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ABSTRACT 
 

Grinding Media Oscillation: Effect on Torsional Vibrations in Tumble Mills. 

 (August 2005) 

Kiran Kumar Toram, B.Tech., JNT University 

Chair of Advisory Committee: Dr. John M. Vance 

 

    

Tumble mills are hollow cylindrical shells of large diameter carrying grinding 

media (a combination of rock/iron ore/chemical flakes and metal balls/rods), which, 

upon rotation of the mill, will be ground into fine powder. These mills rotate at low 

speeds using a gear reduction unit and often have vibration problems. These vibration 

problems result in increased gear wear and occasional catastrophic failures resulting in 

production loss. The objective of this research is to investigate the effect of oscillation 

of grinding media on torsional vibrations of the mill. A theoretical model was 

developed to determine the oscillating frequency of the grinding media. A 12" (0.3 m) 

diameter tumble mill test rig was built with a 0.5 hp DC motor. The rig is tested with 

sand and iron bb balls to simulate the industry process application. At low volume 

levels the grinding media oscillates like a rigid body as compared to higher volumes. It 

is shown that tumbling action of grinding media causes torsional excitation and hence 

its effect has to be considered in torsional vibration analysis. At starting, the load on 

the gears is much higher due to this oscillation. 

 

 



 iv

DEDICATION 
 
 

to Lord Siva 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v

ACKNOWLEDGEMENTS 

 

I wish to express my thanks to the following people. Thanks to Dr. John Vance 

for giving me an opportunity to work at the Turbomachinery Laboratory, for teaching 

me the basics of vibrations, and for his patience and support. Thanks to Dr. Luis San 

Andrés and Dr. Doug Hensley for agreeing to be on my committee.  

Thanks to Eddi Denk and Cris for their help in building the Tumble mill test 

rig. Thanks to Rahul Kar for helping me with LVTorsion. Thanks to Ahmad Gamal 

and Syed Jafri for their help in going through my thesis draft.  

Thanks to my roommates Srinivas Chittla, Rajesh Pilla, Hari Prasad and all 

Telugu Aggies for their encouragement and valuable advice. Thanks to my parents and 

sisters for their love and support and making me what I am today. 

 

 

 

 

 

 

 

 

 

 



 vi

TABLE OF CONTENTS 

Page 

ABSTRACT……………………………………………………………………………iii 

DEDICATION…………………………………………………………………………iv 

ACKNOWLEDGEMENTS…………………………………………………………….v 

LIST OF CONTENTS…………………………………………………………………vi 

LIST OF FIGURES…………………………………………………………………..viii 

LIST OF TABLES……………………………………………………………………...x 

NOMENCLATURE……………………………………………………………………xi 

CHAPTER 

I INTRODUCTION……………………....................................................1 
      

Literature Review………..……………………………………...8 

Research Objective…………………………………………….10 

II THEORY……………………………………………………................12 

III DESIGN AND FABRICATION OF TEST RIG……………………...20 

IV MEASUREMENTS AND INSTRUMENTATION...………………...24 

  Magnetic Transducer…………………………………………..24 

  NI-4472 Data Acquisition Board…………………...…………24 

V RESULTS AND DISCUSSION……………………………................34 

  Grinding Media: Sand…………………………………………34 

  Side Bands…………………………………………………….38 

  Equation for Friction Coefficient……………………………...39 

  Grinding Media: BBs………………………………………….44 



 vii

CHAPTER                                                                                                  Page 

Grinding Media: Sand…………………………………………45 

VI  CONCLUSIONS………………………………………………………49 

REFERENCES………………………………………………………………………...50 

APPENDIX A…………………………………………………………………………51 

APPENDIX B…………………………………………………………………………58 

APPENDIX C…………………………………………………………………………63 

APPENDIX D…………………………………………………………………………68 

APPENDIX E…………………………………………………………………………70 

APPENDIX F…………………………………………………………………………73 

VITA…………………………………………………………………………………..78 

 

 

 

 

 

 

 

 

 

 

 

 



 viii

LIST OF FIGURES 

FIGURE                                                                          Page 

