

IMPES MODELING OF VOLUMETRIC DRY GAS RESERVOIRS

WITH MOBILE WATER

A Thesis

by

SAEED FORGHANY

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2004

Major Subject: Petroleum Engineering

IMPES MODELING OF VOLUMETRIC DRY GAS RESERVOIRS

WITH MOBILE WATER

A Thesis

by

SAEED FORGHANY

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

 Approved as to style and content by:

David S. Schechter

(Chair of Committee)

Robert R. Berg

(Member)

Thomas A. Blasingame

(Member)

Stephen Holditch

(Head of Department)

May 2004

Major Subject: Petroleum Engineering

iii

ABSTRACT

IMPES Modeling of Volumetric Dry Gas Reservoirs with Mobile Water. (May 2004)

Saeed Forghany, B.Sc., Sahand University of Technology (Iran)

Chair of Advisory Committee: Dr. David. S. Schechter

As the importance of natural gas as a resource increases, the importance of volumetric

dry gas reservoirs with mobile water as the dominant gas reservoir types will also

increase.

 This research developed an efficient, user-friendly simulation program specifically

designed to model two-phase flow of gas and water in these reservoirs.

Since fluid compression and viscous forces are the dominant parameters that control

fluid movement in a dry gas reservoir, we used the Implicit Pressure and Explicit

Saturation (IMPES) formulation of flow equations in which neither gravity nor capillary

pressure terms are pertinent. Therefore, the IMPES approach showed greater stability for

all cases considered in this work. The developed simulator is a Visual Basic Application

(VBA) code for which the users can obsereve the results in a pertinent Microsoft Excel

file.

 This program allows users to study the depletion behavior of volumetric dry gas

reservoirs with mobile water as efficiently and accurately as is now possible in more

expensive commercially available reservoir simulators. The program was validated by

comparing the results with a well-recognized commercial reservoir simulator (CMG).

The results of a battery of tests of this simulator matched very well with results of the

commercial reservoir simulator for all tested schemes including different simulation

plans; reservoir, grid and fluid data; and well configurations.

iv

 The observed applicability of the program suggests when dealing with volumetric dry

gas reservoirs with mobile water there is no need to employ more expensive commercial

reservoir simulators, as the program can reliably be used for any simulation scheme of

this case. Furthermore, the program can later be applied in a more robust reservoir

simulator as the part that handles dry gas cases.

v

DEDICATION

To my parents and to my little brother for all of their love, care and enthusiasm.

vi

ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere appreciation to the people

who have assisted me throughout my studies.

I would specifically like to thank my advisor, Dr. David Schechter for his guidance and

encouragement throughout my research. His patience over the period of doing my

research is also greatly appreciated.

I would also like to acknowledge Dr. Thomas Blasingame and Dr. Robert Berg for their

participation in my research as members of my advisory committee.

I also greatly appreciate the considerable aid of Dr. Erwin Putra in the Naturally

Fractured Reservoirs group whose helpful comments always helped me make progress in

my research.

Finally, I want to really thank all my friends especially the ones in the Naturally

Fractured Reservoirs group for making my graduate years pleasant.

vii

TABLE OF CONTENTS

Page

ABSTRACT……………………………….…………………….…………………..….. iii

DEDICATION…………………………….……………….………………....…..…….. .v

ACKNOWLEDGMENTS……………………..…….……….……….…………..…...…vi

TABLE OF CONTENTS………………………………..….….…………..…...…....… vii

LIST OF FIGURES……………………………..………………...……………………..ix

LIST OF TABLES……………………………………………...…...………..……….....xi

CHAPTER I INTRODUCTION………….…………………………………………1

 1.1 Background………………………..…………………………….........1
 1.2 Research Methodology………………………………………………..5

CHAPTER II IMPES FORMULATION FOR TWO-PHASE FLOW………..……..7

2.1 Diffusivity Equation…………………………………………………..7
2.2 Flow Equations………………..…………………….……………….11
2.3 Averaging of Flow Equation Terms……………….………..……….14
2.4 Material Balance Equation………………….……………………….16
2.5 IMPES Formulation…………………………………………………17

CHAPTER III PROGRAM CHARACTERISTICS AND PROPERTIES………….23

 3.1 VBA Code Algorithm……………….................…………………..23
 3.1.1 Initial Conditions……………………………………………26
 3.1.2 Well Rates and Pressures...….....28
 3.1.3 Boundary Conditions……………………………………….30
 3.1.4 Matrices A and B…………………………….......…………30
 3.1.5 Matrix Solver...34
 3.1.6 Timestep-Cut..36
 3.2 Output Units...38

CHAPTER IV VALIDATION AND ANALYSIS OF RESULTS…………….........39

 4.1 Simulation Schemes..39
 4.2 Validation of Plan 1: Three-Producer Case...42
 4.3 Validation of Plan 2: Injector-Producer Case..50
 4.4 Gas Volumes and Material Balance Calculations...............................52
 4.5 Analysis of the Depletion Schemes...56

CHAPTER V CONCLUSIONS……………………………………..……...............71

REFERENCES…………………………………………………..................…………....72

viii

Page

APPENDIX ……......................………………………………………………………....76

VITA……………………………………….......……………………...................…….137

ix

LIST OF FIGURES

FIGURE Page
1.1 World supply and consumption of natural gas..2

1.2 Phase diagram for a dry gas reservoir...3

2.1 Finite difference template used in the finite difference equation..............................10

2.2 Harmonic averaging of permeability...15

3.1 Flowchart of the 3-D, 2-phase code..24

3.2 Point-distributed system of gridding accounts for irregular grids............................25

3.3 Spatial definition of directions for expanding the diffusivity equation....................32

3.4 The matrix of equations for a 14-gridblock sample model.......................................34

3.5 Algorithm for the timestep-cut loop within the main time loop...............................37

4.1 Grid system and locations of production wells for case one....................................40

4.2 Water relative permeability used in cases 1 and 2.....................42

4.3 Gas relative permeability used in cases 1 and 2..42

4.4 Individual well gas rates..42

4.5 Gas rate plot for well W-2 generated by CMG..43

4.6 Gas rate plots for well W-2 generated by both the code and CMG...........................44

4.7 Gas rate plots for well W-3..45

4.8 Water rate plots for wells W-1 and W-2..45

4.9 Bottomhole pressure plots for wells W-1 and W-3..46

4.10 Gp and Wp plots for well W-2..47

4.11 Cumulative gas produced in the field..47

4.12 Cumulative water produced in the field..48

4.13 Average reservoir pressure..48

4.14 Water/Gas ratio for the field..49

4.15 Water injection rate...51

4.16 qg and pwf for the producer...51

x

FIGURE Page

4.17 Tank type model for a volumetric dry gas reservoir with water production..........52

4.18 p/z versus GP generated by the code...54

4.19 p/z versus Gp generated by CMG..55

4.20 Plots of total qg using two different timestep sizes...56

4.21 Gas saturation maps of layer 3 at timesteps 2, 10, 20

 and 30 generated by both the code and CMG...58

4.22 Water saturation maps of layer 3 at timesteps 2, 10, 20

 and 30 generated by both the code and CMG...62

4.23 Gas rate and pwf plots for a well with changing constraint......................................66

4.24 Block pressure projection in layer 5 at the first timestep..67

4.25 Block pressure projection in layer 5 at the last timestep...67

4.26 Gas rates for the case of two wells with different pwf ...68

4.27 Block pressure projection of layer 7 at the 10th timestep..69

4.28 Ratio of the gas rate of well 2 over that of well 1...70

xi

LIST OF TABLES

TABLE Page
2.1 Averaging of parameters..14

3.1 Units for the PVT properties used in the input file...26

4.1 Wells entries for case one...40

4.2 Reservoir input data..41

4.3 Relative permeability data..41

4.4 Wells entries for case 2: Injector-Producer..50

1

CHAPTER I

INTRODUCTION

Natural gas is becoming an increasingly important source of the world’s energy. In

recent years, natural gas use has grown the fastest of all the fossil fuels, and it will

continue to grow rapidly for several decades. World gas consumption grows by 3.3

percent/year compared with 2.2 percent/year for oil and 2.1 percent/year for coal. This

higher growth rate can be attributed to several factors such as the fact that natural gas,

including unconventional gas, is available in abundant quantities in many parts of the

world and also the lower price of gas relative to other fuels makes it attractive to many

gas operators and consumers.1 Fig. 1.1 demonstrates the world supply and consumption

of natural gas over the past few decades up to the present time. From these trends and

also this fact that oil production has already passed its peak it can be easily concluded

that even with this same tendency, natural gas will be the main source of energy that is

going to power the world in the next few decades. Regarding this fact, the significance

of developing tools for handling gas reservoirs is specified. A numerical simulation

program is a tool which, when properly applied, can provide an estimation of reservoir

performance under a variety of user specified conditions and constraints.

1.1 Background

Reservoir simulation is the art and science of using numerical techniques to solve the

equations for mass flow in porous media, considering the appropriate initial and

boundary conditions.2, 3 Thanks to different technical advances such as gridding, fluid

modeling, numerical approximations, linear and nonlinear solvers, reservoir and geolog-

This thesis follows the style and format of the Journal of SPE Reservoir Evaluation and

Engineering.

2

ical modeling, etc. simulators are getting more accurate, realistic, robust and user-

friendly. Simulation of three-dimensional flow of different phases in a reservoir requires

solving the system of coupled, nonlinear partial differential equations. These equations

arise from application of the conservation of mass principle to an oil-water-gas system.

100

140

180

220

260

300

1970 1975 1980 1985 1990 1995 2000 2005

Year

P
ro

du
ct

io
n/

C
on

su
m

pt
io

n,
 B

cf
/D

ay

Production Consumption

Fig. 1.1- World supply and consumption of natural gas (from bp.com4)

For most practical situations the flow equations can not be solved analytically. Instead,

the partial differential equations are approximated by algebraic equations known as finite

difference equations. The finite difference equations are obtained by replacing

derivatives with approximations derived from truncated Taylor series expansions.5, 6In

this study, we develop a numerical reservoir simulator that handles dry gas reservoirs

3

and we have validated this model by comparing the results with a commercially

available reservoir simulator. 7The significance of the work is discussed in the following

section. When we use “dry gas”, we are referring to a reservoir gas made up primarily of

methane with some intermediate-weight hydrocarbon molecules. The dry-gas-phase

diagram in Fig. 1.2 indicates that, because of this composition, dry gases do not undergo

phase changes following a pressure reduction and therefore are solely gases in the

reservoir and at the surface separator conditions. In this sense, “dry” does not refer to the

absence of water but indicates that no liquid hydrocarbons form in the reservoir,

wellbore or surface equipment during production.

Fig. 1.2- Phase diagram for a dry gas reservoir (from McCain11)

Temperature

Pressure path
in reservoir

4

Dry gas reservoirs are categorized into the following titles:

1. Dry gas volumetric reservoirs.

2. Dry gas reservoirs with water influx.

 3. Dry gas volumetric geopressured reservoirs.10

 Volumetric dry gas reservoirs: A volumetric dry gas reservoir, as the name implies,

is completely enclosed by low-permeability or completely impermeable barriers and

does not receive pressure support from external sources, such as an encroaching aquifer.

In addition, if the expansion of rock and the connate water are negligible, then the

primary source of pressure maintenance is gas expansion resulting from gas production

and the subsequent pressure reduction. In a volumetric dry gas reservoir the reservoir PV

occupied by gas remains constant over the productive life of the reservoir.

 Dry gas reservoirs with water influx: Many gas reservoirs are not completely

closed but are subjected to some natural water influx from an aquifer. Water

encroachment occurs when the pressure at the reservoir/aquifer boundary is reduced

following gas production from the reservoir. In gas reservoirs with water influx, pore

volume decreases by an amount equal to the net volume of water entering the reservoir

and the remaining unproduced.

 Dry gas volumetric geopressured reservoirs: In deep, geopressured gas reservoirs

the compressibility of the gas is much smaller than that of volumetric reservoirs and

does not totally dominate production performance. In geopressured systems the

compressibility of the rock and water may be just as large as the gas. Some investigators

have postulated that water will be released from shales as the reservoir compacts during

depletion. 11This would result in an internal water drive similar to aquifer influx.

Because the reservoir rock is usually highly compressible and undercompacted, the

decrease in pore volume during depletion may be very non-linear. Along with the rock

compressibility, the absolute permeability may also decrease with declining pressure.

The creation of an abnormally pressured reservoir requires unusual geologic conditions.

The reservoir is isolated from hydrostatic communication with the surface and is usually

5

geothermal as well. The isolation could result from shale totally surrounding the sand or

from faulting, either of which would coplicate reservoir performance and analysis.

 For abnormally or geopressured reservoirs, pressure gradients often approach values

equal to the overburden pressure gradient (i.e., ~1.0 psi/ft). 8, 9

 Among these types of dry gas reservoirs, in this study we will focus on volumetric

reservoir.

1.2 Research Methodology

This research is primarily accomplished by developing a computer program. The

program is a 1900-line-long VBA code that takes the input data from a Notepad format

file. This program simulates dry gas volumetric reservoirs. The program handles the

general case of a volumetric dry gas reservoir including but not limited to any

combination of boundary conditions, wells, production/injection plans, reservoir

dimensions, reservoir life, etc. The user can easily make any required changes both in

input data and in some settings of the program in the input file and then run the program

just like any commercial simulator. Once the run is complete, numeric results and values

are all stored in another Notepad file that can immediately be retrieved by the user. All

graphic results are plotted and/or tabulated in the MS Excel file which is attached to the

Visual Basic module. Different attributes of the code are discussed in detail in the next

chapter.

 The developed simulator is then validated by comparing the results with CMG

software for some different simulation schemes. 8

 The comparisons showed that in worse cases the difference of the code results from

CMG results is equal to or less than 0.8 percent, 0.9 percent, 0.5 percent, 0.4 percent and

0.4 percent for gq , wq , wfp , pG and pW respectively. Therefore the simulator can be

used when dealing with dry gas reservoirs with confidence. This code, afterwards, can

be included in a more robust reservoir simulator as the part that handles dry gas cases.

Because it provides reliable results for what it has been designed for.

6

The main significance of developing simulation programs is that this activity provides

better understanding of what a commercially available simulator. Developing simulation

codes helps a reservoir engineer analyze the results of a simulation case more reasonably

and consequentially, this permits the reservoir engineer to make more realistic decisions.

Some reservoir engineers view simulation software as a “black box”. 5, 13, 14 Developing

a simulation code helps the reservoir engineer to understand reservoir simulator is an

engineering tool and must be applied with appropriate engineering judgment.15

 In this report the study has been divided into chapters. In Chapter II, we provide a

detailed description of the code and pertinent input and output files. Chapter III consists

of the derivation diffusivity equation, the gas material balance equations, and the final

IMPES flow equation that is applied in the coding. Chapter IV discusses and analyzes

the results of the developed simulator we came up with for a few schemes and also

comparison of them with results of the same sets of cases in CMG. The conclusions will

follow this chapter. A listing of the Visual Basic code is included in the appendix.

7

CHAPTER II

IMPES FORMULATION FOR TWO-PHASE FLOW

In this chapter we will first derive the diffusivity equation from basic reservoir

engineering relationships. The manipulation of the material balance equations in order to

derive the final IMPES flow equations will follow. The averaging of flow equation

parameters will be discussed as well.

2.1 Diffusivity Equation

In order to use differential; equation for predicting the behavior of a reservoir it is

necessary to solve these relations subject to the appropriate boundary conditions. Only

for the simplest cases involving homogeneous reservoirs and very regular boundaries

(such as a circular boundary around a single well) can solutions be obtained by the

classic methods of mathematical physics.5 The set of the difference equations that are

amenable to solution by computers constitute a numerical model.

 The three basic reservoir engineering relationships that initiate the manipulation that

leads us to gas flow equations are: 15, 16

1. Darcy’s law

dx
dp

B
kAcq

igi
xg µ

= (Differential form for linear gas flow) (2.1)

 2. Mass Continuity Equation

t

 - = ug ∂
∂

•∇
)()(φρρ r ……………………………………………......………. (2.2)

8

3. Equation of State

 ρ = f(p) (Isothermal) …………………..…………………………….. (2.3)

The derivation of diffusivity equation is based on incorporating these three relationships.

For isothermal condition, fluid compressibility is defined as:

 c = - 1
V

dV
dp

 = 1 d
dpρ
ρ

……………………………………………….……… (2.4)

and the rock compressibility is

 fc =
1 d

dpφ
φ

 ………………………………….....……………………...........…... (2.5)

The derivation of the diffusivity equation for gas flow starts by substituting Darcy’s law

into the continuity equation which yields the generalized density form of the diffusivity

equation: 16

t
 =k

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
•∇

)(φρ
µ
ρ ………………………................……………………...... (2.6)

Recalling the definition of gas density, we have

zRT
pM

g =ρ ...(2.7)

Substituting Eq. 2.7 into Eq. 2.6, and eliminating the
RT
M terms, we obtain

 ⎥⎦
⎤

⎢⎣
⎡

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∇•∇

z
p

t
p

z
pk φ

µ
...(2.8)

If we assume that the effective permeability, k, is constant which is a very reasonable

assumption for gas reservoirs and we expand the righthand-side term using the product

rule, then Eq. 2.8 becomes:

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

=⎥⎦
⎤

⎢⎣
⎡

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∇•∇

z
p

ttz
p

kz
p

tk
p

z
p φφφ

µ
11 ...(2.9)

Expanding the time derivative terms using the chain rule yields

9

 ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∇•∇

t
p

z
p

pt
p

tz
p

k
p

z
p φφ

µ
1 ...(2.10)

Factoring out the porosity, we have

 ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∇•∇

t
p

z
p

pt
p

pz
p

k
p

z
p φ

φ
φ

µ
1 ...(2.11)

Recalling the definition of pore-volume compressibility, fc , we have

p

c f ∂
∂

=
φ

φ
1 ...(2.12)

Substituting Eq. 2.12 into Eq. 2.11, we obtain

 ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∇•∇

t
p

z
p

pt
pc

z
p

k
p

z
p

f
φ

µ
...(2.13)

Recalling the definition of isothermal gas compressibility, gc , we have

T

g p
z

zp
c ⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

−=
11 ...(2.14)

The alternative form of the definition of gas compressibility is (again for isothermal

conditions, but dropping the T subscript)

 ⎥⎦
⎤

⎢⎣
⎡

∂
∂

=
z
p

pp
zcg ..(2.15)

Rearranging Eq. 2.15, we have

 gc
z
p

z
p

p
=⎥⎦

⎤
⎢⎣
⎡

∂
∂ ..(2.16)

Substituting Eq. 2.16 into Eq. 2.17, we obtain

 ⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∇•∇

t
pc

z
p

t
pc

z
p

k
p

z
p

gf
φ

µ
...(2.17)

Recalling the definition of total compressibility, fgt ccc += , and substituting this

identity into Eq. 2.17 gives us

t
p

z
p

k
c

p
z

p t

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∇•∇

φ
µ

..(2.18)

10

Eq. 2.18 is the generalaized diffusivity equation for gas flow. 16

 In order to solve problems which involve this equation, the finite difference method

can be used. This equation is discretized into the following finite difference form:

t

p -p
k
c =

x
p +p -p n

i
1+n

i
2

1+n
1+i

1+n
i

1+n
1-i

∆∆
φµ

)(
2

……………………………………….. (2.19)

The n superscript indicates the old time level. All of the unknowns have already been

solved at the nth time level. The n+1 superscript indicates the new time level. We want

to solve for these unknown values at the new time level.

 Eq. 2.19 is called an implicit finite difference equation since it involves more than

one unknown. Three unknowns, pi-1
n+1, pi

n+1, and pi+1
n+1 occur because we chose the

n+1 time level to discretize the left-hand side of the equation. A template of this finite

difference equation is shown in Fig. 2.1.

