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ABSTRACT

Wavelet Methods and Statistical Applications:

Network Security and Bioinformatics. (August 2005)

Deukwoo Kwon, B.A., Yonsei University, Korea;

M.B.A., Korea Advanced Institute of Science and Technology;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Marina Vannucci

Wavelet methods possess versatile properties for statistical applications. We would

like to explore the advantages of using wavelets in the analyses in two different re-

search areas. First of all, we develop an integrated tool for online detection of network

anomalies. We consider statistical change point detection algorithms, for both local

changes in the variance and for jumps detection, and propose modified versions of

these algorithms based on moving window techniques. We investigate performances

on simulated data and on network traffic data with several superimposed attacks. All

detection methods are based on wavelet packets transformations.

We also propose a Bayesian model for the analysis of high-throughput data where

the outcome of interest has a natural ordering. The method provides a unified ap-

proach for identifying relevant markers and predicting class memberships. This is

accomplished by building a stochastic search variable selection method into an ordi-

nal model. We apply the methodology to the analysis of proteomic studies in prostate

cancer. We explore wavelet-based techniques to remove noise from the protein mass

spectra. The goal is to identify protein markers associated with prostate-specific anti-

gen (PSA) level, an ordinal diagnostic measure currently used to stratify patients into
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different risk groups.
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CHAPTER I

INTRODUCTION

The main objective for this dissertation is to develop statistical methodologies for

network security and for bioinformatics. In the dissertation we focus on applications

of wavelet methods to the above two fields. Wavelet methods have been introduced

to the statistical community in the last few years. Wavelets have versatile features,

such as the ability to compress and/or denoise signals, they allow multi-scale decom-

positions, and possess time-frequency localization properties.

We treat the detection of network anomaly in network traffics and the prob-

lem of cancer classification with proteomic data in bioinformatics. While multi-scale

decompositions and whitening property of wavelets are beneficial tools in detecting

change points in the topic of network security, denoising procedure is the crucial

tool for classification problem in proteomic data along with Bayesian methodology.

Before we discuss two main parts for statistical applications we need to summarize

theoretical foundations for wavelet methods in order to grasp how to use thes wavelet

methods in the following applications.

In the first part of dissertation we propose a novel approach to detect network

anomalies, which are particulary malicious attacks against a large scale network such

as university network systems or commercial websites. We mainly focus on the on-

line detection algorithms (or real-time detector). We define the performance of these

algorithms in terms of detection delay time and number of false alarms. We prefer

The format and style follow that of Journal of the American Statistical Association.
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short delay time and less false alarms. These two factors are related to each other

reprociprocally. It means we cannot minimize two at the same time. The perfor-

mance of on-line detection algorithms matters since the impact of network anomaly

is enormous so that the quick reaction to the attacks is integral in the management

of a large scale network.

The second part of dissertation deals with classification problem where the re-

sponse variable is naturally ordered. Here we use prostate cancer proteomic mass

spectra data with help of wavelet thresholding. This part comprises preprocess-

ing procedure for prostate data and Bayesian ordinal probit analysis with variable

selection. The purpose of this part is to find biomarkers for the prostate cancer

mass spectra data. Bayesian variable selection plays an important role in identifying

biomarkers.
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CHAPTER II

WAVELETS

2.1 Introduction

In this chapter we describe the versatile features of wavelets in statistical analyses.

Although we deal only with discrete wavelet transforms (DWT) we begin with the

exposition of continuous wavelet transform (CWT). We provide the description of the

standard discrete wavelet transform with its variants such as the maximal overlap

discrete wavelet transform (MODWT), discrete wavelet packet transform (DWPT),

and the combination of the two transforms, maximal overlap discrete wavelet packet

transform (MODWPT).

Wavelet methods is one of orthogonal transformation which transforms data from

original domain (typically time domain) to wavelet domain. This transformation en-

ables us to give analytic tools in various fields . Analytic tools comprise denoising,

nonlinear approximation through thresholding in signal processing, nonparametric

function estimation, data compression in image processing, time-scale decomposition

for time series analysis, and approximate decorrelation. Furthermore, we can enjoy

efficient computations when using wavelet methods due to pyramidal algorithm in

multiresolution analysis by Mallat (1989), which is faster than fast Fourier trans-

form (FFT). Ogden (1997) and Vidakovic (1999) provide good references for wavelet

methods in statistical analyses.

2.2 Basic concepts in wavelets

Wavelets can be considered in two ways: function approximation approach (or pro-

jection approach) and filtering approach (or signal processing approach).
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In function approximation any function in L2(R) space can be written as a linear

combinations of wavelet functions as follows:

f(t) =
∑

j

∑

k

aj,kφj,k(t),

=
∑

k

aj0,kφj0,k(t) +
∑

j≥j0

∑

k

bj,kψj,k(t)

where aj,k = 〈f(t), φj,k(t)〉, bj,k = 〈f(t), ψj,k(t)〉 and φj,k, ψj,k are father and mother

function respectively.

Scaling functions φj,k and wavelet functions ψj,k ought to satisfy the following condi-

tions:

∫
φj,k(t)φj,k′(t)dt = δk,k′

∫
φj,k(t)ψj′,k′(t)dt = 0

∫
ψj,k(t)ψj′,k′(t)dt = δj,j′δk,k′

where

δi,j =





1 if i = j

0 if i 6= j

Smoothness, compact support, and asymmetry of scaling and wavelet functions dis-

tiguish from various functions such as Haar, Daubechies, and so on. See Daubechies

(1992).

We can consider function approximation as projection with multiresolution analysis

which connects to filtering approach in signal processing. First of all we consider

spanned spaces by functions φ and ψ. Function spaces spanned by functions φ has a

nested structure as follows.

Let Vj is a closed subspace spanned by φj,k, k ⊂ Z. The sequence of subspaces has
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the following properties:

. . . ∈ V−1 ∈ V0 ∈ V1 ∈ V2 ∈ . . .

∩j∈ZVj = ∅, ∪j∈ZVj = L2(R)

Wavelet spaces Wj are spanned by functions ψ. These spaces is related to the above

spaces such as:

Vj+1 = Vj

⊕
Wj

L2(R) = · · ·
⊕

Wj−1

⊕
Wj

⊕
Wj+1

⊕
· · ·

Hence by the multiresolution analysis we can rewrite function as follows.

f(t) = P j0f(t) +
∑

j>j0

∑

k

bj,kψj,k(t)

The first term in the above equatin is the projection of function f(t) on Vj0 . The

second sum is also rewritten as projections of function f(t) on wavelet spaces Wl l ≥

j0, l ∈ Z. At given j, space Vj and Wj are orthogonal to each other.

So far we focus on continous wavelet transform, we turn to the discrete wavelet

transform. We can define functions φj,k and ψj,k as follows:

φj,k(t) = 2jφ(2jt− k)

ψj,k(t) = 2jψ(2jt− k)

From the MRA we have the relations as follows. For any function in V0 can be written

as a linear combination of the basis function φ1,k =
√

2φ(2t− k). Hence we have

φ(t) =
∑

k

h(k)φ1,k.
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Due to the orthogonal complement Wj of Vj to Vj+1 we define function ψ as follows.

ψ(t) =
√

2
∑

k

(−1)kh(−k + 1)φ(2t− k) =
√

2
∑

k

g(k)φ(2t− k).

The sequences {h(k), k ∈ Z} and {gh(k), k ∈ Z} are quadrature mirror filters in

signal processing, that is, g(k) = (−1)kh(1 − k). These filters are called as low-pass

and high-pass filters, respectively.

2.3 Discrete wavelet transforms

Now we deal with a finite sequence of time series. Let X = (x0, . . . , xT−1) be a vector

of observations from a stochastic process. The DWT is an orthogonal transformation

of the data that operates via recursive filters according to the pyramidal algorithm

proposed by Mallat (1989). If T = 2J the algorithm produces scaling coefficients at

a coarsest level J, describing global features of the data, and wavelet coefficients at

a number of finer scales 1, . . . , J describing local features. We denote with h and g

the wavelet and scaling filter, respectively, and with L the width of the filters. At the

first level, j = 1, wavelet coefficients w1,t and scaling coefficients v1,t are defined as

w1,t =
L−1∑

l=0

hlx2t+1−l mod N
, v1,t =

L−1∑

l=0

glx2t+1−l mod N

The wavelet coefficients w2,t and scaling coefficients v2,t at level 2 are computed

from the scaling coefficients at level 1 as follows

w2,t =
L−1∑

l=0

hlv1,2t+1−l mod N
, v2,t =

L−1∑

l=0

glv1,2t+1−l mod N

Similary, at levels j = 3, . . . , J the wavelet and scaling coefficients are obtained

as



7

wj,t =
L−1∑

l=0

hlvj−1,2t+1−l mod N
, vj,t =

L−1∑

l=0

glvj−1,2t+1−l mod N

Due to the decimating operator, at level j we have T
2j scaling and wavelet

coefficients.

