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ABSTRACT 

 

The Modeling of Arsenic Removal from Contaminated Water  

Using Coagulation and Sorption. (August 2005) 

Jin-Wook Kim, B.S., Yonsei University, South Korea: 

M.S., Yonsei University, South Korea 

Chair of Advisory Committee: Dr. Timothy A. Kramer 

 

 

To achieve predictive capability for complex environmental systems with 

coagulation and arsenic sorption, a unified improved coagulation model coupled with 

arsenic sorption was developed. A unified coagulation model coupled with arsenic 

sorption was achieved by the following steps: (1) an improved discretized population 

balance equation (PBE) was developed to obtain the exact solution of conventional 

coagulation, (2) the improved PBE was extended to an adjustable geometric size interval 

having higher numerical stability, accuracy, and computational efficiency than existing 

models for fractal aggregate coagulation that includes agglomeration and fragmentation, 

(3) a surface complexation equilibrium model and a sorption kinetic model was 

introduced to predict arsenic sorption behavior onto hydrous metal oxide surfaces, and 

(4) an improved discretized PBE was coupled with arsenic sorption kinetics and 

equilibrium models by aid of collision efficiency α  depending on  surface charge 

(potential) on the hydrous metal oxide particles, colliding particle size ratio, and fluid 

strain-rate in applied flow system. The collision efficiency α  into the improved 

(r , r )i j

(r , r )i j



 iv

discretized coagulation model for fractal aggregate yielded a unified improved 

coagulation model coupled with arsenic sorption kinetics and the equilibrium model. 

Thus, an improved unified coagulation model could provide high statistical accuracy, 

numerical stability, and computational efficiency to enhance predictive capability for 

behavior of arsenic sorption and fractal colloid particle aggregation and break-up, 

simultaneously.  

From the investigation, it is anticipated that the unified coagulation model 

coupled with arsenic sorption kinetics and equilibrium will provide a more complete 

understanding of the arsenic removal mechanism and its application to water/wastewater 

treatment. Further, this coupled model can be applied to other water and wastewater 

treatment systems combined with sorption and filtration processes. These combined 

processes can be optimized by the coupled model that was developed in this study. By 

simulating the arsenic sorption and particle size distribution as a pretreatment before 

filtration (sand filtration or membrane filtration), the overall arsenic removal efficiency 

and operation cost can be estimated. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Statement of Purpose1

In 2001, USEPA adopted a new arsenic standard (< 10 ppb) and public water 

systems must obey the 10 ppb new arsenic standard beginning January 23, 2006 and the 

agency declared that the final arsenic standard of 10 ppb in drinking water would 

become effective on January 1, 2006 (USEPA 2001a). However, the National Arsenic 

Occurrence Survey (NAOS) reported that 20.7 % of all water systems would be out of 

compliance if the standard was set at 2 ppb, 9.3 % would be out of compliance if the 

standard was set at 5 ppb, 3.6 % if the arsenic standard was set at 10 ppb, and if the 

standard was set at 20 ppb, 1.7 % of all water systems would not be in compliance 

(USEPA 2000). As is well known, the exposure to arsenic can lead to many health-

related concerns both cancerous and non-cancerous. Further, arsenic is classified by the 

International Agency of Research on Cancer and the EPA as a human carcinogen.  

The current lowering of the maximum contaminant level (MCL) established by 

the USEPA for arsenic in drinking water is 10 ppb. Thus, the need for adequate methods 

for removal of arsenic has become urgent. The sorption of the toxic metals on a hydrous 

metal oxide (HMO), i.e. Al(OH)3(s) (HAO) or Fe(OH)3(s) (HFO), is the most practical 

method for removing the toxic compounds from contaminated water. Ferric iron (Fe3+) 

can act as a coagulant for suspended particle removal as well as an adsorbent, which is 

                                                 
1The style and format of this thesis follows that of Journal of Environmental Engineering. 
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often called amorphous ferric oxy-hydroxide (am-Fe(OH)3(s)) or 2-line ferrihydrite 

(FepOr(OH)s·nH2O) for toxic metals such as arsenic, chromium, and lead. However, the 

hydrous metal oxide particle behaviors such as aggregation and break-up in the applied 

fluid flow are not easily predicted especially when these toxic metals coexist within the 

fluid system applied due to particle surface charge/potential evolution with time 

resulting from metal sorption onto the particle surface. To achieve predictive capability 

for the complex environmental system with coagulation and metal sorption, a unified 

coagulation model coupled with arsenic sorption should be developed. 

First, an improved discretized population balance equation (PBE) will be 

developed in this study to obtain the exact solution of conventional coagulation model 

(Smoluchowski 1917) coupled with chemical reactions (i.e., arsenic sorption) and fluid 

dynamics. Furthermore, relatively little attention has been paid to fractal aggregate 

modeling including agglomeration and fragmentation. Spherical particle coalescence 

applies only to ideal bubbles and droplets and most particle aggregates are found to be 

fractal, especially in solid colloidal particle coagulation. Thus, fractal aggregate 

coagulation via the higher numerical stability and accuracy is needed for realistic 

simulation. Second, a surface complexation equilibrium model using a thermodynamic 

equilibrium database and a sorption kinetic model using diffusion mass transport will be 

introduced to predict arsenic sorption behavior onto hydrous metal oxide surfaces and 

arsenic sorption effects on the hydrous metal oxide particle surface charge/potential and 

particle collision resulting in charged colloid particle coagulation phenomenon. Third, an 

improved coagulation model coupled with arsenic sorption kinetics and equilibrium 
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models will be developed. The collision efficiency α  between colliding hydrous 

metal oxide particles will be calculated by aid of the surface charge/potentials on the 

hydrous metal oxide particles. Finally, introducing the collision efficiency α  into 

the improved coagulation model for fractal aggregate will yield a unified improved 

coagulation model coupled with arsenic sorption kinetics and equilibrium model. 

(r , r )i j

(r , r )i j

Thus, an improved unified coagulation model, consisting of a simplified non-

uniform discretized population balance equations for fractal aggregate and arsenic 

sorption reactions, will provide high statistical accuracy, numerical stability, and 

computational efficiency to enhance predictive capability for behavior of arsenic 

sorption and fractal colloid particle aggregation and break-up, simultaneously. 

 

1.2 Background 

1.2.1 Arsenic in Drinking Water 

In the nineteenth century, arsenic, the twentieth most abundant element on the 

planet, was recognized as being toxic to humans and other living organisms (Pontius et 

al. 1994). Further, arsenic is one of the most common inorganic environmental 

contaminants and it is on the National Priority List as the second most common 

contaminant of concern. Over the years, extensive research has been performed to 

determine ways that arsenic may enter water sources, risks associated with arsenic 

exposure, and appropriate methods for arsenic removal. To adhere to the inevitably of 

stricter arsenic standards in the future, it is imperative that better methods for arsenic 

removal from drinking water are developed. 
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1.2.2 Aquatic Chemistry of Arsenic 

According to the periodic table, arsenic is considered a nonmetal with an atomic 

number of 33 and an atomic mass of 74.922 grams per mole. The chemistry of arsenic is 

extremely complicated due to its stability in four different oxidation states, +5, +3, 0, 

and –3, which are dependent upon redox conditions (Gupta and Chen 1978). However, 

in most natural waters, the primary oxidation states are +5 and +3. Arsenic species with 

a +5 oxidation state are known as arsenate or arsenic acid, whereas species with a +3 

oxidation state are referred to as arsenite or arsenous acid (Masscheleyn et al. 1992). The 

common and most stable forms of arsenic occurring in oxidized surface waters are the 

arsenate species, H3AsO4, H2AsO4
−, HAsO4

−2
, and AsO4

−3. The arsenite species, 

H4AsO3
+, H3AsO3, H2AsO3

−, HAsO3
−2, and AsO3

−3 which are three to twenty times more 

toxic than the arsenate species (Frank and Clifford 1986), become predominate in 

moderately reducing conditions (Gupta and Chen 1978). 

According to the above arsenic pC-pH diagrams (Figures 1 and 2), it is apparent 

that arsenate species are present in the form of an anion at the normal pH range (6∼9) of 

natural waters, and that the predominant form of As (V) present is dependent upon the 

pH of the water. In contrast, arsenite species have a neutral charge in this pH range. The 

neutral charge renders the arsenite species more mobile and less adsorbable than the 

arsenate species (Masscheleyn et al. 1992), which is an important characteristic when 

considering removal of arsenic by adsorption. 
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Figure 1.1 pC-pH diagram for arsenate species ([As]o = 100 ppb, I = 10−3 M) 
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Figure 1.2 pC-pH diagram for arsenite species ([As]o = 100 ppb, I = 10−3 M) 
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1.2.3 Methods of Arsenic Removal from Drinking Water 

A variety of methods are available for arsenic removal from contaminated water 

(Kartinen and Martin 1995; Papadiamas et al. 1997; Fields et al. 2000; Jiang 2001; 

USEPA 2001b), including (1) coagulation and filtration with or without sedimentation, 

(2) coagulation assisted micro-filtration membrane separation, (3) lime softening, (4) 

adsorption on granular activated alumina, (5) adsorption on ion exchange resins, and (6) 

reverse osmosis, and (7) electro-dialysis. However, each of these traditional methods of 

treatment involves substantial costs and is often difficult to properly control, especially 

for small water treatment systems. It is noteworthy that sorption of the toxic metals on 

hydrous metal oxy-hydroxides was found to be the most cost effective and practical 

toxic metals removal technology. Coagulation using the salts of metals such as Al(III) 

and Fe(III) has been proven to be an adequate technique by forming hydrous metal 

oxides for the removal of arsenic(V) from contaminated water. The binding mechanism 

is mainly the sorption via surface complexation of these compounds onto the hydrous 

metal oxides, i.e. Al(OH)3(s) and Fe(OH)3(s), and subsequent co-precipitation. Although, 

it is possible to form ferric arsenate (FeAsO4⋅2H2O) as the results of co-precipitation, 

this possibility is excluded as ferric arsenate can be formed only at relatively high 

concentration of Fe(III) and As(V) (over 1.0 mM) and low pH (below 2.0) (Robins 

2001). Thus, in this study, at lower concentrations of As(V) and relatively higher Fe(III) 

concentrations with neutral pH range of 6~8, simply adsorptive binding (surface 

complexation) of arsenic onto oxy-hydroxides occurs and this method is the most 

effective for arsenic removal from aqueous solutions. 
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1.2.4 Coagulation in Water Treatment Process 

In water treatment, coagulation refers to the agglomeration of small suspended 

particulate material and is defined as three separate and sequential steps of coagulant 

formation, particle destabilization, and interparticle collisions (Letterman et al. 1999). 

The process of generating interparticle collisions is frequently termed flocculation. 

Flocculation has been subdivided into three basic collision-inducing mechanisms of 

perikinetic, orthokinetic, and differential sedimentation. Brownian motion, the random 

diffusion of the particles, is responsible for perikinetic flocculation. The variables that 

control perikinetic flocculation are the temperature and the particle size. Differential 

sedimentation results from larger and/or denser particles settling at a higher velocity than 

other particles. The mechanism of orthokinetic flocculation is due to the particle 

collisions that occur from the fluid and particle motion. Since the fluid motion can be 

manipulated by mechanical agitation, orthokinetic flocculation is of great interest in 

various science and engineering fields. It must be noted that as flocculation is a subset of 

coagulation the words coagulation and flocculation will be used interchangeably when 

referring to the particle collision mechanisms. A proper method of analyzing and 

predicting orthokinetic flocculation is thus desired for water treatment processes.  

In recent years, numerous studies have attempted to solve the particle 

aggregation problem consisting of the continuous population balance equations (PBE), 

where the continuous PBE can be expressed as an continuous integro-partial-differential 

equation (Drake 1972; Ramkrishna 1985) (Eq. (1.1)), 
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υ

Agg 0 0

dn(υ, t) 1 = αβ(υ , )n(υ ,t)n( ,t)d  αβ(υ, )n(υ,t)n( ,t)d
dt 2

w w w w w w w w
∞

⎛ ⎞ − − −⎜ ⎟
⎝ ⎠ ∫ ∫  (1.1) 

where n is the number concentration of particles, r is the particle or aggregate radius, α is 

a collision efficiency, υ  and  are particle volume, i, j, k, and l  refer to particle size 

class indices, and t is time. The quantity β is termed the collision frequency kernel and is 

dependent on particle size, the particle movement mechanism, and collision geometry. 

w

Aggregate breakup mechanisms have been applied to various fields, such as floc 

disintegration, droplet fragmentation, and comminution of particle solids (Vanni 1999). 

Population balance equations related to a breakup reaction can be expressed by 

continuous and discrete approaches (Patil et al. 2001). Few analytical solutions using 

either method are available under limited conditions (Ziff and McGrady 1985; Peterson 

1986). Thus, numerical solutions are required for these breakup models. A pure breakup 

reaction in the form of a continuous breakup PBE can be expressed by Eq. (1.2) (Prasher 

1987; Randolph and Larson 1988), 

 
0Break

dn(υ, t) = b(υ, )s( )n( ,t)d s(υ)n(υ,t)
dt

w w w w
∞⎛ ⎞ −⎜ ⎟

⎝ ⎠ ∫  (1.2) 

where  is the breakup distribution function, and s(  is the breakup rate 

coefficient.  

b(υ, )w υ)

In a straightforward manner, a final coagulation population balance model can be 

obtained from the combination of aggregation and breakup, yielding an overall 

population balance equation. Thus, an overall continuous population balance equation 
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with aggregation and breakup reactions can be expressed by Eq. (1.3) after summation of 

Eqs. (1.1) and (1.2) (Ramkrishna 1985; Randolph and Larson 1988). 

 

υ

0 0Total

0

dn(υ, t) 1 = αβ(υ , )n(υ ,t)n( ,t)d  αβ(υ, )n(υ,t)n( ,t)d
dt 2

b(υ, )s( )n( ,t)d s(υ)n(υ,t)

w w w w w w w w

w w w w

∞

∞

⎛ ⎞ − − −⎜ ⎟
⎝ ⎠

+ −

∫ ∫
∫

(1.3) 

 Although numerous studies have attempted to solve the classical coagulation 

equation of Eq. (1.3), it is impossible to find an exact solution. Only limited analytical 

solutions exist with the assumptions of a monodisperse initial condition and simplified 

collision and breakup kernels. After converting a continuous particle size distribution 

into a discretized particle-size domain (like a histogram) where integrals are replaced 

with summations, an overall discretized coagulation model including aggregation and 

breakup is produced as Eq. . 

 η η
,

Total 1 1

dn 1 = αβ(r , r )n n   n αβ(r , r )n b s (n ) s (n )
dt 2

k
i j i j k l k l k j j j k k

i j k l j k

∞ ∞

+ = = = +

⎛ ⎞ − + −⎜ ⎟
⎝ ⎠ ∑ ∑ ∑  (1.4) 

To obtain exact numerical solutions of the overall continuous coagulation 

population balance equations of Eq. (1.4), extensive computation time and hardware are 

required. A realistic maximum size used in coagulation modeling would therefore 

produce an unmanageable number of simultaneous equations to solve. To overcome this 

computational non-efficiency of the continuous coagulation model , various non-uniform 

discrete schemes have been introduced for aggregation (Gelbard and Seinfeld 1978; 

Gelbard et al. 1980; Batterham et al. 1981; Hounslow et al. 1988; Marchal et al. 1988; 

Litster et al. 1995; Hill and Ng 1996; Kumar and Ramkrishna 1996; Kramer 2000; Vanni 
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2000) and breakup (Coulaloglou and Tavlarides 1977; Pandya and Spielman 1982; Lu 

and Spielman 1985; Chen et al. 1990; Kusters 1991; Ziff 1991; Hill and Ng 1995; Spicer 

and Pratsinis 1996a; Serra and Casamitjana 1998; Kramer and Clark 1999; Zhang and Li 

2003).  

Relatively little attention has been paid to fractal particle coagulation modeling. 

Spherical particle coalescence applies only to ideal bubbles and droplets and most 

particle aggregates are found to be fractal, especially in solid colloidal particle 

coagulation. Thus, fractal coagulation modeling is needed for realistic simulation. 

 

1.3 Research Objectives 

The goal of this research is to develop a coupled model for arsenic (V) (arsenate) 

removal by the sequential processes of coagulation and sorption. The model will provide 

enhanced predictive capability for the exact behavior of arsenic and colloid growth as 

well as required doses and process operating cost. This goal will be achieved by 

accomplishing the following objectives: 

1.3.1 Development of an Improved Coagulation Model 

To obtain the numerical solution of Eq. (1.3) or (1.4) coupled with chemical 

reactions and fluid dynamics, a simplified coagulation model should be developed, 

rather than continuous model or uniform discretization model. In this study, an improved 

coagulation model will be developed and coupled with arsenic sorption kinetics. Thus, 

the improved coagulation model, consisting of a simplified non-uniform discretization 

scheme, will provide high statistical accuracy, numerical stability, and computational 
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efficiency. Furthermore, relatively little attention has been paid to fractal aggregate 

modeling including agglomeration and fragmentation. Spherical particle coalescence 

applies only to ideal bubbles and droplets and most particle aggregates are found to be 

fractal, especially in solid colloidal particle coagulation. Thus, fractal aggregate 

coagulation via the higher numerical stability and accuracy is needed for realistic 

simulation. Developing an improved coagulation model will consist of several steps as 

follows: 

(1)  An improved coagulation model will have aggregation and breakup kernels with 

the addition of an adjustable geometric size interval (q), where q is a volume ratio of 

class k+1 particle to class k particle ( 1υ / υkq + k= ). This improved coagulation model 

overcomes two limitations; a huge number of variable domain sizes for the uniform 

discrete model and the rough resolution of larger aggregates for the non-uniform discrete 

model with a fixed class size interval.  

(2) The improved adjustable discretized model will be converted to a dimensionless 

form to enhance computational efficiency (CPU time) in orthokinetic coagulation 

modeling.  

(3) The model will be verified with the time derivative of the zero and first moment 

methods and compared with analytical and numerical solutions. Also, the self-preserving 

distribution test will be conducted by using size-independent and size-dependent kernels.  

(4) Two parameters, the collision efficiency and breakup coefficient, will be 

calculated from experimental data using a parameter estimation scheme (least square 

error method).  
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(5) Relatively little attention has been paid to fractal aggregate modeling including 

agglomeration and fragmentation. Thus, fractal aggregate coagulation modeling will be 

developed for realistic simulation. This study will examine several techniques of 

discretization and compare them to uniform discrete modeling. Further, modifications 

are made to incorporate breakup in the orthokinetic population balances while improved 

discretization methods are developed and applied to fractal aggregation modeling.  

(6) Computational efficiency, statistical accuracy, and numerical stability tests will 

be conducted and these results will be compared with a uniform discretized coagulation 

model. 

1.3.2 Application of an Arsenic Sorption Model 

It is anticipated that hydrous ferric oxide (HFO) surface charge will be changed 

during arsenic sorption onto the HFO surface and the changed in surface charge affects 

the particle coagulation process. A number of investigations on coagulation have 

focused on the collision of particles having neutralized surface charge. That is, 

coagulation studies, including experimental and theoretical aspects, have been conducted 

under ideal conditions such as the fixed aqueous pH values to the particle pHZPC (zero 

point of charge). Thus, the sorption model should be applied to predict the time 

evolution of particle surface charge during arsenic sorption onto the particle. The 

sorption kinetic model will be applied by the aid of equilibrium surface complexation 

model. The arsenic sorption kinetic model will be coupled with the improved 

coagulation model that will be developed in next task.  



