greater during the second estrus in pubertal heifers as 

determined by HeatWatch® and in heifers conceiving after artificial insemination.  The 

interestrus interval in gestating heifers will approximate the typical estrous cycle of 21 

days. 

  Objectives: Using radiotelemetry, determine estrus activity in pubertal and 

gestating beef heifers including: 

1. Comparison of the first and second estrus activity,  

2. Prediction of pregnancy rate determined by the activity from the second estrus, 

3. Interestrus interval in pregnant heifers, and 

4. Prediction of the intensity of the estrus activity of pregnant heifers determined by 

the second estrus activity.  

 

 Materials and Methods  

Estrus Detection 

 Twenty-two prepubertal (age= 9 mo) Angus-sired heifers were housed as a single 

group in a 10 x 30 m pen on concrete surfaces.  Heifers were fitted with HeatWatch® 

transponders and continuously monitored for estrous activity.  One heifer was excluded 

from the project and analysis after discovering she had conceived prior to her arrival at 

the Texas A&M University research facility.  Blood samples were collected via jugular 
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venipuncture twice weekly and analyzed by radioimmunoassay for progesterone 

concentration [102].  Puberty was defined by a minimum of three mounts in a 4-hr 

interval according to the HeatWatch® system and confirmed by the occurrence of the 

first normal luteal phase (serum progesterone concentrations greater than one ng/mL for 

at least ten days).   

 Estrus activity recorded included total number of mounts, total duration of 

mounts, and duration of estrus.  Heifers were artificially inseminated with frozen/thawed 

semen approximately 12 hours after the onset of the second estrus after puberty.  Heifers 

that conceived (confirmed by ultrasound 30 days post-insemination) were monitored 

during gestation (range from a minimum of 35 days to a maximum of 220 days gestation 

for individual heifers) for total number of mounts, total mount duration and interestrus 

interval.  Patches that contained the transponder were replaced as needed.   

Statistical Analysis 

 Data obtained from the HeatWatch® system were analyzed using the Mixed 

Procedures to compare total number of mounts, total duration of mounts, and duration of 

estrus between the pubertal and second estrus activities.  The procedure analyzed the 

fixed effects while controlling for the repeated measurements by heifer as random.  This 

is sometimes referred to as the “random effects model” [103].  Logistic regression was 

used to determine if the activities of the second estrus were associated with pregnancy 

(yes/no).  Data from the nine heifers that conceived after artificial insemination were 

analyzed by the random effects model (described above) to determine whether activities 

of the second estrus were predictive of the total estrus activities during gestation.  Chi-
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square analysis was used to determine differences among the percentage of interestrus 

intervals (<10 days, 10-16 days, 17-24 days, or >24 days) observed during gestation.   

 

Results 

Animals 

 Data from one heifer (No. 3) were excluded from the analysis after it was 

determined that it had conceived prior to its arrival at the Texas A&M University 

research facility.  Two heifers conceived after artificial insemination but suffered either 

embryonic loss (heifer No. 17) or abortion due to Listeria infection (heifer No. 2).  Data, 

during the period in which these two heifers maintained a pregnancy, were included in 

the analysis.  Further detail on these three heifers and their conditions is provided in the 

results section of chapter 3. 

Estrus Activity in Pubertal Heifers 

 Mean duration of estrus was longer (p=0.0031) for the second (17.5 ± 3.4 hr) 

than for the pubertal (12.4 ± 3.4 hr) estrus.  Total mount duration and number of mounts 

did not differ (P>0.1) between the pubertal and second estrus (Tables 14 and 15). 

 Mean number of mounts (p<0.05) and mean duration (p<0.1) at second estrus 

were greater in the heifers that conceived after AI.  Total mount duration at second 

estrus was not associated with pregnancy outcome (p>0.1; Tables 16 and 17).   
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Table 14.  Mean (± SE) number of mounts, total mount duration and estrus duration for the 
pubertal and second estrus. 
 

