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ABSTRACT 

A New Sensor Concept for Simultaneous Measurement of Pressure, Temperature and 

Thickness of Plate Structures Using Modified Wave Propagation Theory. (August 2005) 

Tzu-Wei Lo, B.S., Chang Gung University, Tao-Yuan, Taiwan 

Chair of Advisory Committee: Dr. Chii-Der S. Suh 

This thesis presents a multi-purpose sensor concept viable for the simultaneous 

measurement of pressure, temperature and thickness of plate structures.  It also 

establishes the knowledge base necessary for future sensor design.  Thermal-Acousto 

Photonic Non-Destructive Evaluation (TAP-NDE) is employed to remotely initiate and 

acquire interrogating ultrasonic waves.  Parameters including pressure, temperature and 

plate thickness are determined through exploring the dispersion features of the 

interrogating waves.  A theoretical study is performed, through which a modified wave 

propagation theory applicable to homogeneous, isotropic, linear elastic materials is 

formulated along with an associated numerical model.  A numerical scheme for solving 

the model is also developed using FEMLAB, a finite element based PDE solver.  Gabor 

Wavelet Transform (GWT) is employed to map numerical time waveforms into the joint 

time-frequency domain.  Wave time-frequency information enables dispersion curves to 

be extracted and material pressure, temperature and thickness to be determined.  A sensor 

configuration design integrating the wave generation and sensing components of the 

proven TAP-NDE technology is also developed.     

Conclusions of the research are drawn from wave dispersion obtained corresponding 

to the following ranges of parameters: 300-500kHz for frequency, 25-300oC for 

temperature, 1-3mm for plate thickness, and 6101× - 71 10× N/m for pressure.  Each of 

the three parameters considered in the study has a different level of impact on plate wave 

dispersion.  Plate thickness is found to have the most impact on wave dispersion, 

followed by temperature of the plate.  The effect attributable to pressure is the least 

prominent among the three parameters considered.  Plate thickness and temperature can 

be readily measured while simultaneously resolved using dispersion curves.  However, 

pressure variation can only be differentiated when the plate is smaller than 1mm in 
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thickness.  It is observed that the thicker the plate, the faster the frequency group velocity.  

Also, the group velocities of all frequency components considered are seen to increase 

with increasing temperature, but decrease with increasing pressure.   
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CHAPTER I 

INTRODUCTION 

1.1. Overview 

High material stresses could bring about catastrophic results as severe as aircraft 

crashes or chemical tank explosion.  It is important to understand the causes of these 

incidents in order to prevent future catastrophes.  Extensive investigations show that 

variations in both temperature and pressure are the driving force behind the forming of 

high stress magnitudes.  Fig. 1.1 shows an airplane wing with outer pressure acting on it, 

and Fig. 1.2 shows a chemical tank with internal pressure acting on it.  Failures can also 

result from hidden corrosion that weakens the integrity of structures.  Therefore, to be 

able detect environmental parameters including pressure, temperature and thickness is a 

very important issue to avoid structural break-down.  Implementing sensors is necessary 

to address the current status of equipment.  Most traditional sensors were designed to 

detect these parameters by contacting a measured object directly such as piezoelectric 

transducer sensor, and often had destructive qualities.  Additionally, these sensors are 

usually designed for one parameter of measurement only.  For example, strain gage can 

only measure the stresses of an object.  In order to overcome these disadvantages 

associated with the traditional sensors, a new generation of sensor for detecting multi-

parameters without contacting or invading the measured object will be more effective and 

desirable.  To develop a new conceptual sensor is the goal of this research.   

 

 

 

 

 

 

_______________ 

This thesis follows the style and format of Ultrasonics. 
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Fig. 1.1. Aircraft wing 

 
 
 

 

Fig. 1.2. Pressurized chemical tank 

 
 
 

An ultrasonic testing method is considered as a way to achieve this goal.  In 

nondestructive evaluation (NDE) [1], the ultrasonic testing method is one of the most 

widely used techniques.  The general idea of ultrasonic testing is to generate propagating 

ultrasonic wave in the measured object and acquire the wave at a certain distance.  These 

waves are observed to determine material defects, flaws, or environmental parameters.  

However, the traditional ultrasonic testing sensors always use contacting transducers as 

actuators for wave generation or receivers for wave acquisition [2].  In this way, the 
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transducers must be attached to the measured object, thus resulting in a change of state of 

the measured object and errors in acquired data waveform.  Hence, an alternative 

approach to generate and acquire waves without contacting the measured object is needed.  

Laser-optical method is one of the NDE techniques that has been successfully applied to 

profile the thermal state of silicon wafers [3,4,5], to evaluate different thin films material 

properties [6], to determine the material properties of microstructures [7] and to inspect 

solder joint defects in flip-chips [8].  A laser-optical technique referred to as the Thermo-

Acoustic-Photonic Non-Destructive Evaluation (TAP-NDE) [9] will be adopted to 

achieve the objectives of the study.  TAP-NDE consists of a pulsed Nd:YAG laser for 

wave generation, fiber tip interferometers (FTIs) for wave acquisition and a PC based 

data acquisition system.  FTI was developed by Burger and his colleagues [10] at Texas 

A&M University.  By applying TAP-NDE technique, a non-contact, non-destructive and 

multi parameters sensor may be realized. To this end, the correlations of laser-induced 

ultrasonic waves with environmental parameters will need to be established.   

In this thesis, the correlation of ultrasonic waves with multi-environmental 

parameters; namely, thickness, pressure and temperature of a plate will be studied.  In the 

classical wave propagation theory [11], the ultrasonic wave that propagates in thin 

structures whose thickness is small compared with length and width is called a Lamb 

wave.  In the past, Lamb waves have been successfully applied to identify damages of 

plates [12,13].  Lamb waves are dispersive and Lamb dispersion is highly sensitive to the 

variations of environmental parameters.  For example, Lamb dispersion had been 

successfully explored to measure the thermal state of silicon wafers subject to rapid 

temperature ramp-ups [4] and the spatial variations of aircraft structures [14].  However, 

reports on the effect of pressure on wave dispersion are rare.  In addition, a theoretical 

model describing dispersion as functions of pressure needs to be established.  Between 

1960 and 2000, many research contributions [15] have proven that wave responses are 

affected by initial stresses fields regardless if the material is incompressible or not.  For 

example, Chai [16] determined the surface wave velocities in a pre-stress anisotropic 

solid, Rogerson [17] developed a surface wave model for a slightly compressible, finitely 

deformed elastic media, and Prikazchikov [18] developed a model that enables the 
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propagation of surface waves in incompressible, transversely isotropic, pre-stressed 

elastic half-space to be studied.   

 A modified theoretical model for wave propagation in thin structures subject to 

simultaneous temperature effect and pre-stresses is formulated.  Using the relation 

between pre-stresses and pressure, waveforms associated with pressure can be obtained.  

However, it is difficult to solve the modified theoretical model directly.  As an alternative, 

the finite element method (FEM) is appealed to establishing numerical solutions.  

Specifically, the many powerful features of the commercially available FEM tool, 

FEMLAB, will be explored.  In order to address the response of the thin aircraft wing 

structure as shown in Fig. 1, the corresponding numerical model can be an idealized flat 

plate subject to different uniform temperatures, thicknesses and pressures.  Resulted 

numerical waveforms will then be processed using Gabor wavelet transform to extract 

dispersion information as functions of temperature, pressure and plate thickness. 

Wavelet transform is a mathematical transformation that maps time signals into the 

orthogonal time-frequency domain [19,20].  In order to obtain dispersion information, 

numerical time waveforms need be resolved in the time-frequency domain.  The thesis 

will adopt the same method that was well documented for the processing of broadband, 

dispersive waves [21-23].  Since temperature, pressure or thickness changes lead to the 

changes of wave dispersion; conversely, changes in dispersion are therefore a good 

indication temperature, pressure or thickness variations.  As such, the thermal, pressure 

and spatial changes of a plate can be simultaneously established via the deployment of 

interrogating elastic waves. 

Knowledge base established in exploring wave dispersion for the determination of 

pressure, temperature and thickness will then be used to develop a sensor concept.  

Common design methodologies including need analysis, conceptual design and 

embodiment design will be followed.  In need analysis, all functions required of the 

sensor design, along with associated design parameters and constraints, will be identified 

and organized into a hierarchy function structure.  The function structure will enable 

multitude innovative, viable concepts to be formulated.  A selection matrix will then be 

used to evaluate all the developed concepts and to identify one for further design 

embodiment.  In embodiment, a final design configuration will be developed.  The final 
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configuration will be analyzed and optimized using COSMOSWorks and its feasibility 

will be demonstrated. 

 
 
 

1.2. Thesis Objective 

The objective of the thesis is to develop a multi-purpose sensor concept for the 

simultaneous measurement of temperature, pressure and thickness in thin structure.  The 

knowledge base needed for the successful development of such a sensor will be 

established through the three sequential tasks as follow:  (1) formulate a modified wave 

propagation model that incorporates pre-stress and temperature conditions; (2) develop a 

corresponding numerical model; and (3) validate the correlation between ultrasonic wave 

dispersion with temperature, pressure, and thickness.  The IIDE design methodologies 

will be followed to develop several feasible sensor concepts and design software tools 

including SolidWorks and COSMOSWorks will be employed to demonstrate feasibility.  

To develop the wave propagation model, considerations for simultaneous pre-stress and 

thermal effects will be incorporated into the classical theories of elasticity and wave 

propagation.  Since the resulted theoretical model is too complex to suggest close-form 

solutions, numerical solutions will be attempted instead.  To this end, FEMLAB will be 

used to approximate numerical solutions in response to various boundary and forcing 

conditions.  A Gabor wavelet program will be developed to address Task (3), in which 

dispersive waves registering mechanical, thermal and spatial changes will be processed 

for the extraction of temperature, pressure and thickness information.    
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1.3. Thesis Organization 

The need for a multiple-purpose sensor is discussed in Chapter I.  TAP-NDE as a 

viable technology for the characterization of materials are introduced in Chapter II along 

with its configuration and setup.  A sensor concept and the design procedures that will be 

followed are illustrated in Chapter III.  Classical wave theory, definition of dispersion 

and wavelet transform will be reviewed Chapter IV.  A modified wave propagation 

model will also be derived in the same chapter.  Chapter V covers the numerical model 

along with material properties and boundary and forcing conditions.  In Chapter VI 

numerical results and dispersion curves at different temperatures, thicknesses and 

pressures are presented in Chapter VI.  Finally, Chapter VII summarizes the research 

endeavor and discusses possible future work. 
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CHAPTER II 

LASER-OPTIC SYSTEM FOR WAVE GENERATION AND 

ACQUISITION 

 
Thermo-Acousto-Photonic Non-Destructive Evaluation (TAP-NDE) [9] technique 

was employed for the research.  In this chapter, the configuration of TAP-NDE is 

introduced.  The apparatus of TAP-NDE consists of a pulsed laser for ultrasonic wave 

generation, a dual Fiber Tip Interferometer (FTI) [10] system for wave detection, 

semiconductor photodetector and a data acquisition system for receiving and converting 

output signals from the photodetector into digital format.  The TAP-NDE system is 

shown schematically in Fig. 2.1.  The components of TAP-NDE will be discussed in the 

subsequent sections.  

 
 
 

2.1. Laser Actuator for Wave Generation 

The laser actuator of the sensor concept shown in Fig 2.2 consists of a Nd: YAG laser 

and an optical fiber which is connected to the sensor body.  The pulse width of the pulsed 

laser which is a Spectra-Physics model DCR-3 Nd:YAG laser is 10 nanoseconds.   The 

maximum single pulse energy from the laser is 1 J at the 1064 nm wavelength.  A 532 nm 

wavelength green light can also be initiated with a harmonic frequency doubler.  A pulse 

of so small a time duration can cause a sharp thermal shock on the surface of the 

specimen.  The induced thermal energy results in out-of-plane surface displacements that 

propagate out as elastic mechanical waves.  However, surface ablation may occur if the 

energy density levels exceed the ablation threshold of the material.  To prevent surface 

ablation, the spot size of the pulsed laser must be controlled.  Laser induced mechanical 

waves propagate in the specimen and are acquired by the FTI optical sensors. 
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Fig. 2.1. TAP-NDE 
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ablation, the spot size of the pulsed laser must be controlled.  Laser induced mechanical 

waves propagate in the specimen and are acquired by the FTI optical sensors. 

