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ABSTRACT

Aspects of Grand Unified and String Phenomenology. (August 2005)

Joel W. Walker, B.S., Harding University

Chair of Advisory Committee: Dr. Dimitri Nanopoulos

Explored in this report is the essential interconnectedness of Grand Unified

and String Theoretic Phenomenology. In order to extract a modeled connection to

low-energy physics from the context of superstring theory, it is presently necessary to

input some preferred region of parameter space in which to search. This need may be

well filled by a parallel study of Grand Unification, which is by contrast in immediate

proximity to a wealth of experimental data. The favored GUT so isolated may then

reasonably transfer this phenomenological correlation to a string embedding, receiving

back by way of trade a greater sense of primary motivation, and potentially enhanced

predictability for parameters taken as input in a particle physics context.

The Flipped SU(5) GUT will be our preferred framework in which to operate and

first receives an extended study in a non-string derived setting. Of particularly timely

interest are predictions for super-particle mass ranges and the interrelated question of

proton decay lifetime. Corrections to such a picture under the lift to a string embed-

ding are also considered. Two principal approaches to string model building are next

treated in turn: the Heterotic Free Fermionic construction and Intersecting D-branes

in Orientifold compactifications. In both contexts, a summary of existing construc-

tions, extensions to known procedures, and original phenomenological contributions

are described.
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CHAPTER I

INTRODUCTION

A. A View of Science

The underlying goal which most interests me scientifically is a unified understanding of

physical law. My favorite story by way of example is the long slow unraveling of elec-

tromagnetic theory. From just simple experiments involving furs or chips of amber,

the electrostatic interaction might be seen, and reasoned to exploit two distinct states

of charge. Elementary graphical methods could suffice to make the next great step, a

mathematical abstraction of these observations as an inverse-square force. Likewise,

the deflections of compass needles by currents and the induction of currents by the

motion of magnets were also measured and codified. It was only from such concise

expressions that the master-stroke of Maxwell could emerge: the existing formulae

were alone theoretically inconsistent, requiring also a description of induced magnetic

fields if electric charge was to be conserved. This insight was followed in short order

by laboratory confirmation of electromagnetic waves, traveling in like manner unto

light. Only then in the completeness of these equations could their greater structure

could be glimpsed, holding already a full representation of the Relativity theory, and

properly suited to couple as the locally gauge invariant intermediary of a quantum

field theory. The whimsies of experience wherein coiled flows of charge produced a

strong magnet, and particles of charged matter traced helical paths through regions

of magnetic field, could not then be picked and chosen in isolation. They were instead

the unavoidable and integrated consequence of these two well motivated principles.

Physical law, it could be imagined, was simply as it must be.

The journal model is IEEE Transactions on Automatic Control.
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B. The Task at Hand

The central task of physics remains as it has always been: the distillation of informa-

tion down into knowledge, the union of facts seemingly disparate, by common woven

threads of principle. The revelation of modern physics has been that the proper eye

with which to perceive this tapestry is that of the ultra-high energy micro-world.

With this insight comes also a higher calling to consider not only goodness of law,

but further origins of law, and the more basic constructions within which the ab-

stracted content of our effective theories may nest. Smaller yet in comparison to the

nuclear scale than the atomic nucleus is smaller than us, mathematics must become

the new microscope for this unseen cosmos. Symmetry, unity and simplicity are our

lampposts in the search for a framework from which naturally descends the distilled

elements of low-energy physics, namely covariant locally gauged chiral matter multi-

plets in replicated families. They are the lessons learned from study of natural law,

the beacons to which seekers of truth are drawn and the search beams beneath which

successes have been found.

With simple statements of symmetry the currencies which nature holds dear are

imbued into mathematical expression with such power of constraint that little else

could hope to be written. Extending the framework to operate locally raises up fully

specified interactions from the global charges, and corresponding gauge fields for their

mediation. With one stroke the rates of exchange are sealed, and the conceptions

of field source and reaction to field are unified in a renormalizable manner. Even

the matter particle spectrum is confined to fit neatly within representations of the

group structure specified. It is no surprise then that a master group to contain the

standard model should be sought in form of a Grand Unified Theory (GUT) which

would attempt to merge the known electromagnetic and two nuclear forces into a



3

single conceptual framework. Indeed, the notion that the three gauged symmetries

of particle physics should manifest a united structure during extremely energetic

interactions is well motivated by precision low-energy measurements.

Under a natural logarithmic renormalization, the tendency toward asymptotic

freedom of the non-Abelian SU(3)C × SU(2)L elements steadily drives their gauge

couplings downward 1, in cautious balance against the simultaneous ascendance of the

hypercharge U(1)Y . Perhaps the most fascinating feature of this program however is

the indication that fundamental processes occur some twelve orders of magnitude in

energy beyond the scope of our most sophisticated accelerators. This speaks again to

complexity arising out of simplicity at a scale alluringly close to the Planck regime

where gravitational effects are expected to be strong, with a prevailing quantum

structure. The satisfaction of low-energy constraints [2, 3, 4] while using only MSSM

field content 2 reveals the vast desert for what it is [5], a great and empty field for

the couplings to run in and produce in their crossing our familiar world. However,

spanning such unimaginable leagues requires a fundamental shift of paradigm, and

tools born to the world in ways unfamiliar.

String theory, with its relatives M-theory and local supersymmetry, is the prin-

cipal modern candidate for such investigations. Great promise exists in the natural,

consistent and necessary accommodation of gravity as well as the tremendous gauge

freedom which may be transferred out of the intrinsically resident extra spatial di-

mensions. Indeed, the defining insight delivered from this paradigm appears to be the

commonality of origin between gauge and space-time symmetries. Great shortcoming

exists in the same places however, as the theory seems in fact overly malleable, retain-

1The weak nuclear coupling α2 is comparatively sedate in its motion, and in a
supersymmetric context actually increases marginally with energy transfer.

2Standard Model here also refers to its extensions that include neutrino masses.



4

ing too great a freedom of parametrization to be truly predictive. Despite the wealth

of persistent and generically stable desirable features, any mechanism for prediction

of the theorys vacuum remains elusive.

That the string might one day speak its secrets in a language singular and in-

evitable is indeed a noble dream; unfortunately, a dream as yet well beyond our

humble means. While non-perturbative effects must finally produce a dynamic and

definite solution [6], it seems there is also a value to searching in the available light

of a favored theoretical framework and constraint for the simple existence of a viable,

albeit ad-hoc, solution. We must then be content to reveal and study those appeal-

ing corners of the theory which are under no prohibition. However, even guided

by such strong constraints as preserving N = 1 SUSY and the consistent exclusion

of anomalies, there remains too great a freedom for any meaningful comprehensive

search. Instead some target of opportunity must be established, and in this regard

the existence of a preferred GUT model can be of invaluable assistance.

By contrast to string theory, the GUT pictures are not a system of dynamics

in themselves, but contain nonetheless a wealth of new and observable predictions.

That most discerning indicator, which has been the death already of many proposals,

is that new baryon-number violating processes not over-speed proton decay, while

also maintaining consistency with the measured range of αs(MZ). Including a light

spectrum of superpartners, as independently required for stabilization of the mini-

mally extended Standard Model (MSSM) [7, 8, 9] with a low-mass Higgs [10] and

favored cosmologically for cold dark matter [11, 12], improves the first order gauge

coupling convergence to the per-mille level [2, 13, 3, 14] while also lavishly providing

for phenomenological constraint to threshold corrections in the next order. Surely

predictivity is not everything though, and especially in this new climate, insight to

context and origin for knowledge previously held is a great achievement in itself. The
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entanglements of scale, and symbioses of deficiencies suggest then a mutual part-

nership between these studies. Strings endow particle physics with dynamics and

potentially added calculability, while GUTs offer in return a grounding in reality, and

a reasoned starting point for model building.

The treatment in this thesis will thus be multi-fold. Firstly, to read seriously

the cumulative low energy measurements which can help lock into place the unknown

elements of a potential GUT embedding, and secondly to consider the further em-

bedding of the preferred model as a string construction. The discussion will consist

of three independent yet essentially interconnected primary topics as introduced fol-

lowing. It will entail some analysis of what GUT constructions the string appears to

prefer and also discussion of string corrections to both decay rates and allowed modes.

The context of this investigation will be two distinct model building scenarios which

have each met prior with some reasonable degree of success: Free Fermions on the

Heterotic string [15, 16, 17] and the intersecting D-Brane constructions on orientifold

compactifications [18]. There will be a strong focus on extending the available tech-

nology within certain corners of each paradigm, and also detailed demonstration of

model building procedures. It is hoped the techniques so developed will have endur-

ing relevance, and that the examples unearthed may illuminate some properties of

the true path, serving to narrow the gulf from the low-energy side, and set a table in

waiting for the weary travelers who cross the desert.

C. Chapter Introductions

1. Grand Unification and Proton Decay

This section describes research in collaboration with Dr. John Ellis and Dr. Dimitri

Nanopoulos, updating and extending the study [19].
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Beyond this effortless conspiracy of coupling unification, the GUT paradigm is

also appealing from a purely theoretical stand-point, naturally extending the known

electro-weak mixing, providing an origin for charge quantization, and potentially elim-

inating some free parameters from the Standard Model. Moreover, the intermingling

of Leptonic and Baryonic quantum numbers which presages instability of the proton

is, along with CP violation and an of out-of-equilibrium cosmological phase, one of the

three ingredients considered essential to a natural providence of matter/anti-matter

asymmetry.

Following the healthy philosophy which warns against plurality without necessity,

it is no surprise that early searches for a satisfactory Grand Unified Theory landed

squarely on the doorstep of SU(5), the most elemental group structure capable of

enclosing the requisite rank-4 SM system. Nevertheless, we take no interest here in

SU(5), preferring instead the enlarged variation SU(5)L×U(1)X . Interestingly, group

theory provides only this single alternative embedding into SU(5) while respecting

the existing SU(3)c × SU(2)L × U(1)Y structure. We are thus instructed of the

possibility that the pair of right-conjugate color triplets (uc
L ⇔ dc

L) and the pair of

singlets (ec
L ⇔ νc

L) must each flip their locations. Under this redistribution, the true

hypercharge is now an admixture of both U(1)x and the U(1) factor of SU(5).

It is a fair question why after seeking out the minimal Grand Unified gauge group,

one would then follow up by attaching this uncomely and decidedly non-minimal

appendage. But, in fact, it seems the day of complication has arrived, with standard

SU(5) proving insufficient to its testing. The chinks in the armor had been apparent

already in the machinations required to cleanly split the triplets from doublets and

in the absence of a right-handed neutrino. Once heralded as a great boon, this

omission now stands in opposition to the indications of Super Kamiokande from

which the study of neutrino oscillations is enough to remind that for nature, beauty
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is not subject to the eye of the beholder. Since chirality is not Lorentz invariant

for massive fields, there must exist a sixteenth state. Shortfalls exist also in the

excessively high prediction for the strong coupling at Mz, and now most severely

and most fatally in view of recent experiments, in the insufficient lifetime offered

to the proton. From each of these fronts, the experimental consensus is resounding:

Supersymmetric flipped SU(5) survives where its forbear cannot. In presence of these

facts we are reminded of nature’s prior dictum on the virtues of delayed gratification

at the electroweak scale. Indeed, if vector-like SU(2) had prevailed against chiral

SU(2)L ×U(1) at that juncture, there would be no survival of the low energy physics

which pervades our experience against renormalization to the next cutoff. Likewise,

it may also be precocious to insist on a strict unification which would preempt the

presence of gravitation, especially in light of the nearby string scale from which is

generically expected to emerge a unified structure of possibly much larger size than

just the MSSM.

Also along for the ride in flipped SU(5) are the procurement of various other phe-

nomenological benefits and observable signatures. Not only is the disastrously rapid

K+ν̄ dimension five proton decay which plagues standard SUSY SU(5) suppressed,

but it is replaced as principal by a still viable yet imminently observable proton de-

cay mode in the dimension-6 e+π channel. Furthermore, not only are right-handed

neutrinos essentially accommodated, but and eV-scale neutrino mass is also naturally

provided by means of the ‘see-saw’ mechanism.

Still, it should be noticed that all is not lost for the promised benefits of grand

unification. We are free to continue the game upward, and ask what group of rank five

might contain this favored structure. The answer again is clear, and accompanied by

fresh insight and reinforcement for this approach. The group SO(10) can embed all

sixteen desired states as a spinor representation. Furthermore, the bar5 so achieved
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are a perfect match to the variation employed as fermionic matter in flipped SU(5).

By contrast, the pair of 5̄ split from a fundamental of SO(10) carry the quantum

numbers of standard SU(5), exactly as is still needed to serve for Higgs fields. Memory

of this true GUT embedding will suffice to preserve in flipped SU(5) all essential

related properties. We shall see whether all good things indeed come to those who

wait.

Among the recent experimental inputs of relevance to this study are the upwardly

shifted top quark mass measurements from DØ, and the precision determinations of

the cold dark matter density by the WMAP collaboration. Each of these changes

dramatically updates to the ‘background’ picture of supersymmetry constraints by

which a preferred region of that parameter space is recommended. On balance the

favored values of (m1/2, m0) remain relatively small, which bodes well for observation

of both proton decay and supersymmetric partners. Finally, we also incorporate a

discussion of the alterations which a true string derived context imposes. Indications

are that any direct corrections are minimal, yet the identification of a super-unification

above the SU(5) × U(1) scale with the string provides interesting limits on beta

function coefficients and super-heavy threshold effects.

2. Heterotic String Model Building

This section describes research in collaboration with Drs. Alon Faraggi, Gerald Cleaver

and Dimitri Nanopoulos and Mr. John Perkins, as reported in [15, 16, 17].

In the context of Heterotic string theory there has historically been reasonably

good success in the construction of both MSSM and Flipped SU(5) models by the

fixing of phases on the fermionic degrees of freedom. In order to produce a low energy

effective field theory from a string model, it is necessary to further specify a vacuum

state. The Fayet-Illiopoulos anomaly which was originally proposed as a mechanism
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for electroweak SUSY breaking 3 has been recast here to a dignified position at the

string scale. Firstly, it helps greatly to remove the extraneous U(1) factors which tend

to appear abundantly in such constructions, and secondly demands the assignment of

a non-trivial set of vacuum expectation values (VEVs) which will cancel the offending

term such that string-scale SUSY now be preserved!

The door is held open here for a type of phenomenology whereby preservation

of supersymmetry is used as the foremost constraint to limit the possible parameter

space. In order that the vacuum respect SUSY, all field expectation values must be

along so-called ‘flat directions’, leaving the F - and D-terms of the scalar potential to

be zero. It is from these required assignments that a beneficial spectral truncation

and values for masses and couplings may be realized. We note also in passing that

world sheet selection rules form a new criteria for elimination of superpotential terms

above simple gauge invariance.

The situation becomes particularly interesting when one attempts to realize flat

directions while assigning VEVS to fields transforming under non-Abelian represen-

tations of the gauge group. Such a process has been suggested by the insufficiency to

date of simpler Abelian-only constructions to generate sufficient mass terms, among

other shortcomings. Since the expectation value is now shared among multiple com-

ponents of a field, satisfaction of flatness becomes an inherently geometrical problem

in the group space. Specifically it has been noticed that the D-term SUSY condition

appears becomes translated into the imperative that the adjoint space representa-

tion of all expectation values form a closed vector sum. Furthermore, the possibility

emerges that a single seemingly dangerous F -term might experience a self-cancellation

3This approach has generally been supplanted by the writing of ‘soft’ supersym-
metry breaking terms in the Lagrangian which are supposed in turn to descend dy-
namically from spontaneously broken no-scale supergravity.
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among its components. The potential exists that this geometric language can provide

an intuitive and immediate recognition of when the D and F conditions are simulta-

neously compatible, as well as a powerful tool for their comprehensive classification.

This is the avenue receiving the greatest attention in the present section, as applied to

the cases of SU(2) and SO(2n). These are relevant respectively to previous attempts

at reproducing the MSSM and the FNY flipped SU(5) GUT by way of its confining

hidden sector element SU(4) ∼ SO(6). By necessity, the second case addresses the is-

sues inherent to groups with rank n > 1. An additional elimination of some otherwise

dangerous terms from the superpotential already been achieved in this formalism. It

is hoped that the techniques encountered will be of further benefit in extending the

viability of the quasi-realistic phenomenologies already developed.

3. Intersecting D-Brane Model Building

This section describes research in collaboration with Dr. George Kraniotis, Dr. Dim-

itri Nanopoulos, and fellow students Eric Mayes and Ching-Ming Chen, outlining a

complementary path to that demonstrated in [18].

D-branes naturally appear in string theory as static hyper-surfaces on which

the ends of open strings terminate when employing the Dirichlet (opposed to Neu-

mann) boundary conditions. With the advent of intersecting D-brane constructions

the model-builder has powerful new tools for realizing and interpreting the key in-

gredients of particle theory. Gauge fields of non-Abelian groups are the massless

stringy modes degenerately affixed to ‘stacks of these hyper-surfaces. Stacks of Na

such D-branes correspond in a T -dual picture to Chan-Patton degrees of freedom on

the worldsheet which are elevated in space-time to a gauged symmetry group U(Na).

Replicated families of bi-fundamentally charged chiral matter arise from the multiple

intersections of such stacks. Particle multiplets forming representations under such
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groups are realized as strings stretched between the two sets of D-branes. At points

of intersection, the zero-stretching condition corresponds to (string scale) massless

modes as are desired.

The primary goal of this chapter is not to justify or formulate from first princi-

ples the properties of intersecting D-branes. Instead we will attempt to summarize

in the most systematic and concise manner the content of those rules which emerge

from such models, and then formulate procedures for condensing these rules into an

efficient extraction of the related gauged symmetry multiplets. We will divide the

treatment into two main logical branches. First, a systematic procedural statement

of all necessary conditions will be established. The algorithmic appearance of this

construction is not accidental. Rather, it represents our initial preferred approach

for a numerical treatment of intersecting D-brane model building. At each stage of

the discussion, attempts are made to reduce conditions into a format that is more

amenable to numerical treatment, and simultaneously easier to digest for the human

analyst. Secondly, we will begin to assemble the existing rules into a single unit,

investigating what simplifications emerge by taking the union of all conditions rather

than applying each in simple disconnected sequence. Our principal reference through-

out will be the work of Blumenhagen, Görlich and Ott as recorded in citation [20].

In all situations where specificity is demanded, we will follow this lead in using the

T 6/ZZ4 orientifold of Type IIA string theory.

The simplest space on which to compactify string theory is a torus T 6. However,

this flat manifold preserves an excess of supersymmetry, and ‘orientifolding’ is one

possible mechanism to truncate the resulting spectrum to N = 1. The study of T 6/ZZ4

has been carefully reviewed, and treated both numerically with proprietary computer

programs and analytically in the context of a streamlined and unified statement of

the constraints imposed on this model. There are two generic classes of constraint



12

which operate in conjunction to impose strict limits on what gauge multiplets may be

realized. Firstly, unbroken supersymmetry is imposed as a condition on the wrapping

angles of the D-brane homology cycles. Secondly, there is a Raymond-Raymond

charged tadpole term which is necessarily canceled by the essential appearance of

D-brane stacks wrapping the torus. This is highly analogous to the driving role of FI

anomaly in the heterotic string.

So then, the obvious question: What gauge group, and thus what set of stacked

D-branes shall be considered? Attempts have been made with reasonable success

to construct directly in this way just that most well validated set of fields and in-

teractions, the Standard Model (SM). However, we have argued that precedent and

spirit of the SM itself point toward a further unification. However, all argument for

a preferred GUT scenario are for naught, if the string will not admit such a gauge

group. Available parametric freedom notwithstanding, the string theory is also not

infinitely deformable, and it is reasonable to inquire to what classes of models it is

most suited.

Flipped SU(5) models have been the principal target in this search. In principle,

it could be for example that the flipped variant of 5̄ were difficult to produce, or

that it never appeared in conjunction with standard Higgs forms. In fact, the truth

is quite the opposite. Just as the two SU(5) embeddings each find corollary under

SO(10), there is also a perfect parallel to the quantum numbers realized in the ori-

entifolded intersecting D-brane context. Bi-fundamental five-plets are produced at

the intersection of a multiplicity-five stack with another single D-brane. These states

are accompanied also by an intersection involving either stacks orientifold projection.

In the first scenario U(1) charges are summed, and flipped matter results. In the

second, the charges are taken in opposition, and the net state carries the markings

of standard SU(5). Indeed, it is quite difficult to avoid the appearance of both types
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of 5̄-plets, and we are aware of at least one example in the literature where flipped

SU(5) was achieved without intention or realization!

Indeed, a modestly pleasing intermediate result has been achieved and is pre-

sented herein. In the AAA involution, it appears that Flipped SU(5) does exist with

a minimal of extraneous content. However, this is only possible with two rather than

3 generations. Future work is additionally planned along these lines, specifically an

improved understanding of the relation between distinct ‘complex involutions’ is de-

sired. It will also be necessary once the ZZ4 scenario is exhausted to expand into other

orientifolds. With the presence of a more satisfactory spectrum, it will be possible to

begin the hard phenomenology of Yukawa couplings, mass matrices and etc. Finally,

it may profitable to return to a numerical treatment, but incorporating the improved

and condensed statements of constraint which have been developed.
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CHAPTER II

GRAND UNIFICATION AND PROTON DECAY

A. The Call of Unification

1. Supersymmetric Unification

Grand Unified Theories are a logically essential ingredient to the program of reduc-

tionism in particle physics. To forward the goal of extracting greater output, both

more prolific and more specific, from an ever diminishing set of manually input model

parametrization, symmetry considerations are the physicist’s greatest tool. Providing

both a rigorous notion of charge conservation and a strict representational framework

into which all member fields must assemble, such constructions also fully encode the

dynamics of interaction when locally covariantly gauged. Having secured the sym-

metry breaking of SU(2)L × U(1)Y to the U(1) group of electromagnetism within

the experimental bag around the 100 GeV scale 1, it is only natural to consider an

intermingling of all known interactions. The dynamics of logarithmic renormaliza-

tion which would govern the energy Q-dependencies of such a suggestion are well

defined in terms of the one-loop beta function coefficients bi that respectively meter

the qi-charged matter content.

1

αi(Q)
− 1

αGUT
=

bi
2π

ln
MGUT

Q
(2.1)

A survey of this process within the Standard Model (SM) reveals a gentle plod-

ding of the three couplings toward a near crossing at an ultra-high energy of around

1015 GeV. However, the Standard Model has its own afflictions to deal with, most

notably stabilization of the electroweak scale and an over-abundance of unspecified pa-

1Failing only a definitive signal of the Higgs field.
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rameters. Supersymmetry (SUSY) proposes to remedy both maladies by the pairwise

interrelation of fields transforming in the tensor and spinor Lorentz representations

respectively.

Spontaneously broken symmetries require that only space-time scalars may take

nonzero vacuum expectation values if Lorentz invariance is to be preserved. However,

scalar fields alone have no protection against bare masses in the action, and are

moreover prone to catastrophic quadratic renormalization. Tethering all scalars to a

spin-1/2 partner can enforce a transference of beneficial fermionic properties such as

a more mild log-type running. Specifically, chiral symmetry may exclude undesirable

mass terms, and divergences are greatly softened by finely structured cancellations

between partnered Bose diagrams and Fermi loops with their characteristic minus

signs. SUSY furthermore offers a guiding principle by which a Lagrangian can be

greatly constrained. In this picture, all field masses and Yukawa couplings, as well as

the scalar vacuum are fully determined by just a single holomorphic function dubbed

the Superpotential.

These attractive features do not come though without a price. First, it is neces-

sary to fully double the known world, as no known 1/2-integer spin-related particles

share common quantum numbers suitable for association as supersymmetric part-

ners. The number of Higgs multiplets must also double since up- and down-type

masses cannot now arise from a single field once complex conjugation is disallowed

in the potential2. Furthermore, a mechanism must be posited to shift these unseen

super-partners to a suitably invisible mass scale without destroying the initially de-

sired hierarchy stabilization at MZ . It is also of material interest whether this radical

revision of the field content will destroy the picture of GUT convergence. Sugges-

2Alternatively considering the spin-1/2 partners, a single field would induce an
uncanceled chiral anomaly.
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tively, the needed modifications to the bi instead appear to perfect the unification

to within just parts of one thousand. What before gave hope that the idea was at

least in the right ballpark is now difficult for even the most cynical to dismiss as pure

happenstance. Also interesting is the observation that this more gentle coalescence

shifts the GUT scale even further upward by a factor of about ten. This is yet one

step closer to the Planck regime, where the gravitational interaction must not be ig-

nored. Indeed though, even this frontier is singularly the province of supersymmetry,

which by its unique and consistent intermingling of internal quantum numbers with

space-time itself, becomes a theory of general covariance when made local. However,

exuberance must be tempered for while yet, as second order effects and the correc-

tions from crossing the light SUSY and heavy GUT mass thresholds threaten to undo

our success unless delicately balanced. Additionally, any new predictions generic to

GUTs must be evaluated in light of experimental metes and bounds.

Perhaps the most striking maiden feature of Grand Unification is that the notion

of strict baryon and lepton number conservation is now abandoned. By placing these

formerly distinct entities within common multiplets they are now bound to share

interaction vertices. With this development, the stability once granted to the proton

as the lightest member of its class is held forfeit. Fortunately, preservation of the

universe-as-we-know-it can also be afforded by another means. GUTs are in fact

self-protecting in this regard, predicting these exotic interactions be mediated by

the broken, i.e. ultra-heavy, gauge Bosons and thus that they are extremely rare.