Pubertal Estrus 
(n=17) 

2nd Estrus 
(n=21) 

Number of 
Mounts 

Total Mount 
Duration 

(sec) 

Estrus 
Duration 

(hr) 

Number of 
Mounts 

Total Mount 
Duration 

(sec) 

Estrus 
Duration 

(hr) 
51.5 ± 4.1 93.1 ± 14.2 12.42 ± 1.20 54.6 ± 7.6 92.7 ± 12.8 17.54 ± 

1.08 
  

Table 15.  Significance levels for number of mounts, total mount duration and estrus duration 
between the pubertal and second estrus. 
 

 P-value 
Number of Mounts NS 

Total Mount Duration (sec) NS 
Estrus Duration (hr) 0.0031 

 

Table 16.  Mean (± SE) number of mounts, total mount duration and estrus duration at second 
estrus between heifers that did or did not conceive after artificial insemination. 
 

Pregnant Heifers 
 

Non-Pregnant Heifers 

Number of 
Mounts 

Total Mount 
Duration 

(sec) 

Estrus 
Duration 

(hr) 

Number of 
Mounts 

Total Mount 
Duration 

(sec) 

Estrus 
Duration 

(hr) 
70.1 ± 10.1 111.7 ± 17.7 20.13 ± 1.22 40.6 ± 7.4 75.3 ± 13.6 15.18 ± 

1.79 
 

Table 17.  Significance levels for number of mounts, total mount duration and estrus duration at 
second estrus between heifers that did or did not conceive after artificial insemination. 
 

 P-value 
Number of Mounts 0.049 

Total Mount Duration (sec) NS 
Estrus Duration (hr) 0.058 
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Estrus Activity during Gestation 

 Heifers that conceived after artificial insemination were monitored through 

varying lengths of gestation (a minimum of 35 days to a maximum of 220 days).  A total 

of 73 estrus events were detected after conception in the nine pregnant heifers.  The SAS 

program was utilized to plot the interestrus intervals, the period of time from the onset of 

one estrus event to the onset of the next event.  The interestrus intervals during gestation 

were distributed as follows: <10 d= 48%, 10-16 d= 27%, 17-24 d= 10%, and >24 d= 

15% (Table 18, Figure 14).  Even though almost one-half of the estrus events occurred 

fewer than 10 days apart, the frequency of estrus events did not differ (p>0.1) among 

interestrus intervals.  Characteristics of the estrus when insemination occurred (second 

estrus) were compared with the total estrus activities during gestation in the nine 

pregnant heifers.  Number of mounts (p=0.035) and total duration of mounts (p=0.022) 

at second estrus were predictive of number of mounts during gestation (Table 19).  

However, number of mounts and total mount duration at second estrus were not 

associated (p>0.1) with either total mount duration of interestrus interval during 

gestation (Table 19).  Duration of second estrus was not associated (p>0.1) with any of 

the characteristics of estrus during gestation (Table 19). 

 

Table 18.  Percentage of estrus events occurring during gestation by interestrus interval. 
 

Interval 
 

Number of Events Percentage of Total 
(n=73) 

<10 days 35 48% 
10-16 days 20 27% 
17-24 days 7 10% 
>24 days 11 15% 
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Figure 14.  Occurrence of estrus events after conception in nine heifers during gestation 
(minimum 35 d, maximum 220 d).  Interestrus interval was defined as the number of days from 
the onset of one estrus event to the onset of the next estrus event. A- 1 obs., B- 2 obs., C- 3 obs. 
… I-9 obs.   
 

 
Table 19.  Significance levels for predicting number of mounts, total duration of mounts, and 
interestrus interval during gestation based on the number of mounts, total mount duration and 
estrus duration during the second estrus. 
 