 
 
 

 

Fig. 2.2.  Laser actuator for wave generation 

 
 
 
2.2. Fiber Tip Interferometer and a Data Acquisition System 

Out of plane displacements resulted from the pulsed laser are detected by a fiber-

optic-based, Fizeau type interferometer referred to as the Fiber Tip Interferometer (FTI) 

[21].  Fig. 2.3 shows a standard Fizeau interferometer.  In this research, two FTIs are 

required because the ultrasonic waves must be detected at two different locations.  The 

FTI sensing system is powered by a 30mJ Ne-Ne laser.  The emitted laser beam is split 

into two separate optical fibers through a Fused Biconical Taper (FBT) coupler.  The 

Sensor 
Body 

Nd: YAG Laser 
Optical fiber 

Optical fiber 
connector 

Specimen 



 10

GRIN lens used to collect the beam reflected off the object surface is fused to the tip of 

the optical fiber.  When the laser beam reaches the tip of the optical fiber, approximately 

4% of the laser beam is sent back into the fiber core as the reference beam.  The 

remaining laser beam leaves the fiber tip, travels through the Fizeau cavity and gets 

reflected off the surface of the specimen.  The small portion of the light re-entering the 

GRIN lens is called the object beam.  The reference beam and the object beam have a 

constant phase shift which results in an interference pattern that represents the surface 

displacement of the specimen.  This interference pattern can be observed by using a data 

acquisition system.  The data acquisition system shown in Fig. 2.4 includes a photo-

detector, a digital oscilloscope, and a computer.  The interference pattern is converted 

into voltaic changes by the photo-detector, which is a broadband device.  The voltaic 

changes are displayed on the digital oscilloscope as waveforms.  The digital oscilloscope 

has a maximum sampling rate of 1GHz per second.  Digital data received by the 

oscilloscope are then transferred to the computer and recorded.  After waveform data are 

obtained, post signal processing is executed to extract dispersion information.  From the 

dispersion information, temperature, pressure and thickness of the specimen are 

established.  Methods for establishing temperature, pressure and thickness of the 

specimen from wave dispersion will be discussed in Chapter VI.   
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Fig. 2.3. Fiber Tip Interferometer (FTI) system for wave acquisition 
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Fig. 2.4. Data acquisition system 
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CHAPTER III 

CONCEPTUAL SENSOR DESIGN 

The design process followed for the development of sensor concept is introduced in 

this chapter.  The design process includes three subsequent sections: need analysis, 

concept development and final design.  In need analysis, the primary functions and 

parameters required to open up the solution set for sensor design are formulated.  In 

concept development, different design concepts satisfying the functions and parameters 

are developed.  In final design, the one viable concept chosen using a selection matrix for 

further embodiment is developed into a final configuration.  Feasibility of the final 

configuration is also explored.  The multi-purpose sensor configuration incorporates a 

pulsed laser for ultrasonic wave generation and a fiber tip interferometer (FTI) for wave 

detection as introduced in the proceeding chapter.   

3.1. Need Analysis 

In this research, the sensor is defined as non-contact and non-destructive sensor.  

Therefore, all of the needs are addressed by creating a non-contact approach for a sensor 

body, stabilizing the parts of the sensor body, and providing an adjustment system to 

calibrate position in order to excite acoustic wave and acquire acoustic wave in a very 

precise location. 

3.1.1. Evolution of need 

Abstraction 1 

The TAP-NDE method allows acoustic waves to be generated by an Nd:YAG laser 

and detected by fiber tip interferometer (FTI) system remotely.  Non-contact evaluation 

method is also the basis of the sensor design.  Therefore, the first primary function for 

sensor design is to develop a non-contact approach.  The surface condition which the 

sensor body must locate is very important.  A different surface condition may have 

different non-contact requirements required of the sensor body.  Therefore, the associated 
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constraint is assuming that the surface in which the sensor body must locate is flat. The 

primary function 1 is to create a non-contact approach for measurement.  The primary 

parameter is a non-contact approach and the primary constrain is the flat surface. 

For the primary function number 1, which is to create a non-contact approach for the 

sensor body, ease of sensor body installation and removal must be considered along with 

easy sensor body accommodation.  Thus easy installation and removal is the first sub-

function.  In addition, the sub-function implies the use of standard hand tools, for the 

reasons that most technicians are more familiar with them.  Thus, the connection type of 

the sensor body with the surface is the parameter, and using standard parts to design the 

sensor body-surface interface is the associated constraint.  Easy sensor body 

accommodation is the second sub-function of this primary function.  Since sensor body is 

oftentimes required to accommodate limited accessible space, the flexibility of the sensor 

body is the parameter of the sub function, with the volume of the sensor body as its 

constraint.  The sub-function 1-1 is to install and remove sensor body easily.  The 

parameter is the connection type and the constraint is the standard parts.  The sub-

function 1-2 is to accommodate sensor body easily.  The parameter is the flexibility and 

the constraint is the volume of sensor body. 

 
 
 

Abstraction 2 

Extremely small out-of-plane displacements are measured by the FTIs system.  Since 

any small disturbance to the sensor body may cause significant measurement errors, it is 

essential to ensure stability of the sensor body.  Hence, the second primary function is 

addressed by providing stability to all components of the body.  A possible disturbance is 

the deformation of the sensor body resulting from its own weight.  The allowed 

maximum displacement will be the constraint of this primary function.  The primary 

function 2 is to stabilize all components of sensor body.  The primary parameter is the 

deformation and the primary constraint is maximum allowed displacement (0.00001m). 

In TAP-NDE apparatus, both the optical fiber connector and GRIN fiber collimator 

are required to be amounted on the sensor body.  The two components that are to be 

purchased with THORLAB Inc. are shown in Figs. 3.1 and 3.2.  Since they are used to 
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generate and detect ultrasonic waves, interfacing the optical fiber connector and the 

GRIN fiber collimator with the sensor body is an important issue.  All components and 

all amounting interfaces must be stabilized.  Therefore, two sub-functions are defined as 

follows.  The sub-function 2-1 is to connect optical fiber connector.  The parameter is the 

deformation at interface.  The constraint is the maximum displacement allowed 

(0.00001m).  The sub-function 2-2 is to connect GRIN fiber collimator.  The parameter is 

the deformation at interface and the constraint is maximum displacement allowed 

(0.00001m). 

 
 
 

 

 
 

Fig. 3.1. Multimode patch cable connector (THORLAB Inc.) 
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Fig. 3.2. GRIN fiber collimator (THORLAB Inc.) 

 
 
 
Abstraction 3 

The location where the optical fiber connected to the Nd:YAG laser for wave 

generation is different from the location where the GRIN lens is mounted.  Allowing for 

position adjustment is thus an important issue.  The third primary function is to provide 

an adjustment system for the calibration of optical fibers and GRIN lens.  The adjustment 

scales play an important role in the overall system adjustment.  Smaller the adjustment 

scales, better precise positioning can be achieved.  Thus, the minimum adjustment scale 

is the constraint of the primary function.  The primary function 3 is to provide adjustment 

system allowing for precise optical fiber and Grin lens positioning.  The primary 

parameter is to provide the adjustment system and the primary constraint is maximum 

allowed adjustment scale (1.0mm). 

Providing an adjustment system for precision positioning is a global need.  However, 

the location of the adjustment system is of great concern.  The optical fiber connector and 

GRIN fiber collimator are required to have two degrees of freedom adjustment because 

they need to be positioned in the horizontal and vertical directions.  Additionally, the 

sensor body is supposed to have only one adjustment system which is height.  The 

maximum adjustment scale which is 1.0mm is the constraints of the adjustment system.  
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The three sub-functions are defined as follows.  The sub-function 3-1 is to provide two 

degrees of freedom adjustment for optical fiber connector.  The parameter is the 

adjustment scale and the constraint is maximum allowed adjustment scale (1.0mm).  The 

sub-function 3-2 is to provide two degrees of freedom adjustment for GRIN fiber 

collimator.  The parameter is the adjustment scale and the constraint is maximum allowed 

adjustment scale (1.0mm).  The sub-function 3-3 is to provide at least one degree of 

freedom for sensor body.  The parameter is the adjustment scale and the constraint: 

maximum allowed adjustment scale (1.0mm). 

 
 
 

3.1.2. Function structure 

Function structure is used to determine the true need of the design while identifying 

the scope and range in which it should effectively perform.  A function structure for the 

sensor design has been developed in the previous chapter.  This function structure takes 

into consideration the primary functions required of the conceptual sensor body design. 

A functional diagram is a way to visualize the function structure.  It starts with the 

need statement being placed on top of the hierarchy tree.  The need statement is 

developed by identifying the primary functions and constraints (PC).  The tree then 

branches off into the primary functions which identify the properties implied in the need 

statement.  Each function is split into sub-functions.  Each sub function must be 

independent from all others.  Constraints and design parameters (DP) associated with the 

sub-functions are also identified.  Fig. 3.3 is the completely developed function structure 

(functional diagram) for the sensor body.  Each function is further broken down into sub-

functions, constraints and design parameters, which can be seen in Figs. 3.4, 3.5, and 3.6.  
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Fig. 3.3. Overall function structure 
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Fig. 3.4. Function 1 diagram 

 

 
 

Fig. 3.5. Function 2 diagram 
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Fig. 3.6. Function 3 diagram 
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3.2.1. Sensor head 

Concept 1 

The concept shown in Fig. 3.7 consists of the following six parts.  Optical fiber 

connector is to provide a platform for connecting optical fiber.  GRIN fiber collimator is 

to provide a platform for connecting GRIN lens.  Movable sensor base A is to provide 

interface with optical fiber connector.  Movable sensor base B is to provide interface with 

GRIN fiber collimator.  Chassis is to provide horizontal mobility to sensors A and B.  

Movable sensor base screws are to control forward and backward motion of movable 

sensor A and B along horizontal direction. 

In this concept, both sides of the movable base A and B have a rack structure.  The 

movable sensor base screw has a pinion structure.  The movable bases A and B which 

can slide in the horizontal direction are controlled by the movable sensor base screws.  

The heights of the optical fiber connector and GRIN fiber collimator can be adjusted by 

screwing itself into the sensor bases A and B at different locations.  Hence, the sensor 

head has two degrees of freedom adjustment.    

 
 
 

 
Fig. 3.7. Sensor head-concept 1 

 
 



 22

Concept 2 

The concept shown in Fig. 3.8 consists of the following six parts.  Optical fiber 

connector is to provide a platform for connecting optical fiber.  Grin fiber collimator is to 

provide a platform for connecting GRIN lens.  Movable sensor base A is to provide 

interface with optical fiber connector.  Movable sensor base B is to provide interface with 

GRIN fiber collimator.  Inner chassis is to provide horizontal mobility to sensors A and B.   

Outer chassis is to provide inner chassis with vertical mobility.  Movable sensor base 

screws are to control horizontal mobility of sensors A and B.  Vertical alignment wheel is 

to control vertical mobility of inner chassis. 

In this concept, both sides of the movable bases A and B have a rack structure.  The 

movable sensor base screw has a pinion structure. The idea is that the movable bases A 

and B allowing for horizontal translations are controlled by the movable sensor base 

screw.  Similarly, the inner chassis has a rack structure.  The vertical alignment wheel is a 

gear which couples the rack to the inner chassis.  The inner chassis allowing for vertical 

translation is controlled by the vertical alignment wheel.  In addition, the heights of the 

optical fiber connector and GRIN fiber collimator can be adjusted by turning the sensor 

base screw.  This concept has two degrees of freedom adjustment as well, while allows 

optical fiber connector and Grin fiber collimator to be adjusted by the vertical alignment 

wheel at the same time. 
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Fig. 3.8. Sensor head-concept 2 

 
 
 
3.2.2. Sensor arm 

Concept 1 

The first sensor arm concept that connects to the sensor head is a simple structure having 

no adjustment.  Fig. 3.9 shows the configuration. 