2.4 Maximal overlap wavelet transforms

In contrast to the DWT, the maximal overlap wavelet transform (MODWT) does not

decimate the coefficients and therefore the number of scaling and wavelet coefficients

at every level of the transfom is the same as the number of sample observations. Thus,

the MODWT is also called undecimated DWT. The MODWT uses circular shifts of

the scaling and wavelet filters. Although it loses the orthogonality and efficiency in

computation, this transform obtains flexibility on the restriction on the sample size

and invariance to circularly shifting the original data. Wavelet coefficients, w̃j,t and

scaling coefficients, ṽj,t at levels j, j = 1, . . . , J are obtained as follows.

w̃1,t =
L−1∑

l=0

g̃lxt−l mod N
, ṽ1,t =

L−1∑

l=0

h̃lxt−l mod N

w̃2,t =
L−1∑

l=0

g̃lṽ1,t−l mod N
, ṽ2,t =

L−1∑

l=0

h̃lṽ1,t−l mod N

w̃j,t =
L−1∑

l=0

g̃lṽj−1,t−l mod N
, ṽj,t =

L−1∑

l=0

h̃lṽj−1,t−l mod N

The wavelet and scaling filters, g̃j, h̃j are rescaled as g̃j = gj/2
j, h̃j = hj/2

j.
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Figure 1: DWT and DWPT

2.5 Wavelet packet transforms

Wavelet packets, Wickerhauser (1994), induce a finer partition of the frequency space.

We show this finer partitions of the freqency space in Figure 1. In contrast to the

dyadic partitions of the traditional DWT in the left panel of Figure 1 wavelet packet

transforms provide us equal-length frequency partitions. In the discrete wavelet

packet transform (DWPT) or the undecimated version (MODWPT) both the scal-

ing and wavelet coefficients are subject to the high-pass and low-pass filtering when

computing the next level scaling and wavelet coefficients. With the standard trans-

forms, scaling coefficients identify the frequency band [0, 1/2J+1], with J the coarsest

level, while wavelet coefficients at level j describe the frequency band [1/2j+1, 1/2j].
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The discrete packet wavelet tranforms, DWPT and MODWPT, on the other hand,

partition the whole frequency band, [0, 1/2], into equal length frequency bands. For

example, at a given level j, we have 2j frequency partitions with equal length. This

finer partition induced by the DWPT implies better decorrelation properties, as ex-

ploited in Percival et al. (2000), Whitcher (2001) and Gabbanini et al. (2004).

As a filtering of the original time series the MODWPT can be written as

w̃j,n,t =
L−1∑

l=0

f̃j,n,lx(t−l) mod T
,

for n = 0, . . . , T − 1, where

f̃j,n,l =
L−1∑

l=0

f̃n,kf̃j−1,bn/2c,l−2j−1k, 0 ≤ l ≤ L− 1

with

f̃n,l =





g̃l if n mod 4=0 or 3

h̃l if n mod 4=1 or 2

and g̃l = (−1)l−1f̃L−l−1, and such that {f̃1,0,l = g̃l, 0 ≤ l ≤ L − 1} and {f̃1,1,l =

h̃l, 0 ≤ l ≤ L− 1}.

2.6 Wavelet theresholding

Wavelet thresholding technique is one of good approach to remove noises in the data.

More generally this wavelet thresholding is a particular case of shrinkage techniques.

Hereafter we only deal with thresholding. Consider the standard univariate regression

model:

yi = f(xi) + σεi, εi ∼ N(0, 1), i = 1, . . . , n

Our intention is that we want to extract true feature or signal f from the data by

removing noises. We can reformulate the above problem with wavelet transforms.

After the wavelet transform we get the following model in the wavelet domain:

di = θi + σε′i, i = 1, . . . , n,
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Figure 2: Hard and soft thresholding rule

where di is a empirical wavelet coefficient and θi true wavelet coefficient. Here due

to the orthogonality of wavelet transform ε′ is identical distribution to that of ε.

We need to choose thresholding policies. There are two most common choices for the

thresholding policies which are hard and soft thresholding rule. We show these two

rules in Figure 2. We also give the mathematical expressions for these two rules as

follows:

δh(d, λ) = d1|d|>λ, λ ≥ 0, d ∈ R

δs(d, λ) = (d− sgn(d)λ)d1|d|>λ, λ ≥ 0, d ∈ R

The key element in wavelet thresholding technique is to obtain an appropriate value

for λ. The simplest one is the ‘universal’ threshold proposed by Donoho and Johnstone

(1994). Alternative is for selecting a threshold value by minimizing Stein’s unbiased
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estimator of risk (see Stein 1981) suggested by Donoho and Johnstone (1995).
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CHAPTER III

APPLICATION FOR NETWORK SECURITY

3.1 Introduction

In this chapter we investigate the performances of an integrated tool for the detection

of network anomalies with the goal of quickly identifying malicious attacks. Detection

of network anomalies is a crucial task in network traffic management. Here we look

at a network anomaly as a possible attack by a malicious user. Large scale network

attacks cause huge costs and a waste of network resources. Early detection allows

quick actions and minimizes network damage. In statistical terms, the detection of an

anomaly can be considered as a change point problem. In this paper we consider two

kinds of detection methods: Those that detect changes in the local variance of the data

and those that detect jumps in the observed data. All statistical methods we consider

are wavelet-based. Wavelet transformations have been proven to be a valid tool for

the analysis of network traffic, mainly because of their locality and decorrelation

properties, see for example Riedi et al. (1999), Gilbert et al. (1999), Gilbert (2001),

Resnick et al. (2003) and Kim et al. (2004). We look at the implementation of the

detection methods based on wavelet packet transformations. We explore performances

on simulated data. We also analyze the trace data used in Kim et al. (2004), where

the authors propose a novel definition of data correlation for the analysis of traffic

packets and classify various types of network attacks as either variance changes or

sharp jumps.

For detection we consider the iterated cumulative sums of squares (ICSS) algo-

rithm and the Schwarz information criterion (SIC) algorithm, for the identification

of multiple variance change points in sequence data, and the approach suggested by
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Wang (1995) for the detection of sharp jumps and cusps in the data. We explore the

implementation of these detection methods based on wavelet packets and assess per-

formances in detecting network traffic attacks in real-time. The ICSS algorithm was

originally proposed by Inclán and Tiao (1994) while Chen and Gupta (1996) suggested

the use of the SIC algorithm for change detection. Whitcher et al. (2000) adapted

the ICSS algorithm to discrete wavelet transforms (DWT) and to maximal overlap

discrete wavelet transforms (MODWT), also knows as “non-decimated”, “translation

invariant” or “stationary”. Their work is limited to the detection of variance change

points for data that show long-range dependence (LRD). Gabbanini et al. (2004)

extended the ICSS procedure to discrete wavelet packet transforms (DWPT) and

maximal overlap discrete wavelet packet transforms (MODWPT). The use of wavelet

packets allowed them to analyze a broader class of data than LRD.

Here we exploit the Gabbanini et al. (2004) method to see how effectively we can

detect network traffic anomalies caused by malicious users’ network attacks. While

Gabbanini et al. (2004) used only the ICSS algorithm, we implement both the SIC

and the ICSS algorithms based on wavelet packets. In addition, we extend the method

of Wang to maximal overlap wavelet packets, i.e. MODWPT. In the sequel we will

use the term “packet” with two different meanings. In network traffic terminology,

data information is partitioned into small “chunks” called packets. The header of

the packet contains useful information such as the addresses (source and destination)

and the packet count. In wavelet theory terminology, the term packet indicates

the particular frequency band at which the coefficients of a “packet” transform are

associated.
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3.2 Detection methods

In this section we describe two kinds of detection methods: Those that detect changes

in the local variance of the data and those that detect jumps in the observed data.

In the next section we will discuss our adaption of these methods to wavelet packets

and related implementation issues.

3.2.1 Variance change points detection algorithms

We first summarize the ICSS and SIC detection algorithms for the detection of vari-

ance change points and describe a binary segmentation procedure that allows the

adaption of these methods to the detection of multiple change points.

The iterated cumulative sums of squares (ICSS) algorithm aims at testing and

identifying multiple variance changes in a sequence of independent observations. Null

and alternative hypotheses are specified as

H0 : σ2
1 = σ2

2 = . . . = σ2
T versus Ha : σ2

1 = · · · = σ2
k 6= σ2

k+1 = · · · = σ2
T .

