MINIMAX METHODS FOR FINDING MULTIPLE SADDLE CRITICAL
POINTS IN BANACH SPACES AND THEIR APPLICATIONS

A Dissertation
by
XUDONG YAO

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2004

Major Subject: Mathematics



MINIMAX METHODS FOR FINDING MULTIPLE SADDLE CRITICAL
POINTS IN BANACH SPACES AND THEIR APPLICATIONS

A Dissertation
by
XUDONG YAO

Submitted to Texas A&M University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Jianxin Zhou
(Chair of Committee)

Goong Chen Jay Walton

(Member) (Member)

Srinivas Rao Vadali Al Boggess
(Member) (Head of Department)

August 2004

Major Subject: Mathematics



111

ABSTRACT

Minimax Methods for Finding Multiple Saddle Critical Points in Banach Spaces and
Their Applications. (August 2004)
Xudong Yao, B.S; M.S., Shanghai University of Science and Technology, China

Chair of Advisory Committee: Jianxin Zhou

This dissertation was to study computational theory and methods for finding
multiple saddle critical points in Banach spaces. Two local minimax methods were
developed for this purpose. One was for unconstrained cases and the other was for
constrained cases. First, two local minmax characterization of saddle critical points in
Banach spaces were established. Based on these two local minmax characterizations,
two local minimax algorithms were designed. Their flow charts were presented. Then
convergence analysis of the algorithms were carried out. Under certain assumptions, a
subsequence convergence and a point-to-set convergence were obtained. Furthermore,
a relation between the convergence rates of the functional value sequence and cor-
responding gradient sequence was derived. Techniques to implement the algorithms
were discussed. In numerical experiments, those techniques have been successfully
implemented to solve for multiple solutions of several quasilinear elliptic boundary
value problems and multiple eigenpairs of the well known nonlinear p-Laplacian op-
erator. Numerical solutions were presented by their profiles for visualization. Several
interesting phenomena of the solutions of quasilinear elliptic boundary value prob-
lems and the eigenpairs of the p-Laplacian operator have been observed and are open
for further investigation. As a generalization of the above results, nonsmooth critical
points were considered for locally Lipschitz continuous functionals. A local minmax

characterization of nonsmooth saddle critical points was also established. To estab-



v

lish its version in Banach spaces, a new notion, pseudo-generalized-gradient has to
be introduced. Based on the characterization, a local minimax algorithm for finding

multiple nonsmooth saddle critical points was proposed for further study.
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CHAPTER I

INTRODUCTION
This dissertation is to study numerical methods and their related theory for computing
multiple saddle critical points in Banach spaces. For a given Banach space B, let B*
be its topological dual, {, ) the dual relation and ||-|| the norm on B. Let J € C'(B,R).
A point u* € B is said to be a critical point of J iff u* satisfies the Euler-Lagrange
equation

VJ(u) =0

where V.J(u) is the gradient of J at u in the sense of the Fréchet derivative. Critical
points of a C'! functional are called smooth critical points (SCP). Let J : B — R be
locally Lipschitz continuous. Then the generalized-gradient of J in the sense of Clark

[7] is defined as follows.

Definition 1.1 Let J be Lipschitz continuous near ug € B. The generalized direc-

tional derivative J°(ug;v) of J at ug in the direction of v € B is defined by

J(u+tv) — J(u)
; .

J(z;v) = limsup
U — Ug

t10

The generalized gradient 0J(ug) of J at ug is a subset of B* given by
0J(ug) = {C € B* : J°(ug;v) > (¢,v),Yv € B}.
According to Chang [3], u* € B is a critical point of J iff u* satisfies
0€aJ(u").

This dissertation follows the style and format of Mathematics of Computation.



Critical points of a locally Lipschitz continuous functional are called nonsmooth crit-
ical points (NCP). If J is C, then 0.J(u) = {VJ(u)}, i.e., two definitions coincide.
When u* is a critical point (SCP or NCP), ¢ = J(u*) is called the critical value of
J at u* and the set J(c)™' = {u € B : J(u) = J(u*)} is called a critical level. A
problem is said to be wvariational if it can be converted to solving its Euler-Lagrange
equation. Critical point theory is concerned with variational problems. The first
candidates for critical points are the local maxima or minima to which the classical
critical point theory was devoted in calculus of variation. Critical points u* that are
not local extrema are called saddle (critical) points, i.e., in any neighborhood N (u*)
of u* there exist two points v, w such that J(v) < J(u*) < J(w). In physical systems,
saddle points appear as unstable equilibria or transient excited states. Due to unstable
nature, saddle critical points are very elusive to numerical approximation. Conven-
tional numerical algorithms are designed to find stable (local extremum) solutions.
New approaches and methods must be developed.

Variational methods have been proved to be powerful tools in solving nonlin-
ear boundary value problems appearing in many disciplines where other methods
may fail. The study of variational problems can be traced back to early as Fermat
who proved in 1650 that the light follows the path that takes the least time to go
from one point to an other. Newton and Leibnitz simultaneously and independently
made the connection between calculus and derivatives with the variation of functions.
Many great mathematicians, such as, Cauchy, Euler, Dirichlet, Lagrange, Poincare,
etc., have made important contributions to critical point theory. Until beginning of
the 20th century, mathematicians were looking for absolute minimizers of functions
bounded from below. In 1905, in his thesis, Poincare treated a variational problem
whose solution corresponded neither to a minimum nor to a maximum. This approach

was revisited by Birkhoff in 1917 who succeeded to obtain a minimax principle in crit-



ical point theory and this principle was further generalized in late 1920s and early
1930s independently by Morse and Ljusternik-Schnirelman.

Since then, the minimax principle, which characterizes a saddle point as a solu-
tion to

' J 1.1
iy (0 e

for some collection A of subsets A in B, becomes one of the most popular approaches
in critical point theory. As a typical example, the mountain pass lemma proved by
Ambrosetti and Rabinowtz in 1973 [1] set a milestone for modern nonlinear analysis,
since then many minimax theorems, such as various linking and saddle point theorems,
have been successfully established to prove the existence of multiple critical points
[4,10,19,21,1,25,26,27,2,24,3,13,etc.]. But most of them focus mainly on the existence
issue and require one to solve a two-level global optimization problem, and therefore
are not useful for algorithm implementation.

The first numerical minimax algorithm for finding smooth saddle critical points
(SSCPs) basically with MI=1 was developed by Choi-McKenna [6] in 1993, where
MI is the Morse index of a critical point uv* in a Hilbert space H which is defined
as the maximum dimension of a subspace H~ of H on which J”(u*) is negative
definite and MI is not defined in a Banach space. Ding-Costa-Chen [11] proposed
a numerical minimax method in 1999 to capture SSCPs basically with MI=2. But
no mathematical justification or convergence of the algorithms was established. A
numerical local minimax algorithm together with its mathematical justification and
convergence was successfully developed by Li-Zhou [17,18] in 2001, to find multiple
SSCPs of MI=1,2,..n. All those three algorithms are formulated in Hilbert spaces,
where the gradient and orthogonality played important roles. In fact, the gradient is

used to find a search direction to update an approximation point and the orthogonality



is used to prevent the search from degenerating to a lower critical level. In terms of
minimax approach, in (1.1), at the first level, A is a 1D simplex in Choi-McKenna’s
method, a 2D simplex in Ding-Costa-Chen’s method and an nD subspace in Li-Zhou'’s
method.

However, many nonlinear problems in application, such as the wellknown non-
linear p-Laplacian equation in the study of non-Newtonian fluid flows [9, 15, 25], are
formulated in Banach spaces and possess multiple solutions. How to find multiple
SSCPs in Banach spaces? So far no such numerical methods are available in the
literature. In this dissertation, a numerical local minimax method will be developed
for this purpose. The key step in this development is to establish a mathematical
justification, a local minmax characterization for SSCPs, in Banach spaces.

On the other hand, the popular hemivariational inequalities, which arise in me-
chanics when one wants to consider more realistic nonmonotone and multivalued
stress-strain laws or bounded condition [22,23,14], require us to deal with NCPs. In
fact, the local minmax characterization for SSCPs in a Banach space can be general-
ized to be a local minmax characterization for NCPs. The generalized local minmax
characterization gives us a starting point to design a numerical local minimax method
to find multiple nonsmooth saddle critical points (NSCPs).

When theory and methods for finding multiple SCPs are developed, it is quite
natural to consider multiple constrained smooth critical point (CSCP) problems,
which constitute an important part of critical point theory. An important class of
multiple CSCP problems is nonlinear variational eigenpair problems. Linear eigenpair
problems are a classical research topic both theoretically and numerically [28]. Huge
literature is available. On nonlinear eigenpair problems, although many theoretical
studies exist in the literature [28, 8], people’s understanding is still limited. In par-

ticular, few numerical methods [16] can be found. In this dissertation, a numerical



local minimax method will be developed to find multiple nonlinear eigenpairs.

In the sections of Chapter I, some related milestone results on the existence and
computation of critical points and eigenpairs in contemporary critical point theory
will be recalled. In Chapter II, a local minmax characterization for SSCPs will be
established, a local minimax algorithm for finding multiple SSCPs will be designed,
implementation techniques of the algorithm will be discussed and numerical experi-
ment results on quasilinear elliptic PDEs will be presented by figures of their solution
profiles for visualization. In Chapter III, some convergence results of the algorithm
will be established and a relation between convergence rates of the functional values
and their gradients will be presented. The smoothness of peak-selection will be dis-
cussed. As an application of our frame work, we give a proof to the existence of a
nontrivial weak solution to a class of quasilinear elliptic PDEs. In Chapter IV, a local
minmax characterization for a class of CSCP problems, i.e., iso-homogeneous non-
linear eigenpair problems will be established, a local minimax algorithm for finding
multiple eigenpairs of this class eigenpair problems will be designed, numerical ex-
periment results on eigenpairs of the wellknown nonlinear p-Laplacian operator, will
be exhibited by figures of eigenfunction profiles with the corresponding eigenvalues
for visualization. In Chapter V, several convergence results of the algorithm will be
stated and the smoothness of peak-selection will be discussed. In Chapter VI, a local
minmax characterization for NSCPs will be established. In order to establish such
minmax characterization in Banach spaces, pseudo-generalized-gradient for locally

Lipschitz continuous functionals has to be defined. A minimax algorithm for finding

multiple NSCPs will be designed.



A. Existence of Multiple Saddle Critical Points

Many existence results for multiple SSCPs and NSCPs in various nonlinear problems

are available in literatures. Some of them will be recalled in this section.

1. Existence of Multiple SSCPs

The following wellknown Palais-Smale condition [1] is frequently used in the study of
the existence of SSCPs as a compactness assumption, which is, although not always,

frequently satisfied by nonlinear PDE problems.

Definition 1.2 A functional J € C'(B,R) is said to satisfy the Palais-Smale (PS)
condition if any sequence {u;} C B such that J(u;) is bounded and VJ(u;) — 0

possesses a convergent subsequence.

One of the simplest and most useful minimax theorems in the literature for

saddle critical points, is the mountain pass lemma, established by Amhrosetti and

Rabinowitz [1] in 1973.

Theorem I.1 (Mountain Pass Lemma) Given a Banach space B and a functional

J € CY(B,R) satisfying the PS condition with J(0) = 0. Assume that
(1) there exist constants p, o > 0 such that J|pp, > «, and
(2) there is an e € B\ 0B, such that J(e) < 0.

Then

c= inf max J(p(t
peC([0,1],B),p(0)=0,p(1)=e t€[0,1] (p( >>

is a critical value of J.

The mountain pass lemma sets a milestone for contemporary nonlinear analysis. It is

used to prove the existence of the ground state. Since then, many linking theorems



are also established to prove the existence of more saddle critical points in various

nonlinear problems. The following linking theorem is due to Rabinowitz.

Theorem 1.2 (Linking Theorem) Given a Banach space B such that B = L & X,
where X, L are two closed subspaces of B and L has finite dimension. Assume that

J € CY(B,R) satisfies the PS condition and

(1) there are p, o« > 0 such that J(v) > o, Yv € 0B, N X,

(2) there are u € X with ||ul| = 1 and a number R > p such that J(v) <0, Vv € 0Q,
where Q = (BrN L) ® {ru|r € (0,R)}.

Then

c= 1¥f max J(h(u))

1$ a critical value, where

I'={heC(Q,B)h=id on 0Q}.

2. Existence of Multiple NSCPs

The nonsmooth version of the Palais-Smale condition is frequently used in the proof

of the existence for NSCP and due to Chang [3].

Definition 1.3 (Nonsmooth Palais-Smale Condition) A locally Lipschitz continuous
functional J : B — R satisfies the nonsmooth Palais-Smale (PS) condition, if any
sequence {J(u,)} C B such that {J(u,)} is bounded blow and {z,} — 0, where

zn € 0J(uy,) with minimum norm, has a strongly convergent subsequence.

By the nonsmooth version of the PS condition, several minimax theorems and
linking theorems have been established and used to prove the existence of multiple

NSSCPs. Similar to smooth cases, the following Theorem 1.3 is for the existence of



the ground state and Theorem 1.4 is for the existence of more saddle critical points.
These two minimax theorems are due to N. Kourogenis, P. Kandilakis and N. S.

Papageorgiou.

Theorem 1.3 If

(1) B is a reflexive Banach space, B = L & M with dim L < +o0,
(2) J: B — R s a locally Lipschitz functional,

(3) there is v > 0 such that
max{J(u) :u € L,||ul]| =r} <inf{J(v):v e M},

(4) J satisfies the non-smooth Palais-Smale condition, and

(5) ¢o =inf er maxyep J(y(u)) with D ={u e L : ||u|| <r} and
I'={yeC(D;X):y(u) =u for |lul =r},

then co > infoerrJ(v) and cq is a critical value of J. Moreover, if co = infoepJ(v),

then there is a critical point vg € M with co = J(vp).

Theorem 1.4 If

(1) B is a reflexive Banach space, B = L & M with dim L < +o0,

(2) J: B — R s alocally Lipschitz functional which is bounded below,

(3) J satisfies the non-smooth Palais-Smale condition,

(4) J(0) =0 and inf,ep J(v) <0, and

(5) there is v > 0 such that

=
=
A

0ifue L and |jul| <,

J(u) > 0ifueM and ||ul| <,



then, J has at least two non-trivial critical points.

B. Numerical Methods on Finding Multiple SSCPs

In this section, three numerical methods for finding SSCPs, which are related to the
minimax algorithms in this dissertation, will be recalled. The first method is proposed
by Choi and McKenna [6] in 1993. The flow chart of the algorithm in [6] is long. It

is rewritten in [5]. The version in [5] reads basically as follows.

Algorithm 1.1 Modified Mountain Pass Method (Choi-Mckenna)

Step 1. Given an increasing direction vy. Set k = 0.
Step 2. Solve t;, = arg max;~¢ J(tvg).

Step 3. Find the steep descent direction dy, of J at ux = tyvy. If ||di|| < €, stop the

algorithm. Otherwise, do Step 4.
Step 4. Solve s = arg maxg~o{max~o J(t(vg + sdy)) < J(ug)}.

Step 5. Let vgyq = vg + spdy. Update k =k + 1 and go to Step 2.

The second method is designed by Ding, Costa and Chen [11] in 1999. The flow

chart of the algorithm reads as follows.

Algorithm 1.2 High Linking Method (Ding-Costa-Chen)

Step 1. Find a point v such that vo # 0 and J(vy) < 0.

Step 2. Apply the Modified Mountain Pass Method to find a mountain pass solution

vy and uy,us satisfying

J(v1 +tug) < J(vr), J(vi +tug) < J(v1) for small t # 0.
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Step 3. Findt, > 0 and ty < 0 such that J(vi +tiuy) < 0 and J(vy +tauy) <0, and

set g1 = vy + tiuy and go = vy + tou.
Step 4. Find tz > 0 such that J(vy + tsuz) < J(v1), and set g3 = v1 + tzus.

Step 5. Construct the triangle /\ by
A ={Ag1 + Xaga + (1 = A1 = Ag)gs| A, A2 > 0, A + Ap < 1}

and find v* € A such that J(v*) = maxgzea J(g).

Step 6. If v* is an interior point of /A, then go to next step. Otherwise, set uy, =
v* — vy and go to Step 4.

Step 7. Set vy = v*, compute w = V.J(vq).

Step 8. If ||v|| <€, then output vy and stop. Otherwise, set us = (—v +vy) — vy and

go to next step.

Step 9. Repeat the same procedures as Step /-6 to construct a new triangle /N and

find an interior point v* € A such that J(v*) = maxgen J(g).

Step 10. If J(v*) < J(v2), go to Step 7. Otherwise, set w = jw and uy = (—w +

v9) — vy, then go to Step 9.

The third method is established by Li and Zhou [17] in 2001. The flow chart of

the algorithm reads as follows.

Algorithm 1.3 Local Minimaz Method in the Hilbert Space (Li-Zhou)
Assume that uy, ..., u,_1 are n—1 found critical point of J, L = [uy, ..., u,_1] and

A, € are two positive numbers.

Step 1. Find an ascent direction U,lL e Lt at u, .
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Step 2. Solve for

1 1 1,1
= E thu;, +t = E tiu; + 1y,
tn — it + nUn argt €ERi= ,n 1,tn>0 i+ U
with initial point (0,...,0,1) and set k = 1.

Step 3. Compute the descent direction wk of J at uf, wk = —VJ(uF).

n n

Step 4. If |wF|| < ¢, then stop and output uk. Otherwise, go to Step 5.

Step 5. Let v¥(s) = S ond solve for

[[of+sw

t;eR,i=1

Z thu; + tFoF(s) = arg  max J(Z tu; + t,vF(s)).
with initial guess (t¥,t5 ... tF). Set

n

1
s = max{s|]A > sllun|l > 0, J(p(v(5))) = J(p(vr) < =5 stallwil*}.

