
CREATING DEFORMATIONS AND TUNNELS

IN A SURFACE USING LAYERED GEOMETRY

WITH ADAPTIVE FILTERING

A Thesis

by

JACOB BROOKS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2005

Major Subject: Visualization Sciences

CREATING DEFORMATIONS AND TUNNELS

IN A SURFACE USING LAYERED GEOMETRY

WITH ADAPTIVE FILTERING

A Thesis

by

JACOB BROOKS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Ergun Akleman
Committee Members, John Keyser

Richard Davison
Head of Department, Phillip Tabb

August 2005

Major Subject: Visualization Sciences

iii

ABSTRACT

Creating Deformations and Tunnels in a Surface Using

Layered Geometry with Adaptive Filtering . (August 2005)

Jacob Brooks, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Ergun Akleman

With this thesis, I present a method for creating footprints and tunnels in a surface

through the use of layered geometry. Rather than using a single geometric surface,

deformations are created through the interaction of a polygonal object with multiple

layered planes. Contrary to common methods such as solely using displacement

maps or techniques used in fluid dynamics, none of the layered geometry moves.

With adaptive filtering and layered geometry, one can create complex deformations

resulting from sliding, digging, and surfacing. Its volumetric nature allows interaction

to create overlapping shapes, tunnels, and holes in a surface, while alleviating the

ultimate problem of broken geometry.

iv

To my wife Amanda Brooks

v

ACKNOWLEDGMENTS

I would like to extend my greatest thanks to a handful of people who have given

their hard work and time to make my education possible. To start off, I would like

to thank Ergun Akleman, my thesis chair and professor throughout my graduate

studies at Texas A&M. I am forever grateful for his unending support, wisdom, and

encouragement. My committee members, John Keyser and Richard Davison, were

favorite professors of mine in my undergraduate days, and I was honored to have

them be a part of my graduate research. Their support, advice, and flexibility will

always be remembered. Mostly, I would like to thank my wife, Amanda Brooks. She

has supported me through graduate school, and I can only hope to provide a small

fraction of what she has done for me for her once in the professional world. Her

undying motivation, support, and love have been too great for measure. I have no

idea how I would make it any one day without her.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

I.1. Motivation . 1

I.2. Goals and Scope . 3

I.3. Other Deformation Techniques 5

I.4. Thinking Past the Surface Layer 8

I.5. Layers: A Plausible Solution 11

II RELATED WORK . 12

III METHODOLOGY . 16

III.1. Creating Layered Geometry 16

III.2. Defining Rules of Interaction 17

III.2.1. Handling Collision 18

III.2.2. Handling Transparency 19

III.2.3. Adjusting Vertex Normals 19

III.2.4. Conserving Mass 22

III.2.5. Adaptive Filtering 32

III.2.6. Considering Animation 34

III.3. Creating an Animation 36

IV IMPLEMENTATION . 38

IV.1. Setting the Stage for Development 38

IV.2. Initial Setup . 38

IV.3. Handling Collision . 39

IV.4. Denting the Surface . 43

IV.5. Conserving the Shifted Mass 45

IV.5.1. Vertex Normal Alteration 46

IV.5.2. Transparent Planes Above 47

IV.5.3. Surface Level Displacement 49

IV.6. Handling Animation . 52

IV.6.1. Motion Downward 54

IV.6.2. Motion Side to Side 58

IV.6.3. Motion Upward 59

IV.6.4. Tunneling . 61

IV.7. Creating a Final Animation 64

vii

CHAPTER Page

V RESULTS . 65

VI CONCLUSIONS AND FUTURE WORK 71

VI.1. Conclusions . 71

VI.2. Future Work . 73

REFERENCES . 75

VITA . 76

viii

LIST OF FIGURES

FIGURE Page

1 Collision with penetrable surfaces generally yields some form of

response to the interaction. In this case, the image on the left is

missing just that. 2

2 After leaving the area of impact, the ground remains unaltered.

Images sampled from the “Ice Age” DVD[1]. 4

3 With deformable surfaces, overlapping structures are often created. . 6

4 With conventional displacement using a single grayscale map map,

it is impossible to generate the overlapping effect shown on the right. 7

5 Structures with holes throughout tend to be a challenging problem

to create and interact with. 9

6 Left: Sphere moves towards the original geometry. Right: Trans-

lating the side to account for interaction results in broken geom-

etry as it penetrates the other side. 10

7 Sample images from Peng’s SIGGRAPH paper [5]. 13

8 Sample images from Fearing’s paper[2]. 14

9 An example of layered geometry. Each layer is identical to the

selected original. I have spaced them out considerably for illus-

tration purposes. 17

10 Top Left: Current state of interaction. Top Right: Selection of

faces in collision at that particular state. Bottom: Collision faces

set to be transparent. 20

11 Left: Vertices currently in collision with the object. Right: Ad-

justed vertex normals assigned according to the sphere’s closest

surface normal. 21

ix

FIGURE Page

12 Left: Vertices previously altered from collision are colored green.

Right: Only change the normals for vertices located in some in-

terval about the direction of motion. 22

13 Left: Motion towards the surface. Right: Mass is shifted accord-

ing to the area of impact. 23

14 In applying a striped texture map to a sphere, the difference be-

tween applying it as a bump map or a displacement map is evident. . 24

15 Each of the red points is a sample height recorded from a desired

shape. They are sampled at a repeated distance away from the

area of interaction. 26

16 The color of any particular face corresponds to the selection group

it is in, all being a particular face width away from the original. . . . 27

17 Each ring of vertices is described by a different color. Vertices in

each grown area will be translated according the their color. 29

18 Left: Original smooth selection of vertices. Right: Aliased result

from growing that region multiple times. 30

19 In areas of concavity, it is difficult to determine how to trans-

late the data since we have several surface points influencing the

displacement. 31

20 Left: Original selection of colliding vertices in yellow. Right:

Aliased result from applying translation data to the surrounding

vertex rings. 31

21 Gaussian and directional blur applied in areas of a simple 2-D image. 32

22 Averaging the vertex heights based on surrounding vertices results

in different levels of smoothing based on the filter size. 33

23 The amount of detail needed to describe the shape near the colli-

sion area greatly differs from the areas further away. 34

24 A smaller sample size is used to filter the rings of vertices close to

the original selection and increases as the rings size does. 35

x

FIGURE Page

25 A user can alter any of the sliders available to generate a variety

of layered structures. 40

26 Left: Selection represents the closest face in collision. Right: Se-

lection represents a more concise set of faces that could be in collision. 42

27 Hole created by shading the collision faces of each layer to be

transparent. 44

28 Vertices in collision are altered to match the impression of the shape. 45

29 Surrounding ring’s vertex normals are altered to better blend from

layer to layer. 46

30 Vertex normals are interpolated between key normals to create

the effect of shifted mass. 47

31 Left: Top view of the result of altering the vertex normals. Right:

Flaw is obviously the flatness when viewed from side angles. 48

32 Left: Top view of the transparent layers in use. Right: Flaw

continues to be the flatness when viewed from side angles. 49

33 Area under the displaced top layer is not viewable. 50

34 Aliased top layer displacement generated using translation data. . . . 51

35 Depending on the distance away from the original selection, dif-

ferent filter sizes are used. 52

36 Graphical user interface for adaptive filtering. 53

37 Displacement generated from downward motion. 55

38 Slice of layered geometry resulting from downward motion. 56

39 Layered geometry resulting from downward motion. 56

40 Displacement generated from motion downward at an angle. 57

41 Slice of layered geometry resulting from motion downward at angle. . 57

xi

FIGURE Page

42 Layered geometry resulting from motion downward at angle. 58

43 Displacement generated from horizontal motion. 59

44 Slice of layered geometry resulting from horizontal motion. 60

45 Layered geometry resulting from horizontal motion. 60

46 Displacement generated from upward motion. 61

47 Slice of layered geometry resulting from upward motion. 62

48 Layered geometry resulting from upward motion. 62

49 Slice of layered geometry resulting from tunneling. 63

50 Layered geometry resulting from tunneling. 63

51 Layered structure resulting from sliding. 66

52 Shot 10: Resulting images from horizontally sliding. 66

53 Shot 20: Resulting images from horizontally sliding. 67

54 Layered structure resulting from digging. 67

55 Shot 60-1: Resulting images from downward digging. 68

56 Layered structure resulting from surfacing. 69

57 Shot 60-2: Resulting images from vertically surfacing. 70

1

CHAPTER I

INTRODUCTION

I.1. Motivation

With this thesis, I present a method for creating footprints and tunnels in a surface

through the use of layered geometry. Rather than using a single geometric surface,

deformations are created through the interaction of a polygonal object with multiple

layered planes. Contrary to common methods such as solely using displacement maps

or techniques used in fluid dynamics, none of the layered geometry moves. With

adaptive filtering and layered geometry, one can create complex deformations and

holes in a surface and alleviate the ultimate problem of broken geometry.

Imagine you are outside on a beautiful, sunny day at the beach. What visual

clues make it evident that what you are seeing is the familiar place we all know

as the beach? The first things noticed might be the billowy clouds, the ocean’s

waves, or the brilliantly bright sun. However, these evident clues are not always

what make us believe that that particular space is in fact what we commonly know.

The subtle interactions between various elements within that environment helps to

reinforce just that. As the wind blows, the trees move; as the waves roll in, the sand

beneath dampens. Interactions lead us to believe all the visual elements in the scene

collectively form the common environment with which we are familiar.

In creating virtual worlds to be displayed as animated sequences of images, com-

puter artists must represent the visual elements of a particular space to the best of

their ability, while always understanding that any natural or imaginary scene could

The journal model is IEEE Transactions on Visualization and Computer
Graphics.

