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ABSTRACT 

 

Scattered Neutron Tomography Based on a Neutron 

Transport Problem. (August 2004) 

Scipolo Vittorio, B.S., Politecnico di Milano 

Co-Chairs of Advisory Committee: Dr. Marvin L. Adams 

                                                                                   Dr. William Charlton 

 
 

Tomography refers to the cross-sectional imaging of an object from either 

transmission or reflection data collected by illuminating the object from many different 

directions. Classical tomography fails to reconstruct the optical properties of thick 

scattering objects because it does not adequately account for the scattering component of 

the neutron beam intensity exiting the sample.  

We proposed a new method of computed tomography which employs an inverse 

problem analysis of both the transmitted and scattered images generated from a beam 

passing through an optically thick object.  

This inverse problem makes use of a computationally efficient, two-dimensional 

forward problem based on neutron transport theory that effectively calculates the detector 

readings around the edges of an object. The forward problem solution uses a Step-

Characteristic (SC) code with known uncollided source per cell, zero boundary flux 

condition and Sn discretization for the angular dependence. The calculation of the 

uncollided sources is performed by using an accurate discretization scheme given 

properties and position of the incoming beam and beam collimator. The detector 

predictions are obtained considering both the collided and uncollided components of the 

incoming radiation.  

The inverse problem is referred as an optimization problem. The function to be 

minimized, called an objective function, is calculated as the normalized-squared error 

between predicted and measured data. The predicted data are calculated by assuming a 

uniform distribution for the optical properties of the object. The objective function 
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depends directly on the optical properties of the object; therefore, by minimizing it, the 

correct property distribution can be found. The minimization of this multidimensional 

function is performed with the Polack Ribiere conjugate-gradient technique that makes 

use of the gradient of the function with respect to the cross sections of the internal cells of 

the domain.  

The forward and inverse models have been successfully tested against numerical 

results obtained with MCNP (Monte Carlo Neutral Particles) showing excellent 

agreements.  

The reconstructions of several objects were successful. In the case of a single 

intrusion, TNTs (Tomography Neutron Transport using Scattering) was always able to 

detect the intrusion. In the case of the double body object, TNTs was able to reconstruct 

partially the optical distribution. The most important defect, in terms of gradient, was 

correctly located and reconstructed. Difficulties were discovered in the location and 

reconstruction of the second defect. 

Nevertheless, the results are exceptional considering they were obtained by 

lightening the object from only one side. The use of multiple beams around the object 

will significantly improve the capability of TNTs since it increases the number of 

constraints for the minimization problem. 
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CHAPTER I 

INTRODUCTION 

 

I.A Objective 

 

Tomography refers to the cross-sectional imaging of an object from either 

transmission or reflection data collected by illuminating the object from many different 

directions. The incident radiation must penetrate the object before being detected. 

Therefore the choice of radiation type is crucial. Neutron radiation is typically more 

penetrating than X-ray, γ-ray or charged particle radiation. Thus, neutron radiography can 

often be used to evaluate thick objects. Neutron radiation also typically serves as a 

complement to X-ray radiation.  

Neutrons, compared to X-rays, have high interaction probability with hydrogen 

and a lower attenuation in several heavy elements which are "black" for X-rays (e.g. lead 

and bismuth).The attenuation of X-rays increases proportional to the atomic number (Z) 

of the material, whereas there is no direct relationship between neutron attenuation and Z. 

Thus neutron radiography is often complimentary to X-ray radiography1.  

The investigation of moisture and corrosion, the detection of explosives and 

adhesive connections, and the inspection of defects in nuclear fuel or in thick metallic 

samples2 are examples where neutron radiography can be utilized favorably. Neutron 

radiography and tomography applications are, in fact, present in many fields: nuclear 

engineering, material characterization and the biomedical fields are the principal ones.  
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Other important examples of the versatility of the neutron radiography method 

are: 

• surveys of nuclear fuel2,3,4,5, 

• imaging of two-phase flow2,6, 

• analysis of carbon-fiber composite airplane wings2, 

• imaging for explosive devices7, and 

• fast imaging of combustion2. 

 

 However, neutrons, or near-infrared light are strongly scattered in many 

materials. Thus, standard back projection techniques, such as those applied in X-ray 

tomography, have been of limited success8.  

The objective of the work described here was to develop algorithms and a 

computational code to solve the inverse tomography problem taking into consideration 

neutron scattering. The hypothesis is that it is possible to more accurately reconstruct the 

optical properties of an object using the information contained in the scattered radiation 

as well in as the transmitted radiation than using transmitted radiation alone. Sometimes 

very highly scattering problems are so difficult to solve that only the analysis of the 

scattered component leads to a solution9.  

 

I.B History of Neutron Radiography 

 

The first radiographs were obtained in 1895, coinciding with the discovery of 

radiation. In 1985 Röntgen was experimenting with high voltage discharges in a vacuum 

tube. When photographic plates that had been stored nearby were developed, they were 

found to be blackened without any obvious cause. Reasoning that some unknown 

radiation from the high voltage discharge could be affecting the photographic emulsion, 

Röntgen carried out ad hoc experiments and quickly established that this was in fact the 

case. Realizing the importance of this effect, he rapidly developed his discharge tube to 

produce more radiation and obtained a “negative” of welded plates of zinc1.  

The practical implications of this ability to produce shadow images of items 

which were opaque to light and thus reveal their internal structure were clear. Further 
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development was rapid and widespread. Experimental X-ray radiographs were soon 

produced in laboratories in Europe and the USA1. The ferment of scientific and 

engineering endeavor that followed the demonstration of these completely new 

phenomena carried over into the new century with research into electronics and atomic 

physics.  

The discovery of the neutron is credited to Chadwick. In 1932, he related and 

hypothesized on the work of Bothe, Becker, Curie and others and assumed that the 

penetrating radiation produced by bombarding beryllium with alpha particles was neither 

positively nor negatively charged. He called this radiation the neutron (from the Latin 

neuter meaning neither). He had identified a particle that, together with the proton, was 

one of the basic building blocks of matter.  

The application of the neutron to produce radiographs quickly followed its 

discovery. Kallman and Kuhn in Germany in 1935 used neutrons produced by an 

accelerator to make radiographs but the quality was poor due to the weak and ill-defined 

beam. This coupled with the complexity of the apparatus and the fact that hours of 

exposure were required did not lead to early exploitation as had happened with X-rays. 

Nevertheless, the methods and potential of the technique were clearly demonstrated. The 

publication of their work was delayed by World War II. It was not until 1948 that they 

revealed the thoroughness of their investigation by describing most of the basic 

techniques in use today.  

The development of nuclear reactors during and after the war increased the 

intensity of neutron fluxes available for experimental purposes by many orders of 

magnitude, but it was not until 1956 that further work on neutron radiography was 

reported. The first use of a beam of neutrons from a reactor to produce a radiograph was 

by Thewlis and Derbyshire. They used a beam from the 6MW graphite reactor BEPO at 

Harwell to produce good quality images having specific non-destructive testing 

applications such as voids in uranium and in “Boral”, a neutron shielding material 

fabricated from boron carbide and aluminum. Their radiograph showing the structure of a 

plant pointed to the usefulness of the technique in studying organic specimens. This is 

due to the high attenuation of neutrons by hydrogenous materials. 
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The technique developed slowly for several years until problems associated with 

the radiography of radioactive materials encouraged its more active revival. Several 

researchers reported their work in the early 1960’s.  But it was principally the work of 

Berger2 of Argonne Laboratories in USA, followed by Barton8 at Birmingham University 

that led to its revival.  

In 1968, there were 46 reactor facilities, three accelerators and five isotopic 

sources in use or being built. The history of neutron radiography stretches back 65 years; 

although, it is only in the last 30 that it has come to the forefront as an accepted method 

of non-destructive testing. In the last 10 years, it has reached the stature of World 

Conferences1. 

 

I.C Fundamentals of Neutron Radiography 

 

Unlike the X-rays, which interact with the electron cloud, the neutron interaction 

is not characterized by a direct dependence on the atomic number of the object. There are 

practically no generalizations that can be made which relate neutron interaction 

characteristics to atomic mass or atomic number. Each interaction of a neutron with an 

isotope of a particular element is unique. Fig. 1 depicts the relationship between the 

attenuation coefficient for neutrons and X-rays versus element atomic number. As can be 

seen, the X-ray line is a smooth function with atomic number but the neutron attenuation 

coefficient has no discernible pattern. 
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Fig. 1. Attenuation coefficient for neutrons and X-rays versus element atomic number. 

 

 

To produce a neutron radiograph a continuous supply of unbound neutrons is 

required and these must be directed onto the object to be radiographed. The object will 

scatter or absorb some of the radiation from the beam. The beam reaching the detector 

will have an intensity pattern representative of the structure of the object. 

Neutron radiography involves three principal components: 

(a) A suitable neutron beam  

(b) An object of radiographic interest.  

(c) A device to record, either immediately or delayed by some time, the radiation 

intensity of the transmitted beam. 

 

Fig. 2 provides a graphical depiction of these three system components for the 

case of imaging a non-radioactive object. After passing through the object, the beam that 

remains enters a detector that registers the fraction of initial radiation (I0) intensity that 
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has been transmitted by each point in the object. Any in-homogeneity in the object will 

show up as a change in radiation intensity reaching the detector.  

 

 

 

Fig. 2. Principal components of a schematic neutron radiography system. 

 

 

The intensity of radiation (I) passing through an object of thickness t is given by: 

 

0
t tI I e−Σ=                                                                                                                            (1)                          

 

where Σt is the total macroscopic cross section of the object. 

If a void defect, of width d, is present, then the intensity will be 

 

( )
0

t t dI I e−Σ −=                                                                                                                       (2) 

 

If an inclusion is present as a defect, then the intensity will be 

 

( )
0

t dt d dI I e−Σ − −Σ=                                                                                                                 (3) 

 

where Σd is the macroscopic cross section of the inclusion. 
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This methodology [sometimes referred to as the simple exponential attenuation 

method (SEAM)] has been used successfully for numerous applications; however, when 

applied to highly scattering media (such as any low atomic number material) the 

scattering component of the neutron beam intensity exiting the sample is not adequately 

accounted for by SEAM. This tends to lead to decreased system resolution when these 

scattered neutrons are recorded at the image plane. 

For example, Fig. 3 shows a neutron radiograph of two cadmium strips. The holes 

in the cadmium strips range from 50µm in diameter to 1100µm in diameter. For this 

object, which has a very high neutron absorption cross section and a very low neutron 

scattering cross section, all of the holes (and the gaps between the holes) are clearly 

visible.  

Fig. 4 shows a radiograph for a thick carbon composite structure. A 3175µm 

diameter hole is present in the thick object. This hole is not visible in the radiograph even 

though it is much larger than the holes in the cadmium. The carbon fiber composite 

material has very low neutron absorption properties but reasonably high neutron 

scattering properties. 
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Fig. 3. Neutron radiograph of two cadmium strips displaying good image resolution for highly absorbing, 
low scattering materials. Each strip contains a number of different sized holes. The strips are supported on 

an aluminum plate. 
 
 
 

 

(a) (b) 
 

Fig. 4. Image on the left (a) is a neutron radiograph of a thick carbon fiber composite object with a 1/8th 
inch hole present. Image on the right (b) shows the object and the hole. 
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I.D Neutron Transport Theory and Inverse Problem 

 

A potential solution to the problem presented in the section above is proposed 

here. If the neutron-imaging camera was placed at some angle 0θ  off the beam path as in 

Fig. 5, an image of the scattered neutron component from the surface of the sample in 

that direction could be acquired. It is proposed that if the scattered neutron component at 

a variety of angles around a sample can be measured, these scattered components could 

be used to aid in a better estimation of the source of neutron reactions in the sample. It is 

expected that this information would lead to a more accurate reconstruction of the 

surveyed object. 

 

 
Fig. 5. Idealized setup for capturing scattered neutron images. 

 
 

It is important to note that these scattered neutron images are fundamentally 

different from the transmission images. The source of neutrons in these images is (to a 

first-order approximation) the inverse of the source of images in the transmission 

experiment. That is in the transmission images the source of neutrons is the initial input 

beam and the image is created by removal of neutrons from that beam. In the scattered 
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neutron images, the source of neutrons is the neutrons that are removed from the initial 

beam by scattering and the image created shows that source.  

One of the more common tomographic techniques is the filtered back projection 

method10,11. In this technique, the projection data can be considered as line integrals 

along the neutron beam lines. For highly scattering objects these line integrals become 

complicated because of the source of scattered neutrons along the integrals which is 

difficult to characterize with transmission images.  

Suppose an object was imaged in which neutrons interacting in the sample could 

either scatter once in the sample, get absorbed in the sample, or travel uncollided through 

the sample. Consider a sample such that the scattering rate in the object was higher than 

the absorption rate. In this instance, the transmission image would have a high degree of 

unsharpness due to the fact that the principle means of removal of neutrons from the 

beam is through scattering and depending on the angle of scatter, a high portion of these 

neutrons continue on through the object and interact in the detector in some location other 

than where they would interact if they continued uncollided. This leads to “fuzziness” of 

the resultant image. The scattered images measured, via a setup such as that shown in 

Fig.5, would record only the source of neutrons scattering along the line connecting the 

detector through the sample at an angle of0θ . This allows for the determination of the 

scattering rates throughout the sample. These scattering rates could then be used to 

determine the contribution of scattered neutrons to the detector. With this contribution 

known, the image resulting only from the neutrons removed from the beam due to 

absorption can be determined. This would decrease the unsharpness in the resultant 

image. 

In a realistic scenario, the transmitted image would consist of neutrons from the 

initial beam that passed through the object uncollided, had a single small angle scatter, or 

had multiple scatters. The scattered neutron image would consist of neutrons born from 

the scattering reactions in the sample from the initial beam and then passed uncollided 

through the sample or had additional scattering reactions in the sample. To properly 

simulate this effect the neutron radiation transport must be simulated through the sample 

accounting for all of the reaction rates in the sample.  
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Thus a forward model capable of calculating the detector responses (both 

transmitted image and scattered image) for the beam passing through a known object is 

needed. In addition to this forward model, an inverse model is needed in order to pass 

information from the measured images back through the forward model to influence the 

“guess” of the initial object structure (essentially the cross section sets defining the 

object). The forward model can then be repeated using the more accurate guess. These 

iterations would continue until the calculated image matched the measured image to 

within some tolerance (i.e., an objective function is minimized). This is the fundamental 

concept behind the model-based iterative imaging reconstruction (MOBIIR) schemes12. 

MOBIIR schemes mainly differ in their choice of forward model and how the spatial 

distributions of the optical properties of the medium are updated.  

Since a forward model is required, transport theory has to be introduced. The 

transport equation describes the movement of particles through a medium. It is an 

integro-differential equation with seven independent variables: space (3), direction (2), 

energy (1) and time (1).  Therefore, only simple problems can be solved analytically and 

numerical methods must be applied to most problems of interest.  Due to the large 

number of unknowns (e.g., a problem discretized with 10N unknowns in each 

independent variable will have 107N unknowns) it is difficult to use direct numerical 

methods. Instead iterative schemes are employed to solve the transport equation. 

Successive approximations of this complicated equation lead to the diffusion 

equation that has the great advantage of illustrating many of the important features of the 

particles behavior in the matter without the complexity of the transport equation. 

Diffusion theory provides a strictly valid mathematical description of the particle flux 

only if the assumption made in its derivation is satisfied. Specifically, this implies that 

Fick’s law is valid. Fick’s law is valid under the following conditions: 

 

1. Absorption is much less likely than scattering. This is satisfied for most of the 

moderating materials that are usually found in a nuclear reactor. 

2. There is a linear spatial variation of the particle distribution. This condition is 

satisfied a few mean free paths away from the boundary of large homogeneous 

media with relatively uniform source distributions.  
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3. All scattering is isotropic in the center of mass reference frame. Typically this is a 

good assumption for most of the heavy atomic mass nuclei. 

 

Diffusion theory has been widely used in tomography methods especially 

recently. A variety of optical methods based on MOBIIR schemes have been studied in 

the past12,13,14,15,16,17,18,19. While these studies have principally been in the area of low-

energy x-ray medical imaging, they have led to a variety of creative methods and their 

general application can be extended to neutron imaging.  

The forward model used in all of these methods is based on diffusion theory. 

Many authors solved the diffusion forward model by adopting a finite element method. 

Interesting methods used include up-wind or Gibbs schemes to reach a solution for the 

diffusion equation6. The efficiency of these methods is due to the easy analytical 

expression of the diffusion equation that leads to an easy analytical expression of the 

updating algorithm. For example perturbation theory method, widely used to update the 

guessed properties, is easily applicable to a problem in which the forward calculation is 

obtained with diffusion theory, due to the relatively simple analytical expression for the 

flux. 

While accurate for some instances, for most problems of interest to neutron 

radiography, diffusion theory is insufficient for accurately describing the transport of 

neutrons through these objects1. Thus, this project will propose the use of a forward 

model based on neutron transport theory. 