Nevertheless, since the process is forbidden outright within the SM, this offers a

particularly prime target for differentiation of theory by experiment. The chief decay

mode p → e+π0 goes like a fourth power of the unified scale. The supersymmetric

extension of that characteristic energy translates here to four orders of magnitude in

proton lifetime and only by that feint does the predicted rate suffice to evade current
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detection limits.

�X

u

u

d

e

=⇒
p→ e+π0, τp ∝M4

X

d=6

(2.2)

But what SUSY gives, she can also take away. The pair of electroweak Higgs dou-

blets which that theory requires must also here embed two GUT multiplets, and filling

out those representations thus again enlarges the Higgs sector. Mixing is generically

allowed between these new fields, or more pertinently their super-partners, which in

turn may enable a less noble but more rapid channel of decay. The procedure for

elevating these dangerous states to a sufficiently high mass recalls to us the original

hierarchy quandary and is not without distinct consequences for low-energy phe-

nomenology even if successful. It is time then to get specific and evaluate all such

considerations within the confines of a well-defined model.

2. Selecting a Unified Model

If the notion of a GUT is to be feasible, then one must necessarily inquire as to

candidates for the unified group structure and what representational form the known

interactions and fields would take within that group. To contain the SM, SU(3)C ×

SU(2)L × U(1)Y , which carry respectively two, one and one diagonal generators, a

group of minimal rank four is required. The natural starting point is then SU(5),

whose lowest order representations are the singlet 1, the fundamental 5, the (anti)

symmetric tensors 10 and 15, the adjoint 24 which transforms as the generators, and

their related conjugates.

Within each family, all SM states must be assigned a residence which is compat-
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ible with their existing quantum numbers. A charge-parity involution is understood

where needed such that all grouped fields will carry a consistent handedness. The

six quark states of the left-doublet, color-triplet must then fit in at least an anti-

symmetric 10. This leaves four spots open, tidily filled by one right-handed color

triplet and a right handed singlet. The remaining color-triplet partners neatly with

the electron-neutrino left-doublet as a 5̄, canceling the non-Abelian anomaly of the

10. Not only are the fifteen Standard Model states thus uniquely and compactly rep-

resented, but we are gifted additional ‘wisdom’ in the process. By assignment each

of the 10 and 5̄ are electrically neutral, thus correlating charge quantization to the

number of color degrees of freedom. Furthermore, the apparent masslessness of the

neutrinos finds a pleasing justification: there is simply no room remaining in which

to house a right-handed component.

(
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(2.3)

But experimental evidence cannot any longer allow an agnostic position on neu-

trino masses. The Super-Kamiokande facility in Japan, which houses 50, 000 metric

tonnes of ultra-pure water inside a 40-meter high by 40-meter diameter cylindrical

tank faced on all sides by a collection of 13, 000 photomultiplier Čerenkov detectors

and shielded beneath 2, 700 meters of earth within the cavity of an old mine, has been
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diligently studying the problem for many years. By comparing the careful observation

of neutrino fluxes with atmospheric origination against the expected detection ratios

from known interaction cascades they have borne convincing witness to oscillation

between the νµ and ντ sectors 3. This phenomenon may only occur when the related

states carry non-equivalent masses, of which at least one must then be non-zero.

However, chirality can only be an invariant quantum number for massless states, and

we are thus compelled to introduce a sixteenth element for accommodation of the

right-handed neutrino within any considered GUT. It is certainly possible to imagine

the new state as a simple singlet outside the main representations already laid down.

Surely though it is presumptive to suppose that this right-handed neutrino, while

arriving ‘last’ must also be seated as the ‘least’. Every existing position must instead

be subject to reassignment. There is indeed then another way, if one is willing to

sacrifice charge quantization. We can choose to ‘flip’ the right-handed quarks placed

inside the 5̄ and 10 while also swapping ec
L for νc

L footnoteFor a comprehensive recent

review of flipped SU(5), please consult [21].

f5̄ =
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u

d

)

L

dc
L νc

L

)

; l1 = ec
L (2.4)

The cost of this flipping is nothing less than the loss of grand unification, as

the resulting symmetry group is enlarged to the non-simple variant SU(5) × U(1)X .

As demonstrated in Fig. 1, the hypercharge does not descend out of SU(5) together

3Likewise, νe ↔ νµ oscillation has been induced from the observation of solar
neutrinos by the SNO collaboration.
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with the nuclear forces, but is instead of an admixture of U(1)X together with the

additional U(1) factor which is emergent from that breaking. If this tune sounds

familiar though, it is simply a reprise of the theme played out some fourteen orders of

magnitude below in the Weinberg-Salam SU(2)L × U(1)Y electroweak ‘unification’.

Just as it was there no loss to save a true convergence for the future inclusion of color

perhaps it is here folly to imagine a full unification which occurs on the border of the

Planck mass without waiting on gravity. Just as only experiment could there reject

the truly unified but dysfunctional SU(2) model of Georgi and Glashow, between (or

against!) these contenders we can again only let phenomenology decide. And here

there is no finer judge than the consideration of proton decay.

α5

Log (Q) maxM32 M51

Yα

3α

2α

1α

M32

Fig. 1. A Heuristic Demonstration of Flipped Gauge Coupling Unification. Notice the dis-

continuity in the (purple) line of U(1)Y , as it remixes between the “grand unified”

U(1), and that which emerges out of broken SU(5) at the scale M32. Proceeding

upward from this interim stage in orange, SU(5) × U(1) is itself unified at some

higher scale M51. For comparison, the standard SU(5) scenario is shown in red with

a single unification at Mmax
32 ≥ M32, and predicting a larger value for αs(MZ).
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B. The Consequence of Unification

1. Instability of the Proton

Despite the incredible contribution of knowledge made by Super-Kamiokande to the

physics of neutrino oscillations, this is in fact not even the principal task of that

experiment. Faced with the incomprehensibly long time scales on which proton decay

is expected to be manifest, some 19− 26 orders of magnitude older than the universe

itself, we can only hope to observe this process within some reasonably finite interval

by leveraging Avogadro’s number to our benefit and watching some very large number

of nuclei simultaneously. Indeed, that is precisely the role of the extravagant size

allowed to this detector. Turning first to the p → K+ν̄ partial lifetime as mediated

by the triplet higgsinos of SU(5), a lower bound of 6.7×1032 years has been established

at the 90% confidence level.

�udW̃ d̃

ũ H̃3 H̃3̄

s

ν

=⇒
p→ K+ν̄, τp ∝M2

H̃3

d=5

(2.5)

This is a so-called dimension-five decay, summing the mass level of the two-boson, two-

fermion effective vertex à la Fermi. The upper bound on its rate translates directly

to a minimal mass for the color-triplet Higgs of around 1017GeV [22]. Conversely

though, compatibility of a strict unification with the precision LEP measurements of

SM parameters at MZ places a lower limit on this mass of order 1015GeV.

Flipped SU(5) evades this incongruity by means of the ‘missing-partner mecha-

nism’ [23, 24, 25] which naturally splits the heavy triplets H3 within the five of Higgs

(h) away from the light electroweak components H2. Specifically, since the flipped 10

now contains a neutral element it is possible to allow vacuum expectation values for
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the breaking of SU(5) to arise within a Higgs decaplet H from this representation.

The GUT superpotential elements HHh and H̄H̄h̄ then provide for the mass terms

〈νc
H〉dc

HH3 (and conjugate), while H2 is left light, having no partner in H with which

to make a neutral pairing. So then is adroitly bypassed all insinuation of a hand-

built term Mh5h5̄ to finely tune against the putative adjoint GUT Higgs h5h5̄Σ24

for fulfillment of this same goal. And with that term goes also the undesirable triplet

mixing, the dangerously fast proton decay channel and the fatal limits on the mass

of H3
4. As for standard SU(5) however, this is just another splash of cold water

from our friends at Super-K. And as we have mentioned, they have no shortage of

cold water.

This diversion put aside, the dimension six decay p→ e+π0 may now regain our

attention. With aid of the SUSY extension, neither theory is under any fear from the

current lower bound of 1.6× 1033 years for this mode. That is not to say though that

interesting differences do not exist between the pictures. In standard SU(5) there

are two effective operators which contribute in sum to this rate. The first vertex

arises from the term 10 5̄ 10∗ 5̄∗ and the second from 10 10 10∗ 10∗ with a relative

strength of (1 + |Vud|2)2. However, in flipped SU(5), ec
L no longer resides within the

10, so the positronic channel makes use of only ec
R decays utilizing the operator which

contains the representation 5̄. Taking the central value of .9738(5) for the Cabibbo

quark-mixing phase Vud leads to a suppression of the total rate by a factor of about

five after dividing out the correction (1 + (1 + |Vud|2)2). In opposition to this effect is

a tendency toward more rapid decay due to dependence on the intermediate partial

unification scale M32 rather than the traditional GUT value. In fact, we will see

4The d = 5 mode is not entirely abandoned, as there does remain the supersym-
metric term µhh̄ for suppression of electroweak axions. It is slower though by a ratio
( µ

MH3

)2, where µ ∼ TeV.
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that this second distinction generally overwhelms the first, leading on balance to a

net shorter prediction of the proton lifetime in flipped SU(5). This is a beneficial

result in light of the next generation proposals [26] for super-massive water-Čerenkov

detectors weighing up to 106 tonnes. Sampling a number of nuclei greater by some

factor of twenty than Super-K, such an experiment could be sensitive to τ(p→ e+π0)

at a level of around 1035 y.

Lower bounds can only ever exclude a model, never truly supporting any one

competing suggestion. The real goal of course is to constrain this number from

both directions, and assisted by the shorter net flipped SU(5) lifetime, the reach

of next-generation experiments could come tanalizingly close to probing the most

relevant portions of parameter space. However, as we will see, even this great step

may unfortunately be insufficient. Following the results of [27, 22] and references

therein, we present a numerically parametrized expression for the desired lifetime,

with coefficients appropriate to the flipped specialization already absorbed.

τ(p→ e+π0) = 3.8 × 1035

(

M32

1016GeV

)4(
α5(M

max
32 )

α5(M32)

)2(
0.015GeV3

α

)2

y (2.6)

The amplitude for this process is proportional to the overall proton wave function

normalization at the origin. The reduced hadronic matrix elements

〈0|εijk(uidj)Ru
k
L|p(k)〉 ≡ α uL(k), (2.7)

〈0|εijk(uidj)Lu
k
L|p(k)〉 ≡ β uL(k) , (2.8)

have recently been updated to the central reference values α = β = 0.015GeV3 by

the JLQCD collaboration using lattice methods. Somewhat higher than previous

estimates, their calculation has also greatly bolstered the prospects for observability

in this mode. The uncertainty which accompanies these factors into (2.8) stands at
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about 20%.

We close this section with a survey of some characteristic predictions from flipped

SU(5) proton decay based on the baryon-number violating effective potential [28, 29]:

L̄∆B 6=0 =
g2
5

2M2
32

[

(εijkd̄c
ke

2iη11γµPLdj)(uiγµPLνL) + h.c.

+ (εijk(d̄c
ke

2iη11 cos θc + s̄c
ke

2iη21 sin θc)γ
µPLuj)(uiγµPL`L) + h.c.

]

(2.9)

where θc is the Cabibbo angle. Unknown parameters in (2.9) are the the CP-violating

phases η11,21 and lepton flavor eigenstates νL and `L related to the mass diagonal

mixtures as:

νL = νFUν , `L = `FU` . (2.10)

These mixing matrices U(ν, `) take on added currency in the age of neutrino oscilla-

tions. Having seen there evidence for near-maximal mixing, it seems reasonable to

suspect that at least some e/µ entries are also O(1) in U`. From this point it will

indeed be assumed that |U`11,12 |2 are O(1), thus avoiding further large numerical sup-

pressions of both the p → (e/µ+)π0 rates 5. No more can be said though regarding

the ratio of p → e+X and p → µ+X decays, and as such it would be good that any

next-generation detector be equally adept at the exposure of either mode 6. Despite

these ignorances, it can be robustly stated that [30]:

Γ(p→ e+πo) =
cos2 θc

2
|U`11 |2Γ(p→ ν̄π+) = cos2 θc|U`11 |2Γ(n→ ν̄πo)

Γ(n→ e+π−) = 2Γ(p→ e+πo) , Γ(n→ µ+π−) = 2Γ(p→ µ+πo)

Γ(p→ µ+πo) =
cos2 θc

2
|U`12 |2Γ(p→ ν̄π+) = cos2 θc|U`12 |2Γ(n→ ν̄πo) (2.11)

5Note that there is no corresponding suppression of the p → ν̄π+ and n → ν̄π0

modes, since all neutrino flavors are summed over.
6Hereafter, whenever is mentioned the decay process p→ e+π0, it is also taken to

include the muonic product ambiguity.
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We note [30, 27] that the flipped SU(5) predictions for decay ratios involving strange

particles, neutrinos and charged leptons differ substantially from those of conventional

SU(5). Comparison of such characteristic signals then constitutes a potentially pow-

erful tool for establishing mixing patterns and differentiating between GUT proposals.

2. The Renormalization Group

So then, we have reached something of an impasse in terms of garnering direct infor-

mation from existing proton decay limits. However, a quick look at (2.6) reveals a

dependence on just a single parameter germane to flipped SU(5): the intermediate

mass scale M32. This scale is the most essential defining characteristic of the devia-

tion from a strict unification which is expected once the electric charge is subdivided

between multiple groups. It is also phenomenologically quite rich, both in terms of

predictivity and predictability. The agenda thus now becomes a description of what

factors influence and constrain the mass M32, sometimes then turning the analysis

around as a prediction for the proton lifetime.

Specializing (2.1) to the case at hand, we have [27]:

1

αY
− 1

α′
1

=
bY
2π

ln
M32

MZ
(2.12)

1

α2
− 1

α5
=

b2
2π

ln
M32

MZ
(2.13)

1

α3
− 1

α5
=

b3
2π

ln
M32

MZ
(2.14)

As usual, αY = 5
3
(αem(MZ)/ cos2 θW ), α2 = αem(MZ)/ sin2 θW , α3 ≡ αs(MZ), and the

SUSY one-loop beta function coefficients are bY = 33/5, b2 = +1 and b3 = −3. The

limit of a strict triple-unification occurs whenever α′
1 (the hypercharge evaluated at

M32) exactly matches α5, toward which the nuclear couplings are running. Enforcing

this condition à la conventional SU(5), we take the linear combination of (2.12, 2.13,
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2.14) which will eliminate both of the scale dependent terms α5 and sin2 θW
7 , solving

specifically for the ‘maximal’ allowed value of M32.

Mmax
32 = MZ × exp

{

π(3αs − 8αem)

30αemαs

}

(2.15)

Similarly excluding α5 now between just (2.13,2.14), and using (2.15) to replace MZ

via the expansion

ln
M32

MZ

= ln
M32

Mmax
32

+ ln
Mmax

32

MZ

, (2.16)

one arrives at the following most useful expression 8:

αs(MZ) =
7
3
αem

5 sin2 θW − 1 + 10
π
αem ln (Mmax

32 /M32)
(2.17)

We can then isolate α5 from (2.14), using again (2.15,2.16).

α5 =

[

3

5αs

+
3

20αem

− 3

2π
ln

(

Mmax
32

M32

)]−1

(2.18)

Evaluating M32 at its extremal value, this reduces to:

αmax
5 ≡ α5(M

max
32 ) =

20αemαs

3(αs + 4αem)
(2.19)

We may gauge the consistency of this picture by comparing (2.17) against recent

precision electroweak data as compiled by the Particle Data Group [31].

αem(MZ) = 1
127.918±.018

, αs(MZ) = .1187 ± .0020

sin2 θMS
W (MZ) = .23120 ± .00015 , MZ = 91.1876 ± .0021GeV

(2.20)

As advertised, the strict unification limit M32 → Mmax
32 is validated to a surprising

accuracy.

7The sense in which sin2 θW is in this context a function of the generic scale M32

rather than an experimentally input number will become clear shortly.
8The coefficient 10

π
shown here corrects an erroneous value appearing in some

earlier publications.
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However, things are not quite so simple as has been suggested. More specifically,

there are corrections at the next order due to two-loop effects and the detailed crossing

of mass thresholds at both the light supersymmetric and heavy grand-unified scales.

The sum of these contributions may be effectively accommodated via the substitution

sin2 θW → sin2 θW − δ2loop − δlight − δheavy (2.21)

in (2.17). It is worth emphasizing that although each of these corrections is most

properly associated with shifts in the beta coefficients, it has been instead convenient

to parametrize the bulk of our ignorance by just (2.21), locking each of the bi at

the prior quotes. So then, if αs(sin
2 θW ,M32) from (2.17) is forced to the central

measured value, we may best instead interpret that equation to express the necessary

trade offs between the unknown dependent thresholds (as contained inside sin2 θW )

and the ratio M32/M
max
32 [32]. This stipulation now explains the great care taken to

ensure that sin2 θw(M32), and similarly α5(M32), are never equated across expressions

evaluated at different specializations of this mass. Of course, when it comes time

to plot renormalization curves, we are bound to use the experimentally established

sin2 θW , as the weak coupling constant α2(MZ) is well known. To do so consistently,

we must transfer the two-loop and threshold corrections back where they really belong,

i.e. into numerical shifts of the bi.

The two-loop shift, δ2loop ≈ 0.0030, is calculable, although δlight and δheavy are

undetermined at this stage and can in principle carry either sign. Neglecting these

thresholds for the moment, δ2loop alone lifts the ‘prediction’ for αs in standard SU(5)

to around 0.130 [33, 34, 35, 36, 37, 38]. Restoring a value within one standard

deviation of the present central value requires the non-trivial assistance of δlight and/or

δheavy such that the net correction of (2.21) is suppressed. However, δlight is too small

or even of the wrong sign in large portions of parameter space. Moreover, as pointed
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out in [39, 40], appealing here to the aid of δheavy may only compound the conflicts

of SU(5) with proton decay limits [41, 42] for the τ(p→ ν̄K+) mode.

In flipped SU(5) though, there is an alternate way to restore αs(MZ) to a satis-

factory range. Indeed, the full offset of the two-loop correction can be countered by

simply setting M32 ≈ 1
2
Mmax

32 in (2.17). This correlation between M32 and αs(MZ) is

explored graphically in Fig. 2. The curve demonstrates a strong preference for the

reduced scale partial unification of flipped SU(5) relative to the bounding value of

Mmax
32 = 2.23 × 1016 GeV. Also depicted are a number of the proposed benchmark

CMSSM scenarios [43] (now updated to the post-WMAP era as denoted with primed

characters [44]) which attempt to survey the phenomenologically preferred SUSY pa-

rameter space 9. They are restricted to A0 = 0, but otherwise span the viable ranges

of m1/2, m0 and tanβ, and represent both signs for µ. The shift δlight is also included

for these alphabetically labeled points, plotted at the central value of αs
10. Although

the generic tendency of that effect here is to soften the scale reduction, there ex-

ists no benchmark model for which a conventional unification is consistent with the

measured values of αs(MZ) and sin2 θW unless one also invokes action of the GUT

thresholds. We note that the quoted error in αs(MZ) is about 0.002, which translates

to an uncertainty in M32 of order 20%, and in turn an induced uncertainty in the

proton lifetime of a factor around two. The error associated with the uncertainty in

sin2 θW is somewhat smaller.

9The benchmark point F’ from the focus point region at large m0 cannot provide
for electroweak symmetry breaking, taking the recently enlarged top quark mass into
our analysis. It is thus dropped here from further consideration.

10The prediction for M32 at each benchmark for variations in αs follows a curve
like that shown, but passing through the point in question.
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Fig. 2. αs(MZ) vs. M32/M
max
32 with Benchmarks. The solid blue curved lines indicate

the range allowed to M32 for a given value of αs(MZ), within one standard

deviation of sin2 θW . The two-loop correction is implemented to the exclusion

of either threshold. The green horizontal bars depict one standard deviation in

αs. The labeled points supplement these considerations with the value of δlight

appropriate to each CMSSM benchmark.

C. The Completion of Unification

1. The Supersymmetric Threshold

We turn now to a detailed discussion of the light threshold effects. Although the the-

oretical motivations and phenomenological necessities of low-energy supersymmetry

are myriad, all experiments have yet to directly observe the signal of any superpart-

ner field. We are not disheartened though, as even this fact is only yet another clue

into the nature of how SUSY must be broken. And moreover, the extreme interde-

pendencies imposed by this symmetry allow concrete predictions to be made for the

unseen sector. It is essential that any proposal for splitting masses at the infrared

limit do so without disrupting the cancellation of ultraviolet divergences or unmaking
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the 100 GeV electroweak hierarchy. The most general approach to parameterizing

the needed SUSY deviation thus involves an insertion into the fundamental action of

non-symmetric terms with mass-dimension less than or equal to three in the fields.

These ‘soft-breaking’ expressions come in four basic varieties, proportional to existing

SUSY-valid terms but bearing non-canonical coefficients. Namely, they are the spin-1
2

gaugino masses mi
1/2, the scalar mass-square matrix (m2

0)
ij , and the bi- and tri-linear

holomorphic superpotential rescaling Bij
0 and Aijk

0
11.

The suggestion of the CMSSM is that each class of correction be assigned a

universal value at the GUT scale. As a practical matter, it is enough that without

such a simplification we would be unable to sensibly proceed. We may take comfort

though that this democratic scenario can naturally emerge in the effective potential

of a spontaneously broken no-scale supergravity. Failing exclusory evidence, no ‘more

sophisticated’ choice has at any rate a superior motivation. From the enlarged SUSY

Higgs sector there is also the (supersymmetry conserving) mixing parameter µ as

needed to prevent a massless state Hi, and the ratio tanβ of expectation values

〈H2〉/〈H1〉. Although the sum-squared of these VEVs is predicted just as in the SM,

their ratio is undetermined and can be used to partially alleviate from the Yukawa

couplings the onus of providing an up/down mass disparity. Enforcing a radiative

trigger for the electroweak symmetry breaking 12 is sufficient to further eliminate the

B0-coefficient and the absolute value of µ from consideration. This leaves then just

the short list m0, m1/2, A0, tanβ and the sign of µ, from which the entire Higgs 13 and

11The parameters Bij
0 also influences predicted masses, while Aijk

0 are related to
the Yukawa couplings.

12We recall that the large valued Yukawa necessary to drive the mass-squared of
the up-type Higgs negative around MZ successfully predicted a top quark mass above
100 GeV in an era when it was generally supposed to lie in the mid-teens.

13The MSSM requires 8 Higgs degrees of freedom arranged as two pair of complex
scalar doublets. Three Goldstone components are absorbed by the newly massive
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s-particle spectrum can be calculated14. Insomuch as these masses are known, the

light threshold correction is also known, taken approximately as [39, 40, 32]

δlight =
α

20π

[

−3L(mt) +
28

3
L(mg̃) −

32

3
L(mw̃) − L(mh) − 4L(mH)

+
5

2
L(mq̃) − 3L(m˜̀

L
) + 2L(m˜̀

R
) − 35

36
L(mt̃2) −

19

36
L(mt̃1)

]

, (2.22)

where L(x) ≡ ln(x/MZ). Ignoring δheavy for the time being, this translates directly

into the required compensatory value ofM32 from (2.17), and thus also to a prediction

for the flipped SU(5) proton lifetime, (2.6).

The strongest dependencies lie with the universal gaugino and scalar masses

(m1/2, m0), so these are generally plotted in opposition as in Figs. 3 [45], for fixed

values of the other three parameters. As is the case here, the tri-linear coupling A0

is most often set to zero. Within the expanse of these planes is expressed the bounty

of a great catalog of experiments. Interestingly, one of the most confining of these

observations comes from cosmology, principally via the WMAP satellite collabora-

tion [46, 47], which has measured with great precision the neutral non-baryonic cold

dark matter contribution to the energy density of the universe.

0.094 < ΩCDMh
2 < 0.129 (2.23)

SUSY offers the neutralino χ, a mixture of the uncharged Higgs and gauge super-

partners, as a natural candidate for the source of this remnant matter. Predicted

in large portions of parameter space to comprise the lightest supersymmetric parti-

cle (LSP), the neutralino is thus afforded stability under conservation of R parity.

(W±, Z0), while five components (h0, A0, H±, H0) remain observable.
14More specifically, the baseline from which the paired super-partners split is estab-

lished. By definition, the observed particles are the lighter, and from their measured
masses the heavier are then deduced.
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Fig. 3. Proton Lifetimes within the CMSSM (m1/2, m0) Plane. The solid (light blue)

lines are contours of τ(p → e/µ+π0) as dependent on the locally determined

light threshold corrections. Benchmark points with the corresponding value of

tan β and sign of µ [32] are marked with stars where applicable. This data is

overlaid on the charts of [45], which map the suitability of the contending para-

meter space according to satisfactory amounts of cold dark matter (deep blue),

presence of a charged LSP (orange), overlarge b→ sγ corrections (green), con-

sistency with gµ − 2 (pink), and LEP lower limits on the lightest Higgs (red

dash-dot) and χ± (thickly dashed black) masses.
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There are however modes for bulk pairwise χ− χ annihilations in the comparatively

lower (m1/2, m0) regions, and also the more exotic variants of χ − ˜̀ co-annihilation

in the large m1/2 ‘tail’, resonant ‘funnel’ direct-channel annihilations via the heavier

A,H Higgs at large (m1/2, m0), and the ‘focus-point’ 15 modes at large m0. For each

process only a very slender margin of the (m1/2, m0) plane (marked in deep blue) can

retain a satisfactory neutralino density to constitute the CDM without over-closing

the universe. Prominent at lower values of m0, and sloping upwardly along the co-

annihilation tail, the solidly shaded (deep orange) patch is excluded by prediction of

an electrically charged LSP 16.