  
 
 

 
Fig. 3.9. Sensor arm-concept 1 
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Concept 2 

The second sensor arm concept shown in Fig. 3.10 consists of the following six parts. 

Neck is to support and provide interface with sensor head.  Neck gear A is to transmit 

motion of gear A to the neck.  Neck gear B is to transmit the motion of the neck locking 

screw to gear A.  Neck shaft is to connect neck gear A and neck.  Neck locking screw is 

to control scale of rotation of neck.  Sensor arm is to support all components.  

The idea of the concept is that the neck, while connected to the sensor head, can 

rotate about the neck shaft.  The angle of rotation is controlled by the neck gear B which 

is connected with the neck locking screw.  Hence, the sensor arm concept has only one 

degree of freedom. 

 
 
 

 
Fig. 3.10. Sensor arm-concept 2 

 
 
 
Concept 3 

The third sensor arm concept shown in Fig. 3.11 consists of the following eight parts. 

Chassis interface shaft is to provide interface with sensor head.  Single-direction thrust 

bearing is to allow chassis interface shaft to rotate.  Neck is to support sensor head.  Neck 

gear A is to transmit the motion of gear A to the neck.  Neck gear B is to transmit the 

motion of the neck locking screw to the gear A.  Neck shaft is to connect neck gear A and 
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neck.  Neck locking screw is to control scale of rotation of the neck.  Sensor arm is to 

support all components. 

The idea of the concept is very similar to Concept 2, except that there is a single 

direction thrust bearing between the neck and the chassis interface shaft. The chassis 

interface shaft can rotate along the neck axial axis.  Therefore, the sensor arm concept has 

a two-degrees-of-freedom adjustment system. 

 
 
 

 
Fig. 3.11. Sensor arm – concept 3  

 
 
 
3.2.3 Sensor foot 

Concept 1 

The first sensor foot concept shown in Fig. 3.12 consists of the following three parts. 

Sensor arm shell is to provide sliding track for sensor arm.  Sensor arm locking screw is 

to control neck arm movement vertically.  Sensor arm base is to support all constituent 

components of the sensor. 

The idea of this concept is that the neck arm can be adjusted in the vertical direction 

using the sensor arm locking screw.  The sensor arm shell is located at the center of the 
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sensor arm base which is a rectangular plate.  Hence, the sensor foot has one degree of 

freedom. 

 
 
 

 
Fig. 3.12. Sensor foot-concept 1 

 
 
 
Concept 2 

The second sensor foot concept shown in Fig. 3.13 consists of the following three 

parts.  Sensor arm shell: To provide sliding track for neck arm.  Sensor arm locking screw 

is to control neck arm movement vertically.  Sensor arm base is to support all constituent 

components of the sensor. 

The idea of this concept is similar to Concept 1.  It also provides one degree of 

freedom, but the difference is that the neck arm shell is located at the biased center of the 

sensor arm base which is a circular plate. 
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Fig. 3.13. Sensor foot-concept 2 

 
 
 
3.2.4. Selection matrices 

From among all the design concepts, one design must be chosen for each of the 

sensor component.  Selections are made based on critical design criteria.  Using an 

evaluation matrix, each concept is evaluated against a datum which is either a pre-

existing configuration or one that is designated as reference.  If a design concept is better 

than the datum, it receives a plus sign.  A minus sign means it is inferior to the datum in 

that particular design criterion being considered.  An S stands for the same.  The total of 

number of pluses and minuses are then tallied at the bottom of the evaluation matrix to 

identify the best design concept.  The evaluation matrices for the selection of the best 

sensor head, sensor arm, and sensor foot concepts are shown in Tables 3.1, 3.2 and 3.3, 

respectively. 
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Table 3.1. Sensor head selection matrix 

 
 
 
Table 3.2. Sensor arm selection matrix 

Evaluation Criteria 
Concept 1 
No degree of 
freedom 

Concept 2 
One degree of 
freedom (Datum) 

Concept 3 
Two degrees of 
freedom 

Rotary movement -  + 
Axial movement -  S 
Assembly time +  - 
Time of adjustment -  + 
Total +’s 1  2 
Total –‘s 3  1 
Total Score -2  +1 

 
 
 
Table 3.3. Sensor foot selection matrix 
 
Evaluation Criteria 

Concept 1 
Concentric position with 
rectangular base 
(Datum) 

Concept 2 
Biased position with 
circular base 

The flexibility of 
installation 

 + 

Balancing  - 
Assembly time  S 
Time of adjustment  S 
Total +’s  1 
Total –‘s  1 
Total Score  0 

Evaluation Criteria 

Concept 1  
movement in vertical 
direction without adjusting 
gear (Datum) 

Concept 2 
movement in vertical 
direction with adjusting 
gear 

Movement in horizontal 
direction   

 S 

Movement in vertical 
direction 

 + 

Assembly time  - 
Time of adjustment   + 
Total +’s  2 
Total –‘s  1 
Total Score  +1 
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3.2.5. Concept design summary 

In summary, several viable design concepts have been presented for each of the 

following designs: (1) sensor head, (2) sensor arm and (3) sensor arm.  Through careful 

considerations and design evaluations, a sensor body concept was selected.  The selected 

concept has a sensor head design that allows the optical fiber connector and GRIN fiber 

collimator to move in the horizontal direction individually and in the vertical direction 

together.  In addition, the height of measurement can be adjusted by changing the screw 

height.  The concept also has a sensor arm design that allows the chassis interface shaft to 

rotate along the neck axis, and the neck to rotate along the neck shaft.  It is supported by 

a foot design that has a circular plate and a sensor arm shell that is placed at a biased 

position.  As is seen in Table 3.4, the material selected for all the components is 

Aluminum alloy 6061.  In the section that follows, design optimization is performed 

using the COSMOSWorks FEA tool.  This is done to also identify possible weak links in 

the design.  

 
 
 

Table 3.4. Aluminum alloy 6061 material properties 

Yield Strength (Typical) 8  ksi 55  MPa 

Tensile Strength (Typical) 18  ksi 124  MPa 

Young's Modulus 10 E6 psi 69  GPa 

Shear Modulus 3.75 E6 psi 26  GPa 

Poisson's Ratio 0.33     

Thermal Expansion Coefficient 13 E-6 1/F 23.4 E-6 1/C 

Density 0.098  lb/(in^3) 2713  kg/(m^3) 

Thermal Conductivity 1190  BTU-in/(ft^2-h-F) 172  W/(m-C) 

Specific Heat 0.23  BTU/(lbm-F) 0.963  kJ/(kg-C) 

Melting Point 1205  F 652  C 
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3.3. Final Design 

After the preferred design concept was selected, the feasibility of each design 

concept is established.  To this end, force analysis for every component of the design 

concept is performed.  Only components that are concerned for possible failure are 

analyzed.  In the sensor head concept, the vertical alignment wheel is the weakest part 

since the inner chassis is lifted by it.  In the sensor arm concept, the neck gear is the 

weakest since it needs to support the sensor head and neck with a very small contacting 

area.   In the sensor foot design, the connecting area of the sensor arm base with sensor 

arm shell is the weakest.  The following force analyses are carried out to ensure that 

every part is safe and that weight-induced deflections do not exceed the design tolerance. 

3.3.1. Analysis on vertical alignment wheel  

Stress analysis is performed to ensure that the deflection of the wheel due to the 

weight of the movable bases A and B, optical fiber connector, movable sensor base 

screws, and inner chassis do not exceed the tolerance set in the function structure.  The 

total weight of the movable bases A and B, optical fiber connector, movable sensor base 

screws, and inner chassis is 0.09 Kg or 0.882 N.  The weight force vectors (purple arrows 

in Fig. 3.14) act on one of the gear faces that contacts with the inner chassis.  The 

boundary condition is that the shaft of the wheel is constrained both translationally and 

rotationally (green arrows). 
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Fig. 3.14. Boundary conditions of vertical alignment wheel 

 
 
 
The displacement distribution of the vertical alignment wheel is shown in Fig. 3.15.  The 

maximum displacement is 0.0000001399m, which stays well within the 0.00001m 

tolerance specified in the function structure. 

 
 
 

 
Fig. 3.15. Vertical alignment wheel displacement distribution 
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The factor of safety (FOS) is defined using material yield stress and von Mises stress as 
vonMises

Limit

FOSσ
σ

< , where )(55000000 PayieldLimit == σσ .  From Fig. 3.16, it can be seen 

the design has a lowest factor of safety of 100. 
 
 
 

 
Fig. 3.16. Vertical alignment wheel factor of safety distribution 

 
 
 
3.3.2. Analysis on neck gear  

Neck gear is also studied using COSMOSWorks to determine if it is strong enough 

to withstand the applied force.  The applied force (red arrows), which equals to the 

weight sum of the sensor head, chassis interface shaft, neck and two neck gears, is 0.532 

Kg or 5.217 N.  The applied force is normal to one of the gear faces and the hole for the 

shaft is treated as a fixed boundary condition in all directions (green arrows) as shown in 

Fig. 3.17. 
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Fig. 3.17. Boundary conditions of neck gear 

 
 
 
The displacement distribution of the neck gear is shown in Fig. 3.18.  The maximum 

displacement is 4.866e-8 m, which does not exceed the 1e-5 m tolerance set in the 

function structure. 

 
 
 

 
Fig. 3.18. Neck gear displacement distribution 
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Similarly, using the definition from before, the component is seen to have a minimum 

FOS of 28 (Fig. 3.19.)   

 
 
 

 
Fig. 3.19. Neck gear factor of safety distribution 

 
 
 
3.3.3. Analysis on sensor base  

The sensor base is also analyzed in the same way with applied force vectors and 

constraints.  The applied force (purple arrows), which is the total weight of the whole 

sensor except for the weight of the sensor base, is 4.418 Kg or 43.296 N.  It exerts on the 

internal screws of the sensor base.  The four holes that are connected to the ground are 

fixed in all directions (green arrows).  Fig. 3.20 shows the corresponding boundary 

conditions. 
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Fig. 3.20. Boundary conditions of sensor base 

 
 
 
The displacement distribution of the neck gear is shown in Fig. 3.21.  The maximum 

displacement is 1.879e-7 m which again does not exceed the 1e-5 m tolerance set in the 

function structure.  From Fig. 3.22, it can be seen that the lowest factor of safety is 170.   

 
 
 

 
Fig. 3.21. Sensor base displacement distribution 
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Fig. 3.22. Sensor base factor of safety distribution 

 
 
 
3.3.4. Conclusions 

The three major components; namely, the vertical alignment wheel, neck gear, and 

sensor base, have been analyzed using COSMOSWorks FEA.  These results showed that 

components that are potentially prone to mechanical failure were all structurally sound 

subject to the considered boundary and forcing conditions.  Furthermore, these results 

also established the feasibility of the sensor design.  This sensor design is therefore viable 

for incorporating and supporting the pulsed laser and fiber tip interferometer that were 

discussed in Chapter 2.  In summary, there are three major components of the sensor 

design.  They are the sensor head, sensor arm, and sensor foot.  For the sensor head 

design, it has two degrees of freedom which allows the operator to adjust the laser 

generation system and the FTI sensing system to the desire location accurately.  The 

scales of all adjustments of the sensor head are 1 mm per revolution.  For sensor arm 

design, it also has two degrees of freedom adjustments which can rotate the sensor head 

around.  The scales of all adjustment of sensor arm are 1 mm per revolution.  Finally, the 

sensor foot has one degree of freedom which allows sensor arm to move up or down.  

