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ABSTRACT 

Role of MMP2, MMP3 and MMP9 in the Development of Breast Cancer Brain 

and Lung Metastasis in a Syngeneic Rat Model. 

(August 2005) 

Odete Rodrigues Mendes, 

B.S., Universidade of Lisbon 

Chair of Advisory Committee: Dr. Gheorghe Stoica 
 
 
 

In order to study the expression of MMP2, MMP 3 and MMP9 in breast cancer 

brain and lung metastasis, we used a syngeneic rat model of distant metastasis of 

ENU1564, a carcinogen-induced mammary adenocarcinoma cell line. At six weeks post 

inoculation we observed development of micro-metastasis in the brain and lung. 

Immunohistochemistry and Western blotting analyses showed that MMP 2, -3 and -9 

protein expression is consistently significantly higher in neoplastic brain tissue compared 

to normal brain tissue. Lung metastases express abundant MMP2, -3 and -9 in neoplastic 

cell cytoplasm. In situ zymography revealed gelatinase activity within the brain 

metastasis. Gel zymography showed an increase in MMP2 and MMP3 activity in brain 

metastasis. Furthermore, we were able to significantly decrease the development of breast 

cancer brain and lung metastasis in animals by treatment with PD 166793, a selective 

synthetic MMP inhibitor. In addition, PD 166793 decreased the in vitro invasive cell 

behavior of ENU1546. TIMP2 overexpression also decreased the development of breast 

cancer lung metastasis in our model. Our results suggest that MMP2, -3 and -9 may be 
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involved in the process of metastasis of breast cancer to the brain and lung.  

Because astrocytes have been associated with breast cancer brain metastasis we 

evaluated the role of astrocytes and ERK2 pathway in MMP2 up-regulation in BC brain 

metastasis. A significant decrease in brain metastases development, and orthotopic tumor 

size and weight were observed in animals inoculated with ENU1564-TIMP2 cells. These 

were associated with decreased MMP2 activity, as demonstrated by gel zymography. Rat 

astrocyte-conditioned media increased expression of MMP2 in ENU15645 cells and 

increased in vitro cell invasion of ENU1564 and ENU1564-TIMP2 cells. Blockage of 

ERK1/2 phosphorylation by treatment with PD98059 decreased the expression of MMP2 

in cancer cells grown in rat astrocyte-conditioned media. We determine that MMP2 plays 

a role in in vivo development of breast cancer brain metastases. Additionally, we conclude 

that astrocytes are associated with expression of MMP2 in cancer cells via ERK1/2 

signaling pathway.  
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CHAPTER I 

INTRODUCTION 

 

 

Overview on matrix metalloproteinases 

Matrix metalloproteinases (MMP) are structurally related endopeptidases that have 

multiple biological roles including the degradation of the extracellular matrix (ECM). 

Physiologically these enzymes play a role in normal tissue remodeling as well as in 

angiogenesis and mammary gland involution. They belong to a family of 23 gene products, 

which encode for zinc-dependent and calcium dependent proteases that are endopeptidases 

[1]. There are also two other large families of proteases that have major roles in 

extracellular proteolysis, the ADAM family (a disintegrin and metalloproteinase domain, 

with about 33 members in humans) and the ADAMTS family (a disintegrin-like and 

metalloproteinase domain (reprolysin type) with thrombospondin type I repeats, with about 

19 members in humans).  

Numerous classifications of MMPs can be made. Based on their solulibity they can 

be divided in two major groups.  

 

 

 

This dissertation follows the style of Clinical & Experimental Metastasis. 
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(1)Soluble type MMPs; include collagenases, stromelysins, gelatinases and 

matrilysins. (2) Membrane-anchored metalloproteinases; include Type II and type II types. 

They can also be classified according to their substrates. They are known to degrade 

a large array of substrates such as Collagens (C), Fibronectin (FN), Cartilage oligomeric 

protein (COMP), Laminin (LN) and Proteoglycan (PG) [2] (Table 1). 

MMP regulation occurs at multiple levels that include transcription, activation of 

zymogen forms, and activity of extracellular inhibitors [1]. There is moderate variation in 

the protein structure of MMPs. Metalloproteinases are composed by a pre-catalytic, a pro-

catalytic domain, a fibronectin-like domain, a domain for binding to zinc and a homeopexin 

domain (Figure 1). 

 
 
 

 

 

Figure 1. Domain structure of MMP proteins. 

 
 

 
These enzymes depend on zinc for catalytic activity [3]. The presence of the pro-

domain keeps the enzyme inactive. In order to be activated a cystein residue that inactivates 

ligand binding to the zinc catalytic site must be removed. This can be done by 
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conformational change or proteolysis accomplished by plasmin or other MMPs. MMP 

zymogens can be activated by themselves; for instance MT1-MMP activates MMP2 and 

requires TIMP2 binding to its active site in order to do so [4]. Inactivation of MMPs can 

occur by direct interaction with tissue inhibitors of MMPs (TIMPs), alpha 2 macroglobolin 

and other molecules such as pro-collagen C-proteinase enhancer [5]. 

MMPs are responsible for the turnover of the ECM that is rich in growth factors and 

other bioactive molecules and in this way contribute to numerous physiological and 

pathologic processes. Matrix metalloproteinases have multiple important roles in cancer 

development.  

(1) MMPs cause tumor cell initiation and growth. MMP3 has pre-neoplastic activity 

 and is correlated in cancer cell malignant phenotype.  

(2) MMPs are crucial in degradation of basement membrane and extra cellular 

matrix that are fundamental for cancer cell invasion, and metastasis establishment 

(Figure 2). 

(3) MMPs are related to tumor angiogenesis. MMP2 is responsible for laminin-5 

degradation.  

(4) MMPs are associated with breast physiological development in which MMP9 

stimulates increased cell proliferation, branching and morphogenesis by TNFα [7]. 

(5) MMP9 is also important for cancer cell migration and it cooperates with αvβ3 

integrin [8]. 
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Table 1. MMP classification. 
Protein MMP MW 

(kDa) 
Substrate(s) 

Soluble Type    
Collagenase    

Collagenase 1 MMP1 52/41 C-II, II, III, X 
Collagenase 2 MMP8 5/64 C-I, II, III 
Collagenase 3 MMP13 65/55 C-I, II, IV, X, XIV, FN, aggrecan, 

tenascin 
Stromelysin    

Stromelysin 1 MMP3 57/45,28 PG, FN, C-III, IV, VII, IX, Gelatin, 
LN 

Stromelysin 2 MMP10 56/47,24 C-III, IV, V, gelatin, PG, FN 
Gelatinase    

Gelatinase A MMP2 72/67 Gelatin, C-IV, FN, PG, LN 
Gelatinase B MMP9 92/67 Gelatin, C-III, IV, V, elastin  

Matrylisin    
Matrylisin 1 MMP7 28/19 Gelatin, C-IV, FN, PG, LN 
Matrylisin 2 MMP26 29/19 Gelatin, C-IV, FN, fibrinogen 

Others    
Stromelysin 3 MMP11 58/28 Gelatin, PG, LN, FN 
Epilysin MMP28 56/45 Casein 
Not named MMP19 57 Gelatin, aggrecan, COMP, LN, 

nidogen, tenascin, C-IV, FN 
Matalloelastase MMP12 54/45,22 Elastin 
Enamelysin MMP20 54/43 Amelogenin, aggrecan, COMP, FN, 

CIV, LN 
Membrane-anchored  

 
Type I transmem- 

brane-type 

   

MT1-MMP MMP14 66/60 C I, II, III, gelatin, PG, FN 
MT2-MMP MMP15 68/62 FN, aggrecan, nidogen, tenascin, 

perlecan, LN 
MT3-MMP MMP16 64/55 C-III, FN, gelatin 
MT5-MMP MMP24 73/64 PG 

GPI-type    
MT4-MMP MMP14 71/67 Fibrin, fibrinogen 
MT6-MMP MMP25 62/58 Gelatin 

Type II transmem- 
brane-type 

   

Cystine-array-
MMP 

MMP23 66 Gelatin 
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Figure 2. MMPs role in cancer cell extravasation from blood vessel, cancer cell migration 

and establishment of metastatic foci. 

 
 
 

(6) MMPs are correlated with cell proliferation. They release growth factors that are 

important for cancer and mammary gland cell multiplication.  

(7) MMPs are important in apoptosis. They are reported to initiate apoptosis by 

causing loss of contact of cells to the basement membrane. TIMP1 and TIMP2 are 

thought to decrease apoptosis [3, 6].  
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Because of these and other functions MMPs are extensively correlated with breast 

cancer prognosis, cancer invasion and presence of metastasis. MMP2 and MMP9 are the 

two MMPs that are more frequently associated with breast cancer (BC) invasion and poor 

prognosis [6, 9, 10, 11, 12, 13, 14, 15, 16, 17,]. The role of these proteins is however in 

constant scrutiny and there are reports that contradict the association of MMPs in BC 

prognosis [12, 18]. 

 

 

Animal model  

Different animal models have been used for in vivo study of the role of MMPs in 

the development of cancer. Most of these studies describe lung, bone and/or node 

metastasis and are usually concurrent with the studies conducted on human patients that 

correlated MMPs with increased tumor invasion and metastatic behavior [10, 19, 20]. 

Several models have also been used to study metastatic disease. Most utilize 

immunocompromised animals, such as nude mice, that usually develop metastasis in the 

bone, lung and liver [21, 22]. These models do not consider the importance of the immune 

system in cancer development and its relevance to the development of metastatic disease. 

Transgenic models have also been used in the study of multiple cancer pathways [23, 24, 

25, 26, 27]. We use a syngeneic model to study distant metastasis of breast cancer. The 

ENU1564 cell line used in our study is a highly metastatic breast cancer cell line originated 

from a N-ethyl-N-nitrosourea (ENU) induced mammary adenocarcinoma in a female 

Berlin-Druckrey IV (BD-IV) rat (Figure 3).  
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Figure 3. N-ethyl Nitrosurea (ENU) chemical structure. 

 
 
 
ENU is a carcinogenic substance that acts as a specific alkylating agent of DNA and 

RNA nucleotide bases [28]. It has high affinity for oxygen causing frequent alkylations of 

the 2’-O ring in DNA phosphodiesteres and 2’-O of RNA riboses. [29]. All 2’-O from 

DNA bases can react with ENU and ring OH is also susceptible to ENU ethylation [30]. 

Additionally, ethylation can also occur in a ring N position. Ethylation of 7’-N causes rapid 

depurination and subsequent DNA chain breakage. Alkylation of 4’-O of uridine or 

thymidine causes mispairing. Alkylation of 2’-O causes depyrimidiazation and possible 

deletion [31]. In vivo the bases that are more susceptible to ethylation are thymidine and 

guanidine, followed by cytosine [32, 33, 34] (Figure 4). 
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Figure 4. DNA and RNA base alkylation sites by N-ethyl Nitrosurea. 

 
 
 
In studies described here syngeneic, 40 day old BD-IV rats are inoculated with 

1x104 ENU 1564 cells via left ventricle, they develop widespread colonization of breast 

cancer cells in numerous tissues such as bone, lung, kidney and brain (Figure 5).  
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    Figure 5. Histology of metastatic foci in ENU-BC IV rat metastatic model. a) Presence 

of metastatic tumor along long bone growth plate; b) mammary gland orthotopic tumor 

development; c) aspect of lung metastatic tumor; d) presence of kidney metastasis. 

 
 
 

The metastasis cell morphology varies in different organs. Variations in the amount 

of necrosis, stroma and inflammation were also observed at different metastatic locations. 

The organ with the higher metastasis number is the lung. No metastases were identified in 

the digestive tube or liver (Figure 6). 
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Figure 6. Characterization of tumor distribution in the different metastatic sites. Evaluation 

of histological characteristics including, tumor number, tumor size, amount of tumor 

stroma, presence of intratumoral inflammation  and presence of intratumoral necrosis. 

 
 
 
Since metastases were observed with regularity in the brain and bone (please see 

chapter II for distribution) our system was considered to be a reliable model for the study 

of distant breast cancer metastasis. In our experiments we also reproduced local mammary 

tumors by orthotopic inoculation of tumor cells in the inguinal mammary fat pad (Figure 

5) resulting in local tumor growth of orthotopic tumor. Orthotopic tumors have multifocal 



 11

areas of necrosis, marked stromal desmoplastic response and moderate to marked 

inflammation (Figure 7). 

 
 
 

 
 Figure 7. Evaluation of histological characteristics or mammary gland orthotopic tumor 

(including, tumor number, tumor size, amount of tumor stroma, presence of intratumoral 

inflammation  and presence of intratumoral necrosis). 

 
 
 

This is in contrast with the metastatic foci observed in the brain. Brain metastatic 

foci have absence of necrosis, inflammation and stromal response (Figure 8). 
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Figure 8. Evaluation of histological characteristics of brain metastatic tumor (including, 

tumor number, tumor size, amount of tumor stroma, presence of intratumoral inflammation 

and presence of intratumoral necrosis). 

 
 
 
Our model was also considered to be appropriate to study MMP expression in 

breast cancer metastasis in vivo. Immunohistochemistry was performed on paraffin sections 

in order to determine whether neoplastic cells expressed MMPs. We evaluated 
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immunohistochemical staining for MMP2, -3 and -9 in all metastatic sites evaluated as well 

as in the orthotopic mammary tumor (Figure 9). 

 
 
 

 
Figure 9. Immunohistochemical detection of MMP2, -3 and –9 in mammary gland 

orthotopic tumor. 
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MMP localization in tumors 

The morphological localization of MMPs intratumoral in breast cancer has been the 

subject of numerous studies.  Different studies have sometime-contradictory data on the 

location of MMPs. Some co-localize MMP with neoplastic epithelial cells whereas others 

associated them with different components of the neoplastic stroma. Therefore, according 

to some reports, MMP2 can be observed in stromal tumor fibroblasts and well-

differentiated invasive cancer cells [35] in the neoplastic cell plasma membrane in 

peritumor stromal cells [36] and/or angiogenic blood vessels [37]. MMP-9 has been 

associated with neoplastic cell plasma membrane, non-neoplastic ducts and acini, epithelial 

cells and macrophages, stromal fibroblasts and endothelial cells, tumor-infiltrating stromal 

cells, including neutrophils, macrophages, and vascular pericytes. Expression for MMP-3 

was observed both in tumor and stroma cells. Normal breast epithelia were weakly positive 

for MMP-3-mRNA [5]. Tumor cells and peritumor stroma showed low MMP-3 transcript 

levels, especially in medullary carcinomas. There is therefore a need to determine the exact 

location of MMPs in the different types of cells that compose the tumor in order to 

understand more about the way MMPs influence the invasive and metastatic process.  

We observed staining for MMP2, -3 and -9 in the cytoplasm of neoplastic epithelial 

cells in all neoplastic sites evaluated (mammary gland, lung, omentum, pancreas, heart, 

kidney and brain). MMP 2 and MMP 9 also stained stromal fibroblasts. Staining was also 

observed normal epithelium and macrophages within metastatic foci.  
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MMPs and tumor stroma interaction 

Tumor environment is very important for expression and activities of MMPs. For 

instance IL12, a cytokine observed in the extracellular matrix, can enhance the activity of 

MMPs [38]. In the tumor cell-cell interactions, pericellular environment and products of 

degradation of the extracellular matrix are important for MMP production and activation 

[39]. Tumor cells also interact with stromal cells or cell-bound factors that stimulate the 

production of MMPs. Among these factors, extracellular matrix metalloproteinase inducer 

(EMMPRIN) stimulates in vitro production of MMPs. EMMPRIN is present at the surface 

of both tumor epithelial and peritumoral stromal cells. Stromal cells do not expressed 

EMMPRIN, but this molecule is bound to stromal cells via a superficial specific receptor. 

[36, 40] (Figure 10).  

MMP3 and MMP2 are expressed predominately in peritumoral fibroblasts [5, 35]. 

MT-MMP1 is produced in fibroblasts and is a major activator of MMP2 this suggests that 

the stroma component is fundamental for MMP production. MT1-MMP is anchored to the 

cell surface and acts as a receptor for TIMP2 that binds to MT1-MMP through his N-

terminal domain. This binary complex acts then as a receptor for pro-MMP2. TIMP2 C- 

terminal binds to pro-MMP2 and MT1-MMP cleaves then pro-MMP2 causing the 

formation of an intermediate species (Figure 11).  
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Figure 10. Effects of EMMPRIN in MMP secretion, activity and tumor cell and stroma cell 

interaction. 
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Figure 11. Role of MT1-MMP and TIMP2 in MMP2 activation. 

