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ABSTRACT

On Two-Sample Data Analysis By Exponential Model. (August 2005)

Sujung Choi, B.A., Yonsei University;

M.A., Yonsei University

Chair of Advisory Committee: Dr.Emanuel Parzen

We discuss two-sample problems and the implementation of a new two-sample data

analysis procedure. The proposed procedure is based on the concepts of mid-distribution,

design of score functions, components, comparison distribution, comparison density

and exponential model. Assume that we have a random sample X1, · · · , Xm from

a continuous distribution F (y) = P (Xi ≤ y), i = 1, · · · , m and a random sample

Y1, · · · , Yn from a continuous distribution G(y) = P (Yi ≤ y), i = 1, · · · , n. Also as-

sume independence of the two samples. The two-sample problem tests homogeneity of

two samples and formally can be stated as H0 : F = G. To solve the two-sample prob-

lem, a number of tests have been proposed by statisticians in various contexts. Two

typical tests are the two-sample t−test and the Wilcoxon’s rank sum test. However,

since they are testing differences in locations, they do not extract more information

from the data as well as a test of the homogeneity of the distribution functions. Even

though the Kolmogorov-Smirnov test statistic or Anderson-Darling tests can be used

for the test of H0 : F = G, those statistics give no indication of the actual relation

of F to G when H0 : F = G is rejected. Our goal is to learn why it was rejected.

Our approach gives an answer using graphical tools which is a main property of our

approach. Our approach is functional in the sense that the parameters to be esti-

mated are probability density functions. Compared with other statistical tools for

two-sample problems such as the t-test or the Wilcoxon rank-sum test, density esti-



iv

mation makes us understand the data more fully, which is essential in data analysis.

Our approach to density estimation works with small sample sizes, too. Also our

methodology makes almost no assumptions on two continuous distributions F and

G. In that sense, our approach is nonparametric. Our approach gives graphical el-

ements in two-sample problem where exist not many graphical elements typically.

Furthermore, our procedure will help researchers to make a conclusion as to why two

populations are different when H0 is rejected and to give an explanation to describe

the relation between F and G in a graphical way.
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CHAPTER I

INTRODUCTION

1.1. The Two-Sample Problem

Assume that we have a random sample X1, · · · , Xm from a continuous distribution

F (y) = P (Xi ≤ y), i = 1, · · · , m and a random sample Y1, · · · , Yn from a continuous

distribution G(y) = P (Yi ≤ y), i = 1, · · · , n. Also assume independence of the two

samples. The two-sample problem is about homogeneity of the two samples and

formally can be stated as H0 : F = G. Even though we stated the two-sample

problem in terms of distributions, the two-sample problem could be homogeneity in

locations or in scales of the two samples. Borovkov (1998) provides several examples

of the two-sample problem.

• A comparison of two processing techniques on the crops of some variety cereals.

• A test of the effect of a new drug by means of comparing the state of patients

in two groups, one taking the drug and the other(the control group) not.

• A comparison of the car accident ratios in two cities.

To solve the two-sample problem, a number of tests were proposed by statisticians

in various contexts. Some of the tests need specific assumptions on the nature of

two distributions. According to assumptions on distributions, we classify tests into

The format and style of this dissertation follow that of Biometrics .
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parametric test and nonparametric tests. Two typical tests are the two-sample t-test

and the Wilcoxon’s rank sum test respectively. However, since they are testing the

differences in locations, they do not extract more information from the data as well

as a test of homogeneity of distribution functions. Even though the Kolmogorov-

Smirnov test statistic or the Anderson-Darling test can be used for test of H0 : F =

G, those statistics give no indication of the actual relation of F to G even though

H0 : F = G is rejected. The point is why it was rejected. But most two-sample

techniques can not answer this point. Our approach gives an answer using graphical

tools which is a main property of our approach. Our approach is unified in the sense

that graphs and tests are derived from a common foundation, comparison distribution

and comparison density. The comparison density is graphical in nature and carries

information regarding the relation of f to g.

The goal of this dissertation is to discuss the two-sample problem and our main

contribution will be to implement and illustrate a two-sample data analysis proce-

dure which extracts more information from the data by a methodology that makes

almost no assumptions on two continuous distributions F and G. In that sense, our

approach is nonparametric. Also, our approach gives graphical elements in the two-

sample problem where typically exist not many graphical elements such as side by

side boxplot, Q-Q plots and histograms which are not very informative. Also, our

procedure will help researchers to make a conclusion to why two populations are dif-

ferent when H0 is rejected and to give an explanation to describe the relation between

F and G in a graphical way.
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1.2. Outline of This Dissertation

This dissertation is composed of six chapters and an appendix. Chapter I is an in-

troduction of the two-sample problem. In Chapter II, concepts of comparison distri-

bution function and comparison density function are discussed. Especially in section

2.3, sample versions of those functions are discussed for implementation in practice

while population concepts are provided in section 2.2. Also, properties of comparison

distribution and density functions are reviewed. In section 2.3, a real data set is used

to illustrate sample concepts of those functions.

Chapter III examines exponential model with components with other necessary

concepts such as mid-distribution functions, score functions and components. In sec-

tion 3.2.4, we discuss exponential model approach to comparison density function.

Maximum entropy interpretation of exponential model is also given in section 3.2.4.1.

And the following section 3.2.4.2 is dedicated on estimation of coefficient of exponen-

tial model.

Chapter IV provides an algorithm to solve the two-sample problem. That algo-

rithm is based on comparison density estimation through exponential model approach.

Chapter V applies the algorithm of Chapter IV to a real data set and to simulated

data sets. Chapter VI presents conclusions and future research interests.

Appendix A gives some proofs of the theorems and properties stated in the previous

chapters.
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CHAPTER II

COMPARISON DISTRIBUTION FUNCTION

AND COMPARISON DENSITY FUNCTION

2.1. Introduction

In this chapter, comparison distribution and comparison density functions are defined

under the two-sample frame. As a graphical and functional type of test, Parzen

(1983) introduced the concept of comparison density. In one-sample case, comparison

distribution is comparing a model for a true distribution and the sample distribution.

In the following sections, the comparison distribution and comparison density are

defined and some properties of them are discussed.

2.2. Population Concepts

We can formulate the two-sample problem as the comparison of two continuous dis-

tribution functions F and G of variables X and Y respectively. Assume that we have

a sample X1, · · · , Xm from a continuous distribution F and a sample Y1, · · · , Yn from

a continuous distribution G. Assume F and G have continuous densities f and g.

Let N = m+ n and λN = m/N . To compare two continuous distributions F and G,

we define two versions of comparison distributions, unpooled comparison distribution

D(u;F,G), and pooled comparison distribution function D(u;H,F ) where 0 ≤ u ≤ 1

and H is defined by

H(y) = λF (y) + (1 − λ)G(y) (2.1)
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assuming that limN→∞m/N = λ with 0 < λ < 1. Define the following inverse

functions at 0 ≤ u ≤ 1:

F−1(u) = inf {y;F (y) ≥ u},

G−1(u) = inf {y;G(y) ≥ u},

H−1(u) = inf {y;H(y) ≥ u}. (2.2)

The unpooled comparison distribution function is defined as

D(u;F,G) = G(F−1(u)), 0 ≤ u ≤ 1 (2.3)

with assumptions that D(0;F,G) = 0 and D(1;F,G) = 1. The pooled comparison

distribution function is

D(u) = D(u;H,F ) = F (H−1(u)), 0 ≤ u ≤ 1. (2.4)

Research on comparing the two distributions has tended to focus on estimating the

unpooled estimator. However, if F and G do not have the same support, the com-

parison distribution is not always rigorously definable. For example, suppose F is a

distribution of incomes of men and G is a distribution of incomes of women. Then,

the support of F may not be contained in that of G. Therefore, Parzen (1997) rec-

ommends to use the pooled comparison distribution. The properties of D(u) are as

follows:

• D(0) = 0.

• D(1) = 1.

• D(u) is non-decreasing on [0, 1].

• D(u) is absolutely continuous on [0, 1]
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Another problem of the unpooled comparison distribution is that the first two

properties (D(0) = 0 and D(1) = 1) may not be satisfied with the sample unpooled

comparison distribution which will be defined in the section 2.3. We will explain this

in detail with an example in the section 2.3.

Derivatives of D(u) are called the comparison density functions. The unpooled

comparison density function d(u;F,G) and the pooled comparison density function

d(u;H,F ) are defined respectively by

d(u;F,G) = D′(u;F,G) =
g(F−1(u))

f(F−1(u))
,

d(u;H,F ) = D′(u;H,F ) =
f(H−1(u))

h(H−1(u))

=
f(H−1(u))

λf(H−1(u)) + (1 − λ)g(H−1(u))
. (2.5)

We require f(x) = 0 implies g(x) = 0 in order for d(u;F,G) to be well defined and to

integrate to 1. Given a plot of d(u), one can interpret the various shapes as indicating

that the difference between two distributions(F and G for unpooled case and H and

F for pooled case) is a difference in location or a difference in scale by the following

known theorem.

Theorem 2.1. (Parzen (1998)) Assume F = N(θ0, 1) and G = N(θ, 1); that is, the

difference between two Normal distributions is due to a difference in location. Then,

the unpooled comparison density satisfies

log d(u;F,G) = (θ − θ0)Φ
−1(u) − .5(θ − θ0)

2. (2.6)

where F = Φ which is the standard normal distribution. When F = N(0, θ−2
0 ) and

G = N(0, θ−2), that is, if there is a difference in scale, unpooled comparison density

satisfies

log d(u;F,G) = log
θ

θ0
− .5

(
Φ−1(u)

)2
(θ2 − θ2

0). (2.7)
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Proof

d(u;F,G) =
g
(
F−1(u)

)

f
(
F−1(u)

)

=

1√
2π

exp
(
− (Φ−1(u)−θ)2

2

)

1√
2π

exp
(
− (Φ−1(u)−θ0)2

2

)

⇒ log d(u;F,G) = (θ − θ0)Φ
−1(u) − .5(θ2 − θ2

0). (2.8)

d(u;F,G) =
g
(
F−1(u)

)

f
(
F−1(u)

)

=

θ√
2π

exp
(
− θ2Φ−1(u)2

2

)

θ0√
2π

exp
(
− θ20Φ−1(u)2

2

)

⇒ log d(u; θ) = log
θ

θ0
− .5(Φ−1(u))2(θ2 − θ2

0). (2.9)

For pooled comparison density with difference in locations, assume F = N(0, 1) and

G = N(θ, 1). Then for a given λ, pooled distribution H(y) is a mixture normal

distribution.