 

I.E Project Overview 

 

Chapter II introduces the development and implementation of the forward model 

based on neutron transport theory for predicting detector images from a thick highly 

scattering object. This methodology accurately and efficiently simulates the transport of 

neutrons through the object including at boundaries between highly scattering and highly 

absorbing regions. The accuracy of this method is crucial since uncertainties in the 

forward model propagate through the inverse model; however, computational speed is 

also crucial since in an iterative scheme, the forward model calculation may be used 
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numerous times. Chapter II also contains the verification via MCNP of the validity of the 

code. 

Chapter III contains the development and implementation of the inverse model. 

This model allows for the analysis of radiographic images to reconstruct the most likely 

details of the object that minimizes an objective function based on the measured images. 

It makes use of the forward model for predictions of the detector response to a specific 

object definition. The chapter will also involve the implementation of this methodology 

including integration of the forward and inverse models. It includes mathematical and 

numerical verification of the gradient calculated by an adjoint formulation. 

Chapter IV presents the result of different objects reconstruction. These objects 

will range from highly scattering to moderately scattering and include defects of various 

sizes. The experimental data to input in the developed code are obtained by using MCNP 

simulations. The reconstruction technique is therefore verified and some considerations 

are presented.  

Chapter V is the conclusive chapter. It contains final considerations and 

suggestions for future works. 
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CHAPTER II 

FORWARD MODEL 

 

II.A Background 

 

The transport equation is a linear form of the Boltzmann equation, developed one 

century ago for the study of the kinetic theory of gases20. It describes the evolution of a 

particle distribution function in an infinitesimally small 7 phase-space (time, space, 

energy, direction) volume. The analytical solution of this equation is confined to very 

highly idealized cases often concerning astronomic problems with semi-infinite 

mediums21. The solution of the equation for more common but complicated problems is 

obtained through the use of numerical approximations and computational calculations. 

The application of transport theory is associated with a wide variety of fields and research 

topic such as: 

• Nuclear Engineering 

o Reactor analysis22 

o Shielding and dose calculation23 

• Rarefied gas dynamics 

o Sound propagation 

o Diffusion of molecules in gases 

• Other 

o Traffic flow 

The numerical solutions to the transport equation are divided into stochastic 

(Monte Carlo) and deterministic. The Monte Carlo method treats all the events that can 

occur to a particle in terms of probability functions. It tracks every particle from its 

“birth” until its “termination” (for many reasons such as absorption, leaking …) and 

makes the history of the particle23. By using a large number of histories it estimates the 

average particle behavior. This method is in general computationally more expensive 

than deterministic methods. The advantage is the possibility of simulating complex 

geometrical systems and physically complex histories.   
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Deterministic methods solve the transport equation by discretization of the phase-

space volume in order to reduce the transport equation to a set of simpler algebraic 

equation. The discretization into energy groups lead to a multi-group transport equation. 

The transport equation can be expressed as an integro-differential equation or as an 

integral equation. The choice of spatial and angular discretization depends on the form of 

the equation. The form used for this project is the steady-state, one-group integro- 

differential form that involves an angular integral and a first-order spatial derivative. 

Other forms are described elsewere21,24. Different angular discretizations can be applied 

to simplify the angular integral into a set of differential equations. We choose to treat the 

angular dependence with a discrete ordinate (Sn) method in this work. 

The Sn methods approximates the angular integral as a quadrature summation as 

will be presented in more detail later. The resulting set of equations is a system of partial 

differential equations in space that are spatially discretized to generate a set of algebraic 

equation.  

The method chosen for the spatial discretization is the Step Characteristic (SC) 

method. It has been developed first by Lathrop25. Like for every other characteristic 

method the SC method transforms the Sn equation into a one-dimensional equation by 

rotating the axis of the coordinate system along the direction of motion (the characteristic 

line). Given the value of the angular flux at a point along the characteristic line and 

known source term the characteristic equation can be analytically solved for the angular 

flux everywhere along the line. This will be presented in more detail later in the chapter. 

Our choice for the forward model was the two dimensional SC method. In the 

decision many factors, other than accuracy and computational effort, were considered. 

The accuracy of this method for a typical neutron radiography problem is acceptable 

especially for an object with a scattering ratio less than unity. A small scattering ratio is 

also needed to have a relatively fast convergence. In addition, the SC is analytically 

simple. The resolving equations are normal exponential relations with the possibility to 

use them in the analytical process to update the cross sections. Accuracy and easy 

analytical expressions were the keys in the choice of the forward model.  

In this work only two-dimensional cases were considered, for simplicity. Thus the 

model has been developed for a two dimensional case. This will allow for proper testing 
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of the algorithm for the update of the cross sections and will limit the computational time 

required to acquire results. It is expected that the step from two to three dimensions will 

be straightforward once the inverse model has been tested and optimized.  

 

II.B Forward Model Description 

 

A forward model was mathematically derived and computationally implemented 

to solve a set of problems with common characteristics. The purpose of this model was to 

predict detector readings around a rectangular object placed into a neutron beam. The 

beam is not necessarily mono-directional and may consider the physical divergence that a 

real beam experiences when collimated. Also, the detectors can be collimated such that 

they only record radiation coming from a particular direction. The beam-object-detector 

situation is schematically represented in Fig. 6: 

 

Object to
investigate

Beam Window
 

Fig. 6. Schematic of the problem. 
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In order to solve the problem described above, the computational and 

mathematical process was divided into three different parts. First, the beam and the 

spatial discretization of the object were defined. The object was divided into a set of 

spatial rectangular regions. Then the initial source of un-collided particles for every cell 

of the object was calculated.    

Due to the operation of the first step, the problem has become a fixed-source, 

zero-boundary condition problem. In the second step, this is solved using SC with Sn 

angular discretization. The solution will be represented by the average angular flux for 

each cell and the x- and y-direction net-currents for every cell of the problem. 

With the solution reached in the second step, it is possible to calculate the 

scattering source of every cell and calculate its contribute to the detector readings. By 

adding this component to the uncollided radiation entering every detector, the reading is 

complete.  

 

II.B.1  Spatial Discretization 

 

We begin with a graphical description of our approach to spatial discretization of 

an arbitrary rectangular cartesian cell. The user inserts the dimension of the object in the 

x-y plane. The object is considered to be infinite and homogeneous in the third 

dimension. Then the number of regions in the x- and y-direction are inserted. The object 

is considered to be homogeneous over each region. For every region, the user specifies 

the number of cells in the x-direction and the number of cell in the y-direction. Cells that 

are into the same region are assumed to have the same initial optical properties. Fig. 7 

shows an object divided using the process described above. The object is divided into 

nine regions, three in the x-direction and three in the y-direction. Every region is then 

divided into cells. In particular, Region 2 in the x-axis is divided into five cells. Region 2 

in the y-axis is divided into two cells. Thus Region (2, 2) has ten total cells in it. The cells 

are constructed by intersecting the lines of every sub-division. In particular, this problem 

consists of a total of ninety cells. Cells in the same regions have the same initial optical 

properties.  The user introduces the optical properties per region. Every cell is denoted as 
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unique with two indexes, i and j. In the example i goes from one to ten, j goes from one 

to nine and the cell is indicated as: cell (i,j).  

 

 
Fig. 7. Spatial discretization. 

 

II.B.2  Un-collided Sources 

 

The first step of the process to predict the detector readings is to calculate the 

fixed source of un-collided particles for every cell of the discretized object. First, the user 

inserts the properties of the beam window such as distances from the edges of the object 

and dimensions of the collimator.  

In general, it is easy to calculate the component of radiation coming from a point 

source to a certain point into a medium: 
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2solid angle subtended by 1 cm  
trasmission probability tosource strength

area at the dose point perpendicular
traverse R without collisionsteradiant

at distance R

       

uncollidedφ
 

   =    
    

 

2

1
     ( ) tRS e

R
σ−= Ω

   (4) 

 

where R is the total distance between the source point and the investigated one, S 

is the source strength, Ω defines a particular direction and σt is the total cross section of 

the medium. The above equation considers that the particle travels in a medium of 

constant total cross section. The formula can be easily generalized as follows: 

 

( )
( )'

2

1
( )

'

r r
uncollided S e

r r

αφ − −= Ω
−

                                                                     (5) 

 

where α(r-r’) indicates the distance in mean free paths (MFP) between the point r 

and the point r’ . 

In case, the source is a planar source the un-collided radiation incident in a point 

is simply the integral of Eq.(5) along the plane, performed by using the angular notation 

introduced in Fig. 8. 

minθ
maxθ

θ γ

 
Fig. 8. Angular notation for the un-collided source calculation. 
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In Fig. 8, θ is the azimuthal angle and  γ is the polar angle. Therefore, for a planar 

source finite in x and y and infinite in the z direction, the integral for the un-collided 

radiation in the point is: 

 

( )
( )

max

min

2
( ')

2

2

1
 ,

'
r r

uncollided d d S e
r r

π
θ

α

π θ

φ γ θ θ γ
−

− −

−

=
−∫ ∫                                                                            (6) 

 

The angle θ, that together with r describes a point in the x and y plane, has a 

maximum and minimum value as boundaries of the integral, as shown in Fig. 6.  

The code in order to perform the integral of Eq.(6) uses a quadrature set for the 

two angular dependencies. The interval between θmin and θmax is divided, following the 

trapezoidal rule, in as many angles as the user decides. The same is valid for the interval 

in the polar direction. The integral is therefore approached as a quadrature summation.  

In order to calculate α, the distance in MFP between the source point and the 

investigated point, the code tracks back the particle along the line of conjunction 

recording the cell and the path that the particle goes trough. Every cell has its own total 

cross section and knowing the paths traveled in the cell the code can calculate the number 

of MFP traveled by the particle per cell that is simply the length of the path in cm 

multiplied by the total cross section. 

In order to make a precise calculation of the un-collided flux per cell, the 

quadrature integral is performed at different points into the same cell and the result is 

then obtained averaging the results at the points into the cell. The number of locations per 

cell is user defined and the coordinates and weights of these locations are calculated by a 

Gauss –Legendre discretization technique. The choice of this tecnique is reliable since a 

Gauss-Legendre discretization of order N is the only quadrature set able to perform exact 

integrals of polynomial of degree up to 2N-1. 
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minθ maxθ

 
Fig. 9. Process to calculate the un-collided flux per cell. 

 

Fig. 9 shows the process for a small number of cells. The number of locations into 

the cell to calculate the un-collided flux is user defined; in Fig. 9 it is four. 

By choosing an appropriate number of azimuthal and polar directions and a 

reasonable number of locations per cell, the code is able to perform an efficient and 

accurate calculation of the un-collided flux per cell. 

The un-collided flux per cell is then used as a fixed source in the source iteration 

technique to solve the transport equation in the cell. The accuracy of the forward method 

is greatly enhanced using the un-collided sources as driven force in the source iteration 

scheme. The accuracy of this technique lies in the treatment of the boundary conditions 

that are not discretized by following the same angular discretization of the iteration 

scheme but using the above described integral approach. The problem, therefore, has 

become a zero boundary, fixed source problem. To solve it we choose to use a SC 

scheme with angular Sn discretization and first grade polynomial approximation for the 

scattering source. 
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II.B.3  Step Characteristic Method 

 

Using a general quadrature set of order K for the angular discretization, the 

general equation, or angular transport equation, in direction k is: 

 

( ) ( ) ( ) ( ), ,
, ,k k tot k k

x y x y
x y q x y

x y

δψ δψ
µ η σ ψ

δ δ
+ + =

                                                       (7) 

 

where: 

• ( ),x yψ  is the angular flux 
2

neutron

cm steradiant⋅
 
 
 

at position (x,y) 

• ( ),k x yψ is the angular flux in direction k at position (x,y) 

• scaσ is the scattering cross section at that location 

• absσ is the absorption cross section at that location 

• tot sca absσ σ σ= + , is the total cross section at that location 

• kµ and kη are the cosine and sine of direction k with respect to the x-axis 

• ( ),kq x y  is the source term in direction k at location (x,y) 

 

and considering the discretization presented in Fig. 7 if (x,y) are in cell (i,j) : 

 

, , , , ' ' ', ,
' 1

K

k i j k i j sca k kk k i j
k

q S a Pσ ψ
=

= + ∑                                                                                         (8) 

 

Equation (8) presents a piecewise constant source for the cell, where the 

probability to scatter in one direction is treated as generally dependent on the direction. 

This general dependence will be presented later in this section   
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Fig. 10. Cell for the transport equation integration. 

 

To solve this equation a numerical method has to be applied and therefore a less 

complicate form has to be found. First, the equation is integrated over the cell shown in 

Fig. 10 as follows: 
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                                      (9) 

  

Equation (9), with some integral properties, simplifies as follows: 
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this is because the partial derivative in x integrated between the x-cell range gives 

the value of the flux (still a function of y) at xi+1/2 minus the value of the flux (still a 

function of y) at xi-1/2. The same is valid for the integral of the partial derivative in y. 

At this point, the integral in y and x are the average value of the flux along the 

right and left and the top and bottom edges of the cell: 

 

1

2

1

2

1 1
, ,

2 2

1
,

j

j

y

k
k i j i

j y

x y dy
y

ψ ψ
+

−

± ±

 
=  ∆  

∫                                                                                       (11) 

 

and  
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For completeness, to derive Eq.(10) also the average cell-interior flux is 

presented: 
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In the derivation of Eq.(10), the cross section has been averaged along the cell. 

The assumption in this case is that the properties are homogeneous in the cell. The cross 

sections are therefore kept constant in the derivation of the discretized transport equation 

per cell: 
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With these definitions Eq.(10) assumes its final form for the cell (i,j)  and direction 

k: 

 

1 1 1 1
, , , , , , , ,

2 2 2 2
, , , ,

k i j k i j k i j k i j

k k tot k i j k i j
i j

q
x y

ψ ψ ψ ψ
µ η σ ψ

+ − + −
− −

+ + =
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                                             (15) 

 

Eq.(15) represents the equation that has to be solved in order to describe the 

behavior of the neutrons inside the medium. It is an equation in terms of four surface 

fluxes and one average flux defined as shown in Fig. 11. 
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Fig. 11. Angular fluxes per cell representation. 

 

Assuming that the intensity and the direction of the incoming flux are known, for 

example from the right bottom of the cell (mathematically 0kµ > , 0kη > and, 

1
,

2
i j

ψ
−

, 1
,

2
i j

ψ
−

are known), Eq.(15) contains three unknowns.  In order to reach a solution of 

the system, two more independents equations must be found. It is important to note that 

at this point, the derivation contains only the assumptions inherent to the neutron 

transport equation [i.e. neutrons do not interact with other neutrons and no external forces 

(gravity, electromagnetic forces…) do not interact on the neutrons] and the assumption of 

constant cross sections over a cell. These assumptions are generally excellent for all 

problems of interest to this technique. To complete the derivation though, two additional 
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equations need to be introduced to allow for a well-posed problem. The introduction of 

these two equations is the primary source of uncertainty in this derivation. 

The SC scheme has its own closure equations. An assumption made in the 

derivation of the Boltzmann equation is that the particles travel in straight lines between 

collisions. These straight lines are characteristics of Eq.(16) which can be written as: 

 

t

d
S

ds

ψ σ ψ+ =                                                                                                                  (16) 

 

where S is the source term in the considered direction , s is the distance shown in 

Fig. 12 and the derivative is along the direction of motion. Integrating Eq.(16) over a 

domain D with boundary D∂ , it gives: 

 

'
0

)'(
0 dsSee
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sss

∫
−−− += σσψψ                                                                                               (17) 

 

where ψ0 is the flux on the boundary, s is the distance from the boundary to the 

point in which ψ is evaluated and s’ is the point in which the source S is evaluated. 

 

 
Fig. 12. Plot for the characteristic assumption. 
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Physically, if there is a domain D with boundary D∂ , see Fig. 12, the angular flux 

at any point r into the domain with a certain direction Ω  is due to the summation of two 

contributions: 

1. the un-collided flux from some known point on the boundary with the same 

direction and  

2. the contribution from the source between r  and the known point in the 

investigated direction. 

For example, in the general case the angular flux at r with direction Ω  will be: 

 

( ) ( ) '

0

( , ) , ' ' ,t ts
totr r e ds S r s e

τ
τψ ψ τ − Σ − ΣΩ = − ⋅Ω Ω + ⋅ − Ω Ω∫                                              (18)   

 

This was obtained from Fig. 12, omitting energy and time dependencies. This 

solution is correct in the case of a homogeneous domain but it can easily be derived also 

in the case of a non-homogeneous domain using the concept of optical distance. The 

above solution can be mathematically derived from the transport equation with known 

total source by using an integrating factor. Therefore this procedure can be used to 

differentiate the angular flux into the cell. 

 

 

 

 

 

 

 

 
Fig. 13. Derivation of the edge fluxes. 
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In the case presented in Fig. 13:  

 

, , , ,', ,
1

, ,2 0

( , ) 'tot i j tot i jsk i j
inck i

tot i j

q
x y e ds e

τ
τσ σψ ψ

σ
− −

+
= + ⋅∫                                                             (19) 

 

Note that k indicates one particular angle discretization and in this case the one 

corresponding to the direction Ω. 

Looking at all the possible directions of the angular discretization, it is possible to 

derive Eq.(19) for all the cases. The SC method derives the necessary closure equations 

in each quadrant by assuming that the source is constant over the cell and that the 

incident fluxes are constant over their respective edges.  

 

II.B.4  Derivation of the Governing Equations 

 

For clarity, the equations in a specific case are derived and then generalized. 