Fig. 2.1- Finite difference template used in the finite difference equation.

We know the value of p at the n-time level and we are trying to determine the values of p

at the n+1 time level.

11

2.2 Flow Equations

By replacing the differential equations with difference equations, the partial differential

equations that describe fluid flow in reservoirs can be solved numerically. Discretization

of differential equations subdivides distance and time into definite, specified increments.

In this section we will manipulate the differential equations to treat the reservoir as if it

were composed of discrete volume elements.15, 17 The discrete approach we are going to

use amounts to discretizing the continuity equation. Each gridblock has a definite boundary

and the pressure represents the average pressure in the gridblock for material balance

purposes. For simplicity the derivation of the finite difference equations for 1-D gas flow

(two phases) are shown here in this section. When deriving IMPES flow equations for the

code the 3-D case will be handled.
 Discretization starts with developing a finite difference equation for the flow of gas and

water in a grid system. This finite difference equation conserves mass, so it is called the

material balance equation for gridblock. Beginning with a statement of the continuity,

material balance equation would be:

 Net rate of Flow in (scf/D) = Rate of Accumulation (scf/D)

If the system is defined as having constant density at standard conditions, the units of this

equation will be in standard cubic feet, scf, rather than working with mass.
The pore volume of the gridblock i is:

 Vp = φyhx∆∆ …………………………………………………….……………………..……… (2.20)

The gas-in-place can be calculated as:

g

gp

B
SV

GIP = …………………………………………………………….… (2.21)

where

 GIP = standard (stock tank) gas in place, scf

 Vp = pore volume of the gridblock, rcf

 Sg = average gas saturation of the gridblock, fraction

 Bg = formation volume factor at the average gridblock pressure, rcf/scf

 φ = average porosity of the gridblock, fraction

12

The rate of accumulation of gas including the production terms during the timestep is:

 =
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆

+ n

g

gp

n

g

gp

B
SV-

B
SV

t
1

1

+qg ………………………..………………………………. (2.22)

The quantities Vp, Sg, and Bg are evaluated at the time indicated by the superscripts, before

and after the time step. The quantity in brackets is the accumulation of oil in the gridblock

during the timestep. Dividing by ∆t puts the right-hand side on the rate basis. The left side

of the continuity equation deals with flow rates. It can be stated as:

 Net rate of flow in = rightleft qq + ………………………………………….…………. (2.23)

Where positive q is flow into the gridblock, negative flow is out of the gridblock. Usually

fluid is flowing through the gridblock, so one term is positive and the other is negative. Our

material balance equation can now be given as:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∆

+ n

g

gp
n

g

gp
rhtlft B

SV-
B

SV
t

1 = q+q
1

+qg ……………………...…………… (2.24)

Now, we need an expression for flowrate. We use Darcy's law for flow between the centers

of the gridblocks. The flow distance, ∆x, is the distance between the centers of the

gridblocks. The gridblock pressures are taken to be at the center of the gridblocks.

Flow from the right, from gridblock i+1 to gridblock i, is

B

Au = scf/Dq
g

rht
rht)(…………………………………………………….…..…. (2.25)

 qright)(yh
x

p-p
B

0.00633kk
 = i1+i

gg

rg ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

µ

)(1 ii
g

r pp
B
k

x
y0.00633kh = −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

∆
∆

+µ
 …………………..……………… (2.26)

13

The first factor is constant with time. It also applies to both phases. This is called

"transmissibility" and is saved separately in the computations.

Now we define:

x
ykh = T 1/2+i ∆

∆00633.0 ………………………..……………….....................… (2.27)

The subscript i+1/2 indicates that the coefficient applies between gridblocks i and i+1. We

will replace i+1/2 with E, for the "east" direction. The notation for transmissibility can be

represented as follows:

x
y0.00633kh=T E ∆

∆ ……………………………………..…………..………. (2.28)

For a 3-D flow, we will use the following directional notation:

 i+1/2= E

 i-1/2 =W

 j+1/2=N

 j-1/2 =S

 k+1/2=Bk-1/2 =T

The next factor in Eq. 2.23 is called mobility, λ . Its value changes with time and is defined

as:

 =+ 2/1giλ
gE

r

ig

r

B
k=

B
k

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+ µµ 2/1

…………………………..………………. (2.29)

where:

14

 (Bg)E = (Bg i + Bg i+1)/2

 (µg)E = (µgi + µgi+1)/2

 (krg)E = upstream krg

2.3 Averaging of Flow Equation Terms

The following elements of the diffusivity equation need to be averaged:

1. Absolute permeability

2. Relative permeability of both phases

3. Viscosity of both phases

4. Porosity3

There is no unique way to choose the values of 2/12/1 , ++ ii kλ etc. In general the values are

averaged in such a way that they give the most accurate values possible for the flow rate

and accumulation terms. In this case, from literature the properties are averaged as given

in Table 2.1. The methodology of averaging is presented in Aziz and Settari’s book.

Table 2.1-Averaging of parameters.

Averaged Parameter Method of Averaging Units
Absolute Permeability Harmonic Averaging md
Relative Permeability Upstream Weighting -

Porosity Arithmetic Averaging -
Viscosity Arithmetic Averaging cp

Formation Volume Factor Arithmetic Averaging rcf/scf – STB/scf

15

Fig. 2.2- Harmonic averaging of permeability

In case of a single fluid flow, by summing the flow rate from grid center i to block

boundary i+1/2 to the flow rate from block boundary i+1/2 to block center i+1 and then

comparing the result with the flow rate from i to i+1 (Fig. 2.3), one can see that the

averaged equation for permeability term in east direction will look like this3:

1

1
2/1

2

+

+
+ +

=
ii

ii
i kk

kk
k ………………………………………………..…….…….. (2.30)

But for relative permeabilities upstream weighting is applied which is a consequence of

the hyperbolic nature of the problem. Raithby showed that the upstream weighting leads

to an accurate solution. The upstream weighting is defined as follows3, 17:

)(girgrg Skk = if flow is from i to i+1.

 And rgk =)(1+girg Sk if flow is from i+1 to i.

This method of weighting takes effect when interpolating for gas and water relative

permeabilities.

 The pressure dependent properties, viscosities and formation volume factors are

assumed to be arithmetically averaged since these properties are not variable in our case.

A simple arithmetic average is also used for porosity.

i i+1

iδ 1+iδ

i+1/2

16

2.4 Material Balance Equation

Our material balance equation now has the following form:

() ()

() ()

() () g

1

11

11

11

q1
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+

n

g

gp
n

g

gp
iiB

gB

r
i+iT

gT

r

i+iS
gS

r
i+iN

gN

r

i+iE
gE

r
i-iW

gW

r

B
SV-

B
SV

t
 =p-pTB

kp-pTB
k

p-pTB
kp-pTB

k

 p-pTB
k+p-pTB

k

µµ

µµ

µµ

We now consolidate the notation by defining the gas symmetrical flow coefficient as

follows (for the east direction for instance):

TB
k = a E

gE

r
gE ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
µ

……………………………………………………………. (2.32)

The Gas Material Balance Equation now has a simpler form. The resulting 3-D finite

difference equation is:

 agE(pi + 1 - pijk)

 + agW(pi - 1 - pijk)

 + agN(pj + 1 - pijk)

 + agS(pj - 1 - pijk)

 + agB(pk + 1 - pijk)

 + agT(pk - 1 - pijk)
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∆

+ n

g

gp
n

g

gp

B
SV-

B
SV

t
 =

1
1 +qg (2.33)

The equation can be simplified further by defining a general difference operator as follows:

…….…….…………..…. (2.31)

17

 ∆ag∆p = agE(pi + 1 - pijk)

 + agW(pi - 1 - pijk)

 + agN(pj + 1 - pijk)

 + agS(pj - 1 - pijk)

 + agB(pk + 1 - pijk)

 + agT(pk - 1 - pijk) ……………………………………………………..(2.34)

The general Gas Material Balance Equation can then be written as:

………………………………. (2.35)

The general Water Material Balance Equation may also similarly be derived as:

... (2.36)

2.5 IMPES Formulation

The choice of the method for solving the flow equations in a reservoir simulator will

control the ease of use, accuracy, and to some degree the cost of the simulator. Therefore

choosing the right method has to be done with extensive insight.

 Several options exist for picking the dependent variables in multi-phase problems. In

two-phase problems, the most common option is to solve for one phase pressure (gp

here in this case) and two saturations. Different studies of formulations lead us to the

Implicit Pressure, Explicit Saturation (IMPES) procedure which involves solving first

implicitly (as required for stability) for the gas pressure at each point and then solving

explicitly for the saturations. IMPES is the most commonly used sequential approach

among other manipulation techniques. In sequential methods the equation are

g
g

gp
n

g

gp
1+n

g q
B

SV -
B

SV
t

1 = pa +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

∆∆

w
w

wp
n

w

wp
1+n

w q
B

SV -
B

SV
t

1 = pa +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

∆∆

18

manipulated to separate the solution of the pressure equation from that of the saturation

equation. Its appeal is a result of greatly reduced computing requirements, because it

avoids the simultaneous implicit solution for several unknowns at each gridpint.12, 18, 19

So IMPES method is chosen to derive the final flow equations that are to be discretized

for coding in this research.

 For the flow of a gas in a dry gas reservoir (in the absence of any condensate or oil),

fluid compression and viscous forces control fluid movement. So gravity and capillary

forces are not pertinent and besides capillary pressure may not be applied in this case

since there is no oil or condensate.20, 21 Since there is going to be no gravity terms or

cp in the equations, IMPES approach will have less stability limitations and can

definitely be used more efficiently and this another motivation that makes us feel even

more confident about using IMPES for this code.

 For our case, the following main assumption for IMPES method will be taken into

account.

1. 2 phase model (gas and water)

2. A plus and a minus sign refer to production and injection cases respectively.

3. No gravity terms

4. No water influx from an aquifer

The steps for the IMPES method are:

Step 1. Calculate coefficients to the pressure equation

Step 2. Matrix solution of the pressure equation for all pn+1

Step 3. Explicit (point-by-point) solution of 1+n
gS , 1+n

wS

 In this procedure, the saturations are eliminated by adding the individual phase material

balance equations. The resultant equation has only one unknown, a phase pressure which

is obtained by simultaneous solution of a set of equations. Then saturations are

determined explicitly by solving material balance equations.

 For the 3-d system, rearranging the two finite difference equations we came up with

yields these saturation equations:

19

 ()
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−∆∆∆+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= +

+

+
+

g
n

g

n

g

gp
n
p

n
gn

g qpat
B

SV
V
B

S 1
1

1
1 …………………..………….. (2.37)

 ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∆∆∆+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= +

+

+
+

w
n

w

n

w

wp
n
p

n
wn

w qpat
B

SV
V
B

S 1
1

1
1 ………..………….……..….. (2.38)

Total saturation must be equal to unity,

 111 =+ ++ n
g

n
w SS …………………………..…………………………………. (2.39)

Eliminating unknown saturation terms using the recent equation, we’ll have:

 =+1n
pV ()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∆∆∆+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ++
w

n
w

n

w

wpn
w qpat

B
SV

B 11 +

 ()
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−∆∆∆+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

g
n

g

n

g

gpn
g qpat

B
SV

B 11 …………………………………..….. (2.40)

Expanding this equation, we obtain

 =+1n
pV [] ()n

wpn
w

n
w

w
n

w
n
w SV

B
B

tqpaB
1

11
+

++ +∆−∆∆ +

 [] ()n
gpn

g

n
g

g
n

g
n
g SV

B
B

tqpaB
1

11
+

++ +∆−∆∆ …………….……….……….…….. (2.41)

Gas and water compressibilities are respectively:

p

B
B

c g
n
g

g ∆

∆
−=

1 .. ………………………………………….…….……….. (2.42)

20

p

B
B

c w
n
w

w ∆
∆

−=
1 ………………………………………….………….…......(2.43)

 Rearranging these equations yields

)(1 1
1

nn
gn

g

n
g ppc

B
B

−−= +
+

………………………………..……….……….. (2.44)

)(1 1
1

nn
wn

w

n
w ppc

B
B

−−= +
+

………………………………..………….…….. (2.45)

Formation compressibility is defined as:

p

V
V

c p
n
p

f ∆

∆
=

1 ……………………………………………………………. (2.46)

)(1 1
1

nn
fn

p

n
p ppc

V
V

−+= +
+

……………………….………………………… (2.47)

By substituting the compressibility equations into the pore volume equation we obtain:

 [] []=−∆∆+−∆∆ ++++
g

n
g

n
gw

n
w

n
w qpaBqpaB 1111

 ()[]() ()[](){ }n
gp

nn
g

n
wp

nn
w

n
p SVppcSVppcV

t
−−−−−−

∆
+++ 111 111 ……..….. (2.48)

By Simplifying Right Hand Side of this equation and substituting it into previous

equation, we obtain:

 RHS= { }))(()(1 1 nnn
gg

n
wwf

n
g

n
w

n
p ppScSccSS
t

V
−++++−

∆
+ ...…….…………. (2.49)

Total compressibility is defined as n
gg

n
wwft ScSccc ++= …………….………….. (2.50)

So, we’ll have:

 [] [] ()nnt
n
p

g
n

g
n
gw

n
w

n
w pp

t
cV

qpaBqpaB −
∆

=−∆∆+−∆∆ +++++ 11111 …………… (2.51)

21

If the total rate is defined as g
n
gw

n
wt qBqBq 11 ++ += , then recent relationship can be

rearranged to obtain the final form which is as follows:

 () g
n

gw
n

w
nnt

n
pn

g
n
g

n
w

n
w qBqBpp

t
cV

paBpaB 1111111 +++++++ ±±−
∆

=∆∆+∆∆ (2.52)

The elements of A matrix and B matrix that are to be discretized in two separate

subroutines in the code can be shown as:

 11 ++ += n
ggW

n
wwWW BaBaa ………………………………………….…….. (2.53)

 11 ++ += n
ggE

n
wwEE BaBaa …………………………..……………….…….. (2.54)

 11 ++ += n
ggS

n
wwSS BaBaa ……………………..…………………….…….. (2.55)

 11 ++ += n
ggN

n
wwNN BaBaa …………………..……………………….…….. (2.56)

 11 ++ += n
ggT

n
wwTT BaBaa …….…………………………………….…….... (2.57)

 11 ++ += n
ggB

n
wwBB BaBaa …………………………………………….…….. (2.58)

t
CV

Baaaaaa

Baaaaaaa

t
n

pn
ggBgTgNgSgEgW

n
wwBwTwNwSwEwWC

∆
−+++++−

+++++−=

+

+

1

1

)(

)(
 ………………..….… (2.59)

 11 ++ ±±
∆

−= n
gg

n
ww

n
i

t
n

p BqBqP
t
CV

b ………………..……………………… (2.60)

Pore volume and Chord slope relationships that are used in above derivations are

respectively:

22

 zyxVp ∆∆∆= φ ……………………………………………………………… (2.61)

 [])(1 11 nn
f

n
p

n
p ppCVV −+= ++ ………………..………………………….. (2.62)

 [])(1 11 nn
ww

n
w ppCBB −+= ++ ……………….…………………………… (2.63)

 [])(1 11 nn
gg

n
g ppCBB −+= ++ …………………………….………………. (2.64)

23

CHAPTER III

PROGRAM CHARACTERISTICS AND PROPERTIES

In this chapter the main attributes of the developed simulator as well as the input and

output units are discussed. The simulator is a VBA code which is coupled to the

pertinent Excel file. It evaluates/forecasts the declining regime of volumetric dry gas

reservoirs for two-phase (gas and water), 3-D models over the productive life of them.

3.1 VBA Code Algorithm

The 3-D, two-phase code that is developed is an IMPES manipulation of gas and water

flow equations. The code is a convoluted structure of different subroutines that are all

embodied by a main subroutine called Main that controls the order of the run of the

subroutines and loops them over each timestep until the last timestep is reached. Each of

these subroutines does a specific task when it is reached in the order it is placed within

the main loop or when it is called by another subroutine. Some subroutines may be

called more than once. Some basic tasks such as interpolations and averagings are

accomplished in functions instead of subroutines. Fig. 3.1 exhibits the flowchart of the

code. This diagram is the basic algorithm of the code and does not represent all of the

subroutines. We will go through the code algorithm within one single timestep following

above flowchart.

 Read Data: Once the program starts running the first subroutine in the time loop runs

which takes care of reading reservoir, wells, PVT, relative permeabilities and all data

required for the program to run from the input file. This subroutine is written in such a

way that it is capable of accepting either uniform or irregular grids. Gridblocks can be of

different dimensions in either of x, y or z directions or any combination of them. The use

of irregular grid spacing is essential in models.

24

 Fig. 3.1- Flowchart of the 3-D, 2-phase code

Read Data

Allocate Memory

Initialize

Begin Time Stepping

Replace Old Parameters
With the New Ones

Interpolate PVT

Calculate Rates and Bottomhole Pressures

Build Matrices A and B

Call Matrix Solver

Get New Pressures

Update PVT, Rates and Saturations

Write Results

Is the last timestep reached?

Are the saturations
within the tolerable

Yes

No

Stop Running
Yes

No

25

In many practical problems it is necessary to refine the grid in certain parts of the

reservoir in order to obtain desired accuracy. For example, local refinement is often

necessary around the wellbore. On the other hand it is often possible to use coarser grid

over area where pressure and saturation change slowly. Irregular grid is also

advantageous in cross-sectional and 3-D simulation of stratified reservoirs where the

vertical gridblocks are chosen according to reservoir stratification. In practice we always

want to keep the grid as coarse as possible (especially in 3-D simulations).3

 In order for the code to be able to handle different gridblock sizes in a particular

direction, the method of grid construction is point-distributed (as shown in Fig. 3.2) in

Fig. 3.2- Point-distributed system of gridding accounts for irregular grids (from Aziz

and Settari3)

which the grid points are selected first and the block boundaries are placed half-way

between the grid points:

 2/)(2/1++ ∆= ii Xδ …………………………………………………………. (3.1)

 2/)(2/1−− ∆= ii Xδ ………………………………………………………….. (3.2)

2/1−∆ iX 2/1+∆ iX

2/)(2/12/1 −+ ∆+∆=∆ iii XXX

−iδ +iδ

iX 1+iX 1−iX

Block
boundary

26

Unlike many commercial simulators, the code can handle models of any sizes. All the

user has to do to define the size of a problem is to enter the number of gridblocks in each

direction if the model is supposed to be uniform in that particular direction. But if the

model has to be non-uniform in a particular direction the user must enter the sizes of all

gridblocks in that direction.

 Porosity and permeabilities can also be configured differently in different directions.

In most cases permeability in z direction is considerably less than what it is in other

directions.

 The PVT table used for interpolation PVT properties of a given reservoir’s gas and

water can handle pressures starting from standard conditions up to 4,000 psi and the

units for this table are tabulated in Table 3.1.

Table 3.1- Units for the PVT properties used in the input file

Pressure wB wµ wC gB gµ gC

psi rcf/scf cp 1/psi rcf/scf cp 1/psi

Allocate Memory: The next thing after reading the input set of data is allocating

required memory for each variable.

3.1.1 Initial Conditions

To complete the mathematical description of a reservoir (following Eq. 2.49 in chapter

II), it is necessary to specify initial conditions.12 Initialize subroutine is the place for

27

basing the initial conditions to begin the timestep sequence. For the initial conditions,

n=0, a value is specified for pressure, gas saturation and water saturation and then these

parameters have to be initialized in every node by assigning the values to three-

dimensional arrays through a 333 ×× spatial loop. Pore volumes are calculated for each

gridblock and the summation of all of them is stored as the initial reservoir pore volume.