H(y) = λN(0, 1) + (1 − λ)N(θ, 1).

For pooled comparison density with difference in scales, assume F = N(0, 1) and

G = N(0, θ−2). Then for a given λ, pooled distribution H(y) is a mixture normal

distribution.

H(y) = λN(0, 1) + (1 − λ)N(0, θ−2).

In the case of pooled comparison density, we do not have a closed form like unpooled

comparison density functions. Thus, pooled comparison density can be computed

by simulations. In simulation, a very large sample of random variables from known
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distributions F (y) and G(y) will be generated. Then, sample pooled comparison

distribution and density function can be computed.

For the unpooled case, Figure 1 and Figure 2 present log d(u;F,G) for a vari-

ety of F and G. If two distributions F and G are homogeneous, d(u;F,G) = 1(or

log d(u;F,G) = 0). As the difference in locations is getting greater, comparison den-

sity is getting farther from d(u;F,G) = 1( or log d(u;F,G) = 0). Also, log d(u;F,G)

is monotone for location difference and quadratic for scale difference. As the difference

in scales is getting greater, comparison density is getting farther from d(u;F,G) =

1(or log d(u;F,G) = 0). Also, log d(u;F,G) is quadratic and symmetric since there

is no difference in location.

Parzen (1983) gives some properties of pooled comparison density d(u) = d(u;H,F ).

• 0 ≤ d(u) ≤ 1/λ

• d(u) → 0 if f → 0

• d(u) → 1/λ if g → 0

For the proofs, see appendix A. From the definition of the pooled comparison

density function, we can see the relationship between d(u) and likelihood ratio(g/f).

Parzen (1983) noted that

1

d(u)
= λ+ (1 − λ)

g(H−1(u))

f(H−1(u))
(2.10)

which is derived from equation(2.5). If an estimate of g/f is not really desired, it

is enough to know that d(u) > 1 if and only if g(H−1(u)) > f(H−1(u)). Also, even

though g/f is not bounded, d(u) is bounded between 0 and 1/λ. Since the estimation



9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2
lo

g
 d

(u
;F

,G
)

u

θ=0
θ=0.5
θ=1
θ=1.5

Figure 1. Plots of unpooled comparison density function of normal distributions with

difference in locations assuming F = N(0, 1) and G = N(θ, 1). Unpooled comparison

density is log d(u;F,G) =
(
θΦ−1(u) − .5θ2

)
where Φ−1(u) is the inverse function of

F = N(0, 1). As the difference in locations is getting greater, comparison density is

getting farther from log d(u) = 0(d(u) = 1). Also, log d(u) is monotone.
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Figure 2. Plots of unpooled comparison density function of normal distributions with

difference in scales assuming F = N(0, 1) and G = N(0, θ−2). Unpooled comparison

density is log d(u;F,G) = log θ − .5
(
Φ−1(u)

)2
(θ2 − 1) where Φ−1(u) is the inverse

function of F = N(0, 1). As the difference in scales is getting greater, comparison

density is getting farther from d(u) = 1(log d(u) = 0). Also, log d(u) is quadratic

and symmetric.
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of unbounded functions is more difficult, we recommend to use pooled comparison

density function d(u) for estimation of a likelihood ratio.

Comparison distribution and comparison density concepts can be used to compare

two discrete distributions F and G with respective probability mass functions pF and

pG. We define a comparison density function

d(u) = d(u;F,G) = pG(F−1(u))/pF (F−1(u)); (2.11)

then define a unpooled comparison distribution function

D(u) = D(u;F,G) =

∫ u

0

d(t)dt (2.12)

assuming pF (x) = 0 implies pG(x) = 0. D(u;F,G) is piecewise linear between its

values at uj = F (xj), where x1 < · · · < xm and D(uj;F,G) = G(F−1(uj)) = G(xj).

Pooled comparison distribution and comparison density functions are defined as

d(u) = d(u;H,F ) = pF (H−1(u))/pH(H−1(u)),

D(u) = D(u;H,F ) =

∫ u

0

d(t)dt. (2.13)

assuming pF (x) = 0 implies pH(x) = 0. D(u;H,F ) is piecewise linear between its

values at uj = H(zj), where z1 < · · · < zN and D(uj;H,F ) = F (H−1(uj)) = F (zj).

The graph of a comparison distribution D(u;F,G) or D(u;H,F ) is called a P-

P plot because it is a plot of
(
F (y), G(y)

)
or

(
H(y), F (y)

)
which compares the p

values of an observation y under the two distributions. A P-P plot can be drawn

by linearly connecting the points (0, 0), (1, 1),
(
F (y), G(y)

)
or

(
H(y), F (y)

)
for F -

exact uj = F (yj)(j = 1, · · · , m) or H-exact uj = H(yj)(j = 1, · · · , N) respectively.

And this is equal to the definition of D(u) in discrete case. By using P-P plot, we
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have a continuous sample distribution and can overcome the problem that sample

distributions are discrete. P-P plot can be used as an analysis tool and provide the

basis of further analysis.

2.3. Sample Comparison Distribution and Comparison Density Functions

For theoretical concepts to be applied to data analysis, it is crucial to define sam-

ple version of those concepts. Assume that we have a sample X1, · · · , Xm from a

continuous distribution F and a sample Y1, · · · , Yn from a continuous distribution G.

Let Z1, · · · , ZN be a pooled sample of X1, · · · , Xm and Y1, · · · , Yn. Assume F and G

have continuous densities f and g. Let N = m + n and λN = m/N . Define sample

distribution functions

Fm(x) =

m∑

t=1

I(Xt ≤ x)/m

Gn(y) =

n∑

t=1

I(Yt ≤ y)/n

HN(z) = λNFm(z) + (1 − λN)Gn(z), x, y, z ∈ R (2.14)

where I(Y ≤ y) = 1 if Y ≤ y and I(Y ≤ y) = 0 otherwise. HN is a sample pooled

distribution of Fm and Gn. The sample pooled distribution HN = λNFm+(1−λN)Gn

is equivalent to computing HN(y) =
∑m

t=1 I(Xt ≤ y)/N +
∑n

t=1 I(Yt ≤ y)/N .

Example: For illustration of concepts in this section on interesting data, we

use a dataset from Giampaoli and Singer (2004) and call it as stress data. They

consider the problem of comparing the mean of diastolic blood pressure of two group

of individuals. One group is exposed to a stress stimulus (like the death of a close

relative or discharge from employment) and another group is under normal conditions.

The data are reproduced in Table 1 and each data value corresponds to the average

of series of 30 measurements taken over periods of one hour to eliminate short term
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Table 1

Diastolic blood pressure (mmHg)

Stress group Control group
87.1 81.5
89.6 81.7
92.2 85.5
92.2 88.9
92.2 89.4
92.4 89.9
92.7 93.5
95.0 94.6
96.4 95.4
96.8 95.5
109.2 97.0

fluctuations. In this data, there are ties which means one value occurs several times

like 92.2 in stress group. We consider F as distribution function of control group

and G as distribution function of stress group. With this stress data, we compute

sample distribution functions(Table 2- Table 4) using equaiton (2.14). Now we have

X1, · · · , X11(m = 11) for control group, and Y1, · · · , Y11(n = 11) for stress group and

thus N = m + n = 22. Thus λ = m/N = 11/22 = 1/2.

The sample unpooled comparison distribution is defined as a continuous function

of u by

D∼(u;F,G) = Gn(F
−1
m (u)) (2.15)

at u equal to F -exact value uj(j = 1, · · · , m) satisfying Fm(xj) = uj for distinct xj val-

ues(Table 2). At other values of u, define D∼(u;F,G) by linear interpolation between

its values at F -exact values of uj. Figure 3 and 4 are the plots of sample unpooled

comparison distribution. Sample unpooled comparison distribution functions are de-

fined by D∼(u;F = Control, G = Stress) and D∼(u;G = Stress, F = Control)
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Table 2

Sample distribution function for control group : Fm(x) =
∑m

t=1 I(Xt ≤ x)/m,

m = 11

Blood pressure Fm

81.5 0.0909
81.7 0.1818
85.5 0.2727
88.9 0.3636
89.4 0.4545
89.9 0.5455
93.5 0.6364
94.6 0.7273
95.4 0.8182
95.5 0.9091
97.0 1.0000

Table 3

Sample distribution function for stress group : Gn(y) =
∑n

t=1 I(Yt ≤ y)/n, n = 11.

The number in () means the number of occurrences of the corresponding observation.