Assuming the direction k of the incident flux is well known, Fig. 14 will aid in the 

derivation of the governing equations. The cell has been divided in regions useful in the 

integration procedure.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Cell variables for governing equation derivation. 
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 By definition, see Eq.(19), it can be derived: 
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Eqs. (20) and (21) have been derived by using the closure assumption given by 

the SC scheme. The source and cross sections have been kept constant in the cell and the 

integrals have become functions only of geometric parameters.  

Eqs. (11) and (12) defined the average edge flux: 
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that becomes in the case of Fig. 14: 
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The first integral in Eq.(23) does not depend directly on ya since Eq.(20) does not 

depend on ya. Its solution will therefore be straightforward [see Eq.(24)]. The second 

integral is instead more complicate and the result is presented in Eq.(25). 

 

, , , ,
1 1

, ,
2 2

1i
t

k

x
k i j k i j

k i j j
t t j

q q
e y h

y

σ
µψ

σ

∆−

− +

    
− + −    Σ ∆     

                                                            (24) 



 

 

30 

 

1

2

, , , ,
1 1

, ,
2 2

1
1

j

t
k

h y

k i j k i jk

k i j j
t t t j

q q
e h y

y
ηηψ

σ σ σ

−

 
 −
 
 −Σ

− −

  
       − − + −     ∆   
  
   

                                          (25) 

 

Combining Eqs. (24) and (25), the solution for the case introduced in Fig. 14 is 

obtained: 
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In Eq.(26) the parameter h can be substituted, by geometrical consideration, as 

follows: 
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Rearranging the final form is obtained: 
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This final form is the solution for the angular flux at the right edge of the cell 

given an incident beam coming from the left and bottom edge in direction k. The same 

relation can be derived for all the angular fluxes with all the different boundary condition 

applied (different direction k).  

The generalized result is presented: 

 

( )
, ,

, ,, , ,
, , , ,

, , , , , ,
, , , , ,2 2 2

1
1

k i j

k i ji j i j i j
m k i j n k i j m

k i j k i j k i j
i j i j k i j i j

q q qe
e

τ
τψ ν ψ ν ψ

σ σ τ σ+ − −

    −= + − + − −        
    

           (29) 

 

and 
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           (30) 

                                                                                                                                          

The closure equations depend on the quadrant and direction of interest ( )kΩ : 
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and 
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The constants used in the closure equations are defined as: 
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, , min 1, ,k j
m i j

k i

y

x

µ
α

η
 ∆ =  ∆  

                                                                                                 (34) 

 

and 

 

, , min 1, ,k i
m i j

k j

x

y

ην
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 ∆ =  ∆  
                                                                                                  (35) 

 

From the balance equation, Eq.(15), the cell-interior angular flux is: 

1 1 1 1
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                                                 (36) 

 

The discretized cell-interior angular flux is related to the scalar flux and currents 

as given by the discrete ordinates approximation: 

 

, , ,
1

K

i j k k i j
k

wφ ψ
=

=∑ .                                                                                                              (37) 

 

, , ,
1

i j

K

x k k k i j
k

J w µ ψ
=

=∑                                                                                                          (38) 

 

, , ,
1

i j

K

y k k k i j
k

J wη ψ
=

=∑                                                                                                           (39) 

 

  

 

 

 

 



 

 

33 

The scattering cross section is considered linearly anisotropic. The scattering 

source, therefore, as defined in Eq.(8), is also linearly anisotropic and it can be calculated 

for every direction k from the scalar flux and the currents. Remembering the presence of 

the un-collided flux and currents per cell, these flux and currents will constitute fixed 

terms for the source: 

 

( ) ( )

( )

, , , , , ,

, , , ,

3
4 4

3
4

uncollided uncollidedsca sca
k i j i j i j k i j i j

uncollidedsca
k i j i j k i j

q g Jx Jx

g Jy Jy S

σ σφ φ µ
π π

σ η
π

= + + +

+ + +
                                              (40) 

 

where g is called the anisotropic factor. g varies between 0 and 0.333 defining a 

scattering source more and more forward peaked. When g equals 0 the scattering source 

is isotropic.    

Knowing the boundary conditions at the edges of the medium and using Eqs.  (29) 

and (30), it is possible to find all the fluxes of the cells by iteratively sweeping through 

the medium. At the first iteration, the source will consist only of un-collided particles. 

The new sources created during the sweeping process will be the sources of once-collided 

particle. Sweeping again through the object will solve for the once collided particles and 

create the source of the twice-collided particles. And so on until convergence, that is until 

the next source is within some ε of the previous one. The order of sweeping in the case of 

cell-centered spatial mesh and a know boundary conditions direction is presented in Fig. 

1524: 
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Fig. 15. Order of sweeping cell-centered spatial mesh for µk>0, ηk>0. 

 
 

Lathrop25 enumerated a list of desirable properties of a differencing scheme:  

1. it should be accurate in the sense that it has a small truncation error 

2. it should be simple (which we interpret to mean that it should involve a small 

number of numerical operations and should involve unknowns from within a 

single mesh cell) 

3. it should produce positive fluxes if the source and boundary fluxes are positive.  

To this list, he added the requirements that  
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4. the scheme has to be conservative, in the sense that a well defined relation exists 

among flows into and out of the cell and sources and absorptions in the cell  

5. the scheme should be easily generalizable to all geometries25. 

 

Since the definition in Eqs. (11), (12) and (13) satisfy Eq.(15), the SC scheme is 

conservative. Given positive incoming fluxes and source, the out-going fluxes, due to 

Eqs.(29) and (30) are also positive. The truncation error, however, is something less than 

a second order error. It is possible to show that the relations of Eqs. (29) and (30) have 

first order truncation error which depends on σ∆x/µ, σ∆y/η and their ratio. The error is 

largest for large σ∆x/µ and σ∆y/η or when their ratio is near zero. The relations approach 

second order accuracy for small σ∆x/µ and σ∆y/η and when their ratio is near unity. The 

scheme is also difficult to generalize; there are not many geometries, beyond Cartesian, 

in which it is easy to integrate along the characteristics.  

The main difficulty in using the SC scheme is its tendency to spread the beam 

along the object. A perfect forward beam will be transformed into a more spread beam 

due to the averaging of the flux along the edges of a cell. 

The problem of interesting has the best geometry to develop the simple SC 

method since it has good boundary conditions treatment and highly angular-dependent 

fluxes. All the equations are easy exponential relations and are suitable for a further 

analytical analysis (as will be developed in Chapter III).   

At this point, the problem is solved in terms of average flux and net currents in x 

and y per every cell. With this information the second step is finished and the detector 

readings can be calculated. The detector reading will be constructed taking into account 

the un-collided radiation coming directly from the beam window and the collided 

radiation.  The collided component of the detector will be simply the outgoing current at 

the edge correspondent to the detector. The details about the calculation of the detector 

readings are presented in the next sections after some notes about the angular quadrature 

set. 
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II.B.5  Level Symmetric Quadrature Set 

 

In the derivation of the solution for the angular fluxes in the previous sections, 

one angle is needed to specify the angular distribution. The one used in this process is 

shown in Fig. 16: 
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Fig. 16. Angular coordinate system. 

 

In multidimensional problems, two angular coordinates are required to specify the 

direction of neutron travel (Ω). If x1, x2 and x3 are orthogonal spatial coordinates, µ, η and 

ξ are the direction cosines of Ω with respect to these coordinates as indicated in Fig. 16. 

Only two of the direction cosines may be specified independently, however, since 

Ω is a unit vector23.  Hence they must satisfy: 

 

2 2 2 1µ η ξ+ + =                                                                                                                (41) 

 

In three-dimensional problems ( ), ,x yψ Ω  must be determined over all eight 

octants of the unit sphere swept out by Ω . In two-dimensional geometries, the mirror 

x2 

x3 

x1 
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symmetry of  ( ), ,x yψ Ω  about the plane formed by two of the orthogonal coordinates 

reduces to four the number of octants over which the angular dependence of ( ), ,x yψ Ω  

must be determined. 

The purpose of introducing a quadrature set for the direction Ω , is to calculate, in 

the transport equation, the following operator: 

 

( ) ( )
14

M

m m
m

d f p f
π =

Ω Ω ⇒ Ω∑∫                                                                                           (42) 

 

where pm is the point weight and mΩ are the “discrete ordinates.”  A “quadrature 

set” specifies the discrete ordinates at which the function is evaluated as well as the 

weight associated with each ordinate.  

The quadrature points or “ordinates” in a level symmetric set are arranged on the 

principal octant in a triangular fashion on N/2 levels.  Each level has 1
2

N
n− +  points, 

where n=1..N/2.  With this arrangement, there are 
( )2

8

N N +
 directions in the unit 

octant.  

 Each quadrature point represents a direction in the unit sphere specified by three 

direction cosines: 

 

ˆˆˆm i j kµ µ η η ξ ξΩ = + +                                                                                                       (43) 

 

Furthermore, the set of direction cosines obeys the relation26,27,28: 

 

2 2
1 ( 1)i C iµ µ= + −                                                                                                             (44) 

 

with the constant C given by 
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2
12(1 3 )

2
C

N

µ−≡
−

                                                                                                                 (45) 

 

In addition to the ordinates, the weights in each octant must be determined. The 

normalization relation is: 

 
( 2) /8

1

1
N N

n
n

w
+

=
=∑                                                                                                                    (46) 

 
More details about the fundamental equations and properties of the level 

symmetric quadrature set can be easily found in the literature24. 

 

II.B.6  Detector Reading 

 

The last step of the forward method is the detector readings. The calculation of 

the detector responses is almost identical to the calculation of the initial un-collided 

sources except for the addition of the collided component. The detector readings consist 

of two components: the un-collided radiation and the collided radiation. The detector 

readings are given by: 

 

( ) ( ) ( )detector detector detectorunc collP P P= +                                                                 (47) 

 

where P indicates “prediction”. 

The un-collided particles are the one that come directly from the beam window to 

the detector without undergoing a collision event, see Fig. 17. The calculation of this 

component is similar to that used for the un-collided sources: 

• the detector is divided in points whose location into the detector and interval 

weights are calculated by using a Gauss-Legendre quadrature set 

• for every point the un-collided current is calculated by performing an integral 

similar to the one of Eq. (6), again finding the interval for the θ angle, see Fig.(12) 

• the reading of the detector is obtained averaging the readings of its points 
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The integral for the calculation of the un-collided radiation, performed as a 

quadrature summation is: 

 

( ) ( )

( )

# dec. points

1

1 1 1

detector detector,point

2  or 

un collided unc
r

R POL AZ
ds

r pol az beam
r pol az

P P

w w w eαψ η µ

−
=

−

= = =

=

=

∑

∑ ∑ ∑

                                       (48) 

 

where : 

• the first summation in r averages the detector point readings indicating with R the 

number of points per detector 

• the second and third summations perform the integral along the two angles of the 

beam, coming from the window, decreased by the attenuation factor (in the 

exponent ds is the distance between beam window and detector point); POL and 

AZ are the maximum numbers of polar and azimuthal angles 

• the angle to multiply with is µ or η. If the current along the x-axis is needed the 

multiplication will be with µ, otherwise with η.  

The number of points per detector, and angles for the quadrature integral are user-

defined. Again by using a reasonable number of these parameters leads to an efficient 

calculation of the un-collided radiation in the detectors. 

The collided component is simply the current out of the cell-edge corresponding 

to the detector. An important requirement is that the detector is placed corresponding to 

the edge of a cell or multiple cells such that it is clear which cells edges constitutes the 

detector reading. The two components are summed together to have the total prediction. 

Fig. 17 presents this process graphically.  
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Fig. 17.Detector reading calculation. 

 

 
II.C Implementation and Computational Verification 

 

The code was tested using different techniques and different testing problems. 

During the coding process every part of the code was tested against analytical simple 

calculations. At the end, when the coding was finished it was completely tested against 

MCNP results. 

 

II.C.1  FORTRAN Coding 

 

The code has been developed in Fortran 90 on a Microsoft Windows workstation 

with a 3.20 GHz Pentium 4 processor.  

Collided 
Radiation 

Detector point Detector

Beam window

Un-collided 
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The input files for the forward model are three: 

• input file for the geometry of the beam and collimator that indicates the 

order of the angular quadrature set and the number of each parameter 

used for the un-collided source calculation 

• input file for the geometry of the problem. Dimension of the object, 

number of regions and cells per region 

• input file for the cross sections per region. 

 

The output of the code is contained on different files containing: 

• summary of the problem 

• scalar flux per cell 

• current in x and y direction per cell flux 

 

II.C.2  MCNP Decks 

 

Two test objects were explicitly simulated using MCNP-5. One object was 

homogeneous. The other object was heterogeneous. The MCNP object has been 

discretized using a lattice subroutine such that the flux into the object can be compared 

with that calculated by the code. Fig. 18 presents a visual image of the heterogeneous test 

object showing with all the geometrical properties of the beam and the object. 
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Fig. 18. Heterogeneous test problem. 

 

 

II.C.3 Homogeneous Test Object 

 

The object investigated is placed into a neutron beam collimated by using a 

slightly divergent collimator. In both MCNP and the code the fluxes inside the object (in 

the cell of each spatial discretization) were calculated. The object consisted of natural 

carbon with a 10 cm by 10 cm square area. The beam was symmetric about the centerline 

of the object and the beam window was 2 cm wide. The collimator was 3 cm long and 

with an exit window 4 cm wide. For this object no detectors were around the object. The 

testing and verification was performed to assure accuracy in the scalar flux in the object 

cells. The spatial discretization used in MCNP consisted of 20 by 20 uniformly 
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distributed square cells. In the code to reach we used a grid of 200 by 200 cells. Post-

calculation, groups of 10 by 10 cells were collapsed to calculate the averaged flux which 

could then be compared with MCNP. In MCNP reflective boundary conditions in the 

third dimension were used to construct a real two dimensional problem. A summary of 

the properties and the result of the comparison is shown in TABLE I. 

 

TABLE I 
Summary of the homogeneous case test problem 

Object Dimensions     

x length 10 cm 
y length 10 cm 

      
Collimator Dimensions     
Beam window length 2 cm 

Collimator window length 3 cm 
Distance beam window object 4 cm 

Distance collimator window object 1 cm 
      
CODE DISCRETIZATION 
Discretization Forward Problem     

# x cell 200   
# y cell 200   
Order quadrature set (n of Sn) 8   

# polar direction 20   
      
Discretization for Unc. Sources     
# points per cell 1   
# azimuthal angles 20   

# polar angles 20   
      
Optical Properties      
Scattering cross section 0.538678 cm-1 

Absorption cross section 0.000382 cm-1 
Total cross section 0.53906 cm-1 
g factor variable   
   
MCNP INPUT   
# lattice cells 20 by 20  
# particle  108  
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 The fluxes were compared at three different positions inside the object: at the 

entry (first row of cells), at the centerline, and at the exit. The g factor, which measures 

the anisotropic nature of the scattering, was varied between 0 and 0.07 to determine its 

affect on the result. The results are presented in Fig. 19, Fig. 20 and Fig. 21 

The plots present in the abscissa the cell number and in ordinate the strength of 

the sources inside that cell, with respect to the g factor. 
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Fig. 19. Comparison of the scalar fluxes for the cells at the bottom part of the object using different values 

for g. 
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Fig. 20. Comparison of the scalar fluxes for the cells at the center of the object using different values for g. 
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Fig. 21. Comparison of the scalar fluxes for the top cells of the object using different values for g. 
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With a g factor equal to 0.07, the MCNP result and the code calculation agree 

within 2% everywhere. These results demonstrate that the forward model can accurately 

calculate flux values that agree with MCNP simulations. To ensure code verification and 

code reliability a heterogeneous object test was performed as well. 

 

II.C.4  Heterogeneous Test Object 

 

The heterogeneous object was similar to the previous object except for the 

inclusion of a 1 cm by 1.5 cm boron defect. This defect was placed 1 cm away from the 

top and right edges. All the variables related with the beam remained the same. Fig. 18 

shows a graphical depiction of the object. A summary of the optical properties of the 

object is listed in TABLE II. 

The results of the comparison are presented in Fig. 22, Fig. 23, Fig. 24 and Fig. 

25. The plots present in abscissa the cell number and ordinate the strength of the source. 

As in the homogeneous case, the data is collected at different location throughout the 

object: entry (first row of cells), object centerline and exit (last row of cells). In addition, 

for the heterogeneous case, a plot is taken also at the centerline of the boron defect (Fig. 

24). 