1.1 Cutaway Section of Ball Mill……………………………………………………….2 

1.2 Industrial Ball Mill………………………………………………………………….2 

1.3 Rod Loaded Mill...………………………………………………………………….2 

1.4 Ball Loaded Mill……………………………………………………………………3 

1.5 Condition for Centrifuging………………………………………………………….4 

1.6 Block Diagram of Kiln at Clarksville………………………………………………5 

1.7 Spring Mass System of Kiln………………………………………………………..6 

1.8 Grinding Media Motion in Tumble Mill..…………………………………………..7 

1.9 Tube Mill System…………………………………………………………………...8 

1.10 Response of Tube Mill Torsional Vibration………………………………………9 

1.11 Tumble Mill with Lifters…………………………………………………………..9 

2.1 Free Body Diagram of Grinding Media in Tumble Mill..…………………………12 

2.2 Free Body Diagram to Find Normal Reaction...…………………………………..13 

2.3 Included Angle of Grinding Media with Center of Mill Center…………………..15 

2.4 Input Data for XLTumbleMill……………………………………………………..16 

2.5 Displacement Response of XLTumbleMill………………………………………..17 

2.6 Speed Response of XLTumbleMill………………………………………………..18 

2.7 Torque Response of XLTumbleMill………………………………………………19 

3.1 Assembled View of Test Rig……………………………………………………...20 
 
3.2 Exploded View of Test Rig………………………………………………………..20 
 
3.3 Line Diagram of Tumble Mill Test Rig…………………………………………...21 



 ix

FIGURE                                           Page 

3.4 Tumble Mill Test Rig……………………………………………………………...22 

4.1 NI-4472 Data Acquisition Board………………………………………………….25 
 
4.2 Data Acquisition Board Installed in PC…………………………………………...25 
 
4.3 Lab View Installed PC…………………………………………………………….26 
 
4.4 Magnetic Transducer with Chain………………………………………………….26 
 
4.5 Raw Signal from the Magnetic Transducer………………………………………..27 
 
4.6 Setting Threshold Value to Count Pulses………………………………………….27 
 
4.7 Threshold Value to Count Pulses and Number of Pulses………………………….27 
 
4.8 Filter Configuration………………………………………………………………..28 
 
4.9 Instantaneous Speed of Mill……………………………………………………….29 
 
4.10 Spectrum of Instantaneous Speed of Mill………………………………………..29 
 
4.11 Channel Configuration…………………………………………………………...31 
 
4.12 Signal Analysis…………………………………………………………………...32 
 
4.13 Instantaneous Speed and Spectrum………………………………………………33 
 
5.1 Grinding Media Upward Motion…………………………………………………..35 
 
5.2 Grinding Media Downward Motion……………………………………………….36 
 
5.3 Spectrum of Mill at 10 rpm without Load…………………………………………37 
 
5.4 Spectrum of Mill at 10 rpm with Load…………………………………………….38 
 
5.5 Spectrum of Raw Signal Showing Side Bands…..……………………...………...39 
 
5.6 FBD to Determine Friction Coefficient ….……………………………………….39 
 
5.7 Angular Motion of Grinding Media in Mill from Simulation……………………..40 
 
5.8 Torque Excitation of Grinding Media in Tumble Mill……………………………41 
 



 x

FIGURE                                           Page 

5.9 Comparison between Measurements and Predictions…..…………………………42 
 
5.10 Grinding Media Oscillation Amplitude from Simulation………………………..43 
 
5.11 Spectrum of the Mill Loaded with BB Balls……………………………………..44 
 
5.12 Spectrum of Tumble Mill without Load at 50 RPM.…………………………….45 
 
5.13 Spectrum of Tumble Mill with 30% Fill Volume at 50 RPM……………………46 
 
5.14 Angular Motion of Grinding Media in Mill from Simulation……………………47 
 
5.15 Comparison between Measurements and Predictions……………………………48 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xi

LIST OF TABLES 

TABLE                             Page 

3.1 Items of Test Rig…………………………………………………………………..23  

5.1 Comparison between Measured and Predicted Frequencies………………………42 

5.2 Measurements and Predictions for 30% and 40% Fill Volumes…………………..48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xii

NOMENCLATURE 

a  Overhung load distance from right bearing 

D  Free fall distance 

e   Distance between center of gravity of the grinding media and geometric center 

of the tumble mill  

E  Modulus of elasticity 

F  Overhung load applied on simply supported beam 

g   Acceleration due to gravity  

G   Center of gravity of the grinding media 

I   Moment of Inertia of the grinding media about ‘O’ 

areaI   Area moment of inertia of rotor 

assemblyJ Mass polar moment of inertia of rotor and mill assembly 

motorJ  Mass polar moment of inertia of motor 

l  Length of rotor 

L Length of the mill  

cL  Length of cable  

m  Mass of grinding media in the mill   

N   Normal reaction acting on the grinding media  

O   Geometric center of tumble mill 

R   Radius of tumble mill in ft 

*R  Effective radius of mill (internal radius of mill – radius of media) 

SR  Radius of coupling 



 xiii

cR  Distance between cable and geometric center of rotor assembly 

stime Start-up time 

t   Time in seconds  

T  Time period for the free fall distance of D 

V  Volume fill level 

W  Weight of rotor assembly 

W1 Weight of grinding media in lb 

Ω   Angular speed of tumble mill 

*Ω  Critical speed of tumble mill 

θ   Angle made by the center of gravity of grinding media and tumble mill 

geometric center with negative Y-axis 

θ  Angular speed of grinding media in tumble mill 

θ  Angular acceleration grinding media in tumble mill 

1θ  Maximum amplitude of oscillation of grinding media  

2θ  Minimum amplitude of oscillation of grinding media 

α  Angle made by normal reaction with Y axis 

ρ  Fill density  

Sµ   Static or Slip friction coefficient 

Kµ   Kinetic friction coefficient 

ω  Frequency of grinding media 
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CHAPTER I 

INTRODUCTION 

 

Tumble mills are used in cement, mining and chemical industries. These mills 

are hollow cylinders of large diameters used to grind the iron ore, minerals and rock. 

The grinding media to be ground is mixed with iron balls or rods and fed into the mill 

from one side. As the mill rotates at low speed the grinding media is ground into very 

fine particles due to the action of balls or rods on the grinding media. The ground 

products can be collected on other end.  Figure 1.1 [1] shows the cut away section of a 

ball mill. Figure 1.2 [1] shows an industrial ball mill. The two types of tumbling mills 

are distinguished by the use of rods or balls. They are classified as rod-loaded and ball-

loaded. The distinctive feature of the rod-loaded mill is a shell, usually cylindrical, 

revolving with axis horizontal and diameter to length ratio 1.5 to 2.5. Figure 1.3 [2] 

shows the picture of a rod - loaded mill. Ball-loaded mills may be classified as ball 

mills or tube mills. Ball mills have a length to diameter ratio not exceeding 1.5 and 

tube mills have length to diameter ratio more than 1.5. Figure 1.4 [2] shows the picture 

of a ball-loaded mill.  

 

 

 

 

 

 
This thesis follows the style and format of the ASME Journal of Turbomachinery. 



 2

 

 

 

 

 

 
Figure 1.1 Cut away section of Ball Mill.   Source: Ref. # 1 

 

 

 

 

 

 

 

Figure 1.2 Industrial Ball Mill. Source: Ref. # 1 

 

 

 

 

 

 

 

 

 
Figure 1.3 Rod Loaded Mill. Source: Ref. # 2
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Figure 1.4 Ball Loaded Mill.    Source: Ref. # 2 

 

A particular speed of rotation is necessary to achieve the most grinding for least 

power consumption. The speed has to generate enough “centrifugal force” to make the 

grinding media lift up on the shell lining to a height of about two-thirds of the diameter 

of the shell with least sliding. The optimum speed of the mill is about 0.6 to 0.75 times 

the “critical speed”. The critical speed of the mill is defined as the minimum speed at 

which the grinding media are held against the mill by centrifugal force, i.e. the speed at 

which the centrifugal force is just balanced by the weight of the grinding media. From 

figure 1.5, which shows the balance of forces, the critical speed is given by equation 

(1.2). So for a mill of diameter 25’ (7.62 m) the critical speed is 1.6 rad/sec or 15.31 

rpm. The operating speed range of the mill in this case is 9.2 - 11.5 rpm.  

           (1.1) * 2 *( )m R mΩ = g

 
*

g
=Ω

R   (1.2) 

=*R  Effective Radius of Mill 
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mg

* 2 *( )m RΩ

*R

                          

 

 

 

 

 

 

 
Figure 1.5 Condition for Centrifuging

 

The industrial mills shown in figures 1.2, 1.3 and 1.4 often require large power; 

some may even have thousands of horse power motors to run them. These mills have 

motors connected to them via a gear reduction unit. The largest built tube mill is a kiln 

(oven) in Clarksville, MO, which has a length of 760’ (231 m) and diameter 25’ (7.62 

m) [3]. It has dual system drive consisting of two 1200 HP DC motors, flywheel and a 

speed reducer. The block diagram of the kiln is shown in Figure 1.6. After eight years 

of trouble free operation, the south side reducer of the dual kiln drive system had 

broken up inside. Torsional vibration measurements were taken at the drive, and it was 

found that there were three “critical speed*” ranges in the drive system; 0.311 rpm, 

0.520 rpm and 0.805 rpm [3]. 0.805 rpm is also the operating speed of the kiln.  An 

analytical model was developed as shown in figure 1.7 to determine the natural 

frequencies. The problem was fixed through tuning by changing inertia and stiffness of 

the system.  