 13

Two sorption models will be applied to describe the arsenic sorption behavior 

onto hydrous ferric oxide (am-Fe(OH)3(s) or 2-line ferrihydrite (FepOr(OH)s·nH2O)) 

generated from the coagulation process via metal hydrolysis. These two models consist 

of a chemical equilibrium model (surface complexation model) and a kinetic model 

(diffusion transport model). For arsenic sorption kinetic modeling, a diffusion transport 

model will be developed to predict the arsenic sorption rate. Various model parameters 

(equilibrium coefficients, particle properties, diffusivity, and mass-transport coefficient) 

will be derived from the literature and calculated if needed. After determining the 

arsenic sorption rate with sorption kinetic model, this sorption kinetics will be coupled 

with surface complexation model using local equilibrium assumption. Finally, using two 

sorption model schemes, the kinetics of surface potential or surface charge density will 

be calculated and introduced to next step to develop the unified model with As(V) 

sorption model and coagulation.  

1.3.3 Coupling the Coagulation Model with Sorption Model 

This phase of research will provide modeling capability for the complicated 

arsenic removal mechanisms throughout the coagulation and arsenic sorption processes. 

It is anticipated that the coupled model will provide a more complete understanding of 

arsenic removal mechanism and its application to drinking water treatment. For this 

purpose, objectives of arsenate sorption modeling and improved coagulation modeling 

will be used to develop this coupled model. Further, this coupled model will be 

applicable to other water and wastewater treatment systems combined with sorption and 

filtration processes. These combined processes will be optimized by a coupled model 
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that will be developed in this research. By simulating the arsenic sorption and particle 

size distribution as pretreatment before filtration (sand filtration or membrane filtration), 

the overall arsenic removal efficiency and operation cost can be anticipated. 

Model coupling will be achieved by combining the sorption model with the 

improved coagulation model. Two arsenic sorption models introduced in previous task 

will be coupled with an improved coagulation model previously developed. This 

coupling will be carried out on the basis of kinetic models (time dependent reactions). 

Relationships between surface charge/potential and particle collision rate (surface charge 

(σ) vs. collision efficiency (α)) will be developed and applied to an improved 

coagulation model developed. Finally, using the various collision efficiency, a unified 

model with arsenic sorption and coagulation will be achieved. 
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CHAPTER II 

IMPROVED MODELS FOR COLLOID AGGLOMERATION: 

COMPUTATIONALLY EFFICIENT ALGORITHMS 

 

2.1 Overview 

A variety of modeling techniques for the population balances resulting from 

particle coagulation were examined. The simplified models using the non-uniform 

discretization scheme were compared to uniform discrete models. Further, new 

algorithms that incorporate a non-uniform discretization were developed. The uniform 

discrete population balance was used as the basis of comparison as it considers a 

continuous distribution of size classes of particles. Comparisons included the particle 

collision mechanisms of perikinetic, orthokinetic, and differential sedimentation with the 

inclusion of flow induced break-up. Initial particle populations considered were both 

monodisperse and polydisperse. The analysis focused on the resulting population 

distribution and a statistical comparison to the uniform discrete model. In the course of 

the investigation new algorithms were found to be substantial improvements in terms of 

computational time over the other models and compared favorably to the 

discrete/continuous model with respect to accuracy. 

New probability distribution functions for aggregates produced in non-uniform 

discrete coagulation modeling were derived and incorporated into the population balance 

equations. These new algorithms made it possible to simulate fractal aggregate 

coagulation with high accuracy, perfect mass conservation and exceptional 
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computational efficiency. Parameter sensitivity analysis showed that a break-up kernel 

does not influence total particle concentration within the limited range of having the 

break-up coefficient less than collision efficiency, but does influence the particle size 

distribution and coagulation patterns. An aggregate break-up study with various kernel 

parameters indicated that break-up rate is more influenced by particle volume and not 

size class or diameter as previously suspected. The new probability distribution 

functions are found to be useful in fractal aggregation modeling via the higher numerical 

stability and accuracy. The new particle population model is shown in the investigation 

to be superior to all of the other models, having mass conservation factor of over 0.99 

and computation time of 3.125×10-2 sec, thus the new coagulation model can be used to 

develop predictive simulations for coagulation in computational fluid dynamics and 

reaction modeling. 

 

2.2 Introduction 

Coagulation is the growth of larger agglomerates by collisions and subsequent 

bonding of smaller particles contained in a fluid. These particles can be either fluid 

droplets or solids suspended in a gas or liquid. Inter particle motion induces the particle 

collisions and has been attributed to three basic mechanisms; fluid motion or 

orthokinetic coagulation, Brownian diffusion or perikinetic coagulation and differential 

sedimentation.  Fluid motion also creates disruptive stresses that can cause fracture of 

the agglomerates.  Coagulation of droplets or bubbles is often viewed as the coalescence 

of a continuous distribution, while the agglomeration of solid particles is discrete. 
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Smoluchowski derived population balance equations for the coagulation of discrete 

particles in simple shearing flow and Brownian motion, and these equations have been 

used extensively in modeling agglomeration (Smoluchowski 1917). The population 

balance equations take the form (Drake 1972), 

 
1

dn 1 = αβ(r , r )n n   n αβ(r , r )n
dt 2

k
i j i j k l k l

i j k l

∞

+ = =

−∑ ∑  (2.1) 

where, n is the number concentration of particles (number/volume), r is the particle or 

agglomerate radius, α is a collision efficiency ( 0 1.0α≤ ≤ ), t is time, and i, j, k, and l  

refer to particle size class indices.  The quantity β  is termed the collision frequency 

kernel and is dependent on particle size, the particle movement mechanism, and collision 

geometry. Equation (2.1) is strictly realized only for a truly discrete particle size 

distribution, i.e., where i, j, k, and l are the number of primary particles making up the 

aggregate. For coalescence, a continuous integro-differential equation has been derived 

for the agglomeration between particles of volume 

(r, r)

υ  and  and is given as, w

 
υ

0 0Agg

dn(υ, t) 1 = αβ(υ , )n(υ ,t)n( ,t)d  αβ(υ, )n(υ,t)n( ,t)d
dt 2

w w w w w w w w
∞⎛ ⎞ − − −⎜ ⎟

⎝ ⎠ ∫ ∫ (2.2) 

with the number of particles of volume υ  replacing the discrete index i and the collision 

frequency kernel a function of the volume rather than a radius. To solve the population 

balance equations it is customary to discretize the distribution of Eq. (2.2) into size or 

volume classes as represented by Eq.(2.1). In Eq. (2.1) the indices i, j, and k refer to size 

classes; a primary particle will be of size class 1, a doublet of two primary particles a 

size class 2 etc. Obviously the smaller the primary size, the closer the discrete 
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approximation approaches the continuous model of Eq. (2.2). Unfortunately, reducing 

primary size class significantly expands computational time for even a limited aggregate 

size range. For example, if fractal aggregate coagulation is modeled with an initial 

primary particle diameter of 1.0 µm and 1000 equations are solved, the maximum size is 

approximately 30 µm in diameter. A realistic maximum size used in coagulation 

modeling would therefore produce an unmanageable number of simultaneous equations 

to solve. 

In recent years, numerous studies have attempted to solve the coalescence 

continuous integro-differential equation of Eq. (2.2). One of these approaches is to use a 

non-uniform discretization technique. Various computational algorithms based on this 

non-uniform discretization of the size classes have been proposed by previous 

researchers (Gelbard et al. 1980; Batterham et al. 1981; Hounslow et al. 1988; Marchal 

et al. 1988; Litster et al. 1995; Hill and Ng 1996; Kumar and Ramkrishna 1996a) and 

were rigorously studied by Vanni concerning their computational accuracy, error, and 

efficiency (Vanni 2000).  

Although several researches have used these coagulation models for real 

aggregate systems (Spicer and Pratsinis 1996a; Spicer and Pratsinis 1996b; Biggs and 

Lant 2002; Diemer and Olson 2002b; Diemer and Olson 2002a), relatively little attention 

has been paid to fractal aggregate modeling including agglomeration and fragmentation. 

Spherical particle coalescence applies only to ideal bubbles and droplets and most 

particle aggregates are found to be fractal, especially in solid colloidal particle 

coagulation. Thus, fractal aggregate coagulation modeling is needed for realistic 
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simulation. This paper will examine several techniques of discretization and compare 

them to uniform discrete modeling. Further, modifications are made to incorporate 

break-up in the orthokinetic population balances while improved discretization methods 

are developed and applied to fractal aggregation modeling. Finally, model comparisons 

are made using simulation data of particle size distributions, conservation of mass, 

sensitivity of parameters, and computational time. 

 

2.3 Background 

2.3.1 Coagulation Rate Kernels 

 Equation (2.1) generates an infinite number of coupled differential equations 

that, when solved, will produce particle number concentrations for each size class of k = 

1 to ∞. It is apparent that any attempt at a real solution would not be able to solve an 

infinite number of equations and therefore Eq. (2.1) is rewritten 

 
max

1

dn 1 = αβ(r , r )n n n αβ(r , r )n
dt 2

k
i j i j k l k l

i j k l+ = =

−∑ ∑  (2.3) 

where max refers to a maximum size class. In essence Eq. (2.3) is a finite number of 

second order reaction rate equations which are coupled by the inclusion of all other size 

class concentrations.  The rate constants for these equations are the β terms, or kernels 

and may vary with particle size and collision mechanism. These rate constants can be 

simple linear operators or obtained from mass balances of the colliding particles. 

The population balance equations given by Eq. (2.3) are irreversible. To consider 

reversibility the potential for aggregate break-up can be included. Typically, break-up 
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occurs in orthokinetic coagulation as the stresses of fluid motion are the likely fracture 

inducing forces (Thomas 1964; Argaman and Kaufman 1970; Parker et al. 1972; Tambo 

and Watanabe 1979a; Lu and Spielman 1985; Ray and Hogg 1986; Sonntag and Russel 

1987). Kramer and Clark provide a rigorous discussion of contemporary aggregate 

break-up models and propose several break-up kernels (Kramer and Clark 1999).  Using 

a break-up kernel that has units consistent with Eq. (2.3) produces new population 

balance equations of,  

 
max max

η
,

1 1

dn 1 = αβ(r , r )n n   n αβ(r , r )n + b s (n )  s (n )
dt 2

k
i j i j k l k l k j j i j i

i j k l j k+ = = = +

− −∑ ∑ ∑ η  (2.4) 

where ,bk j  is a break-up distribution function, s  is a break-up rate coefficient, and  is 

a break-up concentration exponent.  

j η

In both continuous and discrete modeling the volume and/or radii of the particles 

are significant parameters in the rate kernels. In droplet coalescence conservation of the 

volumes will produce a new droplet radius and is easily computed. In terms of a size 

class, such a radius is given by, 

 13
3 υr  = 
4πk
k  (2.5) 

with 1υ  the volume of the primary size class droplet. Aggregates comprised of solid 

particles can be treated using a fractal dimension.  Thus, the radius r  of a size class k 

aggregate (comprised of k primary particles of radius r

k

1) can be expressed as, 

  (2.6) ( ) f1/D
1r = r kk
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where Df is the fractal dimension. A list of fractal dimensions for floc aggregates 

produced during coagulation studies is presented in Table 2.1. 

 

Table 2.1 Fractal Dimension Obtained by Coagulation Studies 

System Fractal Dimension Study 
Ferric sulfate floc 2.3 ∼ 2.8 Lagavankar and Gemmell 1968 
Kaolin with aluminum sulfate 
Alum aggregates 
Activated sludge floc 
Clay-iron or Clay-magnesium flocs 

1.95 (low alum) , 1.60 (high alum) 
1.59 ∼ 1.97 

1.4 
1.91 ∼ 1.92 

Tambo and Watanabe 1979b 

Minerals with aluminum sulfate in jar test 
   (a) Illite 
   (b) Montmorillonite 
   (c) Calcite 
   (d) Silt 
   (e) Activated slude 

 
1.71 (D2)  1.49 (D3)   
1.86 (D2)  1.79 (D3) 
1.97 (D2)  1.65 (D3) 
1.80 (D2)  1.37 (D3) 
1.81 (D2)  1.76 (D3) 

Gorczyca and Ganczarczyk 1996 

Ferric chloride ( < 0.75mm) 2.3 Wiesner and Mazounie 1987 
Ferric chloride 1.7 ∼ 2.0 Tchoubar et al. 1991 
Ferric chloride (fresh HFO) 1.48 ∼ 2.58 Lo and Waite 2000 
Ferric chloride  2.25 → 2.52 Jung et al. 1996 
HFO by freezing and thawing (dense HFO) 2.5 ∼ 2.8 Hofmann et al. 2004 
HFO by freeze-dried (2-line ferrihydrite) 2.7 ∼ 2.8 Weidler and Stanjek 1998 
Hematite in light scattering apparatus 2.3 (DLCA) Amal et al. 1990a 
Hematite in light scattering apparatus 2.3 (DLCA) ∼ 2.8 (RLCA) Amal et al. 1990b 
Hematite in light scattering apparatus 
   a) with KCl 0.1 M 
   b) with KCl 0.1 M + fulvic acid 2.5 mg/L 

 
2.21 (DLCA) 
2.82 (DLCA) 

Amal et al. 1994 

Hematite particles w/o shear 1.25 ∼ 1.50 Gardner et al. 1998 
Hematite particles 1.68 ∼ 1.87 (DLA) 

2.2 (RLA) 
Zhang and Buffle 1996 

α-FeOOH 1.6 (DLA) 
2.0 (RLA) 

Hackley and Anderson 1989 

γ-Alumina with  
   a) CaCl2

   b) NaCl 
   c) Na2SO4

 
2.11 (0.2M) ∼ 2.23 (0.6M) 
2.09 (0.6M) ∼ 2.10 (0.7M) 
1.85 (0.2M) ∼ 1.91 (0.3M) 

Waite et al. 2001 

Kaolin 1.31 ∼ 1.42 Glasgow 1989 
Kaolinite in shear flow 
   a) 1.0  M KCl, pH 6.5 
   b) 10-3 M KCl, pH 3.21  
   c) 10-3 M KCl, pH 4.58 
   d) 10-3 M KCl, pH 6.45 

 
3.00 
2.92 
1.88 
1.80 

Herrington and Midmore 1993 

Bentonite in cylindrical Burchard cell, shear flow 1.8 (DLA) @ pH < 4.21 
3.0 (DLA) @ pH > 4.21 

Axford and Herrington 1994 

Silica 2.12 ± 0.5 (DLCA) Schaefer et al. 1984 
Silica particle 2.1 (RLA) Axford 1997 
Inorganic particles (gold, silica, latex) 1.85 ± 0.05 (DLCA) 

2.11 ± 0.05 (RLCA) 
Lin et al. 1989b; Lin et al. 1990a; Lin 
et al. 1990b; Lin et al. 1990c 

Inorganic particles (gold, silica, latex) 1.85 (DLCA) 
2.11 (RLCA)  

Lin et al. 1989a 

Latex spheres with aluminum sulfate 1.5 ∼ 1.9 Clark and Flora 1991 
Latex spheres with sodium chloride 1.43 ∼ 2.08 (Couette) 

1.77 ∼ 1.83 (Paddle mixer) 
Jiang and Logan 1996 

Latex spheres 1.75 ∼ 1.80 (DLA) 
2.09 ∼ 2.20 (RLA) 

Burns et al. 1997 

Latex spheres 2.48 Sonntag and Russel 1987 
Latex spheres with sodium chloride 1.79 ∼ 2.25 Johnson et al. 1996 
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Table 2.1 (Continued) 
 

System Fractal Dimension Study 
Latex spheres  
 (a) Rolling cylinder 
 (b) Paddle mixer 

 
1.68 (D2)  1.59 (D3) 
1.89 (D2)  1.92 (D3) 

Logan and Kilps 1995 

Latex spheres in Couette-Flow 1.98 (D2)  2.60 (D3) 
1.12 (DPF) 1.06 (D1) 

Serra and Casamitjana 1998b; Spicer 
et al. 1998 

Latex spheres in Rhshton, 4-brade 2.1 (small floc) 
2.5 (large floc) 

Spicer et al. 1998 

Latex spheres in Rhshton, 4-brade 1.2 ∼1.3 (DPF) Spicer et al. 1996 
Latex spheres in Rhshton, 4-brade 1.1 → 1.3 (DPF) Spicer and Pratsinis 1996b 
Latex spheres in Couette-Flow 2.1 → 2.5 Oles 1992 
3D off-lattice modeling 1.8 → 2.1 (DLA) Meakin and Jullien 1988 
Latex spheres in baffled mixing tank 1.7 → 2.1 (DLA) Selomulya et al. 2001 
Simplified modeling 1.85 (DLCA) 

2.05 (RCLA) 
Lattuada et al. 2003 

Latex spheres 1.8 (DLCA) 
2.0 ∼ 2.2 (RCLA) 

Sandkuhler et al. 2003 

Latex spheres in blood tube rotator 1.79 (D2)  1.80 (D3)  (DLCA) 
1.61 (D2)  2.00 (D3)  (RLCA) 

Tang et al. 2001 

Latex spheres in blood tube rotator 1.82 ∼ 1.86 (DLCA) 
2.06 (RLCA) 

Tang 1999 

Latex spheres in Couette-Flow 
   a) DLCA 
   b) RLCA 

 
1.8 (rpm 700) ∼ 2.0 (rpm 2500)  

2.06 

Tang et al. 2000 

Particle - Cluster mechanism 2.5 ∼ 3.0 Schaefer 1989 
Cluster – Cluster mechanism 1.6 ∼ 2.2 Witten and Cates 1986 
Nickel hydroxycarbonate microspheres 1.7 ∼ 1.8 (w/o shear) 

2.2 ∼ 2.7 (w/  shear) 
Sonntag and Russel 1986 

Latex spheres in Couette-Flow 2.0 Axford 1996 
Latex spheres  
   a) Shear coagulation in Couette-Flow 
   b) Brownian coagulation light scattering cell 

 
1.80 (DLA) 
1.80 (DLA) 

Torres et al. 1991 

Latex spheres (DLA) 
Latex sheres in Couette-Flow 

1.6 
2.2 ∼ 2.5 

Hoekstra et al. 1992 

Latex spheres in Y-shaped mixing cell 1.75 / 1.87 (fitting) (DLCA) Schmitt et al. 2000  
Latex spheres in Y-shaped mixing cell 1.75 (DLCA) Odriozola et al. 1999 
Latex spheres in Y-shaped mixing cell 1.75 (DLCA) ∼ 2.10 (RLCA) Odriozola et al. 2001 
Latex spheres 1.65 (DLCA) ∼ 2.03 (RLCA) Asnaghi et al. 1992 
Latex spheres 1.75 (DLCA) 

2.10 (RLCA) 
Magazu et al. 1989 

Latex lattices 1.75 ± 0.03 (RLCA ∼ DLCA) Bolle et al. 1987 
TiO2 aerosol and Latex spheres 1.75 (DLCA) 

2.15 (RLCA) 
Wang and Sorensen 1999 

Ludox silica spheres 1.75 (DLA) 
2.08 (RLA) 

Aubert and Cannell 1986 

Aqueous gold colloids 1.75 (DLA) 
2.05 (RLA) 

Weitz et al. 1984; Weitz and Oliveria 
1984; Weitz et al. 1985 

Sludge, alum, iron, clay, and mixtures 
Activated sludge 

1.4 ∼ 2.8 
1.13 ∼ 1.22 (DPF) 

Li and Ganczarczyk 1989 

Marine snow 1.28 ∼ 1.86 Kilps et al. 1994 
Calcium carbonate in propeller mixer 1.8 & 2.4 (erosion) Yeung and Pelton 1996 
Lake water with alum 
 
Montmorillonite with alum 

2.12 ∼ 2.93 (D3) 
1.65 ∼ 1.96 (D2) 
2.39 ∼ 2.71 (D3) 
1.77 ∼ 1.89 (D2) 

Chakraborti et al. 2000 

* DPF     = perimeter-based fractal dimension 
   DLCA = Diffusion-Limitted Cluster Aggregation 
   RLCA = Reaction-Limitted Cluster Aggregation 
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2.3.2 Discretization of the Population Balance Equations  

When solving either Eq. (2.1) or (2.2) numerically, some form of discretization 

must be conducted. The most straight forward is to use uniform size class increments 

beginning with a primary size that represents the smallest particle volume or size 

modeled. All other particles are integer multiples of the primary size class and all 

aggregates then range in size from size class 1 to a selected maximum as represented by 

Eq. (2.3). A drawback to this approach is that a very large number of equations must be 

generated, coefficients stored in memory and the equations solved simultaneously 

resulting in long computational time. To limit the number of equations, non-uniform size 

increments can be used.  Instead of each size class, a range can be developed 

establishing an interval or bin which would in theory contain particles of size classes 

between the upper and lower limits of the bin. However, conserving mass or the number 

of particles becomes a problem.  