The final configuration of the sensor body design is shown in Fig. 3.23. 
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Fig. 3.23. The final design configuration of sensor body 
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CHAPTER IV 

MODIFIED FORMULATION OF WAVE PROPAGATION 

In order to find out the relationship of ultrasonic wave dispersion with pressure, 

temperature and plate thickness, a theoretical model needs to be developed.  In this 

chapter, a modified wave propagation model is introduced.  In the subsequent sections, 

the classical theory of wave propagation is reviewed as the basis for deriving the wave 

propagation model.  Lamb plate waves propagating in thin structures plate are also 

reviewed.  As Lamb wave dispersion is used to resolve temperature, pressure and 

thickness, specifics regarding how this is accomplished is also discussed.  Gabor wavelet 

transform is reviewed for its use as the tool for extracting feature information.  After the 

classical theory of wave propagation and Gabor wavelet transform are presented, the 

modified wave propagation model is then derived.   

4.1. Classical Theory of Wave Propagation 

The classical theory of wave propagation is a fundamental theory from which many 

different waves including Rayleigh surface waves and Lamb plate waves are derived 

subject to given boundary.  Consider the stress element isolated from the finite plate 

shown in Figure 4.1, σxx, σxy, σxz are stress components in the xz plane, σzx, σzy, σzz are 

stress components in the xy plane and σyx, σyy,  σyz are stress components in the yz plane.  

The equations of motion are obtained by applying Newton’s Second Law, ii maF =∑ ,  
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Fig. 4.1. Stress components of a stress cube 

 
 
 
where  u, v and w are the displacements along the x, y and z direction, respectively, and ρ 

is the density of the material.  The constitutive equation for isotropic material can be 

written as follows [24] 
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where xxε  , yyε , zzε , xyε , xzε and yzε  are strain components, λ  and μ  are the eLam '  

constants and υ  is the Poisson’s ratio.  The relation between stains and displacements are 
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Combining Eqs. (4.2) and (4.3) into (4.1), the governing equations of wave propagation 

in terms of displacement variables are then obtained, 
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Eqs. (4.1)-(4.4) are the classical theory of wave propagation.  With the application of 

different boundary and initial conditions, individual wave solution can be obtained.  For 

example, a Rayleigh wave occurs along the stress-free surface of a half-space, while a 

Lamb wave propagates along the space bounded between two stress-free boundaries.  In 

this research, an isotropic, homogeneous thin plate is used as the specimen configuration, 

which supports the propagation of Lamb waves. 
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4.1.1. Lamb waves 

Lamb waves are dispersive.  The dispersion property of Lamb plate modes is 

explored in this research.  Assuming the plate is very long in the y-direction, thus 

satisfying the plane-strain assumption.  The 3D problem can be simplified to 2D by 

maintaining a thickness of 2b as shown in Fig. 4.2. 

 

Fig. 4.2. Thin plate configuration 

 
 
 
Since the upper and lower surfaces of the plate are traction free, the corresponding 

boundary conditions are therefore 

At  bZ ±=  , 0=== zzyzxz σσσ                                                                                   (4.5) 
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where xu , yu  and zu  are displacement components along the x, y and z directions,  

respectively.  According to the Helmholtz Representation Theorem, the displacement 

vector ( )ur  can be expressed using two potential functions, ϕ  and ψ , as 

ψϕ ×∇+∇=
rrru                                                                                                               (4.6) 

Expanding Eq. (4.6), the displacement vector ( )ur  can be written as 
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where ˆˆ andi k   are the unit vectors along the x and z directions, respectively.  With the 

plane-strain assumptions, the displacement components along the x and z directions can 

be expressed as functions of ϕ  and ψ  as follow: 
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Substituting Eq. (4.8) into Eqs. (4.2) and (4.3), xzσ  , yzσ , zzσ  can be expressed as 

functions of ϕ  and ψ  as 
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Substituting Eq. (4.9) into Eq. (4-4), one then has 
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Where ω is the angular frequency, ,
2l tk kρ ρω ω

λ μ μ
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
 are the wavenumbers 

of the longitudinal and transverse waves, respectively, and lC  and tC  are the group 

velocities of longitudinal and transverse waves, respectively.  Assuming harmonic solutions 

for the potential functions ϕ  and ψ  

( ) ( ) ( )tkxiezFtzx ωφ −=,,  

( ) ( ) ( )tkxiezGtzx ωψ −=,,                                                                                                        (4.11) 

where, again, k is the wavenumber and ω  is the angular frequency.   
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Substituting Eq. (4.11) into Eq. (4.10),  
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The general solution of Eqs. (4.12) are 
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where A1, A2, B1 and B2  are arbitrary constants,  ( )22 kkq l −=  and ( )22 kks t −= .  

Applying boundary conditions Eq. (4.5), the dispersion equations can then be obtained. 

Due to the symmetry and anti-symmetry of the displacement equation, the 

solutions are separated into symmetric modes and anti-symmetric modes.  Fig. 4.3 

provides the corresponding mode shapes.  Generally speaking, these two different modes 

depend on the symmetry of the configuration and the boundary conditions.  For example, 

if the excitation at the upper surface and lower surface are symmetric, the symmetric 

mode will be excited.  In contrast, the anti-symmetric mode will be excited if the 

excitation at the upper surface and lower surface are anti-symmetric. 

The dispersion equation for the symmetric mode is 
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and the dispersion equation for the anti-symmetric mode is 
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Fig. 4.3. Symmetric and anti-symmetric modes 

 
 
 
4.1.2. Dispersion 

Using the dispersion Eqs. (4.14) and (4.15), the dispersion curves for symmetric 

and anti-symmetric modes can be obtained.  Dispersion curves can be obtained either 

through solving the dispersion equation or via processing waveform responses for 

dispersion extraction.  As it is difficult to obtain close-form wave solutions, this research 

adopts the latter approach for extracting dispersion information from numerical 

waveforms.  Wave dispersion is associated with the time and frequency of a waveform.  

Different waveform responses reflect different dispersion phenomena.  Consider a 0.5mm 

aluminum alloy 6061 plate with an anti-symmetric impulse forcing function.  The 

boundary conditions are the same as described in Eq. (4.5).  An anti-symmetric Lamb 

wave will result through solving Eq. (4.4).  The anti-symmetric waveforms acquired at 

locations 15mm, 25mm and 35mm away from the point of excitation are shown in Figs. 

Symmetric mode-S0 mode 

Anti-Symmetric mode-A0 mode 
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4.4, 4.5 and 4.6, respectively.  The resulted waveforms, though looked similar, are of 

different shape, indicating that all frequency components of the Lamb wave propagate at 

different velocities.  This phenomenon is called dispersion.  On the other hand, if the 

waves are nondispersive, the group velocities of all spectral components are the same and 

the waveform maintains the same at all time.  In mathematical terms, when the group 

velocity of the wave is a nonlinear function of frequency, the wave is dispersive.  

Otherwise, the wave is nondispersive.  By using Gabor wavelet transform, dispersive 

waveforms can be mapped into the time-frequency domain, and from which the relation 

between frequency and group velocity can then be determined.  Plotting of the relation is 

a dispersion curve.  

 
 
  

 
Fig. 4.4. Lamb waveform acquired at 15mm from the excitation point 
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Fig. 4.5. Lamb waveform acquired at 25mm from the excitation point 

 
 
 

 
Fig. 4.6.  Lamb waveform acquired at 35mm from the excitation point 

 
 
 
4.2. Wavelet Transform 

Wavelet transform is used to process the wave solutions obtained from numerically 

solving the theoretical model that is to be derived in the following section.  The reason 

for using Wavelet Transform instead of Fourier Transform is illustrated through 
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comparing the two mathematical transformations.  A time signal, x(t), can be represented 

using a series of exponential functions of different frequencies as 

∫
∞

∞−

−= dtetxfX tiω)()(                                                                                                     (4.16) 

 where X(f) is the Fourier Transform of the signal x(t) in the frequency domain.  By 

applying the Fourier Transform, the frequency components of a time signal are resolved.   

However, the major drawback of the Fourier transform is that time domain information of 

the signal is lost through the transformation.  As an alternative, wavelet transform 

provides both time and frequency information [19].  As such wavelet transform is the 

preferred tool for processing transient signals.  Wavelet transform maps a time signal into 

the time-frequency domain by analyzing a small section of the signal at a given time.  

The continuous wavelet transform is defined as  
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Where a is a scale parameter, b is a translation parameter and )(tf  is a time signal.  )(tψ  

is the analyzing wavelet function and the over-bar, , represents the complex conjugate.  

From Eq. (4.17) it can be seen that wavelet transform is the inner product of a time signal 

with the analyzing mother wavelet function, ψ .  Parameters a and b control the shape 

and location in time of the mother wavelet, respectively.  Figs. 4.7-4.9 illustrate 3 

different Gabor wavelet functions correspond to 3 sets of a and b.  Fig. 4.7 shows that the 

Gabor wavelet function when a=1 and b=0, which corresponds to no dilatation or 

translation.  Fig. 4.8 is the case there is translation but no dilatation.  Fig. 4.9 is when 

there is compression but no translation. 
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Fig. 4.7. Gabor wavelet function corresponds to a=1 and b=0 

 
 
 

 
Fig. 4.8. Gabor wavelet function corresponds to a=1 and b=1 
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Fig. 4.9. Gabor wavelet function corresponds to a=0.5 and b=0 

 
 
 

From the above figures, it is seen that a causes dilatation of the wavelet function 

when a>1 and compression of the function when a<1.  b, on the other hand, causes the 

translation of the mother wavelet in time.  Thus a time signal is approximated along the 

time axis within a window of changing size.  Strictly speaking the wavelet transform 

domain is a time-scale domain.  However, since parameter a implies frequency, wavelet 

transform can be applied to resolve simultaneous time-frequency information.  It should 

be noted that a wavelet function possesses specific characteristics [20].  First, wavelet 

function, )(tψ , must have an average of zero.  That is, 
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Second, the wavelet )(tψ  must satisfy the admissibility condition requiring that )(tψ  

and its Fourier Transform, )(ˆ ωψ , must satisfy 
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∞<∫
∞
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ωωψω d
2
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where ω is the angular frequency.  Gabor function is used as the mother wavelet in this 

research.  Wavelet Transform that employs Gabor function is therefore named the Gabor 

Wavelet Transform (GWT). 

4.2.1. Gabor wavelet transform 

The Gabor wavelet function found in Eq. (4.21) and plotted in Fig. 4.10 is a 

complex-valued sinusoidal function windowed by a Gaussian function centered at the 

origin.  The Fourier Transform of the Gabor function is a Gaussian function centered at  

0ωω = . 

 
 

 
Fig. 4.10. Gabor Wavelet Function consists of a complex-valued sinusoidal 
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where 0ω  and γ  are positive constants.  In this research, 0ω  is set to 2π  and γ =3.  The 

reasons for choosing these two numbers are explained in [20].   

A Matlab Gabor wavelet transform program was developed for processing numerical 

wave solutions.  A Matlab Fourier Transform program was also developed for the 

purpose of comparison.  The example that follows illustrates the reason why wavelet 

transform is preferred over Fourier transform for analyzing transient signals.  Consider 

Signals A and B shown in Figs. 4.11 and 4.12, respectively.  Signal A has two 

frequencies, 1 Hz and 2 Hz, in a time-span of 5 seconds.  Signal B has a 1 Hz component 

in the first 3 seconds and a 2 Hz frequency in the next 2 seconds.  Figs. 4.13 and 4.14 

show the Fourier Transform and Gabor Wavelet Transform of Signal A; while Figs. 4.15 

and 4.16 present the corresponding transforms of Signal B.  For Signal A, both Fourier 

Transform and Gabor Wavelet Transform resolve the frequency components of the signal.  

However, for Signal B, only the Gabor Wavelet Transform can clearly resolve the 

frequency components at the two different time intervals.   

 
 
 

 
Fig. 4.11. Signal A with the sum of two frequencies: 1 Hz and 2 Hz during a time span of 

5 seconds 
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Fig. 4.12. Signal B during two intervals: 1 Hz from 0-3 second and 2 Hz from 3-5 
seconds 

 
 
 

 

Fig. 4.13. Fourier transform of signal A 



 53

 
Fig. 4.14. Gabor wavelet transform of signal A 

 
 
 

 
Fig. 4.15. Fourier transform of signal B 

 



 54

 
Fig. 4.16. Gabor wavelet transform of signal B 

 
 
 
4.3. Modified Equations of Wave Propagation for 2-D, Isotropic, Homogenous 

Materials 

A modified wave formulation is derived based on the classical wave propagation 

theory and elasticity.  The goal is to incorporate temperature and pressure effects into the 

displacement based formulation.  Temperature effects would result in thermal stresses 

and pressure would cause mechanical stresses.  In other words, stress wave propagation 

can be correlated with temperature and pressure induced pre-stresses.  Thus, the relation 

of displacement with thermal and mechanical pre-stresses is sought in the study.  