 Estrus Characteristics During Gestation 
 

Estrus 
Characteristics 

During 2nd Estrus 

Number of Mounts Total Mount 
Duration 

Interestrus 
Interval 

Number of Mounts 
 

0.035 NS NS 

Total Mount 
Duration (sec) 

0.022 NS NS 

Estrus Duration 
(hr) 

NS NS NS 
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Discussion 

Estrus Behavior as Determined by Radiotelemetry and Factors Affecting Activity 

 Using radiotelemetry, producers are able to continuously observe mounting 

activity in dairy and beef herds and utilize this information to enhance their breeding 

program by allowing for more accurate estrus detection and timing for artificial 

insemination.  Mounting activity during estrus can be influenced by breed, 

synchronization methods, number of females in estrus, temperature, and location.  

Landaeta-Hernández et al. [131] reported that synchronization of cows with PGF2α 

affected estrus duration and number of mounts received when compared with 

spontaneous estrus (16 ± 1h vs. 9 ± 1 h, p<0.0001; 34 ± 4 mounts vs. 8 ± 4 mounts, 

p<0.0001, respectively); however, duration and total mounts were similar when the 

temperature-humidity index of 75 (THI75) was included in the statistical model.   

 Activity during spontaneous estrus events for beef heifers in the present study is 

similar to reports of activity measured by radiotelemetry during a synchronized estrus 

(with minor differences depending on breed of the heifer and on the synchronization 

protocol).  After synchronization with a norgestomet ear implant, Rae et al. [48] reported 

mean estrus duration in beef heifers of 6.65 ± 1.16 h, 8.52 ± 1.20 and 11.90 ± 1.22 h for 

Brahman, Angus and Brahman-Angus crosses, respectively (p=0.03).  Richardson et al. 

[132] reported similar estrus duration in beef heifers after synchronization with GnRH + 

PGF2α (11 ± 0.7 h), P4 + GnRH + PGF2α (12 ± 0.6 h) and P4 + PGF2 α (12 ± 0.7 h).  

The mean estrus duration of 14 ± 0.8 h reported by Stevenson et al. [9] in beef heifers 

after synchronization with MGA + PGF2α is similar to the estrus duration in the current 
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study of 12.42 ± 3.42 h and 17.54 ± 3.42 h for the pubertal and second estrus, 

respectively.    

 Number of mounts during estrus is more variable among the reports in the 

literature.  Rae et al. [48] reported as low as 19 ± 3.6 mounts in Angus heifers and as 

high as 37 ± 5.5 mounts in Angus-Brahman crosses (p=0.02) and remarked that the 

number of mounts was correlated with the duration of estrus.  Richardson et al. [132] 

observed between 31 ± 3 and 39 ± 4 total mounts depending on synchronization protocol 

used (P4 + GnRH + PGF2α and GnRH + PGF2α).  Similar to results of the present study, 

Stevenson et al. [9] reported that heifers received over 50 mounts during estrus (50.1 ± 

6.4 mounts).  Total mount duration observed in the current study was similar to that 

reported by Richardson et al. [132] between 81 ± 9 and 100 ± 11 seconds. 

 Hurnik and King [133], using a time lapse videorecorder to observe the activity 

of 12 postpartum dairy cows, reported that mounting activity increased when the number 

of females in estrus increased (number of cows in estrus, one: 11.2 mounts, two: 36.6 

mounts, three: 52.6 mounts, four or more: 49.8 mounts).  The small herd size of 21 

animals in the current study reduced the incidence of multiple heifers being in estrus at 

the same time and may have suppressed the number of mounts received by estrual 

females.  A more restrictive setting (four to five postpartum cows in open-housed pens 

with their calves) noted the difficulties of accurate estrus detection with a time-lapse 

video system, when only 20% of estrus events were detected by more than ten mounts 

and 27% were detected by only one mount. Lack of mounting activity by non-estrual 
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females occurred in 24% of all estrus events indicating the “socially restrictive housing 

conditions of a small group size” [133]. 