Another most important marker is the predicted mass of the (lightest) Higgs h.

It should not go unnoticed that while the SM allows the Higgs a great variation, SUSY

is quite specific and generically states mh < MZ so long as the symmetry remains

intact. The heaviness of the top quark suggests however that radiative corrections

may be quite large, and broken SUSY can permit values less than about 135 GeV.

Observation within this range would be a great boon for the theory. Indeed, by taking

the recent upward shift of the mt world average to 177.9 ± 4.4 GeV as courtesy of

DØ, the central fit for mh narrowly out-paces the current experimental lower limit

of 114.4 GeV at 95% C.L., landing right on top of the still disputed 115+1.3
−0.9 GeV

signal from LEP’s final year (2000) of operation. Lower accelerator bounds on mh

and (mχ± ≥ 103.5 GeV) are depicted in turn by the (red) dot-dashed and heavy

vertical (black) dashed lines at small m1/2
17.

15This already less pleasing scenario is cast into a worse light by a recent upsurge
of the central top quark mass.

16As partner to the heaviest lepton, the stau τ̃ is the lightest slepton.
17These curves are placed as calculated using the FeynHiggs code [48, 49], and

some uncertainty exists particularly for the mh contour. For discussion of the imple-
mentations of these constraints with and without ISASUGRA, see [44, 50].
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The curving (pink) strips shown for µ > 0 are inclusive limits from the also con-

troversial BNL E821 measurement of the ‘anomalous-anomalous’ magnetic moment

of the muon, i.e. surplus contributions to (gµ − 2) as induced by supersymmetric

graphs. Drawn at the 2−σ level, they impose a principally upper-bound on the SUSY

spectrum such that it is sufficiently light to supplement the Standard Model e+e− an-

nihilation contribution (neglecting data from τ decays). The irregular (green) shaded

swathes, which take prominence for µ < 0 at small m1/2, are excluded by b → sγ.

By contrast, they essentially serve as lower limits on SUSY, such that it not disrupt

the already successful SM decay predictions. Benchmark [44] locations are marked

by stars where appropriate. Finally, we mention as a general warning that regions

too far toward the North-Westerly corner of such planes can further suffer difficulty

with electroweak symmetry breaking, while the extreme South-West is susceptible to

tachyonic spectra.

Over this rich background we have laid topographical contours (light blue) for the

predicted variation of the τ(p → e+π0) proton lifetime within the SUSY parameter

space. The program ISASUGRA [51], version 7.71, was used to produce the sparticle

spectra on a densely packed 18 sample grid for each plot, assumingmt = 177.9 GeV 19.

To evaluate (2.22), mw̃ (mH) (mq̃) (m˜̀) were interpreted respectively as the geometric

mean of the chargino and neutralino (H,A,H±) (ũ, d̃, s̃, c̃) (ẽ, µ̃) masses. The gener-

ally lighter mixings of τ̃ , b̃ and t̃ were each considered separately. We note from Figs. 3

that the ‘bulk’ regions of the astrophysically preferred parameter space at relatively

small values of (m1/2, m0) generally correspond to τ(p→ e+π0) ∼ 1×1036 y. However,

this territory is often disfavored by either the bounds on mh and/or b → sγ decay.

18The horizontal spacing between points sampled was comparable to the thickness
of these lines.

19Heavy singlet neutrinos were not used in the renormalization-group equations.
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There are techniques though by which we can systematically rank the goodness of

each proposed position, taking a weighted simultaneous consideration of all relevant

constraints.

We follow here the efforts of [52], wherein the dimensionality of the the (m1/2, m0)

plane is effectively reduced by considering only points along the preferred WMAP

‘strips’. Each sampled CMSSM location is then evaluated under a χ2 fit

χ2 ≡
N
∑

n=1

(

Rexp
n −Rtheo

n

σn

)2

, (2.24)

where σn represents the combined error from experiment, parametric uncertainties,

and higher order corrections for the nth observable. Here N = 4, taking into account

the constraints from MW , sin
2 θeff , (g − 2)µ and BR(b → sγ), and also rejecting all

points which violate Higgs or chargino mass limits. This analysis also extends the

previous considerations by allowing non-zero values of the tri-linear coupling A0. We

have translated their results into the language of corrections at the light threshold

and thus predictions for the proton lifetime as displayed in Figs. 4, following the same

procedures discussed previously.

Of the available scenarios studied, we note that the best general fit is obtained

in the neighborhood of

A0 = −m1/2 , tan β = 10

m1/2 ∼ 290 , m0 ∼ 60
(2.25)

with µ > 0, yielding a pleasing net χ2 deviation of around .292 . The resulting

predictions for this case, neglecting δheavy, are:

δlight ∼ −.000170 , τp ∼ 1.38 × 1036y (2.26)

This corresponds most closely to the benchmark scenarios (B′, C ′). With δlight com-
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Fig. 4. A ‘χ2’ Best Fit for the Proton Lifetime. Following [52], minimization of the

projected error in MW , sin
θ
e ff, (g − 2)µ and BR(b → sγ) is translated into a

preferred value of the light threshold correction.

prising only about 6% of the two-loop effect, it is clear the bulk of the heavy lifting

for satisfaction of the αs(MZ) matching must be borne by other means. How this

task may be distributed between the GUT thresholds and a flipped-type M32 scale

reduction is the topic of consideration for the next section.

2. The Grand Unified Threshold

As was the case for δlight, we have also here an explicit representation for the correc-

tions induced in the picture of gauge coupling renormalization at the crossing of the

heavy GUT mass thresholds in flipped SU(5) [39, 40, 53, 54, 55, 56, 57].

δheavy =
αem

20π

[

−6 ln
M32

MH3

− 6 ln
M32

MH̄3

+ 4 ln
M32

MV

]

' αem

20π

[

−6 ln
r4/3g

2/3
5

λ4λ5

]

(2.27)
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However, we are not so fortunate as before in terms of our ability to map the available

landscape. Whereas the intersection of a highly confining symmetry with an abun-

dance of experimental data gave us some sense of orientation at the light SUSY scale,

the Yukawa couplings λ4,5 are here for example largely unconstrained. Indeed, the

absence of H3 to H̄3 mixing which was essential for protection from fast dimension five

proton decay also removes any strong phenomenological constriction from the heavy

triplet Higgs supermultiplet masses MH3 = λ4|V | and MH̄3
= λ5|V |, where |V | is the

VEV taken by the 10 and 10 of GUT Higgs. Because of this, flipped SU(5) readily

supports δheavy < 0 [32] since there is no injunction against MH3,H̄3
< MV = g5|V | 20.

Curiously, standard SU(5) which must rely exclusively on this mechanism to salvage

the lowering of αs cannot afford such light (H3, H̄3), while Flipped SU(5) holds also

in abundant reserve the additional proprietary device of a reduced intermediary scale.

We explore in Fig. 5 what the role of the heavy thresholds may be within each

of the benchmark [44] models. Without some stronger guiding principles however,

the range −0.0016 < δheavy < 0.0005 [32] which may be considered plausible is un-

fortunately quite large. Each labeled strip slides to the left and right based on its

prediction for δlight, as centered with the darker narrow (red/blue) bands which re-

flect the comparatively smaller error in sin2 θW from (2.20). Both effects are however

significantly overshadowed by uncertainty in the heavy threshold, as demonstrated

by the extensive reach of the more lightly shaded (orange/blue) bars. This less well

described yet potentially more influential effect threatens to undermine any notion

of finely resolved predictability for the τ(p → e+π0) proton lifetime established to

this point. For positive values of δheavy the Mmax
32 /M32 ratio is exaggerated, and most

20MV is the common GUT gauge X, Y and gaugino mass. The parameter r ≡
max{g5, λ4, λ5} is the largest of the SU(5) and two Yukawa couplings, e.g. taken here
as r = g5.
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Fig. 5. Threshold Effects at the Benchmark Points. The overall shifted central predic-

tion for τ(p → e+π0) in each benchmark scenario is determined by the light

thresholds. The darkened narrow inner bands (red, blue) represent the exper-

imental uncertainty in sin2 θW , while the lighter outer (orange, blue) strips

correspond to plausible variation in the heavy threshold.

benchmark points become capable of numbers in the low 1036 years. However, by the

larger freedom allocated to δheavy < 0, we cannot rule out τ(p→ e/µ+π0) approaching

1037 y in any of these models.

We end this section by looking in closer detail at the relationship between M32

and δheavy implied by (2.17,2.21). Selecting now the best light supersymmetric fit

from (2.26) and enforcing an experimentally viable (2.20) range for αs(MZ), we are

provided a strict functional expression isolated in these two variables. This propor-

tional rescaling

M32

Mmax
32

→ M32

Mmax
32

∣

∣

∣

∣

δh=0

× e−πδh/2αem (2.28)

is plotted in the (green) curves of Fig. 6. A strong preference for non-maximal M32 is

suggested by this figure when restricted to the plausible variations of δheavy mentioned
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Fig. 6. Heavy Threshold Effects vs. M32/M
max
32 . The blue curves demonstrate the al-

lowed balance between these factors in flipped SU(5) (± the uncertainty in

sin2 θW ). The green horizontal lines mark the intersection of parameter space

with the preferred range of δheavy, while the red vertical line represents the lower

experimental bound on proton decay in the p→ e+π0 mode.

prior. The cost of our ignorance remains high though, in terms of the expansive real

estate still allowed. Indeed it seems a shame to have come so far only to find our fuel

expended on the very doorstep of the Planck regime. Perhaps the answer then is not

to look behind, but instead to inquire whether the high scale may descend to meet us

halfway, and in so bridging that great divide deliver some extra grain of information

which could help to constrain our GUT model.

3. Super Unification

It is a recurring theme of our analysis to this point that M32 should be shifted down-

ward from its maximal value in conventional SU(5), further separating this ‘GUT’

group from the fundamental Planck regime MPl = 2× 1019 GeV. However, this is not

the whole story, as we are free to consider that (α1, α5) further continue their own
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running upward toward a meeting at some true grand unified scale M51.

1

α1
− 1

α51
=

b1
2π

ln
M51

M32
(2.29)

1

α5
− 1

α51
=

b5
2π

ln
M51

M32
(2.30)

This process was depicted previously in Fig. 1, where we make special note of the

discontinuity in the U(1) progression atM32 induced by a remixing with the additional

Abelian factor delivered from broken SU(5). A consistent normalization of the known

charges within the ‘GUT’ and SM representations allows us to relate the hypercharge

α′
1 ≡ αY (M32) and flipped SU(5) coupling α1(M32) across this boundary.

25

α′
1

=
1

α5
+

24

α1
(2.31)

The continuance to M51 may indeed transport us well beyond Mmax
32 and onward

closer to MPl, although the intervening three-plus orders of magnitude remain yet a

mighty span. It is of great interest then that string theory generically predicts any

lower energy gauge structures emerge intact from a ‘super-unification’ scale Msu that

is significantly depressed from the Planck mass. More fascinating yet is the manner

in which this reduction is intertwined (in a heterotic context) with the value of the

gauge coupling at the super unification:

Msu = ξ
√
αsu , (2.32)

where ξ . MPl is a calculable model-dependent parameter [58]. By this assent of

the string to make some stretch in our direction, we are tempted to explore the

consequence of imposing a full meeting under the identifications:

α51 ⇔ αsu , M51 ⇔Msu (2.33)
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It is reasonable first to make a proper counting of parameters unknown either by

direct measurement, experimental fit or prediction within a model. The tally of four

gauge coupling constants (α′
1, α1, α5, αsu), two mass scales (M32,Msu) and the heavy

threshold δheavy leaves us with seven undetermined variables. Counting our available

constraints to be the string’s mass-coupling relation (2.32), the discontinuity equation

at M32 (2.31), the two upper renormalization relations in (2.29,2.30), and appropriate

combinations of the three lower RGEs (2.12,2.13,2.14), we arrive also at a total of

seven. This offers some strong encouragement for the hope of fixing unknowns by

such a mechanism.

Our recommended procedure begins with the careful isolation of dependence on

δheavy, as enters via the effective corrections to sin2 θW . We take an inversion of (2.28)

for the first of our three choices from the low energy running, evaluated numerically

with the aid of (2.17,2.15), and using still the best fit for δlight (2.26).

δheavy =
2αem

π
ln

(

1.39 × 1016GeV

M32

)

(2.34)

For the second, we take the linear combination of (2.12,2.13) which is independent of

sin2 θW , eliminating α′
1 via (2.31). Finally α5 is traded out by use of (2.14), which is

also satisfactory by itself for the third selection.

α1 =

[

5

8αem
− 2

3αs
− (25/24 bY + 5/8 b2 − 2/3 b3)

2π
ln

(

M32

MZ

)]−1

(2.35)

α5 =

[

1

αs
− b3

2π
ln

(

M32

MZ

)]−1

(2.36)

Substituting into (2.29,2.30), we can eliminate both of (α1, α5). Using also (2.32)

to cut αsu, we are left with two expressions in only the variables (M32,Msu). The

equations are transcendental but may be solved numerically, after which the remaining

five unknowns are each only one step removed.
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Although this process will always yield some result, we have no guarantee that

the output will be real and free from pathologies such as inversion of the fundamen-

tal scales. Nevertheless, we may best proceed forward by means of a specific trial.

Perhaps näıvely, we will initially choose the missing constants above M32 from the

context of the heterotic string-derived flipped SU(5) model in [58], while maintaining

the existing pure GUT numbers below this scale.

b1 = 43/2 , b5 = −1 , ξ =
√

4π 1.76 × 1018 GeV (2.37)

Indeed, analysis of these numbers quickly reveals that our reach has exceeded our

grasp.

The root of the problem here can be traced to the large size of the constant b1,

which causes α1 to climb much more rapidly than did the hypercharge. Because of

this, M51 actually remains always less thanMmax
32 , never approaching the high energies

which were sought. Recalling that by definition M51 converges exactly to Mmax
32 in

the case of triple unification (α1 = α5), we should though be able to parametrically

distinguish in which (if any) cases it splits instead to a higher mass as M32 is lowered.

This is indeed accomplished by differentiation of the following expression obtained

from (2.29,2.30) and supplemented with (2.35,2.36).

M51 = M32 × exp

{

2π

b1 − b5

(

1

α1
− 1

α5

)}

(2.38)

The stipulation that M51 vary conversely to M32 is then enforced in terms of the five

beta function coefficients.

dM52

dM32
< 0 =⇒ 25/24 bY + 5/8 b2 − 5/3 b3

b1 − b5
> 1 (2.39)

Evaluating the CMSSM numerically for the conventional scenario of b1 positive (as-
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cending) and b5 negative, this reduces to:

(b1 − b5) < 12.5 (2.40)

The condition is clearly violated by the constants from (2.37). However even if met,

this extremal transition is still not alone sufficient to enact the desired super unifica-

tion.

Once (2.40) is satisfied, M51 will indeed climb upward, but we are restricted by

how far it may be pushed in terms of how low we are willing to letM32 descend. Proton

decay limits are not terribly strong here as has been mentioned, allowing M32/M
max
32 ∼

.1 before difficulties are encountered. However, this pushes the heavy threshold to

∼ +.008, far exceeding the region formerly considered most plausible. Taking instead

that upper bound of δheavy . .0005 is much more confining, as suggested by Fig. (6),

corresponding to M32/M
max
32 above approximately one-half. We shall be a bit more

generous in what follows, allowing this ratio to drop to around one-quarter. Also, the

ostensible super-unified coupling

α51 =

[

1

(1 − b5/b1)α5

+
1

(1 − b1/b5)α1

]−1

, (2.41)

is found to be quite stable in against such variation and may be safely set near the

standard value 1/24. We can then establish some heuristic limits on when M51 from

(2.38) is reasonably capable of an extension to Msu as defined in (2.32).

(b1 − b5) .
17

6.6 − ln (MPl/ξ)
(2.42)

Taking ξ from (2.37) provides a much tighter constraint than (2.40), demanding

the beta function difference drop almost to 3. By way of reference for b1 = 2, the

heavy threshold is here +.004, and the proton lifetime (p→ e+π0) is a very youngish

5.4× 1034 y. We note this choice might more easily pass the casual observer unnoted
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than the conspicuously large suggestion of 43/2. Nevertheless, it appears by general

arguments that such a value is quite unattainable [59, 60, 61], simply because negative

beta function contributions as would be required to help cancel the large number of

postively contributing loops arise only from non-Abelian self-interactions, of which

the group U(1) has, by definition, none.

It is certainly possible however to get a little aid from the parameter ξ, although

the difference limit moves for example only marginally above five when ξ is cut by

a full order of ten. A potential remixing of couplings at Msu, and additional loop

and threshold effects may all play at least some small role as the mechanism for

shifting these parameters toward a more favorable range. This is in addition to the

need for more consistent application of a single model across the M32 transition, and

without any general survey of what competing string models might predict. It is

possible though that we have been too cautious in anticipation of some movement

by the heavy scale. The presence of some (slightly) enlarged extra dimension [62]

may indeed be capable of bringing the Super-Unification well down into the 10(15−16)

GeV range, preserving the heart of this picture, even as MSU descends below the

traditional value of Mmax
32 . As with many good things however, we suggest that this

mechanism is best when applied in some moderation.

It has been natural in the context of flipped SU(5) to expect that the split

couplings continue upward to a true unification. It is in fact only in this way that

we can hope to recover the beneficial GUT properties such as a correlated charge

quantization and successful prediction of mb/mτ
21. Such memories of a simpler past

are naturally inherited if SU(5)×U(1) is descendant from a structure such as SO(10)

21Although divergence from this relation for the lighter generations is sometimes
mentioned as a failure of Grand Unification, we take the view that competing O(MeV)
corrections must in fact be expected to wash out masses in that same order.
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22. That the string is willing to provide suitable representations for this purpose in

vicinity of the necessarily escalated GUT scale is quite a strong enticement for the

union of these pictures. Despite incompatibility of the example model, we have shown

that a modest softening of b1 relative to bY is sufficient to bring this super unification

into full fruition. Furthermore, there are generic and novel predictions which must

hold if this scenario is to play out. Namely, δheavy is expected to work in the same

direction as δ2loop, which extends the deficit from which the flipped scale reduction

must rescue αs(MZ) and leads in turn to much more rapid proton decay. While

recognizing the dangers of building speculation too high upon itself, it is fascinating

to consider that this analysis might be turned around to in fact constrain the selection

of a string derived model by merit of the beta function (b1, b5) and scale factor ξ

predictions which it makes.

4. String Theory Considerations

It appears that the superstring framework is ideally suited to match our expectations

from ‘low-energy’ physics, bearing with simplicity, consistency and grace the origins

of covariant locally gauged chiral GUT matter multiplets in replicated families. The

appeal of this proposal is amplified moreover by the unified intrinsic inclusion of

both space-time supersymmetry and a gravitational sector (local SUSY). Although

the focus here has been to allow the more tangible GUT content to steer our choices

among the myriad possibilities allowed in string model building, it is only fair in turn

to allow string theory some suggestion of what GUT constructions it may prefer. For

the heterotic string, it is not possible to find adjoint group representations at the first

22It is of great interest that the 16 spinor of S0(10) breaks to the quantum numbers
of only the flipped variety SU(5), while the (5, 5̄) of SM Higgs with conventional
charges readily emerge from a fundamental 10.
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level Kac-Moody algebra. This has historically been considered an additional selling

point for flipped SU(5), which characteristically employs GUT Higgs representations

(10, 1̄0) similar to those used for matter content. Moreover, it is common for the

SU(5)×U(1)x to descend from an enclosing factor of SO(10), under which the spinor

16 representation decomposes neatly as a full matter generation (10 ⊕ 5̄ ⊕ 1), with

quantum numbers in the 5̄ appropriate to a flipped-type assignation. Conversely, the

EW Higgs (5, 5̄) carry the charges of standard SU(5), and naturally break from a

fundamental 10. In the newer interesecting D-brane approach, it has been fascinating

to observe a parallel situation. Since the five-plets present in this scenario arise bi-

fundamentally from the intersection of a single D-brane with a second set of five

branes, and since there are two distinct pairings (plus conjugates) related to mixed

application of the orientifold mirror, the net U(1) charges of such a state may be

composed either by the sum or by the difference of charges from the two stacks.

Again, this distinction which necessarily arises from the construction is a perfect

match to the two variety of five-plets in flipped SU(5).

The other side of this coin, is that if we are going to imagine that our preferred

GUT group descends out of a string theoretical construction near the Planck scale,

then it is also incumbent upon us to inquire what string theory would directly add

to or remove from the predictions of a GUT not so derived. We defer here to the

analysis of [63], which considers proton lifetime within a pure intersecting D-brane

context, and make the necessary conversions into a flipped-SU(5) language. The

most interesting result, is that the multiplicative prefactor which emerges after many

laborious calculations is simply of order unity. In other words, it appears safe to con-

sider at least this question of proton lifetime in the basic GUT scenario. However, the

same work makes another suggestion which may have strange relevance to the flipped

picture. It seems that D-brane constructions may systematically block dimension-
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six decay via the 5̄ operator channel. Recalling that this is the only channel which

flipped SU(5) preserves, the joke may well be on us. If future searches for proton

decay continue to return null results well past the 1036 year range, this conspiracy

between the string and flipped-GUT may need to be revisited as a possible culprit.

D. Conclusions

Proton decay has been an essential piece long missing from the Grand Unified The-

oretical puzzle. As with any puzzle, the contours and texture of the pieces already

in place give us much information regarding those still lacking. And conversely, the

shape of the piece in hand also tells us much about the location in which it may be

made to reside.

It has been pointed out that the flipped variety SU(5) GUT avoids catastroph-

ically rapid dimension five proton decay while successfully matching the low energy

strong coupling, naturally accommodates the now essential right handed neutrino,

provides intrinsically for doublet-triplet Higgs splitting, and may more effortlessly

conform to a string theoretical embedding. We have seen the essential connectedness

of supersymmetry to Grand Unification, which by a single step toward the Planck

scale dramatically improves actual convergence of the SM couplings, and also sal-

vages dimension six proton decay from current experimental limits. Moreover, the

bounty of phenomenological constraint on the CMSSM has been sufficient to isolate

a strongly preferred region of parameter space whose influences are transmitted to

our GUT construction in guise of corrections at the the light SUSY mass thresholds.

The novel flipped splitting of fundamental scales allows for still safe, yet more immi-

nently observable dimension six decay while also pointing toward the prospect of a

true super unification delayed to include gravity on its own terms and territory at the
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reduced string scale. While not so favored by a wealth of direct corollary evidence,

we have also established the significant role which must be played by the heavy GUT

scale thresholds (and potentially string-derived constants of the running) if this final

margin is to be traversed.

We look now with anticipation toward the next generation of massive water-

Čerenkov detectors, knowing that each piece of the puzzle newly added presents its

own fresh perimeter for the next matching, and hastens the day on which we shall

take in the entire vista as a whole with unobstructed sight.
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CHAPTER III

HETEROTIC STRING MODEL BUILDING

A. Minimal Superstring Standard Models (MSSMs)

The approach we favor here for model production uses free fermions for the internal

degrees of freedom of a heterotic string theory,[64, 65] as in the “FNY” model of ref.

[66, 67] with its SU(3)C×SU(2)L×U(1)Y ×∏i U(1)i observable gauge group. Preser-

vation of supersymmetry mandates the acquisition of non-zero vacuum expectation

values (VEVs) to cancel the Fayet-Iliopoulos (FI) D-term, which arises in conjunction

with the anomalous U(1) factor endemic to many related constructions, while keeping

all other D- and F -terms zero as well. In this context, the assignment of a satisfac-

tory ground state is a delicate and confining business, but some freedom does remain

to tailor phenomenology in the emerging low energy effective field theory. Success

has been had here with VEVs decoupling all Standard Model charged fields outside

the MSSM [68, 69, 15, 16], and mechanisms of generational mass suppression have

arisen from powers of 〈φ〉
MP

with non-renormalizable terms and from coupling to Higgs

fields with differing contributions to the massless physical combination. Promising, if

imperfect, particle properties have been realized and discussed, but indications exist

from varied directions [16, 17, 70, 71, 72, 73, 74] that attempts restricted to a non-

Abelian singlet vacuum are unsatisfactory, and that perhaps nature’s craft avails a

larger set of tools. This paper will then focus generally on the technology of assigning

VEVs to non-Abelian fields, and in particular on the geometrical framework that is

introduced by the presence of VEV components within a group space. The geometri-

cal point of view facilitates manipulations which emerge for non-Abelian VEVs, such

as treating superpotential contractions with multiple pairings, and examining the new
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possibility of self-cancellation between elements of a single term. When expressed in

this language, the process of describing valid solutions, or compatibilities between

the F and D conditions, can become more accessible and intuitive, and will hopefully

aid in closing the gap between string model building and low energy experimental

evidence.

