
 

 

NEURAL NETWORK ANALYSIS OF SPARSE DATASETS – AN 

APPLICATION TO THE FRACTURE SYSTEM IN FOLDS OF THE 

LISBURNE FORMATION, NORTHEASTERN ALASKA 

 
 
 

A Dissertation 

by  

THANG DINH BUI 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University  

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 
 
 
 
 
 
 
 

August 2004 
 
 
 
 
 
 

Major Subject: Petroleum Engineering 



 

 

NEURAL NETWORK ANALYSIS OF SPARSE DATASETS – AN 

APPLICATION TO THE FRACTURE SYSTEM IN FOLDS OF THE 

LISBURNE FORMATION, NORTHEASTERN ALASKA 

 
A Dissertation 

by  

THANG DINH BUI 

 
Submitted to the Office of Graduate Studies of 

Texas A&M University  
in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 
 

Approved as to style and content by: 

  
___________________________ 

Jerry L. Jensen 
(Chair of Committee) 

____________________________ 
David S. Schechter 

(Member) 

___________________________ 
Catherine L. Hanks 

(Member) 

___________________________ 
Judith S. Chester 

(Member) 

____________________________ 
Walter B. Ayers 

(Member) 

____________________________ 
Stephen A. Holditch 

(Head of Department) 

 
August 2004 

 
 

Major Subject: Petroleum Engineering 



 

 

iii

ABSTRACT 

 

Neural Network Analysis of Sparse Datasets – An Application to the Fracture 

System in Folds of the Lisburne Formation, Northeastern Alaska. (August 2004) 

Thang Dinh Bui, B.S., Moscow Institute of Oil and Gas; 

M.S., Texas A&M University  

Chair of Advisory Committee: Dr. Jerry L. Jensen  

 

Neural networks (NNs) are widely used to investigate the relationship among 

variables in complex multivariate problems.  In cases of limited data, the network 

behavior strongly depends on factors such as the choice of network activation function 

and network initial weights.  In this study, I investigated the use of neural networks for 

multivariate analysis in the case of limited data.   

The analysis shows that special attention should be paid when building and using 

NNs in cases of limited data.  The linear activation function at the output nodes 

outperforms the sigmoidal and Gaussian functions.  I found that combining network 

predictions gives less biased predictions and allows for the assessment of the prediction 

variability.   

The NN results, along with conventional statistical analysis, were used to 

examine the effects of folding, bed thickness, structural position, and lithology on the 

fracture properties distributions in the Lisburne Formation, folded and exposed in the 

northeastern Brooks Range of Alaska.  Fracture data from five folds, representing 

different degrees of folding, were analyzed.  In addition, I modeled the fracture system 

using the discrete fracture network approach and investigated the effects of fracture 

properties on the flow conductance of the system.   

For the Lisburne data, two major fracture sets striking north/south and east/west 

were studied.  Results of the NNs analysis suggest that fracture spacing in both sets is 

similar and weakly affected by folding and that stratigraphic position and lithology have 
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a strong effect on fracture spacing.  Folding, however, has a significant effect on fracture 

length.  In open folds, fracture lengths in both sets have similar averages and variances.  

As the folds tighten, both the east/west and north/south fracture lengths increase by a 

factor of 2 or 3 and become more variable.  In tight folds, fracture length in the 

north/south direction is significantly larger than in the east/west direction.  The 

difference in length between the two fracture sets creates a strong anisotropy in the 

reservoir.  Given the same fracture density in both sets, the set with the greater length 

plays an important role for fluid flow, not only for flow along its principal direction but 

also in the orthogonal direction.          
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CHAPTER I  

INTRODUCTION 

 

Naturally fractured reservoirs (NFRs) play an important role in oil and gas 

exploration and production because a large number of oil and gas reservoirs are naturally 

fractured (Aguilera, 1995; Nelson, 2001).  Production from those reservoirs is usually 

affected by the presence of a system of connected fractures.  This fracture network can 

contribute significant porosity and permeability to a reservoir.  Also, it creates a greater 

degree of heterogeneity in the porous media than is present in unfractured reservoirs.  

Because of this heterogeneity, production from NFRs usually suffers from low recovery, 

early water breakthrough, and decreasing productivity index during production 

(Aguilera, 1995; Nelson, 2001).  Understanding and quantifying the fracture distribution, 

such as identifying the location of highly fractured zones within the reservoir and 

determining the degree of reservoir anisotropy, can be critical for NFR exploration and 

development.   

Geostatistical approaches such as kriging are commonly used to estimate the 

spatial distribution of the reservoir properties in a field.  When used for NFRs, these 

approaches exploit the spatial relationships but not the factors that are causes for the 

fracture development.  Studies indicate that the fracture density is affected by geological 

factors such as formation curvature (e.g., Harris et al., 1960; Lisle, 1994) that can be 

determined across the field.  Thus, while geostatistical methods may help in modeling 

NFRs, another technique which accounts for the effect of geologic factors can greatly 

enhance fracture distribution prediction and hence improve the quality of the reservoir 

management. 

 

______________ 

This dissertation follows the style and format of American Association of Petroleum 
Geologists Bulletin.   
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The stratigraphic factors that could potentially affect fracture distribution include 

formation rheology, bed thickness, and the interactions between beds.  Many studies of 

the effects of mechanical stratigraphy on fracture distribution have focused on 2 major 

parameters: bed thickness and lithology.  The observations have been that the average 

fracture spacing is proportional to bed thickness, and lithology controls the difference in 

fracture spacing in beds of equal thickness (e.g., Huang and Angelier, 1989; Narr and 

Suppe, 1991; Hanks et al., 1997).  In single-bedded folded strata, the fracture density is 

enhanced by the degree of folding and depends on the mechanism of the fold (e.g., Price 

and Cosgrove, 1990).  For example, the fracture density is greater in the region with 

greater formation curvature (Murray, 1968; Lisle, 1994).    

For a particular geological setting, the spatial distribution of fractures can be a 

very complex function of different geological factors.  For example, the effect of a single 

geologic parameter on fracture distribution can be enhanced or masked, depending on 

the values of the remaining parameters.  The question of how fracture properties change 

with an increase of folding, as a function of bed thickness and lithology, is of critical 

importance not only for the prediction of the fracture distribution within the reservoir but 

also for understanding the development of the fracture system within the geological 

setting.  Conventional statistical analysis with linear relationships between variables is 

usually used to examine the relationships between these variables.  However, in the case 

of complex nonlinear relationship among variables as found in NFRs, an alternative 

technique is needed.   

During the last decade, the application of neural networks for identification of 

nonlinear and non-stationary systems has increased.  Artificial neural networks have 

been used widely in finance, engineering, medicine, and management (Garson, 1998).  

Neural networks, which can extract relationships among multiple variables underlying 

observed data, seem to be an excellent tool for investigating the fracture density as a 

function of multiple geologic parameters.  Properly designed and used, the neural 

network is attractive for analyzing the complex nonlinear system because it does not 

require a-priori knowledge about the functional structure among variables.  Ouenes et al. 
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(1998) used neural networks to analyze the ultimate recovery distribution within the 

naturally fractured reservoir as a function of the bed thickness, formation resistivity, and 

formation curvature.      

A challenge remains, however, when using neural networks to assess geological 

relationships.  This is because neural networks will have to be applied to a situation with 

a limited number of observations.  The behavior of the neural network in this case is 

strongly depends on how the model is built and used for analysis.  For example, the 

typical use of a neural net is to divide available data into a training and a validating set 

but, in a case of limited data, this may create the sets which are not representative of the 

data.  The network behavior also depends on other factors such as initial network 

weights and the network activation function.  Thus, some special attention or 

modifications are needed.   

It is commonly observed that fractures usually develop in sets, each having 

different orientation, density, and geometric parameters.  The interaction of the fractures 

from different sets creates a highly heterogeneous system that can greatly affect the 

effective exploration and development of NFRs.  The question of how the conductivity 

of the fracture system behaves as a function of the fracture properties of each fracture set 

is of critical importance in reservoir management.  The flow characteristic of the fracture 

system can be assessed by using discrete fracture modeling (Chiles and de Marsily, 

1993; Karpov, 2001).  In this model, a fracture system with required statistical 

characteristics is statistically generated.  The hydraulic isotropy of the system can be 

estimated by analyzing the flow conductance between specified source and sink within 

the system.   

This research investigates the use of neural network in the cases of limited data. 

The results are used to investigate the effects of bed thickness, degree of folding, and 

lithology on the fracture density of the detachment folded Carboniferous Lisburne 

Group, exposed in northern Alaska.  The results of the network analysis are compared to 

those obtained using conventional multivariate statistical analysis.  The discrete fracture 
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network system is built to investigate the flow characteristics of the system as a function 

of fractures properties, their orientations and interactions.   

This study is a part of a larger project, sponsored by the U.S. Department of 

Energy, to study the fracture patterns and geometries in folded regions of the Lisburne 

Group exposed in the northeastern Alaska and to investigate the role of folding and other 

geological factors in the potential development of a fractured reservoir.  In my research, 

I hypothesize that the major parameters that affect fracture density are degree of folding, 

bed thickness, lithology, stratigraphic position, and position on folds.  Fracture data and 

associated geologic parameters, collected and defined by geologists at University of 

Alaska at Fairbanks (UAF), are used for the analysis.     

The main objectives of my research are to investigate how:  

1. neural networks can be used in case of limited data; 

2. statistical and neural network analyses compare for the characterization of 

fracture systems; 

3. fracture density and size (height and length) change as a function of the bed 

thickness, the lithology, structural position on the fold, and degree of folding; and 

4. fracture density, size, termination and filling pattern affect the connectivity of the 

fracture system;  

The results of this research suggest that network behaviors strongly depend on 

the network initial weights and that the linear activation outperforms other functions in 

case of limited data.  Using multiple realization of the cross validation network training 

allows uniquely selecting the optimal network configuration and assessing the network 

prediction variability.  Applying these results to our fracture data suggest that lithology 

and stratigraphic position have strong effects on fracture spacing: in general, fracture 

density is higher in packstone than in grainstone and fracture density of the two major 

orientations observed in the field is closely related to the structural position on folds.  

The degree of folding does not have a strong effect on the fracture spacing, but does 
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appear to strongly affect fracture length.  In tight folds, the fracture length is 

significantly larger than in open folds.   

The difference in size and the actual termination pattern and cementation of the 

two fracture sets may create a strong degree of permeability anisotropy in the reservoir.  

Given two fracture sets with similar spacing characteristics, the set with the greater 

length and height controls not only flow along its principal direction, but also in the 

orthogonal direction.        

The results of this study give insight into the relationships between mechanical 

stratigraphy and fracture distribution in the detachment-folded Lisburne Group.  In 

addition, the use of neural networks for sparse data sets and the analysis of network 

prediction variance are discussed in detail and may benefit other applications involving 

analysis of geological systems.  Neural networks are attractive tools for investigating 

complex, nonlinear systems.  However, constructing, training, and interpreting the 

results of the network may be an arduous task that requires special attention and 

sufficient experience.  Users of the neural network should be aware of the possible 

negative behavior of the network such as overfitting the training data and converging to 

local minimum.  In cases of data scarcity, special attention should be paid to choosing 

the optimal network configuration, the activation function used in network, and 

assessing the prediction variability.  

This dissertation consists of 8 chapters.  This chapter (Chapter I) describes the 

problem, objectives, and outlines the dissertation. Chapter II reviews relevant studies.  It 

focuses on the controlling parameters of the fracture distribution associated with folded 

formations, the application of neural networks, and discrete fracture modeling of fracture 

systems. Chapter III briefly describes the geological setting of the Carboniferous 

Lisburne Group, the fracture data, and the results of the analysis done by geologists at 

UAF.  Chapter IV gives the results of conventional linear analysis of the fracture data to 

characterize the fracture data and to assess the relationships between fracture density and 

mechanical parameters.  Chapter V presents results of testing the neural networks for the 

case of limited data where the relationship is known.  Chapter VI presents the results of 
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neural network analysis to average fracture spacing as a function of degree of folding, 

bed thickness, structural position, lithology, and stratigraphic position.  Chapter VII 

presents the results of the DFN study on the flow conductivity of the fracture system.  

Finally, Chapter VIII presents the conclusions and lists recommendations of this 

research.   
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CHAPTER II 

LITERATURE REVIEW 

 

This chapter reviews fracture characterization and fracture distribution as related 

to folding and mechanical stratigraphy.  Also, it briefly presents the background of 

artificial neural networks and their applications in studying complex, nonlinear 

relationships among variables.  Finally, it briefly introduces discrete fracture network 

modeling and its application to studying the flow characteristics of fracture systems.    

 

II.1. Fractures and Folds 

Fracturing is defined as the loss of cohesion of the material along some plane 

(Price and Cosgrove, 1990).  This occurs when the difference between maximum 

principal stress direction and minimum principal stress direction is greater than the 

cohesive strength of the material.  Fractures in rock can be classified as extension or 

shear fractures.   Shear fractures involve the movement of the fracture wall parallel to 

the fracturing plane, whereas extensional fractures do not have such movement (Stearns 

and Friedman, 1972).  For any triaxial stress state in the rock, there are two potential 

shear fracture orientations and one potential extension fracture orientation.  The two 

shear-fracture planes form an angle of about 60º and the axis of the maximum principal 

stress bisects this acute angle.  The extension fracture is parallel to the plane of the 

maximum (σ1) and intermediate (σ2) principle stress axes and normal to the minimum 

principle stress (σ3) (Figure 2.1).    
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Figure 2.1 – Potential fracture planes developed in compression tests: extension 
fractures (A) and shear fractures (B and C). (After Nelson, 2001). 

 

 

Fracture systems that are both pervasive and consistently oriented in a large 

volume of rock can be divided into two major classes: regional and structure-related 

fractures (Stearns and Friedman, 1972).  The regional fractures form as a result of the 

structural development of a large region and are usually composed of two regular and 

continuous fracture sets that are normal to one another.  The structure-related fractures 

are associated with specific local features such as faults or folds and are determined by 

the deformation mechanism within a specific structure.  Fractures associated with faults 

are generally related to the same stress state that caused the fault.  Fractures associated 

with folds are affected by the history and kinematics of the folds.  The folded strata can 

undergo several different stress states through the folding history (Stearns and Friedman, 

1972).  
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Stearns (1967) identified the two most common fracture patterns associated with 

a fold.  Both patterns consist of two conjugate shear fractures and an extension fracture.  

The difference between two patterns is the fracture orientation with regard to the fold 

axis.  The extensional fractures in first fracture pattern are oriented normal to the fold 

axis, whereas extensional fractures in the second pattern are oriented parallel to the fold 

axis (Figure 2.2A, C).  In both cases, the intermediate principal stress axes with respect 

to the fold axes are the same.  In many cases, depending on the amount of overburden, 

other fracture patterns (Figure 2.2B, D) can occur.   

 

 

 

Figure 2.2 – Common fracture patterns associated with folding. (After Stearns, 1967).  
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More recent studies on fracture patterns associated with folds suggest that the 

fracture distribution is determined by the fold kinematics.  Several models of folding 

have been proposed (Price and Cosgrove, 1990; Lisle, 2000) and have implications for 

explaining the fracture distribution.   

One of the most common models relating folding to fracturing in a homogeneous 

single layer is the tangential longitudinal strain model (Figure 2.3A).  This model of the 

fold for a single layer of homogeneous, isotropic material suggests that fracturing is 

concentrated around the fold hinge, with extensional fractures in the outer curve of the 

fold and compressional fractures in the inner curve of the fold (Price and Cosgrove, 

1990; Cosgrove and Ameen, 2000). These two regions are separated by a neutral 

surface.  In this model, one of the principal strains is always parallel to the layer 

boundary.  The outer arc of the hinge area experiences extension and the maximum 

principal extension is parallel to the layer boundary.  The inner arc is compressed and 

the minimum principal extension is parallel to the layer boundary (Price and Cosgrove, 

1990).  This model suggests that the fracture density relates to the degree of deformation 

of the strata.   

Several researchers have investigated the effects of the degree of deformation on 

the fracture distribution.  Harris et al. (1960), Lisle (1994), Jamison (1997), and Henning 

et al. (2000) suggest that fracture density increases with the increasing bed curvature: if 

the fracturing relates to the folding process, the higher the degree of folding, the greater 

the fracture density.    

In multiple layers, folding can be modeled as developing via flexural slip folding 

(Figure 2.3B).  In flexural slip folding, bedding planes slide past each other (Price and 

Cosgrove, 1990; Cosgrove and Ameen, 2000), resulting in a different strain distribution 

pattern compared to those in a tangential longitudinal strain model.  Bedding-parallel 

shear and en echelon tension gashes are commonly occur in conjunction with flexural 

slip (Price and Cosgrove, 1990).  These features generally die out towards the hinge of 

the fold, where the slip between beds is zero. 
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Figure 2.3 – Fracture patterns from tangential longitudinal strain model and multiple layer 
flexural slip folding. (After Price and Cosgrove, 1990).  

 

 

A detachment fold forms when a layer of relatively competent rock deforms 

above a bedding-parallel thrust fault.  Detachment folds are commonly found in layered 

strata, where a relatively competent layer overlies a relatively incompetent unit.  

Detachment folds have been modeled with fixed hinges and rotating limbs (e.g., Poblet 

and McClay, 1996; Homza and Wallace, 1997) or with a migrating hinge and non-

rotating limbs (e.g., Poblet and McClay, 1996; Epard and Groshong, 1995; Homza and 

Wallace, 1997)  Figure 2.4.   
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Figure 2.4 – Various detachment fold models.  In model A, the position of hinge is fixed, 
but in model B the hinge migrates into limb position. (After Poblet and McClay, 1996).   
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In models where fold hinges are not fixed, the folded rocks migrate through the 

synclinal hinges, and thus, similar fracture pattern and fracture density would be found 

in both the limbs and the hinges.  In fixed hinge models, the rocks are fixed with respect 

to all hinges.  In this case, fracture density would be higher in the hinges than in the 

limbs and there would no overprinting of the hinge structure (intense cleavage, small-

scale contractional folds and faults) found in the limb (Homza and Wallace, 1997; 

Jamison, 1997; Atkinson and Wallace, 2003).  Thus, analysis of the fracture density as a 

function of structural position on a fold may help better understand the detachment 

folding process.   

 

II.2. Fracture and Mechanical-Stratigraphy  

Mechanical stratigraphy can be viewed as the rheological properties of the rock, 

the properties of the interfaces between layers, the bed thickness, and the overall scale of 

the multilayer packet being folded (Ramsay and Huber, 1987).  Studies on the 

relationship between mechanical stratigraphy and fracture density have focused on the 

effects of several parameters including thickness of the fractured layer, lithology of the 

fractured layer, and the properties and relative thickness of the incompetent layer 

between the fractured layers.   

The positive relationship between average fracture spacing and bed thickness has 

been observed in different geological settings.  McQuillan (1973) investigated the 

Asmari limestone outcrops over an extensive area of the Zagros Mountains and proposed 

that fracture density has an inverse logarithmic relation to bed thickness, but is 

independent of the structural setting.  Many authors, based on analysis of field data, 

suggest that the average fracture spacing is directly proportional to the formation bed 

thickness (e.g., Harris et al., 1960; Ladeira and Price, 1981; Huang and Angelier, 1989; 

Narr and Suppe, 1991).  This fracture spacing – bed thickness relationship may depend 

on how well-developed the fracture system is (Narr and Suppe, 1991; Wu and Pollard, 

1995).  Wu and Pollard (1995) experimentally showed that, when the applied stress 
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reaches a certain value, the fracture spacing stops evolving and remains nearly constant.  

Spacing prior to saturation varies strongly with applied stress whereas, when saturated, 

spacing is a function of layer thickness.  Ladeira and Price (1981) have shown that 

fracture spacing is a function of bed thickness for up to a 1.5 meter bed thickness. In 

beds thicker than 1.5 meters, thickness does not seem to correlate with fracture 

distribution.  Hanks et al. (1997), studying the un-deformed section of the Lisburne 

formation in the northeastern Brooks Range, found no reliable relationship between 

fracture spacing and bed thickness.  

Others have investigated the effect of the lithology on the fracture distribution, 

finding that the more brittle, competent rocks have more closely spaced fractures (Harris 

et al., 1960; Huang and Angelier, 1989).  Hanks et al. (1997) showed that lithology is the 

primary controlling factor on fracture properties and characteristics in relatively 

undeformed sections of the upper Lisburne Group in the eastern Sadlerochit Mountains.  

In these undeformed carbonates, grainstones are the least fractured, with wider and more 

through-going individual fractures. Dolomitic mudstones are the most densely fractured, 

but have fractures of limited vertical extent that generally terminate at bed boundaries.   

Ji and Saruwatari (1998) analytically show that the relationship between joint 

spacing and bed thickness is affected by the relationship between thickness of the 

competent and incompetent layers: the fracture density in the competent layers which 

adjoin thick, incompetent layers is smaller than when the adjacent layers are thin.  

Helgenson and Aydin (1991), studying fracture development in multilayer formations, 

concluded that the fracture distribution and orientation are affected by the relative 

thickness of the competent and incompetent layers.  As the thickness of the incompetent 

layer increases, the degree of communication among fractures across shale decreases.  

These studies of the effects of mechanical stratigraphy on fracturing have 

approached the properties of structure-related fractures as a function of a single 

lithology-mechanical stratigraphic parameter.  In reality, the fractures are formed under 

the effects of a combination of all these and perhaps other parameters.  The fracture 

density can be a complex function of bed thickness, lithology, degree of folding, and the 
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structural position on a fold.  It is important to analyze and rank the effects of these 

parameters on fracture density.  For this purpose, multivariate linear regression is often 

used.  However, this method often fails in cases of complex and nonlinear relationship 

among variables.  Artificial neural networks, however can provide a method to approach 

this problem. 

 

II.3. Neural Network Analysis   

II.3.1. Introduction 

Multivariate linear analysis is usually used to study relationships between 

variables.  In case of nonlinear relationships, some forms of nonlinear transformation of 

the variables can be used (Xue et al., 1997).  The mathematical form of the nonlinearity 

is usually assumed to be known or empirically determined through trial and error.  

However, when the relationship among variables is complex and nonlinear, an 

alternative technique is often needed to solve the problem.  One of the methods used for 

studying the complex relationship among variables is the artificial neural network 

(ANN).  Compared to multivariate linear analysis, ANNs have several advantages.  One 

of them is that the functional relationships between explanatory variables and dependent 

variables does not need to be known a priori.  The network learns from examples and 

adjusts itself to generalize the underlying relationship among variables.  Other 

advantages are that neural networks can have several outputs and also can use discrete 

variables as inputs or outputs.   

There are many networks with different architectures specifically designed for 

solving different problems (Fausett, 1994; Ripley, 1996).  All ANNs, however, consist 

of neurons (or processing units, or nodes) with an activation function associated with 

each of them and the connections between these neurons (Figure 2.5).   
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Figure 2.5 – Neural network elements: neurons and connections between neurons. 

 

 

Neuron. Network neuron is the elemental processor of the neural network, where the 

data processing takes place.  An ANN has input and output neurons.  The input neurons 

represent explanatory variables and output neurons represent response variables.  Each 

neuron of the network receives an input signal from other neurons or from external 

sources and uses it to compute an output signal (Figure 2.6).  The mathematical function 

which relates the input to the output of a neuron is called an activation function.    

Activation function.  The activation function is the transform function f that is applied 

at each neuron on the input signal.  It has this name from the analog of the neuron of the 

brain: upon receiving the signal, the neuron estimates the output and either remains 

connection 

neuron  
(or processing unit) 
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inactive or changes to active status.  In an ANN, the activation function is also called the 

learning function.  There are several learning functions that can be used.  The choice of 

which function to use is arbitrary, problem dependent, and in most cases is determined 

by computational considerations of the training process.  For the backpropagation 

training algorithm, the activation function should be differentiable (Fausett, 1994).  It is 

also desirable that its derivative be easy to compute.  The most frequently used functions 

are the linear, the sigmoidal, and the Gaussian functions.  The mathematical forms of 

these functions are as follows. 

Linear function: ( ) baxxf +=  

Sigmoidal function: ( ) xe
xf −+

=
1

1  

Gaussian function: ( ) baexf x += − 2

 

 

 

Figure 2.6 – Illustration of the data processing at a neuron. 
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Connection. Network connection represents the flow of data between neurons and has a 

weight.  A connection between neurons A and B has a coefficient multiplying the signal 

from neuron A, before being fed to neuron B.  Therefore, it represents the contribution 

of the neuron A in the input, and because of that, in the output of the neuron B.  In 

Figure 2.6, at some moment the neuron j receives 3 signals s1, s2, and s3 from neurons n1, 

n2, and n3 respectively.  This neuron j processes this information by first multiplying the 

input signals (s1, s2, and s3) to the corresponding connection weights (w1j, w2j, and w3j), 

then taking the summation and finally putting the result into its activation function.  If 

the activation function f of this neuron is the sigmoidal function, then the output of the 

neuron j, which will be supplied to other neurons is: 

( )3322111
13

1
swswsw

i
iijj jjje

swfs +−
= +

=






= ∑  (2.1)     

The processing ability of neural networks rests on the system of weights of the 

network, which are iteratively adjusted so that, for a given value of the input variable, 

the output from the network matches the observed value of the response variable.  Once 

this “training” phase is complete, the neural network can be used to predict and to 

investigate relationships between input and output variables.   

Network training. Network training is the process of adjusting the network connection 

weights so that explanatory and response values match the data as closely as possible.  In 

the case of nonlinear correlation, the most widely used criterion of match is the mean 

squared error (MSE) of the network output with regard to the observed values of 

response variable.  Considering a neural network with one output node (accordingly to 1 

response variables) and NI input nodes (accordingly to NI exploratory variable), the MSE 

of the network during training is calculated as: 
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( )[ ]∑
=
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2;1 wx  (2.2) 

where kY  is the observed value of the response variable at given values of the 

exploratory variables ( )
iNk xxx ,...,, 21=x , Nk is the  number of  data used in training, 

( )wx ;kf  is the network estimate at kx , w is the vector of the network weights that 

specifies the model.  Note that in places where a weight indicates a connection between 

two neurons, it is written in matrix notation such as wij.   

The objective of the learning process is to find the weight vector w* which 

minimizes the objective function E.  In neural networks, this is always done with 

iterative algorithms.  The basic principle of these learning algorithms is that, given the 

current parameter vector wk, for each iteration, a direction uk and a learning rate αk are 

computed, and then a new set of w, wk+1, is calculated with the following rule: 

kkkk uww α+=+1  (2.3) 

Depending on how many terms of the Taylor’s expansion of the objective function are 

used, learning algorithms can be classified in two broad categories: 1) first order and 2) 

second order methods (Wasserman, 1993).  The first order learning algorithms are all 

varieties of gradient descent methods.  The family of second order methods includes 

quasi-Newton and conjugate gradient methods (Wasserman, 1993; Hagan and Menhaj, 

1994). 

 

II.3.2. Feed Forward Neural Networks 

There are several types of ANN, differing from each other by their architecture 

and learning process (Fausett, 1994).   One of the most widely used ANNs for pattern 

recognition and multivariate correlation is the feed forward network with back 

propagation learning algorithm (Rumelhart and McClelland, 1986; Bishop, 1995; 
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Fausett, 1994; Garson, 1998).  This study used this neural network for investigating the 

relationship between fracture density and geologic parameters.  

A multilayer feed forward neural network (FFN) has neurons arranged in layers 

(Figure 2.7).  The output of a neuron in one layer is directed as the input to each and 

every neuron in the immediately following layer.  There are no lateral connections 

between neurons in the same layer and no feedback connection to the neurons in 

previous layers.  For the network in Figure 2.7, there are three layers: the input layer, 

one hidden layer, and the output layer. Each neuron in the input layer represents one 

exploratory variable, while each neuron in the output layer represents one response 

variable.  An additional neuron with constant value (usually 1) is often added to the 

input layer.  This neuron is called a bias node and has a role similar to the constant term 

in the multiple linear regression, e.g. it allows shifting the origin defined by input 

variables for the network output.  FFN can have one or more hidden layers between the 

input and output layers, depending on the complexity of the problem at hand.  Hornik et 

al. (1990) showed that FFNs with one hidden layer are capable of approximating any 

continuous function.  Networks with more hidden layers, however, can speed up the 

training process and can help avoid local minima during learning (Hirose et al., 1991; De 

Villiers and Barnard, 1993). 
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Figure 2.7 – Feed forward neural network with one hidden layer.  The network has three 
input nodes (Xi, i=1 to 3), three hidden nodes (Hj, j=1 to 3), and two output nodes (Yk, k=1 
to 2).   