 
 
 
Stromal fibroblasts at the tumor invasion front are thought to produce the bulk of 

MMP2. Tumor cells usually express low constitutive levels of MMP2. Stromal cells have 

strong but short induction of MMP2 [39]. This very high and complex regulation of the 

expression of MMPs represents a host response to the tumor and neoplastic cell interaction 

with the tumor stromal component is fundamental for cancer invasion and metastasis. 
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Overview on tissue inhibitors of MMPs  

The activities of MMPs are in part influenced by the presence of tissue inhibitors of 

metalloproteinases (TIMPs). An increase in the amount of TIMPs relative to MMPs could 

function to block tumor cell invasion and metastasis. In fact, tumor cell invasion and 

metastasis can be inhibited by up-regulation of TIMP expression or by an exogenous 

supply of TIMPs. Inhibition of both MMPs and osteoclastic bone resorption could be 

efficacious treatment for prevention of osteolytic bone metastases [19]. Four homologous 

TIMPs have been characterized so far, TIMP1-4. They are low molecular weight proteins 

that bind to active MMPs in a 1:1 molar ratio, and form non-covalent tight complexes with 

them [40, 41].  

 (I) TIMP1 can inhibit tumor growth, invasion, and metastasis in experimental 

models and it also exhibits growth factor-like activity and can inhibit angiogenesis [42]. 

Alternatively, down-regulations of TIMP1 have been reported to contribute significantly to 

the tumorigenic and invasive potentials. In addition to inhibiting tumor cell invasion and 

metastasis, overexpression of TIMPs in tumor cells also inhibits primary tumor growth 

[43]. Paradoxically, over-expression of TIMP1 appears to confer growth advantage on 

breast carcinoma cells in vivo. Node-positive patients showed significantly higher TIMP1 

mRNA and antigen concentrations than those who were node negative, and patients co-

expressing high levels of TIMP1 mRNA within the tumors had worse survival prognosis 

[44].  

 (II) TIMP 2 has been recognized as an adaptor protein that activates pro-MMP-2. 

Enhanced TIMP2 expression may denote a stromal response to tumor invasion, indicative 
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of aggressive behavior in a subset of breast carcinomas. The role of TIMP2 in MMP2 

activation is still under intense scrutiny. It is thought that the intermediate form of MMP2 

forms a complex with MT-MMP1 and TIMP2. There is binding with MMP2 at the level of 

its homeopexin domain. This can be regarded as the first step of MMP2 activation. MT-

MMP1 acts as a receptor for TIMP2, where the binary complex acts as a receptor for por-

MMP2. Cleavage at Asb37-Lau 38 occurs and an intermediate active species is formed. 

Optimal TIMP2 levels are required for efficient pro-MMP2 activation [45]. There is 

also an independent way of activation of MMP2 that does not require TIMP2 [4]. Studies 

in cancer from human patients usually correlated the presence of TIMP2 with an increase in 

MMP expression and therefore worse prognosis [4, 46, 47, 48]. Multiple studies have been 

conducted of the role of TIMP2 in breast cancer. Experimental reports of in vivo conditions 

usually correlate overexpression of TIMP2 either by transfection, adenovirus delivery or 

retroviral delivery with reduced tumor growth and reduced metastatic behavior [4, 49. 50, 

51]. 

 (III) TIMP 3 has been reported to be a possible tool for the analysis of cell cycle 

progression, terminal differentiation, and replicative senescence [52]. Overexpression of 

TIMP3 can inhibit angiogenesis and associated tumor growth [53]. Increased expression of 

TIMP3 resulted in a statistically significant suppression of breast cancer tumoral growth in 

vitro.  

 (IV) TIMP 4 MMP inhibitory activity of the expressed TIMP4 protein has been 

reported. TIMP4 shares with other TIMPs the ability to block tumor cell invasion in vitro 

and, at least in some instances, it also blocks tumor growth and metastasis in vivo [41, 54, 
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55]. TIMP4 transfectants significantly inhibited tumor growth by 4-10-fold in primary 

tumor volumes, and in an axillary lymph node and breast cancer lung metastasis as 

compared with controls [56]. However recombinant TIMP4 also stimulated the growth of 

MDA-231 breast carcinoma cells. Administration of naked TIMP4 DNA significantly 

stimulated mammary tumorigenesis in vivo [43].  

The exact function and mode of action of TIMPs is still yet to be determined as is 

the importance in preventing beast cancer metastasis in vivo and potential therapeutical use 

of these molecules. 

 

 

MMPs in the central nervous system 

MMPs are expressed physiologically in central nervous system cells. The main 

MMPs produced in the CNS are MMP3, MMP2 and MMP9. Astrocytes secrete MMP2 and 

they also produce TIMP2. Peripheral growth cones produce and secrete MMPs. Other cells 

that also produce MMPs are the neurons, microglial cells and oligodendrocytes. Neurons 

express mainly MMP9 and MMP3. TIMP2 is the most abundant of tissue MMP inhibitor 

expressed in the neurons [57]. However in normal non-challenged brain the levels of 

MMPs produced are low. There are reports of numerous pathologic processes in the central 

nervous system that cause increase in expression and increase activity of MMPs. For 

instance, the degradation of the extracellular matrix in gliomas is thought to be in part due 

to the activity of MMPs, additionally MMPs regulate glioma vascularization and are 

correlated with glioma aggressiveness [58, 59, 60]. HIV nef protein disrupts the blood-
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brain-barrier via MMP9 [61]. MMP9 is also responsible for the disruption of the blood 

brain barrier in the case of brain ischemic injury [62]. Ischemia activates MT1-MMP that 

increases MMP2 activity. MMP2 increases ILß1 causing up regulation of the NF-kß 

pathways that leads to an increase in MMP3 that activates MMP9 that increases the lesions 

on the blood brain barrier [63]. Disease mediated by HTLV1 (human T lymphoma virus) is 

also correlated with levels of MMP9 and MMP3 [64]. 

The mechanism of activation and regulation of MMPs in the central nervous system 

is not completely understood. Astrocytes have been correlated with MMP expression and 

activity. Co-culture with astrocytes is associated with increased invasion of glioma cells 

and production of MMP2 [65]. After reperfusion injury there is and increase expression of 

MMP2 in astrocytes [63]. Rat astrocytes stimulated with protein kinase C and LPS increase 

production of MMP9 and this is correlated with disease development [66, 67]. HTLV1 

virus infects T lymphocytes that stimulate astrocyte production of MMP3 and MMP9 [64]. 

HIV virions are observed in astrocytes and cause increase of pro-MMP1 and pro-MMP2 

[68]. Additionally, astrocytes may play an important role in the development of brain 

metastases of breast cancer. Breast cancer cells have been shown to respond to extracellular 

stimuli by producing many cytokines and growth factors that can modulate tumor cell 

proliferation, growth, and/or metastases. The growth-stimulatory effect was partially 

reversed by anti-IL-6, anti-transforming growth factor beta (anti-TGF beta), and anti-IGF-I 

antibodies, indicating that these metastatic cells use exogenous cytokines as paracrine 

growth factors. IL-6 produced a variety of responses in the different BC metastatic variants. 

Responses to exogenous IL-6 might determine the differences among these metastatic 
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variants by extending cell survival of selected subpopulations, giving them the opportunity 

to respond to growth factors or other favorable conditions. Cytokines produced by glial 

cells in vivo may contribute, in a paracrine manner, to the development of brain metastases 

by breast cancer cells [69, 70]. 

 

 

MMPs and MAPK 

The mitogen activated protein kinase (MAPK) pathway is one of most important 

transduction signaling pathways that is related to numerous pathogenic processes, including 

neoplasia. Genes that codify for molecules in this family, such as MKK4 and MAPKK4 are 

considered to be important in the metastatic cascade [71]. Moreover components of these 

pathways have been correlated with cancer invasion, and development. They have also 

been linked with MMP expression. Activation state of the ERK pathway in tumor cells 

correlates with the invasive phenotype, which was determined by the ability of cells to 

invade through reconstituted extracellular matrix. Elevated expression of MMP-3 was 

observed in tumor cells in which constitutive activation of the ERK pathway was detected. 

Blockade of the ERK pathway by treatment with PD184352, a specific and powerful 

inhibitor of MAPK/ERK kinase (MEK), suppressed the expression of MMP3 and inhibited 

markedly the invasiveness of tumor cells [72]. Up regulation of MMP3 mRNA by FGF-2 

requires de novo protein synthesis and activation of the ERK-1/2 pathway. [73]. Inhibition 

of ERK's phosphorylation blocks the changes in MMP 3 and TIMP1 expression [74]. 
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MMP2 mRNA expression, protein expression and gelatinolytic activity are 

correlated with ERK phosphorylative activity. MMP9 enzyme activity has an inverse 

relationship with phosphorylated ERK [72]. ERK/MAP kinase is essential for MMP9 up 

regulation via PKC and cytokine pathways in astrocytes [75]. Resident brain cells secrete 

MMP after mechanical injury, astrocytes are the main source of MMP9 activity, and ERK 

and p38 MAP kinases are unregulated after mechanical injury, and mediate the secretion of 

MMP-9. MEK inhibitor PD98059 inhibits MMP2 promoter activity and Sp1 

phosphorylation. Overexpression of constitutively active MEK1 stimulates Sp1 

phosphorylation and MMP2 promoter activity [76] 

MMP11 expression correlates with decrease in breast cancer cell apoptosis and this 

is mediated through ERK1/2 [77]. The activation of MMP1 is related with p38 and/or 

ERK1/2 activity [78, 79] 

 

 

Specific objectives 

Metalloproteinases are enzymatic proteins that have been extensively associated 

with breast cancer local invasion and metastatic process. Intensive studies in this area have 

tried to define the exact mechanism of action of MMPs, their importance in establishing 

breast cancer prognosis and the role of related proteins such as tissue inhibitors of MMPs 

(TIMPs). In view of the inherent difficulties in working with human cancerous tissue, the 

limited extrapolation of in vitro experimental data, as well as the paucity of studies of 

MMP expression in breast cancer brain metastasis, we propose the use of a rodent model 
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for distant metastasis of breast cancer to the brain to study MMP expression in metastatic 

breast cancer and to study TIMP-MMP interactions. Our hypothesis is that MMP 2, 3 

and 9 play a role in the development of brain and lung metastasis of breast cancer. 

Objective 1: Characterization expression of MMP2, 3 and 9 in brain and lung 

metastatic sites, compared with normal brain and lung tissues and breast cancer tumor cells 

growing in culture. To achieve this goal our analysis will focus on: (1) measure and 

quantify MMP2, -3 and -9 protein expression by western blot (WB) and 

immunohistochemistry (IHC);(2) quantify the expression of MMP 2,9 and 3 mRNA by 

reverse transcriptase polymerase chain reaction (RT-PCR) and (3) evaluate activity of 

MMP 2 and 3 in metastatic foci by in situ (ISZ) and gel zymography. 

Objective 2: Determination of roles of MMP 2, 3 and 9 in the development of BC 

brain and lung metastasis. (1) Determine if synthetic MMP inhibitor (PD-166793) will alter 

development of BC brain metastasis. (2) Determine if stable overexpression of TIMP 2 in 

BC cell lines will alter development of BC brain metastasis (Figure 12).  

Objective 3: Investigate possible mechanisms of MMP2 activation in the brain. (1) 

In vitro study of the effect of astrocytes in MMP2 expression in a breast cancer cell line. (2) 

Evaluation of mitogen activated protein kinase (MAPK) components expression in cells 

stimulated by astrocytes factors. (3) Role of MAPK inhibitors in the expression of MMP2 

by BC cells stimulated with astrocyte factors. 
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Figure 12. Effect of MMPs in metastasis development. 

 
 
 

Summary 

In summary the objectives of this project are three fold. We pretend to characterize 

the expression of MMP2, - 3 and -9 in breast cancer brain and lung metastasis at the protein 

and mRNA level and evaluate the activity of these proteases in the tumor foci. 

Additionally, to evaluate if these molecules play a role in the development of brain and 

lung metastasis, inhibition of MMP2 activity will be attempted via TIMP2 overexpression 

and drug induced inactivation of MMPs by the use of PD 166793. Finally a series of in 

vitro experiments will be performed in order to evaluate the role of astrocytes and ERK1/2 

in MMP regulation in breast cancer cells and breast cancer brain metastasis. 



 26

CHAPTER II 

EXPRESSION OF MMP2, MMP9 AND MMP3 IN BREAST CANCER 

BRAIN METASTASIS 

 

 

Introduction 

The metastatic process of breast cancer (BC) has been the subject of intense 

scrutiny. The brain is one of the most common organs affected in the spread of BC that 

ultimately results in fatal overcome of the disease. Brain metastasis is an increasingly 

common complication in breast cancer patients. Approximately 15% to 30% of breast 

cancer patients develop brain metastasis [1, 2]. A suitable specific environment is important 

to the development of tumor cells [80]. The exact role of the brain environment to the 

development of the metastatic process has yet to be clarified. Many theories have been 

developed to study and understand metastatic behavior. Factors such as neoplastic cell 

molecular and genetic characteristics [4] and biological environment are thought to be 

determinants in the metastatic process.  

Matrix Metalloproteinases (MMPs) are a broad family of zinc-dependent 

proteinases that play a key role in extracellular matrix degradation, implicated in numerous 

pathogenic processes [9]. Tumor cells are thought to secrete these matrix-degrading 

enzymes and/or induce host cells to elaborate them [39]. MMPs have been associated with 

pathology within the central nervous system in neoplastic disease, such as glioma and 

melanoma brain metastasis [81, 82], and non-neoplastic disease, such as trauma, ischemia 
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and immune-mediated disease [83]. MMPs have also been extensively studied in the 

context of breast cancer prognosis. Most studies to date have been performed in human 

tissue collected from patients diagnosed with breast cancer or in breast cancer cell lines. 

Most reports suggest that increased expression of MMP2, -3 and -9 proteins, correlates 

with worse prognosis [18, 6]. 

In this context, MMP2, -3 and -9 are thought to play an important role in breast 

cancer invasion, metastasis and tumor angiogenesis [84]. MMP2 over-expression and 

activation have been associated with the invasive potential of human tumors. Active MMP2 

and MMP9 were detected more frequently in malignant than benign breast carcinomas; 

MMP3 was observed in highly invasive breast cancer cell lines [16]. Some reports, 

however, do not correlate MMP2 and MMP9 immunohistochemical staining with the 

presence of metastases at the time of diagnosis or with disease outcome [17]; absence of 

distinct positive immunoreactivity for MMP2, -3 and -9 has been observed in both invasive 

and non-invasive tumor cells without apparent differences in the staining intensity [18]. In 

this regard, additional in vivo studies that characterize MMP expression in metastasis are 

needed.  

Few studies are available on the expression of MMPs within breast cancer 

metastasis [38, 7] and, to our knowledge no one has characterized the expression and 

activity of these molecules in breast-to-brain cancer metastasis. It is important to determine 

if MMPs have different effects/roles in the development of metastasis in different organs 

because this may help to understand why BC cells metastasize to preferential organs. Here 

we focused on the metastatic process of BC to the brain in a rodent model. This 
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understanding could be utilized in the development of the current therapeutic approach to 

metastatic cancer. 

The metastatic rodent models for breast cancer described to date study mostly 

nodal, pulmonary and bone metastasis [10]. In most, brain metastases occur as a non-

predictable event and only sporadically. The use of animal models to study in vivo tumor 

progression and metastatic behavior is important to understand the mechanism of 

metastasis development. It is also an important tool for pharmacological evaluation of 

cancer therapy. Several synthetic MMP inhibitors are under investigation for clinical trials 

in patients with cancer as they are thought to inhibit both primary tumor invasion and 

metastasis. [7].  

We here used an in vivo model that consistently produces brain metastasis [80] to 

evaluate the expression and activity of MMP2, -3 and -9 in metastatic foci of BC in the 

brain. We found the levels of MMP2, -3 and -9 mRNA and protein, in BC brain metastasis 

are higher than those of normal brain tissue. Additionally, the activities of MMP2 and 

MMP3 in metastatic foci are higher than in non-affected brains. We also demonstrated that 

MMP inhibition, by a specific MMP inhibitor decreases in vitro and in vivo cell invasive 

and metastatic behavior. To our knowledge, this is the first report of characterization of 

these molecules in brain metastasis of breast cancer in a rat model. 
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Materials and methods 

Tumor cell line 

The ENU1564 tumor cell line used in this study was developed in our laboratory 

and originated from an N-ethyl-N nitrosourea-induced mammary adenocarcinoma in a 

female Berlin-Druckrey IV (BD-IV) rat. This cell line is highly metastatic to brain and 

bone tissues [80]. 

 

 

Rat inoculation  

Forty-day-old BD-IV rats were used. The animals were obtained from a colony 

maintained at Texas A& M University in accordance with institutional animal care guide-

lines. The syngeneic animals were inoculated with 1x104 tumor cells in the left ventricle. 

Inoculation was performed on animals under Ketamine (87mg/kg, intramuscular injection) 

anesthesia. The animals were humanely euthanatized using Pentobarbital (150mg/kg, 

intraperitoneal injection) when showing clinical signs of discomfort such as decrease 

response to stimulus. Complete necropsies were performed and tissues were sampled for 

histologic evaluation. 

 

 

Tumor collection 

Brain samples were collected immediately after animal’s death and placed on 

powdered dry ice until completely frozen. Samples were then kept at -80oC. The samples 
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from metastatic tissue were collected from frozen brain sections. The half of the brain that 

was frozen in powdered dry ice was sectioned using a cryostat in 12µm sections and placed 

on gelatin-covered slides. Every fifth slide was stained with thionin stain prepared from a 

stock 1.3% thionin (wt/vol in H2O). Metastatic foci were identified under light microscopy. 

