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ABSTRACT 

 
Biomechanics of the Lens Capsule. (August 2004) 

Mark Richard Heistand, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Jay D. Humphrey 

 
Knowledge of the mechanics of the lens capsule is crucial for improving cataract 

surgery as well as understanding better the physiological role of the lens capsule in the 

process of accommodation.  Previous research on the mechanical properties of the lens 

capsule contains many gaps and contradictions due to experimental limitations and 

inappropriate assumptions.  Thus, the goal of this work is to quantify fully the regional, 

multiaxial mechanical behavior of the lens capsule and to calculate the change in stress 

and strain fields as a result of cataract surgery. 

Determining in situ the multiaxial mechanical behavior of the lens capsule 

required the design and construction of an experimental device capable of altering 

stresses in the capsule while measuring localized surface deformations.  Tests performed 

on this device reveal that the meridional and circumferential strains align with the 

principal directions and are equivalent through most of the anterior lens capsule, except 

close to the equator where the meridional strain is greater.  Furthermore, preconditioning 

effects were also found to be significant.  Most importantly, however, these tests provide 

the data necessary for calculating material properties. 

This experimental system is advantageous in that it allows reconstruction of 3D 

geometry of the lens capsule and thereby quantification of curvature changes, as well as 
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measurement of surface deformations that result from various surgical interventions.  

For instance, a continuous circular capsulorhexis (CCC) is commonly used during 

cataract surgery to create a hole in the anterior lens capsule (typically with a diameter of 

5 mm).  After the introduction of a CCC, strain was found to redistribute evenly from the 

meridional direction (retractional strain) to the circumferential direction (extensional 

strain), where both directional components of strain reached magnitudes up to 20% near 

the edge of the CCC.  Furthermore, the curvature was found to increase at the edge of 

the CCC and remain the same near the equator, indicating that the mere introduction of a 

hole in the lens capsule will alter the focal characteristics of the lens and must therefore 

be considered in the design of an accommodative intraocular lens. 
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CHAPTER I 

INTRODUCTION 

 

A better understanding of the mechanics of the lens capsule and its physiological 

function is crucial for the treatment of many causes of visual impairment.  One such loss 

in visual acuity is due to the formation of a cataract, which is a partial or complete 

opacity in the lens of the eye.  Current statistics show that cataracts occur in more than 

one-half of Americans over 65 (American Academy of Ophthalmology, 2001).  Removal 

of cataracts has now become the most frequently performed surgery in the U.S. (>1.5 

million/yr), but in most cases the restoration of visual acuity is only temporary.  

Posterior capsule opacification (PCO) causes a secondary loss of visual acuity in up to 

50% of all patients within 2-5 years after cataract surgery (Emery, 1999; Spalton, 1999). 

Treatment of secondary cataracts costs Medicare over $250 million per year and 

is the second most expensive surgical cost only behind that of the original cataract 

removal and implantation of an intraocular lens (IOL) (Apple et al., 2000).  Secondary 

intervention by an Nd-YAG laser can itself result in further complications, such as raised 

intraocular pressure, damaged IOL, anterior chamber inflammation, and even retinal 

detachment (Spalton, 1999; Emery, 1999; Altamirano et al., 1992). 

This PCO, or secondary cataract, primarily results from the epithelial cells 

migrating from the anterior lens capsule to the central region of the posterior lens 

capsule where they undergo epithelial-mesenchymal transition to fibroblastic- 

______________ 
This thesis follows the style and format of the Journal of Biomechanics. 
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myofibroblastic cell types (Marcantonio et al., 2000).  This is characterized by an 

increased deposition of extracellular matrix (especially along the newly formed wrinkles 

in the posterior capsule resulting from the inserted IOL).  Moreover, these cells primarily 

produce type IV collagen and laminin before cataract surgery but produce types I, III, V, 

and VI collagen, MMP-2 and MMP-9, TIMPs, and osteopontin after surgery (Saika et 

al., 2003).  Furthermore, these post-transition cells are believed to proliferate and form 

large opaque bladder cells, occluding the visual axis (Apple et al., 2000).  In addition to 

the increased proliferation, which may be stimulated by the cytokine TGF-β, there is an 

increased apoptosis.   

Each aspect of the cell biology of PCO corresponds to either a typical wound 

healing response or a growth and remodeling response due to a mechano-stimulus.  

Ohata et al. (2001) show that lens epithelial cells are mechanosensitive, that is, they 

belong to the family of cells known as mechanocytes.  Therefore, we hypothesize that 

secondary cataracts occur in part from the alteration in the mechanical environment of 

the epithelial cells on the lens capsule due to cataract surgery.  Furthermore, reducing the 

occurrence of PCO will require a better understanding of the mechanotransduction 

pathways leading to altered epithelial cell function as well as quantification of changes 

in the native stress and strain fields of the lens capsule as a result of cataract surgery. 

Another visual impairment, thought to be inflicted by age-related changes in the 

mechanics of the lens capsule, is presbyopia (Weale, 1963; Fisher, 1969b; Kaufman, 

1992; Koretz, 1994).  This occurs when the eye’s accommodative function begins to 

diminish; then the eye can no longer focus between near and far objects.  Understanding 
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the relative role of the lens capsule versus the elasticity of the lens substance in 

determining the shape of the lens in accommodation requires a detailed knowledge of the 

mechanical behavior of the native lens capsule.  Recently, Weeber (1999) and Burd et al. 

(2002) have attempted numerical modeling of the accommodative function of the lens; 

however, their results suffered from the lack of qualified data on the geometric and 

material properties of the different components used in their accommodative model 

(namely the lens capsule, lens, and zonules).  It is, therefore, necessary to quantify the 

mechanical properties of the lens capsule to better understand accommodation. 

Ultimately, a greater knowledge of the biomechanics of the lens capsule will be 

useful in addressing a number of issues in ophthalmologic surgery and prosthetics, such 

as improved capsulotomy and extraction techniques for cataract removal, the proper 

design and insertion of IOLs, and the successful development of an accommodative lens. 
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CHAPTER II 

BACKGROUND 

 

Characteristics of the Lens Capsule 

The lens capsule is a small, bag-like membrane that covers the lens of the eye.  It 

is suspended in place by a system of suspensory ligaments, called ciliary zonules, and it 

maintains the lens in its proper shape and position.  Shape changes of the lens can occur 

as a result of accommodation.  During this process, it is understood that the ciliary 

muscles contract, thus relaxing tension in the suspensory ligaments and increasing 

curvature of the anterior surface of the lens, necessary for viewing short distances.  

Therefore, the lens capsule is in tension during negative accommodation (adjustment of 

the eye for long distances by relaxation of the ciliary muscle), and this tension plays a 

role in creating a pre-strain in the lens capsule.  Research by Delange (2002) has 

quantified this pre-strain and has shown it to be higher in the radial direction (roughly 

13%) as compared to the circumferential direction (roughly 8%). 

The lens capsule is a basement membrane that consists primarily of type IV 

collagen (65% by dry weight) arranged in a fine 3D meshwork, with admixed adhesion 

molecules and proteoglycans (Barnard et al., 1992).  Capsular tissue is deposited in a 

lamellar fashion at the inner surface and the mixing of newly formed collagen with 

collagen formed earlier does not occur (Young and Ocumpaugh, 1966; Rafferty and 

Goosens, 1978; Haddad and Bennett, 1988).  It was also noted that, on occasion, the fine 
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branching matrix was more highly condensed in some areas (Barnard et al., 1992).  From 

this we know that the lens capsule is heterogeneous with variable thickness.   

In addition to heterogeneity, other material characteristics of the lens capsule 

have been theorized or experimentally determined.  For instance, anisotropy appears 

evident from the ease at which the lens capsule tears in the circumferential direction, 

rather than the radial direction during cataract surgery.  Furthermore, many have 

described the lens capsule as a highly nonlinear, elastic material.  Recent studies, 

however, show that the lens capsule exhibits viscoelastic behavior on a short time-scale.  

Nevertheless, it is likely that this viscoelasticity is very small and can be neglected for 

most purposes. 

Capsular thickness varies according to age and the location at which the 

measurements are taken (Salzmann, 1912; Fisher and Pettet, 1972; Seland, 1974; 

Travers, 1990).  The anterior and posterior lens capsules are approximately 60 µm and 

40 µm, respectively, in the porcine eye and 11-33 µm and 4-9 µm in the human eye 

(Krag et al., 1997a; Krag and Andreassen, 2003).  One reason the anterior lens capsule is 

thicker than the posterior capsule is that it comprises a monolayer of cuboidally-shaped 

epithelial cells; these cells transition, near the equator, into the so-called equatorial bow 

cells (Fig. 1).  

Presently, there is limited research examining the mechanical properties of the 

lens capsule; however, it does appear that the mechanical behavior is dependent on 

region, age, and gender (Fisher, 1969a; Krag et al., 1997a) as well as disease (Bailey et 

al., 1993).  As noted by Krag and Andreassen (2003), the lens capsule continues to grow 
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throughout most of life, growing in thickness anteriorly (most markedly in the periphery) 

and increasing in surface area to adjust to the increasing volume of the lens.  One of the 

most common diseases affecting the lens capsule is diabetes mellitus, in which the 

glycosylation reaction of type IV collagen in the lens capsule is accelerated several fold 

(Monnier et al., 1979; Cohen et al., 1980; Schnider and Kohn, 1980).  This leads to a 

stiffening and thickening of the capsule (Andreassen et al., 1981), as well as an increased 

occurrence of PCO (Hayashi et al., 2002). 

 

 
Fig. 1.  Schematic of the lens and lens capsule illustrating the normal location of the epithelial cells and 
equatorial lens bow. 