The MCNP and code calculation agree within 5% along the top edge of the 

object. This level of accuracy is sufficient for the purpose of this study. Together with the 

homogeneous test, the heterogeneous test shows accurate calculations for the code. The 

forward code appears to be correctly implemented and verified. 
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TABLE II 
Properties of the heterogeneous case 

Object Dimensions     
x length 10 cm 

y length 10 cm 
     
Collimator Dimensions     
Beam window length 2 cm 
Collimator window length 3 cm 

Distance beam window object 4 cm 
Distance collimator window object 1 cm 

      
CODE DISCRETIZATION     

      
Discretization Forward Problem     
# x cell 200   

# y cell 200   
Order quadrature set (n of Sn) 8   

# polar direction 20   
      
Discretization for Unc. Sources     

# points per cell 1   
# azimuthal angles 20   

# polar angles 20   
      
Optical Properties Background     
Scattering cross section 0.538678 cm-1 
Absorption cross section 0.000382 cm-1 

Total cross section 0.53906 cm-1 
g factor 0.07   

      
Optical Properties Intrusion     
Scattering cross section 0.293788 cm-1 

Absorption cross section 525.7772 cm-1 
Total cross section 526.071 cm-1 

g factor 0.07   
      
MCNP INPUT     
# lattice cells 20 by 20   
# particles 108   
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Fig. 22. Comparison between MCNP and code scalar fluxes for cell at the bottom part of the object. 
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Fig. 23. Comparison between MCNP and code scalar fluxes for the cells at the center of the object. 
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Fig. 24. Comparison between MCNP and code scalar fluxes for the cells at the boron defect centerline. 
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Fig. 25. Comparison between MCNP and code scalar fluxes for the cells at the top part of the object. 
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CHAPTER III 

INVERSE MODEL 

 

III.A Introduction 

 

 The focus of this chapter is to present the scheme to solve the inverse problem 

and therefore determine the optical properties distribution for the object given a 

measurement of transmitted and scattered image. Given the measurements performed on 

the surface of the object and the predicted measurements calculated by using the forward 

method presented in the previous chapter, the scheme has to be able to reconstruct the 

cross sectional image of the optical properties of the media investigated.  

 The imaging problem is treated as an optimization problem, in which an objective 

function is minimized. The objective function has been calculated as a normalized-

squared error between predicted and measured data.  

 The inverse model makes use of the conjugate gradient scheme for the 

minimization and it finds the gradient of the objective function with respect to all optical 

properties. This gradient is the major step of the updating scheme and its calculation is 

performed using an adjoint differentiation algorithm that allows for an efficient and 

accurate calculation. 

 The complete code, consisting of both forward and inverse model, will be referred 

as TNTs (Tomography Neutron Transport using Scattering). 

 

 

 

 

 

 

 

 

 

 



 

 

51 

III.B Perturbation Methods 

 

 The majority of available reconstruction algorithms are based on perturbation 

methods29-34. The limited application of this scheme comes from its main assumption that 

the variations between the optical properties of the medium to reconstruct and those used 

as an initial guess in the forward model are small. These methods are also 

computationally expensive because they involve the inversion of full ill-conditioned 

Jacobian matrixes7.   

 Perturbation theory is the study of the effects of small disturbances in the 

mathematical model of a physical system. Assuming that the optical properties of the 

unknown object are a small perturbation of an estimated distribution it is possible to 

reconstruct the object by using a perturbation model.  

 Experimental measurement are taken along the boundary of the investigated 

medium and compared with the prediction given by a forward method that makes use of 

the estimated distribution. If ξe, the estimated distribution of optical properties, is close to 

ξr, the real distribution, a Taylor series for the measurements (M) at the boundary 

locations can be performed: 

 

( ) ( )( ) ( ) ( )( )T

e e r e r e e r eM f J Hξ ξ ξ ξ ξ ξ ξ ξ ξ= + − + − −   (49) 

 

where f represents the forward model and J and H are the Jacobian and the Hessian of the 

forward scheme. All the underlined quantities are vectors. If expM  is the vector of the 

measured data, then the difference between experimental values and predicted values 

( )ef ξ   is defined as follows: 

 

( ) ( ) ( ) ( )exp
T

e e e eM f M f J Hξ ξ ξ ξ ξ ξ ξ− ≅ − = ∆ + ∆ ∆                                               (50) 

 

where  ( )r eξ ξ ξ∆ = − . 
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 If the second-order term on the right hand side of Eq.(50) is neglected the 

dependence between the differences in the measurements is linearly related to the 

difference in the properties and ξ∆  can easily be found: 

 

( ) ( ) ( ) ( )( )1

exp exp  e e e eM f J J M fξ ξ ξ ξ ξ ξ
−

− = ∆ ⇒ ∆ = −                                           (51) 

 

 Knowing the starting estimated distributioneξ  and ( )exp eM f ξ−  leads to the 

calculation of ξ∆ by the inversion of a full ill-conditioned Jacobian matrix. The approach 

is usually generalized to an iterative method that at every step evaluates a new Jacobian 

matrix and a newξ∆ . A regularization term is often used to reduce to a more diagonally 

dominant matrix the ill-conditioned J matrix7. Although such matrixes can be efficiently 

constructed the method becomes intractable as the size of the problem domain increases.   

 

III.C Gradient-Based Iterative Scheme 

 

 Another approach is to regard the problem as the optimization of an objective 

function representing the sum-squared difference between measured and predicted 

detector readings. In Chapter II, a forward method for the calculation of detector readings 

was introduced. The predicted measurements are function of the optical properties of the 

entire object: 

 

( , , ) ( , , )scattering total anisotropicfactor sca totP f g f gσ σ σ σ= =                                                       (52) 

 

Under the assumption of a maximum-likelihood approach to the solution for the 

inverse problem, the objective function is defined as: 

 

( )
2

exp
1

1
( , , ) ( , , )

2

m

sca tot sca tot
i

E g M f gσ σ σ σ
=

= −∑                                                              (53) 
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where m that indicates the total number of measurement performed along the domain. 

 From Eq.(53) it is clear that the objective function depends on every optical 

property of the object and in particular, in the case of a discretized domain such as the 

one used in the solution of the forward problem, E depends on every cell properties: 

 

( ( , ), ( , ), ( , ))sca totE i j i j g i jσ σ        i=1..I and j=1..J                                                         (54) 

 

with I and J to indicate the total number of cell in x and y direction. The problem 

therefore can be referred as an optimization of the multidimensional function called the 

objective function.  

There are different methods to approach the solution of this problem. The 

classical unconstrained multivariable optimization is usually approached with Newton-

type iterative algorithms that have better results in terms of accuracy and number of 

iteration than the steepest descent method36. However, it is generally very difficult to 

calculate the Hessian of the function. 

 In the method of steepest descent, see Fig. 26 and Fig. 27, ( )f x  is evaluated at a 

certain point (0)x . The method slides down to the bottom of the paraboloid as shown in 

Fig. 27. A series of  ( ) ( ) ( )1 , 2 , 3 ......x x x  are taken until the problem is close enough to 

the solution fx . In taking the step, the steepest descent method chooses the direction in 

which f decreases most rapidly which is the direction opposite to the gradient 

( ) ( )
'

f x
f x

x

δ
δ

= . Indicating with ir  the residual that in terms of matrix multiplication is 

nothing but how far the problem is from the solution it can be proved that ( )'i ir f x= −  

and 

 

1i i ix x rα+ = +                                                                                                                    (55) 
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Fig. 26. Contours of a perfect quadratic form (with minimum in (2,-2)). Each ellipsoidal has constant f(x). 

 

 
Fig. 27. Method of steepest descent: 

(a) starting at x(0)=(-2,2), the method steps in the direction of –f’. 

(b) Intersection between these two surfaces. 

(c) The bottom point of the parabola is the target of the line search. 

(d) The gradient at the bottom point is orthogonal to the gradient at the previous step (see Fig. 28).  
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 A line search is the procedure that chooses α to minimize f along the line. On the 

line search f is minimized where the gradient is orthogonal to the search line (Fig. 28 and 

Fig. 29). A variety of line search methods can be used, either utilizing gradient 

information, such as the secant method, or using only function evaluations such as the 

quadratic fit method. Often an exact line search is too computationally expensive due to 

the large number of function derivative computations. Experience shows that exact line 

search, minimizing the objective function as accurate as possible, is not necessary for 

Newton’s methods. Typically, a full step is taken (α=1) and if ( ) ( )1i if x f x+ > , then we 

back-track towardsix . Quadratic interpolations are available and inexact line search 

methods such as Armijo’s Rule define the bounds for acceptable step lengths which 

guarantee convergence. For conjugate gradient or steepest descent methods the precision 

in the line search is instead vital. 

In developing TNTs Brent’s method was used37. An interval that brackets the 

minimum is given as input, then Brent’s method approaches the minimum by choosing at 

each step between quadratic fit and golden search. 

 

 

 
Fig. 28.The gradient f' is shown at different locations along the search line. On the search line f is 

minimized where the gradient is orthogonal to the search line. 
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Fig. 29. Here the steepest descent starts at (-2,2) and converges at (2,-2). 

 

 The method of the conjugate gradient (CG) is slightly different from the steepest 

descent. At every step instead of moving along a direction orthogonal to the previous one 

the CG moves along an A-orthogonal direction (A is the matrix that defines the quadratic 

dependence of the function with respect to all the variables). From a more understandable 

point of view, the CG method tries to minimize the residual instead of the objective 

function itself. In order to do that, the new direction in every iteration is calculated with a 

linear interpolation between the old direction and the new gradient. The coefficient of this 

interpolation (β ) varies with the method choosen to couple the CG scheme. The 

interesting property of CG is that it finds at every step the best solution within the bounds 

of where it is been allowed to explore. The best property, though, is that the CG can be 

used not only to find the minimum point of a quadratic form, but to minimize any 

continuous function ( )f x for which the gradient 'f  can be computed.  

Under the assumption of an effective calculation of the gradient of the objective 

function ( )xE σ  (where x can indicate total, scattering or g factor), the choice for the 

minimization has been the non-linear conjugate-gradient method coupled with the 

Polack-Ribiere method or with the Fletcher-Reeves formula38.  
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Algorithm 1 : Non linear conjugate-gradient method 

 

Choose an initial set of variables 1xσ  

Set the initial search direction1 1h r= . Define ( )1 1
xr E σ≡ −∇  

Define termination criteria ε  

Set iteration counter 0j =  

 Repeat 

 Find jα that minimizes ( )j j j
xE hσ α+  

 1
min

j j j
x x hσ σ α+ = +  

 ( )1 1j j
xr E σ+ +≡ −∇  

 1 1j j j jh r hβ+ += +  

 1j j= +  

 Until  ( )j
xE σ ε∇ <  

 

In nonlinear CG, the residual is always set to the negative of the gradient 

( )j j
xr E σ≡ −∇ . The search directions are computed by Gram-Schmidt39 conjugation of 

the residuals as with linear CG. Performing a line search along this search direction is 

much more difficult than in the linear case. 

In linear CG, there are several equivalent expressions for the value ofβ . In 

nonlinear CG, these different expressions are no longer equivalent; researchers are still 

investigating the best choice. Two choices are the Fletcher-Reeves formula, which is used 

in linear CG for its ease of computation, and the Polak-Ribiere formula: 

 

( )
( )

1 1

1

Tj j

j
FR Tj j

r r

r r
β

+ +
+ = ,    

( ) ( )
( )

1 1

1

Tj j j

j
PR Tj j

r r r

r r
β

+ +
+

−
=                                                        (56) 
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The Fletcher-Reeves method converges if the starting point is sufficiently close to 

the desired minimum, whereas the Polak-Ribiere method can, in rare cases, cycle 

infinitely without converging. However, Polak-Ribiere often converges much more 

quickly. Fortunately, convergence of the Polak-Ribiere method can be guaranteed by 

choosing ( )max 0, PRβ β= . Using this value is equivalent to restarting CG if 0PRβ < . To 

restart CG is to forget the past search directions, and start a new CG in the direction of 

steepest descent. Fig. 30 shows the path followed by the Polack-Ribiere CG to find the 

minimum of the functions. As can be seen, the directions are not orthogonal with the 

previous ones. 

 

 
Fig. 30. Convergence path of the Polack Ribiere path for a function with many local minima and maxima. 

 

 Application of the Conjugate-gradient for the optimization of an objective 

function is used in a great variety of situation: engineering design, non linear regression 

and lately neural net training. For the purpose of optical tomography the optimization of 

the objective function by CG is very reliable, under the assumption of a possible gradient 

calculation. 
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III.D  Gradient Calculation 

 

 The gradient of the objective function represents the most challenging part of the 

entire process. Eq.(53) expresses the objective function in terms of the optical properties 

of the medium but the dependences are more complicated and directly related to the 

forward process. In order to understand the effect of each cross section on the objective 

function, the forward problem has to be analyzed step by step. 

 In Chapter II it was shown how the detector readings consist of two contributions, 

one due to particles that pass un-collided through the medium and one due to the particles 

that undergo scattering events in the medium before reaching the detectors. The objective 

function can therefore be expressed in a more precise way as: 

 

( )
2

exp
1

1

2

m

collided uncollided
i

E M P P
=

= − −∑                                                                                (57) 

 

 This different way to express the objective function underlines another important 

concept. Both the un-collided and collided processes involve as fundamental a variable 

the total cross section. It is the total cross section only that determines the probability for 

a particle to pass through a medium without collisions. The streaming process itself used 

in the forward model to calculate the fluxes on the surfaces of the cell is affected only by 

the total cross section. It is therefore more convenient to think of the objective function as 

dependent on scattering cross section and total cross section, and anisotropy factor.  

 The best way to investigate the dependence of the function on the above optical 

properties it is by analyzing the two prediction components separately: un-collided 

gradient and collided gradient calculation. 

 

III.D.1  Un-collided Gradient Calculation 

 

 Un-collided radiation passes through the medium without collision. The forward 

model calculates this component by performing a numerical integral along the beam 
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window to calculate the radiation arriving at one detector point. Multiple contributes 

from multiple points into the same detector are summed together with respect to the 

corresponding weights (see Chapter II). If a particular point of a detector is taken into 

consideration it is clearly understandable that the total cross section of all the cells 

between beam window and detector point affect the result. In Fig. 31 these cells are 

marked with “x”. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31. Detector point and beam window connection. The cells that come into play in the detector reading 
calculation are indicated with an “x”. 

 

 TNTs is able to calculate the effect of each cross section on the un-collided 

component of the radiation for each point of each detector. From Chapter II, the 

derivative of this component over the total cross section is easy to calculate and the result 

is: 

 

( )
( ) ( )uncollided detector,point

2 cell,point (  or )polar
tot

P
w w e ds

cell
τ

γ
δ

µ η
δσ

−= ⋅                                (58) 

  

where all the variables have been introduced in the previous chapter. 

Beam window 

Detector point 

x 

x 

x 

x x x

x 

x x 

x 
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The total derivative of the un-collided prediction in one detector as a function of a 

cell total cross section is then: 

 

( )
( )

( )
( )int

1

detector detector,pointN
unc unc

po
ntot tot

P P
w

cell cell

δ δ
δσ δσ=

=∑                                                            (59) 

 

 It is therefore straightforward to calculate the derivative of the objective function 

over the total cross section of a cell due to the un-collided component. From Eq.(57), 

applying the chain rule gives: 

 

( )
( )

( ) ( )( ){

( )
th

 detector

exp
1

int
1 n  point

detector

( ) detector ( )

detector detector

(2  or )

thdec

unc

tot unc tot

D

col unc
dec

N

po polar
n

PE E

cell P cell

M P P

w w w e dsτ
γ

δδ δ
δσ δ δσ

µ η

=

−

=

= =

= − −

⋅ 


∑

∑

                                    (60) 

  

TNTs applies Eq.(60) at all the cells and constructs a matrix of contributions of 

the single cell cross section to the objective function due to un-collided radiation. The un-

collided part is easy to analyze and easy to compute. All the calculations were made 

along the normal forward process after the convergence of the solution without inserting 

further steps or iterations.  

 

III.D.2  Collided Gradient Calculation 

 

 The analytical expression of the collided component of the gradient is also 

straightforward. The implementation into a computational code though is less immediate 

and represents an interesting application of an adjoint formulation. In the collided part the 

radiation passes through different steps before it reaches the detectors. In Chapter II, the 

general solution concept was outlined: un-collided source for all cells are constructed, 

then these sources represent the driving force for the step-characteristic source iteration 
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scheme that iteratively constructs the sources per cell of all collided particles. The total 

cross section and the scattering cross sections appear in all of these steps.  

 The scattering cross section comes into play only in the construction of the 

sources per cell since the strength of a scattering-source depends directly on the value of 

the scattering cross section (see Chapter II). The total cross section, instead, affects all the 

streaming processes including the one used for the creation of the un-collided sources per 

cell. It is easier to understand this by looking at the grid already introduced in Chapter II, 

(Fig. 32) 

 

 

Fig. 32. Spatially discretized medium for forward and gradient calculations. 

 

 Assuming that the only changing properties is the scattering cross section in cell 

(2,2) let’s follow the steps of the forward method to see how this change affects the 

objective function. An important note is that the change of the scattering cross section has 

to be done keeping the total cross section constant. 

 

• Un-collided source calculation: the source in cell (2,2) changes its strength 

because the scattering cross section determines linearly the strength of the source. 

(1,1) (1,2) (1,3) 

(2,1) 
(2,2) 

(2,3) 

(3,3) (3,3) (3,3) 

Beam window 
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Note that the streaming part of this first process is not affected by the change of 

the scattering cross section since depends only on the total cross section of the 

cells that the particle go trough. The sources in all the other cells remain 

unchanged. 

• The change in the source at the first iteration changes the fluxes at the edges of 

the cell itself. It is intuitive to understand that each iteration will transfer the 

changes of these fluxes throughout the problem, affecting all the fluxes and 

sources in all the other cells. It is important to note that keeping constant all the 

total cross sections in the medium leads to un-changed streaming processes. The 

fluxes therefore will change throughout the iterations only because of the effect of 

the fluxes in cell (2,2). It is therefore necessary to understand how this 

“information” travels into the problem between fluxes and sources. 