 A temperature-humidity index equal to 75 (THI75) on the day of estrus, tended 

to affect the duration of spontaneous estrus (p=0.09) compared to cows synchronized 

with PGF2α (9 ± 1 h vs. 16 ± 1 h, respectively) as determined by HeatWatch® [131].  

The THI-75 index for five days (r= -0.46; p<0.003) or one day (r= -0.51; p<0.0008) 

before the onset of estrus and on the day of estrus (r= -0.57; p<0.0001) was significantly 

correlated with estrus duration, indicating that estrus duration decreased as the THI75 

increased on the day of estrus or up to five days prior to estrus. Similar findings were 

observed for total number of mounts received during estrus; THI75 on the day of estrus 

influenced total number of mounts (p<0.005).  The THI75 for five days (r=-0.49; 

p<0.0008) or one day (r= -0.58; p<0.0001) before estrus and on the day of estrus (r= -

0.68; p<0.0001) were correlated with the number of mounts received during estrus [131].  

Gwazdauskas et al. [37] previously reported a significant curvilinear relationship 

between mounting activity and maximum daily temperature; as temperature increased to 

25°C, mounting activity increased (approximately 19°C, 2 m/h; 0°C, 7 m/h; 25°C, 9.5 

m/h).  Although approximately one-half (11/21) of the heifers reached puberty during 

the winter months (December 1 through February 28), temperature and humidity is a 

factor in Texas throughout the year and was not taken into consideration in this study.  

 As mentioned previously, type of housing influenced the number of mounts 

received during estrus and the interestrus interval as observed by visual inspection (barn-

housed: 8.7 ± 0.4 mounts/h, 36.7 ± 2.8 d; drylot: 6.1 ± 0.2 mounts/h, 29.5 ± 3.8 d; 
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pasture: 5.5 ± 0.2 mounts/h, 29.5 ± 3.8; p<0.05) [37].  Similar findings were observed by 

De Silva et al. [134] with barn-housed dairy cows receiving more mounts per hour than 

free stalled or pastured cows (11.2 ± 0.9 mph, 6.5 ± 6.8 mph, 5.4 ± 2.9 mph, 

respectively; p<0.05).  In preferences testing, the mounting activity by Holstein cows 

increased nearly three times when estrual teaser females were tied on soil as compared to 

concrete surfaces, indicating that mounting surface affected activity (soil: 2.4 ± 0.5 

average mounts per 30-min test period, concrete: 1.0 ± 0.3 average mounts per 30-min 

test period; p<0.05) [135].  Females in the current study were housed on concrete 

surfaces, which may have affected estrus behavior by decreasing the desire to mount 

heifers on these surfaces.  

Behavior at Pubertal and Second Estrus  

 The current study appears to be among the first to describe the estrus behavior at 

the pubertal and second estrus in beef heifers using radiotelemetry.  Only one other study 

was found characterizing estrus behavior in dairy heifers using radiotelemetry and 

reported total number of mounts and total mount duration differences before first AI and 

second AI after synchronization.  Richardson et al. [132] used virgin, pubertal Holstein 

heifers; however, average age before treatment was 13 ± 0.1 mos, suggesting the heifers 

were cycling before the start of the study.  In the current study, estrus duration was 

longer during the second spontaneous estrus compared to pubertal estrus (17.54 ± 3.42 h 

and 12.42 ± 3.42 h, respectively; p=0.0031); however, total mount duration and total 

number of mounts did not differ (p>0.1).  Producers with inadequate estrus detection 

may not detect heifers in their pubertal estrus due to the shorter duration, resulting in 
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delayed breeding and postponement in first calving, a concern for producers intending to 

have first-calf heifers calve by 24 months of age. 

 The current findings do not resemble mounting activity of females after periods 

of anestrous (eg. after postpartum anestrous).  Hurnik and King [133] noted estrus 

duration in beef cows during their first, second and third postpartum estrus events were 

shorter (3.9 h, 4.2 h, and 4.8 h, respectively) when compared to previous reports on beef 

heifers and cows housed with their calves, suggesting that comparisons between pubertal 

and first postpartum estrus events are not appropriate.   