We denote with Ck =
∑k

t=1 x
2
t the cumulative sum of squares of a series of uncorrelated

random variables {xt} with mean 0 and variances σ2
t , t = 1, . . . , T . The test statistic

is D = max(D+, D−) where

D+ = max
1≤k≤T−1

(
k + 1

T
− Pk

)

D− = max
1≤k≤T−1

(
Pk −

k

T

)

Pk =
Ck

CT

, k = 1, . . . , T.

Variance change points are located by looking at k∗ = argmaxkD. When the max-

imum absolute value of D exceeds a certain predetermined value, then we take the

point k∗ as the change point estimate. Whitcher et al. (2000) obtained predetermined
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values for D under the null hypothesis by using Monte Carlo simulation. Inclán and

Tiao (2004) showed that when the random variables {xt} are independent distributed

the asymptotic distribution of D is that one of a Brownian bridge. Whitcher et al.

(2000) suggested to use at least T = 128 sample size to conform with this asymptotic

approximation.

The Schwarz information criterion (SIC) was suggested by Schwarz (1978) and is

one of the modifications of Akaike information criterion (AIC) introduced by Akaike

(1974). These criteria are useful tools for model selection. Let {xt} be a sequence

of independent and identically distributed random variables with probability density

function f(·|θ), where f is a model with K parameters, that is,

Model(k) = {f(·|θ) : θ = (θ1, θ2, . . . , θK), θ ∈ Θk}

where Θk = {Θk : θk+1 = θk+2 = · · · = θK}, k = 1, . . . , K − 1.

The SIC is defined as −2 logL(θ̄k)+ p log T , where L(θ̄k) is the maximum likeli-

hood function for the model(k), p is the number of parameters in the model, and n is

the total number of samples. We specify the form of SIC(T ) and SIC(k) as follows

SIC(T ) = T log 2π + T log σ̂2 + T + log T

SIC(k) = T log 2π + k log σ̂2
1 + (T − k) log σ̂2

T + T + 2 log T

where

σ̂2 =
1

T

T∑

i=1

(xi − x̄)2 , σ̂2
1 =

1

k

k∑

i=1

(xi − x̄)2 , and σ̂2
T =

1

(T − k)

T∑

i=k+1

(xi − x̄)2 .

Under the same null and alternative hypotheses described above for the case of the

ICSS algorithm, the null hypothesis is now rejected based on the principle of minimum

information criterion, that is, we reject if SIC(T ) ≥ min2≤k≤T−2 SIC(k) and estimate

the change point as k̂ such that

SIC(k̂) = min
2≤k≤T−2

SIC(k).
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Notice that we can only detect change points that occur between the second and

(T − 2)th point.

The SIC algorithm does not require knowledge of the distribution of the test

statistic. A modification of the method, more robust to data fluctuation, introduces

a significant level α and its corresponding critical value Cα so that the null hypothesis

is rejected if SIC(T ) ≥ min2≤k≤T−2 SIC(k) + Cα. The value Cα can be determined

such that

1 − α = P

[
SIC(T ) < min

2≤k≤T−2
SIC(k) + Cα|H0

]
,

see Chen and Gupta (1996).

3.2.2 The binary segmentation procedure

Methods described above were designed for location of single change points. In the

application section we will use the binary segmentation procedure to test and locate

multiple change points. At the first stage of the procedure we test the null hypothesis

for the whole data. If we do not reject H0 we declare that there is no change point

in the whole sequence, otherwise we divide the data into two sub-sequences as deter-

mined by the change point located. At the second stage we test the two sub-sequences

and repeat the above procedure until we do not find any further change point. Sev-

eral candidate change points may result from this procedure. At the third stage we

check these points as follows. For a given possible change point we determine the

sub-sequence between the previous possible change point and the next change point

and repeat the test. If we still reject H0 we keep this point as a change point, other-

wise we remove it from the list of candidates. This confirmatory step helps to reduce

masking effect and to get more reliable change point estimates. Inclán and Tiao

(1994) describe this procedure in detail.
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3.2.3 Multiple jumps detection: The Wang’s method

Wang’s algorithm enables us to detect sudden jumps and sharp cusps in a time series

by using discrete wavelet transforms. The idea is simple to understand: A sudden

jump affects the magnitudes of wavelet coefficients, thus one can set a threshold level

to identify the location at which the jump occurs. Wang suggested to apply the DWT

to the data and use the universal threshold of Donoho and Johnstone (1994),

Universal threshold λ = σ̂
√

2 log n

σ̂ = 1.4826 · MEDIAN[|dJ−1 − MEDIAN(dJ−1)|]

where dJ−1 is the vector of the finest wavelet coefficients of the wavelet transform and

σ̂ is the MAD estimate. Points above the threshold in absolute value are declared

jump points.

3.3 Detection schemes

We implement the detection methods previously described using wavelet packet trans-

formations. We use a moving window approach so that the methods can be used for

online detection. We indicate these modified procedures as MWICSS (moving window

ICSS), MWSIC (moving window SIC) and MWWJ (moving window Wang’s jump de-

tection). Whitcher et al. suggested that the sample size for the ICSS algorithm be at

least 128 for better approximation. In the next section we investigate performances

for several different window sizes. We use the same window lengths for the MWSIC,

for a better comparison. For the MWWJ algorithm we also try smaller sizes.

Having chosen the length of the window, the data sequence is examined for change

points by sliding the window along the data one point at the time and recording

all change points detected. For all detection tests we use a 0.05 significance level.

Detected points indicate network anomalies. We declare an anomaly to be a potential
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attack if it is detected by our procedures in a number of consecutive windows. In

other words, we look at the detection frequency as the number of times the anomaly

is detected and declare an attack if this exceeds a preselected threshold value. Our

moving window procedure and the calculation of the detection frequency is explained

in Figure 3, where we use a square symbol to indicate whether the point is detected

in a particular window. With a preselected threshold of 6 or higher the point in the

Figure 3: Schematic representation of the moving window and detection frequency
procedures

figure would be declared an attack. The choice of the threshold implies a trade-off

between fast detection and false alarms. Specifically, we want to detect changes as fast

as possible after they occur but also want to avoid false alarms. As the threshold value

increases we are able to avoid more and more false alarms but with an increase in the

detection delay. In the analyses reported here we aimed at decreasing the detection

delay for a given false alarm level and look at the mean delay as a performance
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measure for online detection.

We now give step-by-step descriptions of the implementations of the detection

procedures we propose.

3.4 Procedure for variance change detection

In a generic window of size m we test for variance change points as follows.

• Step I: We apply the DWPT and MODWPT. The maximum level of the trans-

forms depends on the length of window. Whitcher et. al. recommend to use

at least 128 data points to implement the variance change test. Moreover, we

want to apply to the coefficients the Ljung-Box test for autocorrelation with

maximum lag 10 (see step II). We therefore compute wavelet transforms up to

level 4.

• Step II: The application of the MWICSS and MWSIC algorithms to test for

variance changes requires uncorrelated data. We therefore choose the DWPT

packet with highest P-value among those packets of the tree for which the

null hypothesis of the Ljung-Box test for autocorrelation is not rejected. The

statistic for this test is defined as

Q = m(m+ 2)
l∑

k=1

ρ̂2(k)

m− k
,

where ρ̂2(k) is a squared correlation coefficient at lag k and l is arbitrary chosen

(see Ljung and Box, 1978). Here we use a lag of 10, since we use at most 150

data points at a time.

• Step III: We test for variance changes (with either the ICSS or the SIC al-

gorithm) using the coefficients of the DWPT packet selected from Step II. If

the null hypothesis that no variance change occurs is rejected then we identify
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the location of the change point using now the non-decimated wavelet packet

coefficients of the packet selected in Step II.

• Step IV: Using the binary segmentation procedure we repeat Steps I-III with

subsequent subseries until no further variance change point is found. In the case

of the ICSS procedure we also perform the additional confirmatory step on all

identified potential change points by using subseries of data between adjacent

points, as suggested by Inclán and Tiao (1994).

• Step V: We record information of the type (tj, fj) where tj is a time location

and fj is its frequency of detection, i.e. how many times a change at that point

has been detected by the method up to the window under consideration. We

declare a certain time point to be a variance change if its frequency of detection

is greater than or equal to a predetermined threshold k. A smaller k implies

faster detection but also a larger number of false alarms.

3.5 Procedure for jump detection

For jump detection we adapt the procedure suggested by Wang to wavelet packets,

specifically to MODWPT coefficients. This allows us to locate the jump points more

precisely since the MODWPT is not subsampled.