Blood pressure Gn

87.1 0.0909
89.6 0.1818

92.2(3) 0.4545
92.4 0.5455
92.7 0.6364
95.0 0.7273
96.4 0.8182
96.8 0.9091
109.2 1.0000
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Table 4

Sample pooled distribution function HN(z) =
∑m

t=1 I(Xt ≤ z)/N

+
∑n

t=1 I(Yt ≤ z)/N , N = 22

Blood pressure HN

81.5 0.0455
81.7 0.0909
85.5 0.1364
87.1 0.1818
88.9 0.2273
89.4 0.2727
89.6 0.3182
89.9 0.3636

92.2(3) 0.5000
92.4 0.5455
92.7 0.5909
93.5 0.6364
94.6 0.6818
95.0 0.7273
95.4 0.7727
95.5 0.8182
96.4 0.8636
96.8 0.9091
97.0 0.9545
109.2 1.0000

respectively for each figure. Specially from Figure 3, we can know that property of

comparison distribution(D(1) = 1) mentioned in section 2.2 is not satisfied. Sample

pooled comparison distribution is

D∼(u;H,F ) = Fm(H−1
N (u)) (2.16)

at H-exact values uj(j = 1, · · · , r) satisfying HN(zj) = uj for distinct zj values(

Table 4) and at other values of u by linear interpolation between its values at H-

exact values of u. Figure 5 is a plot of the sample pooled comparison distribution

function with stress data. From sample comparison distribution, we compute the
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sample comparison density d∼(u) which is used as an estimate of d(u). Actually, the

slope of the sample comparison distribution is the sample comparison density. For

the unpooled case,

d∼(u;F,G) =
D∼(uj;F,G) −D∼(uj−1;F,G)

uj − uj−1

if uj−1 < u < uj (2.17)

where u0 = 0, and uj = Fm(xj),(j = 1, · · · , m). For the pooled case,

d∼(u;H,F ) =
D∼(uj;H,F ) −D∼(uj−1;H,F )

uj − uj−1
if uj−1 < u < uj (2.18)

where u0 = 0, and uj = HN(zj) for j = 1, · · · , N). Since our main concern is

the pooled comparison density function, we have only a plot of the sample pooled

comparison density function. See Figure 6. A pattern in a sample comparison density

function indicates direction of shape of the score function whose statistic will be

significant and therefore we could conclude a proper model for the difference of the

two distributions. From Figure 6, we can see a quadratic pattern or somewhat cubic

pattern and this may indicate the difference in the direction of 2nd(scale diffeence)

or 3rd order score function. From the side by side boxplot of Figure 7, we see some

differences in scale between two groups. In the Chapter III, we will have a more

precise conclusion using the exponential model approach to the two-sample problem.
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Figure 3. Plot of sample unpooled comparison distribution function D∼(u;F,G)

with stress data. In this case, two properties of comparison distribution

function(D∼(0;G,F ) = 0 and ,D∼(1;G,F ) = 1) are not satisfied.
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Figure 5. Plot of sample pooled comparison distribution function D∼(u;H,F ) with
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CHAPTER III

EXPONENTIAL MODEL WITH COMPONENTS

3.1. Introduction

In this chapter, we introduce an exponential model approach to the comparison den-

sity estimation and related concepts. To form an exponential model, we need to design

mid-distribution score functions first. In subsection 3.2.1, we define the concept of

mid-distribution function introduced by Parzen (1989) and in subsection 3.2.2, we

provide a definition and recursive formula of mid-distribution score functions with an

example.

To estimate the comparison density function, the exponential model with com-

ponents will be used. For the estimation of comparison density d(u), there have

been two main approaches. One is kernel density estimation and another is autore-

gressive method. For details of each method, see Woodfield (1982) and Carmichael

(1976) respectively. Our exponential model approach is similar to exponential family

based density estimation, orthogonal series density estimation and maximum entropy

method. Exponential family based density estimation is approximating a density

function by using a member of a family of densities. Consider an exponential family

of densities of the form

d(u; θ) = exp
( K∑

k=1

θkφk(u) − ΨK(θ)
)
, 0 < u < 1 (3.1)

where θ = (θ1, · · · , θK) ∈ Θ = {θ ∈ RK : 	K(θ) < ∞}. The function ΨK(θ) is the
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normalizing value so that each density integrates to one:

ΨK(θ) = log

{∫ 1

0

exp
( K∑

k=1

θkφk(u)
)
du

}
(3.2)

and {φk(u)}Kk=1 are basis functions, which are bounded and linear independent func-

tions such that

SK = span{1, {φk(u)}Kk=1}

is a linear space. Three common choices for the basis functions are polynomials,

trigonometric series, and spline bases. However disadvantage of this approach is the

assumption that the comparison density is actually a member of this family which

we do not assume in our exponential model approach.

Orthogonal series density estimation was introduced by Cencov (1962) and is al-

lied with exponential family estimation. Cencov (1962) considers the expansion using

orthogonal system with respect to a weight function. Basically Cencov’s approach is

a method of moments estimating scheme(Woodfield (1982)). Other researchers exam-

ined Cencov’s method using specific system of orthogonal functions. Schwartz (1967)

considers expansions using Hermite polynomials, Tarter and Kronmal (1970)) con-

sider trigonometric systems(Fourier series expansion), and Crain (1974) uses Legendre

polynomials. Consider the orthogonal series family of functions:

d(u; θ) = θ0 +
∞∑

k=1

θkφk(u), 0 < u < 1 (3.3)

where θk ∈ R and {φk(u)}∞k=1 form a complete orthonormal basis for the space of all

square integrable functions on [0, 1]. Orthonormal means that

∫ 1

0

φi(u)φj(u)du = I(i = j)

where I(i = j) = 1 if i = j and 0 if i 6= j. By completeness of basis, there exists a
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sequence of constants {θk}Kk=1 such that

|d(u)−
K∑

k=1

θkφk(u)|2 → 0

as K → ∞. Thus, one can write

d(u) = θ0 +
∞∑

k=1

θkφk(u), 0 < u < 1

so that

θk =

∫ 1

0

φk(u)d(u)du = E
(
φk(u)

)
.

In practice, the comparison density might be estimated by

d∧(u; θ) = θ∧0 +

K∑

k=1

θ∧k φk(u), 0 < u < 1.

for suitable choice of order K and θ∧k =
∑m

j=1 φk(Rj)/m where Rj is the rank of the

sample in the pooled sample. Note that the estimator has the undesirable property

that it may be negative for some value of u while our exponential model approach

guarantees the nonnegativity of the estimate.

3.2. Basic Concepts

3.2.1. Mid-distribution Functions

Ranks of the observations are one of the important elements of nonparametric sta-

tistics. Parzen (1989) presented a concept of the mid-distribution function which is

a transform of ranks. To compute mid-distribution score functions, we define mid-

distribution functions first. Let F be a discrete distribution function. For distinct x

values,

Fmid(x) = F (x) − .5pF (x) (3.4)
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where F (x) = P [X ≤ x] and pF (x) = P [X = x]. For order statistics X(1;m) ≤ · · · ≤

X(m;m) of a sample X1, · · · , Xm with no ties,

Fmid(X(j;m)) =
(j − .5)

m
=
Rj − .5

m
(3.5)

which transforms the rank Rj to a number in the open unit interval, and is called

mid-rank transform. If any X values are tied, their average rank is used for Rj. If X

is a continuous random variable, Fmid(X) ∼ Uniform(0, 1). This mid-distribution

concept is important for discrete distributions, specially for sample distribution func-

tions since sample distribution functions are discrete even though true distribution

functions are continuous. For the mid-distribution transform W = Fmid(X),

µmid = E
(
W

)
= 0.5

σ2
mid = V AR

(
W

)
= [1 − E

(
p2
F (X)

)
]/12. (3.6)

For equations in (3.6), there have been a few proofs and Parzen (2004) provides outline

of a simple proof. For the proof of equations in (3.6), we adopt Parzen’s approach.

For detail, see appendix A.

In practice, assume that we have a sample X1, · · · , Xm. Then we estimate Fmid(x)

from

Fmid
m (x) = Fm(x) − .5p∼F (x) (3.7)

where Fm(x) =
∑m

i=1 I(X ≤ x)/m and p∼F (x) = 1/m with no ties. If there are

ties, p∼F (x) =
∑m

t=1 I(Xt = x)/m. Specially in the two-sample frame, let Z1, · · · , ZN

be a pooled sample with a sample distribution function HN(z). Then, sample mid-

distribution can be computed by

Hmid
N (z) = HN(z) − .5p∼H(z). (3.8)
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where Hmid
N (z) =

∑N
t=1 I(Zt ≤ z)/N and p∼H(z) =

∑N
t=1 I(Zt = z)/N . With stress

data, we compute HN(z), p∼H(z), and Hmid
N (z) in Table 5.

3.2.2. Design of Score Functions

Let X be a variable with distribution function F . Then a score function ψ is defined

satisfying

E
(
ψ(X)

)
= 0,

V AR
(
ψ(X)

)
= 1 (3.9)

where expectation is taken with respect to a specific distribution of X. For discrete

F , we define orthonormal score functions which are based on ranks through mid-

distribution transform. By Gram-Schmidt orthonormalization, we derive orthogo-

nal polynomials, called mid-distribution score functions, recursively. Define w1(X),

φ1(X) and ψ1(X).

w1(X) = Fmid(X) − µmid,

φ1(X) = w1(X),

ψ1(X) =
φ1(X)√

〈φ1(X), φ1(X)〉
=
Fmid(X) − µmid

σmid
(3.10)

where 〈·, ·〉 is inner product of two functions, µmid = E
(
Fmid(X)

)
= 0.5 and σ2

mid =

V AR
(
Fmid(X)

)
which are defined in the previous subsection 3.2.1. For j = 2, 3, · · · ,

we have a recursive form

wj(X) = ψj1(X) − βj,

φj(X) = wj(X) −
j−1∑

i=1

〈φj(X), ψi(X)〉ψi(X),

ψj(X) =
φj(X)√

〈φj(X), φj(X)〉
(3.11)
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where βr = E[
(
(Fmid(X)− 0.5)/σmid

)r
]. A few terms of mid-distribution score func-

tions ψj(X) are derived as follows;

ψ0(X) = 1

ψ1(X) = (Fmid(X) − .5)/σmid

ψ2(X) =
[
(ψ2

1(X) − 1) − β3ψ1(X)
]
/a2

... (3.12)

where a2
2 = β4 − β2

3 − 1. Also, the equations in (3.9) are satisfied by the orthonor-

mality of ψ functions. In the two-sample work in practice, let Z1, Z2, · · · , ZN be a

pooled sample with a sample distribution HN(z). Then, the sample mid-distribution

is computed by equation (3.8). With the stress data, we compute mid-distribution

score functions up to order 4 by using the above recursive formula in equation(3.11).