In Fig. 2.1, bins are selected using a scheme with the histograms representing the 

number of particles in each bin.  If it is assumed that a continuous range of particle sizes 

exist in each bin the size of the aggregates formed is uncertain.  For example, particles 

from intervals 1 and 2 could collide and form particles that would fall into either interval 

2 or interval 3 ( 1 1 2υ υ υ+ =  or 2 2 4υ υ υ+ = ). The problem then becomes how to allocate 

the product particles.  Should all aggregates fall into interval 3 or should half be 

allocated to each interval 2 and 3?  Failure to adequately account for the discretization 

problem leads to an incorrect mass balance in the computation. Several techniques have 
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been proposed to generate a non-uniform discrete algorithm to model coagulation and 

are the main focus of this paper. 
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Figure 2.1 Non-uniform discrete particle size distribution 

 

One of the most straight forward methods to obtain a non-uniform discretization 

of the coagulation population balance equations is to assume that the particles collide bi-

kinetically.  In the bi-kinetic assumption only equal sized particles collide. Then in Eq. 

(2.3) size class i = j and the population balance becomes, 

 2 2 '' 3 2 '' 3 2
1 1 1 B, 1 1 1 B,

dn 1= αβ(r , r )(n ) αβ(r , r )(n ) + K (r ) (n ) K (r ) (n )
dt 2

k
k k k k k k k k k k k k− − − + + +− −  (2.7) 

where  is overall break-up rate constant. Equation (2.7) consists of a non-uniform 

discretization where the size class index k = 2i. One advantage to Eq. (2.7) is that it can 

be solved analytically to obtain the time dependent total particle concentration which can 

''
BK
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be used to check the accuracy of the computation (Kramer 2000). Unfortunately, Eq. 

(2.7) can not model differential sedimentation as the rate kernel is always zero due to ri 

equaling rj.  Equation (2.7) is very easy to solve numerically and is extremely stable 

using a variety of solution techniques. 

Batterham et al. proposed a discretization procedure where volume size class 

intervals are configured as 1υ 2υk+ k=  as in Fig. 2.1 (Batterham et al. 1981). To account 

for the problem in the contribution of the product aggregates formed from the collisions 

of particles in adjacent intervals described above, a scheme that has half the number of 

products formed added to each possible interval. The resulting population size 

distribution becomes, 

 
2 1 2 1 1 1 1 1 1 1

2 max

1 1

dn 3 3  αβ(r , r )n n   αβ(r , r )n n  + αβ(r , r )n n  
dt 8 4

+ αβ(r , r )(1 + 2 )n n  αβ(r , r )n n  αβ(r , r )n n

k
k k k k k k k k k k k k

k
j k

k j k j k j k j k k k k
j j

− − − − − − − − − −

−
−

= =

= −

− −∑ ∑
 (2.8) 

Hounslow et al. cite that while the procedure of Batterham et al. correctly 

conserves particle number and mass, the scheme of arbitrarily dividing agglomerates 

between size classes incorrectly predicts coagulation rate (Hounslow et al. 1988). The 

method of Hounslow et al. differs from Batterham et al. by considering continuous 

intervals rather than discrete boundaries. They also compute the zero moment (total 

particle mass) and note a gain in mass that they alleviate by multiplying the first and 

third mechanism by 2/3. The final product is a population distribution given by, 
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1
2 1

1 1 1 1 1
1

1 max

1

dn 1  αβ(r , r )(n )  + n α(2 )β(r , r )n
dt 2

 n α(2 )β(r , r )n n αβ(r , r )n

k
j kk

k k k k k j
j

k
j k

k k j j k k j j
j j k

−
− +

− − − − −

=

−
−

= =

=

− −

∑

∑ ∑

j

 (2.9)     

Litster et al. extended the model of Eq. (2.9) to improve the accuracy for a high 

aggregation intensity using an adjustable geometric size interval scheme given as 

 with arbitrary “q” values. In the case of a q value equal to 1, the advanced 

model (see equation below) is equivalent to the original equation (Litster et al. 1995). As 

the q value approaches infinity, Eq. (2.10) becomes approximately the uniform discrete 

model. These adjustable sectional methods with arbitrary class size refinement capacity 

have been examined by past researchers (Gelbard et al. 1980; Marchal et al. 1988; 

Kumar and Ramkrishna 1996b; Vanni 2000).  

1/
1υ / υ 2 q

i i+ =
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∑ ∑
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(2.10) 

Hill and Ng produced what they felt was an improved population balance 

equation based on probability density functions for the particle population contributions 

in each interval k (Hill and Ng 1996). The analysis of Hill and Ng also included break-up 

(Hill and Ng 1995). To account for the possibility of products from the collisions of two 

intervals producing aggregates that may fall into two larger size intervals, probability 

distributions are assumed. Thus, there is a probability  that collisions between , ,Ci j k
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particles from intervals i and j will fall into interval k. There is also the probability 

 that the i and j interval particles will form a particle of a size in the range of 

interval k 1. Further, there is a 100% probability that particles from intervals i and j will 

fall into either k or k 1, therefore +

, , 1Di j k−

−

− , ,Ci j k , , 1Di j k− = 1.  Hill and Ng concluded that the 

volume of particles removed from intervals i and j ( υi  and υ j ) must be equal to the 

particle volume added to intervals k and k−1 ( υk  and 1υk− ) and found the probability 

distribution to be,  

 1
, , , , 1

1 1

υ υ υ υ υ υ
C ,        D

υ υ υ υ
i j k k i

i j k i j k
k k k k

−
−

− −

j+ − −
= =

− −

−
 (2.11) 

The volume over bar ( υk ) represents the average volume in interval k and the 

agglomeration rate equation obtained by Hill and Ng takes the form, 

 

2 1

1 1, , 1 , ,
1 1

max

1 1 1, 1, 1 1 , ,
1

dn   αβ(r , r )(C )n n  + αβ(r , r )(D )n n
dt

1 1+ αβ(r , r )(C )n n  + αβ(r , r )(D )n n  n αβ(r , r )n
2 2

k k
k

k j k j k k j k j k j k k j
j j

k k k k k k k k k k k k k k k i k
i

− −

− − −

= =

− − − − − −

=

=

−

∑ ∑

∑ i

 (2.12) 

2.3.3 Improved Schemes for the Probability Distributions  

A possible approach to solve the Hill and Ng model of Eq. (2.12) is to equate the 

probability density functions in terms of the average volume ranges of each interval. 

Using the particle average volume calculation for each class size results in the 

population balance of Eq. (2.13). For the interval scheme, 1υ 2υk+ k= , using an average 

volume concept ( 1υ 0.5(υ υ )k k −= + k k) and the definition of 3υ rk ∝ , Eq. (2.12) can also 
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be expressed in terms of the particle radii with volume based new probability functions 

termed “new probability I” and given by Eq. (2.13). 

 

2 13 3

1 13 3
1 1
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1 1 1 1
1

2(r ) (r ) (r )dn   αβ(r , r ) n n  + αβ(r , r ) n n
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j
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 (2.13) 

Also, for the interval scheme, 1υ 2υk+ k= , a break-up distribution function can be 

obtained as Eq. (14),  

 
3 3

, 3
1

(r )  + (r )3b
2 (r )

j j
k j

k −

=  (2.14) 

Using Eqs. (2.4) and (2.14), the break-up rate equation, for the interval scheme, 

1υ 2υk+ = k , can be expressed as, 

 
3 3

3
Breakup 11

(r )  + (r )dn 3 1 s n s n
dt 2 (r ) 2

j jk
j j k k

kj k

∞

−= +

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑   −  (2.15) 

where s  is a break-up rate coefficient and  is a break-up concentration exponent. j η

Furthermore, coagulation simulation using Eq. (2.13) can not be applied to 

fractal aggregates based on the models inability to conserve mass, which will be 

discussed in a later section. That is, the model of Eq. (2.13) is stable only for spherical 

particle aggregation, due to using an average volume approach. To obtain solutions for 

fractal aggregate coagulation it must be assumed that the probability functions are 

proportional to aggregate size having an exponent of a fractal dimension, not an 
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exponent of 3 (volume). This new probability functions are termed “new probability II” 

and given by Eq. (2.16).  

 
f f f
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D D D
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r (
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(r )
r )

j  (2.16) 

Thus, Eq. (2.13) can be replaced by Eq. (2.17) using the new probability II for 

geometric-size intervals of 2. 
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An additional improved scheme for the probability density functions can be 

derived from a primary particle mass balance approach. Consider two particle 

aggregation related to the probability functions of , 1, ,Ck j k− 1, , 1Dk j k− −  and , . 

The first reaction related to the probability distribution functions of  and  

, , 1Ck j k+ , ,Dk j k

1, ,Ck j k− 1, , 1Dk j k− −  

can be expressed as 

 1n n n nk j k k 1− −+ = +  (2.18) 

From a mass balance on aggregates comprised of primary particles yields 

 1( 1)∆n ∆n ∆n ( 1)∆nk j kk j k k 1k− −− + = + −  (2.19) 

where ∆  is the change in the number of aggregates in the interval. However, n

 1∆n (∆n ∆n )Ck k j k− 1, ,j k−= +  (2.20) 

and 

 1 1 1,∆n (∆n ∆n )Dk k j k j , 1k− − − −= +  (2.21) 
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therefore, 

 1∆n (∆n ∆n )Cj k j kj k − 1, ,j k−= +  (2.22) 

or since  1, , 1, , 1C Dk j k k j k− − − 1+ =  (2.23) 

therefore 

 1, ,
1

∆n
C

(∆n ∆n )
j

k j k
k j

j
k−

−

=
+

 (2.24) 

and 

 1
1, , 1

1

∆n ( )∆n
D

(∆n ∆n )
k

k j k
k j

k k j
k

−
− −

−

j+ −
=

+
 (2.25) 

Also, the second reaction can be expressed as 

 1n n n nk j k + k+ = +  (2.26) 

Using the same manner for the first reaction on the basis of primary particle mass 

balance, the “new probability III” can be derived as 

 , , 1

∆n
C

( 1)(∆n ∆n )
j

k j k
k j

j
k+ =
+ +

 (2.27) 

and 

 , ,
1

( 1)∆n + ( 1)∆n
D

(∆n ∆n )
k

k j k
k j

k k j
k −

j+ − +
=

+
 (2.28) 

where ∆n is the difference between two solutions resulting from previous and current 

iteration time steps. Substituting Eqs. (2.24) and (2.28) into Eq. (2.12) yields an 

improved population balance equations given as, 
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2.4 Modeling Analysis Results 

2.4.1 Modeling Conditions 

A variety of solutions to the population balance equations were compared on the 

basis of particle size distribution and mass conservation. These analyses consist of 

various coagulation kernels, initial colloid population conditions, the addition of a break-

up kernel, and aggregate fractal dimension. For each computation a maximum size class 

of 1024 was used. This maximum size class was selected based on computational 

considerations in using the uniform discrete model as the basis of comparison and 

compatibility with the non-uniform discrete population balance equations. Although it 

would be desirable to have an unlimited size class such that the aggregate growth would 

be unbounded, computationally this is not possible. Thus, a reasonable maximum size 

class must be selected. Further, a theoretical coagulation modeling time of 30 minutes 

was used in all of the analyses. The selection of 30 minutes was based on conventional 

practice in the water treatment field (Letterman et al. 1999).  
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Table 2.2 Coagulation Modeling Conditions 

Parameters Monodisperse Polydisperse 

Particle concentration 
           (no./cm3) 

nprimary = 1.819 × 109 

ntotal     = 1.819 × 109
nprimary = 8.489 × 109 

ntotal     = 1.819 × 109

Primary particle diameter 1.0 µm (10 nm for perikinetic coagulation) 
Particle density 1.0 ∼ 1.7 (g cm-3) 
Liquid density 1.0 (g cm-3) 
Temperature 303 K 
Viscosity 7.97 × 10-3 (g cm-1 s-1) 
Hamaker constant 1.0 × 10-20 (J) 
Boltzmann’s constant 1.38 × 10-16 (g cm2 s-2 K-1)  
Gravitational constant 981 (cm s-2) 
Fractal dimension 2.00 ∼ 3.00 

 

The population balance equations were computed over time using the initial 

conditions as presented in Table 2.2. As shown in Table 2.2, two types of colloidal 

dispersion conditions were used in this study; monodisperse initial conditions where all 

of the initial particles have the same particle size (either 1 µm or 10 nm in diameter), and 

polydisperse initial populations where different particle concentrations for each size 

class were examined. Comparisons of the PBE model results were conducted by 

computing R2 and a sum-of-squares of the residuals between the non-uniform models 

(geometric size interval of 2) and the uniform discrete solution (geometric size interval 

of 1) in each variable case with respect to particle size of .  rk

2.4.2 Numerical Solutions 

In solving the various population balance equations comprising a set of ordinary 

differential equations (ODEs), the main program calls two subprograms, IVPAG of the 

IMSL library (1987) and a user-supplied program that generates the coagulation kernels 
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(collision efficiency, collision frequency, break-up, probability functions, and random 

number generation). Two different solution algorithms in IVPAG, the Adams-Moulton 

method and Gear’s method, can be used. Both methods are effective algorithms for 

solving stiff ODEs. The IVPAG program determines the optimum step size to be taken 

based on the rate that a function is changing at a particular point in the computation. The 

error tolerance selected was 10-6 for all numerical solutions for the coagulation models. 

 

Table 2.3 Summary of the Four Kernels Used as Coagulation Modeling 

Kernels Formula 

Perikinetic Aggregation ( ) ( )B2k T 1 1β r  , r  =  + r  + r
3µ r ri j i j

i j

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

Orthokinetic Aggregation ( ) ( )3x4 uβ r  , r  = r  + r
3 yi j i j
∂
∂

 

Differential Sedimentation ( ) ( )2
β r  , r  = π r  + r v   vi j i j i j−  

Break-up due to flow strain-rate ( γ& ) ( ) ( ) ( )b s η
Breakup Br = K γ r ni i&  

* ∂ux/∂y is the flow rate of strain (non-rotational velocity gradient) in the x-y direction, k is Boltzmann's 
constant, T is the absolute temperature, µ is the fluid viscosity, v is the terminal settling velocity of each 
respective particle, and KB is break-up coefficient. 
 

Discretized population balance models (geometric size interval of 2) used for this 

study were the bi-kinetic (Eq. (2.7)), Batterham (Eq. (2.8)), Hounslow (Eq. (2.9)), the 

new models of Eqs. (2.13), (2.17) and (2.29), and the uniform discrete population 

balance model (geometric size interval of 1) incorporating various coagulation kernels 

(i.e., perikinetic, orthokinetic, and differential sedimentation) summarized in Table 2.3. 

Also, two different colloid initial population conditions (monodisperse and polydisperse) 

were examined and various break-up kernels applied to the orthokinetic coagulation 
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modeling. In addition, the new improved probability functions were investigated to 

simulate fractal aggregate coagulation in order to improve mass conservation, especially 

when incorporating break-up. 

2.4.3 Perikinetic Coagulation Modeling 

Perikinetic coagulation was examined for both monodisperse and polydisperse 

particle systems. Resulting data is shown in Figs. 2.2 to 2.5. For the perikinetic 

examination, four discretized models (Eq. (2.7), Eq. (2.8), Eq. (2.9) and the model of Eq. 

(2.13)) were used and compared to the uniform discretized model. Modeling conditions 

are presented in Table 2.2 with a primary particle diameter of 10 nm, maximum 

aggregate size of 63.5 nm and a fractal dimension of 3.0. An aggregate fractal dimension 

of 3.0 implies spherical coalescence. 

The data for monodisperse perikinetic modeling is shown in Figs. 2.2 and 2.3 

displays the cumulative particle size distributions for all models. The model of Eq. (2.7) 

overestimates particle aggregation, however, the other four models (Eq. (2.8), Eq. (2.9), 

Eq. (2.13), and uniform discrete model) show similar predictions. Deviations between 

each method and the uniform discrete model were compared using statistical analysis 

represented by an R2 and the square root of the sum-of-squares of the residuals (see Fig. 

2.3). From Fig. 2.3, all models, except the model of Eq. (2.7), have R2 greater than 

0.9591 and residuals less than 13.7889; however, the model of Eq. (2.7) has the values 

of 0.8718 and 31.7441, respectively. That is, the model of Eq. (2.7) has less accuracy 

compared to the uniform discrete model than the other coagulation models for 

monodisperse perikinetic coagulation. 
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Figure 2.2 Cumulative particle size distribution for monodisperse perikinetic coagulation 
(ninitial = 1.819×109/cm3, α = 0.1, Df = 3.0, after 30 min.) 
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Figure 2.3 Statistical analysis for monodisperse perikinetic coagulation models 
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The model of Eq. (2.8) has excellent numerical accuracy and the models of Eq. 

(2.9) and Eq. (2.13) have similar results with respect to accuracy for this monodisperse 

perikinetic coagulation simulation. 

Polydisperse initial population conditions were also examined for the perikinetic 

case (see Figs. 2.4 and 2.5). The uniform discrete or continuous models have a major 

disadvantage when applied to polydisperse simulation, especially in large particle size 

class ranges (e.g., k ≥ 1000), due to the problem of inputting the initial particle 

concentrations for each class size. However, a nonlinear regression technique can be 

used to obtain a population equation (number as a function of size) and makes it possible 

to input the initial particle concentrations easily. After the nonlinear regression fitting 

(particle size versus cumulative percent), particle concentrations for each class size were 

calculated through a matrix representing the relationship between size class and particle 

size including fractal dimension. Similar to the monodisperse model results, the model 

of Eq. (2.8) has excellent numerical accuracy while the models of Eq. (2.9) and Eq. 

(2.13) have similar results in accuracy. The results of cumulative particle size 

distribution (Fig. 2.4) shows that all models, except for the model of Eq. (2.7), have 

similar predictions compared to the uniform discrete model, having the statistic data of 

R2 and residuals of greater than 0.9936 and less than 9.6043, respectively (see Fig. 2.5). 

These results show that the simulation accuracy of polydisperse perikinetic coagulation 

is better than that of monodisperse modeling when compared to the uniform discrete 

model. This is most likely due to stiffness inaccuracies with the monodisperse system. 
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As shown in the monodisperse modeling, the model of Eq. (2.7) has less accuracy (R2 of 

0.9675 and residuals of 19.7038) than the other models. However, this accuracy is higher 

than monodisperse case (0.8718 and 31.7441, respectively). 