This information was then used to dissect the metastatic tumor, from frozen brain tissue 

sections. Immediately after dissection another 12µm section was stained in order to confirm 

the accuracy of the dissection. 

 

 

Immunohistochemistry (IHC)  

Five-micron (5 µm) paraffin-embedded sections and 12µm frozen sections were 

used. Deparaffinization, rehydration and antigen-retrieval were done by immersion of 

slides in DECLERE® (Cell Marque, Hot Springs, AR) commercially available buffer in 

moist heat (pressure cooker) for 15 minutes. Potential non-specific binding sites were 

blocked with 5% normal goat or rabbit serum in PBS. After blocking, the sections were 

incubated with primary antibodies purchased from Santa Cruz (Santa Cruz Biotech, Santa 

Cruz, CA), in dilutions of 1:200 for MMP2, and 1:25 for MMP3 and -9. After three five-

minute washes in PBS, the sections were then incubated with either biotin-conjugated anti-

rabbit or anti-goat IgG (Vector Laboratories, Burlingame, CA). A Vector-ABC 

streptavidin-peroxidase kit with a benzidine substrate was used for color development. 

Counterstaining was done with diluted hematoxylin. Sections that were not incubated with 

primary antibody served as negative control. 
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Western blotting (WB)  

After microscopic dissection of frozen brain specimens, the tissue was 

homogenized in lysis buffer at a 1V: 10V dilution (50 mM Tris-HCl, pH 8.0, 300 mM 

NaCl, 0.5% NP-40, 0.5% deoxycholate, 1 mM EDTA, pH 8.0, and 0.1% SDS), 

supplemented with a mixture of protease inhibitors. Samples were run on a 9-12% SDS 

polyacrylamide gel and transferred to nitrocellulose membranes. Membranes were 

incubated one hour in blocking buffer (20 mM Tris-HCl buffered saline containing 5% 

nonfat milk powder and 0.1% Tween 20). Blots were incubated at 4oC overnight with anti-

MMP2 (1:2000); MMP3 (1:500) and MMP9 (1:1000) (all antibodies from Santa Cruz 

Bitotech, Santa Cruz, CA), washed extensively and then incubated for one hour with a 

1:5000 dilution of secondary anti-rabbit or anti-goat antibody. After additional washes, the 

blots were incubated with chemiluminescent substrate, according to the directions in the kit 

(SuperSignal ® West Pico, Pierce, Rockford, IL). 

 

 

Reverse transcription-PCR 

We extracted total RNA from frozen specimens using Trizol reagent (Invitrogen, 

Gaithersburg, MD). First-strand cDNA was primed with oligo (dT), synthesized using 

RETROscript kit (Ambion, Austin, TX), and served as a template reverse transcription-

PCR (RT-PCR). PCR primers were as follows: 

• MMP2 primers (forward, GACCTGACCAGAACACCATCG; reverse, 5'-

GCTGTATTCCCGACCGTTGAAC-3'); 
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• MMP3 primers (forward, 5'-CCTCTATGGACCTCCCACAGAATC-3'; reverse 5'-

GTGCCAATGCCTGGAAAGTTC-3'); 

• MMP9 primers (forward, 5'- CCCCACTTACTTTGGAAACGC-3'; reverse, 5'-

ACCCACGACGATACAGATGCTG-3'); 

Rat MMP2, -3 and-9 cDNA sequences were obtained from the 

http://www.ncbi.nlm.nih.gov web site and MacVector® (version 7.0, Accelerys, San Diego, 

CA) software was used to design the primers. To demonstrate the integrity of the RNA 

samples used in the RT-PCR reactions, parallel amplifications with oligonucleotide primers 

for mouse ß-actin cDNA (forward, 5'- ATGTACGTAAGCCAGGC-3'; reverse, 5'-

AAGGAACTGGAAAAGAGC -3') were performed. 

 

 

Fluorescent-labeled substrate-based in situ zymography  

Zymography is the choice method for evaluation of MMP2 and -9 activities [85]. 

Because of the small size of the metastatic foci and the paucity of material collected, we 

opted for an in situ method [86]. The substrate was prepared by dissolving 0.1% 

fluorescent-labeled substrate (Molecular probes, Eugene, OR) in gelatin according to 

manufacturer’s instructions. 50 µl of substrate gel solution were pipetted onto the slide and 

evenly distributed on the slide surface. Frozen sections (10-15µm) were placed on the 

coated slide. The slides were incubated in a moist box with Tris-buffer (pH 7.4) and the 

box was wrapped in foil to protect from light and placed at 37oC. Results of in situ 
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zymography were evaluated after 48 hours of incubation. The samples were examined 

microscopically under UV light. Control samples were stained with thionin stain. 

 

 

Gel zymography  

Gelatin zymography was performed as described previously [7]. In brief, samples 

were electrophoresed on 10% (wt/vol) polyacrylamide gels containing 0.1% (wt/vol) 

gelatin and Ready Gel Zymogram Gel 12%, casein (Biorad, Hercules, CA). After 

electrophoresis, the gels were washed twice for 30 min each in 2.5% (vol/vol) Triton X-100 

at room temperature and then incubated in substrate reaction buffer (50 mM Tris-HCl, 5 

mM CaCl 2, 0.02% [wt/vol] NaN3, pH 8.0) for 8 to 18 h at 37oC with gentle shaking. The 

gels were then stained with Coomassie Blue R250 in 10% (vol/vol) acetic acid and 30% 

(vol/vol) methanol for 1 to 2 h and destained briefly in the same solution without dye. 

Proteolytic activities were detected by clear bands indicating the lysis of the substrate. 

Quantification of band density was carried out using Flour S MultiImager® technology 

from Biorad (Hercules, CA). 
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In vitro and in vivo MMP inhibition assay 

PD 166793 (S-2-4’-bromobiphenil-4-sulfonylamino-3 methyl-butyric acid) was 

kindly provided by Dr J T Peterson (Cancer Molecular Sciences, Pfizer Global Research 

& Development, Ann Arbor, MI).  

In vitro invasiveness was evaluated using the method previously described [29]. 

Boyden chambers were used for the invasion assay. Briefly, each Boyden chamber (Becton 

Dickinson Biosciences, USA) consists of a BD Falcon TC Companion Plate with Falcon 

Cell Culture inserts containing an 8µm pore PET membrane with a thin layer of Matrigel 

basement membrane matrix. First, the interior of the inserts was rehydrated for 2h with 

warm (37 °C) bicarbonate based culture medium. The upper chambers were filled with 0.5 

ml of cell suspension (1.25x10 5cells/ml) in Dulbecco's Modified Eagle Medium 

(Invitrogen Corporation, Carlsbad, California). The same media including 10% fetal 

bovine, was placed in the lower chambers as chemoattractant. Experiments using 10µM 

PD166793 MMP inhibitor, in both chambers media, were conducted in parallel [87]. The 

chambers were incubated at 37 °C in a humidified atmosphere of 5% carbon dioxide for 24 

h, non-migrating ENU1564 cells on the upper surface of the inserts were removed by 

wiping with a cotton swab, and the migrating cells on the lower surface were fixed and 

stained with Insta Stain 3 Step (S&K Reagent, Inc, Denver, CO). The invasive potential 

was quantified by counting the total number of cells on the lower surface of the inserts 

under a light microscope at 400X magnification. Three random visual fields were counted 

for each assay. Each invasion experiment was carried out in triplicate.  
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To evaluate in vivo inhibition of MMP evaluation we conducted the following 

experiment. Ten BD-IV rats were inoculated with 1X104 ENU1564 via left ventricle. Five 

animals were selected randomly for the control group and for the drug treatment group. 

Animals from the control group were daily inoculated via peritoneum with vehicle only 

(DMSO). The five animals in the treatment group were treated daily with intraperitoneal 

injection of 5mg/kg of PD 166793 as described previously [87]. The study had the duration 

of 24 days. All animals were sacrificed at the end of the study. Six sections of brain per 

animal were evaluated histologically, and foci of breast cancer brain metastasis were 

counted. 

 

 

Statistical analysis 

Paired T-student tests were performed with densitometry values obtained from 

Western blotting-autoradiographs analysis and by photograph zymography results using 

Flour S MultiImager® technology from Biorad (Hercules, CA). Differences were 

considered statistically significant when P was ≤0.05. 

 

 

Results 

Histological evaluation of brain metastatic foci 

Six weeks after inoculation the animals began to show neurological signs, such as 

depression and/or head tilt, and were humanely euthanatized. No macroscopic 
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abnormalities were observed in the central nervous system upon necropsy evaluation. 

Histological evaluation of the brain revealed intra-cerebral metastatic neoplasia. 

Morphologically, small clusters of epithelial neoplastic cells resembling the cultured cell 

line could be observed. The neoplastic foci were scattered randomly throughout the brain, 

affecting more frequently the caudal aspect of the parietal lobes and cerebellum (Figure 

13). 

 
 
 

Figure 13. Histology of metastasis of breast cancer to the brain. The metastatic foci in the 

brain are observed as small clusters of epithelial neoplastic cells scattered randomly 

throughout the brain. Arrows indicate metastatic foci. Bar indicates 100µm. 

 
 
 
The neoplastic foci varied in size from five to two hundred-micron. The estimated 

number of tumor foci per animal brain varied from five to fifty (Table 2).  
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Table 2. Morphological characterization of brain metastatic foci.  
 Tumor diameter (µm) Number of tumor foci per 

brain section  
Brain 

metastasis 
43.3 ±34.92 24 ± 15.44 

Values are mean ± standard deviation.  

 
 
 
The tumor foci had absence of fibrous stroma, inflammatory cells or necrosis. Mild 

to marked astrocyte reactivity was observed around the neoplastic cells. Metastatic tumors 

in other organs, such as bone, lung and pancreas, were also observed (Table 3). 

 
 
 

Table 3. Organ distribution of breast cancer metastatic foci. 
Metastatic sites Brain Lung Bone Kidney Panc

reas 
Numbers of animals affected/ total 
number of animals examined 

6/10 10/10 4/5  3/5 1/5 

 

 

 
 

Immunohistochemistry for MMP2, -3 and -9 proteins in brain metastatic foci 

Immunohistochemistry was performed in order to characterize MMP-protein 

expression within the metastatic brain foci. Immunohistochemical staining for MMP2 

showed immunolabeling with moderate intensity in the cytoplasm of neoplastic cells within 

the brain metastatic foci (Figure 14(a) and (b)). In addition astrocytes, microglial cells and 
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endothelial cells also had mild staining. MMP3 staining was observed with strong intensity 

in the cytoplasm of neoplastic cells (Figure 14(g) and (h)). Mild staining was also 

observed in astrocytes. MMP9 staining was weak in the neoplastic cell cytoplasm and faint 

staining of glial cells was also observed (Figure 14(d) and (e)). Similar results were 

observed in neoplastic epithelial cells in the lung metastatic foci (data not shown). 

 
 
 

 
Figure 14. Localization of MMP2, -3 and -9 in the brain metastatic foci. Immunohistochemical staining (brown) of MMP2 (a&b), 

MMP3(g&h) and MMP 9(d&e) protein in the brain metastatic foci revealed positivity within neoplastic cell cytoplasm. Negative controls 

for MMP2, -3 and –9 are respectively c, i and f. Note that glial cells are also positive. Bars indicate 100µm. 

 



 39

 
 
 
 
 

Figure 15. Increased expression of MMP2, -3 and –9 protein in the metastatic brain foci. 

(a)Evaluation of protein expression by Western blotting. The membranes were stripped and 

re-probed with ß-actin antibody to confirm equal loading. (b) Quantitative analysis of 

MMP2, -3 and -9 expression was determined by densitometry. The results shown in the 

histogram are the mean ± standard deviation from three control and three tumor samples. 

(*) for statistically significant when P was ≤0.05).  

 

 

 

 

 

 

 

 

Increased expression of MMP2, -3 and -9 in brain metastatic foci 
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To confirm IHC results on MMP-2, -3 and -9 protein expression and in order to 

semi-quantify protein expression, we extracted protein from the metastatic neoplastic 

tissue. Evaluation of protein expression by Western blotting revealed that MMP3 

expression was significantly higher in neoplastic brain metastasis tissue when compared 

with control tissue from brains of age-matched-non-inoculated rats (p≤0.032) (Figure 15)..  

Such difference was not observed in lung metastatic foci (data not shown). MMP2 

was also more significantly expressed in brain metastasis of breast cancer when compared 

with normal brain control tissue (p≤0.014). MMP 9 expression was also significantly 

higher in tumor tissue (p≤0.049). 

To confirm IHC and WB results on MMP-2, -3 and -9 protein expression, we 

extracted total RNA from frozen specimens. Semi-quantitative RT-PCR analysis of MMP-

2, -3, and -9 mRNA of brain metastatic foci of breast cancer was compared with mRNA 

obtained from age-matched non-inoculated rats. The comparison revealed that the amounts 

of MMP-2, -3, and -9 mRNAs of brain metastasis foci of breast cancer were higher than 

those of control tissues. This data is compatible with the WB results. MMP3 mRNA was 

more abundant in neoplastic tissue when compared with lower expression in controls. The 

same was observed with MMP2 and MMP9 (Figure 16). 
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Figure 16. Increased expression of MMP2, -3 and -9 mRNA in the metastatic brain foci. 

Semi-quantitative RT-PCR analysis was used to detect MMP2, -3, -9 and ß-actin in total 

RNAs from normal brain and metastatic brain foci. ß-actin was used as an internal control.  

 
 
 
Increased MMP2 and MMP3 activity in brain metastatic foci 

To determine if the higher expression of MMPs was correlated with intra-tumoral 

increased enzyme activity, we performed zymography studies. In situ zymography revealed 

intratumoral gelatinase (MMP2 and/or MMP9) activity characterized by loss of 

fluorescence (Figure 17). Additionally gel zymography showed that there was a significant 

increase in both MMP 3 and MMP2 activities (p < 0.05) (Figure 18). MMP9 activity was 

not detected on the samples evaluated. 
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Figure 17. Evaluation of gelatinase activity in the brain foci by in situ zymography. (a) 

Frozen section observed under UV microscope. Marked gelatinase activity (loss of 

fluorescence) was observed within the tumor foci. (b) Thionin stain of the same area. WM 

represents white matter; T indicates tumor foci. Bars indicate 100µm. 
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Figure 18. Increased MMP2 and MMP3 enzymatic activities in the metastatic brain 

foci. (a) Evaluation of MMP2 and MMP3 activities by gel zymography. (b) Quantitative 

analysis of MMP2, and MMP3 activity was determined by densitometry of respective 

active bands (62kDa and 45kDa). The results shown in the histogram are the mean ± 

standard deviation from three control and three tumor samples. (*) for statistically 

significant when p ≤0.05. 

 
 
 
Effect of MMP inhibitor, PD 166793 on the in vitro invasive potential of ENU1564 

cells 

To determine whether the use of an MMP inhibitor (PD166739) has any influence 

on ENU1564 cells in vitro invasive potential a Matrigel-based invasion assay was 

performed. Boyden chamber chemoinvasion analysis showed that PD 166739 significantly 

reduced (p≤0.001) the number of ENU1564 cells that invaded the Matrigel when compared 

with non-treated control cells (Figure 19).  
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Figure 19. Decreased metastatic potential of ENU 1564 by PD 166793, a selective MMP 

inhibitor. (a) In vitro invasion chamber assay for ENU1564 cells was performed as 

described in material and methods. The results shown in the histogram are the mean ± 

standard deviation of two individual experiments run in triplicate. (b) Numbers of 

metastatic foci in the brain in control (n=5) versus animals (n=5) treated with PD 166973. 

(*) for statistically significant when p ≤0.05. 

 
 
 
Effect of MMP inhibitor, PD166793 on brain metastasis of ENU1564 cells 

To determine if MMPs play a role on breast cancer brain metastasis we inhibited 

MMPs’ activities by treating animals with PD166793, a selective MMP inhibitor. The 

animals in the control group started to show neurological signs such as depression and 

obnubilation at day 24 post inoculation, and all animals were sacrificed at that time. Gross 

evaluation did not reveal any significant changes in the central nervous system. Upon 

histological evaluation three of the five animals in the control group had presence of brain 
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metastasis. Brain metastases were not detected in the brains of animals treated with PD 

166793 (p≤0.03) (Figure 19). 

 

 

Discussion 

In the present study, we found increased expression of protein and mRNA of 

MMP2, -3 and -9 in BC brain metastasis, suggesting that these molecules may be relevant 

in the metastatic process of breast cancer to the brain in our rat model. We also determined 

that there is a correlation between MMP expression and enzymatic activity within the 

neoplastic foci, and that inhibition of MMPs’ activities reduces the metastatic potential of 

breast cancer cells in vitro and in vivo. 