 

Limitations of Current Mechanical Tests 

Effort has previously been made to quantify the mechanical properties of the lens 

capsule, yet there are many fundamental shortcomings that make most current data 

unusable.  For instance, Fisher (1969a) used a volumetric strain method to quantitatively 
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investigate the mechanical behavior of the lens capsule; however, this procedure 

included several approximations concerning capsular porosity and the initial (unloaded) 

area of the test specimen, and maximal extension was found to be much less than 

surgical experience dictates.  More recently, Krag et al. (1997a) used a uniaxial test 

procedure, but their 1-D extensibility test ruins the native geometry of the lens capsule 

and can not be extended to describe the multiaxial behavior of the lens capsule since it is 

most likely heterogeneous and anisotropic.  Furthermore, both investigations were 

inappropriately based on linearized elasticity theory even though the lens capsule has 

been shown to behave nonlinearly.  Moreover, they both neglected the effects of 

preconditioning, and they calculated stresses using average thickness measurements of 

the capsule, even though the thickness varies radially. 

Research by Delange (2002) has overcome many of these limitations by 

collecting multiaxial data at several localized regions on the anterior lens capsule.  

Nevertheless, the effects of preconditioning were not considered, and information was 

not collected on the behavior of the lens capsule on the periphery, near the equator.  

Furthermore, regional geometry was not measured, so that localized curvature, and thus 

the in-plane stress resultants, could not be determined. 

It also appears that discrepancies may be present in studies of the viscoelastic 

behavior of the lens capsule.  Krag and Andreassen (2003) claim that the lens capsule 

exhibits viscoelastic properties, i.e. the mechanical response is time-dependent.  They 

conclude this from the hysteresis between the loading and unloading of the lens capsule 

and the stress relaxation they found of approximately 12% at 10% strain and 
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approximately 21% at 40% strain after 20 seconds.  On the other hand, Delange (2002) 

argues that the lens capsule behaves nearly elastically, as evident from reported creep 

tests in which no creep was observed after a dilatation pressure of 45 mmHg was quickly 

applied to the lens capsule (originally in its native state).  Furthermore, the lens capsule 

has been classically regarded as an ideal elastic tissue, which is a reasonable assessment 

considering that any viscoelasticity of the lens capsule would likely require constant, 

accommodative adjustments of the eye to maintain focus on an object for a long period 

of time. 

The results from these two studies may seem contradictory since creep and 

stress-relaxation are both attributed to viscoelasticity, yet only one phenomenon was 

observed.  Nevertheless, it should be noted that stress-relaxation experiments measure 

the decrease in stress with time for a constant strain, while creep experiments measure 

the increase in strain with time for a constant load; thus, it is difficult to compare the two 

studies since they are both measuring different processes.  Krag and Andreassen also 

used human lens capsules, while Delange used porcine lens capsules.  Furthermore, 

discrepancies may arise due to certain limitations of each study.  For instance, there are 

two problems in the testing technique used by Krag and Andreassen.  First, they only 

loaded and unloaded the specimen once.  This does not account for preconditioning 

effects, in which multiple loading cycles tend to stress soften (i.e. precondition) the 

material, as discussed by Mullins and Tobin (1957), so that subsequent cycles are 

consistent and more representative of the materials natural response.  Most importantly, 

preconditioning has been shown necessary for many biological soft tissues (Fung, 1993), 
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and the small hysteresis (energy dissipation) exhibited by the lens capsule is expected to 

decrease after preconditioning.  The second problem is that they did not test the lens 

capsule in its native state.  They use an excimer laser to cut thin rings from the lens 

capsule, thus severing the 3D mesh work of collagen fibers in the lens capsule.  The 

stress relaxation seen may be due in part to the reorienting of broken collagen fibers, 

which would not be seen if tested in its native state.  Moreover, the heat generated from 

the laser may induce thermal damage of the lens capsule, so that its material properties 

may be altered from its native state.  Additionally, limitations in the experimental system 

used by Delange (2002) include the inability to measure early creep response (within the 

first minute), even though Krag and Andreassen (2003) showed most stress relaxation to 

occur within 5 seconds.  It should be noted, however, that creep is primarily a long term 

response, while stress-relaxation typically occurs over much shorter time scales.  

Therefore, it is difficult to state conclusively, from these two studies, whether or not the 

lens capsule exhibits significant viscoelastic behavior.  It is possible that there is some 

short-term viscoelasticity, but more tests must be conducted to verify this. 

Additionally, studies must be conducted to determine how the mechanics of the 

lens capsule change as a result cataract surgery.  Previous experimental studies 

performed on human lens capsules show that the edge of the anterior capsulotomy is 

much stronger when a continuous circular capsulorhexis (CCC) is used instead of either 

the “can-opener technique” or diathermy (Assia et al., 1991; Krag et al., 1997b).  

Furthermore, data has also been obtained on haptic resistance forces from inserted IOLs, 
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but changes in stress and strain fields in the lens capsule, due to the introduction of a 

CCC or the insertion of an IOL, have not been examined. 

Present Needs 

As with any problem in mechanics, it is necessary to determine the geometry, 

material properties, and applied loads associated with the lens capsule.  This information 

has not fully been captured through any single experiment by previous researchers.  

Furthermore, there appears to be many discrepancies in the small amount of data that has 

been collected.  These shortcomings are primarily due to poorly designed experiments or 

inappropriate material models.  Thus, there is a need to design a new experimental 

system appropriate for investigating in situ the regional, multiaxial mechanical behavior 

of the lens capsule, based on what is already known about its general characteristics (i.e., 

heterogeneity and anisotropy).  Specifically, this new experimental system must provide 

a way to alter stresses in the lens capsule, while quantifying in-plane surface 

deformations in localized regions on the anterior pole as well as near the equator.  

Furthermore, it must allow for three-dimensional (3D) reconstruction of lens capsule 

geometry, thus overcoming previous inabilities to capture principal curvature 

measurements necessary for determining in-plane stress resultants.   

There is also a need to quantify the material parameters of the lens capsule.  

Therefore, a constitutive framework, appropriate for nonlinear, pseudoelastic, biological 

membranes, must be used with experimental data collected from this new system to 

calculate material parameters.  These parameters can then be used in computer 

simulations to predict strains, given specified loading conditions; this will ultimately aid 
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in the optimization of IOL design and improvement of surgical techniques used for 

cataract removal. 

There is also a need to examine the redistribution of stress and strain fields in the 

lens capsule which occur as a result of cataract surgery.  An experimental system 

allowing 3D reconstruction of lens capsule geometry is advantageous, in that it lends 

itself towards quantification of curvature changes and surface deformations resulting 

from various surgical procedures.  Therefore, this system will give us a greater 

understanding of secondary cataracts and more insight into the possible 

mechanotransduction pathways causing their occurrence. 
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CHAPTER III 

MULTIAXIAL MECHANICS OF THE LENS CAPSULE 

 

As a result of the basic science and clinical observations reported in the 

literature, we hypothesize that cataract surgery perturbs the native stress and strain fields 

within the lens capsule; through mechanotransduction mechanisms, this perturbation 

stimulates the errant response by the epithelial cells.  To test this hypothesis, we must 

first quantify the native stress and strain fields in the lens capsule and then compute or 

measure how these fields change due to various interventions and designs of intraocular 

implants.  Toward this end, we must know the associated geometry, material properties, 

and applied loads.  In this chapter, we present a new experimental approach for 

investigating, in situ, the multiaxial, mechanical behavior of the lens capsule in 

enucleated eyes.  Further, we present the first detailed data on the regional, multiaxial, 

pseudoelastic behavior of the anterior porcine lens capsule. 

Specimen Preparation 

Fresh porcine eyes were received following an overnight shipment in iced saline 

from SiouxPreme, Inc. (Idaho).  The cornea and iris were excised, and the globe was 

secured in a moldable wax fixture using multiple pins placed through the peri-scleral 

tissue.  Next, we used a precision micro-manipulator to insert a 25-gauge needle just 

under the lens capsule.  We applied a small amount of glue around the needle to seal the 

insertion site and then slowly injected a physiologic saline into the lens.  In most cases, 

the fluid flowed out of and around the lens, thus separating large portions of the lens 
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capsule from the lens.  Fig. 2 is an H&E stained cross-section of a lens capsule, shown in 

both a native and pressurized state; both were fixed via 24 hour immersion in 10% 

formaldehyde, with the pressurized lens capsule perfusion-fixed at 30 mmHg.  As 

desired, the epithelial cells remained on the fluid-separated anterior capsule.  

 

(a)              (b)   
Fig. 2.  H&E stained histological cross-section of the porcine lens with lens capsule (40x). (a) Anterior 
Lens capsule in its native state. (b) Pressure distended (30 mmHg) anterior lens capsule. Note the clean 
separation between the lens and lens capsule, as desired, and that the stretched epithelial cells remain on 
the anterior capsule. 

 

Once the intact lens capsule was successfully separated from the underlying lens, 

multiple 40-µm diameter fluorescent, polystyrene microspheres (Bangs Laboratories, 

Fishers, IN), previously affixed to the surface of the anterior lens capsule, could then be 

imaged at different distention pressures.  These microspheres serve as markers, locating 

the position of distinct points on the lens capsule; their hydrophobic nature and natural 

adhesion to type IV collagen prevents independent movement of the microsphere from 

the underlying lens capsule. These markers are arranged in sets of five (1 center marker 

and four corner markers), and these sets are then organized along the major and minor 
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axes of the lens capsule, spanning from the anterior pole to the periphery near the 

equator (Fig. 3).  The anterior pole was anatomically determined as the point on the lens 

capsule directly above the intersection of the Y-suture lines in the lens.  Note, too, that 

the markers were always placed on the side of the lens capsule opposite the inserted 

needle.  Next, the eye was immersed in a physiologic solution (Alcon BSS) and warmed 

to 35°C.  The specimen and specimen chamber were then moved into position for testing 

as described below. 
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Fig. 3.  Cut-away schematic view of the top right quadrant of an anterior lens capsule showing typical 
marker arrangements, consisting of seven overlapping sets of five markers. 