Formation volume factors, viscosities and compressibility values are located by

interpolation. Total compressibility is calculated using the existing saturations and phase

compressibilities according to the following formula from the previous chapter:

 n
gg

n
wwft ScSccc ++= ……………………………………………………... (2.47)

Initialize is also where total fluids in place are calculated. Relative permeability to each

phase is calculated by interpolation with recent saturations.

Begin Time Stepping: Now, the calculations are ready to get started with the time loop.

The time loop is a do loop which repeats the following steps until it reaches the last

timestep.

 Replace Old Parameters With the New Ones: At this stage the new pressures

calculated at the end of the previous timestep are designated as old values at the

beginning of the new timestep. The same procedure is also applied for pore volumes,

saturations and formation volume factors. The existing pressures are used to update

viscosity, compressibility, total compressibility and relative permeabilites. Here

viscosity, compressibility and relative permeabilites are interpolated. Using the

28

interpolated values of relative permeability, FVF and viscosity, the mobilities are

evaluated. Also transmissibilities need to be evaluated for all directions (west, east,

south, north, top and bottom) at this same stage, because they are going to be used in the

A matrix.

3.1.2 Well Rates and Pressures

The well equations use pressures at the center of the gridblocks. These pressures represent

material balance average pressures in the gridblock. However, if a well is located in the

center of a gridblock, the gridblock pressure, pi,j is not the wellbore flowing pressure, pwf.

These equations compute the gas flow from gridblock to gridblock. So if a well is located

in a cell, we need additional equations to relate the well performance to the cell variables.

Steady state flow occurs within a cell and uses Peaceman’s equations15:

 () p - p
B
k J = q 1 +n

j,i,
r

n

model wfk
g

g ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ

…………………………………………….… (3.3)

 () p - p
B
k J = q 1 +n

j,i,
r

n

w
modelw wfk⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
µ

…………..……………….……………….… (3.4)

The fluid and rock properties are the same as for the cells. We now have 2 equations with

3 unknowns: qw, qg and pwf. This means that the user must specify one of these unknowns

which is going to be the condition under which the well will produce. For example, if the

user specifies qg, then qw and pwf are calculated. Similarly if we specify pwf, then we can

calculate qw and qg from the above equations.

 In Peaceman’s equations Jmodel is called “productivity index” or “well index” and is

defined as follows:

s + r/rln
kh (0.00633) 2 = J

wo
model

π …………………………..…………………………. (3.5)

29

Where ro is calculated using the following equations:

1) When ∆x = ∆y, kx = ky,

 ro= X∆2.0 . ..(3.6)

2) Otherwise,

() ()[]

)k/k(+)(

 + 0.28
 = r 4/1

yx
4/1

22 2/1

o
k/k

yk/kxk/k

xy

yxxy ∆∆
. ...(3.7)

There are essentially two methods for representing a well in a simulator: by rate constraint

or by pressure constraint.5, 22 Both constraint methods are contained in the code and are

summarized below.

 Well BHP and Rates for Constant Rate Constraint: In this representation rates may

be specified for injectors or producers. If the rate of any one phase is specified then the

rate of the other phases can be calculated with obtaining the bottomhole pressure first as

follows:

β

β

λJ
q

pp iwf −= . ………………………………………..………… (3.8)

)(wfi ppJq −= αα λ …………………………………………………… (3.9)

where β is the phase whose rate is known and α is the phase whose rate is unknown.

 Well Rates for Constant Bottomhole Pressure Constraint: If the bottomhole

pressure and well productivity index are known then the rate of any phase can be

30

obtained as in Eq. 3.10. This calculation is done in a different subroutine from the

subroutine for the previous constraint:

)(wfi ppJq −= αα λ . ………………..………………………………….. (3.10)

3.1.3 Boundary Conditions

For our 3-D case, at the left and right boundaries, we need to specify equations other

than the discretized form of the diffusivity equation derived in chapter II, i.e. Eq. 2.16:

t

p -p
k
c =

)x(
p +p2 -p n

i
1+n

i
2

1+n
1+i

1+n
i

1+n
1-i

∆∆
φµ

. ………….………………………….. . (2.16)

The usual boundary condition is called a “no-flow” boundary condition or the Neumann

condition.8In other words, no fluid flows across the outer boundaries. A frequent

assumption in reservoir simulation is that the reservoir lies within some closed boundary

across which there is no flow, and that fluid injection and production takes place at wells

located at points within the interior of the reservoir.12, 23 This condition quite fits the main

assumption of developing this simulator which is handling volumetric dry gas reservoirs.

Because in this type of reservoirs there is no flow or pressure communication between the

reservoir and the adjacent media.

 We should note that at each well, either the pressure or the flow rate for a phase is

specified and this specification is, in fact, the most important part of the boundary

conditions12 which was detailed in the previous section. The boundary condition relations

that apply in the discretized form of the final flow equation will come in the following

section.

3.1.4 Matrices A and B

We now can state all the equations that are to be solved simultaneously for each

timestep.

 Recalling the discretized form of the diffusivity equation we derived in chapter II, we

have:

31

t

p -p
k
c =

)x(
p +p2 -p n

i
1+n

i
2

1+n
1+i

1+n
i

1+n
1-i

∆∆
φµ

………….…………….……………... (2.16)

For our 3-D system, according to the directions defined in Fig. 3.3, this equation can be

expanded as follows:

 aw(w, g) . (Pi-1,j,k – Pi,j,k) + ae(w, g) . (Pi+1,j,k – Pi,j,k) + as(w, g) . (Pi,j-1,k – Pj,j,k) +

 an(w, g) . (Pi,j+1,k – Pj,j,k) + ab(w, g) . (Pi,j,k-1 – Pj,j,k) + at(w, g) . (Pi,j,k+1 – Pj,j,k) =

 n
pV Ct(Pi,j,k

n+1 – Pi,j,k
n)/∆t ………………………………………………….. (3.11)

 aw(w, g) Pi-1,j,k – aw(w, g) Pi,j,k + ae(w, g) Pi+1,j,k – ae(w, g) Pi,j,k + as(w, g)Pi,j-1,k –

 as(w, g) Pi,j,k + an(w, g) Pi,j+1,k – an(w, g) Pi,j,k + ab(w, g) Pi,j,k-1 – ab(w,g) Pi,j,k +

 at(w, g) Pi,j,k+1 – at(w, g) Pi,j,k - n
pV CtPi,j,k

n+1/∆t = n
pV tC Pi,j,k

n/∆t …...……. (3.12)

From this point forward we change the notation from aw(w, g) simply to Wa and ae(w, g)

to Ea and etc. Now we define Ca for central gridblocks as follows:

t
CV

aaaaaaa t
n

p
BTNSEWC ∆

−+++++−=)(…………..……..……..… (3.13)

32

Fig. 3.3- Spatial definition of directions for expanding the diffusivity equation

Therefore Eq. 3.12 is simplified to the following format:

 Wa Pi-1,j,k + Ea Pi+1,j,k + Sa Pi,j-1,k + Na Pi,j+1,k + Ba Pi,j,k-1 + Ta Pi,j,k+1 + Ca Pi,j,k =

 n
pV tC n

kjiP ,, /∆t ……………….……..…………………………..………… (3.14)

Recent equation makes up a system of simultaneous linear equations with respect to the

unknown pressures. The number of unknowns and equations is defined by the user is the

number of gridblocks in a given model. For ease of the equations, let us define α as the

following:

 tCV t
n

p ∆= /β ……………………………………………………………… (3.15)

For example if there are 14 gridblocks in a model, the equations will look like the

following:

 nn
N

n
E

n
C PPaPaPa 1

1
4

1
2

1
1 β−=++ +++ ………………….…………..……….. (3.16)

 nn
T

n
N

n
E

n
C

n
W PPaPaPaPaPa 2

1
8

1
5

1
3

1
2

1
1 β−=++++ +++++ ..………………….(3.17)

West East

Top

Bottom

North

South

33

 nn
T

n
N

n
E

n
C

n
W PPaPaPaPaPa 3

1
9

1
6

1
4

1
3

1
2 β−=++++ +++++ ..………………... (3.18)

 nn
E

n
C

n
W

n
S

n
B PPaPaPaPaPa 13

1
14

1
13

1
12

!
10

1
7 β−=++++ +++++ ……….………. (3.19)

 nn
C

n
W

n
S

n
B PPaPaPaPa 14

1
14

1
13

1
11

1
8 β−=+++ ++++ ………….……..………... (3.20)

Therefore, for this 14-gridblock model, we have 14 equations and 14 unknowns. The

first and last equations in this set are the governing equations for boundary conditions.

This set of equations can be represented by a matrix equation, which can simply be

written as:

 BpA
rr

= …………………………………………………………………….. (3.21)

where A is the coefficient matrix and pr and B
r

are column vectors. Therefore, the set of

equations can be shown as Fig. 3.4. B
r

consists of the right hand side terms of the

equations which are all known. In this matrix presentation a C represents a central flow

coefficient; a W represents a west flow coefficient and etc.

 Now that we made up our matrix presentation of the flow equations, we need to see

what each coefficient is. For our IMPES formulation all of the coefficients in the left

hand side matrix are Eqs. 2.50 through 2.56 in chapter II. The values in the B matrix for

the IMPES formulation for the perforated blocks are computed using Eq. 2.57 in chapter

II which has the total flow rate term in addition to β here.

 In the subroutines of matrices A and B in the code, required average values for

formation volume factors and viscosities are calculated. The direction of flow is

determined to take the upstream relative permeabilites. For the constant bottomhole

pressure case, B vector will have the part of the total rate, which has the old pressure

vector as a multiplier. But the one which has the new pressure vector as a multiplier will

go into A matrix to the central flow coefficient.

.

.

.

.

.

.

34

nn

P
P
P
P
P
P
P
P
P
P
P
P
P
P

P
P
P
P
P
P
P
P
P
P
P
P
P
P

CWSB
ECWSB

ECWSB
NECWSB

NECWSB
NECWSB

TNECWSB
TNECWSB

TNECWS
TNECWS

TNECWS
TNECW

TNECW
TNEC

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−
−
−
−
−
−
−
−
−
−
−
−
−
−

=

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
+

14

13

12

11

10

9

8

7

6

5

4

3

2

1
1

14

13

12

11

10

9

8

7

6

5

4

3

2

1

..............................
...........................

...........................
........................

........................

........................
.....................

.....................

........................

........................

........................

...........................

...........................

..............................

β
β
β
β
β
β
β
β
β
β
β
β
β
β

Fig. 3.4- The matrix of equations for a 14-gridblock sample model

3.1.5 Matrix Solver

Once matrices A and B are built, the next task the time loop does is to solve the matrices

by calling the matrix solver subroutine. Solver gets the flow coefficients from the A

matrix and the known values of right hand side from B vector and returns the new

pressure values.

 The solution of the pressure equation can either be very simple or very difficult, depend-

ing on the physical problem. Almost all 3-D problems are considered relatively difficult to

difficult and the effort required to solve the pressure equation becomes very significant in

relation to the rest of the reservoir simulation problem. It is not unusual for the computing

cost of solving Eq. 3.21 to be as high as 80% to 90% of the total reservoir simulation cost.

The rest of the reservoir simulation solution, other than the solution of equation, is

relatively constant in the computation time and effort required. This means that the overall

35

cost of reservoir simulation is often directly dependent on the ease with which we can solve

Eq. 3.21.15

 Solution methods are either iterative or direct. The basis of an iterative method is the

development of an “approximate” solution to the system of equations. The

approximation is replaced systematically until the answers converge to “the correct”

answer. In a direct method, as the name implies, the algorithm that is used “solves” the

equations exactly and will give a correct answer in a fixed number of answers.12

 Because of the drastic increase in computational effort as the grid size increases in 3-

D problems, there exists a grid size, such that for any grid size larger than this, an

iterative method would have a computational advantage over a direct method. More

importantly, perhaps, is the fact that direct methods require large amounts of storage for

the coefficient matrix A. Iterative methods, on the other hand, are particularly well suited

for large, spare systems of equations.5

 According to Vinsome (1976), the most commonly used procedure among iterative

methods, is Orthomin. This method is a minimization process conceptually based on the

conjugate-gradient numerical method and converges faster than any other iterative

method and also it is insensitive to the number of equations. Another great advantage of

Orthomin approach is that it is applicable to non-symmetric sparse matrices. The method

is so called because it uses both orthogonalizations, and minimization to achieve a high

rate of convergence.24

 Update PVT Data, Rates and Saturations: Rate for each phase is updated using the

new pressure for constant bottomhole pressure case. For this rate, update elJ mod and

mobility terms are kept the same. Formation volume factors and pore volumes are

updated using chord slopes and they are named as “new”. Notice that these new values

will still be named as “new” at the beginning of the new time step and the values, which

are named as old, will be calculated by interpolation. Saturations are updated as the last

stage just before the timestep-cut procedure.

36

3.1.6 Timestep-Cut

In order to assure the IMPES formulation will converge for whatever input data a user

might enter, there is a need for a timestep-cut procedure.25 Once the new values of

pressures are obtained and the rates and saturations are updated the main time loop goes

through a timestep-cut inner loop to evaluate whether the timestep has to be decreased or

not. Timestep, however, is not the only entry that can be changed to control the

convergence of the solution. There is also another entry in the input file called ncuts and

the user has the option of establishing some value for it before a run. The default value

for the ncuts in this code is 3. In most commercially available simulators this value is 4.

ncuts helps the timestep-cut procedure control the number of required reductions in the

timestep (if any). Furthermore, it controls how much reduction is required for the

timestep size to get the fastest possible convergence with the largest timestep each time

there is a need for a reduction. The circumstance of the timestep-cut procedure is

exhibited in Fig. 3.5. In this algorithm, counter is a variable initially set to zero for

comparing with ncuts in the first if condition (algorithm in Fig. 3.5). This variable is first

set to zero each time before the start of the timestep-cut loop.

 Check Well Constraints: Once the timestep size is fixed (if required) in the

timestep-cut inner loop, the main loop makes the simulator proceed into calculating the

cumulative production of gas and water. Meanwhile, for wells with constant rate

constraint, if the calculated bottomhole pressure turns out to be less than the minimum

allowable BHP determined in the input file, the code changes the constraint from

constant rate to constant pressure and then from this point forward will go through this

constraint for calculating the rates.

 Write Results: At this stage all of the results for this particular timestep are

calculated and stored in memory and are ready to be written in both the pertinent Excel

file and in the output Notepad file. So while the simulator proceeds in running, the

results are being either written or plotted in the output units.

37

Fig. 3.5- Algorithm for the timestep-cut loop within the main time loop

Proceed with Timestepping: At this stage if the last timestep has not been reached yet,

the code goes back to the beginning of the time loop where the old parameters are

replaced with new ones until the required simulation time is reached.

From Matrix Solver
and Saturation Update

Counter ≤ ncuts
Max. Cell Saturation ≥ Saturation Tol.

Proceed in Time
By 1 Timestep

No

Exit Timestep Cut
Loop

Continue with
Main Loop

Decrease Timestep Size
Increase ncuts by 1

Go Back to
Matrices A and B

38

3.2 Output Units

Once the run is complete all graphical results for different timesteps and/or wellbores are

plotted in the pertinent Excel file. These graphical results include well gas rate, water

rate and bottomhole pressure, average reservoir pressure, cumulative production,

schematic of the grid model, reservoir cell pressures and saturations. Initial gas and

water in place are also given in this Excel file. Well constraint, reservoir pressure, gas

saturation, water saturation and total saturation for all timesteps are tabulated in separate

worksheets and the user can make any desirable projection of them for either the

analysis of reservoir performance or comparison purposes. The user can both view the

existing plots and make new combination of desirable plots upon their need.

The code also generates a Notepad file as another output unit. This file contains all

numeric results such as cell pressures, gas and water saturations, for all timesteps and all

layers, fluids in place, cumulative production and also well entries from the input file.

39

CHAPTER IV

VALIDATION AND ANALYSIS OF RESULTS

The goal of any numerical-model study is the analysis and/or prediction of reservoir

performance in more detail and with more accuracy than is possible with simple

techniques such as extrapolation.12 Therefore, in this chapter we will go through the

results of two distinct simulation cases done by both the 3-D, 2-phase code and CMG in

order to make comparisons between the two simulators. Comparing the runs of a newly-

developed simulator with a commercially available simulator is usually the best way to

confirm the validity of estimates. For validation of this code, CMG software is used

which is a well-recognized simulator package in the oil and gas industry. In general

having matches of fluid movement parameters including gas rates, water rates,

cumulative productions and water/gas ratios (WGR’s), between the two simulators is the

strongest verification of the validity of techniques, formulations and assumptions

concerning the newly-developed simulator. In this chapter, in addition to these

parameters, the results of bottomhole and average reservoir pressures at times for both

simulators are shown. The analysis of the results pertaining original fluids in place is

also included in this chapter.

4.1 Simulation Schemes

In order to show the reliability of the code, two different schemes are considered to run.

The first case is a production plan including three producer wells, with three different

constraints. The second one is a simple injection-production plan with one injector and

one producer well. Both plans have the same number of gridblocks and gridblock size.

The model dimensions are 102020 ×× . Fig. 4.1 shows the model configuration and also

the location of wells for the first simulation scheme.

40

Fig. 4.1–Grid system and locations of production wells for case one

Table 4.1–Wells entries for case one

Well ID X Y Z Well Type Constraint
Constraint

Value
Min. BHP

W-1 10 10 3 Producer Const. Gas Rate 10,000 Mscf 1,000 psia

W-2 5 5 5 Producer Const. BHP 2,500 psia 1,000 psia

W-3 15 15 8 Producer Const. Water Rate 40 STB 1,000 psia

600 ft

50 ft

X

Y
Z

600 ft

W-1

W-2

W-3

41

The constraints and other entries of wells for case one (three producer wells) are

tabulated in Table 4.1. Also all reservoir and model data are tabulated in Table 4.2.

Table 4.2–Reservoir input data

DX DY
Gridblock

thickness
φ xk yk Vertical

permeability
ip wiS T gγ

600

ft

600

ft
50 ft 0.25

30

md

30

md
5 md

3,000

psia
0.25 210˚F 0.7

Table 4.3 shows the relative permeability data selected for running both cases. These

sets of data for water and gas are demonstrated in Figs. 4.2 and 4.3 respectively.

Table 4.3–Relative permeability data

Sw Krw Sg krg

0.1 0 0 0

0.3 0.024 0.1 0

0.4 0.056 0.3 0.04

0.5 0.116 0.4 0.072

0.6 0.192 0.55 0.144

0.83 0.488 0.65 0.248

1 1 0.85 0.532

 1 1

42

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sw

k r
w

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sg

k rg

Fig. 4.2–Water relative permeability used Fig. 4.3–Gas relative permeability used

in cases 1 and 2 in cases 1 and 2

4.2 Validation of Plan 1: Three-Producer Case

Plots of different fluid movement parameters as well as, wfP , p and GWR versus time

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000

Time, Days

qg
 ,M

sc
f/D

ay W-1
W-2
W-3

Fig. 4.4– Individual well gas rates

43

are made and incorporated to the same plots simulated by CMG package in order to

show the validity of the results of the code.

 Under the specified constraints and deliverability conditions for the three wells in

plan one, the general depletion behavior of the assumed reservoir can be seen from Fig.

4.4 for the gas rates from the code. Fig. 4.5 is CMG’s gas rate plot for well W-2

(constant Pwf well) shown as a sample of plots made by CMG. For the rest of the results,

comparisons are made by putting the plot generated by the code together with one

generated by CMG to show the matches in more detail.

Fig. 4.5– Gas rate plot for well W-2 generated by CMG

44

The first match can be observed from Fig. 4.6 which shows the satisfactory match of gas

production rate for the constant bottomhole pressure well (W-2), simulated by both the

code and CMG.