The sequence taken will be first to review the constraints which supersymmetry

imposes on our VEV choices, in particular for the non-Abelian case. Next, the dis-

cussion will be made concrete by turning to the case of SU(2), and following that,

SO(2n). These choices are made because of their application to the string-derived

FNY MSSM, and flipped SU(5) GUT [75, 76], via SO(6), respectively, but other

benefits exist as well. SU(2) is well known from the theory of spin-1
2

systems, and as

a rank 1 group with a number of generators equal to its fundamental dimension (3),

it represents the simplest specific case on which to initiate discussion. SO(2n), on

the other hand, will generally represent one of the four main Lie group classifications,

and introduces new complications by way of higher rank groups and an adjoint space

of dimension greater than the fundamental. Furthermore, although the fields under

consideration are all space-time scalars, superpotential terms can inherit an induced

symmetry property from the analytic rotationally invariant contraction form of the

group under study. SU(2) will have a “fermionic” nature, with an antisymmetric con-

traction, while that of SO(2n) will be symmetric, or “bosonic”. Interspersed in the

document body will be special topics, such as self-cancellation, and specific examples

of superpotential terms. The final section will be concluding remarks.
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B. D- and F -Flatness Constraints

The well known requirements for preservation of space-time supersymmetry, as ex-

pressed in the so-called F andD-terms have been reviewed in [68, 69, 15, 16, 17]. They

will again be summarized here,1, with a new emphasis on geometric interpretation of

the non-Abelian VEVs.

Space-time supersymmetry is broken in a model when the expectation value of

the scalar potential,

V (ϕ) = 1
2

∑

α

g2
α(

dim (Gα)
∑

a=1

Dα
aD

α
a ) +

∑

i

|Fϕi
|2 , (3.1)

becomes non-zero. The D-term contributions in (3.1) have the form,

Dα
a ≡

∑

m

ϕ†
mT

α
a ϕm , (3.2)

with T α
a a matrix generator of the gauge group Gα for the representation ϕm. The

F -term contributions are,

FΦm ≡ ∂W

∂Φm

. (3.3)

The ϕm are (space-time) scalar superpartners of the chiral spin-1
2

fermions ψm, which

together form a superfield Φm. Since all of the D and F contributions to (3.1) are

positive semidefinite, each must have a zero expectation value for supersymmetry to

remain unbroken.

For an Abelian gauge group, the D-term (3.2) simplifies to

Di ≡
∑

m

Q(i)
m |ϕm|2 (3.4)

1Portions of this section, most notably regarding flatness constraints and the group
SU(2), have been previously reported in ref. [17].
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where Q
(i)
m is the U(1)i charge of ϕm. When an Abelian symmetry is anomalous, that

is, the trace of its charge over the massless fields is non-zero,

TrQ(A) 6= 0 , (3.5)

the associated D-term acquires a Fayet-Iliopoulos (FI) term, ε ≡ g2
sM2

P

192π2 TrQ(A),

D(A) ≡
∑

m

Q(A)
m |ϕm|2 + ε . (3.6)

gs is the string coupling and MP is the reduced Planck mass, MP ≡ MP lanck/
√

8π ≈

2.4 × 1018 GeV. It is always possible to place the total anomaly into a single U(1).

The FI term breaks supersymmetry near the string scale,

V ∼ g2
sε

2 , (3.7)

unless it can be canceled by a set of scalar VEVs, {〈ϕm′〉}, carrying anomalous charges

Q
(A)
m′ ,

〈D(A)〉 =
∑

m′

Q
(A)
m′ |〈ϕm′〉|2 + ε = 0 . (3.8)

To maintain supersymmetry, a set of anomaly-canceling VEVs must simultaneously

be D-flat for all additional Abelian and the non-Abelian gauge groups,

〈Di,α〉 = 0 . (3.9)

A consistent solution to all (3.9) constraints specifies the overall VEV “FI-scale”, 〈α〉,

of the model. A typical FNY value is 〈α〉 ≈ 7 × 1016 GeV.
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C. The group SU(2)

1. The SU(2)/SO(3) Connection

For the case of SU(2), T
SU(2)
a will take on the values of the three Pauli matrices,

σx =







0 1

1 0






, σy =







0 −i

i 0






, σz =







1 0

0 −1






. (3.10)

Each component of the vector ~D in this internal space will be the total, summed over

all fields of the gauge group, “spin expectation value” in the given direction. Vanishing

of the 〈 ~D · ~D〉 contribution to 〈V 〉 demands that SU(2) VEVs be chosen such that the

total x̂, ŷ, and ẑ expectation values are individually zero. The normalization length,

S†S, of a “spinor” S will generally be restricted to integer units by Abelian D-flatness

constraints from the Cartan sub-algebra and any extra U(1) charges carried by the

doublet (cf. Eq. 3.4 with S†S playing the role of |ϕ|2). Each spinor then has a length

and direction associated with it and D-flatness requires the sum, placed tip-to-tail, to

be zero. This reflects the generic non-Abelian D-flatness requirement that the norms

of non-Abelian field VEVs are in a one-to-one association with a ratio of powers of a

corresponding non-Abelian gauge invariant [77].

It will be useful to have an explicit (normalized to 1) representation for S(θ, φ).

This may be readily obtained by use of the rotation matrix,

R(~θ) ≡ e−i
~θ·~σ
2 = cos(

θ

2
) − iθ̂ · ~σ sin(

θ

2
) , (3.11)

to turn







1

0






≡ | + ẑ〉 through an angle θ about the axis θ̂ = −x̂ sinφ + ŷ cosφ.



54

The result,







cos θ
2

sin θ
2
eiφ






, is only determined up to a phase and the choice

S(θ, φ) ≡







cos θ
2
e−i φ

2

sin θ
2
e+i φ

2






(3.12)

will prove more convenient in what follows. Within the range of physical angles,

θ = 0 → π and φ = 0 → 2π, each spinor configuration is unique (excepting φ phase

freedom for θ = 0, π) and carries a one-to-one geometrical correspondence. Up to a

complex coefficient, the most general possible doublet is represented.

A non-trivial superpotential W additionally imposes numerous constraints on

allowed sets of anomaly-canceling VEVs, through the F -terms in (3.1). F -flatness

(and thereby supersymmetry) can be broken through an nth-order W term containing

Φm when all of the additional fields in the term acquire VEVs,

〈FΦm〉 ∼ 〈 ∂W
∂Φm

〉 ∼ λn〈ϕ〉2(
〈ϕ〉
Mstr

)n−3 , (3.13)

where ϕ denotes a generic scalar VEV. If Φm also carries a VEV, then supersymmetry

can be broken simply by 〈W 〉 6= 0. For both practical and philosophical reasons,

the (Abelian) D-condition is usually enforced first. Unless this constraint holds,

supersymmetry will be broken near MP . On the other hand, the F -condition is not

all-or-nothing, since the order of a given dangerous term fixes the scale at which

SUSY fails2. F -flatness must be retained up to an order in the superpotential that is

consistent with observable sector supersymmetry being maintained down to near the

electroweak (EW) scale. However, it may in fact be desirable to allow such a term to

escape at some elevated order, since it is known that supersymmetry does not survive

2The lower the order of an F -breaking term, the closer the supersymmetry breaking
scale is to the string scale.
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down to ‘everyday’ energies. Depending on the string coupling strength, F -flatness

cannot be broken by terms below eighteenth to twentieth order3.

2. Non-Abelian Flat Directions and Self-Cancellation

In [69] we classified MSSM producing singlet field flat directions of the FNY model

and in [15] we studied the phenomenological features of these singlet directions. Our

past investigations suggested that for several phenomenological reasons, including

production of viable three generation quark and lepton mass matrices and Higgs h-h̄

mixing, non-Abelian fields must also acquire FI-scale VEVs.

In our prior investigations we generally demanded “stringent” flatness. That is,

we forced each superpotential term to satisfy F -flatness by assigning no VEV to at

least two of the constituent fields. While the absence of any non-zero terms from

within 〈FΦm〉 and 〈W 〉 is clearly sufficient to guarantee F -flatness along a given D-

flat direction, such stringent demands are not necessary. Total absence of these terms

can be relaxed, so long as they appear in collections which cancel among themselves

in each 〈FΦm〉 and in 〈W 〉. It is desirable to examine the mechanisms of such cancel-

lations as they can allow additional flexibility for the tailoring of phenomenologically

viable particle properties while leaving SUSY inviolate.4 It should be noted that suc-

cess along these lines may be short-lived, with flatness retained in a given order only

to be lost at one slightly higher.

Since Abelian D-flatness constraints limit only VEV magnitudes, we are left with

the gauge freedom of each group (phase freedom, in particular, is ubiquitous) with

which to attempt a cancellation between terms (whilst retaining consistency with

3As coupling strength increases, so does the required order of flatness.
4Research along this line for the FNY MSSM is currently underway.
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non-Abelian D-flatness). However, it can often be the case that only a single term

from W becomes an offender in a given 〈FΦm〉 (cf. Table 1B of [17]). If a contraction

of non-Abelian fields (bearing multiple field components) is present it may be possible

to effect a self-cancellation that is still, in some sense, “stringently” flat.

Near the string scale the complete FNY gauge group is

[SU(3)C × SU(2)L × U(1)C × U(1)L × U(1)A ×
5′
∏

i=1′

U(1)i × U(1)4]obs ×

[SU(3)H × SU(2)H × SU(2)H′ × U(1)H × U(1)7 × U(1)9]hid . (3.14)

The FNY non-Abelian hidden sector fields are triplets of SU(3)H or doublets of

SU(2)H or SU(2)H′ . Self-cancellation of F -terms, that would otherwise break ob-

servable sector supersymmetry far above the electro-weak scale, might be possible

for flat directions containing such doublet or triplet VEVs. Since intermediate scale

SU(3)H triplet/anti-triplet condensates are more likely to produce viable observable

sector electro-weak scale supersymmetry breaking than are their SU(2)H(′) counter-

parts, we focus herein on non-Abelian directions containing doublet, but not triplet,

FI-scale VEVs.

Whenever “spinors” of SU(2) appear in W , they are not of the form S†S, but

rather are in the antisymmetric contraction

S1 · S2 ≡ ST
1 iσ2 S2 = ST

1







0 1

−1 0






S2 . (3.15)

This form, which avoids complex conjugation and thus satisfies the requirement of an-

alyticity, is also rotationally (gauge) invariant as can be verified using {σi, σj} = 2δij ,

[σ2, σ2] = 0, and Eqs. (3.10, 3.11) :

σ2R(~θ) = R∗(~θ)σ2 (3.16)
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S ′
1 · S ′

2 = (RS1)
T (iσ2)(RS2) = ST

1 (iσ2)(R
†R)S2 = S1 · S2 . (3.17)

From Eq. (3.12), the general form of such a contraction may be written explicitly as

S(θ, φ) · S(Θ,Φ) = − sin(
θ − Θ

2
) cos(

φ− Φ

2
) − i sin(

θ + Θ

2
) sin(

φ− Φ

2
) . (3.18)

The magnitude of this term must be a purely geometrical quantity and can be calcu-

lated as

|S(n̂) · S(N̂)| =

√

1 − n̂ · N̂
2

= sin(
δ

2
) , (3.19)

where δ(0 → π) is the angle between n̂ and N̂ . The absence of a similar concise

form for the phase is not a failing of rotational invariance, but merely an artifact of

the freedom we had in choosing (3.12). Self-cancellation of this term is independent

of the spinors’ lengths and demands only that their spatial orientations be parallel5.

The same conclusion is reached by noting that anti-symmetrizing the equivalent (or

proportional) spinors yields a null value. VEVs satisfying this condition are clearly

not D-consistent unless other non-Abelian VEVed fields also exist such that the total

“spin” vector sum remains zero1. To examine generic cases of cancellation between

multiple terms, the full form of (3.18) is needed.

As an important special case, consider the example of a superpotential term

φ1 . . . φnS1S2S3S4
2 with φn Abelian. This is shorthand for an expansion in the various

pairings of non-Abelian fields,

W ∝ φ1 . . . φn{(S1 · S2)(S3 · S4) + (S2 · S3)(S1 · S4) + (S3 · S1)(S2 · S4)} , (3.20)

5The contraction of a field with itself vanishes trivially.
1In the notation of [15], taking a single sign for each of the sk′ is a special case of

non-Abelian self-cancellation, as is
∑p

k=1 nksk = 0 a special case of the D-constraint.
2Here and in the following discussion we consider the doublets of a single symmetry

group.
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Broadly, we notice that:

• Whenever each term holds the same field set, the spinors may be treated as

normalized to one, bringing any larger magnitudes out front as overall factors.

Furthermore, since ST appears but never S†, the same can be done with any

phase selections.

• Since the contractions are antisymmetric, sensible interpretation of terms with

multiple factors demands the specification of an ordering.

The appropriate ordering, or equivalently the choice of relative signs, for (3.20) is

such to ensure total anti-symmetrization. When (3.20) is explicitly evaluated using

the previously established formalism it is seen to vanish identically for all field values.

The calculation is simplified without loss of generality by taking θ1 = φ1 = φ2 = 0.

We emphasize the distinction between this identical exclusion from the superpotential

and cancellations which exist only at the vacuum expectation level. W -terms with 6

non-Abelian fields are formed with factors of (3.20) and also vanish, as do all higher

order terms.

Even safe sectors of W (in particular with 〈Φm〉 = 0) may yield dangerous

〈FΦm〉 ≡ 〈 ∂W
∂Φm

〉 contributions. The individual F -terms may be separated into two

classes based on whether or not Φm is Abelian. For the case of Φm non-Abelian,

〈FΦm〉 is itself a doublet. As a note, terms like 〈FS4〉 ≡ 〈 ∂W
∂S4

〉 which would have arisen

out of (3.20) are cyclically ordered and also vanish identically.

D. Minimal Standard Heterotic-String Model Non-Abelian Flat Directions

Our initial systematic search for MSSM-producing stringent flat directions revealed

four singlet directions that were flat to all order, one singlet direction flat to twelfth

order, and numerous singlet directions flat only to seventh order or lower [69]. For
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these directions, renormalizable mass terms appeared for one complete set of up-

, down-, and electron-like fields and their conjugates. However, the apparent top

and bottom quarks did not appear in the same SU(2)L doublet. Effectively, these

flat directions gave the strange quark a heavier mass than the bottom quark. This

inverted mass effect was a result of the field Φ12 receiving a VEV in all of the above

directions.

We thus performed a search for MSSM-producing singlet flat directions that did

not contain 〈Φ12〉. None were found. This, in and of itself, suggests the need for

non-Abelian VEVs in more phenomenologically appealing flat directions. Too few

first and second generation down and electron mass terms implied similarly.

Among the FNY MSSM non-Abelian flat directions investigated in [16, 17], that

denoted FDNA(5+8) generated the best phenomenology. The search for dangerous

terms yielded 131 results, five of them to 〈W 〉 with 11th the lowest order and 126 of

them to 〈F 〉, as low as order four (counting variations of the four fields labeled (Φ4)

only once). World sheet selection rules reduced this number to 32, all of them F -terms.

Disallowing more than two non-Abelian fields (for each SU(2) group) trimmed the

list further to just the eight terms in Table I. If a single incidence of (Φ4) is mandated,

then it is so indicated by a lack of parenthesis.

The lowest order potentially dangerous F-term (designated as #1) contains a

factor of 〈H26 · V37〉 which we would like to cancel, as per the discussion of Section

2. This requires the VEV orientations to be chosen parallel in the three-dimensional

SU(2)H adjoint space. Since FDNA(5+8) contains (two) additional non-Abelian

fields with VEVs (V5 and V35) which can oppose H26 and V37 with an equal total

magnitude, this choice is alsoD-consistent. The same factor appears in and eliminates

additionally dangerous Table I F -terms #2,5,7 and 8. Since the other two non-Abelian

VEVs had to be parallel as well, the contraction 〈V5 · V35〉 in term #6 is also zero.



60

Table I. Surviving Candidates for non-Abelian Cancellation

# O(W) F -term

1 4 Hs
16 〈H26 · V37〉〈N c

3〉

2 5 V s
32 〈H26 · V37〉〈Φ4H

s
37〉

3 5 V15 〈·V35〉〈Φ′

4H
s
30H

s
21〉

4 5 V17 〈·V5〉〈Φ′

4H
s
30H

s
15〉

5 8 Φ13 〈H26 · V37〉〈(Φ4)H
s
31H

s
30H

s
15N

c
3〉

6 9 Φ13 〈V5 · V35〉〈Φ23(Φ4)
2Hs

30
2Hs

21H
s
15〉

7 9 Φ12 〈H26 · V37〉〈Φ23(Φ4)H
s
31H

s
30H

s
15N

c
3〉

8 10 Hs
36 〈H26 · V37〉〈Φ23Φ4H

s
31H

s
30H

s
15H

s
37N

c
3〉

In the language of [16], we could have said sH26 = sV37 = 1 and sV5 = sV35 = −1.

This leaves us with only #3 and #4, both of which are fifth order terms with un-

VEVed non-Abelian fields so that self-cancellation is impossible. Furthermore, they

will appear in different F -terms and each allows only a single (Φ4) configuration,

ruling out a couple of other (less satisfactory) scenarios. The choice 〈Φ′

4〉 = 0, along

with 〈Φ
′

4〉 = 0 for consistency with Eqs. (3.21,3.22) of [17], would restore F -flatness

by simply removing the offending terms from 〈F 〉. However, as was discussed in [17],

this seems phenomenologically inviable and so it appears that we are stuck with a

broken FDNA(5+8) at order five.3 Also, while it is common to see the vanishing of

terms with excessive non-Abelian doublets, these mark the only examples wherein

non-Abelian self-cancellation by selected VEVs was found for the ‘Table 1A’ (of [17])

3As a note, the cancellations which were successful are insensitive to the factor of
18 between flat directions FDNA5 and FDNA8. (See Table 1.A of [16].)
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flat directions.

E. The SO(2n) Lie Groups

1. General Properties

We will now turn our attention to the general case of SO(2n), the rotation group in

an even dimensional space. Wherever a concrete example is needed, SO(6) will be

focused on for the sake of its relevance to existing studies [25, 78, 79, 80, 81, 70, 82, 83,

84, 85] of a string-derived flipped SU(5) GUT. It is seen quickly in these cases that

certain coincidences and simplicities afforded by the SU(2)/SO(3) example are no

longer available, and that our techniques have to be adjusted accordingly. Firstly, the

case of rotation in three dimensions is very special. Any transformation is facilitated

by the use of three angles and three generators. There is a unique axis normal to to

any rotation plane and our three rotation generators, which define the adjoint space,

can be labeled in one-to-one correspondence with unit vectors from the fundamental

space. It is only in this case that the familiar cross-product can be defined. Secondly,

since all generators fail to commute, we have in SU(2) the simplest case of a rank 1

group, with only a single diagonalizable matrix.

Since the elements of a transformation between coordinate sets are the projec-

tions of unit rows from one basis onto unit columns of another, the transpose of this

matrix must interchange these roles and yield the inverse operator. This property,

named orthogonality for the nature of the eigenvectors used to diagonalize symmetric

matrices, is the origin of the familiar “dot product” rotational invariant. Orthogonal

groups are spanned by antisymmetric generators,

(eM )
T

= eMT

= e−M , (3.21)
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and by satisfying the condition that

det(eM) = eTr (M) = e0 = 1 , (3.22)

are also licensed to bear the designation of “special”. The (i, j)th element of the

rotation generator between Cartesian axes â and b̂ is determined in the small angle

limit:

(Mab)ij = δa
i δ

b
j − δb

i δ
a
j . (3.23)

As with all rotation operators, these matrices respect the algebra

[Mab,M cd] = δadM bc + δbcMad − δacM bd − δbdMac , (3.24)

which is specified almost entirely by group closure and symmetries. We will prefer to

multiply each group element by a factor of i and go to a trivially complex Hermitian

representation.

The number of generators required in an m dimensional space is the number of

ways to take pairs of axes,
(

m
2

)

≡ m!
2!(m−2)!

= m(m−1)
2

, or equivalently, the number of

elements composing a general antisymmetric m ×m matrix. For the case of SO(6),

there are 15 possible rotation planes, and 15 corresponding angles needed to specify

the general rotation. Although only five angles are needed to provide the orientation

of a 6-vector, there remains an orthogonal 5-space, with four angles, which leaves the

vector intact. Perpendicular to this rotation is a 4-space with three angles, and so

emerges another way of counting the
∑m−1

α=1 α = m(m−1)
2

generators needed to enact

all possible transformations.

Certain consequences can be seen immediately when the number of generators

exceeds the fundamental group dimension. First, the conception of a rotation axle

must be abandoned in favor of the rotation plane. Secondly, we see that spanning the
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adjoint space will require an even larger basis, and we cannot expect that transfor-

mations in the fundamental space will be able to realize generic ‘expectation value’

orientations in the chosen generator set. Since some regions of the adjoint space

may be inaccessible, it will be preferable to reverse the procedure of section (1), and

instead carry discussion of the D-term into the fundamental space.

The rank of SO(2n), or number of mutually commuting generators, is equal to

n = m
2
, the number of independent rotation planes, or one half the spatial dimension.

Each diagonal matrix has eigenvalues of (+1,−1), with the remaining entries all zero.

The non-diagonal matrices can be combined into raising and lowering operators of

unit strength, always acting in two diagonal sectors while leaving the rest unaffected.

Every possible pairing of sectors and choice of raising or lowering in each sector

is represented. Another counting exercise, with the
(

n
2

)

ways to pick two diagonal

generators, times a factor of 4 for the choices

(

+ + − −
+ − + −

)

, plus n for the

diagonal matrices themselves, yields the correct total of 2n(n− 1) + n = m(m−1)
2

, and

verifies the consistency of this construction. The commutation relations between the

operators obey a sort of charge conservation, with the net raising or lowering weight

for each sector preserved across the equality. For SO(6), these matrices are shown

explicitly in both the original and diagonal bases, along with example commutators,

in the appendix.

Diagonalization of the secular equation det(M − λ11) = 0 for a matrix M , yields

a product
∏m

i=1(λi − λ), whose roots specify the matrix eigenvalues, and whose ex-

pansion

(a0 = 1)λm + a1λ
m−1 + a2λ

m−2 + · · · + am = 0 (3.25)

produces m coefficients ai, which must be invariant under group transformations4, as

4Any ‘similarity’ transformation which is enacted as S−1MS will preserve these
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is the determinant they arise from. The coefficients are sums of products of eigenval-

ues, e.g. a1 =
∑m

i=1 λi, a2 =
∑m

i>j=1 λiλj , a3 =
∑m

i>j>k=1 λiλjλk, and am =
∏m

i=1 λi,

which provides concrete verification for the claim of invariance. These factors, equiv-

alent to a full knowledge of the eigenvalues, fully encode all the rotationally invariant

properties of M , and fully specify all forms into which M may be rotated. However,

the specific combinations shown prove to have their own desirable properties. For

example a1 and am may be recognized as the familiar trace and determinant. In

general, all m coefficients may be constructed as a function only of the matrix M , by

use of the recursive form

aj =
1

j

j
∑

i=1

(−1)i+1Tr (M i)aj−i , (3.26)

referenced to the starting value a0 ≡ 1. For the generators of SO(2n), the odd-

valued coefficients vanish automatically, due to the tracelessness (antisymmetry) of

odd powers. It is important to note that this leaves only n constraints (equal to the

group rank) to be actively satisfied in any basis change of the generators. For SO(6),

we have specifically:

a2 =
−TrM2

2
, a4 =

−TrM4 − a2TrM2

4
, a6 =

−TrM6 − a2TrM4 − a4TrM2

6
.

(3.27)

Similar to Eq. (3.25), is a theorem by Euler stating that
∏m

i=1(M − λi11) = 0,

as an operation on any of the m |λi〉 must be null. This equation may, in principle,

be used to reduce by one, with each application, the highest power of a series in the

matrix M , until the limiting case where that power is m− 1. The ability to envision

this procedure justifies the statement that the Taylor expansion for a function of M

is truncated to order m− 1. This knowledge is critical to studying the finite rotation

invariants. Orthogonal and unitary mappings are the most notable examples.
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operator

e−iΘabMab . (3.28)

We will focus initially on the case of just a single rotation plane and angle θ

in 6-space, with the adjoint unit vector n̂ providing our combination of generators,

θ( ~M · n̂). An explicit representation, consistent with Eq. (3.23), of the generic planar

generator can be formed readily, where â and b̂ are orthogonal unit 6-vectors and the

notation ⊗ is defined by the construction of a tensor, “| 〉〈 |”, out of the column to

its left and the row to its right.

~M · n̂⇔ Mâb̂ ≡ i(â⊗ b̂− b̂⊗ â) (3.29)

It is clear from this construction that all single plane generators obey the rule

( ~M · n̂)
2 ⇔ Mâb̂ ·Mâb̂ = (â⊗ â+ b̂⊗ b̂) , (3.30)

meaning that ( ~M · n̂)
3

= ~M · n̂, and ( ~M · n̂)
4

= ( ~M · n̂)
2
, etc. and thus that the

rotation operator reduces further in this case, to only 3 terms with 3 undetermined

coefficients (α, β, γ).

e−iθ( ~M ·n̂) = α + β( ~M · n̂) + γ( ~M · n̂)
2

(3.31)

Not coincidentally, this is also the number of available discrete eigenvalues, and forcing

consistency in Eq. (3.31) when ~M · n̂ is replaced by (+1, 0,−1), allows us to fix the

parameters shown:

e−iθ( ~M ·n̂) = 11 − i sin θ( ~M · n̂) + (cos θ − 1)( ~M · n̂)
2
. (3.32)

With this reduced case in hand, we can now return attention to the general finite

SO(2n) transformation specified by the linear combination of rotation generators
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ΘabMab. To start, we will write the prototype block diagonalized form of a member

of this class with n free angles θi.

i×













(

0 θ1
−θ1 0

)

(

0 θ2
−θ2 0

)

. . .