 

Experimental System 

Fig. 4 is a drawing of the optical-mechanical components of a custom biplane, 

video-based test system. It includes: an optical table, a linear railway and carriage with a 

micro-adjustable translation stage and attached needle-injection micro-manipulator, a 

Plexiglas specimen chamber, a pressure transducer, a fluorescent light source, and two  

Equator 
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Fig. 4.  Schema of the experimental system. 

 

Sony CCD cameras, each outfitted with a long distance microscope lens (InfiniMax by 

Infinity Photo-Optical, Boulder, CO).  Not shown are the operating microscope (to the 

left of the optical table), two B&W monitors, a temperature controller, a video-

multiplexer and video cassette recorder, and a controller PC (with A/D and video frame-

grabber boards).  Note that the carriage-stage-needle-injection assembly can be 

translated as a rigid body along the railway, thus allowing the eye to be prepared under 

an operating microscope and then moved under the CCDs for mechanical testing while 

not disturbing the needle insertion within the eye.   
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The light source is a Jensen 150 Watt high-intensity, white light illuminator.  It 

provides illumination of the specimen via dual channel fiber optic light guides, coupled 

with focusable lenses.  A shortpass filter having a sharp cutoff wavelength of 500nm is 

mounted at the end of each light guide so the light source emits a deep blue color, ideal 

for exciting the fluorescent microspheres with excitation/emission maxima of 

480/520nm.  Broadband filters (CWL: 520nm, FWHM: 40nm) are mounted in front of 

each camera to filter out background light as well as reflected light from the light source. 

The cameras are arranged so that one is directly above the specimen with its 

visual axis perpendicular to the optical table, while the other is placed in-plane, 45º apart 

from the first so their visual axes intersect at a 45º angle in a plane that is perpendicular 

to the optical table. The angled camera is mounted to a vertical translational stage so that 

the intersection of the visual axes can be moved up or down, allowing both cameras to 

image the same section of the specimen simultaneously.  Furthermore, the cameras are 

each mounted to an additional translation stage to allow precise movement of each 

camera along its visual axis, thus providing independent focus adjustment. 

Calibration 

The two components of the experimental device requiring calibration are the 

pressure transducer and the biplane video system.  The pressure transducer exhibits a 

linear relationship between output voltage and applied pressure; thus, it was easily 

calibrated using a mercury manometer and a fluid filled aspirator bottle.  Pressure was 

supplied from the manometer between 0 and 70 mmHg in increments of 10 mmHg. 

Voltage for each pressure level was recorded from the pressure transducer using the 
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National Instruments A/D board and software.  Voltage was plotted versus pressure, and 

the calibration constants were determined via linear regression.  The video system 

requires the calculation of four calibration constants as discussed in the 3D Object 

Reconstruction section on page 19.  These constants can be determined separately from 

the decoupled, linear calibration equations shown in Eq. 3.  The details of the calibration 

procedure are given below. 

First, a device was constructed which could be rigidly mounted to the optical 

table and could lower a platform into the bath (see Fig. 5).  Note that the bath was 

designed with viewing surfaces orthogonal to the optical axis of each camera, thus  

 

 
Fig. 5.  Picture of calibration device with platform lowered into the bath. 
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avoiding refraction effects.  The platform was parallel to the table and connected to a 

vertical translational stage, allowing precise control of its height.  Attached to the top of 

the platform was a laser-etched 10mm by 10mm grid with lines spaced a quarter 

millimeter apart.  The grid was brought into focus in both cameras, and the camera 

coordinates of six points (from intersecting grid lines) were determined for each camera.  

The grid was raised and then lowered 0.025 inches from its original height, still 

remaining within the depth of view for each camera, and six more points were measured 

at each new height.  Calibration constants could then be determined using a linear least 

squares regression of the 18 data points for each of the calibration equations in Eq. 3.   

Resolution 

The resolution of the experimental system depends on that of the individual 

components.  The pressure transducer is accurate to within ± 0.1% full scale; current 

resolution is 0.05 mmHg.  The image resolution for each camera is 130 pixels/mm, and 

the high-contrast images of fluorescent microspheres, coupled with the enhanced image 

filtering capabilities of the National Instruments IMAQ Vision software, allows us to 

measure the location of marker centroids to within less than a half pixel error.  This was 

determined after placing approximately 50 markers on a 12 mm diameter tungsten 

carbide ball (illustrated in Fig. 6a) and calculating the camera coordinates of marker 

centroids five separate times.  After using the calibration procedure, the three-

dimensional position of each marker centroid could be determined in millimeters, with 

respect to a laboratory coordinate system (see Fig. 6b).  The error in measuring the 

distance between two points, approximately 2 mm apart, was found to be less than 0.4%. 
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Fig. 6.  Reconstruction of 3D positions of markers on a calibr
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object.  The process is simplified in our case since we are imaging microspheres and 

mapping the camera coordinates of their centroids into point space.  Therefore, our 

system must provide a way for us to determine the location of an arbitrary point in a 

three-dimensional (3D) Euclidean space, given two separate camera views of a marker 

with its centroid located at that point.  This can be described mathematically as finding 

the 3D coordinates of a point p with respect to two orthogonal coordinate systems given 

by unit vectors [e,f,g] and [e*,f*,g*], where the projection tensors P1 = I - g⊗g and      

P2 = I - g*⊗g* operate on p to give the perpendicular projections onto the viewing 

planes of the two cameras as shown in Fig. 7. 

 

 
Fig. 7.  Illustration of the relationship between camera position and the mathematical concept of projection 
tensors.  Coordinates of a point viewed by each camera is represented by the perpendicular projection of 
the point onto a plane orthogonal to the optical axis of the camera. 
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We assume a linear relationship between image coordinates and the spatial 

location of a point p (centroid of a marker), thus determination of 3D coordinates for a 

given point requires calculation of the twelve constants in the transformation equation 

 3)  to1 sum (   ,)()()( kXAN j
k

j
ik

j
i = . (1) 

From the above equation, Ni is the coordinate of a point from each camera in pixels, with 
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for known camera coordinates Ni of imaged points with known spatial coordinates Xk, 

where the 3D Cartesian coordinates given by Xk are taken with respect to the orthogonal 

basis vectors [e,f,g].  Once these constants are found, they can be used in the same 

equations to solve for the 3D coordinates of markers on the surface of the lens capsule, 

given camera coordinates (from both cameras) of each marker’s centroid. 

The camera coordinates of a marker centroid were calculated from digitized 

images using a custom code developed with National Instruments IMAQ Vision 

software.  Coordinates for each centroid were returned in pixel values, indicating their 

respective location in the pixel domain of the 640 by 480 digitized image.   

In addition, we are interested in finding the 3D coordinates of all marker 

centroids relative to each other.  That is, we must calculate the 3D global coordinates of 

each centroid with respect to some arbitrary laboratory origin.  This requires the camera 

coordinates of each centroid to be taken with respect to a common point, but the field of 

view for each camera is not wide enough to simultaneously capture all the markers.  

Therefore, several overlapping images were taken such that subsequent images involved 

a calculated translation of the stage and contained at least one marker shown in the 

previous image. The images were then stitched together to form a montage so that 

coordinates for each marker were with respect to a common point.  The 3D 

reconstruction method discussed above could then be used to calculate the global 3D 

Cartesian coordinates of all markers; this yielded coordinates in millimeters, with respect 

to an origin chosen at the anterior pole (see Fig. 8). 
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Fig. 8.  Plot of global 3D coordinates of markers on the anterior surface of a pressurized lens capsule 
(surface shown is fitted to marker coordinates using biharmonic spline interpolation functions; the surface, 
with computer-generated lighting effects, is displayed for visualization purposes only). 

 

Calculation of Strain 

Monitoring the 3D kinematics of markers on the surface of the inflating lens capsule 

permits one to calculate the associated displacement gradients, and in turn, regional 

Green strains of the capsule.  The specific arrangement of markers in sets of five allows 

for the construction of four triangles of similar size and shape in each set (see Fig. 9), 

where the corners of each triangle constitute a triplet of markers.  A triplet of markers is 

the minimum set needed for calculating all three in-plane components of strain 

(Humphrey, 2002). 

Finite Green strains, E, were computed locally for each triplet using the 

deformation gradient, F, through the equation E = ½(FTF-I).  The three components of 

in-plane strain for each marker triplet are labeled as meridional, circumferential, and 

shear; the origin of the localized strain region was prescribed to be at the centroid of the 

triplet.  The meridional component of strain always points to the anterior pole of the lens 

capsule and is tangent to the capsule at the triplet centroid.  In addition, the 
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Fig. 9.  Standardized subdivision of each marker set into four groups of marker triplets for strain 
calculation. 

 

circumferential direction is tangent to the lens capsule at the centroid of the triplet and is 

perpendicular to the meridional direction, as illustrated in Fig. 10. 

 

 
Fig. 10.  Schema of the lens capsule showing the directions for the different components of strain, which 
originate at the centroid of each marker triplet. 
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The deformation gradient can be calculated directly for each marker triplet by 

finding how position vectors (∆X(1) = XB-XA and ∆X(2) = XC-XA) in the reference 

configuration, βo, deform to position vectors (∆x(1) = xb-xa and ∆x(2) = xc-xa) in 

subsequent configurations, βt, representing various inflated pressure states (e.g., Fig. 11).  

Since the marker triplets are close together and there are no severe deformation 

gradients, we can assume a homogeneous deformation within each triangular region 

created by a marker triplet.  Thus, ∆x ≈ F(∆X) and the in-plane components of F can be 

solved for each pressure state using the matrix equation 
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Note the standardized calculation of position vectors illustrated in Fig. 9 for each 

marker set, where all position vectors originate at the center marker of the set. 
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Fig. 11.  Illustration of position vectors from a triplet of markers, necessary for calculating the deformation 
gradient. 
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Experimental Protocols 

The specimen was pressurized slowly by raising a reservoir via a pulley system.  