 

 

At each neuron, a processing function is applied on the input signal.  Often, the 

processing function at input neurons is the identity function, that is, f(x)=x.  Supposed 

that at each neuron in hidden layer, function f1 is applied and at each neuron in output 

layer, function f2 is applied, then the network shown in Figure 2.7 can be mathematically 

expressed as: 
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where: Xi denotes the input value at input neuron i, wij is the connection weight between 

input neuron i and hidden neuron j, wj1 is the connection weight between hidden neuron j 

and output neuron 1, Ni=3 and Nh=3 are the number of input and hidden nodes.  The 

notation ( )wx;f  implies that the output of the network at output node is a function of 

given vector values x of exploratory variable and the weight vector w.   

A: input connection 
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X2 

X3 

Y1 

C: output 
wij wjk 

B: hidden 
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II.3.3. Back-Propagation Algorithm 

Perhaps the most widely used training algorithm for FFNs is the back 

propagation method (Rumelhart and McClelland, 1986; Ripley, 1996; Bishop, 1995). 

This method propagates the error produced by the network for a given input backward 

through the layers to adjust the network weights.  The training of a network by the back 

propagation algorithm involves three stages: the feed forward of the input training 

pattern, the calculation and back propagation of the associated error, and the adjustment 

of the connection weights. During feed forward, each input node receives an input signal 

(actual value of the explanatory variable) and feeds this value to each of the hidden 

nodes. Each hidden node then computes its activation function and sends the result to 

each output node.  Each output node computes its activation to form the response of the 

net for the given input pattern. The output of the net is compared to the observed value 

to determine the associated error. This error is used to calculate the update of the 

connection weight.   

A standard back propagation algorithm is the first order learning algorithm for 

FFNs.  This algorithm is widely used because of its simplicity and small programming 

cost.  In this algorithm, the gradient of the objective function E (Eq. 2.2) with respect to 

each of the weights 
k

k w
E

∂
∂=g is computed at each iteration.  This vector gives the 

direction of most rapid increase in E.  Hence, the error can be reduced most rapidly in 

the direction of  kwE ∂∂− /  and the weight vector is updated in the direction in which the 

error function decreases most rapidly.   

The weight update at iteration k+1 for given learning rate α can be written as:  

kkk gww α−=+1  (2.5)  

The first values of the weight vector (w0) are randomly generated around zero and are 

called initial weights.  Fausett (1994) gives a detailed derivation of the gradient with 

respect to each weight in FNNs and the algorithm for network training.  
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For large networks with large amounts of training data, a standard back 

propagation algorithm may be slow to converge to a solution.  Several improvements to 

the algorithm have been proposed (Jacobs, 1988; Leonard and Kramer, 1990; Silva and 

Almeida, 1991).  The adaptation of the learning rate (αk) is used to speed up the training: 

the learning rate can be set at a higher value if the algorithm goes in the direction toward 

the minimum, otherwise, it is reduced.  To avoid oscillation, accelerate the optimization, 

and reduce the problem of convergence to local minima, momentum, m, is often used to 

take into account the change in the previous iteration: 

11 −+ −−= kkkkk mggww α  (2.6) 

The learning is stopped when the gradient of the objective function becomes 

small or w is said to be close to w*.  After training, the neural net can be used for 

prediction just by applying the forward calculation, given any set of explanatory variable 

values.    

 

II.3.4. Network Applications 

The applications of ANNs show that it is a useful tool for modeling the complex 

relationship between variables where simple linear functions fail.  Garson (1998) gave a 

summary of the wide applications of ANNs in finance, engineering, medicine, and 

management.  Neural networks have been used for predicting permeability (e.g, Rogers 

et al., 1992 ; Huang et al., 1996).  Ouenes et al. (1998) used a neural network to identify 

sweet spots for infill drilling and to prepare data for input into NFR fluid flow 

simulations.  They used neural networks to establish the relationship between reservoir 

structure, bed thickness, and well performance to fracture density.     

The use of the neural networks, however, has limitations: 

- The behavior of the ANN output depends on several factors, such as network 

architecture, choice of activation function, and number of data used in 

training.  Complex networks may lead to overfitting – a phenomenon which 
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occurs when the ANN “memorizes” the training data and fails to generalize 

the functional relationship between variables.   

- The input variables relate to the outputs through a system of nonlinear 

connected weights. Hence, the analysis of causality between explanatory and 

response variables is not straightforward.    

- Unlike multivariate linear regression, the variance of the network predictions 

is not easy to estimate.  Thus, the assessing of the uncertainty related to the 

network prediction is not a straightforward task. 

I elaborate on these issues below. 

 

II.3.4.1. Network Generalization Ability   

Similar to other parameter determination problems, the solution given by the 

neural network depends on the degree of determination of the system.  The degree of 

determination of a system is defined as the ratio of available data points, N, to the 

number of unknown parameters, U:  

U
ND =1   (2.7) 

The system is called overdetermined if D1>1.  For a neural network, each 

connection weight is one unknown parameter.  ANNs with D1<1 have the potential to 

produce a solution that overfits the observed data.  In this case, the training error is small 

but the neural network has failed to capture the general trend of the relationship between 

variables.   

To reduce the probability of overfitting, a network should be as simple as it can 

be, yet still is able to produce good approximations of the true function.  The 

requirement of a simplest model is called the parsimony requirement (Box and Jenkins, 

1976).  For a FFN with one hidden layer, the selection of the appropriate network leads 

to the choice of the number of hidden nodes in this layer.  The performance criterion for 
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judging the neural network is the generalization ability, defined as the prediction 

accuracy of the neural network on data that were not used for determining the network 

weights.  Several techniques have been proposed to select a simple network which gives 

better generalization ability for given data.  One approach is to start with a large network 

and either iteratively simplify its architecture (LeCun et al., 1990), or include complexity 

terms in the objective function E to force as many weights as possible to zero (Chauvin, 

1990).  Others start with a simple network and iteratively add nodes to it (Ash, 1989).   

For a given network architecture, one widely used approach to avoid over fitting 

is to use validation (Bishop, 1995; Ripley, 1996).  The available data are divided into 2 

sets: a training dataset and a validating dataset.  The training dataset is used to train the 

network.  The validating dataset is used to assess the generalization ability of the 

network.  At any time during the training, two types of error are calculated: one is the 

usual training error and one is the error of the network on the validating data set.  If both 

error terms are decreasing, the training continues. If the error on the validating data set 

starts increasing, the training is terminated.   

Several authors (e.g., Wessels and Barnard, 1992; Bowden et al., 2002) have 

pointed out that the way data are divided into a training and a validating set can have a 

significant influence on the performance of an ANN.  When the number of available data 

is small, division of data into datasets reduces the generalization ability of the network.  

Furthermore, it creates the subsets that may not represent the same population.  As a 

result, this validating method tends to give widely variable estimates of prediction error 

which depend heavily on the partitioning of available data.  Thus, in the case of small 

datasets, cross validation is used for selecting optimal network architecture (Moody and 

Utans, 1992; Zapranis and Refenes, 1999).  This method uses incomplete datasets 

generated by bootstrapping and jackknifing for network training.  The data that do not 

participate in the training are used to assess the prediction error of the network.  Among 

different network architectures, the one that produces the smallest prediction error is the 

optimal configuration.   
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The main difference between bootstrapping and jackknifing is the way the 

subsets of data are created.  Bootstrapping produces a large number of datasets by 

sampling from available data with replacement while jackknifing sequentially removes 

points from available data (Lewis and Orav, 1989).  In ANN terminology, cross 

validation with jackknifed data is also called leave-v-out cross validation with v being 

the number of data points removed.  If v=1, the method is called the leave one out cross 

validation method. 

Empirical studies (e.g., Twomey and Smith, 1996) show that bootstrapping may 

need to generate a large number of subsets and gives similar results to the leave-one-out 

validation method.  Because of this reason, the leave one out cross validation method is 

widely used for network configuration selection, especially when the data are of small or 

medium size.  In cases where computational cost is a big consideration, the leave-v-out 

cross validation (with v>1) can be used at a price of less data used in training. 

 

II.3.4.2. Network Interpretation   

One major problem that prevents ANNs from wider use is the difficulty in 

analyzing the causal relationship between explanatory and response variable.  The neural 

network is usually considered to be a “black box” for prediction (Bishop, 1995).  Several 

researchers have tried to interpret the results from neural networks to answer the 

question: how does one input variable contribute to the output of the model.  Ozesmi and 

Ozesmi (1999) proposed a neural interpretation diagram for providing a visual 

interpretation of the connection weights among neurons.  The relative magnitude of each 

connection is represented on the diagram by line thickness (i.e. thicker lines representing 

greater weights) and line shading represents the direction of the weight (i.e. black lines 

representing positive and grey lines representing negative weights).  Garson (1991) 

presented a simple method, later modified by Goh (1995), for partitioning the relative 

share of the output prediction associated with each input variable.  This method, 

however, provides only the overall influence of each explanatory variable on the 
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network behavior.  In cases where the input variables of the network are both continuous 

and categorical, the results of this weight partition method can be misleading (Goh, 

1995).   

A number of investigators have used sensitivity analysis to determine the 

spectrum of input variable contribution (e.g., Lek et al., 1996; Maier and Dandy, 1998).  

The method calculates the change in prediction if one of the inputs varies while the 

others are fixed at some value.  This fixed value can be the mean of available input data 

or at several quantile values of the explanatory variables in the training dataset (Lek et 

al., 1996).  This method provides detailed effects of each explanatory variable on the 

response variable and is a good choice for analyzing the causal relationship between 

variables in cases where some of the explanatory variables are discrete variables.  Its 

drawback is that the resulting sensitivity matrix can be very big, especially for networks 

with many explanatory variables. 

 

II.3.4.3. Network Prediction Variability 

Another important issue in using neural networks is the ability to assess the 

uncertainty of the network prediction.  Neural networks have been viewed as a black box 

for prediction.  Recently, several authors have tried to relate the neural network to other 

statistical methods of inference (e.g., Chryssolouris et al. 1996; Zapranis and Refenes, 

1999; Rivals and Personnaz, 2000).  The methods of statistical inference fall into two 

categories: analytical and numerical.  The analytical method assumes that the error of the 

network is distributed normally and the estimated weights represent the true parameters 

of the model.  The numerical method uses resampling techniques to estimate the network 

prediction error.  Those techniques include bootstrapping and jackknifing to build a 

prediction variance (Efron, 1993).    

Chryssolouris et al. (1996) and Rivals and Personnaz (2000) proposed a method 

to calculate the ANN confidence interval based on the assumption of a normal 

distribution of the errors. If the model gives a good prediction of the actual system 
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behavior, then w  is assumed to be close to the true value ∗w  of the model and a 

Taylor’s expansion to the first order can be used to approximate network prediction 

( )wx;f  in term of ( )*;wxf : 

( ) ( ) ( )*
0

* f;; wwwxwx −⋅+≈ Tff  (2.8) 

where 0f  is the gradient of the network prediction at a given input vector x.  

The assumption of the normality of the network prediction error leads to the 

following expression of the variance of error around the true value (Chryssolouris et al., 

1996): 

( ) ( ) 0
1

0
22

00 ffˆvar
−

⋅⋅+≈− FFTTyy σσ  (2.9) 

where y0 is the true value of the system, ( )wx;ˆ0 fy =  is the network predicted value at 

given x, F is the Jacobian matrix of the network prediction with the dimensions N by p, 

N is the number of data points used to estimate the weight vector w, p is the dimension 

of vector w, σ2 is the variance of the error associated with the function which models the 

system. 

The unbiased estimator of σ  is as follows:  

( )
pN

fy
s

−
−

=
2;wx

    (2.10) 

where N is the number of input data points, and p is the number of parameters in the 

model. 

Thus, the 100(1-α) confidence interval for the predicted value 0ŷ  is: 

( )( )2
1

0
1

0
2/

0 ff1ˆ −
− ⋅⋅+± FFTT

pN sty α , ……………………………………….. (2.11) 

where 2/α
pNt −  is the two-tailed t statistic with N-p degrees of freedom. 
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Eq. 2.9 suggests that the analytical method can only work for the system where 

N>p, otherwise, the estimation of σ is undetermined.  Furthermore, the confidence 

interval determined by this method is unreasonably large or unidentifiable in cases 

where w is not close to w*, which is a common condition for networks with few degrees 

of determination.  As it has been pointed out, FFNs can converge to the same criterion 

with different sets of weights (Bishop, 1995; Ripley, 1996).  The analytical method for 

building confidence intervals therefore is applicable only for the cases where abundant 

data are available for network training. 

The resampling approach for estimating prediction error of the neural networks 

consists of building a number of subsets from the available data for network training.  

The resulting network weights are used for assessing the prediction variance (Hwang 

and Ding, 1997).  Researchers have used this resampling approach for model selection 

and for estimation of network prediction error (Moody and Utans, 1992; Twomey and 

Smith, 1996; Kalell et al., 2002).     

Reviewing the applications of ANNs reported in literature, I found that ANNs are 

attractive and powerful tools for establishing the complex relationship among variables 

in high-dimension problems.  A neural network has a number of attractive features 

compared to linear correlations.  For example, it can model the data without the 

specification of the structural relationship between input and output data.  However, this 

advantage can at the same time be a disadvantage: given enough complexity of the 

network, ANNs can fit almost any continuous function without giving a meaningful 

prediction.  The results of the ANN analysis strongly depend on how the models are 

built, validated, and used.  Strict rules governing the modeling process however are 

lacking and the effectiveness of using neural networks is highly problem dependent.   

 

II.3.4.4. Sparse Dataset and Neural Networks 

Neural networks are usually used in cases of abundant data.  In cases of limited 

data, the selection of the optimum network configuration and the neural network 
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performance can be affected by the values of initial weights of the network.  In this case, 

we have a system with sparse dataset.   

The sparseness of the data is related to the number of parameters in the model 

and can be represented by the degree of determination (Eq. 2.7).  A system with sparse 

datasets has a small degree of determination.  Bishop (1995) suggested a degree of 

determination of at least 2 for using neural networks.  Amari et al. (1997) suggests that 

the degree of determination must be 30 for the system to be independent of the initial 

weights.  Neural networks with the degree of determination less than 1 can be considered 

as having been trained by a sparse dataset.      

Since the network behavior strongly depends on the initial network weights, it is 

important to be sure that the prediction results are consistent and the variability of the 

prediction can be assessed in cases of data scarcity.  In Chapter V, I will address the 

question of selecting the optimum network configuration using the leave one out cross 

validation method.  I will also examine the use of the cross validation technique for 

assessing the FFNs’ prediction variance. 

 

II.4. Fracture Modeling  

Fluid flow studies of fractured rocks require three-dimensional modeling of the 

fracture system, which consists of interconnected fractures.  There are three approaches 

to simulate the fluid flow and transport in fractured rocks: discrete network simulation, 

continuum approximations based on either porous medium equivalent assumptions or 

statistical representation of mass transfer, and hybrid models that combine elements of 

both discrete fracture models and continuum approximations (Sahimi, 1995; Smith and 

Schwartz, 1993).    

In continuous models, the flow behavior of the system is modeled by the 

classical continuum equations of transport.  These represent the average behavior of the 

system, where the average is taken with respect to a representative volume.  The 

representative volume must be large enough to encompass its variable influences on the 
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fluid flow within the network.  This, however, is not always satisfied when several scales 

of fracturing occur within the rock mass: a small number of areally extensive fractures 

may have a predominant influence on the fluid flow behavior (Smith and Schwartz, 

1993).    

Discrete fracture models, in contrast to the continuum models, characterize the 

flow behavior of the fracture system on a fracture-by-fracture basis.  Discrete fracture 

networks (DFNs) model a fracture system in space as a numbers of discrete fractures 

(Figure 2.8) with specified statistical distributions of the major characteristics and the 

rules governing the conditions of interaction with other fractures.  Several models for 

generating the fracture system in the given rock volume have been proposed.  The 

models differ from one another only with regard to the spatial distribution of the 

fractures, and the inter-relationship of fracture size and fracture location.  Dershowitz 

and Einstein (1988) give a detailed description of DFN models. 

A fracture system can be represented by a network of channels or pipes with 

given parameters or assigned hydraulic properties to the fracture intersections.  Then, it 

is possible to calculate fluid flow through the network (Cacas et al., 1990; Billaux et al., 

1989).  Doe (1997) summarizes the principal steps in using a discrete fracture model:  

1. Analysis of borehole and surface data to define the fracture geometry and 

properties of fractures.  This includes identification of fracture sets and 

distributions of orientation, size and aperture.  

2. Generation of fracture networks.  This step builds the fracture network 

according to some spatial models and fracture properties obtained in step 1.  

Spatial models define fracture locations by any of several methods: random 

distributions, distributions with spatial correlation (geostatistical models), or 

distributions with power law variations of separation distance (fractal 

models).   

3. Definition of boundary conditions for the model and preparing a numerical 

mesh for finite-element analysis.   
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4. Calculation of flow and solute transport through the network.  

The following sections cover the issues related to data preparation for DFN as 

well as a few results of DFN applications for studying fracture systems.    

 

 

Figure 2.8 – Example of fracture networks. A) network of random disks; B) network of 
channels. (After Chiles and de Marsily, 1993).  

 

 

 

 

II.4.1. Fracture Characterization 

II.4.1.1. Fracture Survey 

The first step in using DFNs is the collection of the fracture data.  Fracture data 

are obtained through three main types of survey (Chiles and de Marsily, 1993): 

A B
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1. Borehole surveys: the measurements are usually made on oriented cores or 

deduced from logs.  Such surveys may provide information about fracture 

orientation, density, existence or possible fill, aperture, surface geometry, etc.  

But fracture size, one of the major parameters in the study of the hydraulic 

properties of the rock, is typically difficult to evaluate from borehole surveys.   

2. Scanline surveys: fracture properties are sampled along a scanline drawn on 

an outcrop surface or a photograph.  As an extension of the preceding 

technique to a 2D area, fracture trace size can be measured.  

3. Areal surveys: all traces located within a specified area are collected.     

In general, a complete description of a fracture system is often difficult due to 

limited exposure of fractures for sampling.  It is typically inadequate to deterministically 

describe the actual system of fractures in the formation (Chiles and de Marsily, 1993).  

Instead, the fracture system is characterized by applying stochastic methods.  The 

standard descriptive procedure is to represent each of the major fracture characteristics, 

including fracture orientation, fracture spacing, fracture size or trace length, and aperture 

by a statistical distribution (Dershowitz and Einstein, 1988).   

 

II.4.1.2. Statistical Description of Fracture Properties 

Substantial work has already been performed on the analysis and representation 

of fracture properties by using statistical distributions (Table 2.1).  The most widely used 

distributions for fracture trace length include the exponential, lognormal, hyperbolic, and 

gamma distributions (e.g, Dershowitz and Einstein, 1988, Narr and Suppe, 1991; Wu 

and Pollard, 1995).   

Rives et al. (1992) and Wu and Pollard (1995) suggest that the fracture spacing 

starts with an exponential distribution, changes to lognormal and then to normal as 

fracturing develops.  Some authors (e.g. Barton and Zoback, 1992) argue that the 
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abundance of cases when the lognormal distribution is found for fracture length may be 

a result of inadequate sampling of small-scale features.   

Stochastic modeling of fracture generation based on different processes leads to 

different distributions: random placement processes lead to exponential distributions; 

multiplicatory processes as they occur in breakage lead to lognormal distributions; and 

continuity of the process from smallest to largest sizes produces hyperbolic (fractal) 

distributions.  In modeling fracture spacing, the most commonly used process is a Poison 

process.  This process generates fracture location independently according to a uniform 

distribution and the spacing will be distributed according to an exponential distribution.  

If fracture location is generated by a Markov process, in which fracture location depends 

on the preceding one, the spacing will also be exponentially distributed (Dershowitz and 

Einstein, 1988).           

 

 

Table 2.1 – Statistical distributions for fracture properties. 

References Distribution 
 Spacing Extent 
Rouleau and Gale (1985) normal, exponential lognormal 
Dershowitz (1988) exponential, lognormal Gamma, 

exponential 
Huang and Angelier (1989) Gamma distribution  
Narr and Suppe (1991) lognormal  
Rives et al. (1992) exponential, lognormal  
Wu and Pollard (1995) lognormal, normal  
Mathab et al. (1995) lognormal lognormal 
Guo et al. (1999) Pearson, extreme value Pearson 
Karpov (2001) lognormal lognormal 

 

In choosing the distribution for fracture properties, however, a rigorous 

association of fracture size distribution with underlying geologic processes does not exist 
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at present (Dershowitz and Einstein, 1988).  The standard distributions are often chosen 

to fit the shape of the distribution of fracture data.  Researchers have used probability 

plots (Rouleau and Gale, 1985) for testing the candidate distributions that fit fracture 

data.  Statistical goodness-of-fit tests such as the Kolmogorov - Smirnov test (Rouleau 

and Gale, 1985) or chi-squared goodness-of-fit statistics (Guo et al., 1999) have also 

been used to validate candidate distribution.  Mathab et al. (1995) examined the 

goodness of fit of the normal, lognormal, exponential, Weibull, and gamma distributions 

to fracture spacing and length of 6 different fracture data sets.  They concluded that the 

lognormal distribution provided the best fit in most cases.  Karpov (2001) used the 

method of L-moments to identify suitable distributions for fracture spacing and height in 

a relatively undeformed section of the Lisburne formation.  He found that fracture 

properties can be best represented by either the log-normal or gamma distributions.       

Karpov (2001) pointed out that different distributions may give the best fit to the 

data at different intervals.  For example, given the same mean and standard deviation, a 

change of models from the exponential to the lognormal and further to the gamma 

distribution will shift the mode towards a larger fracture size.  Exponential and 

lognormal distributions will generate a greater number of smaller fractures as compared 

to the gamma model.  However, the observed relative behavior of the distributions holds 

only over a certain range of the distribution parameters.  Montroll and Schlesinger 

(1983) show analytically that the lognormal distribution can mimic a power-law 

distribution within a certain range of the variable.   

 

II.4.2. DFN Modeling 

II.4.2.1. Fracture Network  

DFNs generate numerical fracture networks with the desired statistical 

properties.  Several models for generating fracture systems in a given rock volume have 

been proposed (Dershowitz and Einstein, 1988; Chiles and de Marsily, 1993).  The 
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models differ from one another only with regard to the special distribution of the 

fractures, and the interrelationship of fracture size and fracture location.   

The simplest model generates fractures according to a Poisson process, in which 

fracture centers are located by a uniform distribution in space.  With the assumption that 

fracture size and fracture orientation are independent of fracture location, fracture 

orientation and fracture size are drawn independently from given statistical distributions.  

The process continues until the fracture density satisfies the observed value.  More 

complicated models such as the fractal or geostatistical model allow the inclusion of 

fracture density variations in space.    

 

II.4.2.2. Flow Models 

Once the fracture system has been generated, it is possible to calculate fluid flow 

through the network.   

Early methods assumed that the flow in the fracture is 2D flow between two 

parallel plates with uniform equivalent conductivity.  A semianalytical solution for the 

flow pattern inside each fracture has been proposed (Long et al., 1982), allowing the 

formulation and solution of the system of linear equations with as many unknowns as the 

number of nodes in the network.  In this method of flow calculation, the nodes of the 

network are the intersections between the fractures.  The conductivity of each fracture 

can be derived from the information about the fracture aperture.  

In reality, the fracture aperture is difficult to describe accurately for several 

reasons (Chiles and de Marsily, 1993): 

1- the aperture is not constant: there are voids and contact areas, and flow 

between two parallel plates separated by the mean aperture described in a 

model can be quite different from the actual flow; and 

2- the aperture is stress dependent: the measured aperture may have little in 

common with an in-situ aperture.  
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Considering that flow within a fracture can consist of many flow channels, Cacas 

et al. (1990) proposed another approach for flow calculation.  In this method of 

calculation, flow is assumed to occur through bonds joining the center of each fracture to 

the center of adjacent fractures, provided that the fractures are connected (Figure 2.9).  

The bonds are made up of two parts, one for each fracture, joining at the intersection of 

the two fractures.  Each part of the connecting bond is assumed to be equivalent to the 

set of channels inside the fracture.  The flow rate in a given bond between two fractures 

can be written as: 

 H
CLCL

q ∆
+

=
2211 //

1  (2.11) 

where ∆H is the head difference between the two nodes, C1 and C2 are the hydraulic 

conductivities of the two intersecting fractures, and L1 and L2 are the distances between 

the node and intersection in each fracture. 

 

 

Figure 2.9 – Equivalent channel model for flow calculation. (After Cacas et al., 1990). 
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All methods of flow calculation in fracture network form a system of linear 

equations similar to the Kirchhoff problem in electricity or in pipeline network analysis.  

Solving the system of linear equations for the entire network allows calculation of flow 

anywhere in the system.  

 

II.4.2.3. DFN Applications 

In all methods of solving the flow in fracture networks, the hydraulic parameters 

of the model (aperture or fracture conductivity) are calibrated against the actual data 

(Dverstorp and Andersson, 1989).  Cacas et al. (1990) provided an example of 

calibrating a model and interpreting the results for fracture data in Fanay, France.  In 

their study, the lognormal distribution of the conductivity is assigned for the generated 

fracture set.  The mean and standard deviation of the distribution is adjusted so that the 

distribution of the simulated result from the DFN is the same as the observed injection 

flow rate in the injection test.  

DFNs, once calibrated, can be used to calculate large scale equivalent hydraulic 

conductivities of a continuum.  Cacas et al. (1990) used a DFN to study the isotropy of 

the fracture system and to estimate the permeability of the system.  Ouenes and Hartley 

(2000) used DFNs to upscale permeability fields to use in a reservoir continuum 

simulation and to estimate the relative equivalent size of the matrix block for use in a 

dual porosity reservoir simulation model. 

The application of DFNs to actual field cases, however, is very computationally 

demanding.  When the fracture density of the system is large, it can only be used for a 

small scale study.  Since the flow is related to the connectivity and it is simpler to 

compute the connectivity than flow, the connectivity can be studied first to avoid flow 

calculations when they are not necessary (Chiles and de Marsily, 1993).   

Karpov (2001), for example, studied the connectivity of a fracture system using a 

DFN model for optimization of well design, completion and operations based on an 

understanding of the inter-well scale connectivity.  For a system with two fracture sets 
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orthogonal to the bedding planes, he found that the optimum horizontal wellbore 

orientation is at the bisection of the fracture strikes.  His investigation on the sensitivity 

of the system to the progressive removal of small fractures showed that the flow 

characteristics of the fracture system were governed by a small portion of large, through-

going fractures, and that the fracture termination has strong effects on the optimal 

wellbore orientation and fracture connectivity.    

Karpov’s (2001) study shows that by analyzing the characteristics of the system 

of fractures with the given statistical properties, one can investigate the general trend of 

isotropy and the possible effects of fracture properties on the flow characteristics of a 

fracture system.   

In this study, I will use DFNs to investigate the fracture system isotropy and the 

effect of different parameters of the fracture properties on the conductance of the 

fracture system representing the data collected in the northestern Brooks Range, Alaska.  

I will use FracMan – a software package developed by Golder and Associates Inc., to 

investigate the effect of fracture size, fracture termination, and fracture filling on the 

system connectivity, and the effect of choosing different statistical distributions on the 

simulated conductivity of the fracture system.   
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CHAPTER III 

GEOLOGICAL SETTING AND FRACTURE DATA 

 

III.1. Geological Setting 

III.1.1. Regional Setting 

The Brooks Range is the northern extension of the Rocky Mountain fold-and-

thrust belt and extends across northern Alaska and into northern Canada.  The main axis 

of the Brooks Range is characterized by a Palezoic south-facing continental margin that 

was shortened by hundreds of kilometers during Middle Jurassic to Early Cretacious 

time (Wallace and Hanks, 1990; Moore et al., 1994).  The northeastern Brooks Range is 

a prominent, northward-convex, topographic and structural salient with respect to the 

main Brooks Range axis.  The northeastern Brooks Range is significantly younger than 

the remainder of the Brooks Range and has continued to shorten during Cenozoic time  

(Wallace and Hanks, 1990) (Figure 3.1).   