(s) = vp 4k wk

Let vFt!l = ok = TRk kT
n n [0 +siwrl

k+1 _ k+1) _ n—1  k+1 k+1,,k+1
n and Up ~ = p(vn ) - Zi:l ti w6 :

n

=k +1 and go to Step 3.

C. A Class of Quasilinear Elliptic PDEs

All three numerical methods in Section B are for finding critical points in Hilbert
spaces. However, many problems in application have to be formulated as finding
critical points in Banach spaces. For example, the weak solutions of the following

class of quasilinear elliptic PDEs

Apu+ flz,u) = 0, in
u = h, on 0,
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are the SCPs of some functional in Banach spaces where A, denotes the p-Laplacian

operator defined, for p > 1, by

0 ou
p—2
g}

Ayu = div(|VulP~?Vu) = Z 5
i=1

| - | is the Euclidean norm, f satisfies some standard conditions [20], & is a constant
and €2 is a domain in R". When p = 2, A, becomes the usual Laplacian operator
A. This class of quasilinear elliptic PDEs (p # 2) appears in non-Newtonian fluids,
some reaction-diffusion problems, flow through porous media, nonlinear elasticity,

glaceology and petroleum extraction [9]. It has also geometrical interest for p > 2 [9].

D. Existence of Eigenpairs

Eigenpair problems constitute an important class of multiple CSCP problems. In this
section, some important existence results will be recalled. The first wellknown result

is of linear eigenpair problems.

Theorem I.5 (Courant Maximum-Minimum Principle, [28/) Consider the linear

eigenvalue problem

Au=XIu, uwe H, NeR

with the aid of

2t sup +inf,cq, +F(u),

400 _ suesi Mfues, £(u) (1.2)
2 0 L.

form =1,2,.... In this connection, we assume

(Hy) H is a real separable Hilbert space with inner product (,) and dim(H) = oo.

The operator A : H — H is nonzero, linear, symmetric and compact. Denote

F(u) =2 Au,u), G(u) =2""{u,u).
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(Hy) S ={u € Hl||u|| = 1} and Sy = S N Hy, where Hy is a k-dimensional linear

subspace of H.

(H3) L, is the set of all Sy, with k > n and
LE = {Si € L,| + F(u) >0 on S;}.
Let £X\E > 0 for + or —. Then the following four assertions hold:
(a) A= /\f s an eigenvalue of A. All eigenvalues A # 0 of A can be obtained in this
way with the aid of (1.2).

(b) The multiplicity of X is equal to the number of indices k for which )\ki =\

(c) There exist eigenvectors uy, ..., u, of A such that (u;,u;) = 0;; fori,j =1,...n
and such that
)\i
:I:T" = min +F(u),

uESn

where S, = S N span{uy,...,u,} € LE.

(d) \* — 0 asn — oco.
The second theorem is for nonlinear eigenpair problems.
Theorem 1.6 (/28]) For fized o > 0, consider the eigenvalue problem
F'(u) = \G'(u), wue€ N, XeER, (1.3)

where the level set

N, ={u € B|G(u) = a}.

with the aid of

2t su +inf e £F(u),
7,” _ pSkGKn eK ( ) (14)

0 K*
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n=1,2,.., where KX denotes the class of all compact symmetric subsets K of N,

such that gen(K) > n and £F(u) > 0 on K and

supremum over all m such that +c,, > 0,
tx+ = (1.5)
0 forct =0.

In this connection, we assume

(Hy) B is areal reflexive separable Banach space with dim(B) = oo and F,G : B — R
are even function functionals such that F,G € C*(B,R) and F(0) = G(0) = 0.

In particular, it follows from this that F' and G' are odd potential operators.
(Hy) The operator F' is strongly continuous and F(u) # 0, u € co(N,) implies that
F'(u) #0.

(H3) The operator G' is uniformly continuous on bounded sets and satisfies
Up — u, G'(u,) — v implies u, — u as n — .
(Hy) The level set Ny, is bounded and
u#0 implies (G'(u),u) >0, ltll)rono G(tu) = +o0,

and

inf (G'(u),u) > 0.

uGNa

Then the following five assertions hold:

(1) Existence of an eigenvalue. If +c& > 0 (+ or —), then (1.3) possesses a pair
(uf, —u) of eigenvectors with the eigenvalue Nt # 0 and F(uf) = c¢E.
If F" and G’ are positive homogeneous, i.e., F'(tu) = tF'(u) and G'(tu) = tG'(u)

for allu € B and t > 0, then ¢t = a\t.
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(2) Multiplicity. (1.3) has at least x4 + x— pairs (u, —u) of eigenvectors with eigen-
values that are different from zero.

If ¢t =+ci = = £c

wip >0, p>1 (+ or —), then the set of all eigen-

vectors of (1.3) such that F(u) = ¢ has genus great than or equal to p+ 1. In

particular, this set is infinite.

(3) Critical levels. +00 > ¢ > +c¢F > --- >0 and ¢t — 0 as n — oo.

(4) Infinitely many Eigenvalues. If x4+ = 0o or x— = oo and F(u) =0, u € co(N,)
implies (F'(u),u) = 0, then there is a sequence {\,} of infinitely many distinct
eigenvalues for (1.3) such that A\, — 0 as n — co.

(5) Weak convergence of eigenvectors. Assume that F(u) = 0, u € co(N,) implies

u = 0. Then max(x1,x—) = 0o and there is a sequence of eigenpairs (A, uy)

of (1.8) such that u, — 0, A, — 0 asn — oo and A, # 0 for all n.

Remark 1.1 The symmetry of a subset and the genus of a symmetric subset need an

explanation.
(1) A subset K of a Banach space B is said to be symmetric iff u € K implies
—u € K.

(2) The genus of a symmetric subset K of a Banach space B, denoted as gen(K),
1s defined as

(1) gen(9) = 0.
(2) If K # ¢, gen(K) is the smallest natural number n > 1 for which a zero-free

mapping f : K — R™ — 0, where f is odd and continuous, exists.

(3) If K # ¢ and no such n exists, gen(K) = +00.
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E. Nonlinear Eigenpair Models

Many models in physics and chemistry are related to nonlinear eigenpairs. As exam-
ples, three models are presented.

Example 1.(Non-Newtonian Fluids [9]) The quasilinear elliptic equation
Ayju+Au=0, p>1 A>0, (1.6)

appears in the study of non-Newtonian fluids. Indeed, when studying the laws of
motion of fluid media, Newton fluids are usually considered to be those for which the
relation between the shear stress 7 and the velocity gradient Z—Z (for simplicity we will

here restrict ourselves to the plane case) takes form

T = u%. (1.7)
However, this approximation is satisfactory only for a limited number of actual fluid
media. Dispersive media treated according to a continuum model do not obey the
law given by (1.7). The motions of such non-Newtonian fluids are studied in rheology.

Usually (1.7) is substituted by the power rheological law

du

du,
T = M|£|p 2%7

p>1 (1.8)

The quantities pu and p are the rheological characteristics of the medium. Media with
p > 2 are called dilatant fluids, and those with p < 2 are called pseudoplastics. When
p = 2, they are Newtonian fluids.

Example 2.(Singular equations [9]) The study of some reaction-diffusion problems

leads to formulations such as the following

Au+ " = 0in Q
u = 1 on 0
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where A\ > 0 and 0 < k < 1. This eigenpair problem appears as the limiting case
of some models in heterogeneous chemical catalyst kinetics (Langmuir-Hinshelwood

model) where the equation is

e+1
€e+u

Au 4 Mu™( )" =0 in Q, (1.9)

with £ > 0, m > 1, A > 0 and € > 0 small, as well as in models in enzyme kinetics

m

Autd—t—— =0 inQ. (1.10)

€ + ymtk

When e — 0, the equations (1.9) and (1.10) become
Au+du™=0 in Q.

Example 3.(p-Laplacian Operator [15]) The p-Laplacian operator has various appli-
cations, for instance, in stellar dynamic structure and in flows through porous media
when the D’Arcy’s law does not remain valid. The weighted eigenpair problem of the

p-Laplacian operator is defined as

Apu+ A wlulPu = 0, x € Q,
u = 0, €090
where w is a weight function, €2 is a bounded region and p > 1. When w = 1, the

problem becomes the standard eigenpair problem of the p-Laplacian operator

Apu+ MNulPu = 0, z €Q,
u = 0, €00.
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CHAPTER II

A MINIMAX METHOD FOR SSCPS IN BANACH SPACES
Assume that B is a Banach space and J € C*(B,R). u* is critical point of J iff u*

satisfies the Euler-Lagrange equation, i.e.,

VJ(u*) =0.

A. A Local Minmax Characterization for SSCPs

For a subspace B’ C B, denote Sp = {v|v € B',||v|| = 1} as the unit sphere in B’
Assume that B = L @ L', where L (called a support) and L’ are closed subspaces of

B, and P : B — L' is the corresponding linear projection with a bound M > 1.

Definition I1.1 A set-valued mapping P : Sp, — 28 is the peak mapping of J w.r.t.
L if Yv € Sp, P(v) is the set of all local mazimum points of J in the subspace
[L,v] = {tv+wlw € L, t € R}. A single-valued mapping p : Sp; — B is a peak
selection of J w.r.t. L if

p(v) € P(v), Yv e Sp.

For a given v € S/, we say that J has a local peak selection w.r.t. L at v if there is

a neighborhood N (v) of v and a single-valued mapping p : N'(v) NSy — B satisfying
p(u) € P(u), Yue N(v)NSy.

Definition I1.2 Let u € B be a point s.t. VJ(u) # 0. For given 6 € (0,1], a point

U(u) € B is a pseudo-gradient of J at u w.r.t. 0 if
V()| <1, (VJ(u),¥(u)) > 0[VJ(u)]. (2.1)

Denote B ={u € B : VJ(u) # 0}. A pseudo-gradient flow of J with a constant 0 is
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a continuous mapping ¥ : B — B s.t. Yu € B, U(u) satisfies (2.1).

Remark II.1 Note that the number 1 in (2.1) can be replaced by any number m > 1,

since it can be absorbed by the constant € to become 0 < % <1

Lemma I1.1 Let 0 < 8 < 1 be given. For vy € Sp+, if p is a local peak selection of
J w.rt. L at vy s.t. VJI(p(vg)) # 0 and ¥(p(vg)) € B is a pseudo-gradient of J at
p(vo) w.r.t. the constant 0, then there exists a (modified) pseudo-gradient G(p(vy)) of

J at p(vg) w.r.t. the constant 0 s.t.

(a) G(p(vg)) € L', 0 < ||G(p(vo))|| < M where M > 1 is the bound of the linear

projection P from B to L';

(b) (VJ(p(wo)), G(p(wo))) = (VI (p(vo)), ¥(p(v0)));
(c) If W(p(vo)) is the value of a pseudo-gradient flow V() of J at p(vy), then G(-)
is continuous and G(p(vy)) is called the value of a modified pseudo-gradient flow

of J at p(vy).

Proof. Let G(p(wn)) = P(¥(p(en))) € I'. Then [Gp(un))ll < M| (p(eo))]| < M.
Denote U(p(vg)) = Vi(p(vo)) + G(p(vg)) for some vector Wy (p(vg)) € L. By the

definition of a peak selection p, we have (V.J(p(vo)), Vr(p(vo))) = 0. Thus

(VJ(p(wo)), Gp(wo))) = (VI (p(v0)), W(p(v0))) = 0V (p(wo))]| > 0.

Therefore G(p(vg))) # 0 is a pseudo-gradient of J at p(vg) w.r.t. €. The results

follow.

Lemma I1.2 For each v € X with ||v|]| =1, it holds

2||wl]

v—uw|’

v Yw € B.

—w
lo = I <
—w|| "

lv
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Proof. In fact,

- 2= = [o(lv = wl = 1) +wl _ vl [llv—wl] = 1] + [lw]
lv = wl] lo = wl] - lo —wl]
o —wll = flvoll [+ [lw] o 2flw]
lv —wl = v —wl

The next lemma is crucial, which shows the relation between the gradient of J
and the variation of a peak selection. It will be used to establish a local minmax
characterization of saddle points and to design a stepsize rule in a local minimax

algorithm.

Lemma 11.3 For vy € Sy, if there is a local peak selection p of J w.r.t. L at vy
satisfying (1) p is continuous at vy, (2) d(p(ve), L) > 0 and (3) VJ(p(vo)) # 0, then

there exists s > 0 s.t. as 0 < s < 59

Tp02) ~ J(p(oy)) < ~lVI0] (2.2)

where p(vy) = tovg + wo with ty # 0 and wy € L,

_ U~ sign(to)sG(p(voy))
lvo — sign(to)sG(p(vo))ll

Vs

and G(p(vy)) is a modified pseudo-gradient of J at p(vo) as defined in Lemma I1.1.

Proof. Since J € C'(B,R), we have

J(p(vs) = J(p(vo)) + (VI (p(v0)), p(vs) = p(vo)) + ofllp(vs) — plvo)[D)- (2.3)

Since p is a peak selection, we have (V.J(p(vy)),vo) = (VJ(p(v9)),v) = 0, Vv € L.
Thus

<v‘](p(v0))7p(vs) - p(vo» =t <v‘](p('00))7 'Us>
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_ sign(to)tss(VJ (p(vo)), G(p(v))) _ _ sign(to)tss{VJ(p(vo)), ¥(p(vo)))
[vo = sign(to)sG(p(vo))| lvo = sign(to)sG(p(vo))|

by Lemma II.1 where p(vs) = tsvs + ws and ws € L. When p is continuous at vy and
B=L& L, wehave t, —ty and wy; — wy as s — 0. Then, by the definition of a

pseudo-gradient, as s > 0 is small

Se|t0|

(VI (pleo)): plvs) = plvo)) < == S ]

| VI (o))l (24)

Hence, by (2.3) and (2.4), there is sp > 0 s.t. as 0 < s < s,

s6]tol [V 7 (p(vo))

Tp(w) = o) < —gr2 e (25
Choose s > 0 small such that ||vg — sign(to)sG(p(vo))|| < 2. Then
Tp(w)) - T(plan)) < - AIVT@D] (2.6)

The following theorem characterizes saddle points as local minimax solutions.

Theorem I1.1 Let vy € Sp. Suppose that J has a local peak selection p w.r.it. L
at vy satisfying (1) p is continuous at vy, (2) d(p(vo),L) > 0 and (3) vy is a local

minimum point of J(p(+)). Then p(vo) is a critical point of J.

Proof. Suppose p(vp) is not a critical point, then, by Lemma I1.3, there is so > 0 s.t.

_ sOt[[V I (wo) |
4 )

J(p(vs)) < J(p(wo)) Vs € (0, 50)

g — sign(to)sG(p(vo))

= : and
[[vo — sign(to)sG(p(vo))|l

G(p(vp)) is a modified pseudo-gradient of J with the constant 6 at p(vg) as defined

where p(vg) = tovg + wo (to # 0 and wy € L), vy

in Lemma II.1. This contradicts the assumption that vy is a local minimum point of

J(p(v)).
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The following Ekeland’s variational principle will be used later.

Lemma I1.4 (Ekeland’s variational principle, [27]) Let X be a complete metric space
and J : X — RU {400} be a lower semi-continuous functional bounded from below.

Then for any € > 0 and xy € X with J(x) < +00, there is T € X such that

J(z) + ed(xo,T) < J(xo) and J(x)+ed(z,z) > J(Z), Vo € X and x # T.

By Ekeland’s variational principle and the PS condition, we have the following

existence theorem.

Theorem I1.2 Let J € CY(B,R) satisfy the PS condition. If there is a peak selection
p of J w.r.t. L satisfying (1) p is continuous, (2) d(p(v),L) > «o,Vv € Sp for some
a >0 and (8) infyeg,, J(p(v)) > —o0, then there is vo € Sy s.t. p(vg) is a critical
point of J, and

J(p(vo)) = min J(p(v)).

UESL/

Proof.  Since Sy, is a closed subset and J(p(-)) is a continuous function on Sy,

bounded from below, by Ekeland’s variational principle, for any integer n, there is

v, € Sp s.t.
Tplon)) < jnf Tp(e)+ 2.7
and
T(p(v)) — J(p(vn)) > —%Hv — v, Yo € Sur v £ v (2.8)
By Lemma II.3 and Lemma I1.2, for some v € S, and close to v,,
To) — Tp(e,)) < 2P DITI@y,
Thus
IVl < -t < O (29)

< .
nfd(p(v,), L) — nba
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By the PS condition, {p(v,)} has a subsequence, denoted again by {p(v,)}, converging
to a point ug € B. If denote p(v,) = t,v, + x, where ¢, € R and z,, € L, then,
{tnv,} is convergent since B = L & L'. Hence, {|t,|} is convergent. Assume {t¢,}
is a convergent subsequence. Denote tq = lim, . t,. Then, by our assumption (2),
lto] > a > 0. Thus, v, — vy € Sp. Since p is continuous, by (2.9), p(vg) is a critical

point of J and by (2.7), J(p(v)) = min,eg,, J(p(v)).

B. A Local Minimax Algorithm for SSCPs in Banach Spaces

1. Flow Chart of the Algorithm

Let uy, us, ..., u,_1 be n—1 previously found critical points of J, L = [uy, ug, ..., up_1],

B=L® L. Givene, A >0and# € (0,1). A flow chart of the algorithm reads:

Step 1: Let v! € S/ be an increasing-decreasing direction at w,,_;.
Step 2: Set k = 1 and solve for

ub = p(o") =thF -ty

= argmax{J(to0" + tyus + -+ tp_up_1)|ti € R,i=0,1,....n — 1}.