The res

cle 

from the 

ages of the inflating lens capsule from the camera perpendicular to the table 

(see Fi re 

 

 system can be 

used to

fifth cycle, with respect to the in-situ, unloaded reference configuration (native state). 

ervoir contained BSS solution and was connected to the pressure transducer and 

inserted needle, thus allowing control of the inflation pressure.  The lens capsule was 

inflated in increments of 5 mmHg, with two minutes at each pressure state, so as to cy

the pressure from 0 to 45 to 0 mmHg five times. Images of all markers were collected at 

each pressure state during the first and fifth loading and unloading cycles.  The final 

aspect of the experimental procedure involved obtaining a nearly stress-free 

configuration.  This was accomplished by isolating the lens capsule and lens 

eye and then cutting the posterior lens capsule away to allow free movement of the 

anterior capsule.  The markers were then imaged as the anterior lens capsule rested 

freely on the lens. 

Results 

Im

g. 4), can be used to calculate projected strain approximations at different pressu

states.  These data should theoretically reproduce those of the inflation tests performed 

by Delange (2002).  As shown in Fig. 12 our projected strain data from the first cycle of

an inflation test does match well with previously reported inflation tests. 

More importantly, images from both cameras of the biplane video

 develop more accurate surface strain measurements.  Fig. 13 shows the typical 

surface strain response of the lens capsule for loading and unloading during the first and 
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Fig. 12.  Comparison of the projected strain approximation from our inflation test (New) with that of 
Delange (Old), for all four groups of mark ll Fig. 3 for set specification).  The 
strain is measured in the y-direction (roug et B) of a laboratory coordinate 
system, which is chosen to be the same in both experiments. 

compared to the first cycle; both indicate a notable preconditioning effect. Furthermore, 

s not 

lation, 

Projected Green Strain 

Pressure (mmHg) 

er set B from both tests (reca
hly meridional direction for s

 

Note the slight increase in strain magnitude and decrease in hysteresis of the fifth cycle 

the surface strains are greater than those found previously from the projected strain 

approximation for two reasons.  First, a single camera is not capable of capturing 

motions along its optical axis.  In this case, the camera perpendicular to the table wa

able to measure the vertical displacements that are known to exist as a result of inf

thus underestimating strain.  Second, preconditioning effects were neglected for the 

projected strain approximation, even though preconditioning is known to “stress soften” 

biological tissue as evident for the anterior lens capsule in Fig. 13. 
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Fig. 13.  Comparison of meridional, circumferential, and shear components of strain for the first and fifth 
cycle of pressurization to 40 mmHg, with respect to the in-situ unloaded reference configuration (see Fig. 
3 and Fig. 9 for the location of each marker triplet). 

equator (Set F) for all groups during the fifth cycle.  The responses are nonlinear in the 

meridio

ear 

f 

 

Figs. 14 and 15 show pressure-strain data at the anterior pole (Set D) and near the 

nal and circumferential directions and approximately zero for shear in all four 

groups of both marker sets.  This is an important observation for it reveals that the 

meridional and circumferential directions are principal directions. The meridional 

component of strain also appears to be greater than the circumferential component n

the equator, but almost the same at the anterior pole.  The directional components o

strain at 40 mmHg, with respect to the native state, are typically around 10-12%. 
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Fig. 14.  Plot of all components of strain for marker set D during fifth cycle, with respect to the in-situ 
unloaded reference configuration. Note the consistency amongst the four sets of data within the region, 
thus supporting the computational assumption of local homogeneity.  Furthermore, the near equibiaxial 
strains suggest a symmetry about the apex of the capsule. 



 30

 

0 0.05 0.1
0

10

20

30

40
Set F (Group 1)

Green strain

P
re

ss
ur

e 
(m

m
H

g)

Merid
Circum
Shear

0 0.05 0.1
0

10

20

30

40
Set F (Group 2)

Green strain

P
re

ss
ur

e 
(m

m
H

g)

Merid
Circum
Shear

0 0.05 0.1
0

10

20

30

40
Set F (Group 3)

Green strain

P
re

ss
ur

e 
(m

m
H

g)

Merid
Circum
Shear

0 0.05 0.1
0

10

20

30

40
Set F (Group 4)

Green strain

P
re

ss
ur

e 
(m

m
H

g)

Merid
Circum
Shear

 
Fig. 15.  Plot of all components of strain for marker set F during fifth cycle, with respect to the in-situ 
unloaded reference configuration. Note that the strains are greater in the meridional than the 
circumferential direction. This is consistent with a circumferential constraint at the equator. Indeed, note 
that the directional difference is greatest in group 2, as expected, which is closest to the equator. 

 

Strains with respect to the zero pressure state in the meridional and 

circumferential directions from Set D, for eight specimens, are shown in Fig. 16.  The 

shapes of the loading and unloading curves are similar for each specimen, but some 

appear to be horizontally shifted.  We noted, however, that the lens capsule did not 

appear to inflate correctly from 0 to 10 mmHg for some of the experiments.  It is 

possible that unknown interactions between the needle, lens, and lens capsule caused 

difficulties in obtaining low pressure states.  Nevertheless, from an experimental point of 
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Fig. 16.  Plot of loading and unloading curves from Set D of eight experiments. 
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view, a pressure state of 10 mmHg or higher is more appropriate as a reference for 

measuring strain. 

Strains were then re-plotted with respect to the 10 mmHg pressure state in the 

meridional and circumferential directions from Set D and Set G, for eight specimens, as 

shown in Fig. 17 and Fig. 18, respectively, where the solid line indicates the average 

loading and unloading for all specimens pressurized to 40 mmHg.  Of most importance, 

the loading and unloading curves for each specimen are now almost identical, thus 

verifying repeatability of our experimental method for inflation pressures above 10 

mmHg.  Note in Fig. 17 and Fig. 18 that the initial strain at 10 mmHg is assumed to be 

roughly 12%.  This is found from the average measure of strain at 10 mmHg with 

respect to the stress-free reference configuration. Fig. 19 shows this initial strain for the 

different regions from three separate experiments.  Therefore, the strain at 40 mmHg 

with respect to the stress-free, reference configuration was roughly 18-19% (see Fig. 17 

and Fig. 18), owing to a pre-strain (strain in its in-situ, unloaded state compared to its 

stress-free state) of roughly 8% in the circumferential direction and 13% in the 

meridional direction (Delange, 2002). 

If the average loading and unloading pressure-strain data from all specimens is 

plotted with respect to the stress-free reference configuration, the true shape of the strain 

curve is more apparent as shown in Fig. 20.  Although this is not a stress-strain plot, a 

power curve can be fit to the loading and unloading data separately, revealing the highly 

nonlinear behavior of the lens capsule. 
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Fig. 17.  Plot of loading and unloading curves from Set D of eight experiments, where the strain is 
measured with respect to the pressure state at 10 mmHg.  The initial strain (at 10 mmHg) is assumed to be 
roughly 12%, which is the average strain calculated from the stress-free configuration to the 10 mmHg 
pressure state. Note the consistency of the data, demonstrating the repeatability of our experimental 
method. 
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Fig. 18.  Plot of loading and unloading curves from Set G of eight experiments, where the strain is 
measured with respect to the pressure state at 10 mmHg.  The initial strain (at 10 mmHg) is assumed to be 
roughly 12%, which is the average strain calculated from the stress-free configuration to the 10 mmHg 
pressure state. 
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Fig. 19.  Measured initial strains (strains at 10 mmHg with respect to the stress-free configuration) by 
region. Note that markers are often lost near the equator when cutting the anterior lens capsule free for this 
measurement. 
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Fig. 20.  Average loading and unloading data from set D of six experiments, shown with power curve of 
the form y = Axb, predicting strain values at pressure states that could not accurately be measured.  Note 
the high nonlinearity of the curve. 

 

Discussion 

Despite its fundamental importance in physiologic processes such as 

accommodation and clinical interventions such as cataract surgery, our understanding of 

the mechanical behavior of the lens capsule remains incomplete.  Early work by Fisher 

(1969a) suggested that the ultimate tensile stress of the human anterior lens capsule 

decreases with age from 2.3 MPa to 0.7 MPa, yet these results are limited by both the 

experimental set-up and the method of data analysis.  Data were collected via pressure-

volume tests, which are essentially 1-D and averaged over multiple regions and 



 37

directions, and data were reduced using a result from linearized elasticity.  The latter is 

inappropriate given the nonlinear material behavior and finite strains. 

There are also data from various “unconventional” mechanical tests.  For 

example, Krag et al. (1993) measured the pressure required to express the lens following 

a continuous circular capsulorhexis (CCC).  They found that the posterior lens capsule 

ruptures at 59 ± 10 mmHg, whereas effective “hydroexpression of the lens” required 

pressures from 3 to 47 mmHg (lower pressures for larger CCCs).  Yang et al. (1998) 

measured the force required for a 0.455 mm diameter rod to puncture the lens capsule 

when applied normal to the surface.  They found that the force required for penetration 

was significantly higher in the anterior than the posterior lens capsule (9.02 g versus 

4.42 g). 

Most recently, Krag and colleagues reported many important findings on the 

uniaxial mechanical and thermomechanical behavior of the porcine and human lens 

capsule (Krag et al., 1997a, 1998; Krag and Andreassen, 2003).  Briefly, they tested 

intact, circumferential rings of lens capsule in uniaxial tension.  Data revealed a highly 

nonlinear stress-strain relation, with stresses on the order of 4-5 MPa at stretches of 60-

80% (1st Piola-Kirchhoff stress versus linearized strain), with no statistically significant 

difference in behavior between the left and right eye from the same donor. Moreover, 

despite marked differences in thickness, they found the stress-strain behavior to be the 

same for the anterior and the posterior capsule.  Finally, it was found that mechanical 

strength and distensibility decrease with age while thickness and stiffness increase with 

age.  These are important findings.  Bailey et al. (1993) similarly reported uniaxial 
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stress-strain data, although as a function of the degree of glycation cross-linking due to 

incubating porcine lens capsules in a 133 mM glucose solution.  As expected, the data 

reveal that the lens capsule becomes stiffer and less extensible with increasing cross-

links, which likely reflects that which occurs in diabetes and aging. 