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000
Time, Days

q g
, M

sc
f/D

ay

Code
CMG

Fig. 4.6– Gas rate plots for well W-2 generated by both the code and CMG

Fig. 4.7 shows the same sets of graphs for the well with constant water rate (W-3). The

slight difference seen at the beginning of the two plots is probably caused by different

timestep sizing at initial timesteps between the two simulators as the dotted line for

CMG shows that it has taken very small timesteps at the beginning of the run to

converge. The timestep size in the 3-D, 2-phase code is 100 days for all of the shown

plots in this section. Since the code is equipped with the timestep-cut procedure, it can

be concluded that there has been no need for a cut in timestep size in this particular run,

because if there has, the code would have taken smaller timesteps.

45

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000

Time, Days

q g
, M

sc
f/D

ay

Code
CMG

Fig. 4.7– Gas rate plots for well W-3

Fig. 4.8–Water rate plots for wells W-1 and W-2

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0 500 1000 1500 2000

Time, Days

q w
, S

TB
/D

ay

Code
CMG

W-1

W-2

46

Fig. 4.8 demonstrates the water rates for the two wells with constant Pwf and qg. Well W-

2 shows an almost linear decline in water production rate while the well with constant

gas rate (W-1) increases water production from 41 STB/Day to 66 STB/Day within the

simulated life of the reservoir. Since the other well produces under constant water

constraint, the water production well is not included in this graph.

Fig. 4.9– Bottomhole pressure plots for wells W-1 and W-3

Fig. 4.9 shows the Pwf for wells W-1 and W-3. Since the first well has constantly

produced more gas than the third well (10,000 Mscf/Day), the bottomhole pressure for

this well has depleted faster than well W-3. Fig. 4.10 illustrates the cumulative gas and

water produced for the well with constant BHP constraint over the life of the reservoir.

Cumulative gas and water amounts produced in the whole reservoir are shown in Figs.

4.11 and 4.12 respectively.

1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600

0 500 1000 1500 2000

Time, Days

P w
f,

ps
ia

Code
CMG

W-3

W-1

47

Fig. 4.10– Gp and Wp plots for well W-2

0
5000

10000
15000
20000
25000

30000
35000
40000
45000
50000

0 500 1000 1500 2000

Time, Days

G
p P

ro
du

ce
d,

 M
M

sc
f

Code
CMG

Fig. 4.11– Cumulative gas produced in the field

0

2000

4000

6000

8000

10000

12000

14000

0 500 1000 1500 2000

Time, Days

G
p

Pr
od

uc
ed

, M
M

sc
f

0

10

20

30

40

50

60

70

W
p

Pr
od

uc
ed

, M
ST

B

CMG
Code

Wp

Gp

48

0

50

100

150

200

250

300

0 500 1000 1500 2000

Time, Days

W
p

Pr
od

uc
ed

, M
S

TB

Code
CMG

Fig. 4.12– Cumulative water produced in the field

2700

2750

2800

2850

2900

2950

3000

3050

0 500 1000 1500 2000

Time, Days

P-
ba

r,
ps

ia

Code
CMG

Fig. 4.13– Average reservoir pressure

49

Cumulative rates are among the most reliable parameters to compare with a

commercially available simulator to validate the results and as can be seen from Figs.

4.11 and 4.12 the results of the code match almost perfectly with those of CMG. Fig.

4.13 exhibits the declining regime of the average reservoir pressure which has a good

match with CMG.

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

0 500 1000 1500 2000
Time, Days

W
G

R
, S

TB
/M

M
sc

f

Code
CMG

Fig. 4.14– Water/Gas ratio for the field

Fig. 4.14 shows the match of water/gas ratio, WGR, for the whole reservoir. All of

above plots illustrate that the results of the code for different parameters are within an

acceptable range compared to the same set of results generated by CMG for the same set

of reservoir and fluid input data.

50

4.3 Validation of Plan 2: Injector-Producer Case

In order to assure the developed program is capable of running reliably for all cases it

has been designed for; another simulation scheme is run and tested with CMG results. In

this case all model and fluid data are similar to those of the first case, but instead of three

producer wells, there are one injector and one producer in the model. The constraints and

other entries of wells for case one (three producer wells) are tabulated in Table 4.4.

Table 4.4–Wells entries for case 2: Injector-Producer

Well ID X Y Z
Well

Type
Constraint

Constraint

Value

Min.

BHP

W-1 10 10 3 Injector
Const.

BHP
2,500 psia

1,000

psia

W-2 15 15 8 Producer
Const.

Water Rate
40 STB

1,000

psia

Fig. 4.15 demonstrates the comparison of the water injection rate between the two

simulators which shows an almost linear behavior over the life of the reservoir. Since the

producer well produces with constant water rate constraint of 40 STB/Day, the water

rate plot is not made for that. From the other hand, since the injector well injects with

constant bottomhole pressure constraint of 2,500 psia, the match of Pwf plot with CMG is

shown for the producer well along with the gas production rate match on one single

graph in Fig. 4.16.

51

0

5
10

15

20

25
30

35

40
45

50

0 500 1000 1500 2000

Time, Days

W
at

er
 In

je
ct

io
n

Ra
te

, S
TB

/D
ay

Code
CMG

Fig. 4.15– Water injection rate

Fig. 4.16– qg and pwf for the producer

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 500 1000 1500 2000
Time, Days

q g
, M

sc
f/D

ay

2360
2380
2400
2420
2440
2460
2480
2500
2520
2540
2560

P w
f,

ps
ia

Code
CMG

qg

Pwf

52

4.4 Gas Volumes and Material Balance Calculations

An estimate of the original gas in place (OGIP or Gi) for volumetric gas reservoirs with

mobile water can be obtained from volumetric gas material balance considerations by

equating the reservoir pore volume occupied by the gas at initial conditions to that

occupied by the gas at some later conditions following gas and water production and the

associated pressure reduction. Referring to the tank type model in Fig. 4.17, we write the

material balance equation as8,26:

 wpgpgi BWBGGGB −−=)(.………………………….……..………….. (4.1)

 GBgi (G-Gp)Bg

 Initial Conditions (p = pi) Initial Conditions (p < pi)

Fig. 4.17– Tank type model for a volumetric dry gas reservoir with water production

 wpgpggi BWBGGBGB −−= ..(4.2)

g

w
p

g

gi
p B

B
W

B
B

GG −−=)1(..(4.3)

If we substitute the ratio of the gas formation volume factor evaluated at initial and later

conditions, we can write Eq. 4.3 as:

Gp, Wp

53

z
pBW

zp
pz

GG wp
i

i
p −−=)1(..(4.4)

z
pBW

z
p

p
z

GGG wp
i

i
p −−= ...(4.5)

 pwp
i

i GGBW
p
z

G
z
p

−=−=)(..(4.6)

 p
wpiiwpii

G
BWpGzBWpGz

G
z
p

−
−

−
=

/
1

/
...(4.7)

This linear relationship is the expression of a constant volume reservoir and assumes that

rock and water expansion are negligible and that there is no net movement of gas into or

out of the reservoir volume of interest26, 27 so the reservoir pore volume occupied by gas

remains constant over the reservoir’s productive life.8 A material balance plot of p/z vs.

GP for a volumetric, depletion drive gas reservoir with mobile water generates a line of

slope)//(1 wpii BWpGz −− with an intercept of)//(wpii BWpGzG − for GP =0.

Extrapolation of the straight line to the GP axis yields the OGIP. Fig. 4.18 shows this

plot for the first simulation case simulating by the code. Extrapolating the linear relation

of suggests p/z vs. GP by 1.33280253.0/ +−= PGzp suggests that the original gas in the

reservoir is 131.5 Bscf.

 This same set of results simulated by CMG is plotted in Fig. 4.19 and extrapolating

P/Z vs. GP suggests the OGIP is 136.1 Bscf which is within an acceptable range from the

code’s result.

 In the real-gas law, in order to solve for the initial volume of gas at standard

conditions, we can equate the number of moles of gas at initial conditions to the number

of moles at standard conditions and rearrange them12:

54

sc

scsc

i

gii

p
Tz

Tz
Vp

G = . …………………………. ……..………………………… (4.8)

Assuming the pore volume occupied by the gas is constant during the producing life of

the reservoir gives:

)1(56.43 wigi SAhV −= φ . …………………………………………………… (4.9)

Fig. 4.18– p/z versus GP generated by the code

p/z = - 0.0253 G
P + 3328.1

0

500

1000

1500

2000

2500

3000

3500

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Gp, MMscf

p/
z,

 p
si

OGIP=131.5 Bscf

55

Substituting Eq. 4.3 into Eq. 4.2 yields

Tzp

Tzp
SAHG

isc

scsci
wi)1(56.43 −= φ . ………………………….……….……. (4.10)

If we express the reservoir PV in barrels, Eq. 4.4 becomes

Fig. 4.19– p/z versus Gp generated by CMG

p/z = - 0.0243G
P + 3321.9

0

500

1000

1500

2000

2500

3000

3500

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Gp. MMscf

p/
z,

 p
si

OGIP= 136.1 Bscf

56

gi

wi

B
SAh

G
)1(7758 −

=
φ

. ………………………………….…..………..……….…. (4.11)

This equation is applied in subroutine Fluids in place in the code assigning three-

dimensional arrays for each parameter and yielded the value of 133.47 Bscf for the

Fig. 4.20– Plots of total qg using two different timestep sizes

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

0 500 1000 1500 2000

Time, Days

To
ta

l G
as

 R
at

e,
 M

sc
f/D

ay

2700

2750

2800

2850

2900

2950

3000

3050

P-
ba

r,
ps

ia
30-day TS
100-day TS

P-bar
Gas Rate

57

original gas in place which agrees with the values of 131.5 and 136.1 Bscf calculated

using the extrapolation of p/z vs. GP for the code and CMG in Figs. 4.18 and 4.19

respectively.

4.5 Analysis of the Depletion Schemes

In order to assure the solutions of the developed code converge to the same set of results

using different timestep size, scheme one in previous parts, is run with a smaller time

step size of 30 days instead of 100 days.

 The outcome of this run showed all of the results match quite perfectly with those of

the run with the bigger timestep size.

 Fig. 4.20 shows the plots of the total gas rate and average reservoir pressure for the

reservoir for the two different timestep sizes. As can be seen from this graph, both

parameters follow the same trend which shows the material balance is perfectly satisfied

in the code.

 Another index to show the validity of the code’s results is to compare gas and water

saturation maps of the code with those of CMG at a few timesteps. These comparisons

are made for layer 3 which contains the well with constant gas rate constraint.

 Fig. 4.21 represents the gas saturation maps of this layer generated by both the code

and CMG at timesteps 2, 10, 20 and 30 using a 50-day timestep size.

58

1 3 5 7 9 11 13 15 17 19
S1
S3
S5
S7
S9
S11
S13
S15
S17
S19

Timestep 2

0.74999-0.75
0.74998-0.74999
0.74997-0.74998
0.74996-0.74997
0.74995-0.74996

Fig. 4.21– Gas saturation maps of layer 3 at timesteps 2, 10, 20 and 30 generated by both

the code and CMG

User:
SAEED_F
Date: 04-03-
23
Scale: 1:4817
Axis Units: ft

59

1 3 5 7 9 11 13 15 17 19
S1

S3

S5

S7

S9

S11

S13

S15

S17

S19

Timestep 10

0.7-0.8
0.6-0.7
0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0-0.1

Fig. 4.21– Continued

User:
SAEED_F
Date: 04-03-
23
Scale: 1:4817
Axis Units: ft

60

1 3 5 7 9 11 13 15 17 19
S1

S3

S5

S7

S9

S11

S13

S15

S17

S19

Timestep 20

0.7-0.8
0.6-0.7
0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0-0.1

Fig. 4.21– Continued

User:
SAEED_F
Date: 04-03-
23
Scale: 1:4817
Axis Units: ft

61

1 3 5 7 9 11 13 15 17 19
S1

S3

S5

S7

S9

S11

S13

S15

S17

S19

Timestep 30

0.7-0.8
0.6-0.7
0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0-0.1

Fig. 4.21– Continued

User:
SAEED_F
Date: 04-03-
23
Scale: 1:4817
Axis Units: ft

62

Fig. 4.22 represents the water saturation maps of layer 3 generated by both the code and

CMG at timesteps 2, 10, 20 and 30 using a 50-day timestep size.

1 3 5 7 9 11 13 15 17 19
S1

S3

S5

S7

S9

S11

S13

S15

S17

S19

Timestep 2

0.25-0.25

0.25-0.25

0.25-0.25

0.25-0.25

0.25-0.25

0.25-0.25

Fig. 4.22– Water saturation maps of layer 3 at timesteps 2, 10, 20 and 30 generated by

both the code and CMG

User:
SAEED_F
Date: 04-03-
23
Scale: 1:4817
Axis Units: ft

63

1 3 5 7 9 11 13 15 17 19
S1

S3

S5

S7

S9

S11

S13

S15

S17

S19

Timestep 10

0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0-0.1

Fig. 4.22– Continued

User:
SAEED_F
Date: 04-03-
23
Scale: 1:4817
Axis Units: ft

64

1 3 5 7 9 11 13 15 17 19
S1

S3

S5

S7

S9

S11

S13

S15

S17

S19

Timestep 20

0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0-0.1

Fig. 4.22– Continued

User:
SAEED_F
Date: 04-03-
23
Scale: 1:4817
Axis Units: ft

65

1 3 5 7 9 11 13 15 17 19
S1

S3

S5

S7

S9

S11

S13

S15

S17

S19

Timestep 30

0.6-0.7
0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0-0.1

Fig. 4.22– Continued

User:
SAEED_F
Date: 04-03-
23
Scale: 1:4817
Axis Units: ft

66

Another analysis that is often made to evaluate validity of simulators is to test a case

where a well undergoes a change in its constraint due to depletion. Such a case occurs

when a well with constant gas or water rate constraint depletes Pwf up to the specified

minimum bottomhole pressure. The well will produce with constant BHP constraint

from that point forward.20 Fig. 4.23 shows gas rate and bottomhole pressure plots of

such a case run by the developed code. In this scheme one producer well is producing

with constant gas rate constraint of 10,000 Mscf/Day. After 800 days, since the BHP

declines up to the specified minimum value of 2,300 psia, well continues to produce

with constant BHP constraint.

 Figs. 4.24 and 4.25 exhibit the cell pressures in layer 5 which contains the constant

bottomhole pressure well for the first and the last timesteps. These projections represent

the smooth depleting pressure of the reservoir around the wells in layer 5 and also the

interference of the wells of other layers (layers 3 and 8) in the pressure depletion of layer

5.

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000

Time, Days

qg
, M

sc
f/D

ay

2250

2300

2350

2400

2450

2500

2550

Pw
f,

ps
ia

Gas Rate
Pwf

Fig. 4.23– Gas rate and pwf plots for a well with changing constraint

67

1 3 5 7 9 11 13 15 17 19
S1

S5
S9

S13
S17

2920
2930
2940
2950
2960
2970
2980
2990
3000

B
lo

ck
 p

re
ss

ur
e,

 p
si

a

X

Y

Layer 5

Fig. 4.24– Block pressure projection in layer 5 at the first timestep

1 3 5 7 9 11 13 15 17 19
S1

S5
S9

S13
S17

2680

2690
2700

2710

2720

2730

2740

2750

2760

2770

Bl
oc

k
pr

es
su

re
, p

si
a

X

Y

Layer 5

Fig. 4.25– Block pressure projection in layer 5 at the last timestep

68

In a dry gas reservoir being drained by the same two wells producing at different

constant bottomhole pressures, the drainage volumes of both wells will be continuously

changing.20, 28 To illustrate such a case a model with reservoir and fluid properties

similar to those of the plan one in previous sections, was run. In this scheme there two

constant Pwf wells are producing with different bottomhole pressures of 2,200 and 2,800

psia. The wells are located symmetrically in the grid. Fig. 4.26 exhibits the gas rates for

these two wells and Fig. 4.27 shows the block pressure projection of layer 7 for the 10th

timestep for this case. Layer 7 is where the well with higher Pwf is located. The other

0

2000

4000

6000

8000

10000

12000

14000

16000

0 500 1000 1500 2000

Time, Days

q,
 M

sc
f/D

ay

Pwf=2,200 psia

Pwf=2,800psia

Fig. 4.26– Gas rates for the case of two wells with different pwf

well is located in layer 4. As can be seen Fig. 4.27 the well with lower Pwf continuously

captures the production of the well with higher Pwf and the latter will stop producing a

69

1 3 5 7 9 11 13 15 17 19
S1

S4
S7

S10
S13

S16
S19

2860

2870

2880

2890

2900

2910

2920

2930

2940

B
lo

ck
 p

re
ss

ur
e,

 p
si

a

X

Y

Layer 7

Fig. 4.27– Block pressure projection of layer 7 at the 10th timestep

lot faster than the well with lower Pwf.

 Fig. 4.28 demonstrates the ratio of the gas rates of the wells in this plan is decreasing

because the drainage volume of well 1 (with lower Pwf) is increasing at the expense of

well 2. Also Fig. 4.26 indicates well 2 has an accelerated decline as a result of shrinking

drainage volume.

70

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0 500 1000 1500 2000

Time, Days

q 2
/q

1

Fig. 4.28– Ratio of the gas rate of well 2 over that of well 1

71

CHAPTER V

CONCLUSIONS

The following conclusions can be derived from this study.

• The main advantage of the developed 3-D, 2-phase code is that it is specifically

designed for volumetric dry gas reservoirs and then when solving problems of

these reservoirs, it can be reliably used without a need to deal with more

expensive commercial simulators.

• Since there is no gravity or cp terms in this 2-phase formulation, IMPES

approach shows less stability limitations.

• The developed IMPES code is competitive with well-recognized commercially

available simulators. The results are reliable for different simulation plans,

reservoir and fluid data and well configurations.

• The developed program can later be used as a part of a robust reservoir

simulation.

• In volumetric dry gas reservoirs with multiple wells flowing at different flowing

bottomhole pressure, the drainage volume of the wells with lower bottomhole

pressure increases at the expense of the wells with higher bottomhole pressure.

The drainage boundaries of the wells are therefore continuously changing.

72

REFERENCES

1. Al-Fattah, S.M. and Startzman, R.A.: “Analysis of Worldwide Natural Gas

Production,” paper SPE 57463 presented at the 1999 SPE Eastern Regional Meeting,

Charleston, West Virginia, 20-22 October, 1999.

2. Staggs, H.M. and Herbeck, E.F.: “Reservoir Simulation Models-An Engineering

Overview,” JPT (December 1971) 1428-36.

3. Aziz, K. and Settari, A.: Petroleum Reservoir Simulation, Elsevier Science Publishing

Co., New York, pp. 12-250, (1999).

4. British Petroleum, Statistical Review of World Energy 2003, 25 February 2004,

http://www.bp.com/centres/energy.

5. Fanchi, J.R, et al,: BOAST: A Three-Dimensional, Three-Phase Black Oil Applied

Simulation Tool, United States Department of Energy, Bartlesville, Oklahoma (1982).

6. Poolen, H.K.: “The Wise Use of Reservoir Models,” APEA J. (1971) 11, 131-34.

7. CMG Builder Results, Version 2002 User’s Guide, Computer Modeling Group Ltd.,

Calgary, Alberta (2002).

8. Lee, J. and Wattenbarger, R.A.: Gas Reservoir Engineering, SPE Published Series,

Richardson, Texas, pp. 81-184, (1996).

9. Robinson, J.B. and Ireland, M.M.: “Reserve Prediction Testing in Geopressured Gas

Reservoir,” SPE paper 16958 presented at the 1987 Annual Technical Conference and

Exhibition of the Society of Petroleum Engineers held in Dallas, Texas, 27-30

September, 1987.

73

10. Cao, H.: “Development of Techniques for General Purpose Simulators,” Ph.D.

Dissertation, Stanford University, Stanford, California, June 2002.