 

III.1.2. The Northeastern Brooks Range 

A partial stratigraphy of the northeastern Brooks Range is summarized in Figure 

3.2. The Mississippian-Lower Cretaceous Ellesmerian sequence unconformably overlies 

the Precambrian to Devonian rocks.  These older Paleozoic rocks are often referred to as 

“basement” or “Pre-Mississippian rocks” and consist of slightly metamorphosed 

sedimentary and volcanic rocks (Figure 3.2).  The Ellesmerian sequence is a northerly-

derived Mississippian to Lower Cretaceous sequence of marine carbonate and clastic 

rocks.  The boundary between the two sequences is an unconformity overlain by a basal 

conglomerate, the Mississippian Kekiktuk Conglomerate and an overlying shale, the 

Mississippian Kayak Shale. 
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The overall structure of the northeastern Brook Range is a north-vergent, 

regional duplex between a floor thrust at depth in the pre-Mississippian ‘basement’ rocks 

and a roof thrust in the Kayak Shale (Figures 3.2, 3.3).  The structure of the overlying 

rocks is dominated by detachment folds in the dominant rigid element, the Lisburne 

Group (Figure 3.2) (Wallace and Hanks, 1990; Hanks et al., 1997).   

The Lisburne Group is underlain by the Kayak shale, a thick black organic-rich 

shale with minor siltstone and limestone.  The Kayak Shale fills the core of most of the 

detachment folds. The Lisburne Group in unconformably overlain by the Sadlerochit 

Group, (Figures 3.2, 3.3).   The Sadlerochit Group is frequently detached from the 

underlying Lisburne, and develops tertiary scale folds.   

The Lisburne Group is divided into two units: the upper Lisburne (Wahoo 

limestone) and the underlying lower Lisburne (Alapah limestone).  The Wahoo 

Limestone is Mississippian and Pennsylvanian in age and typically consists of a 

massively bedded grainstones and packstones.  The Alapah limestone is Mississippian in 

age and is relatively thinly bedded and consists of a variety of carbonate lithologies 

(Hanks et al., 1997).  The detachment folded Lisburne Group exposed in northeastern 

Brooks Range (Figures 3.2, 3.3) is the target for the fracture investigation in this study. 
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Figure 3.2 – Schematic lithostratigraphy and mechanical stratigraphy for the study areas. 
(After Brinton, 2002). 
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III.2. Fracture Data 

Fracture data used in this study were collected by UAF geologists during the 

summer of 1999 (Hanks et al., 2000).  The fracture data were collected from the upper 

Alapah and lower Wahoo in the Fourth Range and North Shublik areas and the upper 

Wahoo in South Shublik area (Figure 3.2) (Brinton, 2002).  Outcrops were chosen based 

on proximity to or location on a detachment fold as well as outcrop accessibility.  The 

fracture properties and the geologic parameters such as lithology, bed thickness and 

degree of folding are defined and provided by UAF geologists as reported in Hanks et 

al., (2000) and Brinton, (2002).   

At each location, bed thickness was measured normal to the bedding.  The 

lithology of the formation was determined through examination of hand samples and 

was described according to the classification of Dunham (1962).  Fractures were 

grouped into sets based on orientation and character.  The fracture spacings were 

measured on the bedding plane or on cross-sectional exposures along the scan-lines 

perpendicular to the fracture set.  Fracture height was measured along the fracture 

perpendicular to bedding.  Fracture length was designated as the linear measurement 

along the fracture parallel to bedding.  Detailed description of the data collection 

methodology is given in Brinton (2002).   

Fracture data were collected from ten detachment folds (Figures 3.4-3.6).  Five 

folds were chosen for detailed analysis because of the amount and quality of data 

obtainable and the accessibility to fractures in the hinge and both limbs of each fold.  

The data represented 25 outcrop locations, from which 19 are on limbs of folds and 6 are 

on hinges (Figures 3.4-3.5).  All fractures are interpreted as extensional based upon the 

displacement across the fracture surface.  Stratigraphic bed thicknesses ranged from 

0.1m to 4m. The interlimb angle of the surveyed folds ranged from 90º to 160º.  

Detachment fold geometries in the studies areas varies and include open, boxy folds, and 

tight to isoclinal folds.  Lithologies sampled range from carbonate mudstone to 

grainstone (Brinton, 2002).   
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Two major trends of the fracture orientation were observed: NS striking, which is 

perpendicular to the fold axes; and EW striking, parallel to the fold axes (Figure 3.7).  In 

several locations, more than two fracture sets were identified on the basis of fracture 

orientation.  For example, in hinge of fold II, four fracture sets were identified: the NS 

and EW fractures and north-dipping and south-dipping conjugate sets (Figure 3.8).  The 

NS and EW fractures formed at high angles to bedding.  The conjugate sets are nearly 

parallel in strike direction.  Their dip directions are separated by an acute angle.  Table 

3.1 summarizes the main characteristics for all fracture sets. 

  

 

 

 

Figure 3.4 – Geologic cross section and sample location, Fourth Range study area (after 
Brinton, 2002). 
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Figure 3.5 – Geologic cross section and sample location, North Shublik study area (after 
Brinton, 2002).  
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Figure 3.6 – Geologic cross section and sample location, South Shublik study area (after 
Brinton, 2002). 
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Figure 3.7 – Rose diagram of fracture orientation from all folds.  
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Figure 3.8 – Schematic rendering of features associated with folds. (After Brinton, 2002).   
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Table 3.1 – Summary of the fracture data. 

Fracture Set SP Lith. Form. Bed Fold Interl. 
Angle 

Avrg. 
Spacing 

Avrg. 
Length 

Avrg. 
Height 

    m  deg. m m m 
FR-7-9-1NS L Ps Alapah 3   0.277 0.458 1.971 
FR-7-9-1EWcj L Ps Alapah 3   0.100 0.288 0.827 
FR-7-9-1conj L Ps Alapah 3   0.480 0.143 0.325 
FR-7-9-1MNS L Ps Alapah 3   1.467 6.000 8 
FR-7-9-2EW L Ps/Gr uAlapah 3   0.079 0.231 0.338 
FR-7-9-2NS L Ps/Gr uAlapah 3   1.063 0.680 4.4 
FR-7-9-3EW L Ps/Gr uAlapah 1   0.224 0.230 1.51 
FR-7-9-3NS L Ps/Gr uAlapah 1   0.136 0.238 0.425 
FR-7-10-1EW Hs Ps/Gr Alapah 1.5 II 125 0.310 0.165 0.582 
FR-7-10-1EWS Hs Ps/Gr Alapah 1.5 II 125 0.143 0.085 0.296 
FR-7-10-1EWN Hs Ps/Gr Alapah 1.5 II 125 0.176 0.101 0.386 
FR-7-10-1NS Hs Ps/Gr Alapah 1.5 II 125 0.136 3.467 0.687 
FR-7-12-1NS L Ms Wahoo 1.7   0.064 0.095 0.832 
FR-7-13-1ANS L Md Wahoo 2.4   0.072 0.130 0.98 
FR-7-13-1BEW L Md Wahoo 2.4   0.258 0.171 0.686 
FR-7-13-1Sh L Md Wahoo 2.4   0.125 0.300 999 
FR-7-13-2Sh L Md Wahoo 2.4   0.010 0.200 999 
FR-7-14-1NS L Md/Ws uWahoo 1.5   0.150 0.088 1.113 
FR-7-14-1EW L Md/Ws uWahoo 1.5   0.203 0.083 0.517 
FR-7-14-1MicEW L Md/Ws uWahoo 1.5   0.018 0.101 0.2 
FR-7-14-2MNS L Ws uWahoo 1.5   0.553 0.053 2.286 
FR-7-14-2MicNS L Ws uWahoo 1.5   0.038 0.010 0.617 
FR-7-14-2MeNS L Ws uWahoo 1.5   0.233 0.027 0.291 
FR-7-19-1EW L Gr uWahoo 1.5 II 125 0.123 0.109 0.377 
FR-7-19-1NS L Gr uWahoo 1.5 II 125 0.240 0.413 0.82 
FR-7-19-2NS L Gr Alapah 2.5 II 125 0.500 0.700 1.9 
FR-7-19-2EW L Gr Alapah 2.5 II 125 0.130 0.425 0.625 
NS-7-26-2a L Ps/Gr UN 4   0.160 0.225 2.083 
NS-7-26-2NS L Ps/Gr UN 4   0.069 1.138 2.063 
NS-7-26-2MNS L Ps/Gr UN 4   0.600 1.000 4 
NS-7-27-1a L Ws/Gr uAlapah 4 VII 90 0.358 1.760 0.2 
NS-7-27-1vert L Ws/Gr uAlapah 4 VII 90 0.175 0.980 0.003 
NS-7-27-1conj L Ws/Gr uAlapah 4 VII 90 0.325 0.480 0.003 
NS-7-27-2a Ha Ws/Gr UN 4 VII 90 0.143 0.260 0.96 
NS-7-27-2b Ha Ws/Gr UN 4 VII 90 0.100 0.304 0.786 
NS-7-27-4a L Ws/Ps UN N/A VII 90 2.250 0.600 1.4 
NS-7-27-4b L Ws/Ps UN N/A VII 90 0.920 2.333 4 
NS-7-29-1NS L Ps/Gr Alapah 2.5 V 100 0.273 0.350 0.05 
NS-7-29-1EW L Ps/Gr Alapah 2.5 V 100 0.092 0.732 0.05 
NS-7-29-1A L Ps/Gr Alapah 2.5 V 100 0.375 0.589 0.05 
NS-7-29-2NS Ha Ps/Gr Alapah 3 V 100 0.084 0.409 0.509 
NS-7-29-2EW Ha Ps/Gr Alapah 3 V 100 0.080 0.370 0.15 
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Table 3.1 – (continued). 
Fracture Set SP Lith. Form. Bed Fold Interl. 

Angle 
Avrg. 
Spacing 

Avrg. 
Length 

Avrg. 
Height 

    m  deg. m m m 
NS-7-29-2MNS Ha Ps/Gr Alapah 3 V 100 1.300 1.040 2.8 
NS-7-29-2MEW Ha Ps/Gr Alapah 3 V 100 1.700 0.520 3.4 
NS-7-29-3NS L Ws/Ps Alapah 0.4 V 100 0.304 4.645 0.4 
NS-7-29-3a L Ws/Ps Alapah 0.4 V 100 0.453 0.450 0.4 
SS-8-2-2a L Ps Wahoo 2 VIII 110 0.045 1.000 0.5 
SS-8-2-3a Ha Ps Wahoo 0.2 VIII 110 0.253 0.200 0.15 
SS-8-2-3b Ha Ps Wahoo 0.1 VIII 110 0.250 0.567 0.2 
SS-8-3-1a L Ps Wahoo 0.7   0.175 0.314 0.55 
SS-8-3-2SW L Ps Wahoo 2   0.233 0.271 0.2 
SS-8-3-2NW L Ps Wahoo 2   0.100 0.176 0.9 

SS-8-4-1EW L Ps Wahoo 1 VIII
B 160 0.181 0.115 0.525 

SS-8-4-1NS L Ps Wahoo 1 VIII
B 160 0.074 0.288 0.567 

SS-8-4-2NS Ha Ps Wahoo 1.5 VIII
B 160 0.050 0.431 0.2 

SS-8-4-2EW Ha Ps Wahoo 1.5 VIII
B 160 0.184 0.153 0.2 

SS-8-4-2ConjA Ha Ps Wahoo 1.5 VIII
B 160 0.180 0.450 0.7 

SS-8-4-2ConjB Ha Ps Wahoo 1.5 VIII
B 160 0.320 0.447 0.7 

SS-8-4-3EW Hs Ps Wahoo 3 VIII
B 135 0.075 0.130 0.13 

SS-8-4-3NS Hs Ps Wahoo 3 VIII
B 135 0.090 0.079 0.13 

SS-8-6-1NS L Ps Wahoo 0.5   0.097 0.650 0.638 
SS-8-6-1EW L Ps Wahoo 0.5   0.097 0.556 0.225 
SS-8-6-1BNS L Ps Wahoo 0.5   0.225 0.243 0.629 
SS-8-6-1BEW L Ps Wahoo 0.5   0.190 0.262 0.6 

 

 

III.3. Brinton’s Analysis of Fracture Properties 

Brinton (2002) described the fracture data at each location and performed a 

detailed fold-by-fold analysis of the fracture data.  Fractures of similar orientation were 

compared between folds of close proximity.  The relative age of the fractures was 

assessed by studying the termination of one fracture on another fracture, assuming that 

the more through-going fracture set predates the other set.  The following is a brief 

summary of Brinton’s (2002) fold-by-fold analysis: 
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- There is reliable evidence that the EW fracture sets predominantly pre-date the 

NS fracture sets.   

- The EW fractures pre-dated or formed early during folding, and that the NS 

fractures formed late during, or after folding. 

- The EW fractures have greater density in the hinge of the folds as compared to 

the limb.  Fracture spacing in both orientations become more variable in fold 

hinges. 

Linear statistical analyses also were performed on an area-wide scale on all the 

data, including fracture data from the entire study area.  The purpose was to analyze the 

roles of stratigraphy and folding in the development of fractures.  Assuming that the 

effects of geologic factors on fracturing are independent of each other, Brinton lumped 

all fractures together for investigating the effects of lithology, bed thickness, and 

interlimb angle on the fracture spacing.  For example, to evaluate the effect of lithology 

on fracture spacing, he compared the average fracture spacing of all fractures, grouped 

into appropriate lithologic classifications.  Similarly, the average fracture spacing is 

plotted against bed thickness or interlimb angle to evaluate the effect of bed thickness or 

degree of folding on fracture density.  The following is a summary of Brinton’s (2002) 

area-wide scale analysis.  

- Wackestone shows the smallest fracture spacing, followed by packestone, then 

by grainstone.  Mudstones show the greatest average fracture spacing. 

- Lumping all data and plotting against bed thickness shows no influence of the 

bed thickness on fracture spacing.  

- Fracture density in the hinges is slightly higher than in the limbs.   

- As the interlimb angle decreases (i.e., folds get tighter), the fracture spacing 

increases.  This correlation is weak and would be considered unreliable. 
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- Fracture spacing and its variance for NS and EW orientations are similar.  The 

orientation of the NS fractures becomes more uniform with decreasing interlimb 

angle while such a relationship does not exist for the EW fractures.  

Brinton’s (2002) analysis of the fracture data in the northeastern Brooks Range 

suggests that fracture spacing is controlled by lithology.  The bed thickness and the 

degree of folding do not have a significant effect on fracturing.  No reliable pattern 

relating fracture distribution with the amount of folding was detected.   

Several issues were raised from Brinton’s analysis:  

1- The area-wide analysis of the effect of a particular parameter on the fracture 

spacing is based on the assumption that other parameters either have no effect 

or have equal effect on fracture spacing at each value of the parameter in 

question.  The sparseness of the fracture data, however, may magnify or 

dampen the effect of one particular parameter on the fracture spacing. 

2- The fracture length and height were never used to see if folding or other 

geologic parameters affect the fracture properties.  

In next chapters, I will present further results of the statistical analysis of the 

fracture properties.  The effects of folding and structural position on fracture size will be 

analyzed.  Conventional statistical analysis and neural network will be used to analyze 

the fracture spacing.   
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CHAPTER IV 

STATISTICAL ANALYSIS 

 

This chapter extends the fracture property statistical analysis made by Brinton 

(2002).  The fracture spacing, height, and length for fractures in two orientations are 

studied.  The fractures are grouped with regard to different values of interlimb angle, bed 

thickness, structural position and fracture orientation.  The t-test for mean value, 

Kolmogorov-Smirnov test for general difference of distribution, and bootstrapping to 

evaluate differences in medians are used in assessing the effects of bed thickness, degree 

of folding, and structural position on the fracture spacing.    

This analysis suggests that the geologic parameters have complex effects on the 

fracture spacing distribution.  The fracture spacing increases and becomes more variable 

as the interlimb angle decreases.  The fracture length increases as interlimb angle 

decreases, especially for NS fractures.  The local structural setting seems to have an 

important role in the fracture spacing and fracture size distributions.  The complexity of 

the effects of geologic parameters on the fracture spacing suggest that conventional 

statistical analysis is insufficient and that a different method is needed. 

 

IV.1. Fracture Spacing 

IV.1.1. Summary of Fracture Spacing Data 

One main objective of the fracture analysis is to evaluate the effects of 

mechanical stratigraphy and folding on fracture spacing.  I assume that mechanical 

stratigraphy and folding are represented by the bed thickness, the lithology, the 

formation, the interlimb angle, and the structural position in fold.   

An ideal analysis of the effect of a particular geologic parameter on the fracture 

spacing requires that other parameters are fixed.  For example, the effects of the degree 
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of folding on the fracture spacing are best examined for a layer of a single lithology, 

with constant thickness, at the same position in folds of different interlimb angles.  This, 

however, can not be fulfilled because of the limited amount of fracture data.  In the 

following sections, the fracture data are grouped into different groups representing 

different values of the geologic parameters.  Comparing the fracture spacing between 

groups, I want to examine following questions. 

1- Does fracture spacing increase with bed thickness? 

2- Does fracture spacing increase with interlimb angle? 

3- Is fracture spacing in limbs of the fold significantly different from that in the 

hinge of the fold? 

Table 4.1 summarizes the main statistical characteristics of the fracture spacing 

for NS and EW fractures, lumped together from all 5 folds (Chapter III).  Both fracture 

sets have very similar statistics.  Figure 4.1 shows the cumulative distribution plots for 

both fracture sets.  These plots and statistical tests show that both fracture sets are 

statistically similar at a 95% confidence level.    

Both sets appear to have similar behavior with respect to the effects of bed 

thickness and tightness of the fold.  A plot of fracture spacing versus bed thickness 

(Figure 4.2) shows that, as bed thickness increases, fracture spacing and its variability in 

both orientation increases. This behavior agrees with the fracture density-bed thickness 

reported in the literature (Harris et al., 1960; Ladeira and Price, 1981; Huang and 

Angelier, 1989; Narr and Suppe, 1991).  A plot of fracture spacing versus interlimb 

angle (Figure 4.3) however shows a trend different from that expected if the fractures are 

related to folding: the average spacing increases, and the spacing becomes more variable 

with decreasing interlimb angle.  The results of the literature review in Chapter II 

suggested that the average fracture spacing at any location can be affected by different 

factors.  It is therefore important to investigate the effects of a particular geologic factor 

on the average fracture spacing by keeping others at fixed values. 
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Table 4.1 – Fracture spacing summary. 

 EW fracture NS fracture Difference, % 
Number of fractures 176 215 - 

Average, m 0.26 0.28 6.7 
Median, m 0.14 0.15 7.1 

Standard deviation, m 0.455 0.370 -18.6 
90th percentile, m 0.45 0.65 44.4 
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Figure 4.1 – Cumulative distribution of fracture spacing for two orientations, all fracture 

data. 
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Figure 4.2 – Fracture spacing versus bed thickness for two orientations.  The fracture 

spacing increases with the bed thickness. 
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Figure 4.3 – Fracture spacing versus interlimb angle for two orientations. As interlimb 

angle decreases, fracture spacing and its variability increase. 

 

 

IV.1.2. Regrouping of the Fracture Data 

The limited data prevents us from investigating the effects of a single geologic 

factor with other being constant.  We in fact do not have enough data for examining the 

effect of single geologic parameters on average fracture spacing with all other 

parameters being fixed.  One approach that may partially correct this situation is to treat 

continuous variable as a categorical.  For example, instead of analyzing the effect of bed 

thickness on the average fracture spacing as a continuous for the whole range of bed 

thickness, we can examine how average fracture spacing differs in thin bed and in thick 
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bed.  In such a case, bed thickness becomes a categorical variable with some arbitrary 

boundary defining which value of bed thickness belongs to the “thin bed” and which 

value belongs to the “thick bed”.  By doing this, the number of fracture data in each 

category of bed thickness becomes large enough for studying the effect of other 

parameters on the average fracture spacing within each bed thickness group, now being 

considered fixed.  Treating continuous variable as a discrete has following advantages: 

- it increases the amount of data in each group and thus, will improve the 

statistical significance of the analysis. 

- the assumption of the fixed value of a variable can now be applied within 

each group of that variable for studying the effect of other variables.  

 The major concerns of this approach are as follows. 

- It loses the detailed effect of the exploratory variable on the response variable 

within each group.  Because of this, treating a continuous variable as a 

discrete is meaningful only when the effect of this variable on the response 

variable is monotonically between two consecutive regions of this variable.  

- It is difficult to choose the points dividing the range of a variable into 

different regions.  If we choose to depict the relationship between this 

variable and the response variable, then the boundary should be a point that 

maximizes the difference between subsets of data from each region.  If we 

choose to improve the significance of the analysis for other parameters within 

each group, then the number of data points in each group should be 

considered.     

For our fracture data, I assume that following parameters can affect average 

fracture spacing: the degree of folding, the bed thickness, the structural position on a 

fold, the lithology, and the fracture orientation.  We in fact already treat several 

continuous variables as discrete including following.  
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- Lithology is a continuous variable representing the distribution of the rock 

components and texture within the rock matrix. 

- Structural position is a continuous variable representing the linear distance 

across a fold.  

By the same token we can also treat bed thickness and degree of folding as the 

discrete variables for further analysis.   

 

IV.1.2.1. Interlimb Angle  

Theoretical and experimental studies indicate that the fracture spacing of a single 

layer decreases with degree of folding (Harris et al., 1960; Lisle, 1994; Jamison, 1997; 

Henning et al., 2000).  We expected that the fracture spacing monotonically decreases 

with the interlimb angle under the condition that homogeneous layer folded from the flat 

laying condition and would not change back to unfolded condition.  

Visual inspection of Figure 4.3 suggests that the interlimb angle of about 110° 

can serve as a boundary for two regions of degree of folding.  To be more precise, I 

compared the average fracture spacing of the resulted datasets using t-test (Jensen et al., 

1997).  Figure 4.4 shows t-statistic of the distribution of the difference in means and the 

ratio of data points in these subsets as a function of the point dividing interlimb angle.  

Large t-statistics means large difference between average fracture spacing of two 

subsets.  The ratio of data points equal 1 means that two sets have the same number of 

data.  The results suggest that, the interlimb angle of 105° maximizes the difference 

between two subsets and has a good proportion of data points in them.  This value is 

chosen as the boundary dividing interlimb angle into two categories: tight folds with α < 

105° and open folds with α ≥ 105° (α is the interlimb angle). 
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Figure 4.4 – t-statistic of difference in average fracture spacing and the ratio of data 
points between two groups of interlimb angle. 

 

 

IV.1.2.2. Bed Thickness 

Many studies, based on experiments and field observations, indicated that 

fracture spacing increases with the thickness of fractured layer (e.g., Narr and Suppe, 

1991; Wu and Pollard, 1995).  That is, under the same condition, fractures in thin beds 

have smaller average fracture spacing than in thick beds.  Theoretical studies (e.g., 

Pollard and Segall, 1987) also suggest that the fracture spacing in a homogeneous 

medium is proportional to the layer thickness.  The proportional coefficient is 

determined by parameters such as the properties of the fractured and neighboring layers.  

Assuming that the properties of neighboring layers are similar for different fractured 

layers, the monotonicity of the relationship between fracture spacing and bed thickness 

can be applied and bed thickness can be divided into categories. 

T-statistics for the difference in average fracture spacing and the ratio of data 

points are calculated for two groups of fracture spacing as a function of the value 
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dividing bed thickness into categories.  The results (Figure 4.5) suggest that the bed 

thickness of 2.2 m maximizes the difference between two subsets and has a good 

proportion of data points in them.  This value is chosen as the boundary dividing bed 

thickness into two categories: thin beds (h≤2.2 m) and thick beds (h>2.2 m). 
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Figure 4.5 – t-statistic of difference in average fracture spacing and the ratio of data 
points between two groups of bed thickness. 

 

 

IV.1.3. Statistical Tools for Analysis 

I use box plots (Siegel and Morgan, 1996) and sample cumulative distributions of 

resulting subsets for visual comparison among subsets.  Along with graphical 

comparisons, I applied several statistical tests to quantify and assess the effects of 

geologic factors on fracture spacing.  I used the t-test for the differences in mean, the 

Kolmogorov-Smirnov (KS) test for the differences between distributions, and 

bootstrapping for differences in median (Neave and Worthington, 1988) to assess the 
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statistical significance of the difference between datasets.  The bootstrapping procedure 

is carried as followed:  

1- draw with replacement a sample of size N from each dataset to be compared; 

2- determine sample medians of bootstrapped samples; 

3- calculate the difference between medians obtained in step 2; and  

4- repeat the step 1 to 3 for 999 times.   

These 1000 differences form the distribution of the difference in median between two 

datasets.  An α-level confidence interval includes all differences between the α/2 and 1-

α/2 percentiles of the distribution.  The datasets are said to have different medians if 

their bootstrapped confidence interval excludes the value of zero.          

Following sections presented the results of these analyses for fracture spacing. 

 

IV.1.4. Analysis Results 

IV.1.4.1. Interlimb Angle and Bed Thickness 

Figure 4.6 shows the box plot of fracture spacing for the subsets of data 

according to different groups of bed thickness and interlimb angle.  It appears that the 

fracture spacing is not affected by the value of bed thickness, as it seems to be in Figure 

4.2.  Within each range of interlimb angle, fracture spacing remains relatively unchanged 

for variations in bed thickness.  This effect contrasts with the often-reported relationship 

between fracture spacing and bed thickness.  On Figure 4.4, we also see that the fracture 

spacing increases for both subsets of bed thickness as the interlimb angle decreases.  

This relationship is contrary to the expectation that fracturing would be enhanced by 

folding i.e., fracture spacing is expected to be smaller for the tighter folds (i.e., small 

interlimb angle). The observed relationship between fracture spacing and interlimb angle 

in these detachment folds suggests that the fractures may not be closely or wholly related 
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to the folding.  At the 95% confidence level, all three statistical tests confirmed what we 

observed graphically, i.e.: 

- Bed thickness does not have a significant effect on the fracture spacing 

distribution. 

-  As the interlimb angle decreases, the fracture spacing increases and becomes 

more variable. 

 

 

 
Figure 4.6 – Box plot of fracture spacing for two groups of interlimb angle. Fracture 

spacing and its variability increase as the interlimb angle decreases for both groups of 
bed thickness. The lower edge of each shaded box represents the 25th percentile of the 
dataset, the upper edge represents the 75th percentile. The heavy line is the median of the 
sample.  The “whiskers” at the two ends of each box connect data points lying within 1.5 
lengths of the box.  The circles are the adjacent values and the stars are the outliers. 
(Siegel and Morgan, 1996). 
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IV.1.4.2. Fracture Spacing with Respect to Interlimb Angle and Orientation   

The results of comparing the two fracture sets indicated that the fracture spacing 

of both sets are statistically similar.  Dividing the fracture data into subsets reveals more 

subtle effect of folding on fracture spacing distribution.  The box plots of fracture 

spacing for the two fracture sets with respect to interlimb angle show that fracture 

spacing in both fracture sets appears to behave similarly as the interlimb angle changes 

(Figure 4.7).  Fracture spacing in both the NS and EW fracture sets increases and 

becomes more variable as the interlimb angle decreases.  A t-test confirms this.  The KS 

test and test on median, however, reveal that the distribution and the median of the 

fracture spacing are significantly different for the two fracture orientations with large 

interlimb angle.  In folds with large interlimb angles, the median of the EW fractures 

(0.13 m) is significantly larger than the median of the NS fractures (0.07 m).   

 

IV.1.4.3. Fracture Spacing with Respect to Interlimb Angle and Structural Position   

The position of the sample location on the fold also has an effect on the fracture 

spacing distributions.  Fracture spacings in limbs of folds with small interlimb angle are 

significantly larger than in hinges of folds with small interlimb angles and in folds with 

large interlimb angles (Figure 4.8).  The t-test suggests that the average fracture spacing 

both on the limbs and the hinges of folds with small interlimb angle is significantly 

larger than in folds with large interlimb angle.  The KS test indicates that the fracture 

spacing distributions are significantly different for all subsets, except for the fractures in 

hinges of fold with different interlimb angles.    
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Figure 4.7 – Box plot of fracture spacing for different interlimb angle and orientation. As 

folding increases, fracture spacing and its variability increases in both fracture sets. 
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Figure 4.8 – Box plot of fracture spacing for different interlimb angle and structural 

position. As folding increases (fold changes from open to tight), fracture spacing and its 
variability increases in both limbs and hinges, especially in limbs. 

 

 

IV.1.4.4. Fracture Spacing with Respect to Orientation and Structural Position 

Grouping the fracture sets with respect to different structural positions on the 

folds shows insignificant difference between the sets.  However, the NS fractures in limb 

and in hinge appear to be significantly different (Figure 4.9).  Combining this analysis 

with that shown in Figures 4.7 and 4.8 suggests that the apparent contradictory effect of 

folding on the fracture spacing may be due to excessive influence of the data from the 

fold limbs.  That is, for all possible combinations of bed thickness and interlimb angle 

with structural position, the one in fold limbs shows greatest fracture spacing.    
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Figure 4.9 – Box plot of fracture spacing for two orientations at different position on fold.   