Step 3: Find a descent direction w* = —sign(t§)G* of J at u*, where G¥ € L' is a
modified pseudo-gradient of J at u* = p(v¥) with the constant # as defined in

Lemma II.1.
Step 4: If |[VJ(p(v¥))|| < ¢, then output u*, stop. Otherwise, do Step 5.

Step 5: For each s > 0, let v¥(s) = -4+ and use the initial point (£, ¢5, . ¢ )

o ok swE]l

to solve for

n—1
uF(s) = p(v*(s)) = arg max {J(tovk(s) + Ztluz)]tl €ER,i=0,1,...,n— 1},
i=1
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then set uf ™! = p(v**1) = p(vF(s*)) where

A om 0
sF = max{s = 2|27 > ot J(u(s)) = J (") < =7tV I ()]}
Step 6: Update kK =k + 1 and go to Step 3.

Remark I1.2 It is worthwhile making some remarks on the algorithm:

(a) If B is a Hilbert space, by taking L' = L+ and G*¥ = VJ(u*), it becomes Li-
Zhou’s algorithm.
(b) Step 5 will not stop until | V.J(u*)| < € since by Lemma I1.1, V.J (u¥) # 0 implies

G(u*) # 0.

(c) There are two key steps: (1) computation of a modified pseudo-gradient, (2)
optimization. (2) can be done by some standard optimization method. The

implementation of (1) will be addressed later.

(d) To implement Step 3, we can either follow a modified pseudo-gradient flow given
by Lemma II.1, i.e., to keep the continuity of G* in u* or just find a modified

pseudo-gradient.

(e) The following theorem indicates that the algorithm is stable.

Theorem I1.3 In the algorithm, if u* = p(v*) ¢ L, VJ(u*) # 0 and p is contin-
uous at v® € Sy, then s* > 0 and u*! = p(v(s*)) is well defined. Consequently

J(uF )y < J(u).

Proof. By the setpsize rule and Lemma II.3.
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2.  Computation of Pseudo-Gradient

In this section, we present some formulas to compute a pseudo-gradient and a pseudo-
gradient flow in LP(Q2) (p > 1). Their modified versions follow from a projection to a
subspace. Assume that €2 is a measurable space with measure p and || - ||, represents

the norm in LP(Q). Let us recall some wellknown results.

Lemma IL1.5 ([10]) Let f,{f.} be in LP(Q),1 < p < o0,

(a) if fr — f in LP(Q), then {f,} has a subsequence that converges to f pointwise

a.e.;

(0) if fu = f and | fallp = fllp, then fo — f in LP(Q).

Lemma 11.6 Let p,q > 1 satisfy % —|—é =1 and f, f, € LYQ) s.t. fo, — f. Then
1 1
sign(fo)l ful 77T — sign(f)|f[P=7 in LP(Q), where

1 x 0,
sign(g)(x) = fa@ =0 ),

=1 if g(x) <0,

Proof. It suffices to show that any subsequence, denoted always by {sign(f.)| x| = 1
has a subsequence that converges to sign(f)|f|p_i1 in LP(Q). Since f, — f in L(2),

by Lemma II.5, we have ]fn\ﬁ pay ]f]ﬁ It follows,
. 1 ae . 1
sign(fn)(@)| fu(@) |77 = sign(f)(z)|f(z)[7~T.

Since Il) + é =1land f, — fin L9(Q), it leads to

Isign(f)l fal 7112 = [ £alld = Isign(HLAZTIE = 1112

By Lemma II.5, the proof is complete.
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Theorem I1.4 Let p > 2 and % + % = 1. Assume that J : LP(2) — R is Fréchet
differentiable at f € LP(Q) s.t. VJ(f) # 0. Let G(f) = sz’gn(VJ(f))\VJ(f)|ID+1

Then

G(f)
VIt

is a pseudo-gradient of J at f with the constant 1. If in addition, J is C*, then ¥ is

U(f) =
a pseudo-gradient flow of J with constant 1.

Proof. ||¥(f)||, =1 can be seen from
IGH» = (/Q CI)FEdp)r = VI = IV
On the other hand,
(VI = [ VIHO@ED = [ VI F1du= [Vl

Hence (VJ(f),U(f)) = [|[VJ(f)|l, and ¥(f) is a pseudo-gradient at f with the con-
stant 1.

To show W is continuous. Let fo € LP(Q) with VJ(fo) # 0 and {f,} C LP(Q)
s.t. fu — fo. Since J € CYLP(Q), R), we have VJ(f,) — VJ(fy) in L) and
\VI(fu)llg = IVI(fo)llg- Then Lemma I1.6 leads to

G(fn) — G(fo) in LP(Q), ie. ¥(f,) — V(fo) in LP(Q).

D=
NI

Theorem IL5 Let 1 <p <2, .+ ¢ =1, u() < oo and 0 = max(L, (u(Q))7"2). If

J: LP(Q2) — R is Fréchet differentiable at f with VJ(f) # 0. Then

VJ(f)

Y = ST
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is a pseudo-gradient of J at f with the constant 2. If in addition, J is Ct, then ¥

is a pseudo-gradient flow of J with the constant 2.

Proof. By the Holder inequality, we have

IVIDll < IV I a(a()2 2 or W), < 1. (2.10)
It follows
w090 = [ w2 gy D IV,

Hence U(f) = % is a pseudo-gradient of J at f with the constant 62,
To show W is continuous, let {f,} C LP(Q) s.t. f, — f in LP(Q2). Since J €
CHILP(Q),R), VJ(f,) — VJ(f) in Li(Q). Tt follows VJ(f,) — VJ(f) in LP(Q)
and |[VJ(fn)ll2 = [IVJ(f)]|2, since % + % =1,1<p<2<qand u(Q) < co. Hence
U(f,) — Y(f)in LP(Q), i.e., ¥ is a pseudo-gradient flow of J with the constant 672
In a general Banach space B, when VJ(f) # 0 is computed in B* at some f € B,

a pseudo-gradient of J at f corresponding to a constant 0 < 6 < 1 can be computed

through

wp (YU

e T T P

Y
B*

which has an upper bound %. It seems to us that it is extremely difficult, in this
case, to derive an explicit formula for computing a pseudo-gradient for a functional
J : WP(Q) — R. Instead we develop some numerical techniques to do the job in the

next section.
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C. Numerical Experiment to Quasilinear Elliptic PDEs
Consider solving the following quasilinear elliptic BVP for multiple solutions:
Apu(z) + f(z,u(z) =0,2 €Q, uweB=W,7Q), p>1, (2.11)

where () is an open bounded domain in R™ and Ayu(z) = div(|Vu(z)[P~2Vu(z)) is
the nonlinear p-Laplacian differential operator, which has a variety of applications in
physical fields, such as in fluid dynamics when the shear stress 7 and the velocity
gradient Vu of the fluid are related in the manner 7(z) = r(z)|Vu[P~>Vu, where
p=2,p < 2,p> 2if the fluid is Newtonian, pseudoplastic, dilatant, respectively.
The p-laplacian operator also appears in the study of flow in a porous media (p = %),
nonlinear elasticity (p > 2) and glaciology (p € (1,3)) [9]. So far people’s knowledge
about solutions to (2.11) is still very limited. We hope to examine the qualitative
behavior of solutions and find new phenomena through numerical investigation. We

have B* = W, "4(Q) where 1 +% = 1. Under certain standard conditions on f, weak

solutions of (2.11) coincide with critical points of the functional

/ \Vu(z)[Pdx — / F(z,u(z))dx where F(x,t)= /0 f(z,s)ds. (2.12)
For u € B, to find the gradient d = V.J(u) € B*, for each v € B, we have
(d,v) = /QVCZ(.CE)VU(%’) dx :/Q—Ad(:v)v(x) dr = %]tZOJ(u—l—tv)
- / <]Vu(:r:)\p*2Vu(x)Vv(x) — f(x, u(m))v(m))dw
Q
= [ (Apula) = S la)ota)ds,
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Thus d = VJ(u) can be computed through solving the linear elliptic equation

Ad(z) = Ayu(z) + f(zu(z), =€, (2.13)
d(ZE) = 0, x € Of.

Where since Ayu(z) + f(z,u(z)) € Wy "4(Q), we have d € Wy(Q). When u = p(v)
for some v € Sy, by the definition of a peak selection, d = V.J(u) satisfies

(d,w) = /QVd(x)Vw(a:) de =0, Ywel,

ie,d=VJ(u) L L. In our numerical examples, we check the ratio

I3

=2 (2.14)
ldllp - [Illq

where || - ||, is the norm in W"(Q2). v < 1 by the Holder inequality. If v > o > 0,

then G(u) = ”dd”p € L' is a modified pseudo-gradient of J at w as in Lemma II.1.
It is interesting to point out that although we have not been able to analytically
prove v > a > 0, we can numerically check this ratio in each computation. All our
numerical examples show that the ratio v is a way above 0. For p > 2, since B C B*,
we define L' = L+ = {v € B : {(u,v) = 0,Yu € L}. For p < 2, VJ(u) € B* C B, it
can be used directly in the algorithm.

Next, we apply our numerical minimax algorithm to find multiple solutions for

the p-Emden-Fowler Equation:
Apu(z) + Ju(z)|* u(z) =0, 2 € Q, ue€ W;P(Q) (2.15)
and the p-Henon Equation:

Apu(z) 4 |z — 1" u(@) | u(z) =0, 2 € Q, u e WyP(Q) (2.16)

where | - | is the Euclidean norm, 1= (1,..,1), 1 <p<q+1<p* with p* = "—pp for

n—
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p < n and p* = oo for n < p, and n is the dimension of the domain space. In our
computation, Q = [0,2] x [0,2] C R2.

Note that the right-hand-side of (2.13) involves an evaluation of a higher-order
derivative of a numerical solution w, i.e., Aju(x), which causes difficulty for using

linear finite elements. To solve the problem, we utilize a weak form of (2.13)
/QAd(x)v(ac) dx = /Q (Ayu(x) + flz,u(x)) v(z)de Yo e Wy (2.17)
and the identity
/Q Ayu(a)o(z) de = — /Q V(@) Vo(z) dz Vo € WP (2.18)

to replace the higher-order derivative term by a first-order derivative term. Thus
linear finite elements can be applied. Here either 400 x 400 or 800 x 800 linear square
elements are used. Since different values of p have different physical applications,
we will use different values for p also for the parameter r to examine their solution
profiles. We use € = ||VJ(uy)|| < 1072 to stop the iterations. The profiles of solutions

are presented as follows, Fig.1-Fig.18.
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Fig. 1. Equation (2.15) with p = 3.0, ¢ = 7.0. The ground state with J = 4.4829 (left)
and a solution with J = 40.9568 (right).
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J = 60.4600 (left) and a solution with J = 116.2310 (right).
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Remark I1.3 It is to the best of our knowledge that the above solutions are the first
time to be computed and visualized. Several interesting phenomena have been ob-
served, e.g., for fixed p and ¢ and let r increase, the ground state breaks its symmetry,
compare Fig. 11 with Fig 13, Fig. 12 with Figs 15 and 17. Once the symmetry is
broken, it leads to four asymmetric ground states. Those phenomena are still open

to be analytically verified.



40

Table.I and Table.Il show some argument and symmetry used in the algorithm.

Table I. v, is the minimum among ratios defined by (2.14) in the last 10 iterations

of the computation for each solution and L is the support in the computation.

Solution Yinin L Solution Vnin L
left, Fig.1 (ur) || 0.88 | {0} || right, Fig.6 || 0.93 (0}
right, Fig.1 | 0.93 | {u1} left, Fig.7 || 0.92 {0}
left, Fig.2 0.65 || {u1} right, Fig.7 0.91 {ua}
right, Fig.2 0.73 || {0} || left, Fig.8 (u3) | 0.90 {0}
left, Fig.3 | 0.83 | {0} || right, Fig.8 (us) | 0.96 {uz)
right, Fig.3 0.88 || {0} left, Fig.9 0.91 {us}
left, Fig.4 0.74 || {u1} right, Fig.9 0.93 {0}
right, Fig.4 (ug) || 0.95 | {0} left, Fig.10 0.98 || {us,us(z,y),us(y, x)}
left, Fig.5 0.97 | {us} || right, Fig.10 | 0.94 0}
right, Fig.5 0.98 || {u2} left, Fig.11 0.91 {us}
left, Fig.6 0.91 | {0} right, Fig.11 {0}
Fig.12~Fig.18 0}




Table II. Symmetry listed is used in the computation for each solution.

Solutions

Symmetry

right, Fig.2; left, Fig.6; right, Fig.9

locally odd about z = 2, 3

left, Fig.3; right, Fig.6

odd about z =1,y =1

right, Fig.3; left, Fig.7; right, Fig.10

odd about y =z, x +y = 2

left, Fig.4; right, Fig.7; left, Fig.11

4-rotation

right, Fig.13; right, Fig.15; right, Fig.17

even about x =1

left, Fig.14; left, Fig.16; right, Fig.18

even about xr + y = 2

right, Fig.14; right, Fig.16; right, Fig.18

4-rotation

41
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CHAPTER III

CONVERGENCE OF THE 1ST MINIMAX ALGORITHM
For a subspace B’ C B, denote Sp = {v|v € B',||v|| = 1}. Assume that B=L& L'
for some closed subspaces L and L’ and PP is the corresponding linear projection
operator B — L’ with bound M > 1. For each v € S/, let [L,v] = {tv + wjw €

L.t € R}.

Definition III.1 A set-valued mapping P : Sp, — 28 is the L-1 mapping of J if
Vv € By, P(v) ={u € [L,v] : (VJ(u),w) =0,Yw € [L,v]}. A single-valued mapping
p: Sy — Bisan L-1 selection of J if p(v) € P(v),Yv € Sp,. For a given v € Sy,
we say that J has a local L-1 selection at v if an L-_L selection p is locally defined

near v.

Lemma IT1.1 If J is C', then the graph G = {(u,v) : v € Spi,u € P(v) # 0} is

closed.

Proof. Let (un,v,) € G and (un,v,) — (uo,v9). We have u,, € [L,v,], VJ(u,) L
[L,v,] and u, = t,v, + Uﬁ — wug for some scalar ¢, and point Uﬁ € L. Denote
up = up+ul for some uy € L' and uf € L. Tt follows vE—ul = w, —uo—P(u,—uy) — 0
and t,v, — uy = P(u, —ug) — 0, ie., t,v, — uj = tovy for some scalar ¢y, because
vp — vg. Thus u, — ug = tovg + ul € [L,vo] and V.J(ug) L [L,vg] because J is C.
Therefore vy € S and uy € P(vp), i.e., (ug,vo) € G.

It is clear that if P is the peak mapping of J w.r.t. L, then P is the L-1 mapping
of J. This generalization exceeds the scope of a minimax principle, the most popular
approach in critical point theory. It enables us to treat non-minimax type saddle
points, such as the wellknown monkey saddle, or a problem without a mountain pass

structure at all. See Example 2.1 in [29].



43

Lemma I11.2 Let 0 < 6 < 1 be given. For vy € Sp/, if p is a local L-1 selection of
J at vy s.t. VJ(p(vo)) # 0 and VU(p(vg)) € B is a pseudo-gradient of J at p(vy) w.r.t.

0, then there exists a (modified) pseudo-gradient G(p(voy)) of J at p(vy) w.r.t. 0 s.t.

(a) G(p(vg)) € L', 0 < ||G(p(wo))|| < M where M > 1 is the bound of the linear

projection P from B to L';

(b) (VJ(p(wo)), G(p(wo))) = (VI (p(vo)), ¥(p(v0)));
(c¢) If W(p(vy)) is the value of a pseudo-gradient flow V(-) of J at p(vy), then G(-)
is continuous and G(p(vy)) is called the value of a modified pseudo-gradient flow

of J at p(vy).

Lemma II1.3 For vy € Sy, if J has a local L-1 selection p at vy satisfying (1) p is
continuous at vy, (2) d(p(ve), L) > a >0 and (3) VJ(p(vo)) # 0. Then, there exists

50 > 0 such that for 0 < s < sq

Tp(0()) = Tplen)) < ~ 2ol VI (w0 (3.1)

— sign(ty)sG
where p(vy) = tovo+wy for somety € R,wy € L, v(s) = v — sign(to)sG(p(vo)) and

~ lvo = sign(to)sG (p(vo))|
G(p(vo)) is a modified pseudo-gradient of J with 6 at p(vy) as defined in Lemma I11.2.

The proof of the above two lemmas can follow a similar argument of Lemma II.1 and
I1.3. The inequality in (3.1) will be used to define a stepsize rule for the algorithm.
We have

Theorem III.1 Let vy € S,. Assume that J has a local L-1 selection p at vy such
that (1) p is continuous at vy, (2) d(p(vo), L) > 0 and (3) vy is a local minimum point

of J(p(v)). Then, p(vy) is a critical point of J.
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A. A Unified Convergence Result

In this section, we prove a unified and abstract convergence result which is indepen-
dent of the algorithm. This result is designed to cover several different cases for the
algorithm.

Denote
K={ue B|VJ(u)=0} and K.={u e B|VJ(u)=0,J(u) = c}.

If J satisfies the PS condition, K. is a compact set. Now we are ready to prove an

abstract convergence result.

Theorem II1.2 Let V C B be open and U = VNS # (. Assume that J € C'(B,R)

satisfies the PS condition,
(1) p is a continuous L-1 selection of J in U, where U is the closure of U on Sy,
(2) inf,ep d(p(v), L) > a >0,

(3) inf,cop J(p(v)) > ¢ = inf,cp J(p(v)) > —o0, where AU is the boundary of U on
SL/.