(3.33)

Just as the operator of Eq. (3.28) enacts changes of basis on real 2n-vector states,

orthogonal pairs of such operators invoke the corresponding similarity (rank-2 tensor)

transformation on elements of SO(2n) itself5, i.e. specific instances of Eq. (3.28). In

the Taylor sense, the same transformation is then applied to the selected generators,

transforming them into the alternate basis6.

(ΘabMab)
′ ≡ e−iΦcdMcd(ΘabMab)e

+iΦcdMcd (3.34)

Rotation can only map a linear sum of SO(2n) generators into another such lin-

ear sum. Preservation of the m rotational invariants is the only restriction on what

members of this class may be interrelated by operation of SO(2n). As is necessarily ex-

pected, orthogonal transformations explicitly protect the property of (anti)symmetry,

ensuring that the odd invariants remain identically zero.

(M ′)
T ≡ (OMO−1)

T
= OMTOT = (−)M ′ (3.35)

This leaves then only n non-trivial constraints, which should always be absorbable

via some action of the group itself, into the n angles of Eq. (3.33). Specifically, for

5This ensures then that the same result is achieved whether the change of basis
occurs before or after operation of the SO(2n) element on a given vector.

6Or alternatively, performing an opposing rotation while the basis stays fixed,
depending on taste.



67

the case of m = 6, we have:

a2 = −(θ2
1 + θ2

2 + θ2
3)

a4 = ((θ1θ2)
2 + (θ2θ3)

2 + (θ3θ1)
2) (3.36)

a6 = −(θ1θ2θ3)
2

The solubility7 of equations like the above is identical to the statement that any

matrix ΘabMab may in principle be converted to the desired block-diagonal form

under operation of SO(2n). Note that in each term angles ever appear individually

only as squares.

Since the commutativity of these n sectors from (3.33) will be maintained under

any group action, it may be inferred that all combinations of generators are a sum

over n orthogonal rotation planes. Thus, the finite rotation operator in (3.28) can

be factored into separate exponential terms containing each distinct plane, without

any complications of the Baker–Hausdorff variety. It is then seen that the general

transformation is enacted by a product of n (3.32) copies.

Note that this does not imply that SO(2n) is equivalent to the factored product

O(2)n. Rather, it simply says that for each rotation in SO(2n) which you would

like to perform there is in principle an identical representation for that particular

operation in terms of a product of planar rotations.

2. Viewing D-Terms From the Fundamental Space

Having understood the SO(2n) group structure to some degree, the next matter

which we may wish to consider is the manner in which field VEVs of the fundamental

7Mathematica can readily invert the example system. However, the general solu-
tions are quite clumsy in appearance.
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space are transformed into D-terms of the adjoint space. Ultimately we will also be

interested in how the concisely realized adjoint D-constraint, namely that the sum of

all vector contributions be null, is reflected back onto fundamental states. It will be

useful first to determine the eigenvectors corresponding to generators of rotation in

a given plane, such as appear in (3.29). Within an arbitrary phase, the normalized

solutions for the (+1,−1) eigenvalues of Mâb̂ may be written respectively as:

|+〉âb̂ = (â− ib̂)/
√

2 , |−〉âb̂ = (â+ ib̂)/
√

2 . (3.37)

As expected for a hermitian matrix, these states are mutually orthogonal (〈+|−〉âb̂ =

0), and may also be chosen with null projections onto the 2n − 2 additional states

required to complete the basis. They are not generally orthogonal to the eigenvectors

of overlapping generators, such as “Maĉ”, which induces rotation in a plane passing

through â and some vector ĉ, where b̂ · ĉ = 0. It is interesting to note that the real

generator basis as established in (3.23) produces intrinsically complex eigenvectors,

while the diagonal matrix set described in the Appendix is instead itself complex with

the possibility of real eigenvectors. These two formulations are bridged by a unitary

transformation rather than any SO(2n) element.

The ‘expectation value’ of an eigenstate contracted on its corresponding matrix

generator is given by:

〈+|Mâb̂|+〉 ≡ i

2
(â + ib̂) · (â⊗ b̂− b̂⊗ â) · (â− ib̂) = 1 . (3.38)

The same calculation performed with the |−〉âb̂ state will yield −1. We can argue

that all other contractions employing the |±〉âb̂ are vanishing since the other n − 1

‘diagonal’ generators work in orthogonal spatial sections, and the 2n(n − 1) ‘raising

and lowering’ operators cannot bridge an eigenstate to itself. Thus, the complete
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2n(2n− 1) element D-term which emerges out of this state can be determined:

| â− ib̂√
2

〉 =⇒ (â⊗ b̂− b̂⊗ â)ij . (3.39)

Notice that while previously in (e.g. Eq. 3.29) a similar notation was used to

express the matrix elements of a single generator Mâb̂, the same form now provides

the ‘expectation value’ result for every generator, interpreted as either an adjoint

vector (i > j), or as a fundamental antisymmetric matrix. For example, if we take

â = (1, 0, 0, · · ·) and b̂ = (0, 1, 0, · · ·), then (3.39) says that the related complex 2n

dimensional vector will produce a D-term contribution of 〈M12〉 = 1(= −〈M21〉), with

all other elements zero. Covariance suggests that the same expression must also hold

for vectors (â, b̂) which do not lie along a single direction of the selected basis.

We may next wish to inquire what form the D-term matrix would take for a fully

arbitrary 2n-plet of VEVs, i.e. with the constraints â · â = b̂ · b̂ = 1 and â · b̂ = 0

relaxed. To avoid confusion with the previous results, we will now refer to the unit

vectors ĉ and d̂, used to compose our general state as:

|v〉 ≡ Rĉ+ iId̂ . (3.40)

We can still insist without any loss of generality that the state be normalized

to unity overall, and in fact this condition facilitates a simple rescaling to integral

multiples of the squared FI scale |〈α〉|2 as is typically required. With this condition

in place, the real coefficients R and I are restricted to R2 + I2 = 1.

In correspondence to the earlier (3.37), we can also define the states

|±〉ĉd̂ ≡ (ĉ∓ id̂)/
√

2 , (3.41)

although a word of caution is in order to the effect that no eigenvalue relation to

some matrix Mĉd̂ is being posited. In fact, it is no longer even necessarily true that
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〈+|−〉ĉd̂ = 0 However, in terms of these states there is an alternate formulation of the

general complex state:

|v〉 = A|+〉ĉd̂ +B|−〉ĉd̂ , (3.42)

R =
A +B√

2
, I = −A−B√

2
. (3.43)

The normalization condition is here realized as A2 + B2 = 1. With these con-

ventions in place the expectation value on any generator M can now be decomposed.

〈v|M |v〉 = R2〈c|M |c〉 + I2〈d|M |d〉 + iRI(〈c|M |d〉 − 〈d|M |c〉) (3.44)

We will now focus on the term 〈c|M |c〉. Since this is a scalar contraction, the

transpose operator will be an identity. Furthermore, since the vector ĉ is real by

definition, the state 〈c| is merely |c〉T , so that 〈c|M |c〉 = 〈c|MT |c〉. However, the

antisymmetry of M says that this expression is equal to its own negative, and must

therefore vanish. The same result holds for 〈d|M |d〉, and in fact for any D-term

constructed from a purely real vector8. In a sign of consistency, the remaining two

terms are proportional to “RI”, such that all D-term contributions vanish unless |v〉

contains both real and imaginary contributions. An argument similar to that just

given on the transpose suggests that these terms are opposites. Also, since they are

clearly related by complex conjugation, this means that each term is purely imaginary,

preserving the necessary reality condition on the expectation value. Combining the

information above with Eqs. (3.41, 3.43) allows us to state that:

〈v|M |v〉 = 2iRI〈c|M |d〉 = (A2 −B2)〈+ĉd̂|M |+ĉd̂〉 . (3.45)

8This conclusion is also true for ‘trivially complex’ vectors, as the inclusion of
an overall complex phase can be absorbed in the contraction without altering the
remaining discussion.
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The normalization imposed on the A and B coefficients restricts the pre-factor

A2 −B2 to range between (-1, 1). The lesson to be taken from these exercises is that

an unbalanced mixing between the ‘I’ and ‘R’ coefficients of a given fundamental

state will not effect the orientation of the adjoint space D-term which it yields, but

it can reduce the scale of that contribution.

However, to complete analysis of the general 2n vector, there remains the matter

of ĉ · d̂ 6= 0 to deal with. In order to proceed, let us introduce an alternate unit vector

d̂′ which is perpendicular to ĉ and lies in the plane defined by ĉ and the original d̂.

Breaking d̂ down into its new basis components, we have:

d̂ = d̂′ sin θ + ĉ cos θ , (3.46)

where θ is the angle separating ĉ and d̂.

Under this transformation, the state |v〉 from (3.40) becomes

|v〉 = Rĉ+ iI(d̂′ sin θ + ĉ cos θ) (3.47)

=
R + iIeiθ

√
2

|+〉ĉd̂′ +
R+ iIe−iθ

√
2

|−〉ĉd̂′ . (3.48)

The main points to notice here are that we can decompose |v〉 into the orthogonal

eigenstates of the pure generator Mĉd̂′ , and that no single raising or lowering operator

can hope to join these states1. Because of this, the resultant D-term will again be

fully along the Mĉd̂′ orientation, and we have only to find its magnitude. Since the

|±〉ĉd̂′ coefficients in (3.48) are complex, the expression does not form a realization of

(3.42), nor should the results following that equation be expected to apply2.

1The |±〉ĉd̂′ are separated by a third ‘rung’ corresponding to some state with a

null response to the (ĉ,d̂′) plane rotation operator.
2Although (3.42) did in fact represent the general 2n-plet, this was for ĉ and d̂

unconstrained. Since a definite condition between ĉ and d̂′ has now been imposed,
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Rather than proceeding directly with (3.48), let us instead evaluate 〈c|Mĉd̂′|d〉 =

i〈+ĉd̂|Mĉd̂′|+ĉd̂〉, as appears in (3.45). Rewriting (3.46) as

d̂′ =
d̂− ĉ cos θ

sin θ
, (3.49)

it is readily confirmed that:

Mĉd̂′ ≡ i(ĉ⊗ d̂′ − d̂′ ⊗ ĉ) = i
(ĉ⊗ d̂− d̂⊗ ĉ)

sin θ
. (3.50)

The desired contraction then becomes

〈c|Mĉd̂′ |d〉 = i
ĉ · (ĉ⊗ d̂− d̂⊗ ĉ) · d̂

sin θ
= i

1 − cos2(θ)

sin θ
= i sin θ . (3.51)

Combining this result with (3.45) allows us to summarize the magnitude of the

general D-term as

|v〉 ≡ Rĉ+ iId̂ =⇒ |Dv| = −2RI sin θ = (A2 − B2) sin θ . (3.52)

where θ is the angle between ĉ and d̂, and the relation appearing in (3.42) is also

in use. Extending the intuition that only non-trivially complex states correspond to

D-terms, the sin(θ) term will kill |Dv| if ĉ and d̂ are proportional, such that |v〉 is real

times an overall phase. Also, we can note that this scale is exactly sufficient when

integrated with the known adjoint direction of (3.50) to exactly mimic the simple

result of (3.39) 3 for the total D-term. Specifically, under the redefinitions ~e ≡
√

2Rĉ

and ~f ≡ −
√

2Rd̂, the general result becomes

|v〉 ≡ |~e− i ~f√
2

〉 =⇒ (~e⊗ ~f − ~f ⊗ ~e)ij . (3.53)

complex coefficients are required for the general θ.
3Recall, as per the discussion following this equation, that the orientation corre-

sponding to a state which strikes only a single generator may be written in matrix
form as the generator itself, dropping the factor of i.
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Basic manipulations are enough to reveal an additional equivalent construct:

(Dv)ij ≡ 〈v|Mij|v〉 = (
|v〉〈v| − |v∗〉〈v∗|

i
)ij . (3.54)

Finally, we come to the interesting realization that, having exhausted all avail-

able generality in our state |v〉, and receiving still for this effort only D-terms which

correspond to single-plane rotation generators as in (3.53), it is not possible to rep-

resent an arbitrary adjoint space direction by the VEVs of a solitary 2n-plet. This

conclusion is born out by analogy to the discussion around (3.33), where it was shown

that the general SO(2n) transformation matrix, i.e. adjoint space vector, required

contributions from n orthogonal planar type generators times scaling angles.

3. An Example of D-Flatness in SO(6)

To be more concrete, let us specifically consider D-flat directions formed from the

VEVs of fundamental vector 6 representations for the gauge group SO(6), choosing

to express the generators in their ‘original’ basis as shown in the Appendix. We will

denote the (generally complex) VEVs of the kth 6-plet according to,

< 6k >=

































αk,1 + i βk,1

αk,2 + i βk,2

αk,3 + i βk,3

αk,4 + i βk,4

αk,5 + i βk,5

αk,6 + i βk,6

































, (3.55)

where αk,j & βk,j are real. D-flatness constraints when applied to a single 6-plet (with

field subscript k = 1) demand the vanishing of:

Dij ≡ (α1,a + i β1,a) · {δa
i δ

b
j − δb

i δ
a
j } · (α1,b + i β1,b) , (3.56)
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as can be enforced by direct computation from (3.23). Contracting indices for a more

concisely worded expression,

{α1,iβ1,j − α1,jβ1,i = 0} , (3.57)

for i, j = 1 to 6 and i < j. This is of course equivalent to a vanishing of the construct

from (3.53).

The only solutions to (3.57) are fundamentally trivial. Since real and imaginary

VEV component coefficients, α and β, always appear together as products, a solution

exists for any pure real or pure imaginary vector. However, even for those solutions

which employ cancellation of D-term contributions between α1,i β1,j products, D-

flatness is maintained if and only if the ratio α1,j/β1,j is the same for all non-vanishing

members j. Furthermore, neither α1,j 6= 0 & β1,j = 0 nor α1,j 6= 0 & β1,j = 0 is

allowed for any j [86]. This statement of constant phase is in agreement with the

statements on ‘reality conditions’ from the previous section, specifically as appears

following (3.44, 3.52) .

It is somewhat more interesting to generalize the above solutions for a single

< 6 > to a set of n distinct 6’s, each having respective real and imaginary VEV

components αk,j+i βk,j for k = 1 to n. The constraints become a sum over expressions

of the sort in (3.57),

{
n
∑

k=1

αk,iβk,j − αk,jβk,i = 0} , (3.58)

for i, j = 1 to 6 and i < j. Rather than forcing reality on just one state, we instead now

have a dispersement of the burden of D-flatness among every constituent field, none of

which need individually follow the former condition. Each new 6-plet VEV generates

further non-trivial solution classes, allowing new possibilities for cancellations between

different fields, and additional freedoms for each individual state. The simplest non-
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trivial example involves two fields. If each field is further restricted to non-zero VEVs

for only its top two complex components, that is, for i, j = 1, 2, then the D−flat

constraints (3.58) reduce to simply

α1,1β1,2 − α1,2β1,1 + α2,1β2,2 − α2,2β2,1 = 0 . (3.59)

Hence we are free to choose seven of the eight VEV components.

4. Reduction and Interpretation of the Multiple-VEV Constraint

The condition written in (3.58) is clearly a full specification of the desired D-term

result, but it cannot fulfill the spirit of our search, in that the expression is neither

geometrical nor intuitively comprehensible. In fact, the number of conditions enforced

grows like the group adjoint dimension, and quickly becomes so large that even in-

elegant and forceful approaches may find the task of its solution insuperable. We

would much prefer a statement of principle from which one could deduce at a glance

the existence of solutions, followed in short order by specific field values obedient to

the criterion. Furthermore, the prospect of a condition whose complexity grows lin-

early with the group rank n, rather than quadratically is enticingly motivated by the

earlier observation that any adjoint vector can be decomposed into n commuting anti-

symmetric fundamental matrices of the special rotation generator form, (3.29). This

section will then pursue results useful for understanding D-flatness in the presence of

multiple SO(2n) VEVs.

We can proceed by denoting each contributing state as |γ〉, so that the net D-

term will be:

Dij ≡
∑

γ

〈γ|Mij |γ〉 . (3.60)

As discussed around (3.33), this matrix can be viewed as the sum of n orthogonal
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single-plane rotation matrices times scale factors. We know from (3.39) that any

such matrix can be composed by the contraction of its ‘positive’ eigenvector around

Mij . Furthermore, the independence of each of the n matrices tells us that their

eigenvectors will also be eigenvectors of the total D-term matrix in (3.60), which will

be written as |λ〉. Therefore, we can state the following relationships between the

D-matrix and its eigenvectors:

∑

γ

〈γ|Mij|γ〉 =

n
∑

k=1

λ+
k 〈λ+

k |Mij|λ+
k 〉 =

2n
∑

k=1

λk(|λk〉〈λk|)ij . (3.61)

The front factor of λ+
k is needed in the central expression to represent the scale factor,

which shifts the eigenvalue away from unity, of each ‘planar’ member in the composite

D-term4. Since Mij is Hermitian and complex, we can see that its eigenvalues always

come in ±λ pairs, with eigenvectors related by complex conjugation.

M |λ〉 = λ|λ〉 =⇒M |λ∗〉 = (M∗|λ〉)∗ = −(M |λ〉)∗ = −λ|λ∗〉 . (3.62)

Also noting that

〈γ|Mij |γ〉 = −〈γ∗|Mij|γ∗〉 . (3.63)

for any |γ〉, it is clear that the plus sign on λ+
k should really just be taken to indicate

that half of the eigenvalues (one from each pair) are in play here, with a symmetry

protecting the choice of either the ‘positive’ or ‘negative’ member. This is in accord

with the properties previously observed directly in section (2). The third expression

in (3.61) can be readily justified from the second, via comparison to Eqs. (3.53, 3.54) ,

4In other words, the contraction of |λ〉 around Mij reconstructs the given con-
stituent of Dij with an overall unit scale, but since |λ〉 is the eigenvector of the
matrix to be rebuilt, its eigenvalue λ and the desired scale are in fact one and the
same.



77

when written as:

n
∑

k=1

λ+
k (|λ+

k 〉〈λ+
k | − |λ∗k〉〈λ∗k|)ij =

n
∑

k=1

λ+
k (âk ⊗ b̂k − b̂k ⊗ âk)ij , (3.64)

where |λ+
k 〉 ≡ (âk − ib̂k)/

√
2. This alternate method of writing the same sum of ma-

trices should be recognized as simply a diagonalization by similarity transformation5.

We can now read directly from (3.61) that the n vectors represented as
√
λ|λ〉

function as a completely equivalent set of input to the original fully general |γ〉’s.

This reinforces the notion that it may be possible to impose some reduced number of

conditions equivalent to the rank which will serve to eliminate all n(2n− 1) elements

of the D-matrix. The only flaw in this approach is our complete inability to know |λ〉

before we have already specified the overall VEV set!

From another perspective, we might imagine that a concrete expression for the

eigenvalues |λ〉 of the matrix from (3.60) would enable a clear view of what conditions

ensure that these numbers will vanish. By inserting dual complete sets, each written

as 11 ≡∑ |λ〉〈λ|, into the first expression of (3.61), we can say:

2n
∑

k,l=1

〈λk|Mij |λl
′〉
(

∑

γ

〈γ|λk〉〈λl
′|γ〉
)

=

n
∑

k=1

λ+
k 〈λ+

k |Mij|λ+
k 〉 . (3.65)

The strength of these equations in the (i, j) is enough to let us equate coefficients

of each contraction across the two sides. This is seen most cleanly in a basis where

Mij is diagonal, such that ‘cross-terms’ on the left-hand side of (3.65) vanish6, and

5By starting with the conception of a diagonal form, one could in fact read this
argument in reverse as an alternate proof of the decomposition into n planes.

6We are referring here to the n diagonal matrices; the remaining raising and low-
ering operators can join unmatched kets, but the sum of all such terms must vanish
since these elements make no contribution on the left.
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we are left with
∑

γ

(

|〈γ|λ+〉|2 − |〈γ|λ∗〉|2
)

= λ+ , (3.66)

also using (3.63). Depending on your preference, this expression may be regrouped

into various forms with distinct interpretations.

λ =
∑

γ

〈γ| (|λ〉〈λ| − |λ∗〉〈λ∗|) |γ〉 = 〈λ|
∑

γ

(|γ〉〈γ| − |γ∗〉〈γ∗|) |λ〉 , (3.67)

The first of these constructions appears as an element of (3.60), and again validates

the notion that the entire matrix could be set to zero via consideration of only a

reduced subset of n ‘diagonal’ generators if only one could know ahead of time which

diagonal set to choose! We can also see that each eigenvalue of the overall D-matrix

vanishes in turn when its corresponding eigenvector is ‘real’, up to an overall phase.

This is natural in light of the discussion above where it was noted that the
√
λ|λ〉

serve as equivalent input to the VEVed |γ〉’s7, and that their eigenvalues flip sign

under complex conjugation. Another interpretation of this expression holds that λ

is the imbalance between projections onto the ‘positive’ and ‘negative’ eigenvectors.

The second formulation of (3.67) is arrived at by applying the (free) operation of

complex conjugation to the (real) second element of (3.66) before separating out the

terms. From this, we can read another condition, applied now to the more tangible

input states, which will also kill the D-term:

∑

γ

|γ〉〈γ| =⇒ REAL . (3.68)

By way of first analysis, we can note that this expression is immune to overall phase

factors associated with |γ〉, and that it properly reduces to the ‘generalized reality’

condition imposed on just a single state. In fact though, the statement of (3.68) con-

7As pointed out around (3.52), real SO(2n) states create no D-term contributions.
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tains only the same information, and the same shortcomings of the previous attempts.

Using (3.54), the entire D-term can be written

Dij =
∑

γ(|γ〉〈γ| − |γ∗〉〈γ∗|)ij , (3.69)

and (3.68) is simply the statement that the matrix should vanish8. Alternatively,

using the language of (3.53), we can say that

∑

γ

(~eγ ⊗ ~fγ − ~fγ ⊗ ~eγ)ij = 0 , (3.70)

where |γ〉 ≡ (~eγ − i ~fγ)/
√

2. However, this only serves to mimic (3.58) and its associ-

ated large number of conditions for projections in each of the generator planes.

A fully geometric interpretation of non-Abelian SO(2n) D-flat directions should

offer proper, concise criterion with physically intuitive interpretation. Along this line,

we have made several arguments for the feasibility of solutions that grow only like

the group rank for increasing number of fundamental 2n field VEVs. Realization of

these arguments, nevertheless, remains an open issue, for after a detailed study, a

more functional re-expression of (3.58) has not been found.

5. Ensuring Simultaneous SO(2n) F -Flatness

For the previous study of SU(2), computations were performed in the adjoint space

such that the D-condition was readily realized, while effort was required to transfer F -

terms into the language of orientations in this space (cf. Eq. 3.18). In contrast, we have

worked up to this point in the fundamental space. The exertion of expressing D-terms

via only their corresponding state VEVs is rewarded by a natural and straightforward

8The embedding of (3.69) within the second expression of λ in (3.67) is a consis-
tency check, since the contraction of |λ〉 about the matrix which they represent must
identically yield the eigenvalue.
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implementation of F -flatness. However, even this ostensibly simple contraction is

complicated in practice by the presence of distinct vector orientations for the real

and imaginary VEVs. Having encountered severe obstacles in the transition to a

purely fundamental description, this section will instead entertain something of a

hybrid approach. Pragmatism will here overshadow the desire for generality, and an

attempt will be made to extract from the previous technology some minimal working

procedures to ensure simultaneous D- and F -flatness. New constructions will be

added as needed.

There are three key quantities of interest in our search. These are the commuta-

tors between rotation generators, the scalar product between D-terms in the adjoint

space, and the fundamental space VEV contraction. First, we will define here two

fully general complex vectors to be used throughout the discussion. No restriction on

the orthonormality of the constituent elements is assumed.

|α〉 ≡ (~a− i~b)/
√

2 , |γ〉 ≡ (~c− i~d)/
√

2 (3.71)

Turning first to the commutator,

[M~a~b,M~c~d] = (i)2
{

(~a⊗~b−~b⊗ ~a) · (~c⊗ ~d− ~d⊗ ~c) − (~c⊗ ~d− ~d⊗ ~c) · (~a⊗~b−~b⊗ ~a)
}

,

(3.72)

using the form of Eq. (3.29). This simplifies cleanly to

[M~a~b,M~a~b] = i
{

(~a · ~d)M~b~c + (~b · ~c)M~a~d − (~a · ~c)M~b~d − (~b · ~d)M~a~c

}

, (3.73)

which is equivalent to Eq. (3.24) in the orthonormal limit. This commutator vanishes

if and only if the two rotations are fully disentangled, i.e. the rotation planes have a

null intersection such that (~a,~b) are mutually orthogonal to (~c,~d). As before, the case
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that (~a,~b)1 are themselves (anti)parallel is trivial, with M~a~b = 0.

Next, we will examine the adjoint space contraction between the D-terms in

correspondence to each of |α〉 and |γ〉, denoted henceforth as (α·γ)A. As established in

Eq. (3.53), the needed adjoint space ‘expectation values’ are realized as the members

of an antisymmetric matrix functionally identical, modulo the imaginary factor and

a possible scale, to the rotation generator which would interpolate between vectors

in the related fundamental space plane. To take the scalar product in this adjoint

space, we must sum over the product of corresponding pairs between the two D-terms,

including each of the m(m − 1)/2 unique basis members one time. In terms of the

provided form, this is realized as the trace of a matrix multiplication.