Model stability tests were examined for both monodisperse and polydisperse 

particle systems. The stability was measured by the number or mass conservation during 

coagulation modeling and can be represented by a mass conservation factor that is the 

ratio of the total number of primary particles for each floc size class to the initial primary 

particle number concentration. The mass conservation factor concept was used for 

evaluating the stability and is given as, 

Mass conservation factor = 
( )

( )

max

1

1 0

n

n

i t
i

t

i
=

=

∑
 

Here, mass conservation factor merely means the model stability, not aggregation 

intensity or aggregation kinetics. For both monodisperse and polydisperse perikinetic 

coagulation modeling, all models generated perfect mass conservation during the 

coagulation modeling time limit of 30 min. 
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Figure 2.4 Cumulative particle size distribution for polydisperse perikinetic coagulation  

(α = 0.1, Df = 3.0, after 30 min.) 
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Figure 2.5 Statistical analysis for polydisperse perikinetic coagulation models 
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2.4.4 Differential Sedimentation 

Initially, polydisperse coagulation was examined for the differential 

sedimentation mechanisms using the models (Eq. (2.8), Eq. (2.9) and Eq. (2.13)) and the 

results were compared to the uniform discrete model. The model of Eq. (2.7) is excluded 

in this study due to the assumption in the model that only particle collisions occur 

between particles having the same size and, thus, would have the same sedimentation 

velocities. The modeling results are shown in Figs. 2.6 and 2.7, representing particle 

cumulative percent and statistical analysis, respectively. In this study, only the effect of 

particle density was examined as density is a major factor in the collision frequency 

function for differential sedimentation. It was found that all models, except for the model 

of Eq. (2.8), have similar patterns in cumulative particle size distribution results. With 

the exception of the model of Eq. (2.8) (Fig. 2.6(a)), all models have the similar results 

when compared to the uniform discrete model (Fig. 2.6(d)). 

Relative comparisons between the uniform discrete model and the other three 

models using the same statistical analyses used in the perikinetic modeling study were 

conducted at different particle density (ρp) conditions ranging from 1.1 to 1.7 g/cm3 and 

displayed in Fig. 2.7. These results show that the models of Eq. (2.9) and Eq. (2.13) have 

much better accuracy than the model of Eq. (2.8). Furthermore, there are excellent 

agreements between the models of Eq. (2.9) and Eq. (2.13) compared with cumulative 

distributions (Fig. 2.6) and the statistical analysis (Fig. 2.7). 
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Particle Size (dt/d0) at d0 = 1µm
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Particle Size (dt/d0) (d0 = 1µm)

2 3 4 5 6 7 8 91 10

P
ar

tic
le

 C
um

ul
at

iv
e 

P
er

ce
nt

 (%
)

0

25

50

75

100

125

 
Figure 2.6 Particle cumulative percent for differential sedimentation coagulation models 
after 30 min. (a) Eq. (2.8), (b) Eq. (2.9), (c) Eq. (2.13), and  (d) uniform discrete models 

(α = 0.1, d0 = 1.0 µm, particle density = 1.1 ∼ 1.7 g/cm3, liquid density = 1.0 g/cm3) 
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Figure 2.7 Statistical analysis for differential sedimentation coagulation models at 

particle density (ρp, g/cm3). (a) 1.1, (b) 1.3, (c) 1.5, and (d) 1.7 
 

These two models can maintain higher numerical accuracy (higher R2 and lower 

residuals) as particle density is increased from 1.1 to 1.7 g/cm3. However, the model of 

Eq. (2.8) has high accuracy only at low particle density conditions (1.1 ∼ 1.3 g/cm3). As 

particle density is increased to exceed 1.5 g/cm3, the model of Eq. (2.8) has less accuracy 

than the coagulation model of Eq. (2.13) or the model of Eq. (2.9). When the particle 

density is increased from 1.1 to 1.7 g/cm3, the magnitude of the coagulation kernel for 

the differential sedimentation case is increased in a range from 1.61×10-14 ∼ 6.63×10-11 
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cm3/sec to 1.13×10-13 ∼ 4.64×10-10 cm3/sec, depending on particle size. However, at 

relatively higher coagulation kernel magnitudes, the models of Eq. (2.9) and Eq. (2.13) 

achieve better accuracy than the model of Eq. (2.8). 

Stability tests which represent the mass conservation factor in terms of total 

primary particle number concentration were examined for each coagulation model. For 

both initial monodisperse and polydisperse conditions, all models generated perfect mass 

conservation during the theoretical coagulation time of 30 min. 

2.4.5 Orthokinetic Coagulation Modeling 

Examining the orthokinetic coagulation model in terms of particle size 

distribution and mass conservation, both monodisperse and polydisperse initial particle 

populations were considered and the results are presented in Figs. 2.8 to 2.12. Aggregate 

fragmentation or breakage was not included in these analyses and will be discussed later. 

However, the influence of flow strain-rate on particle size distribution and conservation 

of mass was explored. 

For the initial monodisperse case, the modeling parameters of α = 0.05, flow 

strain-rate = 10 1/s, and a fractal dimension of 3.0, were used and are displayed in Fig. 

2.8. As shown in Fig. 2.8, four of the coagulation models show similar modeling results. 

Deviations between each method and the uniform discrete model were compared using 

the statistical analyses represented by R2 and the square root of the sum-of-squares of the 

residuals (see Fig. 2.9). 
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Figure 2.8 Cumulative percent for monodisperse orthokinetic coagulation models after 
30 min. (α = 0.05, γ = 10 (1/s), Df = 3.0) 
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Figure 2.9 Statistical analysis for monodisperse orthokinetic coagulation models 
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As shown in Fig. 2.9, the models of Eq. (2.9) and Eq. (2.13) obtain relatively 

higher accuracy than the models of Eq. (2.7) and Eq. (2.8). It is notable that the model of 

Eq. (2.8) for initially monodisperse orthokinetic coagulation modeling has much less 

accuracy than other previous coagulation simulations having perikinetic and differential 

sedimentation kernels. That is, the model of Eq. (2.8) fails to achieve similar numerical 

accuracy as collision rate (α × β) is increased. In this study, the collision rate is increased 

from 1.40×10-12 ∼ 2.98×10-12 cm3/sec (perikinetic) to 2.09×10-12 ∼ 3.56×10-10 cm3/sec  

(orthokinetic),  depending on aggregate size.  
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Figure 2.10 Particle size distribution for polydisperse orthokinetic coagulation having no 
break-up kernel after 30 min. (α = 0.01, γ = 10 (1/s), Df = 3.0) 
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Figure 2.11 Statistical analysis for polydisperse orthokinetic coagulation models 
 

 

Initially, polydisperse orthokinetic coagulation modeling was also conducted and 

compared to the uniform discrete model. Figures 2.10 and 2.11 show particle cumulative 

percent after 30 min of theoretical coagulation. As shown in Figs. 2.10 and 2.11, the 

model of Eq. (2.7) underestimates population and has low numerical accuracy, having 

lower R2 (0.9154) and a large square root of the sum-of-squares of the residuals 

(28.9227). The models of Eq. (2.9) and Eq. (2.13) fit the simulation results well and have 

better numerical accuracy than the other models. The model of Eq. (2.8) has excellent 

numerical accuracy, however, it is notable that the model of Eq. (2.8) has less 

compatibility with respect to the stiffness problem. Compared with mono- and poly-

disperse orthokinetic results shown in Figs. 2.9 and 2.11, the model of Eq. (2.8) has less 

accuracy when the higher stiffness exists (monodisperse initial condition) than when 

lower stiffness (polydisperse initial condition) is present. This stiffness sensitivity is seen 
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in the model of Eq. (2.8) by having the square root of the sum-of-squares of the 

residuals; 15.5224 and 8.4557, respectively. In addition, as previously shown in the 

stability test, all models generated perfect mass conservation for both monodisperse and 

polydisperse orthokinetic coagulation modeling. 

2.4.6 Aggregate Breakage 

Researchers have proposed particle fragmentation (break-up) models based on 

five basic categories; limiting strength, strain-rate or flow dependence, limiting size, 

reaction rate, and stochastic dependence (Kramer and Clark 1999). The most common 

approach to aggregate break-up is the use of flow strain-rate as the primary break-up 

parameter (Thomas 1964; Argaman and Kaufman 1970; Parker et al. 1972; Kao and 

Mason 1975; Tambo and Watanabe 1979a; Lu and Spielman 1985; Ray and Hogg 1986; 

Sonntag and Russel 1987; Spicer and Pratsinis 1996a; Kramer and Clark 1999; Serra and 

Casamitjana 1999). Break-up kernels that have been proposed could be summarized in 

the kernel; 

 ( ) ( ) ( )b s η
KB Br = K γ r nk k&  (2.30) 

where KB is the break-up rate constant (the reversible coagulation rate), b is a strain-rate 

exponent, s is an aggregate size exponent, and η is a break-up concentration exponent. 

As populations of the aggregates are exposed to increasing levels of fluid strain-rate and 

stress, thus it is expected that increasing amounts of break-up will be seen. Since the size 

exponent (s) is arbitrary the aggregate radius (or diameter) would serve just as well as 

the aggregate area or volume (s = 2 or s = 3). 
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As shown in Eq. (2.30) and Table 2.4, particle break-up is directly related to flow 

strain-rate, particle geometric properties (size, area, or volume), and break-up reaction 

orders. Previous researchers have proposed various model parameters (exponents of Eq. 

(30)) for the particle fragmentation given by Eq. (30). In this study, the various break-up 

parameters were compared with respect to the conservation of mass and cumulative 

particle percent using a random discretized break-up model and a bi-kinetic break-up 

model (binary breakage) for both monodisperse and polydisperse initial particle 

populations. 

 

Table 2.4 The Summary of Various Break-Up Kernels 

Cases b s η Break-up Kernels 
Case I 0 0 1 ( )KB B kr K n=  
Case II 1 0 1 ( )( )KB B kr K nγ= &  

A 1 1 1 ( )( ) ( )1
KB B k kr K r nγ= &  

B 1 2 1 ( )( ) ( )2
KB B k kr K r nγ= &  

Case III 

C 1 3 1 ( )( ) ( )3
KB B k kr K r nγ= &  

Case IV 1 3 2 ( )( ) ( )3 2
KB B k kr K r nγ= &  

Case V 1.25 3 2 ( ) ( ) ( )1.25 3 2
KB B k kr K r nγ= &  

Case VI 2 3 1 ( ) ( ) ( )2 3
KB B k kr K r nγ= &

1  
 

Kramer and Clark rigorously reviewed contemporary break-up theories on floc 

aggregates formed during orthokinetic coagulation and proposed a uniform discrete 

random particle fragmentation model as (Kramer and Clark 1999), 

 ( ) ( ) ( ) ( ) ( ) ( )
max

b s η b s η
B B

1Breakup

dn = (i)K γ r n K γ r n
dt

k
i i k k

i k

φ
= +

−∑ & &  (2.31) 
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where ( )iφ  is a random distribution function to account for the various daughter 

fragments of size class k. The first term on the right hand side of Eq. (2.31) represents 

the gain to the size class k concentration by the fracture of larger size class aggregates 

and the second term is the loss of size class k aggregates due to facture.  

Binary particle break-up has been proposed by other researchers (Chen et al. 

1990; Kramer 2000; Vanni 2000) and is represented as, 

 ( ) ( ) ( ) ( ) ( ) ( )b s 2 b s
B, 1 1 1 B,

Breakup

dn = K 2γ r n - K γ r n
dt

k
k k k k k+ + +& & k

rk

 (2.32) 

Binary break-up theory has the assumption that only daughter fragments of equal size 

result from the break-up of floc aggregates or 1r 2k+ = . Note that the binary break-up 

reaction given by Eq. (2.32) has a second order reaction rate (η = 2).  

The evolution of particle size distribution was simulated using the model of Eq. 

(2.13). Figure 2.12 represents particle size distributions for polydisperse orthokinetic 

coagulation with a random break-up kernel (see Eq. (2.31)) and was generated using 

particle diameters between 1.0 and 10.1 µm, α = 0.01, KB = 0.001, and a fractal 

dimension of 3.0 at various flow strain-rates. At the range of particle size and viscosity 

conditions used for this study, one can expect to neglect effects of inertia, Brownian 

diffusion, and gravity (Chin et al. 1998; Kramer and Clark 2000). Thus, it is assumed 

that only hydrodynamic forces are considered in orthokinetic coagulation with break-up. 

Figure 2.12 shows that the evolution of particle size distribution is a function of reaction 

time and flow strain-rate. As time elapses, peak concentration is lowered and larger 

particles are developed. Flow strain-rate also enhances coagulation kinetics. The applied 



 49

flow strain-rate promotes particle collision rates that could be expressed by (collision 

efficiency) × (collision frequency). However, stresses resulting from flow strain-rate can 

induce aggregate break-up and alter the particle size distribution. 
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Figure 2.12 The evolution of particle size distribution for polydisperse orthokinetic 

coagulation at different strain-rate (α = 0.01, KB = 0.001, Df = 3.0) 
 

Orthokinetic coagulation modeling results using the varying break-up kernels are 

presented in Table 2.5 and Figs. 2.13 to 2.16 in terms of the mass conservation factor, 

particle cumulative percent and comparative statistical accuracy. Initially, monodisperse 

orthokinetic coagulation with random break-up (Case III-C) is shown in Figs. 2.13 and 

2.14. Other results from various cases of Table 2.4 were not shown in the study due to 
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the huge number of data sets. In the initially monodisperse case, the concentrations of 

particles in each size class had similar values using several break-up kernels (III-B, III-C, 

IV, V, and VI). However, mass was conserved only in the cases of III-B, III-C (see 

Table 2.4).  
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Figure 2.13 Monodisperse orthokinetic random break-up coagulation having the break-
up kernel of rKB=KB(γ)(rk)3(nk) (α=0.1, KB=0.005, γ=10 (1/s), Df=3.0) 
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Figure 2.14 Statistical analysis for monodisperse orthokinetic coagulation models having 
random break-up kernel 
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Figure 2.15 Polydisperse orthokinetic random break-up coagulation having the break-up 
kernel of rKB=KB(γ)(rk)3(nk) (α = 0.01, KB = 0.005, γ&  = 10 (1/s), Df = 3.0) 
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Figure 2.16 Statistical analysis for polydisperse orthokinetic coagulation models having 
random break-up kernel 

 

These results imply that the optimum break-up kernel for initially monodisperse 

orthokinetic coagulation modeling is a first or second order reaction (η = 1 or 2) and 

break-up rate is proportional to the volume of the aggregates (s = 3), not the diameter of 

the aggregates (s = 1). Also, when the values of the break-up concentration exponent (η) 

and aggregate size exponent (s) is 1, 2 or 3, respectively, the break-up exponent (b) did 

not affect the overall coagulation modeling results. It should be noted that the simulation 

results of particle number concentration varied from each break-up kernel (see Table 

2.4) and failed to conserve mass in the case of an aggregate size exponent (s) value of 1. 

Spicer and Pratsinis (1996a) proposed that break-up rate is related to aggregate size (s = 

1),  however, the findings of this study indicate that the break-up rate is a function of the 

area or volume of the aggregate.  
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Table 2.5 The Results of Mass Conservation Factor (After 30 min. of Coagulation) 

Parameters  Df Eq. (2.7) Eq. (2.8) Eq. (2.9) Eq. (2.13) Eq. (2.17) Eq. (2.29) 

α = 0.1 
KB = 0.005 
 

M1) 3 0.99 1.00 1.00 1.00 1.00 1.00 

α = 0.01 
KB = 0.005 
 

P2) 3 0.99 0.94 0.99 0.99 0.99 0.99 

M 3 0.82 0.84 0.90 1.00 1.00 1.00 
M 2.5 0.80 0.82 0.89 0.39 1.00 0.99 

α = 0.01 
KB = 0.5 

M 2.0 0.72 0.79 0.87 0.12 1.00 1.03  
1) Monodisperse initial condition 
2) Polydisperse initial condition 
 

As shown in Table 2.5 and Figs. 2.15 and 2.16, initially polydisperse modeling 

has similar results when compared to the initially monodisperse cases (see Figs. 2.13 and 

2.14). From Figs. 2.13 and 2.15, the model of Eq. (2.8) overestimates the coagulation 

intensity represented by the evolution of particle size distribution for both initial 

conditions, while the model of Eq. (2.7) underestimates the coagulation intensity for the 

polydisperse initial condition. The models of Eq. (2.9) and Eq. (2.13) represent very 

similar results with high numerical accuracy. Furthermore, random break-up kernels (Eq. 

(2.31)) have greater accuracy and stability than binary break-up kernels (Eq. (2.32)). 

From the Table 2.5, it is notable that as volume increases aggregate would be exposed to 

greater stress variance (i.e., increased collision efficiency or break-up coefficient), the 

three models (Eq. (2.7), Eq. (2.8), and Eq. (2.9)) have less stability while three new 

models of Eqs. (2.13), (2.17), and (2.29) have perfect mass conservation. 

Statistical accuracy analyses are displayed in Figs. 2.14 and 2.16 and show that 

the models of Eq. (2.9) and Eq. (2.13) obtained higher numerical accuracy than the other 

models for random break-up case when compared to the uniform discrete model. Also, 
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initial mono- and poly-disperse particle populations have similar numerical accuracy, 

showing that the accuracy of polydisperse coagulation is slightly higher than that of the 

initially monodisperse modeling. As mentioned in the orthokinetic coagulation modeling 

section, the model of Eq. (2.8) having a break-up kernel failed to achieve higher 

numerical accuracy for the relatively higher stiffness (monodisperse initial condition) 

(see Figs. 2.14 and 2.16). The application of a random break-up kernel having a 

functional relationship of aggregate area or volume achieves perfect conservation of 

mass for all coagulation models. 

Numerical stability tests in terms of the mass conservation factor for both initial 

monodisperse and polydisperse conditions were conducted and displayed in Table 2.5. 

All models could achieve perfect numerical stability for the monodisperse condition. 

However, for the polydisperse condition, the model of Eq. (2.8) failed to conserve mass. 

That is, in the case of the polydisperse condition, the increased relative magnitude of the 

break-up coefficient due to the decreased collision efficiency (α) (from 0.1 to 0.01) 

caused the mass conservation deviation for the model of Eq. (2.8). Thus, the model of Eq. 

(2.8) should not be used as a coagulation model when high levels of break-up exist in the 

colloid system.  

2.4.7 Parameter Sensitivity Analysis 

Sensitivity analysis was conducted to obtain a more detailed understanding of the 

dependence between both collision efficiency (α) and break-up rate constant (KB) using 

an orthokinetic coagulation model for a monodisperse initial particle concentration. For 

this study the aggregation model given by Eq. (2.13) with random discrete break-up 
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kernels given by Eq. (2.31) was used. The model of Eq. (2.13) has higher stability and 

numerical accuracy than the other aggregation models. Further, the random break-up 

kernels had better stability than the binary break-up kernel.  

The modeling parameters of flow strain-rate ( γ& ) of 10 s-1, fractal dimension (Df) 

of 3.0, various collision efficiencies (α) and break-up rate constants (KB) of 0.01 to 1.0 

were examined and results are displayed in Figs 2.17 and 2.18 as contour plots. At the 

region of high collision efficiency and low break-up rate constant (right bottom area in 

both figures), coagulation pileup is expected where all particles exist at the maximum 

size class considered.  
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Figure 2.17 Parameter sensitivity analysis of collision efficiency and break-up 
coefficient as respect to maximum size class concentration (nmax) (× 105 no./cm3, strain-

rate = 10 s-1, Df = 3.0) 
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Figure 2.18 Parameter sensitivity analysis of collision efficiency and break-up 
coefficient as respect to total particle concentration (ntotal) (× 107 no./cm3, strain-rate = 

10 s-1, Df = 3.0) 
 

If the collision efficiency (α) is less than 0.1, regardless of the break-up 

coefficient, moderate coagulation patterns could be found. Also, at the collision 

efficiency value of 0.1, slow coagulation can be expected. As shown in Fig. 18 

(representing total particle concentration (Ntotal)) there is no effect of the break-up rate 

constant on total particle concentration. That is, within the limited range of having the 

break-up coefficient less than the collision efficiency, the breakup coefficient does not 

influence the total particle concentration, only the collision efficiency affects the total 

particle concentrations. These results indicate that aggregate break-up has importance to 

the particle size distribution and coagulation patterns. The contours in Fig. 2.17, 

representing particle number concentration of the maximum size class, indicate that 

collision efficiency and break-up rate constant are negatively correlated. That is, as 
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collision efficiency is increased and break-up coefficient is decreased, one can expect 

increased particle number concentration of the maximum size class. However, as shown 

in Fig. 2.18, total particle concentration is dependent on collision efficiency having a 

negative relationship, not depending on the break-up coefficient. 