• The fluxes obtained at the end of the iterative scheme together with the un-

collided radiation construct the objective function. Again the un-collided radiation 

is not affected by the change of the scattering cross section in cell (2,2) since it 

depends only on the total cross sections in the medium. 

 

It is clear, from this first approximate analysis, that the relation between objective 

function and total cross section is more complicated. Again following the steps of the 

forward scheme it is possible to understand better how this happens [the changing cross 

section is the one of cell (2,2)]: 

 

• The streaming process between the beam window and the cell itself is now 

affected. A change in the total cross section causes the un-collided flux and 

current in the cell to change. Therefore, the un-collided source is changed in its 

strength. But in this case not only the source in cell (2,2) is changed. All the cell 

in which the un-collided source is constructed by particles streaming through cell 

(2,2) are affected. In Fig. 32 these cells are the ones of the first row. In general, all 

the un-collided sources of cells above the cell taken into consideration are 

affected by the total cross section of this cell.  
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• At the first iteration then the un-collided source in cell (2,2) creates the edge 

fluxes. The effect of the cross section is therefore passed to the edges of the cell 

itself. Different from the scattering case, at the first iteration all the sources 

affected by the total cross section of cell (2,2) pass the information to their edges. 

Each iteration will spread the effect of the total cross section from all the affected 

cells to the entire medium. The streaming process is un-changed in all the cell but 

the one taken into consideration, cell (2,2). In this cell at each iteration also the 

streaming term affects the fluxes and the source. 

• At the convergence of the forward model both the component of the objective 

functions bring information about the change in the total cross section of cell 

(2,2). 

 

The effect of a change in the total cross section is clearly more complicate than the 

effect due to a change in the scattering property. Let’s try to write this in an approximate 

mathematical way; indicating with (m,n) the cells at the edge used as detector reading and 

(i,j)  the generic problem cell: 

 

( ) ( ) ( )
coll un-coll

, , ,sc sc sc

E E E

i j i j i j

δ δ δ
δσ δσ δσ

= +

( )
( )
( )

( )
( )
( )

coll

1 1 coll

coll

1 1 coll

,

, ,

,

, ,

N M

n m sc

N M

n m sc

J m nE

J m n i j

J m nE

J m n i j

δδ
δ δσ

δδ
δ δσ

= =

= =

=

=

∑∑

∑∑

                                                                  (61) 

 

where J indicates the current calculated at the outer surface of the cell (that is the current 

that contributes to the detector reading calculation). The same can be written for the total 

cross section: 
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( ) ( ) ( )

( )
( )
( ) ( )

( )
( )
( ) ( )

coll un-coll

coll

1 1 coll un-coll

coll

1 1 coll un-coll

, , ,

,

, , ,

,

, , ,

tot tot tot

N M

n m tot tot

N M

n m tot tot

E E E

i j i j i j

J m nE E

J m n i j i j

J m nE E

J m n i j i j

δ δ δ
δσ δσ δσ

δδ δ
δ δσ δσ

δδ δ
δ δσ δσ

= =

= =

= +

= +

= +

∑∑

∑∑

                                       (62) 

 

 The un-collided component was presented in the previous section. It is vital now 

to express in a better way the dependence of the current in one cell with respect to the 

cross sections of another cell. This is the core of the adjoint calculation. As seen before, 

the contributions to the cross sections are different, but in both cases, the information of 

every single cell is transmitted to the outer boundary of the problem through the edge 

fluxes. It is possible to conceive of a mammoth chain rule that brings information from a 

single cell to the outer boundary. It is easy to draw numerous different paths that a 

particle can follow from a cell to the boundaries traveling across consecutive surfaces and 

sources. In general these paths are infinite because mathematically there is always a 

residual radiation that scatters without being absorbed; but this residual will be negligible 

after a certain number of collisions.  

 The best way to take into consideration the passage of information from a cell to 

an adjacent cell is by constructing a matrix with the derivative of the flux in one cell over 

the flux in another cell as its components. A two cell problem is taken into consideration 

to introduce the matrix and its properties. Fig. 33 illustrates this and in particular defines 

the symbol of the fluxes at the edges and the average flux per cell. With this 

configuration it is possible to derive the chain rule to understand how a cross section 

affects the fluxes, but it is also possible to derive the chain rule to relate a flux with all the 

adjacent ones. The matrix for the flux derivatives is shown in Fig. 34. 

Only fluxes of the same cell are directly related, and the average flux per cell only 

depends on the edge fluxes of the cell and on itself. With these considerations some terms 

in the matrix are zero as shown in Fig. 35. 
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Fig. 33. Simple 2 by 1 cells problem to introduce the gradient adjoint calculation. 
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Fig. 34. Matrix of flux over flux derivatives. 

ψv(1,1) 

ψv(2,1) 

ψv(3,1) 

ψh(1,1) 

ψh(1,2) 

ψh(2,1) 

ψh(2,2) 

Ψ(1,1) Ψ(2,1) 



 

 

67 

  

 

(1,1) (1,1) (1,1) (1,1) (1,1)

(1,1) (2,1) (1,1) (1,2)(1,1)

(2,1) (2,1) (2,1) (2,1) (2,1)

(2,1) (3,1) (2,1) (2,2)(2,1)

(1,1) (1,1) (1,1)

(2,1)(1,1)

0 0 0 0

0 0 0 0

0 0 0

V V H H

V V H H

V V V

V

ψ ψ ψ ψ ψ
ψ ψ ψ ψψ

ψ ψ ψ ψ ψ
ψ ψ ψ ψψ

ψ ψ ψ
ψ ψψ

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂

∂ ∂ ∂
∂ ∂∂

(1,1)

(1,1) (1,2)

(2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)

(1,1) (3,1) (1,1) (1,2) (2,1) (2,2)(1,1) (2,1)

(3,1) (3,1) (3,1)

(2,1) (2,(2,1)

0 0

0

0 0 0 0 0

V

H H

V V V V V V V V

V V H H H H

V V V

V

ψ
ψ

ψ ψ ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψψ ψ

ψ ψ ψ
ψ ψψ

∂
∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂∂ ∂

∂ ∂ ∂
∂ ∂∂

(3,1)

1) (2,2)

(1,1) (1,1) (1,1) (1,1)

(1,1) (2,1) (1,2)(1,1)

(1,2) (1,2) (1,2) (1,2)

(1,1) (2,1) (1,1)(1,1)

(2,1) (2,1) (2,1)

(2,1) (3(2,1)

0 0 0 0 0

0 0 0 0 0

0 0

V

H H

H H H H

V V H

H H H H

V V H

H H H

V

ψ
ψ

ψ ψ ψ ψ
ψ ψ ψψ

ψ ψ ψ ψ
ψ ψ ψψ

ψ ψ ψ
ψ ψψ

∂
∂

∂ ∂ ∂ ∂
∂ ∂ ∂∂

∂ ∂ ∂ ∂
∂ ∂ ∂∂

∂ ∂ ∂
∂ ∂∂

(2,1)

,1) (2,2)

(2,2) (2,2) (2,2) (2,2)

(2,1) (3,1) (2,1)(2,1)

0 0 0

0 0 0 0 0

H

V H

H H H H

V V H

ψ
ψ

ψ ψ ψ ψ
ψ ψ ψψ

∂
∂

∂ ∂ ∂ ∂
∂ ∂ ∂∂

 

Fig. 35. Simplified matrix with dependencies between edge and average fluxes. 

 
 
 Another important consideration that has not been introduced previously is about 

the direction k in which all these relations are derived. Every element of the matrix in Fig. 

35 is in reality a K by K matrix where K represents the number of directions that the Sn 

angular discretization scheme is using. Every derivative is therefore taken as follow: 
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 where not only the cells of reference are changing but also the directions of each flux. 

This leads to a more complicated expression for the final form of the matrix but it is still 

straightforward to derive.  

 The matrix, that by itself simply shows the dependence between all the fluxes 

with respect to all the other fluxes of their cell, is a very powerful tool in the gradient 

calculation. It will be shown in detail later how the multiplication of the matrix by itself n 

times leads to an interesting result. It will represent how every flux changes as a function 

of all the fluxes that are n-steps away from it. A step is consider as a forward iteration or 

better it can be seen as a path that “connects” adjacent surface fluxes or surface fluxes 

with average fluxes. Every multiplication of the matrix by itself n times will gather all the 

n-step paths from every investigated flux and therefore, multiplying the matrix infinite 

times corresponds to finding all the infinite paths that a particle can undergo to reach a 

point. 

 The matrix introduced before will be referred from now on as matrix A with all 

the characteristics and all the hidden features explained previously. It is possible now to 

proceed with the analysis of the gradient expressed in Eqs.(61) and (62). We will 

introduce the vector v which contains the derivative of the objective function with respect 

to all the surface and average fluxes of the problem. It is easy to note that this derivative 

will be non-zero only when it is with respect to fluxes of surfaces that correspond to 

detector position and to directions that contribute to the detector responses: 

 

( )

0                  if  surface (p,q) is not detector position 

                    or k is not outer direction

,

value            otherwise

k

E

p q

δ
δψ



= 



                             (64) 

 

 Multiplying v and A together n times gives a vector of derivatives of the objective 

function over fluxes n steps away from the detectors position. The tools presented so far 

are general and they don’t depend on anything other than the geometry of the problem 

and the properties of the medium. The properties, in particular, have been considered 

constants in the derivation of the matrix and the vector. All the derivatives have been 
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taken with respect to fluxes only and not cross sections. To close the chain rule, we need 

to insert the derivative of every flux with respect to the cross sections of each cell. As 

seen before this will be easier for the scattering dependence since the fluxes of a cell 

depend only on the scattering property of their cell; it will be more complicate for the 

total cross section since the average flux of every cell depends, in general, on the total 

cross section of all the cells in the problem. A new matrix to contain all these derivatives 

must therefore be constructed. It will be called matrix B and will have many zeros in the 

scattering case and few in the total cross section case. The multiplication of matrix B with 

An
 and vector v will represent therefore the derivative of the objective function over the 

cross section of a cell due to particles that from the cell reach the detectors position in n 

steps.  

 Finally, the gradient of the objective function over the scattering and total cross 

section can be represented as: 

 

n
sca

nsca

E
B A v

δ
δσ

=∑                                                                                                            (65) 

 

n
tot

ntot

E
B A v

δ
δσ

=∑                                                                                                            (66) 

 

 The maximum value of n is the one that makes the product converge. Thinking in 

term of steps, the maximum n will be exactly equal to the number of iterations of the 

forward problem.  

 Let’s see in more detail for the case introduced in Fig. 33 what Anv will give 

[considering only one detector on the vertical surface (1,3)]: 

 

( )
0

1,3V

E
A v

δ
δψ

=                                                                                                                                         (67) 
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( )
( )
( ) ( )

( )
( )

( )
( )
( ) ( )

( )
( )

1 1,3 1,3

1,3 1,2 1,3 2,1

1,3 1,3

1,3 2,2 1,3 2,1

V V

V V V H

V V

V H V

E E
A v

E E

δψ δψδ δ
δψ δψ δψ δψ

δψ δψδ δ
δψ δψ δψ δψ

= + +

+ +
                                                         (68) 

 

and the same is for n>2. 

 Eq.(67),  derived for n=0, is the derivative of the objective function due to fluxes 

0 steps away from the detector, Eq.(68) instead is the derivative with respect to fluxes 

that are 1 step away from the detector. This has been derived by simply multiplying the 

matrix and the vector and eliminating all the terms that are zero because of angular 

considerations. For example: 

 

( )
( )

( )
( )

1,2 1,3
0

2,1 1,2
V V

V

δψ δψ
δψ δψ

=                                                                                                         (69) 

 

since the directions in which ( )2,1ψ  affects ( )1,2Vψ  are different from the directions in 

which ( )1,2Vψ  affects ( )1,3Vψ . Clearly in Eq.(67) and (68) the chain rule it’s in term of 

steps from the detector position (where the objective function is calculated) and it can be 

derived by inspection without too much effort, at least for small n where all the paths can 

be easily listed. The complicated calculation of the gradient is therefore reduced to a 

matrixes multiplication and summation. The main task is therefore the construction of 

these matrixes.  

It’s interesting to note that the size of the domain doesn’t affect the construction 

of the matrixes. The chain rule, obviously longer for finer meshes problems, is carried out 

correctly by the multiplication of A with v as many times as necessary to consider all the 

particle paths that contribute to the objective function. A single cell problem will be 

presented to derive the components of the matrixes. 
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III.D.3  Matrixes Components 

 
  To simplify the derivation the presented one-cell problem will consider an 

incident flux in direction k incident on bottom and left surfaces, as in Fig. 36. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 36. One-cell problem for the derivation of the matrixes components. 

 
 
 To write the equation for a single cell problem we consider a cell-by-cell 

discretization of the discrete ordinate transport equation. This can be called closed linear 

one-cell functional method.  Given such a method from Chapter II, and the problem 

defined in Fig. 36, the following equation for all the exiting angular fluxes from one cell 

can be written: 

 

1 1
, ,

2 2

1 1
, ,

2 2

(1 ) (1 )
(1 ) 1 (1 )

1

4(1 ) (1 )
(1 ) 1 (1 )

K k

i j i j

K k
tot

i j i j

v e v e
v e v e

Q
a e a e

a e a e

τ τ
τ τ

τ τ
τ τ

ψ ψ
τ τ

πσψ ψ
τ τ

− −
− −

+ −

− −
− −

+ −

   − −   − − − −      
   = +   − −      − − − −         

       (70) 
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or 

 

, ,

k kk k
s s s vs out s in

A A Qψ ψ← ←= +                                                                                                (71) 

 

where we have defined: 

• ψk
s,out  =  vector of outgoing angular fluxes from the cell (all outgoing surfaces 

for direction k) 

• ψk
s,in  =  vector of incoming angular fluxes to the cell (incoming surfaces for 

direction k) 

• Q  =  vector of total source-rate densities in the cell (isotropic) 

• k
s sA ←   =  transmission matrix for the cell for direction k (each element depends 

on cell size and total cross section) 

• k
s vA ←   =  volume-to-surface matrix for the cell for direction k (each element 

depends on cell size and total cross section) 

 
We have assumed isotropic scattering for simplicity, but this can be readily 

extended to anisotropic scattering. Eq.(70) will be used for the derivative calculation. 

Eq.(71) has been introduced to be used later in the chapter.  

 A similar equation for the cell-averaged flux can be written: 

 

( ) ( )
1

,
2

1
,

2

(1 ) (1 )
(1 ) 1 (1 ) 1

(1 ) (1 ) 1
1 1 (1 ) 1 (1 )

4

k

i j
k
AVG k

tot tot tot tot
i j

tot tot tot

v e a e
a e v e

x y x y

v e a e
v e a e Q

x y

τ τ
τ τ

τ τ
τ τ

ψ
µ η µ ηψ
σ τ σ σ σ τ ψ

µ η
σ τ σ τ πσ

− − −
− −

−

− −
− −

 
 − −  = − − − − − − +  ∆ ∆ ∆ ∆  

 

    − −+ − − − − − − − −    ∆ ∆    

  (72) 

 
or 
 

k kk k
v s v vAVG IN

B B Qψ ψ← ←= +                                                                                                 (73) 
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where: 

• k
avgψ  =  vector of cell-interior angular fluxes (direction k) 

• k
s sB ←   =  surface-to-volume matrix for the cell for direction k 

• k
s vB ←   =  volume-to-volume matrix for the cell for direction k   

 
Integrating Eq.(73) gives an equation for the cell-interior scalar flux: 
 
 

,

,

k
k avg

k

kk k
k v s k v vs in

k k

kk
k v s s in

k

w

w B Q w B

w B DQ

φ ψ

ψ

ψ

← ←

←

= =

= + =

= +

∑

∑ ∑

∑

                                                                                 (74) 

 
 
where 

φ  =  vector of cell-interior scalar fluxes 

D  =  volume-to-volume matrix for the cell (direction integral of k
s vB ← ) 

 
Note, from Chapter II, that Q depends on φ: 

 

sQ Sσ φ= +                                                                                                                     (75) 

 

 From Eqs.22 it is possible to derive: 
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πσ δσψ

τ
σ

−−
−

−
−

+

 
   −− − −   
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                                                          (76) 

 
or 
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,

k

s out k
s v

s s

Q
A

δψ δ
δσ δσ←=                                                                                                           (77) 

 
and 
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                      (78) 

 
or 
 

,

,

k
k k

ks out ks s s v
s vs in

t t t t

QA A
Q A

δψ δδ δψ
δσ δσ δσ δσ

← ←
←= + +                                                                     (79) 

 
where all the quantities and variables are evaluated in the considered cell (i,j). 