Although uniaxial data provide important insight into some characteristics of the 

behavior of a material, they are not sufficient for delineating the multiaxial behavior that 

exists in vivo.  There is, therefore, a pressing need for multiaxial data.  Moreover, it is 

often preferable to test biological tissues while maintaining their native geometry and 

mimicking native loading conditions.  This is often complicated by the presence of 

adherent tissue, however, which is why many tissues are excised for testing.  We 

developed a new technique whereby the lens capsule can be isolated from the underlying 

lens, loaded by in-plane stresses, and yet maintained in nearly its native geometry, with 

natural boundary conditions around the periphery.  Consistent with uniaxial findings, we 

observed a nonlinear material behavior over finite strains.  Furthermore, we found that 

the strain in the lens capsule varies with region and direction.  The meridional strain 

always appeared to be equal to or greater than the circumferential strain, where their 

difference was most notable near the equator.  These results are not unexpected; indeed, 

they are qualitatively similar to results obtained for other nonlinear biological 

membranes such as intracranial saccular aneurysms (Humphrey, 2002). 
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CHAPTER IV 

STRAIN REDISTRIBUTION FROM CAPSULORHEXIS 

 

There are typically three basic steps in cataract surgery.  The first step is either a 

capsulotomy or a capsulorhexis, whereby a central part of the anterior lens capsule is 

removed so that the clouded lens can be accessed.  The second step entails a process 

called phacoemulsification, in which ultrasound is used to break the clouded lens into 

pieces that are then aspirated through the hole created by the capsulotomy.  The third 

step involves the skillful insertion of a synthetic material or prosthetic device into the 

capsular bag to restore focus and thus sight.  All three of these steps require extensive 

manipulation of the lens capsule, which in turn alter the native stress and strain fields.  

Of these three steps, our focus will be on the redistribution of strain and changes in 

curvature due to the anterior capsulotomy.   

The most common technique for gaining access to the lens is the creation of a 

continuous circular capsulorhexis (CCC), in which a circular tear is made via a 

continuous circumferential tearing of the lens capsule.  This method is preferred because 

it provides a strong circular edge, resistant to radial tearing during insertion of the IOL.  

In addition, this technique allows for the creation of a smaller diameter hole, which has 

been shown by Hollick et al. (1999) to decrease the occurrence of PCO. 

Because the lens capsule is thin-walled with a large radius of curvature, it may be 

treated mechanically as a membrane, which in turn implies that curvatures influence 

greatly the local stress field. Herein, we report measurements of the changes in in-plane 
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finite strain and curvature in the anterior lens capsule of porcine eyes following a 

continuous circular capsulorhexis performed by an experienced veterinary 

ophthalmologist. 

Experimental Methods 

Our basic experimental procedures and test system are similar to those discussed 

in Chapter III.  Briefly, we mount fresh, enucleated eyes in a moldable wax fixture, 

remove the cornea and iris, and then affix numerous (40 - 50) closely placed, 40 µm 

diameter fluorescent microspheres to the surface of the anterior lens capsule.  After 

immersing the eye in a physiologic solution (Alcon BSS) and warming it to 35°C, we 

then use blue light to excite the markers and a bi-plane video system (current resolution 

of ~7 µm) to monitor their 3D positions both before and after a continuous circular 

capsulorhexis. 

Analysis 

Strain Calculation 

Global reconstruction techniques can then be used with the biplane video system 

to determine the 3D position of the centroid of each marker as detailed in the 3D Object 

Reconstruction part of the Analysis section in Chapter III.  Once the 3D Cartesian 

coordinates of each marker are known, a Delaunay triangularization technique (Matlab) 

is used to construct an array of lines connecting marker centroids, thus forming a 

triangular mesh over the entire field of markers, with nodes at each marker centroid.  

The triangles are of similar size and shape so that the corners of each triangle form a 

marker triplet, appropriate for measuring strain. 
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Regional, in-plane components of Green strain can then be calculated from the 

motions of these closely spaced marker triplets as described previously in the Strain 

Calculation part of the Analysis section of Chapter III.  Briefly, the Green strain, E, 

which is exact for finite strains and independent of rigid body rotations, is computed 

locally for each triplet using the deformation gradient, F, through the equation E = 

½(FTF - I).  The deformation gradient can be calculated directly for each marker triplet 

by finding how position vectors before the CCC (denoted by ∆X and connecting vertices 

of the triplets) deform to position vectors after the CCC (denoted by ∆x).  Since the 

marker triplets are close together and there are no severe deformation gradients, we can 

assume a homogeneous deformation within each triangular region; thus, ∆x ≈ F(∆X), 

which can easily be solved using matrix methods (Humphrey, 2002).  The directional 

components of in-plane strain for each marker triplet are labeled as meridional and 

circumferential.  They are perpendicular to each other and tangent to the lens capsule at 

the origin of the localized strain region, which is prescribed to be at the centroid of each 

marker triplet.  The meridional direction always points to the anterior pole of the lens 

capsule, which is defined by the Y-suture (See Fig. 10).  

Finally, it is important to note that strains reported herein refer to the in situ, 

unloaded reference configuration (the native state of the lens capsule), not a stress-free 

reference configuration.  As shown by Delange (2002), the normal lens capsule is under 

a pre-strain of roughly 8% in the circumferential direction and 13% in the meridional 

direction.  In this chapter, however, we compute only the change in strain from the 

native state, not absolute strain. 
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Curvature Calculation 

Curvature is a measure of how an outward unit normal vector changes its 

orientation along a prescribed arc length.  Curvature can be found from a variety of 

methods.  One way would be to measure it directly from the 3D coordinates of the 

markers, using a finite differencing technique for calculation of the derivatives in the 

curvature equation; however, this would require the computation of second-order 

derivatives.  Therefore, it would be more appropriate to develop a mathematical model 

of the lens capsule.  A good mathematical model must contain the equation for a surface 

in three-space that closely approximates native lens capsule geometry.  If the model is 

good, it can be used to compute curvatures analytically, and these curvatures should 

closely approximate those of the native anterior lens capsule. 

As a first approach in modeling the anterior lens capsule, we made several 

simplifications by assuming certain symmetry conditions and geometry constraints.  For 

instance, the eye was placed under the biplane video system such that the transverse 

plane and the sagittal plane were nearly aligned with the xz plane and yz plane of a 

laboratory Cartesian coordinate system.  Note that these anatomical planes are of 

importance since it is assumed that the major and minor axes of the anterior lens capsule 

reside in these planes.  Furthermore, the anterior lens capsule appears to be a smooth 

surface with near constant concavity.  Therefore, we looked at various polynomial 

functions of the form z = f(x,y), which had, at most, second order terms in x and y.  These 

types of functions represent a family of surfaces known as quadrics.  The general form 

of the equation for a quadric is mathematically appealing, since it is linear in terms of the 
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unknown parameters; thus, these parameters can be found using linear least squares 

regression.  Moreover, the first and second derivatives of the quadric can easily be 

calculated, and curvature is computed in the x and y directions (major and minor axes of 

the lens capsule, respectively) from the standard curvature equations 
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Although the general form for a quadric provides a reasonable model of the 

anterior lens capsule, more sophisticated mathematical models were still examined.  For 

instance, we exploited the suggestion that the anterior lens capsule is a hemi-ellipsoid 

(Fisher, 1969b) and modeled it this way by finding the least squares solution to the 

algebraic representation of an ellipsoid.  As shown by Chatterjee and Chong (1997), an 

ellipsoid with general orientation can be expressed algebraically as 

 0TT =++ cxbxAx  (6) 

where x = [x,y,z]T are the 3D coordinates for each marker, and the symmetric and 

positive definite matrix A , the vector b , and the scalar c , are given by 
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This can also be written in the form 

 0222 =+++++++++ LKzHyGxFyzExzDxyCzByAx , (7) 
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subject to the constraints that D2 < 4AB, E2 < 4AC, and F2 < 4BC, so that A is symmetric 

and positive definite.   

Note that there are ten parameters in Eq. 7, but there should only be nine for a 

general ellipsoid, because an ellipsoid has nine degrees of freedom.  For instance, an 

ellipsoid can be completely described by its three radii, the displacement of its center 

from the origin of a laboratory Cartesian coordinate system, and rotations of the ellipsoid 

about all three axes of the coordinate system.  Therefore, it is necessary to either 

eliminate a parameter or impose some suitable constraint.  Turner et al. (1999) examined 

how the parameters in Eq. 7 relate to the ellipsoid’s center, semi-axes, and orientation.  

They note that A, B, and C are strictly positive and D, E, and F are near zero if the 

rotations of the ellipsoid about the axes of the coordinate system are small.  Furthermore, 

G, H, and K are near zero for ellipsoids centered near the origin (and in other cases as 

well) and L is near zero in a number of instances.  Observation of the physical 

constraints imposed by our experimental method reveal that the eye is oriented with our 

coordinate system in such a way that an ellipsoid modeling the anterior lens capsule 

should have negligible rotations about the x and y axes.  Therefore, the parameters E and 

F can be eliminated, and the remaining eight parameters can be determined using linear 

least squares regression with the coordinate data. 

The advantage of this ellipsoid-fitting approach is its simplicity, but the 

disadvantage is that we do not know what we are minimizing in a geometrical sense, 

when obtaining the linear least squares solution.  Additionally, this best “algebraic fit” 

ellipsoid does not produce the best “geometric fit”.  In fact, Gander et al. (1994) showed 
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that the best “algebraic fit” can be a poor estimate of the geometry described by 

coordinate data.  Therefore, we refined our approach by finding the best geometrical-

fitting ellipsoid.  That is, we solved for the weighted, least-squares, best-fit parameters of 

an ellipsoid by minimizing the difference between measured and modeled surface 

positions.   