2.4.8 Fractal Aggregation 

The effects of aggregate fractal dimension on various coagulation models were 

also examined. The fractal analysis focused on particle size distribution and mass 

conservation. The Hounslow model (Eq. (2.9)) was excluded in this fractal dimension 

modeling due to the low stability discussed previously. The orthokinetic coagulation 

model having a random break-up kernel given by Eq. (2.31) with break-up parameters of 

b=1, s=3, and η=2 (see the Case IV of Table 2.4) was adopted for the initially 

monodisperse simulations. Incorporating Eq. (6) into Eq. (31) produces an orthokinetic 

coagulation model for fractal aggregates. Thus, this fractal aggregation and break-up 

equation can predict the effects of fractal dimension on the behavior of particle 

coagulation. Initially monodisperse modeling conditions of α = 0.01, KB = 0.5, γ&  = 10 

(1/s) and a theoretical elapsed time of 30 (min) were used. The results of the aggregate 

fractal dimension effects are represented in Table 5 and Figs. 19 to 22. New probabilities 

were considered in Eqs. (17) and (29) and compared with the uniform discrete models 

for fractal aggregation modeling. 

As shown in Figs. 2.19 and 2.20, the model of Eq. (2.7) shows largest deviation 

from the uniform discrete model in particle size distribution and the total particle 

concentration results for all three different fractal dimension conditions. However, as the 
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fractal dimension is decreased to 2.0, the differences between the model of Eq. (2.7) and 

uniform discrete models decrease. Although the model of Eq. (2.8) shows the least 

deviation from the uniform discrete model at larger particle size ranges, this model 

underestimated the total particle concentration. From the Figs. 2.19 and 2.20, the new 

models of Eqs. (2.17) and (2.29) show good agreement at various aggregate fractal 

dimensions ranging from 2 to 3. Shown in Fig. 2.20, total particle concentration is 

proportional to the aggregate fractal dimension. The reduction of total particle 

concentration is lowest with the model of Eq. (2.7) having the decreases of 40.08, 38.36, 

and 37.72 % for Df values of 3.0, 2.5 and 2.0, respectively. For the model of Eq. (2.8), 

the total particle reduction is in the range of 78.15 % to 79.18 % for three different 

fractal dimension conditions. Results using the models of Eq. (2.9), Eq. (2.17), and Eq. 

(2.29), and the uniform discrete model are within the deviation range of 98.79 % to 

103.15%. 
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Figure 2.19 Particle cumulative percent for various models with different Df values.  
(a) Df  = 3.0, (b) Df  = 2.5, and (c) Df  = 2.0 
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Figure 2.20 The effect of fractal dimension on total particle concentration 
 

From the Figs. 2.21 and 2.22, the new model of Eq. (2.13) shows good 

agreement only when the fractal dimension value is 3. As the fractal dimension is 

decreased to 2.0, however, the differences increase due to lower stability (see Fig. 2.21). 

In the stability test for various fractal dimensions ranging from 2 to 3 (see Table 2.5 and 

Fig. 2.21), the three models (Eq. (2.7), Eq. (2.8), Eq. (2.9)) and Eq. (2.13) with break-up 

kernels fail to conserve mass. Although the model of Eq. (2.9) results have excellent 

agreement with the results from the new model of Eq. (2.17) (see Figs. 2.19, 2.20, and 

2.22), the model of Eq. (2.9) failed to conserve mass especially when a low fractal 

dimension was used. The new model of Eq. (2.13) was applicable only when a fractal 

dimension value of 3 with a break-up kernel is used (see Figs. 2.21 and 2.22).  
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Figure 2.21 Mass conservation for fractal aggregation having random discretized break-

up kernels with different Df values. (a) Df  = 3.0, (b) Df  = 2.5, and (c) Df  = 2.0 
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Figure 2.22 Statistical analysis for fractal aggregate coagulation models having random 

break-up kernel with different Df values. (a) Df  = 3.0, (b) Df  = 2.5, and (c) Df  = 2.0 
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Furthermore, as fractal dimension is decreased, the model of Eq. (2.13) has lower 

accuracy and fails to achieve mass conservation. However, other two new probability 

functions (probability II and III) developed in this study (Eqs. (2.17) and (2.29)) 

conserved mass at all fractal dimension conditions. In the model of Eq. (2.13) the 

relationship, 1υ 2υk+ = k , having a geometric size interval of 2, could not predict particle 

coagulation resulting from a variation in fractal dimension. Solid particle aggregates are 

found to be fractal (Table 2.1), thus fractal aggregate coagulation modeling is needed for 

realistic simulation. The new probability functions given by Eqs. (2.17) and (2.29) can 

be readily applied to population balance equations that include various fractal 

dimensions and break-up kernels. 

2.4.9 Computational Efficiency 

In examining the computational efficiency, several techniques were used and 

these results are displayed in Table 2.6 in terms of the number of steps, number of 

subroutine calls, and CPU time. These measurements were based on the commercial 

FORTRAN program IVPAG, one of the IMSL programs. All the computations were 

conducted using the same conditions for orthokinetic coagulation modeling having a 

random break-up kernel (α = 0.01, γ&  = 10 s−1, Df = 3.0, , = 

0.001) using the computer hardware of a 1.9 GHz Pentium IV having 1.0 GB of memory. 

Table 2.6 shows that the models of Eq. (2.13) and (2.17) have the best computational 

efficiency on the basis of number of steps, subroutine calls, and CPU time. These seven 

coagulation models demonstrate computational efficiency in the order of the models of 

3
KB B k kr =K (γ)(r ) (n )& BK



 64

Eq. (2.17), Eq. (2.13), Eq. (2.8), Eq. (2.9), Eq. (2.7), Eq. (2.29), and uniform discrete 

models. 

 

Table 2.6 Computational Efficiency Comparisons for Improved Coagulation Model 

Models Number of steps 
taken 

Number of subroutine 
calls with IVPAG CPU time (sec) 

 
Equation (2.7) 

 
471 

 
554 

 
6.2500×10−2

Equation (2.8) 267 331 4.6875×10−2

Equation (2.9) 241 370 5.2500×10−2

Equation (2.13) 184 230 3.1250×10−2

Equation (2.17) 184 230 3.1250×10−2

Equation (2.29) 4654 5845 0.5938 
Uniform Discrete 
 

501 
 

693 
 

525.7640 
 

 

The model of Eq. (2.29) makes many steps and subroutine calls due to the 

calculation of population differences (∆nk) for each time step. Further, during the 

uniform discrete model test, as fractal dimension was decreased from 3.0 to 2.0, the 

number of steps and subroutine calls, and CPU time greatly increased. Thus, the uniform 

discrete model has low computational efficiency (long processing time) compared with 

the non-uniform discrete coagulation models as expected. 

 

2.5 Conclusions 

A variety of modeling techniques for the population balances resulting from 

particle coagulation were examined. The simplified models using non-uniform 

discretization schemes were compared to uniform discrete models. There is a large 
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influence on the stability (conservation of mass) and accuracy (good statistical 

comparisons to the uniform discrete model) of these coagulation ordinary differential 

equations. However, in this study, an aggregation and break-up algorithm that can 

simulate variable kernels based on particle size were used, as these kernels represent the 

physical process of coagulation and are derived from basic mass transport principles. 

Under spherical particle conditions, having the fractal dimension of 3.0 (i.e., droplet 

coalescence), all of the coagulation models examined could conserve mass and had high 

accuracy. Although the model of Eq. (2.13) that has new probability function I had 

higher accuracy and stability than the other models, all models failed to conserve mass 

as the fractal dimension was decreased to 2.0. After introducing other new algorithms of 

Eqs. (2.17) and (2.29), these new two approaches made it possible to simulate fractal 

aggregate coagulation with high accuracy and perfect mass conservation. With respect to 

computational efficiency, the new algorithms of Eqs. (2.13) and (2.17) had the lowest 

computational time. Also, the results of the parameter sensitivity analysis showed that 

the addition of a break-up kernel does not effect total particle concentration within the 

limited range of having the break-up coefficient less than the collision efficiency. 

However, a break-up kernel does influence the particle size distributions. In the break-up 

study, the random discrete break-up kernel was introduced and compared with the binary 

break-up kernel. The binary break-up represents similar simulation results with the 

random break-up and slightly higher stability than random break-up when break-up 

concentration exponent (η) is 2 (see Table 2.4). However, the random break-up kernel 

has greater applicability to various break-up parameter conditions than the binary break-
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up kernel with higher stability and less computational limitations. Spicer and Pratsinis  

proposed that break-up rate is related to aggregate size (s = 1) (Spicer and Pratsinis 

1996a),  however, the results from the analysis of the various break-up kernel parameters 

indicate that the break-up rate is a function of volume (s = 3) of the aggregates. Also, 

when the values of the break-up concentration exponent (η) and aggregate size exponent 

(s) are 1 and 2 or 3, respectively, break-up exponent (b) did not affect the overall 

coagulation model. It should be noted that the simulation results of particle number 

concentration were different from each break-up kernel (see Table 2.4) and failed to 

conserve mass in the case of aggregate size exponent (s) value of 1. The new model of 

Eq. (2.17) has been shown in the investigation to be superior to all of the other models 

and can be used to develop predictive capability for coagulation in computational fluid 

dynamics (CFD) and reaction algorithms resulting from superior efficiency and 

accuracy.  
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CHAPTER III 

IMPROVED ORTHOKINETIC COAGULATION MODEL FOR FRACTAL 

COLLOIDS: AGGREGATION AND BREAK-UP 

 

3.1 Overview 

An improved discretized population balance equation (PBE) is proposed in this 

study. This improved discretized population balance equation has new probability 

distribution functions for aggregates produced in non-uniform discrete coagulation 

modeling. The authors extended an improved particle coagulation model previously 

developed to an adjustable geometric size interval (q), where q is a volume ratio of class 

k+1 particles to class k particles ( 1υ / υk k q+ = ). This model was compared with exact 

numerical solutions of continuous (uniform discretized) population balance equations 

and applied to simulate the particle aggregation and breakup with fractal dimensions 

lower than 3. Further, comparisons were made using the fractal aggregate collision 

mechanisms of orthokinetic coagulation with the inclusion of flow induced breakup.  

In the course of the investigation the new algorithm was found to be a substantial 

improvement in terms of numerical accuracy, stability, and computational efficiency 

over the continuous model. This new algorithm makes it possible to solve fractal particle 

aggregation and breakup problems with high accuracy, perfect mass conservation and 

exceptional computational efficiency, thus the new model can be used to develop 

predictive simulation techniques for the coupled coagulation using computational fluid 

dynamics (CFD) and chemical reaction modeling. 
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3.2 Introduction 

Coagulation is the multi-step process of producing larger aggregates by collisions 

and subsequent bonding or coalescing of smaller particles contained in a fluid. The 

particles can be either solid or fluid materials suspended in a gas or liquid. Particle 

collisions are induced by inter particle motions that have been attributed to three basic 

mechanisms: fluid motion or orthokinetic coagulation, Brownian diffusion or perikinetic 

coagulation and buoyancy or differential sedimentation. Fluid motion also creates 

disruptive stresses that can cause fracture of the agglomerates.  

In recent years, numerous studies have attempted to solve the particle 

aggregation problem consisting of the continuous population balance equations (PBE), 

where the continuous PBE can be expressed as an uniform discretized equation 

(Smoluchowski 1917) (Eq. (3.1)) or a continuous integro-partial-differential equation 

(Drake 1972; Ramkrishna 1985) (Eq. (3.2)), 

 ( ) ( )
Agg 1

dn 1 = αβ r , r n n  - n αβ r , r n
dt 2

k
i j i j k l k l

i j k l+ = =

∞
⎛ ⎞
⎜ ⎟
⎝ ⎠ ∑ ∑  (3.1) 

or 

 ( ) ( )
Agg 0 0

υdn(υ, t) 1 = αβ υ- , n(υ- ,t)n( ,t)d  αβ υ, n(υ,t)n( ,t)d
dt 2

w w w w w w w w
∞

⎛ ⎞ −⎜ ⎟
⎝ ⎠ ∫ ∫ (3.2) 

where n is the number concentration of particles, r is the particle or aggregate radius, α is 

a collision efficiency, υ  and  are particle volume, i, j, k, and l  refer to particle size 

class indices, and t is time. The quantity β is termed the collision frequency kernel and is 

dependent on particle size, the particle movement mechanism, and collision geometry.  

w
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To obtain exact numerical solutions of the continuous PBE (Eq. (3.1) or (3.2)), 

extensive computation time and hardware are required. A realistic maximum size used in 

coagulation modeling would therefore produce an unmanageable number of 

simultaneous equations to solve. To overcome this computational non-efficiency of the 

continuous PBE (or uniform discretized PBE), various non-uniform discrete schemes 

have been introduced (Gelbard and Seinfeld 1978; Gelbard et al. 1980; Batterham et al. 

1981; Hounslow et al. 1988; Marchal et al. 1988; Litster et al. 1995; Hill and Ng 1996; 

Kumar and Ramkrishna 1996a; Kramer 2000; Vanni 2000).  

Relatively little attention has been paid to fractal particle coagulation modeling. 

Spherical particle coalescence applies only to ideal bubbles and droplets and most 

particle aggregates are found to be fractal, especially in solid colloidal particle 

coagulation. Thus, fractal coagulation modeling is needed for realistic simulation. This 

paper will examine an improved technique of PBE discretization and compare them to 

exact numerical solution of uniform discretized PBE. Further, modifications and 

comparisons are made to incorporate breakup in the orthokinetic population balances 

with the inclusion of flow induced fracture. Finally, model comparisons are made using 

simulation data of particle size distributions, mass conservation, and computational time.  

 

3.3 Discretization of the Population Balance Equation  

3.3.1 Particle Aggregation 

Hill and Ng produced a discretized PBE based on probability density functions in 

each interval k for aggregation (Hill and Ng 1996) and breakup (Hill and Ng 1995).  
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The aggregation rate equation of Hill and Ng can be expressed as, 

 

2 1

1 -1, , 1 , ,
Agg 1 1

max
2 2

1 1 -1, -1, 1 , ,
1

dn  = αβ(r , r )C n n  + αβ(r , r )G n n
dt

1 1+ αβ(r , r )C (n )  + αβ(r , r )G (n ) αβ(r , r )n n
2 2

k k
k

k j k j k k j k j k j k k j
j j

k k k k k k k k k k k k i k i k
i

− −

− −

= =

− − −

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

−

∑ ∑

∑
 (3.3) 

where, Ci,j,k and Gi,j,k-1 are collision probability functions. Ci,j,k predicts whether 

collisions between particles from intervals i and j will fall into interval k and Gi,j,k-1 terms 

predict that  the i and j interval particles will form a particle of a size in the range of 

interval .  Furthermore, a 100% probability exists that particles from intervals i and 

j will fall into either k or , having the relation of C

1k −

1k − i,j,k + Gi,j,k-1 = 1. Hill and Ng 

concluded that the volume of particles removed from intervals i and j must be equal to 

the particle volume added to intervals k and 1k − . However, it is not possible to know 

the volume or number of particles removed from a discrete interval or contributed to the 

larger intervals a priori during each iteration. A possible solution is to equate the 

probability density functions in terms of the volume ranges of each interval. Thus, the 

probability that a collision pair will fall into a given size class range increases as the 

range of the interval increases. For the adjustable interval scheme and an average 

volume concept, 1υ υk kq+ =  and 1υ 0.5(υ υ )k k −k= + , is used and Eq. (3.3) can be 

expressed in terms of the particle radii with volume based probabilities as, 

3 32 1

1 1
Agg 1 1

2 2
1 1 1

r rdn 1 = αβ(r , r ) n n  + αβ(r , r ) 1 n n
dt 1 r ( 1) r

1 1 1 2+ αβ(r , r ) (n )  + αβ(r , r ) (n ) αβ(r , r )n n
2 1 2 1

k k
j jk

k j k j k j k
k kj j

k k k k k k i k i k
i

q
q q

q
q q

− −

− −

= =

− − −

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪⎛ ⎞ −⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
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−⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

∑ ∑
max

1=
∑

j

(3.4) 
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3.3.2 Aggregate Break-Up 

Aggregate breakup mechanisms have been applied to various fields, such as floc 

disintegration, droplet fragmentation, and comminution of particle solids (Vanni 1999). 

Population balance equations related to a breakup reaction can be expressed by 

continuous and discrete approaches (Patil et al. 2001). Few analytical solutions using 

either method are available under limited conditions (Ziff and McGrady 1985; Peterson 

1986). Thus, numerical solutions are required for these breakup models. A pure breakup 

reaction in the form of a continuous breakup PBE can be expressed by Eq. (3.5) (Prasher 

1987; Randolph and Larson 1988), 

 
Break 0

dn(υ, t) = b(υ, )s( )n( ,t)d s(υ)n(υ,t)
dt

w w w w
∞⎛ ⎞ −⎜ ⎟

⎝ ⎠ ∫  (3.5) 

where  is the breakup distribution function, and s(  is the breakup rate 

coefficient. Also, Eq. (3.5) can be discretized 

b(υ, )w υ)

 ( ) ( )η η
,

Break 1

dn = b s n s n
dt

k
k j j j k k

j k= +

∞
⎛ ⎞ −⎜ ⎟
⎝ ⎠ ∑  (3.6) 

where, η is a break-up concentration exponent, ,bk j  is the breakup distribution function 

(or probability function), and  is the breakup rate coefficient.  sk

Researchers have proposed the breakup distribution function (or probability 

function), ,bk j  using several approaches (Coulaloglou and Tavlarides 1977; Pandya and 

Spielman 1982; Lu and Spielman 1985; Kusters 1991; Ziff 1991; Hill and Ng 1995; 

Spicer and Pratsinis 1996a; Kramer and Clark 1999). To solve the breakup distribution 

function an adjustable improved probability function was derived from the breakup 
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function of Hill and Ng (Hill and Ng 1995) by adding the adjustable interval scheme, 

1υ υk q+ = k and the average volume concept, 1υ 0.5(υ υ )k k −k= +  producing, 

 
3

,
3( 1) rb

2 r
k

k j
j

q ⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.7) 

Further, the breakup distribution function can be described using a random 

breakup distribution function, ( )jφ  (Kramer and Clark 1999) as, 

 ,b ( )k j jφ=  (3.8) 

The breakup rate coefficient, s  has been proposed by several researchers (Chen 

et al. 1990; Kusters 1991; Spicer and Pratsinis 1996a; Serra and Casamitjana 1998a; 

Kramer and Clark 1999; Zhang and Li 2003). The most common approach to aggregate 

breakup is the use of flow strain-rate as the primary breakup parameter. The breakup rate 

coefficient can be expressed as, 

k

 b s
Bs = K (γ) (r )k & k  (3.9) 

where KB is the breakup rate constant, b is a breakup rate exponent, s is an aggregate 

size exponent, and γ&  is the flow strain-rate. Equation (3.9) indicates that the breakup 

coefficient is a function of flow strain-rate resulting from energy input and the geometric 

properties of the aggregate (i.e., size, area, or volume). As populations of the aggregates 

are exposed to increasing levels of flow strain-rate (or stress), thus it is expected that 

increasing amounts of breakup will occur. Adding Eqs. (3.9) and (3.7) or (3.8) into Eq. 