11. McCain, W.D. Jr.: The Properties of Petroleum Fluids, Second Edition, PennWell

Publishing Co., Tulsa, Oklahoma, pp. 72-75, (1989).

12. Calvin, C.C. and Dalton, R.L.: Reservoir Simulation, SPE Monograph Series,

Monograph 13, Richardson, Texas, pp. 58-145, (1990).

13. Odeh, A.S. and Aziz, K.: “Comparison of Solutions to a Three-Dimensional Black-

Oil Simulation Problem,” JPT (January 1981) 13-25.

14. Carter, R.D.: “Performance Predictions for Gas Reservoir Considering Two-

Dimensional Unsteady-State Flow,” Society of Petroleum Engineers Journal (March

1966) 35-43.

15. Wattenbarger, R.A.: Reservoir Simulation, class notes for PETE 603, Texas A&M

University, College Station, September 2002.

16. Blasingame, T.B.: Fluid Flow in Porous Media, class notes for PETE 620, Texas

A&M University, College Station, September 2003.

17. Putra, E. and Schechter, D.S.: Numerical modeling Notes, NFR Group at Texas

A&M University, College Station, Texas, June 2003.

18. Hallam, R. and Kin, M.L.: “Performance of Trinidad Gas reservoirs (Cassia,

Immortelle, Flamboyant, Mahogany, Amherstia and Teak),” SPE paper 81010 presented

at the 2003 SPE Latin American and Caribbean Petroleum Engineering Conference,

Port-of-Spain, Trinidad, West Indies,27-30 April, 2003.

74

19. Ansah, J.: “Production Rate and Cumulative Production Models for Advanced

Decline Curve Analysis of Gas Reservoirs,” Ph.D. Dissertation, Texas A&M University,

College Station, TX, August 1996.

20. Toh, S.K.: “The Depletion Performance of Heterogeneous Reservoirs,” Ph.D.

Dissertation, Texas A&M University, College Station, Texas, December 1997.

21. Begland, T.F.: “Depletion Performance of Volumetric High-Pressured Gas

Reservoirs,” SPE paper 15523 presented at the 1986 Annual Technical Conference and

Exhibition of the Society of Petroleum Engineers, New Orleans, Louisiana, 5-8 October,

1986.

22. Qasem, F.H. and Gharbi, R.: “Gas Well Decline Analysis Under Constant –Pressure

Conditions, Wellbore Storage, Damage, and Non-Darcy Flow Effects,” SPE paper

75526 presented at the 2002 SPE Gas Technology Symposium, Calgary, Canada, 30

April-2 May, 2002.

23. Wattenbarger, R.A. and El-Banbi, A.H.: “Analysis of Linear Flow in Gas well

Production,” SPE paper 39972 presented at the 2002 SPE Gas Technology Symposium,

Calgary, Canada, 15-18 March, 2002.

24. Vinsome, P.K.: “Orthomin, an Iterative Method for Solving Sparse Sets of

Simultaneous Linear Equations,” paper SPE 5729 presented at the 1976 Fourth

Symposium of Numerical Simulation of Reservoir Performance of the Society of

Petroleum Engineers of AIME, Los Angeles, California,19-20 February, 1976.

75

25. Jensen, O.K.: ”An Automatic Timestep Selection Scheme for Reservoir Simulation,”

paper SPE 9373 presented at the 1980 SPE Annual Conference and Exhibition, Dallas,

Texas, 21-24 September, 1980.

26. Baptise B.J. and Jagai, T.: “P/Z Analysis of a Mature Gas Condensate Field,

Offshore Trinidad,” paper SPE 81009 presented at the 2003 SPE Latin American and

Caribbean Petroleum Engineering Conference, Port-of-Spain, Trinidad, West Indies, 27-

30 April, 2003.

27. Wattenbarger, R.A. and Ibrahim, M.: “Determination of OGIP for Wells in Pseudo-

Steady-Old Techniques, New Approaches,” paper SPE 4286 resented at the 2003 SPE

Annual Conference and Exhibition, Denver, Colorado, 5-8 October, 2003.

28. Aminian, K. and Ameri, S.: “Gas-Well Production Decline in Multiwell Reservoirs,”

SPE 18268 resented at the 1988 SPE Annual Conference and Exhibition, Houston,

Texas, 2-5 October, 1988.

76

APPENDIX

3-D, 2-PHASE VBA CODE LISTING

'3-D 2-Phase Simulator For Volumetric Dry Gas Reservoirs

'Simulation Units: Field Units

'Water, Gas FVF: rcf/scf

'Water Rate: STB/Day

'Gas Rate: scf/Day

Option Explicit

Option Base 1

Public nx As Integer, ny As Integer, nz As Integer 'Number of

grid blocks and their sizes

Public Xsize As Double, Ysize As Double, Zsize As Double

Public xD() As Double, yD() As Double, zD() As Double, _

 dx() As Double, dy() As Double, dz() As Double 'Grid

dimensions

Public xThick() As Double, yThick() As Double, zThick() As Double

'Rock properties

Public poro() As Double, perm() As Double, permX() As Double, _

 permY() As Double, permZ() As Double, Cf As Double, _

 TW() As Double, TE() As Double, TN() As Double, TS() As Double,

_

 TT() As Double, TB() As Double, PV() As Double, _

 PV1() As Double, PoreVol As Double, PoreVolTime() As Double

'Well properties

Public rw() As Double, Skin() As Double, Pwf() As Double, _

 ro() As Double, QW() As Double, QG() As Double, _

 QT() As Double, MinBHP() As Double, JMODEL() As Double, _

 nwell As Integer, Wellname() As String, XCoor() As Integer, _

 YCoor() As Integer, ZCoor() As Integer, TypeWell() As String, _

 WellConstraint() As String, TypeWell_read() As String, _

 rw_read() As Double, Skin_read() As Double, QT_read() As

Double, _

77

 QW_read() As Double, QG_read() As Double, _

 Pwf_read() As Double, MinBHP_read() As Double, _

 LambdaW() As Double, LambdaG() As Double, LambdaT() As Double

Public BCW As Byte, BCE As Byte, BCN As Byte, BCS As Byte, _

 BCT As Byte, BCB As Byte 'Boundary

conditions

Public npvt As Integer, nkr As Integer, nkrg As Integer 'Number of

PVT/Kr input data

'Fluid properties

Public Ppvt() As Double, BW() As Double, _

 BG() As Double, UW() As Double, _

 UG() As Double, CW() As Double, _

 CG() As Double, CT As Double

Public BWI() As Double, BGI() As Double, _

 UWI() As Double, UGI() As Double, _

 CWI() As Double, CGI() As Double, _

 CTOT() As Double, BWI1() As Double, _

 BGI1() As Double, dRdP As Double

'Average properties for Matrix coefficients

Public UWavw() As Double, UGavw() As Double, _

 BWavw() As Double, BGavw() As Double, _

 UWave() As Double, UGave() As Double, _

 BWave() As Double, BGave() As Double, _

 UWavs() As Double, UGavs() As Double, _

 BWavs() As Double, BGavs() As Double, _

 UWavn() As Double, UGavn() As Double, _

 BWavn() As Double, BGavn() As Double, _

 UWavb() As Double, UGavb() As Double, _

 BWavb() As Double, BGavb() As Double, _

 UWavt() As Double, UGavt() As Double, _

 BWavt() As Double, BGavt() As Double

'Relative Permeabilities parameters

Public SW() As Double, SG() As Double, SL() As Double, _

 KRW() As Double, KRG() As Double, _

 SWI() As Double, SGI() As Double, SLI() As Double, _

 KRWI() As Double, KRGI() As Double, _

78

 KRWUPS As Double, KRGUPS As Double, _

 SWI1() As Double, SGI1() As Double, SLI1() As Double, SWC As

Double

 'KROG() As Double, KROW() As Double,KROWI() As Double,KROGI()

As Double, KROI() As Double

'Matrix Elements

Public aW() As Double, aww() As Double, agw() As Double, _

 ac() As Double, awc() As Double, agc() As Double, _

 aE() As Double, awe() As Double, age() As Double, _

 aN() As Double, awn() As Double, agn() As Double, _

 aSt() As Double, aws() As Double, ags() As Double, _

 aT() As Double, awt() As Double, agt() As Double, _

 aB() As Double, awb() As Double, agb() As Double, _

 MB() As Double, betha() As Double

Public press() As Double, p() As Double, pn() As Double 'Pressure

terms

Public Pinit As Double, PSum As Double 'Initial

conditions

'To check stability and accuracy of solution and time step control

Public Sat_diff() As Double, Satmax As Double, Check As Boolean, _

 Count As Byte, ncuts As Byte, dt1 As Double, dt As Double, _

 tmax As Double, time As Double

'Fluids in place and cumulative production

Public OWIP() As Double, OGIP() As Double, _

 TotalWIP As Double, TotalGIP As Double, _

 CumWater As Double, CumGas As Double

'Matrix Solver Elements

Public TOL As Double, II As Integer, JJ As Integer, KKK As Integer, _

 IJKM As Long, ITMAX As Double, QI() As Double, AQI() As Double,

_

 AL3() As Double, AL2() As Double, AL1() As Double, _

 AD() As Double, AU1() As Double, AU2() As Double, _

 AU3() As Double, QN() As Double, AQN() As Double, RN() As

Double, _

 DXN() As Double, ADX() As Double, Psim() As Double, IT As Long

'Report variables

79

Public rc As Integer, MyCount As Integer

Sub Main()

 Call Read_data

 Call MemAlloc

 Call Wells

 Call Initial

 time = 0

 rc = 0

 Do

 rc = rc + 1

 Call Properties

 Call Rates_con_rate

 Count = 0

 Do

 Call MatrixB

 Call MatrixA

 Call Matrix_Solver

 Call Rates_con_bhp

 Call Saturations

 If Count <= ncuts And Check = False Then

 dt1 = dt1 / (2 + Count)

 Count = Count + 1

 Else

 time = time + dt1

 Call Cum_production

 dt1 = dt

 Exit Do

 End If

 Loop

 Call Update

 Call Report

 Call SgUpdate

Loop Until time >= tmax

Close #2

80

End Sub

Sub Initial()

'Initial conditions for simulation

Dim i As Integer, j As Integer, k As Integer

With ThisWorkbook.Sheets("RESULTS"): .Cells.ClearContents: End With

With ThisWorkbook.Sheets("Pressure"): .Cells.ClearContents: End With

With ThisWorkbook.Sheets("Sw"): .Cells.ClearContents: End With

With ThisWorkbook.Sheets("Sg"): .Cells.ClearContents: End With

With ThisWorkbook.Sheets("Sw+Sg"): .Cells.ClearContents: End With

With ThisWorkbook.Sheets("WELLS"): .Cells.ClearContents: End With

PoreVol = 0

CumWater = 0

CumGas = 0

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 pn(i, j, k) = Pinit

 SWI(i, j, k) = SWC

 SGI(i, j, k) = 1 - SWC

 SWI1(i, j, k) = SWI(i, j, k): SGI1(i, j, k) = SGI(i, j, k)

 PV(i, j, k) = poro(i, j, k) * dx(i, j, k) * dy(i, j, k) *

dz(i, j, k)

 Next

 Next

Next

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 PoreVol = PoreVol + PV(i, j, k) / 5615

 Next

 Next

81

Next

Call InterpolaPVT

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 BWI1(i, j, k) = BWI(i, j, k)

 BGI1(i, j, k) = BGI(i, j, k)

 OWIP(i, j, k) = 0.1779685 * PV(i, j, k) * SWI(i, j, k) /

BWI(i, j, k) 'Unit conversion of 2.294E-5 acre/ft^2 * coeffifient of

7758

 OGIP(i, j, k) = 0.1779685 * PV(i, j, k) * SGI(i, j, k) /

BGI(i, j, k)

 Next

 Next

Next

Call Fluids_In_Place

Call Matrix_Initial

CumWater = 0#: CumGas = 0#

dt1 = dt: Check = True

End Sub

Sub Properties()

Call InterpolaPVT

Call InterpolaKr

Call Mobilities

Call Comp_Total

Call Trans

Call Avg_PVT

End Sub

Sub Update()

Dim i As Integer, j As Integer, k As Integer

82

'Update properties for the new time step

PSum = 0

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 pn(i, j, k) = p(i, j, k)

 SWI(i, j, k) = SWI1(i, j, k)

 SGI(i, j, k) = SGI1(i, j, k)

 PV(i, j, k) = PV1(i, j, k)

 'PoreVol = PoreVol + PV(i, j, k) / 5615

 PSum = PSum + pn(i, j, k)

 Next

 Next

Next

Call Check_WellConstraints

End Sub

Sub Wells()

Dim i As Integer, j As Integer, k As Integer, m As Integer

Call Calc_dxdydz2

For m = 1 To nwell

 For k = 1 To nz

 If k = ZCoor(m) Then

 For j = 1 To ny

 If j = YCoor(m) Then

 For i = 1 To nx

 If i = XCoor(m) Then

 TypeWell(i, j, k) =

TypeWell_read(m)

 rw(i, j, k) = rw_read(m)

 Skin(i, j, k) = Skin_read(m)

 QW(i, j, k) = QW_read(m) * 5.615

83

 QG(i, j, k) = QG_read(m) * 1000

 Pwf(i, j, k) = Pwf_read(m):

MinBHP(i, j, k) = MinBHP_read(m)

 End If

 Next

 End If

 Next

 End If

 Next

Next

Call Identify_constraints

For m = 1 To nwell

 For k = 1 To nz

 If k = ZCoor(m) Then

 For j = 1 To ny

 If j = YCoor(m) Then

 For i = 1 To nx

 If i = XCoor(m) Then

 ro(i, j, k) = 0.28 * (((permY(i, j,

k) / permX(i, j, k)) ^ 0.5 * dx(i, j, k) ^ 2 + _

 (permX(i, j, k) /

permY(i, j, k)) ^ 0.5 * dy(i, j, k) ^ 2) ^ 0.5) / _

 ((permY(i, j, k) /

permX(i, j, k)) ^ 0.25 + (permX(i, j, k) / permY(i, j, k)) ^ 0.25)

 JMODEL(i, j, k) = 0.039772562 *

(permX(i, j, k) * permY(i, j, k)) ^ 0.5 * dz(i, j, k) / _

 (Log(ro(i, j, k)

/ rw(i, j, k)) + Skin(i, j, k))

 End If

 Next

 End If

 Next

84

 End If

 Next

Next

End Sub

Function Interpolation(x As Double, a() As Double, b() As Double) As

Double

'x, the value of reference for interpolation

'A() the array of reference

'B() the array of values for interpolation

Dim i As Double

Dim A1 As Double, A2 As Double, B1 As Double, B2 As Double

'ReDim A(1 To n) As double, B(1 To n) As double

If a(LBound(a)) > a(UBound(a)) Then

 For i = LBound(a) To UBound(a) - 1

 If x <= a(i) And x > a(i + 1) Then

 A1 = a(i)

 A2 = a(i + 1)

 B1 = b(i)

 B2 = b(i + 1)

 End If

 If x > a(LBound(a)) Then

 A1 = a(LBound(a))

 A2 = a(LBound(a) + 1)

 B1 = b(LBound(a))

 B2 = b(LBound(a) + 1)

 End If

 If x < a(UBound(a)) Then

 A1 = a(UBound(a))

 A2 = a(UBound(a) - 1)

 B1 = b(UBound(a))

 B2 = b(UBound(a) - 1)

 End If

 Next i

85

Else

 For i = 1 To UBound(a) - 1

 If x >= a(i) And x <= a(i + 1) Then

 A1 = a(i)

 A2 = a(i + 1)

 B1 = b(i)

 B2 = b(i + 1)

 End If

 If x < a(LBound(a)) Then

 A1 = a(LBound(a))

 A2 = a(LBound(a) + 1)

 B1 = b(LBound(a))

 B2 = b(LBound(a))

 End If

 If x > a(UBound(a)) Then

 A1 = a(UBound(a))

 A2 = a(UBound(a) - 1)

 B1 = b(UBound(a))

 B2 = b(UBound(a))

 End If

 Next i

End If

Interpolation = B1 + (B2 - B1) / (A2 - A1) * (x - A1)

End Function

Function MaxValue(a() As Double) As Double

Dim i As Integer, j As Integer, k As Integer

MaxValue = a(LBound(a, 1), LBound(a, 2), LBound(a, 3))

For k = LBound(a, 3) To UBound(a, 3)

 For j = LBound(a, 2) To UBound(a, 2)

 For i = LBound(a, 1) + 1 To UBound(a, 1)

 If a(i, j, k) > MaxValue Then MaxValue = a(i, j, k)

 Next

86

 Next

Next

End Function

Function MinValue(a() As Double) As Double

Dim i As Integer

MinValue = a(UBound(a))

For i = LBound(a) + 1 To UBound(a)

 If a(i) < MinValue Then MinValue = a(i)

Next i

End Function

Function AritAvg(a As Double, b As Double) As Double

AritAvg = (a + b) / 2#

End Function

Function HarmAvg(a As Double, b As Double) As Double

HarmAvg = 2 * a * b / (a + b)

End Function

Sub Calc_dxdydz()

Dim i As Integer, im As Integer, ip As Integer

Dim j As Integer, jm As Integer, jp As Integer

Dim k As Integer, km As Integer, kp As Integer

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 im = i - 1: ip = i + 1

 jm = j - 1: jp = j + 1

 km = k - 1: kp = k + 1

 If i = 1 Then im = i

 If i = nx Then ip = nx

87

 If j = 1 Then jm = j

 If j = ny Then jp = ny

 If k = 1 Then km = k

 If k = nz Then kp = nz

 dx(i, j, k) = (xD(i, j, k) - xD(im, j, k)) / 2 + (xD(ip, j,

k) - xD(i, j, k)) / 2

 If ny = 1 Then

 dy(i, j, k) = yD(i, j, k)

 Else

 dy(i, j, k) = (yD(i, j, k) - yD(i, jm, k)) / 2 + (yD(i,

jp, k) - yD(i, j, k)) / 2

 End If

 If nz = 1 Then

 dz(i, j, k) = zD(i, j, k)

 Else

 dz(i, j, k) = (zD(i, j, k) - zD(i, j, km)) / 2 + (zD(i,

j, kp) - zD(i, j, k)) / 2

 End If

 Next

 Next

Next

End Sub

Sub InterpolaPVT()

Dim i As Integer, j As Integer, k As Integer

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 BWI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), BW())

 BGI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), BG())

88

 UWI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), UW())

 UGI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), UG())

 CWI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), CW())

 CGI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), CG())

 Next

 Next

Next

End Sub

Sub InterpolaKr()

Dim i As Integer, j As Integer, k As Integer

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 KRWI(i, j, k) = Interpolation(SWI(i, j, k), SW(), KRW())

 KRGI(i, j, k) = Interpolation(SGI(i, j, k), SG(), KRG())

 Next

 Next

Next

End Sub

Sub Chord_slope()

Dim i As Integer, j As Integer, k As Integer

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 PV1(i, j, k) = PV(i, j, k) * (1 + Cf * (p(i, j, k) - pn(i,

j, k)))

 BWI1(i, j, k) = BWI(i, j, k) * (1 - CWI(i, j, k) * (p(i, j,

k) - pn(i, j, k)))

 BGI1(i, j, k) = BGI(i, j, k) * (1 - CGI(i, j, k) * (p(i, j,

k) - pn(i, j, k)))

 Next

 Next

89

Next

End Sub

Sub Saturations()

Dim i As Integer, j As Integer, k As Integer

Dim dp1() As Double, dp2() As Double, dp3() As Double, dp4() As Double,

_

 dp5() As Double, dp6() As Double

ReDim dp1(nx, ny, nz), dp2(nx, ny, nz), dp3(nx, ny, nz), dp4(nx, ny,

nz), dp5(nx, ny, nz), dp6(nx, ny, nz)