Figure 8 shows a plot of each sample mid-distribution score function. The plots are on

the unit interval and plotting ψj
(
H−1
N

(
u)) for ui−1 < u < ui and H−1

N (ui) = zi. Prac-

tically we can verify the orthornormality of sample mid-distribution score functions

defined on the unit interval using stress data. See the Table 6.

3.2.3. Components

The usefulness of d(u;H,F ) comparing F andH arises from the fact that d(u;H,F ) =

1 iff H(y) = F (y). Thus one method to compare F and H can be based on a

comparison of d(u;H,F ) with the uniform density p0(u) = 1 when 0 ≤ u ≤ 1.

Eubank et al. (1987) gives the introduction of a measure of the disparity between

d(u;H,F ) and p0(u) and analysis of its component decomposition. Define the measure

using the squared L2[0, 1] norm of their differences

φ2 =‖ d− p0 ‖2=

∫ 1

0

d(u)2du− 1 (3.13)
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Let {ψi
(
H−1(u)

)
}∞i=1 be an orthonormal system for L2[0, 1] such that

d− p0 ∼
∞∑

j=1

θjψj
(
H−1(u)

)
(3.14)

where the θj’s are generalized Fourier coefficients.

θj =

∫ 1

0

(d(u) − 1)ψj
(
H−1(u)

)
du =

∫ 1

0

d(u)ψj
(
H−1(u)

)
du, j = 1, 2, · · · (3.15)

and ∼ is the usual Fourier series notation indicating
∑r

j=1 θjψj → d− p0 in L2[0, 1]

as r → ∞. By Parseval’s relation,

φ2 =

∞∑

j=1

θ2
j (3.16)

where θj’s are components of φ2. Thus, to test H0 : F = H is equivalent to test

H0 : φ2 = 0 or to test θj = 0 for all j ≥ 1 from equation (3.16). Since one cannot test

an infinite number of parameters, Eubank et al. (1987) suggest to test subhypotheses,

such as H0 : θj = 0 for j = 1, · · · ,M for a constant M . H0 : F = H should be rejected

if we can reject any of the subhypotheses θj = 0(j = 1, · · · ,M). To estimate θj, make

the change of variable x = H−1(u) in equation(3.15). Then,

θj =

∫ 1

0

d(u)ψj
(
H−1(u)

)
du

=

∫ 1

0

f
(
H−1(u)

)

h
(
H−1(u)

)ψj
(
H−1(u)

)
du

=

∫ ∞

−∞

f(x)

h(x)
ψj(x)h(x)dx

=

∫ ∞

−∞
ψj(x)f(x)dx

= Ef (ψj(x)) (3.17)
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Thus, given estimates Fm and HN for F and H, the estimate of θj is

θ∼j =

∫ ∞

−∞
ψj(x)dFm(x)

=

m∗∑

i=1

p∼F (x∗i )ψj(x
∗
i )

= EF (ψj(x)) (3.18)

where x∗i is the distinct value of the first sample Xi in the pooled sample of X and Y

and m∗ is the number of distinct values in the sample of X and p∼F (x∗i ) =
∑m∗

i=1 I(X =

x∗i )/m. To test H0 : θj = 0, we need to know asymptotic distribution of the individual

components. For that, the corollary of Eubank et al. (1987) is used, which is a variant

of the Chernoff-Savage theorem(Chernoff and Savage (1958)). Chernoff and Savage

(1958) define a rank statistic having the form

SN =

∫ ∞

−∞
JN

(
HN(x)

)
dFm

=
1

m

m∑

j=1

JN(Ri/N) (3.19)

where Ri is the rank of Xi in the pooled sample, JN is known as a score function,

and Fm and HN are sample distributions defined in Chapter II. Using the following

Chernoff-Savage approach, we demonstrate normality of θ∼j .

Theorem 3.1.(Chernoff and Savage, 1958). If J(u) is not constant and if |J (i)| ≤

K|u(1 − u)|−i−(1/2)+δ for i = 0, 1, 2 and some K and δ > 0, then for fixed and con-

tinuous F and G, one has SN is AN(µ, σ2
N ), where

µ =

∫
J
(
H(x)

)
dF (x) (3.20)
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and

Nσ2
N = 2(1 − λN){

∫∫

x<y

G(x)
(
1 −G(y)

)
J ′(H(x)

)
J ′(H(y)

)
dF (x)dF (y)

+
1 − λN
λN

∫∫

x<y

F (x)
(
1 − F (y)

)
J ′(H(x)

)
J ′(H(y)

)
dG(x)dG(y)} (3.21)

providing σN 6= 0.

The notation SN is AN(µ, σ2
N ) means that the distribution function of the random

variable (SN−mu)/σN converges pointwise to the distribution function of a standard

normal random variable. To find approximate values of the distribution function of

SN , one need only calculate the values of µ and σ2
N . In many practical circumstances,

the values of µ and σ2
N can be worked out. For an example, see Alexander (1989).

θ∼j ’s asymptotic distribution under the null hypothesis F = G or θj = 0, j =

1, 2, · · · is given in the following theorem.

Theorem 3.2. Under H0 : θj = 0, the asymptotic distribution of
√
Nθ∼j is N(0, σ2

j )

where

σ2
j =

1 − λ

λ

∫ 1

0

ψ2
j (H

−1(u))du =
1 − λ

λ
.

For the proof, see Alexander (1989). And σ2
j is estimated by

σ∼2
j =

1 − λN
λN

.

Then we find significant components by testing H0 : θj = 0, j = 1, · · · ,M through

standardization. Since we know the asymptotic distribution of θ∼j which is an estimate

of θj from Theorem 3.2, if the result of standardization is greater than 2(or 3) in

absolute value, we conclude that θj is not zero or significant(or very significant).

With stress data, we have θ∼j values up to order 4 and corresponding standardized
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values defined as Cj =
√
N(θ∼j )/σ∼

j

θ∼1 = −0.2367 σ∼
1 = 1

θ∼2 = 0.2456 σ∼
2 = 1

θ∼3 = −0.2591 σ∼
3 = 1

θ∼4 = −0.2088 σ∼
4 = 1

then,

C1 = −1.1102,

C2 = 1.1520,

C3 = −1.1253,

C4 = −0.9794.

Thus, one may be able to conclude that there are no significant components through

the test results. Therefore there is not enough evidence to reject H0 : θj = 0 for

j = 1, 2, 3, 4. This could mean that d(u;H,F ) is not different from p0(u) = 1 and we

could conclude that there is no significant evidence to reject H0 : F = G.

3.2.4. Exponential Model Approach and Comparison Density Estimation

The model discussed in this dissertation is motivated by the observation that the

logarithm of a probability function is often found to be a fairly well-behaved func-

tion and it is often convenient to work with it. In terms of density estimation, the

exponential model guarantees the nonnegativity of the density function which is an

essential property of a density function.

Our exponential model is formed using score functions which have largest compo-

nents instead of finding significant components through tests performed in the previ-



32

ous subsection 3.2.3. With selected components and corresponding mid-distribution

score functions, we form an exponential model estimator of comparison density func-

tion:

d∧(u; θ) = exp
(
θ∧0 +

∑

k∈C

θ∧kψk
(
H−1(u)

))
(3.22)

where C is a set of index of selected components. With stress data, we sort θ∼j values

in absolute value in descending order.

θ∼3 = −0.2591

θ∼2 = 0.2456

θ∼1 = −0.2367

θ∼4 = −0.2088

Then with the three two components, an exponential model estimator of is

d∧(u; θ) = exp
(
θ∧0 +

∑

C

θ∧kψk
(
H−1(u)

))
(3.23)

where C = {1, 2, 3}. Estimation of θ∧k will be discussed in 3.2.4.2.
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3.2.4.1. Maximum Entropy Interpretation of Exponential Model Approach

Our comparison density estimator using exponential model approach has a maximum

entropy interpretation in the sense that maximum entropy density estimation gives

the same form of estimator as exponential model estimator. However, our exponen-

tial model is different in the sense that we use orthonormal score functions as basis

functions and use significant terms.

Shannon’s measure of entropy was originally developed for a discrete distribution.

The entropy of a discrete distribution, denoted by HS(·) is defined

HS(p) = −
∑

x

p(x) log p(x) (3.24)

where p(x) is probability mass function. The notion of entropy for a continuous

distribution is formally defined by

HS(f) = −
∫ ∞

−∞
f(y) log f(y)dy (3.25)

with probability density function f(y). Another fundamental concept is cross-entropy

defined by

H(f ; g) =

∫ ∞

−∞

(
− log g(y)

)
f(y)dy (3.26)

A closely related concept is Kullback-Leibler’s information divergence I(f ; g) between

two probability density functions f(y) and g(y). The information divergence is defined

by

I(f : g) =

∫ ∞

−∞

(
− log

g(y)

f(y)

)
f(y)dy. (3.27)

Then one important property of I(f ; g) is

I(f ; g) ≥ 0 (3.28)

with equality if and only if f = g, which is called Shannon’s inequality.
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Figure 8. Sample mid-distribution score functions up to order 4 using stress data.

ψj
(
H−1
N

(
u)) for ui−1 < u < ui and H−1

N (ui) = zi.
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Exponential model for comparison density d(u;H,F ) has a form

log d(u;H,F ) =

K∑

j=1

θjψj
(
H−1(u)

)
− Ψ0(θ) (3.29)

where

Ψ0(θ) = log

∫ 1

0

e
∑K

j=1 θjψj

(
H−1(u)

)
du (3.30)

and θ = (θ1, · · · , θK).