 

* Not the same critical speed as defined above. 
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Auxiliary Drive Unit 

Speed 
Reduction 
Unit 

1200 HP  
DC Motor 

Kiln Master Gear 

Pinion 

Figure 1.6 Block Diagram of Kiln at Clarksville 

Fly Wheel 
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High End Auxiliary 
Clutch 

J11Speed 
Gearing K3-11Motor Flywheel 

K1-2 K2-3 K3-4 K4-5J3 J4J1 J2

Girth Gear 
Low Speed 
Gearing 

K9-10J5 J10

Kiln + Charge 
K8-9 K7-8 K6-7 K5-6J7J9 J8 J6

High End Low Speed 
Gearing 

Motor Flywheel 
Speed 
Gearing 

Figure 1.7 Spring Mass System of Kiln 
 

 
In a case study by Dr. John M. Vance of Texas A&M University on a 10’ (3 m) 

length, 25’ (7.62 m) feet diameter tumble mill running at 12 rpm, it was observed that 

the gears were failing during start-up of the mill. The reason behind this failure was 

speculated to be excitations coming from the grinding media oscillation in the mill. 

There has not been any work done by researchers to study the excitations 

coming from the mill. The motion of the grinding media inside the mill can be in two 

modes.  In the first mode shown in figure 1.8, the grinding media, depending upon the 

rotation and friction of the mill inner surface, lifts up on the rising side of the mill to a 

certain height; the grinding media that has reached this height then rolls and drops 

down on the free surface of remaining part of the grinding media. As the mill rotates, 

jostling action in the lifting up and rolling and impact action during the fall down takes 
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place in the grinding media. This is the intended motion required to get the grinding 

media to be ground into fine granule. 

In the second mode the grinding media will behave almost as a rigid body and 

its motion is described in figure 1.8. As the mill rotates the grinding media lift up on 

the rising side of the mill to a certain height due to friction and rotation. Then the 

grinding media will slide down on the surface of the mill. This action repeats as the 

mill rotates. It can be noted that the second mode is periodic and can act as a torsional 

excitation. This unintended motion does not serve the purpose of a tumble mill, but one 

of the objectives of this project is to show that it can occur. 

 

 

 

 

 

 
MODE I (Intended) 

 

 

 

 

 
MODE II (Unintended)

 
Figure 1.8 Grinding Media Motion in Tumble Mill 
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LITERATURE REVIEW 

 Yang Zhiqian [4] worked on a cement plant tube mill of 7.9’ (2.4 m) diameter 

and 42.65’ (13 m) length. He considered the mill operating system as a 3 degree of 

freedom consisting of motor, gear reduction unit and tube mill as shown in figure 1.9. 

He considered electromagnetic damping from the motor, oil damping in the gear 

reduction unit and grinding media damping in the tube mill. In his investigation it was 

assumed that the grinding media in the mill did not add inertia to the system. To 

determine the damping from the grinding media, a pulse excitation from the motor was 

collected at mill normal operation. This pulse excitation is a free torsional vibration 

shown in figure 1.10. From the plot the damping ratio ξ  was determined. It was found 

that the second natural frequency of the system is 1.94 Hz (116.4cpm) from theory and 

1.93Hz (116cpm) from test. He concluded that this natural frequency has to be 

considered carefully in the design of the mill. 

 

Tube Mill Gear Reduction 
Unit 

Motor 

Figure 1.9 Tube Mill System 
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Figure 1.10 Response of Tube Mill Torsional Vibration.        Source: Ref. # 2  

 

Later Heidecker [5], in his research work considered mill plus grinding media 

as a single degree of freedom. He tested on a 12” (0.3 m) diameter and 12” (0.3 m) 

long ball mill test rig with wet & dry conditions of grinding media. He placed liners in 

the mill to protect the mill shell from wear and to reduce slip between the shell and 

grinding media. He used strain gauges and a telemetry system in measurements. 

 

 

 

 

 

 

 

 
Lifter 

 

Figure 1.11 Tumble Mill with Lifters  
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He found that there is an increase in inertia when dense material is placed in the 

drum. When lifters (bars placed around the inner surface of the mill to prevent slippage 

between grinding media and mill shown in figure 1.11) are placed there is an increase 

in the inertia of the mill and also in mean torque. It was observed that the increase in 

mean torque was from the reduction in slippage between the media and the mill. An 

increase in damping occurred when media are placed in the mill. As the density of the 

grinding media increased, there is an increase in the damping. The placement of lifters 

also increased the damping. 

 The research analysis presented in this thesis, considers the grinding 

medium as a separate degree of freedom.  

RESEARCH OBJECTIVE 

The present research work aims to find whether the grinding media will 

oscillate in mode II as a rigid body. If it is oscillating in mode II, what is the torsional 

excitation frequency on the system? To accomplish the research objective the 

following tasks will be performed.  

 Develop a theoretical model and computer program for the grinding media 

oscillation in a tumble mill, assuming the grinding media as a rigid body 

 Design and build a test rig which can be conveniently tested in the Turbo 

machinery Laboratory 

 Install a transparent Plexiglas plate on one side of the drum, to study the grinding 

media oscillations 

 Develop an interface in Lab View to measure torsional vibrations 
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 Experimentally measure the oscillation frequencies of the grinding media on the 

test rig at different rotational speeds and at different fill volumes 

 Compare theoretical and experimental results  
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CHAPTER II 

THEORY 

Assumptions:  

1. The grinding media is assumed to be a rigid body in deriving the equation of 

motion 

2. Dry friction is assumed to exist between the mill surface and the grinding media 

 

The equation of motion for the grinding media is given in (equation 2.1). 

Sliding takes place between the grinding media and tumble mill surface, when the sum 

of the restoring and inertia moment exceeds the frictional moment. Figure 2.1 shows 

the free body diagram for the grinding media in the tumble mill. Figure 2.2 shows the 

free body diagram to find the normal reaction of the grinding media.   