(3.6), yields an improved discretized breakup population balance as,  
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b s η b s η
B B

Break 1

dn r3( 1) 1= K (γ) (r ) (n )  K (γ) (r ) (n )
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q
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or 

 b s η b s η
B B

Break 1

dn = ( )K (γ) (r ) (n )  K (γ) (r ) (n )
dt

k
j j k k

j k

jφ
= +

∞
⎛ ⎞ −⎜ ⎟
⎝ ⎠ ∑ & &  (3.11) 

In a straightforward manner, a final coagulation population balance model can be 

obtained from the combination of aggregation and breakup, yielding an overall 

population balance equation. Thus, an overall continuous population balance equation 

with aggregation and breakup reactions can be expressed by Eq. (3.12) after summation 

of Eqs. (3.2) and (3.5) (Ramkrishna 1985; Randolph and Larson 1988). 

 
( ) ( )

( )

0 0Total

0

υdn(υ, t) 1 = αβ υ- , n(υ- ,t)n( ,t)d  αβ υ, n(υ,t)n( ,t)d
dt 2

b υ, s( )n( ,t)d s(υ)n(υ,t)

w w w w w w w w

w w w w

∞

∞

⎛ ⎞ −⎜ ⎟
⎝ ⎠

+ −

∫ ∫
∫

(3.12) 

Also, the discretized form of Eq. (3.12) is represented by Eq. (3.13) using the 

summation of Eqs. (3.1) and (3.6).  

 ( ) ( ) ( ) ( )η η
,

Total 1 1

dn 1 = αβ r , r n n   n αβ r , r n b s n s n
dt 2

k
i j i j k l k l k j j j k k

i j k l j k+ = = = +

∞ ∞
⎛ ⎞ − + −⎜ ⎟
⎝ ⎠ ∑ ∑ ∑ (3.13) 

Adding Eqs. (3.4) and (3.10) or (3.11) into Eq. (3.13), produces an overall 

improved discretized coagulation model including aggregation and breakup. Although 

Eq. (3.13) with Eqs. (3.4) and (3.10) or (3.11) has improved probability functions that 

can predict particle aggregation and breakup, Eq. (3.13) is applicable for only perfect 

spherical aggregates with fractal dimension Df of 3. 
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3.3.3 Improved Coagulation Modeling for Fractal Agglomeration 

In both continuous and discrete modeling the volume and/or radii of the particles 

are significant parameters. In droplet coalescence conservation of the volumes will 

produce a new droplet radius and is easily computed. In terms of a size class, such a 

radius is given by, 

 13
3 υr  = 
4πk
k  (3.14) 

with 1υ  the volume of the primary size class droplet. Amorphous aggregates comprised 

of solid particles can be treated using a fractal dimension, Df. The effective radius of a 

size class k aggregate comprised of primary particles of radius r1 can be calculated using 

a fractal dimension (Meakin 1988) as, 

 1/
1r r ( ) fD

k k=  (3.15) 

The adjustable geometric size interval ( 1υ / υkq + k= ) is determined using an 

aggregate maximum size class computation incorporating a fractal dimension given as,  

 d1/ 1/1
,d 1 d 1r r ( ) r ( )f fD Dk

k k q −= =  (3.16) 

where  is the aggregate radius of size class k for the discretized model and  is the 

number of the size class interval for discretized model. By letting Eq. (3.15) be equal to 

Eq. (3.16), the equation for the calculation of the adjustable geometric size interval (q) 

becomes, 

,drk dk

 { }d1/( 1)
c( ) kq k −=  (3.17) 
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where,  is the number of size class intervals for the uniform discrete distribution 

model (q = 1).  

ck

Furthermore, coagulation simulation using Eq. (3.4) can not be directly applied 

to fractal aggregates based on the model’s inability to conserve mass when modeling 

fractal aggregation. That is, the model of Eq. (3.4) is stable only for spherical particle 

aggregation, due to applying an average volume approach. To obtain solutions for the 

fractal aggregate coagulation problem it must be assumed that the probability functions 

are proportional to aggregate size having an exponent of a fractal dimension. Thus, an 

improved discretized aggregation model for fractal particles was derived as, 
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Also, in the same manner, a new discretized breakup model for fractal particles 

was obtained as, 

 b s η b s η
B B

Break 1

dn 3( 1) r 1= K (γ) (r ) (n )  K (γ) (r ) (n )
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= +

⎛ ⎞−⎛ ⎞ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ & &  (3.19) 

By assuming Eqs. (3.18) and (3.19) or (3.11) to be additive, the overall improved 

discretized coagulation population balance model having fractal aggregate applicability 

is given as,  
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or 
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(3.21) 

3.3.4 Orthokinetic Coagulation Modeling for Fractal Agglomeration 

The collision frequency kernel, β in orthokinetic kinetic coagulation was 

rigorously analyzed using the coalescencing particle collisions created by a laminar 

shear flow (Kramer and Clark 1997) to be, 

(r , r )i j

 34β(r , r ) = πγ(r  + r )
3i j i j&  (3.22) 

To improve the computational efficiency and compatibility of Eqs. (3.20) or 

(3.21) when coupled with other modeling (i.e., computational fluid dynamics (CFD) and 

chemical reactions), a dimensionless scheme is very effective. For these purpose, 

dimensionless constants for concentration , time Ni τ , time increment dτ , and breakup 

 can be introduced as:  κ

For dimensionless concentration, 
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 0n N (ni i )=  (3.23) 

For dimensionless time,  

 3
1 0

4π γ(r ) n t
3

τ = &  (3.24) 

and 

 3
1 0

4πd γ(r ) n dt
3

τ = &  (3.25) 

For dimensionless break-up, 
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κ
π

− −

−=
&

 (3.26) 

Substituting Eqs. (3.23), (3.24), (3.25), and (3.26) into Eq. (3.21), produces the 

final dimensionless population balance equation for orthokinetic coagulation using the 

new probability distribution functions, yields 
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3.4 Results and Discussion 

3.4.1 Numerical Methods 

Equation (3.27) generates a set of ordinary differential equations (ODEs) to 

predict the population  of all size classes k = 1 to maximum. Solutions to the PBE of nk
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Eq. (3.27) were obtained using FORTRAN ODE integrating method (IVPAG) with 

Gear’s method. IVPAG is applicable to numerically stiff problems such as the 

population balance equations where extreme ranges in particle population and size class 

exist. The error tolerance was 10-6 for all numerical solutions during coagulation 

modeling.  

The PBM of Eq. (3.27) was computed over time using the monodisperse initial 

conditions as follows; primary particle concentration of 1.0×108 no/cm3 and primary 

particle diameter of 1.0 µm. For each computation a maximum size class of 1024 was 

used. Although it would be desirable to have an unlimited size class such that the 

aggregate growth would be unbounded, computationally this is not possible. Thus, a 

reasonable maximum size class must be selected. Further, a theoretical coagulation 

modeling time of 30 minutes was used in this study. The selection of 30 minutes was 

based on conventional practice in the water treatment field (Letterman et al. 1999).  

3.4.2 Fractal Agglomeration 

The effects of aggregate fractal dimension (Df) on orthokinetic coagulation 

modeling results were examined. The fractal analysis focused on the response variables 

of mass conservation and cumulative oversize particle distribution of Eq. (3.28), not 

particle size distribution.  

 ( ) ( )
( )

( )
1

CPSDO  1 CPSD 1
k

j t
k kt t

Total tj

n

n
=

= − = −∑  (3.28) 

where CPSDO is defined as cumulative oversize particle distribution and CPSD is 

cumulative particle size distribution or cumulative undersize particle distribution which 
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is commonly used. Particle size distribution analysis can not be used directly to compare 

two different solutions resulting from uniform and non-uniform discretized modeling 

studies due to the different size classes and number of variables (this will be discussed in 

later section of this study).  

Using the improved discretized population balance model of Eq. (3.21) or (3.27) 

with initially monodisperse modeling conditions of α = 0.1, KB = 0.0, γ  = 20 (1/s) and a 

theoretical elapsed time of 30 min, produces the results of fractal dimension influences 

on orthokinetic PBM. Further, these results were compared with the exact solution from 

uniform discretized (continuous) PBM of Eq. (3.13) (see Figs. 3.1 to 3.3). From Figs. 3.1 

to 3.3, it was found that as the q value was decreased, solution accuracy was increased 

for all fractal dimension cases. That is, at a lower q value, the improved discretized 

model approaches the uniform discretized (continuous) as expected. As fractal 

dimension decreased from 3.0 to 2.0, smaller q values should be used to obtain a higher 

accuracy population balance model. Although it is interesting that fractal dimension may 

not be constant during coagulation (Jung et al. 1996; Kostoglou and Konstandopoulos 

2001; Chakraborti et al. 2003), variable fractal dimension is beyond the scope of this 

study. Furthermore, a mass conservation factor (MCF) concept was used for evaluating 

the model numerical stability and is given as, 

&

 ( )
( )

( )

max

1

1 0

n
MCF

n

j t
j

t
t

j
=

=

=
∑

 (3.29) 

In the stability tests, all modeling results generated perfect mass conservation 

during the theoretical coagulation time of 30 min (not displayed in this study). 
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Figure 3.1 Cumulative oversize distribution for fractal agglomeration (Df = 3.0) 
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Figure 3.2 Cumulative oversize distribution for fractal agglomeration (Df =2.5) 
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Figure 3.3 Cumulative oversize distribution for fractal agglomeration (Df =2.0) 
 

3.4.3 Orthokinetic Coagulation of Fractal Agglomeration 

Incorporating Eqs. (3.11) and (3.22) into Eq. (3.18), produces an orthokinetic 

coagulation model for fractal particle aggregation and breakup (Eq. (3.21) or (3.27)). 

Thus, this fractal aggregation and breakup equation can predict the effects of the ratio of 

collision efficiency (α) to breakup coefficient (KB) as well as fractal dimension on the 

behavior of particle coagulation. The improved orthokinetic fractal aggregate 

coagulation model (given by Eq. (3.21) or (3.27)) having a fractal dimension (Df) of 2.5, 

a random break-up kernel with breakup parameters of b = 1, s = 3, and η = 2 (Kramer 

and Clark 1999) in a laminar flow field (strain-rate γ&  of 20 sec-1) was adopted for the 

initially monodisperse simulations during a theoretical elapsed time of 30 (min) and the 

results are displayed in Figs. 3.4 to 3.9.  
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In Fig. 3.4, the results from the orthokinetic coagulation of fractal aggregates are 

represented by the particle size distribution. Unfortunately, particle size distribution 

analysis is not applicable to compare directly two identical solutions resulting from non-

uniform discretized and uniform discretized (continuous) models due to the different 

class size intervals or the number of variables. That is, due to the different class size 

intervals, it is impossible to compare two different results from a non-uniform 

discretized model to uniform discretized model by putting these two methods together 

on the same particle size distribution graph. Thus, an alternative comparison method 

should be developed. As shown in Fig. 3.5, for various ratios of aggregation to breakup 

(α/KB of 0.1 to 10.0), the cumulative oversize particle distribution curves can be used as 

a direct comparison method. After converting the particle size distribution data (see Fig. 

3.4) to a cumulative oversize particle distribution (see Fig. 3.5), it is possible to compare 

a set of solutions resulting from various size class intervals consisting of the improved 

discretized model (Eq. (3.21) or (3.27)) and the uniform discretized (continuous) model 

(Eq. (3.13)) (see Figs. 3.6 to 3.9). Further, the results for large size classes produce 

important information about particle evolution patterns during the experience of 

aggregation and breakup (Kramer and Clark 1999). Although, cumulative undersize 

particle distribution has been commonly used as one of the coagulation results analysis 

tools, this curve often fails to obtain valuable information of the large size class solutions.  
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Figure 3.4 Particle size distributions for fractal agglomeration (Df 2.5) using the 
continuous orthokinetic coagulation model 
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Figure 3.5 Cumulative oversize particle distribution for fractal agglomeration (Df 2.5) 
using the continuous orthokinetic coagulation model 
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Figure 3.6 Cumulative oversize distribution for fractal agglomeration (Df 2.5) using the 
orthokinetic coagulation; α/KB = 0.1 
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Figure 3.7 Cumulative oversize distribution for fractal agglomeration (Df 2.5) using the 
orthokinetic coagulation; α/KB = 0.5 
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Figure 3.8 Cumulative oversize distribution for fractal agglomeration (Df 2.5) using the 
orthokinetic coagulation; α/KB = 1.0 
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Figure 3.9 Cumulative oversize distribution for fractal agglomeration (Df 2.5) using the 
orthokinetic coagulation; α/KB = 10.0 
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From Figs. 3.6 to 3.9, as q value is decreased, the improved discretized 

coagulation model approaches uniform discretized (continuous) model. Further, it was 

found that as the ratio of α/KB changed from 0.1 to 10.0, a smaller value of geometric 

size interval (q) was required to achieve higher numerical accuracy, especially for larger 

size class solutions. That is, when the ratio of α/KB increased, larger particles could exist 

due to the higher influence of aggregation which would overshadow aggregate breakup. 

In addition, perfect mass conservation was achieved throughout all of the modeling 

results during the theoretical coagulation time (not displayed in this study). 

3.4.4 Computational Efficiency of Improved Orthokinetic Coagulation Model 

In examining the computational efficiency, the continuous PBM (Eq. (3.13)) and 

two  adjustable geometric size interval (q = 2.000 and 1.2089) of the discretized PBM 

(Eq. (3.21)) were used and these results are displayed in Table 1 and Fig. 10 in terms of 

the CPU time. All of the computations were conducted using the same conditions for 

orthokinetic coagulation including aggregation and breakup modeling (a monodisperse 

initial condition, an orthokinetic kernel, a random breakup kernel, n0 = 1.0×108 no/cm3, 

α = 0.2, KB = 0.2, γ& = 20 sec-1, d0 = 1.0 µm, Df = 3.0 ~ 2.0, elapsed time = 1800 sec) 

using the computer hardware of a 2.4 GHz Pentium IV CPU having 1.0 GB of memory.  

Comparing CPU time, the improved discretized PBM has a much higher 

computational efficiency than the continuous model. Further, as expected, CPU time is 

inversely proportional to the magnitude of both q value (ranging 2.0 to 1.0) and the 

fractal dimension (ranging 3.0 to 2.0). For example, an improved discretized population 

balance model having q value of 1.2809 has approximately 1,000 and 5,000 times 
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greater computational efficiency than the continuous population balance model for a 

fractal dimension of 3.0 and 2.0, respectively.  

 
Table 3.1 Computational Efficiency Comparisons for Orthokinetic Coagulation 

PBE Models Fractal Dimension 
(Df) 

CPU time  
(sec) 

Improved Discrete Model 3.0 1.5625×10-2

(q = 2.000, k = 11) 2.5 2.8815×10-2

 2.0 3.1250×10-2

   
Improved Discrete Model 3.0 1.719×10-1

(q = 1.2809, k = 29) 2.5 2.031×10-1

 2.0 2.188×10-1

   
Uniform Discrete Model 3.0 3.484×102

(q = 1.0000, k = 1024) 2.5 1.253×103

 2.0 1.440×104
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Figure 3.10 The relationship between fractal dimension and CPU time for continuous 
PBM and improved discretized PBM (q = 1.2809) 
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Computational efficiency is a direct relationship to the number of size intervals 

or the number of variables. As shown in Table 1, the discretized model, having the 

reduced number of size intervals (i.e., q = 1.2809), has only 29 size intervals or variables 

resulting in the lower number of steps and subroutine calls which greatly reduce 

computational time. Otherwise, there are 1024 size intervals considered for the 

continuous model (q = 1) having 1024 size intervals or variables. It may be impossible to 

use the continuous model (Eq. (3.13)) when coupled with CFD using fractal 

agglomeration. These results indicate that the discretized population balance equations 

developed in this study can be used in coupling coagulation population balance equation 

(PBE) with computational fluid dynamics (CFD) due to the low computational time 

required. 

 

3.5 Conclusions 

For the purpose of fractal aggregate coagulation modeling, the authors improved 

the discretized population balance equations having an aggregation and breakup kernel. 

After direct numerical simulation, the accuracy of this model was verified using the 

lowered geometric size interval (q), where q is a volume ratio of class k+1 particle to 

class k particle ( 1υ / υkq += k ). Perfect mass conservation was achieved in all modeling 

cases. The proposed model was converted to a dimensionless orthokinetic coagulation 

form including an aggregation and breakup kernel to enhance computational efficiency. 

Furthermore, the authors attempted to find an optimum graphical method for 

representing the two different results (discretized and continuous populations) on an 
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identical 2D plane and found that the cumulative oversize particle distribution is 

convenient to compare these results due to different aggregate class size scales.  

As a result, this proposed discretized population balance equation can be used for 

fractal aggregate orthokinetic coagulation model on the basis of numerical accuracy, 

stability, and computational efficiency. 
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CHAPTER IV 

ADJUSTABLE DISCRETIZED POPULATION BALANCE EQUATIONS: 

NUMERICAL SIMULATION AND PARAMETER ESTIMATION FOR 

FRACTAL AGGREGATION AND BREAK-UP 

 

4.1 Overview 

Improved adjustable discretized population balance equations (PBEs) are 

proposed in this study. The authors extended an improved particle coagulation model 

previously developed to an adjustable geometric size interval (q), where q is a volume 

ratio of class k+1 particle to class k particle ( 1υ / υk k q+ = ). This model was verified with 

the time derivative of the zero and first moments to show mass conservation and 

compared with previous analytical and numerical solutions. Also, the self-preserving 

distribution test was conducted by using size-independent and size-dependent kernels. 

After direct numerical simulations (DNS), the proposed model was found to have 

excellent agreement with the analytical and continuous numerical solutions. In addition, 

this proposed model was converted to a dimensionless form to enhance computational 

efficiency in order to be coupled with computational fluid dynamic solutions in the 

future. Furthermore, a parameter estimation scheme was created to computationally 

determine the two key parameters, the collision efficiency (α) and the break-up 

coefficient (KB), from orthokinetic experimental data. This parameter estimation scheme 

was able to compute the coefficients in the coagulation model rapidly, especially in 

particle systems having a fractal aggregate structure. In addition, the authors attempted 
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to find an optimum graphical method for representing the two different results (non-

uniform discretized and continuous populations) on an identical 2D plane and the results 

indicate that the particle cumulative population distribution curve is convenient to 

compare these results due to different aggregate class size scales. Using the reproduction 

of a continuous distribution from discrete data, it was concluded that this method has 

close agreement between non-uniform discretized and continuous data. 