 

 

IV.1.4.5. Fracture Spacing with Respect to Bed Thickness and Structural Position 

Comparing the fracture spacing of the datasets from two groups of bed thickness 

and structural position suggests that fracture spacing in thick beds and on fold limbs is 

significantly larger than fracture spacing in other combination of parameters.  Figure 

4.10 shows that the fracture spacing distribution in thick beds and fold limbs is 

significantly skewed in the direction of large fracture spacing.   
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Figure 4.10 – Box plot of fracture spacing for two groups of bed thickness at different 

position on fold.   

 

 

 

IV.1.5. Summary 

Table 4.2 shows the summary of the statistical assessment of the difference 

between different subsets of data.  The results are the p-value of the t-test, Kolmogorov-

Smirnov test and the bootstrapped difference in median.   
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Table 4.2 – Summary of the statistical assessment of fracture spacing subsets. 

  p value  
Set 1 Set 2 t-test KS Median* 

EW-Tight folds EW-Open folds 0.999 0.999 D 
NS-Tight folds NS-Open folds 1.000 0.999 D 
EW-Thin beds EW-Thick beds 0.981 0.827 nd 
NS-Thin beds NS-Thick beds 1.000 1.000 D 

EW-Limb EW-Hinge 0.210 0.752 nd 
NS-Limb NS-Hinge 0.942 0.998 nd 

Tight folds-Thin beds Tight folds-Thick beds 0.914 0.948 nd 
Open folds-Thin beds Open folds-Thick beds 0.036 0.434 nd 

Tight folds-Limb Tight folds-Hinge 0.935 1.000 D 
Open folds-Limb Open folds-Hinge 0.493 0.693 nd 
Tight folds-EW Tight folds-NS 0.950 0.742 nd 
Open folds-EW Open folds-NS 0.779 0.998 D 
Thin beds-Limb Thin beds Hinge 0.482 0.220 nd 
Thick beds-Limb Thick beds-Hinge 0.948 1.000 D 

Thin beds-Tight folds Thin beds-Open folds 0.999 1.000 D 
Thick beds-Tight folds Thick beds-Open folds 1.000 0.982 D 

Thin beds-EW Thin beds-NS 0.896 0.783 nd 
Thick beds-EW Thick beds-NS 0.134 0.993 nd 
Limb-Thin beds Limb-Thick beds 1.000 1.000 nd 
Hinge-Thin beds Hinge-Thick beds 0.771 0.987 nd 

Limb-EW Limb-NS 0.053 0.945 nd 
Hinge-EW Hinge-NS 0.707 0.988 nd 

Limb-Tight folds Limb-Open folds 1.000 1.000 D 
Hinge-Tight folds Hinge-Open folds 0.947 0.462 nd 

 *) D means difference and nd means no difference at 95% confidence level. 

 

 

The comparison of the fracture spacing for different combinations of geologic 

factors in this section suggests that the local structural position may have strong effect 

on the fracture spacing.  In particular, the fracture spacing in thick beds and on the limbs 

of tight folds is significantly larger than for other combination of parameters used in this 

study (Figures 4.8, 4.10).  The contradictory relationship between folding and fracture 

spacing as seen in Figure 4.3 can be mainly attributed to the fractures associated with 
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this combination of parameters.  Table 4.3 summarizes the average p-value of the test 

with respect to each geologic factors and their ranking.  All tests suggest that in general, 

folding has the most significant role in controling the fracture fracing.  It is worth noting 

that the effect of folding from the tests is contradictory with that from literature: fracture 

spacing is large in tight folds than in open folds.  The effect of other factors on fracture 

spacing is different for different tests.       

 

 

Table 4.3 – Ranking of the geologic factors.  

 Average p-value Rank 
 t-test KS t-test KS Median* 

Folding 0.99 0.91 1 1 1 
Bed thickness 0.68 0.87 3 3 3 

Structural position 0.78 0.78 2 4 2 
Fracture orientation 0.59 0.91 4 2 3 

 

 

 

In summary, the analysis in this section suggests that: 

1- the two fracture sets behave similarly with regard to the degree of folding and 

other parameters; 

2- the folding has significant effect on the fracture spacing;  

3- the fracture spacing is weakly affected by bed thickness;  

4- the fracture spacing on the limbs of tight folds is significantly larger than the 

fracture spacing in other groups;   

5- the fracture spacing on the limbs within thicker bed is significantly larger 

than the fracture spacing in other groups; and     
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6- the fracture spacing is a complex function of different geologic factors and 

that lumping all fracture data into one large dataset may not be helpful for 

investigating the effects of a particular geologic factor on fracture density.  

Dividing fracture data into subsets can only partially overcome the problem of 

combining different geologic factors in the analysis.  For example, the effect of bed 

thickness and interlimb angle on the fracture spacing shown in Figure 4.4 may be 

affected by the structural position, lithology or fracture orientation.  Dividing fracture 

data according to the orientation and structural position shows that these parameters do 

affect the fracture spacing (e.g., Figures 4.8, 4.9) differently for different values of bed 

thickness and structural position.  The conclusion about the effects of single geologic 

parameters on the fracture spacing is, in fact, the conclusion about the combined effects 

of other parameters.  Ideally, the effect of single geological factor on fracture 

distributions must be assessed while other factors are fixed.  With this level of data 

division, there is evidence that large fracture spacing on the limb of tight folds and 

within thick beds contributes to the apparent overall behavior of fracture spacing with 

regard to degree of folding or bed thickness.  Further division of fracture data into 

smaller subsets for a single geological factor, however, is restricted by the number of the 

available data.   

More detailed analysis of the effects of single geological factor on fracture 

spacing will be done with the use of neural network.  The application of neural network 

will be described in the next two chapters.      

 

IV.2. Fracture Size 

IV.2.1. Summary of Fracture Size Data 

In modeling the connectivity of the fracture system, fracture size should be 

specified along with the fracture density.  It is typically inadequate to deterministically 

describe the system of fractures in the formation.  Instead, the major fracture 

characteristics, including fracture orientation, fracture spacing, fracture size or trace 
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length and aperture are represented by statistical distributions.  The following section 

presents the fracture size analysis for the data described in Chapter III.  An analysis 

similar to the one performed on fracture spacing will be presented to give an idea of how 

fracture size is distributed with bed thickness and folding.  

The cumulative distribution function of fracture height is shown in Figure 4.11.  

Table 4.4 summarizes the general statistics of both NS and EW fractures for fracture 

heights.  The plot and data summary indicate significant difference in height 

distributions of the two sets.   

The cumulative distribution function of fracture length is shown in Figure 4.12.  

Table 4.5 summarizes the general statistics of both NS and EW for fracture lengths.  The 

plot and data summary also indicate significant difference in length distributions of the 

two sets. 
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Figure 4.11 – Cumulative distribution of fracture height for two orientations, all fracture 

data. 
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Table 4.4 – Fracture height summary. 

 EW fracture NS fracture Difference, % 
Number of fractures 203 250 - 

Average, m 0.595 1.165 96 
Median, m 0.34 0.6 76 

Standard deviation, m 0.708 1.639 131 
90th percentile, m 1.4 3.0 114 
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Figure 4.12 – Cumulative distribution of fracture length for two orientations, all fracture 

data. 
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Table 4.5 – Fracture length summary. 

 EW fracture NS fracture Difference, % 
Number of fractures 192 247 - 

Average, m 0.327 0.853 161 
Median, m 0.2 0.3 50 

Standard deviation, m 0.382 1.848 383 
90th percentile, m 0.6 2.0 233 

 

 

Examination of cumulative distribution plots and the data in Tables 4.4 and 4.5 

suggests that there are more large fractures with NS than with EW strike.  All statistical 

tests indicate significant differences between the NS and EW sets.  The NS fractures are 

generally more developed in size than EW fractures.   

It is worth noting that the fracture length and height can be heavily affected by 

several types of error involving the fracture size measurement.  Chiles and de Marsily 

(1993) discussed several types of bias that can affect the fracture measurement, 

including censoring error, truncation error, and the bias caused by the scale of the 

survey.  Censoring error occurs when a fracture termination is not observed; the 

recorded length is shorter than the true length.  Truncation error occurs when small 

fractures are not recorded due to the resolution of the survey.   

For the data available in this study, the fracture length was either taken on the 

bedding plane or on the exposed face of the formation: 40% of total fracture length data 

were measured on bedding planes and 60% were measured on exposed faces.  Clearly, 

fractures lengths that were measured on exposed face are not reliable.  Similarly, fracture 

heights that were measured on bedding plane represent only the minimum possible 

values.  In several instances, an arbitrary value has been assigned to all fractures at the 

same location.   
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Figure 4.13 shows the histogram of fracture height normalized to the value of 

bed thickness for all fractures.  This plot suggests that the majority of fractures 

terminates within the fractured layer and only ~20% of fractures have the height to bed 

thickness ratio greater than 1.  From the field observations, ~50% of fractures are 

described as terminated at least at one bedding plane.  This fact, combined with Figure 

4.13 suggests that either fractures are initiated very near the bedding plane or the 

reported fracture heights are heavily truncated.  Even 50% of fractures are reported to be 

terminated at bedding plane, bed thickness does not seem to have a major effect on 

controlling the fracture height since majority of fractures have height less than the 

thickness of fractured layer.  Figure 4.14 shows the similar histogram of fracture length 

normalized to the bed thickness. A majority fraction of fractures have length smaller 

than the bed thickness.      
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Figure 4.13 – Histogram of fracture height normalized to the bed thickness.  
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Figure 4.14 – Histogram of fracture length normalized to the bed thickness.  

 

 

It is worth noting that, to my knowledge, there is no theoretical or experimental 

ground for the relationship between fracture size (length and height) and geologic 

factors.  Intuitively, however one would expect that folding enhances fracturing and the 

fracture length and height would be greater in tight folds as compared to that in open 

folds.  I present the comparison of our fracture length and fracture height at different 

values of interlimb angle and for different position on the fold.   

 

IV.2.2. Fracture Height Versus Interlimb Angle and Structural Position 

Figures 4.15-4.16 show the box plot of the fracture height for the two fracture 

sets with regard to interlimb angle and structural position.  No significant difference was 

observed between fracture height of different datasets.  These results suggest that the 
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effect of the degree of folding and the structural position on fracture height is not 

significant.   

 

 

 

Figure 4.15 – Fracture height of the two fracture sets from folds of different interlimb 

angle. 
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Figure 4.16 – Fracture height of the two fracture sets in different structural position.   

 

 

IV.2.3. Fracture Length Versus Interlimb Angle and Structural Position 

Figures 4.17-4.18 show box plot of fracture length at different value of interlimb 

angle and structural position.  Unlike the fracture height, the fracture length increases 

with folding.  Fracture length in the fold limbs is slightly larger and more variable than 

in the hinges, especially for NS fractures.  
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Figure 4.17 – Fracture length of the two fracture sets in different interlimb angle.  

Fracture length is larger in tight folds as compared to open folds. 
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Figure 4.18 – Fracture length of the two fracture sets in different structural position.  

Fracture length in limbs is larger than in hinges. 

 

 

IV.2.4. Summary 

The analysis of fracture height and fracture length indicates that the behavior of 

both NS and EW fractures is similar with regard to the interlimb angle.  The fracture 

height does not seem to be affected by the structural position in the fold, while the 

fracture length is more variable in fold limbs for both fracture sets.  

Whereas the fracture height does not seem to relate to folding, fracture length is 

larger and more variable in tight folds than in open folds for both fracture sets.  This 

implies that folding enhances the fracture length in both sets, and if that is true, then the 
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bed boundary plays an important in controlling the fracture height.  This reflects the fact 

that 50% of fractures are reported to terminate at the bedding plane.  

The behavior of fracture length with regard to folding is in contrast to the 

behavior of fracture spacing: folding does not appear to increase fracture density but 

does significantly affect fracture length.  Assuming that the truncation error affects the 

fracture length measurement equally at any sample location, this analysis leads to 

following conclusion: the fracture system in the region of study is so over-saturated so 

that additional shortening of formation caused by folding does not change the fracture 

spacing but enhances the fracture development in length.  Since the bedding plane can be 

a boundary for the fracture development, the analysis of fracture length could be more 

helpful in assessing the effect of folding on fracture development.  However, it is very 

difficult to measure the fracture length on the exposed face of the formation.  The result 

of the analysis could be more reliable if the fracture length is measured on the bedding 

planes.  
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CHAPTER V 

TESTING OF NEURAL NETWORKS ON KNOWN FUNCTIONS 

 

As discussed in Chapter II, the problem of developing neural networks when 

there are few data is difficult, and no general solution has been identified.  Here, I 

examine the network building and validation process in the case of scarce data and 

where the underlying relationship between the variables is known.  This analysis will 

give us some guidance when we apply the NNs to the Lisburne data in Chapter VI.  In 

particular, we now investigate: (1) the effect of choosing different activation functions 

on the output of the network; (2) the effect of different initial weights on the cross 

validation method; and (3) the possibility to assess the network prediction error.   

The results of the investigation suggest that the network prediction depends on 

the activation function used for the output unit and on the initial values of the network 

weights.  Using the linear activation function reproduces the true relation and is less 

biased than the sigmoidal and Gaussian activation functions.  When the number of 

available data is small, different initial weights for network training produces different 

network predictions. In these cases, applying multiple network training during the cross 

validation process helps to eliminate the effect of the initial weights on the result of the 

network configuration selection.  For small datasets, the multiple initial weights of the 

leave one out training method can be used to assess the network prediction error.   

 

V.1. Leave One Out Cross Validation and Prediction Error 

V.1.1. Leave One Out Cross Validation 

This model selection method is based on the argument that increasing model 

complexity need not result in a better description of the underlying function due to 

increasing estimation error.  To find an appropriate degree of complexity, it is appealing 
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to compare the prediction error of different model specification.  For FNNs with one 

hidden layer, the model selection process consists of selecting the optimum number of 

hidden nodes in the hidden layer (or the optimum network configuration).  

To calculate the prediction error, a resampling technique is used.  In conventional 

statistical analysis, this technique is often used to assess the variability of estimates using 

incomplete datasets (Jensen et al., 1997).  Those datasets are built from available data by 

sampling with replacement (bootstrapping method) or by removing v observations from 

available data (jackknifing method) (Lewis and Orav, 1989).       

The cross validation technique uses the resampled data generated by the 

bootstrapping or jackknifing methods for network training.  The data not used to train 

are used to estimate the prediction error.  This process is outlined as follows. 

- Start with a simple network configuration.  Use the resampling technique to 

build a number of datasets from the available data. 

- Train the network using resampled datasets.  The training of the network 

using each dataset produces a set of network weights.  The resulting network 

weights are used to calculate the prediction error on the data that do not 

participate in the network training.  The average of the prediction error from 

all datasets is the cross validation error for the given network configuration. 

- Add a hidden node in the network and repeat the previous step.   

- Compare the cross validation error obtained from different network 

configurations.  The best network configuration is the one that gives the 

minimum prediction error.   

In this chapter, I will examine the leave one out (LOO) cross validation method 

for network selection and for prediction error assessment.  This method uses jackknifing 

to build datasets for network training and validation.   

For a dataset of N points, the LOO cross validation method builds N subsets of 

size N-1 by removing one point from the original dataset.  For each network 
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configuration, the network is trained N times, using one subset of data each time.  The 

trained network is then used to calculate the prediction error on the remaining data point.  

( )
ixxii xwfy

=−= ,  is the predicted value at ix  by the network trained with ix  left out and 

the squared prediction error is  

( )2
iii yySPE −= , (5.1) 

where iy  is the true observed value of the response variable at ix . 

Repeating the training for N times, we can calculate the mean squared prediction 

error, ECV, for all N points that have been left out, 

∑
=

=
N

i
iCV SPE

N
E

1

1
  (5.2) 

This is the cross validation (CV) error for the given network configuration.  By 

determining the smallest ECV among different network configurations, characterized by 

different numbers of hidden nodes in the hidden layer, we select the optimal network 

configuration.  The scarcity of data, which is the main reason for using CV, however, 

leads to different prediction errors when using different initial weights for the network 

training.  Moody and Utans (1992) suggest that the training during model selection 

process be carried on different resampled subsets with the same set of initial weights.  

This, however, artificially forces all networks to be defined around one random set of 

weights and different results still can be obtained for different sets of initial weights.    

Considering the fact that network prediction can be affected by initial weights, I 

propose multiple realizations of the network training for selecting the optimum network 

configuration.  That is, the prediction error for each network configuration is re-

estimated M times (M>1), each time with different initial weights.  The average CV-

error resulting from M realizations is used to select the best network configuration.   

The model selection process is as follows. 

1- Specify initial network configuration.  
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2- Calculate i
CVE  for M times and take the average ∑

=
=

M

i

i
CVCV E

M
E

1

1ˆ .  

3- Include one additional hidden unit in the network. 

4- Calculate CVÊ  of the extended network as in step 2. 

5- If the CVÊ  is smaller than the previous model, then chose this model and 

repeat the step 3.  If CVÊ  is greater than the previous model, then discard this 

model and chose the last model as the optimum network configuration.   

 

V.1.2. Network Prediction Error 

Once the optimum network configuration is chosen, the weights obtained for the 

optimum network can be used for prediction.  It is worth noting that we have N sets of 

weights, each set corresponds to one LOO subset used in training.  The prediction 

model, therefore, is not a single network model but a number of network realizations, 

which are called CV-networks.  The network prediction at given values of input variables 

is the average of the values predicted by these CV-networks.  The CV-networks also 

give a way to assess the variability of the network prediction (Hwang and Ding, 1997). 

The average network prediction is: 

∑
=

=
N

i
CViy

N
y

1

1
  (5.3) 

where CViy  is the predicted value of the network, trained with the observation i left out. 

The CV-variance of the network prediction is: 

( ) ( )∑
=

−
−

=
N

i
CVi yy

N
s

1

22

1
1ˆ   (5.4) 

Assuming that the prediction error is normally distributed, the prediction 

confidence interval of the average network prediction can be constructed as:  
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( )NstyNstyI dfdfp ˆ,ˆ 2/2/ αα +−=    (5.5) 

where 2/α
dft  is the “t value” from Student’s distribution with confidence level α, df = N-1 

degrees of freedom, and ŝ  is the standard error of the average network prediction, 

estimated from CV-networks.  This prediction interval pI  is determined from networks, 

trained with leave one out subsets of data, and is termed the leave one out (LOO) 

prediction interval.   

In the following section, I will illustrate the model selection method based on 

LOO cross validation and will examine the network prediction error behavior on a 

known function.  The feed forward neural network will be used for constructing the 

approximation of the function given sample from that known function.  The goal is to 

assess some issues that are pertinent for the case of small datasets before applying neural 

networks in the Lisburne situation.  Those issues are: 1) the choice of activation 

function, 2) the effect of multiple network training on the results of the model selection 

process.   

The following one-variable and two-variable functions were used to test the LOO 

procedure: 

123.0 2 ++−= xxy  (5.6) 

and  

12.005.023.0 21
3
21

2
1 ++++−= xxxxxy  (5.7) 

 

V.2. One Variable Function 

The plot of Eq. 5.6 in the range from 0 to 6 is shown in Figure 5.1.   
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Figure 5.1 – One variable function for x from 0 to 6. 

 

 

A feed forward network was used to approximate this function, using (x, y) pairs 

of values.  The network has three layers: input layer, one hidden layer, and output layer.  

The input layer has one unit representing the bias and one unit representing the variable 

x.  The sigmoidal activation function is used at hidden units.  The network is trained 

using backpropagation learning algorithm with varying learning rate and a fixed 

momentum of 0.8.  Before training, the learning rate is set at 0.1 and the network 

weights are initialized to a random value between -0.1 and 0.1.  During training, the 

learning rate increases or decreases by a factor of 1.1 if the training error between 

iterations decreases or increases, respectively.  The training mean square error is updated 

every 50 iterations.  The network training stops when the change of mean squared error 

between two updates is less than a threshold value of 0.001 within the maximum of 

10000 iterations.  The reason for checking the mean squared error after 50 iterations is to 

eliminate the premature stopping when the error stabilizes or even increases for several 
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iterations before reaching true minimum.  A program in Visual Basic was written to 

perform the network training and prediction. 

The (x, y) pairs were produced by randomly generating 10 values of x ranging 

from 0 to 6.  For each value of x, a value of y is calculated according to Eq. 5.6.  These 

data will be used in training the network.  One testing set of 50 data points with x 

randomly generated in the range from 0 to 6 and  with one point at x=7 is created for 

assessing the prediction error of the network. 

 

V.2.1. Choice of Activation Function  

Typically, the same activation function is used for all neurons in any particular 

layer of a neural network.  Nonlinear functions are required in one layer to achieve the 

advantage of FFNs compared to linear correlation (Fausett, 1994).  FNNs usually use the 

sigmoidal function at the hidden layer.  The selection of which activation function to use 

at the output layer is arbitrary, and mainly determined by computational considerations 

(Bishop, 1995; Ripley, 1996).  I will examine the network behavior for three activation 

functions commonly used at the output layer: sigmoidal, Gaussian, and linear.  For this 

purpose, the neural network is trained on the same training dataset, shown in Figure 5.2, 

with three different activation functions at the output node.  Three hidden nodes are used 

in the hidden layer.  The sigmoidal function is used at every hidden node.  To eliminate 

the effect of the initial weights, the network training is performed 10 times for each 

dataset.  The trained network is used to predict the value of y for x in the testing dataset.  

Figures 5.3 to 5.5 show the prediction of the network with the three different activation 

functions.   
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Figure 5.2 – Data for training: small set of 10 points. 
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Figure 5.3 – Prediction of the true x-y relationship with sigmoidal function.  
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Figure 5.4 – Prediction of the true x-y relationship with Gaussian function. 
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Figure 5.5 – Prediction of the true x-y relationship with linear function. 
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The plots of the network prediction for three different activation functions show 

that the linear function gives closer network predictions than the other two, especially 

for the data beyond the training data.  The plots also show that the network predictions 

slightly depend on the initial weights.  

To eliminate the effect of training data, I perform the above analysis for 10 

different datasets.  Each set consists of 10 randomly generated data points with x ranging 

from 0 to 6.  For each set, the network is trained multiple times and is used to predict the 

value of y in the testing dataset.  Two measurements are calculated for each function: 

mean squared prediction error for the data lying within the range of the training data 

(MSPE1) and mean squared prediction error for the data lying outside of the range of 

training data (MSPE2).  These two measurements represent the ability of network to 

correlate the data and to extrapolate beyond the range of training data.  The results 

(Table 5.1) suggest that the linear activation function gives closer predictions and faster 

convergence speed, compared to the other two.         

 

 

Table 5.1 – Network prediction error for different activation functions, small dataset.   

 Small dataset (N=10) 
 MSPE1 MSPE2 Number of Iterations 

Sigmoidal 0.0216 0.8928 1855 
Gaussian 0.0093 0.6629 1154 

Linear 0.0071 0.2145 658 

 

 

 

Similar analysis has been done for larger datasets (N=30 data points, Table 5.2).  

As expected, MSPE1 does not differ significantly for different activation functions.  The 

extrapolation error MSPE2 of the network however, suggests that the linear and the 

Gaussian functions outperform the sigmoidal function.  
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Table 5.2 – Network prediction error for different activation functions, large dataset.   

Function Large dataset (N=30) 
 MSPE1 MSPE2 Number of Iterations 

Sigmoidal 0.0096 1.0852 3256 
Gaussian 0.0085 0.5911 1852 

Linear 0.0087 0.5511 1354 

 

 

 

The results of the analysis of the activation function for the univariate problem 

suggest several things:  

- Network training with the linear activation function is faster than with 

sigmoidal and Gaussian activation functions.  

- The linear activation function gives better network predictions when 

extrapolating beyond the range of training data.   

- The effect of the activation function on network prediction depends on the 

number of data for training.  Within the range of the training data, all 

functions give similar prediction error in case of large training dataset.  For 

the case of small training datasets, the linear function produces the smallest 

prediction error.   

The linear activation function will be used in subsequent analysis for the one 

variable function. 
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V.2.2. Small Dataset  

V.2.2.1. Model Selection   

I apply the LOO cross validation method for a dataset of 10 points with x 

randomly generated in the range from 0 to 6.  The initial network configuration has two 

hidden nodes.  The training parameters are similar to the ones described in the previous 

section.  The linear activation function will be used at the output node.  A minimum of 2 

and a maximum of 8 hidden nodes is permitted.  To illustrate the effect of multiple 

network realizations on the CV-error, the CV-error calculation for the whole range of 

network configurations (number of hidden node ranging from 2 to 8) is repeated 5 times.  

Figure 5.6 shows the behavior of the mean squared error during training as a 

function of the number of hidden nodes in the model.  Five curves on the plot correspond 

to five different runs.  Small networks (two hidden nodes) do not give a small training 

error.  For networks with 4 or more hidden nodes, the training error does not change 

significantly with added network complexity.   

Figure 5.7 shows the behavior of the CV-error as a function of the added 

complexity to the network.  The results suggest that the prediction error drastically 

decreases for the first two added hidden nodes and then stabilizes or slowly increases.  

Different network realizations at each configuration produce slightly different CV errors.  

The plots on Figures 5.6 and 5.7 suggest that the effect of initial weights is stronger on 

the CV-error than on the training error.  That is, networks with similar training error may 

behave differently when used for prediction.  Since the prediction ability of the network 

is of central concern, it is important to find the solution which provides the smallest 

prediction error.      
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Figure 5.6 – Mean square error on the training dataset as a function of the network 
complexity.   
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Figure 5.7 – CV-error for different runs shows that it is affected by the initial network 
weights.  

 

 

Table 5.3 shows the CV-error for different network configurations at different 

runs.  The results show that automatically applying of the model selection process 

resulted in optimum configuration with the number of hidden node varying from 4 to 7.  

Had we carried out the model selection process with multiple network realizations, the 

resulting optimum network configuration would have 5 hidden nodes.   
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Table 5.3 – CV-error for small dataset, one variable function. 

 Number of hidden node in the model 
 2 3 4 5 6 7 8 

Run 1 0.639 0.529 0.082 0.099 0.100 0.057 0.081 
Run 2 0.713 0.138 0.128 0.078 0.070 0.074 0.087 
Run 3 0.325 0.330 0.045 0.083 0.076 0.106 0.199 
Run 4 0.614 0.406 0.143 0.075 0.108 0.140 0.139 
Run 5 0.699 0.083 0.180 0.073 0.116 0.105 0.118 

Average 0.598 0.297 0.116 0.082 0.094 0.096 0.125 

*) Bold indicates the minimum among all network configurations 

 

 

V.2.2.2. Network Prediction Variability 

Network weights obtained from LOO training for configuration of 5 hidden 

nodes were used to predict the value of the function at 50 values of x in the testing 

dataset.  Figure 5.8 shows the network prediction with the LOO prediction interval at the 

confidence level α=95%.  The prediction interval is wide in the region where no data are 

available and is small in the region where abundant data exist.  Comparing to the true 

values of the function, 49 true values are within the LOO confidence limits (98%).  If the 

testing dataset include only points within the range of x used for model selection, then 

100% true values are within the LOO confidence limits.   
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Figure 5.8 – Average LOO network prediction for the data in the testing dataset: small 
dataset for one variable function.  Out of 50 points, 49 are within 95% confidence limits. 

 

 

To eliminate the effects of data distribution in the training set, the model 

selection algorithm was run for 10 different sets of data with x randomly generated from 

0 to 6.  In all cases, ECV depends on the initial weights of the network.  The average ECV 

is therefore evaluated with the number of realization M=5.  The resulting optimum 

network configuration for these cases has hidden nodes varied between 4 and 6.  The 

sets of weights obtained at the optimum network configuration were used to predict y 

values, given x in the testing dataset.  Comparing with the true values, all cases give 

satisfactory results: the number of points falling within 95% confidence limits is always 

greater than 48 out of 50. 

 

V.2.3. Large Dataset 

A similar analysis, applied to the case of a large data set (N=30 data points) 

suggests that the results of the model selection slightly depend on the initial weight 

(Figure 5.9).  The CV-error slightly varies with different initial network weights (Figure 
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5.10).  This results in three different optimum network configurations based on 5 runs of 

the selection algorithm (Table 5.4).  The average CV error from 5 realizations is smallest 

when 6 hidden nodes are in the model.  The degree of determination for the network 

with 6 and 8 hidden nodes is 1.67 and 1.25 respectively.  Thus, for the case of large 

datasets, a single run of the network configuration selection still leads to different 

optimum network configurations, but the change in the degree of determination of the 

system is not as big as for the case of small dataset. 