To derive the modified formulation, three states are defined as shown in Fig. 4.17. 

First, non-deformed state is the initial state experiencing no deformation.  In addition, the 

assumed position vector is expressed as capital XI, and the tensors subscripts are 

expressed as capital letters I, J, K, L, M and N.  Secondly, deformed state is defined as 

the deformed configuration after pressure is applied and pre-stress is resulted.  The 

position vector is expressed as xi which is a function of the reference (non-deformed state) 

position vector XI.  The associated tensors are expressed as letters i, j, k, l, m and n.  
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Thirdly, final state is defined as a secondary deformed configuration after excitation and 

temperature are both applied.  In general, wave propagation occurs between the deformed 

state and the final state.  The position vector is expressed as X α which is a function of 

deformed position vector, xi, and the tensors are expressed as Greek letters α, β, γ, δ, ε 

and η. 

 
Fig. 4.17. Three different states in cartesian coordinate system 

 
 
 

UI is the displacement vector from the non-deformed state to deformed state which 

can be expressed as UI= xI- XI.  UI is the displacement vector from the deformed state to 

final state which can be expressed as Ui= Xi – xi .  Stresses in the deformed state is 

denoted as deformed
ijσ  and stresses in the final state as final

αβσ .  The density in the non-

deformed, deformed, and final state are denoted as ρ , deformedρ  and finalρ , respectively.  

Since the deformed sate is a static state, the equilibrium equations [24] in the deformed 

state are therefore 0, =deformed
iijσ                                                                                      (4.22) 

Since the final state is a transient state, the final state can be written according to [11] as 

βααβ ρσ Ufinalfinal &&=,                                                                                                             (4.23) 
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Eqs. (4.22) and (4.23) are in spatial description, and in order to relate the two equations, 

Eq. (4.23) needs to be in material description.  Hence, final
αβσ  can be expressed in terms of 

the second Piola-Kirchhoff stress tensor, final
ij

S , as [24]  

Tfinalfinal FJFS
ij

−−= αβσ1                                                                                                    (4.24) 

where J is the Jacobian of the motion from the deformed configuration at t = t0 to the final 

configuration, and F is the deformation gradient tensor. 

Since xFdXd = , 
i

i dx
XdF α

α = , Eq. (4.24) can be written as 
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Similarly, deformed
ijσ  can be expressed in terms of the second Piola-Kirchhoff stress 

tensor, 
IJ

deformedS , as [24] 

Tdeformed
ij

deformed
IJ FFJS −−= σ1'                                                                                           (4.26) 

where 'J is the Jacobian of the motion from the non-deformed configuration to the 

deformed configuration, and F is the deformation gradient tensor. 

Since XFdxd = , 
I

i
iI dX

dxF = , Eq. (4.26) can be written as   
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For incompressible material, the relation between the density of the material in the 

deformed state and in the final state is given as follows [24] 
deformed finalJρ ρ=   

where 
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1
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J
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−

                                                                                                                (4.28) 

' deformedJρ ρ=              
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'

,

1
1 K K

J
U

=
−

                                                                                                             (4.29) 

The increment of the stress tensor ijS  is defined in the deformed state coordinates as [12] 

final deformed
ij ij ijS S σ= −                                                                                                (4.30) 

or in the non-deformed state coordinates as  
final deformed

IJ IJ IJS S S= −                                                                                                (4.31) 

For linear elastic materials, and assuming infinitesimal deformation, the constitutive 

equations can be written as follow [24]  
deformed deformed

IJKL IJKL KLIJ KLS C E C αθ= +                                                                    (4.32) 

final final
IJKLIJ KLS C E=                                                                                                      (4.33) 

where IJKLC is the second order elastic constants, and deformed
KLE and final

KLE are the Lagrange 

finite strain tensors in the deformed and final states, respectively.  α is the thermal 

expansion coefficient, and KLθ is the temperature tensor.  Substituting Eqs. (4.32) and 

(4.33) into (4.31), IJS  can be expressed as  
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                                                                    (4.34) 

Substituting Eqs. (4.34) and (4.28) into (4.27), ijS  can be written in the following form 

'
,ij ijkl k l ijkl klS C U C αθ= −                                                                                            (4.35) 

Using the chain rule and neglecting higher order terms, '
ijklC  can be written as a function 

of U which is the pressure-induced initial displacement 
'

, , , , ,(1 )ijkl ijkl ijkm ijml imkl mjklM M l m k m j m i mC C U C U C U C U C U= − + + + +         (4.36) 

Substituting Eq. (4.25) into (4.23) and using the chain rule, one has 
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Since Uk= Xk – xk , Eq. (4.37) becomes 
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Substituting j with l and k with j, Eq. (4.38) becomes 
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Substituting Eq. (4.30) into (4.39), the following results 

( ) 0j deformed deformed
il ijijil

i l

U
S S

x x
σ σ

∂⎛ ⎞∂
+ + + =⎜ ⎟∂ ∂⎝ ⎠

                                                    (4.40) 

Since small deformation is assumed, the product of 
l

j

x
U
∂
∂

with ilS  are very small so that it 

can be neglected.  Since ( ) 0=
∂
∂ deformed

ij
ix
σ  (see Eq. (4.22)), Eq. (4.40) becomes 

0j
il ij

i l

U
S S

x x
∂⎛ ⎞∂

+ =⎜ ⎟∂ ∂⎝ ⎠
                                                                                              (4.41) 

Substituting Eq. (4.35) into (4.41), Eq. (4.42) is obtained 

'
, ,( )deformed deformed

ijkl jk k li ijkl kl i jilC U C Uδ σ αθ ρ+ − = &&                                              (4.42) 

Combining Eqs. (4.42) and (4.29), Eq. (4.21) can be written in the following form 

, , ,(1 )ijkl k li ijkl kl i jm mB U C U Uαθ ρ− = − &&                                                                    (4.43) 

where ' deformed
ijkl ijkl jk ilB C δ σ= + .  The equations of wave propagation incorporating 

pre-stress and temperature were derived in Eq. (4.43).  Next, the formulation is simplified 

to account for isotropic, homogenous materials subject to plane strain conditions.  Models 

created using the 2D formulation are then used to simulate stress wave propagation in 

thin plates.  



 59

Eq. (4.43) is derived for anisotropic materials.  To consider isotropic materials, Eq. 

(4.43) needs be simplified.  All isotropic fourth-order tensors have scalar components of 

the following form [24] 

ijkl ij kl ik jl il jkC λδ δ μδ δ μδ δ= + +                                                                             (4.44) 

where λ and μ are independent elastic constants called eLam '  constants.  Substituting 

Eq. (4.44) into (4.36), '
ijklC  can be expressed using eLam '  constants as 

( )( ) ( )
( ) ( )
( )

'
, , , ,

, , , , , ,

, , ,

1ijkl ij kl ik jl il jk ij ik jkM M l k l j l i

ij jl il kl ik ilk l k i k j j i j l j k

kl jl jki j i k i l

C U U U U

U U U U U U

U U U

λδ δ μδ δ μδ δ λδ μδ μδ

λδ μδ μδ λδ μδ μδ

λδ μδ μδ

= + + − + + +

+ + + + + +

+ + +

   

                        (4.45) 

For 2-D problems, i, j, k ,l, m = 1 or 2 and '
ijklC  can be written as a 4×4 matrix as 

' ' ' '
1111 1112 1121 1122
' ' ' '
2111 2112 2121 2122'
' ' ' '
1211 1212 1221 1222
' ' ' '
2211 2212 2221 2222

ijkl

C C C C

C C C C
C

C C C C

C C C C

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                                  (4.46) 

where 

( )( )'
1111 1,1 2,22 3 1C U Uλ μ= + − +  

( )( )'
1112 1,2 2,12C U Uλ μ= + +  

( )( )'
1121 1,2 2,12C U Uλ μ= + +  

( )'
1122 1,1 2,2 1C U Uλ= + +  

( )( )'
2111 1,2 2,12C U Uλ μ= + +  

 ( )'
2112 1,1 2,2 1C U Uμ= + +  

( )'
2121 1,1 2,2 1C U Uμ= + +  

( )( )'
2122 1,2 2,12C U Uλ μ= + +  
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( )( )'
1211 1,2 2,12C U Uλ μ= + +  

( )'
1212 1,1 2,2 1C U Uμ= + +  

( )'
1221 1,1 2,2 1C U Uμ= + +  

( )( )'
1222 1,2 2,12C U Uλ μ= + +  

( )'
2211 1,1 2,2 1C U Uλ= + +  

( )( )'
2212 1,2 2,12C U Uλ μ= + +  

( )( )'
2221 1,2 2,12C U Uλ μ= + +  

( )( )'
2222 1,1 2,22 3 1C U Uλ μ= + − + +  

Similarly, ijklB  can be written as a 4×4 matrix  

1111 1112 1121 1122

2111 2112 2121 2122

1211 1212 1221 1222

2211 2212 2221 2222

' ' ' '
1111 1112 1121 112211 12
' ' ' '
2111 2112 2121 212221 22

1211

ijkl

deformed deformed

deformed deformed

B B B B
B B B B

B
B B B B
B B B B

C C C C

C C C C

C

σ σ

σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

+ +

+ +
=

' ' ' '
1212 1221 122211 12

' ' ' '
2211 2212 2221 222221 22

deformed deformed

deformed deformed

C C C

C C C C

σ σ

σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +
⎢ ⎥

+ +⎢ ⎥⎣ ⎦

              

                       (4.47) 

From the non-deformed state to the deformed state, deformed
ijσ can be written as the 

function of U  

( ) ( ), , ,
deformed deformed deformed deformed

il ilil i l l i k kU U Uσ μ λ δ βθδ= + + −                           (4.48) 

where λ and μ  eLam '  constants and ( )μλαβ 23 +=  with α  being the thermal 

expansion coefficient.  Combining Eqs. (4.46)-(4.48), ijklB  can be written as follows 
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1111 1112 1121 1122

2111 2112 2121 2122

1211 1212 1221 1222

2211 2212 2221 2222

ijkl

B B B B
B B B B

B
B B B B
B B B B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                                    (4.49) 

where 

( )( ) ( ) βθλμμλ −++++−+= 2,21,11,12,21,11111 2132 UUUUUB  

( )( ) ( )1,22,11,22,11112 2 UUUUB ++++= μμλ  

( )( )1,22,11121 2 UUB ++= μλ  

( )12,21,11122 ++= UUB λ  

( )( ) ( )1,22,11,22,12111 2 UUUUB ++++= μμλ  

( ) ( ) βθλμμ −+++++= 2,21,12,22,21,12112 21 UUUUUB  

( )12,21,12121 ++= UUB μ  

( )( )1,22,12122 2 UUB ++= μλ  

( )( )1,22,11211 2 UUB ++= μλ  

( )12,21,11212 ++= UUB μ  

( ) ( ) βθλμμ −+++++= 2,21,11,12,21,11221 21 UUUUUB  
( )( ) ( )1,22,11,22,11222 2 UUUUB ++++= μμλ  
( )12,21,12211 ++= UUB λ  

( )( )1,22,12212 2 UUB ++= μλ  
( )( ) ( )1,22,11,22,12221 2 UUUUB ++++= μμλ  
( )( ) ( ) βθλμμλ −+++++−+= 2,21,12,22,21,12222 2132 UUUUUB  

4.4. 2D Theoretical Model  

There are four primary variables that need to be defined: U1 and U2 are the 

displacements along the X and Y directions from the non-deformed state to the deformed 

state, and U1 and U2 are the corresponding displacements from the deformed state to the 
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final state.  The eLam '
 -Navier equations that governs the state change from the non-

deformed to the deformed state is [24]  

( ) , , 0k ki i jjU Uλ μ μ+ + =                                                                                          (4.50) 

The equations governing the transient state change from the deformed to the final state as 

Eq. (4.44) is  

, , ,(1 )ijkl k li ijkl kl i jm mB U C U Uαθ ρ− = − &&                                                                    (4.51) 

Since the temperature varies uniformly, the term ,ijkl kl iC αθ  is zero.  Eq. (4.51) can be 

further simplified as  

, ,(1 )ijkl k li jm mB U U Uρ= − &&                                                                                        (4.52) 

Eqs. (4.50) and (4.52) are the governing equations for plane strain problems and can 

be expressed in four equations and four primary variables.  From the non-deformed state 

to the deformed state, the governing equations can be written as follow 
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2
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2

=
∂
∂

+
∂∂

∂
++

∂
∂

+
y
U

xy
U

x
U

μμλμλ                                                              (4.53) 
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4.5. Summary 

A modified wave propagation model was developed using Eqs. (4.53)-(4.56), whose 

primary variables are displacements U1, U2, U1, and U2.  U1 and U2 are the 

displacements of the deformed state along the X and Y directions, respectively.  They can 

be acquired by solving Eqs. (4.53) and (4.54) subject to boundary conditions described in 

Chapter V.  U1 and U2 are not functions of time since they are solutions corresponding to 

steady-states.  Displacement U1 is the displacement of the final state along the X-

direction and U2 is the displacement of the final state along the Y-direction.  U1 and U2 

are functions of time that can be solved by Eqs. (4.55) and (4.56) subject to initial and 

boundary conditions described in Chapter V.  Since close-form solutions to these 

governing equations are difficult to find, numerical solutions will instead be attempted.  