2

Fig. 1. Collision with penetrable surfaces generally yields some form of response to the

interaction. In this case, the image on the left is missing just that.

potentially be far too complex to represent every physical element present. It is my

duty as a 3-D artist to illustrate those key, yet subtle, interactions properly, in order

to help the viewer better understand and relate to the environment they see. Just as

it is extremely challenging to understand the plot of a movie spoken in an unfamiliar

language, it is difficult to visually understand an environment that does not behave

one would expect it to. For example, one of the images in Figure 1 seems to be a bit

awkward.

Of course, throughout life experiences, we have all learned that when two ob-

jects collide, an effect occurs between the surfaces based on their respective material

properties. The displacement of the ground around the ball (Figure 1 - right) or the

ball deforming to account for contacting a more robust surface (Figure 1 - middle)

are effects we are accustomed to seeing, making them more comfortable to view. The

absence of some interaction effect causes the left image of Figure 1 to look a little

strange. Neither the ground surface nor the ball has been affected by their interac-

tion. We can also learn a lot about the material properties involved by analyzing

such a simple interaction. It is easy to see that the soft ground structure on the right

might resemble some mud-like structure, while the middle image’s sphere could be

made of a rubber-like material. Again, the image on the left does not tell us a whole

3

lot. It just seems a bit confusing. While the shading and lighting in Figure 1 are

far short of spectacular, these subtleties tell the viewer a lot about the environment’s

surroundings.

In viewing a highly complex scene such as a beach, these subtle interactions

become second nature to our eyes and are often not our primary focus. So, you might

initially think those interactions should be given lower priority and importance when

trying to recreate the scene three-dimensionally. However, when these characteristics

are absent, the trees not blowing with the wind or a foot not leaving a print in the

sand, the resulting awkwardness, in turn, distracts us from the more important issue

at hand, for example, the storyline or mood of a scene. Figure 2 illustrates a sequence

from Blue Sky’s animated film “Ice Age.” In this shot, the sloth slams the ground

with a rather forceful impact, yet the ground beneath him is left unchanged. One

inherently expects to see some alteration of the dirt below. When this expectation is

not met, its absence draws our attention. This awkwardness is what initially drove

me to research methods of interaction between rigid objects and deformable surfaces,

representing penetrable matter.

I.2. Goals and Scope

Knowing the time limits for developing a thesis, it was important for me to refine

the scope of my research by clearly defining my goals. I had three main goals upon

starting my research. I wanted to develop a way to automatically generate surface

deformations given an animation, create complex interaction effects resulting from

digging, surfacing, and sliding, and generate a final animation, having deformations

as an addition to the story, rather than the source.

Knowing I did not want the deformations to be the immediate focus of the

4

Fig. 2. After leaving the area of impact, the ground remains unaltered. Images sam-

pled from the “Ice Age” DVD[1].

5

animation, I was able to create a plausible scope for my work. I did not intend for

the results to look fully physically correct, so extensive research in physically based

simulations was unneeded. However, due to the complexity of penetrable surface

motion, referencing its physical properties proved to be a helpful step in achieving a

less exact, yet effective, solution.

I.3. Other Deformation Techniques

When creating penetrable surfaces resembling sand, mud, or snow in computer graph-

ics, it is necessary to consider a method of handling collision effects. Collisions create

responses that alter the geometric structure in different ways. When interacting with

surfaces of this type, the presence of horizontal movement plays an important role in

illustrating a shifting of weight or a direction of motion.

The traditional use of animating displacement maps to create an effect, such as

a character’s footprints in snow, can be a quick and effective solution when viewed

from a distance. However, when analyzed closely, the map’s innate properties prove

to be extremely limiting for many circumstances. For instance, Figure 3 illustrates a

baseball thrown at an angle into soft mud and a sample result one might expect to

occur. If soft enough, the mud will always displace along the direction of motion to

some degree based on its velocity.

More importantly, it is likely that the mud-like surface will shift in multiple di-

rections. Not only is the mud compressed beneath the ball, it is also shifted laterally

with respect to the horizontal component of the ball’s velocity. Therefore, in recre-

ating this action properly in computer animation, one needs to have some means of

altering the surface both vertically and horizontally. This seemingly simple necessity

proves to be an inherent problem for displacement map use.

6

Fig. 3. With deformable surfaces, overlapping structures are often created.

A displacement map is created as a grayscale image, where the whites represent

the higher elevation of a surface and the darks represent the valleys. This map is then

applied to a surface, translating the geometric vertices in the vertical direction with

respect to their corresponding grayscale value. This method can create a wide range

of vertical variation in a surface, yet it prevents any overlapping or lateral variation

from occurring. Unfortunately for the common case of an object colliding at any

direction other than perpendicular to a surface, the nature of a displacement map

makes it impossible to create the effect of horizontal movement. A common way to

test if a particular shape can be generated from a flat plane using displacement is to

use a vertical line test. If the surface intersects the vertical line in more than one

place, the shape is impossible to create using a single displacement map. Figure 4

illustrates its limitations.

If only a few collisions occur in a particular scene, modeling the deformation shift

in a surface might be a valuable approach. One can duplicate the original surface,

alter the model to more appropriately reflect the shape resulting from the collision,

and use a blend between the two shapes. This way, the animator can represent a

shift of the surface over the time of interaction. The main problem with this solution

7

Fig. 4. With conventional displacement using a single grayscale map map, it is impos-

sible to generate the overlapping effect shown on the right.

is that it is highly case specific and, depending on the complexity of the model, it

will generally only work for a particular collision instance. If the animator were to

change the moving object’s animation, the modeling phase would again be revisited to

account for the new shape generated. This technique is highly effective for close-ups

and situations where a high level of detail is needed, however, in handling penetrable

surfaces like mud and snow, there are often sequences of shots involving numerous

interactions per shot. The effects of a collision with this type of surface tend to occur

frequently with a variety of objects and are rarely seen at a close distance. Therefore,

modeling a particular shape can be far too tedious, time-consuming, and inflexible

for a complex shot.

A more effective approximation of interaction response can be done through the

use of fluid dynamics and other key principles of physically based modeling. Though

the results tend to be visually accurate and stunning, the computation involved in

creating such effects can often be far beyond the scope of the task at hand, and ex-

tremely time consuming. Fluid effects have proven to be highly successful with their

representation of water in many of today’s popular computer-generated films, such as

8

Pixar’s “Finding Nemo” or Dreamworks’ “Shrek 2,” however, rendering tends to be

challenging and time-consuming. This application focuses on representing volumes of

mass that continually interact with themselves. Its implementation requires complex

grid cell calculation to approximate the fluid amount in each voxel and its current ve-

locity with respect to its neighboring voxels. Fluid dynamics is an extremely powerful

effects tool, but it can be a bit of an overkill to generate the deformation of a foot-

print. For my purpose, the important concept to take from fluids is creating geometry

as a volume of data that can be broken down into smaller, repeatable elements.

I.4. Thinking Past the Surface Layer

Creating surface deformations is possible with any of the aforementioned methods.

However, what if an object not only deformed a surface but also traveled through

that surface, creating a hole or tunnel? Is it possible to create such tunnels through a

surface, so that a worm, for instance, could enter the ground at a particular location

and exit from a different one, leaving a clear path through the structure? With a

single piece of geometry, it is not.

When modeling surface geometry, it is important to remember that the inside of

the object represented is hollow. The geometry of a traditional 3-D object constructed

from polygons exists only on the surface level. Just like a balloon or a blown up beach

ball, the inside of the object is filled with empty space or air. It has no geometric

structure on the inside.

Yet the desire to dig into a surface requires that, as we move through, the surface

retain its geometric structure despite the interaction. The best visual example that

comes to mind is the representation of an anthill in 3-D. Though ants will continually

interact with the outside surface of the mound, if one were to poke the side of it with

9

Fig. 5. Structures with holes throughout tend to be a challenging problem to create

and interact with.

a stick, he would see the hundreds of others digging the tunnels beneath. Now I,

personally, have never done such a cruel thing, nor has any other typical five year old

I have met, yet I can imagine what it would look like. It would be extremely difficult

for this continuously-changing, porous structure to be represented by a single surface

model. A sliver of the tunnels complexity can be seen in the antfarm pictured in

Figure 5.

Aside from modeling the anthill, imagine accounting for the changes made to its

tunnels over time, as the ants continually shape and build the mound, digging new

paths, and often branching into other existing ones. This is far beyond the scope of

surface geometry. In the case of penetrating through another existing tunnel, how

would the two tunnels merge? Simply moving geometry would not handle such an

event, for the shifted vertices would penetrate through the other tunnel, giving us

a completely different result than two joined paths. Eventually, when two or more

paths cross, the surface geometry overlaps and breaks its geometric structure.

Broken geometry leads to unexpected results when rendering. The structure

intersects itself, causing the backside of the interpenetrating faces, whose normals

10

Fig. 6. Left: Sphere moves towards the original geometry. Right: Translating the side

to account for interaction results in broken geometry as it penetrates the other

side.

are pointing in the opposite direction, to be rendered. Most often, the visual results

are unpredictable and therefore undesirable. In instances where an object is moving

through a surface, it is likely that using single surface geometry will result in broken

geometry, as in the examples of Figure 6 . So what other options are available?

Well, this potential problem of creating animated deformations lies with the

movement of the geometry itself. Referring back to Figure 3, as the ball hits the

mud, it is a common solution to shift the geometric structure downward to create the

effect of a divot or an imprint made over time. As the motion of an object becomes

more complex, the vertices must be moved farther to accommodate the desired shape.