The LOO network prediction is shown in Figure 5.11 with 95% confidence 

limits.  In this case, 47 points out of 50 (94%) are within the prediction limit.  This is 

slightly smaller than the nominal value (95%).  If we exclude the point with x=7 from 

testing dataset, then 96% of points are within the confidence limit.   
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Figure 5.9 – Mean square error on the training dataset as a function of the network 
complexity: large dataset with N=30 points. 
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Figure 5.10 – CV-error of the network selection: large dataset with N=30 points. 

  

 

 

 

Table 5.4 – CV-error for large dataset, one variable function. 

 Number of hidden nodes in the model 
 3 4 5 6 7 8 9 10 

Run 1 0.024 0.022 0.021 0.019 0.021 0.022 0.020 0.022 
Run 2 0.026 0.025 0.024 0.019 0.019 0.020 0.020 0.021 
Run 3 0.025 0.024 0.020 0.018 0.021 0.022 0.020 0.021 
Run 4 0.033 0.022 0.021 0.022 0.020 0.022 0.021 0.022 
Run 5 0.025 0.022 0.023 0.021 0.020 0.019 0.022 0.023 

Average 0.026 0.023 0.022 0.020 0.020 0.021 0.021 0.022 

*) Bold indicates the minimum among all network configurations 
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Figure 5.11 – Average LOO network prediction for the data in the testing dataset: large 
dataset for one variable function.  Out of 50 points, 47 are within 95% confidence limits. 

 

 

Comparing the results of the analysis for small and large datasets suggests 

several things: 

- For large data sets, the CV-error is smaller than for small dataset.  Adding 

hidden nodes in the model does not result in a significant change of the CV-

error. 

- In these examples, the network with 4 hidden neurons in case of small dataset 

has a degree of determination of 0.83, and having the average CV error of 

0.116, while the network with 10 hidden neurons in case of large dataset has 

a degree of determination of 1 and having an average CV error of 0.02 (5 

times different).  That is, networks with similar degree of determination may 

represent underlying relationship with different degrees of satisfaction.  This 

suggests that, together with the degree of determination as defined in Eq. 2.7 
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(
pX

ND =1 , with Xp is the number of weights), another quantity may be used 

to represent the ability of the neural network to model data.  This quantity 

may be the ratio of available data N over the number of explanatory variables 

X:  

X
ND =2 .  (5.8) 

In this example, D2 for small dataset is 10, and for large dataset is 30, 

regardless of the network configuration.  Combining 213 DDD =  may even a 

better choice for judging how well a network can represent data.  For the 

aforementioned examples, D3 is 8.3 and 30 respectively.    

 

V.3. Two Variable Function 

I apply the above analysis for the two-variable function given by Eq. 5.7 (Figure 

5.12).  The small dataset for training consists of 14 data points with x1, x2 randomly 

chosen from 0 to 6.  A separate testing dataset consists of 50 data points with x1 and x2 

randomly chosen from 0 to 6.  The network with two input nodes and four hidden nodes 

is used.  The parameters for network training are the same as for the one variable 

function case.  10 different training sets, each consists of 14 data points were used for 

assessing the network prediction behavior with regard to different activation functions.   

The results (Table 5.5) suggest that the linear activation function gives closer predictions 

and faster convergence speed, compared to the other two.    
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Figure 5.12 – Two variable function with x1 and x2 ranging from 0 to 6.  

 

 

Table 5.5 – Prediction behavior for different activation functions.   

 Small dataset (N=14) 
 MSPE1 MSPE2 Number of Iterations 

Sigmoidal 0.760 3.016 8766 
Gaussian 0.367 4.352 7243 

Linear 0.281 1.680 5612 

 

 

The linear activation function is used for model selection and for prediction 

variability analysis, similar to the one for one variable function.  The average mean 

squared error during the LOO training is shown in Figure 5.13.  The CV-error is shown 

in Figure 5.14 as a function of the number of hidden node in the model.   
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Figure 5.13 – Mean squared error on training dataset as a function of number of hidden 
nodes in the model. 
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Figure 5.14 – CV-error as a function of number of hidden nodes in the model. 
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The CV-error shows that the network with 5 hidden nodes has the smallest 

average prediction error (Figure 5.14).  The degree of determination D1 for this 

configuration is 0.93.  The “second” degree of determination D2 is 7.  The combined D3 

is 6.5.  Without multiple realizations for network selection, the optimum configuration 

can have 4 to 7 hidden nodes, depending on the initial network weights (Table 5.6).  

The LOO network prediction is plotted against the true value of the function in 

testing dataset (Figure 5.15).  46 true values out of 50 (92%) fall within the 95% 

confidence limit.  This is slightly lower than the nominal value (95%).  However, if we 

test only data points within the range of x1, x2 used in model selection, then 100% true 

values fall within the 95% confidence limits.   

 

 

Table 5.6 – CV-error for large dataset, two variable function. 

 Number of hidden nodes in model 
 2 3 4 5 6 7 8 

Run 1 0.850 0.326 0.293 0.114 0.075 0.033 0.198 
Run 2 0.921 0.859 0.051 0.095 0.190 0.285 0.106 
Run 3 1.071 0.999 0.551 0.211 0.303 0.334 0.296 
Run 4 1.082 0.793 0.158 0.072 0.021 0.213 0.147 
Run 5 1.161 0.572 0.724 0.079 0.152 0.024 0.122 

Average 1.017 0.709 0.355 0.114 0.148 0.178 0.174 

*) Bold indicates the minimum among all network configurations 
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Figure 5.15 – Average LOO network prediction for the data in the testing dataset: small 
dataset for two variable function.  Out of 50 points, 46 are within 95% confidence limits. 

  

 

The analysis of the LOO network prediction for another 5 randomly generated 

sets of data, each consisting of 14 data points, produces similar behavior: 

- The CV-error calculated in the model selection process depends on the initial 

weights of the network. 

- The LOO prediction interval gives a good coverage of the true values of 

function.  The number of points falling within 95% confidence limits is between 

46 and 48 out of 50 (92% to 96%).  If the testing dataset includes only points 

within the range of x1, x2 used in model selection, then 97% to 100% true values 

fall within the 95% confidence limits.       

It is worth noting that the network prediction depends on several factors: the 

optimization algorithm, the convergence criterion, and the activation function used by 

network.  The number of realizations in LOO network training also can affect the 

estimated network prediction interval.  In our test, I run the network training 5 times for 

each jackknifed dataset.  More accurate estimation of prediction interval can be obtained 
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by increasing the number of network realization at the cost of increasing the 

computational time.   

While the jackknifing parameter estimation and prediction interval method works 

well for the estimator that is linear combination of available data (Lewis and Orav, 

1989), such methods may not well suited for neural networks which use nonlinear 

function.  Thus, the uncertainty related to the estimated LOO prediction interval may be 

problem dependent.  In our tests, I examine the behavior of the network prediction 

variance for two functions.  The results show that, with the given network parameters, 

the multiple LOO method produces satisfactory prediction intervals.  If the testing 

dataset include only points within the range of available data, then the true values always 

fall within the estimated confidence intervals.  The extrapolation beyond the training 

data reduces the number of points falling within the estimated confidence intervals.   

Because of the nonlinear nature of the network estimates, extending the results to 

more complex relationships of high dimension may introduce uncertainty in the LOO 

estimated prediction interval.  In any cases, the results of this study suggest that the LOO 

estimated prediction interval is a valuable tool for assessing the uncertainty of the 

network prediction, especially when we need to compare different network predicted 

values.  Given the scarcity of the data, this method may be the only resort to addressing 

this problem.   

I have introduced another quantity for assessing the “degree of determination” of 

the network.  This quantity can be helpful in addressing the generalization ability of 

different network configurations.  In cases where the rigorous model selection algorithm 

is used, the comparison of different model is based solely on prediction error.  The use 

of this quantity, similar to the one in Eq. 2.7, therefore is limited in giving the user an 

idea about the relationship between available data and the number of unknown. 
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V.4. Summary 

The results of investigation in this chapter suggest following: 

- In case of small dataset for training, the network behavior depends on the 

activation function.  In our tests, the linear activation function had an equal or 

better prediction performance than either the sigmoidal or the Gaussian 

functions.  To my knowledge, this observation has not been reported in 

literature.  

- In case of large dataset for training, the network behavior is insensitive to the 

choice of activation function.  The choice of the activation function is 

determined mostly by the computational consideration.  Similar suggestions 

regarding the selection of activation function were made in literature (e.g., 

Ripley, 1996).    

- The network behavior depends on the initial weights of the network, 

especially for the case of small datasets.  In such cases, multiple realizations 

of the network training and using all resulting sets of weights for prediction 

help to uniquely select the optimal network configuration. 

- The LOO cross validation is not only a valuable technique for validating the 

network configuration, but also provides a way to assess the prediction error 

of the network.  Because of the unidentifiable nature of neural network 

modeling, the information about prediction errors is valuable for evaluating 

the effectiveness of the model.   

- One drawback of the cross validation model selection is that it may become 

computationally burdensome.  Suppose that t is the time for one network 

training pass and NC is the number of configurations to be examined, then 

the time required for multiple LOO cross validation is NCxNxMxt where t 

depends on the number of data for training.  The total training time for small 

dataset in the two-variable function example is almost 5 hr on a PC 1.6 GHz.  
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The model selection procedure and the approach for prediction error assessment 

described in this chapter will be used for analyzing the relationship between fracture 

spacing and different geologic factors in the next chapter.       
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CHAPTER VI 

NEURAL NETWORK ANALYSIS OF FRACTURE SPACING DATA 

 

Statistical analysis of the fracture density in Chapter IV shows that bed thickness 

does not have a significant effect on fracture density and that the structural position and 

fracture orientation may play an important role in fracture distribution.  Because of the 

limited number of data, conventional linear statistical analysis can only partially address 

the effect of individual geologic parameters on the fracture density.  This chapter 

presents the use of artificial neural networks to investigate the collective effect of 

geologic parameters on the fracture density.   

The neural network used in this study is the multilayer feed forward network. 

Bed thickness, lithology, structural position on the fold, stratigraphic position, fracture 

orientation, and degree of folding are the inputs and average fracture spacing is the 

output of the network. The back propagation algorithm is used to train the network on 

the given data and observed fracture density.  The multiple leave-one-out cross 

validation method is used for selecting the best network configuration and for estimating 

the network prediction confidence interval.  The resulting method produces a population 

of network predictions for each given input pattern and allows using conventional 

statistical tests to assess the significance of the effect of input parameters on fracture 

spacing.  The results of the neural network analysis suggest (1) that the effect of 

geologic parameters on fracture distribution is complex and (2) the lithology and local 

stratigraphic setting play an important role in fracture distribution.    
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VI.1. Neural Networks 

VI.1.1. Network Parameters  

The feed forward neural network consists of three layers (Figure 6.1).  I assume 

that the fracture spacing in each orientation may be affected by bed thickness, lithology, 

structural position on the fold, degree of folding, and the stratigraphic position.  The 

basis for this assumption is the effect of folding and mechanical stratigraphy on fracture 

distributions reported in the literature (see Chapter II).  Thus, the input layer of the 

network consists of 7 neurons, representing a bias unit and 6 input parameters: bed 

thickness, lithology, structural position on the fold, degree of folding (which is expressed 

by the magnitude of interlimb angle), orientation, and formation.  The number of hidden 

units in the hidden layer is a subject for selection.  The multiple LOO cross validation 

method described in Chapter V will be used to select the best network configuration.  

The output layer consists of one unit representing the average fracture spacing.  The 

sigmoidal activation function is applied for all units in the hidden layer.  The linear 

activation function is used for the output unit.  It shows several advantages over 

sigmoidal and Gaussian functions in cases of sparse datasets, such as less biased 

predictions, both in interpolation and extrapolation outside of the training data (Chapter 

V).  The back propagation algorithm is used with varying learning rate (between 0.02 

and 0.2) and fixed momentum of 0.8.  The network training is stopped when the absolute 

change of mean squared error for every 50 iterations is less than 0.0001. 
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Figure 6.1 – Feed forward neural network to study the effect of geologic factors on 
fracture spacing in exposed detachment folds of Lisburne Group in northeastern Alaska.  

 

 

VI.1.2. Fracture Spacing Data  

The fracture data and associated geologic parameters were defined by geologists 

at the University of Alaska.  A detailed description of the geological setting and fracture 

data were given in Chapter III.  The fracture data were collected from 5 detachment 

folds with interlimb angles ranging from 90 deg. to 160 deg.  Only extensional fractures 

are included in the analysis.  Bed thickness ranges between 0.1 m and 4 m.  To assist the 

convergence of the training and the analysis of the network connection weights, the bed 

thickness and interlimb angle are scaled to the range between 0 and 1 as follows: 
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Structural position on the fold, formation, and fracture orientation are categorical 

variables and are represented by discrete numbers as follows:  

- for structural position: -1 represents the limb, 1 represents the hinge;  

- for fracture orientation: -1 represents EW orientation, 1 represents NS 

orientation; and 

- for stratigraphic location: -1 represents Wahoo limestone, 1 represents Alapah 

Limestone. 

Lithology is a special case of categorical variable.  While other categorical 

variables take only two values, lithology can have several discrete values.  Two 

approaches can be used for assigning values to lithology: (1) treating each value as one 

variable; or (2) assigning values in the continuous sense.  Each method has its 

advantages and disadvantages.  Treating each value of lithology as one variable will 

increase the number of weights in the model, hence, decrease the degree of 

determination of the system.  Assigning values to the variable in the continuous sense 

may create a false sense of the continuity among these values, hence, may have adverse 

effect on the behavior of the network.  In our case, the lithology of the available data 

consists mainly of two types: packstone and grainstone.  Therefore, the lithology is 

treated as one variable with packstone represented by -1, grainstone represented by 1.  

For all categorical variables, 0 represents the status where the value of the variable is 

undefined.   

A total of 25 data patterns are available for network analysis (Table 6.1).  Each 

input pattern consists of one set of values for bed thickness, interlimb angle, lithology, 

structural position, orientation, and stratigraphic position.  A training pattern is the 

values for all input variables and associated average fracture spacing.        
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 Table 6.1 – Fracture data used in neural network analysis. 

Bed 
thickness, 

Interlimb 
angle, 

Structural 
position Lithology Formation Orientation 

Average 
fracture 
spacing, 

m deg.     m 
1.5 125.0 1 -1 1 -1 0.245 
1.5 125.0 1 -1 1 1 0.123 
1.5 125.0 -1 1 -1 -1 0.123 
1.5 125.0 -1 1 -1 1 0.240 
2.5 125.0 -1 1 1 1 0.500 
2.5 125.0 -1 1 1 -1 0.130 
4 90.0 -1 -1 1 1 0.341 
4 90.0 -1 -1 1 -1 0.175 
4 90.0 1 1 0 -1 0.143 
4 90.0 1 1 0 1 0.100 

2.5 100 -1 1 1 1 0.319 
2.5 100 -1 1 1 -1 0.092 
3 100 1 1 1 1 0.464 
3 100 1 1 1 -1 0.561 

0.4 100 -1 -1 1 1 0.304 
0.4 100 -1 -1 1 -1 0.453 
2 110 -1 -1 -1 1 0.045 

0.2 110 1 -1 -1 -1 0.253 
0.1 110 1 -1 -1 -1 0.250 
1 160 -1 -1 -1 -1 0.181 
1 160 -1 -1 -1 1 0.074 

1.5 160 1 -1 -1 1 0.131 
1.5 160 1 -1 -1 -1 0.182 
3 135 1 -1 -1 -1 0.075 
3 135 1 -1 -1 1 0.090 
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VI.1.3. Optimal Network Configuration  

The multiple LOO cross validation method described in Chapter V is used to 

select the best network configuration and to assess the network prediction error.  The 

algorithm starts with the network having 1 hidden node and iteratively adds a new node 

into model.  For each configuration, the LOO cross validation error is calculated based 

on the leave one out prediction.  The algorithm stops when the average cross validation 

error starts to increase.  Figure 6.2 shows the average cross validation error as a function 

of the number of hidden nodes in the model.  The best network configuration, 

corresponding to smallest CV-error, consists of 3 hidden nodes.  
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Figure 6.2 –  Average CV-error as a function of the number of hidden nodes in the model. 
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In the next sections, I will examine the behavior of the network prediction for the 

best network configuration and will explore the effect of each input geologic parameter 

on fracture spacing.   

 

VI.1.4. Network Sensitivity Analysis  

Analyzing the network result for multiple-variable relationships is not straight-

forward (Chapter II).  The network outputs are impossible to be viewed graphically due 

to the multi-dimensionality of the model.  The problem is worse if there are multiple 

values of network prediction for each given input pattern.   

If the network is used purely for prediction, the network output is simply 

calculated for all network weights, stored during training.  The prediction value of the 

network is the average from all the network outputs.  The variance of the prediction 

value is assessed from the distribution of the network output at given input pattern 

(Figure 6.3)   

In our case, we want to investigate the effect of input geologic parameters on the 

network output (average fracture spacing).  This can be done by plotting the network 

output at different input patterns.  For example, the average fracture spacing at an 

interlimb angle of 100 deg., lithology of packestone, NS fractures, in the limbs of the 

fold is calculated for several values of bed thickness, ranging from 0.25 m to 3.75 m, 

while fixing other parameters (Figure 6.4).  Similarly, the fracture spacing at bed 

thickness of 1 m, lithology of packestone, NS fracture, in limb of the fold is calculated 

for several values of interlimb angle, ranging from 90 deg. to 160 deg.  (Figure 6.5).   

 



 

 

118

 

Figure 6.3 – Distribution of the average fracture spacing as predicted by the neural 
network for EW fracture at bed thickness of 1 m, interlimb angle of 100 deg., and the 
structural position is the hinge in the Wahoo formation. 
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Figure 6.4 – Fracture spacing as a function of bed thickness at interlimb angle of 100 deg.  
Other parameters are: hinge, packstone, Wahoo formation, and EW orientation. 
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Figure 6.5 – Fracture spacing as a function of interlimb angle at bed thickness of 1 m. 
Other parameters are: Hinge, Packstone, Wahoo formation, and EW orientation. 

 

 

Examining the relationships of fracture spacing as a function of bed thickness  

(Figure 6.4) and interlimb angle (Figure 6.5) suggests that the variance of the network 

prediction is not constant.  It is smaller at and around the points where data exist for 

training than in the regions of no data.  In most cases, the fracture spacing varies 

monotonically with respect to bed thickness and interlimb angle.  The trend of this 

relationship is not unique.  In some cases, the graph shows that fracture spacing 

decreases with bed thickness; in another cases, the fracture spacing levels out or 

increases with bed thickness.  The same holds true for the relationship between fracture 

spacing and interlimb angle.  
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We want to assess the statistical significance of the effect of each geological 

parameter on the fracture spacing.  In particular, we want to answer these questions: 

1- How does the bed thickness affect the fracture spacing? 

2- How does the interlimb angle affect the fracture spacing? 

3- How does the structural position and lithology affect the fracture spacing? 

Because the relationships between fracture spacing and geological parameters 

may be nonlinear (e.g., Figures 6.4, 6.5), conventional tests using the linear correlation 

coefficient are not appropriate.  Instead, I assessed the statistical significance by 

following the same approach as the statistical analysis in Chapter IV: by testing 

statistical differences between groups of data, derived from the different values of the 

input variables.   

For discrete variables, this approach will cover all possible values of that 

variable.  For the continuous variables such as bed thickness and interlimb angle, 

different numbers of groups can be used for assessing the significance of each variable 

on the network output (Lek et al., 1996).  We are interested in judging whether the 

average fracture spacing in tight folds is different comparing to the average fracture 

spacing in open folds.  Similarly, how does the average fracture spacing in thin beds 

compare to the spacing in thick beds.  Thus, the statistical significance of the bed 

thickness and interlimb angle on the average fracture spacing will be assessed by 

considering two groups of bed thickness and two groups of interlimb angle.  A bed 

thickness of 1 m represents thin beds, and a bed thickness of 3 m represents thick beds.  

Similarly, an interlimb angle of 100 deg. represents tight folds, and an interlimb angle of 

140 deg. represents open folds.   

As a result, we have 64=26 subsets of fracture data.  Each subset of data 

represents a single combination of input geologic parameters considered in this model.  

For example: one subset is fracture spacing in thin beds (h = 1 m), in hinges of tight 

folds (interlimb angle of 100 deg.), the lithology is packstone, the orientation is NS, and 

the formation is the Wahoo.  I use the paired t-test to assess the statistical significance of 
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the difference between datasets of average fracture spacing (Siegel and Morgan, 1996).  

Each data pair consists of two datasets of average fracture spacing predicted by the 

neural network for two values of a particular geologic factor.  For example, to infer the 

effects of bed thickness on fracture spacing, I compare the average fracture spacing in 

thin beds (h = 1 m) and in thick beds (h = 3 m), while keeping all other geologic 

parameters in the model (interlimb angle, structural position, lithology, formation, and 

fracture orientation) at the constant value.  The prediction variabilities for each subset 

are estimated from the network predictions at the given geologic parameters using LOO.   

The following sections present the results of statistical assessments of the 

network predictions with regard to the geologic factors.  For each pair of average 

fracture spacings, the paired difference is calculated and the one sample t-test is used to 

see whether the average of the paired differences is significantly different from 0.  The 

test can be formulated in two ways: 1) test if there is a significant difference between 

sets and 2) test if the first set is greater/smaller than the second set.  The difference 

between the two formulations of the test is the confidence level in the test: the test for 

difference uses a two-tail confidence level while the test for the direction of the 

difference uses a one-tail confidence level. 

 

VI.2. Results of Network Analysis 

VI.2.1. Effects of Bed Thickness 

Table 6.2 presents the results of the t-test for all possible combinations of two 

values of bed thickness with other geologic parameters in the neural network model.  

The effect of bed thickness on fracture spacing is characterized by the difference 

between average fracture spacing at bed thicknesses of 1 m and 3 m, while other 

parameters in the model are fixed.  The column labeled as p-value in Table 6.3 presents 

the significance level for the hypothesis that the average fracture spacing in thin beds is 

larger than the average fracture spacing in thick beds.  The p-value of 0.5 indicates no 

difference between average fracture spacings.  The p-value less than 0.5 indicates that 
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the average fracture spacing in thin beds is smaller than in thick beds.  The column 

labeled as “test result” presents the result of the paired t-test at a 95% confidence level:  

the value of 1 indicates that the average fracture spacing in thin beds is statistically 

greater than in thick beds; and the value of -1 indicates that the average fracture spacing 

in thin beds is statistically smaller than in thick beds.  The value of 0 indicates that there 

is not enough evidence to conclude about the difference at the confidence level of 90%.  

The reason for using two different confidence levels is that the test for differences uses a 

two-tail test value while the test for the direction of difference uses a one-tail test value.       

The effect of bed thickness on fracture distribution is not clear.  In all 32 possible 

combinations of interlimb angle (two groups), structural position, lithology, fracture 

orientation, and formation, there are 5 instances where fracture spacing in thin beds (h = 

1 m) is larger than fracture spacing in thick beds (h = 3 m); 0 instances where fracture 

spacing in thin beds is smaller than fracture spacing in thick beds; and 27 instances 

where there is no significant difference between fracture spacings for the two bed 

thicknesses.  The differences between fracture spacing in thin beds and in thick beds 

occurred in combinations with EW fractures and with tight folds (4 cases occurred in 

fold with the interlimb angle of 100 deg., only 1 case in fold with the interlimb angle of 

140 deg.).  Out of these 5 cases where fracture spacing in thin beds was statistically 

greater than in thick beds, there is no preference with regard to other geologic factors: 3 

cases occurred in hinges, 2 cases in limbs; 3 in the Wahoo, 2 in the Alapah; 3 in 

packstone, 2 in grainstone.   

Statistical analysis of the fracture density in Chapter IV shows that bed thickness 

does not have a significant effect on fracture density.  Compared to the statistical 

analysis results in Chapter IV, the neural network provides more detailed effects of bed 

thickness on fracture spacing.  Neural network analysis indicates that the effect of bed 

thickness on fracture spacing is different for different combinations of other geologic 

parameters but in general, there was no significant difference in fracture spacing 

between thin and thick beds.  
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Table 6.2 – Result of t-test for the effect of bed thickness on fracture spacing. 
Int. 

Angle, 
Structural 
Position Lihthology Formation Orient. Mean 

(H1) 
Mean 
(H2) p-value t test 

result*
deg.     m m   
100 Hinge Packstone Alapah NS 0.307 0.282 0.563 0 
100 Hinge Packstone Alapah EW 0.638 0.423 0.791 0 
100 Hinge Packstone Wahoo NS 0.065 0.033 0.754 0 
100 Hinge Packstone Wahoo EW 0.209 0.100 0.997 1 
100 Hinge Grainstone Alapah NS 0.446 0.412 0.571 0 
100 Hinge Grainstone Alapah EW 0.759 0.522 0.786 0 
100 Hinge Grainstone Wahoo NS 0.113 0.076 0.765 0 
100 Hinge Grainstone Wahoo EW 0.242 0.121 0.984 1 
100 Limb Packstone Alapah NS 0.308 0.308 0.506 0 
100 Limb Packstone Alapah EW 0.307 0.151 0.994 1 
100 Limb Packstone Wahoo NS 0.120 0.067 0.728 0 
100 Limb Packstone Wahoo EW 0.179 0.040 0.811 0 
100 Limb Grainstone Alapah NS 0.390 0.387 0.517 0 
100 Limb Grainstone Alapah EW 0.349 0.183 0.991 1 
100 Limb Grainstone Wahoo NS 0.148 0.096 0.711 0 
100 Limb Grainstone Wahoo EW 0.181 0.042 0.813 0 
140 Hinge Packstone Alapah NS 0.199 0.242 0.303 0 
140 Hinge Packstone Alapah EW 0.283 0.223 0.694 0 
140 Hinge Packstone Wahoo NS 0.083 0.071 0.580 0 
140 Hinge Packstone Wahoo EW 0.156 0.089 0.955 1 
140 Hinge Grainstone Alapah NS 0.304 0.351 0.309 0 
140 Hinge Grainstone Alapah EW 0.357 0.286 0.706 0 
140 Hinge Grainstone Wahoo NS 0.123 0.110 0.567 0 
140 Hinge Grainstone Wahoo EW 0.173 0.105 0.934 0 
140 Limb Packstone Alapah NS 0.295 0.322 0.354 0 
140 Limb Packstone Alapah EW 0.179 0.095 0.851 0 
140 Limb Packstone Wahoo NS 0.132 0.094 0.678 0 
140 Limb Packstone Wahoo EW 0.157 0.037 0.787 0 
140 Limb Grainstone Alapah NS 0.370 0.400 0.362 0 
140 Limb Grainstone Alapah EW 0.199 0.118 0.854 0 
140 Limb Grainstone Wahoo NS 0.162 0.126 0.650 0 
140 Limb Grainstone Wahoo EW 0.157 0.039 0.782 0 

*) 1 indicates that fracture spacing in H1 (h = 1 m) is statistically greater than in 

H2 (h = 3 m), -1 indicates that fracture spacing in H1 is statistically smaller than in H2, 

and 0 indicates no difference between subsets. 
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This relationship is opposite to that often reported in the literature (Ladeira and 

Price, 1981; Huang and Angelier, 1989; Narr and Suppe, 1991).  From the breakdown of 

the number of cases where the differences occurred, we can say that the EW fractures in 

the limbs of Wahoo formation are more likely to have fracture spacing in thin beds 

greater than in thick beds.  Hanks et al. (1997) found no reliable relationship between 

fracture spacing and bed thickness for flat-lying Lisburne Carbonates in the northeastern 

Brooks Range.  

It is worth noting that the choice of the bed thickness values used for fracture 

spacing comparison may affect the analysis results.  The p-value in Table 6.2 may 

change if we choose to compare the average fracture spacing in beds of 1 m and 4 m.  

However, considering the fact that fracture spacing monotonically varies with the bed 

thickness (e.g., Figure 6.4), choosing different bed thickness values for fracture spacing 

comparison might not significantly alter the analysis results.  The bed thicknesses of 1 

and 3 m ware chosen to avoid the possible boundary effects in calculating fracture 

spacing using networks.  The same arguments are applied when analyzing the effects of 

folding on fracture spacing.   