(α · γ)A = −αijγji

2

= −1/2Tr
{

(~a⊗~b−~b⊗ ~a) · (~c⊗ ~d− ~d⊗ ~c)
}

(3.74)

= −1/2Tr
{

(~b · ~c)~a⊗ ~d+ (~a · ~d)~b⊗ ~c− (~b · ~d)~a⊗ ~c− (~a · ~c)~b⊗ ~d
}

A short diversion is in order here to investigate what is meant by the trace in this

language. Recall that the notation ~a ⊗~b simply signifies the matrix constructed by

the ‘outer’ product of the vectors ~a and ~b. Thus:

Tr(~a⊗~b) ≡



















a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

. . .



















= a1b1 + a2b2 + a3b3 + · · · ≡ ~a ·~b (3.75)

1Or, equivalently, (~c,~d).
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Armed with this knowledge, the expression from Eqs. (3.74) reduces nicely.

(α · γ)A = (~a · ~c)(~b · ~d) − (~b · ~c)(~a · ~d) (3.76)

The next question of relevance is whether any geometrically intuitive representation

is possible. We will make here a separation of the vectors ~c and ~d into two sections

each, representing portions within and orthogonal to the (~a,~b) plane.

~c ≡ ~c‖ + ~c⊥ , ~d ≡ ~d‖ + ~d⊥ (3.77)

The orthogonal portions (~c⊥, ~d⊥) trivially factor out of Eq. (3.76), reducing the

analysis to a single plane. Furthermore, it is noted that the presence of all four

vectors in both terms of this difference allow the extraction of an overall scale factor,

leaving us to contend only with angles of orientation.

(α · γ)A ⇒ |a b c‖d‖| {cos(δ) cos(δ + γ − α) − cos(α− δ) cos(δ + γ)}

= |a b c‖d‖| sin(α) sin(γ) (3.78)

The angle2 α separates (~a,~b), while γ splits (~c‖, ~d‖), and δ is the angle between the

vectors (~a,~c‖). Basic trigonometric relations lead to the quite concise final result of

Eq. (3.78), which has also a pleasing interpretation. Each of the pairs (~a,~b) and (~c, ~d)

correspond to an area within their plane constructed by completing the parallelogram

which contains the vector pair as edges. Eq. (3.78) is the product of these areas,

including only the portion which they project onto each other. As is required, for the

case of |α〉 = |gamma〉, this result reduces to the square of Eq. (3.52)3.

2When used in a trigonometric context a symbol such as α will designate the angle
of separation between the real and imaginary constituents of the corresponding VEV
state |α〉.

3Note for comparison that R ≡ a√
2

and I ≡ − b√
2
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We note that there are then three distinct mechanisms accessible for tuning the

value of an adjoint scalar contraction. Firstly, the relative plane orientations can

be tilted to effect a lesser or greater area of projection. It is clear that if only one

of (~c‖, ~d‖) vanishes, then the product is null. The condition (α · γ)A = 0 is thus

weaker than the statement [M~a~b,M~c~d] = 0, which requires complete independence of

the two planes. Secondly, the internal angle between the real and imaginary portions

of a single state can be adjusted to shorten or lengthen its overall D-term scale.

Thirdly, one may of course consider rescaling the magnitude of the coefficients |a b|,

although the combination (a2 + b2)/2 = ||α〉|2 is generally constrained in units of the

squared FI-scale. In keeping with the discussion leading up to Eq. (3.53), these last

two scenarios have the benefit of leaving intact the adjoint space orientation. The

maximum adjoint space extension occurs when |a| = |b| and ~a ·~b = 0, in which case

|D| = a2 = ||α〉|2, which is proportional to the corresponding integral multiple of the

fundamental scale.

The final quantity of interest for additional study here is the SO(2n) invariant

contraction in the fundamental space. This is simply the standard orthogonal inner

product.

(α · γ)F ≡ αTγ

≡ 1

2
(~a · ~c−~b · ~d) − i

2
(~b · ~c+ ~a · ~d) (3.79)

F. Concluding Remarks

We have observed the emergence of new techniques for the removal of dangerous

terms from 〈W 〉 and from 〈F 〉. For example, four of the ‘Table 1B’ flat directions

from [17] are lifted to all order by the vanishing of terms with more than two non-

Abelian fields. One track suggested by the partial success of these flat directions is
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investigation of non-stringently flat directions for the FNY model that are flat to a

finite order due to cancellation between various components in an F -term [86]. In

this case, a benefit of the more difficult case of non-trivial D-flatness when compared

to the simpler restriction of purely real state VEVs, which nevertheless ensure perfect

compliance with D-flatness, may be that using generalized vectors can force flatness

to be preserved order by order, so that when it eventually fails at some high order,

a natural scale emerges at which supersymmetry is broken. It remains to be seen

whether more attractive phenomenology with improved mass terms etc. may then

result.



85

CHAPTER IV

INTERSECTING D-BRANE MODEL BUILDING

A. Structure of the Type IIA T 6/ZZ4 Orientifold

To extract phenomenologically viable models from a string context it is necessary

to eliminate from observation the six ‘extra’ spatial dimensions which inhabit that

theory. The two main approaches to solving this problem are the ‘free fermionic’

models, wherein new world sheet degrees of freedom are used instead of space-time

coordinates to saturate the conformal anomaly, and the wrapping up of the unde-

sirable dimensions on a suitable compact manifold. However, this ostensible plague

on the string theory turns out to be a saving grace, in that all such procedures can

translate the intrinsic symmetries of the extraneous space-time into interactions on

gauged multiplets which naturally complement the ever-present Einstein gravity. The

simplest such manifold which could be considered is the flat torus T 6. However, this

turns out to be too näıve, preserving an inordinately large (maximal) amount of su-

persymmetry. The quest for N = 2 SUSY instead recommends extension to the

curved ‘Calabi-Yau’ manifolds. Although there are examples of closed form model

building in this context, the complexity of the treatment is daunting. Thankfully,

there exist techniques which can yet salvage the humble torus by introducing a non-

trivial topology via physical identification of points related modulo some discrete

symmetry [87, 88, 89, 90, 91].

We will consider always that the torus T 6 is to be factored into three paired sets

as T 2 × T 2 × T 2. Each two-torus is then represented on the complex plane as in the

first element of Figure 7. Without loss of generality, the first toroidal edge may be

scaled to length 1 and laid along the x̂ axis. The second edge is conventionally taken
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Fig. 7. Anti-holomorphic Inversion of the Fundamental Torus T 2

to lie in the upper half-plane with a length and tilting described by the ‘complex

structure’ U ≡ Ux + iUy. The prototype set of identifications imposed on the complex

coordinates (z = x + iy) of a given T 2 are the ‘orbifoldings’ generated under action

of the group ZZN .

ZZN : z → e
i2π
N z (4.1)

The is represented diagrammatically in Figure 8 for the example N = 6. In general,

Fig. 8. Action of the Symmetry ZZN in the Complex Plane

1/N th of the plane becomes wrapped onto itself as a cone, creating a defect at the

former origin. Strings can become entangled around such fixed points, thus developing
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trapped orbits about those positions. That the adjacent cell onto which one member

identifies is in turn connected to its own neighbor is like unto the sequential application

of the summed operators
N
∑

i=1

Θi
N , (4.2)

where ΘN represents the generator of the ZZN transformation.

However, we are not dealing here with the extended complex plane, but instead a

toroidally re-associated sector of that plane. If ZZN is to be a symmetry of the manifold,

then it must act ‘crystallographically’ on the coordinates of the fundamental lattice

cell. This means simply that the shape, scale and orientation of the torus are to

be unaltered under the rotation. The scenario ZZ4 represents a ‘counter-clockwise’

rotation by 90 degrees. This is applied to the first two tori T 2, while the third goes

through a conjugate treatment, 180◦ clockwise. The generator of this transformation

will be labeled just Θ.

Θ: z1 → e
iπ
2 z1 , z2 → e

iπ
2 z2 , z3 → e−iπz3 (4.3)

That this be true under 90◦ rotations restricts the shape of the first two tori strictly

to be squares, that is (Ux = 0;Uy = 1). The third T 2 on the other hand escapes un-

scathed, as all parallelograms map to themselves under rotation by π. The orbifolding

of the square tori is graphically demonstrated in Figure 9. Straight (red) arrows rep-

resent translations between points identified under T 2, while curved (green) arrows

are the rotations of ZZ4. The unit cell is truncated as expected to just one-quarter

of its original area, shown as the shaded region. There are two fixed points (red

dots) which map to themselves under these combined operations, located at a corner

(0, 0) and center (1
2
, 1

2
) of the square. The remaining two (green) dots are instead

interchanged by Θ. Diagonally opposed edges are similarly traded on the reduced
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Fig. 9. Effect of the Identification ZZ4 on the Square Torus T 2

square, such that it folds into closure on itself as in the second element of Figure 9.

Tori one and two are thus deformed from our traditional ‘dough-nut’ conception into

the topology of a three cornered ‘pillow’. The full set of singularities generated on T 6

are sufficient to break the supersymmetry which our manifold supports in the bulk

to N = 21. This improved phenomenology is reflective of the fact that the T 6/ZZ4

orbifold is actually a Calabi-Yau threefold singular limit.

The next step in symmetry reduction is similar. Called the ‘anti-holomorphic

involution’ σ̄, it acts to identify points as:

σ̄: zi → eiφi z̄i (4.4)

The name of the game here is to lock down the available parameters such that this

operation also preserves the torus. Let us look first at the square elements from the

first and second T 2. The effect of the complex conjugation z̄ is a simple reflection

across the horizontal axis. The square retains its shape under this process so no

additional rotation need be employed. Conceptually we are always free to shift points

1Strictly speaking, the induced topological defects break continuous differentiabil-
ity and the orbifold is no longer a manifold at all.
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along integral factors of the torus moduli, so we may imagine that the square is now

translated back to its original home position. This has been called the A involution

[20] of the first two tori. Alternatively though, taking φi = nπ
2

is equally satisfactory.

The salient feature of this subtle change is that the invariant point set now lies

diagonally across the torus, which will have tremendous ramifications on both the

counting and supersymmetry of the allowed particle spectra. In conjunction with the

repeated application of Θ, it is sufficient to consider only the “n=1” case, which will

be called the B or ‘tilted’ involution.

A1,2: z → z̄

B1,2: z → e
iπ
2 z̄ (4.5)

Treatment of the third torus is somewhat more delicate, and will follow Figure 7

closely. The z̄ transformation is enacted on the 1st diagram to arrive at the 2nd.

The 3rd element of the figure shows an equivalent deformation by partial translation

along the two moduli. Fixing any two of (Ux, Uy, α, β, γ) will fully determine the

torus. First, it is clear that taking α = 90◦ (with Uy undetermined) is a special case.

This will be the A involution on the third torus, wherein simple reflection without

rotation is a proper symmetry. We are also allowed to transform by φ3 = 180◦, but it

is without supplementary effect. A rotation by 90◦ is generally excluded due to the

elongated rectangular structure for Uy 6= 1; A second scenario of interest is α = β,

which has been labeled involution B. As shown in the 3rd element of Figure 7, this

can be reconfigured as a vertically oriented diamond, i.e. with the tips located at

position x = 1
2
. As in case A, φ3 = 0 is a symmetry, φ3 = π is redundant, and there

is a special allowance for 90 degree rotations, occurring now at Uy = 1
2
. The choice

α = γ apparently contains no distinct benefit beyond involution B. The final observed
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symmetry occurs for |U | ≡√U2
x + U2

y = 1, i.e. a rhombus with α undetermined. We

will label this as case C, although it is unknown to us from the prior literature. In this

situation, taking φ3 = α(±π) will restore the torus to itself post complex conjugation.

For α = 90◦ this is the square limit of A. Taking α = 60◦ recreates a member from

B which may be rotated by any multiple of (2π/3). In fact, all figures obtained from

involution C are all similar to those of case B, although the orientation and scaling

are generally distinct. It is true that all final physical formulae are rotationally and

scale invariant in terms of conventions on the complex plane. Nevertheless, the basis

cycles overlay different sections of the parallelogram within each configuration, and it

remains unclear at this stage whether the extant phenomenology are furthered by the

third tilting. Analysis of this possibility will be deferred for the time-being. Applying

the remaining involutions to each of the three two-tori in all combinations yields only

four unique theories, labeled henceforth as {AAA,ABA,AAB,ABB}.

A3: z → z̄ (Ux = 0)

B3: z → z̄ (Ux =
1

2
)

C3: z → eiπαz̄ (|U | = 1) (4.6)

In oriented string theory e.g. Type IIA, the admission of the symmetry σ̄ of

(4.4) on the underlying manifold implies that the combined operator Ωσ̄, where Ω

represents worldsheet parity, will be a symmetry of the full stringy model. As desired,

modulating the spectrum by this ‘orientifold projection’ reduces the maximal available

bulk supersymmetry to N = 1. However, there are also ‘side benefits’ at least equally

as satisfactory. Namely, this set of identifications causes the generation of aRamond−

Ramond charged extended object lying along the invariant plane of the σ̄ operator

(c.f. Section E). This so-called ‘orientifold six-plane’, πO6, in turn develops a RR-
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tadpole term which must be canceled by the introduction of stacks of D6-branes2,

as exhibited in Section F. These stacks of branes are then responsible via string

modes tethered at their point of intersection for the appearance of the massless chiral

matter representations in gauged multiplets which we are ultimately seeking, as is to

be detailed Section G. Without the O6-plane, the right-hand side of (4.36) would

vanish, and with it our D6-brane stacks, accompanied by the entire supersymmetric

construction undertaken in the current framework3.

B. The SUSY Condition on D-Brane Stacks

In preliminary construction of the class of models under consideration, great care

has been taken to select a compactification background which can support N = 1

supersymmetry. However, this is necessary condition is yet insufficient. One must

also certify that the D-Branes wrapped on this space are capable of realizing super-

symmetry in a way which will be manifest within the multiplets arising from strings

located at their intersections. The orientation of a stack of D-Branes within T 6 is

given as three pair of wrapping numbers (ni, mi), with i = 1, 2, 3. As suggested in the

first diagram of Figure 7, n measures wrapping along the x̂ side of the torus, while m

counts cycles along the complex structure modulus ~U = Uxx̂+ Uy ŷ. There are three

corresponding angles Φi defined which measure ‘counter-clockwise’ from the +x̂ axis

to the vector nix̂ + mi
~U . The supersymmetry condition is applied on a per-stack

basis, and is enforced by the simple requirement that:

Φ1 + Φ2 + Φ3 = 0 (mod 2π) (4.7)

2The D-branes are static planes on which open strings terminate when employing
the Dirichlet (opposed to Neumann) boundary conditions.

3It has alternatively been stated [20] that without the Ωσ̄ projection, there are no
supersymmetric brane configurations, due to a persistently positive overall tension.
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As will be generally the case, all specific discussions in this section take the ori-

entifold T 6/ZZ4 context. In this scenario, the complex structure of the first and second

2-Tori is fully determined. This means simply that the prototype parallelogram on

which (n,m)1,2 are overlaid is not continuously deformable. However, the ŷ dimen-

sion of the third torus is undetermined and may be freely rescaled by the structure

factor U2. Since just this component of the complex structure will be referenced as

a parameter, the special notation of U is henceforth adopted. A consistent choice of

U for the third toroidal cell is the only inter-stack condition which SUSY imposes

on the D-brane configuration. The notion of ‘tilting’ on the second and third tori

will be naturally accommodated in the later discussion, but it remains for now an

unnecessary complication. The third intersection angle of a given stack for the AAA

involution is then properly defined by the relation

tan(Φ3) =
m3U
n3

. (4.8)

Graphically, we can attempt to find the net tangent-angle formed by the first

and second intersections, and play this against the expected result from (4.8). In

this manner it may be tested whether SUSY is salvaged, and what restrictions are

placed on the value of U . The perspective employed will be that each of the (n,m)i

are pre-selected, while U remains to be set by consistency requirements, as might be

convenient for a computer-based search. Discussion here will follow Figure (10). As

seen in the first image, the desired value of Φ3 is such to serve as the explement to

(Φ1 + Φ2). It is convenient to rescale the 2nd triangle to overlay the 1st, as in the

second graphic, with

n′
2 =

√

n2
1 +m2

1 , m
′
2 =

m2n
′
2

n2
. (4.9)

The dotted (green) triangle from the last image represents the target angle sum,
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Fig. 10. Graphical Representation of the SUSY Angle Constraints

which will be called Φ12. To compute the lengths of its sides, the segment

ξ =
m1m

′
2

n1
(4.10)

is needed first. We can then write:

tan(Φ12) =
m1 +m′

2(
n1

n′
2
)

n1 − ξ(n1

n′
2
)

=
m1 + (

m2n′
2

n2
)(n1

n′
2
)

n1 − (m1

n1
)(

m2n′
2

n2
)(n1

n′
2
)

(4.11)

Canceling crossed terms and multiplying through by (n2/n2 ≡ 1), this reduces to:

tan(Φ12) =
m1n2 + n1m2

n1n2 −m1m2
(4.12)

This result is symmetric under the operation (Φ1 ⇔ Φ2), consistent with the seman-

tical freedom of our angle designation.

While this construction is visually pleasing, it suffers from at least two short-

comings. Firstly, we have been somewhat incautious with the potentiality of some

factors in the calculation to go to zero. Secondly, there is a fundamental property

of the tangent function that it is periodic modulo π, rather than 2π, as appears in
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the SUSY condition of (4.7). This occurs because as each of sin(θ) and cos(θ) take

on a negative sign with the advance (θ → θ ± π), the ratio tan(θ) remains constant.

Equivalently, multiplication of each the numerator and denominator of a tangent ra-

tion by a negatively signed factor will reflect the quadrant to which the associated

angle vector refers. In order to unequivocally determine the referenced angle, it is

necessary to know at least the numerator or denominator’s sign in addition to the

tangent value. By choosing to flip the signs of (n,m)i, the diagrams of Figure (10)

can suffer a severe distortion. In conjunction with the through multiplication of n2,

this may leave it unclear at the outset that signs have been treated with sufficient

delicacy4. An alternate and more elegant derivation can help to rescue confidence in

(4.12).

We will consider that each of (n,m)1 and (n,m)2 establish a vector in the plane.

The matrix transformation which rotates such a vector through an angle Φ1 is given

by:






x̄

ȳ






=

1
√

n2
1 +m2

1

⊗







n1 −m1

m1 n1













x

y






(4.13)

Application of the formula (4.13) to the 2nd set of wrapping numbers again effectively

adds the angles Φ1 and Φ2, and yields barred coordinates within the ray lying along

this sum.






n̄2

m̄2






=

1
√

n2
1 +m2

1

⊗







n1n2 −m1m2

m1n2 + n1m2






(4.14)

Associating

tan(Φ12) =
m̄2

n̄2
, (4.15)

it is clear that (4.12) is reproduced identically. Cancellation of the positive-definite

4In fact, making sign assumptions consistent with the diagram figure are sufficient
to protect the dependent derivation under all deformations.
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radical
√

n2
1 +m2

1 is free from ambiguity.

We note that the target ray for the 3rd wrapping, such to achieve the
∑3

i=1 Φi =

0 (mod 2π) rule, is marked always by flipping the numerator m̄2 → −m̄2 in (4.15).

It will be convenient at this point then to make two definitions.

Γ ≡ −(m1n2 + n1m2)

∆ ≡ +(n1n2 −m1m2) (4.16)

It can thus be stated that

m3U
n3

=
Γ

∆
, (4.17)

employing (4.8,4.12) with the recent definitions. We stress that embedded within

this equivalency is also an understanding that the related numerators (denominators)

should share a common sign. A sequence of rules in the format of a logical flow can

now be read off of the previous relationship, as exhibited in Table II. We have allowed

either sign in general, but neither the values of zero nor infinity for U , the ŷ scaling

factor (complex structure) on the third 2-torus. This prevents both collapse and an

infinite extent for the physical notion of the compact surface element. Although we

have elected here not to manually restrict U to the upper half-plane this condition

will reappear dynamically in Section F. The condition of an indeterminate result for

(4.17) does not occur. To see this, define two vectors

~a ≡ n1x̂+m1ŷ , ~b ≡ n2x̂−m2ŷ (4.18)

embedded in a three-space. Then,

Γ = (~a×~b) · ẑ , ∆ = (~a ·~b) (4.19)

These can ever simultaneously vanish only if ~a = 0 or ~b = 0, which are disallowed as
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Table II. Rules for the Preservation of Supersymmetry in terms of Wrapping Numbers



































































































































































1. If Γ equals zero

• m3 must be zero

• (n3∆) must be positive

• U is undetermined

2. If ∆ equals zero

• n3 must be zero

• U must carry the sign of (m3Γ)

3. Otherwise

• (n3m3) cannot be zero

• (n3∆) must be positive

• U = n3Γ
m3∆

is fixed

null winding configurations. This conclusion is consistent with the intuition of Γ/∆

as the tangent of a physical angle.

Having dealt with the SUSY condition for the model AAA, it is time to consider

the tilted involutions. If the second torus is of type B, (4.7) is replaced by the

condition:

Φ1 + Φ2 + Φ3 = π/4 (mod 2π) (4.20)

The revised angle is a direct consequence of the π/4 rotation undertaken by the O6-

plane in this construction, as discussed in Section E. It will be convenient to absorb
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these 45 degrees into a redefinition of (n,m)2 which is counter rotated by −π/4.







ñ2

m̃2






≡ 1√

2
⊗







+n2 +m2

−n2 +m2






(4.21)

Replacing (n,m)2 with (ñ, m̃)2, all the previous analysis goes through smoothly, with

the angles once again summing to zero in the effective wrapping number frame. In

terms of the tangent definition with respect to the original coefficients,

Γ

∆
⇒ −(m1n2 +m1m2 − n1n2 + n1m2)

+(n1n2 + n1m2 +m1n2 −m1m2)

=
∆ + Γ

∆ − Γ
≡ Γ̃

∆̃
(4.22)

It is clear that indeterminacy of the transformed ratio is likewise excluded, as it would

require the previously disallowed scenario Γ = ∆ = 0. Although the ‘natural’ split

definitions of Γ̃ and ∆̃ could be argued to each carry a factor of 1/
√

2, we will forgo

this for the simpler cross relation of quotients implied by (4.22).

Γ̃B ≡ (∆ + Γ)A , ∆̃B ≡ (∆ − Γ)A (4.23)

We will advocate the position that the unwieldy (n,m)1,2 be replaced whenever pos-

sible by the more compact factors of Γ̃ and ∆̃. The question of what limitations

are imposed by ultimately demanding an explicit representation of (Γ̃, ∆̃) in terms of

fundamental co-prime wrapping numbers will be saved for later.

Tilting of the third torus is handled similarly. Because the vector ~U now contains

a lateral element, the m wrapping coefficients additionally supply a displacement in

the x̂ direction of one-half unit per cycle (c.f. Eq. 4.6). The third intersection angle

is thus replaced by

tan(Φ3) ⇒
m3U

n3 + 1
2
m3

≡ m̃3U
ñ3

, (4.24)
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recalling that U still refers to just the ŷ component of the full complex structure.

When there is no ambiguity, the subscript will be dropped from (ñ3, m̃3), expressing

them simply as (ñ, m̃). The explicit split definitions for these effective wrappings are:

m̃B ≡ mA , ñB ≡ (n +
m

2
)A (4.25)

The generalized SUSY requirement is thus restated

m̃U
ñ

=
Γ̃

∆̃
, (4.26)

understanding that the definitions of (ñ, m̃)2,3 are to be employed as in (4.23,4.25)

only whenever the corresponding torus represents a B-type involution. The omission

of a tilde-notation in any formula will imply reversion to the definitions of (4.16),

irrespective of any tilting.

C. Fundamental Bulk Basis Cycles

Again the context of current discussion will be T 6/ZZ4. A complete basis set of 16

linearly independent ZZ4 invariant 3-cycles has been developed in reference [20]. These

are partitioned into two sets of 8, with a barred notation marking dependence on the

‘m’ (as opposed to ‘n’) wrapping of the 3rd torus, all else being equal. There is

a further subdivision, as just two of these pair (ρ, ρ̄)1,2 descend from the ambient

toroidal ‘bulk’ space, being simple combinations of the fundamental wrappings on

T 6. The remaining 6 pair (ε, ε̄)i=1...6 are ‘exceptional cycles’ arising from the ZZ2

‘twisted’ orbifold sector. Their discussion will resume in the following section. The

projections of a given wrapping onto each of the bulk basis members are a function

of the (n,m)i selected for a given stack. These coefficients of the bulk cycles take on
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a simple form in our current language.

πb = [n∆]ρ1 + [−nΓ]ρ2 + [m∆]ρ̄1 + [−mΓ]ρ̄2 (4.27)

Notice that this formula is static across all four involutions. We will need also the

image π′ under the orientifold mirror Ωσ̄. The transformation is enacted via 4 × 4

matrix Σ, distinct per each case of tilting.

π′ ≡ Σ × π (4.28)

It is convenient to first define a pair of 2-dimensional square matrices:

α2 ≡







1 0

0 −1






, β2 ≡







0 1

1 0






(4.29)

Then:

Σ =







α ∅

∅ −α






;







β ∅

∅ −β






;







α α

∅ −α






;







β β

∅ −β







AAA ABA AAB ABB

(4.30)

Since the matrices α2 and β2 square to unity, a repeated application of Σ maps all

cycles to themselves as expected.