X

                         

 

 
 O

θ

e

G

mg

N Ω  α

 

 

 
x

 
I mgeSinθ θ+

 y
NRsignum( )µ Ω θ− 

 
Y

 
Figure 2.1 Free Body Diagram of Grinding Media in Tumble Mill 
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Inertia torque =  Iθ  

Restoring torque =  mgesinθ

Frictional torque =   )( θµ −ΩNRsignum

signum(+ve) = +1, signum(0)= +1, signum(-ve)= -1 

∴Equation of motion is 

        I mgesin NRsignum( )θ θ µ Ω+ = −θ        (2.1) 

X

                                                                                                                                                                           

                    

                          O

 θ

e 
G

 x

θ 
m eθ 2m eθ

mg
y 

Nµ Ω   
N

α 
Y

  

Figure 2.2 Free Body Diagram to find Normal Reaction  

 
For an angle θ made by the grinding media with Y axis the resultant normal 

reaction N makes an angle α with the Y axis. 

xF 0=∑  

                                                                          (2.2) 2NSin m eSin m eCos 0α θ θ θ θ− + − =
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 yF 0=∑  

                                                      (2.3) 2mg m eCos m eSin NCos 0θ θ θ θ α− − − + =

Solving these equations for N and α we get  

                     (2.4) 
1 / 22 2 2 2 2N ( mg ) ( m e ) ( m e ) 2mg( m eCos m eSin )θ θ θ θ θ θ⎡ ⎤= + + + +⎢ ⎥⎣ ⎦

                              
2

1
2

m eSin m eCostan
mg m eCos m eSin

θ θ θ θ
α

θ θ θ
−

⎡ ⎤−⎢= ⎢ + +⎢ ⎥⎣ ⎦θ
⎥
⎥

θ−

µ

µ

                                      (2.5) 

After substituting N from the above equations into the equation of motion, the final 

equation becomes 

1 / 22 2 2 2 2

I mgeSin

( mg ) ( m e ) ( m e ) 2mg( m eCos m eSin ) Rsignum( )

θ θ

µ θ θ θ θ θ θ Ω

+ =

⎡ ⎤+ + + +⎢ ⎥⎣ ⎦

(2.6) 

 The resulting equation of motion, (2.6), is a second order, nonlinear differential 

equation. A Microsoft Excel spread sheet using Visual Basic macros was developed to 

simulate the motion of the grinding media. This XLTumbleMill computer program 

uses Runga - Kutta 4th order integration. It takes the radius of the mill (R), Length of 

the mill (L), volume fill level (V), fill density ( ), static ( ) and kinetic ( ) friction 

coefficients, mill operating speed (Ω ) and start up time (stime) to reach that speed as 

inputs. The user can vary the solver conditions like initial time, final time, step size, 

initial displacement, initial speed and band. Band is the difference between mill 

operating speed and grinding media speed.  

ρ Sµ kµ

                 (2.7) ( ) Sbandθ µΩ− ≤ ⇒ =

                 (2.8) ( ) kbandθ µΩ− > ⇒ =
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 If the difference between mill speed and grinding media speed,  is less 

than band the friction coefficient is static otherwise it will be kinetic. By running the 

code several times with different band conditions it is observed that 10% of mill 

operating speed as a band value gives better results. For example if the mill is 

operating at 10 rpm, for a band of 10%, the friction coefficient is static for the grinding 

media speed of 9 or more than 9 rpm. For less than 9 rpm the friction coefficient is 

kinetic. The program outputs the included angle i.e., angle between the two radii of the 

mill with the chord made by the fill shown in figure 2.3. This is used in calculating the 

center of gravity (e), cross sectional area (m) and area moment of inertia of grinding 

media (I). The program also outputs weight and volume of the fill. This program gives 

the angular distance, angular speed and toque of grinding media at each time step. The 

angular distance (θ ) and angular speed (θ ) of the grinding media with the mill speed 

( ) are directly plotted with time (t) as the program output.  

)( θ−Ω

Ω

 The interface of the program is shown in figure 2.4. The results for a 12” 

(0.3m) mill diameter, 15% mill fill level of grinding media, 10 rpm mill running speed 

and 5 sec startup time are shown in figures 2.4, 2.5, 2.6 and 2.7.   

 

 

 

 

 

 
Included Angle 

Figure 2.3 Included Angle of Grinding Media with Center of Mill Center  
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CHAPTER III 

DESIGN AND FABRICATION OF TEST RIG 

 

A 12” (0.3 m) diameter tumble mill test rig was designed and fabricated for 

testing. The three dimensional assembled and exploded views of the designed test rig 

are shown in figures 3.1 and 3.2.  

 

 

 

 

 

 

 

Figure 3.1 Assembled View of Test Rig 

 

 

 

 

 

 

 

Figure 3.2 Exploded View of Test Rig  
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Figure 3.3 shows the schematic diagram of the tumble mill and its parts. The 

mill is made of a PVC pipe of 12” (0.3 m) inside diameter and 4” (0.1 m) length. The 

wall thickness of PVC tube is 3/8” (10 mm).  One side of the mill is closed with a 

12¾” (0.32 m) diameter, 3/8” (10 mm) thick Plexiglas so the operator can see the 

oscillation of the grinding media inside the mill. Another Plexiglas sheet of 3/8” (10 

mm) thick and 3” (76 mm) diameter attached to this Plexiglas cover at its center to 

serve as a filling door.  Through this filling door one can load or unload the mill with 

grinding media. The other side of the PVC mill is closed with a 12¾” (0.32 m) 

diameter, 3/8” (10 mm) thick Aluminum plate which is connected to the rotor via a 

steel flanged plate. The rotor is supported on two NTN Pillow Block, self aligning and 

narrow inner ring bearings with a bearing span of 6” (0.15 m). The inside diameter of 

each bearing is 1¼” (32 mm). Each bearing has the capability to take a 3000 lb (1360 

kg) radial and 1000 lb (424 kg) axial load. The mill is connected to the outboard end of 

the rotor (an overhung load at a distance of 3” (76 mm) from the bearing). The other 

end of the rotor is connected to a 90 V DC, 0.5 HP motor via a 3 jaw coupling. The test 

rig uses a speed controller to carry out tests at different speeds. 
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Figure 3.3 Line Diagram of Tumble Mill Test Rig  

DC Motor
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The entire setup is fixed on an 18” X 36” (0.45 m X 0.9 m) wooden base.  This 

base has ¾” (19 mm) thick plywood and attached to it is a 3/8” (10 mm) aluminum 

plate. The pillow bearing blocks are elevated by 1¾” (45 mm) vertically to align with 

the motor outlet shaft.  Figure 3.4 shows pictures of the tumble mill test rig. Appendix 

A presents the individual component drawings of the tumble mill. Table 3.1 list the 

items of the test rig with description and material of each part. 

 
 
 

Pillow Block Bearings  DC Motor 

Figure 3.4 Tumble Mill Test Rig  
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fitted with 
Plexiglas 

Rotor

 

 

 

 
Speed Controller

 

 

 

 

 

 

 

 

 

 



 23

Table 3.1 Items of Test Rig 

ITEM 

NO. 