 

4.2 Introduction 

Coagulation is the growth of small particles (i.e. droplets, bubbles, or solid 

particles) into larger aggregates by the collision-inducing mechanisms: orthokinetic, 

perikinetic, and differential sedimentation. For droplet or bubble coalescence, the 

agglomeration between particles of volume υ and w has been described by a continuous 

nonlinear integro-partial-differential equation as (Drake 1972; Ramkrishna 1985), 

 ( ) ( )
υ

0 0

υ
υ υ υ υ

dn( , t) 1 = αβ , n( ,t)n( ,t)d  αβ , n( ,t)n( ,t)d
dt 2

w w w w w w w w
∞

− − −∫ ∫  (4.1) 

where, α is the collision efficiency, β is the collision frequency or kernel, n is the particle 

concentration, and t is time. Although numerous studies have attempted to solve the 

classical coalescence equation (Eq. (4.1)), it is impossible to compute an exact analytical 

solution. Only limited analytical solutions exist with the assumptions of monodisperse 

initial conditions and simplified collision kernels (β). A numerical scheme converting 

the continuous particle size distribution into discretized particle-size domains (a 

histogram) is a useful approach to the solution of Eq. (4.1). Coagulation of droplets or 

bubbles is often treated as the coalescence of a continuous distribution, while the 
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agglomeration of solid particles is discrete. Smoluchowski derived a uniform discrete 

population balance equation (Eq. (4.2)) for the coagulation of discrete particles having 

the class size interval value of 1 ( 1υ / υ 1k k+ = ) and this equation has been used 

extensively in modeling agglomeration (Smoluchowski 1917), 

 
Agg 1

dn 1 = αβ(r , r )n n  αβ(r , r )n n
dt 2

k
i j i j l k l k

i j k l

∞

+ = =

⎡ ⎤ −⎢ ⎥⎣ ⎦ ∑ ∑  (4.2) 

where r is the particle or agglomerate size, and i, j, k, and l  refer to particle size class 

indices. To obtain a numerical solution of Eq. (4.2), extensive computation time is 

required for a realistic range of particle sizes. Thus, to overcome this computational non-

efficiency of the uniform discrete model (Eq. (4.2)), various non-uniform discrete 

schemes ( , where q is greater than 1) have been introduced (Gelbard and 

Seinfeld 1978; Gelbard et al. 1980; Batterham et al. 1981; Hounslow et al. 1988; 

Marchal et al. 1988; Litster et al. 1995; Hill and Ng 1996; Kumar and Ramkrishna 

1996a). Gelbard et al. developed a sectional balance method that could predict the total 

particle number or volume (Gelbard and Seinfeld 1978; Gelbard et al. 1980). Batterham 

et al. proposed a non-uniform discretized population balance equation having class size 

intervals or geometric-size intervals of 2 (

1υ / υk k q+ =

1υ / υ 2k k+ = ), and the Batterham model scheme 

has half the number of products formed added to each possible class size interval 

(Batterham et al. 1981). Hounslow et al. improved the Batterham model using the 

concept that the scheme of arbitrarily dividing agglomerates between size classes 

incorrectly predicts coagulation rate (Hounslow et al. 1988). The model of Hounslow et 

al. (geometric-size interval of 2) differs from the Batterham model by considering 
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continuous intervals rather than discrete boundaries (Hounslow et al. 1988). Marchal et 

al. improved the agglomeration model between class size intervals by assuming that 

coagulation behaves as a chemical reaction between species using the concept that 

stoichiometric coefficients of those chemical species should be adjusted to preserve mass 

(Marchal et al. 1988). Litster et al. extended the model of Hounslow el al. (Hounslow et 

al. 1988) to improve accuracy using an adjustable geometric size interval scheme given 

as  with arbitrary p values (Litster et al. 1995). In the case of a p value 

equal to 1, the Litster model is equivalent to the Hounslow model. Hill and Ng produced 

an improved population balance equation based on probability density functions for the 

particle population contributions in each interval k (Hill and Ng 1996). To account for 

the possibility of products from the collisions of two intervals producing aggregates that 

may fall into two larger size intervals, probability distributions are assumed. Kumar and 

Ramkrishna developed an overall coagulation modeling technique consisting of 

agglomeration and break-up using the fixed pivot method by adopting arbitrary size 

class grids (Kumar and Ramkrishna 1996a). Moreover, Kumar and Ramkrishna 

extended the fixed pivot scheme to a moving pivot technique (Kumar and Ramkrishna 

1996b). The adjustable sectional method with arbitrary class size refinement capability 

has been examined by several researchers (Gelbard et al. 1980; Marchal et al. 1988; 

Kumar and Ramkrishna 1996a; Vanni 2000). Often modeling requires a much finer 

discretized class size interval to accurately predict real particle systems. For example, 

experimental devices to measure particle size distributions can obtain measurements 

with a greater resolution than the non-uniform discretization used by agglomeration 

1/
1υ / υ 2 p

k k+ =
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modeling with class size interval ratio q of 2 (i.e. the Batterham and Houslow models). 

Furthermore, for a large class size range, the class size resolution is too broad to obtain 

high accuracy at the larger size class intervals. That is, between the class size of n = 

1024 and n = 2048, there is only one class size interval in the non-uniform model with a 

q of 2, however, 1024 class size intervals exist in the continuous or uniform discrete 

model. Thus, to obtain higher coagulation modeling accuracy, especially when large size 

aggregates exist, the adjustable sectional method with arbitrary class size refinement 

capacity should be applied.  

 In this study, the authors extend an improved particle coagulation model (Kim 

and Kramer 2005) having particle size dependent agglomeration and break-up kernels 

with the addition of an adjustable geometric size interval (q), where q is a volume ratio 

of class k+1 particle to class k particle ( 1υ / υkq + k= ). This improved coagulation model 

overcomes the two limitations mentioned earlier; the large number of variable domain 

sizes for the uniform discrete model and the poor resolution at larger aggregate size 

classes for the non-uniform discrete model with a fixed class size interval. The improved 

adjustable discretized model was also expressed in a dimensionless form to enhance 

computational efficiency (CPU time). Further, the particle size distribution prediction 

from the results of the non-uniform discretized model to that of uniform discrete model 

to obtain continuous particle size distributions were rigorously compared.  

The new model was verified with the time derivative of the zero and first 

moment methods and compared to previously obtained analytical and numerical 

solutions. Also, the self-preserving distribution test was conducted by using size-



 95

independent and size-dependent coagulation rate kernels. Furthermore, two key 

parameters in the new model, the collision efficiency (α) and break-up coefficient (KB), 

were calculated from experimental data using a parameter estimation scheme. 

 

4.3 Background 

4.3.1 Adjustable Discretized Population Balance 

Hill and Ng produced a discretized population balance equation based on 

probability density functions in each interval k for agglomeration (Hill and Ng 1996) and 

break-up (Hill and Ng 1995). The agglomeration rate equation of Hill and Ng can be 

expressed as, 
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υ j

(4.3) 

where, the over bar ( υ ) represents the particle volume removed from an interval and the 

probability functions expressed by the four functions of υ  on the right hand side of Eq. 

(4.3). However, it is not possible to know the volume or number of particles removed 

from a discrete interval or contributed to the larger intervals a priori during each 

iteration. A possible solution is to equate the probability density functions in terms of the 

volume ranges of each interval. Thus, the probability that a collision pair will fall into a 

given size class range increases as the range of the interval increases. For the interval 
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scheme of using an average volume concept of 1υ 2υ ,k+ = k 1υ 0.5(υ υ )k k −k= + and the 

definition of  Eq. (4.3) can be modified in terms of the particle radii as, 3υ ( ) ,k kr∝
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 (4.4) 

Furthermore, to apply Eq. (4.4) into fractal aggregate coagulation, it must be assumed 

that the probability functions are proportional to aggregate size having an exponent of a 

fractal dimension of Df. Meakin proposed the relationship between fractal dimension and 

particle size as (Meakin 1988),  

 1/
1r r ( ) fD

k k=  (4.5) 

By using Meakin’s relationship between fractal dimension ( ) and the radius ( ) of a 

size class k aggregate (composed of k  primary particles of radius ), the particle 

aggregation probability functions can be developed as, 

fD rk

1r
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and  
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Further, when the fractal dimension value is 3, these probability functions can be 

replaced as, 
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and  
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 (4.9) 

Otherwise, applying the aggregate volume conservation scheme of Eq. (4.10) into new 

probability functions, the new probability functions can be rewritten as, 
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and 
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As shown in the two sets of new probability functions (Eqs. (4.8)/(4.9) and (4.11)/(4.12)), 

two unique probability functions could be obtained. Thus, using the two unique 

probability functions, Eq. (4.4) can be modified when the fractal dimension value is 3, as 
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or 
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 Comparing Eq. (4.14) to the Hounslow’s equation of Eq. (4.15) that is a 

conventional and popular discretized solution for population balance equations 

(Hounslow et al. 1988), the new probability functions proposed in this study are not the 

same as those of Hounslow’s original model, but rather a novel approach.  
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1 2

1 1 1 1
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Furthermore, in the application of the probability functions, it may be more convenient 

to apply these new probability functions into for systems with fractal aggregate 

coagulation. Introducing the new probability functions of Eq. (4.6) and (4.7) into 

improved coagulation model of Eq. (4.3) and using an adjustable interval scheme 

( 1υ υk q+ = k ) and an average volume concept ( 1υ 0.5(υ υ )k k k −= + ), yields improved 

adjustable discretized population balance equations (PBEs) expressed in terms of the 

particle radii with volume based probabilities as, 
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or 
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4.3.2 Moment Conservation of Particle Mass with the New Agglomeration Model 

The time derivative of the zero moment, corresponding to the total number of 

particles, can be rewritten in the discrete form of Eq. (4.18) as, 

 0
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d dn 1 A n n
dt dt 2
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where,  represents the agglomeration rate coefficient which is the product of α  and 

. Substituting Eq. (4.16) into Eq. (4.18), produces Eq. (4.19) consisting of terms 

(4.19.1) through (4.19.5),  
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where (4.19.1) + (4.19.2) yields, 
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and adding terms (4.19.3) and (4.19.4), obtains 
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The terms of Eq. (4.19.5) can be rewritten as, 
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and after adding all terms into Eq. (4.19), the time derivative of the zero moment is 

obtained as,  
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For the condition where , then Eq. (4.23) can be rewritten as, r rj = k
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and, the time derivative of the zero moment is, 
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Thus, Eq. (4.16) can conserve particle mass.  
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The time derivative of the first moment, corresponding to total particle volume, 

can be rewritten in a discrete form of Eq. (4.26) as, 
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Substituting Eq. (4.16) into Eq. (4.26), yields Eq. (4.27). 
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By adding terms (4.27.1) and (4.27.2) yields, 
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and by adding terms (4.27.3) to (4.27.4), produces Eq. (4.29). 
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and after combining all terms, Eq. (4.27) can be rewritten as  
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For the situation where r , two terms of Eq. (4.31) may be shown to be identical and 

Eq. (4.31) can be used for the steady-state time derivative of first moment, representing 

volume conservation. 
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4.3.3 Improved Orthokinetic Coagulation Models for Fractal Aggregate 

The improved adjustable discretized model having agglomeration and break-up 

kernels was converted to a dimensionless form to enhance computational efficiency. 

Fractal aggregate break-up mechanisms have also been incorporated in the 

agglomeration modeling phenomenon to predict phenomenon such as floc disintegration, 

droplet break-up, and the comminution of solid particles (Vanni 1999). Population 

balance equations in terms of a break-up reaction can be modeled by continuous and 

discrete approaches (Patil et al. 2001). The discrete aggregate break-up equation can be 

expressed as 

 η
,

Break 1

dn = b s (n ) s (n )
dt

k
k j j j k k

j k

∞

= +

⎡ ⎤ −⎢ ⎥⎣ ⎦ ∑ η  (4.33) 

where, η  is a break-up concentration exponent, ,bk j  is the break-up distribution function, 

and s  is the break-up rate coefficient. Thus, an overall population balance equation with k



 103

both aggregation and break-up reactions is expressed by the summation of Eqs. (4.2) and 

(4.33) or, 

 
1

η η
,

Overall 1 1 1

dn 1 = αβ(r , r )n n  αβ(r , r )n n b s (n ) s (n )
dt 2

k
k

i k i i k i k j k j k j j j k k
i j j k

− ∞ ∞

− −

= = = +

⎡ ⎤ − + −⎢ ⎥⎣ ⎦ ∑ ∑ ∑ (4.34) 

where, the first term on the right hand side represents the rate of creation of all size class 

k aggregates from the collisions of all possible combinations of the smaller size class i 

and j particles. The second term on the right hand side is the loss in concentration of size 

class k particles due to growth into larger aggregates by collisions with all possible size 

classes. The third term is the gain to the size class k concentration by the fracture of 

larger size class aggregates. The last term on the right side is the loss of size class k 

aggregates due to fracture. Often, colloid aggregates pose a fractal geometry, as opposed 

to spherical droplets or bubbles (Kim and Kramer 2005). The break-up rate coefficient 

 and break-up distribution function are summarized in Table 5.1 and 5.2. ks ,k jb

  

Table 4.1 The Summary of Break-Up Rate Coefficient,  ks

Expression Reference 
b s(γ) ( )k B ks K r= &   

s = 1 Chen et al. (1990) 
s = 1   b = 1.6   KB = 4.7×10−3 Spicer and Pratsinis (1996a) 

s = 1   b = 1.6   KB = 7.0×10−4 Flesch et al. (1999) 

s = 1   b = 1.89∼5.62   KB = 2.0×10−8∼0.02 Serra and Casamitjana (1998a) 
s = 3   b = 1.25 Kramer and Clark (1999) 

1 2 2

2

2 exprms critical
k

k r

u us
a uπ

⎛ ⎞∆ ∆⎛ ⎞= −⎜ ⎟⎜ ⎟ ∆⎝ ⎠ ⎝ ⎠ms

 Delichatsios and Probstein (1975) 

1 2 1 2
,4 exp

15
k critcal

ks
εε

π ν ε
⎛ ⎞⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 Kusters (1991) 

11 3
11.61 (γ) (mass )

6

f

f

D
D

k B k
p

s K c π
ρ

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
&  Zhang and Li (2003) 
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Table 4.2 The Summary of Break-Up Distribution Functions,  ,k jb

Expression Reference 

,

υ
υ

j
k j

k

b c=  Spicer and Pratsinis (1996a) 

1

2

,

υ log(υ / υ )1 exp dυ
υ log2 log

i

i

c
j m

k j
ck

b
σπ σ=

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∫  Pandya and Spielman (1982) 

Lu and Spielman (1985) 

1

2

, 2

υ (υ υ )1 exp dυ
υ 22

i

i

c
j m

k j
ck

b
σπσ=

⎡ ⎤−
= −⎢ ⎥

⎣ ⎦∫  Coulaloglou and Tavlarides (1977) 
Spicer and Pratsinis (1996a) 

( 3) 2 ( 3) 2

,
υ (1 ) υ

3υ υ 3υ υ

b c

k k
k j

j j j j

ab a cb
− −

⎛ ⎞ ⎛ ⎞−
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 Hill and Ng (1995) 

2
2

,
υ υln

υ υ υ

b

k k
k j

j j j

bb
−

⎛ ⎞ ⎛ ⎞
= − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 Hill and Ng (1995) 

2 2

,
υ (1 ) υ

υ υ υ υ

b d

k k
k j

j j j j

ab a db
− −

⎛ ⎞ ⎛ ⎞−
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 Ziff (1991) 

( )
2 2

,

2exp  (υ υ / 2) / 2 υ

2 erf υ /(2 2 )
k j

k j

j

b
σ

πσ σ

⎡ ⎤− −⎣ ⎦=
⎡ ⎤
⎣ ⎦

j  
Pandya and Spielman (1982) 

1
,

1

υ υ3
2 υ

k k
k j

j

b −

−

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 Hill and Ng (1995) 

, (random number)k jb φ=  Kramer and Clark (1999) 
3

,
r3( 1)

2 r
k

k j
j

qb
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 Kim and Kramer (2005) 

 

To solve the break-up model equation of Eq. (4.33), the equation was modified by 

adding the adjustable interval scheme ( 1υ υk q+ k= ) and the average volume concept 

( 1υ 0.5(υ υ )k k −= + k ) producing, 

 η

Break 1

rdn 3( 1) 1= s (n )  
dt 2 r 2

fD
jk

k j k k
kj k

q∞

= +

⎛ ⎞−⎡ ⎤ −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
∑ ηs (n )  (4.35) 

Researchers have proposed particle fragmentation (break-up) models based on 

five basic categories; limiting strength, strain-rate or flow stress dependence, limiting 
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size, reaction rate, and stochastic dependence (Kramer and Clark 1999). The most 

common approach to aggregate break-up is the use of flow strain-rate as the primary 

break-up parameter (Thomas 1964; Argaman and Kaufman 1970; Parker et al. 1972; 

Kao and Mason 1975; Tambo and Watanabe 1979a; Lu and Spielman 1985; Ray and 

Hogg 1986; Sonntag and Russel 1987; Spicer and Pratsinis 1996a; Kramer and Clark 

1999; Serra and Casamitjana 1999). The break-up rate coefficient, sk  can be summarized 

as, 

 b s
Bs = K (γ) (r )k & k  (4.36) 

where KB is the break-up rate constant (the reversible coagulation rate), b is a break-up 

rate exponent, s is an aggregate size exponent, and γ&  is the fluid strain-rate (non-

rotational velocity gradient). Equation (4.36) indicates that the break-up coefficient is a 

function of fluid strain-rate resulting from energy input and the geometric properties of 

the aggregate (i.e., size, area, or volume). As populations of the aggregates are exposed 

to increasing levels of fluid strain-rate (or stress), thus it is expected that increasing 

amounts of break-up will be seen. Adding Eq. (4.36) into Eq. (4.35), yields an improved 

break-up kinetic model as,  

 b s η b s η
B B

Break 1

rdn 3( 1) 1= K (γ) (r ) (n )  K (γ) (r ) (n )
dt 2 r 2

fD
jk

j j k k
kj k

q∞

= +

⎛ ⎞−⎡ ⎤ −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
∑ & &  (4.37) 

Further, a general expression for the break-up kinetics can be described using a 

random break-up distribution function, ( )jφ  (Kramer and Clark 1999): 

 b s η b s η
B B

Break 1

dn = ( )K (γ) (r ) (n )  K (γ) (r ) (n )
dt

k
j j k k

j k

jφ
∞

= +

⎡ ⎤ −⎢ ⎥⎣ ⎦ ∑ & &  (4.38) 
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In a straightforward manner, a final coagulation kinetic model can be obtained from the 

combination of agglomeration of Eq. (4.16) and break-up (Eq. (4.37) or (4.38)), yielding 

an overall population balance equation. 