We used brains of age-matched BD-IV rats as controls, assuming that differences in 

MMP expression would be attributable to the presence of tumors. Although, ENU1564 

expresses low levels of MMP2 and no detectable MMP3 or MMP9 in vitro (data not 

shown), our results show that MMP2, -3 and -9 protein levels in metastatic foci had 

significantly higher expression than controls. This difference was especially marked for 

MMP3 with undetectable protein expression in the control tissue. Because brain cells are 

positive for MMP3 by IHC it is likely that the levels of MMP3 protein, although present, 

are too low to detect by the WB procedure performed. To ascertain whether increased 

expression of MMP2, -3 and -9 proteins is correlated with their mRNA expression, cDNA 

was prepared from dissected tumor samples and RT-PCR was performed. Although this 
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technique is semi-quantitative our results show that there are higher levels of MMP2, -3 

and -9 mRNA in metastatic neoplastic foci than in normal brain tissue.  

In situ zymography results showed that there is a multifocal sharp increase in 

gelatinase activity and that it is morphologically associated with the neoplastic foci. Gel 

zymography results confirm the increase in gelatinase activity of MMP2 in tumor brain 

foci; however in spite of multiple technical variations we were unable to detect MMP9 

activity in the samples evaluated. This result suggests that either the active levels of MMP9 

in brain samples are under the detection limits of our technique or that MMP9 may play a 

different role from active MMP2 in the early development of brain metastasis since we 

were able to detect MMP9 activity under the same conditions in lung and mammary gland 

samples (data not shown). Additionally we observed a significant increase in MMP3 

activity in the brain metastatic samples. Altogether these results suggest that MMP2 and 

MMP3 play a role in the metastatic process.  

Our results show that the levels of MMP2 and MMP3 protein and mRNA are 

increased in neoplastic foci, which corresponds to an increase in intratumoral enzymatic 

activity. These results are in accordance with previous reports correlating MMP activity 

with metastatic and invasive behavior [9]. Previous studies that describe MMP expression 

correlated with breast cancer metastasis reveal that MMPs may be important in the 

metastatic process. MMP2 is related to osteoclastic resorption in the metastatic process to 

the bone [20]. MMP2 and MMP9 latent forms are released in breast cancer cells in co-

cultures with bone extracellular matrix [19]. Additionally, incidence of metastasis to the 

brain was increased in animals injected intra-cardiac with clones of breast cancer cells 
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transfected with MMP2 [10]. Transfection with TIMPs has been reported to decrease 

cancer metastatic behavior [33, 34]. Conversely, TIMP evaluation in breast cancer patients 

has been associated with better prognosis [35]. This data correlates with the fact that MMPs 

have been associated with invasive and metastatic behavior of BC. High MMP2 serum 

levels are associated with adverse prognosis in node-positive BC, implying that this 

molecule is related to nodal metastasis [9]. Additionally, MMP2 and MMP9 protein 

expression have been extensively correlated with poor breast cancer prognosis, and survival 

rates that are invariably associated with metastatic and invasive BC phenotypes [37, 84].  

The determination of what cell component of the tumor mass expresses MMPs is 

important in order to understand the role of these molecules in tumor development. Some 

studies have localized MMP2 to neoplastic epithelial cells. Others, however, associate them 

with different components of the tumor stroma and/or angiogenic blood vessels [88]. 

MMP9 has been associated with neoplastic cell plasma membrane ; non-neoplastic ducts 

and acini; stromal fibroblasts; endothelial cells; and tumor-infiltrating inflammatory cells, 

including neutrophils, macrophages, and lymphocytes. Expression of MMP3 was observed 

in both tumor and stroma cells [38]. Normal breast epithelia was weakly positive for 

MMP3 mRNA [17].  

In concurrence with previous reports [18], we observed MMP2 expression in 

epithelial cancer cells. However, the IHC staining was observed diffusely within the 

cytoplasm instead of the neoplastic cell plasma membrane [17]. Due to the absence of 

stroma in our tumor we were unable to determine if stromal cells or angiogenic blood 

vessels were positive. Moreover, as described in previous reports [7, 10], MMP3 and 
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MMP9 staining was observed diffusely in the neoplastic cell cytoplasm with weaker 

staining for MMP9. Again, stroma evaluation was not possible. The variation in the 

intensity of staining may be due to different roles of these molecules in the metastatic 

process. However, IHC is not a good method to quantify expression and conclusions should 

be drawn very cautiously. 

 Stromal fibroblasts are thought to be important in stimulating the production of 

MMPs [39, 40, 41, 42]. In our model, the extreme paucity of fibrous stroma, the absence of 

necrosis and inflammatory cell infiltrate (such as macrophage invasion) within the brain 

metastasis are highly suggestive of an alternate mode of MMP activation in this particular 

type of neoplasia within the central nervous system, and questions the need and role of 

inflammatory/macrophage infiltrate and fibroblast presence in the expression and activity 

of MMP molecules. We characterized morphologically the brain metastatic neoplasia 

together with MMP expression and activity, and concluded that it may be independent of 

the presence of inflammation and fibrous stroma-interaction.  

More must be known in order to fully understand the mechanisms that regulate 

MMP activity within the central nervous system. MMP2, -3 and -9 are expressed in normal 

brain tissue [63], MMP2, -3 and -9 are produced by neurons, astrocytes, glial cells and 

oligodendrocytes. MMPs have also been associated with intra-cerebral tumor evolution, 

MMP2 with glioma in situ invasion, and MMP9 with intratumoral angiogenesis. Astrocytes 

are thought to play a role in MMP9 activation and expression [66]. Astrocytic factors, such 

as TNFα, IL6 receptor, have been identified in cell cultures derived from metastasis of BC 

in the brain [4, 47]. Because of the growing evidence that astrocytes and/or glial cells have 
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a role in the MMP cascade in the central nervous system, we analyzed how these cells react 

and express MMPs in our experimental conditions. Using Hematoxilin & Eosin 

histological stain we observed that there is marked astrocytic reactivity around neoplastic 

foci. Peritumoral astrocytic reactivity was confirmed using GFAP (glial fibrillary astrocytic 

protein) immunohistochemistry staining (data not shown). MMP2, -3 and -9 staining of 

astrocytes and microglial cells was observed. The marked positivity of glial cells and 

astrocytes for MMPs, together with reactivity of these around the tumor, suggest that these 

may indeed play a role within the MMP cascade [48]. Nonetheless, the presence of glial 

staining suggests that further studies are needed in order to characterize the role of those 

cells in MMP cascade in metastatic disease to the brain. 

MMP inhibitors are being investigated as an important tool for cancer treatment. 

[7]. In order to determine if MMPs play a role on breast cancer brain metastasis 

development we used PD 166739 (S-2-4’-bromobiphenil-4-sulfonylamino-3 methyl-

butyric acid) as a selective MMP inhibitor that is known to decrease activities of MMP2, -3 

and -9 [49]. Unlike the first generation of MMP inhibitors, PD 166793 does not inhibit 

other metalloproteinases such as TNF-alpha-convertase [30]. We observed slight but 

significant decrease in in vitro ENU 1564 invasion behavior when cells are in presence of 

PD 166793. Surprisingly, we observed a dramatic decrease in development of brain 

metastasis in animals treated with PD 166739. The disparity observed in vivo vs in vitro 

results may be associated with low levels of in vitro MMP expression; however these in 

vivo results are in concordance with our other in vivo results and strongly suggest that 

MMPs are important in the brain metastatic process of breast cancer.  
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In conclusion, we were able to use, for the first time, a rat model for distant breast 

cancer metastasis to the brain to successfully study expression and activity of MMP 2, -3 

and -9. Our results indicate that MMPs are involved in breast cancer metastasis to the brain 

in our model. 
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CHAPTER III 

ROLE OF MMP2, MMP3 AND MMP9 IN THE DEVELOPMENT OF 

BREAST CANCER BRAIN METASTASIS IN A RAT MODEL 

 

 

Introduction 

Brain metastases of breast cancer (BC) occur in 15-30% of BC patients and they 

usually are a late event in the disease process [70]. Few studies characterized BC-brain 

metastases, and evaluated the role of MMPs in this disease. We previously reported that 

brain metastases of breast cancer have high expression and activity of MMP2. 

MMP2 belongs to a broad family of zinc-dependent proteinases that are important 

in extracellular matrix degradation. It is implicated in numerous pathogenic processes, such 

as cancer metastases [9]. Tumor cells secrete this matrix-degrading enzyme and/or induce 

host cells to elaborate it [38].  

TIMP2 is reported to be the physiologic inhibitor of MMP2. An increase in the 

amount of TIMP2 relative to MMP2 may decrease MMP2 activity and block tumor cell 

invasion and metastases. However, the role of TIMP2 in cancer development is still under 

investigation. Although TIMP2 was at first considered a suppressor of invasion and 

metastases, the complexity of TIMP2/MMP2 interactions led to reconsideration of the role 

of TIMP2 in cancer [4]. TIMP2 expression in BC patients has been correlated with 

advanced disease, decrease of survival time, increase in tumor size, node positive status and 

tumor recurrence [46, 48, 50]. Paradoxically, genetic manipulation of cancer cells has 
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correlated experimental TIMP2 overexpression with decreased metastatic behavior. Here 

we propose to determine whether MMP2 is important to the development of brain 

metastases of BC in a syngeneic animal model, by over expressing TIMP2 in ENU 1564 

cells. 

MMPs have been extensively correlated with pathological processes within the 

central nervous system (CNS) [66]. They have been involved in the degradation of 

extracellular periphery of brain tumors such as glioma [58], as well as in glioma invasion 

[60] and vascularization [61]. Although the exact mechanism of activation and function of 

MMPs in brain disease is still under intense scrutiny, it is reported that astrocyte co-culture 

with glioma cells increases activation of MMP2 [20]. In addition, astrocytes can produce 

and/or regulate MMP2 production [57, 89]. Astrocytes also have been implicated in the 

mechanism of activation of other MMPs in the CNS [67]. Additionally, astrocytes may be 

involved in the development of BC brain metastases [69]. Astrocyte factors such as 

interleukin 6 (IL6), fibroblast growth factor-b (FGFb), and insulin-like growth factor (IGF) 

receptor are up regulated in breast cancer brain metastases.  

Mitogen activated protein kinase (MAPK) pathway components, such as ERK1/2, 

have been related to MMPs activation and expression, have been associated with astrocytic 

activity and are considered genes related with tumor metastases [90].  

We aim here to study the role of MMP2 in the development of brain metastasis in a 

rat syngeneic model, and to investigate ERK1/2 signaling pathway in astrocyte-mediated 

MMP2 response. We report results that suggest that MMP2 may play a role in the 

development of breast cancer brain metastases. Furthermore, we present evidence that 
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astrocytes are important for MMP2 up regulation in BC brain metastasis through activation 

of the ERK1/2 signaling pathway.  

 

 

Materials and methods 

Cell lines and cell culture  

The ENU1564 tumor cell line used in this study was developed in our laboratory 

and originated from an N-ethyl-N nitrosourea-induced mammary adenocarcinoma in a 

female Berlin-Druckrey IV (BD-IV) rat. This cell line is highly metastatic to brain and 

bone tissues [27]. The primary rat astrocyte CTX-TNA2 cell line used was purchased from 

ATCC (VA, USA). Both cell lines were maintained in Dulbecco’s modified Eagle’s 

medium (Invitrogen, Carlsbad, CA, USA) DMEM supplemented with 10% fetal bovine 

serum (Invitrogen) and antibiotics (100 units/ml penicillin and 100 µg/ml streptomycin). 

All cells were grown at 37oC in a humidified incubator containing 5% CO2 in air. Cells 

were passaged biweekly and used for experiments when in the exponential growth phase. 

Rat astrocyte conditioned media was obtained as previously described [28, 29]. Briefly, the 

cells were cultured for 9 days and replenished with medium containing 10% FBS on days 

0, 3, and 6. On day 8, the 48h conditioned medium was collected, centrifuged, and filtered. 
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Transfection experiment  

Dr Stetler-Stevenson, (NIH, USA) graciously provided the TIMP2 human plasmid 

[30]. TIMP2 human sequence has high homology (more than 92%) with the respective 

TIMP2 rat sequence (92%, BLAST). pcDNA-TIMP2 was generated by subcloning TIMP2 

cDNA into the pcDNA3.1 vector (Invitrogen). TIMP2 cDNA was released by cutting with 

Pst1 and Apa1 restriction enzymes, gel purified, blunt-ended ligated into blunt-ended Xba1 

site of pcDNA 3.1. The orientation of cDNA was verified by restriction enzyme digestion 

and sequencing. The vector has a eukaryotic selection marker (neomycin resistance gene) 

that allows selection under G418 (Invitrogen). After linearization with Nru1, the plasmid 

was transfected into ENU1564 cells using Lipofectamine2000 (Invitrogen). After 

transfection, the cells were placed in antibiotic selective media (G418) to select clones that 

had successfully been transfected with the plasmid. The colonies were screened by WB for 

the expression of TIMP2 protein. Animals were inoculated with the stably transfected 

ENU1564-TIMP2 cell line. The animal inoculation was done in groups of nine animals. 

Nine control animals were inoculated with ENU1564 cells at the same time.  

 

 

Invasion assay  

In vitro invasiveness was evaluated using the method previously described [31]. 

Boyden invasion chambers were used. Briefly, each Boyden chamber (Becton Dickinson 

Biosciences, NJ, USA) consists of a BD Falcon TC Companion Plate with Falcon Cell 

Culture inserts containing an 8-µm pore PET membrane with a thin layer of Matrigel 
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basement membrane matrix. First, the interior of the inserts was rehydrated for 2h with 

warm (37°C) bicarbonate based culture medium. The upper chambers were filled with 0.5 

ml of cell suspension (1.25x105 cells/ml) of ENU1564 and ENU1564-TIMP2 cells. Ten 

percent fetal bovine serum in Dulbecco's Modified Eagle Medium (Invitrogen) was placed 

in the lower chambers as chemoattractant or, alternatively, 48h rat astrocyte conditioned 

media. The chambers were incubated at 37°C in a humidified atmosphere of 5% CO2 for 

24h. Non-migrating cancer cells on the upper surface of the inserts were removed by 

wiping with a cotton swab; migrating cells on the lower surface were fixed and stained with 

Insta Stain 3 Step (S&K Reagent, Denver, CO, USA). The invasive potential was 

quantified by counting the total number of cells on the lower surface of the inserts under a 

light microscope at 400X magnification. Three random visual fields were counted for each 

assay. Triplet was carried out in each invasion experiment.  

 

 

Rat inoculation  

Forty-day-old BD-IV rats were used. The animals were obtained from a colony 

maintained at Texas A& M University in accordance with institutional animal care 

guidelines. The syngeneic animals were inoculated with 1x104 tumor cells in the left 

ventricle or alternatively in the mammary gland. Inoculation was performed on animals 

under Ketamine (87mg/kg, intramuscular injection) anesthesia. The animals were 

humanely euthanatized using Pentobarbital (150mg/kg, intraperitoneal injection) when 

showing clinical signs of discomfort. Complete necropsies were performed and tissues 
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sampled for histological evaluation. Six brain sections were done per animal and metastatic 

foci were counted. 

 

 

Orthotopic tumor growth assay 

Animals were inoculated in the mammary fat pad with 1X104 ENU1564-TIMP2 

(n=3) or ENU1564 cells (n=3). Tumor size was determined at two time points by the use of 

a caliper. Tumor weight was determined at the time of death by complete dissection of 

mammary tumor. Six lung sections from each animal were evaluated histologically and 

metastatic foci were counted.  

 

 

Gel zymography  

Gelatin zymography was performed as described previously [32]. In brief, samples 

were electrophoresed on 10% (wt/vol) a polyacrylamide gel containing 0.1% (wt/vol) 

gelatin. After electrophoresis, the gel was washed twice for 30 min each in 2.5% (vol/vol) 

Triton X-100 at room temperature and then incubated in substrate reaction buffer (50 mM 

Tris-HCl, 5 mM CaCl2, 0.02% [wt/vol] NaN3, pH 8.0 at 25 C) for 8–18 h at 37oC with 

gentle shaking. The gel was then stained with Coomassie Blue R250 in 10% (vol/vol) 

acetic acid and 30% (vol/vol) methanol for 1h and destained briefly in the same solution 

without dye. Proteolytic activity was detected by a clear band indicating the lysis of the 

substrate.  
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Western blotting  

Cells and tissue samples were homogenized in lysis buffer in a 1V: 10V dilution 

(50 mM Tris-HCl, pH 8.0, 300 mM NaCl, 0.5% NP-40, 0.5% deoxycholate, 1 mM EDTA, 

pH 8.0), supplemented with a mixture of protease inhibitors. Samples were run on a 9-12% 

SDS polyacrylamide gel and transferred to nitrocellulose membranes. Membranes were 

incubated one hour in blocking buffer (20 mM Tris-HCl buffered saline containing 5% 

nonfat milk powder and 0.1% Tween 20). Blots were incubated at 4oC overnight with anti-

MMP2 (1:2000), GFAP (1:1000) and phospho-ERK1/2 (1:1000) (MMP2 antibody was 

purchased from Santa Cruz Bitotech, Santa Cruz, CA, USA; antibody for ERK1/2 from 

Cell Signaling, Beverly, MA, USA; GFAP from DAKO, Denmark), washed extensively 

and then incubated for one hour with a 1:5000 dilution of anti-primary antibody. After 

additional washes, the blots were incubated with chemiluminescent substrate, according the 

directions in the kit (SuperSignal ® West Pico, Pierce, Rockford, IL, USA). 