Theorem 3.3. Among any comparison density d(u) satisfying the following con-

straints ∫ 1

0

ψj
(
H−1(u)

)
d(u)du = τj, j = 1, · · · ,M,

an exponential model d0(u) has maximum entropy.

proof:

I
(
d(u); d0(u)

)
=

∫ 1

0

(
− log

d0(u)

d(u)

)
d(u)du

=

∫ 1

0

(
− log d0(u)

)
d(u)du+

∫ 1

0

(
log d(u)

)
d(u)du

= HS

(
d(u); d0(u)

)
−HS

(
d(u)

)
(3.31)

H(d(u); d0(u)) =

∫ 1

0

(
− log d0(u)

)
d(u)du

=

∫ [
−

M∑

j=1

θjψj
(
H−1(u)

)
− Ψ0(θ)

]
d(u)du

= −Ψ0(θ) −
M∑

j=1

θjτj

= HS

(
d0(u)

)
(3.32)
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Thus,

I
(
d0(u); d(u)

)
= HS

(
d(u); d0(u)

)
−HS

(
d0(u)

)
≥ 0 by equation(3.28)

⇒ HS

(
d0(u)

)
≥ HS

(
d(u)

)
(3.33)

Therefore, an exponential model of comparison density function d(u) has maximum

entropy.

3.2.4.2. Estimation of Coefficients of An Exponential Model

To estimate coefficients of d∧(u) of equation (3.22), we adopt the method of moments.

The method of moments is a technique for constructing estimators that is based on

matching the sample moments with the corresponding distribution moments. Let

µ∼
k (θ) =

∫ 1

0

d∼(u)ψk
(
H−1(u)

)
du (3.34)

denote the kth sample moment where k = 1, 2, · · · , K. Next, let

µk(θ) =

∫ 1

0

d∧(u)ψk
(
H−1(u)

)
du (3.35)

denote the kth moment. To construct estimators of coefficients of exponential model,

we need to solve the set of simultaneous equations

µ∼
1 (θ) = µ1(θ),

µ∼
2 (θ) = µ2(θ),

...

µ∼
K(θ) = µK(θ). (3.36)
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Then equations in (3.36) can be rewritten by

Mk(θ) =

∫ 1

0

(
d∧(u) − d∼(u)

)
ψk

(
H−1(u)

)
du = 0, k = 1, 2, · · · , K, (3.37)

where θ = (θ1, · · · , θK)′ and those satisfying constraints Mk(θ) = 0 have a maximum

entropy interpretation from theorem 3.3. Assume we have 4 components θk, k =

1, 2, 3, 4. Then the solutions are updated according to the scheme from Newton-

Raphson method

θ(i+1) = θ(i) + ∆θi,

where i indicates the iteration number and ∆θ = (∆θ1,∆θ2,∆θ3,∆θ4)
′. We have the

Jacobian system with starting values θ
(0)
k , k = 1, 2, 3, 4.




∂M1(θ)
∂θ1

∂M1(θ)
∂θ2

∂M1(θ)
∂θ3

∂M1(θ)
∂θ4

∂M2(θ)
∂θ1

∂M2(θ)
∂θ2

∂M2(θ)
∂θ3

∂M2(θ)
∂θ4

∂M3(θ)
∂θ1

∂M3(θ)
∂θ2

∂M3(θ)
∂θ3

∂M3(θ)
∂θ4

∂M4(θ)
∂θ1

∂M4(θ)
∂θ2

∂M4(θ)
∂θ3

∂M4(θ)
∂θ4







∆θ1

∆θ2

∆θ3

∆θ4




= −




M1(θ)

M2(θ)

M3(θ)

M4(θ)




which is obtained by Taylor expansion with

∂Mk(θ)

∂θl
=

∫ 1

0

exp

[
θ0 +

4∑

j=1

θjψj
(
H−1(u)

)
]
ψk

(
H−1(u)

)
ψl

(
H−1(u)

)
du. (3.38)

In practice, initial values are computed from

θ
(0)
k =

m∗∑

i=1

p∼F (x∗i )ψj(x
∗
i ) k = 1, 2, 3, 4 (3.39)

which is from equation (3.18). Table 7 provides the result of Newton-Raphson it-

eration to estimate the components of exponential model using stress data. Three

components was chosen from subsection 3.2.4. Then, the estimated exponential model
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is

d∧(u; θ) = exp
(
−0.052−0.2171ψ1

(
H−1(u)

)
+0.0922ψ2

(
H−1(u)

)
−0.1862ψ3

(
H−1(u)

))
.

(3.40)

From the estimated coefficients, we could know that two distributions may be different

in the direction of 1st and 3rd score functions.

To check the goodness of fit of our exponential model, we compute a smooth

comparison distribution function and this wil be discussed in Chapter IV.
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Table 5

Sample mid-distribution function Hmid
N (z) : Hmid

N (z) = HN(z) − .5p∼H(z)

Blood pressure Rj HN p∼H(z) Hmid
N (z)

81.5 1 0.0455 0.0455 0.0227
81.7 2 0.0909 0.0455 0.0682
85.5 3 0.1364 0.0455 0.1136
87.1 4 0.1818 0.0455 0.1591
88.9 5 0.2273 0.0455 0.2045
89.4 6 0.2727 0.0455 0.2500
89.6 7 0.3182 0.0455 0.2955
89.9 8 0.3636 0.0455 0.3409

92.2(3) 10 0.5000 0.1364 0.4318
92.4 12 0.5455 0.0455 0.5227
92.7 13 0.5909 0.0455 0.5682
93.5 14 0.6364 0.0455 0.6136
94.6 15 0.6818 0.0455 0.6591
95.0 16 0.7273 0.0455 0.7045
95.4 17 0.7727 0.0455 0.7500
95.5 18 0.8182 0.0455 0.7955
96.4 19 0.8636 0.0455 0.8409
96.8 20 0.9091 0.0455 0.8864
97.0 21 0.9545 0.0455 0.9318
109.2 22 1.0000 0.0455 0.9773
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Table 6

Inner product of score functions to verify orthonormality with stress data

ψ1(H−1
N (u)) ψ2(H−1

N (u)) ψ3(H−1
N (u)) ψ4(H−1

N (u))
ψ1(H−1

N (u)) 1.000 -5.55-11e-017 4.9960e-016 -6.3838e-016
ψ2(H−1

N (u)) -5.55-11e-017 1.000 0 1.3045e-015
ψ3(H−1

N (u)) 4.9960e-016 0 1.000 0
ψ4(H−1

N (u)) -6.3838e-016 1.3045e-015 0 1.000

Table 7

θ∧j values up to order 3 through Newton-Raphson iteration with stress data

Iteration θ0 θ1 θ2 θ3

1 -0.1210 -0.2367 0.2456 -0.2591
2 -0.0667 -0.2354 0.1136 -0.2102
3 -0.0539 -0.2198 0.0949 -0.1896
4 -0.0522 -0.2174 0.0925 -0.1865
5 -0.0520 -0.2172 0.0923 -0.1862
6 -0.0520 -0.2171 0.0922 -0.1862
7 -0.0520 -0.2171 0.0922 -0.1862



41

CHAPTER IV

TWO-SAMPLE DATA ANALYSIS PROCEDURE

4.1. Introduction

In this chapter, we implement a two-sample data analysis procedure based on expo-

nential model approach introduced at Chapter III. Section 4.2 gives our two-sample

data analysis algorithm based on exponential model approach and to illustrate each

step, the stress dataset is used again.

4.2. Algorithm

Step 1: Combine two samples and arrange them in order. Estimate comparison

distribution D(u;H,F ) as D∼(uj;H,F )

D∼(uj;H,F ) = Fm
(
H−1
N (uj)

)
= Fm(zj)

=

m∑

t=1

I(Xt ≤ H−1
N (uj))/m.

(4.1)

As an estimate of D(u;H,F ), we use a P-P plot drawn by connecting points (0, 0),

(uj, D
∼(uj;H,F )), and (1, 1) where uj = HN(zj) called H-exact values for distinct zj

values in pooled sample and D∼(uj;H,F ) = Fm(H−1
N (uj)). If P-P plot is close to the

45 degree straight line, that implies F = H. However, since D∼(u;H,F ) is usually

very rough, it is not easy to make a conclusion. Thus, we need to estimate a smooth

comparison distribution D∧(u;H,F ). To estimate this, go to step 2. Figure 5 is a
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P-P plot using stress data.

Step 2: Compute mid-distribution score functions ψj
(
H−1
N (u)

)
.

At distinct values in the pooled sample, compute mid-distribution score functions

using Gram-Schmidt orthonormalization up to order 4. Use the recursive formula

in equations (3.10) and (3.11). Table 8 shows mid-distribution score functions using

stress data.

Step 3: Compute the estimated values of components θ∼j . Select largest θ∼j .

θ∼j =

m∗∑

i=1

p∼F (x∗i )ψj(x
∗
i ). (4.2)

which is defined at equation (3.18). Here m∗ is the number of distinct values x∗i from

the first sample. Select largest θ∼j values then form an exponential model in (3.22)

with selected θ∼j .

With stress data, θ∼3 = −0.2591, θ∼2 = 0.2456, θ∼1 = −0.2367 were selected. And

exponential model was formed in equation (3.23).

Step 4: Estimate coefficients of the exponential model.

Coefficients of the exponential model are estimated through Newton-Raphson itera-

tion scheme in section 3.2.4.2. Then the exponential model formed with estimated

components can be written as

d∧(u) = exp(θ∧0 +
∑

j∈C

θ∧j ψj(H
−1
N (u))) (4.3)
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where C is an index set of selected order. With stress data, exponential model with

estimated components is

d∧(u; θ) = exp
(
−0.052−0.2171ψ1

(
H−1(u)

)
+0.0922ψ2

(
H−1(u)

)
−0.1862ψ3

(
H−1(u)

))
.