This all seems to make perfect sense initially. Unfortunately, as described in the case

of the tunnels in the anthill’s tunnels, moving vertices and pushing a shape too far is

sure to result in broken geometry. So, if moving geometry tends to result in broken

geometry, why not avoid moving it altogether?

This may seem like an absurd solution since we are so accustomed to creating a

particular shape by altering the surface geometry. However, if we think of geometry

11

as a group of layers stacked atop one another, much like our skin or the layers of the

Earth, certain limitations of traditional deformation are alleviated. With multiple

layers of interaction, it is possible to create holes throughout as well as generate ver-

tical and horizontal variation in a surface. The volumetric nature of a layered surface

presents the opportunity for convex, concave, and overlapping terrain properties and

allows for the dragging or sliding of objects through the surface. More importantly,

rather than pushing or pulling geometry to generate these shapes and risk breaking

the geometric structure of the surface with self-intersection, layer properties such as

transparency and normal direction can be manipulated to create a similar effect of

motion through a surface. The actual geometry of the individual layers never changes

at all.

I.5. Layers: A Plausible Solution

As with any research, the resulting product relies heavily on the initial scope of the

work. If one had to only recreate a single baseball falling into the mud in one shot of

an entire movie, using layered geometry is most likely overkill to represent that one

instance of interaction. It could definitely do the trick, but this effect could be easily

and efficiently achieved using other simpler methods. However, if creating story that

relies heavily on surface interaction, for instance, “The Life and Adventures of Earl

the Earthworm,” digging holes and illustrating his movement through the ground

is essential to depict how he interacts with his environment. Creating a tunnel or

poking through on the surface elsewhere is a necessary visual element in order for us

to understand his way of life. Though it may not be the focus of the story, it is a

vital element in telling the story, and awkwardness would result from its absence.

12

CHAPTER II

RELATED WORK

Developing new ideas almost always stems from the analysis of existing ones. Studying

the current methods used elsewhere is essential for learning from previous mistakes

and successes. Understanding theses successes, problems, benefits, and drawbacks

leads to a more effective and timely solution. Research areas applicable to my goals

include geometric modeling, physically based simulation, and surface animation.

In order to deform an object, it must first be created/modeled. A variety of

shape representations are commonly used in creating geometric structures. Included

are parametric surfaces (polygons, spline patches, and trimmed NURBs), subdivision

surfaces, and implicit surfaces. These representations, in general, relate to the shape

of the surface of an object [3].

Developing methods to represent geometric structures as a volume of elements

became a popular area of research in the late nineteen-eighties. For example, in the

representation of fluids, it is impossible to think of fluid as a single piece of geometry

in the case of pouring and splashing into some container. A fluid can have varying

masses and velocities across its surface at any given time. Thus, the concept of

breaking the overall geometry into separate grid cells with individual properties is

essential to parallel how molecules of fluids interact [6].

Volumetric geometry also aims to create extremely complex three-dimensional

models. A common goal is to retain a higher level of detail without having to increase

the geometric resolution to unmanageable sizes. Volume textures have proven to be a

useful tool to do just that. Peng describes a way to use volume textures on the surface

of basic geometry to achieve highly detailed results such as chain-mail or a woven

13

Fig. 7. Sample images from Peng’s SIGGRAPH paper [5].

basket. The success of the volume textures relies on its application to a repeatable

volume of geometry. Achieving this volume involves breaking the single surface into

multiple layers. His methodology includes creating non-intersecting shells that form

an “elastic compressible skin” about the geometry’s surface (Figure 7 - left). Each of

these shells has the same connectivity, allowing for repetition of the volume texture.

The shells then have implicit functions within each, describing a more complex shape.

This lets mathematical functions dictate the shape of the model, not the resolution

of the model’s surface [5]. The obvious goal here is to create an efficiently complex

model, such as the chainmail on the right of Figure 7, not to handle how that model

might change over time.

However, many circumstances in nature represented in computer graphics do

inherently require changes in a model over time. For instance, if snow were to fall for

some time period, one would expect to see accumulation of the flakes on the ground

or on other objects in the scene. To do this without handling the heavy computation

of particle collisions as they stack atop one another, one could devise a subdivision

scheme that will subdivide the geometric mesh to a higher level of detail based on

14

Fig. 8. Sample images from Fearing’s paper[2].

the current amount of snowfall. Fearing did just this in his research on “Computer

Modeling of Fallen Snow.” The geometry changes over time, continually sub-dividing

into finer definition as the positions of specific regions of the mesh shift (Figure 8) [2].

This method is quite effective for demonstrating the change of a geometric structure

over time, however, the resulting geometry continually becomes geometrically more

complex and can potentially become difficult to manage when rendering.

Instead of only changing a model over time, I must be able to alter it based on

its interaction with another object. Rigid body interaction with penetrable surfaces

introduces this new element not yet considered. Some object will collide, intersect,

and move through the ground geometry at any given frame. Handling this complexity

was approached by Sumner, O’Brien, and Hodgins in their research on “Animating

Sand, Mud, and Snow.” The geometric structure is modeled as a height field of

vertical columns that compress and move according to the impact of a rigid body

model. At each frame of interaction, the columns heights are adjusted such that no

column is colliding with the object. To do so, the geometry can only move vertically,

15

forming a compressed shape around the collision. To account for various types of

surface materials, parameters such as liquidity, compression, roughness and slope are

adjusted by the user [7]. The results from this research are fascinating, however,

overlapping ground structure cannot be generated, due to the lack of lateral motion,

making digging and surfacing impossible interactions.

Given the previous research in the aforementioned areas, there does not seem

to be one clear path to take in order to achieve my goals. Each does, however,

contribute an essential idea or concept that aids in achieving my desired results. The

key ingredients in applying my solution involve three main ideas: creating some form

of geometric volume representation, developing interaction rules with that structure,

and modifying that structure in some way over time. I plan to incorporate these

research concepts to create a penetrable layered ground plane, whose layered sections

will be treated individually as in fluid dynamics, while preserving the illusion of being

one consistent piece of geometry changed over time.

16

CHAPTER III

METHODOLOGY

There are three critical stages involved in developing this technique. It begins with

creating a layered structure, followed by defining and refining the rules of interaction

for that structure, and ends with creating an animation to demonstrate the results.

This bottom-up building process overlaps each new step with its predecessor, making

every decision valuable for its use in the next. As in developing any visual effect in

3-D, the way to test its success is to perform test renders, analyze the results, and

revisit the development stage. The most crucial and time-consuming of the stages

involves fine-tuning the rules of interaction; however, without the presence of each of

the other steps, it alone serves no purpose.

III.1. Creating Layered Geometry

For an object to interact with a layered surface, there must first be a way to create such

a structure. Also, depending on the subject matter of the desired final animation,

a user must be capable of specifying various parameters to describe the surface of

interaction. Given these essentials, a tool is needed to take a user-specified surface

and construct a volume from it.

Traditional 3-D modeling involves creating the surface of an object. For my

purposes, the model represents a penetrable ground plane, such as mud or snow, and

is interacted with by some other object moving within some region of its volume. It

is essential then that a representation of that volume is created to allow this. Volume

is achieved using duplicates of the original structure placed below the original layer

of interaction (see Figure 9). Each layer must retain all of the properties of the

17

Fig. 9. An example of layered geometry. Each layer is identical to the selected original.

I have spaced them out considerably for illustration purposes.

original layer, as it is translated beneath the next. Parameters of the initial surface

layer include resolution, width, and length. This resulting structure should resemble

one constructed by stacking Legos, except imagine stacking one beneath the other,

leaving a gap between each layer as it is moved down. Figure 9 illustrates a simple

surface and the layered structure created from it. Nothing more than duplication and

translation is needed in order to create such a structure. The only parameter subject

to change after defining the original layer is the spacing defined between each. It is

important to note that this method is not limited to using a flat piece of geometry.

A height field could be used to define the original layer’s structure, making a more

interesting shape when creating the lower layers. For simplicity’s sake, I will perform

calculations using a simple, flat plane.

III.2. Defining Rules of Interaction

The rules of interaction encompass all changes that could potentially occur to each

of the layers’ properties in one particular frame of an animation. Included are deter-

18

mining collision points with a specified object, handling the effects of that collision

within each layer, and conserving the overall mass of the layered structure by altering

its structure according to the direction, speed, and position of the animated object.

III.2.1. Handling Collision

In determining how to alter the layered structure upon a specific type of collision, we

must first locate the collision when and where it occurs. Researchers have studied

collision handling since the early stages of computer graphics. Collision detection

determines the exact time frame when one object penetrates another. In the realm

of physically based modeling, where various objects behave according to an approxi-

mation of physics laws, detecting collisions serves as the primary step for most simu-

lations. If a ball is bouncing in a box, it must be able to detect the walls of the box,

so that it does not bounce out. This would be impossible to simulate if there were

no way of determining when a collision between the ball and the box’s walls occurs.

The same applies to the case of interacting with a layered surface. Nothing can be

affected or changed until a collision is present within one or more of the layers.

Moore and Wilhelms addressed the topic of detecting collision and handling the

resulting response in computer animation in the late 1980s [4]. Their methodology

describes how to determine the collision between two polygonal rigid surfaces and the

motion created from that collision. In dealing with convex polyhedra, the Cyrus-Beck

clipping algorithm determines whether a particular point is inside a convex polygon.

By viewing the polygon in a 2-D plane, the dot product of a particular side’s normal

vector and the vector from a corresponding vertex from that side to the point being

tested yields either a positive or a negative number. After computing the dot product

for all sides, if all of the results are negative, then the point is, in fact, inside the

19

polygon. This method was then implemented to account for this occurrence three

dimensionally. Others have implemented what is known as ray-triangle intersection

to test whether a given ray intersects with a given triangle. This method has been

used heavily in ray tracing for collision detection. Because my thesis focus is not

to derive a new way for detecting collision and I will be using convex and concave

polygons, I will use the ray-triangle intersection method for determining collision.