Call Chord_slope

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 If i <> 1 Then dp1(i, j, k) = p(i - 1, j, k) - p(i, j, k)

 If i <> nx Then dp2(i, j, k) = p(i + 1, j, k) - p(i, j, k)

 If j <> 1 Then dp3(i, j, k) = p(i, j - 1, k) - p(i, j, k)

 If j <> ny Then dp4(i, j, k) = p(i, j + 1, k) - p(i, j, k)

 If k <> 1 Then dp5(i, j, k) = p(i, j, k - 1) - p(i, j, k)

 If k <> nz Then dp6(i, j, k) = p(i, j, k + 1) - p(i, j, k)

 SWI1(i, j, k) = BWI1(i, j, k) / PV1(i, j, k) * (dt1 *

(aww(i, j, k) * dp1(i, j, k) + _

 awe(i, j, k) * dp2(i, j, k) + aws(i, j, k)

* dp3(i, j, k) + awn(i, j, k) * dp4(i, j, k) + _

 awt(i, j, k) * dp5(i, j, k) + awb(i, j, k)

* dp6(i, j, k) - QW(i, j, k)) + PV(i, j, k) * SWI(i, j, k) / BWI(i, j,

k))

 SGI1(i, j, k) = BGI1(i, j, k) / PV1(i, j, k) * (dt1 *

(agw(i, j, k) * dp1(i, j, k) + _

 age(i, j, k) * dp2(i, j, k) + ags(i, j, k)

* dp3(i, j, k) + agn(i, j, k) * dp4(i, j, k) + _

90

 agt(i, j, k) * dp5(i, j, k) + agb(i, j, k)

* dp6(i, j, k) - QG(i, j, k)) + PV(i, j, k) * SGI(i, j, k) / BGI(i, j,

k))

 Next

 Next

Next

Call Saturations_check

End Sub

Sub Saturations_check()

Dim i As Integer, j As Integer, k As Integer, maxdiff As Double

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 Sat_diff(i, j, k) = Abs(1 - SWI1(i, j, k) - SGI1(i, j, k))

 Next

 Next

Next

maxdiff = MaxValue(Sat_diff())

If maxdiff >= Satmax Then

 Check = False

Else

 Check = True

End If

End Sub

Sub SgUpdate()

Dim i As Integer, j As Integer, k As Integer

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 SGI(i, j, k) = 1 - SWI(i, j, k)

91

 Next

 Next

Next

End Sub

Sub Comp_Total()

'Calculate total compressibility

Dim i As Integer, j As Integer, k As Integer

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 CTOT(i, j, k) = Cf + CWI(i, j, k) * SWI(i, j, k) + CGI(i,

j, k) * SGI(i, j, k)

 Next

 Next

Next

End Sub

Sub Mobilities()

Dim i As Integer, j As Integer, k As Integer

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 LambdaW(i, j, k) = KRWI(i, j, k) / (UWI(i, j, k) * BWI(i,

j, k))

 LambdaG(i, j, k) = KRGI(i, j, k) / (UGI(i, j, k) * BGI(i,

j, k))

 LambdaT(i, j, k) = LambdaW(i, j, k) * BWI1(i, j, k) +

LambdaG(i, j, k) * BGI1(i, j, k)

 Next

 Next

Next

End Sub

92

Sub Kr_upstream(a As Integer, b As Integer, c As Integer, d As Integer,

e As Integer, f As Integer)

If pn(a, b, c) >= pn(d, e, f) Then

 KRWUPS = KRWI(a, b, c): KRGUPS = KRGI(a, b, c)

Else

 KRWUPS = KRWI(d, e, f): KRGUPS = KRGI(d, e, f)

End If

End Sub

Sub Rates_con_rate()

Dim i As Integer, j As Integer, k As Integer, m As Integer

For m = 1 To nwell

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 Select Case TypeWell(i, j, k)

 Case "PROD"

 Select Case WellConstraint(i, j, k)

 Case "WRate"

 QG(i, j, k) = QW(i, j, k) *

LambdaG(i, j, k) / LambdaW(i, j, k) 'SCF/d

 QT(i, j, k) = QW(i, j, k) *

BWI1(i, j, k) + BGI1(i, j, k) * QG(i, j, k) 'rcf/d

 Case "GRate"

 QW(i, j, k) = QG(i, j, k) *

LambdaW(i, j, k) / LambdaG(i, j, k) 'SCF/d

 QT(i, j, k) = QW(i, j, k) *

BWI1(i, j, k) + BGI1(i, j, k) * QG(i, j, k) 'rcf/d

 Case "2Rate"

 QT(i, j, k) = QW(i, j, k) *

BWI1(i, j, k) + BGI1(i, j, k) * QG(i, j, k) 'rcf/d

 End Select

 Case "WINJ"

93

 Select Case WellConstraint(i, j, k)

 Case "WRate"

 QT(i, j, k) = QW(i, j, k) *

BWI1(i, j, k) 'rcf/d

 Case "GRate"

 QT(i, j, k) = QG(i, j, k) *

BGI1(i, j, k) 'rcf/d

 End Select

 End Select

 Next

 Next

 Next

Next

End Sub

Sub Rates_con_bhp()

Dim i As Integer, j As Integer, k As Integer, m As Integer

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 Select Case TypeWell(i, j, k)

 Case "PROD"

 Select Case WellConstraint(i, j, k)

 Case "Pressure"

 QW(i, j, k) = JMODEL(i, j, k) * LambdaW(i,

j, k) * (p(i, j, k) - Pwf(i, j, k)) 'SCF/day

 QG(i, j, k) = JMODEL(i, j, k) * LambdaG(i,

j, k) * (p(i, j, k) - Pwf(i, j, k)) 'SCF/day

 QT(i, j, k) = QW(i, j, k) * BWI1(i, j, k) +

BGI1(i, j, k) * QG(i, j, k) 'rcf/day

 Case "WRate", "GRate", "2Rate"

94

 Pwf(i, j, k) = p(i, j, k) - QT(i, j, k) /

(JMODEL(i, j, k) * LambdaT(i, j, k))

 End Select

 Case "WINJ"

 Select Case WellConstraint(i, j, k)

 Case "Pressure"

 QW(i, j, k) = JMODEL(i, j, k) * LambdaW(i,

j, k) * (p(i, j, k) - Pwf(i, j, k)) 'SCF/day

 QT(i, j, k) = QW(i, j, k) * BWI1(i, j, k)

 Case "WRate"

 Pwf(i, j, k) = p(i, j, k) + QT(i, j, k) /

(JMODEL(i, j, k) * LambdaT(i, j, k) * BWI1(i, j, k))

 End Select

 End Select

 Next

 Next

Next

End Sub

Sub Check_WellConstraints()

'Check whether the minimum constraints are reached, if so change the

constraints

Dim i As Integer, j As Integer, k As Integer

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 Select Case WellConstraint(i, j, k)

 Case "WRate", "GRate", "2Rate"

 If Pwf(i, j, k) <= MinBHP(i, j, k) Then

 WellConstraint(i, j, k) = "Pressure"

 Pwf(i, j, k) = MinBHP(i, j, k)

 End If

95

 End Select

 Next

 Next

Next

End Sub

Sub Cum_production()

Dim i As Integer, j As Integer, k As Integer, m As Integer

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 CumWater = CumWater + QW(i, j, k) * dt1

 CumGas = CumGas + QG(i, j, k) * dt1

 Next

 Next

Next

End Sub

Sub Trans()

'Calculates transmisibilities for each phase

Dim i As Integer, j As Integer, k As Integer

Dim kavw As Double, kave As Double

Dim kavn As Double, kavs As Double

Dim kavt As Double, kavb As Double

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 If i <> 1 Then

 kavw = HarmAvg(permX(i, j, k), permX(i - 1, j, k))

 TW(i, j, k) = 0.00633 * kavw * dy(i, j, k) * dz(i, j,

k) / (xD(i, j, k) - xD(i - 1, j, k))

 End If

 If j <> 1 Then

96

 kavs = HarmAvg(permY(i, j, k), permY(i, j - 1, k))

 TS(i, j, k) = 0.00633 * kavs * dx(i, j, k) * dz(i, j,

k) / (yD(i, j, k) - yD(i, j - 1, k))

 End If

 If k <> 1 Then

 kavt = HarmAvg(permZ(i, j, k), permZ(i, j, k - 1))

 TT(i, j, k) = 0.00633 * kavt * dy(i, j, k) * dx(i, j,

k) / (zD(i, j, k) - zD(i, j, k - 1))

 End If

 If i <> nx Then

 kave = HarmAvg(permX(i, j, k), permX(i + 1, j, k))

 TE(i, j, k) = 0.00633 * kave * dy(i, j, k) * dz(i, j,

k) / (xD(i + 1, j, k) - xD(i, j, k))

 End If

 If j <> ny Then

 kavn = HarmAvg(permY(i, j, k), permY(i, j + 1, k))

 TN(i, j, k) = 0.00633 * kavn * dx(i, j, k) * dz(i, j,

k) / (yD(i, j + 1, k) - yD(i, j, k))

 End If

 If k <> nz Then

 kavb = HarmAvg(permZ(i, j, k), permZ(i, j, k + 1))

 TB(i, j, k) = 0.00633 * kavb * dy(i, j, k) * dx(i, j,

k) / (zD(i, j, k + 1) - zD(i, j, k))

 End If

 Next

 Next

Next

End Sub

Sub Avg_PVT()

Dim i As Integer, j As Integer, k As Integer

For k = 1 To nz

97

 For j = 1 To ny

 For i = 1 To nx

 If i <> 1 Then

 UWavw(i, j, k) = AritAvg(UWI(i, j, k), UWI(i - 1, j,

k))

 UGavw(i, j, k) = AritAvg(UGI(i, j, k), UGI(i - 1, j,

k))

 BWavw(i, j, k) = AritAvg(BWI(i, j, k), BWI(i - 1, j,

k))

 BGavw(i, j, k) = AritAvg(BGI(i, j, k), BGI(i - 1, j,

k))

 End If

 If j <> 1 Then

 UWavs(i, j, k) = AritAvg(UWI(i, j, k), UWI(i, j - 1,

k))

 UGavs(i, j, k) = AritAvg(UGI(i, j, k), UGI(i, j - 1,

k))

 BWavs(i, j, k) = AritAvg(BWI(i, j, k), BWI(i, j - 1,

k))

 BGavs(i, j, k) = AritAvg(BGI(i, j, k), BGI(i, j - 1,

k))

 End If

 If k <> 1 Then

 UWavt(i, j, k) = AritAvg(UWI(i, j, k), UWI(i, j, k -

1))

 UGavt(i, j, k) = AritAvg(UGI(i, j, k), UGI(i, j, k -

1))

 BWavt(i, j, k) = AritAvg(BWI(i, j, k), BWI(i, j, k -

1))

 BGavt(i, j, k) = AritAvg(BGI(i, j, k), BGI(i, j, k -

1))

 End If

 If i <> nx Then

 UWave(i, j, k) = AritAvg(UWI(i, j, k), UWI(i + 1, j,

k))

98

 UGave(i, j, k) = AritAvg(UGI(i, j, k), UGI(i + 1, j,

k))

 BWave(i, j, k) = AritAvg(BWI(i, j, k), BWI(i + 1, j,

k))

 BGave(i, j, k) = AritAvg(BGI(i, j, k), BGI(i + 1, j,

k))

 End If

 If j <> ny Then

 UWavn(i, j, k) = AritAvg(UWI(i, j, k), UWI(i, j + 1,

k))

 UGavn(i, j, k) = AritAvg(UGI(i, j, k), UGI(i, j + 1,

k))

 BWavn(i, j, k) = AritAvg(BWI(i, j, k), BWI(i, j + 1,

k))

 BGavn(i, j, k) = AritAvg(BGI(i, j, k), BGI(i, j + 1,

k))

 End If

 If k <> nz Then

 UWavb(i, j, k) = AritAvg(UWI(i, j, k), UWI(i, j, k +

1))

 UGavb(i, j, k) = AritAvg(UGI(i, j, k), UGI(i, j, k +

1))

 BWavb(i, j, k) = AritAvg(BWI(i, j, k), BWI(i, j, k +

1))

 BGavb(i, j, k) = AritAvg(BGI(i, j, k), BGI(i, j, k +

1))

 End If

 Next

 Next

Next

End Sub

Sub MatrixA()

Dim i As Integer, j As Integer, k As Integer, MH As Integer

99

MH = 0#

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 MH = MH + 1

 If i <> 1 Then

 Call Kr_upstream(i, j, k, i - 1, j, k)

 aww(i, j, k) = TW(i, j, k) * KRWUPS / (UWavw(i, j, k) *

BWavw(i, j, k))

 agw(i, j, k) = TW(i, j, k) * KRGUPS / (UGavw(i, j, k) *

BGavw(i, j, k))

 aW(MH) = aww(i, j, k) * BWI1(i, j, k) + agw(i, j, k) *

BGI1(i, j, k)

 End If

 If j <> 1 Then

 Call Kr_upstream(i, j, k, i, j - 1, k)

 aws(i, j, k) = TS(i, j, k) * KRWUPS / (UWavs(i, j, k) *

BWavs(i, j, k))

 ags(i, j, k) = TS(i, j, k) * KRGUPS / (UGavs(i, j, k) *

BGavs(i, j, k))

 aSt(MH) = aws(i, j, k) * BWI1(i, j, k) + ags(i, j, k) *

BGI1(i, j, k)

 End If

 If k <> 1 Then

 Call Kr_upstream(i, j, k, i, j, k - 1)

 awt(i, j, k) = TT(i, j, k) * KRWUPS / (UWavt(i, j, k) *

BWavt(i, j, k))

 agt(i, j, k) = TT(i, j, k) * KRGUPS / (UGavt(i, j, k) *

BGavt(i, j, k))

 aT(MH) = awt(i, j, k) * BWI1(i, j, k) + agt(i, j, k) *

BGI1(i, j, k)

 End If

 If i <> nx Then

 Call Kr_upstream(i, j, k, i + 1, j, k)

100

 awe(i, j, k) = TE(i, j, k) * KRWUPS / (UWave(i, j, k) *

BWave(i, j, k))

 age(i, j, k) = TE(i, j, k) * KRGUPS / (UGave(i, j, k) *

BGave(i, j, k))

 aE(MH) = awe(i, j, k) * BWI1(i, j, k) + age(i, j, k) *

BGI1(i, j, k)

 End If

 If j <> ny Then

 Call Kr_upstream(i, j, k, i, j + 1, k)

 awn(i, j, k) = TN(i, j, k) * KRWUPS / (UWavn(i, j, k) *

BWavn(i, j, k))

 agn(i, j, k) = TN(i, j, k) * KRGUPS / (UGavn(i, j, k) *

BGavn(i, j, k))

 aN(MH) = awn(i, j, k) * BWI1(i, j, k) + agn(i, j, k) *

BGI1(i, j, k)

 End If

 If k <> nz Then

 Call Kr_upstream(i, j, k, i, j, k + 1)

 awb(i, j, k) = TB(i, j, k) * KRWUPS / (UWavb(i, j, k) *

BWavb(i, j, k))

 agb(i, j, k) = TB(i, j, k) * KRGUPS / (UGavb(i, j, k) *

BGavb(i, j, k))

 aB(MH) = awb(i, j, k) * BWI1(i, j, k) + agb(i, j, k) *

BGI1(i, j, k)

 End If

 Select Case WellConstraint(i, j, k)

 Case "GRate", "WRate", "2Rate", ""

 ac(MH) = -aW(MH) - aSt(MH) - aB(MH) - aE(MH) -

aN(MH) - aT(MH) - betha(i, j, k)

 Case "Pressure"

 ac(MH) = -aW(MH) - aSt(MH) - aB(MH) - aE(MH) -

aN(MH) - aT(MH) - betha(i, j, k) - JMODEL(i, j, k) * LambdaT(i, j, k)

 End Select

If i = 1 Then

101

 Select Case BCW

 Case 0

' Keep the same values

 Case 1

 ac(MH) = 1

 awe(i, j, k) = 0: age(i, j, k) = 0: aE(MH) = 0

 awn(i, j, k) = 0: agn(i, j, k) = 0: aN(MH) = 0

 aws(i, j, k) = 0: ags(i, j, k) = 0: aSt(MH) = 0

 awt(i, j, k) = 0: agt(i, j, k) = 0: aT(MH) = 0

 awb(i, j, k) = 0: agb(i, j, k) = 0: aB(MH) = 0

 End Select

 End If

 If j = 1 Then

 Select Case BCS

 Case 0

' Keep the same values

 Case 1

 ac(MH) = 1

 awn(i, j, k) = 0: agn(i, j, k) = 0: aN(MH) = 0

 aww(i, j, k) = 0: agw(i, j, k) = 0: aW(MH) = 0

 awe(i, j, k) = 0: age(i, j, k) = 0: aE(MH) = 0

 awt(i, j, k) = 0: agt(i, j, k) = 0: aT(MH) = 0

 awb(i, j, k) = 0: agb(i, j, k) = 0: aB(MH) = 0

 End Select

 End If

 If k = 1 Then

 Select Case BCT

 Case 0

' Keep the same values

 Case 1

 ac(MH) = 1

 awb(i, j, k) = 0: agb(i, j, k) = 0: aB(MH) = 0

 aww(i, j, k) = 0: agw(i, j, k) = 0: aW(MH) = 0

102

 awe(i, j, k) = 0: age(i, j, k) = 0: aE(MH) = 0

 awn(i, j, k) = 0: agn(i, j, k) = 0: aN(MH) = 0

 aws(i, j, k) = 0: ags(i, j, k) = 0: aSt(MH) = 0

 End Select

 End If

 If i = nx Then

 Select Case BCE

 Case 0

' Keep the same values

 Case 1

 ac(MH) = 1

 aww(i, j, k) = 0: agw(i, j, k) = 0: aW(MH) = 0

 awn(i, j, k) = 0: agn(i, j, k) = 0: aN(MH) = 0

 aws(i, j, k) = 0: ags(i, j, k) = 0: aSt(MH) = 0

 awt(i, j, k) = 0: agt(i, j, k) = 0: aT(MH) = 0

 awb(i, j, k) = 0: agb(i, j, k) = 0: aB(MH) = 0

 End Select

 End If

 If j = ny Then

 Select Case BCN

 Case 0

' Keep the same values

 Case 1

 ac(MH) = 1

 aws(i, j, k) = 0: ags(i, j, k) = 0: aSt(MH) = 0

 aww(i, j, k) = 0: agw(i, j, k) = 0: aW(MH) = 0

 awe(i, j, k) = 0: age(i, j, k) = 0: aE(MH) = 0

 awt(i, j, k) = 0: agt(i, j, k) = 0: aT(MH) = 0

 awb(i, j, k) = 0: agb(i, j, k) = 0: aB(MH) = 0

 End Select

 End If

 If k = nz Then

 Select Case BCB

 Case 0

103

' Keep the same values

 Case 1

 ac(MH) = 1

 awt(i, j, k) = 0: agt(i, j, k) = 0: aT(MH) = 0

 aww(i, j, k) = 0: agw(i, j, k) = 0: aW(MH) = 0

 awe(i, j, k) = 0: age(i, j, k) = 0: aE(MH) = 0

 awn(i, j, k) = 0: agn(i, j, k) = 0: aN(MH) = 0

 aws(i, j, k) = 0: ags(i, j, k) = 0: aSt(MH) = 0

 End Select

 End If

 Next i

 Next j

Next k

End Sub

Sub MatrixB()

Dim i As Integer, j As Integer, k As Integer, MH As Integer

MH = 0#

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 MH = MH + 1

 betha(i, j, k) = PV(i, j, k) * CTOT(i, j, k) / dt1

 'Well Constraints

 Select Case WellConstraint(i, j, k)