In a generic window of size m we test for jumps in the data as follows.

• Step I: We apply the MODWPT up to level J .

• Step II: We compute a threshold value λ using the finest wavelet coefficients

of the MODWPT (the wavelet coefficients of packet [1, 1]) according to the

formula given in Section 3.2.2 with slight modification (see Vidakovic, 1999).

• Step III: We check wavelet coefficients and find those that exceed the threshold
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value. In general terms, resolution level j identifies the dyadic interval with

width proportional to 2j−1. Wang pointed out that jumps are better detected

using relatively narrow widths. In our simulation study we found best detection

performances when using the wavelet coefficients at levels 5 and 4. Among all

packets at a given level, better performances were obtained at lower frequencies.

Results we report here were obtained by considering the locations of the wavelet

coefficient of packet [5,1] of the MODWPT for which the absolute value is larger

than the threshold value λ. In case we have multiple points as jump points

within a given window we choose the closest point to end point of the window.

We declare a new jump point if the detected point is at least 20 points away

from the jump detected in the previous window.

3.6 Simulation study

3.6.1 Purpose of the study

We performed a simulation study to better understand the relative performances of

the iterated cumulative sum of squares (ICSS) and the Schwarz Information Crite-

rion (SIC) algorithms. We simulated data and computed mean delays under several

different settings. The aim of the study was to assess how two different factors,

the window size and the variance ratio, affect the performance of the MWICSS and

MWSIC algorithms. We also looked at the robustness of the distributional and model

assumptions on the data.

3.6.2 Simulation scheme

We simulated normal random sequences of length 250 with one change point in the

variance located at point 201. For convenience we set the mean of the data to zero.

We used four different variance ratios, one vs. four, four vs. one, one vs. sixteen,
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and sixteen vs. one. For each variance ratio we replicated the experiment 200 times.

We adopted the same detection scheme that we used in the previous section. We

looked at three different window sizes, 128, 140, and 150. For window size 128 we

used windows sliding from point 74 to 114, from point 62 to 102 for window size 140,

and from point 52 to 92 for widow size 150. We set the threshold level to 2, that is

we recorded end points of windows where change points were detected for the second

time. We measured detection delays as differences between the actual change point

(the 201 data point) and the end points. We repeated this scheme for the different

variance ratios under investigation. We looked at the mean delays and their standard

errors from the 200 experiments as criteria for performance comparison.

3.6.3 Results for simulations

Results on normal data are reported in Table 1. We repeated the entire simulation

with data from a Laplace distribution, see Table 2, and from an AR(1) process with

normal errors, see Table 3. Variance ratio: For increasing variance ratios (1 vs. 4

and 1 vs. 16 variance ratio), both MWICSS and MWSIC can capture change points

with mean delay around 17 and 7 points, respectively, away from the end point of the

analyzing window. Performances in the case of a one vs. sixteen ratio appear to be

better than those for the case of one vs. four ratio. This is an obvious result since a

bigger variance change should be easier to detect. In these cases the absolute mean

delays are in general quite small. However, when the variance changes from large to

small, for example from four to one or from sixteen to one, both algorithms show

worse performances, with mean delays almost doubled. A variance change from large

to small may take more time to be detected because of the bigger oscillations of the

signal in the first part that tend to dominate over the latter part.
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Table 1: Summary of four variance ratios for MWICSS and MWSIC for normal
distribution

variance ratio method window size

128 140 150

MWICSS mean 16.21 16.72 18.45

1 vs. 4 std. err. 0.64 0.62 0.63

MWSIC mean 17.86 17.62 18.88

std. err. 0.71 0.67 0.65

MWICSS mean 32.83 31.76 32.92

4 vs. 1 std. err. 0.45 0.39 0.27

MWSIC mean 31.48 31.26 31.24

std. err. 0.46 0.48 0.47

MWICSS mean 6.02 6.24 7.65

1 vs. 16 std. err. 0.28 0.29 0.28

MWSIC mean 6.06 5.92 7.61

std. err. 0.26 0.24 0.24

MWICSS mean 35.05 34.88 34.97

16 vs. 1 std. err. 0.32 0.34 0.27

MWSIC mean 22.24 21.96 23.71

std. err. 0.43 0.42 0.41

Table 2: Summary of four variance ratios for MWICSS and MWSIC for Laplace
distribution

variance ratio method window size

128 140 150

MWICSS mean 16.57 17.06 19.71

1 vs. 4 std. err. 0.64 0.63 0.67

MWSIC mean 19.38 18.60 19.76

std. err. 0.74 0.67 0.65

MWICSS mean 31.29 29.57 31.78

4 vs. 1 std. err. 0.68 0.86 0.72

MWSIC mean 28.46 27.12 29.41

std. err. 0.63 0.64 0.58

MWICSS mean 6.69 6.85 8.46

1 vs. 16 std. err. 0.32 0.30 0.32

MWSIC mean 7.23 7.05 8.85

std. err. 0.38 0.34 0.36

MWICSS mean 35.6 35.69 35.58

16 vs. 1 std. err. 0.32 0.33 0.33

MWSIC mean 21.78 22.10 23.64

std. err. 0.48 0.49 0.46



24

Table 3: Summary of four variance ratios for MWICSS and MWSIC for AR(1) with
normal errors (φ = −0.1)

variance ratio method window size

128 140 150

MWICSS mean 17.00 18.02 19.63

1 vs. 4 std. err. 0.62 0.66 0.64

MWSIC mean 19.16 19.47 21.33

std. err. 0.71 0.68 0.66

MWICSS mean 36.29 30.00 31.25

4 vs. 1 std. err. 0.26 0.54 0.38

MWSIC mean 30.62 30.86 32.31

std. err. 0.51 0.59 0.49

MWICSS mean 5.90 6.11 7.47

1 vs. 16 std. err. 0.23 0.25 0.23

MWSIC mean 6.26 6.10 7.89

std. err. 0.28 0.28 0.27

MWICSS mean 34.78 34.57 35.28

16 vs. 1 std. err. 0.38 0.39 0.32

MWSIC mean 22.82 23.23 24.68

std. err. 0.46 0.46 0.46

Window size: From all three tables we conclude that different window sizes do

not affect the detection performance since the variations in detection delays are quite

small. Given the reduction in computation time and in cost we suggest to use small

window sizes.

MWICSS vs. MWSIC: Both methods show reasonably good performance in

the increasing variance ratio cases for both normal and Laplace distributions. In the

decreasing variance ratio cases, i.e. four vs. one and sixteen vs. one, we notice that the

MWSIC performs better than the MWICSS for the case of a large difference between

the two variance values (16 vs 1). The MWSIC algorithm showed large differences

in detection performance according to whether we used the additional checking pro-

cedure or not. Results here reported were obtained without this procedure. Similar

comments apply to results obtained by generating data from an AR(1) process with

normal errors. Here, in addition, we notice an improvement in the standard errors

for both methods for the cases four vs. one and one vs. sixteen.
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Mean delay: An another goal of the simulation study was to investigate how

much we can reduce the detection delay. In the case of increasing variance ratios the

best detections were 6-8 data points away from the end of the window. That is, we

have to endure a 6-8 delay.

3.7 Analysis of network data

3.7.1 Network trace data

Kim et al. (2004) suggest a new data structure for network anomaly detection.

Their data structure is based on the concept of correlation between adjacent sampling

periods. They use IP addresses and their packet counts from the packet header data.

Their computation procedure intends to convert discrete type information into a

continuous signal. Within a given sampling period (e.g. one minute) IP addresses

and their packet counts are stored for all traffic flows. An IP address has four fields

with word-size of 256 locations, that is, a total of 1024 words. For a given traffic

flow its packet count is recorded at the number of each field of IP address. In order

to obtain a signal, correlation numbers are computed for the four fields at a given

sampling point as follows:

Ci(t) =

∑255
j=0[packet countj(t− 1) × packet countj(t)]√∑255

j=0(packet countj(t))
2

where i = 1, · · · , 4.

The correlation signal is defined as:

S(t) = α0 + α1(
4∑

i=1

wiCi(t)), where
4∑

i=1

wi = 1.

This linear transformation ensures that the signal lies in the range between zero and

one hundred. We illustrate this procedure in Figure 2 with a simple example.

Kim et al. (2004) analyze internet traffic traces from NLANR (National Labo-

ratory for Applied Network Research). They apply the following sampling scheme:
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They sampled one minute of traffic to compute their correlation signal and then

paused for one minute. The resulting correlation signal consists of 4,302 data points

for a 3-day trace. These data were considered as an ambient trace, that is, without

noticeable attacks against the network. They then simulated nine kinds of attacks

with various behaviors, as motivated by recent SQL Slammer and Code Red attacks.