In finding the best “geometric fit” ellipsoid, it is best to use a parametric 

representation, such as 
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where -π ≤ u < π and –π/2 ≤ v < π/2 are scalar auxiliary parameters; [xc, yc, zc]T are 

coordinates for the origin of the ellipsoid; 321  and , , rrr are radii of the axes of the 

ellipsoid; and 321  and , , RRR are plane rotation matrices given by 
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We are interested in minimizing the geometric distances between measured 

marker positions and the model ellipsoid, where the geometric distance is defined as the 

distance between a marker and its closest point on the ellipsoid (Gander et al., 1994).  

We can solve this optimization problem by finding the values for the parameter set s that 

minimizes the quadratic function 
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for all markers (i = 1…N) where the coordinates of the ith marker are ][][][ ,, m
i

m
i

m
i zyx , and 

the parameter set is [ ]Tccczyxmimi zyxrrrvvuu 321 ,,,,,,,,,...,... θθθ=s .  This is a non-

linear problem, which must be solved iteratively, as, for example, by using an algorithm 

such as the Marquardt-Levenberg method. 

The biggest difficulty with this approach is that it is hard to generate initial 

estimates for the parameter set s.  This complication can be overcome, however, by first 

finding the parameters for the best “algebraic fit” and then relating them to the 

parameters in s, so that they can be used as initial parameter estimates, ŝ .  The 

relationship between the parameters from the best “algebraic fit” and the parameters in s 

can be found by introducing an ellipsoid-oriented Cartesian coordinate system x̂ , such 

that this new coordinate system has its origin at the center of the ellipsoid, and its 

coordinate directions aligned with the axes of the ellipsoid.  The laboratory coordinate 

system x, can be related to the rotated and shifted ellipsoid-oriented coordinate 

system x̂ by the equation 

 txQx += ˆ , (10) 

so that Eq. 6 becomes 

 0ˆˆˆˆˆˆ TT =++ cxbxAx , (11) 

with 

( ) cc ++=+== tbtAtQbAtbQAQA TTTTTT ˆ   and   ,2ˆ   ,ˆ . 

This coordinate transformation was chosen with specific Q and t so that 0b =ˆ and Â  

contains the eigenvalues of A (Gander et al., 1994).  Therefore, Eq. 11 can be written as 
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where λ1, λ2 and λ3 are the eigenvalues of A , and they must all be positive since A is 

symmetric and positive definite.  Furthermore, the columns of Q are eigenvectors of 

A and ( ) bAt T21 −−= so that 0b =ˆ .  Finally, ŝ can be calculated from the known 

parameters of the best “algebraic fit” ellipsoid using the following equations: 
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for i = 1,2,3 and xc = [xc, yc, zc]T. The set ŝ can then be used in a non-linear least squares 

regression to find the best-fitting parameter set s. 

Once the parameters of the ellipsoid are known, they can be used in the partial 

derivatives of Eq. 8, with respect to u and v.  These derivatives can then be transformed 

to the ellipsoid oriented coordinate system x̂ , and curvature in the meridional direction 

can be calculated along the major and minor axes by using the equation 
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where u = 0 and ŵ represents x̂ for curvature along the major axis and u = π/2 and 

ŵ represents ŷ for curvature along the minor axis. 

It is important to note the ellipsoid is oriented in such a way that the section 

defined parametrically by -π ≤ u < π and θm ≤ v < π/2 models the anterior lens capsule, 

where θm is the elevation angle of the equator of the capsule (see Fig. 21). 
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Fig. 21.  Drawing that illustrates how the best “geometric fit” ellipsoid models the anterior lens capsule. 
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Once again, we assume that the major and minor axes of the lens capsule reside in the 

transverse and sagittal planes, respectively.  If this conjecture is true, then the anterior 

lens capsule is aligned with the ellipsoid such that the zxˆˆ plane is the transverse plane, 
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and the zyˆˆ plane is the sagittal plane (as shown in Fig. 21).  Furthermore, the two curves 

on the ellipsoid, parameterized by u = 0 (in the zxˆˆ plane) and u = π/2 (in the zyˆˆ plane) 

with θm ≤ v < π/2 represent the surface of the lens capsule along the major and minor 

axes, respectively.   

We are most interested in the principal curvatures along these axes.  One 

principal curvature can be found by using the derivatives of Eq. 8 in Eq. 14 for u = 0 and 

u = π/2.  This principal curvature describes how the unit outward normal changes with 

arclength along the parametric curves representing the major and minor axes of the 

capsule.  The other principle curvature can be found from the first principle curvature 

using differential geometry. 

Results 

Fig. 22 is a picture of the anterior surface of the lens capsule immediately 

following a continuous circular capsulorhexis, with a diameter of 5 mm, centered at the 

Y-suture of the lens.  Although only partially visible in normal lighting, the 40-µm 

diameter fluorescent microspheres can be seen as the small white dots in the upper-right 

quadrant.  Fig. 23 is an image from the biplane video system, showing a portion of the 

marker field remaining after the CCC; the microspheres have been excited with blue 

light.  Note the high image quality and excellent contrast obtained with the biplane video 

system. 
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Fig. 22.  Anterior Lens Capsule with field of markers in top-right quadrant immediately after surgical 
introduction of CCC with 5 mm diameter.  Note that this picture was imaged with a separate video system 
and VCR, not the experimental biplane video system, which provides better resolution and more contrast, 
as seen in Fig. 23. 

 

 

Approximate location 
of lens capsule 

Approximate location 
of CCC

Fig. 23.  Section of anterior lens capsule imaged with the experimental biplane video system; shown is a 
portion of marker field remaining after a CCC. 
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Fig. 24 to Fig. 28 show the meridional and circumferential strain fields in a 

quadrant of the anterior lens capsule resulting from a CCC, approximately 5 mm in 

diameter, for five different specimens.  For visual purposes, the strain fields were each 

plotted on an ellipsoid surface that represents the overall dimensions (in millimeters) of a 

typical, porcine anterior lens capsule.  The x-direction is oriented along the transverse 

plane while the y-direction is oriented along the sagittal plane.  The strain range for each 

figure is chosen between limits set by the minimum meridional strain and the maximum 

circumferential strain calculated for that particular specimen.  It is evident from the 

figures that a high degree of strain redistribution occurs as a result of the CCC.  We 

found that strain increases up to 20% in the circumferential direction and decreases 

nearly 20% in the meridional direction, each relative to the in situ reference 

configuration.  Furthermore, the magnitude of strain was always greater near the edge of 

the CCC and almost zero near the equator.  Both directional components of strain also 

appear slightly greater along the transverse plane than the sagittal plane. 
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Fig. 24.  Strain field in top-right quadrant of anterior lens capsule after introduction of CCC with 5 mm 
diameter. (Specimen: 1, Number of nodes: 39, Number of elements: 59) 
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Fig. 25.  Strain field in top-right quadrant of anterior lens capsule after introduction of CCC with 5 mm 
diameter.  (Specimen 2, Number of nodes: 38, Number of elements: 50) 
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Fig. 26.  Strain field in top-right quadrant of anterior lens capsule after introduction of CCC with 4.5 mm 
diameter.  (Specimen 3, Number of nodes: 28, Number of elements: 42) 



 55

 

-4
-2

0
2

4

-4

-2

0

2

4

-3-2
-1

X

Strain Redistribution from CCC in Meridional Direction

Y

Z

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

 
 

-4
-2

0
2

4

-4

-2

0

2

4

-3-2
-1

X

Strain Redistribution from CCC in Circumferential Direction

Y

Z

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

 
Fig. 27.  Strain field in top-right quadrant of anterior lens capsule after introduction of CCC with 3.5 mm 
diameter.  (Specimen 4, Number of nodes: 53, Number of elements: 85) 
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Fig. 28.  Strain field in top-right quadrant of anterior lens capsule after introduction of CCC with 4 mm. 
diameter.  (Specimen 5, Number of nodes: 21, Number of elements: 27) 
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Fig. 29 is a plot of a quadric surface fit to the marker coordinates of specimen 5 

before the CCC (using TableCurve 3D); the equation of the quadric is shown along with 

associated parameter values.  Unfortunately, the parameters have no physical meaning, 

and the equation is not written in parametric form.  Nevertheless, we can still calculate 

curvature analytically, along the x and y directions using the equations for κx and κy 

given in Eq. 5.  Fig. 30 is a plot of the inverse curvature in the x and y direction of the 

quadric, which is an approximation of curvature in the major and minor axes of the 

anterior lens capsule, both before and after the CCC.  The abscissa represents the 

distance along the meridional direction from the anterior pole to the equator. 

 

 
Fig. 29.  Plot showing section of a quadric fit to marker coordinates before CCC (using TableCurve 3D). 
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Fig. 30.  Estimates of the curvature along the major and minor axes of the anterior lens capsule, both 
before and after the CCC. 

 

Discussion 

The normal lens capsule consists primarily of type IV collagen, with admixed 

adhesion molecules and proteoglycans, woven in a fine 3D network structure having 

polygonal-shaped interstices ~20 nm in diameter (Barnard et al., 1992).  Given the thin-

wall (on the order of 30 µm for the human anterior lens capsule) and large radius of 

curvature (~7 mm), these observations justify the use of a membrane assumption within 

a framework of continuum mechanics.  It is well known in mechanics that introducing a 

hole in a material under load usually results in highly non-uniform stress and strain 
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fields, including marked stress concentrations at the edge of the hole.  Recently, 

however, we showed that the degree of material anisotropy (e.g., a circumferentially 

versus radially stiffer behavior) can dramatically affect the stress and strain distributions 

around a hole in a flat, pre-stressed, nonlinear membrane subjected to finite strains 

(David and Humphrey, 2004).  Given the lack of a similar solution for a distended 

ellipsoidal membrane, there was a need for experimental measurements of the changes in 

strain and curvatures in the lens capsule following a CCC. 