 

VI.2.2. Effects of Folding 

Table 6.3 shows the result of the t-test for all possible combinations of two 

values of interlimb angle with other geologic parameters in the model.  At the 

confidence level of 90%, all cases show no significant difference between the average 

fracture spacings in tight and in open folds.  Even at the confidence level of 80%, only 2 

out of 32 cases (6%) show significant differences between average fracture spacings in 

tight and in open folds.  The average value of the p-value for all 32 cases is 0.63, which 

is only slightly greater than 0.5.  These results indicate that fracturing may not be closely 

related to the folding, or that it already had reached its saturation status prior to folding 

so that the folding does not change the fracture spacing distribution (Bai and Pollard, 

2000).   
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 Table 6.3 – Result of t-test for the effect of folding on fracture spacing. 
Bed 

Thick. 
Structural 
Position Lihthology Form. Orient. Mean 

(α1) 
Mean 
(α2) p value t test 

result*
m     m m   
1 Hinge Packstone Alapah NS 0.307 0.199 0.757 0 
3 Hinge Packstone Alapah NS 0.282 0.242 0.612 0 
1 Hinge Packstone Alapah EW 0.638 0.283 0.879 0 
3 Hinge Packstone Alapah EW 0.423 0.223 0.918 0 
1 Hinge Packstone Wahoo NS 0.065 0.083 0.401 0 
3 Hinge Packstone Wahoo NS 0.033 0.071 0.366 0 
1 Hinge Packstone Wahoo EW 0.209 0.156 0.808 0 
3 Hinge Packstone Wahoo EW 0.100 0.089 0.600 0 
1 Hinge Grainstone Alapah NS 0.446 0.304 0.774 0 
3 Hinge Grainstone Alapah NS 0.412 0.351 0.667 0 
1 Hinge Grainstone Alapah EW 0.759 0.357 0.876 0 
3 Hinge Grainstone Alapah EW 0.522 0.286 0.918 0 
1 Hinge Grainstone Wahoo NS 0.113 0.123 0.442 0 
3 Hinge Grainstone Wahoo NS 0.076 0.110 0.375 0 
1 Hinge Grainstone Wahoo EW 0.242 0.173 0.804 0 
3 Hinge Grainstone Wahoo EW 0.121 0.105 0.669 0 
1 Limb Packstone Alapah NS 0.308 0.295 0.565 0 
3 Limb Packstone Alapah NS 0.308 0.322 0.442 0 
1 Limb Packstone Alapah EW 0.307 0.179 0.892 0 
3 Limb Packstone Alapah EW 0.151 0.095 0.813 0 
1 Limb Packstone Wahoo NS 0.120 0.132 0.413 0 
3 Limb Packstone Wahoo NS 0.067 0.094 0.341 0 
1 Limb Packstone Wahoo EW 0.179 0.157 0.682 0 
3 Limb Packstone Wahoo EW 0.040 0.037 0.537 0 
1 Limb Grainstone Alapah NS 0.390 0.370 0.587 0 
3 Limb Grainstone Alapah NS 0.387 0.400 0.450 0 
1 Limb Grainstone Alapah EW 0.349 0.199 0.881 0 
3 Limb Grainstone Alapah EW 0.183 0.118 0.813 0 
1 Limb Grainstone Wahoo NS 0.148 0.162 0.403 0 
3 Limb Grainstone Wahoo NS 0.096 0.126 0.332 0 
1 Limb Grainstone Wahoo EW 0.181 0.157 0.694 0 
3 Limb Grainstone Wahoo EW 0.042 0.039 0.533 0 

*) 1 indicates that fracture spacing in α1 (α = 100 deg.) is statistically greater than in α2 

(α = 140 deg.), -1 indicates that fracture spacing in α1 is statistically smaller than in α2, 

and 0 indicates no difference between subsets. 
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VI.2.3. Effects of Structural Position 

Table 6.4 shows the result of the paired t-test for all possible combinations of two 

values of structural position on fold with other geologic parameters in the model.  2 out 

of 32 possible cases show that average fracture spacing in limbs is significantly smaller 

than in hinges at the confidence level of 95%.  Both two cases occurred for the EW 

fractures in the Alapah Formation.  The other 30 cases show no significant difference 

between the average fracture spacing in limb and the average fracture spacing in hinge.  

The average p-value for the hypothesis that average fracture spacing in the limbs is 

larger than average fracture spacing in the hinges is 0.427, which is only slightly 

different from 0.5.  This suggests that, in general, the structural position does not have a 

significant effect on the average fracture spacing. 

Analyzing the effect of the structural position in combination with other 

parameters suggests that the structural position may have a systematic effect on the 

average spacing of the fractures in different orientations: the average p-value is 0.63 for 

the hypothesis that the average fracture spacing of the NS fractures in the limbs is larger 

than in hinges.  The average p-value for the hypothesis that the average fracture spacing 

of the EW fractures in the limb is larger than in the hinge is 0.22.  That is, the NS 

fractures in the hinges tend to be more closely spaced than in the limbs while the EW 

fractures in the limb tend to be more closely spaced than in the hinge.  In combination 

with other parameters, the structural position has no preferential effect on the fracture 

spacing. 
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Table 6.4 – Result of t-test for the effect of structural position on fracture spacing. 
Bed 

Thick. 
Int. 

Angle Lihthology Form. Orient. Mean 
(L) 

Mean 
(H) p value t test 

result*
M deg.    m m   
1 100 Packstone Alapah NS 0.308 0.307 0.504 0 
3 100 Packstone Alapah NS 0.308 0.282 0.608 0 
1 100 Packstone Alapah EW 0.307 0.638 0.112 0 
3 100 Packstone Alapah EW 0.151 0.423 0.005 -1 
1 100 Packstone Wahoo NS 0.120 0.065 0.712 0 
3 100 Packstone Wahoo NS 0.067 0.033 0.629 0 
1 100 Packstone Wahoo EW 0.179 0.209 0.371 0 
3 100 Packstone Wahoo EW 0.040 0.100 0.274 0 
1 100 Grainstone Alapah NS 0.390 0.446 0.388 0 
3 100 Grainstone Alapah NS 0.387 0.412 0.398 0 
1 100 Grainstone Alapah EW 0.349 0.759 0.082 0 
3 100 Grainstone Alapah EW 0.183 0.522 0.000 -1 
1 100 Grainstone Wahoo NS 0.148 0.113 0.656 0 
3 100 Grainstone Wahoo NS 0.096 0.076 0.593 0 
1 100 Grainstone Wahoo EW 0.181 0.242 0.304 0 
3 100 Grainstone Wahoo EW 0.042 0.121 0.224 0 
1 140 Packstone Alapah NS 0.295 0.199 0.815 0 
3 140 Packstone Alapah NS 0.322 0.242 0.758 0 
1 140 Packstone Alapah EW 0.179 0.283 0.225 0 
3 140 Packstone Alapah EW 0.095 0.223 0.184 0 
1 140 Packstone Wahoo NS 0.132 0.083 0.783 0 
3 140 Packstone Wahoo NS 0.094 0.071 0.644 0 
1 140 Packstone Wahoo EW 0.157 0.156 0.503 0 
3 140 Packstone Wahoo EW 0.037 0.089 0.313 0 
1 140 Grainstone Alapah NS 0.370 0.304 0.704 0 
3 140 Grainstone Alapah NS 0.400 0.351 0.647 0 
1 140 Grainstone Alapah EW 0.199 0.357 0.120 0 
3 140 Grainstone Alapah EW 0.118 0.286 0.127 0 
1 140 Grainstone Wahoo NS 0.162 0.123 0.707 0 
3 140 Grainstone Wahoo NS 0.126 0.110 0.579 0 
1 140 Grainstone Wahoo EW 0.157 0.173 0.412 0 
3 140 Grainstone Wahoo EW 0.039 0.105 0.289 0 

*) 1 indicates that fracture spacing in L (Limb) is statistically greater than in H (Hinge), -

1 indicates that fracture spacing in Limb is statistically smaller than in Hinge, and 0 

indicates no difference between subsets. 
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VI.2.4. Effects of Lithology 

Table 6.5 shows the result of the paired t-test for all possible combinations of two 

values of lithology with other geologic parameters in the model.  All 32 possible 

combinations of parameters show no significant difference between fracture spacing in 

packstone and in grainstone at the confidence level of 90%.  Analysis of the p-value,  

however, suggests that the fracture spacing in packstone is systematically smaller than in 

grainstone.  The average p-value is 0.26 and the range is from 0.08 to 0.49.  This effect 

of lithology is undetectable at the 90% confidence level.  In fact, if the confidence level 

is lowered to 80%, then 5 out of 32 cases will have significant differences of average 

fracture spacing in packstone, compared to that in grainstone. 

 

VI.2.5. Effects of Stratigraphic Position 

The position of the fold in the stratigraphic column has a consistent effect on 

fracture distribution (Table 6.6).  At the confidence level of 90%, 16 out of 32 possible 

cases show significant differences between average fracture spacing in the Wahoo and in 

the Alapah.  The p-values of the hypothesis that the fracture spacing in Wahoo is larger 

than in Alapah range from 0.0 to 0.4 with the average of 0.085.  If the stratigraphic 

position (Wahoo or Alapah Formation) represents the interaction between layers within 

the stratigraphic unit and how these layers are packed to form this single unit, then this 

factor plays an important role in the fracture spacing.  In general, the Alapah Formation 

is interbedded and is more lithologically heterogeneous than the Wahoo Formation 

(Hanks et al., 1997; Whalen, 2000).   

 

 



 

 

130

Table 6.5 – Result of t-test for the effect of lithology on fracture spacing. 
Bed 

Thick. 
Int. 

Angle 
Structural 
Position Form. Orient. Mean 

(P) 
Mean 
(G) p value t test 

result*
m deg.    m m   
1 100 Hinge Alapah NS 0.307 0.446 0.162 0 
3 100 Hinge Alapah NS 0.282 0.412 0.125 0 
1 100 Hinge Alapah EW 0.638 0.759 0.160 0 
3 100 Hinge Alapah EW 0.423 0.522 0.117 0 
1 100 Hinge Wahoo NS 0.065 0.113 0.300 0 
3 100 Hinge Wahoo NS 0.033 0.076 0.296 0 
1 100 Hinge Wahoo EW 0.209 0.242 0.328 0 
3 100 Hinge Wahoo EW 0.100 0.121 0.360 0 
1 100 Limb Alapah NS 0.308 0.390 0.094 0 
3 100 Limb Alapah NS 0.308 0.387 0.089 0 
1 100 Limb Alapah EW 0.307 0.349 0.243 0 
3 100 Limb Alapah EW 0.151 0.183 0.237 0 
1 100 Limb Wahoo NS 0.120 0.148 0.269 0 
3 100 Limb Wahoo NS 0.067 0.096 0.269 0 
1 100 Limb Wahoo EW 0.179 0.181 0.479 0 
3 100 Limb Wahoo EW 0.040 0.042 0.473 0 
1 140 Hinge Alapah NS 0.199 0.304 0.186 0 
3 140 Hinge Alapah NS 0.242 0.351 0.147 0 
1 140 Hinge Alapah EW 0.283 0.357 0.228 0 
3 140 Hinge Alapah EW 0.223 0.286 0.203 0 
1 140 Hinge Wahoo NS 0.083 0.123 0.302 0 
3 140 Hinge Wahoo NS 0.071 0.110 0.298 0 
1 140 Hinge Wahoo EW 0.156 0.173 0.383 0 
3 140 Hinge Wahoo EW 0.089 0.105 0.387 0 
1 140 Limb Alapah NS 0.295 0.370 0.081 0 
3 140 Limb Alapah NS 0.322 0.400 0.084 0 
1 140 Limb Alapah EW 0.179 0.199 0.314 0 
3 140 Limb Alapah EW 0.095 0.118 0.278 0 
1 140 Limb Wahoo NS 0.132 0.162 0.268 0 
3 140 Limb Wahoo NS 0.094 0.126 0.267 0 
1 140 Limb Wahoo EW 0.157 0.157 0.493 0 
3 140 Limb Wahoo EW 0.037 0.039 0.466 0 

*) 1 indicates that fracture spacing in P (Packstone) is statistically greater than in G 

(Grainstone), -1 indicates that fracture spacing in Packstone is statistically smaller than 

in Grainstone, and 0 indicates no difference between subsets. 
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Table 6.6 – Result of t-test for the effect of stratigraphic position on fracture spacing. 
Bed 

Thick. 
Int. 

Angle 
Structural 
Position Lihthology Orient. Mean 

(W) 
Mean 

(A) p value t test 
result*

m deg.    m m   
1 100 Hinge Packstone NS 0.065 0.307 0.101 0 
3 100 Hinge Packstone NS 0.033 0.282 0.014 -1 
1 100 Hinge Packstone EW 0.209 0.638 0.065 0 
3 100 Hinge Packstone EW 0.100 0.423 0.001 -1 
1 100 Hinge Grainstone NS 0.113 0.446 0.068 0 
3 100 Hinge Grainstone NS 0.076 0.412 0.002 -1 
1 100 Hinge Grainstone EW 0.242 0.759 0.047 -1 
3 100 Hinge Grainstone EW 0.121 0.522 0.000 -1 
1 100 Limb Packstone NS 0.120 0.308 0.005 -1 
3 100 Limb Packstone NS 0.067 0.308 0.001 -1 
1 100 Limb Packstone EW 0.179 0.307 0.101 0 
3 100 Limb Packstone EW 0.040 0.151 0.083 0 
1 100 Limb Grainstone NS 0.148 0.390 0.001 -1 
3 100 Limb Grainstone NS 0.096 0.387 0.000 -1 
1 100 Limb Grainstone EW 0.181 0.349 0.067 0 
3 100 Limb Grainstone EW 0.042 0.183 0.065 0 
1 140 Hinge Packstone NS 0.083 0.199 0.104 0 
3 140 Hinge Packstone NS 0.071 0.242 0.050 -1 
1 140 Hinge Packstone EW 0.156 0.283 0.188 0 
3 140 Hinge Packstone EW 0.089 0.223 0.165 0 
1 140 Hinge Grainstone NS 0.123 0.304 0.048 -1 
3 140 Hinge Grainstone NS 0.110 0.351 0.025 -1 
1 140 Hinge Grainstone EW 0.173 0.357 0.092 0 
3 140 Hinge Grainstone EW 0.105 0.286 0.120 0 
1 140 Limb Packstone NS 0.132 0.295 0.046 -1 
3 140 Limb Packstone NS 0.094 0.322 0.011 -1 
1 140 Limb Packstone EW 0.157 0.179 0.405 0 
3 140 Limb Packstone EW 0.037 0.095 0.295 0 
1 140 Limb Grainstone NS 0.162 0.370 0.017 -1 
3 140 Limb Grainstone NS 0.126 0.400 0.004 -1 
1 140 Limb Grainstone EW 0.157 0.199 0.294 0 
3 140 Limb Grainstone EW 0.039 0.118 0.249 0 

*) 1 indicates that fracture spacing in W (Wahoo) is statistically greater than in A 

(Alapah), -1 indicates that fracture spacing in Wahoo is statistically smaller than in 

Alapah, and 0 indicates no difference between subsets. 
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VI.2.6. Effects of Orientation 

Table 6.7 shows the result of the test for fracture spacing with respect to fracture 

orientation.  There are 28 instances where there is no significant difference in fracture 

spacing between fracture sets at a confidence level of 90% and 4 instances where 

fracture spacing in the EW orientation is smaller than in the NS orientation at the 

confidence level of 95%.  All these 4 cases occur in the limbs of the fold and in the 

Alapah Formation.   

The average p-value for the hypothesis that the average fracture spacing in EW 

orientation is larger than in NS orientation is 0.53, which suggests that, in general, the 

orientation does not affect the average fracture spacing.  However, the wide range of the 

p-values (from 0.002 to 0.95) with the standard deviation of 0.33 suggests that the 

effects of the orientation are highly variable and depend on other parameters.  

The combination of the fracture orientation and other parameters suggests that 

the differences between fracture spacing in the EW and NS orientations is systematically 

different in the limb and in the hinge.  In the limb, the average p-value for the hypothesis 

that the average fracture spacing in EW orientation is larger than in NS direction is 0.76.  

In the hinge, the average p-value for the hypothesis that the average fracture spacing in 

EW direction is larger than in NS direction is 0.30.  That is, in the limb, the average 

fracture spacing of EW fractures is larger than the average spacing of NS fractures 

whereas, in the hinge, the average fracture spacing of EW fractures is smaller than the 

average spacing of NS fractures.  
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Table 6.7 – Result of t-test for the fracture spacing in different orientation. 
Bed 

Thick. 
Int. 

Angle 
Structural 
Position Lihthology Form. Mean 

(EW) 
Mean 
(NS) p value t test 

result*
m deg.    m m   
1 100 Hinge Packstone Alapah 0.638 0.307 0.914 0 
3 100 Hinge Packstone Alapah 0.423 0.282 0.912 0 
1 100 Hinge Packstone Wahoo 0.209 0.065 0.902 0 
3 100 Hinge Packstone Wahoo 0.100 0.033 0.797 0 
1 100 Hinge Grainstone Alapah 0.759 0.446 0.910 0 
3 100 Hinge Grainstone Alapah 0.522 0.412 0.876 0 
1 100 Hinge Grainstone Wahoo 0.242 0.113 0.923 0 
3 100 Hinge Grainstone Wahoo 0.121 0.076 0.810 0 
1 100 Limb Packstone Alapah 0.307 0.308 0.492 0 
3 100 Limb Packstone Alapah 0.151 0.308 0.012 -1 
1 100 Limb Packstone Wahoo 0.179 0.120 0.803 0 
3 100 Limb Packstone Wahoo 0.040 0.067 0.377 0 
1 100 Limb Grainstone Alapah 0.349 0.390 0.304 0 
3 100 Limb Grainstone Alapah 0.183 0.387 0.002 -1 
1 100 Limb Grainstone Wahoo 0.181 0.148 0.697 0 
3 100 Limb Grainstone Wahoo 0.042 0.096 0.260 0 
1 140 Hinge Packstone Alapah 0.283 0.199 0.724 0 
3 140 Hinge Packstone Alapah 0.223 0.242 0.442 0 
1 140 Hinge Packstone Wahoo 0.156 0.083 0.945 0 
3 140 Hinge Packstone Wahoo 0.089 0.071 0.723 0 
1 140 Hinge Grainstone Alapah 0.357 0.304 0.648 0 
3 140 Hinge Grainstone Alapah 0.286 0.351 0.341 0 
1 140 Hinge Grainstone Wahoo 0.173 0.123 0.781 0 
3 140 Hinge Grainstone Wahoo 0.105 0.110 0.473 0 
1 140 Limb Packstone Alapah 0.179 0.295 0.104 0 
3 140 Limb Packstone Alapah 0.095 0.322 0.010 -1 
1 140 Limb Packstone Wahoo 0.157 0.132 0.661 0 
3 140 Limb Packstone Wahoo 0.037 0.094 0.279 0 
1 140 Limb Grainstone Alapah 0.199 0.370 0.054 0 
3 140 Limb Grainstone Alapah 0.118 0.400 0.007 -1 
1 140 Limb Grainstone Wahoo 0.157 0.162 0.473 0 
3 140 Limb Grainstone Wahoo 0.039 0.126 0.213 0 

*) 1 indicates that fracture spacing in EW orientation is statistically greater than in NS 

orientation, -1 indicates that fracture spacing in EW orientation is statistically smaller 

than in NS orientation , and 0 indicates no difference between subsets. 
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VI.2.7. Summary 

Table 6.8 summarizes the results of the effects of the geologic parameters on the 

average fracture spacing using a neural network.  Assuming that bed thickness, degree of 

folding, structural position on the fold, lithology, formation, and fracture orientation are 

the major factors in fracturing, the effects of each parameter have been assessed using a 

neural network and applying statistical tests on the network predictions.   

 

 

Table 6.8 – Summary of statistical test on fracture spacing, estimated by neural network.  

Variable Hypothesis 
No of 

accepted
out of 32 

Bed Fracture spacing in thin bed is greater than in thick bed 5 
 Fracture spacing in thin bed is smaller than in thick bed 0 
 No difference, at α=90% 27 

Interlimb angle Fracture spacing in tight fold is greater than in open fold 0 
 Fracture spacing in tight fold is smaller than in open fold 0 
 No difference, at α=90% 32 

SP Fracture spacing in limb is greater than in hinge 0 
 Fracture spacing in limb is smaller than in hinge 2 
 No difference, at α=90% 30 

Lithology Fracture spacing for packstone is greater than in grainstone 0 
 Fracture spacing for packstone is smaller than in grainstone 0 
 No difference, at α=90% 32 

Formation Fracture spacing in Wahoo is greater than in Alapah 0 
 Fracture spacing in Wahoo is smaller than in Alapah 16 
 No difference, at α=90% 16 

Orientation Fracture spacing of EW fractures is greater than of NS fractures 0 
 Fracture spacing of EW fractures is smaller than of NS fractures 4 
 No difference, at α=90% 28 
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The investigation shows that fracture spacing is related to the combined effect of 

several geologic characteristics.  The neural network can model the combined effect of 

these geologic characteristics and can assess the effects of particular geologic parameter 

on fracture spacing.  Given the scarcity of the fracture data, the conventional statistical 

analysis has to lump the data and, therefore, can not assess the effects of particular 

geologic parameter on fracture spacing (Chapter IV).  The result of network analysis 

may provide a basis with which to rank the geologic parameters according to their 

effects on fracture spacing.   

From the number of cases that have significant difference in Tables 6.2-6.7, the 

most important parameter that affects the fracture spacing is the formation, followed by 

bed thickness, fracture orientation, and structural position on fold.  The numbers of cases 

with significant difference between average fracture spacing are 16, 5, 4, and 2 

respectively for these parameters.   

Both the degree of folding and the lithology (packstone and grainstone) 

statistically are not significant in affecting the fracture spacing with no cases of 

significant difference.  This way of ranking the parameters, however, depends on the 

confidence level used in the tests.   

Another way of ranking the parameter is based on the average p-value: in 

applying the paired t-test, the p-value of 0.5 indicates no difference between two sets.  A 

p-value greater than 0.5 indicates that the first set is greater than the second set, while a 

p-value less than 0.5 indicates that the first set is smaller than the second.  The average 

p-value for all possible data pairs of each parameter, therefore, represents the effect of 

that parameter on the fracture spacing (Table 6.9).   
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Table 6.9 – Result of the parameters ranking.  

 Paired t-test p-value 

 # of different 
case at a=95% Rank average 

p-p0 
max min Stdev Rank 

Bed thickness 5 2 0.71 0.997 0.303 0.201 3 
Interlimb angle 0 5 0.63 0.918 0.332 0.195 4 

Structural Position -2 4 0.43 0.815 0.000 0.247 5 
Lithology 0 5 0.26 0.493 0.081 0.120 2 
Formation -16 1 0.09 0.405 0.000 0.101 1 
Orientation -4 3 0.53 0.945 0.002 0.326 6 

 

 

According to this method of assessment, the most significant parameter is the 

formation (with pavrg=0.09), followed by lithology, bed thickness, degree of folding, 

structural position, and fracture orientation (with pavrg equals 0.26, 0.71, 0.63, 0.43, and 

0.53, respectively).  This way of ranking does not depend on the confidence level used in 

the tests.  In fact, the two methods of ranking parameters yields the same result if the 

confidence level of 50% is used in the method based on the results of paired t-test.   

Compared to the ranking based on the t-test at 95% confidence level, formation 

does not change its ranking.  This supports the conclusion that stratigraphic position has 

a consistent effect on the fracture spacing.  From the 5th place in the t-test method, the 

lithology changes its ranking to the 2nd place in the p-value method.  The range of the p-

value suggests that lithology has a consistent effect on fracture spacing: in all 

combinations of parameters, the fracture spacing in packstone is smaller in grainstone 

with the p-value ranges from 0.081 to 0.493.  However, this effect is not statistically 

detectable at the one-tail confidence level of 95%.   
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Another parameter with the big change of its ranking is the fracture orientation.   

According to the results of the paired t-test, the fracture orientation ranks 3rd in relating 

with the fracture spacing.  Analysis of the average p-value suggests that the fracture 

orientation is the least influential parameter (pEW>NS =0.53).  This is in accordance with 

the conventional statistical analysis in Chapter IV.  However, the large range of the p-

value (from 0.002 to 0.945 with the standard deviation of 0.326) suggests that the effect 

of fracture orientation is not systematic: the difference of the fracture spacing in EW and 

NS orientations depends on the combination of other parameters, especially the 

structural position.  In the hinges, EW fracture spacing is larger than NS fractures (pEW in 

hinge > NS in hinge = 0.758) while in the limb, EW fracture spacing is smaller than NS 

fractures (pEW in limb < NS in limb = 0.704).  For fractures in each orientation, EW fractures in 

the limbs are more densely spaced than EW fractures in the hinges (pEW in hinge > EW in limb 

= 0.779), and NS fractures in the hinges are more densely spaced than the NS in the 

limbs (pNS in limb > NS in hinge = 0.632).  This analysis indicates that the structural position 

relates to the fracture spacing selectively with regard to the fracture orientation.    

 

VI.3. Comparison with Conventional Statistical Analysis 

Table 6.10 summarizes the results for the parameter ranking of the statistical t-

test analysis and the neural network analysis of fracture spacing.  In grouping fracture 

data into subsets, I extend the t-test analysis in Chapter IV to cover the effect of 

lithology and stratigraphic position.  In using conventional statistical analysis, the degree 

of folding has the greatest effect on fracture spacing whereas, in neural network analysis, 

folding appears to have a smaller effect on fracture spacing.  In neural network analysis, 

bed thickness appears to be the third important factor after stratigraphic position and 

lithology in controlling the fracture density, whereas it ranks fourth after the degree of 

folding, the stratigraphic position, and the structural position in applying conventional 

statistical analysis.  In both methods, the fracture orientation is the least important factor 

in controlling the fracture spacing.       
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 The difference in the rank of geologic parameters between two methods can be 

explained by the fact that, we lump the fracture data into subsets in using conventional 

statistical analysis (Chapter IV).  Because these subsets represent the combination of 

different parameters, any conclusion about the effects of a single parameter on 

controlling the fracture spacing could be biased.  Neural networks, on the other hand, 

can trace the effects of a single parameter on the fracture spacing with other parameters 

fixed. 

 

 

Table 6.10 – Summary of the statistical and neural network analysis for fracture spacing. 

 Parameter rank 
 t-test Neural network 

Bed thickness 4 3 
Interlimb angle 1 4 

Structural position 3 5 
Lithology 5 2 

Stratigraphic position 2 1 
Orientation 6 6 

 

 

The analysis in this chapter demonstrates the following advantages of the neural 

network: 

- it produces a detailed functional relationship between average fracture spacing 

and geologic parameters without lumping the effect of other parameters; and 

- it provides the capability to analyze the effects of the single parameter on fracture 

spacing with the statistical confidence.   

As a result, the neural network analysis provides more insight into the 

relationship between average fracture spacing and geologic parameters with statistical 
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confidence.  For all combinations of geologic parameters considered in the model, there 

are several conclusions. 

- The general effect of bed thickness on fracture spacing is opposite to the 

relationship often reported in the literature.  Neural network analysis shows that 

fracture spacing is either larger in thin beds than in thick beds (15.6% at the 

confidence level of 95%) or it does not significantly differ (84.4% at the 

confidence level of 90%). 

- The degree of folding does not have a significant effect on fracture spacing 

(100% at the confidence level of 90%).   

- The effect of the lithology on fracture spacing is systematic but undetectable at 

the confidence level of 95%.  In general, the average fracture spacing in 

packstone is smaller than in grainstone (12.5% at the confidence level of 90%, 

31.3% at the confidence level of 80%).     

- Position in the stratigraphic column has the most consistent effect on fracture 

distribution.  The fracture spacing in the Wahoo Formation is consistently 

smaller than in the Alapah Formation (50% smaller, 0% larger at the confidence 

level of 95%; 69% smaller, 0% larger at the confidence level of 80%).  

- The effect on fracture spacing of structural position on the fold is closely related 

to the fracture orientation.  Fracture spacing can be larger in the limb than in the 

hinge or vice versa, depending on the fracture orientation.  In the limbs, fracture 

spacing of the EW fracture set is smaller than the NS fracture set whereas, in the 

hinges, NS fractures are more densely spaced than EW fractures.  Note that the 

fold axis is in EW orientation. 

 

VI.4. Discussion on the Sampling Requirement 

One important question in designing a study is to determine the amount of data 

required for the analysis.  As discussed in Chapter II, the degree of determination of the 
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system D1 is often used to judge the effectiveness of the system in modeling the data.  

As a rule of thumb, D1 of at least 2 is suggested in using neural networks (Bishop, 1995).  

However, the optimal network configuration is data driven and cannot be determined a-

priori.  Thus, this measurement could not be used to determine the required amount of 

data for the analysis.   