 In the case of a multi-cell problem, the derivatives are calculated as shown in 

Eqs.(77) and (79) paying attention to the dependence of the un-collided sources of a cell 

on the total cross section of another cell: 

 

( )
( ) ( ) ( )

( )
,

, ,

, ,
,

, ,

k

s out k
s v i m j n

s s

i j Q i j
A i j

m n m n

δψ δ
δ δ

δσ δσ←=                                                                     (80) 
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( )
( )

( )
( ) ( ) ( )

( ) ( )

( )
( )
( )

,
, ,,

, , ,
, ,

, , ,

,
                      ,

,

k k k
ks out s s s v

i m j ns in
t t t

k
s v

t

i j A i j A i j
i j Q i j

m n m n m n

Q i j
A i j

m n

δψ δ δ
ψ δ δ

δσ δσ δσ

δ
δσ

← ←

←

 
= +  
 

+

                             (81) 

 
Eqs.(80) and (81) consider all the dependencies of a flux on the cross sections of 

other cells. They constitute the building equations for the construction of matrixes Bsca 

and Btot.  

Using the same constitutive equations [Eqs.(70) and (71)] it is possible to derive 

the components for the construction of matrix A.  

First we consider the derivative of the surface fluxes over the cell-averaged flux: 

 

( )
1 1

, ,2 2
' '

, ,

1 1
1 1

4

k
k

i j
i j

k k
i j tot i j

Q e
v v e

τ
τ

δψ δ
δψ πσ δψ τ

−± ±
−  −= − − −  

  
                                                     (82) 

 

or 
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1 1
,

2 2
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,

, ( ')
,

, 4

k

i j
sca k

s vk
i j tot

i j w k
A i j

i j

δψ
σ

δψ σ π
± ±

←=                                                                             (83) 

 

Then we consider the derivative of the surface fluxes over the other surface fluxes 

of its cell: 
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1
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v e τ
δψ

δ
δψ

± −= −
∓

                                                                                                 (84) 
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and  

 

1
, ,

2
, '

1
', ,

2

1k i j
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                                                                                               (86) 
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2

1
k i j
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eτ
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α δ
δψ

±

±
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 Now we consider the cell-averaged derivatives. These are acquired from Eq.(72). 

The derivative of the cell-averaged flux over the surface fluxes is: 
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                                                                 (88) 
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                                                                 (89) 

 

or 

 

'
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,

k
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δψ
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The derivative of the cell-averaged flux over itself is: 
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                             (91) 

 

or 

 

( )
( )

'
'

, ( ')

, 4

k

avg scak
v vk

totavg

i j w k
B

i j

δψ σ
σ πδψ ←=                                                                                          (92) 

 

Eqs.(88),(89) and (91) are the components of the A matrix.  Angular consideration 

has to be done in the construction of every block in matrix A.  

To complete the calculation of the tools for the adjoint calculation only the vector 

v need to be explicitly expressed: 

 

( ) ( ) ( )( )
1

,
2

, , ,    if (i,j) = detector position

0                                                       if k is outer direction

k k

k

i j

y i j w P i j M i jE µδ
δψ

±

∆ −= 


                     (93) 

 

( ) ( ) ( )( )
1

,
2

, , ,    if (i,j) = detector position

0                                                       if k is outer direction

k k

k

i j

x i j w P i j M i jE ηδ
δψ

±

∆ −= 


                     (94) 

 

0
k
avg

Eδ
δψ

=                                                                                                                         (95) 

 

 Again it should be noted that the derivative of the objective function over the 

angular flux of a cell is different from zero only if the surface is a detector surface and if 

the direction is the outgoing direction. Thus, all the components of the matrixes and the 

vector have been mathematically derived. It is necessary to verify the correctness of these 

relations.  
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III.E Mathematical Verification 

 

 It is possible, for the simple case of the one-cell problem, to derive the gradient of 

the objective function both analytically and with the adjoint method. If the adjoint model 

is correct the result should be the same or at least approximately the same for a large n 

where n is the number of time the matrix A is multiplied by itself.   

 Consider a one-cell problem, the one of Fig. 36, with known incident fluxes and 

known fixed source S, where S is a function of the total cross section of the cell.  The 

goal is to know how the total and scattering cross sections in the cell affect the outgoing 

fluxes.  That is: 

,s out
t

ψ
σ
∂

∂
   and   

,s out
s

ψ
σ
∂

∂
                                                                                     (96) 

 From Eq.(71) we acquire: 
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                         (97) 

and: 
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                                (98) 
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Since this is a one-cell problem, we have neglected the cell indexes.  

We will now solve for the scalar flux. Eqs.(74) and (75) give: 

 

[ ] ,
kk

s k v s s in
k

I D w B DSσ φ ψ←− = +∑                                                                                (99)  

which implies that 

[ ] 1
,

kk
s k v s s in

k

I D w B DSφ σ ψ−
←

 
= − + 

 
∑                                                                       (100)  

Note the following: 

• D is the sum of the volume-to-volume B matrices, which contain the total 

cross section and cell dimensions but not the scattering cross section. 

• The surface-to-volume B matrices also do not contain the scattering cross 

section, but they do contain the total cross section and cell dimensions. 

 

An important consideration for the computational application can be shown, before 

to directly calculate the derivative of the scalar flux in Eq.(100) with respect to the cross 

sections of the problem,  

The source iteration applied to the one-cell problem would generate the following 

solution: 
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Continuing this, it can be found that 

( ) ( ) ( ) [ ] ( )2 1 0
,

...
l ll kk

s s s k v s ss in
k

I D D D w B DS Dφ σ σ σ ψ σ φ−
←

   = + + + + + +      
∑        (103) 

and 

 

( ) ( ) [ ] ( )0
,

0

lim
l lconverged kk

s k v s ss in ll k

D w B DS Dφ σ ψ σ φ
∞

←
→∞=

      = + +           
∑ ∑                      (104) 

 

Note:  If σsD has spectral radius <1, then: 

 

( ) [ ] 1

0

l
s s

l

D I Dσ σ
∞

−

=

 
= − 

  
∑                                                                                             (105) 

and 

 

[ ] ( )0lim 0
l

s
l

Dσ φ
→∞

  =
  

.                                                                                                   (106) 

 

Note also that σsD is the iteration matrix in this problem.  As long as σs < σt, σsD 

will have spectral radius < 1.  Therefore it can be concluded that Eqs.(105) and (106) 

hold for the problem, and that, as a result, Eqs.(100) and (104) are equivalent. 

Plugging Eq.(104) in Eq.(71) to obtain an expression for the exiting angular flux 

leads to: 

[ ] 1 ''
, , ,

'

k k kk k k
s s s v s s k v ss out s in s in

k

A A I D w B DS Sψ ψ σ σ ψ−
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= + − + +   

   
∑                    (107) 

 
This important result is shown to note how the final angular flux is totally 

dependent on the converged solution for the scalar flux. This leads to an important 
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computational application: the gradient of the objective function can be calculated at the 

end of the forward process making use of the converged solution. This fact, not at all 

intuitive, shows that the iteration scheme during its process of solving the problem 

generates un-converged fluxes and currents that don’t add information to the gradient 

evaluation. From the computational point of view the gradient calculation can be 

performed at the last iteration of the forward model. The result of this investigation 

doesn’t agree with the methodology used in other computed tomography papers35, where 

the gradient is calculated in a different way along the forward iterative process.  

Starting with Eq.(100): 
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s s k

I D w B DSφ σ ψ
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∑                                                    (108) 

 

 
It is necessary to take the derivative of the inverse matrix in this expression.  If D 

were just a constant (which it is for methods like SC that use only one scalar-flux 

unknown per cell), then it would be 
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                                                                              (109) 

 
It can be shown that it is also correct when D is a matrix. Using the previous 

result Eq.(105):   
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This agrees with differentiating the other form for the inverse: 
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Therefore, plugging Eq.(111) into Eq.(108) gives the important result: 
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 The same exists for the derivative of the scalar flux with respect to the total cross 

section: 
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which implies that: 
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 Substituting Eqs.(112) and (114) respectively into Eqs.(97) and (98): 
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and  
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The last two equations are the analytical solution for the calculation of the 

derivative of the exiting fluxes with respect to the cross sections in the one-cell problem. 

The adjoint calculation introduced in the previous section needs to give the same result in 

order to be tested, at least for this simple case. 

 First is the calculation of the derivative of the fluxes over the scattering cross 

section. Recall that in the adjoint method: 
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where the matrix A in Eq.(117) is not to be confused with the transmission matrix 

introduced for the closed linear one-cell functional method. 



 

 

84 

 Performing this multiplication for n less and equal to two leads to: 
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that is: 
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and using our previous results: 
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The result is in perfect accordance with the analytical result obtained in Eq.(115). 

We can do the same for the scattering derivative: 
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that is: 
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And simplifying again: 
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Eq.(123) is essentially the same as the analytical results of Eq.(116). 

To find the gradient, we simply multiply the results by the vector v. The adjoint 

model gives the correct interpretation of the gradient of the objective function with 

respect to the cross sections in the discretized domain according to the analytical result 

for the one-cell problem. 
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III.F FORTRAN Coding 

 

 TNTs has been developed in Fortran 90 on a Microsoft Windows workstation 

with a 3.20 GHz Pentium 4 processor. It uses the results of the forward model (Chapter 

II) and the experimental data, inserted by the user as input, to calculate the gradient. All 

the variables, such as cross sections and geometric measures, are passed from the forward 

model to the inverse model as common variables.   

 

III.G Numerical Verification 

 

 Another possibility to verify the gradient calculation is by calculating it 

numerically for a simple problem. By definition, the gradient of a one variable function 

can be approximated as follows: 

 

( ) ( ) ( )f x f x f x

x

δ ε
δ ε

+ −
≈                                                                                             (124) 

 

where ε is an infinitesimally small constant.  

 This means that by changing slightly one cross section and leaving all the others 

un-changed and using Eq.(124) leads to the calculation of the gradient of the objective 

function with respect to the changed property: 

 

( )( )
( )

( )( ) ( )( ), , ,

,

E i j E i j E i j

i j

δ σ σ ε σ
δσ ε

+ −
≈                                                                  (125) 

 

The gradient calculated numerically for all the cells of the domain can be 

therefore compared with the one obtained by using the adjoint formulation to give an 

estimation of the reliability of TNTs.  

A test with a two by two cell homogeneous object is presented. The optical 

properties were 0.9 cm-1 and 1.2 cm-1 for scattering and total cross section, respectively. 

One by one every cross section has been changed adding 0.001 cm-1 to its value and the 
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gradient has been calculated. It is important to note that when the scattering cross section 

has been changed also the absorption in the cell has been changed to keep the total cross 

section constant. 

 TABLE III and TABLE IV contain the scattering gradients for the 2x2 problem 

from the numerical results and from TNTs result, respectively. The percent error between 

the numerical and TNTs results is shown in TABLE V. TABLE VI and TABLE VII 

contain the total cross section gradient calculated numerically and by TNTs respectively. 

The percent error of the total cross section gradient is presented in TABLE VIII. 

 

TABLE III 

Numerical result for the scattering gradient 

0.11388464 0.11388464 
0.84114470 0.84114470 

 

 

TABLE IV 

TNTs (adjoint calculation) results for the scattering gradient 

0.11387102 0.11387102 
0.84102871 0.84102871 

 

 

TABLE V 

Percent error in scattering gradients 

0.012 0.012 
0.014 0.014 

 

 

TABLE VI 

Numerical results for the total cross section gradient 

-0.11985335 -0.11985335 
-1.18359350 -1.18359350 
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TABLE VII 

TNTs results for the total cross section gradient 

-0.11986997 -0.11986997 
-1.18379570 -1.18379570 

 

 

TABLE VIII 

Percent error in total cross section gradient 

0.014 0.014 
0.017 0.017 

 

 

 The difference between the numerical and TNTs calculated values is negligible. 

The error assuming the numerical result is exact is less than 0.02%. This verification 

shows the effectiveness of the adjoint formulation in the gradient calculation. 

 

III.H Reconstruction 

 

In this section, we will verify that the derived method can reconstruct an object. 

The geometric properties of the object and the collimator in question are shown in Fig. 

37. A summary of these properties is given in TABLE IX. 
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Fig. 37. View of the object and the collimator for the reconstruction verification of the process. 
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TABLE IX 

Geometric, discretization and optical parameters of the object 

Object Dimensions     
      
x length 3 cm 
y length 3 cm 
      
Collimator Dimensions     
      
Beam window length 2.999 cm 
Collimator window length 2.9999 cm 
Distance beam window object 0.001 cm 
Distance collimator window object 0.0001 cm 
      
Discretization Forward Problem     
      
# x cell 20   
# y cell 20   
Order quadrature set (n of Sn) 4   
# polar direction 20   
      
Discretization for Unc. Sources     
      
# points per cell 1   
# azimuthal angles 20   
# polar angles 20   
      
Discretization Detectors     
      
# detector points 1   
# azimuthal angles 20   
# polar angles 20   
      
Optical Properties Background     
      
Scattering cross section 1.8 cm-1 
Absorption cross section 0.5 cm-1 
Total cross section 2.3 cm-1 
g factor 0.02  
      
Optical Properties Intrusion     
      
Scattering cross section 0.5 cm-1 
Absorption cross section 2 cm-1 
Total cross section 2.5 cm-1 
g factor 0.02  
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 The object designed for the reconstruction was optically thick. Due to its 

properties it was around 7 mean free paths long and 7 mean free paths wide. Less than 

0.1% of the initial radiation was transmitted radiation in the detectors. A tomographic 

technique applied to this object to attempt its reconstruction would have found the task 

hard to accomplish. Most of the radiation reached the detectors after multiple scattering 

that would have decrease the resolution of a radiographic image. The problem is therefore 

interesting to solve with the gradient based computed tomography introduced.  

 The optical distribution of the real object is shown in Fig. 38 and Fig. 39: 

   

 

Fig. 38. Scattering cross section distribution of the real object. 

 

                                                                 

Fig. 39. Total cross section distribution of the real object. 

  

 The object has been discretized with a 20 by 20 grid. The number of unknown 

variables were therefore 800, since the reconstruction was made by using only scattering 

and total cross section. There were 60 detector measurements that were simply the result 

given by the forward model with as input the real object. To attempt the reconstruction 

the initial guess for the optical properties was equal to the properties of the background 

object, the part without the intrusion. The results after 300 iterations (almost 7 hours) are 

shown in Fig. 40 and Fig. 41: 
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Fig. 40. Scattering distribution of the reconstructed object. 

 

                                                       

Fig. 41. Total cross section distribution of the reconstructed object. 

 

 Both the optical distribution for the reconstructed object show the presence of a 

different object inside the homogeneous one used as initial guess. The green part in Fig. 

40 and Fig. 41 is more absorbing and less scattering than the background medium. In 

particular the scattering cross section at the center of the green spot of Fig. Fig. 40 is 

around 1.5 cm-1 instead of the real 0.5 cm-1 and the absorption cross section is around 0.8 

cm-1 instead of 2.0 cm-1.  

 The intrusion is well detected in its position, but the shape tends to be less 

representative of the real object. Due to the poor discretization (only 400 cells) the 

reconstructed area is “bounded” to the edge of the object were the detectors are placed. 

Since the process steps back from the boundaries of the object to reconstruct the optical 

distribution it is reasonable that the reconstructed area, in case of few cell between the 

defect and the detector, is bounded to the boundaries. The process changes the cell 

properties in the right direction, and it presents an intrusion in the right position which is 

more absorbing and less scattering than the surrounding medium. The objective function 
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decreased three order of magnitude from it’s initial value showing a correct behavior of 

the inverse model. 

 The result presented corresponds to that using the conjugate gradient (CG) 

scheme minimization technique. The same result was calculated with steepest descent 

(SD) scheme for comparison.  In particular, the final optical distributions were the same 

for both methods but, as it was expected, the CG took considerably less iteration to 

converge to the solution. A plot of the objective function with respect to number of 

iteration obtained with both methods is shown in Fig. 42. 
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Fig. 42. Objective function with respect to iteration number for CG and S. 

 
 In the analysis of the above problem other important features were investigated. 

In particular nothing in the literature has been found regarding the shape of the line along 

which TNTs finds the minimum for the step α. 
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III.I Line Search, Negativity  and Gradient Perpendicularity 

 
The method to use for the line search, such the step α to minimize the line could 

be found efficiently required knowledge of the shape of the line. In particular, since the 

objective function has in general more than one minimum it could also be that the line 

along the negative gradient contains more local minima. In order to verify that at the first 

iteration of the problem presented above, the line ( ) ( )( )f E Eα σ α σ= − ⋅∇   has been 

calculated for different values of α. These results are shown in Fig. 43. 
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Fig. 43. Objective function with respect to alpha. 

 
 
 The behavior showed in Fig. 43 is interesting. Not only is there only one 

minimum but the shape of the function is essentially that of a second order polynomial.  

A polynomial fitted through the points of the function has an R2 of 0.9992. A cubic has 

an R2 equal to 1. 
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 Since this result seems due to the particular homogeneous guess of the first 

iteration, a plot of the same function starting from a completely heterogeneous object 

(every cell different from the others) is presented in Fig. 44. 
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Fig. 44. Objective function with respect to alpha for an heterogeneous object. 

  
 

At 53α >  one cross section would turn negative therefore TNTs stops. If there is 

a minimum point of the line before TNTs encounters the alpha that makes negative a 

cross section a new gradient is calculated at the minimum point, otherwise the gradient is 

calculated in the point with the maximum alpha that assures positivity of all the optical 

properties. In the case of Fig. 44, there is a minimum around50α = . Again there is the 

same behavior as before even with a more complex initial guess.  

