
INVESTIGATION OF TECHNIQUES FOR IMPROVEMENT OF 

SEASONAL STREAMFLOW FORECASTS  

IN THE UPPER RIO GRANDE BASIN 

                                                             
 

A Dissertation 

by 

SONG-WEON LEE 

 

 
Submitted to the Office of Graduate Studies of 

Texas A&M University 
in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

August 2004 

 

 

 

Major Subject: Civil Engineering 



 

 INVESTIGATION OF TECHNIQUES FOR IMPROVEMENT OF 

SEASONAL STREAMFLOW FORECASTS  

IN THE UPPER RIO GRANDE BASIN 

                                   
A Dissertation 

by 

SONG-WEON LEE 

Submitted to Texas A&M University 
in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

Approved as to style and content by:  

    

Thomas M. Over 
(Co-Chair of Committee) 

  Anthony T. Cahill 
(Co-Chair of Committee) 

    

Andrew G. Klein 
(Member) 

  Ralph A. Wurbs 
(Member) 

    

 Paul N. Roschke 
(Head of Department) 

   

 

August 2004 

Major Subject: Civil Engineering 

 



 iii

ABSTRACT 

Investigation of Techniques for Improvement of Seasonal Streamflow 

Forecasts in the Upper Rio Grande Basin. (August 2004) 

Song-Weon Lee, B.A., Kyunghee University; 

M.E., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Thomas M. Over 
                              Dr. Anthony T. Cahill 

The purpose of this dissertation is to develop and evaluate techniques for 

improvement of seasonal streamflow forecasts in the Upper Rio Grande (URG) basin in 

the U.S. Southwest. Three techniques are investigated. The first technique is an 

investigation of the effects of the El Niño/Southern Oscillation (ENSO) on temperature, 

precipitation, snow water equivalent (SWE), and the resulting streamflow at a monthly 

time scale, using data from 1952 to 1999 (WY). It was seen that the effects of ENSO on 

temperature and precipitation were confined to certain months, predominantly at the 

beginning and end of the winter season, and that the effect of these modulations of 

temperature and precipitation by ENSO can be seen in the magnitude and time variation 

of SWE and streamflow. 

The second part is a comparison of the use for snowmelt-runoff modeling of the 

newly available snowcover product based on imagery from the satellite-borne Moderate 

Resolution Imaging Spectroradiometer (MODIS) with the long-time standard snowcover 

product from the National Hydrological Remote Sensing Center (NOHRSC). This 



 iv

comparison is made using the Snowmelt Runoff Model (SRM) in two watersheds 

located inside the URG basin. This comparison is important because the MODIS 

snowcover product could greatly improve the availability of snowcover information 

because of its high spatial (500m) and temporal (daily) resolutions and extensive 

(global) coverage. Based on the results of this comparison, the MODIS snowcover 

product gives comparable snowcover information compared to that from NOHRSC. 

The final part is an investigation of streamflow forecasting using mass-balance 

models. Two watersheds used in the comparison of MODIS and NOHRSC snowcover 

products were again used. The parameters of the mass-balance models are obtained in 

two different ways and streamflow forecasts are made on January 1st, February 1st, 

March 1st and April 1st. The first means of parameter estimation is to use the parameter 

values from 1990 to 2001 SRM streamflow simulations and the second means is by 

optimization. The results of this investigation show that mass-balance models show 

potential to improve the long-term streamflow forecasts in snowmelt-dominated 

watersheds if dependable precipitation forecasts can be provided.                                 
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CHAPTER I 

GENERAL INTRODUCTION 

Water resources allocation and management is a growing concern for the 

southwestern United States. As the region’s population continues to expand, water 

resources will remain a major concern into the foreseeable future and may be a limiting 

factor in the region’s future growth. Possible responses to this situation include reducing 

demand and increasing supply, but also more efficient management of existing water 

resources based on forecasts of water supply. Accordingly, this dissertation reports an 

investigation of three techniques for the improvement of seasonal streamflow forecasts 

from snowmelt-dominated basins, using the Upper Rio Grande (URG) basin as a case 

study. 

The first chapter presents an investigation of the effects of the El Nino/Southern 

Oscillation (ENSO) phenomenon on climate and hydrology, especially precipitation, 

temperature, and resulting snowpack and streamflow in the URG basin. These effects 

could be particularly beneficial for streamflow forecasting, because they offer the 

possibility of predicting the spring snowpack and resulting summer streamflow volume 

from previous fall or winter seasons, and thus increasing the lead time of the streamflow 

forecasts used by water managers. Although there have been many investigations related  

_____________ 

This dissertation follows the style and format of Hydrological Processes. 
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to ENSO, they have usually demonstrated precipitation, temperature, snow and 

subsequent streamflow responses to climatic variability over relatively large spatial 

scales, such as the entire western United States. While helpful in understanding the 

general climatic responses in large areas, such results are of limited practicality in water 

resources management because the characteristic response of specific hydrologically 

important areas within the regions may differ from the regional response to ENSO 

events, or the response may even differ within the basin of interest. Accordingly, this 

chapter investigates how the seasonal cycles of precipitation and temperature, and the 

resultant snow water equivalent (SWE) and streamflow in the URG are modulated by 

ENSO. 

The second chapter of this dissertation approaches the improvement of 

snowmelt-dominated streamflow forecasting by an investigation of the efficacy of a new 

remotely-sensed snowcover product for use in snowmelt-runoff modeling. This product 

is produced from imagery from the satellite-borne Moderate Resolution Imaging 

Spectroradiometer (MODIS). The investigation compares streamflow simulations with 

the Snowmelt Runoff Model (SRM) using two different sources of snow covered area 

(SCA) information: the MODIS snowcover product and the widely-used snowcover 

product made by the National Operational Hydrologic Remote Sensing Center 

(NOHRSC) in two watersheds located inside the URG basin. This comparison is 

important because the MODIS snowcover product could greatly improve the availability 

of snowcover information because of its high spatial (500m) and temporal (daily) 

resolutions and extensive (global) coverage, compared to other existing snowcover 
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products having limited spatial or temporal resolutions. This chapter addresses several 

specific questions. The first is how, if at all, the timing and volume of simulated 

snowmelt runoff differs in streamflow simulations that use MODIS and NOHRSC snow 

maps as SCA inputs? Secondly, can the observed differences in the simulated 

streamflow be explained by spatial-temporal differences in the mapped snowcover 

between the two products during the snowmelt period? Thirdly, how do zonal SWE 

volumes on April 1st calculated using the Modified Depletion Curve (MDC) produced 

by SRM differ when MODIS and NOHRSC snow maps are used, and how do these 

estimates compare to in situ snowpack telemetry (SNOTEL) observations. 

The final part of this dissertation presents an investigation of the potential and 

limitations of two types of mass-balance models for long-term (April – September) 

streamflow forecasts on January 1st, February 1st, March 1st and April 1st in the two sub-

watersheds of the URG which were used in the comparison of MODIS and NOHRSC 

snowcover products above. The first type of mass-balance model uses the parameter 

values from SRM streamflow simulations and the second type obtains its parameters by 

optimization. The model based on the parameters from SRM streamflow simulations 

uses SWE values at the time of forecast and forecast period parameter values (snow and 

rainfall runoff coefficients) obtained through SRM streamflow simulations and 

precipitation data during the forecast period. The optimized parameter models use 

historical SWE values at the time of forecast and historical precipitation values during 

the forecast period in order to get optimized parameter values for four different mass-

balance models of increasing complexity during the forecast period. After getting 
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parameter values for two types of mass-balance models, it is necessary to apply the 

forecasted precipitation in the forecasting mode. For precipitation forecasts, the 

observed precipitation amount in the year of interest was first applied to look at the 

forecast performance apart from the effect of the errors of precipitation forecast 

although this is not a real forecasting situation. Meanwhile, in the actual forecasting 

mode, it is difficult to forecast the long-term precipitation amount. So, the ensemble 

forecasting method was used; that is, the historical precipitation data in each year was 

applied except for the year of interest and then streamflow forecasts were obtained for 

each precipitation value. This gives a distribution of streamflow forecasts from which 

statistics such as mean and standard deviation (i.e., the uncertainty due to precipitation) 

can be calculated. In addition to these streamflow forecasts, the streamflow forecasts 

using only SWE and the forecasting for naturalized streamflow from Natural Resources 

Conservation Service (NRCS) are also presented in order to compare the relative 

accuracy of streamflow forecasts among the models. Through these investigations, it is 

possible to see first what are the potential and limitations of these two types of mass-

balance model parameterizations in these snowmelt-dominated watersheds; second, 

comparing streamflow forecast accuracy using the two types of parameterizations, how 

much improvement in the accuracy of streamflow forecasts can be achieved in the 

optimized parameter models compared to models which use the parameter values from 

SRM streamflow simulations and which type of mass-balance model can show the best 

results related to the long-term streamflow forecasts; third, as previous studies have 

shown that forecast model performance depends on site-specific characteristics, what 
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kind of differences in model parameters and performance are obtained and why this kind 

of difference occurs between these two closely-located watersheds. 

The dissertation is organized as follows: Chapter II shows the effects of ENSO 

on temperature, precipitation, SWE and resulting streamflow in the URG basin. Chapter 

III evaluates the use of the MODIS snowcover product for simulating streamflow using 

SRM by comparing streamflow simulation made using the NOHRSC snowcover 

product in the two watersheds located inside the URG. Chapter IV shows the potential 

and limitations of mass-balance models for long-term volumetric streamflow forecasts 

in the same watersheds as those in Chapter III. Finally, general conclusions for this 

dissertation are provided in Chapter V. 
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                            CHAPTER II 

EFFECTS OF THE ENSO ON TEMPERATURE, PRECIPITATION, 

SNOW WATER EQUIVALENT AND RESULTING STREAMFLOW 

IN THE UPPER RIO GRANDE BASIN* 

2.1. Introduction 

Water resource allocation and management is a growing concern for the 

southwestern United States. As the region’s population continues to expand, water 

resources will remain a major concern into the foreseeable future and may be a limiting 

factor in the region’s future growth. Possible responses to this situation include reducing 

demand and increasing supply, but also more efficient management of existing water 

resources based on forecasts of water supply. From this perspective, the recognition of 

the effects of the ENSO phenomenon on western US climate and hydrology, especially 

precipitation, temperature, and resulting snowpack, is particularly beneficial for water 

resource management, because it offers the possibility of predicting the spring snowpack, 

and thus increasing the lead time of the streamflow forecasts used by water managers 

(Brown, 1998; Cayan, 1996; Cayan and Webb, 1992; Groisman and Easterling, 1994;  

_____________ 

*Reprinted with permission from “Effects of the El Nino-southern oscillation and temperature, 
precipitation, snow water equivalent and resulting streamflow in the Upper Rio Grande river basin” by 
Songweon Lee, Andrew Klein, and Thomas Over, 2004. Hydrological Processes, 18:1053-1071. 2004 by 
Wiley. 
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Kahya and Dracup, 1993; Dracup and Kahya, 1994; Cayan et al., 1999; Woolhiser et 

al.,1993; Clark et al., 2001;Redmond and Koch, 1991; Ropelewski and Halpert, 1986). 

For the southwestern United States, it is generally observed that during the 

negative phase of ENSO (El Nino), there is higher precipitation, higher streamflow, and 

lower temperatures, while during positive ENSO phase (La Nina), precipitation is lower, 

streamflow is reduced, and temperatures are higher. Considerable research has examined 

the relationship between climate, snow conditions, and resulting streamflow with ENSO 

on a regional scale in the western United States. Redmond and Koch (1991) found 

negative correlations between average October-March monthly precipitation and June-

November averaged SOI and positive correlations over the same period between 

temperature and SOI in the desert southwest. Ropelewski and Halpert (1986, 1989), 

Kahya and Dracup (1993) and Dracup and Kahya (1994) detected consistent response 

regions in the United States in terms of precipitation, temperature, and streamflow for El 

Nino and La Nina periods through harmonic and composite analysis. More recent papers 

have investigated how daily precipitation, temperature, and streamflow frequency and 

volume is affected by ENSO phase (Woolhiser et al., 1993; Gershunov, 1998; 

Gershunov and Barnett, 1998; Cayan et al., 1999). For example, Cayan et al. (1999) 

found a higher than average frequency of occurrence of high precipitation and 

streamflow in the desert southwest during El Nino years, and the opposite during La 

Nina years. Cayan (1996) noted that there are more significant differences in April 1st 

SWE between La Nina and neutral years rather than between El Nino and neutral years 

in five regions encompassing the western US, especially in the Rocky Mountains. 
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Brown (1998) also demonstrated the differences in snow conditions during El Nino and 

La Nina periods using satellite and climate station data throughout the United States. 

Clark et al. (2001) showed that differences in the seasonal changes and intensities of 

SWE response to each ENSO phase exist in several smaller regions of the desert 

southwest. 

This previous research has demonstrated precipitation, temperature, snow and 

subsequent streamflow responses to climatic variability over relatively large spatial 

scales, such as the western United States. While helpful in understanding the general 

climatic responses in large areas, it is of limited practicality in water resource 

management because the characteristic response of specific hydrologically important 

areas within the regions may differ from the regional response to ENSO events, or the 

response may even differ within the basin of interest. Accordingly, this paper 

investigates how the seasonal cycles of precipitation and temperature, and the resultant 

snowpack and streamflow in the URG basin are modulated by variable sea surface 

temperatures in the tropical Pacific Ocean (i.e., ENSO). 

The URG (Figure 2-1) of southern Colorado and northern New Mexico, 

defined here as the area draining the Rio Grande at Espanola, NM (at the downstream 

end of HUC 130201), has an area of approximately 43,000 km2 including a non-

contributing area in the northeast, and elevations ranging from approximately 1600 to 

4200 m, with highest elevations found in the northwest corner of the basin along the 

continental divide. Snow formation usually begins in late October, with the snowpack 
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approaching its maximum near April 1st as measured by SWE values from snowcourse 

sites scattered across the basin and in more recent years also at SNOTEL sites. 

Several factors led to the selection of this basin as the study area. The primary 

reason is that all reaches of the Rio Grande are heavily utilized as a water resource. The 

ground water resources in the Middle Rio Grande Basin, which is just downstream and 

supplies water to the Albuquerque metropolitan area, have recently been determined to 

be significantly less than previously believed (Thorn et al., 1993; Bartolino and Cole, 

2002), putting further pressure on the surface water supply from the URG. In addition, 

as mentioned above, it is not clear that the results of the rather large-scale studies of the 

influence of ENSO on climate and streamflow can be successfully scaled down to this 

basin, especially because the URG lies near the northern limit of the southwestern US 

region as defined in previous studies. 

This study combines meteorological data from National Weather Service 

(NWS) stations, which are located at lower elevations (Table 2-1) with SWE data from 

snowcourse sites, which are located at higher elevations (Table 2-2). Meteorological 

observations are combined with streamflow data from United States Geological Survey 

(USGS) streamgaging stations (Table 2-3) having long records. Both stations on the Rio 

Grande River itself and in tributary basins with limited direct human influence are 

investigated. The locations of all observation sites are shown in Figure 2-1. Analysis 

begins in 1952 because prior to this date the temperature and precipitation timeseries at 

NWS stations are very incomplete.



 

 

 

Figure 2-1. Maps of the Upper Rio Grande basin showing the gauging sites used in this study: (a) NWS temperature and 

precipitation stations and snowcourse sites (left); (b) USGS streamflow gauging stations and their drainage basins (right) 10
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Combining temperature and precipitation observations with long-term snow 

course measurements and streamflow enables investigation of how variations in ENSO 

are associated with differences in monthly precipitation and temperature, which in turn 

affect SWE and streamflow. It is hoped that by better understanding these relationships, 

streamflow prediction in the URG can be improved. It is also hoped that a better 

understanding of these relationships can improve modeling of how the magnitude and 

timing of streamflow in the URG basin may be altered by anthropogenic climate 

changes such as global warming. 

Table 2-1. Temperature and precipitation stations 

Number Name Elevation 
(m) 

Mean Annual Temp. 
(oC) 

Mean Annual 
Precip. 
(mm) 

( 1 ) Abiquiu Dam 1945 10.28 251 
( 2 ) Ghost Ranch 1969 * 288 
( 3 ) El Vado Dam 2054 7.05 372 
( 4 ) Dulce 2071 6.88 450 
( 5 ) Elrito 2094 9.34 314 
( 6 ) Cuba 2147 7.79 336 

( 7 ) Alamosa San Luis 
Valley Rgnl 2296 5.14 185 

( 8 ) Cerro 2332 6.85 329 
( 9 ) Center 4 SSW 2339 5.04 183 

( 10 ) Manassa 2344 5.74 200 
( 11 ) Blanca 2362 5.66 222 
( 12 ) Chama 2393 5.57 545 
( 13 ) Del Norte 2E 2399 6.22 262 

( 14 ) Great Sand Dunes  
Natl. Mon. 2475 6.43 287 

*data not available. 
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Table 2-2. Snowcourse sites 

Number Name Elevation 
(m) 

( a ) Rio En Medio 3139 
( b ) Tres Ritos 2621 
( c ) Taos Canyon 2774 
( d ) Hematite Park 2896 
( e ) Chama Divide 2384 
( f ) Silver Lakes 2896 
( g ) La Veta Pass 2877 
( h ) Lake Humprey 2743 
( i ) Upper Rio Grande 2865 
( j ) Pool Table Mountain 2999 
( k ) Santa Maria 2926 
( l ) Porcupine 3133 
( m ) Cochetopa Pass 3048 
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Table 2-3. Characteristics of streamgaging stations 
 

Station USGS Number Period of Record 
(WY) 

Station 
Elevation

(m) 

Drainage
Area 
(km2) 

Annual Average 
Streamflow 

(m3/s) 

Linear Trend  
in Standardized 1 
annual average 

streamflow ( yr –1)

Station 
Summary 

Rio Chama  
Near La Puente 08284100 1956 – 99 2159 1229 10.25 0.0097 2 Diversions for irrigation of 

about 41.6 km2 
Rio Ojo Caliente 

At La Madera 08289000 1952 – 99 1938 1073 1.94 0.0088 Diversions for irrigation of 
about 14 km2 

Rio Grande  
At Embudo 08279500 1952 – 99 1765 19098 22.87 0.0122 

Irrigation of about 2504.8 km2 
in Colorado and 161 km2  

in New Mexico 
Rio Pueblo De Taos 
Below Los Cordovas 08276300 1958 – 99 2028 973 1.89 0.0180 Diversions for irrigation of 

about 48.5 km2 

Rio Grande 
 Near Del Norte 08220000 1952 – 99 2432 3379 24.00 0.0067 

Small diversions for irrigation, 
storage in 4 reservoirs (0.156 
km3 total capacity), and some 
incoming interbasin transfers

Conejos River  
Near Mogote 08246500 1952 – 99 2521 722 8.81 0.0031 Small diversions 

for irrigation 
1Streamflows are standardized by dividing by mean annual streamflow. 