III.2.2. Handling Transparency

Once a collision is determined, there must be a way to create the collision response

within each individual layer. As mentioned above, a key concept of using layers is

that I will never move the geometry. I use transparency as a means of removing the

mass from an area. Shading a layer’s collision faces transparent helps me achieve a

similar look to moving the geometry. In Figure 10, the sphere penetrates the topmost

layer, and, if removed from atop the structure, a portion of the plane inside the object

should no longer be visible, due to it being “compacted” by the ball’s structure. This

particular area of the layer is shaded to be completely transparent to reflect this

action. Transparency is set on a face by face basis.

III.2.3. Adjusting Vertex Normals

To aid in blending the layers together as one piece of geometry, vertex normals lining

each layer’s collision region must be altered from their previous states. An example of

this alteration is provided in Figure 11. I assign each vertex a new normal according

to the interacting object’s (the sphere’s) closest contact point to that vertex. For

a particular layer’s vertex in collision, I calculate the inverse of the normal of the

sphere’s closest contact point and assign it as the new vertex normal. The desire of

20

Fig. 10. Top Left: Current state of interaction. Top Right: Selection of faces in colli-

sion at that particular state. Bottom: Collision faces set to be transparent.

this action is to aid in reducing the obvious visual separation between each layer. The

left image of Figure 11 illustrates the various normals of the sphere’s surface with black

arrows. The green vertices represent the vertices in need of vertex normal alteration.

The sphere’s face normals are then used to reassign the inverse to the surrounding

vertices in collision. The resulting vertex normals are illustrated by the arrows in the

right image. I could take this one step further and create a new geometric structure

along the holy area to alleviate the layered geometry, but this would pose a bigger

problem when creating tunnels or holes through the surface. Creating that complex

geometry from a porous structure would be difficult.

Altering the vertex normals is a fairly simple concept for generating a single

image, however, the goal is to develop a method that works over the course of an

animation. When considering the motion of any object over time, the direction of

21

Fig. 11. Left: Vertices currently in collision with the object. Right: Adjusted vertex

normals assigned according to the sphere’s closest surface normal.

motion plays a large role in determining which vertex normals should be altered. The

only vertex normals needing change exist in some interval area about the direction of

motion. In the case of our sphere sliding through the layers in Figure 12, the vertices

greater than ninety degrees away from the direction of motion should not be altered

for a particular time-step.

In Figure 12’s right image, the lone green vertex outside of the degree interval

will not have its normal altered, even though it may have been selected as a vertex in

collision. The reason for this is that once vertices are behind some region surrounding

the object’s direction of motion, they are no longer affected by the impact of the

sphere. The vertex normal should never be changed if outside the region between

the direction vector and its perpendicular vector. Anything altered beyond that

point is wasted calculation, and if changed, the resulting shape often strays from the

desired structure. Rather than achieving a channeled surface much like a half pipe

in snowboarding, the structure will seem to have slight bumps in the areas where

previously located. For any given interaction, half of the vertices can potentially be

22

Fig. 12. Left: Vertices previously altered from collision are colored green. Right: Only

change the normals for vertices located in some interval about the direction

of motion.

thrown out, reducing the calculation time by half as well.

This method can also be implemented for a more complex object than a sphere.

In the case of a concave shape like a peanut, of the ground vertices in collision with

this object, only those in an area where the appropriate intersecting face’s normal is

within that ninety degree region about the direction of motion will be altered. Thus,

contact with the portion of the peanut that has face normals greater than ninety

degrees away from the motion direction do not need to be calculated. As in the case

of the sphere, the new normal is set to the inverse of the closest face normal of the

object in collision. Again, depending on the particular shape, possibly half of the

vertices can be eliminated before calculation.

III.2.4. Conserving Mass

A more challenging response involves conserving the mass shifted upon interaction.

As with any deformable matter, mass is always conserved in the process of interaction.

It may be compressed or shifted according to the material properties, yet roughly the

23

Fig. 13. Left: Motion towards the surface. Right: Mass is shifted according to the

area of impact.

same amount of matter should appear to be present before and after interaction. In

Figure 13, the red area represents the shifted mass resulting from the area in blue

becoming depressed. Since it is generally not the focus of an image, it is unnecessary

to make matter conservation an exact science; it is more important that it is present

in some form. It should behave, on some level, as one would expect a real surface to

if in the real world. Unfortunately, doing that is not always so simple.

We have a method for removing mass by altering transparency and vertex nor-

mals, however, there must be a solution for conserving that removed mass. Perhaps

the ground should appear to shift in a particular direction, as in the case of a foot-

print. This scenario relies heavily on being able to create the illusion of a shift of

mass within the individual layers, yet due to the nature of the lower levels, movement

of the actual geometry is impossible and will break the structure. The lower layers

handle the removal of mass, so how do we create the effect of its shifting elsewhere?

When handling the topmost layer, a solution surfaces.

When creating the illusion of mass conservation, the alteration of the topmost

24

Fig. 14. In applying a striped texture map to a sphere, the difference between applying

it as a bump map or a displacement map is evident.

layer proves to be extremely critical. With a layered structure, the majority of the

layers are hidden beneath the top layer, and their job is to reflect the removal of

mass when visible. It is then the responsibility of the topmost layer to conserve

the mass properly. Various methods are capable of doing just this, each with their

own respective benefits. One could solely alter the vertex normals of the top layer

according to the collision response. This method illustrates the shift well, however,

because the geometry itself is not altered, it may seem too flat when viewed from

angles other than directly above. A common example of this problem is illustrated

in Figure 14. The bump map alters only the vertex normals, while the displacement

map actually translates the surface geometry. The difference is evident when looking

along the outline of the geometry of each and seeing that geometry is only altered in

the case of displacement.

Altering the geometry using displacement solely for the top layer is yet another

25

solution, as long as the layers below never change. This method eliminates the overall

flat look, but implementing it is yet another challenging problem. Displacing the top

layer would involve no calculation at all if one were willing to individually paint

the corresponding displacement map for each and every frame of animation. This

solution is not only extremely time-consuming, but it also detracts from the goal

of an automated process. It is my goal to derive a way to calculate these changes

automatically for each frame.

In order to do so, one must utilize all of the information given at a particular time.

The most important data at any moment include the selection of faces on the top

layer that are currently in collision with the object, the direction and velocity of the

object, and the center of mass of the object with respect to the topmost layer. Using

these three pieces of data, generating a method for determining vertical displacement

of the topmost layer is possible.

First of all, the faces in collision with the object form the overall 2-D topographic

shape of the current collision. As with any imprint or deformation, the mass shifts

around the collision shape created. This can be seen in the case of a spherical object

falling into a penetrable surface. Radially from the center of the sphere, a ripple effect

is created beyond the edges of the object. If falling from exactly ninety degrees above

the surface, the shape generated will generally be the same going out at any angle

from the center of the sphere. It may be easier to visualize this result when analyzing

a 2-D slice from the deformed structure. The displaced matter is roughly identical in

mass on either side of the object, yet the shape is flipped horizontally based on its

orientation to the ball.

The resulting shape can be defined two-dimensionally by a number of key dis-

placement translation points. Figure 15 illustrates the possible variation of those key

points. For simplicity’s sake, let’s take the highest point displaced to be equivalent to

26

Fig. 15. Each of the red points is a sample height recorded from a desired shape. They

are sampled at a repeated distance away from the area of interaction.

a vertical translation of 1, and the original top surface height to be 0. If we sample the

deformed structure’s height with respect to the initial height of the topmost layer, we

can gather enough information to determine an estimate of how the shape was made

based on its vertical translation. We can then analyze the height at a sample distance

away from the collision point, repeating multiple times, until the surface resumes its

original height. The red points in Figure 15 represent the interpolation points used to

generate the shape of the area in blue. Their translational data collectively describes

the shape of the matter displaced or shifted for a particular material. The points of

translation can be altered to generate different effects and shapes useful for a variety

of surface-types based on the material’s physical properties. Given the approximation

of the shape in 2-D, I must use that translation data to create some modification to

a 3-D surface.

27

Fig. 16. The color of any particular face corresponds to the selection group it is in, all

being a particular face width away from the original.

As mentioned before, the selection of faces in collision with the object is already

calculated, and in Figure 16, it is shaded red. Based on this original selection, mass

will shift a certain distance away. That distance is illustrated by the various colored

rings in the image below. Each color represents a different area grown about the

original selection. By first breaking the surrounding area into sections, each group of

faces can be displaced to reflect a rough approximation for mass conservation. The

pre-determined translation data from before is then applied to the respective colored

region of faces. For instance, at one face width away from the original collision faces

(the yellow area), we can move the geometry vertically in accordance with the first

translation point. At two face widths away, we can move the next sampled translation

value, and so forth. While the basic concept works, the 2-D grid gives a strong angular

bias to the amount of displacement. For most cases, we want circular, smooth rings,

not square rings. To create a wider variety of shapes and allow more cohesion between

each particular translation, it is better to translate vertices instead of faces.

28

Two things must then be accomplished: a conversion from faces to vertices is

needed for the collision area and a method for determining which vertices are 1, 2,

3, etc. sample distances away from the edge of collision. The solution for the first

of the two is straight-forward. A transparent shader will be assigned to the collision

face list prior to anything else. Given that selection of transparent faces and knowing

that a face consists of four vertices, one can simply retrieve the vertex information

for each face in the selection and add it to a new list of vertices. This new vertex

list will be used as the base collision selection and will not be altered vertically or

horizontally since it is within the colliding object’s surface boundary. The only thing

that will be done is re-calculating the normal of each vertex in the list according to

the methodology mentioned before for the lower layers. Aside from that, this list will

only serve as a base for adjusting the heights of the surrounding vertices.