D. Exceptional Cycles and Fractional Branes

The so-called ‘fractional’ branes are pairings of a fundamental cycle with one of the

exceptional classes. A factor of 1/2 is pre-pended to the fundamental cycle whenever

such a combination is considered. Exceptional cycles ever appear only in such unions,

rather than as isolated manifestations of the D-brane wrapping state. Although the

description of fractional branes is demanded for completeness, and they can certainly
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be phenomenologically indicated for the purposes of model building, in no situation

is their use mandatory. On the other hand, severe restrictions do exist on when and

how we may elect to employ the exceptional sector, as provided in Table III 5. These

Table III. Allowed Exceptional Cycles

n1 odd, m1 odd n1 odd, m1 even n1 even, m1 odd

n2 odd, ε3, ε4 ε3, ε4

m2 odd ε5, ε6 ε5, ε6

(Case 0) (Case 2) (Case 2)

n2 odd, ε1, ε2 ε1, ε3, ε5 ε1, ε3, ε6

m2 even ε5, ε6 ε1, ε4, ε6 ε1, ε4, ε5

ε2, ε3, ε6 ε2, ε3, ε5

ε2, ε4, ε5 ε2, ε4, ε6

(Case 1) (Case 3) (Case 4)

n2 even, ε1, ε2 ε1, ε3, ε6 ε1, ε3, ε5

m2 odd ε5, ε6 ε1, ε4, ε5 ε1, ε4, ε6

ε2, ε3, ε5 ε2, ε3, ε6

ε2, ε4, ε6 ε2, ε4, ε5

(Case 1) (Case 4) (Case 3)

restrictions emerge from the consideration that only those exceptional cycles may

contribute which are intersected by the flat D-brane. Notice that Case 1 versus Case

2 represents an inversion of the first and second tori. The distinction between Cases

3 and 4 is marked by the interchange (ε5 ⇔ ε6). Depending on the case in play,

5Taken with slight modification from its appearance as Table 3 of reference [20].



101

as selected by the wrapping ‘parity’ on the first and second tori, there are 2, 4, or

0 choices for the set of non-vanishing exceptional cycle elements. A 6-dimensional

vector ~ω is defined for each given set, bearing a (freely) signed coefficient (±1)6 for

the two (or three) listed basis elements, and all other entries null. The exceptional

cycle is then fully determined, with the same vector ~ω providing signs for both of the

six (ε, ε̄), while each is separately mitigated in scale by wrapping numbers on the 3rd

torus.

πe = n(~ω · ~ε) +m(~ω · ~̄ε) (4.31)

The net fractional homology is the halved-sum of both bulk (c.f. Eq. 4.27) and

exceptional contributions.

πf =
1

2
πb +

1

2
πe (4.32)

While Table III represents the natural language of derivation for its constraints,

the provided framework is somewhat bulky, and inconvenient for computational appli-

cation. The reader may readily confirm equivalency of the reduced rule set appearing

in Table IV. Following our injunction to favor (Γ,∆) of (4.16) over the (n,m)1,2, we

can also (nearly) restate the allowed exceptional cycles in this language (Table V).

As was hinted previously, the ability to distinguish between Cases (1, 2) requires a

detailed knowledge of wrapping on the 1st and 2nd tori. However, the factors (Γ,∆)

treat those wrapping numbers in full symmetry. Regardless, this will be the least

significant distinction between the 5 possible classifications.

As with the bulk cycles, it will be necessary to know the orientifold Ωσ̄ mapping

of the exceptions. Just as in (4.28), π′ ≡ Σ × π, except Σ is now a 12 × 12 matrix,

where the upper six rows operate on εi, and the lower on ε̄i. The block-composition

6This relative sign freedom is in correspondence to the turning on of a discrete
Wilson line along an internal D-brane direction at the orbifold point.
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Table IV. Rules for Selection of the Allowed Exceptional Class











































































































1. If (n1 +m1 + n2 +m2) is Even

(a) If (n1 + n2) is Even

i. If (n1 ×m1) is Even : Case 3

ii. Otherwise : Case 0

(b) Otherwise : Case 4

2. Otherwise

(a) If (n1 ×m1) is Even : Case 2

(b) Otherwise : Case 1

of Σ from (4.30) remains intact across each tilted involution, so long as we update

(4.29) with 6-dimensional matrices.

α6 ≡

































1

1

1

1

1

1

































, β6 ≡

































−1

−1

1

1

0 1

1 0

































(4.33)

Unmarked off-diagonal elements are zero. As before, Σ2 ≡ 11.
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Table V. Allowed Exceptional Cases in Terms of (Γ,∆)

Γ odd Γ even

∆ odd Case 1 or2 Case 3

∆ even Case 4 Case 0

E. The O6 Planes

Under the action of the symmetries imposed on the torus T 6, there are certain sets

of fixed points which become re-associated into themselves. Since the ZZ4 action Θ

represents a rotation in the complex plane by e
i2π
4 , or ‘90 degrees counter-clockwise’,

on the first two tori T 27, it may be applied up to three times (Θ3) before becoming

degenerate. From each of operations Ωσ̄, Ωσ̄Θ, Ωσ̄Θ2, and Ωσ̄Θ3, there is defined an

invariant plane which bisects each 2-torus in a manner identical to the cross-cutting

of the D-branes themselves. In fact, the orientation these fixed point sets can be fully

described in terms of just the four bulk wrapping basis cycles. The sum of the four

listed contributions will be called the ‘orientifold six-plane’, πO6. Under each allowed

tilting, as induced by distinct ‘anti-holomorphic involutions’ σ̄: z → eiφi z̄, there is a

7Θ operates on the 3rd torus as e−iπ, balancing its net effect to unity. In this
context then, Θ2 ≡ 11.
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unique resulting O6-plane.

πO6 =



















































ρ1 ρ2 ρ̄1 ρ̄2

4 0 0 −2 AAA

2 2 2 −2 ABA

2 1 0 −2 AAB

0 2 2 −2 ABB

(4.34)

F. Tadpole Constraints

Once the orientifold projection and associated invariant planes are incorporated into

our construction, they will necessarily carry a non-vanishing induced Ramond-Ramond

charge. These structures are manifest in the string theory as the appearance of a RR-

tadpole. Suppression of this undesirable factor is in fact the underlying natural and

essential motivation for the introduction of D-brane stacks wrapping the compact

space, and with them gauged chiral matter multiplets as are expected in the stan-

dard model and GUT extensions. It also provides one of strongest guiding constraints

as to how the allocation of these stacks may be consistently realized.

The full constraint is written concisely as a sum over all stacks a, with Na the

number of D-branes in the ath stack.

∑

a

Na(πa + π′
a) = 4πO6 (4.35)

However, in this language the underlying similarities between tilted variants are some-

what masked. Note that (4.35) actually represents 16 relationships, as it must be

satisfied individually for each of the basis elements of the cycles π. We shall choose

instead to expand the constraints in terms of these sixteen coefficient sets. Since

the O6-plane sources associate to bulk cycles only, the four (ρ, ρ̄)1,2 are conveniently
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grouped together, and will be addressed first, using (4.27,4.28,4.34). Taking each

involution in turn, it is seen that there are only ever two independent bulk tadpole

conditions, both of which exhibit a pleasing unified form.

∑

a

(

{2}bNñ∆̃
)

a
= Πn

∑

a

(

{2}bNm̃Γ̃
)

a
= Πm (4.36)

The term {2}b is a reminder that stacks which wrap only in the bulk, as opposed to

the fractional branes, contribute at twice the rate to saturation of the tadpole. The

Π(n,m) are (distinct) constant positive numbers in each tilted configuration.

AAA ABA AAB ABB

Πn = 16 16 8 8

Πm = 8 16 8 16

(4.37)

For the remaining 12 tadpole constraints on exceptional cycles (c.f. Eqs. 4.31,4.28,4.33)

the right-hand side of (4.35) is zero. As before, only one half of the possible constraints

are non-trivially applied. There is an apparent disparity in how these six equations

are written, based on whether or not the second torus is tilted.

∑

a

Na(ñ~ω)a = 0 (AAA,AAB) (4.38)

∑

a

Na

(

m̃ω1, m̃ω2, ñω3, ñω4, ñ
(ω5+ω6)

2
, m̃ (ω5−ω6)

2

)

a
= 0 (ABA,ABB) (4.39)

We will now begin to cross-reference the bulk tadpole constraint of (4.36) with

the rules on supersymmetry preservation from Table II8. First it is noted that under

all scenarios, the quantity ñ∆̃ is greater than or equal to zero, by SUSY . Next, from

8Although this table was constructed prior to introduction of the ‘tilde’ notation,
it does indeed refer to the rotated effective wrapping numbers.
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the tadpole constraint, we observe that at least some stacks must take a positive value

for m̃Γ̃. Whenever this is the case, the SUSY rules say that U , the (imaginary part

of the) complex structure on the third torus must also be positive. But, since every

stack must share just a single physical value for U , this value must therefore always

be positive. The converse is also true, in that a positive U cannot ever allow m̃Γ̃ to

be negative. Therefore, all contributions to the two bulk tadpole terms are strictly

positive semi-definite. Furthermore, since (ñ∆̃) and (m̃Γ̃) must never simultaneously

vanish9, all stacks must contribute to at least one of the terms. These conditions are

highly confining, and disallow the prospect of an indefinite well of D-brane stacks or

large wrapping numbers from which to fashion any desired result. The least restrictive

involution is the ABA configuration, in the sense that its tadpole allowances from

(4.37) are the greatest.

Table II is then be updated by Table VI, reflecting this new knowledge. Please

note that Table VI does not subsume (4.36), but instead they must be taken in

conjunction.

Finally, we summarize a number of generic statements which can now be made

after combination of the SUSY and RR-tadpole constraints.

1. U must be a positive number.

2. All stacks make a positive-definite contribution to at least one bulk tadpole.

3. Only stacks which hit both tadpoles fix U numerically.

9Note however that when (ñ∆̃) is zero, both of its factors vanish together, and

likewise for (m̃Γ̃).
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Table VI. The Combined SUSY plus RR-tadpole Wrapping Selection Rules



















































































































1. If (ñ∆̃ < 0) or (m̃Γ̃ < 0)

• The construction Fails

2. If (ñΓ̃) equals zero

• (m̃∆̃) must be zero

• U is positive

3. Otherwise

• (m̃∆̃) cannot be zero

• U = ñΓ̃
m̃∆̃

is fixed

G. Brane Intersections and Gauged Symmetry Groups

The static position of a D-brane within a compactified space has the T -dual inter-

pretation of Wilson-line type phases accrued by Chan-Patton charges at the ends of

open strings wrapping the non-trivial topology. The cyclic nature of the trace fac-

tor in tree-level scattering for open oriented strings with N CP degrees of freedom

guarantees that such constructions generally support a globalized U(N) symmetry1.

There is the generic expectation in string theory that global world-sheet symmetries

will be dynamically gauged in space-time by creation operator modes which carry

the internal indices. However, this symmetry is broken if the N Wilson phases are

1There are also mechanisms for achieving Orthogonal (unoriented) and Symplectic
gauge groups.
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non-degenerate, or in the other picture, if the N corresponding D-branes take on dis-

tinct positions. Alternatively, the gauge symmetry may be viewed as being gauged by

the N2 massless modes associated with the N redundant string attachment faces of

the stacked D-branes. It is then ‘Higgsed’ if the member elements diverge from each

other, thus creating massive modes corresponding to a non-zero energy of stretching.

The presence of magnetic fluxes from such gaugings corresponds in a dualized

picture to a tilting of the related D-brane. There will thus generally be intersections

between any various such stacks, at which (string scale) massless modes are expected

to materialize. The resulting particle spectrum will carry bi-fundamental representa-

tions from the two stacks on which its endpoints affix. The redundancy, or number of

generations in the usual particle language, of gauge multiplets produced by stacks of

intersecting D-branes is simply determined by the number of times which the stacks

bisect each other while wrapping the fundamental toroidal section. Some intuition for

the calculation of this ‘topological intersection number’ can be gained by the elemen-

tary graphical demonstration of Figure (11). However, care must be taken in that we

will ultimately wish to deal with the orbifolded quotient space, and not the ambient

torus T 6 itself. In this picture, two wrapping vectors (large blue & red arrows) we

can call (~a,~b) overlay the (square) toroidal lattice. In the upper left-hand corner all

crossings of each vector are overlaid into a single cell so that their intersections (green

dots) may be counted. Note that we could instead choose to view one of the two vec-

tors as in the expanded lattice while it is repeatedly crossed by the dotted arrows of

the opposing color. However, the counting of either set of dotted lines (being careful

to not apply the edges in duplicate) is just equivalent to the number of internal lat-

tice points framed by the parallelogram of the wrapping vectors. To verify, note that

each lattice point must by definition form the origin (and destination) of a translated
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Fig. 11. Graphical Representation of the Topological Intersection Number

version of the wrapping vectors ~a and ~b. The ‘co-prime’2 wrapping restriction against

multiple windings ensures that any such point will be crossed no more than once. The

right-hand side of Figure 11 demonstrates via rearrangement of the parallelogram3

that the desired count of contained lattice nodes (green dots) is further equivalent

to the enclosed area. There is then a convenient vector expression for the number of

resulting families in terms of a cross product.

Mab = (~a×~b) · ẑ = (namb −manb) (4.40)

As expected for consistency, this is purely integral. Within the definition of sign

convention as in (4.40), the exchange (a ⇔ b) is antisymmetric. Negative values of

2Co-prime wrapping numbers (n,m) are selected such that they have no common
integral divisors beside ±1.

3As is coded alphabetically and in gray-scale.
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Mab imply conjugate representations. Although this exercise was undertaken for a

square lattice, the result is valid for any conformal distortion, i.e. alternate value of

the complex structure, as long as the wrapping numbers (n,m) are the pure count of

windings along the skewed axes. In other words, particle multiplicities are expected

not to refer to the effective winding coefficients (ñ, m̃). However, appearance of the

trigonometric function sin(Φab) in this construction should hearken back to the SUSY

constraint of (4.7), and provide some intuition for the recurrence of the familiar

quantities (Γ,∆).

The specific results for the d = 4 chiral gauged multiplets in T 6/ZZ4 are provided

in term of the previously described basis cycles and orientifold plane in Table VII 4.

We note that all gauge multiplets derived from this and related models are guaranteed

to be free of non-Abelian anomalies, which forms then a valuable consistency check on

the resultant spectra. The circle-product ‘◦’ notation here signifies application of the

Table VII. Chiral Spectrum in d = 4

Representation Multiplicity

[Aa]L
1
2
(π′

a ◦ πa + πO6 ◦ πa)

[Sa]L
1
2
(π′

a ◦ πa − πO6 ◦ πa)

[(Na,Nb)]L πa ◦ πb

[(Na,Nb)]L π′
a ◦ πb

topological intersection between cycles. The basis cycles, which we will collectively

name πi ≡ (ρi, εi), were defined such to be orthogonal under intersection. There is

a non-vanishing product only with the barred-partner of each cycle, normalized to

4Appears originally as Table 1 of reference [20].
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magnitude 2. Commuting the product yields a Grassman-like flip of sign.

π̄a
i ◦ πb

j = 2δijε
ab (4.41)

It is now possible to expand the intersections from Table VII into the more tangi-

ble language of wrapping numbers and exceptional vector elements, using (4.16,4.27,4.31

& 4.32).

πa ◦ πb = 2
{

1
2

}f

a

{

1
2

}f

b
× [−(n∆)a(m∆)b + (mΓ)a(nΓ)b

−(nΓ)a(mΓ)b + (m∆)a(n∆)b]

+1
2
~ωa · ~ωb × [−namb +manb] (4.42)

π′
a ◦ πb = 2

{

1
2

}f

a

{

1
2

}f

b
× [−(n∆)a(m∆)b + (mΓ)a(nΓ)b

+(nΓ)a(mΓ)b − (m∆)a(n∆)b]

+1
2
~ωa · ~ωb × [−namb −manb] (4.43)

In each expression the first square brackets enclose the contribution of the bulk cycles

while the second set describe the exceptions, if any. In that case of fractional cycles,

the {1
2
}f coefficients must also be employed. The orientifold six-planes ostensibly

require special treatment, in that each tilted involution offers a unique value (c.f.

Eq. 4.34).

πO6 ◦ πa =
{

1
2

}f

a
×



































−8m∆ +4nΓ AAA

−4m∆ +4mΓ +4n∆ +4nΓ ABA

−4m∆ +2mΓ +4nΓ AAB

+4mΓ +4n∆ +4nΓ ABB

(4.44)
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However, under the transformations (4.23,4.25), and using the constants of (4.36), a

unified form is realized.

πO6 ◦ πa = 4
{

1
2

}f

a
×
[

ñΓ̃ − m̃∆̃

(

Πn

Πm

)]

(4.45)

H. Searching for Flipped SU(5)

Since the Grand Unified Theory of ‘Flipped SU(5)’ holds for us a special appeal, it

will be made the target in this section as an example of model construction. Seeking

out the gauge group SU(5) × U(1)X then recommends the use of stacks with either

five or just a single element. The chiral matter representations in this scenario are

{

10 , 5̄F , 1F
}

L
, (4.46)

times three generations. The superscript ‘F’ is in place to emphasize that the ‘flip-

pings’ (uc
L ⇔ dc

L) and (νc
l ⇔ ec

L) restructure the charge content of our five-bar and sin-

glet representations as compared to Georgi-Glashow theory. The flipped-type U(1)X

(non-anomalous) multiplets 5̄F come from the the [(Na,Nb)] elements of Table VII,

while [(Na,Nb)] produces standard SU(5) content from strings stretched between

five- and single-member stacks. For the singlets this assignation is reversed, with

1F arising out of either the [(Na,Nb)] stretching between isolated D-branes or the

symmetric self-attachment of a single brane. There is no such distinction for the 10.

The Georgi-Glashow five-plets are not without use to us however, as we take a pair

(5, 5̄) to serve as Standard-Model Higgs. It is also desirable to find a pair ((10, 10))

with which to break the GUT to the Standard Model5. Although mechanisms exist

for pushing ‘extraneous’ content to an unobservable string-scale mass, we shall nev-

5That this is possible via antisymmetric representations (which now house an
electrically neutral member) rather than the usual adjoint Higgs is an advertised
feature of Flipped SU(5).
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ertheless endeavor where possible to achieve the minimal representation, free of any

(symmetric) 15’s and enlarged matter or Higgs sectors. As an aside, each family in

(4.46) exactly represents the decomposition of a 16 (spinor) of SO(10).

We shall resist for now the complication of tilting until the prototype scenario of

AAA has been laid out in full. It is sensible to start first with the most broad yet

inescapable of our phenomenological demands. This will be simply that the number of

antisymmetric 10-plets is nonzero. The first critical observation which can be made in

this context is that contributions to either of the ‘self-intersection’ type multiplicities

require that a stack participate in both bulk tadpole terms of (4.36), and thus that it

sets a hard value for U . To see this, note that every term from both of (4.43,4.45)

contains at least one member from each of the pairs ñ∆̃)a and m̃Γ̃)a (for a = b), so

that the vanishing of either6 kills the entire result. The least possible value which can

be applied to (NmΓ)a for our stack of five D-branes is just 5. In the current AAA

scenario this is the only choice available, and in fact it is necessary that exceptional

cycles be include so that the {2}b factor not oversaturate the 2nd tadpole. Since the

value of Πn is here 16, not just 8, we can in principle take any of n∆ = (1, 2, 3).

However, the exceptional cycle tadpoles of (4.38) must also be taken into account.

It is important to notice here that only contributors to the 1st bulk tadpole

“n∆” have any effect on the exceptional tadpole. Factors of both sign clearly appear

in this zero-sum constraint. However, it is certainly not a free-for-all, in that even by

assuming the minimal case of δ = ±1 a contribution of magnitude |Nana| is at least

matched by the bulk tadpole. Therefore, if the exceptional tadpole is overextended

by more than half the total allocated by Πn ⇒ 16, there will not be enough ‘gas’ left

6Recall consistency enforces that both related members mush go to zero together,
if at all.
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to get back home7.

Nana ≤ 16 (AAA) (4.47)

This is enough to already to restrict our consideration to just

(n∆)5 = 1 ; (mΓ)5 = 1 . (AAA) (4.48)

Still, it is beneficial here to study further the ways in which we might expect the varied

exception cases of Table III to conspire in their cancellation. One obvious possibility

is that a pair of subscribers to the same exception class take opposite assignments of

(Nn~ω)a and find agreement amongst themselves. However, this is often unrealizable.

We note that between the cases of 3 and 4 any two choices for the vector ~ω will have

exactly two or no elements in common. If there are two shared basis vectors which

have coefficients such to vanish when paired then the remaining sum of two elements

will always be such that it can in principle be countered by a stack of exception type

1 or 2. Within either case 3 or 4 any two ~ω’s have either all three (they are the

same set of 3εi) or only one common element. If the single duplicate basis member is

canceled then two stacks from the set of cases (1,2) are enough to close the tadpole.

However, when dealing here with magnitude 5 tadpole contributions, the quadruple-

stack picture already over-saturates the bulk. This seems to summarize the reasonable

basis scenarios in satisfaction of (4.38).

It is also important to mention some general conditions on the bi-fundamental

multiplicity numbers from (4.42,4.43). When taking the intersection between two

stacks that contribute each to just a single bulk tadpole, there is an isolated term

that survives if (and only if) the respective stacks hit the opposed tadpoles and both

7This principle has been well known for some time to carrier-based Naval aircrew.
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employ fractional cycles.

π(′)
a ◦ πb ∼ −1

2
namb~ωa · ~ωb (4.49)

If a single-tadpole stack a intersects a double-type stack b, there are generally two

non-vanishing terms, for example:

π(′)
a ◦ πb ∼ −2

{

1
2

}f

a

{

1
2

}f

b
(n∆)a(m∆)b − 1

2
namb~ωa · ~ωb (4.50)

If both stacks are participants in both available bulk tadpole constraints, then all six

terms should be expected.
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CHAPTER V

CONCLUSION

A. Summary and Conclusions

This study has considered Grand Unified Theories as the essential bridge between

low energy phenomena and next generation String Theories. We have reviewed the

compelling arguments in favor of the Flipped SU(5) GUT, including simultaneous

consistency with αs(MZ) and proton lifetime limits. The tremendous expense, both

material and intellectual, entailed by the experimental search for proton decay de-

mands a diverse and comprehensive survey of prospects for discovery by the theoret-

ical community. In addition to helping develop consensus on the likelihood that we

could be looking in the “right place”, laying our cards on the table has the greater

benefit of establishing how finely the results, even null results, will discern between

competing proposals. The great sensitivity of proton lifetime to the selected GUT

structure, and even to the supersymmetric parameter space, do seem to justify the

efforts required. We believe the analysis here is the most accurate and comprehensive

to date for the flipped picture.

In conjunction, investigations into the two leading paradigms for string model

building have been presented. Free Fermionic constructions require assignment of

a non-trivial vacuum, oriented in the field space to preserve a flat scalar potential,

in order to trim field content, provide masses and cancel the FI anomaly. We have

advanced the technology of assigning such VEVs to non-Abelian fields for the Lie

groups SU(2) and SO(2n), taking the stance that a geometrical interpretation of

the adjoint VEV representation will greatly aid visual intuition of the model builder.

A more modern approach employs Intersecting D-Branes for the direct realization
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of GUT multiplets at the string scale. Focusing on the T 6/ZZ4 orientifold, we have

undertaken a numerical search for the flipped SU(5) GUT in parallel to an analytic

reduction of the simultaneous constraints of supersymmetry and anomaly cancellation

on the brane configuration. The rules described allow in some cases a comprehensive

manual classification of existing models which include the desired representations.

B. Future Work

I would like to develop an improved understanding of the second stage super-unification

which the flipped SU(5) GUT undergoes, presumably at a suitably reduced string

scale. Since this energy depends from below on the precision LEP measurements at

MZ and the CMSSM parameter space, besides additional heavy thresholds effects on

either side of M32, it is intrinsically linked to low energy particle physics (and also

very strongly correlated to proton lifetime). On the other hand, the scale is inherently

a string determined value, providing a rare and valuable tangible link to that regime.

Looking down the wrong end of the telescope, we may imagine that mechanisms pro-

posed for a slight lightening of the string mass are a necessary consequence of grand

unification.

It may also be valuable in time to extend the brief examples studied for applica-

tion of non-Abelian VEVs, particularly within the existing flipped SU(5) Heterotic

construction. Within the D-brane approach, I would like to complete an exhaustive

search all SU(5) type theories which exist within T 6/ZZ4, developing a better under-

standing of the role of tilting to influence the spectrum. The proposed “third tilting”

also deserves a proper study to determine whether it is truly independent. It would

additionally be good to attempt extension of the listed rules, which benefit from

purely positive contributions to the anomaly for all stacks, to alternate orientifold
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configurations. It may be possible to play two (or more) 5-stacks against each other

to avoid or cancel the appearance of light symmetric (15) representations. Finally,

a second generation computer program which benefits from the developed wisdom to

greatly reduce required runtime, while maintaining the comprehensive and accurate

nature of a numerical search, would be a tremendous development.
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APPENDIX A

Presented here is the choice of SO(6) Matrices in the Original and Diagonal bases 1.