Then, K? = p(U)N K. # 0 and for any {vx} C U with J(ug) — ¢ where u, = p(vy),

(a) Ve > 0, there is k > 0 such that d(KP,uy) < e, Vk > k;

(b) If in addition, VJ(p(-)) is Lipschitz continuous in U, then there is a constant C
such that |V.J (ug)|| < C(J(ug) — ¢)=.

Proof. Define
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Then, J(p(-)) is lower semicontinuous and bounded from below on the complete metric
space Sp/. Let {vy} C U be any sequence such that J(p(vg)) — ¢. By our assumption
(c), such sequence always exists. Denote uy = p(vi). Applying Ekeland’s variational
principle to J(p(-)), for every v, € U and & = (J(uy) — ¢)2, there is 7, € Sy such

that

J(p(o)) = J(p(v))

J(p(v)) — J(p(vr)) < =0k — vk (3.3)

IN

5k||77k — U”, Yv € SL/ (32)

By the definition of j(p()) and assumptions on p, we have o, € U,

J(p(vr)) — J(p(v))

J(p(vp)) — J(p(vr)) < —0kl|on — vi]- (3.5)

IN

5k||@k — U”, Yv € SL/ (34)

It follows ¢ < J(p(vg)) < J(ux) — Ol|vx — vgl|, or
1
I — wrll < 6. (3.6)

and d(L,p(vx)) > « when k is large. Then J(p(vy)) — ¢ implies J(p(vx)) — ¢. By
condition (3), we have vy € U for large k. For those large k, if VJ(p(tx)) # 0, by

Lemma II.3, when s is small,
Tp(@(s)) — T0(E)) < T p(50) () — e

— __ Uptswg
where U(s) = FiE

e U, wy, = —sign(th)G(p(ty))), p(tr) = thvy + ub for some

uk € L and G(p(vy)) is a modified pseudo-gradient of J at p(v;,). Hence

IV I < gt} (3.7

which implies V.J(p(v;)) — 0 and then V.J(p(vi)) — 0 by (3.6). {J(p(vk))} is already
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bounded. By the PS condition, {ux} has a subsequence that converges to a critical
point u*. It is clear that J(u*) = ¢ and u* € K? # (). Let  be any limit point
of {d(KP,ux)} and wuy, = p(vk,) € {ug} such that lim; .., d(K?,uy,) = . By the
PS condition, {p(vx,)} has a subsequence that converges to a critical point u. Again

J(w)

cand u € K? ie., § =0. Thus conclusion (a) holds.

If in addition, VJ(p(-)) is Lipschitz continuous in U with a Lipschitz constant
(1, from (3.6) and (3.7), we have

IVI ()l < VI @@+ VI (p(er) = VI (p(0r))]

16M 1 16 M
< Wéﬁ%—&”%—vkﬂ < (W—kﬁl)(l](uk)—c) :

N

Corollary II1.1 Let J € CY(B,R) satisfy the PS condition, Vi and Vs be open in L'
with ) # Uy = Vo Sy € ViN Sy = Uy, If p is a continuous L-L1 selection of J in
U1 with

(1) inf,ep, d(p(v), L) > a > 0,¢ =inf,ep, J(p(v)) > —oc0 and K? = p(U;)NK C K.,

(2) thereis d > 0 with
inf{J(p(v))|v € Uy,d(v,0U;) < d} = a > b= sup{J(p(v))|v € Us},

(3) given {v} such that vy € Us, ||vgs1 — k|| < d, J(ugy1) < J(ux) and {ug} has a

subsequence that converges to a critical point ug, where ux = p(vg). Then
(a) Ve >0, there is k > 0 such that  d(KP,uy) <e, Yk >k;

(b) If in addition, VJ(p(-)) is Lipschitz continuous in Uy, then there is a constant
C such that |VJ(u)|| < C(J(up) — ¢)2.

Proof.  First, we prove that v, € U; and d(vg,0U;) > d, k = 1,2,.... In fact, if
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v € Uy, d(vg, 0Up) > d and J(uy) < b, then vy € Uy and J(ugyq) < b, i.e., vpyq € Uy
and d(vgy1,0U;) > d. Thus, for vy € Us, vy, € Uy and d(vg, 0U;) > d, k = 1,2, ....
Since K? = p(U;) N K C K. and {u;} has a subsequence that converges to a critical
point ug, we have ug € K? # (). Denote U = {v € U;|d(v,0U;) > d}. Then by the

monotonicity of {J(ug)}, we have J(uy) — ¢ = inf,cp J(p(v)) as k — oo, and

inf J(p(v)) >a>b> J(p(v1)) > c= inf J(p(v)).

vedlu velU

Thus all the assumptions of Theorem III.2 are satisfied and the conclusions follow.

B. A Min-Orthogonal Algorithm & Subsequence Convergence

Definition II1.2 Let vy € Sy and p be a local L-L selection of J at vy with VJ(p(vy))

# 0. A point w € L' is a descent direction of J(p(+)) at vy if there is sq > 0 such that

Vo + Sw
J <J Vi<s< h = ——.
(Plun() < Tp(w), VO <5 <50 where wfs) = T

The local min-orthogonal characterization of a saddle point, Theorem III.1, sug-
gests to devise the following local min-orthogonal algorithm.

1,2 n—1

"~ where ut,u?, ...,u" ! are n—1 previously found

Assume that L = [u!,u?, ..., u

critical points of J. For given A\,e >0 and 6 € (0,1). Let B=L& L.

Step 1: Let v; € S; be an ascent-descent direction at u" 1.

Step 2: Set k = 1. Solve for ux = p(vp) = thop + thul + - + ¥ ™! such that
tg # 0,

(VJ(p(vp)),ve) =0 and (VJ(p(vg)),u’)y =0, i=1,2,...n — 1.

Step 3: Find a descent direction wy, of J(p(-)) at vy.

Step 4: If |VJ(ug)|| < e, then output uy = p(vy), stop. Otherwise, do Step 5.
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Vg + Swy,

Step 5: For each s > 0, denote vy(s) = Tox & 5wl
Vk SWi,

and set vg1 = vg(sk) where

A 0lth|

s = mas{ 2 lm € V.27 > |, Tl (o) — () <~ 0LV}

Step 6: Update k = k£ + 1 and go to Step 3.

Remark I11.1 About the algorithm, we need point out the following facts.

(1) In Step 2, one way to solve the equations while satisfying the nondegenerate
condition t§ # 0 is to find a local mazimum point vy, of J in the subspace

[L,vy], i.e., ux, = p(vg) and p becomes a peak selection of J w.r.t. L.

(2) In Step 3, there are many different ways to select a descent direction wy. How-
ever, when a descent direction is selected, a corresponding stepsize rule in Step 5
has to be designed such that it can be achieved and leads to converge to a critical
point. For example, when a negative modified pseudo-gradient flow —Gy, or a
negative modified pseudo-gradient is used as a descent direction, a positive step
size s for the current stepsize rule in Step 5 can always be obtained. In some
case, when the negative gradient —V J(p(vy)) is used as a descent direction, the

stepsize rule in Step 5 has to be modified as in Case 3 below.

Now let us first assume that a negative modified pseudo-gradient (flow) is used

as a descent direction.

Definition II1.3 For each v € Sp with |[VJ(p(v))|| # 0, write p(v) = tyv + vy, for

some vy, € L and define the stepsize at v as

s(v) = max{s|A > sf|lwll, J(p(v(s))) — J(p(v)) < —i9lto!SHVJ(p(v))H}

where
U+ Sw

v(s) = To sl w = —sign(ty)G
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and G is either a modified pseudo-gradient of J with 0 at p(v) or the value of a

modified pseudo-gradient flow of J with 6 at p(v).
Then it is easy to check that %s(vk) < sk < s(vx) and by Lemma 3.1 we have

Lemma I11.4 If p is a local L-L selection of J atv € Sp/ such that (1) p is contin-

uous at v, (2) d(p(v),L) >0 and (3) VJ(p(v)) # 0, then s(v) > 0.

To verify the condition that {u;} has a subsequence that converges to a critical
point in Corollary III.1, let us make the following uniform stepsize assumption for

{ux} and then verify it for different cases.

(H) if vy € Sy with VJ(p(vg)) # 0 and uy — p(vy), then there is so > 0 such that

s(vg) > so when k is large.

Theorem II1.3 Let J € CY(B,R) satisfy the PS condition and p be an L-1 selection
of J such that (1) p is continuous on Sr/, (2) infi<k<oo d(p(vi), L) > a > 0,

(3) inf1<pcoo J(p(vr)) > —00, (4) {p(vi)} satisfies Assumption (H), then

(a) {vi}2, has a subsequence {vy, } such that uy, = p(vk,) converges to a critical point
of J;

(b) if a subsequence uy, — ug as i — 00, then ug = p(vy) is a critical point of J.

Proof. (a) By the stepsize rule and Lemma 1.2, for k = 1,2, ..., we have

Huer) = Tue) < = 30050V T(pon) ]| < ~aballver = wl VI @@ (39

Suppose that there is 6 > 0 such that ||VJ(p(vg))|| > d for any k. From (3.8), we

have

J(upg1) — J(ug) < Oad||vgrr — vkl, Yk=1,2,.. (3.9)

C16M
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Adding up (3.9) gives
Jim J (u) - ; (ur1) = (u)] < =1 M@a(SZ vpsr —vell,  (3.10)
e., {vr} is a Cauchy sequence. Thus vy — © € Sp. By the continuity of p,

IVJ(p(0))|| > 6 > 0. On the other hand, adding up (3.8) gives

k—o0

, JR— 1 -
lim J(uy,) — J(uy) < —Zﬁa;skHVJ(p(vk))H < —Zﬁadgsk,

or s, — 0 as k — oo. It leads to a contradiction to assumption (4). Therefore,
there is a subsequence {v, } such that ||VJ(p(vg,))|| — 0 as ¢ — oo and {J(p(vk,))}
is convergent. By the PS condition, {p(vk,)} has a subsequence that converges to a
critical point wuyg.

(b) Suppose uy = p(vg) is not a critical point. Then there is § > 0 such that
|V J(ug,)|| > 6,i=1,2,.... Similar to (3.8), we have

1 1
‘](uk’r‘rl) - J(“h) < —ZQQSkZHVJ(Uh)H < _Zeaéski'

Since Y oo [ (wg1) — J (ug)] = limy oo J (ug) — J (wr), limy oo (J (up;41) — J (ug,)) = 0.
Hence, zlggo sk, = 0. It leads to a contradiction to Assumption (H). Thus ug is a
critical point.

First, we discuss case 1, i.e., use a negative modified pseudo-gradient flow as a
descent direction.

In Step 3 of the algorithm we choose wy = —sign(tf)G(p(vy,)) where G(p(vy))
is the value of a modified pseudo-gradient flow of J at p(vy) = thvy + vE for some

vr € L.

Lemma IIL.5 If p is a local L-L selection of J at vy € Sy such that (1) p is con-

tinuous at vy, (2) d(p(v), L) > 0 and (3) VJ(p(vg)) # 0, then Assumption (H) is
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satisfied, or, there exist €,s9 > 0 such that for each v € Sp with ||v — vo| < e,

800|tv|
4

J(p(v(s0))) = J(p(v)) < = IVJ(p())]l

v S8IgN(ty)s0G (p(v))
where v(so) = § G edwn’ P

(v) = tyv+w, for some w € L and G(p(v)) is the

value of a modified pseudo-gradient flow of J at p(v) with constant 6.

Proof. By Lemma III1.4, there is 5 > 0 such that as 0 < s < 5

ol (o)) (3.11)

Tp(oo(s))) = T(plwo)) < =22

where vy(s) = vo—sign(to)sG(p(vo))

= Toosien(i)sC o) and p(vy) = toug + wp for some wy € L. Actually,

for fixed s, the two sides of (3.11) are continuous in vy. Thus, there are €, s > 0 such

that

To((e) - ) <~ g s, voe sy with ol < e

Second, we discuss case 2, i.e., use a negative modified pseudo-gradient as a
descent direction.

In Step 3 of the algorithm we choose wy, = —sign(t§)G(p(vi)) where G(p(vy))
is a modified pseudo-gradient of J at p(vy) = tfvy + vf for some vF € L. Since
pseudo-gradients may be chosen from different pseudo-gradient flows, we lost the
continuity. To compensate the loss, we assume that an L- 1 selection p of J is Lipschitz

continuous.

Lemma II1.6 Let p be a local L-1 selection of J at vy € Spr. If (1) p is Lipschitz
continuous in a neighborhood of vy, (2) d(p(vy), L) > 0 and (3) VJ(p(vy)) # 0, then
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Assumption (H) is satisfied, or there are €, sy > 0 such that
1 .
J(p(v(sp))) — J(p(v)) < —1309|tUH|VJ(p(v))H, Vv € By with ||v— | < e

where

v — sign(t,)soG(p(v))

, . pv) =ty +vE for somevt € L
o signto)soGp@)] 7

v(so) =

and G(p(v)) is a modified pseudo-gradient of J at p(v) with constant 6.

Proof. First, denote p(v(s)) = t5v(s) + w,(s) for some w,(s) € L, we have

J(p(v(s))) = J(p(v)) = (VI (p(v)) + (VI (C((v, 5)) = VI (p(v))), p(v(s)) — p(v)) (3.12)

where ((v,s) = (1 — A)p(v) + Ap(v(s)) for some A € [0,1]. By assumption (1) and

Lemma II.2,

25| G (p(v))|
[v = sign(tu)sG(p(v))]]

On the other hand, by the definition of an L-_1 selection of J, as s > 0 is small and
v = sign(t,)sG(p(v))
lv — sign(tu)sG(p(v))|

_sign(ty)tys(VJI(p(v), G(p(v)))
< ( ( )),p(U(S)) ( )> - Hv—szgn( ) (p(U))H
_ 51V I (p(v)), ¥(p(v))) sO[t|[[V I (p(v)) ]
= o= signft)sCE@) > <0 31

Ip(v(5)) = p()|| < €flv(s) =]l <

< 40Ms. (3.13)

we have

for any v close to vy, denote v(s) =

[(VJ(C(v,5)) = VI (p(v)), p(v(s)) — p(v))]
sO]tu |1V (p(0)) |

< V(v 5)) = VI (p)] [[p(v(s)) = p(v)]| < 1 (3.15)

where in the last inequality, since J is C' and by assumptions (2) and (3), we have

Olt. |V I (p()lIl

IVJ(C(v,s)) — VI(p(v))] < 16¢M

(3.16)
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By (3.12) there exist sg, € > 0 such that

soflta IV (p(0))]

J(p(v(s0))) = J(p(v)) < T

, Yu € S with [ — ]| < e

(3.17)

Finally, we discuss case 3, i.e., use a practical technique for a descent direction.

To solve a class of quasilinear elliptic PDEs, some very useful practical techniques
are developed in Chapter II for numerical implementation to compute descent search
directions. Let B = Wy*(Q) = L& L' for some closed subspaces L, L' in B, p > 1 and
B* = W, "(Q) with %—i—% = 1. Let P be an L-_L selection of J. Forv € S/, u = P(v),
let 6.J(u) be the gradient of J at u w.r.t. the usual (B, B*) duality. By the definition
of P,6J(u) L L. But 6J(u) € B*, thus cannot be used as a search direction in B.

Our gradient d = VJ(u) is a solution to
Ad(z) = =6J(u)(x), x € Q, d(z)|sq = 0.
We have V.J(u) € W;(Q) € B* and for any w € B,
(d, Wyt = (Vd, Vi) oo = /ﬂ Vd(z) - V() d
= /Q —Ad(z)w(x)de = /Q(SJ(U)(;E)w(:E) dx = (6J(u), w>WJl’qu5’p'
In this sense, d = V.J(u) can be used as a gradient of J at u and in particular
<VJ(u),w>W&,qxwg,p = (6J(u),w)wgl,qxw&,p =0, VYwelL. (3.18)

Then we will discuss, a few paragraphs late, how to choose L’ such that V.J(u) € L'.

Since

6Tl = s> (6T (W), W)y

lwll ,1,p=1
wyP
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= sup |<d, w>W01,q><W(},p‘ = sup |<Vd, Vw>quLp| S ||d||W01,q,

||w||W5,p=1 [Vwllgp=1

VJ(ur) — 0 = dJ(ug) — 0, ie., the PS condition of J in terms of §J implies
the PS condition of J in terms of VJ. From now on, (-,-)a,1 = (-,->W01,qxw01,p,
(s ) (=11) = '>WO—1,qXW01,p and (-,-) means (-,-)(1,1) whenever V.J is involved. Based
on the understanding that when a nice smooth initial guess vy is used, we may expect
that actually nice functions are used to approximate a critical point, i.e., all the points
U, ur, = P(vg) and VJ(uy) are nice. Motivated by pseudo-gradients, to find a descent

search direction, we check the ratio

IV ()3
IV ()l IV T ()]

>0>0 Vk=1,2,.., (3.19)

where || - ||, is the Wy (Q)-norm. When (3.19) is satisfied, ¢(uz) = % is not

only in W, () with r = ¢,2,p, but also a modified pseudo-gradient of .J w.r.t. 6
at w, e O(ue) € Sur lo(u)lly = 1 and (8.(ue), 6(u)) 11y = 06T (1)1
However, we cannot assume that ¢(uy) is the value of a modified pseudo-gradient
flow of J at P(vg), simply because we do not have any information about the ratio
at other points.

Thus, when —¢(uy) is used as a descent search direction, this case can be covered
by Case 2. But in implementation, the lower bound 6 in (3.19) is usually not known
beforehand. In particular, we do not know whether or not the ratio is satisfied at a
limit point of the sequence. Hence, Step 3 in the algorithm is modified to be

Step 3: Find a descent direction wy, of J at u, = P(vg), wp = —sign(t§)V.J (uy).
[[wil[3

Compute the ratio 6, = m
P q

> 0;
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and the stepsize rule in Step 5 has to be changed to

A tk|s
Sp = maX{s = 2—m|m € N, 2™ > ||wgl], J(P(vk(s))) — J (ug) < %HVJ(U;JH%}
(3.20)
Next we show that if 0 < [|[VJ(P(vp))|l2 < +00, a positive stepsize can always be

attained.