Now that we have an initial selection of vertices, the second problem is to de-

termine which surrounding vertices are a particular grid size away. It is conceptually

easier to think of the surrounding vertices as being in various concentric rings of

distance around the initial collision list. Figure 17 illustrates this around an initial

selection of collision vertices in red.

Each surrounding vertex will then be stored in a list along with those of the same

color. The goal is to have different sets of vertices, each a different grid size away from

the original. With those selection groups, I can then translate each set independently

based on the translation data for the particular surface being represented. It is

important to note that just because two vertices are in the same set does not imply

that their respective distances to the outline of the original shape is the same. The

sets include vertices that are within a certain interval of the grid size away from the

original selection.

Unfortunately, due to the nature of selecting a randomly shaped set of vertices on

29

Fig. 17. Each ring of vertices is described by a different color. Vertices in each grown

area will be translated according the their color.

a plane made of perfect square faces, the various rings of vertices around that shape

will continually get more jagged the farther the distance. As seen in Figure 18 on

the right, the largest grown ring will seem to have harsh, sharp edges composing its

outline. Even though the initial shape of vertices on the left makes a smooth shape,

this blockiness will always result from growing the initial region farther out.

In order to solve this blocking problem, one would need to calculate the exact

distance each vertex in a particular set was away from the outlining shape of the

initial collision selection. Based on that exact distance, one could interpolate linearly

from the translational data to figure out an exact amount to displace the vertex. Yet

again, this is a tough solution when dealing with both convex and concave selection

shapes. How can we determine from which point on the outline of the selection to

measure the distance? How can we determine how to weight the affects when a vertex

30

Fig. 18. Left: Original smooth selection of vertices. Right: Aliased result from growing

that region multiple times.

lies within the boundaries of numerous surface edges? This is extremely problematic

for concave shapes where the basic shape takes the look of the letter “V.” Figure 19

illustrates this area of complication. The translation data applied to vertices in the

blue area will depend on weighting the distances and the appropriate translation data

from various points of the outlining shape, which is a tough solution.

Determining the actual distance to a particular vertex in a ring is shape based,

so I will first treat each ring of vertices as if they are the same distance away from

the original collision set. Each set of vertices will be initially translated the same

distance vertically in accordance with the corresponding material translation data

points. Doing so will yield a shape similar to the one below in Figure 20 which,

unfortunately, results in a jaggy, blocky surface. Contrary to what is desired for

most penetrable surfaces, the results are rough instead of smooth and fluid. This

problematic result proves to be a valuable start to a desired solution.

31

Fig. 19. In areas of concavity, it is difficult to determine how to translate the data

since we have several surface points influencing the displacement.

Fig. 20. Left: Original selection of colliding vertices in yellow. Right: Aliased result

from applying translation data to the surrounding vertex rings.

32

Fig. 21. Gaussian and directional blur applied in areas of a simple 2-D image.

III.2.5. Adaptive Filtering

The resulting blocky geometry serves as a building block to a much more appealing

solution. It is here that we implement what we call “adaptive filtering.” Adaptive

filtering serves as a method of smoothing a geometric surface through the use of a

variable filter technique. In the same way filters are applied to 2-D images to blur,

smooth, or alter the pixel value in some way, one can use adaptive filtering to smooth

the geometry of a blocky surface. An example of filtering select areas of a 2-D image

is evident in Figure 21.

Adaptive filtering works as follows. For each vertex in every corresponding set,

a new height value is set based on the average height of its surrounding vertices. For

example, if a particular vertex has a height of 1 and the eight surrounding vertices

each have a value of 0, the resulting value of the current vertex will be set to the

average of those nine values. In this case, the new height for that vertex would be

1/9 instead of 1. This method is equivalent to that of a 2-D box filter. In Figure 22,

one can see the difference in averaging a small region about each vertex (second image

33

Fig. 22. Averaging the vertex heights based on surrounding vertices results in different

levels of smoothing based on the filter size.

- 1 ring) and a large area around a vertex (fourth image - 3 rings). This technique

adequately smooths the overall geometric structure; however, a problem still exists.

In the case of most penetrable surfaces, the further away from the collision area,

the less detailed the ground shift becomes. The impact of the collision grows weaker

as distance increases, causing the resulting effects to form a more subtle, rather than

a distinct shift. For example, in analyzing a footprint in damp sand, one can easily

see the individual toe prints in the collision area, but a few inches outside of that

collision area, the shifted sand is no longer precise enough to make out the individual

toe prints. This can be seen in the animal track of Figure 23.

The presence of various levels of detail is handled by the adaptive portion of this

filtering method. Averaging the vertices is controlled by the set in which the vertex

lies. Essentially, the further away a ring of vertices is from the initial collision set, the

less complex (more smoothed) the deformed geometry will be. In order to vary the

resulting area’s smoothing, one can increase or decrease the number of surrounding

vertices to include in calculating the new average height. Much like the rings of

vertices grown about the original collision vertices, we will grow a certain number of

times about the particular vertex being averaged, and according to its set, determine

34

Fig. 23. The amount of detail needed to describe the shape near the collision area

greatly differs from the areas further away.

surrounding heights and the resulting average. This method allows varying detail

across the shifted mass and can again be fine-tuned to represent the desired material

properties. Figure 24 illustrates the effect of using various filter sizes along with a

result from using them adaptively as vertices increase in distance from the original

selection. This maintains the detail near the original selection, and properly accounts

for the area sampled between the two selections.

III.2.6. Considering Animation

We now have a method for making deformations for a single image, but we must

further account for two important elements: withstanding an animation and altering

the shape of the displacement to account for the interacting object’s vector of motion

and position.

In order for these techniques to be useful, they must be able to work over the

course of an animation. Displacement with adaptive filtering helps solve the conserva-

tion of mass issue, but between any two frames the shift must blend together. With

35

Fig. 24. A smaller sample size is used to filter the rings of vertices close to the original

selection and increases as the rings size does.

the current structure, each particular collision does not know anything about the

collision before it, nor does it account for the changes made prior to that particular

frame. In the previous examples shown, the topmost layer is altered in all directions

around the area of impact. However, if the collision object were sliding horizontally

along the topmost layer over time, there is no need to alter the geometry directly

behind the object since there is no force creating a change of shape in that particular

direction.

In order to account for this problem, it is necessary to consider the direction of

motion, just as was done in the case of altering the vertex normals of the lower layers.

Only those vertices within some interval near 90 degrees of the direction of motion

need to be altered. Of those vertices, another tolerance needs to be set to average

the previous state of the displacement with the current stage. This creates a blend

between shapes and generates a result that seems to mesh together as one collective

deformable mesh from one frame to the next.

The vertices directly in front of the object’s motion vector will displace the most

matter. As the object’s speed increases or the deeper it penetrates the surface, the

36

higher the topmost layer will be displaced. These subtle, yet necessary, characteristics

will make the layered geometric surface more believable to the viewer.

In the case of generating holes or tunnels through a surface, the colliding ob-

ject’s velocity and position determine the way the layers are affected. If moving

upward from beneath the surface as in the case of a groundhog digging to the top

layer from underground, the displacement layer must give the illusion of a shifting

upward. Accounting for this will involve displacing the top layer some amount based

on the distance to the topmost layer. The closer the object is to the top layer if

coming from below, the displacement maximum value will increase. Once the surface

level is breached, the layer will then retreat back to the traditional way of handling

displacement with a hole of transparent faces in the center. Each of these animation

cases must be handled appropriately and are essential for generating an aesthetic final

animation sequence.

III.3. Creating an Animation

Once the layered ground is constructed and the appropriate interaction rules are set,

there must be a way to display the effects generated from their use. Sample animations

involving various scenarios of interaction ranging from digging, sliding, surfacing, or

any combinations thereof serve as a testing ground for the functionality of the tools.

Various modeling and animation software packages provide a means of animating a

particular object through a surface, and their built-in renderers allow one to generate

image sequences of TIFs from a particular animation. With those sequences, one

can then create a movie viewable in Windows Media Player (or a similar player) and

watch the animated sequence as it unfolds over time. Animation creation also serves

as a test to see if the tools are working properly for a given situation. By comparing

37

the animation samples, I will be able to fine tune the tools to achieve the desired

results for a final animation.

38

CHAPTER IV

IMPLEMENTATION

Implementing the tools described proved to be a cyclical process, despite my hopes

for linearity. In any bottom-up process, one can only hope that each stage predicts

the needs of its successor. My approach followed the course most traveled, as I

continued to re-visit my previous solutions to better suit the final product. The

following describes the decisions I made, the successes and problems of each, and the

solutions implemented to achieve my goals.

IV.1. Setting the Stage for Development

Before I began, I had to decide which software package to use for developing the tools

necessary and a final animation sequence. I chose to use Alias’ Maya as my foundation.

Aside from having functionality for modeling and animating, Maya allows users to

program scripts and plug-ins through the use of its embedded scripting language, MEL

(Maya Embedded Language). Having used MEL previously and knowing its strong

correlation to C programming, I opted to use it for programming the tools needed.

This decision proved to be one that would yield various pros and cons throughout the

development stage.

IV.2. Initial Setup

To start, I animated a simple polygon sphere to move through an inanimate, square,

polygonal ground plane. The first tool needed was to create the layered geometry. A

single plane obviously was no solution to having a layered ground plane, but through

the use of Maya’s commands for surface duplication and translation, I transformed

39

the initial surface into various carbon copied layers, each with their own respective

distance away from the initial top surface.