2Slopes in bold face are significant at the 90% level. 
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2.2. Methods 

2.2.1. ENSO Designation Criteria 

Determination of ENSO phase has historically been accomplished using the 

Southern Oscillation Index (SOI), which is based on deviations in the sea level pressure 

differences between the island of Tahiti and Darwin, Australia. In this study, water years 

(October-September) in the period 1952-1999 were assigned to one of three ENSO 

phases, El Niño, neutral and La Niña by three different methods, which employ two 

different indices: the Climate Prediction Center (CPC) SOI and the Troup SOI for the 

period 1952-1999 (WY). If at least one of the three methods designated a year as either 

El Nino or La Nina it was considered as such, otherwise it is considered as neutral. The 

designation of ENSO phase based on these three criteria is shown in Figure 2-2. The 

three methods occasionally differ in their assignment of ENSO phase to each water year. 

However, conflict never occurs between El Nino and La Nina, only between El Nino or 

La Nina and neutral. In the first method, when the 5-month running mean of the CPC 

SOI is in the lower (upper) 25% of its distribution for five consecutive months in a 

calendar year (CY), then the following WY is designated as an El Nino (La Nina) year 

(Ropelewski and Jones, 1987; Dracup and Kahya, 1994). This method suffers from the 

problem that ENSO designation may change through time as additional years are added. 

The second method uses the Troup SOI. When average Troup SOI values for the period 

running from April of the previous WY to March of current WY fall below –5, the 

current year is designated as an El Nino year. When average SOI values for the April-
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March period are above +5, the year is designated as a La Nina year (Chiew et al., 1998). 

The third method follows the criteria used in Redmond and Koch (1991) and Cayan et al. 

(1999). When the average CPC SOI of June to November of the previous CY is –0.5 or 

less, then the present WY is designated as El Nino. If it is greater than or equal to +0.5, 

then the present WY is designated as La Nina. June to November SOI values are 

selected because SOI values for these months exhibit the strongest correlation with 

winter climate over the western United States among the averages of leading 6-month 

SOI values prior to the winter in question. 
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Figure 2-2. Designation of ENSO phases in each year. Symbols show designation of the 

ENSO phase of each year following the criteria described in the text. Location of 

symbols gives the June-November average CPC SOI. The dashed lines, at +/-0.5, 

separate the years into La Niña (top), neutral (middle), and El Niño (bottom), 

according to the CPC SOI criterion 
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To check the randomness of assigned ENSO phase through time, two runs tests 

were performed (Davis, 1986). In each, the years of one ENSO phase (El Nino or La 

Nina) were assigned the value of one and the other two assigned a value of 0. The 

randomness of this binomial distribution was then tested using a runs test. The Z statistic 

and associated probability were 0.33 and 0.37, respectively for El Nino years, indicating 

they occur randomly throughout the study period. For La Nin a years the Z statistic and 

its probability were –1.47 and 0.07, respectively, indicating La Nina years are not 

randomly distributed over the study period, but are rather clumped in a few periods. 

That is, there is a possibility that these clumped La Nina years could result in periods of 

higher or lower values of the interest variables in terms of long-term trends. Therefore, it 

was necessary to remove any long-term trends in the climate variables to isolate ENSO 

effects from background climate variability. 

2.2.2. Data 

Figure 2-1 shows the locations of the NWS, snowcourse, and streamgaging 

stations that provide the temperature, precipitation, SWE, and streamflow records used 

in this study, and Tables 2-1, 2-2 and 2-3 provide basic information about them. All 

NWS stations are located at relatively low elevations in the basin between 1945 and 

2475 m a.s.l. while snowcourse sites are located relatively higher in the basin at 

elevations between 2384 and 3139 m a.s.l. Only those NWS and snowcourse stations 

with records covering the period from 1952 to 1999 and with a small percentage of 

missing days were used in the analysis. 
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To create uniform time series of temperature and precipitation, small gaps in 

missing data were replaced. Gaps in NWS daily average temperatures were filled at the 

daily time scale using regressions against another station with a complete or nearly 

complete record. Daily average temperatures were then averaged up to monthly values. 

NWS daily precipitation depths were summed to monthly totals with months having ten 

or more missing days considered to be missing months. These months were then filled at 

the monthly time scale by the normal-ratio method (e.g., McCuen, 1998) using the 

average of monthly to annual total precipitation. Snowcourse SWE exists as individual 

measurements taken once per month, near the end of the months of January through 

March or April. No attempt was made to replace missing snowcourse measurements. 

Monthly streamflow data were taken as published by the USGS, so no replacement of 

missing periods was performed. 

2.2.3. Removal of Long-Term Trends 

Following creation of monthly data sets as described above, long-term trends in 

each variable of interest were removed. This was done to isolate the effect of short-term 

and potentially ENSO-related fluctuations from longer-term factors such as the Pacific 

Decadal Oscillation as stated above. Long-term temporal trends were estimated by 

fitting first and second-order polynomials to the monthly temperature, precipitation, and 

SWE data, and to annual streamflow time series. Except in the case of streamflow, for 

each station, a long-term trend was computed separately for each month. In the first-

order analysis of temperature and precipitation, a significant fraction of station-months 
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(25% for both temperature and precipitation) had slopes significant at the 90% level. 

Linear temperature trends for individual station-months had ranged from –0.052 to 

0.078  per year, and monthly averages of slopes over all stations ranged from –

0.016 (October and June) to 0.044 (March)  per year. As an example, Figure 2-3 

shows the slopes of the linear trends in average temperature for each station during 

October and March. The average linear temperature increase over all stations and 

months was just 0.002  per year. 
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Figure 2-3. Slopes of October and March monthly average temperature versus time, 

obtained by linear regression. October is the month having the smallest slope averaged 

over the stations, and March is the month with the largest averaged slopes 



 19
 

Linear trends for individual precipitation station-months ranged from –0.280 to 

0.644 mm/yr, and monthly averages ranged from –0.064 (December) to 0.327 

(September) mm/yr, with an average over all stations and months of 0.137 mm/yr. Due 

to a larger variance relative to precipitation, only 3 of 39 (7.7%) station-months of SWE 

values had significant linear trends, with slope values ranging from –2.1 to 2.1 mm/yr. 

As given in Table 2-3, standardized linear trends in streamflow had slopes ranging from 

0.0031 per year at the Conejos River station to 0.018 per year at the Rio Pueblo station. 

In all but the Conejos River and Rio Ojo station, trends were significant at the 90% level. 

Similar levels of significance were found for both coefficients in the second-

order analysis. However, the removal of linear trends in temperature and streamflow 

were deemed to be sufficient, as subsequent composite analysis (described below) was 

found to be relatively insensitive to the use of first vs. second-order residuals. 

Streamflow exhibits both a strong annual cycle and large, non-Gaussian 

variation at the monthly time scale; therefore long-term trends in streamflow were 

obtained and subtracted only at the annual (water year) time scale. Monthly residuals 

were then computed using a downscaling technique, in which the annual residual for a 

given year was divided into monthly residuals by multiplying the year’s residual by the 

monthly fraction of that year’s annual streamflow in the original data. Analytically, if 

the annual residual for year T is denoted as ( )TQε  and defined in the usual way through 

( ) ( )TTbaTQ QQQ ε++= , where ( )TQ  is the annual average streamflow in year T and 
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Qa  and  are the constants defining the estimated linear trend, then the monthly 

residual for month t in year T, 

Qb

( )Tt,δ , is computed as 

( ) ( )
( ) ( )T
TQ
TtqTt Qεδ

12
,, =   (2.1) 

where  is the average streamflow in month t in year T. Where appropriate, 

results using the streamflow residuals given below have been standardized by dividing 

by the root-mean-square-residuals (RMSR), defined as 

( Ttq , )

( )∑
=

=
N

T
Q T

N
RMSR

1

21 ε   (2.2) 

where N is the number of years of record, and other symbols are defined as before. 

2.2.4. Tests for Dependence on ENSO 

After residuals were obtained by subtracting the linear trend, two types of 

analyses were performed to test dependence of the variables on ENSO. First, continuous 

dependence on ENSO was tested by plotting the residuals versus June to November 

average CPC SOI. Second, a composite analysis was performed in which separate 

averages of the residuals for El Niño, neutral, and La Niña years were obtained for each 

variable, month, and station, according to the ENSO phase designations shown in 

Figure 2-2. 
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2.3. Results 

2.3.1. Continuous Dependence on CPC SOI 

Among the meteorological variables (maximum and average monthly 

temperatures and total monthly precipitation) the number of station-months exhibiting 

linear dependence (i.e., correlation) on CPC SOI at various significance levels is similar 

for both the original variables and detrended residuals. For example, for average 

monthly temperature, the fraction of station-months having significant correlation at the 

90% level is 12.8% for the original variables and 15.4% for the residuals, while for 

monthly total precipitation, these fractions are 17.3% and 12.2%, respectively. Using 

maximum monthly temperatures as opposed to average monthly temperatures greatly 

increases the number of station-months having significant correlation; for this variable, 

the fractions are 23.7% for the original variables and 24.4% for the residuals. 

2.3.1.1. Temperature and Precipitation 

As in the analysis of temporal trends above (and in the composite analysis 

below), certain months stand out as having the most significant linear dependence on 

CPC SOI. For average monthly temperature, these months are March and November. 

The correlations of March average temperature residuals versus CPC SOI are positive at 

all stations with an average slope of 0.526  per SOI unit (note from Figure 2-2 that 

the total range of CPC SOI is about four units), and are significantly positive at the 90% 

Co
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level at 10 of the 13 stations. This indicates colder temperatures in El Niño years and 

warmer ones in La Niña, as expected. Similarly, for the residuals in November, all 

correlations are again positive with an average slope of 0.401  per SOI unit, but the 

significance is not as high: only two are significant at the 90% level, but 11 of 13 are 

significant at the 70% level. The results are similar in the original variables for 

November, but not as strong for March. Combining November and March, four stations 

have the weakest relationship to the CPC SOI: Dulce, El Vado Dam, Blanca, and Chama 

(stations 3, 4, 11 and 12). As can be seen in Figure 2-1, the first three of these stations 

are clustered in the upper reaches of the Rio Chama drainage basin in the west-central 

portion of our study area. 

Co

For precipitation, the months with the strongest linear dependence on CPC SOI 

were November, December, and March. The correlations of total monthly precipitation 

residuals versus CPC SOI are negative for all stations during these months, with average 

slopes of -3.53, -3.11, and -4.08 mm per SOI unit, respectively. This indicates these 

months are wetter in El Niño versus La Niña years. These correlations are significant at 

the 90% level at 3 of 14 stations in November and December, and at 8 of 14 in March. 

The number of significant slopes jumps to 12, 10, and 12 in November, December, and 

March, respectively, if the 70% significance level is considered. The results are 

somewhat stronger in the case of precipitation residuals than in the original variable. 

Unlike temperature, there is not a clear geographical clustering of the stations that fail to 

have significant slopes. 
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2.3.1.2. Snow Water Equivalent 

Whether residuals or original values are considered, no snowcourse stations 

have significant (at the 90% level) correlations of SWE with SOI for January and 

February, but several do have significant negative correlations during (late) March. The 

latter are the snowcourse stations in the eastern portion of the study area (stations a-d 

and g). This implies larger snow storage in El Niño versus La Niña years. As will be 

discussed in the composite analysis below, this is the result of a decrease in SWE from 

February to March in La Niña years, apparently caused by warmer March temperatures 

and lower March precipitation. 

2.3.1.3. Streamflow 

Annual streamflow and its residuals at all the stations exhibit negative 

correlation with June to November CPC SOI, implying more runoff in El Niño years, as 

would be expected (see Figure 2-4 for the results in the residuals). This dependence is 

significant at the 90% at the Rio Chama station, Rio Grande at Embudo, and the Rio 

Pueblo station for the original variables, but only at the Rio Pueblo and Rio Ojo stations 

in the residuals. The four southernmost stations (all stations except Rio Grande near Del 

Norte and the Conejos River station) have slopes that are significant at the 70% level, 

whether original variables or residuals are considered. 

The lack of significance of the Rio Grande near Del Norte can be understood in 

terms of the SWE results discussed above, since the cluster of snowcourse stations in its 
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drainage basin did not show a significant correlation between SWE and the June to 

November CPC SOI. Because no meteorological stations are situated in this watershed 

(the Del Norte NWS station is near the streamgage and thus is unlikely to characterize of 

the entire drainage basin), it is difficult to characterize streamflow in this basin in terms 

of temperature and precipitation. Human regulation of streamflow may also be an 

influence on the dependence of streamflow on ENSO in this watershed. 
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Figure 2-4. Regression of standardized annual streamflow residuals versus June-

November average CPC SOI. Standardization here is by division by the stations’s 

RMSR (see Equation (2.2) for definition) 
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2.3.2. Composite Analysis 

Composite Analysis is the analysis of composites created by separating 

instances of a climatic phenomenon into classes based on some criterion, and then 

combining, usually by averaging, the instances falling into each class (Brown, 1998; 

Dracup and Kahya, 1994; Kahya and Dracup, 1993; Clark etc., 2001). Here we apply 

composite analysis to the weather and hydrology in the URG by first separating the 

years into El Niño, neutral, La Niña years, according to the criterion described in the 

ENSO designation section above, and then by combining the years by averaging the 

temperature, precipitation, SWE, and streamflow data separately for each ENSO phase, 

primarily to test if statistically significant differences exist between the ENSO phases. 

2.3.2.1. Temperature and Precipitation 

An overview of the composite analysis results for temperature and precipitation 

residuals are shown in Figures 2-5 and 2-6. The statistically significant months are the 

same as observed above in the linear dependence of these variables versus CPC SOI. In 

Figure 2-5, it may be seen that El Niño years are colder vis-a-vis neutral years in 

November and March while La Niña years are warmer vis-a-vis neutral years in March, 

but without much difference in November. Figure 2-6 shows that El Niño years are 

unusually wet (wetter than neutral years) in November, while in December and March it 

is La Niña years that are unusually dry (drier than neutral years). 
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Figure 2-5. The t-statistics of differences of composite average monthly temperature 

residuals between El Niño and neutral years and between La Niña and neutral years 
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Figure 2-6. The t-statistics of differences of composite average monthly precipitation 

residuals between El Niño and neutral years and between La Niña and neutral years 

Spatial patterns in temperature and precipitation residuals between ENSO 

phases across the basin are illustrated in Figure 2-7 and 2-8, respectively. Figure 2-7 

suggests the presence of two inter-basin geographical patterns in the residual 

temperatures. The first is a spatial variability in the colder El Niño November 

temperatures. During El Niño years, stations in the northern and eastern sections of the 

basins appear to have colder temperatures than other stations. This is consistent with t-

test statistic result (Figure 2-5). November El Niño temperature residuals are smallest 
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for stations in the southwestern portion of the basin, which is consistent with the CPC 

SOI dependences for these stations. 

Stations across the entire basin show March temperature of La Niña years to be 

warmer than neutral or El Niño years. Thus warmer temperatures during March in La 

Niña years appear to be more spatially uniform than the colder El Niño November 

temperatures. However, warmer temperatures in the southwestern portion of the basin 

appear slightly smaller than those in the northeast. 

A map of composite average precipitation residuals from October to September 

is illustrated in Figure 2-8. Overall, spatial patterns in the monthly precipitation 

residuals are less obvious than those for the temperature residuals. However, during the 

snow season, March precipitation during La Nina years is most notably lower in the 

southwestern stations, but a more mixed response is seen at the other stations. Stations 

in the southern half of the basin also tend to experience a greater increase in 

precipitation during November of El Niño years, but the response is not seen at all 

stations. 



 29
 

                          

 

Figure 2-7. Map of composite average monthly temperature residuals at each station 

from October through September for El Niño (solid), neutral (dotted), La Niña (dashed) 

years 
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Figure 2-8. Map of composite average monthly total precipitation residuals at each 

station from October through September for El Niño (solid), neutral (dotted), La Niña 

(dashed) years 
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2.3.2.2. Snow Water Equivalent 

Composite averages of SWE residuals at the snowcourse stations are shown in 

Figure 2-9 in which exhibit consistent spatial patterns. With a single exception, Silver 

Lake, all stations with small SWE residuals for the January through March period occur 

along the URG’s western side. The stations with the largest decrease in March SWE 

during La Niña years occur on the basin’s eastern side. A one-tailed t-test (not shown) 

indicates that either or both of the differences between El Niño or La Niña and neutral 

years are significant at about the 90% level for March at these eastern stations. This is 

consistent with the analysis of the linear dependence of SWE on CPC SOI. 

2.3.2.3. Streamflow 

Composite average analyses of annual residual streamflow are shown in Figure 

2-10. As expected, El Niño years have higher residual streamflow than La Niña years, 

except at Rio Grande at Del Norte. Standardizing the residuals by dividing by the 

station’s RMSR as in Figure 2-10 gives a more realistic picture of the significance of 

the differences, where, according to a t-test (not shown), the streamflow in La Niña 

years is significantly less at about a 90% level than that in the neutral years at all stations 

except Rio Grande at Del Norte. The difference between La Niña and neutral years at 

Conejos River near Mogote is a bit deceiving, however, since at this station the 

composite average streamflow residual in neutral years is larger than that during El Niño 

years. 
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Figure 2-9. Map of composite average SWE residuals at each snowcourse station for 

January, February and March 
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Figure 2-10. Composite average of annual streamflow residuals: (above) not 

standardized; (below) standardized by dividing by RMSR 
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Figure 2-11. Map of composite average of monthly streamflow residuals standardized 

by dividing by RMSR for each of the gauging stations studied 
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Figure 2-11 shows the composite average of the standardized monthly 

streamflow residuals in the map. In interpreting these plots, it is important to remember 

the definition of the monthly residual, given above in equation (2-1). Based on this 

definition, it can be seen that the monthly residual for a certain ENSO phase is the 

combined effect of the size of the annual residuals for that phase and the proportion of 

the annual flow volume in that month. Thus, for example, the large negative La Niña 

residual in April at the Rio Chama station implies that this station has relatively large 

average annual residuals in La Niña years and that a large proportion (in fact, the largest 

of any month) of annual flow volume occurs during April. More subtly, the positive 

monthly average La Niña residual in June at this station is due to a few La Niña years 

having positive residuals and relatively significant streamflow during June, whereas 

most La Niña years have negative residuals and relatively little streamflow during June. 

This same situation occurs in July at the Rio Grande near Del Norte and the Conejos 

River near Mogote. An analogous situation obtains for the negative composite average 

residual streamflow in April during El Niño years at the Rio Chama station. 

These monthly composite average residual plots therefore show certain subtle 

features at each basin that make generalization difficult. The Rio Chama and Rio Ojo 

stations, which are the two smaller basins in the southwestern portion of the study area, 

show strong evidence of a lag in the maximum streamflow month between La Niña and 

El Niño years, with the La Niña maximum streamflow month occurring earlier in the 

year, as generally warmer March temperatures and lower March SWE values at the 

snowcourse stations on the east side of the URG would suggest. However, the 
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snowcourse station actually within the Rio Chama basin (Chama Divide) does not show 

lower March SWE values, and the stations with the strongest tendency to have reduced 

March SWE are in the region of the Rio Pueblo in the southeast, which does not exhibit 

a lag in the maximum month between La Niña and El Niño. However, the Rio Pueblo 

station shows significant winter streamflow during La Niña years (and very little during 

winter in other ENSO phases), as does Rio Grande at Embudo, to which the Rio Pueblo 

is a nearby tributary. 