QTY 

 

PART NO. 

grainger 
DESCRIPTION MATERIAL 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

2 

1 

1 

6Z418 

6Z385 

2L036 

2L039 

2L070 

2L071 

2L072 

- 

5NW87 

- 

- 

- 

- 

- 

- 

- 

- 

Dayton ½ HP, 90V DC motor 

DC Speed Controller 

Jaw type shaft coupling 

Jaw type shaft coupling 

Bronze Insert 

Synthetic Rubber Insert 

Polyurethane Insert 

Rotor 

Pillow Block Bearings 

Flanged Pipe 

Solid Plate 

Mill 

Plexiglas Plate 

Charging Door 

Bearing Supports 

Base 

Base Plate 

- 

- 

Steel 

Steel 

Bronze 

Rubber 

Polyurethane 

Steel 

- 

Steel 

Aluminum 

PVC 

Plexiglas 

Plexiglas 

Steel 

Wood 

Aluminum 
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CHAPTER IV 

MEASUREMENTS AND INSTRUMENTATION 

 

The instrumentation used in this study is a magnetic transducer along with 

National Instruments Lab VIEW™ and NI 4472 PCI 8-channel board for data 

acquisition. An Intel Pentium 1.4GHz, 512 RAM, Windows NT or XP personal 

computer is fitted with data acquisition boards. The Lab VIEW™ 7.0 Express with the 

Order Analysis and Sound and Vibration Toolset [6] is installed.  

 

MAGNETIC TRANSDUCER 

 A characteristic unique to the magnetic pick up is that its output signal 

amplitude is proportional to peripheral speed when used with a gear. Further 

advantages of the magnetic transducer signal are that it requires no external power 

source, its output signal is very clean, approximating a sine wave if properly selected 

for use with a gear, and it generally produces a strong signal with minimum amount of 

noise. The pickup used in this study is a B&K MM0002 magnetic transducer. It has a 

linear response to velocity over a wide speed range, with output level a function of 

distance from the teeth passing by.   

 

NI-4472 DATA ACQUISITION BOARD  

The NI 4472 [7] is an 8-channel data acquisition device which, when used with 

the Sound and Vibration Toolset (Lab VIEW™), allows high precision vibration 

measurements. The test stand uses two such boards, thus possessing the capability of 
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16 channel synchronized data acquisition. Input channels incorporate Integrated 

Electronic Piezoelectric signal conditioning for accelerometers. The channels 

simultaneously digitize signals over a bandwidth of 0 to 45 kHz. Figures 4.1 and 4.2 

show the data acquisition board and a personal computer installed with the board.  

 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 NI-4472 Data Acquisition Board 
  

 

 

 

 

 

 

 Figure 4.2 Data Acquisition Board Installed in PC 

 

The LVTorsion (Lab VIEW Torsion) has the capability to measure torsional 

vibration measurements. To measure torsional vibrations the rotating object has to have 

a gear like structure. It uses either a magnetic or proximity probe or an optical pickup. 

In the case of an optical pickup a paper with black and white strips will work like a 

gear. In the gear case there is increase in voltage whenever the tooth comes near the 
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probe. To implement this, the solid plate connected to the drum is wound with a 

galvanized iron chain of 70 links. The magnetic transducer is connected to the mount 

and installed to the base of the test rig. The Lab View installed measurement test setup 

and magnetic transducer with chain placed are shown in figures 4.3 and 4.4.  

 

 

 

 

 

 

 

 

 Figure 4.4 Magnetic Transducer  

with Chain 

data

indi

incr

over

the m

thre

Figu
Figure 4.3 Lab View 
 

Installed PC 

 

 

 

As the mill rotates the voltage pickup induced in the transducer is fed into the 

 acquisition board. The raw signal is shown in figure 4.5. The raw signal has peaks 

cating the chain link passage. Whenever a link passes the transducer, there is an 

ease in voltage induced, which is shown in figure 4.5. The number of links passed 

 a fixed amount of time can be counted using peak/pulse counter. As the speed of 

ill increases the voltage induced in the magnetic transducer also increases. So the 

shold of the pulse can be changed accordingly to count the number of pulses. 

res 4.6 and 4.7 show the pulse detection.  
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Figure 4.5 Raw Signal from the Magnetic Transducer  

 

 

 

 

 

 
Figure 4.6 Setting Threshold Value to Count Pulses  

 

 
 
 
 
 
 

 
 

 
 

Figure 4.7 Threshold Value to Count Pulses and Number of Pulses  
 
 
 Filters can be used to refine the raw signal in this Lab View program. It has the 

capability to use a high pass filter, a band pass filter and no filter at all. Figure 4.8 

shows the three filter configurations available. Whichever filter window is active that 

filter is activated. 
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Figure 4.8 Filter Configuration 
 

  

 After pulse detection over a fixed time the instantaneous speed can be 

calculated through following procedure. The chain has 70 links along the periphery of 

the drum and it will take 70 pulses to complete one revolution. From figure 4.7 the 

number of pulses measured in 1 sec is 18. So the instantaneous speed at that particular 

moment is 18/70 rps or 18*60/70 rpm or 15.42 rpm. The instantaneous speed of the 

mill is shown in figure 4.9. This speed can be fed into the FFT to get spectrum. The 

Lab View contains an inbuilt spectrum virtual instrument and it is used to get the 

spectrum. This FFT has various windowing and averaging parameters available. The 

sample picture of the FFT from an instantaneous speed sample is in figure 4.10. 
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 The Lab View program has 3 tabs; first one is channel configuration, second 

one Signal Analysis and third Spectrum. In channel configuration one can configure in 

accordance with the transducer using. The signal analysis page basically uses filter and 

pulse detection. The third one is instantaneous speed along with spectrum. The 

different pages of this program are shown in figures 4.11, 4.12 and 4.13. LVTorsion 

also has the capability to detect side bands. The raw signal from the transducer is fed 

into the FFT available in the Lab View to get tooth pass frequency and side bands are 

formed at torsional excitation frequency on both sides of the tooth pass frequency. 
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CHAPTER V 
 

RESULTS AND DISCUSSION 
 

  
The tumble mill test rig has a drum of diameter 12” (0.3 m). The “critical 

speed”, *
g
R

, of the mill is 76 rpm and so the best operating speed for tumbling action 

is 45 rpm – 57 rpm. The tumble mill test rig is tested with four different types of 

material to observe the rigid body oscillation or second mode motion described in 

Chapter I. The four different materials tested are river rock, gravel, sand and BBs 

(small pellets fired from an air rifle). The mill is filled with each material (except BBs) 

with fill volume level of 15%, 30% and 45% and rotated to a maximum speed of up to 

60 rpm. The second mode motion was observed with wet sand as the grinding media 

for a volume fill level of 15% and at 10 rpm. At this fill volume level and speed, the 

dry grinding media motion is in first mode. With the addition of a little water (less than 

1% by volume), the sand behaves as a rigid body and the grinding media motion is in 

the second mode. The motion of the sand was observed through the Plexiglas cover.   