Lemma II1.7 Forwvy € Sy, if J has a local L-L selection P at vy satisfying (1) P is
continuous at vy, (2) d(P(vo), L) > a >0 and (3) 0 < ||[VJ(P(vy))|l2 < +00. Then

there exists so > 0 such that as 0 < s < sg

J(P(vo(s))) = J(P(vo)) < —@IIVJ(P(%))H% (3.21)

vo—S1GMN(t0)sV I (P(vo))
[lvo— 82N (t0)sV J (P (vo))l|

where vy(s) = and P(vg) = tovg + wy, for some ty € R, wy, € L.

Proof. Since ||P(vo(s)) — P(vp)|| — 0 as s — 0, we have

J(P(vo(s)) — J(P(wo))

151511V (P (vo))II3

“ilvo = sVI P00 +o([P(vo(s)) = Pwo)ll) < == =IIVJ(P(w))ll2

4

where P(vo(s)) = t§vo(s) + wj for some t§ € R, w§ € L and the last inequality holds
for 0 < s < sg for some sy > O.

Now we discuss how to choose L’ such that VJ(uy) € L.

For p < 2, V.J(v) € Wy € B. Although when L is finite-dimensional, theoreti-
cally there is a closed subspace L’ such that B = L & L', in general it is difficult to
find an explicit formula for L’. Here we develop a different approach for convergence
analysis. Denote Lt = {v € Wy?|(v,u)11) = 0, Yu € L} and L' to be the || - ||,-norm

closure of L' in B. It is clear that L’ is closed in B. When L = {0}, L’ = B holds.
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But when dim(L) > 0, B = L @ L’ fails to hold. Thus this case has to be handled
with extra care. We still use S/ as the domain to define an L-1 selection P as in

Definition III.1. However if an initial guess v; is chosen in S} ., we have v, € Sy . for

all k=23, ...

Lemma IIL1.8 Let J € CY(B,R) and vy € Sp/. Let P be a local L-1 selection of J
at vy such that P is continuous at vy and d(P(vy), L) > 0. If VJ(P(vy)) # 0, then

there exists s > 0 and € > 0 such that

[ts|s0 ’50

J(P(v(s0)) = J(P(v)) < == —=IVJ(P())Il, Vv € Sp,[lv—wl <e,

where P(v) = t,v +w, and w, € L.

Proof. By Lemma II1.7, we have

|750|=5‘

J(P(vo(s))) = J(P(v0)) < =—=IIVI(P(wo))ll2; (3.22)

where P(vg) = tovg + wo and wy € L. When p < 2, we have ¢ > 2. J is C'! implies
that V.J is continuous in ||-[|s-norm. For fixed s, all the terms in (3.22) are continuous

in vy. Thus there exists sg > 0 and € > 0 such that

2 |80

J(P(v(s0))) = J(P(v)) < — IVI(P@)I3, Vv € Sy, llv—wll <e.

With the new stepsize rule and Lemma II1.8, if 8, > 6 > 0 in Step 3 is satisfied, we

can verify Theorem II1.3. The proof is similar. We only need to replace (3.8) by

Qs @05
) = J(ur) < == F[ VI (w)lf5 < .

a@
< ——Hvk+1 - kaIIVJ(Uk)II (3.23)

IV () [l [V T ()4

and then follow the proof.
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Then the unified convergence result, Corollary III.1 holds for this practical tech-
nique.

In all our numerical examples carried out so far, (3.19) is satisfied. We also note
that the ratio is stable for 1 < p < 2 and gets worse as p — +o00. Thus for p > 2,
instead of assuming (3.19) holds and using —¢(ug) as a descent search direction, we
only assume ||VJ(u)||, < M for some M > 0 and directly verify that —V.J(uy) is a
descent search direction in B.

For p > 2, B C B*. Let L' = L*+ = {u € Bl{u,v)q1) = 0, Yo € L}. Thus
it can be verified that L' is closed in B and B = L @ L’ holds at least when L is
finite-dimensional. If [|[VJ(P(vg))|l, < +oo, then VJ(P(vy)) € L' by the definition
of P at vy € Sy and (3.18). Since J is C" means that 6. is continuous in W, “%(€),
but V.J is not necessarily continuous in || - [|s-norm or || - ||,-norm, we need an L-_L

selection P to be locally Lipschitz continuous.

Lemma IIL9 If w, — w # 0 in W3 (Q)(¢ > 1) and wy, € W, (Q)(r > 1),k =

1,2,... and Q is bounded, then i%f ||wgl» > 0.

Proof. (1) The case ¢ > r is trivial, since wy, — w in Wy(Q) = w, — w in Wy (Q).
(2) For ¢ < r, if infy [Jwi|. = 0, then there is {wy, } such that lim ||wy, ||, =0,
ie., lim wy, =0 in W, "(Q). Then lim wy, =0 in W;%(Q), ie, w = 0. Tt is a

contradiction.

Lemma IIL.10 Let J € C*(B,R) and vy € Sp/. Assume P is a local L-L selection
of J at vy such that (1) P is locally Lipschitz continuous (2) d(P(vo), L) > 0 and (3)
VJ(P(vy)) # 0. Then for any vy € Sp/, limg_oo vx = vo and |V J(P(vp))|| < M for

some constant M, ux, = P(vy) satisfies Assumption (H).
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Proof. Let uy = tyvg +v& and P(vg(s)) = tivi(s) +vE(s) for some vl vl(s) € L, we

have
J(P(vi(s))) — J(u) = (VI (ur) + (VI (((vk, 8)) = VI (ug)), P(or(s)) — ue)) (3.24)

where ((vg, s) = (1= A\p)ug + AP (vi(s)) for some i, € [0,1]. By assumption (1) and

Lemma II1.2, it leads to

20s||V J (uy) ||
sign(ty)sVJ (ug)||

[P (or(s)) — urll < €llve(s) — vell < on —

On the other hand, by the definition of an L-1 selection of J, as s > 0 is small and

k is large,

(VI (ur), Pvk(s)) — ux)) =

sign(ty)tys||V.J (u) |l s|t] 2
_ : < — VJ(u <0
|vp — sign(ty)sV.J (ug)|| 2 AR

— sign(ty)sVJ
where vy(s) = Uk 8@.971( 1)V J (ug) _
llog — sign(ty)sVJ (ug)]|
(3), and Lemma III.9, there exist ¢ > 0 such that when s > 0 is small and & is large,

Since J is C* and by assumptions (2) and

[telllve — sign(ts)sVJ (ui)[[[IVJ (ur) |3

>0 > 0.
8¢||V J (ug) ||

Thus we can choose s > 0 small and k large such that

tilllow — sign(ty)sVJ (up) IV (ur) |3
8|V J (ug)]| '

IVI(C (v, 8)) = VI (wi) || <
Hence

(VI (C(vr, 5)) = VI (ur), P(vr(s)) — us)]

< IVICvk, 8)) = VI () [[[[P(vr(s)) — unl <

|t [V () |13
: .

By (3.24), there exist k, sy > 0 such that when 0 < s < s,

_ s[tllIV T () |15
4

J(P(vg(s))) — J(ug) < , VEk > k.
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With the new stepsize rule and the conditions |V.J(uy)||, < M, we can also verify
Theorem II1.3. The proof is similar. Note that when ||V.J(ug)||, > do for some &y > 0,
|V J(ug)||2 > 9 for some § > 0 and there is always a 3 > 0 such that ||vg+spwy|, > 3,

k =1,2.... We only need to replace (3.8) and (3.9) by

as as _asyd?
T = Jm) < ~HTI@[F < ~Dkst = 0Ty
_as (52 aﬁéQ
- : ||Vj(uk)||p — 16 M ||Uk‘+1 - Uk‘”

where the last inequality follows from Lemma II1.2 and then follow the proof. The

unified convergence result, Corollary III.1 also follows.

C. An Application to Nonlinear p-Laplacian PDE

As an application, let us consider the following quasilinear elliptic boundary-value

problem on a bounded smooth domain 2 C R"

Apu(z) + f(z,u(z)) = 0, z€Q,
u(z) = 0, z e,

uw€ B=WY"(Q), p>1, (3.25)

where A, defined by Ayu(x) = div(|Vu(x)[P~2Vu(z)) is the p-Laplacian operator
which has a variety of applications in physical fields, such as in fluid dynamics when
the shear stress and the velocity gradient are related in certain manner where p =
2,p < 2,p > 2 if the fluid is Newtonian, pseudoplastic, dilatant, respectively. The
p-Laplacian operator also appears in the study of flow in a porous media (p = %),
nonlinear elasticity (p > 2) and glaciology (p € (1,3)). Under certain standard

conditions on f, it can be shown that a point u* € Wy"(Q) is a weak solution of

(3.25) if and only if u* is a critical point of the functional

:%/Q]Vu(q;)\pdx—/QF(x,u(x))dx where F(x,t):/otf(:c,s)ds. (3.26)
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Since conditions (1), (2) and (3) in Theorem III1.2 are basic assumptions in our results
and new in the literature, we verify them in this section. Let us assume some of the

standard growth and regularity conditions in the literature. Set the Sobolev exponent

Pt = n"pp for p < n and p* = oo for p > n. Assume
(a) f € CHQ x R,R), f(x,0) =0, éﬁf t§2§ monotonically increases to +oo in ¢,

(b) For each € > 0, there is ¢; = ¢;(¢) > 0 such that f(x,t)t < e|t|P + c1|t|P", Vt €
R, x € Q.

It is clear that w = 0 is a critical point of least value J and f(z,u) = |u|9?u for ¢ > p
satisfies condition (a). For each v € B with [jv]| =1 and ¢t > 0, let g(t) = J(tv). We

have

/() = (VI = [ (p-1|w< WP = (o, to(@))o(e) ) o
= tp11_/f1’tv x>|p>d:€.

[tv(z)[P~2tv(z)

Thus, by condition (a), there is a unique ¢, > 0 such that ¢'(t,) = 0, i.e., for L = {0}
and each v € Sp, the L-_L selection (actually a peak selection) P(v) = t,v is uniquely
determined with J(P(v)) > 0 and

g6 = (p— 1)t — / f1(, to(a))o?(z) de

< p-vo- [ ®D fa o(eyyoayde = L)

The last inequality follows from taking a derivative of condition (a) w.r.t. ¢. Thus
condition (3) in Theorem III1.2 is always satisfied for any L. Next let us recall that
when L = [uy,us, ..., u,_1], by the definition of an L-_L selection, P(v) = tqv + tyu; +

<o+ ty_1U,_1 is solved from

<VJ(t0U + t1u1 —+ -4 tn_lun_l), U) = 0, (327)
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<VJ(t0U—|—t1U1+"'+tn_1un_1>,ui> = 0, ’L:]_,,TL

If u="P)=1tov+tiu; + -+ tp_1u,_1 satisfies (3.27) and at u, the n x n matrix

(J"(wo,0) 1y (S, vy o (W)U, v)
Q= (J"(u)v, U1>(71,1) (J"(u)uy, U1>(71,1) s (M (u)un g, Un—1>(71,1)
i (J"(w)v, up-1)11) (S (Wur, w1}y o (W1, Un—1) (-1 ]

is invertible, i.e., |@Q| # 0, then by the implicit function theorem, around u, the L-1
selection P is well-defined and continuously differentiable. The condition || # 0
can be easily and numerically checked. For the current case L = {0}, we have
Q = ¢"(t,) < 0. Thus the L-L selection P is C'. To show that d(P(v),L) > a > 0
for all v € Sg, by (b), for any £ > 0, there is ¢; = ¢;(¢) such that f(z,v(z))v(z) <

elv(x)|P + er|v(z)[P". Tt follows

/fa:v dx<5/|v |pdx+cl/|v )P dx

(by the Poincare and Sobolev inequalities)

< el /Q Vo) dz + crea() /Q ]Vv(x)\pd:zc>%
= [ea(@) + crea() /Q \Vv(x)|pd$>%_l] /Q Vo()? de.
Thus
(VJI(v),0) > {1—5(;0( — 1e(Q /\w ]pda: /yw )P da

= [1—500(9) — c1c(Q)[|v]]?

o

It follows that for any small € > 0, ¢1, ¢(£2) and c2(£2), there is ¢y > 0 such that when
0 < ||v|| =t < to, we have (VJ(v),v) > [1 —eco(Q) _C]_CQ(Q)tp*_p] t? > 0. Therefore
the L-L selection P(v) satisfies ||P(v)|| > to or d(P(v),L) >ty > 0,Yv € Sp where
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L = {0}.

To assure that the energy function J in (3.26) satisfies the PS condition, we need
() |flz,u)] < C + |uli™), Vu € R, z € Q for some positive constant C' and
l<q<p,

(d) there is @ > p, M > 0 such that |u| > M implies
0<0F(z,u) <uf(x,u),

[20]. Tt is easy to check f(x,u) = |u|7"?u, where p < ¢ < p*, satisfies (c) and (d).

By the above discussion and Theorem III.2, we have following existence theorem.

Theorem II1.4 If f in (3.25) and F in (3.26) satisfy the conditions (a), (b), (c)
and (d), then the quasilinear elliptic boundary value problem (3.25) has a nontrivial

weak solution.
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CHAPTER IV

A MINIMAX METHOD FOR NONLINEAR EIGENPAIRS

Let B be a Banach space, (,) the dual relation and || - || the norm in B. Consider the

following eigenpair problem, for given o > 0, find (A, u) € R x (B '\ {0}) such that

F'u=\Gu or (F'u,v)=XGu,v), YveB (4.1)
subject to G(u) = «
where F” and G’ are the Fréchet derivatives of two functionals F and G in C*(B,R).
Such (A, u) is called an eigenpair where A is an eigenvalue and u is an eigenfunction

corresponding to A. Since (4.1) is a constrained critical point problem, let us define

the Lagrange functional
L(u,\) = F(u) — MG(u) — ). (4.2)

Then critical points (u, A) of L(u, ) are eigenpairs (A, u) of (4.1) and vice versa.
Under certain conditions, existence of countable critical points (ty,, Ay) to (4.2) can
be established (see Proposition 44.26 in [28]). We assume that the eigenpair problem

(4.1) satisfies the following iso-homogeneous condition, i.e., there is k£ # 0 such that
F'(tu) = t"F'(u) and G'(tu) = t*G'(u), Vt > 0,u € B. (4.3)

Let U = {u € B|G(u) = 0}. We assume that U N S contains only isolated points on
the unit sphere S of B and F(u) # 0, Yu € U \ {0}. Then the Rayleigh quotient .J

It is easy to check that J € C*(B\ U,R).
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A. Characterization of Eigenpairs

Lemma IV.1 Under the homogeneous condition, a pair (A, u) is an eigenpair of
(4.1), if and only if w is a critical point of J and A = J(u) is the corresponding

critical value.

Proof. The “if” part is always true. To see the “only if” part, let u € B\ U, we have

/0 (F'(tu),u)dt = /0 %F(tu)dt = F(u).

Similarly, fol(G’(tu), u)dt = G(u). Thus, if (A, u) is an eigenpair of (4.1), i.e., F'(u) =

AG'(u), then with the homogeneous condition we have F(u) = AG(u),

F'(u) _ F(u) _ J(u) and J'(u) =

_ Fu)G(u) — F(u)G'(u)
G'(u)  G(u)

A e

= 0.

Remark IV.1 Several points need to be remarked.

(a) Due to the homogeneous condition, « in (4.1) can be replaced by any nonzero
number. For the Rayleigh quotient, we have J(tu) = J(u) for any u € B\ U.

Thus (VJ(u),u) = 0. From now on we limit J on the unit sphere S of B\ U;

(b) Lemma IV.1 gives the equivalence between eigenpairs of (4.1) and critical points
of (4-4);

(c) Another important consequence of Lemma IV.1 is that if critical points uy are
found in a way that their critical values are in a monotone (increasing) manner,
then eigenvalues A are obtained in the same monotone (increasing) manner.

Thus 1t 1s easy for us to discuss whether or not we miss any eigenfunctions.
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1. A Local Minmax Characterization of Eigenpairs

In order to solve our eigenpair problems, we need to modify the local minimax method
in Chapter II. Let us introduce the following definitions. Let L = [uy, ug, ..., u,_1] be
the space spanned by given linearly independent u, us, ...,u,_1 € Band B= L& L.
Let P : B — L' be the corresponding linear projection operator. Let S;, be the unit
sphere in I/ \ U. For each u € Sp, denote [L,u]s = {w = Y7~ trug + tou| Sp—1 t2 +

t2=1}.

Definition IV.1 A mapping P : S;, — 2P is the peak mapping of J w.r.t. L if
for each w € Sp/, P(u) is the set of all local mazimum points of J on [L,uls, i.e.,
w € [L,uls is in P(u) if and only if there is a neighborhood N (w) of w such that
J(v) < J(w), Yv € [L,uls NN (w). A single-valued mapping p : S, — B is a peak
selection of J w.r.t. L if p(v) € P(v), Vv € Sy. For a given u € Sy, p is said to be
a local peak selection of J at w if the peak mapping P is locally defined near u and

p(v) € P(v) when v is near u.

Remark IV.2 Several points should be remarked for the definition IV.1.