The most northern Conejos River and Rio Grande near Del Norte stations show 

rather similar behavior: rather weaker separation of composite average annual residuals 

(especially at Rio Grande near Del Norte), an earlier maximum month during La Niña 

years (May) compared to El Niño and neutral years (June or July), and a higher or 

equally high maximum during neutral compared to El Niño years. These behaviors 

correspond to the warmer March during La Niña years, combined with little difference 

in SWE values: apparently the average total snowpack affecting flow at these stations is 

rather independent of ENSO phase (again especially at Rio Grande near Del Norte), but 

it melts somewhat earlier during La Niña years. 

2.4. Conclusions 

Examination of two important climatic factors, temperature and precipitation, 

along with streamflow volumes and estimates of SWE at snowcourse stations, over the 

years of 1952-1999 demonstrates that ENSO appears to modulate temperature and 

precipitation across the basin, affecting snow accumulation and melt and the resulting 
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streamflow in the URG river basin. Through these sequential observations of ENSO 

impacts, it is possible to demonstrate how the important climatological factors of 

temperature and precipitation are modulated by ENSO and how these climatological 

differences are embodied in the form of SWE and resultant streamflow differences 

among ENSO phases. 

Comparing this research with previous work highlights some important 

characteristics concerning temperature and precipitation responses to ENSO episodes 

specific to the URG. First, temperature differences between the three ENSO phases are 

not uniform throughout the entire winter, but are concentrated at its beginning and end - 

only in November and March. Second, El Nino years as compared to neutral years, the 

URG experiences lower temperatures especially in the basins northern and eastern 

sections. Third, during La Niña years March temperatures are warmer across the entire 

basin. With respect to temperature at least, it can be said that ENSO in the URG affects 

the length of winter rather than its severity. 

Statistically significant increases in monthly precipitation totals were found to 

occur only during November. Significantly lower precipitation occurred in La Niña 

years during December and March. So, as with temperature mentioned above, 

climatological precipitation differences during El Nino, neutral and La Nina years are 

confined to certain months, predominantly at the beginning and end of the winter season. 

Differences in snow water equivalent among ENSO phases were found to exist 

only during March. While meteorological variations in observed ENSO response were 

primarily temporal with relatively weak geographical variability, SWE dependence on 
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ENSO was seen to vary geographically very strongly, with snowcourse stations on the 

east side of the URG showing a strong ENSO signal, while those on the west side did 

not. 

These findings are also important in another respect. The URG has been the site 

of several studies investigating the effect of increased temperatures caused by 

anthropogenic climatic change (van Katwijk, et al., 1993; Rango, 1992; Rango and 

Martinec, 1997). Many of these studies have employed the Snowmelt Runoff Model 

(SRM), which is one of most popular models to simulate and predict snowmelt in 

mountainous areas. SRM has been used to model predict changes in the streamflow 

regime caused by temperature changes (e.g. global warming). In these studies, 

temperatures changes have usually been considered uniform. However, our work 

suggests that assuming a uniform warming may be overly simplistic, and future 

modeling efforts may be able to predict climatically-induced streamflow variations more 

accurately if existing variations caused by ENSO are considered. 

March during La Niña years is the critical month in determining differences in 

annual hydrograph in the URG. Higher temperatures and lower precipitation result in 

lower, and usually earlier, streamflow, compared to that of neutral and El Nino years. 

March therefore needs to be given special attention when modeling scenarios of 

streamflow under altered climatic conditions. 

There are variable time lags between ENSO-modulated differences in 

temperature and precipitation and the resultant streamflow. Colder temperatures and 

greater precipitation in November of El Niño may result in more snow storage over the 
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winter and higher streamflow during the following snowmelt season – a time lag of 

several months. However, the impact of warmer and drier conditions during March of 

La Niña years on streamflow is more immediate, with almost no lag time occurring 

between ENSO modulated meteorological differences and the resultant streamflow. 

Finally, La Niña years experience decreased annual streamflow compared to 

both El Niño and neutral water years. However, examination of the reduction of runoff 

during La Niña phase on a monthly basis reveals different responses at different stations. 

At most stations, with the exception of the Rio Grande at Embudo and Rio Pueblo, the 

peak streamflow month during La Niña years is earlier, though the size of the differences 

varies. At the Rio Grande near Del Norte, the effect of ENSO is rather slight, matching 

small differences in SWE between El Niño and La Niña years in this drainage basin. At 

the Rio Grande at Embudo and at Rio Pueblo, winter streamflow during La Niña years is 

greatly increased and the spring peak is attenuated. 

The above observations demonstrate that improved streamflow forecasting using 

ENSO phase information, which has in the past been observed for the western US in 

general, should indeed be possible specifically for the URG. Particular features of the 

differences between El Niño, neutral and La Niña water years in terms of temperature 

and precipitation and resulting SWE and streamflow that can contribute to the improved 

forecasting have been provided by this research. However, responses vary in strength and 

in timing, and cannot be completely characterized in terms of meteorological and SWE 

data, given the sparseness of the long-term data network. 
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                            CHAPTER III 

COMPARISON OF MODIS AND NOHRSC SNOWCOVER 

PRODUCTS FOR SIMULATING STREAMFLOW USING 

SNOWMELT RUNOFF MODEL 

3.1. Introduction 

Snowmelt is a dominant water resource for runoff and groundwater recharge in 

wide areas of the world and therefore it is very beneficial to obtain more accurate 

forecasts of snowmelt magnitude and timing. The utilization of snowcover information 

as an important source of data for runoff prediction started in 1930’s with the use of 

aerial photographs (Potts, 1937). Many daily regional scale satellite-derived estimates of 

snow covered area (SCA) have become available since 1972 with the advent of National 

Oceanic and Atmospheric Administration - Advanced Very High Resolution Radiometer 

(NOAA-AVHRR) (Rango, 1986; Rango, 1996) and have been serving as input into 

snowmelt runoff models or weather prediction models around the world (Rango, 1980; 

Dey et al., 1983; Baumgartner et al., 1987; Richard and Gratton, 2001; Landesa and 

Rango, 2002). Especially in data-sparse regions such as the Himalayan or Andean 

Mountains, satellite-derived SCA information is the best routinely available SCA input 

for snowmelt runoff estimates (Rango, 1985; Compagnucci and Vargas, 1998). 
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Beginning in 1986, a 1 km snowcover product for the conterminous United 

States and portions of Canada has been operationally produced by the NOHRSC 

(Hartman et al., 1996; Hall et al., 2000; Bitner et al., 2002; Klein and Barnett, 2003; 

Maurer et al., 2003). A number of new satellite-derived snowcover maps covering all or 

portions of the Northern Hemisphere are currently produced including: the NOAA’s 23 

km Interactive Multisensor Snow and Ice Mapping System (IMS) charts (Ramsay, 2000), 

the 25 km Near Real-Time SSM/I EASE-Grid Daily Global Ice Concentration and Snow 

Extent from National Snow and Ice Data Center (NSIDC) made from Defense 

Meteorological Satellite Program (DMSP) F13 Special Sensor Microwave/Imager 

(SSM/I) passive microwave measurements (Chang et al., 1987; Armstrong and Brodzik, 

2001), and new automated 5 km snowcover maps produced by the National 

Environmental Satellite, Data, and Information Service (NESDIS) using Geostationary 

Operational Environmental Satellite (GOES) and SSM/I (Romanov et al., 2000; Bitner 

et al., 2002) data. 

A suite of snowcover products is also currently being produced from data 

collected by the MODIS instrument including a 500 m global daily product which is 

used here. NASA’s MODIS began collecting science data from onboard the Terra 

(formerly known as EOS-AM1) spacecraft on February 24, 2000 and from onboard the 

Aqua (formerly known as EOS-PM1) spacecraft on June 24, 2002. MODIS has 36 

spectral bands in the visible, near- and short-wave infrared and thermal portions of the 

electromagnetic spectrum and it views the earth’s entire surface ranging from every day 

at high latitudes to every other day at low latitudes (Justice et al., 1998). The Distributed 
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Active Archive Center (DAAC) at the NSIDC currently distributes the snowcover 

products produced from MODIS (Scharfen et al., 1997; Hall et al., 2000). Their global 

extent and daily coverage enable these global MODIS snow products to augment 

existing remote-sensing derived continental and regional scale snowcover maps and 

provide high resolution snowcover information for areas of the world where snowcover 

maps are not currently produced. 

A number of comparisons between different satellite-derived snow maps have 

been conducted (Baumgartner et al., 1987; Hall et al., 2000; Bitner et al. 2002; Rango et 

al., 2002; Klein and Barnett, 2003; Maurer et al., 2003; Rango et al., 2003). These 

studies have examined the relative snow-mapping accuracy of various snowcover maps 

or the relationship between snow-mapping accuracy and spatial resolution, ruggedness, 

or landcover type. Table 3-1 lists recent studies which evaluate snowcover mapping 

techniques and assess the accuracy of these techniques either through the comparison of 

different snowcover products or the comparison between satellite-derived snow products 

and ground-truth observations using SNOTEL or NOAA Cooperative Observer 

meteorological network stations. 

Among these studies, Klein and Bartnett (2003) found good overall agreement 

between snowcover maps produced using the 500-m resolution MODIS snowcover 

product used here and NOHRSC snow maps for the URG basin of Colorado and New 

Mexico. They showed that the MODIS product typically mapped a higher proportion of 

the basin as snow covered than did the NOHRSC product. However, whether the 

differences in these two remote sensing-derived snow maps produce significant 
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differences in the timing and volume of snowmelt in the URG was not addressed. Since 

an important use of snowcover maps is for water resource estimates, it is useful to 

compare snowmelt runoff simulations using MODIS and NOHRSC snowcover maps as 

input, both against each other and against observed streamflow. The SRM is used in 

these simulations because of its long and successful history of use in one northwestern 

watershed of the URG basin (Martinec 1985; Rango and van Katwijk 1990; Rango 

1992; van Katwijk et al., 1993; Martinec and Rango, 1995; Rango and Martinec, 1997; 

Rango et al., 2002; Rango et al., 2003). 

Table 3-1. Papers evaluating satellite-derived snowcover products 

Manuscript Sensors or snowcover products Study region 

Baumgartner et al., 
1987 Landsat-MSS and NOAA/AVHRR Rhein-Felsberg (Alps), 

Switzerland 

Hall et al., 2000 
Landsat-TM (30m and 1km) using 
MODIS SNOWMAP algorithm, 
NOHRSC snow products, SSM/I 

Saskatchewan, Canada; 
New England, Idaho, North 

and South Dakota, USA 

Rango et al., 2002 NOAA/AVHRR, Landsat-TM 
and Terra-MODIS 

Upper Rio Grande, 
Colorado and New Mexico, 

USA 

Bitner et al., 2002 
NOHRSC, Terra-MODIS, and new 

automated snowcover maps 
from NESDIS 

Entire conterminous USA 
and northwest and north 

central USA 

Rango et al., 2003 NOAA/AVHRR and Terra-MODIS Noguera Ribagorzana basin,
central Pyrenees, Spain 

Maurer et al., 2003 NOHRSC and Terra-MODIS 
Columbia and Missouri 

river 
basins, USA 

Klein and Barnett, 2003 NOHRSC and Terra-MODIS 
Upper Rio Grande, 

Colorado and New Mexico, 
USA 
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The research addresses several specific questions. The first is how, if at all, the 

timing and volume of simulated snowmelt runoff differs in streamflow simulations that 

use MODIS and NOHRSC snow maps as SCA inputs? Secondly, can the observed 

differences in the simulated streamflow be explained by spatial-temporal differences in 

the mapped snowcover between the two products during the snowmelt period? Thirdly, 

how do zonal SWE volumes on April 1st calculated using the MDC produced by SRM, 

differ when MODIS and NOHRSC snow maps are used, and how do these estimates 

compare to in situ SNOTEL observations. To answer these questions, streamflow 

simulations were performed with SRM using NOHRSC snow products from 1990 to 

2000, and representative (average) coefficient or factor values obtained from these 

streamflow simulations were used to parameterize streamflow simulations made using 

MODIS and NOHRSC snowcover products as inputs for the year 2001. While another 

MODIS snowcover product has been produced from a different snow-mapping 

algorithm (Rango et al., 2002; Landesa and Rango, 2002; Rango et al., 2003), this 

research evaluates standard MODIS snowcover product because this product is readily 

available to the cryospheric research community and does not require remote sensing 

expertise to use. Therefore, this investigation can help assess whether standard MODIS 

snow product provides suitable SCA information for input into SRM in less well-studied 

portions of the world. 
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Figure 3-1. Digital elevation model of the Upper Rio Grande basin showing the location 

of the two study basins and the gauging stations used in this study 
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3.2. Study Site 

Two tributary watersheds of the URG basin in Colorado and New Mexico were 

selected for this study (Figure 3-1). One watershed located in the northern part of URG 

has been a main research watershed for SRM-related research and has been utilized for 

development and testing of SRM techniques (e.g. Rango and van Katwijk, 1990; Rango, 

1992; van Katwijk et al., 1993; Rango and Martinec, 1997; Rango et al., 2002; Rango et 

al., 2003). It thus provides an ideal setting for evaluating the performance of SRM using 

MODIS and NOHRSC snow maps as model inputs. 

In the URG, snow formation usually begins in late October, with the snowpack 

approaching its maximum SWE near April 1st as has been measured at snowcourses 

scattered across the basin and in more recent years also at SNOTEL sites. The exact 

timing of peak SWE accumulation varies spatially across the URG basin and from year 

to year. This study only considers the period from April 1st to the end of the snowmelt 

season. 

The larger of the two studied watersheds is Rio Grande upstream of the USGS 

gauge near Del Norte, Colorado (hereafter referred to simply as the Rio Grande). The 

smaller and more southerly watershed is the Rio Ojo Caliente upstream of USGS gauge 

at La Madera, New Mexico (hereafter referred to as the Rio Ojo). The pertinent 

geographic characteristics of the two watersheds are listed in Table 3-2 and the 

proportion of each landcover class covering each of the three SRM elevation zones in 

each basin is listed in Table 3-3. Both of the watersheds meet the 100-500 km2 
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minimum recommended area for the use of SRM given the spatial resolutions (500 m 

and 1000 m) of the snowcover maps being investigated (Rango, 1985; Martinec et al., 

1998). In the SRM modeling, each watershed is separated into three approximately 500 

m altitudinal zones and SRM inputs (daily temperature, precipitation, and SCA) are 

allowed to vary between zones. In both watersheds, the 2nd zone area comprises 

approximately 50% of each basin (Table 3-2). Landcover is similar in the two basins for 

the lower two SRM zones (zones 1 and 2). However, in the 3rd (upper) SRM zone of the 

Rio Grande grassland occupies the majority of the area (53%) while evergreen forests 

dominate landcover in the 3rd zone of the Rio Ojo. 

3.2.1 Rio Grande Watershed 

The Rio Grande watershed is located in the northwestern portion of the basin 

and has been a site of several snowmelt runoff modeling studies using SRM (e.g. Rango 

and van Katwijk, 1990; Rango, 1992; van Katwijk et al., 1993; Rango and Martinec, 

1997; Rango et al., 2002; Rango et al., 2003) and contains both NWS meteorological 

sites and SNOTEL sites. Moreover, this watershed has a large altitudinal range, variable 

slopes, and in situ observations over a wide range of environmental conditions. Klein 

and Barnett (2003) showed SCA differences to exist between MODIS and NOHRSC 

snow maps for the winter of 2000-2001, especially at the lower elevations. 
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3.2.2 Rio Ojo Watershed 

Unlike most other tributary watersheds located in the southern portions of URG, 

the Rio Ojo has several meteorological stations located in or in close proximity to the 

watershed. Klein and Barnett (2003) showed the upper portion of this watershed to have 

significant differences in the areas mapped as snow by MODIS and NOHRSC. 

Moreover, the Rio Ojo watershed is much smaller and drier of the two watersheds; 

therefore, the effect of these factors on differences in runoff simulation can be examined. 

Table 3-2. Geographic characteristics of selected watersheds 

 Rio Grande Rio Ojo 

Zone Area 
(km2) 

Elevation 
(m) 

Area 
(km2) 

Elevation 
(m) 

1st 777 (23%)1 2438 – 2937 294 (30%) 1950 - 2449 

2nd 1628 (48%) 2938 – 3437 573 (58%) 2450 - 2949 

3rd 964 (29%) 3438 – 4069 128 (12%) 2950 - 3247 

Total 3369 2438 – 4069 995 1950 - 3247 

1Percentages are the proportions of each zone relative to its total basin area. 
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Table 3-3. Proportion of major landcover classes for two studied watersheds determined 

from USGS North American Landcover Data. The 1st zone in each watershed is the 

lowest, the 3rd zone the highest 

 Rio Grande Rio Ojo 

Zone 1st 2nd 3rd 1st 2nd 3rd 

Evergreen Forests 45% 64% 32% 47% 67% 54% 

Shrublands 9% 3% 2% 3% 18% 18% 

Grasslands 35% 22% 53% 25% 14% 26% 
Deciduous 

Forests 6% 7% 2% 0% 0% 0% 

Others 5% 4% 11% 25% 1% 2% 

 

3.3. Method and Data 

3.3.1 Snowmelt Runoff Model (SRM) 

Among many snowmelt runoff models which use snowcover information, the 

deterministic SRM is one of the most widely used models in both simulation and 

forecasting modes (e.g. Rango and Martinec 1979; Shafer et al. 1982; Martinec 1985; 

Hall and Martinec, 1985; Rango and van Katwijk, 1990; Martinec and Rango, 1995; 

Rango and Martinec, 1997; Ferguson 1999). It was first applied to small European 

basins beginning in 1975 and since has been successfully used in approximately 80 

mountainous basins in 25 countries worldwide (Martinec, 1975; Martinec et al., 1998). 

SRM is a degree-day based model for daily runoff simulations and forecasts in the 

mountainous areas in which snowmelt is the major runoff contributor (Rango and 
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Martinec, 1981; Martinec et al., 1998; Mitchell and DeWalle, 1998). The degree-day 

method employed by SRM has been used in different ways for more than 60 years 

(Clyde, 1931; Collins, 1934), and Rodriguez (1994) points out that SRM and HBV-2 

model (Bergstrom, 1975) are two mostly widely used models using degree-day method 

(Rango and Martinec, 1995). The degree-day method has also proven to be very 

efficient in determining the average zonal or basin SWE for a specific day (Martinec and 

Rango, 1981; Martinec and Rango, 1987; Martinec, 1991). 