 Heifers that conceived after artificial insemination had significantly higher 

numbers of mounts during their second estrus (p<0.05) and tended to have longer 

durations of estrus (p=0.058) than heifers that did not conceive.  These results suggest 

that intensity of estrus behavior, based on the number of mounts and duration of estrus, 

can be incorporated into the breeding schedule for pubertal heifers and determining the 

likelihood of pregnancy. 

Estrus Behavior of Gestating Heifers 

 Few authors have remarked on the occurrence of estrus behavior after conception 

in livestock species, though the potential implications for the producer can be costly.  

Erb and Morrison [10] reported 5.6% of 6,751 pregnant dairy cows over a 30-year study 

displayed estrus behavior after breeding with 5.6% of these events occurring 21 days 

post breeding.  More recently, Thomas and Dobson [46] observed estrus after conception 

in 5.7% of pregnant dairy and beef cows and remarked they were shorter in duration, but 

otherwise were indistinguishable from non-pregnant cycling cows.   
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 In a smaller sample size, we observed that the nine pregnant heifers demonstrated 

estrus activity during gestation with individual heifers showing a minimum of four to a 

maximum of 16 estrus events (heifers were observed from at least 35 days up to 206 

days post-insemination, respectively).  Due to the time schedule of the previous study on 

fascioliasis in prepubertal beef heifers, we were unable to continue monitoring the 

heifers to parturition, which resulted in the variation in the duration for which they were 

observed.  The use of the Mixed Procedures from SAS for this analysis took into account 

the differences in observation lengths and was not a factor in the outcome.  Interestrus 

intervals ranging from 17 to 24 days, the typical duration of non-pregnant estrous cycles, 

occurred in only 10% of the estrus events during gestation, with the majority occurring 

less than 10 days apart.  Total mount duration and the number of mounts received during 

the second estrus influenced the number of mounts received during estrus events after 

conception (p<0.035).   

 Estrus activity after conception may be initiated by follicular wave development.   

In cycling heifers with estrous cycles characterized by two follicular waves, the first 

anovulatory wave occurred on day 2 ± 1 (ovulation = day 0) and the second wave 

resulting in the development of an ovulatory dominant follicle, on day 10 ± 4 [136].  

Heifers characterized by three follicular waves followed a similar pattern; the first 

anovulatory wave occurred on day 0, followed by a second anovulatory wave on day 10, 

and a third ovulatory wave on day 16 post ovulation [136].  Follicular waves in pregnant 

cows are initiated approximately every ten days as determined by ultrasonography (9.3 ± 

0.2 days from wave one to two, 8.5 ± 0.5 days from wave two to three) and did not differ 
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between the time interval for non-pregnant heifers (10 ± 0.6 days from wave one to two, 

10.2 ± 0.6 days from wave two to three) [137].   

 These findings, along with previous work, further emphasize the importance of 

proper pregnancy diagnosis in cattle.  Cows and heifers showing behavioral signs of 

estrus 17 to 24 days post conception can be misdiagnosed as non-pregnant and rebred 

resulting in increased semen expenses and possible paternity questions, or it can lead to 

culling of the “infertile” females for slaughter.  Breeding schedules which incorporate 

prostaglandin, an increasing trend in today’s industry due to the utility of estrus 

synchronization and economic value, can induce abortion if administered to females 

misdiagnosed as non-pregnant. 