As expected, we found considerable redistribution of strain from the CCC in all 

specimens.  The results seem reasonable from a mechanics point of view, as evident 

from the relatively smooth strain gradients and decreasing magnitude of strain from the 

CCC edge to the equator.  Moreover, negative strains in the meridional direction 

(consistent with a retraction) and positive strains in the circumferential direction 

(consistent with an increase in fictitious circumferences) are both consistent with the 

concept of pre-strain in the lens capsule (i.e. the lens capsule is stretched in its in-situ 

state, thus the introduction of a tear or cut will cause retraction of the capsule). 

It also appears that the CCC causes slight changes in curvature; this is expected 

in part because the CCC creates a traction-free boundary condition at the edge of the 

tear.  In addition, this suggests that the CCC allows the lens to change shape, perhaps 

tending to bulge-out near the edge of the CCC.  Regardless, curvature should change 

most notably at the edge and should remain nearly the same close to the equator (as 

evident in Fig. 30).  Note, too, that Gauss-Codazzi relations combined with equilibrium 

equations from membrane theory reveal that the meridional stress resultant is inversely 
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related to the second principal curvature.  Thus, as stress decreases in the meridional 

direction, after the CCC, curvature is expected to increase, thus qualitatively validating 

our curvature results. 

Although the curvatures seem reasonable, there is a need to parameterize the 

surface more rigorously and to calculate principal curvatures along the major and minor 

axes.  This, along with equations derived from membrane theory, will allow us to 

calculate regional stress resultants in the lens capsule and quantify their changes as a 

consequence of the CCC.  Furthermore, if thickness of the lens capsule is measured as a 

function of arclength, then the regional stress resultants can be divided by localized 

thickness measurements to calculate the stress field over the entire lens capsule. 
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CHAPTER V 

DISCUSSION 

 

The functionality of our testing system and repeatability of our experimental 

methods have been validated by the consistency of our data and the successful 

duplication of experiments performed by Delange (2002).  Furthermore, we have been 

able to explain some of the variability seen in the pressure-strain data and pre-strain data 

reported by Delange (i.e. preconditioning effects and unknown lens interactions at 

pressures below 10 mmHg).  Not only have we reproduced previous data, but we have 

added new, important information, such as accurate 3D geometry of the lens capsule, 

preconditioning studies, and strain redistribution due to CCC.   

In review, two different sets of experiments were conducted: multiple cycle 

inflation tests and strain redistribution experiments from the CCC technique.  The 

inflation tests were used to determine the multi-axial mechanical behavior of the porcine 

lens capsule.  This behavior was quantified via pressure-strain data found from the 

differences between 3D coordinates of markers at various pressure states (note that the 

3D coordinates from these tests can also be used to determine the material parameters as 

discussed in the Calculation of Material Properties section of Chapter VI).  Pressure-

strain data shows that the porcine anterior lens capsule does indeed exhibit highly 

nonlinear, pseudoelastic behavior.  Strain in the meridional and circumferential direction 

appears to be nearly the same, except for regions very near the equator, in which case the 

meridional strains are slightly higher.  This increased extensibility in the meridional 
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direction may be related to differences in geometry (thickness) or material properties 

(anisotropy), or it may just be a consequence of the displacement boundary condition 

imposed by the zonules at the equator of the lens capsule.  Nevertheless, total strains at 

40 mmHg, taken with respect to the stress-free reference configuration, appear to be 

roughly 18% to 19%.  The strain redistribution test showed that strain appears to equally 

redistribute from the meridional direction to the circumferential direction (i.e. the 

magnitude of decrease in meridional strain equals the magnitude of increase in 

circumferential strain).  The strain redistribution was highest near the edge of the CCC, 

reaching magnitudes of 20%.  More importantly, the mere existence of strain 

redistribution verifies the reality of a pre-strain in the lens capsule.  These tests also 

show that introduction of the CCC results in a decreased radius of curvature at the edge 

of the CCC and almost no change in curvature near the equator, as expected.  The 

significance of these results is most evident when considering how the changes in 

curvature of the lens capsule affect the changes in curvature of the underlying lens, thus 

affecting its optical properties.  Therefore, the effects of a hole in the lens capsule must 

carefully be considered in the design of accommodative intraocular lenses.  Furthermore, 

changes in the curvature of the lens capsule are indicative of changes in the stress field 

present.  This can be shown quantitatively by equations derived from membrane theory 

(as discussed in the Calculating Stress Resultants section of Chapter VI). 

The research documented here is only a small part of the ongoing effort to 

investigate the details of lens capsule behavior, its mechanical properties, and its role in 

secondary cataracts, as well as its interactions with the lens and zonules in the 
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accommodative process.  The project organization is illustrated in the flowchart from 

Fig. 31.  The darker boxes represent the areas of this project that are still in progress.  

Recommendations as to why and how these remaining tasks should be completed are 

discussed in Chapter VI; this includes discussion on the significance of each task, as well 

as the theoretical framework and methods necessary to complete them. 
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Fig. 31.  Flowchart showing project organization.  Light boxes indicate work that has been completed, and 
dark boxes indicate tasks that remain. 

 

Although there is still work to be done, the experimental results presented in this 

thesis are of great importance since they provide the information necessary to complete 
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the remaining tasks.  For instance, the 3D coordinates from the multiple cycle inflation 

tests can be used to calculate material properties.  Knowledge of the material properties 

will then allow us to predict the strain response for various loading conditions.  This will 

take us beyond our current experimental capabilities, in that we can run a vast array of 

simulations for different loading conditions to determine the strain response much faster 

and more easily than what could be achieved experimentally.  Furthermore, the 3D 

coordinates from the strain redistribution tests can be used in the pursuit of developing 

better mathematical models for the lens capsule.  This will ultimately provide us with 

better regional curvature measurements necessary for quantifying the stress field in the 

lens capsule and changes in the stress field that result from various surgical 

interventions. 
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CHAPTER VI 

RECOMMENDATIONS 

 

Calculation of Material Properties 

A large task that remains is quantification of the material properties of the lens 

capsule.  If we treat the inflation of the capsule as a pure mechanics problem, we can use 

the “inverse approach” to determine the material properties, once the geometry and 

loading conditions are known.  The geometry is found from the 3D coordinates, but the 

loading conditions are too difficult to determine on the lens capsule as a whole, so we 

will look at each set of five markers individually.  This simplifies the problem since we 

can consider each set of markers as a displacement boundary value problem, where the 

displacement of the four corner markers can be measured at each pressurized state.  

Furthermore, this gives us the advantage of examining heterogeneities by allowing us to 

quantify different material properties from region to region throughout the lens capsule. 

To accomplish this region-by-region analysis, we will employ a sub-domain 

inverse finite element method to determine the best-fit material parameters, using a 

constitutive framework, appropriate for nonlinear, pseudoelastic, biological membranes.  

Therefore, we will use a 2-D Fung-exponential constitutive relation.  The material 

properties will be quantified via a Fung pseudostrain-energy function w,  
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where E11 and E22 are the measured, principal Green strains, and c and ci (i = 1,2,3) are 

the best-fit material parameters which will be determined.  This functional form is 

chosen based on what is already known about the behavior of the lens capsule, 

specifically its display of nonlinear elasticity and anisotropy.  Furthermore, it has been 

shown to describe well the data for many soft tissues (Fung, 1993; Humphrey, 2002). 

The associated constitutive equation is given by 
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where Tab are components of the stress resultant tensor T (a,b,C,D =1,2).   

The finite element code will use a nonlinear regression algorithm (Marquardt-

Levenberg) to determine the set of parameters in the constitutive relation which 

produces the best match between the computed and measured displacements (at multiple 

pressures) of the inner node.  This can be done by minimizing the objective function e 

(i.e., ∂e/∂c = 0 and ∂e/∂ci = 0), where e is given by, 
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The (x1,x2,x3) denote the Cartesian coordinates of the inner node (marker) at each 

pressure state j, and subscripts t and e denote finite element-calculated and 

experimentally-measured, respectively.   

Seshaiyer et al. (2001) showed the effectiveness of this finite element method in 

quantifying the behavior of non-axisymmetric membranes.  Many biological tissues can 

be modeled as membranes, such as aneurysms, skin, and the urinary bladder.  For an 

element to be classified as a membrane, the thickness of the element must be small in 
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comparison to its in-plane dimensions, the bending stiffness of the element is generally 

negligible, and the in-plane stresses are assumed to be constant through the thickness.  

The lens capsule has been shown by Vaughn et al. (1995) to be classified as a thin-

walled structure exhibiting these characteristics.  Therefore, the anterior lens capsule can 

be modeled as a membrane so that the proposed finite element method should be suitable 

for determining its material properties. 

Study of Posterior Capsule 

The posterior capsule is thinner and more curved than the anterior lens capsule; it 

is also devoid of epithelial cells.  These characteristic dissimilarities between the 

posterior and anterior lens capsule, combined with the mechanical differences reported 

in literature, indicate that the material properties of the posterior lens capsule may be 

different; thus, it is necessary to study the posterior capsule in addition to the anterior 

capsule. 

 The mechanical properties of the posterior lens capsule can be determined using 

the method discussed in the preceding section.  This can only be done once the 3D 

coordinates of its surface are found at different pressure states from multiple cycle 

inflation tests.  These coordinates can be found using the biplane video system with the 

same experimental procedure detailed in Chapter III.  The only difference is that the 

posterior half of the eye and the vitreous are removed instead of the cornea. 