Assuming there is an 18-hour time lag between the meteorological inputs on 

day n and the resulting streamflow on day n+1, SRM calculates the daily streamflow 

separately for each zone as follows: 

111 )1(
86400

10000])([ +++ +−
⋅
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In Eq. (3.1), the daily average discharge on day n+1 (Qn+1) [m3s-1] is calculated as the 

sum of three quantities from the preceding day (n): (1) snowmelt calculated as the 

product of the degree-day factor a [cm·oC-1·d-1], the representative zonal degree-days (T  

+ ∆T) [oC·d], the ratio (S) of the SCA to the total basin area (A) [km2], and the snowmelt 

runoff coefficient CS; (2) precipitation contributing to runoff [cm], calculated as the 

product of measured precipitation P and the rainfall runoff coefficient CR; and (3) 

discharge on the preceding day (Qn), weighted by the recession coefficient k. (T + ∆T) 

represents extrapolated degree-days calculated at the hypsometric average elevation of 

the zone from the degree-days measured at the meteorological stations. The snowmelt 

and rainfall runoff coefficients CS and CR are defined as the fraction of snowmelt and 
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rainfall, respectively that become streamflow. The recession coefficient on day n+1, kn+1, 

is defined, as can be seen in Eq. (3.1), as the ratio of streamflow on day n+1 to that on 

day n when there is no input of runoff. The factor 
86400
10000  represents a conversion from 

cm·km2·d-1 to m3s-1. If a watershed contains multiple altitudinal zones, as were used in 

this research, Eq. (3.1) is applied separately to each zone and the discharges are summed. 

If a lag-time other than 18 hours is needed for the basin being modeled, SRM adjusts the 

input data appropriately as explained in the SRM manual (Martinec, et al., 1998); for 

example, for a 6-hour lag, SRM uses an average of the input data from days n and n+1, 

as 12 hours of each day is appropriate. In addition to the coefficients and input data 

appearing in Eq. (3.1), other parameters such as critical temperature, rainfall 

contributing area also need to be specified in SRM. 

When streamflow simulations are made using SRM, SRM gives users a freedom 

to modify the values used at different times during melt season unlike other calibration 

models (Ferguson, 1999). Related to these characteristics of SRM, Ferguson (1999) 

described SRM as the model which falls in between the fully calibration-based 

hydrological models which are fitted from data and have no physical interpretations and 

fully physics-based models which are physical constants or measurable real-world 

quantities so that no fitting is involved. 
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3.3.2. Determination of SCA Variation 

The shape of a snow depletion curve (changes in SCA over time during the melt 

season) depends on several factors including initial snow reserves and meteorological 

conditions as well as intermittent precipitation during the melt season (Leaf, 1967; Hall 

and Martinec, 1985). The snow depletion curves required as input into SRM only 

consider the depletion of seasonal snowcover which has been present for some weeks 

and therefore has undergone a process of densification. ‘Transient’ intermittent snow 

that falls during the ablation season is treated in SRM as precipitation, and therefore 

sudden and short-lived increases in SCA should not be included in the snow depletion 

curve. During the 2001 water year, several intermittent one or two day snowfall events 

occurred during the melt season. By comparing snow maps from the preceding and 

following days, it can be determined that this snowfall was a transient event relative to 

the seasonal snowcover. Therefore, although the streamflow simulations begin on April 

1st, it is necessary to inspect both MODIS and NOHRSC snow maps beginning earlier in 

the snow season and consider several neighboring snow maps simultaneously in order to 

decide whether each available snow map is affected by ‘transient’ intermittent 

snowcover. 

Although there is one equation that has been developed to model the snow 

depletion curve (Hall and Martinec, 1985; Rango et al., 2003), this equation also 

requires subjective decisions of the modeler. Therefore, the construction of the snow 

depletion curves used in this research follows the general procedures outlined in the 
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SRM manual (Martinec et al., 1998), and the following specific approach was used. First, 

the SCA as a percentage of each zone’s total area was obtained from all cloud-free days 

using MODIS and NOHRSC snow maps. In here, cloud-free days were mainly 

determined by modeler’s subjective decisions through visual inspection, and some cases 

in which cloud is reclassified as snow will be described below. Secondly, an initial snow 

depletion curve was constructed for each zone, using visual analysis to remove days 

affected by transient intermittent snow. Thirdly, starting on April 1st, the values of SCA 

were interpolated at 10-day intervals from this initial snow depletion curve. Finally, a 

final smoothed snow depletion curve was created by fitting a spline function through the 

interpolated points. 

3.3.3. MODIS Snow Cover 

As one aim of this study is to evaluate the suitability of the standard MODIS 

snowcover product as an input into SRM, MODIS daily snowcover product (MOD10A1 

version 3) were used as one source of snowcover information. Each daily MOD10A1 

file is a single tile of 500m gridded, georeferenced cells covering a 1200 km x 1200 km 

area. The MOD10A1 product indicates the presence of snow, no snow, and cloud using 

all MODIS observations covering each pixel during a day using the SNOWMAP, the 

MODIS snow-mapping algorithm. In SNOWMAP, surface reflectance and a cloud mask 

serve as the basic inputs to the MODIS swath products with other ancillary inputs such 

as land/water mask or geographic adjustment, cloud mask analysis, decision rules and 

quality assurance analysis added to the algorithm to construct the daily and weekly 
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snowcover products (Hall et al., 1995). Snow detection in SNOWMAP is accomplished 

several spectral tests incorporating at-satellite reflectances in visible to mid-infrared 

wavelengths. A normalized difference snow index (NDSI) employing MODIS bands 4 

(0.545-0.565 µm) and 6 (1.628-1.652 µm) is the primary snow-classification criteria: 

 ( )
( )64
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+
−

=    (3.2) 

Non-forested pixels whose NDSI ≥ 0.4 and reflectance in MODIS band 2 (0.841-0.876 

µm) is >11% will be mapped as snow. However, snow-covered forests may have lower 

NDSI values. To better map these snow-covered forests, a combination of the 

normalized difference vegetation index (NDVI) computed using MODIS bands 1 (620-

670 µm) and 2 (841-876 µm) and the NDSI are used. Pixels falling in a polygon region 

in NDVI-NDSI space may be mapped as snow when the NDSI is < 0.4. However, to 

prevent very dark forests from being erroneously mapped as snow the reflectance in 

MODIS band 4 must be greater than <10% even if other criteria are met. A split-window 

technique employing MODIS thermal bands 31 (10.780-11.280 µm) and 32 (11.770-

12.270 µm) is used to mask misclassified pixels whose temperature is too high to 

contain snow. Details concerning the SNOWMAP algorithm can be found in Hall et al., 

(1995, 2001) and a complete description of the suite of MODIS snowcover products are 

described in Hall et al. (2002). 

In the MOD10A1 snow products, cloud masking is accomplished using the 

MODIS cloud mask. The MODIS cloud-masking algorithm uses a series of visible, mid 
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and thermal infrared thresholds and consistency tests to specify the confidence with 

which a MODIS observation provides an unobstructed view of the surface. The actual 

cloud screening tests employed vary depending on the underlying surface and other 

conditions. A complete description of the cloud mask algorithm is presented in 

Ackerman et al. (1998). 

3.3.4. NOHRSC Snow Cover 

During the northern hemisphere snow season, snowcover maps are created for 

the conterminous United States, Alaska, and the southern portions of Canada by 

NOHRSC since 1986, primarily for use in hydrological forecasting. Currently, the 

NOHRSC daily nationally-gridded product is available the day after the satellite 

observations are made (Bitner et al., 2002). Snow detection is accomplished via a semi-

automated multispectral snow classification algorithm (theta) that is designed to 

distinguish snow from cloud, land, and water over North America. Typically, two GOES 

images per day (GOES 10 for western USA and GOES 8 for eastern USA) and images 

from AVHRR are combined (Hartman et al., 1996; Maxson et al., 1996; Cline and 

Carroll, 1999; Hall et al., 2000; Bitner et al., 2002). NOHRSC daily snow maps are 

produced at a nominal resolution of approximately 1 km and are available via the 

internet. 

NOHRSC snowcover products serve as a useful comparison for MODIS snow 

maps because NOHRSC snowcover products have been used for almost 20 years. While 

Landsat Thematic Mapper (TM) and AVHRR images have been most commonly used 
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for deriving SCA information for input into SRM, Mitchell and DeWalle (1998) did 

employ NOHRSC snow maps in SRM streamflow simulations for the Towanda creek 

basin located in Pennsylvania, USA. 

3.3.5. Landcover 

It is known that landcover affects the snow mapping accuracy of both MODIS 

and NOHRSC in the URG (Klein and Barnett, 2003). In this research, land cover 

information for the two watersheds was obtained from the National Land Cover Data 

(NLCD) produced by USGS (http://landcover.usgs.gov/natlland cover.asp). This data set 

was produced from 30 m Landsat TM multi-band mosaics using an unsupervised 

clustering algorithm along with aerial photography and ground observations. The 21 

land cover classes of the NLCD are based on the Anderson Level III land-use and land-

cover classification system; however, some Anderson Level II classes have been 

consolidated into a single NLCD class (Vogelmann et al., 2001). The NCLD was used to 

obtain the proportions of major landcover classes for each zone of the two watersheds 

(Table 3-3). The pixels falling in each altitdinal zone were determined using the 30 m 

spatial resolution National Elevation Dataset (NED) by United States Geological Survey 

(USGS) (http://gisdata. usgs.net/NED/default.asp). 

3.3.6. Meteorological Observations 

In addition to zonal daily SCA, zonal daily temperature and precipitation data 

are also needed to run SRM. These data values were obtained from SNOTEL and NWS 

http://landcover.usgs.gov/natlland cover.asp
http://gisdata. usgs.net/NED/default.asp
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stations around or inside the watershed. For the Rio Grande watershed, 6 SNOTEL 

stations and 1 NWS station were used while 2 SNOTEL stations and 2 NWS stations 

were used in the Rio Ojo watershed. Figure 3-1 gives the locations of SNOTEL and 

NWS stations used. Although they are not located within the study watersheds, one or 

two NWS stations were used to characterize meteorological conditions in each basin’s 

lower elevations because SNOTEL stations are restricted to higher elevations. 

Zonal daily temperatures were calculated as follows. First, average monthly 

temperatures at each station were computed from average daily temperatures. Monthly 

temperature lapse rates were then computed by linear regression of the mean monthly 

temperatures observed at all the available NWS and SNOTEL stations against their 

elevations. The lowest elevation stations (Del Norte 2E (NWS, 2399m) and Abiquiu 

Dam (NWS, 1945m)) were selected as the base stations of the Rio Grande and Rio Ojo 

watershed, respectively. For each day of a month, the difference between the monthly 

average temperature at the base station and monthly temperature at the base station’s 

elevation predicted by the regression equation (i.e., the regression residual at the base 

station) was applied to the base station’s daily temperature to obtain a modified daily 

temperature at the base station. Then the daily temperature for each zone was found by 

extrapolating from the modified daily temperature at the base station using the monthly 

regression slope to the hypsometric mean elevation of each zone. 

To determine zonal daily precipitation, the average daily precipitation from all 

the available stations was first calculated and assigned to the average elevation of all the 

stations. Then average daily precipitation was extrapolated to the mean hypsometric 
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elevations of the respective zones by an assumed elevation gradient of 3.5% per 100m 

(Martinec et al., 1998). 

3.3.7. Parameterization of SRM 

To effectively simulate runoff, SRM requires the determination of several 

coefficients: the snow (CS) and rainfall (CR) runoff coefficients and the degree-day 

factor (a) in Eq. (3-1) which vary both inter- and intra-annually depending on 

hydrometeorological and snow conditions. An extensive literature describing the 

procedures for obtaining physically-realistic values for these coefficients exists (Rango 

and Martinec 1979; Shafer et al., 1982; Hall and Martinec, 1985; Martinec and Rango, 

1986; Martinec et al., 1998; Mitchell and DeWalle, 1998). 

Streamflow simulations from 1990 to 2000 using the NOHRSC snow products 

were first performed in the Rio Grande watershed. The coefficient values in each year 

were obtained from the modifications of values used in the sample simulation for this 

same watershed which is included in the SRM program (version 4.06), starting with the 

modification of the runoff coefficients if there is general under or over-prediction of 

streamflow. And then degree-day factor (a) or other parameters were modified if 

unsatisfactory streamflow simulation were obtained after the modification of runoff 

coefficients. The degree-day factor (a) and snow runoff coefficient (CS) were allowed to 

vary between zones, while identical rainfall runoff coefficient (CR) was applied to the 

whole basin. In the case of Rio Ojo watershed, because two watersheds are located near 

to each other, the time variation and values of coefficients in the Rio Grande watershed 
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were used as a starting point in the determination of coefficient values in the Rio Ojo 

watershed and then the same procedure was applied, i.e., adjustment of the runoff 

coefficients if there was general over- and under-prediction of streamflow and then other 

coefficients each year. In the case of the recession coefficient (k), this important 

coefficient was parameterized as a function of streamflow using daily streamflow rates 

measured in the USGS gauge station from 1990 to 2000, following the procedure 

explained in Martince et al. (1998). 

Figure 3-2 illustrates how the derived coefficients vary at half-month interval 

beginning on April 1st in the 2nd zone or all zones of each basin depending on the 

coefficient, and Table 3-4 shows two statistical criteria used to assess the SRM 

streamflow simulations for each of the 11 years. Although degree-day factor should 

increase linearly with time during the melt season in both watersheds (Kustas et al., 

1994; Ferguson, 1999; DeWalle et al., 2002), runoff coefficients show, in Figure 3-2, 

some differences in terms of time variation between the two watersheds. The probable 

reasons are relatively thinner snow cover due to more southerly latitude, lower average 

elevation, and the differences of soil moisture recharge in an initial early season of melt 

due to the higher aridity in the Rio Ojo compared to the Rio Grande watershed. As can 

also be seen in Figure 3-2, there is less intra-annual variation in the determined 

coefficients for the larger Rio Grande watershed as compared to the smaller Rio Ojo 

watershed. It can be expected that the smaller watershed would have larger intra-annual 

variations because it is more likely to be influenced by meteorological variations such as 

irregular snowfalls and spatial variability in surface characteristics in addition to 
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geographic conditions mentioned above. This highly variable situation in the Rio Ojo 

watershed is also evidenced by multiple high streamflow events during the snowmelt 

period. That is, while the Rio Grande always experiences a single peak streamflow each 

year, the Rio Ojo experienced two to four similar amount of peak streamflow events 

each year, which makes the determination of appropriate coefficients more difficult and 

streamflow simulations less accurate. 

3.4. Results 

3.4.1 Snow Depletion Curves 

The study employed MODIS and NOHRSC snow maps for the period from 

January 1st to July 31st, 2001 (Figure 3-3). Visual inspection of the daily snow images 

was deemed to be the most appropriate method for selecting appropriate images for 

determining SCA because many MODIS and NOHRSC daily snow maps suffer from 

cloud contamination. In cases where it seemed reasonable to assume that snow had been 

misclassified as cloud, like the cases of the cloudy pixels which are located totally inside 

the snow pixels or cloudy pixels in the transition zone between snow and land which 

will be explained later, the cloudy pixels were reclassified as snow in creating the snow 

depletion curves. 
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Figure 3-2. Time variations in the calculated SRM parameters for individual years 

(dashed lines) in an eleven-year period (1990-2000) as well as their arithmetic means 

(solid lines) over the same period. Degree-day factor (a) and snow runoff coefficient 

(CS) in the 2nd zone for the Rio Grande (A) and for the Rio Ojo (B) watershed, and 

basinwide rainfall runoff coefficients (CR) for both watersheds (C) 



 

 

Table 3-4. SRM simulation statistical results using NOHRSC derived SCA values from April 1st to September 30th 

 Rio Grande 

 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 Ave.
Goodness of Fit 

(R2)1 0.93 0.89 0.83 0.82 0.79 0.87 0.90 

 

0.85 0.95 0.85 0.82 0.86

Vol. Diff  
Dv (%)2 -0.23 5.99 3.82 0.08 5.49 0.94 2.66 -0.63 1.19 -0.20 5.06 2.39

 Rio Ojo 

 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 Ave.
Goodness of Fit 

(R2) 0.67 0.28 0.89 0.67 0.67 0.77 0.82 

 

0.88 0.91 0.80 0.83 0.75

Vol. Diff 
Dv (%) -3.28 44.89 9.87 35.75 13.13 12.63 12.08 -0.10 6.70 2.17 1.83 12.95

1Goodness of Fit is defined as
2
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Day of 2001
 

Figure 3-3. Dates of the MODIS and NOHRSC snowcover maps selected for (A) the Rio Grande 

and (B) the Rio Ojo watersheds. For each watershed, the black lines in the upper and lower panels 

indicate the dates for NOHRSC and MODIS snowcover maps, respectively. Gray area indicates snow-free periods 

63
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Example MODIS and NOHRSC snowcover maps from 4 dates (Figure 3-4) 

illustrate the progressive snowmelt pattern observed in the study basins. One interesting 

phenomenon in the MODIS snow maps is that cloudy pixels which were reclassified as 

snow in this research, are often located in the transition zone between snow-covered and 

snow-free areas as was previously noted by Riggs and Hall (2002) and Klein and 

Barnett (2003). In the discussion of the problem of misclassification of snow as clouds 

in the standard MODIS snow products by Riggs and Hall (2002), they noted that the 

transition zone between snow and land is usually covered by thin or fractional snow. In 

addition, they proved that misclassified clouds at the edges of SCA can be eliminated 

using a less strict cloud masks. So, the reclassification from cloud to snow in the 

transition zone between snow-covered and snow-free land is a reasonable assumption. 

In general, MODIS snowcover products exhibit more consistent patterns of 

snow retreat as a function of elevation than do NOHRSC snow maps. Comparing the 

SCA images from April 13th or May 1st (Figure 3-4) with a DEM of the URG (Figure 

3-1) shows that the transient snowline on these two dates occurs at much more uniform 

elevations in the MODIS snow maps than in the NOHRSC snow maps. Figure 3-5 

compares the snow extent mapped by MODIS and NOHRSC as a function of aspect for 

both watersheds for the days illustrated in Figure 3-4. Although there are some 

differences in the area mapped as snow by MODIS and NOHRSC at some aspects, 

overall there are strong similarities in the patterns of snow mapped as a function of 

aspect by the two algorithms. Therefore, it can be expected that aspect does not play a 



 65
 

significant role on the pattern of snowcover mapped by the two approaches in these two 

watersheds. 

Land Cloud Snow
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Figure 3-4. MODIS and NOHRSC snow maps for selected days in 2001 for (A) the Rio 

Grande and (B) the Rio Ojo watersheds. White indicates snow and gray cloud and black 

land 
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Figure 3-5. Polar plot (bin size: 30o) showing the dependence of SCA as a function of 

aspect for (A) the Rio Grande and (B) the Rio Ojo watersheds for MODIS (solid line) 

and NOHRSC (dotted line). Selected days are the same as those of Figure 3-4 
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The daily snow depletion curves used in the SRM simulations beginning from 

April 1st and individual SCA observations beginning from March 1st derived from 

MODIS and NOHRSC snowcover maps are shown in Figure 3-6. Individual SCA 

observations are shown beginning from March 1st in order to identify transient 

intermittent snowfalls as described above. The methodology used to produce the snow 

depletion curves does result in some differences between the observed SCA and the final 

depletion curves for both MODIS and NOHRSC (Figure 3-6) due to both the avoidance 

of transient snow and temporal smoothing. However, the differences between the 

individual observations and the snow depletion curves were similar for both snow 

products. 

In 2001, the snow depletion curve in the Rio Grande watershed was much easier 

to characterize than the Rio Ojo watershed because the Rio Grande had considerably 

more snow and the snowmelt season lasted much longer than in the Rio Ojo. In the Rio 

Ojo watershed, it was difficult to determine the actual SCA in the lowermost zone on 

April 1st because only one cloud-free NOHRSC snow map was acquired within 10 days 

of this date. Unfortunately, this image also appears to be affected by a transient 

intermittent snowfall event as both MODIS and NOHRSC snow maps for previous and 

subsequent dates show considerably less snow. 