(a) If U = {0}, J is a continuous function on the nonempty compact set [L,u]s for
each u € Sps. Since any global mazimum point of J on [L,u]s is indeed a local

mazimum point of J on [L,u]s as well, P(u) is always nonempty;

(b) According to the definition, P(u) contains no points of U except al points v €
U N [L,uls where lim¢(f, g ww J (V) = +00. Due to the monotone decreasing
feature of our local minimax method, J(p(-)) has a barrier at w. Thus the search
of the algorithm will keep away from such points. We may simply exclude all

those points and focus our discussion only on those u € S, with P(u) NU = (.
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Lemma IV.2 For each ug € S/, if p is a local peak selection of J at ug such that

p(ug) € U, then (VJ(p(ug)),u;) =0,i=0,1,....,n— 1.

Proof. By the assumption, let w = p(ug) = 27—, tiu; € [L, ugls \ U where S0/ 2 =
1. Thus VJ(w) exists. For each i = 0,1,....,n — 1, if (VJ(w),u;) # 0, we denote
w(s) = “5* where c(s) = [(t: +5)* + ZZ;(I),/@# t2]2. Since B\ U is open, w € B\ U

and w(s) — w as s — 0, there exists sp > 0 such that when 0 < |s| < sy, we have

w(s) € [L,u;]s \ U and

J(w(s)) = J(w) = (VJ(w), ) +o(llw(s) —wl),

s
o(s) "
where we have used the fact that (VJ(w),w) = 0. Thus when |s| is small, the term
5 (VJ(w), u;) dominates the difference of J(w(s)) — J(w). Since this term can be
made either positive or negative as we wish by properly selecting s # 0, it leads to a

contradiction that w is a local maximum of J on [L, ug]s. Therefore (VJ(w),u;) = 0.

Lemma IV.3 Let a local peak selection p of J be continuous at u € St with VJ(p(a))

#0. When s > 0 is small and u(s) = %, we have

J(p(u(s))) < J(p(u)) - %89Itn|||VJ(p(U))II

where w(u) = —sign(t,)P(G(p(a))), p(a) = tyug + -+ + tp1Up_1 + t,0 with t, # 0
Sor_itt =1 and G(p(a)) is a pseudo-gradient of J at p(a) with constant 6 € (0,1),
1.e.,

IGp(@)] <1, and (VJ(p(w)),G(p(w)) = 0|V J(p(a))].
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Proof.  Since (VJ(w),w) = 0, Yw € B\ U and p is continuous at u implies that

p(u) € U, when s > 0 is small, we have

J(p(a(s))) = J(p(w) + (VJ(p(w)), p(u(s))) + o(llp(u(s)) — p(@)]).

On the other hand, by Lemma IV.2, as s > 0 is small,

(V@) pags)) = — 20N G ey pam@))

1u + sw(@)]]

< sl IV T p(a) |

u+sw(a) u+sw(a)

where p(a(s)) = p(m) = t1(S)ur + -+ + tho1(S)un—1 + tu(s) Titew(a)) - Hence,

when s > 0 is small,

_ _ 1 _
J(p(a(s))) < J(p(a)) = 7s01ta] [V I (p(@))]
Remark 1V.3 Several points on Lemma IV.2 and 1V.3 need to be remarked.

(a) The last inequality in the proof of Lemma IV.3 implies that if p(u) & U, then
p(u(s)) € U as well;

(b) From the last two lemmas, it is clear that the notion of a peak selection p(a) can

be generalized to satisfy (J(p(w)),u) = (J(p(u)),w;) =0,i=1,..,n—1.

As a direct consequence of Lemma V.3, we have the following local minmax charac-

terization of eigenpairs of (4.1).

Theorem IV.1 Assume that a local peak selection p of J is continuous atu € Syr. If
J(p(u)) = minyeg,, J(p(u)) and d(p(w), L) > 0, then p(u) is a critical point of J, i.e.,

p(a) is an eigenfunction of (4.1) and A = J(p(u)) is the corresponding eigenvalue.
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2. Comparison with Other Characterizations

Theorem IV.1 serves as a local minmax characterization of eigenpairs to (4.1) under
the iso-homogeneous condition. It states that when the first n—1 linearly independent
eigenfunctions uy, us, ..., u,_1 are found this way, by setting L = [uq, ..., u,_1] and
M = {p(u)|u € S/}, the nth eigenfunction u, can be found through finding a local

minimum of J on M or solving a local minimax problem

min max J(v), (4.5)

UEST VE[UL ey Un—1,u]g

Theorem IV.2 For the wellknown linear eigenpair problem, find (A\,u) € R x (B —
{0}) such that
Fu = \Gu, (4.6)

where F' and G are two linear, self-adjoint operators and G is positive definite in a
Hilbert space B, the local minimax method (4.5) is equivalent to the Rayleigh-Ritz
method, i.e., by letting (u,v)g = (Gu,v) and ||lullec = ((u,v)¢)2 be the equivalent
inner product and norm on B, L' = L+ = {u € Bl{u,u;)¢ = 0,i =1,....,n — 1} and

Spr = {u € LY|||ullg = 1}, thus

-----

.....

Proof. (1) It is known that (u;,uj)¢ = 0, 1 < ¢ < j < n. Thus we only have
to find v = p(u) € L. Then (4.5) reduces to the wellknown orthogonal method of
Rayleigh-Ritz

min max J(v) = min J(u). (4.7)

u€S; | velulg u€S, |
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(2) if u, = argminges,, J(u) = argminges, , (Fu,u). Then there is a neighborhood

N (uy,) of u, such that for all u € N (u,) NSy,

max (Fv,v) > (Fu,u) > (Fuy,, uy,).

VE[UL e Un—1,u]s

On the other hand, Vu € [uq, ..., up_1,u,]s, we have u = >"1" | cu; with Y7 ¢7 = 1.

=1 "

Then
J(w) = (Fu,u) = Z Z cicj(Fui, uj) = Z Z ciciNi(Gu;, uj)
i=1 j=1 i=1 j=1
= D N < = J(u),

=1

where ); is the eigenvalue corresponding to u;. Therefore

J(up) = (Fup, u,) = min max (Fv,v) = min max J(v).
UES, | VE[UL,...,Un—1,Un]S u€S; 1 vE[uL,...,Un—1,Un]s

As for nonlinear eigenpair problems, the Courant-Fischer minimax principle
states that u, can be found through solving I%ljl Jhax J(v) where the minimum
is taken over all the subspaces W,, of dimension n in B and S is the unit sphere in
B. The Courant-Fischer minimax principle is originally designed for linear eigenpair
problems. People then found that it was also valid for nonlinear eigenpair problems
where the homogeneous condition is satisfied. The Ljusternik-Schnirelman minimax
principle which is commonly regarded as a generalization of the Courant-Fischer
minimax principle, is used to characterize saddle points of a nonlinear functional J
through solving Kléllgn 21612 J(u) where IC,, is the class of all compact subsets K of B
with ind(K) > n, sup is the global maximum of J on K and inf is the global min-

imum over K,. When the homogeneous condition is satisfied and J is the Rayleigh

quotient, the Ljusternik-Schnirelman minimax principle coincides with the Courant-
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Fischer minimax principle. But they are all two-level global minmax characterizations
and do not provide much help in algorithm implementation. While our local minmax

characterization in (4.5) can be implemented as the following numerical algorithm.

B. A Local Minimax Algorithm for Eigenpairs

Assume that uq, ug, ..., u, 1 are previously found n—1 critical points of J with ||u;|| =
1,1=1,2,...,n—1. Let L = [uj,ug,....;up—1],B =L &L and P : B — L' be the

corresponding linear continuous projection operator. Given 6 € (0,1) and A > 0.

Step 1. Let k = 1. Choose v' € Sy, such that p(v!) € [L,v']s \ U where

ut =pv') = Z?:_ll tiu; + tlo! is solved from

n—1 n
u' = argmax{J(vﬂv = Ztiui + t,v, th = 1}.
1=1 i=1

Step 2. Compute a descent direction w* = —sign(t*)P(G*), where G* is a pseudo-

gradient of J at u* with constant 6.

Step 3. If |[VJ(p(v¥))|| < ¢, then output u* = p(v*), stop. Otherwise, do Step 4.

vk + swk

R . |
[oF + swk]| "

Step 4. Denote v*(s)

ub(s) = p(v*(s)) = argmax{J(v)\v = Z_:tlul + t,0f(s) € U, th = 1},

where (¢, ...,tF) is used as an initial point. Let

A

0|tk
2m

) - a5 < =l gy,

A

A
k _ _ "t lom k k
s —gllg]i[{{S—ZmD > ||w®|, J(u"(

Step 5. Set vFt! = vF(sF), bt = p(uF ) = S0 by + Rt oR T and k= k4 1.

i=1 "

Go to Step 2.
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Remark IV.4 About the algorithm, we need point out the followings.

(a) Ifp(vl) € [L,vl]\ U is satisfied, then p(v¥) € [L,vE]\ U for all k= 1,2, ....

(b) In Step 3, we can either following a pseudo-gradient flow or just find a pseudo-
gradient at the current point. The projection is important to avoid the degener-
acy. For computation of a pseudo-gradient or a pseudo-gradient flow in LP((2)

and Wol’p(ﬂ) spaces, see Chapter II and Chapter III.

(c) It is easy to check that %sk < s¥ < 55, where sy, is the step-size defined by sy,

— max {s|J(u*(s)) — J(uF) < —is@tZHVJ(uk)H, > S| VIWH)| > 0}, (4.8)

0<s<A

(d) A computational technique can be used to find a pseudo-gradient, Chapter II. In
this case w* in Step 2 should be w* = —sign(tF)VJ(u*) and the inequality to

decide s* in Step 4 should be

k
2N = T) < =B 2T ()

J(p(v*(
In fact, the expression of w(w) in Lemma IV.3 should be w(u) = —sign(t,)VJ(u)
and the inequality should be J(p(u(s))) < J(p(w)) — 3s|t.||VI(p(w))||3 under

the assumption |V J(p(w))|l2 < +oo, where || - ||2 is the norm of W12(Q).

(e) The algorithm is stable in the sense J(u*t) < J(u).

C. Numerical Experiment to Eigenpairs of p-Laplacian

In this section we carry out several numerical experiments to find the (weighted)
eigenpairs of the p-Laplacian operator on the domain Q = [0,2] x [0,2]. The weight
function is either w(z) = 1 or w(x) = |x — 1|9, where 1 = (1,...,1) € R® and | - | is

the Euclidean norm in R™. In Section 2, the Rayleigh quotient J has been defined.
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To compute the gradient d = V.J(u) at u, for each v € W, (), we have

@) = [ Adyo(a)de = %]tzoj(u + tv)

- % Q(—bApu(a:)—aw(x)|u(x)|p_2u(x))v(x)da;

which leads to solve a linear Poisson problem

Ad(z) = H(bAu(z) + aw(x)u(z)P?u(z)), =€
dlag =0

where a = [, |Vu(z)Pdz and b = [, w(z)|u(z)Pde. Then by using VJ(u), we can
follow the practical techniques developed in Chapter II and Chapter III to find a
pseudo-gradient.

In our numerical computations, 800 x 800 or 1000 x 1000 linear square elements
are used. Next for each case, the profiles of the first seven numerically computed
eigenfunctions and their eigenvalues \; for w(x) = 1 and the first five for w(z) =
|z — 1|7 are displayed. The profiles of eigenfunctions are presented as follows, Fig.19-

39.
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Fig. 19. Eigenfunctions of A,, p=1.75. A\; = 4.245837 (left) and Ay = 9.317313 (right).



73

05 N 05 y (AN
A, A & ‘\‘“\\\\\ﬁ\.\
BN\ s S S
i e SN NN NN gy U TS TS
2%t e /)4 \ iy
-05 ”II[,%%%{:%%&‘&@‘ \\\\\Q\\\\\ Ww{”l -05 \ N\ “\““’M‘{"illll /,/(/,’
SIS \ \ 7

Fig. 20. Eigenfunctions of A,, p=1.75. A3 = 9.407816 (left) and Ay = 14.280496
(right).
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Fig. 21. Eigenfunctions of A,, p=1.75. X\; = 16.837822 (left) and \¢ = 17.254568
(right).
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Fig. 22. Eigenfunction of A,, p=1.75. A7

p=2.5. A\; = 20.798476 (right).
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Fig. 24. Eigenfunctions of A,, p=2.5. Ay = 35.944786 (left) and A\; = 48.259806
(right).

01 15
KN 1
005 S RLE i
! “““’0‘000‘0’00‘%‘0 il
NN s
W itie\ WY 2SN A XA 0ss
itz SRR N “ali i s
Wflurt ottt St i TSI
I NN 05 "’lll I[,II [,, 3 K Z NN
-0.1 & 4 I,I"l'lil;" i 7, /7
7 g
-0.15 -15

Fig. 25. Eigenfunctions of A, p=2.5. X\¢ = 49.679394 (left) and \; = 51.104811
(right).
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Fig. 26. Eigenfunctions of A,, p=3.0. A\; = 7.844420 (left) and Ay = 32.098661 (right).
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Fig. 27. Eigenfunctions of A,, p=3.0. A3 = 33.947805 (left) and Ay = 62.748593
(right).
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Fig. 28. Eigenfunction of A,, p=3.0. A; = 90.795294 (left) and Ag = 94.932100 (right).
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Fig. 29. Eigenfunction of A,, p=3.0. A; = 102.660394 (left) and weighted eigenfunc-
tion of A, p=1.75, ¢=0.5. A; = 6.088006 (right).
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Fig. 30. Weighted eigenfunctions of A,, p=1.75, q=0.5. Ay = 11.775095 (left) and
Az = 11.938270 (right).
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Fig. 31. Weighted eigenfunctions of A,, p=1.75, q=0.5. Ay = 16.633820 (left) and
A5 = 23.366003 (right).
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Fig. 32. Weighted eigenfunctions of A,, p=1.75, q=6.0. A\; = 18.714875 (left) and

Ay = 20.312840 (right).
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Fig. 33. Weighted eigenfunctions of A,

Ay = 20.738396 (right).
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p=1.75, q=6.0. A3 = 20.425545 (left) and
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Fig. 34. Weighted eigenfunctions of A,, p=1.75, q=6.0. A; = 34.801623 (left) and
p=2.5, q=0.5. A\; = 10.185286 (right).
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Fig. 35. Weighted eigenfunctions of A,, p=2.5, q=0.5. Ay = 26.174362 (left) and
A3 = 26.991732 (right).
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Fig. 36. Weighted eigenfunctions of A,, p=2.5, q=0.5. Ay = 42.140740 (left) and
A5 = 69.931326 (right).
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Fig. 37. Weighted eigenfunctions of A,, p=2.5, q=6.0. A\ = 65.223275 (left) and
o = 70.878805 (right).



82

15 15
4 8
KON
il 5T
E il 1 SRR
{52 KRS X RRATAN
0% SRS
et KIS
# 0020000592 202953 USSR S AN\
IR IS B 145 0 0y 0 0 00 S S TS TN
0s TS 0s SN
NS 2 a0 0 U Uy 000000550557 ASSSIS o 0 000, 0o ase S S S SN
\\\\\\“:3“3&43'3?2?#3'%»3%%%'03%. i e R
S A S T BT A AR08, 20027 SR NS SSS STy
0 ‘\\\ “\\\‘\w:/':,l:,,'l:,'o,'o;o,'o:'o,,”a,,,ll:,'m‘t (M 0 TR s
i I oo A
i I K SN
. NN 2t rsssesosre it tn tas et \\ > ; NN i SNNNSooo i)
el o= N TN
A\ 77 222300 20,%:0 4254 ALK T 7 Il ' A NN i
-1 S35 -1 I/[ll i\ /
KK Illi""“ /
S X\
-15 2 -15
2

Fig. 38. Weighted eigenfunctions

of A,, p=2.5, q=6.0. A3 = 71.815461 (left) and
Ay = 74.271235 (right).
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Fig. 39. Weighted eigenfunctions of A,, p=2.5, q=6.0. A5 = 161.729721.
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Several interesting phenomena related to the (weighted) eigenpairs of A, on the
square domains have been observed in our numerical experiments.
(a) By comparing Fig. 19 (left), Fig. 22 (right) and Fig. 26 (left), Fig. 19 (right),
Fig. 23 (right) and Fig. 27 (left), Fig. 20 (left), Fig. 23 (left) and Fig. 26 (right),
Fig. 21 (left), Fig. 25 (right) and Fig. 29 (left), Fig. 21 (right), Fig. 24 (right) and
Fig. 28 (left), Fig. 20 (right), Fig. 24 (left) and Fig. 27 (right), Fig. 22 (left), Fig. 25
(left) and Fig. 28 (right), we observe that for different values of p, the eigenfunctions
in the same group have the same number of peaks, their locations are also quite
similar and peaks become sharper when p becomes larger.
(b) By comparing Fig. 19 (right), Fig. 23 (right) and Fig. 27 (left) (side-to-side peaks),
Fig. 20 (left), Fig. 23 (left) and Fig. 26 (right) (corner-to-corner peaks), we found
that when p crosses 2, the sequential order of the eigenvalues of the eigenfunctions
with side-to-side peaks and the eigenfunctions with corner-to-corner peaks switches.
Numerical computation shows that when p = 2, the eigenvalues of the eigenfunctions
with side-to-side peaks and the eigenfunctions with corner-to-corner peaks are the
same. By comparing Fig. 21 (left), Fig. 25 (right) and Fig. 29 (left) (3-peak), Fig. 21
(right), Fig. 24 (right) and Fig. 28 (left) (4-peak), Fig. 22 (left), Fig. 25 (left) and
Fig. 28 (right) (5-peak), the sequential order of the eigenvalues of the eigenfunctions
with 3-peak, 4-peak, 5-peak changes when p crosses 2. Numerical computation shows
when p = 2, it seems their eigenvalues are same.
(c) If we pay attention to the peak locations and compare Fig. 29 (right) and Fig.32
(left), Fig. 30 (left) and Fig.32 (right), Fig. 31 (right) and Fig. 34 (left), Fig. 34 (right)
and Fig. 37 (left), Fig. 35 (right) and Fig. 38 (left), Fig. 36 (right) and Fig. 39, we
can see that the peaks prefer the corners when ¢ increases and crosses some number.