So, the scripting began, and through the use of MEL’s built-in GUI functions, I

was able to build an interactive window, allowing a user to select the makeup of the

initial polygonal surface. Figure 25 is a snapshot of the menu available in creating a

layered structure and a sample structure created. Options include length, width, the

subdivisions along each axis, the number of layers to create, and a distance between

each. Once all parameters are present, at the click of a button a layered structure

is built according to specification. Below are pictures of the options available for

the user when creating a layered structure and the resulting structure created when

applied. I later setup a way for a user to create layered geometry from a polygonal

plane they previously altered in some way.

This tool not only creates the layered structure but also serves as the basis

for determining collision and its respective response. Without this clearly defined

structure, moving to the next stage would be impossible. It is important to note that

the lower layers of this layered surface will only be seen when a collision response

occurs. Much like a grassy field, we cannot see the dirt beneath the grass unless the

grass is penetrated or shifted by some force. The topmost layer in the bottom image

of Figure 25 would resemble the grass, with the lower layers serving as the layers of

dirt below. If we were to stand upon that top layer and look directly down, the layers

below would not be visible.

IV.3. Handling Collision

Considering the geometric structure of the layers, I had to implement an efficient

way for determining collision. Because the structure now has N copies of the original

40

Fig. 25. A user can alter any of the sliders available to generate a variety of layered

structures.

41

structure and (N)*(number of faces in a single layer) faces to handle for collision,

coming up with an efficient way to determine which faces are in collision with the

sphere at a particular time frame was extremely important.

The key to doing this is understanding that a sphere is basically a point in space,

with an area of surface surrounding it no greater than some radial length away. It is

important to throw away as much extraneous data possible to reduce the amount of

calculations, just as a ray tracer does not consider objects hidden behind others in

relation to the camera upon render time. If the distance from the sphere’s center to

a particular layer’s position along the y-axis is greater than the radius of the sphere,

no faces in that layer ought to be considered for collision, and it can be thrown out of

the calculation. In the case where the distance is less than or equal to the radius of

the sphere, we know that a collision does in fact occur at that particular time-step.

However, it would be too costly to check every single face for collision.

The calculation data can be further reduced by finding the closest face to the

center of the sphere, and checking for collision within some region of faces surrounding

it. To generate this checklist of faces, I used one of Maya’s most handy functions

that grows the selection region. This built-in functionality served as a helper for

many calculations in developing the interaction rules. Figure 26 provides a visual

representation of this idea. If, for instance, the sphere’s radius is roughly two times

the width of a face, then we know that the largest cross section of intersection with

that sphere could be four faces wide. Since we already have the closest face in collision,

we grow that selection of faces twice to increase the area of collision to be slightly

larger than that of the sphere. We then know that, for all the faces in that particular

plane, it is impossible for any other face outside that grown selection to be in collision

with the sphere. Thus, for any particular layer, we have already calculated the closest

face in collision, and have a reduced selection of faces to check for collision.

42

Fig. 26. Left: Selection represents the closest face in collision. Right: Selection repre-

sents a more concise set of faces that could be in collision.

For a particular face, if the distance from its center to the center of the sphere

is less than or equal to that of the current radius, the face is in collision and some

effect must occur. Using the ray-triangle intersection method determines collision

areas with complex objects, allowing this to be implemented for a variety of different

objects as well. If the collision face’s center is within the boundary of the object, it

will be included in the final collision set.

In determining collision areas using MEL, calculation time for a particular frame

grew exponentially when the geometry composed of many faces. I suppose the reason

for this is that MEL has to access each face in a long array of elements, scanning

through each to find the proper one for each and every calculation. Therefore, the

bigger the array (higher the resolution), the longer the calculation time. I knew I

would work with some fairly heavy geometry for the animation, so I had to optimize

this process.

For the interaction of one specific object with a surface, we know at any given

time, its maximum size. It is therefore wasteful calculation to test faces for collision if

outside some region encompassing its maximum width. By using a piece of geometry

43

the size of its maximum width and translating it to the closest face in collision, I

was able to do collision testing on the smaller test piece of geometry, and translate

the resulting collision actions to the high resolution data. Using this intermediary

for collision testing, I was able to alleviate a large amount of overhead in calculation

time.

Once collision testing worked efficiently enough for my purposes, I had to achieve

a desired deformation effect, requiring further additions to the development tool.

IV.4. Denting the Surface

Within each layer’s collision area, something must be done to illustrate the effect of

the material either getting compressed or removed. Since I am not moving any of

the geometric structure to achieve this effect, the shading properties of the individual

layers will be important.

The first thing to do in areas of collision is to shade that particular face with a

completely transparent shader, giving the impression that a piece of actual geometry

has been removed. Transparency plays an important role in creating the illusion of a

removal of the geometric structure without actually doing so. If I were to delete the

faces in collision, the plane’s geometric structure would change, making it impossible

to reconsider that area for future interactions. Figure 27 shows the result of shading

collision faces to be completely transparent. The layers seem to have faces removed,

yet due to the layer’s distance apart, it looks as if the layers don’t blend together

as one piece of geometry. Furthermore, I have shaded each layer with a gradient in

Figure 27, making the lower layers darker than the ones directly above it. If I were to

shade all of the layers with the same white shader, as I will eventually, the removal

of mass is not visible since the way light interacts with the surface has not changed.

44

Fig. 27. Hole created by shading the collision faces of each layer to be transparent.

For this, I changed how each layer reacts to the light, by altering the vertex

normals for the vertices in collision. Altering the vertex normals also improved the

cohesion between the multiple layers. Maya provides a useful function that converts

a selection of faces to vertices. With that new vertex selection it is important to only

calculate new normals for the vertices that will be visible. Of the transparent faces

in collision, only the outermost ring of vertices will be seen after the faces are set

to be transparent. Shrinking the region of vertices once and removing that selection

list from the original collision list of vertices further reduced the computation by

throwing out extraneous calculations. As described in the methodology section, the

vertex normals in the outermost ring of the collision area of a particular layer are

altered to point toward the sphere’s center, or the object’s closest surface point.

After doing this for each layer in collision, the appearance of the layers as one piece

of geometry was improved but not perfectly. The result is illustrated in Figure 28.

Due to each layer’s vertical separation to the next, one can see the faces sur-

rounding the region of collision from most camera angles. Their vertex normals still

45

Fig. 28. Vertices in collision are altered to match the impression of the shape.

point in the direction of the original surface, upward, creating the triangular dark

edges seen in Figure 28. This presence when looking between any two layers again

prevents the two from meshing together as one surface as well as we had hoped.

To solve this problem, I also altered the vertex normals directly surrounding

the vertices in collision to point toward the sphere’s center. This required more than

double the vertex calculation for each layer, however, the resulting image in Figure 29

merged together far better than any solution before. The top layer’s dark ring still

posed a problem, but I will address that later, when handling displacement.

IV.5. Conserving the Shifted Mass

The results so far illustrate the removal of mass, so we must now account for the

shifted mass. As mentioned in my methodology, doing so relied on making alterations

to the topmost layer of the structure. Mass moved below must go somewhere, and

when not being compressed, it is most likely shifted upward somewhere within the

structure.

46

Fig. 29. Surrounding ring’s vertex normals are altered to better blend from layer to

layer.

IV.5.1. Vertex Normal Alteration

As a first attempt to represent this shifting of mass, I extended the method of altering

the vertex normals. Since the shifting occurs roughly the same all around the center

of the collision, I altered the vertex normals of the top layer based on their distance

away from the sphere’s center. Given two key vertex normals to interpolate between

based on distance, I altered each of the vertex’s normals within a certain grown region

around the collision area of the topmost layer. As with the lower layers, the faces in

collision for the top layer were set to transparent, yet the vertex for changing was far

greater than that of any lower layer. Figure 30 shows the effected normals assigned

for the topmost layer’s vertices surrounding the collision.

The results from this method yielded a nice illusion of conserving the mass shifted

from below (Figure 31, left), however, when looked at from practically any angle

other than from directly above, it was quite noticeable that the geometry remained

unaltered, resulting in an extremely flat look (Figure 31, right). As a bump map does

47

Fig. 30. Vertex normals are interpolated between key normals to create the effect of

shifted mass.

not change the surface position of an object, this method prevented any shadows

from being cast from the top of the surface to the layers below and gave no vertical

variation on the surface.

IV.5.2. Transparent Planes Above

My initial solution was to develop a way to show the shifted mass while maintaining

the layered structure. Since the geometry needed to physically represent a shift of

mass, I implemented within the layered geometry creation tool a way to create layers

above the topmost layer, assigning each to be completely transparent prior to collision.

The idea here was to incorporate layers above the surface level that would, in a sense,

“turn on” in certain areas to illustrate the shift. By shading particular faces within

the transparent layers as collisions occurred, I avoided ever moving any geometry.

Layers above the top were shaded opaque in regions surrounding the area of collision.

Creating this effect involved selecting a number of rings grown concentrically around

the faces of collision. That set of faces was then shaded opaque for the first transparent

48

Fig. 31. Left: Top view of the result of altering the vertex normals. Right: Flaw is

obviously the flatness when viewed from side angles.

layer above the original topmost layer. Shrinking that selection of faces and shading

the next immediate transparent layer’s faces continued until the face selection was

empty. As in the case of the original topmost layer, the vertex normals in each of the

faces shaded in the transparent layers were altered to give the illusion of unity.

This new solution allowed me to conserve mass and maintain geometry in areas

of shifting, however, it posed bigger problems. The selection of faces grown about

the initial collision faces of the topmost layer tended to result as an extremely blocky

version of the original, due to the nature of geometry composed of square faces.