 

GRINDING MEDIA: SAND 

Captured video frames of the second mode motion of grinding media at 15% 

fill volume level and 10 rpm is depicted in figures 5.1 and 5.2. In figure 5.1, frames 1 

to 6 describe the upward motion of the grinding media, which can be established 

through a vertical reference line. This vertical reference line passes through frames 1 to 

6. It can be noted that the distance between the vertical reference line and the trailing 

edge of the grinding media is increasing from frames 1 to 6 indicating upward motion. 



 35

The downward motion of the grinding media is shown in frames 7 to 11 of figure 5.2. 

This motion can also be observed through the decrease in the distance between the 

vertical reference line and the trailing edge of the grinding media from frames 7 to 11.  

 

 

 

 

 

Frame 1 Frame 2 

Frame 3 Frame 4 

 

 

 

 

 

 

 

 

 

 

 

 
Frame 6Frame 5

 
Vertical Refernce Line
 

Figure 5.1 Grinding Media Upward Motion
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Frame 7 Frame 8 
 

 

 

 

 

 
Frame 10 Frame 9

 

 

 

 

 

Frame 11 

Vertical Reference Line 
 

 
Figure 5.2 Grinding Media Downward Motion 
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At a fill volume level of 15% and a mill operating speed of 15 rpm, the grinding 

media oscillating frequency is found to be 80 cpm (1.33 Hz). This frequency is 

measured using a stop watch and observing the grinding media motion through 

Plexiglas. The spectrums from LVTorsion for the empty mill and the mill loaded at 

15% volume fill level and 15 rpm running speed are shown in figures 5.3 and 5.4 

respectively. The spectrum for the mill loaded with grinding media (sand in this case) 

clearly shows a peak at 80 cpm (1.33 Hz). 

 

 

 

 
Running Speed 
0.25 Hz (15 rpm) 

 

 

 

 

 
Figure 5.3 Spectrum of Mill at 15 rpm without Load 
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Running Speed 
0.25 Hz (15 rpm)

Torsional Vibration 
Frequency 1.33 Hz (80 cpm) 

Figure 5.4 Spectrum of Mill at 15 rpm with Load
 

 

SIDE BANDS 

The traditional method to measure torsional vibration frequencies is side bands. 

The torsional excitation frequency of the grinding media can also be established 

through the presence of side bands, but one has to know the frequencies to look for. 

The tooth pass frequency at the mean running speed of 14.87 rpm (approximately 15 

rpm) is 14.87 multiplied by the number of teeth (70) or 1040.88 cpm (17.348 Hz ). As 

the grinding media oscillates at 80 cpm (1.33 Hz), the side bands due to torsional 

vibrations should be at 18.68 Hz (17.348 Hz + 1.33 Hz) and 16.018 Hz (17.348 Hz -

1.33 Hz). Figure 5.5 shows the spectrum of the raw signal from magnetic transducer 

along with the side bands.  
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16.018 Hz 18.678Hz 

 

 

 

 
Figure 5.5 Spectrum of Raw Signal Showing Side Bands  

 

 

EQUATION FOR FRICTION COEFFICIENT 

 

Figure 5.6 FBD to Determine Friction Coefficient  
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                                                                                                              (5.1) sinF mg θ=
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0=∑ yF  

                                                                     (5.2) N mgcosθ=

from   F Nµ=

Figure 5.7 Angular Motion of Grinding Media in Mill from Simulation 
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To determine the friction coefficient the sand was placed into a bottomless 

container and put onto an inclined surface (shown in figure 5.6) similar to the PVC mill 

surface. The inclination angle was increased until the sand began to slide. Plexiglas 

sheet was used in this testing as both materials are made of plastic. After testing with 

sand and BB’s the static friction coefficients are found to be 0.52 and 0.3 respectively.  
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Computer simulation of the grinding media for the given friction coefficients of 

0.52 and 0.45, fill volume level of 15%, running speed of 15 rpm and 0 seconds start 

up time is shown in figure 5.7. This predicts a grinding media oscillation frequency of 

78 cpm (1.3 Hz). 

Video frames of the mill running at 15% fill volume level and 15 rpm running 

speed are used to measure the angle made by the center of gravity of the mill (e) with 

negative vertical axis. These measured angles are used in calculating excitation torque. 

Figure 5.8 shows a comparison of excitation torque for measured and predicted motion 

of the grinding media.  
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Figure 5.8 Torque Excitation of Grinding Media in Tumble Mill 
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The tumble mill is then tested at the same fill volume level of 15% and at 

running speeds of 20, 30 and 40 rpm. The comparisons between measurements and 

computer simulation are shown in table 5.1 and figure 5.9. 

 

Table 5.1 Comparison between Measured and Predicted Frequencies 

Mill Running 
Speed (RPM)  

Grinding Media Oscillating 
Frequency from 

Measurements Mode II 
(CPM) 

Grinding Media Oscillating 
Frequency from  

Predictions Mode II 
(CPM) 

15 80 78 
20 78 79 
30 79.8 82 
40 83.4 82 
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 Figure 5.9 Comparison between Measurements and Predictions 
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 It should be noted from figure 5.9 that as the mill running speed increases the 

oscillating frequency of the grinding media increases. The increase in this frequency is 

only 4% when the mill running speed is increased from 15 to 40 rpm. This is because 

of the increase in the normal reaction of the grinding media as the speed increases 

which increases the frictional torque pulling the grinding media up from sliding down. 

This can also be established through figure 5.10, which shows the predicted grinding 

media oscillation amplitude and frequencies as the speed increases.  
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Figure 5.10 Grinding Media Oscillation Amplitude from Simulation 
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GRINDING MEDIA: BBs 

The tumble mill test rig is tested with BBs at 15% fill volume level and at 

different running speeds. At 45 rpm a clear oscillating sound is heard but it was 

difficult to notice these oscillations visually. These audible oscillations are counted 

using a stopwatch and the BBs are found to oscillate at 100 cpm (1.67 Hz). The 

spectrum in figure 5.11 obtained using LVTorsion shows a peak at 102 cpm (1.7 Hz). 

During start-up of the mill with BBs it is clearly observed that there is a torsional 

excitation frequency (audibly noticed), these oscillations could not be measured as 

LVTorsion does not have the capability to measure torsional vibrations during run-up 

and coast down. 

 

 

 
 
 Running Speed 

0.75 Hz 
Torsional Vibration 
Frequency 1.7 Hz 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5.11 Spectrum of the Mill Loaded with BB Balls   
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GRINDING MEDIA: SAND 

 When the tumble mill is filled with more than 15% sand the grinding media no 

longer behaves as a rigid body and the motion of the grinding media is in the first mode 

as described in Chapter I. This means that the assumptions made in earlier chapters are 

invalid for cases with more than 15% fill. Regardless of this invalidity, it is of the 

interest to the industry to conduct tests on the mill with more than 15% fill volume, as 

33% fill volume is the optimum level used in industry, [3]. Tests are performed at 30% 

and 45% fill volumes at different running speeds. The mill is loaded at 30% fill volume 

and run up to 60 rpm. There is no change on the spectrum between the cases of the mill 

loaded and unloaded up to 40 rpm. The spectrums of the mill at 50 rpm without load 

and with load at 30% of grinding media are shown in figures 5.12 and 5.13 

respectively.  