In the next chapter, a finite element model using the governing equations (4.53) to (4.56) 

will be developed. 
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CHAPTER V 

FEMLAB BASED FINITE ELEMENT PLATE WAVE MODEL  

To the theoretical formulation derived in Chapter IV, a FEMLAB based numerical 

model is developed.  FEMLAB, a commercially available finite element method (FEM) 

software package, is introduced first.  The configuration of the developed FEMLAB 

model, boundary conditions and material properties are then defined.  The forcing 

functions used to initiate stress waves in the model are also discussed.   

5.1. Introduction to FEMLAB 

FEMLAB is a FEM software package under the registered trademark of COMSOL 

AB.  It provides a powerful interactive environment for modeling and solving scientific 

and engineering problems governed by partial differential equations (PDEs).  FEMLAB 

solves PDEs using the proven FEM and it also provides ‘canned’ models for multi-

physics problems.  FEMLAB models are constructed by defining the relevant physical 

quantities such as material properties, loads constraints, sources, and fluxes.  FEMLAB 

can handle a wide range of problems including acoustics, electromagnetics, MEMS and 

quantum mechanics using either built-in models or user-defined PDE models.  For user-

defined models, the corresponding governing equations need be expressed in a standard 

FEMLAB form.  Using FEMLAB’s hassle-free UGI, specifying and modifying model 

PDEs are relatively effortless. 

5.2. Model Description 

The numerical model to be developed in the following is for simulating a finite plate 

in an aircraft wing structure.  The plate is considered as flat and subject to an applied 

pressure and temperature as shown in Fig. 5.1.  The width of the plate is assumed to be 

infinitely long compared with the length and thickness, thus satisfying the plane-strain 

condition.  As such, the 3D model is then simplified to a 2D one.  Material properties, 
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model configuration, boundary conditions, mesh types and mesh sizes need be specified.  

As described in Chapter IV that 1U  and 2U  are functions of time but 1U  and 2U  are not, 

Eqs. (4.54) and (4.55) are valid for static analysis while Eqs. (4.56) and (4.57) are 

required for transient analysis.  Since FEMLAB provides multi-physics capability 

allowing two or more different types of physical formulations to be considered 

simultaneously, static and transient models are constructed in FEMLAB.  The two 

models have identical configurations, material properties, and mesh elements except for 

different boundary conditions.  The 2-D geometric definition of the FEMLAB numerical 

model is given in Fig. 5.2.  Points A and B are the excitation points and Points 1 and 2 

are the wave acquisition points.  The origin is at the middle of the plate.  The model is of 

150 mm in length (L) and propagation paths L1 and L2 are 35mm and 45mm, respectively.  

There is a pressure (P) acting vertically on segment BD.  Temperature is assumed to be 

uniform across the plate.  Pressure (P), temperature (T) and plate width (d) are variables 

to be analyzed.  The initial temperature is assumed to be 25oC.  By varying the variables, 

responses of plate in the form of propagating plate waves can be investigated.  Three 

different plate thicknesses (2mm, 1.5mm and 1mm), four different temperatures (25oC, 

50oC, 100oC, and 300oC) and three different uniform pressures ( 6101× N/m, 6105× N/m, 

and 7101× N/m) are considered.  The material for the plate is aluminum alloy 6061-T6, 

whose properties are tabulated in Table 5.1. 
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Fig. 5.1. Simplified plate model 
 
 
 

 
Fig. 5.2. 2-D numerical plate model with forcing conditions 
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Table 5.1. Material properties of aluminum alloy 6061-T6 

 Metric English 
Density (ρ) 2700 kg/m3 0.0975 lb/in3 

Tensile Strength, Ultimate 310 MPa 45000 psi 
Tensile Strength, Yield 275 MPa 39900 psi 
Modulus of Elasticity (E) 69 GPa 10000 ksi 
Poisson’s Ratio (υ) 0.33 0.33 
Ultimate Bearing Strength 607 MPa 88000 psi 
Bearing Yield Strength 386 MPa 56000 psi 
Fatigue Strength 95 MPa 13800 psi 
Shear Modulus (G) 26 GPa 3770 ksi 
CTE, linear 20oC (α) 23.6 μm/m-oC 13.1 μin/in- oF 
CTE, linear 250oC (α) 25.2 μm/m-oC 14 μin/in- oF 
Heat Capacitence 0.896 J/g- oC 0.214 BTU/lb- oF 
Thermal Conductivity 166.9 W/m-K 1160 BTU/lb- oF 
Melting Point 582-652 oC 1080-1210 oF 

eLam ' constant 

(
)21()1( υυ

υλ
−++

=
E ) 

50.354 GPa 7301.33 ksi 

eLam ' constant (μ=G) 26 GPa 3770 ksi 
 
 
 
5.2.1. Boundary conditions 

Since different boundary conditions could lead to different responses, boundary 

conditions imitating that of a wing structure (Fig. 5.3) are carefully selected for the model.  

Segment AB is constrained as immovable along the X-direction while free to move along 

the Y-direction.  Stress-free segment AC is allowed to move in any direction.  Points C 

and D are constrained as immovable in the Y-direction but allowed to translate along X-

direction.  Segment BD is subject to uniform pressure P and is free to move in any 

direction.  The boundary conditions specified for the transient model are shown in Fig. 

5.4.  The forcing functions for exciting stress waves exert at points A and B.  Stress-free 

segment AB is constrained along the X-direction but not the Y-direction.  Points C and D 

are constrained along the Y-direction but free to move along the X-direction.  Segment 

BD is movable in any direction.  
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Fig. 5.3. Boundary conditions for static model 

 
 
 

 
Fig. 5.4. Boundary conditions for transient model 

 
 
 
5.2.2. Mesh type and mesh size 

Triangular meshes shown in Fig. 5.5 are used in the numerical model.  Mesh density 

needs to be high enough to ensure numerical accuracy.  Mesh sizes are estimated by the 

following formula,   

λfC =                                                                                                                            (5.1) 

where C is wave velocity, f is wave frequency, and λ is wavelength.  According to the 

Nyquest sampling Theorem, sampling frequency is at least two times the wave frequency.  

As such, the maximum mesh size needs to be half of the wavelength.  It is difficult to 

determine wave velocity and frequency accurately a priori.  An approximate mesh size 

can be computed depending on the estimated wave velocity and frequency.  In the model, 

the range of frequency is from 0 to 1MHz, and the wave velocity is slower than the shear 

wave velocity which is 3,103m/s.  Therefore, the approximate wavelength is 0.0031m 
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and the approximate mesh sizes are (0.00155m)x(0.00155m).  Reduction in mesh size is 

oftentimes required to ensure converged numerical solutions.   

 
 
 

 

 
Fig. 5.5. Triangular meshes in model 

 
 
 
5.3. Forcing Functions for Excitation 

Fig. 5.6 shows the temporal profile of the impulse forcing function that is exerted at 

points A and B (see Fig. 5.2).  The function is defined using a Gaussian function 

( )
2

221
2

t
aG t e

aπ

−

=                                                                                                        (5.2) 

where a dictates the width of G(t) in both the time and frequency domains.  The forcing 

function is specified as an initial condition in FEMLAB.  Different orientation of 

excitation would result in different modes.  If excitation exertions at points A and B are 

of the same orientation, anti-symmetric modes would result.  Otherwise, if excitations at 
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points A and B are of the opposite orientation, symmetric modes would propagate.  In 

this research, only anti-symmetric modes are investigated.   

 
 
 

 
Fig. 5.6. Gaussian forcing function  

 
 
 
5.4. Summary 

A numerical model has been constructed in FEMLAB.  Numerical solutions can be 

obtained by solving the governing equations developed in Chapter IV subject to boundary 

and initial conditions.  Resulted numerical solutions are propagating Lamb waves in the 

plate model.  The waves are acquired at two different locations that are 10mm apart.  To 

investigate the behavior of ultrasonic plate waves in response to the influences of 

temperature, pressure and thickness, 36 different combinations of parameters are 

considered for numerical study using the FEMLAB model.  Table 5.2 provides details of 

these combinations.   
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Table 5.2. Different combinations of parameters 

Excitation type Thickness (mm) Temperature (oC) Pressure (N/m2) 

Anti-symmetric 2 25 6101×  

Anti-symmetric 2 50 6101×  

Anti-symmetric 2 100 6101×  

Anti-symmetric 2 300 6101×  

Anti-symmetric 2 25 6105×  

Anti-symmetric 2 50 6105×  

Anti-symmetric 2 100 6105×  

Anti-symmetric 2 300 6105×  

Anti-symmetric 2 25 7101×  

Anti-symmetric 2 50 7101×  

Anti-symmetric 2 100 7101×  

Anti-symmetric 2 300 7101×  

Anti-symmetric 1.5 25 6101×  

Anti-symmetric 1.5 50 6101×  

Anti-symmetric 1.5 100 6101×  

Anti-symmetric 1.5 300 6101×  

Anti-symmetric 1.5 25 6105×  

Anti-symmetric 1.5 50 6105×  

Anti-symmetric 1.5 100 6105×  

Anti-symmetric 1.5 300 6105×  

Anti-symmetric 1.5 25 7101×  

Anti-symmetric 1.5 50 7101×  

Anti-symmetric 1.5 100 7101×  

Anti-symmetric 1.5 300 7101×  

Anti-symmetric 1 25 6101×  
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Excitation type Thickness (mm) Temperature (oC) Pressure (N/m2) 

Anti-symmetric 1 50 6101×  

Anti-symmetric 1 100 6101×  

Anti-symmetric 1 300 6101×  

Anti-symmetric 1 25 6105×  

Anti-symmetric 1 50 6105×  

Anti-symmetric 1 100 6105×  

Anti-symmetric 1 300 6105×  

Anti-symmetric 1 25 7101×  

Anti-symmetric 1 50 7101×  

Anti-symmetric 1 100 7101×  

Anti-symmetric 1 300 7101×  
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CHAPTER VI 

RESULTS OF NUMERICAL INVESTIGATION 

 Using the FEMLAB model developed in Chapter V, numerical waveforms are 

obtained in response to various combinations of parameters and forcing configurations.  

The numerical waveforms corresponding to different pressures are discussed first in the 

chapter, followed by waveforms subject to varying temperatures and plate thicknesses.  

The extraction of dispersion information is then discussed in detailed along with the 

display of dispersion curves as functions of pressure, temperature and plate thickness. 