 

 

Immunohistochemistry  

Five-micron (5µm) paraffin-embedded sections were used. Deparaffinization, 

rehydration and antigen-retrieval were done by immersion of slides in DECLERE® (Cell 

Marque, Hot Springs, AR, USA) commercially available buffer in moist heat (pressure 

cooker) for 15 minutes. Potential non-specific binding sites were blocked with 5% normal 

goat or rabbit serum in PBS. After blocking, the sections were incubated with primary 

phospho-ERK1/2 antibody (1:100) and GFAP (1:800). After three five-minute washes in 
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PBS, the sections were incubated with either biotin-conjugated anti-rabbit or anti-goat IgG 

(Vector Laboratories, Burlingame, CA, USA). A Vector-ABC streptavidin-peroxidase kit 

with a benzidine substrate was used for color development. Counter-staining was done with 

diluted hematoxilin. Sections that were not incubated with primary antibody served as 

negative control. 

 

 

MAPK inhibition assay  

ERK1/2 mitogen-activated kinase (MAPK) inhibitor, PD98059 (EMD Biosciences, 

Inc. San Diego, CA, USA) was used. It is a selective and cell-permeable inhibitor of MAP 

kinase kinase (MEK) that acts by inhibiting the activation of MAP kinase and subsequent 

phosphorylation of MAP kinase substrates. It was used dissolved in DMSO in a 10mM 

solution. Fifty microliters of the solution are added to 5 ml culture media at 24h of the 

experiment. PD98059 was added to ENU1564 cells and ENU1564 cells incubated with 

astrocyte-conditioned media. 

 

 

Statistical analysis 

Paired T-student tests were performed for all parameters including densitometry 

values obtained from gel zymography and Western blotting-autoradiograph analysis using 

Flour S MultiImager® technology from Biorad (Hercules, CA, USA). Differences were 

considered statistically significant when p <0.05. 
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Results 

In vitro and in vivo TIMP2 expression 

Because we observed increase of MMP2 activity/expression in breast cancer brain 

metastases in our model, we over expressed tissue inhibitor of MMP2 (TIMP2) in the 

ENU1564 cell line to determine if MMP2 plays a role in the brain metastatic process. After 

selecting cell culture clones that expressed TIMP2, cell extracts were prepared, and WB 

was performed on the cell culture extracts (Figure 20a). The clone with higher expression 

of TIMP2 was selected for in vivo inoculation. To confirm the increased expression of 

TIMP2 in vivo, tumor cell extracts were obtained from the tumor masses derived from 

mammary fat pad inoculation. Tumors derived from ENU1564-TIMP2 cell lines had 

significantly higher levels of TIMP2 protein expression when compared with controls 

inoculated with ENU1564 cells (p<0.001) (Figure 20b &20c).  

 

Effect of TIMP2 transfection on orthotopic tumor growth 

In order to determine if MMP2 has a role in in vivo tumor growth at the primary 

mammary gland site, we inoculated ENU1564-TIMP2 cells into the mammary pad of BD-

IV rats. We observed, at two different time points, that tumors derived from ENU1564 cells 

were significantly larger than tumors derived from ENU1564-TIMP2 (p<0.001 and p<0.05 

in the two different time points, day 32 and day 42 post inoculation) (Figure 21).  

Tumor weights were obtained at the time of sacrifice (day 42 post inoculation). The 

tumors from control rats, originated from ENU1564 inoculation, were heavier than tumors 
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Figure 20. Establishment of TIMP2 overexpression in cancer cells. (a) In vitro TIMP2 

expression in ENU1564-TIMP2 compared with ENU 1564 control cells. (b) In vivo 

expression of TIMP2 in orthotopic tumors derived from inoculation with ENU 1564-

TIMP2 vs ENU 1564 control cells. The membranes were stripped and re-probed with ß-

actin antibody to confirm equal protein loading and transfer(c) Quantitative analysis of 

TIMP2 in vivo expression was determined by densitometry. The results shown in the 

histogram are the mean ± standard deviation from three control and three tumor samples. *, 

for statistically significant when p<0.05.  
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Figure 21. Effects of TIMP2 overexpression on orthotopic tumor development originated 

from inoculation with ENU1564-TIMP2 vs ENU1564 control cells in the mammary fat 

pad. (a) Orthotopic tumor size determined in two different days. (b) Orthotopic tumor 

weight determined at time of animals’ sacrifice. (c) Number of lung metastases originated 

from orthotopic mammary tumors. (*) for statistically significant when p<0.05.  
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from animals inoculated with ENU1564-TIMP2 cells (p<0.05). Additionally, histological 

evaluation of lungs from both groups revealed that only animals from the control group 

developed lung metastases.  

 

 

In vitro invasive potential of cancer cells  

To determine whether TIMP2 overexpression has any influence on in vitro 

ENU1564 invasive potential, we used a Matrigel-based invasion assay. Boyden chamber 

chemoinvasion analysis showed that a significantly smaller number (p<0.001) of 

ENU1564-TIMP2 cells invaded the Matrigel when compared with ENU1564 cells. (Figure 

22). 

 

 

 In vivo assessment of MMP2 expression and activity 

Because we did not observe development of brain metastases in any of the animals 

inoculated with ENU1564-TIMP2 cells, we used material collected from orthotopic 

mammary tumors developed from inoculation of both ENU1564 and ENU1564-TIMP2 

cells to evaluate in vivo change in expression and activity of MMP2. WB evaluation 

revealed non-significant difference in levels of MMP2 protein (p>0.1) (Figure 23a&b). 

Gel zymography evaluation revealed significantly higher MMP2 activity in samples 

obtained from animals inoculated with ENU1564 cells when compared with animals  
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Figure 22. Metastatic potential of ENU1564 vs ENU1564-TIMP2. (a) In vitro invasion chamber assay for ENU1564 cells 

was performed as described in material and methods. The results shown in the histogram are the mean ± standard 

deviation of two individual experiments run in triplicate. (b) Effects of TIMP2 overexpression in brain metastatic tumor 

development. (*) for statistically significant when p<0.05.  
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health of animals in the control group, all animals were sacrificed. Gross evaluation did not 

reveal any significant changes in the central nervous system. Upon histological evaluation 

44.4% of the animals in the control group had brain metastases. Brain metastases were not 

detected in any of the animals in the group inoculated with ENU1564-TIMP2 cells 

(p<0.001) (Figure 22). 

 

 

Effect of TIMP2 transfection in brain metastasis development 

To determine if MMP2 plays a role on breast cancer brain metastases development, 

we used cells that have high in vivo expression of tissue inhibitor of MMP2. We inoculated 

ENU1564-TIMP2 cells in the left ventricle. In parallel we inoculated control animals with 

ENU1564 cells. Five weeks after inoculation, due to deterioration of inoculated with 

ENU1564-TIMP2 cells (p<0.05) (Figure 23c&d). 

 

 

In vivo and in vitro astrocytic activity  

Astrocytes play an important role in the development of breast cancer brain 

metastases [1, 25]. We observed previously that breast cancer brain metastases induce a 

marked astrocytic response. To better understand the role of astrocytes in the development 

of brain metastases of breast cancer in our model, we evaluated GFAP (glial fibrillary 

protein-astrocytic marker) reactivity in brain sections of animal with metastases by IHC. 

We observed a marked increase of immunohistochemical staining of GFAP in reactive 
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astrocytes around brain metastatic foci when compared with normal brain (Figure 24a). To 

confirm the IHC results, we performed WB analysis for GFAP protein in samples obtained 

from dissected brain frozen specimens. Additionally, we observed that tumor tissue 

expresses higher levels of GFAP protein when compared with control brains of animals 

 

Figure 23. MMP2 enzymatic activity and MMP2 protein expression in orthotopic tumors originated from 

inoculation with ENU1564-TIMP2 vs ENU1564 control cells. (a) Evaluation of protein expression by 

Western blotting. The membrane was stripped and re-probed with ß-actin antibody to confirm equal loading. 

(b) Quantitative analysis of MMP2 expression was determined by densitometry. The results shown in the 

histogram are the mean ± standard deviation from three control and three tumor samples. (c) Evaluation of 

MMP2, activity by gel zymography. (d) Quantitative analysis of MMP2 activity was determined by 

densitometry. The results shown in the histogram are the mean ± standard deviation from three control and 

three tumor samples. (*) for statistically significant when p <0.05. 
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free of tumor (p<0.05) (Figure 24b & c). The use of 48h-rat astrocyte-conditioned media 

as a chemoattractant revealed an increase in invasive behavior of ENU1564 cells (p<0.001) 

that was reduced in ENU1564-TIMP2 transfected cells (p<0.001) (Figure 24d). To 

determine if astrocytes have a role in MMP2 expression in ENU1564 cells, we treated these 

cells with 48h conditioned rat-astrocyte media. WB evaluation of MMP2 expression in 

ENU1564 cells revealed that these express low levels of MMP2. When incubated with 

astrocyte-conditioned media we observed an increased expression of MMP2 protein by WB 

evaluation (p<0.05). 

 

 

ERK1/2 pathway-mediated MMP2 expression 

We observed a relationship between MMP2 expression/activity in the development 

of BC brain metastases. We found that astrocytes affect MMP2 expression in ENU1564 

cells. The MAPK has been associated with the metastatic cascade, MMP2 activity and 

astrocytic factors [23, 24, 26]. To determine if there is any correlation between brain 

metastases and the main components of the MAPK pathway in our model, we performed 

IHC analysis for ERK1/2, p38 and JNK. Neoplastic epithelial cells were positive for 

phosphorylated-ERK1/2 and staining was more intense at the periphery of the neoplastic 

lesions (Figure 25a&b). Neoplastic cells did not stain with p38 and JNK antibodies. To 

confirm the IHC results, we performed WB analysis for phosphorylated-ERK1/2 protein 
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Figure 24. In vivo and in vitro astrocyte activity (a) Immunohistochemical staining (brown) of GFAP (glial 

fibrillary acidic protein) protein around metastatic foci. Arrows indicate metastatic foci. Bars indicate 100µm. 

(b) In vitro invasion chamber assay for ENU1564 cells was performed as described in material and methods. 

The results shown in the histogram are the mean ± standard deviation of two individual experiments run in 

triplicate. *, statistically significantly different from ENU1564 (p<0.05). **, statistically significantly 

different from ENU1564 (p<0.05). ***, statistically significantly different from ENU1564-RA (rat astrocyte-

conditioned media treated-ENU1564) (p<0.05). (c) In vivo evaluation of GFAP protein expression in brain 

metastatic foci by Western blotting. The membranes were stripped and re-probed with ß-actin antibody to 

confirm equal protein loading and transfer. (d) Quantitative analysis of GFAP protein expression was 

determined by densitometry. The results shown in the histogram are the mean ± standard deviation from three 

control and three tumor samples. (*) for statistically significant when p<0.05. 

in samples obtained from dissected frozen brain specimens. We observed that tumor tissue 

expresses higher levels of phosphorylated-ERK1/2 protein when compared with control 
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brains of tumor free animals (p<0.05) (Figure 25c&d). To evaluate the role of 

phosphorylated-ERK1/2 in the expression of MMP2 in ENU1564 cancer cells treated with 

48h astrocyte-conditioned media we used ERK1/2-MAPK inhibitor, PD98059. We 

observed that phosphorylated-ERK1/2 was up regulated in the breast cancer cell line when 

treated with astrocyte-conditioned media (p<0.05). The analysis of cell extract protein 

expression after treatment with PD98059 revealed a significant decrease of MMP2 protein 

expression (p<0.05) as well as decrease in ERK1/2 expression (p<0.001) (Figure 26).  

 

 
Discussion 

The metastatic rodent models for breast cancer described to date study mostly 

nodal, pulmonary and bone metastases. In most of these studies, brain metastases occur as a 

non-predictable event and only sporadically [33, 34]. In a previous study using a rat 

syngeneic model for breast cancer brain metastases, we determined that breast cancer brain 
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Figure 25. In vivo and in vitro phosphorylated-ERK1/2 protein expression in breast cancer 

brain metastatic foci. (a)&(b) Immunohistochemical staining (brown) of phosphorylated-

ERK 1/2 protein. Arrows indicate metastatic foci. Bars indicate 100µm. (b) In vivo 

evaluation of phosphorylated-ERK 1/2 protein expression in brain metastatic foci by 

Western blotting. The membranes were stripped and re-probed with ß-actin antibody to 

confirm equal protein loading and transfer. (c) Quantitative analysis of phosphorylated-

ERK1/2 protein expression was determined by densitometry. The results shown in the 

histogram are the mean ± standard deviation from three control and tree tumor samples. (*) 

for statistically significant when p<0.05. 
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Figure 26. In vitro ERK1/2 pathway-mediated MMP2 regulation. (a) Evaluation of 

phosphorylated-ERK1/2 and MMP2 protein expression by Western blotting. The 

membranes were striped and re-probed with ß-actin antibody to confirm equal protein 

loading and transfer. (b) Quantitative analysis of phosphorylated-ERK1/2 expression was 

determined by densitometry. (c) Quantitative analysis MMP2 expression was determined 

by densitometry. The results shown in the histograms are the mean ± standard deviation 

from three individual experiments run in triplicate. *, statistically significantly different 

from ENU1564 (p<0.05). **, statistically significantly different from ENU1564 (p<0.05). 

***, statistically significantly different from ENU1564-RA (rat astrocyte-conditioned 

media treated-ENU1564) (p<0.05). 
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metastases significantly express higher levels of MMP2 and have increased MMP2 activity 

(in print). These results suggest that this proteinase may play a role in the development of 

breast cancer brain metastases.  

Here, we report that inhibition of MMP2 by overexpression of tissue inhibitor of 

MMP2 (TIMP2) causes reduction in metastases of breast cancer to the brain. Furthermore, 

we intend to investigate a possible role of astrocytes in MAPK signaling on MMP2 

expression. 

MMP2 is believed to play an important role in breast cancer invasion and 

metastases [9]. MMP2 overexpression and activation have been associated with the 

invasive potential of human tumors. Active MMP2 was detected more frequently in 

malignant than benign breast carcinomas [6]. A few studies are available about the role of 

MMPs in breast cancer metastases. However, fewer have characterized the expression of 

these molecules in breast-to-brain cancer metastases. It is important to determine if MMPs 

have different effects/roles in the development of metastases in different organs because 

this may contribute to understanding why BC cells metastasize to preferential organs. Here, 

we concentrate on the metastatic process of BC to the brain. 

TIMP2 expression is important for MMP2 activity. In BC patients it has been 

correlated with poor prognosis [4, 46]. We observed that transfection of breast cancer cells 

with TIMP2 causes in vitro TIMP2 overexpression that is associated with decrease in in 

vitro cancer cell invasive behavior. When these transfected cells are inoculated in vivo, 

there is a marked increase in TIMP2 expression, which is associated with marked 

variations of cancer cell biological behavior. TIMP2 overexpression decreases orthotopic 
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tumor growth, size and weight; and also influences the metastatic behavior of orthotopic 

tumors. None of the animals inoculated orthotopically, with ENU1564-TIMP2 cells 

developed lung metastases, compared with development of lung metastases in all animals 

inoculated with ENU1564 cells. Additionally, and in concurrence with these results, none 

of the animals inoculated with ENU1564-TIMP2 cells developed brain metastases when 

inoculated via the left ventricle. These results suggest that TIMP2 expression decreases the 

metastatic brain behavior of BC cancer cells in this model. In order to determine if there 

was any variation in in vivo expression and activity of MMP2, and because we did not 

detect development of brain metastases in any of the animals inoculated with ENU1564-

TIMP2 cells, we analyzed material collected from orthotopic mammary tumors developed 

from animals inoculated with ENU1564 and ENU1564-TIMP2 cells. As expected, no 

significant variation was observed in the levels of MMP2 protein expression, because 

TIMP2 has no reported influence on MMP protein expression. However, tumors derived 

from animals inoculated with ENU1564 cells had higher MMP2 activity when compared 

with tumors originated from animals inoculated with ENU1564-TIMP2 cells. These results 

suggest that TIMP2 overexpression effectively decreases MMP2 activity and that MMP2 is 

important in the biological brain metastatic behavior of cancer cells. Our results are in 

concurrence with results of previous studies. Cell transfection with TIMP2 in in vivo 

models decreases not only tumor growth but also metastatic potential [39, 40]. 

Experimental TIMP2 overexpression is related to decreased node and pulmonary 

metastases in bladder cancer [52], adenovirus-mediated TIMP2 delivery decreases the 
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numbers of pulmonary metastases [49], retroviral delivery of TIMP2 decreases BC 

invasion and metastases [91]. 