 

 

 

 

Running Speed  50 rpm (0.83 Hz)

 

 

 

 

 
Figure 5.12 Spectrum of Tumble Mill without Load at 50 RPM 
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 Figure 5.13 clearly shows a grinding media oscillating frequency of 90 cpm 

(1.51 Hz). The oscillating frequency is not mode II. It is an oscillating variant of mode 

I. The incorrectly predicted mode II motion from the computer program for 30% fill 

volume and 50 rpm is shown in figure 5.14 and the calculated frequency from the 

simulation is 72 cpm (1.2 Hz).  Even though the mode of motion is not correctly 

predicted, the predicted excitation frequency is within 20%. 

 

Torsional Vibration 
Frequency 90 cpm (1.5 Hz) 

Running Speed 
50 rpm (0.83 Hz)

Figure 5.13 Spectrum of Tumble Mill with 30% Fill Volume at 50 RPM 
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Figure 5.14 Angular Motion of Grinding Media in Mill from Simulation  
 

The test results of the mill at fill volume levels of 30% and 45% and at running 

speeds of 50 and 60 rpm are shown in table 5.2 and figure 5.15 along with predicted 

frequencies from the computer program. It should be noted that the program assumes 

rigid body motion (mode II) for the grinding media inside the drum and so there is 

large difference between predicted and measured results at 30% and 45% fill volumes 

than at 15% fill volume level.  

At 45% fill volume and 60 rpm the measured oscillating frequency is 89 cpm 

(1.483 Hz), which is less than that of 50 rpm running speed with oscillating frequency 

114 cpm (1.9 Hz). This may be because at 60 rpm bigger fractions of grinding media 

ride to top of the mill compared to smaller fractions at 50 rpm. At 45% fill volume 

level and at 50 rpm and 60 rpm the prediction is that the grinding media does not 

oscillate as it is near the critical speed of 76 rpm.  
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Table 5.2 Measurements and Predictions for 30% and 45% Fill Volumes 

 30% fill level 45% fill level 

Mill 
Running 
Speed 
(RPM)  

Grinding Media 
Oscillating 

Frequency from 
Measurements 
Mode I (CPM) 

Grinding Media 
Oscillating 
Frequency  

from Predictions 
Mode II (CPM) 

Grinding Media 
Oscillating 

Frequency from 
Measurements 
Mode I (CPM)

Grinding Media 
Oscillating  
Frequency 

 from Predictions
Mode II (CPM)

50 90 72 114 - 
60 94 72 89 - 
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Figure 5.15 Comparison between Measurements and Predictions   

 

The measurements from LVTorsion for the fill volume level of 30% at 60 rpm 

and 45% at 50 and 60 rpm are presented in Appendix F. 
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CHAPTER VI 
 

CONCLUSIONS 
 
 
 The theoretical model for the grinding media motion inside the tumble drum is 

developed and is programmed in Microsoft Excel using Visual Basic macros. A 12” 

diameter tumble mill test rig is designed and fabricated. LVTorsion is used to measure 

torsional vibrations on the tumble mill due to grinding media oscillation.  

 The grinding media motion is in the second mode for a fill volume of 15% and 

induces torsional excitation. At higher fill volume levels it is seen that the grinding media 

motion is in the first mode, which also causes torsional excitation due to regular 

modulation of the tumbling action. These excitation frequencies should be considered in 

the design and failure analysis of tumble mills. 

 At 15% fill volume level the measurements and predictions agree well. As the fill 

volume level is increased, however the discrepancy between the measurements and 

predictions increases. The torque variation from the simulation is only valid for fill levels 

up to 15% for sand as the simulation is based on mode II motion.  

 When the tumble mill is loaded with BBs, experiments show that the grinding 

media oscillates in mode I during start-up of the mill. This may be an explanation of 

higher loads on the gears during start-up. However, this excitation amplitude and 

frequency was not measured because LVTorsion does not have the capability to measure 

torsional vibrations under start-up and coast down conditions.  
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APPENDIX A 
 
 

DRAWINGS 
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APPENDIX B 
 
 

MASS POLAR MOMENT OF INERTIA OF TUMBLE MILL 

ASSEMBLY AND MOTOR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 59

 
 

The mass polar moment of inertia of the assembly (made of rotor, flanged plate, 

solid aluminum plate, PVC mill, Plexiglas cover and Plexiglas filling door) is found 

through two procedures. The first procedure described in [8], involves assembling all 

the parts mentioned above together, suspending the assembly by two cables and 

measuring the period of oscillation as the assembly twists. The axis of oscillation is the 

axial geometric centerline of the assembly and the cable length is long enough to 

minimize translational motion; thereby to improving the accuracy of the measurement. 

The assembly suspended from a cable length of 94” (2.38 m) is shown in figure B1 

(entire cable length not shown).  

 

 

 

 

 

 

 

 

 

 Figure B1 Tumble Mill Assembly Suspended from Cables 

After suspending the assembly from the ceiling, the assembly was twisted 

manually and then released. The assembly oscillated torsionally back and forth and the 
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period of oscillation was measured using a stop watch.  The mass polar moment of 

inertia was computed using the following expression [8]. 

c

c
assembly L

PeriodWR
J 2

22

4π
=       

The average time taken over 10 iterations was 1.857 seconds. The distance 

between the axial center of the assembly to the cable ( ) was 6.5” (0.16 m). The total 

weight of the assembly (W ) was 16 lb (7.25 kg).  

cR

2
2 2

2
(16).(6.5) .(1.857) 0.628015 . .sec (0.067 . )

4. .94assemblyJ lb inch
π

= = kg m  

The second procedure for calculating the mass polar moment of inertia involves 

using component dimensions, material properties and CAD software. Using Solid 

Works® the mass polar moment of inertia for the given geometry and physical 

properties of each component were calculated. The individual components of the rotor, 

mill assembly were drafted and density of each component material like steel, 

aluminum and PVC are used to find the mass polar moment of inertia. Table B.1 gives 

each component of the assembly, mass polar moment of inertia and weight. 
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Table B.1 From Solid Works 

Component 
Polar Moment of 

Inertia 
Weight 

 lb-inch2 lb 

Coupling 0.570 1.200 

Rotor 1.030 4.980 

Flange Plate 3.100 1.590 

Solid Plate 79.270 3.900 

Drum 117.540 3.090 

Plexiglas plate 41.700 1.940 

Charging Door 0.410 0.200 

TOTAL 243.620 16.900 

 
 

Mass polar moment inertia of the total assembly 243.620
386

=  

              2 20.63114 . .sec (0.071 . )lb inch kg m=

The percentage difference between procedure 1 and 2 is approximately 0.5%. 