Another quantity to measure the degree of determination of the system is the 

ratio of the data to the number of explanatory variables of the model D2 (Eq. 5.8).  This 

quantity does not depend on the network configuration but depends on the number of 

exploratory variables of the model.  Thus, it is important to identify the possible 

important variables of the model before collecting data for analysis.  For the fracture 

system in this study, the degree of determination D1 is 1 and D2 is 4.2.  With these values 

of determination, the network produces significant prediction variability (Figures 6.4, 

6.5).  Using multiple realizations of the cross validation technique, one still can assess 

the prediction variability and investigate the relationship among variables at the price of 

wide confidence interval of the network prediction. 

It is worth noting that 4 out of 6 variables in our model are discrete variables 

with only 3 possible values.  For the model with continuous explanatory variables, a 

larger degree of determination D2 is required to represent the whole range of each.  The 

question of how big D2 should be in designing the data collection process depends on 

several factors such as the nature of the possible relationship between explanatory and 

response variables, the range of change for each explanatory variable, and the tolerance 

to the prediction variability of the model.  Unfortunately, these factors are highly 

problem dependent and could not easily determined.  In any case, careful analysis of the 

possible theoretical or experimental relationship between each explanatory and response 

variable is essential in determining the required amount of data for analysis.    
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CHAPTER VII 

FRACTURE NETWORK CONDUCTIVITY ASSESSMENT 

 

This chapter presents the result of the analysis of flow conductivity of a fracture 

system consisting of two orthogonal fracture sets, similar to those observed in the 

Lisburne Group.  I used FracMan to model the fracture system and to calculate the flow 

conductance of the fracture system along the principal orientation of each fracture set.  

The effects of fracture properties such as fracture size, fracture spacing, and 

transmissivity on system isotropy were investigated.  

The results of this investigation suggest that, given two fracture sets with similar 

spacing characteristics, significant anisotropy can be observed because of the difference 

in fracture length.  The set with the greater length plays an important role not only for 

flow along its principle direction but also in the orthogonal direction.     

 

VII.1. Overview 

The fracture data used in this study were collected from several locations with 

different combinations of geological parameters.  At each location, two major fracture 

sets, EW and NS striking, were identified and their properties were characterized.  All 

possible combinations of geological parameters resulted in a large number of cases, 

which is difficult to handle.  FracMan, on other hand, is limited to a maximum number 

of fractures in the model and with the given fracture density.  In this study, it can only 

model the fracture network at a small scale.  The first task in studying the flow 

characteristics of the fracture system in this study was to choose the data for fracture 

properties used in DFN model so that the results of the small scale study could be used 

to infer the properties of the entire region. 
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The results of the analysis in Chapters IV and VI suggest that the fracture 

spacing and fracture length are affected by several geological factors.  Fracture length, 

for example, is greater in tight folds than in open folds and the fractures are more 

through going in the NS than in the EW directions.  Field observation shows that a 

number of EW fractures terminate at NS fractures.  Field observation also suggests that 

half of the fractures in both sets terminate at bedding planes.  Combining the results of 

the statistical analysis with the field observations, I identified the following important 

parameters for their effects on the flow characteristics of the fracture system in this 

study. 

- Fracture length: to investigate the isotropy causing by the two fracture sets 

with different size and the effect of folding on the system conductivity. 

- Fracture filling (cementation): the effect of fracture filling can be regarded as 

changing the fracture transmissivity (if the fractures are partially filled) or as 

reducing the fracture density (if the fractures are completely filled).   

- Fracture termination: the fracture termination reduces the probability of 

cutting through more than one fractures and, hence, affects the flow 

conductance.    

Specifically, I modeled the fracture system as consisting of two fracture sets: EW 

and NS striking.  As a base case, the fracture spacing and fracture height for each set 

were taken from the combined dataset of the whole region and the fracture length were 

taken from the data for tight folds.  I investigated the effect of having smaller fracture 

length on the system conductivity by using the data for open folds in the sensitivity 

study.  Fracture aperture, being an important parameter of the fractures, will not be 

directly included into this study because of the related uncertainties discussed in Chapter 

II.  Instead, I will indirectly investigate the effect of aperture on the fracture system 

conductivity by running cases where different fracture transmissivities are assigned to 

each fracture set.  The effect of the fraction of fractures that are completely filled in each 

fracture set is taken to be the same as reducing the fracture density.  I used fracture 
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height from the lumped dataset.  The variation of the fracture height was not studied 

since we are mainly interested in flow conductance in the horizontal direction.   

Since the data are lumped from different locations of the field, I did not discuss 

the selection of the statistical distribution to represent these data.  Instead, I studied the 

effect of different distributions on the system flow conductance.  

 

VII.2. Fracture Properties in DFN 

A summary of the statistical parameters for fracture spacing, fracture height and 

length is given in Table 7.1.  The histograms of the fracture height and length for these 

two sets are shown in Figure 7.1.  The histograms show that fracture properties of the 

lumped dataset are skewed to the left.  A portion of fractures grouped on the right side of 

the histogram, e.g. for fracture height, may represent the fact that fracture data are 

lumped from different locations with different bed thickness.  

 

 

 

 Table 7.1 – Summary of fracture spacing, height, and length for use in FracMan. 

 Spacing, m Height, m Length, m 
     Tight folds Open folds 

Fracture set EW NS EW NS EW NS EW NS 
Average 0.26 0.28 0.92 1.16 0.83 1.63 0.45 0.51 

Standard deviation 0.45 0.37 0.87 1.25 0.73 2.13 0.42 0.47 
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Figure 7.1 – Histograms of fracture height and fracture length for the combined dataset. 

 

 

The L-moment plots (Hosking and Wallis, 1997) for spacing, height and length 

of these datasets are shown in Figure 7.2.  On this figure, the plotting positions for our 

data are scattered around the line for the lognormal distribution.  The plotting position 

for the NS fracture height and the NS fracture length in open folds is closed to the 

position for the exponential distribution.  Karpov (2001) argued that different 

distributions can represent the fracture data.  Lognormal and exponential distributions 

are often chosen to represent the fracture properties (Table 2.1, Chapter II).  I chose the 

lognormal distribution to represent our fracture properties in FracMan.  To investigate 

how different distributions may affect the modeled conductivity, I compare the results 

obtained from the exponential and lognormal distributions for fracture length of one of 

our cases.  
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L-moment diagram for fracture spacing, length, and height 
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Figure 7.2 – L-moment plot for fracture spacing, height, and length used in FracMan. 

 

 

With regard to the fracture orientation, the frequencies of fracture strike for both 

orientations are scattered around the mean values with large standard deviations (Figure 

7.3).  It is worth noting that, in using DFN, I model the fracture system in a small 

volume of rock (in the order of 10 m) which represents one sample location.  The 

fracture orientation for both sets in the simulation is chosen as a bivariate distribution 

with the mean calculated from lumped data, and the standard deviation is the average 

value from all sampled locations.  The fracture orientation data are given in Table 7.2.  
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Figure 7.3 – Histogram of fracture strike for EW and NS sets. 

 

 

Table 7.2 – Fracture orientation data for use in FracMan. 

 Strike Dip 

 Mean, 
deg. 

Standard 
deviation, deg. 

Mean, 
deg. 

Standard 
deviation, deg. 

EW fracture set 85 8.2 68.0 6.6 
NS fracture set 0 7.7 72.4 6.4 

   

 

 

VII.3. DFN Analysis 

The conductivity of the fracture system in FracMan is calculated using the 

Pathway Analysis module.  This module examines the occurrence of hydraulically 

continuous pathways between different locations within the simulated fracture network.  

It searches through all fractures to identify possible pathways and their properties.   

Pathway Analysis requires the definition of the initiation and destination points 

for pathways, and the minimum property of the fractures in a network before they can be 

considered a pathway.  In FracMan, the minimum cutoff is defined in terms of the 

pathway conductance Cp:  
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Cp = min {TfiWfi} , i=1,nf ; 

where Tf and Wf are the transmissivity and width perpendicular to flow of the ith 

fracture and nf  is the number of fractures in the network.  

The Pathway Analysis output parameters include:  

1. Number of pathways;  

2. Number of fractures in the pathway;  

3. The conductance of the pathway, m3/s;  

4. Area of fractures in the pathway, m2.   

Two fracture sets representing NS and EW fractures are generated using 

FracMan within the rock region having dimension of 10x10x6m (Figure 7.4, left).  The 

dimension of the rock region is chosen based on the limited number of fracture that this 

version of FracMan can handle.  Given the fracture intensity in this study, adding 2 m to 

each side of this rock region would cause the program to be unstable.  The horizontal 

measurement of the simulated rock region is about 6 times the average fracture length in 

NS direction and 12 times the average fracture length in EW direction (Table 7.1).  

The input parameters of the model are as follows: 

1. Poisson Rectangle geometric model.  The choice of the fracture shape in the 

simulation is arbitrary.  Without any specific data about the fracture shape 

and for simplicity, I assumed parallelogram shaped fractures.  The fracture 

location is generated according to the Poisson process and the resulting 

fracture spacing will follow the exponential distribution. 

2. “Surface Points” Generation Mode.  With this mode, fracture location is not 

restricted to the condition that it should not cross the face of the simulated 

region.  This mode was selected to eliminate the edge effect.   

3. Strike and dip model (bivariate normal) with specified means and standard 

deviations.      
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4. Fracture height. Lognormal distribution with specified mean and standard 

deviation.   

5. Fracture length. Lognormal distribution with specified mean and standard 

deviation.  In the sensitivity study, an exponential model will be used to 

evaluate the effect of using a different distribution on the results. 

6. Fracture termination. Termination percentage, a probability that a fracture 

will terminate at an intersection with a pre-existing fractures.  Zero 

termination in base case.  In a sensitivity study, 50% of EW fractures will 

terminate against NS fractures.  

7. Fracture intensity. Area of fractures per unit volume (P32) is chosen.  Other 

options were “number of fractures (P31)” and “fracture volume per volume 

(P33)”.  P31  is scale-dependent.  P33 depends on the fracture aperture and 

therefore cannot be assessed adequately in this study.  P32 is aperture 

independent and can be used, once assigned, for a variety of sizes and shapes 

of the generation region.  The value of P32 for each set is determined using an 

iterative procedure.  During fracture generation, the fracture density for each 

set is sampled along 10 scan lines perpendicular to the mean orientation of 

this set.  The fracture intensity is iteratively adjusted until the average spacing 

along those scan lines matches the value in the field.   

8. Constant fracture aperture and transmissivity.  In a sensitivity study, I will 

vary transmissivity for each fracture set.   

Table 7.3 list the cases used in the study to assess the effects of fracture 

termination, length, and filling on the system conductivity.   
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Figure 7.4 – Example of the fracture system in FracMan and the sampling planes. 

 

 

 

For all cases, the fracture conductance was evaluated for two directions 

(north/south and east/ west) between two vertical planes placed perpendicular to the 

mean strike of each fracture set and 8 m apart from each other (Figure 7.4, right).  For 

each set of parameters, I ran 10 different realizations of the fracture network.  I chose 

planes instead of wellbores for assessing the flow conductance, because for this scale of 

simulation (10 m), the planes may better represent the picture about the direction of flow 

than the wellbores.  A similar approach was used for studying the anisotropy of the 

fracture system (e.g., Cacas et al., 1990, Herbert and Lanyon, 1992).   
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Table 7.3 – DFN simulation cases. 

 Cases Description 

Base case Fracture length from tight fold, 
fracture spacing and height from 
lumped data, equal transmissivity in 
both sets. 

Transmissivity variation, 
cases T1, T2, T3, T4, T5 

Varying fracture transmissivity in 
EW and NS sets 

Spacing variation, cases S1 
to S7. 

Varying fracture spacing in EW and 
NS sets 

EW termination, case E1 50% of EW fractures terminate at 
intersection with NS fractures 

Length in 
tight folds 

Different statistical 
distribution, case D1 

Use exponential distribution for 
fracture length 

Case L0 Fracture length from open folds 

Spacing variation, case L1  Varying fracture transmissivity in 
EW and NS sets 

Length in 
open folds 

EW termination, case L2 50% of EW fractures terminate at 
intersection with NS fractures 

 

 

 

VII.3.1. Anisotropy 

This case represents the case of strong degree of anisotropy with regard to two 

EW and NS orientations.  The fracture length is taken from the data for tight folds.  The 

average fracture length of the NS set is double the average length of the EW set.  

Fracture spacing and fracture height are taken from lumped datasets and are very similar 

for both sets (Table 7.1).  Fracture transmissivity is constant and equal 0.001 m2/s for all 

fractures.   
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The conductance between source and sink trace planes was evaluated 10 times 

with different realizations of fracture sets in the model.  The comparison of the fracture 

network conductance for the two directions is shown in Figure 7.5.  With the given 

configuration and parameters, the average conductance in the NS direction is almost 4 

times larger than in the EW direction.      
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Figure 7.5 – Flow conductance in EW and NS directions.  Given the same fracture 
spacing, fracture length causes the conductance anisotropy. 
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VII.3.2. Effects of Fracture Transmissivity 

In this section, I change the transmissivity for each fracture set to investigate the 

effect on system conductance and anisotropy.  Five cases were run.  

- Case T1 and T2: the transmissivity of the EW fractures was increased by, 

correspondingly, 10 and 100 from the “base” case.  NS fracture 

transmissivity was kept at the “base” case level and, therefore, 1 and 2 orders 

of magnitude lower than the EW set transmissivity. 

- Cases T3 and T4:  NS fracture transmissivity was increased by 10 and 100 

time from the “base” case value for NS set.   

- Case T5: the transmissivity correlates with the fracture area according to the 

following equation: ( ) ( )ii SeT log0.1log 4−= , where Ti is the transmissivity of 

fracture i, Si is the area of fracture i.  

Figure 7.6 shows the conductance in EW and NS directions for the cases T1 and 

T2 along with the base case conductance.  The plot shows that the average conductance 

and its standard error are almost linearly proportional to the transmissivity in the case of 

constant transmissivity of each fracture set.  Increasing the transmissivity in the EW 

direction slightly affects the average flow conductance in the NS direction.  In particular, 

a 2 order transmissivity increase in the EW direction increases the average conductance 

in the NS direction by 2.5 times.   

Similar behavior is observed for cases T3 and T4 (Figure 7.7).  The conductance 

in the NS direction and its standard error linearly increase with the transmissivity of the 

NS set.  However, a transmissivity increase in the NS direction does not affect the EW 

conductance.     

When the transmissivity is entered as a function of the fracture area, the average 

conductance in the NS direction is almost 16 times greater than the average conductance 

in the EW direction.   
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Figure 7.6 – Effect of increasing transmissivity in EW set on the flow conductance. 
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Figure 7.7 – Effect of increasing transmissivity in NS set on the flow conductance. 
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VII.3.3. Fracture Spacing 

In reality, not all fractures conduct fluid due to the cementation and the stress 

field.  Therefore, the model based on all observed fractures may overestimate the 

fracture density that participates in conducting fluid.  I investigated the effect of filling 

on the fracture conductivity by reducing the fracture intensity when generating fracture 

sets.  This means that a fraction of fractures is completely filled with the cementation.  

The effect of the partial fill of fractures is studied by changing the fracture 

transmissivity. 

Figure 7.8 shows the flow conductance in the EW and NS directions when the 

fracture density of the EW set decreases by 50%, 75%, and 85% (cases S1, S2, and S3).  

The results suggest that the filling of EW fractures has a small effect on NS 

conductance.  At 50% and 75% reduction of the fracture density in EW direction, the 

average conductance in EW direction decreases 50% and 80%, whereas the NS 

conductance does not change significantly (2% and 9%).  At the reduction of 85% of 

fracture density in EW direction, 6 out of 10 realizations show zero conductance in EW 

direction.  At this value of EW fracture density, the average NS conductance decreases 

17%.  

The general observation for these cases is that changing the fracture density of 

the set with smaller length does not affect the flow conductance in the orthogonal 

direction.   
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Figure 7.8 – Effect of decreasing fracture density of EW set on the flow conductance. 

 

 

The NS fractures, in contrast to the EW fractures, have a strong effect on the 

conductance in the EW direction.  Figure 7.9 shows the flow conductance in the EW and 

NS directions when the fracture density of NS set decreases by 50%, 75%, and 85% 

(cases S4, S5, and S6).  At 50% and 75% reductions of the NS fracture density, the 

average conductance in NS direction decreases 38% and 79%, respectively, while the 

average EW conductance decreases 49% and 66%.   At a reduction of 85% of the NS 

fracture density, 1 out of 10 realizations show zero conductance in each direction.  That 

is, the system is at the percolation threshold.   
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Figure 7.9 – Effect of decreasing fracture density of NS set on the flow conductance. 

 

 

If the fracture density decreases simultaneously in both directions, the flow 

conductance decreases at a higher rate.  In the case S7 where the fracture density in both 

directions reduces by 75% from base level, the average flow conductance in the EW 

direction decreases 22 times and the average flow conductance in the NS direction 

decreases 9 times, compared to the base case.  The EW conductance is zero in 5 out of 

10 realizations, and the NS conductance is zero in 1 realization.    

 

VII.3.4. Fracture Termination 

In case E1, 50% of the EW fractures terminate at the intersection with the NS 

fractures.  The pathway analysis shows that the average flow conductance in the EW 

direction drops by 53% while the average flow conductance in the NS direction is almost 

unchanged.  For the fractures used in the base case, the average fracture length of the 
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EW set is 0.83 m, or almost 3 times greater than the average fracture spacing in the NS 

direction.  This implies that a number of the EW fractures may cut through 2 or more 

fractures in the NS set.  In the termination case, however, 50% of the EW fractures 

terminate at the fractures that they intersect.  Thus, the number of through-going 

fractures decreases.  Following this line of argument, the effect of termination on the 

system conductance is expected to be a function of the relationship between the fracture 

length and fracture spacing of the other set.  

 

VII.3.5. Effect of Different Statistical Distributions for Fracture Length 

I evaluated the flow conductance when using different statistical distributions for 

fracture length.  The exponential distribution for fracture length is used for comparison 

with the results obtained with the lognormal distribution.  Except for the exponential 

distribution for the fracture length, all parameters are the same as in the base case, which 

uses the lognormal distribution for fracture length.  The comparison of the results shows 

that the average flow conductance in the EW direction is 19% lower than that in the base 

case.  The average flow conductance in the NS direction drops 26%.       

Figure 7.10 shows the cumulative distribution functions (CDFs) of the 

exponential and the lognormal distributions having the characteristics used in the 

simulation for EW and NS fracture length. Figure 7.11 is the expanded version for 

fracture lengths in the NS set, with the value of fracture length ranging from 4 to 16.  

This plot suggests that about 2% of the generated fractures using the lognormal 

distribution will have length greater than 8 m, while this number for the exponential 

distribution is 0.5%.  In other words, the probability that some fractures may cut through 

the whole rock region is 4 times higher for the lognormal case than the exponential case.  

Thus one may argue that the simulated rock region should be extended to reduce the 

possibility that one fracture may go across the entire region.  On the other hand, if the 

flow conductance is strongly affected by the existence of a small number of large 
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fractures, which could be the case here, using another distribution may give still different 

results.           
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Figure 7.10 – Lognormal and exponential distribution for fracture length in EW and NS 
sets. 
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Figure 7.11 – Comparison of the lognormal and exponential distribution in representing 
NS fracture length.  The plot is shown for fracture length in the interval from 4 to 16 m. 
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VII.3.6. Effect of Fracture Length 

In this case, the parameters for the fracture length distribution are taken from the 

dataset representing open folds (Table 7.1).  Since the mean and standard deviation of 

the two sets are similar, we expect that the system is isotropic.  The simulation results 

show that the average flow conductance in the NS direction is about 1.4 times higher 

than in the EW direction.  Compared to the base case, where the fracture length is taken 

from tight folds, the average conductance in the NS direction decreases 10 times and the 

average conductance in the EW direction decreases 3 times.  Except for the fracture 

length, all other parameters of the model and of the fractures are the same as in the base 

case.   

For these fracture data, two cases are run to investigate the relationship between 

the fracture spacing and fracture termination and fracture length.  Case L1 is run with 

50% of EW fractures terminating against the NS fractures.  Case L2 is run with reducing 

the fracture density by half for both fracture sets.   

The results of case 1 show that the change in average flow conductance is small 

(13% and 7% for EW and NS, respectively).  This suggests that the effects of fracture 

termination on flow conductance depend on the fracture length entered in FracMan.  If 

the fracture length is large compared to the fracture spacing of the other set, the 

termination has a strong effect on the flow conductance; if the fracture length is small, 

the effect of termination is also small. 

The relationship between fracture spacing and fracture length is demonstrated in 

case 2.  By decreasing the fracture density by half, 3 out of 10 realizations have zero 

conductance in each direction.  The average flow conductance decreases by 4.2 and 3.6 

times, respectively for the EW and NS directions.       
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VII.3.7. Discussions 

Table 7.4 summarizes the results of the flow conductance analysis for all cases.   

 

Table 7.4 – Summary of the flow conductance analysis. 

 Average flow 
conductance, m3/s 

Degree 
of 

isotropy 

Fraction from 
base case 

 EW NS  EW NS 

Base case with fracture length from tight 
folds 2.93E-04 1.29E-03 4.4 1.00 1.00 

10 fold increase of transmissivity in NS 
set 2.67E-04 8.93E-03 33.4 0.91 6.92 

100 fold increase of transmissivity in NS 
set 3.09E-04 6.02E-02 194.5 1.05 46.62 

10 fold increase of transmissivity in EW 
set 2.38E-03 1.60E-03 0.7 8.10 1.24 

100 fold increase of transmissivity in EW 
set 1.47E-02 3.32E-03 0.2 49.95 2.57 

Transmissivity correlates with size 4.43E-05 6.86E-04 15.5 0.15 0.53 
50% decrease fracture density of EW set 1.46E-04 1.27E-03 8.7 0.50 0.98 
75% decrease fracture density of EW set 5.98E-05 1.17E-03 19.6 0.20 0.91 
85% decrease fracture density of EW set 3.87E-05 1.07E-03 27.6 0.13 0.83 
50% decrease fracture density of NS set 1.51E-04 8.05E-04 5.3 0.51 0.62 
75% decrease fracture density of NS set 9.94E-05 2.68E-04 2.7 0.34 0.21 
85% decrease fracture density of NS set 3.12E-05 8.60E-05 2.8 0.11 0.07 

75% decrease fracture density in both 
sets 1.31E-05 1.46E-04 11.2 0.04 0.11 

50% EW termination 1.38E-04 1.31E-03 9.5 0.47 1.02 
Exponential distribution for fracture length 2.38E-04 9.60E-04 4.0 0.81 0.74 

Cases with fracture length from open 
folds 8.40E-05 1.23E-04 1.5 0.29 0.1 

50% EW termination 7.31E-05 1.14E-04 1.6 0.25 0.09 

50% decrease fracture density in both 
sets 2.05E-05 3.41E-05 1.7 0.07 0.03 
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In summary, the study of the flow conductance of the fracture network suggests 

the following:  

- Given two fracture sets with similar spacing characteristics, significant 

anisotropy can be observed because of the difference in fracture size.  With 

constant fracture transmissivity in both fracture sets, the average flow 

conductance in the NS direction can be as high as 4 times that in the EW 

direction.  A higher degree of isotropy will result if the fracture transmissivity 

is correlated with fracture size.  

- The set with the greater length plays an important role not only for flow 

along its principle direction but also in the orthogonal direction.  The 

reduction of the fracture density of this set causes the reduction of the flow 

conductance in both directions. 

- The termination of the EW set upon the fractures in the NS set may 

significantly reduce the flow conductance in the EW direction, depending on 

the size of EW fractures.  In the case of small fracture length, the change in 

flow conductance is small.  

- The use of different statistical distributions to describe fracture data may have 

an effect on the simulated flow conductance.  Small differences in the 

sensitive region (for example, in the region of large fracture size in our case) 

can lead to big differences in the predicted flow conductance.  

One of the major concerns in simulating the fracture system is the size of the 

rock region within which the fracture network is generated.  Obviously, if the size of the 

simulated region is small, there is a possibility that a number of fractures can cut through 

that region and thus affect the value of the flow conductance.  I have shown that the 

lognormal distribution for one of our fracture length datasets may produce up to 2% of 

fractures that have lengths greater than 8 m.  Assuming that the rock region is large 

enough if the average flow conductance does not change with the distance between 

sample planes, we can assess the representative rock volume issue by examining the 
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flow conductance between planes of different separation distances.  A detailed 

discussion of the representative elementary volume is given in Bear (1993).   

Figure 7.12 shows the flow conductance in the EW and the NS directions as a 

function of the separation distance between sample planes.  This plot shows that the 

average flow conductance in both directions significantly drops as the separation 

distance increases from 2 to 4 m.   The average flow conductance in the EW direction 

stabilizes at the separation distance of 8 m, while the average flow conductance in the 

NS direction is still decreasing at this separation distance.  This result suggests that the 

size of the simulated region should be increased in the NS direction to ensure that the 

average flow conductance will not change with distance.  The pathway analysis module 

of this version of FracMan, however, limits the number of fractures and interconnections 

in the model.  Removing small fractures from the model after they have been generated 

may help to increase the size of the model.  But this may introduce uncertainty into the 

results, since we do not know the value of the fracture size below which we can remove 

fractures without affecting the flow conductance of the system. 
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Figure 7.12 – Flow conductance in EW and NS directions as a function of the separation 
distance between sample planes. 
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Another concern is the number of realizations of the fracture network for flow 

conductance calculations.  Due to the large number of cases investigated in this study, 

only 10 realizations were run for each case.  This small number of realizations may give 

only general trends of the effects of different parameters on the flow conductance of the 

system, considering the wide range of conductance variation (Figure 7.5).  More 

simulation runs are needed for assessing the flow conductance of a particular 

combination of the fracture properties and model parameters.   

In presenting the results of the flow assessment, I used the average flow 

conductance from different realizations.  In cases where the system is near the 

percolation threshold, this may be misleading.  For example, in near percolation 

threshold cases (e.g., a case with a 75% reduction of fracture density in both directions), 

a large number of realizations show zero conductance while the average value is 

different from zero.  The average also tends to be affected by extreme values (Jensen et 

al., 1997), thus the median of the prediction can be an alternative statistic for 

representing the flow conductance.  The mode of the simulated flow conductance, being 

the most probable value of a distribution, may be a better estimator of the flow 

conductance calculated from DFNs.  However, the mode may require a large number of 

network realizations and may not be well suited for a sensitivity analysis such as the one 

in this study. 

A similar study was done by Karpov (2001) for the fracture data in the 

undeformed section of the Lisburne Group.  In his study, the fracture length was 

assumed to be equal to the fracture height, estimated from photos of the exposed faces.  

This resulted into a weakly anisotropic system.  Combining Karpov’s and my results, it 

appears that the fracture density and length determine the system connectivity whereas 

the fracture length and transmissibility determines the system permeability anisotropy.  

The information of the fracture length distribution, especially for the large fractures, is 

essential in modeling the fracture system.  For the fracture system in the Lisburne 

Group, folding appears to be the major factor in controlling the permeability anisotropy 

of the reservoir.   
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The effect of folding on the system anisotropy is also evidenced in the subsurface 

Lisburne Group.  In the subsurface Lisburne reservoir, two major fracture orientations 

were observed: north-northwest and east-northeast striking.  The east-northeast striking 

set is more common, but is frequently more mineralized and trends normal to the 

maximum compressive stress. The north-northwest striking set is less frequent but more 

open (Missman and Jameson, 1991; Hanks et al., 1997).  The permeability test on full 

diameter samples which contain fractures indicates an average value of 1.5 to 3 for the 

maximum to minimum permeability ratio (Belfield, 1988).    

The results of an interference test indicate that the preferential direction of the 

permeability is in the north-south direction with the maximum to minimum permeability 

ratio of 1.63 (Sampson and Marcou, 1988).  This value agrees with the result of the core 

analysis and with our DFN analysis of the fracture data in open folds. Comparison 

between the DFN analysis of outcrop fracture data and analysis of the subsurface data 

suggest that folding plays an important role in determining the degree of the 

permeability anisotropy.  

 

VII.3.8. Implications for Other Fracture Systems  

The results of the flow conductance assessment have the following implications 

on the data collection and reservoir simulation of other fracture systems. 

- Fracture termination and percentage of fracture fill appear to be important 

parameters and can significantly change the system connectivity and fluid 

flow behavior.  The percentage of fracture fill can be the reduction in fracture 

transmissivity and/or the reduction of the fraction of open fractures.  Both 

fracture termination and the percentage of fracture fill are determined by the 

relative age of fractures.  Thus, the partition of the fractures into sets and the 

quantitative data on fracture termination percentage and filling are essential.  