Astrocytes may play an important role in the development of brain metastases, as 

they have been shown to respond to extracellular stimuli by producing many cytokines and 

growth factors that can modulate tumor cell proliferation, growth and/or metastases. 

Cytokines produced by glial cells in vivo (such as IL6, tumor necrosis factor alpha and IGF 

1) may contribute, in a paracrine manner, to the development of brain metastases by breast 

cancer cells [58, 61]. We reported previously that there is prominent astrocyte reaction 

associated with BC brain metastatic foci. We wanted to investigate if astrocytes play a role 

in the development of breast cancer brain metastases in our system and if this role is related 

to MMP2. Increased IHC stain of GFAP around brain metastatic foci when compared to 

brain tissue non-infiltrated by neoplasia suggests that astrocytes are associated with the 

development of BC brain metastases. Additionally, tumor samples express higher levels of 

GFAP protein when compared with controls. We also observed that the use of astrocyte-

conditioned media as chemoattractant increases invasive behavior of both ENU1564 and 

ENU1564-TIMP2 cells. Rat astrocyte-conditioned media causes increased in vitro 

expression of MMP2 protein, but has no effect in in vitro MMP3 and/or MMP9 protein 

expression (data not shown). These results support that astrocytes are associated with 

MMP2 expression and that this may be related to cancer cell invasive phenotype. 

Our previous studies demonstrated that expression and activity of MMP2 are 

increased in breast cancer brain metastases. Our present study shows that astrocytes may be 

involved in MMP2 up regulation. These points prompted us to investigate what signaling 
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pathway is involved in up regulation of MMP2 expression in ENU1564. MAPK pathway 

has been related to MMP activation and expression. MMP2 expression and activity are 

correlated with ERK phosphorylation [76]. Blockade of the ERK pathway by treatment 

with PD184352, a specific powerful inhibitor of MAPK/ERK kinase (MEK) suppressed 

expression of MMPs [72, 92]. In addition, activation of the ERK pathway in tumor cells is 

well correlated with cancer cell invasive and metastatic phenotype [77]. To determine if 

there is a correlation between brain metastases and the main components of the MAPK 

pathway, we performed IHC analysis for several components of the MAPK pathway 

phosphorylated ERK1/2, p38 and JNK. Neoplastic epithelial cells are positive for 

phosphorylated ERK1/2 and staining is more intense at the periphery of the brain 

metastatic foci. Since these peripheral tumor cells correspond to the invasive front of the 

tumor foci, these results suggest that phosphorylated ERK1/2 may be involved in brain 

metastases development. No staining was observed with p38 and JNK (data not shown). 

Additionally, we observed that brain tumor tissue expresses higher levels of 

phosphorylated ERK1/2 protein. Also, increase of phosphorylated ERK1/2 protein in 

ENU1564 cells after treatment with astrocyte-conditioned media was correlated with 

increased expression of MMP2 in these cancer cells. When we treated ENU1564 cells (with 

or without astrocyte conditioned media) with an ERK1/2 inhibitor (PD98059) we observed 

a significant decrease in MMP2 protein expression, as well as the expected decrease in 

phosphorylated ERK1/2 expression. These results strongly support that MMP2 expression 

is associated with phosphorylated ERK1/2 expression and is regulated, at least in part, by 

factors produced by astrocytes. Future studies will be needed to determine the specific 
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astrocytic factors that are associated with MMP2 expression within the CNS that are 

mediated through ERK1/2 signaling pathway. 

We conclude that MMP2 is important in the process of establishment of breast 

cancer brain metastases. Additionally, we have evidence of the importance of astrocytes 

within the BC brain metastatic cascade and their possible correlation with MMP2 

expression via ERK1/2-MAPK pathway. 
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CHAPTER IV 

EFFECTS OF MMP INHIBITION BY PD166793 IN THE 

DEVELOPMENT OF BREAST LUNG METASTASIS IN A RAT 

MODEL 

 

 

Introduction  

A suitable tumor environment is important for the development of metastatic tumor 

cells [80]. Many theories have been developed to study and understand metastatic behavior. 

Factors such as molecular and genetic characteristics of neoplastic cell and biological 

environment are considered determinant in the metastatic process [9]. We aim to study the 

role played by matrix metalloproteinases (MMPs) and their inhibitors in the development 

of BC lung metastasis.  

MMPs are a broad family of zinc-dependent proteinases that play a key role in 

extracellular matrix degradation, and are implicated in numerous pathogenic processes [9]. 

Tumor cells are believed to secrete these matrix-degrading enzymes and/or induce host 

cells to produce them [39]. In addition to the degradation of the extracellular matrix 

(ECM), MMPs are suspected of having other roles in cancer development, such as 

angiogenesis, inhibition of apoptosis [6], and regulation of cell proliferation [3]. High 

serum concentration and over-expression of MMP2, MMP3 and MMP9 in breast cancer 

patients is related to poor prognosis, decreased survival, increased tumor size, increased 

invasiveness and metastatic behavior [9, 11, 12, 16, 18, 14, 39, 93, 94, 95]. Data from 
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experimental animal models also correlates MMP expression with invasive behavior and 

increased metastasis [39].  

The lung is one of the most frequent sites for breast cancer metastasis. MMPs have 

been studied not only in the context of lung metastasis, but also as a factor in the 

development of metastasis of pulmonary tumors. Several MMP inhibitors are under 

consideration for clinical trial in patients with cancer [96]. It is important to understand 

organ specific metastatic mechanisms in order to increase drug efficacy. 

Here, we intend to determine if inhibition of MMP is important to the development 

of pulmonary metastasis of breast cancer in a rodent syngeneic model. To do this we used a 

MMP synthetic inhibitor (PD166793), known to inhibit/decrease MMP2, 3 and 9 activities. 

We will further characterize the metastatic system evaluating if MMPs influence cancer 

cell proliferation, cancer cell death as well as the relationship of MMPs and tumor stroma 

development. 

 

 

Materials and methods 

Tumor cell line 

The ENU1564 tumor cell line used in this study was developed in our laboratory 

and originated from an N-ethyl-N nitrosourea-induced mammary adenocarcinoma in a 

female Berlin-Druckrey IV (BD-IV) rat. This cell line is highly metastatic to lung, brain 

and bone tissues [80]. 
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Rat inoculation  

Forty-day-old BD-IV rats were used. The animals were obtained from a colony 

maintained at Texas A&M University in accordance with institutional animal care 

guidelines. The syngeneic animals were inoculated with 1x104 tumor cells in the left 

ventricle. Inoculation was performed on animals under Ketamine (87mg/kg, intramuscular 

injection) anesthesia. The animals were humanely euthanatized using Pentobarbital 

(150mg/kg, intraperitoneal injection) when showing clinical signs of discomfort. Complete 

necropsies were performed and tissues were sampled for histology evaluation. 

 

 

Drug experiment 

PD166973 (S-2-4’-bromobiphenil-4-sulfonylamino-3 methyl-butyric acid) is a 

specific MMP inhibitor. Dr J. Peterson generously provided PD166793 (Pfizer Inc, Ann 

Harbor, MI). The experiment was conducted in BD-IV rats. Five control animals received a 

single intracardiac inoculation of 1X104 tumor cells and daily treatment with vehicle only 

(DMSO). Five animals were inoculated with 1X104 neoplastic cells and treated daily. We 

used the dose of 5mg/kg/day as recommended in the literature for rat studies [PL26]. The 

study had the duration of 24 days. Animals were sacrificed at the end of the study and lung, 

and body weights were collected. Lung/body weight and lung/brain weight ratios were 

determined. Lung samples were placed in 10%formalin for histological evaluation. Six 

sections of lung were evaluated per animal. The lung lesions were scored from 1-7 
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according to size, presence of cell death, abundance of stroma, mitotic index, nuclear 

pleomorphism and number of metastatic foci (Table 4). 

 

 

Table 4. PD166793 experimental design. 
30 day old BD IV rats Control group  

N=5 
Treated group 
n=5 

PD166793 (compound) IP injection of vehicle only 5mg/kg/24 day IP 
(dissolved with 

DMSO) 
ENU 1564 breast cancer cell 
line 

1x104 cells IC on d=1 1x104 cells IC on d=1 

 

 

 

Tumor collection 

Samples were collected immediately after animal’s death and placed on powdered 

dry ice until completely frozen. Samples were then kept at -80oC. The samples from 

metastatic tissue were collected from the lung by dissection. 

 

 

Immunohistochemistry (ICH)  

Five-micron (5 µm) paraffin-embedded sections and 12µm frozen sections were 

used. Deparaffinization, rehydration and antigen-retrieval were done by immersion of 

slides in DECLERE® (Cell Marque, Hot Springs, AR) commercially available buffer in 

moist heat (pressure cooker) for 15 minutes. Potential non-specific binding sites were 
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blocked with 5% normal goat or rabbit serum in PBS. After blocking, the sections were 

incubated with primary antibodies in dilutions of 1:200 for MMP2; 1:25 for MMP3 and -9 

purchased from Santa Cruz (Santa Cruz Biotech, Santa Cruz, CA); 1:500 for PCNA and 

1:300 for Vimentin (antibodies for PCNA and vimentin were purchased from DAKO, Dako 

Cytomation, Denmark). After three five-minute washes in PBS, the sections were then 

incubated with biotin-conjugated anti-rabbit and anti-goat IgG (Vector Laboratories, 

Burlingame, CA). A Vector-ABC streptavidin-peroxidase kit with a benzidine substrate 

was used for color development. Counter-staining was done with diluted hematoxilin. 

Sections that were not incubated with primary antibody served as negative control. 

 

 

Western blotting (WB)  

The tissue was homogenized in lysis buffer in a 1V:10V dilution (50 mM Tris-HCl, 

pH 8.0, 300 mM NaCl, 0.5% NP-40, 0.5% deoxycholate, 1 mM EDTA, pH 8.0, and 0.1% 

SDS), supplemented with a mixture of protease inhibitors. Samples were run on a 9-12% 

SDS polyacrylamide gel and transferred to nitrocellulose membranes. Membranes were 

incubated one hour in blocking buffer (20 mM Tris-HCl buffered saline containing 5% 

nonfat milk powder and 0.1% Tween 20). Blots were incubated at 4oC overnight with anti-

MMP2 (1:2000); MMP3 (1:500); MMP9 (1:1000) (antibodies from Santa Cruz Bitotech, 

Santa Cruz, CA), cleaved-caspase 3 (1:1000) (antibody form Cell Signaling, Beverly, MA) 

and washed extensively and then incubated for one hour with a 1:5000 dilution of anti-

primary antibody. After additional washes, the blots were incubated with chemiluminescent 
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substrate, according the directions in the kit (SuperSignal ® West Pico, Pierce, Rockford, 

IL).  

 

 

Gel zymography  

Gelatin zymography was performed as described previously [28]. In brief, samples 

were electrophoresed on 10% (wt/vol) polyacrylamide gels containing 0.1% (wt/vol) 

gelatin and Ready Gel Zymogram Gel 12%, casein (Biorad, Hercules, CA). After 

electrophoresis, the gels were washed twice for 30 min each in 2.5% (vol/vol) Triton X-100 

at room temperature and then incubated in substrate reaction buffer (50 mM Tris-HCl, 5 

mM CaCl 2, 0.02% [wt/vol] NaN3, pH 8.0) for 8 to 18 h at 37oC with gentle shaking. The 

gels were then stained with Coomassie Blue R250 in 10% (vol/vol) acetic acid and 30% 

(vol/vol) methanol for 1 to 2 h and destained briefly in the same solution without dye. 

Proteolytic activities were detected by clear bands indicating the lysis of the substrate.  

 

 

PCNA index evaluation 

The evaluation of PCNA index was performed according to the literature [97]. After 

IHC staining with PCNA antibody the number of cells with positive nuclear staining was 

evaluated in a total of 500 cells in five different high power fields (400X). 
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TUNEL assay  

Apoptotic cells were visualized by the terminal deoxynucleotidyl transferase 

mediated dUTP nick end labeling (TUNEL) technique using a NeuroTACS II in situ 

apoptosis detection kit (Trevigen, Gaithersburg, MD). The tumor sections fixed on glass 

slides were incubated with Proteinase K/Triton X-100 for 20 min at room temperature. TdT 

was used to catalyze the addition of biotin-conjugated dUTP to the 3 -OH ends of DNA 

fragments. The incorporated biotin was detected by streptavidin conjugated to horseradish 

peroxidase. The staining was done using DAB as chromogen and H2O2 as substrate. The 

sections were counterstained with hematoxylin. The apoptotic index was determined by 

microscopic examination  

 

 

Statistical analysis 

Student t-test was performed to evaluate all parameters including densitometry 

values obtained from Western blotting-autoradiographs and gel zymography analysis using 

Flour S MultiImager® technology from Biorad (Hercules, CA). Differences were 

considered statistically significant when p≤0.05. 
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Results 

MMP expression in lung metastasis 

We evaluated the expression of MMP2, MMP3 and MMP9 in lung metastasis using 

IHC. We observed that neoplastic cells have strong expression of these molecules diffusely 

in the cytoplasm (Figure 27). To confirm these results we performed WB in lung 

metastatic tissue. We observed no significant difference in the levels of MMP2, -3 and -9in 

lung metastasis when compared with levels of MMP2 expression in normal lung (Figure 

28). 

 

 
Drug experiment 

PD166973 (S-2-4’-bromobiphenil-4-sulfonylamino-3 methyl-butyric acid) is a 

selective MMP inhibitor, known to decrease the activities of MMP2, -3 and -9. We 

observed previously that PD166793 decreases in vitro invasive behavior of ENU 1564. 

cells (Chapter II). We use this compound to determine if inhibition of these molecules will 

alter in vivo development of lung metastasis. We observed that the lung weight/body 

weight and lung weight/brain weight ratios were higher in non-treated animals compared 

with PD166793 treated animals (p≤0.24 and P≤0.017 respectively) (Figures 28 & 29). 
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Figure 27. Expression of MMPs in lung metastasis (a) Immunohistochemical staining 

(brown) of MMP2 in the cytoplasm neoplastic cells in lung metastatic foci. (b) 

Immunohistochemical staining (brown) of MMP3 in the cytoplasm neoplastic cells in lung 

metastatic foci. (c) Immunohistochemical staining (brown) of MMP9 in the cytoplasm 

neoplastic cells in lung metastatic foci. Bars indicate 100µm.  
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Figure 28.Expression of MMPs proteins in lung metastasis. (b) Expression of MMP2, -3 

and -9 proteins in lung metastatic foci. The membranes were striped and re-probed with ß-

actin antibody to confirm equal loading (c) Quantitative analysis of MMP2; -3, -9 

expression was determined by densitometry. The results shown in the histogram are the 

mean ± standard deviation from three control and three tumor samples.  
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Figure 29. Effects of PD166793 in the development of lung metastasis. Evaluation of lung 

weight/brain weight ratio.(*) for statistically significant when p≤0.05.  

 

 

 

In vivo assessment of MMP expression and activity 

We used material collected from metastatic lung tumors developed from inoculation 

of both animals treated with PD166973 vs animals that were vehicle treated, to evaluate in 

vivo change in expression and activity of MMP2, -3 and 9. WB evaluation revealed no 

significant difference in levels of MMP2, -3 and -9 protein expression (p>0.1) 
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Figure 30 Effects of PD166793 in the development of lung metastasis. Evaluation of lung 

weight/body weight ratio. 
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Table 5. Effect of PD166793 in lung metastasis development. 
 ENU1564 PD166793 

treated 
Vehicle 

treated 
p 

value 
Mitotic index 7±0 6.4±0.54 7±0 0.035 
Nuclear 
pleomorphism 

6.33± 0.70 6.4±0.89 6.2±0.83 0.36 

Stroma 
abundance 

6.33±0.86 5.4±0.54 6.2±0.83 0.05 

Cell death 6.11±1.16 5.8±0.83 6.2±0.83 0.235 
PCNA index 43.5% 20.7% 47.9%  
Number of 
tumors 

6±1 6.6±0.54 7±0 0.08 

Tumor size 6.22±0.97 5.2±0.44 6.4±0.54 0.002 

 
 

 

Figure 31. Effects of PD166793 in the development of lung metastasis. Histological evaluation of pulmonary metastasis 

size and number in animals treated with vehicle (a) and (b) animals treated with PD166793. Bars indicate 100µm. 
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Figure 32. Effects of PD166793 in the development of lung metastasis. Evaluation of tumor 

size variation between animals treated with PD166793 and controls 
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Figure 33. Effects of PD166793 in the development of lung metastasis. Evaluation tumor 

number variation between animals treated with PD166793 and controls. 

 
 
 
Lung metastasis of animals treated with vehicle only, when compared with 

PD166793 treated animals were larger and present in higher numbers (p≤0.002 and p≤0.08, 

respectively) (Figure 31, 32 & 33) (Table 5). 