Differences between the MODIS and NOHRSC snow depletion curves are 

observed in Figure 3-6. In the lowermost (1st) zone of the Rio Grande watershed, 

MODIS mapped less snow than did NOHRSC in the initial stages of snowmelt and more 

snow during the final stages of snowmelt. In the middle (2nd) zone of the Rio Grande 
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watershed, MODIS showed snow persisting longer into the melt season than did 

NOHRSC. This difference is significant because this zone occupies 48% of the basin’s 

total area and will significantly affect the simulated streamflow. In the upper (3rd) zone 

of the Rio Grande watershed, MODIS shows more snow persisting into through the end 

of May than does NOHRSC. However, through the remainder of the melt season similar 

snow retreat can be observed in both snow products. 
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Figure 3-6. Snow depletion curves for MODIS (solid lines) and NOHRSC (dashed lines) 

showing changes in SCA as a percentage of the total area of each zone from April 1st, 

2001 until the end of the melt season. Also shown are individual SCA observations for 

selected days from MODIS (cross) and NOHRSC (diamonds) 
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Figure 3-7. Total SCA in each zone of the (A) Rio Grande and (B) Rio Ojo watersheds 

as derived from MODIS (upper panels) and NOHRSC (lower panels) snow maps for the 

period from April 1st, 2001 until the end of the melt season. Square for the 1st zone, 

diamond for the 2nd zone and triangle for the 3rd zone 

Similar differences are seen between the two snowcover products for Rio Ojo 

watershed. In the lowermost (1st) zone, both MODIS and NOHRSC show SCA to be < 

5% of the total zonal area. In the middle (2nd) zone MODIS shows more snow and 

shows it persisting longer into the melt season. However, there is large scatter in the 
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actual SCA values for both products in this zone. In the highest (3rd) zone, MODIS 

shows a slower snowmelt in the April, but slightly faster snow retreat in May. However, 

because the number of observations at the end of the melt season is limited, the zonal 

snow depletion curves in this period were more subjective than those earlier in the 

snowmelt season. 

From a snowmelt runoff perspective, depicting changes in the actual area 

covered by snow is often more useful than simply examining changes in the snowcover 

fraction in each zone. As can be seen in Figure 3-7, snowcover in the 2nd zone of both 

studied watersheds will dominate the simulated streamflow from April 1st to 

approximately May 15th in the Rio Grande and from April 1st to April 15th in the Rio Ojo 

watershed simply due to much larger SCA in this zone. After these periods, the 3rd zone 

dominates the simulated streamflow in both watersheds. In the Rio Grande, the 

lowermost (1st) zone seems to have some effects on the simulated streamflow during the 

first half of April and MODIS shows SCA in this zone decreasing more slowly than 

does NOHRSC. Meanwhile, in the Rio Ojo, the contribution to simulated streamflow 

from this zone is very small. 



 71
 

0

50

100

150

200

St
re

am
flo

w
 R

at
e 

(m
3 /s

)

Rio Grande

0

5

10

15

Rio Ojo

APR MAY JUN JUL AUG SEP  

Figure 3-8. Measured (solid line) and SRM simulated streamflow using MODIS- (dotted 

line) and NOHRSC- (dashed line) derived SCA inputs and the representative parameter 

values 
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3.4.2. Runoff Simulation Comparisons 

Using the developed MODIS and NOHRSC snow depletion curves, runoff was 

simulated from April 1st to September 30th, 2001 for both watersheds using SRM and the 

representative coefficient values obtained from 1990 to 2000 simulations (Figure 3-2). 

Figure 3-8 illustrates the daily runoff simulations using the two snow products along 

with measured discharge, and Table 3-5 summarizes the simulation result statistics for 

both watersheds. In the case of Rio Grande watershed, all of the simulation result 

statistics are fairly good even though the simulations were conducted using coefficient 

values that do not account for the specific hydrometeorological characteristics of the 

study year. The volume differences (measured – simulated) between the measured and 

simulated discharge are 2.6% and 14.0% for MODIS and NOHRSC, respectively. When 

measured streamflow depth from April 1st to September 30th in 2001 is compared with 

average measured streamflow depth from 1990 to 2000 in Table 3-5, higher streamflow 

depth happened during the year 2001 in the Rio Grande watershed. Therefore, it is 

reasonable for the simulated streamflow using representative coefficient values to have 

less streamflow depth compared to the measured one in 2001. The MODIS and 

NORHSC streamflow simulations compared for the Rio Grande watershed are quite 

comparable in their ability to successfully simulate the climbing limb of hydrograph. 

Large differences between the two simulations start approximately just before the peak 

annual streamflow. Moreover, on the hydrograph’s falling limb, the streamflow 

simulation using MODIS snow products more closely match observed variations in 
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streamflow. Meanwhile, both snow products fail to catch some secondary and minor 

streamflow peaks on the falling limb. 

Table 3-5. Result statistics of SRM simulations, April 1st - September 30th 

 Rio Grande Rio Ojo 

 MODIS NOHRSC MODIS NOHRSC 

Measured streamflow volume, 2001 
( 106 m3) 808 28.7 

Measured streamflow depth, 
2001 (m) .240 .0288 

Average measured streamflow 
depth, 1990-2000 (m) .193 .0532 

Measured precipitation during 
simulation period, 2001 (m) .363 .208 

Computed streamflow volume, 
2001 (106 m3) 787 695 38.1 34.0 

Average measured discharge, 
2001 (m3/s) 51.1 1.81 

Average computed discharge, 
2001 (m3/s) 49.8 44.0 2.41 2.15 

R2 Goodness of Fit1 between 
measured and computed daily 

discharge, 2001 
.89 .80 .57 .68 

Volume difference2, 2001 (%) 2.6 14.0 -33.1 -18.6 

1, 2See Table 3-4 for definition. 

In the Rio Ojo watershed, there are greater differences between simulated and 

measured runoff when two snowcover products are used. Both MODIS and NOHRSC 

SRM simulations significantly overpredict discharge with volume differences being -

33.1% for MODIS and -18.6% for NOHRSC and cannot model the peak streamflow. 

This situation can be also explained by much smaller measured streamflow depth in 
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2001 compared to average measured streamflow depth from 1990 to 2000 (Table 3-5). 

These results, compared to the better results for the Rio Grande watershed, would appear 

to be due to two factors in addition to above hydrological situation in 2001: (1) the Rio 

Ojo watershed is much drier than the Rio Grande, as can be seen by its much smaller 

runoff depth (Table 3-5), its smaller fractional area of snowcover (Figure 3-6), and 

smaller estimated depth of SWE on April 1st (Table 3-6, to be discussed below) and to a 

smaller degree, (2) its smaller size (smaller watersheds are more easily affected by 

meteorological variations, spatial variability in surface characteristics and consequently 

changes in the SRM coefficients). The small amount of runoff observed in the Rio Ojo 

implies that loss processes (evaporation and the portion of infiltration that does not re-

appear as baseflow) are relatively more important in the watershed, yet these were 

modeled relatively crudely in SRM, as compared to the computation of snowmelt runoff. 

These characteristics of small watershed are also seen in large intra-annual variability in 

the coefficient values (Figure 3-2). 

Figure 3-8 shows that the simulated discharge from SRM using MODIS snow 

products is greater than simulated discharge using NOHRSC during peak runoff periods 

in both watersheds. The greater peak flow in mid-May in the Rio Grande is not 

surprising as the largest SCA differences between MODIS and NOHRSC snow maps 

occur during May, when snowcover is still extensive, air temperatures are rising 

significantly and are consistently above freezing. In the lower and more southerly Rio 

Ojo watershed, the largest differences between MODIS and NOHRSC snowcover occur 

during April and these differences result in the higher peak SRM simulated discharge 
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using MODIS snow products. Moreover, daily SRM-generated streamflow is calculated 

by combining the previous day’s streamflow modified by the recession coefficient with 

the current day’s calculated runoff. The consideration of previous day’s runoff is shown 

in the second-term in Eq. (3-1). So if a previous day’s runoff is overestimated, this 

overestimation will propagate to following days, helping to exaggerate the differences in 

the simulated streamflow. 

Examining differences between the MODIS- and NOHRSC-based SRM 

simulations yields two important observations. The first is that discharge is higher in the 

MODIS simulations due to greater SCA in the middle (2nd) and highest (3rd) zone. 

Differences in total streamflow volume between SRM simulations using MODIS- and 

NOHRSC-derived snow depletion curves are 12% and 11% ((MODIS – NOHRSC) / 

MODIS) for the Rio Grande and Rio Ojo watershed, respectively. However, both 

simulations show very similar temporal pattern discharges for both watersheds. In fact, 

the correlation coefficients between discharges simulated using MODIS and NOHRSC 

snowcover products are remarkably high at 0.99 for both watersheds. 

3.4.3 Estimate of Total SWE Accumulation on April 1st 

Several papers have discussed determining areal average SWE from 

accumulated daily snowmelt depths and daily SCA variations (Martinec and Rango, 

1981; Martinec et al., 1987; Martinec, 1991). In SRM the relationship between 

accumulated snowmelt depth and SCA variations is described by MDC. MDC quantifies 

the relationship between daily-accumulated snowmelt depth calculated from air 
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temperatures and a degree-day factor, and daily reductions in basinwide or zonal SCA. 

That is, the y-axis is just daily ‘observed’ fractional SCA (basically given in Figure 3-6) 

and the x-axis shows the cumulative melt depth M on day n, according to Eq. (3-1), 

. Figure 3-9 illustrates MDCs for each zone in the two studied 

watersheds employing MODIS and NOHRSC snow depletion curves and representative 

coefficient values. 
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Figure 3-9. Modified Depletion Curves calculated using MODIS (solid line) and 

NOHRSC (dotted line) snow depletion curves for the (A) Rio Grande and (B) Rio Ojo 

watersheds 
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Spatially-averaged SWE, either for an entire basin or a single zone, for a 

specific day, in this case April 1st, 2001, can be calculated by integrating the area under 

the MDC. Calculating SWE by this method can help assess the representativeness of 

snowcourse or SNOTEL SWE as well as to better determine winter precipitation total in 

mountainous areas and detection of differences of snow accumulation across a basin 

(Martinec and Rango, 1981; Martinec, 1991). Therefore, it is interesting to examine how 

SRM estimates of total basin SWE on April 1st, which is near the time of maximum 

snow accumulation, differ when MODIS and NOHRSC snow maps are used as SRM 

inputs. It is also useful to compare these SWE estimates to those made from in situ 

SNOTEL measurements. 

Comparing the snow depletion curves illustrated in Figure 3-7 with the 

modified depletion curves in Figure 3-9 reveals similar temporal trends in snow retreat. 

Meanwhile, in the lowermost (1st) zone in the Rio Grande watershed, the MODIS-based 

MDC shows snow cover to persist to much higher level of accumulated melt than does 

the NOHRSC-based MDC, and thus seems to exaggerate snow accumulation differences 

between the two products. Higher air temperatures in this zone compared to zones 2 and 

3 and slower snow retreat as mapped in the MODIS snow products in later snowmelt 

season seem to be the cause of this exaggerated difference in the MDC. 

Table 3-6 lists the zonal average SWE values and total April 1st SWE calculated 

from SRM using representative SRM coefficient values. Average measured SWE from 

the SNOTEL sites located within the 3rd zone of both watersheds is also shown. As 

expected from the simulation results and Figure 3-9, higher total and zonal April 1st 
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SWE accumulations are found in the MODIS-based SRM simulations. For the Rio 

Grande and Rio Ojo, NOHRSC-based basinwide SWE volume estimates were 27% and 

25%, respectively, lower than SWE calculated from MODIS-based depletion curves. 

Comparisons between SRM calculated SWE values and in situ SNOTEL-

measured SWE could only be made in the 3rd zone because SNOTEL stations are 

restricted to higher elevations. As can be seen in Table 3-6, SRM calculated SWE 

values using both MODIS and NOHRSC are less than those observed in the 3rd zone of 

each watershed when average coefficient values are applied. However, when zonally-

averaged SWE values calculated from the MODIS and NOHRSC-based MDCs are 

compared, the observed differences are insignificant except in the 2nd zone of both 

watersheds. However, because this zone occupies approximately 50% of the total area in 

both watersheds, some differences in total SWE accumulation do occur between the two 

snow products. 
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Table 3-6. April 1st SWE in the two watersheds 

Rio Grande Average SWE (m) in each zone SWE volume: 
Area * SWE (m3) 

Zone Zone Area 
(km2) MODIS NOHRSC Measured 1 MODIS NOHRSC

1st zone 777 .11 .07  8.55E+07 5.44E+07

2nd zone 1628 .32 .20  5.22E+08 3.26E+08

3rd zone 964 .48  .42 .62 4.63E+08 4.05E+08
Watershed 

Total 3369 .32 .23  1.07E+09 7.85E+08

 
Rio Ojo  Average SWE (m) in each zone SWE volume: 

Area * SWE (m3) 

Zone Zone Area 
(km2) MODIS NOHRSC Measured 2 MODIS NOHRSC

1st 294 .002 .002  5.88E+05 5.88E+05

2nd 573 .07 .04  4.01E+07 2.29E+07

3rd 128 .26  .25 .34 3.33E+07 3.20E+07
Watershed 

Total 995 .074 .056  7.40E+07 5.55E+07

1Average of SWE values from four SNOTEL stations located in the 3rd zone. 

2Average of SWE values from two SNOTEL stations located in the 3rd zone. 

3.5. Conclusions 

This paper investigates how differences in snow maps produced by NOHRSC 

and from MODIS are translated into differences in simulated runoff and zonally 

averaged April 1st SWE by the widely-used snowmelt runoff model SRM for the 

snowmelt season of the year 2001. Differences in mapped snow cover during the melt 

season lead to differences in the simulated runoff and zonally averaged SWE. The 

MODIS product generally maps more snow at higher elevations in the studied 

watersheds than does NOHRSC, while both products map similar snow amounts at 
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lower elevations. The greater amount of snow mapped by MODIS leads to higher 

simulated discharge volumes from April to September in SRM simulations than when 

NOHRSC snow depletion curves are used. Similarly, the calculated zonally averaged 

April 1st SWE from MODIS is higher than that calculated using NOHRSC snow maps. 

MODIS-derived snow maps show more consistent patterns of snow cover retreat with 

respect to elevation than do the NOHRSC snowmaps. This is probably due to their 

higher spatial resolution of the MODIS product, which enables it to provide a more 

detailed picture of snow cover in these high relief basins (Figure 3-4). Meanwhile, no 

significant effects of aspect on mapped snowcover between the two products were 

observed in the two watersheds (Figure 3-5). 

The large number of cloudy days in both snow products necessitates making 

some subjective decisions in the construction of SRM snow depletion curves. Despite 

some subjectivity, the developed curves do a reasonable job of capturing real differences 

in SCA between the two products (Figure 3-6). Overall, the snow depletion curves 

developed from MODIS and NORSC snowcover maps provide consistent and 

comparable patterns of snow retreat in the two studied watersheds. 

For the larger and wetter of the two watersheds, the Rio Grande, satisfactory 

simulations can be obtained by using representative coefficient values. The MODIS-

based simulations show higher discharge simply because MODIS maps more snow in 

the watersheds. Meanwhile, SRM was unable to satisfactorily simulate observed 

streamflow in the smaller Rio Ojo watershed. For the Rio Ojo, it appears that these 

coefficient values should be determined for the hydrometeorological conditions of the 
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current year to obtain good matches between simulated and observed streamflow, and it 

appeared to be difficult to model the multiple-peaked hydrograph in SRM. Nevertheless, 

when the time-variation of simulated MODIS- and NOHRSC-based discharges are 

compared, the correlation coefficients between them are remarkably high at 0.99 for 

both watersheds. 

The observed differences MODIS- and NOHRSC-based simulated streamflow 

for both watersheds can be traced to spatial-temporal differences in SCA in a single 

SRM zone within each watershed. The middle elevation zone (2nd) covers approximately 

50% of the area of both watersheds. In this zone of both watersheds, MODIS 

consistently maps more snow. Because this zone also occupies a high proportion of each 

watershed’s area, small fractional SCA differences lead to differences in simulated 

streamflow. 

Total basin April 1st SWE calculated using MODIS-based snow depletion 

curves show a little more difference compared to the difference in the amount of 

simulated streamflow. Again, the 2nd zone in each watershed contributes most 

significantly. There are small differences between SRM zonally averaged SWE and 

SNOTEL measured SWE located in the uppermost (3rd) zone. 

Snowcover information obtained from MODIS and NOHRSC maps and 

discharge simulated using the SRM is quite comparable both in terms of total seasonal 

discharge and in daily streamflow variations for two tributary basins of the URG. Thus it 

appears that standard MODIS snowcover product can provide sufficient-quality SCA 
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information for streamflow simulation using SRM in the snowmelt dominated 

watersheds. 

This research focused on the standard MODIS snowcover product because of its 

widespread availability to the cryospheric community. Moreover, the MODIS snow-

mapping algorithm is not static but is evolving. One potential area of improvement in 

MODIS snow cover products is to include subpixel estimates of snow cover fraction 

which would improve SCA over the current MODIS snow products and make more 

accurate snowmelt runoff simulations or forecasts possible. Several approaches to 

subpixel (fractional) snowcover calculations using MODIS have been recently 

undertaken (Barton et al., 2000; Kaufman et al., 2002; Landesa and Rango, 2002; Rango 

et al., 2003). Meanwhile, Rango et al. (2002, 2003) developed a different algorithm to 

derive a MODIS snow product at the swath level (level - 2) using the same spectral 

regions as when AVHRR (channels 1 and 2) or Landsat TM (channels 2 and 4) image 

data are used. Thus there is great potential for improved MODIS estimates of SCA 

compared to what is provided by the current algorithm. Indeed, Rango et al. (2002) 

asserted that MODIS offers the best potential for snow mapping on regular basis with 

respect to temporal and spatial resolution and data availability. 

Finally, while satisfactory streamflow forecasting using only SCA information 

was obtained in the Himalayas (Dey et al., 1983), the worldwide use of SRM to simulate 

or forecast snowmelt runoff also requires reliable temperature and precipitation 

measurements which provides additional constraints to its use even if MODIS can 

provide adequate measurement of snowcover extent. Therefore, if the above conditions 
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(adequate temperature and precipitation measurements) are satisfied and the watersheds 

of interest are snowmelt-dominated ones, these results show that SRM simulations using 

snowcover maps from MODIS can be successfully applied to other parts of the world. 
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CHAPTER IV 

POTENTIAL AND LIMITATIONS OF MASS-BALANCE MODELS 

FOR FORECASTING LONG-TERM STREAMFLOW VOLUME IN 

THE UPPER RIO GRANDE BASIN 

4.1 Introduction 

The considerable interannual variation of precipitation and runoff is part of the 

natural variability of climate and hydrological systems, and must be considered in 

efficiently managing water resources and coping with risks to maximize benefits and 

minimize damages (Chiew et al., 2003). Among various tools for management of water 

resources systems, long-term streamflow forecasts can be used in the allocation of 

irrigation water, negotiation of hydropower contracts, and in the evaluation and 

implementation of mitigation measures such as water conservation contingency plans or 

risk-based management decisions to improve the management of water resources 

systems (Maidment, 1992). As an example of anticipated financial benefits of improved 

long-term streamflow forecasts, Hamlet et al. (2002) found that reservoir model 

simulations based on new climate forecasts increased non-firm energy production from 

the major Columbia River hydropower dams by as much as 5.5 million megawatt-

hours/year, resulting in an average annual revenue increase of approximately $153 

million per year. In addition to these financial benefits, the allocation and management 
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of water resources through streamflow forecasting is directly related to a region’s 

current and future growth. For example, the population in the southwestern United 

States continues to expand and efficient water resources management is an essential to 

region’s development. If efficient water resources management is not achieved, they will 

be a limiting factor in the region’s future growth. 