(4.4)

given in equation (3.40). See Figure 9.

Step 5: Check the goodness of fit of estimated comparison density function

Check for goodness of fit is done using definition of comparison distribution. By inte-

grating estimated comparison density function d∧(u;H,F ), we can computeD∧(u;H,F ),

smooth comparison distribution function . Regarding stress data, see Figure 11. Also,

we add 95% bootstrap confidence interval to the plot of d∧(u) for better interpretation.

The confidence interval is computed through percentile method with 500 bootstrap

samples. See Figure 10.

4.3. Summary and Discussion: Stress Data

This data set was analyzed by Giampaoli and Singer (2004). Assuming normality

and homoscedasticity,

• The two-sample t-test with d.f. = 20 yields a p-value= 0.0595

• The Wilcoxon rank-sum test yields a p-value= 0.2929

According to these statistics, there is no sufficient evidence for rejection of the

null: mean blood pressure of subjects are the same under normal or stress conditions.

Usually most people stop their data analysis at this point. However, through our

two-sample data analysis procedure, we are able to find more features of the stress
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data. The control group is more likely to have lower blood pressure level than the

stress group does. This means that stress could have an effect on the level of blood

pressure. This finding is the opposite of the t-test or the Wilcoxon rank-sum test

results. And we could estimate smooth compatison distibution function with even

small sample sizes. Also, since we select three components(order 1,2, and 3), there

might be differences in the direction of the 1st,2nd and 3rd order score functions.
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Table 8

Score function value up to order 4 with stress data

X ψ1(H−1
N (u)) ψ2(H−1

N (u)) ψ3(H−1
N (u)) ψ4(H−1

N (u))
81.5 -1.6569 1.9515 -2.0031 1.9181
81.7 -1.4991 1.3952 -0.8530 0.0969
85.5 -1.3413 0.8945 0.0089 -0.9090
87.1 -1.1835 0.4494 0.6129 -1.2992
88.9 -1.0257 0.0600 0.9896 -1.2511
89.4 -0.8679 -0.2739 1.1691 -0.9202
89.6 -0.7101 -0.5522 1.1820 -0.4396
89.9 -0.5523 -0.7749 1.0586 0.0797
92.2 -0.2367 -1.0534 0.5241 0.9006
92.4 0.0789 -1.1096 -0.1912 1.0966
92.7 0.2367 -1.0543 -0.5408 0.9177
93.5 0.3945 -0.9434 -0.8445 0.5758
94.6 0.5523 -0.7768 -1.0719 0.1147
95.0 0.7101 -0.5547 -1.1927 -0.3995
95.4 0.8679 -0.2770 -1.1766 -0.8788
95.5 1.0257 0.0563 -0.9930 -1.2129
96.4 1.1835 0.4452 -0.6118 -1.2694
96.8 1.3413 0.8897 -0.0024 -0.8939
97.0 1.4991 1.3898 0.8654 0.0903
109.2 1.6569 1.9455 2.0221 1.8820
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Figure 9. d∧(u;H,F ) : Estimated comparison density function through exponential

model approach with stress data. The step function, the quartile density is added

to the graph to see how exponential model approach works. The quartile density is

defined for i = 1, 2, 3, 4 by dQk(u) = 4{D∼(
i(.25)

)
−D∼(

(i− 1)(.25)
)
}, (i− 1).25 <

u < i(.25). For lower value of blood pressure(u < 0.25), the comparison density is

greater than 1, indicating a great frequency of observations in control group.



47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5
d

∧
(u

;H
,F

)

u

Estimated Comparison Density Function

d∧ (u;H,F)

d∼ (u;H,F)
d

0
(u)=1

Figure 10. 95% bootstrap confidence interval of d∧(u;H,F ) : For better interpreta-

tion, bootstrap confidence interval is added and the confidence interval is computed

through percentile method with 500 bootstrap samples. Since the confidence inter-

val does not include uniform density d0(u), we conclude that the distributions of the

blood pressure level of two groups are different and stress does have an effect on blood

pressure level.
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Figure 11. D∧(u;H,F ) : Estimated comparison distribution function with stress

data. Since estimated comparison distribution function goes with D∼(u;H,F ) very

well, we conclude that our exponential model estimation is working properly.
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CHAPTER V

EXAMPLES AND APPLICATIONS

5.1. Introduction

The two-sample data analysis procedure derived in the Chapter IV is applied to

another example of real data. In the section 5.2, we provide basic information related

with the data set. In the section 5.3 before performing our analysis procedure, we

have a summary of explanatory analysis of the data which was done by Parzen (2004).

Then data analysis through exponential model approach will be performed in the

section 5.4.

5.2. Radon Cancer Data

To illustrate our new procedure of the two-sample data analysis, we consider a data set

from an article “Indoor radon and childhood cancer”(Wakefield and Kohler (1991))

which we call as radon cancer data. To study the effect of indoor radon concentration

to incidence of childhood cancer, a case-control study was done measuring indoor

radon concentrations over the same 3-month period in bedroom and living room of

children in the Wessex health region. The cases were composed of children with

cancer diagnosed within the previous 3 years and controls were matched for age and

area of residence. For the data set, see Table 9. The data have two independent

samples from cancer group and no-cancer group and researchers want to know how

indoor radon effects the incidence of childhood cancer. This is one of the typical two-

sample problems. Instead of testing the homogeneity of locations or scales, we will



50

Table 9

Radon concentration levels

Cancer Cancer Non-cancer Non-cancer
3 16 3(2) 12
5 16 3 12
6 17 5 13
7 18 6 14
8 18 6 17
9 18 7 17
9 20 7 21
10 21 7 21
10 21 8 24
10 22 8 24
11 22 8 29
11 23 9 29
11 23 9 29
11 27 9 29
12 33 9 33
13 34 11 39
13 38 11 55
15 39 11 55
15 45 11 85
15 57 11
16

extract more information from the data by testing H0 : F = H where F is continuous

distribution for the first group and H is pooled distribution. LetX1, · · · , X39(m = 39)

be a sample from no-cancer group with distribution function F , and Y1, · · · , Y41(n =

41) be a sample from cancer group with distribution function G and thus N = m+n =

80. Thus λ = m/N = 39/80 = 0.4875.
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5.3. Explanatory Data Analysis

Explanatory analysis of radon cancer data was performed by Parzen (2004). Parzen

provided the following conclusions on radon cancer data;

• Location parameter is greater in cancer houses than in non-cancer houses.

• Variability of radon in non-cancer houses is greater than that of radon in cancer

houses.

• Non-cancer homes radon has skew distribution and cancer homes radon has

symmetric distribution.

• Non-cancer houses radon is fitted by exponential distribution and cancer houses

radon is fitted by normal distribution with outliers.

Also, Parzen presented P-P plot of two sample distributions which estimate the

pooled comparison distribution D(u;H,F ). For the related plots and tables, see

Parzen (2004).

5.4. Two-sample Data Analysis Using Exponential Model Approach

In this section, our two-sample data analysis algorithm is applied to the radon cancer

data. For each step, we have corresponding interpretations too.

• Step 1: Combine two samples and arrange them in order. Estimate compari-

son distribution D(u;H,F ) by drawing a P-P plot. H-exact values for distinct

yj values is given in the Table 10. Figure 12 is the corresponding P-P plot.

Even though P-P plot seems to be close to the 45 degree straight line, since

D∼(u;H,F ) is usually very rough, we proceed to step 2.
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• Step 2: Compute mid-distribution score functions ψj up to order 4. To verify

the orthonormality of computed score functions, see Table 11 and Figure 13.

• Step 3: Compute the estimated values of components θ∼j .

θ∼1 = −0.1268,

θ∼2 = 0.2074,

θ∼3 = 0.0970,

θ∼4 = −0.0960.

We select the first and the second components to form an exponential model.

Also, a quadratic pattern from the Figure 14 supports our components selection.

• Step 4: Estimate coefficients of the exponential model through Newton-Raphson

iteration. Exponential model with estimated components is

d∧(u; θ) = exp
(
−0.0276 − 0.1841ψ1

(
H−1(u)

)
+ 0.1298ψ2

(
H−1(u)

))
. (5.1)

given in the equation (3.40). See Table 12 and Figure 15.

• Step 5: Check the goodness of fit of estimated comparison density function us-

ing definition of comparison distribution. By integrating estimated comparison

density function d∧(u;H,F ), we can compute D∧(u;H,F ), smooth comparison

distribution function . With stress data, see Figure 16. 95% bootstrap con-

fidence interval is added to the plot of d∧(u) for better interpretation. The

confidence interval is computed through percentile method with 500 bootstrap
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samples. See Figure 17.

5.5. Summary and Discussion: Radon Cancer Data

This data set was analyzed by Wakefield and Kohler (1991) and Parzen (2004) from

quite different views. Wakefield and Kohler (1991) concluded that there was no

significant difference between the mean indoor radon concentration levels for no-

cancer group and cancer group. However, Parzen (2004) pointed out the differences in

distributions between two groups as well as those in location and variability. Through

our two-sample data analysis procedure, we try to find more features of radon cancer

data. From Figure 15, we clearly see that no-cancer group is more likely to have lower

indoor radon concentration level than cancer group does. This means that indoor

radon concentration level could have an effect on incidence of childhood cancers.

And we could have this finding with even small sample sizes. Also, since we select

two components(order 1 and 2), there might be differences in direction of 1st and 2nd

order score functions which indicates differences in location and scale.
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Table 10

Sample pooled distribution function HN . The number in () means the number of

occurrences of the corresponding observation.