Gel zymography evaluation (Figure 34). revealed significant increased MMP9 

activity in samples obtained from animals non treated with PD166793 cells when compared 

with animals treated with PD166793 (p≤0.04) (Figure 35) as well as a decrease in 

MMMP2 and MMP3 activity in animals treated with PD166793. 
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Figure 34. Effects of PD166793 in the development of lung metastasis. (b) Expression of 

MMP2, -3 and -9 in lung metastatic foci in animals treated with PD166793 and controls. 

The membranes were striped and re-probed with ß-actin antibody to confirm equal loading 

(c) Quantitative analysis of MMP2, -3, -9 expression was determined by densitometry. The 

results shown in the histogram are the mean ± standard deviation from three control and 

three tumor samples.  
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Figure 35. Effects of PD166793 in the MMP enzymatic activity. Quantitative analysis of 

MMP2, -3 and 9 activity was determined by densitometry. The results shown in the 

histogram are the mean ± standard deviation from three control and three tumor samples. 

(*) for statistically significant when p ≤0.05. 

 
 
 
Evaluation of cell proliferation 

In order to determine if there was an effect of MMP inhibition via PD166793 in 

tumor cell proliferation we evaluated histologicaly the mitotic index and nuclear 

pleomorphism (Figure 36).  

 
 
 



 93

 
Figure 36. Effects of PD166793 in tumor cell proliferative index. Immunohistochemical 

staining (brown) of PCNA in the nucleus of neoplastic cells in lung metastatic foci. Bars 

indicate 100µm.  
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We confirmed these results by calculating the PCNA proliferative index. There was 

significantly higher mitotic index in non-PD166793 treated animals (p≤0.03). There was 

also increased nuclear pleomorphism in non PD166793-treated animals (p≤0.36). We 

observed that PCNA indexes were higher on lung metastasis originated from non-

PD166793 treated animals (47.9%) when compared with PD166793 treated animals 

(20.7%).  

 

 

Evaluation of cell death 

To evaluate differences in cell death in the metastatic neoplastic foci we quantified 

the cell death phenotype by histological evaluation (Figure 37) and confirmed the 

evaluation by WB for cleaved-caspase 3. We observed that there was no significant 

difference in the amount of cell death in non-PD1667963 treated animals when compared 

with PD166793 treated animals (p≤0.2). There was also no significant difference in 

expression of cleaved-caspase3 protein in samples collected from non PD166793-treated 

animals vs samples collected from PD166973 animals (p≤0.49) (Figure 38). Conversely 

TUNEL assay results did not show noticeable differences in apoptosis when samples of 

lung metastasis arising from PD166793 treated animals were compared to samples from 

non-PD166793 treated animals. 
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Figure 37. Effects of PD166793 in the development of lung metastasis. Histological 

evaluation of pulmonary metastasis cell death in treated with PD166793. Bars indicate 

100µm.  
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Figure 38 Effects of PD166793 in lung metastasis apoptosis. (a) Expression of cleaved-

caspase 3 in lung metastatic foci in animals treated with PD166793 vs vehicle treated 

animals . The membranes were striped and re-probed with ß-actin antibody to confirm 

equal loading (b) Quantitative analysis of cleaved-caspase3 was determined by 

densitometry. The results shown in the histogram are the mean ± standard deviation from 

three control and three tumor samples. 

 

 

 

Evaluation of cell stroma 

To evaluate differences in fibrous stroma in the metastatic neoplastic foci we 

quantified the amount of stroma by histological evaluation (Figure 39) and confirmed 

these results by Vimentin (mesenchymal cell marker) IHC staining (Figure 40). We 

observed that tumor stroma was more prominent in non-PD166793 treated animals 

(p≤0.05) (Figure 41). 
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Figure 39. Effects of PD166793 in the development of lung metastasis. Histological 

evaluation of fibrous stroma in pulmonary metastasis in animals treated with PD166793. 

Bars indicate 100µm.  
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Figure 40. Effects of PD166793 in tumor stroma development. Immunohistochemical 

staining (brown) of vimentin in the cytoplasm of fibrous stroma cells in lung metastatic 

foci. Bars indicate 100µm.  
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Figure 41. Effects of PD166793 in the development of lung metastasis. Evaluation of tumor 

stroma variation between animals treated with PD166793 and controls. 

 

 

 

Discussion 

MMPs have been extensively studied in the context of breast cancer prognosis. 

Most of these studies have been performed on human tissue collected from patients 

diagnosed with breast cancer or in breast cancer cell lines. In this context, MMP2, -3 and -9 

are thought to play an important role in breast cancer invasion and metastasis [18].  

Our aim here is to study the relevance of MMPs in the development of BC lung 

metastasis. We evaluated the expression of MMP2, MMP3 and MMP9 in lung metastasis 

using IHC. We observed that neoplastic cells have strong expression of these molecules 
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diffusely in the cytoplasm. The evaluation of protein expression by western blot revealed 

that MMP protein levels studied were not increased in the lung metastasis when compared 

with to normal lung. This may be due to the fact that the lung is a environment 

physiologically rich in MMPs and because of that a marked difference is not noticeable. 

However, the strong expression of MMPs in the metastatic foci indicates that these 

molecules may still be important in the lung metastatic process. To determine if these 

molecules play a role in the development of metastasis we decided to inhibit MMP 

expression by use of an MMP synthetic inhibitor, PD166793. 

Several synthetic MMP inhibitors are thought to inhibit both primary tumor 

invasion and tumor metastatic behavior. TN6b decreases the number of lung metastatic to 

lymph node [98]. BAY12-9566 decreases the number and volume of lung metastasis [99]. 

FYK1388 decreases lung metastasis of fibrossarcoma [100]. Prynomast decreases the 

incidence of lung cancer metastasis to the kidney [101].  

Because MMP have been associated with lung metastasis development [102, 103, 

104, 105, 106,107, 108, 109, 110, 111, 112] , we used PD166973 (S-2-4’-bromobiphenil-4-

sulfonylamino-3 methyl-butyric acid) that is a specific MMP inhibitor and unlike first 

generation of MMP inhibitors do not inhibit other metalloproteinases like TNF-alpha-

convertase. This compound, known to decrease the activity of MMP2, -3 and -9, was used 

to determine if inhibition of these molecules will alter development of lung metastasis in 

treated compared to control animals. Lung weight/body weight and lung weight/brain 

weight ratios evaluation are highly suggestive that MMP inhibition caused decreased lung 

metastasis development. Additionally reduction in number and size of lung metastasis was 
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also observed. We therefore conclude that in our model MMPs play a role in the 

establishment of metastatic breast cancer to the lung. To evaluate in vivo variations in 

MMP activity and protein expression associated with PD166793 treatment we analyzed 

protein extracts derived from lung metastasis. No variation in the protein levels of MMP2, -

3 and -9 was observed. This is due to the fact that PD166793 acts chiefly on MMP activity 

and not on MMP expression. Although we observed a decrease in MMP2 and MMP3 

activities in animals treated with PD166793 these changes were not marked and additional 

data would be needed in order to confirm if a significant decrease in the activity of these 

molecules occurs. Surprisingly an increase in MMP9 activity was observed in animals 

treated with PD166793. This may be due to the fact that MMP9 activity is only minimally 

affected by PD166793. It could also indicate that MMP9 as a different and/or more 

complex role in the development of lung metastasis. 

Knowing that MMPs play a role in metastasis development is important, however, 

it is also fundamental to understand what are the mechanisms by which the inhibition of 

MMPs causes a phenotypic decrease in metastatic behavior. In addition to the degradation 

of the extracellular matrix, MMPs are thought to have other roles in cancer development. 

MMPs stimulate angiogenesis, cancer cell proliferation and may have a role in inhibition of 

apoptosis. We intended to further characterize cell proliferation, cell death and stroma 

development in our system. 

MMP expression has been correlated with high proliferative indexes in cancer. 

MMPs are induced by growth factors and the inhibition of MMPs via TIMPs causes 

decrease in in vivo tumor proliferation [3]. To evaluate cell proliferation we scored from 1 
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to 7 the mitotic index and nuclear pleomorphism [97]. We found that there was 

significantly higher mitotic index and increase nuclear pleomorphism in non PD166793-

treated animals. These two parameters are clear indicators of tumor malignancy that is 

related with highly proliferative, invasive and metastatic characteristics [97]. We confirmed 

this evaluation by calculating the tumor cell PCNA proliferative index. We observed that 

PCNA indexes were higher on lung metastasis originated from non PD166793-treated 

animals. Additionally, indexes superior to 30% are considered indicators of high 

proliferation [112]. Taken together these results suggest that inhibition of MMPs is 

associated with decrease in cell proliferation. 

Additionally, MMPs can be related to cancer cell death. MMPs cause the loss of 

contact from neoplastic cells to the basement membrane and are responsible for anoikis a 

special type of apoptosis [3]. Furthermore, there is an increase in apoptosis in genetically 

manipulated MMP3 transgenic mice [3]. Cell death, may it be by apoptosis or necrosis, is a 

very important tumor characteristic. Highly malignant tumors (that are more likely to 

metastasize) have usually extensive cell death. In here we evaluated cell death 

histologically. We attributed a score from one to seven in accordance with the extension of 

cell death and we observed that treatment with PD166973 did not increase the amount of 

cell death. To confirm this finding we used protein extracts from tumors in order to 

perform WB analysis of cleaved-caspase 3. Caspase 3 is one of the main molecules 

involved in apoptosis and it is known to activate in both intrinsic and extrinsic apoptotic 

pathways. Furthermore caspase 3 has been reported to be a good general indicator of the 

apoptotic status [96]. There was no significant difference in the expression of cleaved-
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caspase3 protein in samples collected from non-PD166793 treated animals. TUNEL assay 

did not revealed a significant difference between treated and non-treated animals. These 

results suggest that MMP inhibition by PD166973 may not play a considerable role in 

cancer cell death in our system.  

Finally we studied the variation of stroma development in the metastatic foci in 

different conditions of MMP activity. BC tumor cell lines transcribe, synthesize and secrete 

MMP2, MMP3, and MMP9. The production of these MMPs is related with the extra-

cellular matrix, fibroblast and collagen fibers that surround the tumor cells [10]. Stroma 

cells fibroblasts are mediators and stimulators of the production of MMPs in tumor cells 

[2]. Additionally, most MMPs are localized in the tumor stroma. MMP2, and MMP3 are 

observed in a widespread manner in peritumoral fibroblasts, and MMP9 is observed in 

focal endothelial cells [35]. To evaluate differences in fibrous stroma in the metastatic 

neoplastic foci we quantified the amount of stroma by histological evaluation. The results 

were confirmed the evaluation by vimentin immunostaining, a marker for mesechymal 

differentiation characteristic of stromal fibroblasts. We observed that tumor stroma was 

more prominent in non-PD166793 treated animals. This suggests that MMPs may play a 

role development of tumor stroma may and/or vice versa. 

In conclusion we observed a significant decrease in breast cancer lung metastasis in 

a rodent model associated with selective inhibition of MMPs by PD166973. In addition we 

observed significant decrease in cell proliferation, and stroma development in animals that 

were treated with PD166793. These results suggest that in addition to inhibition of 
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extracellular matrix degradation, MMPs play a role in cancer cell proliferation that may be 

conditioned by tumor stroma development. 
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CHAPTER V 

EFFECTS OF MMP2 INHIBITION BY TIMP2 IN THE 

DEVELOPMENT OF BREAST LUNG METASTASIS IN A RAT 

MODEL 

 

 

Introduction  

The development of metastatic tumor cells depends on multiple factors including 

tumor environment [80] and molecular and genetic characteristics of neoplastic cells [R42]. 

MMPs have been extensively associated with cancer development [113, 114, 115, 116, 

117, 118, 119, 120, 123, 124, 125]. We aim to study the role played by matrix 

metalloproteinase 2 (MMP2) and its physiological inhibitor (TIMP2- Tissue inhibitor of 

MMP2) in the development of BC lung metastasis.  

MMP2 belongs to a broad family of zinc-dependent proteinases that play a key role 

in extracellular matrix degradation, and are implicated in numerous pathogenic processes 

[126, 127, 128]. Tumor cells are believed to secrete MMP2. In addition to the degradation 

of the extracellular matrix (ECM), MMP2 and TIMP2 are suspected of having other roles 

in cancer development such as inhibition of apoptosis [6], and regulation of cell 

proliferation [3]. High serum concentration and over-expression of MMP2 in breast cancer 

patients, are related to poor prognosis, decreased survival, increased tumor size, increased 

invasiveness and metastatic behavior [18]. Data from experimental animal models also 

correlates MMP2 expression with invasive behavior and increased metastasis [R68]. 
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Transfection with MMP2 in breast cancer cells increases brain, liver, bone and kidney 

metastasis but does not significantly affect lung metastasis [10]. 

TIMPs are specific inhibitors of matrixins that control MMPs activities [4]. Four 

homologous TIMPs have so far been characterized: TIMP1 through -4. They regulate 

MMPs activity controlling in this way the breakdown of extracellular matrix components 

important for invasion and metastasis [129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 

139]. An increase in the amount of TIMPs relative to MMPs may function to decrease 

MMP activity and block tumor cell invasion and metastasis, if this protease activity is a 

critical determinant for these processes. In fact, tumor cell invasion and metastasis can be 

inhibited by up-regulation of TIMP expression or by an exogenous supply of TIMPs [54, 

56].  

At first, TIMP2 was believed to suppress invasion and metastasis. However, the 

complexity of TIMP2 /MMP interactions led to reconsideration of the role of TIMP2 in 

cancer [4]. TIMP2 expression in BC patients has been correlated with advanced disease, 

decreased survival time, increases in tumor size, node-positive status and tumor recurrence 

[140]. Paradoxically, the genetic manipulation of cancer cells has correlated experimental 

TIMP2 overexpression with decreased metastatic behavior; cells genetically modified to 

overexpress TIMP2 have fewer, smaller and less invasive in vivo characteristics [49, 52].  

Establishment of metastasis in the lung and development of metastasis originated 

from pulmonary neoplasms have been connected to MMP2 [105, 110] and TIMPs [98]. 

Because pulmonary metastases are a common event in breast cancer clinical outcome, 

several MMP inhibitor drugs have been tested in pulmonary breast cancer metastasis [106].  
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Here, we intend to determine if inhibition of MMP2 is important in the 

development of pulmonary metastasis of breast cancer in a rodent syngeneic model. To do 

this we over expressed TIMP2 in ENU1564 cells, an ethyl-nitrosurea-induced rat 

adenocarcinoma cell line. We will further characterize the metastatic system, evaluating if 

MMPs influence cancer cell proliferation, cancer cell death and tumor stroma development. 

 

 

Materials and methods 

Tumor cell line 

The ENU1564 tumor cell line used in this study was developed in our laboratory 

and originated from an N-ethyl-N nitrosourea-induced mammary adenocarcinoma in a 

female Berlin-Druckrey IV (BD-IV) rat. This cell line is highly metastatic to lung, brain 

and bone tissues [R142]. 

 

 

Rat inoculation  

Forty-day-old BD-IV rats were used. The animals were obtained from a colony 

maintained at Texas A&M University in accordance with institutional animal care 

guidelines. The syngeneic animals were inoculated with 1x104 tumor cells in the left 

ventricle. Inoculation was performed on animals under Ketamine (87mg/kg, intramuscular 

injection) anesthesia. The animals were humanely euthanatized using Pentobarbital 
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(150mg/kg, intraperitoneal injection) when showing clinical signs of discomfort. Complete 

necropsies were performed and tissues were sampled for histology evaluation. 

 

 

Transfection experiment  

Dr Stetler-Stevenson, (NIH, USA) graciously provided the TIMP2 human plasmid 

[R12]. TIMP2 human sequence has high homology with the respective TIMP2 rat sequence 

(BLAST). pcDNA-TIMP2 was generated by sub-cloning TIMP2 cDNA into the pcDNA3.1 

vector (Invitrogen, Carlsbad, CA). TIMP2 cDNA was released by cutting with Pst1 and 

Apa1 restriction enzymes, gel purified, blunt-ended ligated into the Xba1 restriction site 

PcDNA 3.1. The orientation of cDNA was verified by restriction enzyme digestion and 

sequencing. The vector has a eukaryotic selection marker (neomycin resistance gene) that 

allows selection under G418 (Invitrogen). After linearization with Nru1, the plasmid was 

transfected into ENU1564 cells using Lipofectamine2000 (Invitrogen). After transfection, 

the cells were placed in antibiotic selective media (G418) to select clones that had 

successfully been transfected with the plasmid. The colonies were screened by WB for the 

expression of TIMP2 protein. Animals were inoculated with the stably transfected 

ENU1564-TIMP2 cell line. The animal inoculation was done in groups of nine animals. 