Mathematical Modeling of Lens Capsule 

We attempted to model the anterior lens capsule as part of an ellipsoid, but the 

nonlinear parameters associated with the best “geometric fit” ellipsoid proved difficult to 
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solve.  The main problem is that the geometry of the anterior lens capsule closely 

resembles that of an oblate spheroid, in which two of the axes have nearly the same 

dimension.  This can lead to numerical difficulties that often arise when fitting an 

ellipsoid to near-spherical data.  Thus, it may be beneficial to use the technique 

developed by Turner et al. (1999) to avoid this problem; they derived an alternative 

parameterization for a best-fitting ellipsoid (in a geometrical, least-squares sense), and 

iteratively solved for the new parameter set s* using a nonlinear least squares method. 

It is also possible that higher order terms should be added in the mathematical 

model of the lens capsule, or on the other hand, it may be better to develop multiple, 

individual models of different sections of the lens capsule, instead of searching for a 

global, mathematical representation.  For instance, biquadric surface patches have been 

used for modeling in vivo 3D surface geometry of abdominal aortic aneurysms (AAA) 

and the right ventricular free wall (Sacks et al., 1993; Sacks et al., 1999).  These surface 

patches use regional parameterization functions of the form 

 ( ) 22 2, cvbuvauvuS ++= , (19) 

where a local u-v tangent plane coordinate system is used, and the parameters a, b, and c 

are found for each surface patch by fitting this function to a five by five node grid, 

digitally reconstructed from images of the specimen surface using MRI.   

Since the lens capsule is a smooth surface, we should not encounter the 

difficulties reported by Sacks et al. (1999), in which the tortuosity of the AAA and the 

MRI noise required them to use surface smoothing techniques.  Furthermore, the 

smoothness of the lens capsule allows us to use a variety of other mathematical models 
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as well.  Nevertheless, regardless of which method is chosen, the goal of mathematical 

modeling is measuring curvature of the lens capsule and changes in curvature that result 

from surgical intervention and accommodation. 

Computing Regional Curvatures 

Curvature in the lens capsule is important for two reasons.  First, it dictates the 

focal characteristics of the underlying lens substance.  Hence, it is necessary to measure 

regional curvatures as well as changes in curvature that result from surgical intervention, 

specifically the introduction of a Continuous Circular Capsulorhexis.  This information 

could be very useful in the development of an accommodative IOL.  Second, principal 

curvatures can be used in equations derived from membrane theory to calculate stress 

resultants in the lens capsule. 

Calculating Stress Resultants 

In special cases, membrane theory also allows us to calculate stress resultants 

solely from known loads and geometry, without the explicit specification of a 

constitutive relation.  If the lens capsule is axisymmetric, then the analysis by Humphrey 

(2002) can be used to write the governing equations for the stress resultants as, 
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where P is the pressure-like traction, exerted on the lens capsule (by either the lens or the 

inflation pressure if the pressure is high enough to cause separation between the lens and 

lens capsule) and κ1 and κ2 represent the principal curvatures, which can easily be 

calculated from the mathematical model of the lens capsule.  Thus, regional stress 
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resultants can be measured at any localized region on the lens capsule.  Furthermore, if 

thickness is known as a function of its location, stress can then be calculated from the 

stress resultants.  Therefore, the stress field over the entire lens capsule can be measured, 

and stress redistribution due to the CCC can be determined if curvature changes are 

known. 

Strain Redistribution from IOL 

The strain redistribution due to the Continuous Circular Capsulorhexis (CCC) 

only provides partial insight into the total changes that occur in the strain field of the 

lens capsule as a result of cataract surgery.  This is mainly because the CCC is only the 

first of several steps in this surgery.  Of most importance, however, is the total strain 

redistribution which occurs as an end-result of the cataract surgery.  In other words, we 

are most interested in comparing the strain field of the capsule after the intraocular lens 

(IOL) is inserted with the strain field of the capsule in its native state.  Clinically, this 

comparison will be the most significant, because it shows how the strain redistributes as 

a result of cataract surgery, and it is this redistribution that we believe alters epithelial 

function, thus increasing the occurrence of PCO. 

The same experimental system and methods discussed in Chapter IV can be used 

to measure this strain redistribution.  The surgery will be modified to include common 

procedures for cataract extraction (such as phacoemulsification) and insertion of the 

IOL.  Furthermore, it may be of interest to compare the strain redistributions that results 

from different IOLs.  For instance, it has been reported that a new intraocular lens design 

by Alcon Laboratories, Inc. (the AcrySof® lens) has been reported to reduce PCO from 
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the ~40-60% for other lenses to ~10% (Spalton, 1999); thus, not all IOLs are created 

equal. 

Accommodation 

To better understand the accommodative process, it is necessary to study other 

constituents of the accommodative apparatus, including the mechanical interactions 

between the lens and lens capsule, mechanical properties of the lens, viscoelastic 

behavior of the lens and lens capsule, zonular tension, and forces generated from 

contraction of the ciliary muscles.  Therefore, a solid understanding of the mechanics of 

accommodation will require much thought in developing innovative testing techniques, 

appropriate for the detailed study of each constitutive element of the accommodative 

apparatus.  For instance, special 1D compression tests with glass plates may be used to 

study the mechanics of the lens, while a biaxial stretching apparatus could be used to 

study the short-term viscoelasticity of the lens capsule, via stress relaxation tests. 

Studies on Human Lens Capsule 

The experimental system discussed in Chapter III can also be used to study the 

multiaxial mechanical behavior of the human lens capsule.  This will allow us to 

describe the general characteristics of the human lens capsule (in a similar way to that 

done with the porcine lens capsule) and then quantify material properties.  Furthermore, 

human studies will also allow for statistical comparisons between gender, age, and 

different disease states, such as diabetes.  It may then be possible to individualize an 

optimum IOL design for different people, based on a particular category they may fit in 

(for example, the IOL designed for diabetics may be different than that designed for non-
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diabetics).  Additionally, the statistical comparisons between different age groups may 

provide insight into presbyopia by answering if and how the mechanical properties of the 

lens capsule change with age.  This will have a great impact on the development of an 

accommodative lens, because it tells whether or not the elderly may have the potential to 

recover accommodation. 

Moreover, human studies will allow us to investigate changes in the strain field 

and curvature of the lens capsule, due to accommodation and cataract surgery.  

Contraction of the ciliary muscles in the porcine eyes could not be induced, in-situ, due 

to their naturally poor ability to accommodate; thus, human eyes will provide much 

more insight into the mechanics of the lens capsule during accommodation.  

Additionally, it is the strain redistribution from cataract surgery that occurs in human 

lens capsules (rather than porcine lens capsules) that is of most interest.  Therefore, 

human studies will provide many more possibilities. 
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CHAPTER VII 

CONCLUSION 

 

The mechanics of the lens capsule plays a central role in many causes of visual 

impairment.  For instance, with more than 1.5 million cataract surgeries performed in the 

U.S. each year and nearly half of these surgeries only providing temporary visual 

restoration, it is believed that changes in the mechanical environment of the lens capsule 

(due to the original cataract surgery) cause this secondary loss of vision.  Presbyopia (or 

loss of accommodation) is another visual impairment resulting in part from age-related 

changes in the mechanics of the lens capsule.  Therefore, proper treatment of these 

causes of visual impairment can only be achieved once the mechanics of the lens capsule 

is better understood.   

As with any mechanics problem, it is necessary to determine the geometry, 

material properties, and applied loads.  Unfortunately, this information has not fully been 

obtained in previous research.  Therefore, the goal of this work was to construct an 

experimental device capable of altering stresses in the lens capsule, in its intact state 

within the eye, while measuring 3D geometry and localized surface deformations.  This 

system will be useful in providing data necessary to quantify the regional, multiaxial 

mechanical behavior of the lens capsule, thus accounting for heterogeneity and 

anisotropy.  In addition, this data can be used in a sub-domain inverse finite element 

program, along with a constitutive framework appropriate for nonlinear, pseudoelastic 

biological membranes, to calculate material parameters of the lens capsule.  This 
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experimental device must also provide a way to examine the surface deformations and 

changes in 3D geometry of the lens capsule that result from various procedures used in 

cataract surgery.  This will provide quantification of changes in stress and strain fields as 

well as curvature of the lens capsule. 

Results show that the meridional and circumferential directions are the principal 

directions for strain.  Additionally, the meridional strain and circumferential strain were 

the same through most of the anterior lens capsule, reaching maximum strains (with 

respect to the stress-free reference configuration) of nearly 20%.  The only difference 

found between directional strains was near the equator, where the meridional strain was 

slightly greater.  Preconditioning effects were also found to be significant, as evident 

from differences between the first and fifth loading and unloading cycles.  Thus, it seems 

that four cycles are necessary to precondition the material, where each of these cycles 

tends to stress-soften the lens capsule and reduce hysteresis (energy dissipation).  

Furthermore, a Continuous Circular Capsulorhexis (CCC) with a 5 mm diameter caused 

an even redistribution of strain from the meridional direction to the circumferential 

direction.  This redistribution achieved its highest magnitude near the edge of the CCC, 

where the meridional direction experienced retractional strains of up to 20%, while the 

circumferential direction experienced extensional strains of up to 20%.  It is interesting 

to note that the magnitude of these strains were the same, and even more, any strain at all 

verifies the concept of a pre-strain in the lens capsule.  Furthermore, curvature was 

found to increase near the edge of the CCC and remain the same near the equator.  This 

is important for it suggests that a hole formed in the anterior lens capsule will 
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significantly change the curvature of the underlying lens.  Therefore, it is likely that the 

location, size and shape of the hole must be considered in the design of an 

accommodative intraocular lens. 

This thesis presents only part of the results from an on-going effort to rigorously 

study the mechanics of the lens capsule and its relation to cataract surgery and 

accommodation (see Fig. 31).  Final results from this project should be useful in 

reducing the occurrence of secondary cataracts by improving capsulotomy and 

extraction techniques for cataract removal and optimizing the design of intraocular 

lenses, as well as providing information beneficial in the pursuit of developing an 

accommodative intraocular lens. 
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