The nine attacks were classified as follows:

(1) Duration: The first 6 attacks last for 2 hours, the remaining 3 attacks for 1

hour.

(2) Persistance: The first 3 attacks send malicious packets for 3 minutes and

pause for 3 minutes. Such pattern is repeated through the attack duration. While

the filtering may mitigate the overhead of the attacker’s continuing scan traffic, a

more sophisticated attacker might have stopped scanning and it may be possible to

conceal attacker’s intentions through repeating attack and pause periods. The other

remaining attacks continue to assault throughout the attack period.

(3) IP address: The first attack among every 3 attacks targets a single des-

tination IP address. In a hypothetical situation, the attackers target a famous site

such as the White House, CNN or Yahoo, etc. This target may be really one host in

case of 32-bit prefix, occasionally aggregated neighboring hosts in case of x-bit prefix.

The 2nd attack style imitates from the IP address generation scheme of the notorious

Code Red II worm. That is to say, a portion of addresses preserve the class-A and a

partition of addresses preserve class-B for the infiltration efficiency. The 3rd type is

a randomly generated address that was used for the Code Red I and SQL Slammer

worm.

(4) Protocol: The 3 major protocols, ICMP, TCP, and UDP, are used in turn.

(5) Port: The second port among every 3 attacks targets randomly generated

destination ports. It is useful to detect portscan that is used to probe a loosely
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Table 4: Description of nine simulated attacks
1 2 3 4 5 6 7 8 9

Duration 2h 2h 2h 2h 2h 2h 1h 1h 1h
Persis- inter- inter- inter- persis- persis- persis- persis- persis- persis-
tency mittence mittence mittence tency tency tency tency tency tency
IP single semi- random single semi- random single semi- random

random random single random random single random random
Protocol ICMP TCP UDP ICMP TCP UDP ICMP TCP UDP

Port #80 random #1434 #80 random #1434 #80 random #1434
Size random 4KB 404B random 4KB 404B random 4KB 404B

defensive port. The first port is a representative #80 that stands for the reserved

port for well-known services. The third port is a #1434 that acts for the ephemeral

client port, which is used in SQL Slammer worm.

(6) Size: There are three different byte counts of packets. The three denomina-

tions are random size, 4K bytes and 404 bytes.

The attacks can be described by a 3-tuple (duration, persistency, and IP address).

These attacks were superimposed to the ambient traces from NLANR. The ratio of

attack and normal traffic is 1:2 in packet counts. The resulting correlation signal is

shown in Figure 4. We summarize the features of the nine attacks in Table 4. The

first three attacks exhibit variance changes, while the other 6 show also sudden up

and down jumps.
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Figure 4: Correlation signal

Figure 5 shows the sub-sequence of the data corresponding to the second attack.

In the same figure we also report autocorrelation functions of the data, of the DWT

wavelet coefficients at levels 2 and 3 and of two DWPT packets. This figure clearly

shows the additional flexibility of the DWPT versus the DWT at decorrelating data.

3.7.2 Results

We examined several different combinations of the window size and the wavelet family.

We used three different wavelet families, the Haar wavelets, Daubechies wavelets with

2 vanishing moments, and the least asymmetric wavelets with 4 vanishing moments

(Daubechies, 1992). In order to reduce the number of false alarms we used the

threshold approach as previously described, that is, we considered change points

those for which the detection numbers are equal or greater than the threshold value.
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Figure 5: Attack n.2 with autocorrelation functions of the data, of the DWT wavelet
coefficients at levels 2 and 3 and of two DWPT packets.

When computing detection delays we considered a change point successfully detected

if a point that falls within 10 time points from the actual change point was detected

by our procedure.

We report here results we obtained with Haar wavelets, which showed the best

performances. We considered only 8 attacks, that is, 16 change points, among the 9

simulated. We ignored the last attack because of the moving window and threshold

approach we adopted. Table 5 reports detection delays for 4 threshold values between

3 and 15. We measured the detection delay as the time difference between the actual

change point and the earliest point detected by our procedure. Numbers in the first

column of Table 5 indicate the 16 change points (numbered from 1 to 16) that define

starting and ending of the first to the eighth attack.
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Table 5: Detection delays for MWICSS and MWSIC
threshold 3 6
window 128 140 150 128 140 150
method ICSS SIC ICSS SIC ICSS SIC ICSS SIC ICSS SIC ICSS SIC

1 12 12 12 16 16 18 16 16 16 - 23 -
2 65 53 77 113 79 87 71 77 85 101 87 101
3 8 8 8 8 10 10 14 14 14 14 14 14
4 58 62 58 74 68 68 70 74 74 104 84 114
5 4 5 5 7 4 9 7 8 8 19 8 19

change 6 65 70 70 64 78 74 79 80 77 74 82 92
7 12 11 16 11 14 13 20 14 24 14 26 16
8 29 35 29 51 23 27 35 47 35 71 33 61
9 45 105 49 33 52 75 55 - 57 77 63 127

point 10 1 - 1 - 2 - 5 - 12 - 6 -
11 38 16 20 28 18 102 52 88 50 104 52 111
12 8 51 4 81 2 53 13 73 9 93 14 87
13 - 9 - 7 - 9 - 41 - 45 - 47
14 20 14 24 22 20 26 30 30 30 28 30 34
15 64 - 110 - 116 - - - - - - -
16 42 - 77 132 - - - - - - - -

mean delay 31.40 34.69 37.33 46.22 35.86 43.92 35.93 65.64 37.77 74.45 40.31 90.17
total points detected 107 141 106 137 104 136 55 63 58 66 60 64

threshold 9 15
window 128 140 150 128 140 150
method ICSS SIC ICSS SIC ICSS SIC ICSS SIC ICSS SIC ICSS SIC

1 27 31 27 - 33 - - - - - - -
2 77 97 97 122 93 111 116 118 132 - 138 -
3 18 18 18 18 20 20 31 - - - - -
4 80 118 82 118 92 126 94 - 110 - 118 -
5 11 22 12 27 12 25 19 - 18 - 18 -

change 6 108 94 88 92 94 100 121 - 126 - 131 -
7 26 17 30 17 33 23 - 32 - 28 - 28
8 64 51 60 77 58 75 89 - 103 - 109 -
9 61 - 63 - 69 136 - - - - - -

point 10 22 - 42 - 20 - - - - - - -
11 62 101 63 120 19 127 - - - - - -
12 20 85 16 101 47 99 - - - - - -
13 - 52 - 64 - 99 - - - - - -
14 44 78 36 37 - 38 52 108 105 - 107 126
15 - - - - - - - - - - - -
16 - - - - - - - - - - - -

mean delay 47.69 60.30 48.77 62.60 49.17 78.08 71.15 86.00 99.00 28.00 108.17 77.00
total points detected 54 61 57 66 58 64 32 39 28 12 29 13

In Table 6 we report detection delays for the MWWJ algorithm with four different

widow sizes. The detection criterion for MWWJ is as follows. We set to 20 the

gap size value to decide whether a jump occurs. For a given window size we find

all locations at which the absolute value of the MODWPT coefficients exceeds λ

(computed using the MODWPT coefficients of the finest level). Then we record the

closest location to the end point of the window. We compare this location with the

one of the previous window. When the difference between two points is equal to or

greater than the predetermined gap size, this new point is declared as a jump point.

As expected, performances of the three different detection methods vary according

to the attack type. MWWJ detects all 12 jump-type change points without delay

while it shows worse performances in capturing variance change points (first three
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Table 6: Detection delays for MWWJ
window 100 128 140 150

1 - 16 16 16

2 - - - -

3 6 6 6 6

4 24 27 30 33

5 7 7 7 7

change 6 63 92 97 100

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

10 1 1 1 1

11 0 0 0 0

point 12 0 0 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 0

16 0 0 0 0

mean delay 7.14 10.53 11 11.36

total points detected 27 28 28 23

attacks, see Table 6), particularly for the first attack. Note that the 2nd and 3rd

attacks are not “pure” variance change points. Indeed, they contain both a jump in

the mean level as well as a variance change. As for the MWICSS and the MWSIC,

performances are different for the single attacks. For the 1st, 2nd, and 3rd attacks

the two methods show comparable behaviour, with a slight better performance of the

MWICSS. For the 4th and 7th attacks the MWSIC does a better job at capturing the

starting point while the MWICSS performs better in detecting the end point of the

attack. MWSIC shows bad behaviour for the 5th attack, by missing it in most cases,

and performs worse than MWICSS in the detection of the 6th attack. The 8th attack

is a very difficult case to detect, although MWICSS with a small threshold does a

decent job, even if with a considerable detection delay. As a general result, MWICSS

may be preferable to MWSIC since it shows smaller mean detection delays. Here

MWSIC was performed without the confirmatory step as additional checking proce-

dure previously described because we noticed that including such additional checking
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would worsen the performances of the MWSIC method. On the contrary, when used

with the MWICSS algorithm the confirmatory step was beneficial. Plots of Figure 6
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Figure 6: Performances of the three algorithms

give a graphical representation of the performances of the three detection methods.