Operational monthly to seasonal streamflow forecasts in the western United 

States are usually performed by two methods, one by the Natural Resources 

Conservation Service (NRCS) and the other by the National Weather Service (NWS). 

The NRCS method relies on a regression-based forecasting method (also known as the 

index-variable method), in which the volumetric streamflow during the forecast period 

is related to accumulated precipitation in the form of snow storage or soil moisture at the 

time of forecast. The NWS method uses conceptual hydrologic/hydraulic simulation 

models to capture the hydrologic/hydraulic memory, as reflected in soil moisture, snow 

storage and reservoir conditions and then assumes, explicitly or implicitly, 

climatological average conditions during the forecast period. The climatological 

averages are assumed during the forecast period because it is difficult to obtain accurate 

climatological variable forecasts with long lead times (Garen, 1992; Lettenmaier et al., 

1990; Maidment, 1992; Stedinger et al., 1989; Twedt et al., 1977). 

The winter accumulation of snow in mountainous snowmelt-dominated 

watersheds such as those in Sierra Nevada or the Rocky Mountains in the western 

United States facilitates seasonal forecasts of streamflow volumes because of the direct 

relationship between winter accumulated snow amount and resulting summer 
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streamflow (Maidment, 1992). Accordingly, useful streamflow forecasts can be usually 

achieved in the watersheds having significant snow accumulation and small liquid 

precipitation during the forecast period. 

However, there are several basic sources of errors in streamflow forecasts even 

in snowmelt-dominated basins (Maidment, 1992). The first error source is the 

determination of snow reserves at the time of forecast. It is not easy to accurately 

determine the snow covered area and average snow water equivalent (SWE) in a 

watershed, especially in mountainous regions. The second and most problematic error 

source is the difficulty of predicting precipitation during the forecast period. The third 

error source is incorrect model conceptualization of the relationships among variables 

affecting streamflow generation (Maidment, 1992; Martinec and Rango, 1995). 

Problems related to model conceptualization occur because there are some 

unexplainable relationships among variables affecting streamflow which are not 

embedded in the model, and each year has its own hydrological characteristics. Finally, 

there are also some problems related to the model parameterization. That is, even under 

the condition that appropriate model conceptualization has been obtained, it is difficult 

to obtain proper parameters for the model. 

In order to investigate the effects of the various sources of errors (or 

uncertainties), this chapter investigates potential of several simple mass-balance models 

for seasonal streamflow forecasting in the two sub-watersheds of the URG basin which 

were also used in the Chapter III. The concept of a mass-balance model is that runoff in 

a future forecast period is determined by the amount of water presently in storage in a 
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watershed (here snow accumulation) as well as forecast period precipitation and water 

losses through evapotranspiration and groundwater percolation in the watershed. 

In this chapter, two ways of obtaining the parameters of the mass-balance 

models are examined. The forecasts obtained by use of the split-sample method due to 

short period record of historical observation. The first means of parameter estimation is 

to use the parameter values from SRM streamflow simulations which were discussed in 

the Chapter III, and the second means is by optimization. Further the effect of forecast 

lead time is considered by comparison of streamflow forecasts made on January 1st, 

February 1st, March 1st and April 1st. Forecasts are made for both observed and 

ensemble-forecasted precipitation in order to separate the effect of precipitation forecast 

uncertainty. For data, the models mainly use historical SWE on April 1st and 

precipitation amount from April 1st to September 30th from 1981 to 2001 observed in 

several NWS and SNOTEL sites located inside or very close to the watersheds. 

The models based on the parameters from SRM streamflow simulations 

(hereafter referred to SRM mass-balance model) use SWE at the time of forecast and 

forecast period parameter values (snow and rainfall runoff coefficients) obtained 

through SRM streamflow simulations from 1990 to 2001 and precipitation during the 

forecast period. The optimized parameter models use historical SWE values at the time 

of forecast and historical precipitation during the forecast period in order to get 

optimized parameter values (usually snow and rainfall runoff coefficients) for the mass-

balance models during the forecast period. Through streamflow forecasts using SRM 

mass-balance model, it is possible to see whether the parameter values obtained from 
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SRM streamflow simulations effectively represent time-varying hydrometeorological 

characteristics of these two watersheds in the forecasting mode. However, it is not 

necessarily true that the parameter values from SRM streamflow simulations are optimal 

for forecasting. Therefore, mass-balance models which have several assumptions and 

constraints related to the parameters and input variables (SWE on April 1st and 

precipitation amount from April 1st to September 30th) were developed to check whether 

optimization can give more satisfactory results in terms of long-term streamflow 

forecasts. 

In addition to the above mentioned streamflow forecasts, two additional 

streamflow forecasts are also presented for purposes of comparison in this chapter. The 

first is the simple index-variable method which uses the relationship between average 

SWE on the first day of each month (January, February, March, April) at several 

SNOTEL stations and streamflow volume from April 1st to September 30th, and the 

other comes from the NRCS. The reason to examine the streamflow forecasts using 

simple index-variable method is to compare the results from above two types’ mass 

balance models with those from simple method which do not consider the hydrological 

conditions during the forecast period to see how much improvement using mass balance 

models can be achieved. NRCS streamflow forecasts forecast naturalized streamflow 

which is not affected by upstream water management such as reservoirs or irrigation. 

Therefore, although our results can not be directly compared with these streamflow 

forecasts, it is possible to examine the relative accuracy of our models. 
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Through this investigation, it will be possible to examine first what are the 

potential and limitations of above mentioned two types of mass-balance model 

parameterizations in these snowmelt-dominated watersheds; second, by comparing 

streamflow forecast accuracy using the two types of parameterizations, how the 

improvement in the accuracy of streamflow forecasts can be achieved in the optimized 

parameter models compared to SRM mass-balance model and which type of mass-

balance model shows the best results for seasonal streamflow forecasts; third, as 

previous studies (Lettenmaier and Garen, 1979; Stedinger et al., 1989) have shown that 

forecast model performance shows dependence on site-specific characteristics, what 

kind of differences in model parameters and performance are obtained in these two 

closely-located watersheds and why this kind of difference occurs. 

4.2. Study Site 

The two sub-watersheds (Rio Grande and Rio Ojo watersheds) located inside 

the URG basin used in Chapter III are again used in this chapter. The elevation ranges 

and landcover types of these two watersheds were described in detail in section 3.2 

along with the historical SRM studies that have been conducted in the Rio Grande 

watershed. Figure 3-1 also shows the outlines and locations of these two watersheds. 
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                          4.3. Data and Method 

                  4.3.1. Meteorological Observations 

To perform SRM streamflow simulations from 1990 to 2001, daily temperature 

and precipitation data from NWS meteorological stations and SNOTEL stations were 

used. Detailed information regarding the data used, for example, how many stations in 

each watershed were used and how zonal temperature and precipitation were calculated, 

were explained in section 3.3.6. Meanwhile, in order to forecast volumetric stremflow 

amounts from 1981 to 2001 as is done in this chapter, the historical precipitation and 

SWE from 1981 to 1989 were also used in addition to the 1990 – 2001 data used in 

Chapter III. The 1981 to 1989 data were also obtained from NWS and SNOTEL stations, 

and the same method was applied to compute zonal precipitation data in both watersheds 

from 1981 to 1989. 

4.3.2. Snow Cover 

NOHRSC snowcover product from 1990 to 2001 was used for the SRM 

streamflow simulations. The characteristics of the NOHRSC snowcover product and 

how SCA daily time variations were determined are explained in detail in section 3.3.4 

and section 3.3.2, respectively. Figure 3-4 illustrates four examples of snowcover maps 

for both watersheds and Figure 3-6 illustrates the NOHRSC zonal daily SCA variation 

used for an SRM streamflow simulation in 2001. 
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4.3.3. Snowmelt Runoff Model (SRM) 

The SRM mass-balance model uses the parameter values which come from the 

SRM streamflow simulations from 1990 to 2001. Detailed explanations regarding SRM 

are found in section 3.3.1. 

                4.3.4. Parameterization of SRM 

Several parameters are required when SRM streamflow simulations are 

performed. Each parameter has its own characteristics such as physically-realistic range 

or time variation. Section 3.3.7 illustrates details about the parameterization of SRM, 

and Figure 3-2 shows the time variation of SRM parameters from 1990 to 2000 over the 

same period. One thing to be noticed is that when SRM streamflow simulation was also 

conducted in 2001, the time-variation shape of parameters follows the same pattern as 

other years. Table 3-4 lists the SRM simulation result statistics from 1990 to 2000 using 

two statistical criteria. 

      4.3.5. Streamflow Forecasts Using SRM Mass-Balance Model 

The starting point for the parameter values used in the forecasting investigation 

in this chapter is the values obtained for the use of SRM to model snowmelt runoff as 

discussed in Chapter III. How these parameter values were obtained is fully described in 

section 3.3.7. To review briefly, the bimonthly-varying snow runoff coefficients (CS) 

applied to each zone and the bimonthly-varying one rainfall runoff coefficients (CR) 
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applied to all the zones were obtained from 1990 to 2001 SRM simulations. A 

bimonthly-varying degree-day factor (a) for each zone was obtained (this parameter is 

not used in the SRM mass-balance model). Therefore, three zonal bimonthly-varying CS 

values, a values and one bimonthly-varying spatially constant CR value were obtained 

through SRM streamflow simulations from 1990 to 2001. 

The following is the mass-balance equation expressing SRM mass-balance 

model for runoff integrated over the snowmelt season which uses the parameter values 

obtained from 1990 to 2001 SRM streamflow simulations (Martinec and Rango, 1995). 
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i PCCHWAR ,,,               (4.1) 

ℜ : Total forecasted streamflow volume from April 1st to September 30th 

Ri: Forecasted streamflow volume from April 1st to September 30th in zone i 

i: Zonal index (i = 1, 2, 3) 

t: Bimonthly time step from April 1st to September 30th 

HWi: Average zonal snow water equivalent on April 1st (m) in zone i 

Pi,t: Forecasted precipitation from April 1st to September 30th in zone i 

and time step t 

Ai: Area (m2) in zone i 

CS,i: Runoff coefficient for snow in zone i 

CR,t: Runoff coefficient for rainfall at time step t 
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This mass balance equation is suitable for use in these two watersheds because 

maximum snow accumulation in these two watersheds occurs on approximately April 1st, 

and it is reasonable to assume that maximum snow accumulation on April 1st, total 

precipitation from April 1st to September 30th, and losses through evapotranspiration or 

groundwater percolation which are expressed as runoff coefficients for rain and snow 

are the main factors affecting the streamflow amount from April 1st to September 30th. 

One thing to be noticed in the above equation is that annually averaged zonal values are 

used in the case of CS values while in the case of CR values, bimonthly-varying spatially 

constant values are used. That is, CS values are separated by zone while CR values are 

separated by time in the above equation. The reason to use annually averaged zonal CS 

values is to make the equation simplified. Meanwhile, the reason to use bimonthly-

varying spatially constant CR values is that it was difficult to estimate annually-averaged 

CR values in the forecasting mode which will be explained later. 

Using this mass balance equation, to compute volumetric streamflow amount 

from April 1st to September 30th requires knowledge of averaged SWE on April 1st, 

annually-averaged zonal CS, bimonthly-varying but spatially constant CR, and bimonthly 

precipitation totals from April 1st to September 30th. However, for a forecast on April 1st, 

the only available information is the observed SWE at the SNOTEL stations at that date 

and meteorological data such as temperature, precipitation and streamflow for earlier 

months. Therefore, it is necessary to estimate the other parameter values (1st, 2nd, 3rd 

zonally-averaged SWE values on April 1st, annually-averaged zonal CS values and 

bimonthly-varying spatially constant CR values) from the relationship between these 
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parameter values and average observed SWE in the 3rd (upper) zone of both watersheds. 

The reason only to use SWE in the 3rd zone although there are other SNOTEL stations in 

the watershed is due to the fact that the number of SNOTEL stations located in other 

zones is very small compared to the size of zonal area, especially in the 2nd zone. 

First, it is necessary to obtain the relationship between observed SWE at 

SNOTEL stations from 1990 to 2001 and zonally-averaged April 1st SWE in the 3rd zone 

through MDC derived from SRM simulations (Martinec et al., 1998) because there are 

differences between these two SWE values. This relationship in both watersheds is 

illustrated in Figure 4-1(a). As can be seen, there is a significant relationship between 

average measured SWE and SRM calculated zonally-averaged SWE in the 3rd zone of 

both watersheds, which can be used to estimate zonally-averaged SWE in the 3rd zone. 

Secondly, to forecast annually-averaged zonal CS from average observed SWE, the 

relationship between annually-averaged zonal CS obtained from the 1990-2001 SRM 

simulations and average measured SWE on April 1st was used. As an example, Figure 

4-1(b) illustrates this relationship for CS in the 2nd zone of each watershed. As can be 

seen, a first-order linear relationship is appropriate between average observed SWE in 

the 3rd zone and annually-averaged CS in the 2nd zone. A similar relationship is also valid 

for the other two zones. This relationship is reasonable because high SWE on a specific 

day will give high CS in following days. Therefore, the linear regression to forecast 

annually-averaged CS from average measured SWE was used in each zone. Estimates of 

zonally-averaged SWE in the 1st and 2nd zones are also needed. In this case, the ratios 

between the SRM-calculated SWE in the 1st and 2nd zones and the SRM-calculated SWE 
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in the 3rd zone were calculated from each year’s simulation and then the average of 

above ratios for each zone were used to estimate the 1st and 2nd zonally-averaged SWE 

from the estimated 3rd zonally-averaged SWE in the forecasting mode. 

No relationship exists between CR and average measured SWE because CR is 

related to the precipitation total from April 1st to September 30th, not to April 1st SWE. 

One possibility would be to predict annually-averaged CR as a function of the observed 

precipitation from April 1st to September 30th. However, as illustrated in Figure 4-1(c), 

the observed relationship was poor as compared to that between CS and April 1st SWE. 

This difference appears to be related to hydrological differences between snowmelt and 

rainfall runoff in both watersheds. Compared to precipitation, snowmelt occurs in a 

short time period and therefore the relationship between snowmelt and CS is not affected 

by many other hydrological factors in these watersheds. However, precipitation occurs 

throughout the period of April to September and therefore many other factors can affect 

the relationship between precipitation and CR during wet and dry periods. Therefore, 

bimonthly-varying spatially constant CR from 1990-2001 SRM streamflow simulations 

were averaged in bimonthly time scale, and then used in the forecasting mode. 
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Figure 4-1. Relationships between several parameter values obtained from streamflow 

simulations and average observed 3rd zonal April 1st SWE at SNOTEL stations in both 

watersheds from 1990 to 2001. a) Linear relationship between average observed April 

1st SWE and SRM calculated April 1st zonally averaged SWE. b) Linear relationship 

between average observed April 1st SWE and annually averaged CS in the 2nd zone. c) 

Linear relationship between averaged observed April 1st SWE and annually-averaged 

spatially constant CR 
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After setting up the above procedure to estimate parameter values from average 

observed SWE in the 3rd zone, the split-sample method (also known as the jack-knife 

method) was used. For example, to forecast the streamflow volume from April 1st to 

September 30th in 1990, the linear relationships among the above-mentioned parameters 

and average observed SWE in the 3rd zone from 1991 to 2001 were used. Then average 

observed SWE on April 1st in 1990 was applied to each linear regression equation to 

obtain the parameters for 1990. This procedure is applied in sequence for the years 1990 

to 2001. However, in the case of streamflow forecast for 1981 to 1989, it was 

unnecessary to use the split-sample method because the streamflow simulation started 

from 1990. For the years prior to 1990, the relationship using all the data from 1990 to 

2001 was used to obtain the parameter values. 
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In the case of precipitation term in the SRM mass-balance model, the observed 

precipitation amount in the year of interest was first applied to look at the forecast 

performance apart from the effect of the errors of precipitation forecast. That is, if the 

forecast of streamflow amount in 1990 is of interest, the precipitation observed in 1990 

was applied to above mass balance equation with the parameter values obtained through 

the split-sample method. In the actual forecasting mode a precipitation forecast is 

required. However, it is difficult to forecast the long-term precipitation amount. So, the 

ensemble forecasting method is used; that is, the historical precipitation in each year 

from 1981 to 2001 was applied except for the year of interest and then streamflow 

forecasts were obtained for each precipitation value. This gives a distribution of 

streamflow forecasts from which statistics such as mean and standard deviation (i.e., 

uncertainty due to precipitation) can be calculated. 

Finally, in the case of January 1st, February 1st, and March 1st streamflow 

forecasts, the univariate linear regression between the observed SWE on each of these 

days and the observed SWE on April 1st at each SNOTEL station from 1981 to 2001 

was used following the split-sample method described above. After obtaining the 

forecasted SWE on April 1st in the 3rd zone, the same procedure as when the observed 

SWE in the 3rd zone on April 1st were used in order to forecast volumetric streamflow 

amount from April 1st to September 30th.



 

 

Table 4-1. Characteristics of optimized models 

Models Assumptions Optimized 
coefficients 

Constraints of 
optimized coefficients 

Model 1 
- CS, CR are intra- and inter-year constants and are spatial constants (same value is  

applied to all the zones) 

- 3rd zonal average measured SWE (HW) and 3rd zonal average measured  
precipitation (P) are applied to all the zones 

CS, CR 
10 ≤≤ SC  

10 ≤≤ RC  

Model 2 

- a, b, c, d are intra- and inter-year constants and are also spatial constants 

- 3rd zonal average measured SWE (HW) and 3rd zonal average measured  
precipitation (P) are also applied to all the zones 

- Snow and rainfall runoff coefficients are both proportional to the 3rd zonal  
average measured SWE and 3rd zonal average measured precipitation from  
April 1st to September 30th 

a, b, c, d 
1)(0 ≤⋅+=≤ HWbaC S

1)(0 ≤⋅+=≤ PdcC R  

Model 3 
- CS, CR are intra- and inter-year constants and are spatial constants 

- 1st, 2nd zonal SWE values are optimized as the proportions on the 3rd zonal  
measured SWE, and zonal precipitation which was used in the SRM simulation  
is again used 

CS, CR, 

e (SWE 1 / SWE 3),

f (SWE 2 / SWE 3)

10 ≤≤ SC  

10 ≤≤ RC  

10 ≤≤ e  
10 ≤≤ f  

Model 4 

- a, b, c, d are intra- and inter-year constants and are spatial constants 

- 1st, 2nd zonal SWE values are optimized from the proportions to the 3rd zonal  

measured SWE, and zonal precipitation which was used in the SRM simulations 

is again used  

- Snow(rainfall) runoff coefficients are both proportional to measured and optimized 

SWE values and average measured precipitation from April 1st to September 30th

in each zone 

a, b, c, d, 

e (SWE 1 / SWE 3),

f (SWE 2 / SWE 3)

1)(0 , ≤⋅+=≤ HWbaC iS
 

1)(0 , ≤⋅+=≤ PdcC tR
 

10 ≤≤ e  

10 ≤≤ f  

99
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4.3.6. Streamflow Forecasts Through Parameter Optimization 

of Mass-Balance Models 

Although the SRM mass-balance model is a reasonable one to forecast 

volumetric streamflow amount from April 1st to September 30th, it is difficult to 

ascertain that the parameter values obtained through SRM simulations and above linear 

relationships are the optimal ones. Therefore, the next step is to develop models based 

on mass-balance which have optimized parameters. The following equations describe 

four models in order from the simplest to the most complicated, and Table 4-1 gives 

detailed explanations about the corresponding assumptions and constraints of each 

model. In this optimization procedure, the goal of optimization was to minimize the sum 

of the squared differences between optimized and measured streamflow amount during 

all the available years. Here, “optimized streamflow” amount means the streamflow 

amount in each year after optimization process. 