Nine control animals were inoculated with ENU1564 cells at the same time.  
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Immunohistochemistry (ICH)  

Five-micron (5 µm) paraffin-embedded sections and 12µm frozen sections were 

used. Deparaffinization, rehydration and antigen-retrieval were done by immersion of 

slides in DECLERE® (Cell Marque, Hot Springs, AR) commercially available buffer in 

moist heat (pressure cooker) for 15 minutes. Potential non-specific binding sites were 

blocked with 5% normal goat or rabbit serum in PBS. After blocking, the sections were 

incubated with primary antibodies in dilutions of 1:200 for MMP2; 1:25 for MMP3 and -9 

purchased from Santa Cruz (Santa Cruz Biotech, Santa Cruz, CA); 1:500 for PCNA and 

1:300 for Vimentin (antibodies for PCNA and vimentin were purchased from DAKO, Dako 

Cytomation, Denmark). After three five-minute washes in PBS, the sections were then 

incubated with biotin-conjugated anti-rabbit and anti-goat IgG (Vector Laboratories, 

Burlingame, CA). A Vector-ABC streptavidin-peroxidase kit with a benzidine substrate 

was used for color development. Counter-staining was done with diluted hematoxilin. 

Sections that were not incubated with primary antibody served as negative control. 

 

 

Western blotting  

The tissue was homogenized in lysis buffer in a 1V:10V dilution (50 mM Tris-HCl, 

pH 8.0, 300 mM NaCl, 0.5% NP-40, 0.5% deoxycholate, 1 mM EDTA, pH 8.0, and 0.1% 

SDS), supplemented with a mixture of protease inhibitors. Samples were run on a 9-12% 

SDS polyacrylamide gel and transferred to nitrocellulose membranes. Membranes were 

incubated one hour in blocking buffer (20 mM Tris-HCl buffered saline containing 5% 
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nonfat milk powder and 0.1% Tween 20). Blots were incubated at 4oC overnight with anti-

MMP2 (1:2000 (antibody from Santa Cruz Bitotech, Santa Cruz, CA), cleaved-caspase 3 

(1:1000) (antibody form Cell Signaling, Beverly, MA) and washed extensively and then 

incubated for one hour with a 1:5000 dilution of anti-primary antibody. After additional 

washes, the blots were incubated with chemiluminescent substrate, according the directions 

in the kit (SuperSignal ® West Pico, Pierce, Rockford, IL).  

 

 

PCNA index evaluation 

The evaluation of PCNA index was performed according to the literature [L17]. 

After IHC staining with PCNA antibody the number of cells with positive nuclear staining 

was evaluated in a total of 500 cells in five different high power fields (400X). 

 

 

Statistical analysis 

Student t-test was performed to evaluate all parameters including densitometry 

values obtained from Western blotting-autoradiographs analysis using Flour S 

MultiImager® technology from Biorad (Hercules, CA). Differences were considered 

statistically significant when p ≤0.1. 
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Results 

MMP expression in lung metastasis 

We evaluated the expression of MMP2 in lung metastasis using IHC. We observed 

that neoplastic cells have strong expression of these molecules diffusely in the cytoplasm 

(See chapter IV Figure1). To confirm these results we performed WB in lung metastatic 

tissue. We observed no significant difference in the levels of MMP2 in lung metastasis 

when compared with normal lung (See chapter IV Figure2). 

 

 

Transfection experiment  

To determine if TIMP2 overexpression and MMP inhibition had a effect in the 

development of BC lung metastasis we inoculated ENU1564-TIMP2 cells in the left 

ventricle and compared with animals inoculated with ENU 1546 control cells. We observed 

that the lung weight/body weight and lung weight/brain weight ratios were higher in 

animals inoculated with ENU1564 cells compared with animals inoculated with ENU1564-

TIMP2 (p≤0.021 and p≤0.128 respectively). There were higher numbers and larger 

numbers of lung metastasis in animals inoculated with ENU1564 cells compared with 

animals inoculated with ENU1564-TIMP2 (p≤2.7E-06 and p≤7.08E-7, respectively) 

(Table 6) (Figures 42, 43, 44, 45 & 46). 
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Figure 42. Effects of TIMP2 overexpression in the development of lung metastasis. Evaluation  

of lung weight/brain weight ratio.(*) for statistically significant when p≤0.05.  
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Figure 43 Effects of TIMP2 overexpression in the development of lung metastasis. 

Evaluation of lung weight/body weight ratio. 
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Figure 44. Effects of TIMP2 overexpression in the development of lung metastasis. 

Histological evaluation of pulmonary metastasis size and number in animals inoculated 

with ENU 1564(a) and (b) animals inoculated with ENU1564-TIMP2. Bars indicate 

100µm.  
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Figure 45. Effects of TIMP2 overexpression in the development of lung metastasis. 

Evaluation of tumor size variation between animals in animals inoculated with ENU 1564 

and animals inoculated with ENU1564-TIMP2. (*) for statistically significant when 

p≤0.05. 
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Figure 46. Effects of TIMP2 overexpression in the development of lung metastasis. 

Evaluation tumor number variation between animals in animals inoculated with ENU 1564 

and animals inoculated with ENU1564-TIMP2. (*) for statistically significant when 

p≤0.05. 
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Table 6. Effect of TIMP2 overexpression in lung metastasis development. 

 ENU1564 
-

TIMP2 

ENU1564 p value 

Mitotic index 3.22±1.39 7±0 1.94E-5 
Nuclear pleomorphism 3±1.11 6.33± 

0.70 
1.63E-6 

Stroma abundance 3.22±1.39 6.33±0.86 3.35E-5 
Cell death 3.22±1.48 6.11±1.16 0.0001 
PCNA index 24.6% 43.5%  
Number of tumors 3.11±0.78 6±1 2.7E-6 
Tumor size 2.8±0.92 6.22±0.97 7.08E-7 

 

 

 

Evaluation of cell proliferation 

In order to determine if there was an effect of MMP2 inhibition and TIMP2 

overexpression in tumor cell proliferation we evaluated histologicaly the mitotic index and 

nuclear pleomorphism. We confirmed these results by calculating the PCNA proliferative 

index. There was significantly higher mitotic index in animals inoculated with ENU1564 

cells (p≤1.94E-5). There was also increase nuclear pleomorphism in animals inoculated 

with ENU1564 cells (p≤1.6E-6). Additionally, we observed that PCNA indexes were 

higher on lung metastasis originated from animals inoculated with non-transfected cells 

(43.5%) when compared with animals inoculated with ENU1564-TIMP2 cells (24.6%) 

(Figure 47).  
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Figure 47. Effects of TIMP2 overexpression in tumor cell proliferative index. 

Immunohistochemical staining (brown) of PCNA in the nucleus of neoplastic cells in lung 

metastatic foci in animals inoculated with ENU 1564(a) and (b) animals inoculated with 

ENU1564-TIMP2. Bars indicate 100µm.  
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Evaluation of cell death 

To evaluate differences in cell death in the metastatic neoplastic foci we quantified 

the cell death phenotype by histological evaluation and confirmed the evaluation by 

immunoblotting for cleaved-caspase 3. We observed that there was a higher amount of cell 

death in animals inoculated with non-transfected cells (p≤0.00017). There was also higher 

expression of cleaved-caspase3 protein in samples collected from animals inoculated with 

non-transfected cells (p≤0.1) (Figure 48). 

 

 

Evaluation of metastatic foci stroma 

To evaluate differences in fibrous stroma in the metastatic neoplastic foci we quantified the 

amount of stroma by histological evaluation and confirmed these results by Vimentin IHC 

staining. We observed that there was more prominent stroma in animals inoculated with 

ENU1564 cells when compared with animals inoculated with ENU1564-TIMP2 cells 

(p≤3.5E-5) (Figure 49&50). 

 
 

Discussion 

In the context of BC prognosis, MMP2 is thought to play an important role in breast 

cancer invasion and metastasis [R44]. The evaluation of MMP2 expression in lung 

metastasis using IHC (chapter IV) revealed strong expression of this molecule diffusely in 
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Figure 48. Effects of TIMP2 overexpression in lung metastasis apoptosis. (a) Expression of 

cleaved-caspase 3 in lung metastatic foci in animals inoculated with ENU 1564 vs animals 

inoculated with ENU1564-TIMP2. The membranes were striped and re-probed with ß-actin 

antibody to confirm equal loading (b) Quantitative analysis of cleaved-caspase3 was 

determined by densitometry. The results shown in the histogram are the mean ± standard 

deviation from three control and three tumor samples. (*) for statistically significant when 

p≤0.1. 
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Figure 49. Effects of TIMP2 overexpression in tumor stroma development. 

Immunohistochemical staining (brown) of vimentin in the cytoplasm of stromal fibroblasts 

in lung metastatic foci of animals inoculated with ENU 1564(a) and (b) animals inoculated 

with ENU1564-TIMP2.  Bars indicate 100µm.  
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Figure 50 Effects of TIMP2 overexpression in the development of lung metastasis. 

Evaluation of tumor stroma variation between animals inoculated with ENU 1564 and 

ENU1564-TIMP2. 

 

 

 

the cytoplasm of neoplastic cells. Because of these results and to determine if MMP2 plays 

a role in the development of metastasis we decided to inhibit MMP2 expression by 

overexpression of its physiological inhibitor -TIMP2. 

We generated a cell line over expressing TIMP2 (ENU1564-TIMP2). Despite the 

fact that TIMP2 cancer expression is associated with poor prognosis [129, 130, 132, 133], 

transfection with TIMPs in in vivo models decreases not only tumor growth but also 

metastatic behavior [53]. The reason for this paradox as not yet been clarified and clearly 
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more studies are needed in order to understand the complex mechanisms of TIMP2/MMP2 

interaction. The fact that together with MT-MMP1, TIMP2 participates in the activation of 

MMP2 [4] would explain why it has been related with bad prognosis. However, 

experimental TIMP2 overexpression is related with decrease node and pulmonary 

metastasis in bladder cancer [52]; adTIMP2 delivery decreases the numbers of pulmonary 

metastasis [49]; and 91 These results clearly emphasize the role of TIMP2 in metastatic 

development and introduce TIMP2 as a possible therapeutical agent. We hypothesize that 

TIMP2 is important to the development of pulmonary metastasis. As in agreement with the 

results obtained in the drug experiment (see chapter IV), we observed that the lung 

weight/body weight and lung weight/brain weight ratios were higher in animals inoculated 

with ENU1564 cells compared with in animals inoculated with ENU1564-TIMP2 cells and 

that there are higher and larger numbers of lung metastasis in animals inoculated with non-

transfected cancer cells. Once again these results are supportive of the premise that MMPs 

are important and play an active role in the pulmonary metastatic cascade of breast cancer. 

Because TIMP2 overexpression causes decrease in MMP2 activity in orthotopic tumors 

(see chapter III) we can suggest that MMP2 is also involved in the development of lung 

metastasis in our model.  

Knowing that TIMP2/MMP2 play a role in metastasis development is important, 

however, it is also fundamental to understand what are the mechanisms by which the 

inhibition of MMP2 causes a phenotypic decrease in metastatic behavior. In addition to the 

degradation of the extracellular matrix, MMP2 and TIMP2 are thought to have other roles 

in cancer development.  
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MMP2 has been associated with breast cancer malignant characteristics such as 

high proliferation of cancer cells. By causing degradation of the extra cellular matrix 

MMP2 is indirectly responsible for growth factor release that causes increased tumor cell 

proliferation [3]. At the same time TIMP2 by regulating MMP2 activity may influence 

tumor cell proliferation. In addition to inhibiting tumor cell invasion and metastasis, 

overexpression of TIMPs in tumor cells may also inhibit primary tumor growth. To 

evaluate cell proliferation we scored from 1 to 7 the mitotic index and nuclear 

pleomorphism [97]. We found that there was significantly higher mitotic index and 

increase nuclear pleomorphism in animals inoculated with ENU 1564 cells when compared 

with ENU1564-TIMP2 cells. These two parameters are clear indicators of tumor 

malignancy that is related with highly proliferative, invasive and metastatic characteristics 

[97]. We confirmed this evaluation by calculating the tumor cell PCNA proliferative index. 

We observed that PCNA indexes were higher on lung metastasis originated from animals 

inoculated with ENU 1564 cells when compared with ENU1564-TIMP2 cells. 

Additionally, indexes superior to 30% are considered indicators of high proliferation [96]. 

Taken together these results suggest that inhibition of MMP2 and TIMP2 overexpression 

are associated with decrease in cell proliferation.  

Tumor cells can undergo cell death by apoptosis or necrosis. There are indications 

that MMPs can cause loss of contact from neoplastic cells to the basement membrane and 

are responsible for anoikis a special type of apoptosis [3]. TIMP2 is said to decrease 

apoptosis [6]. TIMP2 has anti-apoptotic effect in epithelial cells and TIMP4 has anti-

apoptotic activity in BC cells [43]. We evaluated cell death by histological examination. 
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We attributed a score from one to seven in accordance with the extension of cell death. We 

observed that there was a higher amount of cell death in animals inoculated with ENU 1564 

cells when compared with ENU1564-TIMP2 cells. To confirm this finding we used protein 

extracts from tumors to perform WB analysis of cleaved-caspase 3. Cleavage of caspase 3 

is one of the main events of both intrinsic and extrinsic apoptotic pathways. Cleaved 

caspase 3 has also been reported to be a good indicator of the apoptotic status [R110]. We 

observed higher expression of cleaved-caspase3 protein in samples collected from animals 

inoculated with ENU1564 cells when compared with ENU1564-TIMP2 cells. These results 

suggest that there may be a role of MMP2 inhibition and TIMP2 activity in cancer cell 

death.  

Finally we studied the variation of stroma development in the metastatic foci in 

different conditions of MMP2 activity. Within breast cancer tumor foci, both fibroblastic 

stromal cells and neoplastic epithelial cells can express and secrete MMP2 [10, 35]. The 

exact role and contribution of these different tumor cells in metastasis and tumor invasion 

is still the object of intense scrutiny. Stromal fibroblasts are thought to interact with 

cancerigenous epithelial cells and act as mediators and stimulators of the production of 

MMPs in tumor cells [2]. TIMP-2 expression may influence the stromal response to tumor 

invasion, indicative of aggressive behavior in a subset of breast carcinomas. To evaluate if 

TIMP2 overexpression and decrease in MMP2 activity causes differences in fibrous stroma 

development in the metastatic neoplastic foci we quantified the amount of fibrous stroma 

by histological evaluation. The results were confirmed the evaluation of vimentin 

immunostaining, a marker for mesechymal differentiation characteristic of stromal 
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fibroblasts. We observed that animals inoculated with ENU1564 cells developed more 

prominent tumor fibrous stroma when compared with animals inoculated with ENU1564-

TIMP2 cells. This suggests that there may be a relation between tumor stroma development 

and MMP2 activity.  

In conclusion we observed a significant decrease in breast cancer lung metastasis in 

a rodent model associated with TIMP2 overexpression in breast cancer cells. In addition we 

observed significant decrease in cell proliferation, stroma development and cell death in 

animals that were inoculated with ENU1564-TIMP2. These results suggest that in addition 

to decreasing development of BC lung metastasis, MMP2 and TIMP2 play a role in cancer 

cell proliferation and cell death. 
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CHAPTER VI 

SUMMARY/CONCLUSIONS 

 

 

This dissertation provides a comprehensive analysis of the role of matrix 

metalloproteinases 2, 3 and 9 in the development of brain and lung metastatic disease of 

breast cancer. Additionally it explores the potential of a rat syngeneic model for breast 

cancer in the study of molecular genetics of distant breast cancer metastasis. 

Chapter I provides a introductory comprehensive  review of MMP biology, their 

role in (breast) cancer development, and in neurological disease. 

Chapter II contains the first manuscript generated from this work that is currently in 

print in Clinical & Experimental Metastasis. This chapter describes the expression of 

MMP2, -3 and -9 in breast cancer brain metastasis at the level of protein and mRNA 

expression as well as the activity of MMP2 and MMP3 in the brain metastatic foci. 

Additionally the importance of these molecules in the development of brain metastatic 

disease is underline by inhibition of metastatic disease observed with treatment with a 

specific MMP inhibitor-PD166793. 

Chapter III includes the second manuscript generated from this work that is 

currently under review by Breast Cancer Research. This chapter focuses on the role of 

MMP2 in breast cancer brain metastasis. This proteinase is inhibited by overexpression of 

its physiological inhibitor, TIMP2. A decrease of MMP2 activity caused inhibition of brain 

metastasis development. Data presented on this chapter strongly suggests that the 
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mechanism of MMP2 up regulation in brat cancer brain metastasis is associated with 

astrocytic factors and is mediated, at least in part by the ERK1/2 pathway. 

Chapters IV and V describe the role of MMPs in the development of breast cancer 

pulmonary metastasis. Inhibition of MMP activity is accomplished by the use of PD166793 

(chapter IV) and TIMP2 overexpression (chapter V). Decrease in lung metastatic disease 

was observed with both approaches. Histological evaluation of these different conditions of 

MMP activity was conducted in both cases in order to elucidate additional factors 

important in MMP activity. TIMP2 overexpression and treatment with PD166973 cause 

decrease in tumor cell proliferation and are associated with less prominent tumor stroma 

development. Additionally, decrease in MMP2 activity and TIMP2 overexpression appear 

to decrease the development of intratumoral apoptosis. 

In conclusion, this work provides an analysis of the role of MMPs in the 

development of cancer metastatic disease in particular to the MMPs in breast cancer brain 

metastatic disease.  
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