M12 M34 M560BBBBB@ 0 i 0 0 0 0
−i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ,

0BBBBB@ 1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ;

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 i 0 0
0 0 −i 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ;

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 i

0 0 0 0 −i 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

1CCCCCA ;

E1

24 +
+
×

35 ≡ 1

2

0BBBBB@ 0 0 −1 i 0 0
0 0 i 1 0 0
1 −i 0 0 0 0
−i −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 −1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ; E2

24 −

−

×

35 ≡ 1

2

0BBBBB@ 0 0 1 i 0 0
0 0 i −1 0 0
−1 −i 0 0 0 0
−i 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ;

E3

24 +
−

×

35 ≡ 1

2

0BBBBB@ 0 0 1 i 0 0
0 0 −i 1 0 0
−1 i 0 0 0 0
−i −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ,

0BBBBB@ 0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ; E4

24 −

+
×

35 ≡ 1

2

0BBBBB@ 0 0 −1 i 0 0
0 0 −i −1 0 0
1 i 0 0 0 0
−i 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 0 0
0 0 0 −1 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ;

E5

24 +
×

+

35 ≡ 1

2

0BBBBB@ 0 0 0 0 −i −1
0 0 0 0 −1 i

0 0 0 0 0 0
0 0 0 0 0 0
i 1 0 0 0 0
1 −i 0 0 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 0 −i

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 i 0 0 0 0
0 0 0 0 0 0

1CCCCCA ; E6

24 −

×

−

35 ≡ 1

2

0BBBBB@ 0 0 0 0 −i 1
0 0 0 0 1 i

0 0 0 0 0 0
0 0 0 0 0 0
i −1 0 0 0 0

−1 −i 0 0 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 −i 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
i 0 0 0 0 0

1CCCCCA ;

E7

24 +
×

−

35 ≡
1

2

0BBBBB@ 0 0 0 0 i −1
0 0 0 0 1 i

0 0 0 0 0 0
0 0 0 0 0 0
−i −1 0 0 0 0
1 −i 0 0 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 i 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −i 0 0 0 0

1CCCCCA ; E8

24 −

×

+

35 ≡
1

2

0BBBBB@ 0 0 0 0 i 1
0 0 0 0 −1 i

0 0 0 0 0 0
0 0 0 0 0 0
−i 1 0 0 0 0
−1 −i 0 0 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 i

0 0 0 0 0 0
0 0 0 0 0 0
−i 0 0 0 0 0
0 0 0 0 0 0

1CCCCCA ;

E9

24 ×

+
+

35 ≡
1

2

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 i

0 0 0 0 i 1
0 0 1 −i 0 0
0 0 −i −1 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

1CCCCCA ; E10

24 ×

−

−

35 ≡
1

2

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 i

0 0 0 0 i −1
0 0 −1 −i 0 0
0 0 −i 1 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 −1 0 0 0

1CCCCCA ;

E11

24 ×

+
−

35 ≡
1

2

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 −i

0 0 0 0 i −1
0 0 1 −i 0 0
0 0 i 1 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0

1CCCCCA ; E12

24 ×

−

+

35 ≡
1

2

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 −i

0 0 0 0 i 1
0 0 −1 −i 0 0
0 0 i −1 0 0

1CCCCCA ,

0BBBBB@ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 0 0 0

1CCCCCA ;

1 The symbols (+,−,×) describe the raising, lowering or null role of the operators
Ei in each of the three selected diagonal sectors.
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APPENDIX B

Presented following are programs for numerical extraction of gauged models on T 6/ZZ4.

1. Phase 1: The Supersymmetry Condition

#!/usr/bin/perl

#T6/Z4

5 require ’ibw_subrouts.p’;

use vars qw(@cop $maxindex);

my @inv = (’AAA’, ’ABA’, ’AAB’, ’ABB’);

10 my $tori = 3;

my ($n1,$m1,$n2,$m2,$n3,$m3,$wrap,$gamma,$delta,$u2,$cs);

$maxindex = 1;

15
&COPRIME;

&WRAPPINGNUMBERS;

20 &SORT;

sub WRAPPINGNUMBERS {

my (@index,$cp);

my $t = $tori - 1;

25 my $cop = $#cop;

for (@inv) {

open (IBW, ’>SUSY/IBW_SUSY_’.$_.’_’.$maxindex);

my ($i);

my @cs = split ’’;

30 *NM2 = *{’NM_2’.$cs[1]};

*NM3 = *{’NM_3’.$cs[2]};

($index[$_] = $cop) for (0..$t);

until ($i < 0) {

$wrap = join ’ ’, (($n1,$m1,$n2,$m2,$n3,$m3) = map @{$cop[$_]}, @index);

35 ($n2,$m2) = &NM2;

($n3,$m3) = &NM3;

($gamma,$delta) = &TAN3;

for (&COMPLEXSTRUCTURE) {

($u2,$cs) = @$_;

40 next unless $cs;

$m3 *= $u2;

if (&QUADRANT) {

print IBW $cs, "\t"x(length($cs)>7?1:2), $wrap, "\n"; }}}

continue {

45 $i = $t;
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($index[$i--] = $cop) while (--$index[$i] < 0); }

close IBW; }}

sub SORT {

50 for (map $_, @inv) {

my %cs;

my $file = ’SUSY/IBW_SUSY_’.$_.’_’.$maxindex;

open (IBW, $file);

while (<IBW>) {

55 my ($k,$v) = split /\s+/, $_, 2;

push @{$cs{$k}}, $v; }

close IBW;

open (IBW, ’>’.$file);

select IBW;

60 for (sort {$b cmp $a} keys %cs) {

print $_, "\t", int @{$cs{$_}}, "\n\t";

print join "\t", @{$cs{$_}}; }

close IBW; }}

65 sub COMPLEXSTRUCTURE {

if ($gamma == 0) {

($m3 == 0) ? [0,’ANY’] : [0,0]; }

elsif ($delta == 0) {

($n3 == 0) ? ([1,’POS’],[-1,’NEG’]) : [0,0]; }

70 else {

return [0,0] if ($n3*$m3 == 0);

my $cs = 1.0*($n3/$m3*$gamma/$delta);

[$cs,&ROUNDFIVE($cs)]; }}

75 sub QUADRANT {

if (($n1*$m1*$n2*$m2 < 0) or ($gamma == 0)) {

($n3*$delta < 0); }

else {

($m3*$gamma < 0); }}

80
sub NM_2A {

($n2,$m2); }

sub NM_2B {

85 (($n2+$m2),($m2-$n2)); }

sub NM_3A {

($n3,$m3); }

90 sub NM_3B {

(($n3+$m3/2),$m3); }

sub TAN3 {

(($n1*$m2+$m1*$n2),($m1*$m2-$n1*$n2)); }
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2. Phase 2: The Bulk Cycles

#!/usr/bin/perl

#T6/Z4

5 $| = 1;

require ’ibw_subrouts.p’;

my (@bet,@bem,@cs,@rho,@prime,@tad,%any,@rhoprime,$o6);

10
my @inv = (’AAA’, ’ABA’, ’AAB’, ’ABB’);

my @stacks = (5,5,1);

@stacks = reverse sort {$a<=>$b} @stacks;

my $stacks = join ’’, @stacks;

15 my $s = $#stacks;

my $is = int @stacks;

my @choose = map { my @tmp = @$_;

[ map { ($tmp[$_] == 1) ? $_ : () } (0..$s) ]; } &CHOOSENOFM(2,$is);

my $tori = 3;

20 my $ele = 2*$tori;

my $maxindex = 5;

my @BE = (’B’, ’E’);

my %BE = ( ’B’, 1, ’E’, .5 );

25 my %RHO_PRIME = (

’AAA’ => [

[ 1, 0, 0, 0],

[ 0,-1, 0, 0],

[ 0, 0,-1, 0],

30 [ 0, 0, 0, 1] ],

’ABA’ => [

[ 0, 1, 0, 0],

[ 1, 0, 0, 0],

[ 0, 0, 0,-1],

35 [ 0, 0,-1, 0] ],

’AAB’ => [

[ 1, 0, 1, 0],

[ 0,-1, 0,-1],

[ 0, 0,-1, 0],

40 [ 0, 0, 0, 1] ],

’ABB’ => [

[ 0, 1, 0, 1],

[ 1, 0, 1, 0],

[ 0, 0, 0,-1],

45 [ 0, 0,-1, 0] ] );

my %O_SIX = (

’AAA’ => [ 4, 0, 0,-2],

’ABA’ => [ 2, 2, 2,-2],

50 ’AAB’ => [ 2, 1, 0,-2],

’ABB’ => [ 0, 2, 2,-2] );

for (0..$is) {

push @bet, (map { join ’’, (map $BE[$_], @$_) } &CHOOSENOFM($_,$is)); }

55 for (@bet) {

my @tmp = split //;

push @bem, [ map { $stacks[$_]*$BE{$tmp[$_]}} (0..$s) ]; }

&BULK;

60
sub BULK {

my (@index,@wrap,$wrap,@wrapc,@indexb,@bstart,@wrapb,$wrapb);
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my $s = $#stacks;

for (map $_, @inv) {

65 my ($cs);

@rhoprime = @{$RHO_PRIME{$_}};

$o6 = $O_SIX{$_};

open (IBW, ’SUSY/IBW_SUSY_’.$_.’_’.$maxindex);

open (BLK, ’>BULK/IBW_BLK_’.$_.’_’.$stacks.’_’.$maxindex);

70 select BLK;

$| = 1;

while (<IBW>) {

chop;

75 if (s/^\s+//) {

push @cs, $_; }

else {

&STACKS($cs);

$cs = (split /\s+/, $_, 2)[0];

80 @cs = (); }}

&STACKS($cs);

close BLK;

close IBW; }}

85
sub STACKS {

my (@index,$i,@be,@wrap,$wrap);

my $cs = $_[0];

return unless length $cs;

90 @cs = &SYMMETRY(@cs);

if ($cs =~ /^(ANY|POS|NEG)$/) {

$any{$cs} = [ @cs ];

return; }

my $craw = $#cs;

95 push @cs, @{$any{’ANY’}};

push @cs, @{$any{($cs>0 ? ’POS’ : ’NEG’)}};

my $c = $#cs;

@rho = map { &RHO($_) } @cs;

@prime = map { &PIPRIME($_) } @rho;

100 @tad = map { &VSUM($rho[$_],$prime[$_]) } (0..$c);

($index[$_] = $c) for (0..$s);

until ($i < 0) {

$i = $s;

@wrap = map $tad[$_], @index;

105 next unless (@be = map { &TADPOLE(@{$bem[$_]},-4,@wrap,$o6) ?

$bet[$_] : () } (0..$#bem));

print +(int(map { ($_>$craw) and () } @index) ?

($cs.(length($cs)>7?’’:"\t")) : "?\t"), "\t";

print +(join "\t", map $cs[$_], @index), "\t";

110 print +(join "\t", &MULTIPLICITIES(@index)), "\t";

print +(join ’ ’, @be), "\n"; }

continue {

($index[$i--] = $c) while (--$index[$i] < 0); }}

115 sub SYMMETRY {

my @cs = @_;

my ($i, $j, $k, $sym, @sym, %sub, @sub);

for $i (0..2) {

my (%sym);

120 J: for $j (0..$#cs) {

next if $sym{$j};

$sym = &SYMTRANS($i,$cs[$j]);

for $k (0..$#cs) {

next if $sym{$k};

125 if ($cs[$k] eq $sym) {
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push @{$sym[$j]}, $k;

push @{$sym[$k]}, $j;

$sym{$j} = $sym{$k} = 1;

next J; }}}}

130 for (0..$#cs) {

next if $sub{$_};

push @sub, $_;

my ($i,$j);

my %sym = ($_,1);

135 until (($j = int keys %sym) == $i) {

$i = $j;

%sym = map {($_,1)} map {($_, @{$sym[$_]})} keys %sym; }

$sub{$_} = 1 for keys %sym; }

@cs[@sub]; }

140
sub SYMTRANS {

my @w = split ’ ’, $_[1];

if ($_[0] == 0) {

@w = (-$w[0],-$w[1],-$w[2],-$w[3],$w[4],$w[5]); }

145 elsif ($_[0] == 1) {

@w = ($w[1],-$w[0],-$w[3],$w[2],$w[4],$w[5]); }

else {

@w = ($w[0],$w[1],-$w[2],-$w[3],-$w[4],-$w[5]); }

@w = map $_*1, @w;

150 return join ’ ’, @w; }

sub RHO {

my ($n1,$m1,$n2,$m2,$n3,$m3) = split /\s+/, $_[0];

my $gam = ($n1*$n2-$m1*$m2);

155 my $del = ($n1*$m2+$m1*$n2);

[$gam*$n3,$del*$n3,$gam*$m3,$del*$m3]; }

sub PIPRIME {

my (@piprime);

160 my @rho = @{$_[0]};

return ’NULL’ unless (@rho == 4);

$piprime[$_] = &DOT(@{$rhoprime[$_]},@rho) for (0..3);

\@piprime; }

165 sub TADPOLE {

my $v = @_/2;

return ’NULL’ unless &ISINTEGER($v);

for $i (0..3) {

my @exc = map ${$_[$_]}[$i], ($v..$#_);

170 return 0 unless (&DOT(@_[0..$v-1],@exc) == 0); }

1; }

sub MULTIPLICITIES {

my (@intx,$intx);

175 my @index = @_;

for (@index) {

push @intx, join ’ ’, (.5*&CIRCLE(@{$prime[$_]},@{$rho[$_]}),

.5*&CIRCLE(@{$o6},@{$rho[$_]})); }

for $tmp (&CHOOSENOFM(2,int @stacks)) {

180 my ($a,$b) = @index[(map { ($$tmp[$_] == 1) ? $_ : () } (0..$s))];

push @intx, (length($intx)<8 ? "\t" : ’’) . ($intx = join ’ ’,

(&CIRCLE(@{$rho[$a]},@{$rho[$b]}),&CIRCLE(@{$prime[$a]},@{$rho[$b]}))); }

@intx; }

185 sub VSUM {

my ($i, @vsum);

for $i (0..$#{$_[0]}) {

$vsum[$i] += $$_[$i] for @_; }
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\@vsum; }

190
sub DOT {

my ($dot);

my $v = @_/2;

return ’NULL’ unless &ISINTEGER($v);

195 $dot += $_[$_]*$_[$_+$v] for (0..$v-1);

$dot; }

sub CIRCLE {

return ’NULL’ unless (@_ == 8);

200 (2*&DOT(@_[2,3],@_[4,5]) - 2*&DOT(@_[0,1],@_[6,7])); }
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3. Phase 3: The Exceptional Cycles

#!/usr/bin/perl

#T6/Z4

5 $| = 1;

require ’ibw_subrouts.p’;

my @inv = (’AAA’, ’ABA’, ’AAB’, ’ABB’);

10 my @stacks = (5,5,1);

@stacks = reverse sort {$a<=>$b} @stacks;

my $stacks = join ’’, @stacks;

my $s = $#stacks;

my $d = ($s*($s+1)/2 - 1);

15 my @choose = map { my @tmp = @$_;

[ map { ($tmp[$_] == 1) ? $_ : () } (0..$s) ]; } &CHOOSENOFM(2,int @stacks);

my $tori = 3;

my $ele = 2*$tori;

my $maxindex = 5;

20 my %BE = ( ’B’, 1, ’E’, .5 );

my ($cindx,@cycles,@excindx,@tadpole,@mult,@AAA_PRIME,@ABA_PRIME,@AAB_PRIME,@ABB_PRIME);

my ($prime);

25 my @exc = (

[[1,1,0,0,0,0], [0,0,0,0,1,1]],

[[0,0,1,1,0,0], [0,0,0,0,1,1]],

[[1,0,1,0,1,0], [1,0,0,1,0,1], [0,1,1,0,0,1], [0,1,0,1,1,0]],

[[1,0,1,0,0,1], [1,0,0,1,1,0], [0,1,1,0,1,0], [0,1,0,1,0,1]],

30 [[0,0,0,0,0,0]] );

my @blank = ( 0,0,0,0,0,0 );

&PRIME;

35
&CYCLES;

&EXCEPTIONS;

40 &SPECT;

sub EXCEPTIONS {

my (@be,$cs,@wrap,@self,@dual,@ei,$wrap,@si,@di,@mi,@index,@wrap3,@wrapE);

for (map $_, @inv) {

45 open (BLK, ’BULK/IBW_BLK_’.$_.’_’.$stacks.’_’.$maxindex);

open (IBW, ’>EXCEPTIONS/IBW_EXC_’.$_.’_’.$stacks.’_’.$maxindex);

select IBW;

$| = 1;

$prime = \@{$_.’_PRIME’};

50
&INTERSECTIONS;

while (<BLK>) {

chop;

55 @be = split /\s+/;

$cs = shift @be;

@wrap = map [ splice (@be,0,$ele) ], @stacks;

@self = map [ splice (@be,0,2) ], @stacks;

@dual = map [ splice (@be,0,2) ], (0..$d);

60 @ei = map $excindx[&EXCINDX(@$_)], @wrap;

$wrap = ’(’ . (join ’) (’, (map { join ’’, @$_ } @wrap)) . ’)’;
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$cs .= "\t" x ((length($cs)<8) ? 2 : 1);

BE: for (@be) {

65 my ($i,@si,@di);

my @bet = split //, $_;

my @bei = @ei;

for (0..$s) {

if ($bet[$_] eq ’E’) {

70 next BE if (($mi[$_] = $#{$bei[$_]}) == -1);

my ($a,$b) = @{$self[$_]};

push @si, [.25*$a, .5*$b]; }

else {

$mi[$_] = 0;

75 $bei[$_] = [$cindx];

push @si, $self[$_]; }}

@index = @mi;

@si = map [ ($$_[0]+$$_[1], $$_[0]-$$_[1]) ], @si;

80 @di = map { my ($a,$b) = @BE{@bet[@{$choose[$_]}]};

my $c = $a*$b;

[ map $c*$_, @{$dual[$_]} ]; } (0..$d);

until ($i < 0) {

85 my ($ints,$intd);

@wrap3 = map { ($stacks[$_]*${$wrap[$_]}[4],

$stacks[$_]*${$wrap[$_]}[5]) } (0..$s);

@wrapE = map ${$bei[$_]}[$index[$_]], (0..$s);

90 next unless &TADPOLE(@wrap3,

(map @{$tadpole[$_]}, @wrapE));

for (0..$s) {

my ($a,$n,$m) = ($wrapE[$_],@{$wrap[$_]}[4,5]);

my @coef = ($n*$n,$m*$m,2*$n*$m);

95 my $si = .5*&DOT(@coef,@{$mult[$a][$a]}[0..2]);

$ints = join ’ ’, (map $si+$_, @{$si[$_]});

print $ints, "\t" x ((length($ints)<8) ? 2 : 1); }

print ’ || ’;

my @dit = @di;

100 for (@choose) {

my ($g,$n1,$m1,$d,$n2,$m2) =

map { ($wrapE[$_],@{$wrap[$_]}[4,5]) } @$_;

($g,$d) = reverse sort {$a<=>$b} ($g,$d);

my @d = @{$mult[$g][$d]};

105 my @coef = ($n1*$n2,$m1*$m2,($n1*$m2+$m1*$n2));

$intd = join ’ ’, @{ &VSUM(shift @dit,

[($n1*$m2-$m1*$n2)*(pop @d),&DOT(@coef,@d)]) };

print $intd, "\t" x ((length($intd)<8) ? 2 : 1); }

print ’ || ’;

110 @wrapE = map {($_ == $cindx) ? ’B’ : $_} @wrapE;

my $wrapE = ’(’ . (join ’,’, @wrapE) . ’)’;

print $cs, $wrapE,

"\t" x ((length($wrapE)<8) ? 2 : 1), $wrap, "\n"; }

continue {

115 $i = $s;

($index[$i--] = $mi[$i]) while (--$index[$i] < 0); }}}

close IBW;

close BLK; }}

120 sub CYCLES {

open (IBW, ’>EXCEPTIONS/IBW_CYCLES’);

print IBW ’-’x25, "\n";

for (@exc) {

for $tmp (@$_) {
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125 push @cycles, $tmp;

my @active = map { ($$tmp[$_] == 1) ? $_ : () } (0..5);

my $act = @active;

for $n (1..$act) {

for (&CHOOSENOFM($n,$act)) {

130 my @cycle = @blank;

@cycle[@active] = map { (-2*$_) + 1 } @$_;

push @cycles, \@cycle; }}}

push @excindx, [($cindx..$#cycles)];

(print IBW $_, ":\t", (join ’ ’, @{$cycles[$_]}), "\n") for @{$excindx[-1]};

135 print IBW ’-’x25, "\n";

$cindx = @cycles; }

close IBW;

$cindx--; }

140 sub SPECT {

for (map $_, @inv) {

my (%spect);

my $file = ’EXCEPTIONS/IBW_EXC_’.$_.’_’.$stacks.’_’.$maxindex;

open (IBW, $file);

145 while (<IBW>) {

chop;

/^(.*?\|\|.*?)\s+\|\|\s+(.*)$/;

push @{$spect{$1}}, $2; }

close IBW;

150 open (IBW, ’>’.$file);

select IBW;

print +(join "\t\t", @stacks), "\t\t", ’ || ’;

print +(join "\t\t", map {$stacks[$$_[0]].

’_’.$stacks[$$_[1]]} @choose), "\n";

155 print "\t", ’COMPLEX STRUCT’, "\t", ’(EXC INDEX)’,

"\t", ’(WRAPPING NUMBERS)’, "\n";

print +(’-’ x (16*($s+$d+2))), "\n";

for (keys %spect) {

print $_, "\n";

160 (print "\t", $_, "\n") for @{$spect{$_}}; }

close IBW; }}

sub EXCINDX {

my ($n1,$m1,$n2,$m2,@nm3) = @_;

165 my ($a,$b) = (($n1+$n2),($n1*$m1));

if (&ISEVEN($a+$m1+$m2)) {

return (&ISEVEN($b) ? 2 : 4) if (&ISEVEN($a));

return 3; }

else {

170 return (&ISEVEN($b) ? 1 : 0); }}

sub INTERSECTIONS {

my @un = map { [@$_, @blank] } @cycles;

my @bar = map { [@blank, @$_] } @cycles;

175 my @unp = map { [&PIPRIME(@$_)] } @un;

my @barp = map { [&PIPRIME(@$_)] } @bar;

for $i (0..$#cycles) {

$tadpole[$i] = [&VSUM($un[$i],$unp[$i]),

180 &VSUM($bar[$i],$barp[$i])];

for $j (0..$i) {

$mult[$i][$j] = [

.25*&CIRCLE(@{$unp[$i]},@{$un[$j]}),

185 .25*&CIRCLE(@{$barp[$i]},@{$bar[$j]}),

.25*&CIRCLE(@{$unp[$i]},@{$bar[$j]}),

.25*&CIRCLE(@{$un[$i]},@{$bar[$j]}) ]; }}}
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sub TADPOLE {

190 my $v = @_/2;

return ’NULL’ unless &ISINTEGER($v);

for $i (0..11) {

my @exc = map ${$_[$_]}[$i], ($v..$#_);

return 0 unless (&DOT(@_[0..$v-1],@exc) == 0); }

195 1; }

sub ISEVEN {

&ISINTEGER($_[0]/2); }

200 sub VSUM {

my ($i, @vsum);

for $i (0..$#{$_[0]}) {

$vsum[$i] += $$_[$i] for @_; }

\@vsum; }

205
sub DOT {

my ($dot);

my $v = @_/2;

return ’NULL’ unless &ISINTEGER($v);

210 $dot += $_[$_]*$_[$_+$v] for (0..$v-1);

$dot; }

sub CIRCLE {

return ’NULL’ unless (@_ == 24);

215 (2*&DOT(@_[6..11],@_[12..17]) - 2*&DOT(@_[0..5],@_[18..23])); }

sub PIPRIME {

my (@piprime);

return ’NULL’ unless (@_ == 12);

220 for (0..11) {

$piprime[$_] = &DOT(@{${$prime}[$_]},@_); }

@piprime; }

sub PRIME {

225 @{’AAA_PRIME’} = (

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

230 [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0],

235 [ 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1] );

@{’ABA_PRIME’} = (

[-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

240 [ 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

245 [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1],

250 [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0] );

@{’AAB_PRIME’} = (
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[ 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

[ 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[ 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0],

255 [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0],

[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0],

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1],

[ 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0],

260 [ 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1] );

@{’ABB_PRIME’} = (

265 [-1, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0],

[ 0,-1, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0],

[ 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0],

[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1],

270 [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0],

[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0],

275 [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1],

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0] ); }
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4. Subroutines

#!/usr/bin/perl

#T6/Z4

5 sub COPRIME {

my ($a, $b);

my @div = map {

my $a = $_;

my %div = map {&ISINTEGER($a/$_) ? ($_,1) : ()} (2..$a/2);

10 \%div; } (0..$maxindex);

@cop = ();

A: for $a (2..$maxindex) {

B: for $b (1..$a-1) {

next B if (map {${$div[$a]}{$_} or ()} (keys %{$div[$b]},$b));

15 push @cop, [$b,$a]; }}

push @cop, map {

($a,$b) = @$_;

([-$a,$b],[$a,-$b],[-$a,-$b],[$b,$a],[-$b,$a],[$b,-$a],[-$b,-$a]); } @cop;

push @cop, ([0,1],[0,-1],[1,0],[-1,0],[1,1],[-1,1],[1,-1],[-1,-1]); }

20
sub CHOOSENOFM {

my ($n, $m) = @_;

my (@perm);

$perm[0] = [ map 0, 1..$m ];

25 for $i (1..$n) {

my (@nofm);

for (@perm) {

my @set = @$_;

my $zero = $m;

30 for (reverse @set) {

last if ($_ == 1);

$zero--; }

for ($zero..($m-$n+$i-1)) {

my @iofm = @set;

35 $iofm[$_]++;

push @nofm, \@iofm; }}

@perm = @nofm; }

return @perm; }

40 sub ISINTEGER {

$_[0] == int $_[0]; }

sub ROUNDFIVE {

.00001 * int (100000*$_[0] + ($_[0]>0?.5:-.5)); }

45
1;
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