 To find the mass polar moment inertia of gear motor the procedure described in 

[4] was followed. A weight of 11.35 lb (5.15 kg) was suspended through a cable wound 

around the coupling of the motor as shown in figure B2. The radius RS  of the coupling 

is 0.875” (22 mm). The time taken for the suspended weight to fall freely through a 

distance of 24” (0.61 m) was noted over 10 iterations. The average time T taken for the 

free fall distance D of 24” (0.61 m) was 31.5 sec. These values were substituted in the 
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expression shown below to calculate the mass polar moment of inertia of the gear 

motor.  

          

 

RS 

Motor 
Coupling 

Fall Distance (D) 
during Fall Time (T) 

Falling Weight (W) 

M  
Figure B2 Mechanical Arrangement for 

ass Polar Moment Inertia of Gear Motor

 

 
2

2
motor S

T 1J W .R .
2.D g

⎡ ⎤
⎢ ⎥= −⎢ ⎥⎢ ⎥⎣ ⎦  

         
2

2 31.5 1(11.35 ).(0.875 ).
( 2 ).( 24 ) 386.2

⎡ ⎤
⎢ ⎥= −⎢ ⎥⎢ ⎥⎣ ⎦

 

 

              2 2179.61lb.inch.sec ( 20.32kg.m )=
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APPENDIX C 
 
 

CATALOGS 
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APPENDIX D 
 

TUMBLE MILL ASSEMBLY MODEL AS SIMPLY SUPPORTED 

BEAM WITH OVERHUNG LOAD 
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The tumble mill assembly can be modeled as a simply supported beam with an 

overhung load. Using this model the deflection of the rotor due to a load on the drum 

can be determined. The two bearing locations are the supports on which the rotor is 

supported. The load applied is a point load at the end of the outboard bearing. The 

model for such a standard problem is shown in figure D1. The deformation of the beam 

due to the overhung load can be determined by equation (D.1). For simplicity the beam 

is assumed to have a uniform cross section of 0.875” (22 mm). The maximum load 

applied on the beam is 80 lb (36 kg).  

The tumble mill assembly can be modeled as a simply supported beam with an 

overhung load. Using this model the deflection of the rotor due to a load on the drum 

can be determined. The two bearing locations are the supports on which the rotor is 

supported. The load applied is a point load at the end of the outboard bearing. The 

model for such a standard problem is shown in figure D1. The deformation of the beam 

due to the overhung load can be determined by equation (D.1). For simplicity the beam 

is assumed to have a uniform cross section of 0.875” (22 mm). The maximum load 

applied on the beam is 80 lb (36 kg).  

  
Mill Load F 

Bearing Locations 

  
    

  
  
  

a
 
  

Figure D1 Tumble Mill Model as Simply 

Supported Beam with Overhung Load 

l   
  
 

  
  

  
 
  
 

2
C

area

l aY F.a .
3.E.I

⎡ +⎢= ⎢
⎣ ⎦

⎤
⎥
⎥       (D.1) 

 
 

    ( )2
6

11 3( 80 ). 3 .
( 3 ).( 30.10 ).(0.0575 )

⎡ ⎤+⎢ ⎥= ⎢ ⎥
⎣ ⎦

 

 
 

       0.0019inch(0.048mm )=
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APPENDIX E 
 
 

NATURAL FREQUENCIES FROM THE NONLINEAR EQUATION  
 

VS THE LINEARIZED EQUATION EIGEN VALUE 
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The equation of motion for the grinding media in tumble mill, equation (E.1) is 

a nonlinear differential equation. This equation was linearized assuming small changes 

in θ  about an operating point of 0 . Therefore the functions of  and co  are and 

1 respectively, and the homogeneous equation is   

sinθ sθ θ

        I mgeSin 0θ θ+ =          (E.1) 

sinθ θ→  

                    I mge 0θ θ⇒ + =                                    (E.3) 

                                               n
mge

I
ω =                                          (E.4) 

 For 15% fill volume the weight (mg), the distance between center of gravity 

and geometric center of the mill (e) and the mass moment of inertia of grinding media 

(I) are 3.66 lb, 0.377 ft and 0.2048 lb.ft.sec2 respectively. Substituting these in equation 

(E.4) the eigen value is given by 8.208 rad/sec or 78.4 cpm. Table E.1 gives the 

measured and predicted grinding media oscillating frequencies. The predicted values 

come from the nonlinear equation of motion and from the linearized equation of 

motion for a fill volume level of 15% at different speeds. Figure E1 shows the plot of 

these frequencies.  

Table E.1 

Mill Running 
Speed (RPM) 

Grinding Media 
Oscillating 

Frequency from 
Measurements 

(CPM) 

Grinding Media 
Oscillating 

Frequency from 
Simulation 

(CPM) 

Grinding Media 
Oscillating 

Frequency from 
Linearization 

(CPM) 
15 80 75 78.4 
20 78 76 78.4 
30 79.8 78 78.4 
40 83.4 79 78.4 
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Figure E1 Comparison of Frequencies of Grinding Media  
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APPENDIX F 

MEASUREMENTS FROM LVTORSION  
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78 cpm (1.3 Hz)  
 
 
 20 rpm (0.33 Hz)
 
 
 
 
 
 
 
 Figure F.1 Spectrum of Tumble Mill with 15% Load at 20 RPM  
 
 
 
 
 
 80 cpm (1.33 Hz) 
 
 
 

30 rpm (0.5 Hz)  
 
 
 
 
 
 
 
 
 

Figure F.2 Spectrum of Tumble Mill with 15% Load at 30 RPM  
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 83.4 cpm (1.4 Hz) 
 
 
 40 rpm (0.67 Hz)
 
 
 
 
 
 
 
 Figure F.3 Spectrum of Tumble Mill with 15% Load at 40 RPM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 76

 
 
 
 
 
 
 
 
 
 

60 rpm (1 Hz)  
 
 
 
 
 
 
 Figure F.4 Spectrum of Tumble Mill with out Load at 60 RPM  
 
 
 
 
 
 94 cpm (1.567 Hz)
 
 
 
 

60 rpm (1 Hz)  
 
 
 
 
 
 
 
 

Figure F.5 Spectrum of Tumble Mill with 30% Load at 60 RPM  
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114 cpm (1.9 Hz) 

50 rpm (0.83 Hz)

Figure F.6 Spectrum of Tumble Mill with 45% Load at 50 RPM 

89 cpm (1.48 Hz) 

60 rpm (1 Hz) 

Figure F.7 Spectrum of Tumble Mill with 45% Load at 60 RPM 
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