6.1. Waveforms as Functions of Pressure 

As stated, three different pressures; namely, 6101× N/m, 65 10× N/m and 
71 10× N/m, are considered along with four different temperatures, 25oC, 50oC, 100oC 

and 300oC and three different thicknesses, 1mm, 1.5mm, and 2mm.  To illustrate the 

effects of pressure, waveforms correspond to different pressures at a specific thickness 

and temperature are presented.  Figs. 6.1-6.4 present the waveforms for three different 

pressures corresponding to thickness d=1mm and temperatures T=25oC, 50oC, 100oC and 

300oC, respectively.  Waveforms found in Figs. 6.5-6.8 correspond to the same three 

different pressures and temperatures at d=1.5mm.  Waveforms correspond to d=2mm at 

the same 3 pressures and temperatures are shown in Figs. 6.9-6.12.  All waveforms are 

acquired at Position 1 seen in Fig. 5.2 at time t= 52.5 10−× seconds. 

Differences in waveforms as seen in Figs. 6.1-6.12 are minor, thus suggesting that 

pressure is not as dominant as temperature and thickness on affecting plate wave 

propagation. 
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Fig. 6.1.  Waveforms of three different pressures at d=1mm and T=25oC 
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Fig. 6.2. Waveforms of three different pressures at d=1mm and T=50oC 
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Fig. 6.3. Waveforms of three different pressures at d=1mm and T=100oC 
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Fig. 6.4. Waveforms of three different pressures at d=1mm and T=300oC 
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Fig. 6.5. Waveforms of three different pressures at d=1.5mm and T=25oC 
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Fig. 6.6. Waveforms of three different pressures at d=1.5mm and T=50oC 
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Fig. 6.7. Waveforms of three different pressures at d=1.5mm and T=100oC 
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Fig. 6.8. Waveforms of three different pressures at d=1.5mm and T=300oC 
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Fig. 6.9. Waveforms of three different pressures at d=2.0mm and T=25oC 
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Fig. 6.10. Waveforms of three different pressures at d=2.0mm and T=50oC 
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Fig. 6.11. Waveforms of three different pressures at d=2.0mm and T=100oC 
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Fig. 6.12. Waveforms of three different pressures at d=2.0mm and T=300oC 
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6.2. Waveforms as Functions of Temperature 

Numerical waveforms correspond to four different temperatures at a specific 

pressure and plate thickness are presented in the section.  Figs. 6.13-6.15 present the 

waveforms for the four different temperatures corresponding to thickness d=1mm and 

pressure P= 6101× N/m, 65 10× N/m and 71 10× N/m, respectively.  Waveforms found 

in Figs. 6.16-6.18 correspond to the same different temperatures and pressure at 

d=1.5mm.  Waveforms correspond to d=2mm at the same temperatures and pressures are 

shown in Figs. 6.19-6.21.  All waveforms are acquired at Position 1 at time 

t= 52.5 10−× seconds. 

It can be seen from Figs. 6.13-6.21 that differences in waveforms are prominent.  

Wave dispersion is sensitive to increasing temperature.  The waveforms at different 

temperatures also vary with plate thickness, thus indicating that temperature effect is 

significant regardless of pressure and thickness conditions. 

 
 
 

0 0.5 1 1.5 2 2.5

x 10-5

-12

-10

-8

-6

-4

-2

0

2
x 10-4Numerical Waveforms with Different Temperature at Thickness 1mm and Pressure 1e6 N/m

time (s)

di
sp

la
ce

m
en

t (
m

)

25C
50C
100C
300C

 

Fig. 6.13. Waveforms of four different temperatures at d=1.0mm and P= 61×10  N/m 
 



 81

0 0.5 1 1.5 2 2.5

x 10
-5

-12

-10

-8

-6

-4

-2

0

2
x 10-4Numerical Waveforms with Different Temperature at Thickness 1mm and Pressure 5e6 N/m

time (s)

di
sp

la
ce

m
en

t (
m

)

25C
50C
100C
300C

 

Fig. 6.14. Waveforms of four different temperatures at d=1.0mm and P= 65×10  N/m 
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Fig. 6.15. Waveforms of four different temperatures at d=1.0mm and P= 71×10  N/m 
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Fig. 6.16. Waveforms of four different temperatures at d=1.5mm and P= 61×10  N/m 
 
 
 

0 0.5 1 1.5 2 2.5

x 10
-5

-6

-4

-2

0

2
x 10-4Numerical Waveforms with Different Temperature at Thickness 1.5mm and Pressure 5e6 N/m

time (s)

di
sp

la
ce

m
en

t (
m

)

25C
50C
100C
300C

 

Fig. 6.17. Waveforms of four different temperatures at d=1.5mm and P= 65×10  N/m 
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Fig. 6.18. Waveforms of four different temperatures at d=1.5mm and P= 71×10  N/m 
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Fig. 6.19. Waveforms of four different temperatures at d=2.0mm and P= 61×10  N/m 
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Fig. 6.20. Waveforms of four different temperatures at d=2.0mm and P= 65×10  N/m 
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Fig. 6.21. Waveforms of four different temperatures at d=2.0mm and P= 71×10  N/m 
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6.3. Waveforms as Functions of Plate Thickness 

Numerical waveforms correspond to three different thicknesses at a specific pressure 

and temperature are considered in the section.  Figs. 6.22-6.24 present the waveforms for 

the three different thicknesses corresponding to temperature T=25oC and pressure 

P= 6101×  N/m2, 65 10×  N/m2 and 71 10×  N/m2, respectively.  Waveforms shown in 

Figs. 6.25-6.27 correspond to the same three different thicknesses and pressures at 

T=50oC.  Waveforms correspond to T=100oC at the same three thicknesses and three 

pressures are found in Figs. 6.28-6.30.  Lastly, Figs. 6.31-6.33 show the waveforms in 

response to the same thicknesses and pressures at T=300oC.  Again, all waveforms are 

acquired at Position 1 at time t= 52.5 10−× seconds. 

It can be seen from Figs. 6.22-6.33 that plate thickness is more dominant than 

temperature and pressure in affecting waveform.  The waveforms at different thicknesses 

also vary with temperature, thus indicating that effects of plate thickness is significant 

regardless of pressure and temperature conditions. 
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Fig. 6.22. Waveforms of three different thicknesses at T=25oC and P= 61×10  N/m 
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Fig. 6.23. Waveforms of three different thicknesses at T=25oC and P= 65×10  N/m 
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Fig. 6.24. Waveforms of three different thicknesses at T=25oC and P= 71×10  N/m 
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Fig. 6.25. Waveforms of three different thicknesses at T=50oC and P= 61×10  N/m 
 
 
 

0 0.5 1 1.5 2 2.5

x 10
-5

-1.5

-1

-0.5

0

0.5

1

1.5
x 10-4 Numerical Waveforms with Different Thickness at Temperature 50C and Pressure 5e6 N/m

time (s)

di
sp

la
ce

m
en

t (
m

)

1mm
1.5mm
2mm

 

Fig. 6.26. Waveforms of three different thicknesses at T=50oC and P= 65×10  N/m 
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Fig. 6.27. Waveforms of three different thicknesses at T=50oC and P= 71×10  N/m 
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Fig. 6.28. Waveforms of three different thicknesses at T=100oC and P= 61×10  N/m 
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Fig. 6.29. Waveforms of three different thicknesses at T=100oC and P= 65×10  N/m 
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Fig. 6.30. Waveforms of three different thicknesses at T=100oC and P= 71×10  N/m 
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Fig. 6.31. Waveforms of three different thicknesses at T=300oC and P= 61×10  N/m 
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Fig. 6.32. Waveforms of three different thicknesses at T=300oC and P= 65×10  N/m 
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Fig. 6.33. Waveforms of three different thicknesses at T=300oC and P= 71×10  N/m 
 
 
 
6.4. Extraction of Dispersion Curves  

A dispersion curve plots wave group velocities as functions of wave frequency.  In 

order to obtain the dispersion curves for each case considered in Figs, 6.1-6.33, all 

corresponding numerical waveforms are resolved in the time-frequency domain using the 

Gabor wavelet transform (GWT).  Figs. 6.34 and 6.35 show, respectively, the waveforms 

acquired from Position 1 and 2, which correspond to P= 6101×  N/m, T=25oC and d=1 

mm.  The GWT of the two waveforms are given in Figs. 6.36 and 6.37.   

 The arrival time of a certain frequency component can be determined by finding the 

maximum GWT coefficient magnitude in time.  Once the arrival times of the frequency 

component at the two acquisition locations are extracted, the time laps taken for the 

frequency to cover the 10mm propagation path is then used to determine the wave group 

velocity of the frequency.  As an example, assume the arrival time of the frequency 

component 500 kHz at Position 1 to be t1 (see Fig. 6.36), the arrival time at Position 2 to 
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be t2 (see Fig. 6.37) and the distance between the two positions is D.  The group velocity 

of the 500 kHz component is then 

( )1 2/groupV D t t= −                                                                                                         (6.1) 

The wave group velocity Vgroup (ω) of any frequency component, ω, can be determined 

using the same approach as 

( ) ( ) ( )( )1 2/groupV D t tω ω ω= −                                                                                      (6.2)    

By plotting group velocities as functions of frequency components, dispersion curve are 

obtained. 
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Fig. 6.34. Numerical waveform at position 1 corresponds to P= 61×10  N/m, T=25oC and 
d=1 mm 
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Fig. 6.35. Numerical waveform at position 2 corresponds to P= 61×10  N/m, T=25oC and 

d=1 mm 
 
 
 

 

Fig. 6.36. GWT of the waveform in Fig. 6.34 

t1 
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Fig. 6.37. GWT of the waveform in Fig. 6.35 

 
 
 
6.5. Wave Dispersion at Different Pressures 

Figs.6.38-6.41 show the dispersion curves for three different pressures at d=1mm 

and T=25oC, 50oC, 100oC and 300oC.  Figs. 6.42-6.45 present the dispersion curves for 

the same pressures and temperatures at d=1.5mm.  The dispersion curves correspond to 

the same pressures and temperatures at d=2.0mm are found in Figs. 6.46-6.49.  In all 

figures, the horizontal axis represents the frequency in kHz and the vertical axis 

represents the group velocity in m/s.  The frequency range considered is 300-500 kHz.  

It can be observed from Figs. 6.38-6.49 that the differences between the dispersion 

curves in response to different pressures are small.  However, one can still conclude that 

smaller the thickness, the easier it is to identify the pressure induced effects.  From Figs. 

6.38, 6.42 and 6.46, which show the dispersion curves correspond to three different 

pressures at T= 25oC and d=1mm, 1.5mm and 2mm, one can see that dispersion curves 

are more sensitive to the thinner plate (d=1.0mm) than to thicker plates (d=1.5mm and 

2.0mm.)  This is consistent for all the temperatures considered except for T=300oC.  One 

t2 
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other conclusion is that, in thin plates, higher the pressure, lower the wave group velocity, 

as is evident from Figs. 6.38-6.40.  It should be noted that the intersection of dispersion 

curves seen in Figs. 6.39 and 6.40 is due to numerical errors. 
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Fig. 6.38. Dispersion curves for three different pressures at d=1.0mm and T=25oC 
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Fig. 6.39. Dispersion curves for three different pressures at d=1.0mm and T=50oC 
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Fig. 6.40. Dispersion curves for three different pressures at d=1.0mm and T=100oC 
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Fig. 6.41. Dispersion curves for three different pressures at d=1.0mm and T=300oC 
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Fig. 6.42. Dispersion curves for three different pressures at d=1.5mm and T=25oC 
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Fig. 6.43. Dispersion curves for three different pressures at d=1.5mm and T=50oC 
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Fig. 6.44. Dispersion curves for three different pressures at d=1.5mm and T=100oC 
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Fig. 6.45. Dispersion curves for three different pressures at d=1.5mm and T=300oC 
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Fig. 6.46. Dispersion curves for three different pressures at d=2.0mm and T=25oC 
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Fig. 6.47. Dispersion curves for three different pressures at d=2.0mm and T=50oC 
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Fig. 6.48. Dispersion curves for three different pressures at d=2.0mm and T=100oC 
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Fig. 6.49. Dispersion curves for three different pressures at d=2.0mm and T=300oC 

 
 

 
6.6. Wave Dispersion at Different Temperatures 

The dispersion curves for four different temperatures at a specific pressure and 

thickness are presented in the section.  Figs. 6.50-6.52 show the dispersion curves for 

four different temperatures at d=1mm and P= 6101× N/m, 65 10× N/m and 71 10×  N/m.  