Again, when looked at from any angle other than directly above, the semi-shaded

transparent layers above seemed to clearly be separate planes of geometry. With the

inability to view the shape from any angle from the side, I was back to the same

problem resulting from solely changing the normals of the topmost layer. It was

considerably more noticeable than the layers below that the overall structure lacked

the sense of being one geometric structure. Figure 32 illustrates these problems and

limitations.

49

Fig. 32. Left: Top view of the transparent layers in use. Right: Flaw continues to be

the flatness when viewed from side angles.

IV.5.3. Surface Level Displacement

Yet again, I was back to square one in creating the illusion of mass conservation

without actually moving the geometry. Layered geometry had already shown its

benefits by allowing an object to move through another, removing the mass, but its

structure was extremely limiting in creating effects above the surface level. As in most

scenarios, one idea alone cannot be a solution to all problems, so I began pondering

the benefits and potential problems of using displacement solely on the topmost layer

of geometry to create the illusion of shifting mass.

As mentioned prior, the only layer that actually shows where the mass shifts

when depressed or moved is the topmost layer, given you are looking from above the

top surface level, which we will be. The layers below represent matter compression or

the absence of mass, while the top is responsible for illustrating how and where it is

moved. To prevent seeing a gap in the overall structure, the topmost layer’s collision

faces will be to always set the height to equal the elevation of the plane’s y-value. As

long as the camera is never able to see the area labeled green in Figure 33, it could

50

Fig. 33. Area under the displaced top layer is not viewable.

be a valuable solution. Displacement of the top layer seemed to be an easy method

to implement, however, trouble lay ahead.

Creating a smoothly displaced surface required new solutions. As described in the

methodology section, the shape deformed around an object directly correlates to the

shape of the collision area. The collision area for the top layer is already determined,

so altering the vertex heights involves selecting grown rings of vertices about that

initial selection and translating those rings or sets to a particular height based on

the user’s predefined translation data. Each of these vertex sets is determined by

growing the size of the previous selection and de-selecting the vertices in that previous

set. This allows concentric sets of vertices to be created about the initial collision

selection, with each being further spread out than the last. The translation data was

then applied to the corresponding set of vertices to move the group a specified amount

in the y direction. Doing so for every ring resulted in a blocky structure formed about

the original selection, colored orange in Figure 34.

At this stage in the process, I realized this method of displacing the surface layer

would not suffice if there were not some way to smooth the deformation created. By

implementing adaptive filtering across the various grown sets of vertices, I was able

to do just that. Adaptive filtering relies solely on averaging the translation data of

51

Fig. 34. Aliased top layer displacement generated using translation data.

the vertices’ height values surrounding a particular vertex along with that of its own,

as described in the methodology section. By revisiting each vertex in its respective

ring, I was able to take a weighted average of the specified region around it.

The filter area for a particular vertex depends on what set that vertex is in.

The sampling area is determined by selecting the vertex and growing the selection of

vertices any number of times corresponding to the predetermined filter value for its

ring. If more detail is desired, a smaller selection is used. If less is desired, a larger

selection is used. In Figure 35, the vertex on the right nears the original collision and

since detail is needed to help define the shifted shape, the filter area consists of itself

and one surrounding ring of vertices. However, if filtering a vertex in the outermost

ring, like the vertex on the left of Figure 35, it is filtered with a larger surrounding

area of vertices to better blend into the surface. The resulting average height value

is then assigned to the vertex that started the selection.

Using Maya’s built-in selection tools for growing the vertex selection size made

it much easier for me to implement adaptive filtering as a tool. In general, adaptive

52

Fig. 35. Depending on the distance away from the original selection, different filter

sizes are used.

filtering creates a smoothed region far away from the collision area and a detailed

region near by. Of course, the user is able to specify the translation data and its

respective filter size upon runtime to create a variety of shapes and effects. All

results can then be tweaked for specific results by redefining the parameters for filter

width and translation data for each set of vertices. The interface for using adaptive

filtering is illustrated in Figure 36. Handling vertices outlining the collision selection,

it is still important to set the vertex normal according to the intersecting face of the

interacting object, as done when simply altering the vertex normals of the topmost

layer. This maintains the blending effect between the displaced layer and the layers

beneath.

IV.6. Handling Animation

With adaptive filtering enabled for the displacement of the topmost layer and layered

geometry accounting for the penetration within the surface, the tools developed work

well for a single image. Generating a single image well does not ensure its success

53

Fig. 36. Graphical user interface for adaptive filtering.

54

in creating a working animated sequence. To do so, rules and alterations must be

implemented to account for the various interaction scenarios that could potentially

occur in an animation.

Potential situations include an object penetrating the surface from above, push-

ing upward on the surface from below, and countless ways of sliding through the

surface in any primarily horizontal direction. Each of these test cases required a dif-

ferent implementation of how the surface level is deformed. The key to determining

which case applied is calculating the direction of motion of the colliding object along

with the speed at which it is moving.

Animation in Maya relies on positional data captured at particular moments in

time, or key frames. These frames of time serve as a method for determining the

changes in a scene from one moment to the next. For a particular time frame when

an object is interacting with another, it is important to gather as much data possible

about each object. The velocity and position of the colliding object are the crucial

factors for determining the interaction response for a particular time frame. The

position of an object in Maya is always available by reading its coordinates in world

space. Calculating the velocity of that object at that time frame requires backing

up a time-step, getting the position, and subtracting that positional value from the

current position. This calculation gave us the direction of motion along with the

distance traveled in a single time-step, which was used as a way to measure its speed.

IV.6.1. Motion Downward

The methods described in the prior examples of displacement are sufficient for im-

plementing the case where the motion of the colliding object is directed downward

or into the surface. If the angle between the object’s direction and the penetrable

55

Fig. 37. Displacement generated from downward motion.

surface layer’s normal is within the interval of 45 to 90 degrees, the surface will gen-

erally displace matter equally around the collision area. I calculated the angle by

determining the dot product of the motion vector with the vector perpendicular to

the average normal of the topmost layer. If within this interval of degrees, the result

will tend to resemble the image in Figure 37. The position of the colliding object in

relation to the topmost layer determines how far to displace the vertices. The further

down the object moves, the higher the ground is displaced to account for the extra

movement of mass. There is a maximum displacement value that can be set by the

user to prevent the surface from displacing too far. In Figures 38 and 39, one can see

the results when using layered geometry for this type of interaction.

Often, the object’s motion is not perpendicular to the surface as the previous

example. When entering at an angle from above, an overlapping shape is created,

fulfilling the requirements that displacement maps cannot. Figures 40, 41, and 42

illustrate the expectations and results from angular downward motion.

56

Fig. 38. Slice of layered geometry resulting from downward motion.

Fig. 39. Layered geometry resulting from downward motion.

57

Fig. 40. Displacement generated from motion downward at an angle.

Fig. 41. Slice of layered geometry resulting from motion downward at angle.

58

Fig. 42. Layered geometry resulting from motion downward at angle.

IV.6.2. Motion Side to Side

Lateral motion requires extra calculation to properly determine the resulting effect.

When sliding a ball sideways in the sand, for instance, the area in the direction

opposite the motion is not altered. Only the area within a region of 90 degrees of

the motion vector will be altered, having the areas further away displacing less and

less. For displacing a particular vertex, if its vector created from the center of the

colliding object is greater than 90 degrees from the direction of motion, it will not

be altered. In the area where the vertices are not in the strength of the direction of

motion, only a percentage of the displacement value is used, averaging that portion of

the height with the value from the previous frames, if there were any. Doing so allows

for the blending of displacement animation from one frame to the next, rather than

constantly displacing all vertices the exact amount for the current frame. Figure 43

gives an example of lateral motion, while Figures 44 and 45 illustrate the results from

59

Fig. 43. Displacement generated from horizontal motion.

this interaction using layered geometry.

IV.6.3. Motion Upward

For motion from below the top surface moving upward, yet another consideration

must be accounted for. The displacement does not occur around a collision area,

because the collision area is not yet defined, due to the collision having not yet

occurred for the topmost layer. In the case of continual motion upward from beneath

the top surface layer, the displacement must reflect the shape of the object coming

from below. According to its position beneath the surface and the collision area

from a lower layer, the shape is then applied to the topmost layer as an area of

displacement, translating the vertices in the center the most and those on the edges

the least. This displacement uses adaptive filtering as well to smooth the resulting

geometry. Of course, as the object gets closer to surfacing, the displacement height

gradually increases until the maximum displacement for that particular material is

60

Fig. 44. Slice of layered geometry resulting from horizontal motion.

Fig. 45. Layered geometry resulting from horizontal motion.

61

Fig. 46. Displacement generated from upward motion.

met. Figure 46 illustrates the expected effect of upward motion, prior to breaching the

top surface. When the object has penetrated through the topmost layer, that frame

resorts back to calculating displacement in the case of downward motion, leaving a

hole as the object exits the surface. Figures 47 and 48 display the results from this

interaction type using layered geometry.

IV.6.4. Tunneling

When moving through a layered structure in an animation, a combination of interac-

tion methods occur. Digging a hole through a surface generally requires downward,

angular, horizontal, and upward motion. Each resulting in different effects as seen

in the previous examples. Figures 49 and 50 illustrates a combination of all of the

aforementioned interaction methods.

62

Fig. 47. Slice of layered geometry resulting from upward motion.

Fig. 48. Layered geometry resulting from upward motion.

63

Fig. 49. Slice of layered geometry resulting from tunneling.

Fig. 50. Layered geometry resulting from tunneling.