 

Conclusion 

 Duration during the second estrus was longer than the pubertal estrus, although 

number of mounts and total mount duration did not differ between estrus events. Estrus 

duration tended to be associated with pregnancy outcome, and the number of mounts 

received during the second estrus was greater in heifers that conceived than in heifers 

that did not conceive after artificial insemination.  During gestation, 48% of the estrus 

events in heifers occurred less than 10 days apart while an interestrus interval of 17-24 d 

occurred in only 10% of estrus events indicating that the majority of estrus events after 

conception do not resemble normal estrous cycles in non-pregnant heifers.  The number 

of mounts and total mount duration during the second estrus were predictive of the 

number of mounts received after conception.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Experiment 1 

 Experimental infection of prepubertal heifers with 600 metacercariae of Fasciola 

hepatica develops a sub-clinical level of fascioliasis but does not alter normal liver 

function, resulting in non-appreciable differences in circulating concentrations of sex 

steroid hormones.  The results presented in this thesis, support the following 

conclusions:  

1. Serum concentrations of hepatic enzymes were significantly elevated in infected 

heifers indicating liver trauma was induced, 

2. Normal liver function was not markedly affected as determined by the lack of 

clinical signs of fascioliasis (i.e. decreased albumin and increased globulin and 

bilirubin concentrations), 

3. Serum concentrations of estradiol and progesterone were not significantly 

different between groups, suggesting the metabolic clearance function of the liver 

was not altered, and 

4. Age at puberty was not delayed in infected heifers. 

 Future studies on the effect of Fasciola hepatica on pubertal development are 

warranted due to the contrasting results reported in this study and those published by 

López-Díaz et al. [8] to confirm that 600 metacercariae does not alter serum steroid 

hormones resulting in a delay in the onset of puberty.  Areas of further research were 

alluded to in the discussion section of chapter 2 and include: 
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1. Increased dosage or frequency of Fasciola hepatica administered to prepubertal 

heifers to induce sufficient trauma to the liver, determined by clinical signs of 

fascioliasis, or to simulate a “natural” infection, 

2. Sacrifice of the infected heifers to determine the extent of liver damage induced 

during the migratory phase of the disease to support the findings of the hepatic 

enzyme analysis, and 

3. Administration of exogenous estradiol to observe possible impacts of infection 

on the metabolic clearance rate to determine if regulatory mechanisms are 

maintaining normal concentrations of endogenous estradiol. 

 The results of this study do not confirm the findings by López-Díaz et al. [8] and 

raise further questions on the true impact of fascioliasis on pubertal development.  Under 

the conditions of the current experiment, we reject our own hypothesis that Fasciola 

hepatica infection of 4-mo-old beef heifers will alter serum steroid hormone 

concentrations and delay puberty. 

 

Experiment 2 

 Analysis of the HeatWatch® data obtained during estrus detection demonstrated 

similarities in the pubertal and second estrus activity, in terms of total number of mounts 

and total mount duration.  Duration of the second estrus, however, was longer and 

tended to be associated with pregnancy outcome.  Total number of mounts received 

during the second estrus was greater in heifers conceiving to artificial insemination.  

After conception, all nine heifers displayed estrus activity; 48% of the events occurred 
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less than 10 days apart while only 10% of the events occurred between 17 and 24 days.  

The number of mounts received after conception was related to the number and total 

mount duration received at the time of artificial insemination (second estrus).   

 This experiment was conducted concurrently with experiment 1; due to time 

constraints, analysis of the gestating heifers was minimized, warranting future research 

in this area.  In this study, only nine heifers were monitored during gestation, all of 

which displayed estrus activity after conception.  Research using larger sample sizes will 

allow for an accurate account of the occurrence rate of activity after conception and will 

confirm the time distribution of estrus events presented in this report.  The use of FSH 

analysis may demonstrate an association of follicular waves with the occurrence of 

estrus events post-conception.    

 Several studies have remarked on the characteristics of estrus behavior using 

radiotelemetry; however, this is the first known research completed on characterizing 

spontaneous pubertal and second estrus events in beef heifers and their association with 

pregnancy outcome.  Though few studies have demonstrated interestrus intervals in 

gestating heifers, this appears to be the first report using radiotelemetry and the first 

report on the association of activity after conception to the activity at artificial 

insemination. 
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