There, each of the two subplots contains a different portion of the signal, displaying

1st, 2nd, 3rd attacks and 4th, 6th and 8th attacks respectively, as representatives of

the two different kind of change point, in mean and in variance. Results for MWICSS

and MWSIC are for a threshold level 2 and window size 128 (see Table 5), those for

MWWJ are for window size 128 (see Table 6). In these plots, the solid circles indicate

the real change points, the square rectangles the points detected by the MWICSS,

the diamonds those detected by the MWSIC, and the triangles those detected by the

MWWJ. Notice how the MWICSS and MWSIC algorithms do a better job at de-

tecting attacks of the first type, that show variance changes. However, there appears

to be an asymmetric aspect in the detection of these two methods, in that both the

MWICSS and the MWSIC detect the start of the attacks but show a relative large
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delay in detecting the ending points. In other words, these algorithms seem to be

sensitive to the location of the change points and to the variance ratio, as already

suggested by the simulation study of the previous section.

For online network attack detection, our results suggest that a simultaneous use

of both MWICSS (or MWSIC) and the MWWJ algorithms give best results, allowing

the detection of attacks of different types. Indeed, the average detection delay for all

methods is 10.63 minutes. In addition, if we consider the starting points of the attacks

only, as points of primary interest in network attack detection, the mean detection

delay is 1.06 minutes, with a threshold level 2.



34

CHAPTER IV

APPLICATION FOR BIOINFORMATICS

4.1 Introduction

We propose a Bayesian model for the analysis of high-throughput data where the out-

come of interest has a natural ordering. The method provides a unified approach for

identifying relevant markers and predicting class memberships. This is accomplished

by building a stochastic search variable selection method into an ordinal model. We

apply the methodology to the analysis of proteomic studies in prostate cancer. We

also explore wavelet-based techniques to remove noise from the protein mass spectra.

The goal is to identify protein biomarkers associated with prostate-specific antigen

(PSA) level, this ordinal diagnostic measure currently used to stratify patients into

different risk groups.

Recently, there has also been interest in using protein mass spectroscopy to detect

discriminating molecular markers in Petricoin et al. (2002a). The diagnostic cate-

gories often consist of tumor versus normal tissues, different types of malignancies,

and subtypes of a specific cancer. Several variable selection methods have been de-

veloped to address this problem in Brown et al. (1998a, 1998b, 2002) and Sha et al.

(2003). These procedures are tailored towards classification into nominal categories.

In some cases, however, the outcome of interest may have an ordered scale. Examples

of variables with a natural ordering include the stage of a tumor and quantitative clin-

ical factors such as white blood cell counts. Applying methods designed for nominal

variables to such problems is not optimal since the information about the ordering

will be ignored.

In this chapter, we propose a Bayesian variable selection method for classification
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into ordinal categories. In this method, the ordered outcomes are related to the PSA

levels using a data augmentation approach. The variable selection procedure pro-

posed by George and McCulloch (1997) is built into the model through a latent

binary inclusion/exclusion vector. Markov chain Monte Carlo (MCMC) stochastic

search techniques are used to update this latent vector and explore the prohibitively

large space of variable subsets for promising models. For posterior inference, Bayesian

model averaging techniques proposed by Madigan and Raftery (1994)are used to iden-

tify discriminating variables and predict the ordered group membership of a sample.

This allows us to account for the uncertainty inherent in the model selection process.

In addition, in the proteomic application, we propose wavelet based techniques to

remove noise from the mass spectra as part of the preprocessing steps required before

analysis.

We apply the methods to the analysis of prostate cancer studies conducted us-

ing protein mass spectroscopy technologies. Prostate cancer is the most frequently

diagnosed and the second leading cause of cancer death in men in the United States

(see Jemal et al., 2003). Despite these high rates, it is often an indolent disease

and patients can remain asymptomatic for years. Currently, patients prognostic and

treatment assignment are based on clinical stage, serum PSA levels. PSA is a glyco-

protein produced primarily by the epithelial cells that line the acini and ducts of the

prostate gland, and is concentrated in prostatic tissue. Serum PSA levels are nor-

mally low and tend to increase proportionally to the pathological stage of the tumor

(see Stamey and Kabalin, 1989). Protein mass spectroscopy experiments have also

been used to detect markers that distinguish men with different PSA levels (Petricoin

et al., 2002b). We will focus on the analysis of the protein spectra from Petricoin et

al.. Our goal is to identify relevant markers, both at the transcriptional and post-

translational levels, related to the state of tumor as measured by the PSA levels.
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4.2 Bayesian ordinal probit model

4.2.1 Probit model for ordinal outcomes

Let (Z,X) denote the observed data, where Zn×1 is the vector of ordered categorical

outcomes and Xn×p is the matrix of covariates. The responses Zi take one of J

values, 0, . . . , J − 1. Each outcome Zi is associated with a vector (pi,0, . . . , pi,J−1),

where pi,j = P (Zi = j) is the probability that subject i falls in the class ordered j.

The probabilities pi,j can be related to the linear predictor xiβ by adopting a data

augmentation approach in Albert and Chib (1993). We assume that there exists a

latent continuous random variable Yi, such that

Yi = α+ x′iβ + εi, εi ∼ N (0, σ2), i = 1, . . . , n, (4.2.1)

where β is a p × 1 vector of regression coeffifcients and σ2 is set to 1 to make the

model identifiable. The correspondence between the observed outcome Zi and the

latent variable Yi is defined by

Zi = j if δj < Yi ≤ δj+1, j = 0, . . . , J − 1, (4.2.2)

where the boundaries δj are unknown and −∞ = δ0 < δ1 < . . . < δJ−1 < δJ = ∞.

4.2.2 Incorporating variable selection into model

Without loss of generality, we assume in the sequel that X has been centered, so that

its columns sum to zero. Thus, rank(X) ≤ min(n− 1, p).

We deal with high dimensional data sets where the number p of covariates is

substantially larger than the sample size n and most of the variables provide no in-

formation about the outcome of interest. The method we propose here for variable

selection can be viewed as a univariate version of the approach presented by Sha
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et al. for multinomial probit models. In this context, however, the correspondence

between Zi and Yi uses different boundaries that account for the natural ordering

of the outcome. In order to identify the predictive variables, we introduce a latent

binary inclusion/exclusion vector γ that induces a mixture prior on the regression

coefficients. We specify conjugate priors for the intercept α ∼ N (α0, h) and the re-

gression coefficients of the included variables βγ ∼ N (β0γ, Hγ). The simplest form

for the prior of γ is to assume its elements to be independently and identically dis-

tributed Bernoulli random variables, π(γ) = wpγ (1−w)p−pγ , where w is the proportion

of variables expected a priori to be related to the outcome and pγ is the number of

included variables. This prior can be relaxed and more uncertainty can be introduced

by assuming a further beta prior on w.

4.2.3 Hyperparameter settings

A vague prior can be specified on the intercept parameter α by setting h large, so

that the value ascribed to the prior mean becomes irrelevant. We set α0 = 0 and

β0 = 0. For a given γ, the prior on β depends on the matrix Hγ. Brown et al.(1998b)

discuss relative merits and drawbacks of different specifications. Here we use H = cI,

which is easier to calibrate. The parameter c regulates the amount of shrinkage in

the model. In general, we want to avoid very small values of c which cause too

much regularization and large values that can induce nonlinear shrinkage as a result

of Lindley’s paradox (see Lindley, 1957). For the boundary parameters, we need to

impose one constraint to ensure identifiability; without loss of generality we take

δ1 = 0. We assign diffuse priors for the remaining parameters.
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4.2.4 Model fitting

The prior beliefs are then updated with information from the data. We do this using

Markov chain Monte Carlo (MCMC) techniques. The model fitting can be made

more efficient by integrating out the parameters α and β. The MCMC sampler starts

from a set of arbitrary parameters and the following steps are iterated:

• Step I:

Update the latent vector Y from its posterior distribution given (γ, δ,X, Z),

which is a truncated normal density under the constraints defined in equation

(4.2.2)

Y |(γ, δ,X, Z) ∼ Nδ(1α0 +Xγβ0γ , Pγ), (4.2.3)

where Pγ = In + h11′ + XγHγX
′
γ , 1 is an n × 1 vector of ones, In is an n × n

identity matrix.