Figs. 6.53-6.55 present the dispersion curves for the same temperatures and pressures at 

d=1.5mm.  The dispersion curves correspond to the same temperatures and pressures at 

d=2.0mm are given in Figs. 6.56-6.58.  In all figures, again, the horizontal axis represents 

the frequency in kHz and the vertical axis represents the group velocity in m/s.  The 

frequency range between 300kHz and 500kHz is again considered. 

The differences between dispersion curves in response to different temperatures are 

prominent in Fig. 6.50-6.58.  From Figs. 6.50, 6.53 and 6.56, one can conclude that 

smaller the thickness, the easier it is to resolve temperature.  In addition, as can be 

observed from Figs. 6.50-6.52 that for thin plates, higher the temperature, higher the 

wave group velocity. 
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Fig. 6.50. Dispersion curves for four different temperatures at d=1.0mm and 

P= 61×10 N/m 
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Fig. 6.51. Dispersion curves for four different temperatures at d=1.0mm and 

P= 65×10 N/m 
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Fig. 6.52. Dispersion curves for four different temperatures at d=1.0mm and 

P= 71×10 N/m 
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Fig. 6.53. Dispersion curves for four different temperatures at d=1.5mm and 

P= 61×10 N/m 
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Fig. 6.54. Dispersion curves for four different temperatures at d=1.5mm and 

P= 65×10 N/m 
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Fig. 6.55. Dispersion curves for four different temperatures at d=1.5mm and 

P= 71×10 N/m 
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Fig. 6.56. Dispersion curves for four different temperatures at d=2.0mm and 

P= 61×10 N/m 
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Fig. 6.57. Dispersion curves for four different temperatures at d=2.0mm and 

P= 65×10 N/m 
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Fig. 6.58. Dispersion curves for four different temperatures at d=2.0mm and 

P= 71×10 N/m 
 
 
 
6.7. Wave Dispersion at Different Thicknesses 

The dispersion curves for three different thicknesses at a specific pressure and 

temperature are presented in the followings.  Figs.6.59-6.61 show the dispersion curves 

for three different thicknesses at T=25oC and P= 6101× N/m, 65 10× N/m and 71 10×  

N/m.  Figs. 6.62-6.64 present the dispersion curves for the same thicknesses and 

pressures at T=50oC.  The dispersion curves correspond to the same thicknesses and 

pressures at T=100oC and T=300oC are found in Figs. 6.65-6.67 and Figs. 6.68-6.70, 

respectively.  Again, in all figures, the horizontal axis represents the frequency in kHz 

and the vertical axis represents the group velocity in m/s.  The same range of frequency, 

300-500kHz, is again considered. 

The effect of plate thickness on dispersion curves is significant as can be readily seen 

in Figs. 6.59-6-70.  One observation is that thicker the plate, higher the wave group 

velocity regardless of the temperature and pressure conditions.   
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Fig. 6.59. Dispersion curves for three different thicknesses at T=25oC and P= 61×10 N/m 
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Fig. 6.60. Dispersion curves for three different thicknesses at T=25oC and P= 65×10 N/m 
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Fig. 6.61. Dispersion curves for three different thicknesses at T=25oC and P= 71×10 N/m 
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Fig. 6.62. Dispersion curves for three different thicknesses at T=50oC and P= 61×10 N/m 
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Fig. 6.63. Dispersion curves for three different thicknesses at T=50oC and P= 65×10 N/m 
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Fig. 6.64. Dispersion curves for three different thicknesses at T=50oC and P= 71×10 N/m 
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Fig. 6.65. Dispersion curves for three different thicknesses at T=100oC and 

P= 61×10 N/m 
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Fig. 6.66. Dispersion curves for three different thicknesses at T=100oC and 

P= 65×10 N/m 



 111

300 320 340 360 380 400 420 440 460 480 500
2500

2600

2700

2800

2900

3000

3100

3200
Dispersion Curves with Different Thicknesses at Temperature 100 C and Pressure 1e7 N/m

Frequency (KHz)

G
ro

up
 v

el
oc

ity
 (m

/s
)

t=1 mm
t=1.5 mm
t=2 mm

 
Fig. 6.67. Dispersion curves for three different thicknesses at T=100oC and 

P= 71×10 N/m 
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Fig. 6.68. Dispersion curves for three different thicknesses at T=300oC and 

P= 61×10 N/m 
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Fig. 6.69. Dispersion curves for three different thicknesses at T=300oC and 

P= 65×10 N/m 
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Fig. 6.70. Dispersion curves for three different thicknesses at T=300oC and 

P= 71×10 N/m 
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6.8. Discussions 

In order to easily compare the differences between dispersion curves corresponding 

to pressure, temperature and thickness effects, 36 dispersion curves are plotted in Fig. 

6.71.  Group A contains twelve dispersion curves that correspond to the four different 

temperatures and three different pressures at d=1.0mm.  Similarly, Group B and Group C 

each contain twelve dispersion curves that correspond to the four different temperatures 

and three different pressures at d=1.5mm and d=2.0mm, respectively.  Groups A, B and 

C correspond to different plate thicknesses, and reversely, they can be used to resolve 

thickness.  In each group, there are four distinct dispersion curves which correspond to 

different temperatures.  These dispersion curves can be used to determine temperature.  

However, dispersion variations due to the pressure effect are too insignificant to be 

differentiated. 

The intersections of dispersion curves in Groups B and C are not supposed to happen.  

By comparing the dispersion curves extracted from Position 1 (Fig. 6.72) with those 

extracted from Position 2 (Fig. 6.73), it can be concluded that the aforementioned 

discrepancy is the result of numerical errors.  There are no intersections in either of the 

single-point dispersion curve and individual dispersion curves are easily identified.  The 

errors are believed to be from calculating the wave group velocity using Eq. (6.2).  
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Fig. 6.71. All 36 dispersion curves extracted from both positions 1 and 2 
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Fig. 6.72. All 36 dispersion curves extracted position 1 only 

 
 
 

 
Fig. 6.73. All 36 dispersion curves extracted position 2 only 
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6.9. Summary 

Using the model for modified wave propagation theory, numerical waveforms were 

successfully generated using the finite element method.  All generated waveforms 

demonstrated higher sensitivity to temperature and thickness than to pressure.  By 

applying Gabor Wavelet Transform to the numerical waveforms, dispersion curves 

corresponding to various mechanical, thermal and geometric conditions were successfully 

extracted.  Availability of different dispersion curves as shown in Fig. 6.71 renders 

feasible the simultaneous determination of temperature, pressure and plate thickness.   

The parameter range considered for the study was 300-500kHz for frequency, 25-

300oC for temperature, 1-3mm for plate thickness and 1-10MPa for pressure.  Three 

conclusions can be made from the resulted time waveforms and dispersion curves subject 

to these parameter ranges.  The first is that smaller the plate thickness, more prominent of 

dispersion curve shift under the action of pressure.  Frequency group velocity decreases 

with increasing pressure.  The second is that thinner the plate, more significant the shift 

of dispersion curve due to thermal effect.  Frequency group velocity increases with 

increasing temperature.  The third is that thicker the plate, faster the group velocity.  

Since pressure, temperature and plate thickness were seen to affect wave dispersion, 

information about pressure, temperature and plate thickness can then be determined from 

dispersion curves.  And, when plate thickness is over 1mm, it would be difficult to 

resolve pressure as wave dispersion becomes insensitive to pressure effects. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

The primary objective of the research was to create a new senor concept for the 

simultaneous measurement of pressure, temperature and plate thickness without 

contacting or destructing the object being measured.  To meet this need, Thermal–

Acoustic-Photonic Nondestructive Evaluation (TAP-NDE) was adopted for the sensor 

design which employs a pulsed laser for dispersive plate wave generation and an optical 

interferometry known as FTI for wave sensing.  By exploring the dispersion 

characteristics of propagating plate waves, pressure, temperature and thicknesses 

information of the plates through which the waves propagate can be resolved.   

A theoretical analysis was performed to validate the new sensor concept and a 

modified wave propagation theory that considers pre-stress and temperature effects was 

formulated.  The fundamental elasticity theory and classical wave propagation theory 

were the basis for deriving the modified theory.  Using the modified wave propagation 

theory, a comprehensive 2D model applicable to linear elastic, homogeneous materials 

was developed.  Since the governing differential equations of the model were too 

complex to render analytical solutions, FEM numerical procedures were instead 

attempted using the commercially available FEMLAB package.  Numerical waveforms 

were successfully obtained for each parameter case considered.  To extract dispersion 

curves from numerical waveforms, A Gabor Wavelet Transform (GWT) computer code 

was developed to resolve simultaneous time-frequency information.  The code enabled 

the extraction of dispersion curves corresponding to three different pressures, four 

different temperatures and three different plate thicknesses.  The differences in dispersion 

curves allow pressure, temperature and thickness to be established. 

A new conceptual sensor body design was also created.  This design integrated the 

wave generation and sensing components of TAP-NDE.  Experimental investigation can 

be conducted through realizing this conceptual sensor body design. 

All obtained dispersion curves were shown in Fig. 6.71.  It was shown that dispersion 

curves are strong functions of plate thickness, followed by temperature and then lastly by 
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pressure, thus indicating that the three parameters considered in the study each have a 

different level of impact on plate wave dispersion.  Within the parameter ranges 

considered for the investigation, i.e., 300-500kHz for frequency, 25-300oC for 

temperature, 1-3mm for plate thickness, and 6101× - 71 10× N/m for pressure, three 

conclusions were drawn from the extracted dispersion information.  The first is that 

smaller the plate thickness, more prominent the pressure effect on wave dispersion.  The 

frequency group velocity within this context was seen to decrease with increasing 

pressure.  The second conclusion is that smaller the plate thickness, more sensitive 

dispersion curves are to temperature effect.  The frequency group velocity within this 

context was seen to increase with increasing temperature.  The third is that thicker the 

plate, faster the frequency group velocity.  Results obtained for the research showed that 

plate wave dispersion can be correlated with pressure, temperature and plate thickness.  

Thus, proper information available from the dispersion curves can be used to determine 

the pressure, temperature, and thickness a thin plate are subjected to.  It was also 

observed that when plate thickness is larger than 1mm, pressure effects are hard to be 

differentiated using dispersion curves. 

Contributions of the thesis are many.  First, the research provides a new non-contact, 

non-destructive sensor concept viable for multi-parameter measurement.  Second, the 

research formulates a modified wave propagation theory along with its associated 

numerical model for studying plate wave dispersion subject to simultaneous thermal, 

mechanical and spatial effects.  Third, the research also presents a new conceptual sensor 

body design.   Availability of the results obtained and conclusions made in the research 

provides the necessary knowledge base for the design and development of multi-purpose 

sensors in the future.   

Although the research has realized a multi-purpose sensor concept capable of 

simultaneous measurement of pressure, temperature and thickness in a non-contact 

fashion, however, more works are still needed.  Since interrogating waves are initiated 

using a pulsed laser, the waves are fundamentally thermal-mechanical waves.  Since the 

wave formulation derived for the research does not consider the influences of rapid, 

localized heating on plate wave propagation, investigation into establishing the impact of 

thermal wave propagation on plate wave dispersion is needed.  Second, the heating of 
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high-power pulsed laser can cause extreme temporal and thermal gradients in the 

immediate proximity of the area of excitation.  If and how these gradients would impact 

plate wave propagation and wave dispersion need be understood.  Finally, experimental 

investigations need be conducted to validate the theoretical groundwork and the sensor 

concept developed in the thesis.  
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