Radon concentration HN

3.00(3) 0.0375
5.00(2) 0.0625
6.00(3) 0.1000
7.00(4) 0.1500
8.00(4) 0.2000
9.00(6) 0.2750
10.00(3) 0.3125
11.00(9) 0.4250
12.00(3) 0.4625
13.00(3) 0.5000
14.00 0.5125

15.00(3) 0.5500
16.00(3) 0.5875
17.00(3) 0.6250
18.00(3) 0.6625
20.00 0.6750

21.00(4) 0.7250
22.00(2) 0.7500
23.00(2) 0.7750
24.00(2) 0.8000
27.00 0.8125

29.00(4) 0.8625
33.00(2) 0.8875
34.00 0.9000
38.00 0.9125

39.00(2) 0.9375
45.00 0.9500

55.00(2) 0.9750
57.00 0.9875
85.00 1.0000
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57

Table 11

Inner product of score functions to verify orthonormality with radon cancer data

ψ1(H−1
N (u)) ψ2(H−1

N (u)) ψ3(H−1
N (u)) ψ4(H−1

N (u))
ψ1(H−1

N (u)) 1 7.6328e-017 -1.2698e-015 3.8858e-016
ψ2(H−1

N (u)) 7.6328e-017 1 -4.0246e-016 -3.1919e-016
ψ3(H−1

N (u)) -1.2698e-015 -4.0246e-016 1 2.4564e-015
ψ4(H−1

N (u)) 3.8858e-016 -3.1919e-016 2.4564e-015 1



58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5
Sample Pooled Comparison Density Function

d
∼
(u

;H
,F

)

u

d∼ (u;H,F)
d

0
(u)=1

Figure 14. d∼(u;H.F ): Sample comparison density function with radon cancer

data.
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Table 12

θ∧j values up to order 2 through Newton-Raphson iteration with radon cancer data

Iteration θ0 θ1 θ2

1 -0.0320 -0.1268 0.2074
2 -0.0274 -0.1784 0.1366
3 -0.0276 -0.1841 0.1298
4 -0.0276 -0.1841 0.1298
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Figure 15. d∧(u;H,F ) : Estimated comparison density function through exponen-

tial model approach with two components with radon cancer data.
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Figure 16. D∧(u;H,F ) : Estimated comparison distribution function with radon

cancer data with 2 components. Since estimated comparison distribution function

goes with D∼(u;H,F ) very well, we conclude that our exponential model estimation

is working properly.
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Figure 17. 95% bootstrap confidence interval of d∧(u;H,F ) : For better interpreta-

tion, bootstrap confidence interval is added and the confidence interval is computed

through percentile method with 500 bootstrap samples. Since the confidence interval

does not include uniform density d0(u), we conclude that the distributions of the

radon concentration level of two groups are different and radon does have an effect

on childhood cancer incidence.
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5.6. Simulation Results

We apply our two-sample data analysis procedure to several cases to see how com-

parison distribution function and comparison density function behave and to find

structured interpretation rules. We have all 8 possible cases according to differences

in either locations or scales or distributions. For each case, we have probability func-

tions, estimated comparison density functions and comparison distribution functions.

Let X be a random variable. Then X ∼ Normal(µ, σ2) means that a random variable

X has a normal distribution with a density function

f(x) =
1√

2πσ2
exp

(
−(X − µ)2

2σ2

)
. (5.2)

where −∞ < x < ∞, E(X) = µ, and V ar(X) = σ2. In the same way, X ∼

Gamma(λ, γ) means that a random variable X has a gamma distribution with a

density function

f(x) =
λγ

Γ(γ)
xγ−1 exp(−λx) (5.3)

where x > 0, λ > 0 and γ > 0. And E(X) = γ/λ, and V ar(X) = γ/λ2. We generate

two-sample data using these two distributions and apply our exponential model ap-

proach to the generated data set. From each distribution, 100 samples are generated.

To represent two samples, we use two random variables X and Y . As a measure

of location and scale, we use mean(E(X)) and variance(V ar(X)) respectively. For

corresponding example for each case, see Table 13.
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Table 13

All possible cases according to differences in either locations or scales or

distributions. “0” means that there are no differences between two samples and “1”

means there are differences between two samples

Case number Locations Scales Distributions
1 0 0 0
2 0 0 1
3 0 1 0
4 1 0 0
5 0 1 1
6 1 0 1
7 1 1 0
8 1 1 1
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5.6.1. Case 1: Same Distributions, Same Locations, and Same Scales

In this case, we know that comparison density function is uniform distribution. Thus,

we omit the simulation result.

5.6.2. Case 2: Same Locations, Scales but Different Distributions

Let X ∼ N(1, 12) and Gamma(1, 1) with E(X) = E(Y ) = 1 and V ar(X) =

V ar(Y ) = 1 under different distributions. Figure 18, Figure 19 and Figure 20 are

plots of two density functions, d∧(u) and D∧(u) respectively.

5.6.3. Case 3: Same Locations, Different Scales and Same Distributions

Let X ∼ Normal(0, 52) and Y ∼ Normal(0, 12). Then E(X) = E(Y ) = 0 and

V ar(X) = 52 and V ar(Y ) = 12 under normal distribution. Figure 21, Figure 22 and

Figure 23 are plots of two density functions, d∧(u) and D∧(u) respectively.

5.6.4. Case 4: Different Locations, but Same Scales and Distributions

Let X ∼ Normal(0, 12) and Y ∼ Normal(3, 12). Then E(X) = 0 and E(Y ) = 3 and

V ar(X) = V ar(Y ) = 12 under normal distribution. Figure 24, Figure 25 and Figure

26 are plots of two density functions, d∧(u) and D∧(u) respectively.

5.6.5. Case 5: Same Locations, but Different Scales and Distributions

Let X ∼ N(2, 12) and Y ∼ Gamma(1, 2) with E(X) = E(Y ) = 2 and V ar(X) = 12

and V ar(Y ) = 2 under different distributions. We select 2nd,3rd and 4th order to

form an exponential model. Figure 27, Figure 28 and Figure 29 are plots of two

density functions, d∧(u) and D∧(u) respectively.
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5.6.6. Case 6: Different Locations, Same Scales and Different Distributions

Let X ∼ Normal(0,
√

2
2
) and Y ∼ Gamma(1, 2) with E(X) = 0, E(Y ) = 2 and

V ar(X) = V ar(Y ) = 2 under different distributions. Figure 30, Figure 31 and

Figure 32 are plots of two density functions, d∧(u) and D∧(u) respectively.

5.6.7. Case 7: Different Locations, Scales but Same Distributions

Let X ∼ Normal(0, 12) ,Y ∼ Normal(3, 22). Then, E(X) = 0, E(Y ) = 3 and

V ar(X) = 12 and V ar(Y ) = 22 under normal distribution. Figure 33, Figure 34 and

Figure 35 are plots of two density functions, d∧(u) and D∧(u) respectively.

5.6.8. Case 8: Different Locations, Scales and Distributions

Let X ∼ Normal(0, 12) and Y ∼ Gamma(2/3, 2). Then, E(X) = 0, E(Y ) = 3 and

V ar(X) = 1 and V ar(Y ) = 4.5 under different distributions. Figure 36, Figure 37

and Figure 38 are plots of two density functions, d∧(u) and D∧(u) respectively.

5.6.9. Summary and Discussion

As a measure of location and scale, we use mean and variance. And when we say the

difference in distribution, usually that is about differences in skewness and excess.

Thus we try to see how comparison density function and comparison distribution

function behave according to these features.

Figure 22 shows a case of difference only in distribution. If there is difference only

in location between two groups, estimated comparison density will show monotone

linear pattern( Figure 25). And if there is difference only in scale between two groups,

estimated comparison density will show symmetric quadratic pattern( Figure 25).

Case 4 and case 6 show similar patterns( Figure 25 and Figure 31) and both cases
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have differences in location and no differences in scale. That gives monotone linear

pattern to each case. Also, from Figure 32, we see difference in distribution through

asymmetry compared with Figure 26 which shows symmetry. Also, case 7 and case

8 show analogous patterns( Figure 34 and Figure 37) and both cases have differences

in location and scale. If we see Figure 33 and Figure 36, we can also see similarity.
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Figure 18. Case 2: Same locations, scales but different distributions: Probability

density functions of X ∼ Normal(1, 12) and Y ∼ Gamma(1, 1).



69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

d
∧
(u

;H
,F

)

u

Estimated Comparison Density Function

d∧ (u;H,F)

d∼ (u;H,F)
d

0
(u)=1

Figure 19. Case 2: Same locations, scales but different distributions: d∧(u;H,F ):

Estimated comparison density function with X ∼ Normal(1, 12) and Y ∼

Gamma(1, 1). 2nd and 3rd order score functions were selected(C = {2, 3}).
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Figure 20. Case 2: Same locations, scales but different distributions: D∧(u;H,F ):

Estimated comparison distribution function with X ∼ Normal(1, 12) and Y ∼

Gamma(1, 1).
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Figure 21. Case 3: Same locations, different scales and same distributions: Proba-

bility density functions of X ∼ Normal(0, 52) and Y ∼ Normal(0, 12).
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Figure 22. Case 3: Same locations, different scales and same distributions:

d∧(u;H,F ): Estimated comparison density function with X ∼ Normal(0, 52) and

Y ∼ Normal(0, 12). Only 2nd order score function was selected(C = {2}).
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Figure 23. Case 3: Same locations, different scales and same distributions:

D∧(u;H,F ): Estimated comparison distribution function with X ∼ Normal(0, 52)

and Y ∼ Normal(0, 12)
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Figure 24. Case 4: Different locations, but same scales and distributions: Probabil-

ity density functions of X ∼ Normal(0, 12) and Y ∼ Normal(3, 12).
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Figure 25. Case 4: Different locations, but same scales and distributions:

d∧(u;H,F ): Estimated comparison density function with X ∼ Normal(0, 12) and

Y ∼ Normal(3, 12). Only 1st order component was selected(C = {1}).
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Figure 26. Case 4: Different locations, but same scales and distributions:

D∧(u;H,F ): Estimated comparison distribution function with X ∼ Normal(0, 12)

and Y ∼ Normal(3, 12)
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Figure 27. Case 5: Same locations, but different scales and distributions: Probabil-

ity density functions of X ∼ Normal(2, 12) and Y ∼ Gamma(1, 2).
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Figure 28. Case 5: Same locations, but different scales and distributions:

d∧(u;H,F ): Estimated comparison density function with X ∼ Normal(2, 12) and

Y ∼ Gamma(1, 2). 2nd, 3rd, and 4th order score functions were selected(C =

{2, 3, 4}).
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Figure 29. Case 5: Same locations, but different scales and distributions:

D∧(u;H,F ): Estimated comparison distribution function with X ∼ Normal(0, 12)

and Y ∼ Normal(3, 12)
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Figure 30. Case 6: Different locations, same scales and different distributions:

Probability density functions of X ∼ Normal(0,
√

2
2
) and Y ∼ Gamma(1, 2).
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Figure 31. Case 6: Different locations, same scales and different distributions:

d∧(u;H,F ): Estimated comparison density function with X ∼ Normal(0,
√

2
2
) and

Y ∼ Gamma(1, 2). 1st and 2nd order score functions were selected(C = {1, 2}).
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Figure 32. Case 6: Different locations, same scales and different distributions:

D∧(u;H,F ): Estimated comparison distribution function with X ∼ Normal(0,
√

2
2
)

and Y ∼ Gamma(1, 2)
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Figure 33. Case 7: Different locations, scales but same distributions: Probability

density functions of X ∼ Normal(0, 12) and Y ∼ Normal(3, 22).
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Figure 34. Case 7: Different locations, scales but same distributions: d∧(u;H,F ):

Estimated comparison density function with X ∼ Normal(0, 12) and Y ∼

Normal(3, 22). 1st and 3rd order score functions were selected(C = {1, 3}).
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Figure 35. Case 7: Different locations, scales but same distributions: D∧(u;H,F ):

Estimated comparison distribution function with X ∼ Normal(0, 12) and Y ∼

Normal(3, 22)
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Figure 36. Case 8: Different locations, scales and distributions: Probability density

functions of X ∼ Normal(0, 12) and Y ∼ Gamma(2/3, 2).
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Figure 37. Case 8: Different locations, scales and distributions: d∧(u;H,F ):

Estimated comparison density function with X ∼ Normal(0, 12) and Y ∼

Gamma(2/3, 2). 1st and 3rd order score functions were selected(C = {1, 3}).
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Figure 38. Case 8: Different locations, scales and distributions: D∧(u;H,F ):

Estimated comparison distribution function with X ∼ Normal(0, 5) and Y ∼

Gamma(2/3, 2)



89

CHAPTER VI

CONCLUSION

6.1. Concluding Remarks

This study has aimed to discuss two-sample problem and expand the traditional two-

sample data analysis. A goal of this work is to propose a two-sample data analysis

procedure which is more graphical and interactive. Also, this work has sought to find

a mode of analysis which provides a deeper understanding of the relation of the two

populations under study.

Our exponential model approach has several desirable features that a procedure

should have. It was desired to make almost no assumptions about the distribution

functions of the two populations. Also it was desired to estimate the relation of distri-

bution functions of the two populations when H0 is rejected. In forming exponential

model, it was desired to avoid doing significance test to select the significant compo-

nents. Finally, it was desired to have a smooth comparison distribution function.

While reviewing existing methodologies, it was seen that the comparison density

is an important object related to several of these goals. The comparison density

can be used as a way of testing the homogeneity of two distribution(Under H0, the

comparison density is uniform.) and as a likelihood ratio of the density of the first

sample to that of the pooled sample. Thus estimation of the comparison density is

useful in the sense that it can be tested for uniformity and it serves as an estimate of

the relation of the densities of two samples.
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6.2. Problems for Future Study

This research has a main concern in univariate two-sample data analysis. Our future

work will include

• ROC curve estimation in univariate two-sample case,

• Bivariate two-sample data analysis procedure development.

The unpooled comparison distribution function is an ordinal dominance curve(ODC)

used in the evaluation of the performance of medical tests for separating two groups.

And there is a relationship between ODC and receiver operating characteristic curve(ROC)

such as ROC(u) = 1 − ODC(1 − u). There have been not many researches related

with estimation of ROC curve. Zou et al. (1997) and Lloyd (1998) proposed a smooth

kernel estimator of ROC curve. And Lloyd (2002) presented a method of comput-

ing the maximum likelihood estimator of ROC curve assuming convexity. We will

examine the estimation of ROC curve using our exponential model approach.

As a natural extention of univariate two-sample problem, we will examine bivariate

two-sample problem through exponential model approach. Parzen (2004) gave a brief

sketch of the concepts of bivariate comparison density, called dependence density ,

score functions and components. We will study each concept in detail and develop a

bivariate two-sample data analysis procedure.
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APPENDIX A

PROOFS

• Some properties of Comparison Density Function

From the definition of the pooled comparison distribution function,

H(y) = λF (y) + (1 − λ)G(y)

⇒ H(QH(u)) = λF (QH(u)) + (1 − λ)G(QH(u))

(A.1)

After differentiating,

h(QH(y)) = λf(QH(u)) + (1 − λ)g(QH(u))

⇒ h(QH(u))

f(QH(u))
= λ+ (1 − λ)

g(QH(u))

f(QH(u))

⇒ 1

d(u)
= λ+ (1 − λ)

g(QH(u))

f(QH(u))

⇒ d(u) =
1

λ+ (1 − λ) g(QH(u))
f(QH(u))

=
f(QH(u))

λ+ (1 − λ)g(GH(u))
(A.2)

Then from A.2, we conclude that d(u) → 0 if f → 0 and d(u) → 1/λ if g → 0. Also,

max u d(u) = max u




1

λ + (1 − λ)
g
(
QH(u)

)

f
(
QH(u)

)


 =

1

λ
(A.3)

when g
(
QH(u)

)
/f

(
QH(u)

)
has minimum value 0. Since d(u) is a density function,

d(u) ≥ 0.

• Mean and Variance of mid-distribution transform
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For the mid-distribution transform W = Fmid(Y ) defined in section 3.2.1,

µmid = E
(
W

)
= 0.5

σ2
mid = V AR

(
W

)
= [1 − E

(
p2(Y )

)
]/12. (A.4)

Proof : Let Y have values yj with probability pj(j = 1, · · · , n), uj = p1 + · · · + pj,

umidj = uj − .5pj, u0 = 0 and u1 = 1. First, verify the following equations.

(u2
j − u2

j−1)

2
= pju

mid
j ,

(u3
j − u3

j−1)

3
=

pj(u
2
j + ujuj−1 + u2

j−1

3
= pj‖umidj ‖2 +

p3
j

12
. (A.5)

(A.6)

u2
j − u2

j−1

2
=

(uj + uj+1)(uj − uj+1)

2

=

(
2(p1 + · · ·+ pj−1) + pj)

)
pj

2

= uj−1pj + .5p2
j

= ujpj + .5p2
j − p2

j

= ujpj − .5p2
j

= (uj − .5pj)pj

= umidj pj. (A.7)

u3
j − u3

j−1

3
=

pj(u
2
j + ujuj−1 + u2

j−1)

3

=
pj

(
(2uj − pj)

2 − uj(uj − pj)
)

3

=
pj(2uj − pj)

2 − pj(uj − pj/2)2 + p3
j/4

3

= pj‖umidj ‖2 +
p3
j

12
. (A.8)



97

By using equations A.6,

E
(
W

)
=

n∑

j=1

p(yj)F
mid(yj)

=
n∑

j=1

u2
j − u2

j−1

2

=
1

2
V ar(U) − u0

2
+
u1

2
− 1

2
V ar(U)

= .5 (A.9)

V AR
(
W

)
=

n∑

j=1

pj
(
Fmid(yj) − .5

)2

=
n∑

j=1

pj‖umidj ‖2 − 1

2
+

1

4

=

n∑

j=1

u3
j − u3

j−1

3
−

n∑

j=1

p3
j

12
− 1

4

=
1

3

n∑

j=1

u3
j −

1

3

n∑

j=1

u3
j −

u0

3
+
un
3

−
E

(
p(y)2

)

12
− 1

4

=
1

3
− 1

4
−
E

(
p(y)2

)

12

=
1

12

[
1 − E

(
p(y)2

)]
. (A.10)

• Relationship between θ1 and Wilcoxon’s rank sum statistic

To compute Wilcoxon’s rank-sum test statistic, combine two samples into a single

ordered sample and then assign ranks to sample values. Let R1(i) and R2(j) denote

ranks assigned to each sample. Wilcoxon test statistic is defined as follows;

Tk =
Wk − E(Wk)√

V ar(Wk)
(A.11)

where k = 1, 2 and nk is number of observations in kth population(followed by previ-

ous section, n1 = m and n2 = n), and Wk =
∑nk

i=1Rk(i), E(Wk) = nk(N + 1)/2 and
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V ar(Wk) = mn(N + 1)/12. From the equation(A.11),

T1 =
W1 − m(N+1)

2√
mn(N+1)

12

=

[
12(N − 1)λN

(1 − λN)

].5
(R−

1 − .5)

=

[
12(N − 1)λN

(1 − λN)
σ2
mid

].5
θ1 (A.12)

where λN = m/N and defining

R−
1 = (1/m)

m∑

t=1

(R1(t) − .5)/N

=
W1

mN
− 1

2N
. (A.13)



99

VITA

Sujung Choi was born in Pusan, on February 4, 1973. She is a daughter of Seung-

Nam Choi and Shinja Lee. She graduated from the Yonsei University, Seoul with

a Bachelor of Arts degree in Statistics in 1996 and with a Master of Arts degree in

Statistics in 1998. Her permanent address is Evergreen Oscarville 102-1701, Yang-San

Dong, Osan City, Kyoungki Province, Korea.