• Step II:

Update the latent variable selection vector γ from its conditional posterior dis-

tribution

π(γ|Y, δ,X, Z) ∝ π(γ) · π(Y |γ, δ,X, Z). (4.2.4)

This is accomplished using a Metropolis algorithm as in Sha et al.. In this ap-

proach, the sampler visits a sequence of models that differ successively in one or

two variables. At a generic step, a candidate model, γnew, is generated by ran-

domly choosing among a set of transition moves. These moves consist of adding

or deleting a variable by choosing one of the γk’s (k = 1, . . . , p) and changing

its value, or swapping the status of two variables by choosing independently

and at random a 0 and a 1 and exchanging their values. The proposed γnew is
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accepted with a probability that depends on the ratio of the relative posterior

probabilities of the new vector versus the one visited at the previous iteration.

• Step III:

Update the boundary parameters from their posterior densities given (γ,X, Z, δ(−j)),

where δ(−j) is the vector δ without the j-th element. These conditional distribu-

tions are uniform [max{Yi : Zi = j − 1} ∧ δj−1,min{Zi : Yi = j} ∧ δj+1], as de-

scribed in Albert and Chib (1993).

4.2.5 Posterior inference

The MCMC procedure results in a list of visited variable subsets, γ, as well as sampled

δ and Y vectors with their corresponding relative posterior probabilities. In order to

draw posterior inference, we first need to impute the latent vector Y , which can be

viewed as missing data. Let Ŷ and δ̂ be the estimates obtained by averaging respec-

tively over the sampled Y and δ vectors. The normalized conditional probabilities

π(γ|Ŷ , δ̂, X, Z), which identify promising variable subsets, can be computed for all

distinct vectors γ visited by the MCMC sampler. The marginal posterior probabil-

ities of inclusion for single variables, π(γk = 1|Ŷ , δ̂, X, Z), k = 1, . . . , p, can also be

derived from these posterior probabilities.

Inference on class prediction can be done in various ways. If a further set of

observations is available for validation, least squares prediction based on a single

“best” model can be computed:

Ŷf = α̃ +Xf(γ)β̃(γ), (4.2.5)

where γ is the vector with highest posterior probability, Xγ consists of the covariates

selected by γ, α̃ =
¯̂
Y , β̃(γ) = (X ′

γXγ + H−1
γ )−1X ′

γŶ . Alternatively, we can use
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Bayesian model averaging over a set of a posteriori likely models to estimate Yf :

Ŷf =
∑

γ

(
α̃ +Xf(γ)β̃(γ)

)
π(γ|Ŷ , δ̂, X, Z). (4.2.6)

The ordered categorical outcomes can then be predicted using the correspondence

Ẑf,i = j if δ̂j < Ŷf,i ≤ δ̂j+1. (4.2.7)

In situations where the sample size is limited dividing the data into a training and

a validation set may not be possible. In such cases, one can resort to sampling-based

methods for cross-validation prediction (see Gelfand,1996). A cross-validation pre-

dictive distribution for sample i can be calculated using π(γ, Y, δ|X,Z) as importance

sampling density for π(γ, Y, δ|X,Z(i)), where Z(i) is the outcome vector Z without the

i-th element:

P (Zi = j|X,Z) =

∫

γ

∫

Y

∫

δ

P (Zi = j|X,Z(i), γ, Y, δ) · π(γ, Y, δ|X,Z(i)) dδ dY dγ

∝ 1

M

M∑

t=1

P (δ
(t)
j < Yi ≤ δ

(t)
j+1|X,Z(i), γ

(t), Y (t)) (4.2.8)

=
1

M

M∑

t=1

Φ
(
δ
(t)
j+1 − µ

(t)
Yi

)
− Φ

(
δ
(t)
j − µ

(t)
Yi

)
,

where t indexes the MCMC iterations, Φ(.) is the normal cumulative density function,

µ
(t)
Yi

= α̃(t) + xi,γ(t) β̃
(t)
γ with α̃ = Ȳ (t), β̃

(t)
γ = (X ′

γ(t)Xγ(t) +H−1
γ )−1X ′

γ(t)Y (t), and xi,γ(t)

are sample i’s measurements for the variables selected by γ(t). The class membership

of sample i can then be predicted by the mode of the predictive distribution:

Ẑi =0≤j≤J−1 P (Zi = j|X,Z). (4.2.9)

4.3 Preprocessing of mass spectrometry profiles

Protein mass spectra are inherently noisy and require substantial preprocessing be-

fore analysis. A mass spectrum can be represented as a curve where the x-axis



41

indicates the ratio of a particular molecule’s weight to its electrical charge (m/z)

and the y-axis represents a signal intensity corresponding to the abundance of the

molecule in the sample. Most peaks in the spectrum are associated with proteins

or peptides and constitute important features. The goal of the analysis is often to

identify peaks related to specific outcomes, such as different malignancies or clinical

responses. Before proceeding to the data analysis, a number of preprocessing steps,

such as removal of baseline and noise, normalization and calibration of samples, are

needed. The procedures to achieve these are still experimental and no standard has

yet been established.

4.3.1 Baseline correction

This step is required to remove the ion overload and chemical noise that are usually

higher at smaller m/z values. There is no general solution to this problem because

baseline characteristics vary from one experiment to another and each spectrum has

to be assessed individually. For the data considered in this paper, the baseline was

already subtracted by the original investigators. Indeed, we can see from the spectra

plot in Figure 7 that there is no evident baseline artifact.

4.3.2 Noise removal by wavelet methods

Wavelets are families of orthonormal bases that can be used to parsimoniously repre-

sent functions. Following the seminal work of Donoho and Johnstone (1994), wavelet

thresholding has successfully been used in various applications to remove noise and

recover the true signal intensities. This is accomplished by applying a wavelet trans-

form to the data and mapping wavelet coefficients that fall below a threshold to 0

(hard thresholding) or shrinking all coefficients toward 0 (soft thresholding). One can

also opt between a universal or an adaptive thresholding rule. The former applies
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Figure 7: Profiles of four mass spectra from each class

the same threshold, i.e. identical cut-off value or same amount of shrinkage for all

wavelet coefficients, whereas the latter uses a threshold that depends on the resolu-

tion level of the wavelet coefficients. An inverse wavelet transform is then applied to

the thresholded coefficients leading to a smoothed estimate of the function.

We interpolated the mass spectra on a grid of equally spaced m/z values us-

ing piecewise cubic splines. We considered three different grids with 10,000, 12,000

and 15,000 equi-spaced points in the range of the data. We noticed better qualita-

tive denoising with undecimated transforms over standard decimated discrete wavelet

transforms (DWT). These transforms do not impose restrictions on the length of the

signal and are shift-invariant, i.e., they are not affected by the starting position of
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the signal. We used the maximum overlap discrete wavelet transforms (MODWT)

(see Percival and Walden, 2000). We explored different choices of wavelet basis (Haar

wavelets, Daubechies wavelets with 4 vanishing moments, least symmetric Daubechies

wavelets with 8 vanishing moments), different thresholding rules (hard versus soft and

universal versus adaptive). See Daubechies (1992). In general, we noticed that the

universal hard threshold removes lots of coefficients and the universal soft threshold

tends to attenuate some of the distinctive peaks. The adaptive soft thresholding ap-

proach, on the other hand, does a better job at preserving the peaks. As a result

of this investigation, we chose to interpolate the data on a grid of 15,000 points and

used the MODWT with Daub(4) along with an adaptive soft thresholding rule.

4.3.3 Peak identification

A crucial step for the identification and quantification of proteins in mass spectra is to

findm/z values that correspond to peak intensities. We used the peak detection meth-

ods implemented in the Bioconductor PROcess package (www.bioconductor.org).

For each spectrum, peaks were identified as m/z values with signal intensities sat-

isfying at least three of the following criteria: (1) the intensity exceeds a specified

threshold value; (2) the intensity exceeds a constant times the median absolute de-

viation estimate of noise in a given window; (3) the intensity is a local maximum

within a given window; (4) the ratio of the area under the peak, i.e., the sum of the

intensities within a bandwidth, versus the maximum area among all peaks is greater

than a pre-specified constant.

4.3.4 Normalization

Systematic variations often exist between spectra and need to be minimized. These

are due to varying amounts of protein samples or differences in the detector sensi-
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tivity . We used a global normalization approach in which the signal intensities are

scaled by a common factor. For a given peak in a spectrum, we defined the normal-

ization constant as the ratio of the area under the peak to the median area of the

corresponding peaks in all spectra. See Bolstad et al. (2003).