- Along with the fracture density, fracture length is an important parameter in 

modeling the fracture system.  Often, the fracture length is assessed as it 
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correlates to the fracture height.  At the scale such as in this study, a large 

fraction of fractures terminates at bedding planes, therefore, assuming 

fracture height-fracture length correlation may be misleading.      

- In a large-scale reservoir simulation, the horizontal dimensions of the 

simulation block are often significantly greater than the vertical dimension.  

The relationship between the flow conductance and the separation distance 

(Figure 7.12) suggests that the vertical permeability (corresponding to the 

vertical dimension of the simulation block) may be significantly greater than 

the horizontal permeability (corresponds to the horizontal dimension of the 

simulation block).  This observation is important in assigning values for 

permeability in a large scale reservoir simulation.  Stable permeability for the 

simulation block requires that the block size to be much larger than the 

average fracture length (in horizontal direction) or height (in vertical 

direction).  In cases where the vertical dimension of the simulation is less 

than or comparable with the average fracture height, the vertical permeability 

could be much higher than the horizontal permeability.  
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CHAPTER VIII 

SUMMARY, CONCLUSIONS, AND FURTHER WORK 

 

VIII.1. Summary 

I investigated the effects of geological parameters on the distribution of fracture 

spacing, fracture height and length in detachment folds exposed in northeastern Brooks 

Range, Alaska, using fracture data from Lisburne Group outcrops.  Fracture data were 

collected earlier by geologists at the University of Alaska.  Two analysis methods were 

employed in this study: conventional statistical analysis of fracture spacing, fracture 

height and length; and neural network analysis of fracture spacing as a function of 

folding, bed thickness, structural position on folds, lithology, and stratigraphic position. 

In using conventional statistical analysis, I grouped fracture data into groups 

representing two categories of fold tightness and bed thickness with the main purpose of 

increasing the statistical significance of the analysis.   

I performed an analysis using neural networks to identify the relationships among 

variables, focusing on the issues related to the sparseness of available data.  I examined 

the application of a model selection method for neural networks and the prediction 

variability analysis on known function before applying these tools to fracture spacing 

data.  The application of neural networks allowed studying the effects of geological 

parameters on fracture spacing distribution, without having to assume independence of 

data from different combinations of geological parameters as was the case of using 

conventional statistical analysis.  

I analyzed flow conductance in the fracture system using discrete fracture 

networks.  A fracture system with the fracture properties representing our data was built.  

The effects of fracture length, fracture spacing and fracture termination pattern on the 

flow conductance of the system and on the system isotropy were studied.  The results of 
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this analysis show the significance of different fracture properties in determining the 

flow conductance and the system anisotropy.   

 

VIII.2. Conclusions 

A review of the results of this research leads to following conclusions. 

1. In the environment as encountered in exposed folds in northeastern Brooks 

Range, Alaska, the fracture properties distribution is a complex function of 

geological factors.  Simple statistical analysis may give only the combined 

effects of different geological factors on fracture properties distribution, 

considering the limited number of fracture data available for this study. 

2. Neural networks provide a useful alternative to conventional statistical 

analysis.  The use of neural networks, however, is affected by a number of 

aspects.  Only careful examination for each application will help to extract 

helpful information from available data.  For the case of limited data, using 

multiple realizations of the leave-one-out cross validation helped to uniquely 

choose the optimal network configuration and assess the network prediction 

variability.  The trade off of this approach is the increased computational cost 

and additional effort in coding of the neural network. 

3. For limited data case, the linear activation function at the output layer of 

neural networks gives less biased prediction than sigmoidal and Gaussian 

functions.  

4. The results of neural network analysis on fracture spacing data suggest that, 

overall, the stratigraphic position plays the most important role in average 

fracture spacing distribution, followed by the lithology and bed thickness.  

The degree of folding and the structural position are the least influential 

parameters on average fracture spacing.  However, the effect of structural 

position is closely related to the fracture orientation.  On the fold limbs, the 
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average fracture spacing in the EW orientation, parallel to fold axis, is 

systematically larger than in the NS direction.  In the hinge, the average 

fracture spacing of EW fractures is systematically smaller than the average 

spacing of NS fractures. 

5. Bed thickness has weak effect on fracture spacing.  This is in agreement with 

the observation in un-deformed section of Lisburne Group (Hanks et al., 

1997).   

6. It may be that the fracture system has reached its saturation state and folding 

mostly affects fracture length.  This conclusion has important implications for 

the assessment of the fracture system anisotropy and its flow characteristics 

since, in many cases, only fracture density catches the engineers’ attention.  

Fracture height, which is often used to infer fracture length, may not 

accurately represent the true fracture length in layered formations since a 

large portion of fractures terminate at bedding planes.    

7. The combination of fracture spacing, fracture length and field observation 

suggests that the fracture development may have been caused by different 

geological events, one of which is closely related to folding and one of which 

is not.  However, I did not have enough information to classify our fractures 

according to separate events.  Judging from change of the average fracture 

length with folding, the NS fractures appear to be more related to the folding. 

8. The study of flow conductance of the fracture system shows that, given the 

same fracture spacing, differences in fracture length may introduce a 

significant anisotropy in the system.  The fracture set with greater length 

plays an important role, not only for flow along its principle direction, but 

also in the orthogonal direction.   

9. Overall, the fracture system in this study appears to be well connected at the 

scale of the study.  However, if the fracture density is reduced by half in both 

directions and the fracture length is taken from available data for open folds, 
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a number of model realizations show zero conductance.  It appears that the 

fracture density and the fracture size determine the system connectivity 

whereas the fracture length and transmissivity determine the system 

permeability anisotropy. 

10. The fracture termination does have an effect on flow conductance. The 

magnitude of this effect depends on the fracture length.  In cases of small 

fracture length with regard to fracture spacing, the effect of fracture 

termination in flow conductance can be negligible. 

11. The system conductance strongly depends on the separation distance between 

source and sink planes.  The flow conductance between two closely placed 

planes may be significantly greater than between two planes placed far from 

each other.  This observation is very important in assigning the values for 

permeability in a large-scale reservoir simulation. 

12. The choice of the statistical distribution has effect on the result of the flow 

conductance calculation.  Even a small difference between the distributions in 

the region of large fracture length may cause a big difference in simulated 

results.     

 

VIII.3. Recommendations and Further Work 

I identified the following areas for further developments and investigation. 

1. Convert the neural network program, which has been written in Visual Basic 

in Excel, into a separate program and develop an interface that allows easy  

use for network training and interpretation of the results.  

2. Incorporate different training methods to improve the neural network 

training.  The LOO cross validation method requires multiple network 

training and increases computational cost.  A fast training algorithm will help 

to reduce the network training time. 
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3. Apply flow simulations to the discrete fracture network.  Flow conductance 

analysis is easy and fast to calculate.  It does not give the equivalent 

permeability of the system, a measurement that is used in a large scale 

continuum simulation.  In applying the DFN to problems such as upscaling 

permeability for continuum simulation, flow simulation allows calculation of 

the equivalent permeability of the system.   

 



 

 

171

REFERENCES CITED 

Aguilera, R., 1995, Naturally Fractured Reservoirs: Pennwell Publishing Co., Tulsa, OK, 
521 p. 

Amari, S. I., N. Murata, K. R. Muller, M. Finke, and H. H. Yang, 1997, Asymptotic 
statistical theory of overtraining and cross validation: IEEE Transactions on Neural 
Networks, v. 8, p. 985-996. 

Ash, T., 1989, Dynamic node creation in backpropagation neural networks: Connection 
Science, v. 1, p. 365-375. 

Atkinson, P. K., and W. K. Wallace, 2003, Competent unit thickness variation in 
detachment folds in the northeastern Brooks Range, Alaska: Geometric analysis and 
a conceptual model: Journal of Structural Geology, v. 25, no. 10, p. 1751-1771. 

Bai, T., and D. D. Pollard, 2000, Fracture spacing in layered rocks: A new explanation 
based on the stress transition: Journal of Structural Geology, v. 22, no. 1, p. 43-57. 

Barton, C. A., and M. D. Zoback, 1992, Self-similar distribution and properties of 
macroscopic fractures at depth in crystalline rocks in the Cajon Pass scientific drill 
hole: Journal of Geophysical Research, v. 97, p. 5181-5200. 

Bear, J., 1993, Modeling flow and contaminant transport in fractured rocks, in J. Bear, 
C. F. Tsang, and G. de Marsily, eds., Flow and Contaminant Transport in Fractured 
Rock: Academic Press, San Diego, CA, p. 1-35.  

Belfield W. C., 1988, Characterization of a naturally fractured carbonate reservoir: 
Lisburne Field, Prudhoe Bay, Alaska: Society of Petroleum Engineers Annual 
Technical Conference and Exhibition, Houston, SPE Paper 18174. 

Billaux, D., J. P. Chiles, K. Hestir and J. Long, 1989, Three-dimensional statistical 
modeling of a fracture rock mass – An example from the Fanay-Augeres mine: 
International Journal of Rock Mechanics and Mining Sciences, v. 26, p. 281-299. 

Bishop, C. M., 1995, Neural Networks for Pattern Recognition: Clarendon Press, 
Oxford, 482 p. 

Bowden, G. J., H. R. Maier, and G. C. Dandy, 2002, Optimal division of data for neural 
network models in water resources applications: Water Resource Research, v. 38, no. 
2, p. 1-11. 

Box, G. E. P., and Jenkins, G. M., 1976, Time Series Analysis: Forecasting and Control, 
Holden-Day, San Francisco, CA, 575 p.  

Brinton, J., 2002, Natural fracturing in carbonate rocks as a function of lithology and 
structural position in a detachment fold: Examples from the northeastern Brooks 
Range, Alaska: M.S. thesis, University of Alaska, Fairbanks, AK, 126 p. 



 

 

172

Cacas, M. C., E. Ledoux, G. de Marsely, B. Tillie, A. Barbreau, E. Durand, B. Feuga and 
P. Peaudecerf, 1990, Modeling fracture flow with a stochastic discrete fracture 
network: Calibration and validation 1: The flow model: Water Resources Research, 
v. 26, no. 3, p. 479-489. 

Chauvin, Y., 1990, Dynamic behavior of constrained back-propagation networks, in D. 
S. Touretzky, ed., Advances in Neural Information Processing System 2: Morgan 
Kaufmann Publishers, San Mateo, CA, p. 642-649. 

Chiles, J. P., and G. de Marsily, 1993, Stochastic models of fracture systems and their 
use in flow and transport modeling, in J. Bear, C. F. Tsang, and G. de Marsily, eds., 
Flow and Contaminant Transport in Fractured Rock: Academic Press, San Diego, 
CA, p. 169-231. 

Chryssolouris, G., M. Lee, and A. Ramsey, 1996, Confidence interval prediction for 
neural network models: IEEE Transactions on Neural Networks, v. 7, p. 229-232. 

Cosgrove, J. W., and M. S. Ameen, 2000, A comparison of the geometry, spatial 
organization and fracture patterns associated with forced folds and buckle folds, in J. 
W. Cosgrove and M. S. Ameen, eds., Forced folds and fractures: Geological Society 
of London, Special Publications, London, p. 7-21.  

Dershowitz, W. S., and H. H. Einstein, 1988, Characterizing rock joint geometry with 
joint system models: Rock Mechanics and Rock Engineering, v. 21, p. 21-51. 

De Villiers, J., and E. Barnard, 1993, Backpropagation neural nets with one and two 
hidden layers: Neural Networks, v. 4, no. 2, p. 136-141.   

Doe, T., 1997, The problem of fracture flow: Water Environment and Technology, v. 9, 
p. 63-79. 

Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture, 
in W. E. Ham, ed., Classification of carbonate rocks: Memoirs of the American 
Association of Petroleum Geologists 1, p. 108-121. 

Dverstorp, B, and J. Anderson, 1989, Application of discrete fracture network concept 
with field data: Possibilities of model calibration and validation: Water Resource 
Research, v. 25, no. 4, p. 540-550. 

Efron, B., 1993, An Introduction to the Bootstrap: Chapman and Hall, New York, 436 p. 
Epard, J. L., and R. H. Jr. Groshong, 1995. Kinematics model of detachment folding 

including limb rotation, fixed hinges and layer-parallel strain: Tectonophysics, v. 
247, p. 85-103. 

Fausett, L., 1994, Fundamentals of Neural Networks Architectures, Algorithms, and 
Applications: Prentice Hall, Englewood Cliffs, NJ, 430 p. 

Garson, G. D., 1991, Interpreting neural network connection weights: Artif. Intelligent 
Expert, v. 6, p. 47-51. 



 

 

173

Garson, G. D., 1998, Neural networks: An Introductory Guide for Social Scientists: Sage 
Publications, Thousand Oaks, CA, 194 p. 

Goh, A. T. C., 1995, Back propagation neural networks for complex systems: Artif. 
Intelligence in Engineering, v. 9, p. 143-151. 

Guo, G., S. A. George, and R. P. Lindsey, 1999, Statistical analysis of surface 
lineaments and fractures for characterizing naturally fractured reservoirs, in R. 
Schatzinger and J. Jordan, eds., Reservoir characterization – Recent advances: 
AAPG Memoirs 71, p. 221-250 

Hagan, M. T., and M. Menhaj, 1994, Training feedforward networks with the Marquardt 
algorithm: IEEE Transactions on Neural Networks, v. 5, p. 989-993. 

Hanks, C. L., J. Lorenz, L. Teufel, and A. P. Krumhardt, 1997, Lithologic and structural 
controls on natural fracture distribution and behavior within the Lisburne Group, 
northeastern Brooks Range and north slope subsurface, Alaska: AAPG Bulletin, v. 
81, no. 10, p. 1700-1720. 

Hanks, C. L., J. Brinton, and J. Lorenz, 2000, Fracturing in the Lisburne Group as a 
function of carbonate lithology, mechanical stratigraphy and position in detachment 
folds, in The influence of fold and fracture development on reservoir behavior of the 
Lisburne Group of northern Alaska, first annual report: U.S. Department of Energy 
Contract DE-AC26-98BC15102, p. E1-E52. 

Harris, J., G. Taylor, and J. Walper, 1960, Relation of deformational structures in 
sedimentary rocks to regional and local structure: AAPG Bulletin, v. 44, no. 12, p. 
1853-1873. 

Helgelson, D. E., and A. Aydin, 1991, Characteristics of joint propagation across layer 
interface in sedimentary rocks: Journal of Structural Geology, v. 13, no. 8, p. 897-
911.  

Henning, P. H., J. E. Olson, and L. B. Thompson, 2000, Combining outcrop data and 
three-dimensional structural models to characterize fractured reservoirs: An example 
from Wyoming: AAPG Bulletin, v. 84, no. 6, p. 830-849. 

Herbert, A. W., and G. W. Lanyon, 1992, Discrete fracture network modeling of flow 
and transport within a fracture zone at Stripa, in L. R. Myer, N. G. W. Cook, R. E. 
Goodman, and C. F. Tsang, eds., Fractures and Jointed Rock Masses: Balkema 
Publishers, Rotterdam, Netherlands, p. 603-610.  

Hirose, Y., K. Yamashita, and S. Hijiya, 1991, Back-propagation algorithm which varies 
the number of hidden units: Neural Networks, v. 4, no. 1, p. 61-66. 

Homza, T. X., and W. K. Wallace, 1997, Detachment folds with fixed hinges and 
variable detachment depth, northeastern Brooks Range, Alaska: Journal of Structural 
Geology, v. 19, no. 3, p. 337-354. 

Hornik, K., M. Stinchcombe, and H. White, 1990, Multilayer feed forward neural 
networks are universal approximations: Neural Networks, v. 3, no. 4, p. 359-366. 



 

 

174

Hosking, J. R. M., and J. R. Wallis, 1997, Regional Frequency Analysis: Cambridge 
University Press, Cambridge, 224 p.  

Huang, Q., and J. Angelier, 1989, Fracture spacing and its relation to bed thickness: 
Geological Magazine, v. 126, p. 355-362. 

Huang, Z., J. Shimeld, M. Williamson, and J. Katsube, 1996, Permeability prediction 
with artificial neural network modeling in the venture gas field offshore eastern 
Canada: Geophysics, v. 61, p. 422-428. 

Hwang, J. T. G., and A. A. Ding, 1997, Prediction intervals for artificial neural 
networks: Journal of the American Statistical Association, v. 92, p. 748-757. 

Jacobs, R., 1988, Increase rates of convergence through learning rate adaptation: Neural 
Networks, v. 1, no. 4, p. 295-307. 

Jamison, W. R., 1997, Quantitative evaluation of fractures on Monshood anticline, a 
detachment fold in the foothills of western Canada: AAPG Bulletin, v. 81, no. 7, p. 
1110-1132. 

Jensen, L. J., L. W. Lake, P. W. M. Corbett, and D. J. Goggin, 1997, Statistics for 
Petroleum Engineers and Geoscientists: Prentice Hall, Englewood Cliffs, NJ, 390 p. 

Ji, S., and K. Saruwatari, 1998, A revised model for the relationship between joint 
spacing and layer thickness: Journal of Structural Geology, v. 20, no. 11, p. 1495-
1508. 

Kalell, R., M. Cottrell, and V. Vigneron, 2002, Bootstrap for neural model selection: 
Neorocomputing, v. 48, p. 175-183. 

Karpov, V. A, 2001, Lisburne formation fracture characterization and flow modeling: 
M.S. thesis, Texas A&M University, College Station, TX, 113 p. 

Ladeira, F. L., and N. J. Price, 1981, Relationship between fracture spacing and bed 
thickness: Journal of Structural Geology, v. 3, no. 2, p. 179-183. 

LeCun, Y., J. S. Denker, and S. A. Solla, 1990, Optimal brain damage, in D. S. 
Touretzky, ed., Advances in Neural Information Processing System 2: Morgan 
Kaufmann Publishers, San Mateo, CA, p. 598-602. 

Lek, S., M. Delacoste, P. Baran, I. Dimopoulous, J. Lauga, S. Aulagnier, 1996, 
Application of neural networks to modeling nonlinear relationship in ecology: Ecol. 
Modeling, v. 120, p. 65-73. 

Leonard, J., and M. A. Kramer, 1990, Improvement of the backpropagation  algorithm 
for training neural network: Computer Chem. Engineering, v. 14, p. 337-341. 

Lewis, P. A. W., and E. J. Orav, 1989, Simulation Methodology for Statisticians, 
Operations Analysts, and Engineers, v. 1: Wadsworth Inc., Pacific Grove, CA, 534 p. 

Lisle, R. J., 1994, Detection of zones of abnormal strains in structures using gausian 
curvature analysis: AAPG Bulletin, v. 78, no. 12, p. 1811-1819. 



 

 

175

Lisle, R. J., 2000, Predicting patterns of strain from three-dimensional fold geometries: 
neutral surface folds and forced folds, in J. W. Cosgrove and M. S. Ameen, eds., 
Forced folds and fractures: Geological Society of London, Special Publications, 
London, p. 213-221. 

Long, J. C. S., J. S. Remer, C. R. Wilson, and P. A. Witherspoon, 1982, Porous media 
equivalents for networks of discontinuous fractures: Water Resources Research, v. 
18, no. 5, p. 645-658. 

Maier, H. R., and G. C. Dandy, 1998, Understanding the behavior and optimizing the 
performance of back-propagation neural networks: An empirical study: 
Environmental Modeling and Software, v. 13, p. 179-191. 

Mathab, A., S. Xu, P. Grasso, and F. S. Kendorski, 1995, Use of alternative distributions 
for characterizing joint extent and spacing, in L. R. Myer, N. G. W. Cook, R. E. 
Goodman, and C. F. Tsang, eds., Fractured and Jointed Rock Masses:  Balkema 
Publishers, Rotterdam, Netherlands, p. 47-59. 

McQuillan, H., 1973, Small-scale fracture density in Asmari formation of southwest Iran 
and its relation to bed thickness and structural setting: AAPG Bulletin, v. 57, no. 12, 
p. 2367-2385. 

Missman, R. A., and J. Jameson, 1991, An evolving description of a fractured carbonate 
reservoir: the Lisburne field, Prudhoe Bay, Alaska, in R. Sneider, W. Massell, R. 
Mathis, D. Loren, and P. Wichmann, eds., The integration of geology, geophysics, 
petrophysics, and petroleum engineering in reservoir delineation, description, and 
management: AAPG-SPE-SPWLA Archie Conference, Houston, TX, p. 204-224. 

Montroll, E. W. and M. F. Schlesinger, 1983, Maximum entropy formalism, fractals, and 
1/f noise: A tale of tails: Journal of Statistical Physics, v. 32, p. 209-230. 

Moody, J. E., and J. Utans, 1992, Principle architecture selection for neural networks, in 
J. E. Moody, S. J. Hanson, and R. P. Lippmann, eds., Advances in Neural 
Information Processing System 4: Morgan Kaufmann Publishers, San Mateo, CA, p. 
683-690. 

Moore, T. E., W. K. Wallace, K. J. Bird, S. M. Karl, C. G. Mull, and J. T. Dillon, 1994. 
Chapter 3: Geology of northern Alaska, in G. Plafker and H. C. Berg, eds.: The 
geology of Alaska: The geology of North America, vol. Gi: Geological Society of 
America, Boulder, CO, p. 49-140. 

Murray, G. H., 1968, Quantitative fracture study – Spanish pool, North Dakota: AAPG 
Bulletin, v. 52, no. 1, p. 57-65.  

Narr, W., and J. Suppe, 1991, Joint spacing in sedimentary rocks: Journal of Structural 
Geology, v. 13, no. 10, p. 1037-1048. 

Neave, H. R., and P. L. Worthington, 1988, Distribution Free Tests: Unwin Hyman Ltd., 
London, 430 p. 



 

 

176

Nelson, R. A., 2001, Geologic Analysis of Naturally Fractured Reservoirs: Gulf 
Publishing Co., Houston, TX, 232 p. 

Ouenes, A., A. Zellou, P. M. Basinski, and C. F. Head, 1998, Practical use of neural 
networks in tight gas fractured reservoirs: Application to the San Juan Basin: Society 
of Petroleum Engineers Rocky Mountain Regional/Low Permeability Reservoirs 
Symposium and Exhibition, Denver, SPE Paper 39965. 

Ouenes, A., and L. J. Hartley, 2000, Integrated fractured reservoir modeling using both 
discrete and continuum approaches: Society of Petroleum Engineers Annual 
Technical Conference and Exhibition, Dallas, SPE Paper 62939. 

Ozesmi, S. L., and U. Ozesmi, 1999, An artificial neural network approach to spatial 
habitat modeling with interspecific interaction: Ecological Modeling, v. 116, p. 15-
31. 

Poblet, J., and K. McClay, 1996. Geometry and kinematics of single-layer detachment 
folds: AAPG Bulletin, v. 80, no. 7, p. 1085-1109. 

Pollard, D. D., and P. Segall, 1987, Theoretical displacements and stress near fractures 
in rocks: with applications to faults, joints, veins, dikes and solution surfaces, in B. 
K. Atkinson, ed.: Fracture Mechanics of Rock: Academic Press, London, p. 277-349. 

Price, N. J., and J. W. Cosgrove, 1990, Analysis of Geological Structures: Cambridge 
University Press, Cambridge, 502 p. 

Ramsey, J. G., and M. I. Huber, 1987. Folds and Fractures, The Techniques of Modern 
Structural Geology, vol. 2: Academic Press, London, 307 p. 

Ripley, B. D., 1996, Pattern Recognition and Neural Networks: Cambridge University 
Press, Cambridge, 416 p. 

Rivals, I., and L. Personnaz, 2000, Construction of confidence intervals for neural 
networks based on least squares estimation: Neural Networks, v. 13, no. 4, p. 463-
484.  

Rives, T., M. Razak, J. P. Petti, and K. D. Rawnsley, 1992, Joint spacing: Analog and 
numerical simulations: Journal of Structural Geology, v. 14, no. 8, p. 925-937. 

Rogers, S. J., J. H. Fang, C. L. Karr, and D. A. Stanley, 1992, Determination of lithology 
from well logs using a neural network: AAPG Bulletin, v. 76, no. 5, p. 731-739.  

Rouleau, A., and J. E. Gale, 1985, Statistical characterization of the fracture system in 
the Stripa Granite, Sweden: International Journal of Rock Mechanics and Mining 
Sciences and Geomechanics Abstracts, v. 22, p. 353-367.  

Rumelhart, D. E., and J. L. McClelland, 1986, Parallel Distributed Processing: 
Explorations in the Microstructure of Cognition, vol. 1: MIT Press, Cambridge, MA, 
576 p.  

Sahimi, M., 1995, Flow and Transport in Porous Media and Fractured Rock: VCH 
Publishers, Weinheim, Germany, 482 p. 



 

 

177

Sampson, L. E, and J. A. Marcou, 1988, Interference test in a fractured carbonate: A 
Lisburne case history: Society of Petroleum Engineers Annual Technical Conference 
and Exhibition, Houston, SPE Paper 18138. 

Siegel, A. F., and C. J. Morgan, 1996, Statistics and Data Analysis – An Introduction: 
John Wiley and Son, New York, 635 p. 

Silva, F. M., and L. B. Almeida, 1991, Speeding up back propagation: Advance Neural 
Computers, v. 4, p. 67-69.  

Smith, L., and F. W. Schwartz, 1993, Solute transport through fracture networks, in J. 
Bear, C. F. Tsang, and G. de Marsily, eds., Flow and Contaminant Transport in 
Fractured Rock: Academic Press, San Diego, CA, p. 129-168. 

Stearns, D. W., 1967, Certain aspects of fracture in naturally deformed rocks, in R. E. 
Riecker, ed., NSF advanced science seminar in rock mechanics: Air Force 
Cambridge Research Lab. Report, Bedford, MA, p. 97-118. 

Stearns, D. W., and M. Friedman, 1972, Reservoirs in fractured rock: AAPG Memoir, v. 
16, p. 82-100.  

Twomey, J. M., and A. E. Smith, 1998, Bias and variance of validation methods for 
function approximation neural networks under condition of sparse data: IEEE 
Transactions on Systems, Man, and Cybernetics – Part C: Applications and Reviews, 
v. 28, p. 417-430. 

Xue, G., A. Datta-Gupta, P. Valko, and T. Blassingame, 1997, Optimal transformations 
for multiple regression: Application to permeability estimation to permeability 
estimation from well logs: SPEFE, v. 7, p. 85-92. 

Wallace, W. K., and C. L. Hanks, 1990, Structural provinces of the northeastern Brooks 
Range, arctic national wildlife refuge, Alaska, AAPG Bulletin, v. 74, no. 7, p. 1100-
1118. 

Wasserman, P. D., 1993, Advanced Methods in Neural Computing: Van Nostrand 
Reinhold, New York, 255 p. 

Wessels, L., and E. Barnard, 1992, Avoiding false local minima by proper initialization 
of connections: IEEE Transactions on Neural Networks, v. 3, p. 899-905.    

Whalen, M. T., 2000, Baseline stratigraphy of the Lisburne Group, in The influence of 
fold and fracture development on reservoir behavior of the Lisburne Group of 
northern Alaska, first annual report: U.S. Department of Energy Contract DE-AC26-
98BC15102, p. B1-B14.  

Wu, H., and D. D. Pollard, 1995, An experimental study of the relationship between 
joint spacing and layer thickness: Journal of Structural Geology, v. 17, no. 6, p. 887-
905. 

Zapranis, A., and A-P. Refenes, 1999, Principles of Neural Model Identification, 
Selection and Adequacy: Springer-Verlag, London, 190 p. 



 

 

178

VITA 

 

Name: Thang Dinh Bui 

Address: PetroVietnam 

22 Ngo Quyen, Ha Noi, Viet Nam 

email: thangbui04@yahoo.com 

Education: Texas A&M University, College Station, TX, USA 

Ph.D., Petroleum Engineering, (August 2004) 

M.S., Petroleum Engineering (May 1998) 

 Moscow Institute of Oil and Gas, Moscow, Russia 

B.S., Petroleum Engineering (June 1991) 

Affiliations: Society of Petroleum Engineers (SPE) 

Honors: First place in the Master Division of the 1998 Gulf Coast Region 

Student Paper Contest, Corpus Christi, TX. 

Experience: Summers 2002, 2003: Engineering Intern – Schlumberger WCP, 

Houston, Texas. 

 1995 – 1999: Reservoir Engineer, PetroVietnam, Ha Noi, Viet Nam. 

 1992 – 1995: Production Engineer, VietSovPetro, Vung Tau, Viet Nam. 

Publication: Had published 4 professional papers since 1998. 

 