There are two important considerations that can be made around the example 

presented above: 

• during the line search, cross sections can become negative 
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• the function of alpha seems to be a smooth function with only one 

minimum (it cannot be elevated as general rule without further 

investigation) 

 
When a cross section turns negative before a minimum can be found, TNTs 

comes back to the maximum alpha to assure the posititvity of all the optical properties 

and calculates a new gradient. It moves therefore along another direction until a global 

minimum for the objective function is found.  

For the minimization of a function without any knowledge about its gradient 

many algorithms have been developed. A golden section search is designed to handle, in 

effect, the worst possible case of function minimization37. But, if the function is nicely 

parabolic near the minimum, then the parabola fitted through any three points ought to 

reach in a single leap the minimum or at least a point very close to it. But a method that 

uses only parabolic fittings is not likely to succeed in practice. The task is to use a 

scheme which relies on sure-but-slow technique, like golden section search, when the 

function is not cooperative and switches over to a parabolic fit when the function allows. 

A method with this capability is the Brent’s method that is up to the task in all particulars. 

In the worst possible case, where the parabolic steps are useless, the method will 

approximately alternate between parabolic steps and golden sections, converging in due 

course by virtue of the latter8.  

When a minimum is found the gradient calculated at that location (that particular 

α) should be perpendicular to the previous gradient. For the gradients calculated by TNTs 

the dot product of the two gradients at the alpha for the minimum is around 0.01, proving 

a good perpendicularity of the directions.                                                                   .
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CHAPTER IV 

RECONSTRUCTION RESULTS 

 

IV.A Introduction 

 

 The chapter presents the result of different object reconstructions. The reliability 

of TNTs and algorithm is tested using data obtained with MCNP-5. The MCNP results 

are considered equivalent to experimental results since many successful benchmarks have 

been done for the performance of MCNP in similar problems.  

 

IV.B MCNP Decks 

 

The object reconstructed by TNTs was explicitly simulated using MCNP. The 

MCNP simulation contained: 

• planar source finite in x and y directions and infinite along the z-axis to simulate 

the beam window introduced in TNTs  (see Chapter II) 

• object, finite in x and y directions and infinite along the z-axis, with different 

material properties in it 

• detectors around the edges of the object 

In order to have an infinite homogeneous third direction, so that the problem can 

be assumed two-dimensional, the MCNP model contains reflecting planes perpendicular 

to the z-directions. The rectangular beam and the divergent collimator are shown in Fig. 

45. 
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Fig. 45. MCNP design. 

 

A spherical source is placed behind the collimator. The source energy is 1E-6 

MeV and the spatial distribution follows a power law of order 1 centered at the origin of 

the sphere (the power law is the right distribution to make the beam at the window 

isotropic as it is in TNTs). The radius of the source is larger enough to cover the entire 

beam window. The materials for the object that we chose to use are carbon, boron, 

hydrogen and nitrogen because of their constant cross sections around energies close to 

the one chosen for the source. This choice was made because TNTs is not a multi-group 

code and it uses constant cross sections without knowledge about the neutron energy.  

The particles incident to the collimator are stopped and only those that enter the 

beam window can reach the object. The collimator is divergent as is the one inserted in 

the input file for TNTs. The objective is to have a beam coming from the beam window 

with the same spatial and angular distribution as the beam in TNTs. The particles out of 

the collimator encounter the object or the reflective planes so that the third infinite and 

homogeneous direction is created.  

Reflective 
plane 

Object 

Collimator 

Beam 
window 
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The three outer surfaces of the object as shown in Fig. 46 are used to tally the 

detector readings. The MCNP tally used is a surface current tally. 

There are 20 detectors, equally spaced, on each side for a total of sixty 

measurements. Fig. 47 and Fig. 46 show the geometrical layout for the problem 

considered. 

 

 

 

Fig. 46. xy view of the MCNP layout. 
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Fig. 47. xz view of the MCNP layout. 

 

 

The importance “0” cells shown in Fig. 46 and Fig. 47 represent the collimator. In 

MCNP importance “0” defines a cell in which particles are not tracked. Therefore, the 

particles entering these cells are “terminated”. Only the particle entering the beam 

window can reach the object as shown in all the pictures. These particles are counted, 

using a surface current tally, in order to normalize the results on the effective number of 

particle that form the beam.  

 

IV.C Computing MCNP 

 

To run the cases a parallel version (PVM) of MCNP was used; it helps to reduce 

the computational time and to increase the particle number for better statistics. The case 

was run on a LINUX cluster consisting of 8 nodes. Each node had a single 3.2 GHz 

INTEL Pentium 4 processor. 

 

IV.D  Results 

 

Five different objects were simulated in MCNP. The results from these 

simulations were inputted as “measured” images to TNTs and a distribution of optical 
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properties was reconstructed. A description of each of the objects and the results of the 

reconstructions are given below. 

 

IV.D.1  I Reconstruction 

 

The first object reconstructed is shown in Fig. 48. The properties of the object are 

presented in TABLE X. They have been chosen so that the problem is approximately 

seven MFP thick.  

 

 

Fig. 48. First reconstruction process 
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TABLE X 

Properties of the investigated object 

Background object:   
     
Polyethylene (C2H4)   
density 0.3 g/cm3 
σsca 5.8834E-01 cm-1 
σabs 8.5955E-03 cm-1 
G 0.02  

     

Intrusion object  
    
Boron Nitride (BN)  
density 0.06 g/cm3 
σsca 2.1078E-02 cm-1 
σabs 1.1142E+00 cm-1 

g 0.02  
 

 

The measurements along the three non-lightened edges were interpolated to 

calculate the values for the “experimental” TNTs input. TNTs, in fact, uses a 40 by 40 

grid with a total of 120 measurements. A summary of the problem is presented in TABLE 

XI. 
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TABLE XI 

TNTs discretization and optical properties 

Discretization Forward Problem     
      
# x cell 40   
# y cell 40   
Order quadrature set (n of Sn) 8   
# polar direction 20   
      
Discretization for Unc. Sources     
      
# points per cell 1   
# azimuthal angles 20   
# polar angles 20   
      
Discretization Detectors     
      
# detector points 1   
# azimuthal angles 20   
# polar angles 20   
      
Optical Properties Background     
      

Scattering cross section 5.8834E-01 cm-1 

Absorption cross section 8.5955E-03 cm-1 

Total cross section 5.9694E-01 cm-1 
g factor 0.02   

 

 

 

 By performing the reconstruction of the object only changing the scattering and 

total cross sections, the task is represented by the minimization of a function of 3200 

variables having 120 measurements. Even if TNTs changes scattering and total cross 

sections, the results are presented in terms of scattering and absorption distribution. This 

is because it is easier to understand the property of the object and of the extraneous body 

in terms of these cross sections. 

 The result of the reconstructed scattering distribution is shown in Fig. 49. 



 

 

104 

 

 

(a) 

 

(b) 

 

Fig. 49. I reconstruction. (a) Image of the scattering property of the real object. (b) Image of the scattering 
property of the reconstructed object. 

 
 The reconstructed scattering distribution presents interesting properties: 

• the intrusion has been identified 

• the location of the intrusion is slightly different from the real one, in particular is 

correct the distance from the right edge but is slightly off the distance from the 

top edge 

• the scattering cross section in the center of the intrusion is around 0.4 cm-1
 that is 

far from the real one (0.021 cm-1) but represents a change in the cross section 

equal to 32% of the initial value in the right direction 

 

For the absorption cross section reconstruction the result is presented in Fig. 50. 
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(a) 

 

(b)

 

Fig. 50. I reconstruction. (a) Image of the absorption property of the real object. (b) Image of the absorption 
property of the reconstructed object. 

 

 The reconstructed absorption properties present interesting properties: 

• the intrusion has been identified 

• the location of the intrusion is slightly different from the real one, in particular is 

correct the distance from the right edge but is slightly off the distance from the 

top edge 

• the absorption cross section in the center of the intrusion is around 0.997E-3 cm-1
 

that is far from the real one (1.11 cm-1) but represents a change in the cross 

section equal to 16% of the initial value in the right direction 

 

A more absorbing and less scattering intrusion has therefore been found with this 

method. It is important to notice that these results have been obtained lightening only one 

edge of the object. 

In the minimization process, for the reconstruction of the optical distribution of 

the object, the objective function dropped by almost two orders of magnitude reaching a 

stable value. The norm of the gradient, initially of the order 10-7, determined the criterion 

to stop the process when it reached order 10-12. The final distribution was almost 

completely reached within the first 10 iterations. After that the process changed slightly 

the properties until convergence of the gradient. The time required to reach a reasonable 

distribution like the one presented above is between 1 and 3 hours. 
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IV.D.2  II Reconstruction 

 

The second object tested is shown in Fig. 51. Its optical properties are 

summarized in TABLE XII. The object has an extraneous body in it that is a tenth of the 

width of the object itself. The input files for TNTs are summarized in TABLE XIII. 

 

 

 

Fig. 51. II reconstruction object and beam properties. 
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TABLE XII 

Optical properties of object II reconstruction 

Background object:   
     
Carbon (C)   
density 3 g/cm3 
σsca 0.712850935 cm-1 
σabs 0.000505397 cm-1 
g  0.055506063  

     

Intrusion object  
    
Boron (N)  
density 0.1 g/cm3 
σsca 0.011942621 cm-1 
σabs 21.37305892 cm-1 

g 0.061665588  
 

TABLE XIII 

TNTs discretization parameters and optical properties 

Discretization Forward Problem     
# x cell 40   
# y cell 40   
Order quadrature set (n of Sn) 8   
# polar direction 20   
      
Discretization for Unc. Sources     
# points per cell 1   
# azimuthal angles 20   
# polar angles 20   
      
Discretization Detectors     
# detector points 1   
# azimuthal angles 20   
# polar angles 20   
      
Optical Properties Background     

Scattering cross section 0.712850935 cm-1 

Absorption cross section 0.000505397 cm-1 

Total cross section 0.713355632 cm-1 
g factor 0.055  
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The reconstructions for both the properties are presented in Fig. 52 and Fig. 53. 

 

 

(a) 

 

(b)

 

Fig. 52. II reconstruction. (a) Image of the scattering property of the real object. (b) Image of the scattering 
property of the reconstructed object. 

 

 

(a) 

 

(b) 

 

Fig. 53. II reconstruction. (a) Image of the absorption property of the real object. (b) Image of the 
absorption property of the reconstructed object. 

 

 

 There are common considerations that can be made on both the reconstructions: 
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• the extraneous object is detected 

• again, as in the previous section, the distance from the top is slightly off but the 

one from the right edge is correct 

• the properties of the reconstructed object and its dimension are not close to those 

of the real object but still the process moved the cross section in the right 

direction, to create an area less scattering and more absorbing 

 

The process and algorithms were able to detect the extraneous body and to locate 

it almost precisely into the object. Even if the properties were not the ones of the real 

object, still TNTs was able to find a less scattering and more absorbing area that 

corresponds to the intrusion material. 

A similar object to the previous one was reconstructed in which the intrusion 

material has a scattering cross section comparable to the scattering cross section of the 

background medium. 

The properties of this material are shown in TABLE XIV. 

 

TABLE XIV 

Property distribution 

Background object:   
    
σsca 0.9 cm-1 
σabs 0.3 cm-1 
g  0.02  

     

Intrusion object  
    
σsca 0.3 cm-1 
σabs 12.4 cm-1 

g 0.02  
 

 

 In particular the scattering cross section is comparable numerically in both the 

materials. In the previous section there was at least an order of magnitude difference 

between the scattering cross sections of the two materials. In this simulation they are 
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within a factor of 3. The experimental data for this reconstruction have been calculated 

directly from TNTs and not from MCNP as in the other reconstructions. 

 The process used the input properties shown in TABLE XV. The results are 

shown in Fig. 54 and Fig. 55. 

 

TABLE XV 

Discretization and optical properties for TNTs input file 

Discretization Forward Problem     
      
# x cell 40   
# y cell 40   
Order quadrature set (n of Sn) 8   
# polar direction 20   
      
Discretization for Unc. Sources     
      
# points per cell 1   
# azimuthal angles 20   
# polar angles 20   
      
Discretization Detectors     
      
# detector points 1   
# azimuthal angles 20   
# polar angles 20   
      
Optical Properties Background     
      

Scattering cross section 0.9 cm-1 

Absorption cross section 0.3 cm-1 

Total cross section 1.2 cm-1 
g factor 0.02  
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(a) 

 

(b)

 

Fig. 54. III reconstruction. (a) Image of the scattering property of the real object. (b) Image of the scattering 
property of the reconstructed object. 

 

 

(a) 

 

(b)

 

Fig. 55. III reconstruction. (a) Image of the absorption property of the real object. (b) Image of the 
absorption property of the reconstructed object. 

 

 It is very interesting to notice that even if the geometric measures of the 

extraneous body into the object are the same of the previous reconstruction the results are 

different. The comparison of Fig. 54b and Fig. 55b with Fig. 52b and Fig. 53b underlines 

the difference in the reconstruction due to the change in the optical properties. In 

particular, when the scattering cross section of the extraneous object is comparable in 

order with the scattering cross section of the background object the extraneous body is 
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not well defined in the reconstruction. In Fig. 54b and Fig. 55b the area where the process 

changed the properties is bounded to the boundary edge like if the scattering events 

throughout the entire object covered the effect of the absorption of the extraneous body. 

The scattering still present in the intrusion (only a factor of 3 less than in the background) 

increases the “noise” in the detectors. In other words, especially for the detection of little 

objects, it seems that the process to reconstruct properly relies more on the “lack” of 

scattering sources than on the importance of the absorption in the extraneous body cells. 

In particular in the II reconstruction the low value of the scattering cross sections in the 

extraneous body led to “zero source” in its cells. The effect on the detection on this edge 

was more important than in this case where the body is still as scattering as the 

background and strongly absorbing.  

 Also in this case the reconstruction started a little lower on the y-axis in 

comparison with the real position of the extraneous object. 

 

IV.D.3  III Reconstruction 

 

The next reconstruction involves the presence of two extraneous bodies into the 

background object as shown in Fig. 56. The properties of the object and the defect are 

listed in TABLE XVI. Again the experimental results were obtained by using MCNP. 

TNTs had the initial guess for the material and the discretization parameters presented in 

TABLE XVII.  

 



 

 

113 

 

Fig. 56. III reconstruction object and beam properties. 
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TABLE XVI  

Optical properties of materials for reconstruction 

Background object:   
     
Polyethylene (C2H4)   
density 0.3 g/cm3 
σsca 5.8834E-01 cm-1 
σabs 8.5955E-03 cm-1 
G 0.02  

     

Intrusion object  
    
Boron Nitride (BN)  
density 0.06 g/cm3 
σsca 2.1078E-02 cm-1 
σabs 1.1142E+00 cm-1 

g 0.02  
 

TABLE XVII 

Discretization parameters and optical properties for the initial guess 

Discretization Forward Problem     
# x cell 40   
# y cell 40   
Order quadrature set (n of Sn) 8   
# polar direction 20   
      
Discretization for Unc. Sources     
# points per cell 1   
# azimuthal angles 20   
# polar angles 20   
      
Discretization Detectors     
# detector points 1   
# azimuthal angles 20   
# polar angles 20   
      
Optical Properties Background     

Scattering cross section 5.8834E-01 cm-1 

Absorption cross section 8.5955E-03 cm-1 

Total cross section 5.9694E-01 cm-1 
g factor 0.02   
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The process reached a converged solution in 5 iterations (almost an hour of 

computational time) dropping the objective function of one order of magnitude from 10-6 

to 10-7. The results obtained are presented in Fig. 57 and Fig. 58 

 

 

(a) 

 

(b)

 

Fig. 57. IV reconstruction. (a) Image of the scattering property of the real object. (b) Image of the scattering 
property of the reconstructed object. 

 

 

 

(a) 

 

(b)

 

Fig. 58. IV reconstruction. (a) Image of the absorption property of the real object. (b) Image of the 
absorption property of the reconstructed object. 
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 It is clear from intuition and from the images that the reconstruction of an object 

with two extraneous bodies is more difficult to obtain. In both the reconstructions the 

body closer to the left edge has been detected, but the one closer to the right edge is not 

well defined. Even if not well defined it is visible the presence of “something” else that 

affect the shape of the reconstructed area. At first sight it seems incorrect that the body 

closer to two edges (the top and right edge) is the one that is less defined in the converged 

image for the optical distribution. The other body, the one closer to the left edge, is 

though also closer to the lightened edge. The calculation of the gradient as introduced in 

Chapter III showed how the gradient is in part function of the scalar flux of the cell. Due 

to its position the extraneous body on the left is in an area with higher scalar flux. Its 

gradient is therefore larger than the gradient of the body on the right. It seems that the 

process tends to minimize the objective function by looking at every moment at the spot 

with higher gradient because it is the one that affects the objective function the most; then 

after that spot has been moved enough toward the direction of the minimum for the 

objective function the process looks for other possible spots to adjust. This is the reason 

why there is an effect of the presence of the second body, the one closer to the right edge; 

but this body is not well defined because by the time that the process tries to change that 

area the property already changed have brought the objective function to a minimum 

(local minima).    

 To prove this supposition a new object is considered with a different geometric 

disposition for the two bodies in order to make one predominant, in terms of the gradient, 

over the other. The size of the bodies is also changed but it is the same for both of them. 