(d) To the weighted eigenpair problem of the p-Laplacian, there is a corresponding
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p-Henon equation
—AyuA |z —1"u|u =0, 2 € Q, ulsq=0.

Usually, ¢ > p— 2. By the numerical experiments in Chapter II, the symmetry of the
ground state will be broken when the difference r — ¢ becomes large. This interesting
case is called a symmetry breaking phenomenon. But by our numerical experiments
in this chapter, it seems that for the weighted eigenfunction problems, the symmetry

breaking phenomenon never took place.
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CHAPTER V

CONVERGENCE OF THE 2ND MINIMAX ALGORITHM
Let L = [uy, ug, ..., un—1] be the space spanned by given linearly independent u; € B,
i=1,..n—1, B=L&L and P : B — L the corresponding linear projection
operator. Let Sp, be the unit sphere in L'\ U where U = {u € B|G(u) = 0}. For

each u € Sy denote [L, uls = {w = Y71 thug + tou| Sp_i t7 + 12 = 1}.

Definition V.1 A set-valued mapping P : Sy — 28 is the L-1L mapping of J if
Vo e Sy, P(v) ={ue[Lv]s| >t =1,(VJ(u),w;) =0,i =1,..,n—1}. A single-
valued mapping p : Sy — B is an L-1 selection of J if p(v) € P(v), Yv € Sp/. For a

giwen v € Sy, we say that J has a local L-1selection at v if there is a neighborhood

N W) of v and p: N(v) NSy — B such that p(u) € P(u), Yu € N(v) N Sp.

By L-L selection, we have the following lemma and theorem which generalize

Lemma IV.3 and Theorem IV.1.

Lemma V.1 Given an L-1 peak selection p of J which is continuous at w € Sy, with

VJ(p(a)) # 0. When s> 0 is small and u(s) = 7225 we have

= Tatsw(@]’
J(p(u(s))) < J(p(u)) — isﬁltnIHVJ(p(U))ll

where w(w) = —sign(t,)P(¥(p(a))), p(a) = tyug + -+ + tp1Up_1 + t,0 with t, # 0,

Sor_iti =1 and VU(p(n)) is a pseudo-gradient of J at p(u) with constant 6 € (0,1).

Theorem V.1 Assume that an L-1 peak selection p of J is continuous atu € Sp,. If
J(p(u)) = minyeg,, J(p(u)) and d(p(w), L) > 0, then p(u) is a critical point of J, i.e.,

p(u) is an eigenfunction of (4.1) and X\ = J(p(u)) is the corresponding eigenvalue.
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A. A Min-Orthogonal Algorithm

By Lemma V.1 and Theorem V.1, a min-orthogonal algorithm can be designed
through replacing a peak selection in the minimax algorithm by an L-1 selection.
The flow chart reads as follows.

Assume that L = [u',u? ..., u""!] where u!, v?, ..., u"™!

are n — 1 previously
found eigenfunctions. For given A\,e >0 and 6 € (0,1). Let B=L& L.

Step 1: Let v; € Sp be an ascent-descent direction at u" 1.

Step 2: Set k = 1. Solve for uy = p(vp) = thu! + - + 8w + tFy;, such that

ty #0,

<VJ(tlfU1 + -+ tﬁ,lun_l + tZUk),U1> — 07 Il - ]-7 ey T — ]'7 Z(tf)2 - 1
=1

Step 3: Find a descent direction wy, of J(p(-)) at vy.

Step 4: If |V J(uy)| < e, then output uy = p(v), stop. Otherwise, do Step 5.

Vg + SwWg

Step 5: For each s > 0, denote vy(s) = m
Vg SWE

and set vg11 = vg(sx) where

A by 0|tk
e = max{ 2 fm € V.27 > | T ()~ T ) <~

(o) IV}

Step 6: Update k = k£ + 1 and go to Step 3.

To establish some convergence results of the algorithm, for simplicity we assume

that U = {0} and the following version of the PS condition is needed.

Definition V.2 Given u; € B with ||u;|| = 1, i = 1,....,n — 1. A functional J €
CY(B,R) is said to satisfy the Palais-Smale (PS) condition if any sequence {v;} C B
with ||v;|| = 1 satisfies J(w;) is bounded and V.J(w;) — 0, where w; = 2;:11 ti(vi)u;+

tn(vi)vi, D00 (t5(vi))? = 1, then {w;} possesses a convergent subsequence.
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B. Statement of Convergence Results

Similar convergence results as in Chapter III can be established through some mod-
ifications in the corresponding proofs. We only state our conclusions and omit all

proofs.

1. A Unified Convergence Result

Theorem V.2 Let V C B be open and W =V NSy # 0. Assume that J € C'(B,R)

satisfies the PS condition,
(1) p is a continuous L-L selection of J in W, where W is the closure of W on Sy,
(2) infyew d(p(v), L) > a >0,

(3) inf,com J(p(v)) > ¢ = inf,ew J(p(v)) > —o0, where OW is the boundary of W

on Sp.
Then, K? = p(W)N K. # 0 and for any {vy} C W with J(ug) — ¢ where u, = p(v,),
(a) Ve >0, there is k > 0 such that d(KP,uy) < e, Yk > k;
(b) If in addition, VJ(p(-)) is Lipschitz continuous in W, then there is a constant

C such that |VJ(u)|| < C(J(u) — ¢)2.

Corollary V.1 Let J € CY(B,R) satisfy the PS condition, V; and Vy be open in L'
with O £ Wy =VoN Sy C ViNSy = W,. Assume p is a continuous L-L selection of

J in Wy with

(1) infyew, d(p(v),L) > a > 0,c = inf,ew, J(p(v)) > —o0 and K? = p(W;) N K C
K.

(2) there is d > 0 with

inf{J(p(v))|lv € Wy,d(v,0W;) < d} =a > b= sup{J(p(v))|v € Wa},
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(3) given {vg} such that vy € Wy, |[vgs1 — vkl < d, J(ups1) < J(ug) and {u} has a

subsequence that converges to a critical point ug, where ux, = p(vg). Then
(a) Ve >0, there is k > 0 such that  d(KP,u) <&, Yk >k;

(b) If in addition, V. J(p(+)) is Lipschitz continuous in Wy, then there is a constant
C such that |VJ(u)|| < C(J(u) — c)2.

2. Subsequence Convergence

Theorem V.3 Let J € C*(B,R) satisfy the PS condition and p be an L-1 selection
of J such that (1) p is continuous on Sp, (2) infi<pcoo d(p(vg),L) > a > 0, (3)
infi<peoo J(p(vr)) > —00 and (4) wy, = —sign(t*)P(V(uy)) in Step 3 of the algorithm,
where W(-) is a pseudo-gradient flow with the constant 6 € (0,1] and P : B — L' is

the linear projection operator, then

(a) {ve}2, has a subsequence {vy,} such that ux, = p(vy,) converges to a critical

point of J;

(b) if a subsequence ug, — ugy as i — oo, then ug = p(vo) is a critical point of J.

Theorem V.4 Let J € CY(B,R) satisfy the PS condition and p be an L-1 selection
of J such that (1) p is locally Lipschitz continuous on S, (2) infi<p<oo d(p(vg), L) >
a >0, (3) inficpen J(p(vr)) > —00 and (4) wy, = —sign(tF)P(V(uy)) in Step 3 of
the algorithm, where V(uy) is a pseudo-gradient at uy with constant 6 € (0,1] and

P : B — L' is the linear projection operator, then

(a) {ve}32, has a subsequence {vy,} such that ux, = p(vy,) converges to a critical

point of J;

(b) if a subsequence ux, — ugy as i — oo, then ug = p(vy) is a critical point of J.
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When B = VVO1 (Q) (¢ > 1), a practical technique mentioned in Chapter I1I can

be used in the min-orthogonal algorithm. Set wy, = —sign(t*)VJ(u;) and compute

VIl
IV T ) 1V ()

Vi

in Step 3 of the algorithm where % + % = 1 and modify the stepsize rule in Step 5 as

A N A £ A
s = max{ 2 fm € V.27 > | (e (50)) — ) < — 297w ).
For 1 < g < 2, L' is the || - ||;norm closure of L* in B where L+ = {v €

Wy (Q)] [yvude = 0, Yu € L} and for ¢ > 2, I’ = L* = {u € B| [ uvdr =

0, Yv € L}. Then we have the following two subsequence convergence results.

Theorem V.5 Assume that J € C*(B,R) satisfies the PS condition, q € (0,1] and p
is an L-L selection of J such that (1) p is continuous on Sy, (2) infi<p<oo d(p(vg), L)
> a > 0, (3) infickecs J(p(vg)) > —00 and (4) V& > Ymin > 0 where Ypmin s a

constant, then

(a) {vk}2, has a subsequence {vy,} such that ux, = p(vg,) converges to a critical

point of J;

(b) if a subsequence uy, — uy as i — oo, then ug = p(vo) is a critical point of J.

Theorem V.6 Assume that ¢ > 2, J € C'(B,R) satisfies the PS condition and p
is an L-1 selection of J such that (1) p is locally Lipschitz continuous on Si/,(2)
infi<peoo d(p(vi), L) > o > 0, (3) infi<pcoo J(p(vr)) > —00 and (4) ||V J(u)|l, < M,
Vk, where M > 0 is a constant or (4)” Yk > Ymin > 0, Yk, where Y, is a constant,

then

(a) {ve}2, has a subsequence {vy,} such that uy, = p(vy,) converges to a critical

point of J;
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(b) if a subsequence ux, — ug as i — oo, then ug = p(vy) is a critical point of J.

C. On the Smoothness of L-1 Selection

Since the continuity or smoothness of an L-_1 selection is important for our algorithm
design and convergence analysis, the following method can be used to check whether
or not p is continuously differentiable. According to the definition of an L-_1 selection,

when L = [uy, g, ..., Un_1], p(v) = tyus + -+ - + tp_1Up_1 + t,v, where > 7 t2 =1 and

=1 "1

v € Sy, is solved from

<VJ(t1U1 + -+ tn,lun,l —+ tnv),ui) = 0, 1= 1, ., n and th =1. (51)
i=1
To apply the implicit function theorem to (5.1), we need to resolve the problem caused

by the normalization condition ), ¢; = 1 which prevents us from taking derivative

w.r.t. ¢;. Since the right hand side of (5.1) contains all zeros, by the homogeneous

condition, the normalized condition ) " ,¢; = 1 can always be satisfied afterward

through dividing each ¢; by (>°1 tf)%. Thus this condition can be released. Then
for given v € Sp/, the system (5.1) contains n unknown ¢, ..., t, but n — 1 equations.
To obtain a square Hessian matrix of (5.1) and keep in mind of the nondegeneracy

condition d(p(v), L) > 0 in our local minimax characterization, Theorem IV.1, let us

consider solving

<VJ(t1u1+---+tn_1un_1+v),ui) :0, 1= 1,...,n— 1. (52)
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That is, we force t,, = 1 in (5.1). The implicit function theorem states that if u =

p(v) = tjug + -+ - + tp_qu,_1 + v satisfies (5.2) and at u, the (n — 1) x (n — 1) matrix

(J"(wug,ur) o (J(W)Up_1, Up—1)

(J"(wur, un—1) -+ {J"(Wtn-1, up—1)

is invertible, i.e., |Q| # 0, then (¢;(w), ..., t,—1(w)) can be solved from (5.2) around v

and (t1(w), ..., t,—1(w)) is continuously differentiable around v, i.e.,

n—1

p(w) = Z ti(w)u; +w

i=1
satisfies (5.2). Thus the L-L selection p is well-defined and continuously differentiable
near v € Sp. Then we can normalize p(w) through a differentiable operation, i.e.,
multiplying each t;(w) and 1 by the number t,(w) = 1/(31 t;(w)? + 1)z to get
pw) = (0 ti(w)u; + w) /ta(w), w € [L,w]g for all w near v in Sz,. Such p(w)

satisfies (5.1). The condition |Q| # 0 can be easily checked in numerical computation.
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CHAPTER VI

A NONSMOOTH MINMAX CHARACTERIZATION
Let B be a Banach space, B* its dual space, (,) the dual relation and || - || its norm.
Let J : B — R be alocally Lipschitz continuous functional. Then according to Chang

[3], a point u* € B is a critical point of J iff
0e€dJ(u"), (6.1)

where 0J(u*) is the generalized gradient of J at u* in the sense of Clark [7]. If J is
C1, (6.1) reduces to VJ(u*) = 0 where VJ(u*) is the gradient of J at u*, i.e., (6.1)
becomes the wellknown Euler-Lagrange equation.

Let us recall some basic lemmas for the generalized gradient of locally Lipschitz

continuous functionals which will be used later for convenience.

Lemma VI.1 ([7]) Assume that J is Lipschitz continuous in a neighborhood N (ug)

of up with Lipschitz constant K, i.e., |J(u)— J(v)| < K|lu—v||, Vu,v € N(ug). Then

(1) For all u € N(ug), 0J(u) is a nonempty, convex, weak*-compact subset of B*

and ||w| < K, Yw € 0J(u).
(2) Let B be a Hilbert space. For each u € N(u), if z € dJ(u) such that ||z]| =
min{|[C]| : ( € 0J(u)}, then we have
(2,0) = |l2]1, V¢ € dJ(u).

Lemma VI.2 (Lebourg, [7]) Let u,v € B. Assume that J is Lipschitz continuous in
an open set which contains the line segment {\u + (1 — N)v : A € [0,1]}. Then there
is Ao € (0,1) such that

J(u) — J(w) € (0J(Aou + (1 — Xo)v), u — v).
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To locally Lipschitz continuous functional, we can define peak mapping, peak

selection and local peak selection in the same way as Definition II.1.

Definition VI.1 A set-valued mapping G : B — 2B is said to be weakly upper
semicontinuous at u € B, if for all u, — w and vy € G(uy,), there is wy € G(u) such
that wy, — v — 0 weakly. G is said to be weakly upper semicontinuous if it is weakly

upper semicontinuous at each point in B.

A. A Local Minmax Characterization for NSCPs

1. A Characterization in Hilbert Spaces

First let us consider the case in a Hilbert space H. By using the generalized gradient,
we are able to establish a local minmax characterization for multiple nonsmooth
critical points in H which generalizes the corresponding results in [17, 18] for multiple
smooth critical points in H. The following lemma plays an important role in the local

minimax method.

Lemma VI.3 Let H be a Hilbert space with H = L& L* for a closed subspace L C H
and J : H — R. Assume that p is a local peak selection of J w.r.t. L atv € Sy and

J s locally Lipschitz continuous in a neighborhood of p(v) such that

(1) p is continuous at v and dis(p(v), L) > 0,
(2) 2z € 0J(p(v)) such that ||z|| = min{||w|| : w € dJ(p(v))} > 0, and

(3) the set-valued mapping G : u — dJ(u), Yu € N(p(v)) is weakly upper semicon-

tinuous at p(v), where N (p(v)) is a neighborhood of p(v).

Then as s > 0 s sufficient small,

T(o(s)) ~ Jp(0)) < — gl l=17 (62)
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v — sign(t,)szp.

where v(s) = p(v) =tyv+w,, w, € L and z = zp+ 21, 2z € L,

v — sign(t,)szp]|’
ZrL € LJ_.

Proof. By Lemma VI.2, for ¢ close to t,, w € L close to w, and s > 0 sufficient small,

jgn(t,)st jgn(t,)st
J<a(s,t,w) — szgn( Jstz ) — J(a(s, t,w)) = — ‘”,gn( )5 (Zow, 2)
v — sign(ty)szp.|| lv = sign(ty)szpe]
-t _ __ sign(ty)stz
where a(s,t,w) = fo=sign(e)s, 1T +w and z,,, € 0J ((x(s,t,w) Av.w Hv_sign(tv)sleH)

for some A, ,, € (0,1). Since p is a peak selection, for ¢ close to ¢,, w close to w, and

s sufficiently small, we have

J(p(v)) = J(a(s,t,w)).
Hence
st — sign(t,)stz B ” B sign(t,)st L
J( (5,8, w) ||v—sign(tv)sleH) Tpw) < ||v—sign(tv)szLL||< s 2)-

On the other hand, by assumption (3), there is ,,, € 9J(p(v)) such that

1
|<Cv,w - zv,wvz>| < §||Z||2

for ¢ close to t,, w close to w, and s > 0 sufficiently small. Thus, by Lemma VI.1,

sign(t,)stz

J(a(s,t, w) — ) — J(p(v))

Jo—sign(t)szrs

sign(t,)st 1
(=1zo = Gows 2 + (G 2)) < —sltalll2]*.

a |lv — sign(t,)szp.||
Then
T(u(s)) ~ Jp(0)) < ~gsltall=|

sign(t,)st(s)zr,

. , where
v — sign(ty)szp||

as s > 0 sufficiently small by letting t = #(s), w = w(s) +

p(0(s)) = t(s)o(s) + w(s), w(s) € L.
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Remark VI.1 Several points on this lemma need to be remarked.

(a) zpo # 0, since z # 0 and p is a peak selection, see Lemma VI.6.

(b) The inequality (6.2) is an important result which can be used to not only derive
a local minmax characterization of nonsmooth saddle points as presented in Theo-
rem VI.1 but also design a stepsize rule for the local minimazx algorithm, see Step 5
in the flow chart of the algorithm in Section 3.

(c) If H = R", to a locally Lipschitz function J, the set-valued mapping G : u —
dJ(u), Yu € H, is upper semicontinuous [7]. If J is C*, then 0J(u) = {VJ(u)}, i.e,

G 1s upper semicontinuous.