 Case "WRate", "GRate", "2rate"

 MB(MH) = -betha(i, j, k) * pn(i, j, k) + QT(i, j,

k)

 Case "Pressure"

 MB(MH) = -betha(i, j, k) * pn(i, j, k) - JMODEL(i,

j, k) * LambdaT(i, j, k) * Pwf(i, j, k)

 Case ""

 MB(MH) = -betha(i, j, k) * pn(i, j, k)

104

 End Select

 'Boundary conditions

 If i = 1 Then

 Select Case BCW

 Case 0

' Keep the same values

 Case 1

 MB(MH) = Pinit

 End Select

 End If

 If j = 1 Then

 Select Case BCS

 Case 0

' Keep the same values

 Case 1

 MB(MH) = Pinit

 End Select

 End If

 If k = 1 Then

 Select Case BCT

 Case 0

' Keep the same values

 Case 1

 MB(MH) = Pinit

 End Select

 End If

 If i = nx Then

 Select Case BCE

 Case 0

' Keep the same values

 Case 1

 MB(MH) = Pinit

 End Select

 End If

105

 If j = ny Then

 Select Case BCN

 Case 0

' Keep the same values

 Case 1

 MB(MH) = Pinit

 End Select

 End If

 If k = nz Then

 Select Case BCB

 Case 0

' Keep the same values

 Case 1

 MB(MH) = Pinit

 End Select

 End If

 Next

 Next

Next

End Sub

Sub MemAlloc()

'Allocate memory for variables after reading data

 ReDim p(nx, ny, nz), pn(nx, ny, nz)

 ReDim BOI(nx, ny, nz), BWI(nx, ny, nz), BGI(nx, ny, nz), RSOI(nx,

ny, nz), BOI1(nx, ny, nz), BWI1(nx, ny, nz), _

 BGI1(nx, ny, nz), RSOI1(nx, ny, nz)

 ReDim UOI(nx, ny, nz), UWI(nx, ny, nz), UGI(nx, ny, nz)

 ReDim COI(nx, ny, nz), CWI(nx, ny, nz), CGI(nx, ny, nz), CTOT(nx,

ny, nz)

 ReDim UOavw(nx, ny, nz), UWavw(nx, ny, nz), UGavw(nx, ny, nz), _

 UOavs(nx, ny, nz), UWavs(nx, ny, nz), UGavs(nx, ny, nz), _

 UOavb(nx, ny, nz), UWavb(nx, ny, nz), UGavb(nx, ny, nz)

106

 ReDim BOavw(nx, ny, nz), BWavw(nx, ny, nz), BGavw(nx, ny, nz), _

 BOavs(nx, ny, nz), BWavs(nx, ny, nz), BGavs(nx, ny, nz), _

 BOavb(nx, ny, nz), BWavb(nx, ny, nz), BGavb(nx, ny, nz)

 ReDim UOave(nx, ny, nz), UWave(nx, ny, nz), UGave(nx, ny, nz), _

 UOavn(nx, ny, nz), UWavn(nx, ny, nz), UGavn(nx, ny, nz), _

 UOavt(nx, ny, nz), UWavt(nx, ny, nz), UGavt(nx, ny, nz)

 ReDim BOave(nx, ny, nz), BWave(nx, ny, nz), BGave(nx, ny, nz), _

 BOavn(nx, ny, nz), BWavn(nx, ny, nz), BGavn(nx, ny, nz), _

 BOavt(nx, ny, nz), BWavt(nx, ny, nz), BGavt(nx, ny, nz)

 ReDim RSOavw(nx, ny, nz), RSOave(nx, ny, nz), _

 RSOavs(nx, ny, nz), RSOavn(nx, ny, nz), _

 RSOavb(nx, ny, nz), RSOavt(nx, ny, nz)

 ReDim KRWI(nx, ny, nz), KROWI(nx, ny, nz), KRGI(nx, ny, nz),

KROGI(nx, ny, nz), KROI(nx, ny, nz)

 ReDim SOI(nx, ny, nz), SWI(nx, ny, nz), SGI(nx, ny, nz), SLI(nx,

ny, nz)

 ReDim SOI1(nx, ny, nz), SWI1(nx, ny, nz), SGI1(nx, ny, nz),

SLI1(nx, ny, nz)

 ReDim PV(nx, ny, nz), PV1(nx, ny, nz), OOIP(nx, ny, nz), OWIP(nx,

ny, nz), OGIP(nx, ny, nz)

 ReDim TypeWell(nx, ny, nz), WellConstraint(nx, ny, nz), rw(nx, ny,

nz), Skin(nx, ny, nz), Pwf(nx, ny, nz)

 ReDim MinBHP(nx, ny, nz), QO(nx, ny, nz), QW(nx, ny, nz), QG(nx,

ny, nz)

 ReDim QT(nx, ny, nz), JMODEL(nx, ny, nz), ro(nx, ny, nz), dx(nx,

ny, nz), dy(nx, ny, nz), dz(nx, ny, nz)

 ReDim LambdaO(nx, ny, nz), LambdaW(nx, ny, nz), LambdaG(nx, ny,

nz), LambdaT(nx, ny, nz)

 ReDim TW(nx, ny, nz), TE(nx, ny, nz), TN(nx, ny, nz), TS(nx, ny,

nz), TT(nx, ny, nz), TB(nx, ny, nz), _

 aow(nx, ny, nz), aww(nx, ny, nz), agw(nx, ny, nz), aoe(nx,

ny, nz), awe(nx, ny, nz), age(nx, ny, nz), _

 aon(nx, ny, nz), awn(nx, ny, nz), agn(nx, ny, nz), aos(nx,

ny, nz), aws(nx, ny, nz), ags(nx, ny, nz), _

 aot(nx, ny, nz), awt(nx, ny, nz), agt(nx, ny, nz), aob(nx,

ny, nz), awb(nx, ny, nz), agb(nx, ny, nz)

107

 ReDim betha(nx, ny, nz) As Double

 ReDim Sat_diff(nx, ny, nz) As Double

End Sub

Sub Matrix_Solver()

Dim i As Integer, j As Integer, k As Integer, MH As Integer

Call CMAT(aW(), aE(), aSt(), aN(), aT(), aB(), ac(), MB(), TOL, II, JJ,

KKK, IJKM, ITMAX, QI(), AQI(), _

 AL3(), AL2(), AL1(), AD(), AU1(), AU2(), AU3(), QN(), AQN(),

RN(), DXN(), ADX(), Psim(), IT)

'Update pressure at i,j,k coordinates

MH = 0

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 MH = MH + 1

 p(i, j, k) = Psim(MH)

 Next

 Next

Next

End Sub

Sub AllocateMemory_Matrix(ByVal IJKM As Long)

ReDim aW(1 To IJKM)

ReDim aE(1 To IJKM)

ReDim aSt(1 To IJKM)

ReDim aN(1 To IJKM)

ReDim aT(1 To IJKM)

ReDim aB(1 To IJKM)

ReDim ac(1 To IJKM)

ReDim MB(1 To IJKM)

ReDim r(1 To IJKM)

ReDim Psim(1 To IJKM)

108

ReDim AL3(1 To IJKM)

ReDim AL2(1 To IJKM)

ReDim AL1(1 To IJKM)

ReDim AD(1 To IJKM)

ReDim AU1(1 To IJKM)

ReDim AU2(1 To IJKM)

ReDim AU3(1 To IJKM)

ReDim QI(1 To 15, 1 To IJKM)

ReDim AQI(1 To 15, 1 To IJKM)

ReDim QN(1 To IJKM)

ReDim AQN(1 To IJKM)

ReDim RN(1 To IJKM)

ReDim DXN(1 To IJKM)

ReDim ADX(1 To IJKM)

End Sub

Sub Matrix_Initial()

'Orthomin Matrix Solver's Parameter

 II = CInt(nx)

 JJ = CInt(ny)

 KKK = CInt(nz)

 IJKM = CInt(II)

 IJKM = IJKM * CInt(JJ)

 IJKM = IJKM * CInt(KKK)

 ITMAX = 50

 Call AllocateMemory_Matrix(IJKM)

 TOL = 0.000001

End Sub

109

Sub CMAT(aW() As Double, aE() As Double, aSt() As Double, aN() As

Double, _

 aT() As Double, aB() As Double, ac() As Double, MB() As

Double, _

 TOL As Double, II As Integer, JJ As Integer, KKK As Integer, _

 IJKM As Long, ITMAX As Double, QI() As Double, AQI() As

Double, _

 AL3() As Double, AL2() As Double, AL1() As Double, _

 AD() As Double, AU1() As Double, AU2() As Double, _

 AU3() As Double, QN() As Double, AQN() As Double, RN() As

Double, _

 DXN() As Double, ADX() As Double, Psim() As Double, IT As

Long)

Dim INX As Integer

Dim i As Integer, j As Integer, k As Integer

Dim FAC As Double

Dim TERM As Double

Dim INXY As Integer

Dim IB As Long

' ORTHOMIN SPARSE MATRIX SOLVER BASED ON PAPER BY P. K. W. VINSOME

' FOUTH SYMPOSIUM ON RESERVOIR SIMULATION

' LOS ANGELES, CALIFORNIA FEBRUARY 19-20,1976

 INX = II

 INXY = II * JJ

 IB = 0

 For k = 1 To KKK

 For j = 1 To JJ

 For i = 1 To II

 IB = IB + 1

 FAC = 1# / ac(IB)

 If i <> 1 Then AL1(IB) = FAC * aW(IB)

 If i <> II Then AU1(IB) = FAC * aE(IB)

110

 If j <> 1 Then AL2(IB) = FAC * aSt(IB)

 If j <> JJ Then AU2(IB) = FAC * aN(IB)

 If k <> 1 Then AL3(IB) = FAC * aT(IB)

 If k <> KKK Then AU3(IB) = FAC * aB(IB)

 RN(IB) = FAC * MB(IB)

 Next i

 Next j

 Next k

' APPROXIMATE LDU FACTORIZATION

 AD(1) = 1#

 For i = 2 To INX

 TERM = 1# - AL1(i) * AD(i - 1) * AU1(i - 1)

 AD(i) = 1# / TERM

 Next i

 For i = INX + 1 To INXY

 TERM = 1# - AL1(i) * AD(i - 1) * AU1(i - 1) _

 - AL2(i) * AD(i - INX) * AU2(i - INX)

 AD(i) = 1# / TERM

 Next i

 For i = INXY + 1 To IJKM

 TERM = 1# - AL1(i) * AD(i - 1) * AU1(i - 1) _

 - AL2(i) * AD(i - INX) * AU2(i - INX) _

 - AL3(i) * AD(i - INXY) * AU3(i - INXY)

 AD(i) = 1# / TERM

 Next

 Call ORTH(AL3(), AL2(), AL1(), AD(), AU1(), AU2(), AU3(), TOL _

 , INX, INXY, IJKM, ITMAX, RN(), DXN(), ADX(), QI() _

 , AQI(), QN(), AQN(), Psim(), IT)

 End Sub

111

Sub MVEC(AL3() As Double, AL2() As Double, AL1() As Double, AU1() As

Double, AU2() As Double, AU3() As Double, r() As Double, _

 INX As Integer, INXY As Integer, IJKM As Long, c() As Double)

Dim i As Long

 For i = 1 To IJKM

 c(i) = r(i)

 Next i

 For i = 1 To IJKM - 1

 c(i) = c(i) + AU1(i) * r(i + 1)

 Next i

 For i = 1 To IJKM - INX

 c(i) = c(i) + AU2(i) * r(i + INX)

 Next i

 For i = 1 To IJKM - INXY

 c(i) = c(i) + AU3(i) * r(i + INXY)

 Next i

 For i = 2 To IJKM

 c(i) = c(i) + AL1(i) * r(i - 1)

 Next i

 For i = INX + 1 To IJKM

 c(i) = c(i) + AL2(i) * r(i - INX)

 Next i

 For i = INXY + 1 To IJKM

 c(i) = c(i) + AL3(i) * r(i - INXY)

 Next i

 End Sub

Sub ORTH(AL3() As Double, AL2() As Double, AL1() As Double, _

 AD() As Double, AU1() As Double, AU2() As Double, _

 AU3() As Double, TOL, INX As Integer, INXY As Integer, _

112

 IJKM As Long, ITMAX As Double, RN() As Double, DXN() As

Double, _

 ADX() As Double, QI() As Double, AQI() As Double, _

 QN() As Double, AQN() As Double, DP() As Double, IT)

Dim Rsq As Double

Dim nmax As Long

Dim N As Long

Dim CONV As Double, CONV1 As Double

Dim NM1 As Long

Dim IB As Long

Dim ITER As Long

Dim i As Long

Dim omega As Double

Dim AI As Double

Dim AQIAQI() As Double

Dim AQIADX As Double

Dim AQNAQN As Double

Dim AQNRN As Double

ReDim AQIAQI(IJKM)

' ======== temp

 nmax = 15

' ======== temp

 CONV1 = TOL * TOL

 If CONV1 > 0.0001 Then CONV1 = 0.0001

 Rsq = 0#

 For IB = 1 To IJKM

 DP(IB) = 0#

 Rsq = Rsq + RN(IB) * RN(IB)

 Next IB

113

 CONV = CONV1 * Rsq

 N = 0

 For ITER = 1 To ITMAX

 IT = ITER

 If N = nmax Then N = 0

 N = N + 1

 NM1 = N - 1

 Call MSOLVE(AL3(), AL2(), AL1(), AD(), AU1(), AU2() _

 , AU3(), RN(), INX, INXY, IJKM, DXN())

 Call MVEC(AL3(), AL2(), AL1(), AU1(), AU2(), AU3(), DXN(), _

 INX, INXY, IJKM, ADX())

 If N = 1 Then

 For IB = 1 To IJKM

 QN(IB) = DXN(IB)

 AQN(IB) = ADX(IB)

 QI(1, IB) = QN(IB)

 AQI(1, IB) = AQN(IB)

 Next IB

 Else

 For IB = 1 To IJKM

 QN(IB) = DXN(IB)

 Next IB

 For i = 1 To NM1

 AQIADX = 0#

 For IB = 1 To IJKM

 AQIADX = AQIADX + AQI(i, IB) * ADX(IB)

 Next IB

 AI = AQIADX / AQIAQI(i)

 For IB = 1 To IJKM

 QN(IB) = QN(IB) - AI * QI(i, IB)

114

 Next IB

 Next i

 Call MVEC(AL3(), AL2(), AL1(), AU1(), AU2(), _

 AU3(), QN(), INX, INXY, IJKM, AQN())

 For IB = 1 To IJKM

 QI(N, IB) = QN(IB)

 AQI(N, IB) = AQN(IB)

 Next IB

 End If

 AQNAQN = 0#

 AQNRN = 0#

 For IB = 1 To IJKM

 AQNAQN = AQNAQN + AQN(IB) * AQN(IB)

 AQNRN = AQNRN + AQN(IB) * RN(IB)

 Next IB

 AQIAQI(N) = AQNAQN

 omega = AQNRN / AQNAQN

 Rsq = 0#

 For IB = 1 To IJKM

 DP(IB) = DP(IB) + omega * QN(IB)

 RN(IB) = RN(IB) - omega * AQN(IB)

 Rsq = Rsq + RN(IB) * RN(IB)

 Next IB

 If (Rsq <= CONV) Then GoTo line900

 Next ITER

' MsgBox " ORTHOMIN DID NOT CONVERGE IN " & ITER & " ITERATIONS"

line900:

End Sub

115

Sub MSOLVE(AL3() As Double, AL2() As Double, AL1() As Double, _

 AD() As Double, AU1() As Double, AU2() As Double, _

 AU3() As Double, r() As Double, INX As Integer, _

 INXY As Integer, IJKM As Long, XX() As Double)

Dim i As Long

 XX(1) = AD(1) * r(1)

 For i = 2 To INX

 XX(i) = AD(i) * (r(i) - AL1(i) * XX(i - 1))

 Next i

 For i = INX + 1 To INXY

 XX(i) = AD(i) * (r(i) - AL1(i) * XX(i - 1) - AL2(i) * XX(i -

INX))

 Next i

 For i = INXY + 1 To IJKM

 XX(i) = AD(i) * (r(i) - AL1(i) * XX(i - 1) - AL2(i) * XX(i -

INX) _

 - AL3(i) * XX(i - INXY))

 Next i

 For i = 1 To IJKM

 XX(i) = XX(i) / AD(i)

 Next i

'

' BACK SUBSTITUTION

'

 For i = IJKM - 1 To IJKM - INX + 1 Step -1

 XX(i) = AD(i) * (XX(i) - AU1(i) * XX(i + 1))

 Next i

 For i = IJKM - INX To IJKM - INXY + 1 Step -1

 XX(i) = AD(i) * (XX(i) - AU1(i) * XX(i + 1) - AU2(i) * XX(i +

INX))

 Next i

 For i = IJKM - INXY To 1 Step -1

 XX(i) = AD(i) * (XX(i) - AU1(i) * XX(i + 1) - AU2(i) * XX(i +

INX) _

116

 - AU3(i) * XX(i + INXY))

 Next i

End Sub

Sub Read_data()

Dim InputFile As String

Dim OutputFile As String

Dim Tablename As String, text As String, PR() As Double

Dim i As Integer, j As Integer, k As Integer, convar As String

InputFile = "C:\Documents and Settings\SAEED F\My Documents\My Academic

Career\My Research\Mycodes\3D2PH_2.txt"

OutputFile = "C:\Documents and Settings\SAEED F\Desktop\3D2PH_2.out"

Open InputFile For Input As 1

Open OutputFile For Output As 2

Line Input #1, text

Line Input #1, text

Input #1, nx, ny, nz

ReDim xD(nx, ny, nz), yD(nx, ny, nz), zD(nx, ny, nz), xThick(nx, ny,

nz), yThick(nx, ny, nz), zThick(nx, ny, nz)

ReDim poro(nx, ny, nz), permX(nx, ny, nz), permY(nx, ny, nz), permZ(nx,

ny, nz)

'GRID BLOCKS GENERATION

Input #1, text, convar

Select Case convar

 Case "CONST"

 Input #1, Xsize

 xD(1, 1, 1) = Xsize

 For i = 2 To nx

 xD(i, 1, 1) = xD(i - 1, 1, 1) + Xsize

 Next

 For k = 1 To nz

 For j = 1 To ny

117

 For i = 1 To nx

 xD(i, j, k) = xD(i, 1, 1)

 Next

 Next

 Next

 Case "IVARIABLE"

 For i = 1 To nx

 Input #1, xThick(i, 1, 1)

 Next

 xD(1, 1, 1) = xThick(1, 1, 1)

 For i = 2 To nx

 xD(i, 1, 1) = xD(i - 1, 1, 1) + xThick(i, 1, 1)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 xD(i, j, k) = xD(i, 1, 1)

 Next

 Next

 Next

End Select

Input #1, text, convar

Select Case convar

 Case "CONST"

 Input #1, Ysize

 yD(1, 1, 1) = Ysize

 For j = 2 To ny

 yD(1, j, 1) = yD(1, j - 1, 1) + Ysize

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 yD(i, j, k) = yD(1, j, 1)

118

 Next

 Next

 Next

 Case "JVARIABLE"

 For j = 1 To ny

 Input #1, yThick(1, j, 1)

 Next

 yD(1, 1, 1) = yThick(1, 1, 1)

 For j = 2 To ny

 yD(1, j, 1) = yD(1, j - 1, 1) + yThick(1, j, 1)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 yD(i, j, k) = yD(1, j, 1)

 Next

 Next

 Next

End Select

Input #1, text, convar

Select Case convar

 Case "CONST"