64

IV.7. Creating a Final Animation

Once all of the rules for interaction were set and the tools for creating and deforming

the layered geometry worked according to specific test scenarios, a final animation

was created to illustrate the results. I wanted to ensure the animation demonstrated

all of the test scenarios properly, however, I did not want the final render to seem

as if it were a mere demo for the various interactions. It was more important to

me that I select a subject matter that would in fact do those things in its natural

environment, making the need for such tools relevant. My hope was to create an

animation whose interaction with an environment made complete visual sense to the

viewer, not distracting from the animation itself but adding to the realism of the

actions.

In order to do this, I decided to animate an inch worm moving through a soft

mud surface. His interaction with the mud includes sliding along the surface, digging

beneath, and surfacing again elsewhere. With each of these actions animated and

working together as one sequence of shots, I hoped to generate an effect that would

be difficult to create using traditional methods of surface deformation and would

enhance the animation for a necessary purpose, not merely for eye candy.

After rendering the animation as a sequence of TIFs, I composited the rendered

images from Maya together to make a movie viewable in Windows Media Player.

Through the use Adobe’s compositing software, After Effects, I was able to generate

an AVI file of the animation sequence, viewable as a movie at thirty frames per second.

65

CHAPTER V

RESULTS

The following section is devoted to showing still frames from my final animation. I

have included stills of consecutive frames from various types of interaction to illustrate

the different calculations and effects resulting from each.

My final animated short created is titled “Xing.” A brief summary of the plot

involves the painstaking journey of a determined inchworm, tiring with every move-

ment. When confronted with a detour around a twig crossing his path, he becomes

disgruntled with the additional distance added to his trip. In a clever attempt to

beat the system, he takes a deep breath and digs a hole beneath the twig to reach

the other side. Delighted with his ingenuity, he continues his journey.

I was careful to develop a story that would require all of the interaction methods

developed within my tools, however, as stated before, my overall hope was to create an

animation whose story would be accented by the visual effects of surface deformation,

rather than having deformation be the one and only focus.

In the opening sequence, the inchworm moves slow and steady along through the

ground’s soft mud. The interaction, in this case, involves sliding along horizontally

through the mud’s surface. The surface structure, unlit and unshaded, can be seen

in Figure 51. The final rendered effect can be seen below in the image sequence of

Figures 52 and 53.

Shortly after, he decides to try his luck by digging beneath the ground. The

interaction in this case involves digging downward through an object. Again, the

rough structure and the resulting effect can be seen below in Figure 54 and the image

sequence of Figure 55 respectively.

66

Fig. 51. Layered structure resulting from sliding.

Fig. 52. Shot 10: Resulting images from horizontally sliding.

67

Fig. 53. Shot 20: Resulting images from horizontally sliding.

Fig. 54. Layered structure resulting from digging.

68

Fig. 55. Shot 60-1: Resulting images from downward digging.

69

Fig. 56. Layered structure resulting from surfacing.

Once past the twig’s area, he begins to approach the mud’s topmost layer, sur-

facing from below. Figure 56 and Figure 57 contain sample stills from this type of

interaction.

The final rendered images are much more aesthetically interesting than those of

the rough surfaces, due to the lighting and shading of the various props and elements.

I was pleasantly surprised with the blending between the various layer, as the structure

seems to exist as one consistent piece of geometry. The results from this short reflect

on the successes of the use of the tools developed. I define each interaction type

clearly within the animation, yet, the story prevents the viewer from focusing on its

demonstration of the various scenarios. With these final renders, I am better able to

assess my goals and draw conclusions.

70

Fig. 57. Shot 60-2: Resulting images from vertically surfacing.

71

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

VI.1. Conclusions

Given the images shown in the results section, I was able to demonstrate an auto-

matic method for animation-dependent, geometric deformation that handles multi-

directional movement, while conserving mass. The inherent benefit of treating a

surface as a volume of layers is that the layered geometry never changes. Thus, the

geometry never breaks, allowing the creation of interesting overlapping effects result-

ing from digging, dragging, surfacing, or making holes in a surface. The MEL scripts

developed allow a user to create a specific layered ground plane and, with an anima-

tion of a particular object, create a sequence of images illustrating its motion and

effects from interaction with a soft, penetrable surface in Maya. I attempted to give

the user the most control possible to fine tune the deformation effects for a desired

ground material. The overall results proved it to be a usable tool for creating complex

deformations in a surface, and I feel that I successful met my initial goals.

As for the results of the process itself, there are a few things I might try differ-

ently, given the chance to do it all again. The rendered images illustrate the output

from using my developed tools, but generating those images from a computing stand-

point could stand improvement. As mentioned early on, selecting MEL as the coding

language to build this tool led to effective results, however its innate flaws, unknown

to me at the time, prevent its ease of use.

The main downfall of using MEL as a tool builder was its inability to release

memory. After computing calculations for a particular time frame, the memory stays

active and is never released back to the computer’s operating system. Upon calling

72

the tools’ functions a second time, almost an equivalent amount of memory is allo-

cated again, rather than reusing that which was allocated previously. No matter if

I flushed the variables or history, the memory continued to remain inaccessible and

un-releasable. Heavy calculations generally resulted in Maya crashing, restarting the

file from where it left off, and continuing the render process.

Furthermore, there are a few additions that would make this tool even more

useful. Currently, the layered structure changes from frame to frame, never allowing

a user to see what the geometry looked like at a previous frame. Making the changes

keyable from one frame to the next would benefit the user by allowing them to scrub

back and forth through the animation to see the effects in each frame. This would also

allow post modifications to the surface on a frame basis. As with any production, no

tool works perfectly for every single shot, and often, computer graphics artists must

manipulate certain frames of an animation that might not look exactly as desired.

At their current state, my tools would not allow this fine-tuning step.

Also, there is currently nothing implemented to refine the translated geometry

of the topmost layer. Thus, as the vertices are displaced, the resolution of that

layer reduces, due to the greater distance between any face’s translated vertices. Not

accounting for this problem can result in areas of the displaced layer becoming blocky

and rigid if displaced too far, when the goal is to have a smooth geometric surface.

Implementing a subdivision technique to refine these stretched areas would alleviate

this problem.

The final concern for my implementation occurs when traversing back through

old paths. Currently, crossing an old path will not shift any matter into the old

transparent area. Once the area is transparent, I have no method for re-shading it

back to opaque when interacted with a second time. Implementing a way to revisit

transparent sections of the structure would allow for more complex animations.

73

It is important to note, however, that no one technique will ever be a perfect

solution for each and every situation. Many circumstances pose a strong need for a

different way of handling what is difficult to do with common tools. In the situation

of creating animated deformations and holes through a surface, layered geometry and

displacement with adaptive filtering serves as a viable solution.

VI.2. Future Work

As in most cases, future work is always a possibility given time to act. Never is any

one solution perfect in all of its methods and calculations. There is always room for

improvement.

In my case, the biggest push would be to improve the calculation speed, whether

it be coding in another language or reducing the number of calculations done each

time step. Speed can always be improved given time to research bottlenecks in current

algorithms. For instance, it would be beneficial to implement a more resourceful way

of calculating collision, determining the closest collision point using iterative subdi-

vision schemes on the geometry, rather than looping through every single geometric

face. One could begin treating each layer as a single face initially, subdividing that

face, calculating which of the new faces is closest to the object, and repeating until

some subdivision level is met. This would reduce the unnecessary collision calcula-

tions immensely. Also, re-working the code for Maya’s API environment could be

beneficial in both calculation time and memory usage, or implementing the same

tools in a coding language such as C++ with OpenGL could allow for more complex

and lengthy animations. Unfortunately, strictly coding in C++ requires the user to

setup a whole slew of other tools needed to model, animate, and render easily.

Another area of work for this technique would be to handle the interaction of

74

the penetrated surface with itself after another object interacts with it. For instance,

if some animal digs a hole beneath a surface and exits, depending on the material

structure, the matter might shift to fill the hole where he used to be. In representing

sand, this shifting is largely important for illustrating its granular nature as an object

enters or leaves. Much of the time, sand will actually cover the geometry of the object

until it exits. Generating this effect would allow users to represent a wider range of

material properties.

Regarding the actual animations generated, the content is bound only by the

user’s imagination, leaving new ideas and effects wide open to further development.

75

REFERENCES

[1] Blue Sky Studios, “Ice Age,” Motion Picture: March 2002.

[2] P. Fearing, “The Computer Modeling of Fallen Snow,” Ph.D. Thesis, Dept. of

Computer Science, University of British Columbia, July 2000.

[3] S. Frisken, R. Perry, A. Rockwood, and T. Jones, “Adaptively Sampled Distance

Fields: A General Representation of Shape for Computer Graphics,” Proc. ACM

SIGGRAPH 2000, pp. 249-254, 2000.

[4] M. Moore, and J. Wilhelms, “Collision Detection and Response for Computer

Animation,” Proc. ACM SIGGRAPH 1988, pp. 289-298, 1988.

[5] J. Peng, D. Kristjansson, and D. Zorin, “Interactive Modeling of Topologically

Complex Geometric Detail,” Proc. ACM SIGGRAPH 2004, pp. 635-643, 2004.

[6] J. Stam, “Stable Fluids,” Proc. ACM SIGGRAPH 1999, pp. 121-128, 1999.

[7] R. Sumner, J. O’Brien, and J. Hodgins, “Animating Sand, Mud, and Snow,”

Computer Graphics Forum, vol. 18, no. 1, pp. 17-26, 1999.

76

VITA

Jacob Brooks

227 Bonner

New Braunfels, TX 78130

jakebrooks@tamu.edu

Education

M.S. in Visualization Sciences Texas A&M University, August 2005

B.S. in Computer Science Texas A&M University, May 2002

Employment

Graduate Assistant, Non-Teaching Texas A&M University,

August 2002 - May 2005