The body closer to the left edge has been moved closer to the bottom edge, so that it will 

be into a higher flux region. The other body has been increased in size so that its effect on 

the detection measurements will be more consistent (Fig. 59). The properties are shown 

in TABLE XVIII. 
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Fig. 59. Beam and object geometric properties. 

 

TABLE XVIII 

Background and extraneous object optical properties 

Background object:   
     
Carbon (C)   
density 3 g/cm3 
σsca 0.712850935 cm-1 
σabs 0.000505397 cm-1 
g  0.055506063  

     

Intrusion object  
    
Boron (N)  
density 0.1 g/cm3 
σsca 0.011942621 cm-1 
σabs 21.37305892 cm-1 

g 0.061665588  
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The discretization parameters for the forward and inverse model are the same 

used in all the previous examples and again the initial guess for the properties are the 

ones of the background object as shown in TABLE XIX. 

 

 

TABLE XIX 

TNTs discretization parameters and initial guess 

Discretization Forward Problem     
      
# x cell 40   
# y cell 40   
Order quadrature set (n of Sn) 8   
# polar direction 20   
      
Discretization for Unc. Sources     
      
# points per cell 1   
# azimuthal angles 20   
# polar angles 20   
      
Discretization Detectors     
      
# detector points 1   
# azimuthal angles 20   
# polar angles 20   
      
Optical Properties Background     

Scattering cross section 5.8834E-01 cm-1 

Absorption cross section 8.5955E-03 cm-1 

Total cross section 5.9694E-01 cm-1 
g factor 0.02   

  

 

 

The real optical property distribution and the reconstruction results are shown in Fig. 60 

and Fig. 61. 
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(a) 

 

(b)

 

Fig. 60. V reconstruction. (a) Image of the scattering property of the real object. (b) Image of the scattering 
property of the reconstructed object. 

 

 

 

(a) 

 

(b)

 

Fig. 61. V reconstruction. (a) Image of the absorption property of the real object. (b) Image of the 
absorption property of the reconstructed object. 

 

 As expected the body closer to the bottom edge, the lightened one, has a 

predominant gradient over the other extraneous body. It is so predominant that the 

algorithm fails in the reconstruction of the optical distribution of the entire object. This 

simulation seems to confirm the consideration that the process reconstructs before the 
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spot with the higher gradient and then the other spots in order of gradient. The algorithm 

was successful in the reconstruction of one object and it fails in the reconstruction of the 

other. . 
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CHAPTER V 

CONCLUSIONS 

 

V.A Conclusion 

 

 An image reconstruction algorithm and code (TNTs) for optical tomography were 

developed. This algorithm does not require small perturbations or advance knowledge of 

a reference medium.  

 It consists of three components: 

1. A forward model used to predict the detector readings along the surfaces of the 

object assuming a certain distribution of optical properties. The forward model is 

based on a SC scheme for the solution of the neutron transport equation with 

level symmetric discretization for the angular dependence, zero boundary 

condition and un-collided sources per cell. 

2. An analysis scheme in which an objective function, defined as the sum of the 

squared difference between predicted responses and experimental measurements, 

is defined. The objective function is minimized in order to find the expected 

optical distribution of the real object. 

3. An updating scheme, which iteratively changes the optical properties of the 

medium based on the gradient of the objective function over every optical 

property. The gradient is calculated with an adjoint calculation. 

 

This work constitutes the first effort to use a forward model based on transport 

theory rather than diffusion or radiative transfer applied to tomography reconstruction. 

The forward model has been successfully tested against numerical results obtained with 

MCNP showing excellent agreements. This forward model is more accurate than the 

models based on diffusion or on radiative transfer in most applications. The generality in 

the definition of the incoming radiation beam allows TNTs to be used in a great variety of 

physical situation. 

The main accomplishment was the calculation of the gradient of the objective 

function with respect to the optical properties of the medium for the transport-based 
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forward model. A mathematical proof, via sensitivity equation, was presented to show the 

effectiveness of the adjoint calculation. The adjoint calculation was performed in a 

different manner than was done previously by other authors and was tested numerically 

to prove its reliability. The adjoint calculation, fundamental for this application, should 

be considerated for further future study. The adjoint calculation is capable of finding the 

gradient quickly in comparison to other techniques such as finite-difference methods or 

perturbation theory. It can be used in a variety of other application such as 

homogenization of the cross section in reactor analysis.   

The reconstructions of several objects were successful. In the case of single 

intrusion TNTs was always able to detect the intrusion. However the predicted position 

was slightly different from the real position. It could locate the defect precisely along the 

x-axis, but less precisely along the y-axis. The reason of this behavior can be related to 

the fact that SC tends to “move” more forward the particle with respect to the real 

solution (MCNP in our case). This is a direct effect of the averaging of the angular flux 

along the edge of a single cell. In the case of the double body object TNTs was able to 

reconstruct partially the optical distribution. The most important defect, in terms of 

gradient, was correctly located and reconstructed. Difficulties were discovered in the 

location and reconstruction of the second defect.  

Nevertheless, the results are exceptional considering they were obtained by 

lightening the object from only one side. The use of multiple beams around the object 

will significantly improve the capability of TNTs since it increases the number of 

constraints for the minimization problem.  
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V.B Future Efforts 

 

There are many possibilities for improvement of the current technique and 

algorithm including: 

• The construction of matrix A and vector v (see Chapter III) is performed by 

storing all the blocks involved in the calculation of the gradient.  This is a 

memory and time consuming process. Since the only matrix dependent on the 

forward solution through the angular fluxes is matrix B, the operation involving 

matrix A and vector v should be substitute with functions. Instead of storing all of 

the information, a function, calculating the same information, can be called 

whenever necessary. This saves memory and computational time and will allow 

the process to use a finer grid for the discretization of the domain 

• The process should make use of multiple beams from all edges. This will 

increase the resolution and the capability of the updating scheme. It can be easily 

accomplished by rotating the object about its axis. 

• TNTs should be modified to include a full 3-dimensional, time-dependent, and 

energy discretized forward model to assure generality and to increase the 

capability of the updating scheme 

 

 An interesting development of the technique studied in this project can be the 

used of a hierarchical method for the updating scheme (Fig. 62). Instead of calculating 

the gradient for the entire discretized domain the domain can be divided into different 

areas of interest and making use of homogenization techniques the number of 

fundamental derivatives can be reduced. TNTs can then use a finer mesh around the 

extraneous body to define it with more precision. In Fig. 62, it is shown how a 16 by 16 

cell problem is reduced to a simpler problem by collapsing through averaged cross 

sections cells that are less important to the gradient calculation of the cell of interest. 
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Fig. 62. Hierarchical method for perturbation updating scheme. 

 

  

The method developed here has great potential for significantly advancing the 

state of tomographic neutron radiography. This method can greatly aid in the surveying 

of thick, highly-scattering objects. With the addition of the upgrades mentioned above it 

is expected that this methodology will find application in many fields. 
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APPENDIX A 

 

MCNP input for the verification of the forward model. The verification has been 

presented in Chapter II: 

 

program 
c    Input file to simulate the first experiment 
c    the first experiment consists in a simple block of paraffin 
c    with a neutron beam and detector all around 
c    Cell cards 
c    #cell,#material,#density,#domain 
    1     1  -2.267     -115   u=1 
    4     2  -2.46      -115   u=2 
c 
    2     0  -112  111  -114  113  -16  17   u=6 lat=1 
            fill=-10:9 -10:9 0:0 
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 1  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 2  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 3  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 4  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 5  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 6  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 7  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 8  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 9  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 10  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 11  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 12  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 13  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 $ROW 14  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 $ROW 15  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 $ROW 16  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 17  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 18  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 19  
      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $ROW 20  
c 
    3     0  1  -3  6  -8  17  -16   fill=6 
c 
   17     0  5  -21  -13  12  17  -16  
   18     0  10  11  9  -23  17  -16  
   19     0  18  -4  -15  14  17  -16  
   20     0  20  -21  -12  -23  17  -16  
   21     0  20  -21  24  13  17  -16  
   22     0  -11  -20  22  -23  17  -16  
   23     0  19  -10  22  -23  17  -16  
   24     0  18  -19  -14  -23  17  -16  
   25     0  18  -19  24  15  17  -16  
   26     0  20  -5  -13  12  17  -16  
   27     0  10  11  22  -9  17  -16  
   28     0  4  -19  -15  14  17  -16  
   29     0  -27  -28  25  -24  17  -16  
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   30     0  -27  -28  26  -29  31  -30  
   31     0  18  27  25  -24  17  -16  
   32     0  28  -21  25  -24  17  -16  
   33     0  18  27  26  -29  31  -30  
   34     0  28  -21  26  -29  31  -30  
   35     0  -27  -28  29  -25  31  -30  
   36     0  18  27  29  -25  31  -30  
   37     0  28  -21  29  -25  31  -30  
   38     0  18  -21  25  -23  16  -30  
   39     0  18  -21  25  -23  31  -17  
   40     0  19  -20  24  -22  17  -16   #3 
   41     0  -18  :23  :21  :-26  :-31  :30  
 
c    Surface cards 
c SURFACES U=1 
  111        px          0 
  112        px        0.5 
  113        py          0 
  114        py        0.5 
  115        cz         20 
c 
c SURFACES OBJECT 
    1        px         -5 
    3        px          5 
    6        py         -5 
    8        py          5 
c 
    4        px         -7 
    5        px          7 
    9        py          7 
   10         p          2         -1          0         -9 
   11         p         -2         -1          0         -9 
   12         p       -0.5         -1          0       -4.5 
   13         p        0.5         -1          0        4.5 
   14         p        0.5         -1          0       -4.5 
   15         p       -0.5         -1          0        4.5 
  *16        pz          1 
  *17        pz         -1 
   18        px         -8 
   19        px         -6 
   20        px          6 
   21        px          8 
   22        py          6 
   23        py          8 
   24        py         -6 
   25        py         -9 
   26        py        -10 
   27         p         -6         -1          0         15 
   28         p          6         -1          0         15 
   29        py       -9.5 
   30        pz          4 
   31        pz         -4 
 
mode  n 
m1    6000.50c            100 $MAT 
m2    5010.50c            100 $MAT 
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imp:n  1            6r           0            5r           1            
$ 1, 26 
       4r           0            1r           1            4r           
$ 27, 37 
       0            1r           1            0            $ 38, 41 
nps   100000000                                                                  
sdef  sur=26 pos=0 -9.00002 0 vec=0 1 0                                          
      erg=1.0000e-6 rad=d1                                                       
si1   0 2.0                                                                      
sp1   -21 1                                                                      
c                                                                                
f4:n (3 < 2 [-10:9 -10:9 0:0])                                                   
sd4   0.5 399R                                                                   
c                                                                                
c  f44:n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16                                  
c  E44 0.01e-6 0.0253e-6 0.99999e-6 1.00001e-6 20.0                              
f1:n 25                                                                          
fs1 +27 +28 +16 +17                                                              
c1   0.0 1.0                                                                     
f11:n  29           

 

It follows the MCNP input for the detector responses calculation 

to use in the reconstruction. The reconstructions were presented in 

Chapter IV:                 

 

program 
c    Input file to simulate the first experiment 
c    the first experiment consists in a simple block of paraffin 
c    with a neutron beam and detector all around 
c    Cell cards 
c    #cell,#material,#density,#domain 
1     1  -2.267   -55                   u=1 imp:n=1  
4     2  -2.460   -55                   u=2 imp:n=1 
c 
2     0           -52 +51 -54 +53 -16 +17 u=6 lat=1  imp:n=1                  
      fill=-10:9 -10:9 0:0 
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2  1  1  1  1       
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      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1       
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1            
c          
3     0          +1 -3 +6 -8 +17 -16 fill=6   imp:n=1  
c 
17    0       +5 -21 -13 +12 +17 -16          imp:n=1 
18    0       +10 +11 +9 -23 +17 -16          imp:n=1 
19    0       +18 -4 -15 +14 +17 -16          imp:n=1 
20    0       +20 -21 -12 -23 +17 -16         imp:n=0 
21    0       +20 -21 +24 +13 +17 -16         imp:n=0 
22    0       -11 -20 +22 -23 +17 -16         imp:n=0 
23    0       +19 -10 +22 -23 +17 -16         imp:n=0 
24    0       +18 -19 -14 -23 +17 -16         imp:n=0 
25    0       +18 -19 +24 +15 +17 -16         imp:n=0 
26    0       +20 -5 -13 +12 +17 -16          imp:n=1 
27    0       +10 +11 +22 -9 +17 -16          imp:n=1 
28    0       +4 -19 -15 +14 +17 -16          imp:n=1 
29    0       -27 -28 +25 -24 +17 -16         imp:n=1 
30    0       -27 -28 +26 -29 +31 -30         imp:n=1 
31    0       +18 +27 +25 -24 +17 -16         imp:n=0 
32    0       +28 -21 +25 -24 +17 -16         imp:n=0 
33    0       +18 +27 +26 -29 +31 -30         imp:n=1 
34    0       +28 -21 +26 -29 +31 -30         imp:n=1 
35    0       -27 -28 +29 -25 +31 -30         imp:n=1 
36    0       +18 +27 +29 -25 +31 -30         imp:n=1 
37    0       +28 -21 +29 -25 +31 -30         imp:n=1 
38    0       +18 -21 +25 -23 +16 -30         imp:n=0 
39    0       +18 -21 +25 -23 +31 -17         imp:n=0 
40    0       +19 -20 +24 -22 +17 -16 #3      imp:n=1 
41    0       -18:+23:+21:-26:-31:+30         imp:n=0  
 
c    Surface cards 
c SURFACES U=1 
51  px 0.0 
52  px 0.5 
53  py 0.0 
54  py 0.5 
55  cz +20.0 
c 
c SURFACES OBJECT 
1    px -5.0 
3    px +5.0 
6    py -5.0 
8    py +5.0 
c 
4    px -7 
5    px +7 
9    py +7 
10   p +2 -1 +0 -9 
11   p -2 -1 +0 -9 
12   p -0.5 -1 +0 -4.5 
13   p +0.5 -1 +0 +4.5 
14   p +0.5 -1 +0 -4.5 
15   p -0.5 -1 +0 +4.5 
*16   pz +1 
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*17   pz -1   
18   px -8 
19   px -6 
20   px +6 
21   px +8 
22   py +6 
23   py +8 
24   py -6 
25   py -9 
26   py -10.0 
27   p -6 -1 +0 15 
28   p +6 -1 +0 +15 
29   py -9.5 
30   pz +4 
31   pz -4 
c 7    py +0 
c 2    px +0 
c 32   px -2.5 
c 35   py +2.5 
c 33   px +2.5 
c 34   py -2.5 
c 
c SURFACES FOR TALLY DIVIDER 
100  px -5.0 
101  px -4.5 
102  px -4.0 
103  px -3.5 
104  px -3.0 
105  px -2.5 
106  px -2.0 
107  px -1.5 
108  px -1.0 
109  px -0.5 
110  px  0.0 
111  px +0.5 
112  px +1.0 
113  px +1.5 
114  px +2.0 
115  px +2.5 
116  px +3.0 
117  px +3.5 
118  px +4.0 
119  px +4.5 
120  px +5.0 
c 
200  py -5.0 
201  py -4.5 
202  py -4.0 
203  py -3.5 
204  py -3.0 
205  py -2.5 
206  py -2.0 
207  py -1.5 
208  py -1.0 
209  py -0.5 
210  py  0.0 
211  py +0.5 
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212  py +1.0 
213  py +1.5 
214  py +2.0 
215  py +2.5 
216  py +3.0 
217  py +3.5 
218  py +4.0 
219  py +4.5 
220  py +5.0 
 
c    All the data cards 
mode n 
nps   100000000 
sdef  sur=26 pos=0 -9.00002 0 vec=0 1 0 
      erg=1.0000e-6 rad=d1 
si1   0 2.0 
sp1   -21 1 
c 
c 
c    Tally along back surface 
f12:n 8 
fs12  -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 
      -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 
sd12  (  1    1    1    1    1    1    1    1    1    1    1 
         1    1    1    1    1    1    1    1    1    1    1) 
c 
c 
c    Tally along left surface 
f22:n 1 
fs22  -200 -201 -202 -203 -204 -205 -206 -207 -208 -209 
      -210 -211 -212 -213 -214 -215 -216 -217 -218 -219 -220 
sd22  (  1    1    1    1    1    1    1    1    1    1    1 
         1    1    1    1    1    1    1    1    1    1    1) 
c 
c 
c    Tally along left surface 
f32:n 3 
fs32  -200 -201 -202 -203 -204 -205 -206 -207 -208 -209 
      -210 -211 -212 -213 -214 -215 -216 -217 -218 -219 -220 
sd32  (  1    1    1    1    1    1    1    1    1    1    1 
         1    1    1    1    1    1    1    1    1    1    1) 
c 
c f4:n (3 < 2 [-10:9 -10:9 0:0]) 
c sd4   0.5 399R 
c 
c  f44:n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
c  E44 0.01e-6 0.0253e-6 0.99999e-6 1.00001e-6 20.0 
c f1:n 25    
c fs1 +27 +28 +16 +17  
c c1   0.0 1.0 
c f11:n  29 
m1 6000.50c 100 
m2 5010.50c 100 
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