 Input #1, Zsize

 zD(1, 1, 1) = Zsize

 zThick(1, 1, 1) = Zsize 'This line is for

printing purposes only

 For k = 2 To nz

 zD(1, 1, k) = zD(1, 1, k - 1) + Zsize

 zThick(1, 1, k) = Zsize 'This line is for

printing purposes only

 Next

 For k = 1 To nz

 For j = 1 To ny

119

 For i = 1 To nx

 zD(i, j, k) = zD(1, 1, k)

 Next

 Next

 Next

 Case "KVARIABLE"

 For k = 1 To nz

 Input #1, zThick(1, 1, k)

 Next

 zD(1, 1, 1) = zThick(1, 1, 1)

 For k = 2 To nz

 zD(1, 1, k) = zD(1, 1, k - 1) + zThick(1, 1, k)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 zD(i, j, k) = zD(1, 1, k)

 Next

 Next

 Next

End Select

'POROSITY ENTRIES

Input #1, text, convar

Select Case convar

 Case "CONST"

 Input #1, poro(1, 1, 1)

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 poro(i, j, k) = poro(1, 1, 1)

 Next

 Next

 Next

 Case "IVARIABLE"

120

 For i = 1 To nx

 Input #1, poro(i, 1, 1)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 poro(i, j, k) = poro(i, 1, 1)

 Next

 Next

 Next

 Case "JVARIABLE"

 For j = 1 To ny

 Input #1, poro(1, j, 1)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 poro(i, j, k) = poro(1, j, 1)

 Next

 Next

 Next

 Case "KVARIABLE"

 For k = 1 To nz

 Input #1, poro(1, 1, k)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 poro(i, j, k) = poro(1, 1, k)

 Next

 Next

 Next

End Select

'PERMEABILITY ENTRIES

121

'I DIRECTION PERMEABILITY

Input #1, text, convar

Select Case convar

 Case "CONST"

 Input #1, permX(1, 1, 1)

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permX(i, j, k) = permX(1, 1, 1)

 Next

 Next

 Next

 Case "IVARIABLE"

 For i = 1 To nx

 Input #1, permX(i, 1, 1)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permX(i, j, k) = permX(i, 1, 1)

 Next

 Next

 Next

 Case "JVARIABLE"

 For j = 1 To ny

 Input #1, permX(1, j, 1)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permX(i, j, k) = permX(1, j, 1)

 Next

 Next

 Next

122

 Case "KVARIABLE"

 For k = 1 To nz

 Input #1, permX(1, 1, k)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permX(i, j, k) = permX(1, 1, k)

 Next

 Next

 Next

End Select

'J DIRECTION PERMEABILITY

Input #1, text, convar

Select Case convar

 Case "CONST"

 Input #1, permY(1, 1, 1)

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permY(i, j, k) = permY(1, 1, 1)

 Next

 Next

 Next

 Case "IVARIABLE"

 For i = 1 To nx

 Input #1, permY(i, 1, 1)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permY(i, j, k) = permY(i, 1, 1)

 Next

 Next

 Next

123

 Case "JVARIABLE"

 For j = 1 To ny

 Input #1, permY(1, j, 1)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permY(i, j, k) = permY(1, j, 1)

 Next

 Next

 Next

 Case "KVARIABLE"

 For k = 1 To nz

 Input #1, permY(1, 1, k)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permY(i, j, k) = permY(1, 1, k)

 Next

 Next

 Next

 Case "EQUALI"

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permY(i, j, k) = permX(i, j, k)

 Next

 Next

 Next

End Select

'K DIRECTION PERMEABIITY

Input #1, text, convar

124

Select Case convar

 Case "CONST"

 Input #1, permZ(1, 1, 1)

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permZ(i, j, k) = permZ(1, 1, 1)

 Next

 Next

 Next

 Case "IVARIABLE"

 For i = 1 To nx

 Input #1, permZ(i, 1, 1)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permZ(i, j, k) = permZ(i, 1, 1)

 Next

 Next

 Next

 Case "JVARIABLE"

 For j = 1 To ny

 Input #1, permZ(1, j, 1)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permZ(i, j, k) = permZ(1, j, 1)

 Next

 Next

 Next

 Case "KVARIABLE"

 For k = 1 To nz

125

 Input #1, permZ(1, 1, k)

 Next

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permZ(i, j, k) = permZ(1, 1, k)

 Next

 Next

 Next

 Case "EQUALI"

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permZ(i, j, k) = permX(i, j, k)

 Next

 Next

 Next

 Case "EQUALJ"

 For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 permZ(i, j, k) = permY(i, j, k)

 Next

 Next

 Next

End Select

Line Input #1, text

Input #1, Cf

'PVT

Line Input #1, Tablename

Input #1, npvt

Line Input #1, text

ReDim Ppvt(npvt) As Double, BW(npvt) As Double, _

 UW(npvt) As Double, CW(npvt) As Double, BG(npvt) As Double, _

126

 UG(npvt) As Double, CG(npvt) As Double

For i = 1 To npvt

 Input #1, Ppvt(i), BW(i), UW(i), CW(i), BG(i), UG(i), CG(i)

Next i

'RELATIVE PERM

Line Input #1, text

Line Input #1, text

Input #1, nkr

Line Input #1, text

ReDim SW(nkr), KRW(nkr)

For i = 1 To nkr

 Input #1, SW(i), KRW(i)

Next i

Line Input #1, text

Input #1, nkrg

Line Input #1, text

ReDim SG(nkrg), KRG(nkrg)

For i = 1 To nkrg

 Input #1, SG(i), KRG(i)

Next

Line Input #1, text

Line Input #1, text

Input #1, SWC

Line Input #1, text

Input #1, Pinit

Line Input #1, text

Line Input #1, text

Input #1, BCW, BCE, BCS, BCN, BCB, BCT

Line Input #1, text

Input #1, dt, tmax, Satmax, ncuts

Line Input #1, text

Input #1, nwell

If nwell <> 0 Then

 ReDim Wellname(nwell), XCoor(nwell), YCoor(nwell), ZCoor(nwell),

TypeWell_read(nwell), _

127

 PR(nwell), rw_read(nwell), Skin_read(nwell),

QT_read(nwell), _

 QW_read(nwell), QG_read(nwell), Pwf_read(nwell),

MinBHP_read(nwell)

 Line Input #1, text

 For i = 1 To nwell

 Input #1, Wellname(i), XCoor(i), YCoor(i), ZCoor(i),

rw_read(i), Skin_read(i), TypeWell_read(i)

 Next

 Line Input #1, text

 For i = 1 To nwell

 Input #1, PR(i), QW_read(i), QG_read(i), Pwf_read(i),

MinBHP_read(i)

 Next

End If

Close #1

Print #2, "Simulation Output Results"

End Sub

Sub Identify_constraints()

Dim i As Integer, j As Integer, k As Integer

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 If QW(i, j, k) <> 0# Then WellConstraint(i, j, k) = "WRate"

 If QG(i, j, k) <> 0# Then WellConstraint(i, j, k) = "GRate"

 If QG(i, j, k) <> 0# And QW(i, j, k) <> 0# Then

WellConstraint(i, j, k) = "2Rate"

 If Pwf(i, j, k) <> 0# Then WellConstraint(i, j, k) =

"Pressure"

 Next

 Next

Next

End Sub

128

Sub Fluids_In_Place()

Dim i As Integer, j As Integer, k As Integer, m As Integer

TotalWIP = 0#: TotalGIP = 0#

For k = 1 To nz

 For j = 1 To ny

 For i = 1 To nx

 TotalWIP = TotalWIP + OWIP(i, j, k)

 TotalGIP = TotalGIP + OGIP(i, j, k)

 Next

 Next

Next

With ThisWorkbook.Sheets("RESULTS")

 .Cells(1, 1) = "SIMULATION RESULTS"

 .Cells(2, 1) = "Fluids in Place"

 .Cells(4, 1) = "OWIP = " & Round(TotalWIP / (1000000 * 5.615), 1) &

" MMSTB"

 .Cells(5, 1) = "OGIP = " & Round(TotalGIP / 1000000, 1) & " MMSCF"

End With

Print #2, ""

Print #2, "Fluids in place"

Print #2, "OWIP = ", Round(TotalWIP / (1000000 * 5.615), 1) & " MMSTB"

Print #2, "OGIP = ", Round(TotalGIP / 1000000, 1) & " MMSCF"

End Sub

Sub Report()

Call Print_Report

Dim i As Integer, j As Integer, k As Integer, m As Integer

With ThisWorkbook.Sheets("Pressure")

 .Cells(1, 1) = "Pressure at every grid block"

129

 .Cells((rc - 1) * (ny * nz + nz + 1) + 2, 1) = "Time = " &

Round(time, 2)

 For k = 1 To nz

 .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 3, 1) =

"k = " & k

 For j = 1 To ny

 For i = 1 To nx

 .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) +

j + 2, i + 1) = Round(pn(i, j, k), 2)

 Next

 Next

 Next

End With

With ThisWorkbook.Sheets("Sw")

 .Cells(1, 1) = "Water Saturation at every grid block"

 .Cells((rc - 1) * (ny * nz + nz + 1) + 2, 1) = "Time = " &

Round(time, 2)

 For k = 1 To nz

 .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 3, 1) =

"k = " & k

 For j = 1 To ny

 For i = 1 To nx

 .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) +

j + 2, i + 1) = Round(SWI(i, j, k), 6)

 Next

 Next

 Next

End With

With ThisWorkbook.Sheets("Sg")

 .Cells(1, 1) = "Gas Saturation at every grid block"

 .Cells((rc - 1) * (ny * nz + nz + 1) + 2, 1) = "Time = " &

Round(time, 2)

 For k = 1 To nz

130

 .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 3, 1) =

"k = " & k

 For j = 1 To ny

 For i = 1 To nx

 .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) +

j + 2, i + 1) = Round(SGI(i, j, k), 6)

 Next

 Next

 Next

End With

With ThisWorkbook.Sheets("Sw+Sg")

 .Cells(1, 1) = "Sum of Saturation at every grid block"

 .Cells((rc - 1) * (ny * nz + nz + 1) + 2, 1) = "Time = " &

Round(time, 2)

 For k = 1 To nz

 .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 3, 1) =

"k = " & k

 For j = 1 To ny

 For i = 1 To nx

 .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) +

j + 2, i + 1) = Round(SWI(i, j, k) + SGI(i, j, k), 6)

 Next

 Next

 Next

End With

If nwell <> 0 Then

 With ThisWorkbook.Sheets("WELLS")

 .Cells(2, 1 + nwell) = "Water Rate, STB/D"

 .Cells(2, 1 + nwell * 2) = "Cum. Water, MSTB"

 .Cells(2, 2 + nwell * 3) = "Gas Rate, Mscf/D"

 .Cells(2, 2 + nwell * 4) = "Cum. Gas, MMscf"

 .Cells(2, 3 + nwell * 5) = "Pwf, psi"

 .Cells(2, 4 + nwell * 6) = "Well Type"

 .Cells(2, 2 + nwell * 8) = "Avg Rsr Prs"

131

 .Cells(2, 1) = "Time Step"

 .Cells(3, 1) = "Days"

 .Cells(rc + 4, 1) = Round(time, 2)

 For m = 1 To nwell

 Select Case WellConstraint(XCoor(m), YCoor(m), ZCoor(m))

 Case "GRate"

 .Cells(3, m + 1 + nwell * 3) = Wellname(m)

& " layer " & ZCoor(m): .Cells(3, m

+ nwell) = Wellname(m) & " layer " & ZCoor(m)

 .Cells(rc + 4, m + 1 + nwell * 3) =

Round(QG(XCoor(m), YCoor(m), ZCoor(m)) / 1000, 1):

.Cells(rc + 4, m + nwell) = Round(QW(XCoor(m), YCoor(m), ZCoor(m)) /

5.615, 1) ' .Cells(rc + 4, m + nwell) = Round((QW(XCoor(m), YCoor(m),

ZCoor(m)) - (-0.0002 * time ^ 2 + 0.0109 * time + 24)) / 5.615, 1)

 .Cells(3, m + 1 + nwell * 4) = Wellname(m)

& " layer " & ZCoor(m)

 .Cells(rc + 4, m + 1 + nwell * 4) =

(.Cells(rc + 4, m + 1 + nwell * 3) * dt1) / 1000 + .Cells(rc + 3, m + 1

+ nwell * 4)

 .Cells(3, m + nwell * 2) = Wellname(m) & "

layer " & ZCoor(m)

 .Cells(rc + 4, m + nwell * 2) = (.Cells(rc

+ 4, m + nwell) * dt1) / 1000 + .Cells(rc + 3, m + nwell * 2)

 .Cells(3, m + 2 + nwell * 5) = Wellname(m)

& " layer " & ZCoor(m)

 .Cells(rc + 4, m + 2 + nwell * 5) =

Round(Pwf(XCoor(m), YCoor(m), ZCoor(m)), 1)

 Case "WRate"

 .Cells(3, m + nwell) = Wellname(m) & "

layer " & ZCoor(m)

132

 .Cells(rc + 4, m + nwell) =

Round(QW(XCoor(m), YCoor(m), ZCoor(m)) / 5.615, 1)

 .Cells(3, m + nwell * 2) = Wellname(m) & "

layer " & ZCoor(m)

 .Cells(rc + 4, m + nwell * 2) = (.Cells(rc

+ 4, m + nwell) * dt1) / 1000 + .Cells(rc + 3, m + nwell * 2)

 .Cells(3, m + 1 + nwell * 3) = Wellname(m)

& " layer " & ZCoor(m)

 .Cells(rc + 4, m + 1 + nwell * 3) =

Round(QG(XCoor(m), YCoor(m), ZCoor(m)) / 1000, 1)

 .Cells(3, m + 1 + nwell * 4) = Wellname(m)

& " layer " & ZCoor(m)

 .Cells(rc + 4, m + 1 + nwell * 4) =

(.Cells(rc + 4, m + 1 + nwell * 3) * dt1) / 1000 + .Cells(rc + 3, m + 1

+ nwell * 4)

 .Cells(3, m + 2 + nwell * 5) = Wellname(m)

& " layer " & ZCoor(m)

 .Cells(rc + 4, m + 2 + nwell * 5) =

Round(Pwf(XCoor(m), YCoor(m), ZCoor(m)), 1)

 Case "Pressure"

 .Cells(3, m + 1 + nwell * 3) = Wellname(m)

& " layer " & ZCoor(m): .Cells(3,

m + nwell) = Wellname(m) & " layer " & ZCoor(m)

 .Cells(rc + 4, m + 1 + nwell * 3) =

Round(QG(XCoor(m), YCoor(m), ZCoor(m)) / 1000, 1):

.Cells(rc + 4, m + nwell) = Round(QW(XCoor(m), YCoor(m), ZCoor(m)) /

5.615, 1) ' .Cells(rc + 4, m + nwell) = Round(QW(XCoor(m), YCoor(m),

ZCoor(m)) / 5.615 - (0.00016 * time ^ 2 - 0.17 * time + 16), 1)

 .Cells(3, m + 1 + nwell * 4) = Wellname(m)

& " layer " & ZCoor(m)

133

 .Cells(rc + 4, m + 1 + nwell * 4) =

(.Cells(rc + 4, m + 1 + nwell * 3) * dt1) / 1000 + .Cells(rc + 3, m + 1

+ nwell * 4)

 .Cells(3, m + nwell * 2) = Wellname(m) & "

layer " & ZCoor(m)

 .Cells(rc + 4, m + nwell * 2) = (.Cells(rc

+ 4, m + nwell) * dt1) / 1000 + .Cells(rc + 3, m + nwell * 2)

 .Cells(3, m + 2 + nwell * 5) = Wellname(m)

& " layer " & ZCoor(m)

 .Cells(rc + 4, m + 2 + nwell * 5) =

Round(Pwf(XCoor(m), YCoor(m), ZCoor(m)), 1)

 End Select

 Next

 'Print Well Type & Average Reservoir Pressure

 For m = 1 To nwell

 .Cells(3, m + 3 + nwell * 6) = Wellname(m) & "

layer " & ZCoor(m)

 .Cells(rc + 4, m + 3 + nwell * 6) =

WellConstraint(XCoor(m), YCoor(m), ZCoor(m))

 Next

 For m = 1 To 1

 .Cells(3, m + 4 + nwell * 7) = "psi"

 .Cells(rc + 4, m + 4 + nwell * 7) = Round(PSum)

/ (nx * ny * nz)

 Next

End With

With ThisWorkbook.Sheets("RESULTS")

 .Cells(8, 1) = "Cumulative Water = " & Round(CumWater / 5615,

2) & " MSTB"

134

 .Cells(9, 1) = "Cumulative Gas = " & Round(CumGas / 1000000, 1)

& " MMSCF"

 .Cells(10, 1) = "Pore Volume = " & Round(PoreVol / 1000, 2) & "

MMSTB"

 .Cells(1, 6) = "X-->"

 .Cells(2, 5) = "Z"

 For k = 1 To nz

 For i = 1 To nx

 .Cells(1 + k, 5 + i) = zThick(1, 1, k)

 Next

 Next

End With

End If

End Sub

Sub Print_Report()

Dim i As Integer, j As Integer, k As Integer, m As Integer

Print #2, ""

Print #2, "Time step:", time

Print #2, ""

'Print pressure at grid blocks

Print #2, "Pressure"

For k = 1 To nz

Print #2, "k= " & k

 For j = 1 To ny

 'Print #2, ""

 For i = 1 To nx

 Print #2, Round(pn(i, j, k), 2),

 Next

 Print #2, ""

 Next

135

Next

'Print Water saturation at every grid block

Print #2, ""

Print #2, "Water Saturation"

For k = 1 To nz

Print #2, "k= " & k

 For j = 1 To ny

 For i = 1 To nx

 Print #2, Round(SWI1(i, j, k), 6),

 Next

 Print #2, ""

 Next

Next

'Print Gas Saturation at every grid block

Print #2, ""

Print #2, "Gas Saturation"

For k = 1 To nz

Print #2, "k= " & k

 For j = 1 To ny

 For i = 1 To nx

 Print #2, Round(SGI1(i, j, k), 6),

 Next

 Print #2, ""

 Next

Next

'Print Sum Saturation Verification

Print #2, ""

Print #2, "Verification Sum Sat"

For k = 1 To nz

Print #2, "k= " & k

 For j = 1 To ny

 For i = 1 To nx

 Print #2, Round((SWI1(i, j, k) + SGI1(i, j, k)), 6),

 Next

 Print #2, ""

 Next

136

Next

'Print production for wells, if any

If nwell <> 0 Then

Print #2, ""

 Print #2, "Well Name", "Layer", "Qw STB/D", "Qg MSCF/D", "Pwf psi"

 For m = 1 To nwell

 For k = 1 To nz

 If k = ZCoor(m) Then

 For j = 1 To ny

 If j = YCoor(m) Then

 For i = 1 To nx

 If i = XCoor(m) Then

 Print #2, Wellname(m), ZCoor(m),

Round(QW(i, j, k) / 5.615, 2), Round(QG(i, j, k) / 1000, 2),

Round(Pwf(i, j, k), 2)

 End If

 Next

 End If

 Next

 End If

 Next

 Next

Print #2, ""

Print #2, "Cum Water Production (MSTB) : ", Round(CumWater / 5615, 2)

Print #2, "Cum Gas Production (MMSCF) : ", Round(CumGas / 1000000,

2)

Print #2, ""

End If

End Sub

137

VITA

 Name: Saeed Forghany

 Permanent Address: No. 12, Sahebazaman St.

 Isfahan, P.O. Box: 819 666 9368

 IRAN

 E-mail: saeed_f@tamu.edu

 Education: B.Sc., Mining Engineering

 Sahand University of Technology,

 Tabriz, IRAN

 (Sep. 1996-Sep. 2000)

 M.Sc., Petroleum Engineering

 Texas A&M University

 College Station

 Texas, U.S.A.

 (Jan. 2002-May 2004)