By Lemma VI.3, a minmax characterization for nonsmooth critical points in a

Hilbert space can be immediately derived as follow.

Theorem V1.1 Let H be a Hilbert space with H = L @& L* for a closed subspace
L C Hand J: H— R. Assume that p is a local peak selection of J w.r.t. L at

v € Sy and J is locally Lipschitz continuous in a neighborhood of p(v) such that

(1) p is continuous at v and dis(p(v), L) > 0,

(2) the set-valued mapping G : u — dJ(u), Yu € N(p(v)) is weakly upper semicon-

tinuous at p(v), where N (p(v)) is a neighborhood of p(v), and
(3) J(p(v)) = local-minyes, , J(p(u)).

Then p(v) is a critical point of J.

Proof. 1If p(v) is not a critical point of J, let z € 0J(p(v)) satisfying ||z|| = min{||w]| :

w € dJ(p(v))} > 0, then by Lemma VL3, as s > 0 sufficiently small,

J(p(v(s))) = J(p(v)) < —ESWIIIZIIQ’
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v — sign(t,)szp .

where v(s) = p(v) =t,v+w,, w, € Land z = zp+ zp1, 2z, € L,

|lv — sign(t,)szp1]|’
zp1 € L*. Tt is a contradiction to assumption (3).

2. A Characterization in Reflexive Banach Spaces

Now we start to establish a local minmax characterization for nonsmooth saddle
points in Banach spaces. Since in this case, the generalized gradient 0.J(u) is in B*
not B, a point in dJ(u) cannot be used to update an iteration point v € B. Thus
as long as numerical algorithms are concerned, a new notion has to be developed.
Motivated by the notion of a pseudo-gradient for C! functional in Banach spaces, we

introduce the following definition which is crucial for later development.

Definition V1.2 Let B be a reflexive Banach space and J : B — R be Lipschitz

continuous near a point uy € B. Let yu = min{||z|

g 2 € 0J(ug)} > 0. Then the
pseudo-generalized-gradient (PGG) VJ(ugy) of J at ug is defined by — W.J(ug)

={ € B:|2"ll = p, (w,2") = (2,27) = pi*, 2 € DI (uo), ||2]| - = 1, Yw € 0T (uo)}.

Lemma V1.4 Assume that B is a reflexive Banach space, J : B — R is Lipschitz
continuous near a point ug € B and ug is not a critical point. Then the PGG W .J(uy)
of J at ug is a nonempty, convex. If in addition, B* is locally uniformly convexr and

B*

| - ||g= is Fréchet differentiable on B*\ {0}, then WJ(uo) = {]|z|

2|’ } where z

is the unique point of minimum norm in 0J (ug).

Proof. Let p = min{||z|p+ : 2 € 0J(uo)} and S(p) = {u € B* : |jul

Bx* S ILL} If
0 € 0J(up), i.e., p =0 and z = 0, then ¥.J(ug) = {0}. If 0 € 9J(up), then x> 0 and

there is z € 0.J(up) such that ||z|

g+ = i > 0 since 0J(up) is nonempty, convex and
weak*-compact. Note that intS(u) N9J(ug) = 0 and z € S(u) N AJ(ug), by Lemma

VI.1 and the separation theorem [28], there is a 2* € B** = B such that
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(D) ll="] = [I=]

Bx = [, and

(2) infyeariue)(w, 2%) = (z,2") = sup,eg(u (U, 27).

On the other hand,

2 _ 2
B = M

sup (u,2") = sup (u,2") = [|2"]|[|z[| 5= = [|]
ues () {ueB*llull=|l2I}

Hence

(w, 2*) > (z,2) = ||2||%. = p®, Yw € 0J(up).

Thus W.J(up) is nonempty. To show that W.J(ug) is convex, let 27, z5 € WJ(ug) and

0 < a < 1. There exist z1, 2o € 0J(ug) such that ||z1]| g = ||22][p+ = p > 0 and
(w, 27y > (2,27 = p?, Yw € dJ(up), i =1,2.
Since ||27]| = ||z3]| = p, we have
lazt + (1 — @)z < o and [laz + (1 — a)2a]| < g,

and for all w € 9J(uy),

(w,az1 + (1 - a)z) = aw, 27) + (1 = a)(w, z)

> alzz) + (1= a)(z, 2) = ap® + (1 - a)p® = .

In particular for w = az; + (1 — &)z € 9J(up), we have

W2 < (o + (1—a)z, a2 + (1-)2) < oz + (1 @)zl oz + (1 - @)z < 42

B*
Therefore we must have

{0z + (1 —a)zm,azi + (1 -a)z) =

lazi + (1 = @)z = [lez + (1 = a)zls = @
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and for all w € 0J(up),
(wyazf + (1 —a)z3) > (azy + (1 — a)ze, a2z + (1 — a)z3) = 12,

Le., azf + (1 —a)z;y € ¥J(up) and thus ¥.J(ug) is a convex set.

If in addition, B* is locally uniformly convex and ||-|| g« is Frechet differentiable on
B*\ {0}, then there is only one z € 9.J(ug) with ||z|| g+ = p and S(p) NI (ug) = {z}.

The set {u € B* : (||z|

's.,u — z) = 0} is the tangent plane of the sphere S(u) at z.

On the other hand, B is reflexive and || - |

‘s« exists on B*\ {0} imply that B is locally
uniformly convex. Since W.J(ug) is a convex set in B such that for any z* € W.J(uy),

we have ||z*]| = ||z]

B+ = [, the set W.J(ug) can contain at most one point z*. The

hyperplane corresponding to z* separates 0J(ug) from S(u) at z. Such a separating

hyperplane must be a tangent plane of S(u) at z. Since g(v) = ||v|| g+ is Frechet

differentiable at z, such a tangent plane is unique. We have

(ll=]

Bew—2) 202>z

oy u—z),Yw € 8J(ug),u € S(p).

Since (|[2/5-,2) = |||

B+ = [, we have

B > (l2|

2lpe, 2) = 1* = |2 2|, u),

(ll=]

pell2 e, w) > (l12l1 - 5

Vw € 0J(ug),u € S(u), which implies ||| 2]
{z"} = {ll=] B}

B ||2|I'5|] = ||z]| B+ = p and then U.J(ug) =

B* Z|

Remark VI.2 Several points on this lemma need to be remarked.
(a) When B is a Hilbert space, z* = z.

(b) When J is a C functional, z* is a pseudo-gradient of J at ug with

12l = IV (uo)|| - and (=", VI (uo)) > ||V (o) >
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(¢) By the Kadec-Troyanski theorem (pp. 603-605, [28]), in every reflexive Banach

space B, an equivalent norm || - ||p can be introduced so that B and B* are locally
uniformly convex and therefore ||-||g and || - || g~ are Frechet differentiable on B\ {0}
and B*\ {0}. Thus in this case, we may use the norm || - ||p as the default norm || - ||
on B.

Then replacing the generalized gradient by the PGG and with some modification,

the following lemma can be verified in a similar way as in Lemma VI1.3.

Lemma VI.5 Assume that J is locally Lipschitz continuous in B and p is a local

peak selection of J w.r.t L at v € Sp. such that

(1) p is continuous at v and dis(p(v), L) > 0,
(2) 2* € B is the PGG of J at p(v) with ||z*|| > 0, and

(3) the set-valued mapping G : u — dJ(u), Yu € N(p(v)) is weakly upper semicon-

tinuous at p(v), where N (p(v)) is a neighborhood of p(v).

Then
J(p(v(s))) = J(p(v)) < _is‘tvmzHQB*v

v — sign(t,)sz},
where v(s) = ‘ ,pv) =t +w,, w, € L, 2¥ =27 +27, 27 € L,
( ) ||’U—S’lg7’l(tv)82'z/|| p( ) L L L

25, € L' and z is a point of minimum norm in 0J(p(v)).

By Lemma VIL.5, the minmax characterization for nonsmooth critical points in

Banach spaces can be written as follow.

Theorem V1.2 Assume that J is locally Lipschitz continuous in B and p is a local

peak selection of J w.r.t L at v € Sy, such that

(1) p is continuous at v and dis(p(v), L) > 0,
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(2) the set-valued mapping G : u — dJ(u), Yu € N(p(v)) is weakly upper semicon-

tinuous at p(v), where N (p(v)) is a neighborhood of p(v), and
(3) J(p(v)) = local-minyes,,J (p(u)).

Then p(v) is a critical point of J, i.e., 0 € dJ(p(v)).

B. A Local Minimax Algorithm

Before we present the algorithm, we need the following lemma to show that Step 3
in the algorithm can be carried out once a nonsmooth saddle critical point has not

been reached.

Lemma V1.6 Let B be a reflexive Banach space with B = L & L' for some closed
subspaces L, L' in B and J : B — R. Assume p is a local peak selection of J w.r.t
L at vy € Sp, J is locally Lipschitz continuous near uy = p(vy) and the set-valued
mapping G : uw — 0J(u) is weakly upper semicontinuous at ug. If ug is not a critical

point, then P(z*) # 0,Vz* € WJ(ug) where P : B — L' is the projection operator.

Proof. Since ug is not a critical point of J, we have = min{||z|| : z € 9J(ug)} > 0.
If P(z*) =0, then 2* € L, up + tz* € [L,vp]. When ¢ > 0 is sufficiently small, by
Lemma VI.2, there exist A € (0,1), ¢; € 0J(ug + Atz*) and (y € 0J(up) such that

J(uo +12") = J(uo) = (G, 2") = t((G = Co, 2%) + (G0, 27))

1 ¢
> H=gp’ + %) = 51 >0,

where the first inequality is due to the conditions that G : v — 9.J(u) is weakly upper
semicontinuous and z* € W.J(ug). It leads to a contradiction to the assumption that
up = p(vg) is a local maximum point of J in [L,vy]. Now we are ready to present

the algorithm.
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Assume that wuq,...,u,,_; are n — 1 previously found nonsmooth critical points
of a locally Lipschitz continuous functional J in a reflexive Banach space B. Let
L=A{uy,...;up_1}, B=L& L and P be the corresponding projection operator from
B to L'. Given g, A > 0.

A flow chart of the algorithm reads:

Step 1: Let v! € S/ be an increasing-decreasing direction at w,,_;.

Step 2: Set k = 1 and solve for
b = p(o") =thF -ty

= argmax{J(tov" +tyus + -+ tp_1up_1)|ti € R,i=0,1,....,n —1}.
Step 3: Find a descent direction w* = —sign(tk)P(2*) at u*, where 2% € W.J(u).
Step 4: If |[u* — u*7Y| < e, then output u*, stop. Otherwise, do Step 5.

Step 5: For each s > 0, use the initial point (t§,t%,...,t% ) to solve for

sy b1
n—1
p(0"(5)) = angmax { J(to"(s) + 3 twi)lts € Ri=0,1,.n =1},
i=1
where v¥(s) = 4@ then set ubT = p(vFTh) = p(vF(s*)) where s* satisfies

sk

A 1
s* = max{s = om M € N, 27 > [w® (I, T(p(v*(5))) = J(p(v*)) < —th'SISIIZ’“IIQ}-
Step 6: Update k = k£ + 1 and go to Step 3.

Remark VI.3 Several points on the algorithm need to be remarked.
(a) By Lemmas VI.5 and VI.6, a positive step size in Step 5 of the algorithm can

always be obtained if a critical point has not been reached. Therefore the algorithm is
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a strict descending method, i.e., J(u*t) < J(u¥), Vk = 1,2, .....

(b) When B is a Hilbert space, L' will be chosen as L+ and 2* is the point of minimum
norm in 0J(u").

(c) When J is a C' functional, this algorithm will reduce to the local minimaz algo-
rithm in [17, 18] if B is a Hilbert space and the local minimax algorithm in Chapter 11
if B is a reflexive Banach space except Step 3 where for smooth saddle critical points

[17, 18] and Chapter II,
IVJ(uh)|| <e or [GF| <e,

where G* is a modified pseudo-gradient of J at u*, is naturally used as a criterion to
stop iteration in the algorithm. For monsmooth saddle critical points, one may think

to use

IP(M) <e (6.3)

as a criterion to stop iteration in the algorithm. But it is easy to construct a Lipschitz
continuous functional J, e.g., J(u) = |u|, u € R such that uy is a nonsmooth critical

point of J and u* — uy € B satisfies
|P(2%)|| > 6 > 0,V2F € WJ(u").

Hence in general (6.3) cannot be used as a criterion to stop iteration in the algorithm.
Instead we may use |[u* —u*~1| < e or [J(u*)— J(uF1)| < € or ||v*F —ov*L|| < & which
is equivalent to ||s*P(z%)|| < e, as a criterion to stop the iteration of the algorithm.
Those criteria are commonly used in numerical computation.

(d) Other definitions of generalized gradient may also be used to derive local minmaz
characterization of nonsmooth saddle critical points. We are conducting further study

and implementation of the algorithm.
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CHAPTER VII

FURTHER TOPICS AND CONCLUSION

A. Further Topics

1. Elliptic Neumann Boundary Value Problem

Consider the following quasilinear elliptic Neumann boundary value problem

Apu —lulP2u+ f(z,u) = 0, x€Q,
g—fb = 0, x€0df,

where A, is p-Laplacian operator with p > 1,  is a bounded domain and [ > 0.

In the space Wl?(Q) = {u € W'P(Q)| 24 = 0 on 09}, we define
lullwgo = [ (FuP+UuP)ds, e W)
Q

Then, the energy function to the above quasilinear elliptic Neumann boundary value

problem is
1
J(u) = - /(|Vu|p + l|ul?)dx — / F(x,u)dz,
D Ja Q
where F(z,u) = [, f(x,s)ds. Thus, the gradient d = V.J(u) of J at u can be

calculated by solving the following linear elliptic equation

Ad—1d = Apu—IluP?u+ f(x,u), x€Q,

% = 0, x€0d9,

So far, people’s knowledge on the existence of solutions to the problem and their
properties is still quite limited. From the theoretical analysis in this dissertation, our
algorithm should work for this problem. So computational theory and methods de-

veloped in this dissertation can be used to provide some tools for further investigation
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on the problem.

2. Lagrange Multiplier Methods for Eigenpairs

In Chapter IV, we consider the following eigenpair problem, for given o > 0, find
(A, u) € R x (B\ {0}) such that
F'u=\Gu or (F'u,v)=XGu,v), YVveB

(7.1)
subject to G(u) = «

where F’ and G’ are the Fréchet derivatives of two functionals F' and G in C'(B,R)
and B is a Banach space with the dual relation (,) and the norm || - ||. Such (A, u) is
called an eigenpair where X is an eigenvalue and u is an eigenfunction corresponding
to A\. As a special case, the iso-homogeneous eigenpair problem has been solved in
Chapter IV. Here we consider more general cases.

Define the Lagrange functional
LA u) = F(u) — AMG(u) — a). (7.2)

Then critical points (u,\) of L(u,\) are eigenpairs (A, u) of (7.1) and vice versa.
By this equivalence, we can define a peak-selection in R x B and get a minmax
characterization for the critical points of (7.2). Then, a minimax algorithm can be
designed for finding multiple saddle critical points of (7.2), i.e., multiple eigenpairs
of (7.1). As a matter of fact, a peak-selection in R x B has already been defined,
a minmax characterization for critical points of (7.2) has been established and a
minimax algorithm for capturing multiple saddle critical points of (7.2) has been
designed. Our numerical experiment on several models in [9] shows us that the

algorithm is successful. This is an ongoing research.
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3. Nonsmooth Saddle Critical Points

In Chapter VI, a minimax algorithm for capturing multiple nonsmooth saddle critical
points has been proposed and needs to be implemented. Techniques for such imple-
mentation may need to be developed. Numerical experiment on some models needs

to be done. It is another ongoing research.

B. Conclusion

Two local minimax methods together with their related theory have been developed
in this dissertation for computing multiple saddle critical points in Banach spaces.
The first is for unconstrained smooth cases and the second is for a class of con-
strained smooth cases, i.e., the iso-homogeneous nonlinear eigenpair problems in Ba-
nach spaces. They are two-level local optimization methods. The first level is a local
maximization and the second is a local minimization. Hence they can be realized nu-
merically. There are two key steps in devising these two minimax methods. The first
is to define a peak-selection and the second is to establish a minmax characterization
for multiple saddle critical points. Such an approach has been generalized to design
a minimax algorithm for unconstrained nonsmooth saddle critical points in Banach
spaces.

Based on the methods, two numerical minimax algorithms have been designed for
finding multiple smooth saddle critical points in Banach spaces. Pseudo-gradient has
been used to find a descent direction for the local minimization at the second level and
projection is used to avoid the degeneracy. To implement the algorithms, techniques
to compute a pseudo-gradient are proposed. In particular, the method to compute
our gradient of J € C*(W,”?,R) (p > 1) is noteworthy. A unified convergence and

several subsequence convergence results have been established for the algorithms. A
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relation between the convergence rates of the functional value and its derivative has
been derived. To get convergence results, peak-selections have been generalized to
L-L selections. By these L-_L selections, L-1 characterizations are established and
min-L-_1 algorithms can be designed. By this generalization, the smoothness of peak-
selections can be numerically checked. Several numerical experiments to solve a class
of quasilinear elliptic PDEs for multiple solutions and to find multiple eigenpairs of
the p-Laplacian operator are carried out. Several interesting phenomena have been
observed. As an application of our theory, we verify the existence of a nontrivial
solution to a class of quasilinear elliptic PDEs.

A minimax algorithm has been designed for finding multiple nonsmooth saddle
critical points. To do so, a pseudo-generalized-gradient has been introduced. Some

interesting properties of a pseudo-generalized-gradient have been found.
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