                  Model (1):  )( PCHWCA rs ⋅+⋅⋅=ℜ
∧

         Model (2):  ))()(( PPdcHWHWbaA ⋅⋅++⋅⋅+⋅=ℜ
∧

             Model (3):  [ ]∑∑ ⋅+⋅⋅==ℜ
∧

i
irisi

i
i PCHWCAR )(

        Model (4): [ ]{ }∑∑ ⋅⋅++⋅⋅+⋅==ℜ
∧

i
iiiii

i
i PPdcHWHWbaAR )()(  



 101
 

Models 3 and 4 are zonally separated forms of models 1 and 2, respectively. 

The difference between models 1 and 3 and models 2 and 4 is that models 1 and 3 

optimize CS and CR directly, while in models 2 and 4, CS and CR are estimated as linear 

functions of SWE (HW) and precipitation, respectively. The reason to use these 

relationships to estimate CS and CR instead of CS and CR directly in the models 2 and 4 

is that there is a linear relationship between CS and SWE on April 1st as was mentioned 

above, and it can be accordingly hypothesized that a similar relationship could exist 

between annually-averaged CR and April 1st to September 30th precipitation although 

above SRM streamflow simulations from 1990 to 2001 failed to show it. This 

relationship can be considered because, all other things being equal, the fraction of 

runoff increases with the amount of rainfall, since some losses reach a maximum at 

some rain amount. Although numerous models modifying above mass balance equations 

exist, the above four models provide the general characteristics of many possible 

optimized mass-balance models in these watersheds. In order to obtain these optimized 

parameter values in above equations, the “Solver” tool in the EXCEL program was used. 

A detailed explanation regarding “Solver” algorithms and capabilities can be found in 

(http://www.frontsys.com). 

The split-sample method was again used to obtain the optimized parameter 

values for each year in each model. For example, to obtain optimized parameter values 

for streamflow forecast in 1981, all the data in 1981 were deleted, and the optimized 

parameter values were obtained using the data from the remaining years 1982 to 2001 

and then the same procedure was applied to each year sequentially. As in the case of 

http://www.frontsys.com/
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forecasts using SRM mass-balance model, two sets of forecasts were obtained, one 

using observed precipitation, and the other using a distribution of precipitation forecasts 

obtained by the ensemble method. 

In order to get the streamflow forecasts from January 1st, February 1st, March 1st, 

the same procedure as that of streamflow forecasts using SRM mass-balance model was 

used. The two diagrams in Figure 4-2 illustrate the general procedure for above two 

approaches to forecast volumetric streamflow amount from April 1st to September 30th 

in both watersheds. 

4.3.7. Streamflow Forecasts Through Simple Index Variable 

and Streamflow Forecasts Made by NRCS 

As mentioned above, two other streamflow forecasts are provided in this 

chapter. One comes from simple index-variable method which uses only the SWE 

measured in the SNOTEL stations, and the other is the streamflow forecasts made from 

NRCS. In the case of simple index-variable method, the linear regression between 

historical average SWE in the 1st day of each month (January, February, March and 

April) at several SNOTEL stations located in the 3rd zone and streamflow volumes from 

April 1st to September 30th from 1981 to 2001 were used. Figure 4-3 shows these linear 

relationships using the data from all the years in both watersheds. Meanwhile, in the 

case of NRCS naturalized streamflow forecasts, which are only available in the Rio 

Grande watershed from 1990 to 2001, they also use the linear regression between 

variables significantly affecting streamflow amounts such as SWE and soil moisture and 
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streamflow volume along with some calibration techniques. They provide the 

streamflow forecasts having 10%, 30%, 50%, 70% and 90% exceedance probabilities 

(http://www.wcc.nrcs.usda.gov/wsf/). However, streamflow forecasts having 50% 

exceedance probability are used in here because this streamflow forecast is most 

probable one. 

4.4 Results 

4.4.1. Streamflow Forecasts Using Observed Precipitation on April 1st 

Figure 4-4 shows the linear relationships between several variables which are 

important in the above mass balance equations in both watersheds. Through this 

investigation, it is possible to determine which years have different hydrologic 

characteristics compared to other years and whether good linear relationship exists 

between the variables which are closely related to each other in the watershed. The 

relationships are significant except the relationship between total average precipitation 

amount from April 1st to September 30th and streamflow volume from April 1st to 

September 30th in both watersheds. It is also possible to see that several points are far 

away from linear regression lines in the other two relationships, and the years having 

these points can be believed to show different hydrologic characteristics compared to 

other years. 

http://www.wcc.nrcs.usda.gov/wsf/
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Figure 4-2. General procedures for two types’ mass-balance models 
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Figure 4-3. Relationships between historical average SWE on the 1st day of each month 

and streamflow volume from April 1st to September 30th in both watersheds 
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Figure 4-4. Linear relationships between several variables which are important in the 

above mass-balance models. a) Relationship between average SWE (cm) on April 1st 

and total average precipitation (cm) from October to March. b) Relationship between 

total average precipitation (cm) from April 1st to September 30th and average measured 

streamflow depth (cm) from April 1st to September 30th. c) Relationship between 

average SWE (cm) on April 1stand average measured streamflow depth (cm) from April 

1st to September 30th
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Table 4-2. Averages and standard deviations of optimized parameters in the models    

and average Cp values between the optimized and measured streamflow volumes 

Average ± standard deviation Average Cp
3 

Model Parameter 
Rio Grande Rio Ojo Rio Grande Rio Ojo

Model 1 
CS 

CR 

0.226 ± 0.019 

0.196 ± 0.027 

0.131 ± 0.002

0.001 ± 0.003
0.70 0.61 

Model 2 

a 

b 

CS = a + b . HW 

c 

d 

CR = c + d . P 

0.264 ± 0.015 

0.033 ± 0.021 

0.283 ± 0.007 

-0.109 ± 0.007 

0.483 ± 0.028 

0.092 ± 0.009 

0.003 ± 0.012

0.217 ± 0.065

0.099 ± 0.010

-0.011 ± 0.066

0.195 ± 0.039

0.030 ± 0.013

0.80 0.74 

Model 3 

CS 

CR 

e1 

f 2 

0.381 ± 0.020 

0.202 ± 0.028 

0.255 ± 0.003 

0.650 ± 0.006 

0.244 ± 0.005

0.001 ± 0.003

0.227 ± 0.002

0.591 ± 0.004

0.66 0.61 

Model 4 

a 

b 

c 

d 

CS,1 = a + b . HW1 

CS,2 = a + b . HW2 

CS,3 = a + b . HW3 

CR,1 = c + d . P1 

CR,2 = c + d . P2 

CR,3 = c + d . P3 

e1 

f 2 

0.377 ± 0.098 

0.098 ± 0.126 

0.122 ± 0.118 

0.157 ± 0.166 

0.373 ± 0.112 

0.395 ± 0.086 

0.424 ± 0.059 

0.163 ± 0.075 

0.171 ± 0.068 

0.177 ± 0.062 

0.224 ± 0.012 

0.578 ± 0.022 

0.424 ± 0.187

1.102 ± 0.426

-0.163 ± 0.073

0.449 ± 0.140

0.027 ± 0.045

0.102 ± 0.063

0.691 ± 0.084

0.022 ± 0.004

0.030 ± 0.005

0.036 ± 0.005

0.054 ± 0.030

0.069 ± 0.045

0.68 0.74 

1Proportion between 1st and 3rd zonally-averaged SWE. 

2Proportion between 2nd and 3rd zonally-averaged SWE. 

3Average Cp values between measured and optimized streamflow after optimization. 
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Table 4-2 shows the averages and standard deviations of parameter values 

obtained by optimizing separately for each year according to the split-sample method in 

the two watersheds. Because there is no model structure which exactly matches to that 

of SRM mass-balance model, it is not appropriate to compare the parameter values used 

in SRM mass-balance model with those in optimized models. One interesting 

phenomenon is that optimized CR values for the Rio Ojo watershed were almost zero in 

all years in models 1 and 3. This situation is caused by the fact that precipitation does 

not have any function in predicting the streamflow amounts in the Rio Ojo while 

apparently it has some function in the Rio Grande watershed. 

The coefficient of prediction (Cp), which can be used for determining the 

accuracy of streamflow forecasts in a model, is calculated as follow. 

2
1

2)(1

1
s

nC

n

i
ii

p

∑
=

ℜ′−ℜ
−=                   (4.2) 

        : Observed streamflow volume in the year i iℜ

             : Forecasted streamflow volume in the year i iℜ′

                   n: Number of years 

s2: Variance of observed streamflow volume in all the years 

However, the Cp values for measured and optimized streamflow volumes during 

the optimization process using the split-sample method were first calculated. Therefore, 

“forecasted” streamflow volume in the above equation is replaced with “optimized” 
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streamflow volume and following modified form of above equation is used for 

calculating the Cp values between measured and optimized streamflow volume. 

2

2)(1

1)(
i

n

ij
jj

p s
n

iC
∑

≠

ℜ′−ℜ
−=    where ∑

≠

ℜ−ℜ=
n

ij
ji n

s 22 )(1       (4.3) 

jℜ : Measured streamflow volume in the year j 

jℜ′ : Optimized streamflow volume in the year j 

ℜ : Average of streamflow volume in all the years except year i 

n: Number of years 

Through this calculation, it is possible to infer which models are more 

appropriately conceptualized in the watershed, and which years show different 

hydrological characteristics compared to other years. Figure 4-5 shows the time 

variations of this Cp value in both watersheds and the average Cp values are given in 

Table 4-2. Models 2 and 4 have the highest Cp values in the Rio Grande and Rio Ojo 

watersheds, respectively, although models 2 and 4 in the Rio Ojo watershed have almost 

the same average Cp values. Therefore, these two models show the best performance of 

model conceptualization for hydrological conditions in both watersheds. The Cp values 

for 1987 and 1999 are significantly increased in the Rio Grande watershed, indicating 

hydrologically different characteristics compared to other years. Meanwhile, in the case 

of Rio Ojo watershed, 1984 and 1985 have different characteristics compared to other 

years. In the Rio Ojo watershed, the same Cp values are obtained for models 1 and 3 and 
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almost the same values when models 2 and 4 are used like mentioned above. From this, 

it can be inferred that although the variables (SWE and precipitation) to be optimized in 

the Rio Ojo watershed are separated into 3 zones in the models 3 and 4, this separation 

does not affect the improvement of model conceptualization in the Rio Ojo watershed. 

Moreover, while the conceptualization performance order of models in the Rio Grande 

watershed is model 2>model 1>model 4>model 3, models 2 and 4 show significant 

increases in the performance of model conceptualization compared to models 1 and 3 in 

the Rio Ojo watershed. 
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Figure 4-5. Time variation of Cp values between measured and optimized streamflow in 

both watersheds. Note that models 1 and 3 overlap in the Rio Ojo watershed 
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Figure 4-6. Streamflow forecasts using SRM mass-balance model and optimized models 

with observed precipitation in the year of interest 
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In order to compare and evaluate the performance of SRM mass-balance model 

and optimized models in the two watersheds, one needs to compute Cp value of 

streamflow forecasts using the observed rather than forecasted precipitation from April 

1st to September 30th in the forecasted year. This comparison examines the functionality 

of the models apart from the effect of uncertain precipitation and models’ sensitivity to 

precipitation. The long-dashed lines in Figure 4-6 and Table 4-3 show the streamflow 

forecasts and Cp values using SRM mass-balance model with observed precipitation in 

both watersheds on April 1st, respectively. From this point, Cp value is calculated using 

Eq. (4.2). That is, forecasted streamflow is used instead of optimized streamflow. As can 

be seen, satisfactory streamflow forecasts are obtained for the Rio Grande but less 

satisfactory for the Rio Ojo watershed. This situation seems to be related to two factors. 

The first one is related to high variation of parameter values in the Rio Ojo watershed 

compared to those in the Rio Grande as mentioned above, and the second is the weak 

relationships between average observed SWE in the 3rd zone and other parameter values 

in the Rio Ojo watershed (Figure 4-1) which were used in the above mass-balance Eq. 

(4.1). 
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Table 4-3. Cp values and standardized root mean squared error (SRMSE) between 

measured and forecasted streamflow volumes using observed precipitation in the year of 

interest 

Cp Model 1 Model 2 Model 3 Model 4 SRM 
Rio Grande 0.57 0.75 0.55 0.47 0.68 

Rio Ojo 0.58 0.52 0.56 0.65 0.40 
 

SRMSE1 Model 1 Model 2 Model 3 Model 4 SRM 
Rio Grande 0.23 0.17 0.23 0.25 0.20 

Rio Ojo 0.35 0.36 0.37 0.31 0.42 
1SRMSE is calculated like the following. 

ℜ
=
∑ ℜ′−ℜ= µ/))((1

1

2
n

i
iin

SRMSE  

where : Measured streamflow volume in the year i iℜ

iℜ′ : Forecasted streamflow volume in the year i 

     ℜµ : Average of measured streamflow volume in all the years 

n: Number of years 

Figure 4-6 and Table 4-3 also illustrates the streamflow forecasts and Cp values 

using each optimized model with observed precipitation in the year of interest, 

respectively. Model 2 and model 4 show the most satisfactory streamflow forecasts in 

the Rio Grande and Rio Ojo watersheds, respectively. From this result, it can be inferred 

that the use of linear functions of SWE and precipitation amount instead CS and CR, 

respectively, improves model performance in both watersheds. Meanwhile, the 

differences of model conceptualization in the Rio Ojo watershed between models 1, 3 
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and models 2, 4 are decreased when the observed precipitation in the forecasted year is 

used, which is related to the sensitivity of model to the precipitation. 

When the streamflow forecast obtained using optimized parameter values are 

compared with those using SRM mass-balance model, the latter is the second-best one 

in the Rio Grande watershed. It is also interesting to see that the separation of zones 

decreases slightly the performance of model 3 as compared to model 1 and significantly 

decreases the performance of model 2, making model 4 the most unsatisfactory in the 

Rio Grande watershed. Zonal separation may give too many additional degrees of 

freedom in the optimization process, making it difficult to obtain adequate parameter 

values. This situation can be seen by comparing the standard deviations of 

corresponding optimized parameters between model 1 and model 3 and between model 

2 and model 4 in Table 4-2. Models having zonal separation of variables have higher 

standard deviations of parameter values. In the case of Rio Ojo watershed, the same 

situation happens in the relationship between model 1 and model 3. However, in the 

case of model 2 and model 4, reverse situation happens. That is, the additional degrees 

of freedom of model 4 give some improvement of model 2. Therefore, it can be inferred 

that the increase of standard deviation of parameter values does differently affect model 

performance depending on the watershed. Related to the streamflow forecasts using the 

SRM mass-balance model, SRM mass-balance model shows the most unsatisfactory 

results compared to optimized models in the Rio Ojo watershed (Table 4-3). 

Another technically interesting phenomenon can be seen in the comparison of 

Figure 4-6 and Table 4-3. That is, almost the same range of Cp values can be obtained 
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in the Rio Ojo watershed compared to the Rio Grande watershed although visual 

inspection shows better streamflow forecasts in the Rio Grande watershed. This 

situation is caused by the method to calculate Cp. When Cp values are calculated, the 

denominator of Cp is the variance of measured streamflow amounts in all the years, and 

therefore the higher variation of measured streamflow amounts in the Rio Ojo watershed 

makes Cp have almost the same range of values compared to that of Rio Grande 

watershed. This fact can be confirmed when the SRMSE values, which don’t consider 

the variance of measured streamflow, between both watersheds are compared (Table 4-

3). 

4.4.2. Streamflow Forecasts Using Ensemble-Forecasted Precipitation 

 4.4.2.1. Streamflow Forecasts on April 1st Using Ensemble-Forecasted 

Precipitation 

Although the investigation about which model is more appropriate with 

observed precipitation in the forecasted year was discussed above, it is not the real 

forecasting situation. So, the historical precipitation amounts from April 1st to 

September 30th from 1981 to 2001 except the precipitation data of the year of interest 

were used to determine the ensemble of forecasted streamflow amounts from April 1st to 

September 30th on April 1st. After getting the ensemble of forecasted streamflow, the 

“best” streamflow forecast which is the arithmetic average of the ensemble of forecasted 
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streamflow was obtained for each year and the Cp values between “best” forecasted 

streamflow and measured one for all the years were calculated. 