4.3.5 Alignment

Mass spectra exhibit shifts along the horizontal axis between replicate spectra. In

general, the instruments have an accuracy of 0.1 to 0.3% on the m/z scale. Thus,

detected peaks that have masses within the percentage accuracy are considered iden-

tical. We merged peaks that have m/z measurements within 0.2% of each other and

assigned the new peak the average m/z values and the maximum intensity.

4.4 Results

We use the surface-enhanced laser desorption and ionization time-of-flight (SELDI-

TOF) protein mass spectra from Petricoin et al. (2002b). The complete data set

is available at home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp and

consist of 63 samples with no evidence of disease and PSA ≤ 1 ng/ml, 190 benign

samples with PSA levels ranging from less than 1 ng/ml to greater than 10 ng/ml,

26 cancer samples with 4 < PSA < 10, and 43 cancer samples with PSA ≥ 10

ng/ml. Petricoin et al.(2002b) were interested in investigating the ability of serum

protein profiles to discriminate between different prostate conditions based on their

PSA levels. They considered 25 samples with no evidence of disease and PSA levels

≤ 1 ng/ml, and 31 prostate cancer samples with PSA ≥ 4 ng/ml in their training

set. They used genetic algorithms and self-organizing maps to identify discriminating

protein markers. They then used the selected markers in an independent test set
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to separate benign and tumor samples whose PSA levels spanned all possible ranges.

Their approach does not specifically address the issue of validating the performance of

the classifiers since the outcomes considered in the training and test sets are different.

In the sequel, we remove the benign samples from analysis because their PSA

levels span all possible ranges. We focus on the other three groups (63 non-diseased

with PSA ≤ 1, 26 cancer with 4 < PSA < 10, and 43 cancer with PSA ≥ 10). Figure

7 displays the mass spectra for four patients from each of the three groups. Each

mass spectra represents the expression profile of 15,154 peptides defined by their

m/z values. We note some clear differences between the different classes. We divided

the data into a training set (70% of data, i.e. 92 spectra) and a validation set (40 mass

spectra) to assess the prediction performance of the classifiers. We preprocessed the

spectra as described in the previous section. After applying the wavelet thresholding

for noise removal, the peak identification and alignment steps resulted in 53 peaks in

the training set. We located these same 53 peaks in the test set in order to assess the

selected classifiers.

We fitted the ordinal probit model with variable selection to identify protein

markers that discriminate among the three groups. We used a Bernoulli prior with

10 variables expected to distinguish the classes. We ran four MCMC chains with

100,000 iterations each and discarded the first half as burn-in to eliminate depen-

dence on the starting points. We used c = 0.1 for the covariance hyperparameter of

the regression coefficients. Each chain visited about 20,000 distinct models after the

burn-in period. The majority of the visited models contained 5 to 15 variables. The

marginal probabilities of inclusion for single peaks are shown in Figure 8. Indices

with high posterior probabilities correspond to important markers that discriminate

between the different groups. There is a good concordance among the four plots and

posterior inference was drawn on the pooled output from the four MCMC chains.
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Figure 8: Marginal posterior probabilities of inclusion for single peaks in each of the
four MCMC chains

We considered variables with large marginal posterior probabilities as well as markers

included in the “best” models, i.e., γ vectors with high joint posterior probabilities.

As we can see from the list of selected markers reported in Table 7, there is a good

agreement between the selections based on the marginal and joint posterior proba-

bilities. The majority of the selected peaks have m/z values lower than 7000 with

only three peaks falling in a higher range. We note that among the seven peaks

selected by Petricoin et al. (2002b) six had m/z values lower than 6000. Figure 9

displays surface representations of single spectra for the first 10,000 m/z values in

each of the three groups plus the benign group that was not considered for analysis.
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Table 7: List of selected markers
Criterion selected markers (m/z values)
Best γ 693.19 930.48 2011.6 3466

4665.7 4739.1 7683.8 8983.5
π(γk|X,Z) > 0.5 693.19 930.48 2011.6 3466

4665.7 4739.1
10 best γ vectors 693.19 930.48 2011.6 3466

4665.7 4739.1 6312.1 6554.7
7683.8 7793.1 7886.4 8327.7
8603.6 8983.5 19495

The arrows on top of the graph indicate peaks that appeared in the best model. We

note that they clearly distinguish the different groups. The performance of the se-

lected discriminants was assessed by predicting the class membership in the validation

set. We considered a least squares prediction as well as a Bayesian model averaging

(BMA) prediction based on the single best and on the 10 best models. Table 8 re-

ports the misclassification error rates for each of these prediction approaches. They

ranged between 22.5 and 27.5%. For comparison, we also looked at commonly used

classification methods, such as k-nearest neighbor (KNN) and nonlinear support vec-

tor machines (SVM). For KNN we considered values of k ranging from 1 to 20 and we

report the results for k = 2. We note that all the methods have fairly high error rates

with LDA performing slightly better. However, we have to keep in mind that this

approach does not provide selection of the actual discriminating markers. We also

note that the largest misclassification errors were associated with the cancer group

that has 4 < PSA < 10. This is known to be a range where the PSA levels correspond

to a rather heterogeneous group.
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Figure 9: Surface representation of spectra from patients in four groups. Arrows at
the top of the graph indicate peaks selected by our method

Table 8: Misclassification error rates
Prediction overall PSA ≤ 1 4 < PSA < 10 PSA ≥ 10
approach error rate
MCMC (pooled)
Least squares 0.250 0/19 5/8 5/13
BMA (1 best) 0.225 0/19 4/8 5/13
BMA (10 best) 0.275 1/19 5/8 5/13
nonlinear SVM 0.250 1/19 3/8 5/13
kNN 0.225 1/19 5/8 3/13
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CHAPTER V

SUMMARY AND FUTURE RESEARCH

5.1 Summary

We have witnessed versatile properties of wavelet methods for statistical applications

in this dissertation. Mainly we use decorrelation property for Part I and denoising

via wavelet thresholding technique for Part II.

The main goal of Part I is to develop an integrated tool for the detection of

network anomalies and investigate performances using statistical analysis. We have

proposed adaptations to wavelet packets of variance change detection methods and of

a method for jump detection, and explored their implementation for online detection

of network anomalies. These methods can capture several types of attacks against

the network.

In Part II We have proposed a methodology for classification problems with ordi-

nal outcomes. The method is well suited for the analysis of high-dimensional data and

we have illustrated its applications using protein mass spectra from prostate cancer

studies. The ordinal outcomes were defined in terms of PSA level. The prediction

accuracies in both cases were between 70 and 80%. These error rates are partly due

to the less than perfect specificity of these prognostic factors. Indeed, in order to

identify reliable biomarkers, each outcome category must correspond to homogeneous

groups.

We have also proposed wavelet-based techniques to remove noise from protein

mass spectra. This procedure appears beneficial. We repeated the analysis without

using the noise removal preprocessing step on the spectra. There were 93 markers

identified by the peak detection and alignment procedures. We applied the ordinal
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probit model with variable selection to the data without wavelet thresholding pro-

cedure and obtained classification accuracies that were lower than those reported in

previous chapter. This confirms the sensitivity of the results to noise in the data

and the need for good preprocessing techniques. Here, we have used soft and adap-

tive wavelet thresholding to remove noise from the spectra. In future work, we will

investigate alternative approaches, such as block shrinkage methods (see Cai, 1999).

We conclude the second part by raising a couple of issues related to the analysis of

SELDI-TOF mass spectra. It has been suggested that the current technology may

be unreliable for low m/z values because of the effects of chemicals used to ionize the

proteins. It may therefore be preferable to remove these low levels from the analysis.

In addition, several criticisms have been raised on the use of SELDI-TOF technology

for cancer detection (see Diamandis, 2004).

5.2 Future research

We focus on Bayesian ordinal probit model with Bayesian variable selection in the

second part. Our approach for Bayesian ordinal probit is based on sampling from uni-

form distribution for cutoff point parameter, δ with Albert and Chib (1993). There

are several advanced suggestions for sampling this parameter vecter in order to im-

prove mixing ability such as Cowles (1996) and Nandram-Chen (1996) algorithms.

We are going to investigate enhancement of our results with these above algorithms.

Their works do not retain variable selection part. Our extension will be good en-

deavor in the Bayesian generalized linear models (GLMs).

We am going to consider other way by using a Bayesian clustering technique.

Current work is based on the classification task with SELDI-TOF MS. Before we

analyze data with Bayesian inference we do ‘curve clustering’ and find biomarkers.
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