Six streamflow forecasts using the four optimized models, SRM mass-balance 

model, and simple index-variable model using only SWE are shown for both watersheds 

in Figure 4-7 and Figure 4-8. Because the streamflow forecasts from NRCS are only 

available from 1990 and 2001, NRCS streamflow forecasts are not included in Figure 4-

7. However, Table 4-4 includes the Cp values for all the models including NRCS 

streamflow forecasts. 
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Figure 4-7. Streamflow forecasts for six models on January 1st, February 1st, March 1st 

and April 1st in the Rio Grande watershed 
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Table 4-4. Cp values for streamflow forecasts for all the models with ensemble-

forecasted precipitation on January 1st, February 1st, March 1st and April 1st 

Rio Grande Model 1 Model 2 Model 3 Model 4 SRM SWE NRCS 

January 1st 0.44 0.50 0.48 0.53 0.35 0.57 0.20 

February 1st 0.47 0.56 0.51 0.55 0.41 0.55 0.25 

March 1st 0.43 0.52 0.47 0.50 0.38 0.43 0.26 

April 1st 0.40 0.48 0.44 0.44 0.38 0.46 0.26 

 

Rio Ojo Model 1 Model 2 Model 3 Model 4 SRM SWE 

January 1st 0.23 -0.17 0.23 -0.13 0.02 0.02 

February 1st 0.28 0.09 0.28 0.13 0.04 0.23 

March 1st 0.43 0.35 0.43 0.43 0.13 0.44 

April 1st 0.56 0.54 0.56 0.62 0.22 0.57 

In the case of Rio Grande watershed, model 2 shows slightly better performance 

compared to the other models although not as much better as was the case for observed 

precipitation. Again, the use of a linear relation between SWE and precipitation instead 

of CS and CR in model 2 improves the performance of streamflow forecasts on April 1st 

when ensemble-forecasted precipitation is used. It is also interesting to consider the 

deterioration of streamflow forecasts using the SRM mass-balance model compared to 

that using observed precipitation. The SRM mass-balance model seems to have more 

sensitivity to the accuracy of the precipitation, and this can be confirmed by examining 

the average of standard deviations of the ensemble of forecasted streamflow for each 

year on April 1st (Table 4-5). SRM mass-balance model shows the highest standard 
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deviation of the ensemble of forecasted streamflow for each year on April 1st compared 

to other models, and therefore using the average of the ensemble of forecasted 

streamflow deteriorates the performance of model. However, this does not mean that the 

standard deviation of the ensemble of forecasted streamflow should be small to obtain 

good streamflow forecasts as measured by Cp value. For example, models 1 and 3 show 

the smaller standard deviations compared to model 2 although they show less 

satisfactory streamflow forecasts. This situation seems to be related to the fact that the 

variation of precipitation does not control the variation of streamflow. Meanwhile, in the 

case of Rio Ojo watershed, like the case of streamflow forecasts with the observed 

precipitation, model 4 shows the highest Cp value and SRM mass-balance model shows 

the lowest one although the differences among all the models except SRM mass-balance 

model are small. The relationship between the standard deviation of ensemble forecasted 

streamflow for each year and performance of model can be clearly seen in this 

watershed. Because optimized CR coefficients have almost zero values in models 1 and 

3 in the Rio Ojo watershed as mentioned above, the ensemble-forecasted precipitation 

does not affect the streamflow variation which makes the standard deviation almost zero. 

Therefore, in order to obtain good streamflow forecasts using the ensemble of forecasted 

streamflow, the standard deviation of the ensemble of forecasted streamflow should be 

apparently of moderate size. 
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Table 4-5. Average of standard deviation (cm) of ensemble of forecasted streamflow 

depth for each year on April 1st in both watersheds 

 Model 1 Model 2 Model 3 Model 4 SRM 

Rio Grande 2.15 3.58 2.24 2.60 4.29 

Rio Ojo 0.01 0.74 0.01 0.65 1.11 

 

Notice also the difference in the effect of using ensemble-forecasted 

precipitation compared to the observed one between the two watersheds. In the Rio 

Grande watershed, streamflow forecasts made using the ensemble-forecasted 

precipitation are worse than those using observed precipitation. However, the model 

performance is almost the same in the Rio Ojo watershed. This situation is again related 

to very small optimized CR parameter values in the Rio Ojo watershed which make the 

effects of the precipitation negligible. 
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4.4.2.2. Streamflow Forecasts in Winter Months (January 1st, February 1st, 

March 1st) Using Ensemble-Forecasted Precipitation 

Although streamflow forecasts on April 1st are important, forecasts on January 

1st, February 1st and March 1st are even more valuable because these winter-time 

streamflow forecasts provide more time to water users to make use of the information. 

Because all the models except the streamflow forecasts using only SWE are based on a 

mass balance, the linear regressions between observed SWE on January 1st, February 1st, 

March 1st and observed SWE on April 1st in each SNOTEL station were used to estimate 

SWE on April 1st in each month. This estimated SWE at each SNOTEL station was 

averaged to obtain representative estimate of April 1st SWE. Other procedures are the 

same as streamflow forecasts on April 1st. Figure 4-9 shows these linear regressions in 

one SNOTEL station for each watershed. As can be seen, the SWE on January 1st, 

February 1st and March 1st is well correlated to the SWE on April 1st and this good 

relationship was also applicable to other SNOTEL stations in both watersheds. 
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Figure 4-9. Linear relationships between historical SWE from 1981 to 2001 on January 

1st, February 1st, March 1st and April 1st in a SNOTEL station (Middle Creek) in the Rio 

Grande watershed (a), and in a SNOTEL station (Bateman) in the Rio Ojo watershed (b) 
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Figure 4-7 and Figure 4-8 illustrate the comparisons of streamflow forecasts in 

the Rio Grande and Rio Ojo watersheds, respectively, and Table 4-4 lists Cp for each 

model from January 1st to March 1st. As can be seen, for the Rio Grande watershed, 

models 2 and 4 have slightly better Cp values than models 1 and 3 among those using 

optimized parameter values, and these models are better than the simple index-variable 

model only on March 1st. The use of a linear relationship instead of CS and CR again 

improves the performance of streamflow forecasts in winter months. Notice also that 

streamflow forecasts for the Rio Grande from early months (January 1st, February 1st) 

show higher Cp values than those from later months (March 1st, April 1st). This situation 

seems to be related to the climatological seasonal precipitation. That is, although April 

1st is the closest day to the period of our interest for the streamflow forecasts, the 

streamflow amount from April 1st to September 30th in the Rio Grande watershed is 

more closely related to the SWE on January 1st or February 1st. This situation can be 

observed in the linear regressions between average measured SWE on the 1st day of each 

winter month and streamflow amounts from April 1st to September 30th (Figure 4-2). In 

the case of Rio Ojo watershed, models 1 and 3 generally have higher Cp values and have 

much more stable Cp values among the months compared to other models. With respect 

to forecast accuracy as a function of the date of the forecast, unlike the Rio Grande 

watershed, streamflow forecasts are improved with time. 

The NRCS streamflow forecasts perform poor results compared to other models. 

However, NRCS streamflow forecasts are for the naturalized streamflow, not the 

measured streamflow in the streamflow gauge. Therefore, it is not appropriate to make a 
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simple comparison between NRCS streamflow forecasts and those using other models. 

However, they provide an indication of how much accurate the streamflow forecasts 

made by our models are. 

4.5. Conclusions 

This chapter presented an investigation of the forecasting of April 1st to 

September 30th streamflow volume using a mass-balance model which uses the 

parameter values obtained from SRM streamflow stimulations (called the SRM mass-

balance model), mass-balance models of various complexities which have optimized 

parameter values, and a simple index-variable model using only SWE. Because there 

were only 21 years of data available in the watersheds, all the models used split-sample 

method. The streamflow forecasts were conducted using two precipitation conditions. 

One case used observed precipitation in the forecasted years even though it is not a true 

forecast, and the other used ensemble-forecasted precipitation from 1981 to 2001 

excluding the observed precipitation in the year of interest. Observed precipitation in the 

forecasted years was used because the errors of precipitation forecasts can dominate the 

forecast errors, making it difficult to see the utility of the model itself for streamflow 

forecasts. Meanwhile, the reason to apply the ensemble-forecasted precipitation was that 

it is difficult to obtain reliable long-term precipitation forecasts, and therefore this 

method was used to overcome this limitation in the actual forecasting mode. 

First, although a true forecast can not use observed precipitation in the 

forecasted year, the SRM mass-balance model in the large snowmelt-dominated Rio 
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Grande watershed showed some forecast value even without optimization if dependable 

precipitation forecasts are available. Meanwhile, ensemble-forecasted precipitation gave 

worse streamflow forecasts because of the high sensitivity of model to the precipitation. 

Therefore, the SRM mass-balance model for seasonal streamflow forecast in the Rio 

Grande watershed can be used under the condition that dependable precipitation 

forecasts are provided. The SRM mass-balance model in the drier and small Rio Ojo 

watershed provided no satisfactory forecasting results in either condition. This situation 

appears to be related to two main factors. The first is higher variation of parameter 

values obtained through the streamflow simulations, and the second is weaker 

relationships between average measured SWE and other parameter values which are 

used in the SRM mass-balance model compared to those in the Rio Grande watershed 

(Figure 4-1). 

In the optimized models, the replacement of linear functions of SWE and 

precipitation for the CS and CR, respectively, significantly improved model 

conceptualization obtained through the relationship between measured and optimized 

streamflow (Figure 4-5), and in the model forecasting on April 1st when observed 

precipitation in the year of interest was used in both watersheds (Figure 4-6). The zonal 

separation of variables (SWE and precipitation) in the optimized models, however, 

showed different effects to the model performance between the two watersheds when 

observed precipitation in the year of interest was used. That is, while zonal separation of 

variables in the Rio Grande watershed decreased the performance in model 2, making 

model 4 have the worst performance among the optimized models, this separation 
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improved model 2, making model 4 show the best performance among the optimized 

models in the Rio Ojo watershed. 

In the case of streamflow forecasts on January 1st, February 1st, March 1st and 

April 1st using ensemble forecasted precipitation in the Rio Grande watershed, models 2 

and 4 had slightly better Cp values compared to the models 1 and 3 among the models 

using optimized parameter values, and these models showed almost the same 

performance as that of simple index-variable model. Meanwhile, in the Rio Ojo 

watershed, models 1 and 3 showed higher Cp values and much more stability in the Cp 

values among the months compared to other models. 

However, when the Cp values of streamflow forecasts on April 1st using 

observed precipitation were compared with the streamflow forecasts of simple index-

variable model using only SWE, there was significant improvement in model 2 in the 

case of the Rio Grande watershed and some improvement in model 4 in the case of the 

Rio Ojo watershed. Therefore, our optimized models showed potential to improve the 

accuracy of streamflow forecasts on April 1st especially in the Rio Grande watershed. 

However, this potential largely depends on the accuracy of precipitation forecast. 

Finally, when the streamflow forecasts using above models were compared to 

the forecasts for naturalized streamflow made from NRCS, although the direct 

comparison is not appropriate because of the differences in the range of available data 

and in the streamflow forecasted, there were significant improvements in the optimized 

models. 
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CHAPTER V 

 GENERAL CONCLUSIONS AND RECOMMENDATIONS 

In this dissertation, three hydrological perspectives on the improvement of long-

term streamflow forecasting were investigated in the snowmelt-dominated URG basin of 

Colorado and New Mexico. The first chapter presented an investigation of the effects of 

ENSO on two important climatic factors, temperature and precipitation, along with 

streamflow volumes and estimates of SWE at snowcourse stations over the years of 

1952-1999. This investigation demonstrated that ENSO modulates temperature and 

precipitation across the URG basin, affecting snow accumulation and melt and the 

resulting streamflow. Comparing this research with previous works highlights some 

important characteristics concerning temperature and precipitation responses to ENSO 

episodes specific to the URG. First, temperature differences between the three ENSO 

phases are not uniform throughout the entire winter, but are concentrated at its 

beginning and end – i.e., during November and March. Second, in El Nino years as 

compared to neutral years, the URG experiences lower temperatures especially in its 

northern and eastern sections.  Third, during La Niña years, March temperatures are 

warmer across the entire basin. With respect to temperature at least, it can be said that 

ENSO in the URG affects the length of winter rather than its severity. Meanwhile, 

statistically significant increases in monthly precipitation totals during El Niño years 

were found to occur only during November. Significantly lower precipitation occurred 
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in La Niña years during December and March. So, climatological precipitation 

differences during El Nino, neutral, and La Nina years are confined to certain months, 

predominantly at the beginning and end of the winter season. 

Differences in SWE among ENSO phases were found to exist during only 

March. Thus March during La Niña years is the critical month in determining 

differences in annual hydrograph in the URG. Higher temperatures and lower 

precipitation result in lower, and usually earlier, streamflow, compared to that of neutral 

and El Nino years. March therefore needs to be given special attention when modeling 

scenarios of streamflow under altered climatic conditions. 

There are variable time lags between ENSO-modulated differences in 

temperature and precipitation and the resultant streamflow. Colder temperatures and 

greater precipitation in November of El Niño may result in more snow storage over the 

winter and higher streamflow during the following snowmelt season – a time lag of 

several months. However, the impact of warmer and drier conditions during March of 

La Niña years on streamflow is more immediate, with almost no lag time occurring 

between ENSO modulated meteorological differences and the resultant streamflow. 

La Niña years experience decreased annual streamflow compared to both El 

Niño and neutral water years. However, examination of the reduction of runoff during 

La Niña phase on a monthly basis reveals different responses at different stations. With 

the exception of the Rio Grande at Embudo and Rio Pueblo, the peak streamflow month 

at the studied stations during La Niña years is earlier, though the size of the volume 

differences varies. At the Rio Grande near Del Norte, the effect of ENSO is rather slight, 
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matching small differences in SWE between El Niño and La Niña years in this drainage 

basin. At the Rio Grande at Embudo and at Rio Pueblo, winter streamflow during La 

Niña years is greatly increased and the spring peak is attenuated. 

The second chapter approached the improvement of long-term streamflow 

forecasts in the URG basin by an investigation of the efficacy of the newly available 

MODIS snowcover product. The usefulness of the MODIS snowcover product was 

evaluated by the comparison of streamflow simulations using it and the NOHRSC 

snowcover product with the widely-used SRM in the two sub-watersheds (Rio Grande, 

Rio Ojo) located inside the URG basin. Differences in mapped snow cover during the 

melt season lead to differences in the simulated runoff and zonally averaged SWE. The 

MODIS product was found to generally map more snow at higher elevations in the two 

studied watersheds than did the NOHRSC product, while both products mapped similar 

snow amounts at lower elevations. The greater amount of snow mapped by MODIS lead 

to higher simulated discharge volumes from April to September in SRM simulations 

than when NOHRSC snow depletion curves were used. Similarly, the calculated zonally 

averaged April 1st SWE from MODIS was higher than that calculated using NOHRSC 

snow maps. MODIS-derived snow maps showed more consistent patterns of snow cover 

retreat with respect to elevation than did the NOHRSC snow maps, and no significant 

effect of aspect on differences between the two products in mapped snowcover was 

found. 

For the larger and wetter of the two watersheds, the Rio Grande, satisfactory 

simulations were obtained by using representative parameter values obtained from 1990 
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– 2001 SRM streamflow simulations. The MODIS-based simulations showed higher 

discharge simply because MODIS mapped more snow in the watersheds. Meanwhile, 

SRM was unable to satisfactorily simulate observed streamflow in the smaller Rio Ojo 

watershed because of much drier condition and smaller size compared to the Rio Grande. 

The observed differences in MODIS- and NOHRSC-based simulated streamflow for 

both watersheds were traced to spatial-temporal differences in SCA in a single SRM 

zone, the 2nd zone, within each watershed. This zone comprises approximately 50% of 

the area of both watersheds, and in this zone of both watersheds, MODIS consistently 

mapped more snow. Because this zone occupies a high proportion of each watershed’s 

area, small fractional SCA differences lead to some differences in simulated streamflow. 

Total basin April 1st SWE calculated using MODIS-based snow depletion 

curves showed a little more difference compared to the difference in the amount of 

simulated streamflow. Again, the 2nd zone in each watershed contributes most 

significantly. The differences between SRM zonally averaged SWE and SNOTEL 

measured SWE located in the uppermost (3rd) zone in both watersheds were judged to be 

small when the fact that the SWE measurement is a point one is considered. However, 

snowcover information obtained from MODIS and NOHRSC maps and discharge 

simulated using the SRM was generally quite comparable both in terms of total seasonal 

discharge and in daily streamflow variations for two tributary basins of the URG. Thus it 

appears that MODIS snowcover product can provide SCA information of sufficient 

quality for streamflow simulation using SRM in snowmelt-dominated watersheds. 
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Finally, the fourth chapter presented an investigation of the forecasting of April 

1st to September 30th streamflow volume using a mass-balance model with the parameter 

values obtained from SRM streamflow stimulations, four mass-balance models of 

various complexities which have optimized parameter values, and a simple index-

variable model using only SWE and naturalized streamflow forecasts made by NRCS. 

The streamflow forecasts were conducted using two precipitation conditions. One case 

used observed precipitation in the forecasted years even though it is not a true forecast, 

and the other used ensemble-forecasted precipitation from 1981 to 2001 excluding the 

observed precipitation of the year of interest. 

The results of this investigation were as follows. First, although it is not a real 

forecasting situation to use observed precipitation in the forecasted year, the SRM mass-

balance model in the larger snowmelt-dominated Rio Grande watershed showed some 

forecast value even though no optimization process was involved if dependable 

precipitation forecasts are provided. Meanwhile, the application of ensemble-forecasted 

precipitation gave worse streamflow forecasts than when observed precipitation was 

used because of the high sensitivity of model to the precipitation. The use of SRM mass-

balance model in the drier and smaller Rio Ojo watershed did not give any satisfactory 

forecasting results in either condition. This situation was related to two main factors. 

The first is higher variation of parameter values obtained through the streamflow 

simulations, and the second is weaker relationships between average measured SWE and 

other parameter values compared to those in the Rio Grande watershed. 
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Considering the results for the optimized models, the replacement of CS and CR 

with linear functions of SWE and precipitation, respectively, gave significant 

improvement in the model fit to the observed streamflow in the case of observed 

precipitation of the year of interest in both watersheds. The zonal separation of variables 

(SWE and precipitation) in the optimized models, however, showed different effects to 

the model performance between the two watersheds, with the Rio Grande showing the 

deterioration of model performance and the Rio Ojo showing the improvement of model 

performance. Meanwhile, using the ensemble-forecasted precipitation decreased the 

forecasting differences among different models including simple index-variable model, 

making all the models except SRM mass-balance model have almost the same 

forecasting results in both watersheds. 

When the Cp values of streamflow forecasts on April 1st using observed 

precipitation were compared with the streamflow forecasts of simple index-variable 

model using only SWE on April 1st, there was significant improvement in model 2 in the 

Rio Grande watershed and some improvement in model 4 in the Rio Ojo watershed. 

Therefore, optimized models 2 and 4 showed potential to improve the accuracy of 

streamflow forecasts in the Rio Grande and Rio Ojo watersheds, respectively, although 

this potential largely depends on the accuracy of precipitation forecast. 

Finally, when the streamflow forecasts using above models were compared to 

the forecasts for naturalized streamflow made from NRCS, although the direct 

comparison is not appropriate because of the differences in the range of available data 
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and in the streamflow forecasted, there were significant improvements in the optimized 

models. 

The following recommendations are proposed for the future research. 

1. In addition to the ENSO teleconnection, much research about the 

relationships between Pacific Decadal Oscillation (PDO) or Arctic Oscillation (AO) and 

regional climate variables has been conducted. Accordingly, future studies could extend 

this ENSO analysis to these other indices. This would add to the understanding of the 

effects that teleconnections between global atmospheric circulations and regional 

climate have on hydrologic, ecologic and geomorphologic processes, and it might be 

ultimately possible to provide more accurate long-term streamflow forecasts in regional 

basis with a long lead-time. 

2. Although the relative differences between simulated streamflow using 

NOHRSC and newly available MODIS snowcover product were investigated in chapter 

III, it would be also interesting to evaluate the accuracy of MODIS snowcover product 

by comparing it with that obtained using higher resolution remotely-sensed data sources 

such as Landsat, SPOT or ASTER under various conditions in these and other 

watersheds. 

3. In chapter IV, ensemble-forecasted precipitation were used in order to 

provide the long-term precipitation because there are currently no such available long-

term precipitation forecasts. However, the Climate Prediction Center (CPC) of NOAA 

currently provides 3-month precipitation forecasts at various lead-times. Accordingly, it 
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would be also interesting to examine the performance of above optimized models using 

these actual precipitation forecasts issued by the CPC. 
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