Kramer and Clark rigorously analyzed the coalescencing particle collisions 

created by a laminar shear flow in orthokinetic coagulation (Kramer and Clark 1997) and 

found to be, β(r , r )i j

 34β(r , r ) = πγ(r  + r )
3i j i j&  (4.39) 

By assuming Eqs. (4.16) and (4.37) or (4.38) to be additive, the overall coagulation rate 

equation having the fractal aggregate applicability of Eq. (4.5) and an orthokinetic 

coagulation kernel of Eq. (4.39) becomes, 

 

2
3

-1 -1
1

3

1

3 2
-1 -1 -1

rdn 4π = α γ(r + r ) n n  
dt 3 1 r

r4π 1+ α γ(r + r ) 1 n n
3 ( 1) r

1 4π 1 1 4π+ α γ(r + r ) (n )  + α γ(r + r
2 3 1 2 3
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⎛ ⎞⎛ ⎞
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∑
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1

2) (
1

4πα γ(r + r ) n n
3

r3( 1) 1K (γ) (r ) (n )  K (γ) (r ) (n )
2 r 2

f

k k

k i k i
i

D
j

j j k k
kj k

q
q

q

=

∞

= +

⎛ ⎞−⎛ ⎞
⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

⎛ ⎞− ⎜ ⎟
⎝ ⎠

⎛ ⎞−
+ −⎜ ⎟

⎝ ⎠

∑

∑

&

& &

2n )
 (4.40) 

Equation (4.5) can be substituted for all values of r , , and r , then the total 

orthokinetic coagulation rate equation (Eq. (4.40)) becomes 

i r j k
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∑
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 (4.41) 

Next, introduce a dimensionless concentration  defined as, Ni

 0n N (ni i=  (4.42) 

and 

 
max

1

(N ) 1i
i

i
=

=∑  (4.43) 

By substituting Eq. (4.42) into Eq. (4.41) and rearranging the following non-dimensional 

overall orthokinetic fractal aggregation rate equation results in, 
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 ( )3
1 0

4π γ r n t
3

τ = &  (4.45) 

 ( )3
1 0

4πd γ r n dt
3

τ = &  (4.46) 

 ( ) ( )b 1 s 3
B 1

2 η
0

3K γ r
8 n

κ
π

− −

−=
&

 (4.47) 

Further, by defining a dimensionless time constant (Eq. (4.45)), a dimensionless 

time increment (Eq. (4.46)), and a dimensionless break-up constant (Eq. (4.47)), yields a 

new dimensionless orthokinetic coagulation rate equation using the new probability 

distribution functions, producing 
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 (4.48) 

The first, second, third, and fourth terms on the right hand side of Eq. (4.48) represent 

the rate of creation of all size class k aggregates from the collisions of all possible 

combinations of the smaller size classes i and j. The fifth term on the right hand side in 

Eq. (4.48) is the loss in concentration of size class k due to growth into larger aggregates 

by collisions with all possible size classes. The sixth term is the gain to the size class k 
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concentration by the fracture of larger size class aggregates. The last term is the loss of 

size class k aggregates due to fracture. Equation (4.48) generates a set of ordinary 

differential equations for the population n  of all size classes k  = 1 to max. The set of 

coupled equations defined by Eq. (4.40) or (4.48) can not be solved analytically, 

therefore, a numerical technique must be used. 

k

 

4.4 Results and Discussion 

4.4.1 Modeling Conditions 

Several ODE solvers can be used to solve Eqs. (4.40) or (4.48). However, it 

should be noted that the stiffness problem exists when attempting to solve these 

population balance equations. That is, extremely large ranges exist among the values of 

all size class variables during each differential equation solution time step. For example, 

the maximum and minimum values of n  are 1.0×10k
10 and 1.0×100 in the initial 

conditions. In this study, a Fortran IVPAG subprogram based on Gear’s method was 

used to simulate coagulation modeling and conduct parameter estimation (collision 

efficiency and break-up coefficient). The error tolerance selected was 1.0×10-6 for all 

numerical solutions. Also, a user-supplied subroutine (collision frequency, break-up 

kernel, probability functions, and random number generation) was developed and 

coupled to calculate the kernels for particle agglomeration and break-up in the 

population balance equations. In addition, various coagulation kernels used in this study 

(i.e., size-independent, size-dependent, self-preserving, and orthokintic) are summarized 

in Table 4.3. 
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Table 4.3 The Kernels Used as Coagulation Modeling Verification 

Kernels Formula 

Size-independent (constant) ( ) 0β r  , r  = βi j
 

Size-dependent (linear) ( ) ( )0β r  , r  = β r  + ri j i j
 

Self-Preserving (Friedlander) ( ) ( )0
1 1β r  , r  = β (r )  + (r )  + 

(r ) (r )
f f

f f

D D
i j i j D D

i j

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

Orthokinetic  Equation (4.39) 

 

 

4.4.2 Comparison with Analytical and Uniform Discrete Numerical Solutions  

 Numerical accuracy of the improved population balance equations were verified 

using the solution results and analytical equations having constant (size-independent) 

and linear (size-dependent) agglomeration kernels (see Table 4.3). In this test, various 

model cases having different values of q were compared with respect to particle size 

distributions. Scott and Gelbard and Seinfeld developed analytical solutions for various 

agglomeration kernels (Eqs. (4.49) and (4.50)) (Scott 1968; Gelbard and Seinfeld 1978). 

For a size-independent kernel case ( , constant kernel), analytical solution is 0β(r , r ) = βi j

 2
0 1 1

4 2υ(υ, ) exp
υ ( 2) 2

totalnn t
τ τ

⎛ ⎞
= −⎜ ⎟+ +⎝ ⎠

 (4.49) 

where,  is the total particle number concentration, totaln 0υ  is the initial particle mean 

volume, 1 βtotaln 0tτ = , and 0υ υ / υ= . The solution for a size-dependent kernel (linear 

kernel) case,  , is 0β(r , r ) = β (r + r )i j i j
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 1
(1 )(υ, ) exp[ (1 )υ] (2υ )
υ

totaln Tn t T I T
T
−

= − +  (4.50) 

where, 21 exp( )T τ= − − , 2 0υ βtotaln 0tτ = , and  is the modified Bessel function of the 

first kind of order one.  

1I

The adjustable geometric size interval ( 1υ / υkq + k= ) was determined by an 

aggregate maximum class size calculation having a fractal dimension (see Eq. (4.5)), 

 d1/ 1/1
,d 1 d 1r r ( ) r ( )f fD Dk

k k q −= =  (4.51) 

where,  is the aggregate radius of size class k for discretized model and  is the 

number of the size class interval for discretized model. By letting Eq. (4.51) be equal to 

Eq. (4.5), the equation for the calculation of the adjustable geometric size interval (q) 

becomes, 

,drk dk

 { }d1/( 1)
c( ) kq k −=  (4.52) 

where,  is the number of size class intervals for the uniform discrete 

distribution model (q = 1). The numerical solutions, obtained from the particle 

agglomeration model (Eq. (4.16)) with various geometric size interval values (q) for the 

size-independent kernel case ( ), were represented by a cumulative particle 

size distribution and compared with the analytical solution (Eq. (4.49)) in Figure 4.1(a).  

ck

0β(r , r ) = βi j
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Also, deviations between each result and the analytical solution were compared 

using an R2 computation and the square root of the sum-of-squares of the residuals 

analyses (see Fig. 4.1(b)). As the q value was decreased from 2.0 to 1.3348, higher 

numerical accuracy was found (R2 of 0.9936 and residuals of 0.1616). This result 

indicate that as the q value decreases from 2.0 and falls into 1.0, the solution resulting 

from improved adjustable discretized coagulation model approaches the exact solution 

of size independent (or constant) kernel case calculated from analytical solution of Eq. 

(4.49).  

Similar results were obtained using a size-dependent kernel ( ) 

(see Fig. 4.2). In this case, the cumulative particle size distribution results were 

compared with the analytical (Eq. (4.50)) and numerical accuracy test were conducted in 

terms of an R

0β(r , r ) = β (r + r )i j i j

2 and the sum of residuals using statistical analyses and displayed in in Figs. 

4.2(a) and 4.2(b).  
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Figure 4.1 Size-independent particle size distributions for various geometric size 

intervals (βo = 1.0×10-9 cm3/sec, KB = 0.0, do = 1 µm, Df = 3.0) 
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Figure 4.2 Size-dependent particle size distributions for various geometric size intervals  

(βo = 1.0×102 cm2/sec, KB = 0.0, do = 1 µm, Df = 3.0) 
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Higher numerical accuracy could be obtained by a decreasing q from 2.0 to 

1.3348 (R2 of 0.9978 and residuals of 0.0557). These numerical accuracy tests for the 

results from the agglomeration model having the size-independent and size-dependent 

kernels indicate that numerical accuracy can be obtained with introducing fine resolution 

of class size interval q value (i.e., smaller q value but larger than 1.0). At a smaller q 

value, the solution deviation was minimized and converged to the exact results from 

analytical solutions when both size-independent and size-dependent kernels are used. 

4.4.3 Self-Preserving Distribution Test 

A self-preserving distribution method can also be used to evaluate the accuracy 

of the population balance equation (Eq. (4.16)), which is associated with the 

agglomeration rate kernels such as a size-independent kernel and a size-dependent kernel. 

Friedlander  suggested that in aerosol agglomeration the resulting particle size 

distribution approaches a form at long times, which is asymptotically independent of the 

initial particle size distribution (Friedlander 2000). These asymptotic particle size 

distributions are independent of time when results are plotted in a non-dimensional form 

and are termed self-preserving distributions. This self-preserving distribution method is 

based on scaling the density function as, 

 υ 0( ) n(υ)υ / mψ η =  (4.53) 

where, υ( )ψ η  is a dimensionless particle number concentration, υη  is a dimensionless 

particle volume expressed as υ υ / υη = ,  is the zero moment (see Eq. (4.54)), and 0m υ  

is average aggregate size calculated by the ratio of the third moment to the zero moment, 

3 0υ m / m= . The nth moment can be obtained from the equation suggested by Hounslow, 
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 nk j jL= ∑  (4.54) 

where, is an aggregate length in diameter (Hounslow et al. 1988). Litster derived a 

self-preserving method for a size-independent kernel (Litster et al. 1995). For the size-

m ( )k

j

L  

independent kernel, this self-preserving equation (Eq. (4.54)) can be rewritten as, 

 ( ) exp( )ψ η η= −  (4.55)
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Figure 4.3 Size-independent self-preserving particle size distributions for various 
geometric size intervals (βo = 1.0×10-9 cm3/sec, KB = 0.0, do = 1 µm, Df = 3.0) 

 

 

ize-

independent kernel ( ) were conducted and compared with the analytical 

solution (Eq. (4.49)). In the q ranging from 2 to 1.4142 (the results of q values of 1.4697 

As shown in Figure 4.3, the self-preserving analysis of Eq. (4.16) having a s

0β(r , r ) = βi j
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and 1.4

R2 of 1 an

142 were not presented to avoid overlapping the symbols), all results were in 

excellent agreement ( d residuals of 1.7719×10-7 to 2.5517×10-4) with the 

analytical solution (Eq. (4.49)).  

Friedlander provides a numerical solution for a size-dependent agglomeration 

kernel associated with an aggregate fractal dimension, Df, (Friedlander 2000) as, 

 ( )f f

f f

1/ D 1/ D
0 1/ D 1/ D

1 1β(r , r ) = β (r ) (r )
(r ) (r )i j i j

⎛ ⎞
+ +⎜ ⎟⎜ ⎟  (4.56) 

om the 

improved adjustable discretized model (Eq. (4.16)) using an initially monodisperse 

pared with the uniform discrete model (Eq. (4.2)) and 

i j⎝ ⎠

For self-preserving test for size-dependent kernel (Eq. (4.56)), the results fr

particle population were com

displayed in Fig. 4.4. 
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Figure 4.4 Size-dependent self-preserving particle size distributions for various 
geometric size intervals (βo = 1.0×10-10 cm3/sec, KB = 0.0, do = 1 µm, Df = 3.0) 
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As seen in Fig. 4.4, excellent agreement was found among the self-preserving 

distributions computed by the various techniques (R2 of 1 and residuals of 4.5942×10-3 to 

6.6578×10-3 with q ranging from 2 to 1.4142 and the results of q values of 1.4697 and 

1.4142 were not presented to avoid overlapping the symbols). After comparing these 

self-preserving results (see Figs. 4.3 and 4.4), it can be concluded that the self-preserving 

distribution analysis may not be the proper way to verify a coagulation model. Thus, in 

addition to the self-preserving distribution analysis, the resulting particle size 

distributions using various collision frequencies (or kernels) should be considered to 

evaluate numerical coagulation accuracy. 

4.4.4

A parameter estimation scheme was created to computationally determine the 

two key co

B ntal 

o

2 4 3 2

3

odel was converted to the dimensionless 

form of Eq. (4.48) to improve computational efficiency. Parameter estimation was 

 Coagulation Parameter Estimation 

agulation constants, the collision efficiency (α) and the break-up coefficient 

(K ). To verify the estimation procedure the fractal aggregate orthokinetic experime

data of Li and Zhang was used (Li and Zhang 2003). Li and Zhang obtained their 

orthokinetic data by using batch coagulation experiments having initial conditions of; a 

latex primary particle size of 2.8 µm in diameter with a density of 1.05 g/cm3, initial 

number concentration n  = 2.0×106 /mL, using a jar-test device with a flat paddle mixer, 

3.5% NaCl as a electrolyte, 10 mg/L Al (SO ) ·18H O as a flocculant, and the pH 

maintained at 7.5 using 0.1M NaHCO . A microscopic technique was used for the 

measurement of the particle size class concentrations.  

The improved adjustable discretized m
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perform

parameter vector, is the Jacobian matrix, and the superscript T implies the transpose 

operation. The algorithm of the Gauss-Newton least square method is converts a 

nonlinear problem into a linear one by applying a Taylor series expansion as,  

ed to optimize the two best fit values of collision efficiency (α) and break-up 

coefficient (KB), two crucial coefficients in orthokinetic coagulation model. The function 

used for this parameter estimation was the Gauss-Newton least-square method (Eq 

(4.58)) by minimizing the sum of squared residuals (SSR) between the experimental and 

model results for the change in number concentrations with time (Constantinides and 

Mostoufi 1999), 

 exp mod exp modSSR=(n n J∆p) (n n J∆p)T− − − −  (4.57) 

where, n  is the experimental data, n  is the predicted value using the model, p  is a exp mod

J  

 
(m)

(m) (m)

p

n(t, p) n(t, p ∆p) n(t, p ) ∆p n J∆p
p

= + = + = +
∂

 (4.58) 

where, the Taylor series has been truncated after the second term. Therefore, the 

problem has been transformed from finding the parameter to one of finding the 

correction to the parameter through minimizing the sum of squared residuals using the 

addition of p∆  into an estimated p . The Gauss-Newton scheme is a simplified classical 

n∂

Newton method in that this scheme contains the first and second derivatives of the 

atrix of sum of squared residuals (Ernest et al. 1991). The algorithm

 me

diameter, a fractal aggregate dimension Df of 2.0, a fluid strain-rate of 15 (1/s), a break-

m  of the Gauss-

Newton thod adopted in this study is represented by the flow chart shown in Fig. 4.5. 

The parameter estimation conditions used were; a primary particle size of 2.8 µm in 
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up exponent b of 1, an aggregate size exponent s of 3, and a break-up concentration 

exponent η of 2, and particle size interval q value of 1.5422. 

These results are shown in Fig. 4.6 and Table 4.4, with collision efficiency 

0.3938 and aggregate break-up coefficient KB of 4.4105. Li and Zhang compared their 

α of 

model simulation results to experimental data and did not achieve an accurate prediction 

in terms of the time evolution of particle size distribution (Li and Zhang 2003). This 

discrepancy between the experimental and modeling data resulted from inaccurately 

assuming the collision efficiency (α) and not considering aggregate break-up. Li and 

Zhang simulated the time evolution of the particle size distributions with only two 

modeling coefficients, collision efficiency α of 1.0 and curvilinear collision frequency β 

developed by Han and Lawler (Han and Lawler 1992), and excluded an aggregate break-

up kernel.  
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Evaluate n from the equations using vector p

Evaluate J from the equations

Correction of vector p
∆p = (J TJ )-1 J T (nexp - nmod)

SSR is stable within the tolerance?
∆p has a small value?
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Parameter initial guess (p)

Evaluate the new parameter
p(m+1)  = p(m) + ∆p

No

 
 
 

Figure 4.5 The algorithm of parameter estimation scheme 
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Figure 4.6 Particle concentration evolution during orthokinetic coagulation  
(no = 2.0×106 cm-3, γ&  = 15 (1/s), Df = 2.0) 

 

 

Table 4.4 Parameter Estimation Results for Fitting the Experimental Data  

95% Confidence Levels Parameter Value Standard 
Deviation Lower Upper 

α 0.3938 6.5678×10-3 0.38074 0.40697 

KB 4.4105 1.0598 2.2946 6.5264 

 

.4.5 Reproduction of Continuous Distribution from Discrete Data 

Although the particle size distributions resulting from experimental data and 

discretized coagulation modeling mentioned in the above sections are represented by 

histograms due to the convenient depiction of the data (see Fig. 4.7), a continuous 

representation is required when modeling experimental data (Hiemenz and Rajagopalan 

4



 123

1997). As shown in Fig. 4.8, due to the different class size intervals (q values of 1.5422 

and 1), it is impossible to compare two different results from non-uniform discrete 

population balance models to uniform discrete models by putting these two methods 

together on the same graph. There are 1024 size intervals (or variables) in the uniform 

discrete model (q = 1), however, there are only 17 size intervals in the corresponding 

non-uniform discrete model (q = 1.5422), which is based on maximum class size interval 

of 1024 (see Eq. (4.52)). For example, with the non-uniform discrete model having q = 2, 

only one class size value of n = 1024 represents all population values ranging from n = 

512 to n = 1024, while the uniform discrete model produces population values at each 

size class. Obviously, one population valu in the non-uniform discr e model (NNU) 

represents several valu (NU) (NNU is always 

r than NU) (see Fig. 4.7). By using the cumulative distribution curve, one can 

data conversion. The particle cumulative 

ifferent class 

size intervals; non-uniform and u crete da  

distribu n can be easily umulativ tion distri rve 

using a data reproduction procedure with statistic schem ter converting the 

discretized particle size distribution data into a cumulative size distribution, it is possible 

to regenerate a synthetic continuous particle size distribution using a statistical nonlinear 

regression analysis (see Fig. 4.9). As shown in Fig. 4.8, at a particle geometric size 

e et

es of the uniform discrete model results 

large

directly compare both results without any 

population distribution is a convenient way to compare these data having d

niform dis ta. Further, the particle size

tio derived from the c e popula bution cu

e. Af

k

the particle cumulative size distribution corresponds to kC  and  

d , 
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1

k
j

totalj

n
n

=

kC = ∑  (4.59) 

so 

 1 2 3 ......total k kn C n n n n= + + + +  (4.60) 

and 

1

1

k

k total k j
j

−

=

 = −n n C n∑  (4.61) 

thus at 1d , 1 1totaln n C= , then 2 2 1totaln n C n= −  and on, for all class size k. Thus, from any 

cumulative distribution one can compute a continuous (uniform discretized) particle size 

distributions. As shown in Fig. 4.9, this method shows good agreement between the 

discretized and continuous data except at the larger particle size classes. This difference, 

especially in the larger size classes, results from different size class interval scales. 

Furthermore, particle concentrations for the larger size classes have relative smaller 

fraction than those for smaller class size. 
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Figure 4.7 Particle size distributions for discretized data (histogram) and continuous data 
(line plot) 
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Figure 4.8 The reproduction of continuous particle size distribution from discretized data 
using cumulative size distribution curve 



 126

Dimensionless Particle Diameter (do = 1.0µm)

0 2 4 6 8 10 12

C
um

ul
at

iv
e 

S
iz

e 
D

is
tri

bu
tio

n 
Fr

ac
tio

n

0.25

0.50

0.75

1.00

Discretized Data (q = 1.5422)
Uniform Model
Regression

Y = Yo +  (a*Xb) / (cb+Xb)

a  = 11.4064
b  =   2.0029
c  =   0.2497

Yo = -10.4068

Adj R2 = 0.9997

 
(a) 

Dimensionless Particle Diameter (do = 1.0µm)

0 2 4 6 8 10 12

P
ar

tic
le

 S
iz

e 
D

is
tri

bu
tio

n 
Fr

ac
tio

n 
(n

k/
n T

ot
al

)

10-6

10-5

10-4

10-3

10-2

10-1

100

Disceritized Data (q = 1.5422)
Continuous Data (Synthesized)
Continuous Data (Original)

 
(b) 

 
Figure 4.9 Particle size distributions for various geometric size intervals  
(Monodisperse initial condition, ort okinetic kernel, no = 1.0×108 cm-3,  h

α = 0.1, γ& = 15 1/s, KB = 0.01, Df = 3.0) 
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4.5 Conclusions 

In this study, the authors extended their improved particle coagulation model 

having an agglomeration and break-up kernel to an adjustable geometric size interval (q), 

where q is a volume ratio of class k+1 particle to class k particle ( 1υ / υk kq += ). The 

accuracy of this model was verified using several methods; direct numerical simulations 

(DNS) comparing to analytical exact solutions, the derivative of moments, and self-

preserving distributions. The proposed model was converted to a dimensionless form to 

enhance computational efficiency. Furthermore, a parameter estimation scheme was 

created to computationally determine the two key parameters in the new model, the 

collision efficiency (α) and the break-up coefficient (KB), from orthokinetic 

experimental data. This parameter estimation scheme can be readily applied to establish 

coefficients in a variety of coagulation systems, especially those having fractal aggregate 

structure. In addition, the authors attempted to find an optimum graphical method for 

representing the two different results (discretized and continuous populations) on an 

identical 2D plane and found that the particle cumulative population distribution curve is 

convenient to compare these results due to different aggregate class size scales. Using 

the reproduction of continuous distribution from discrete data, it was concluded that this 

method has close agreement between discretized and continuous data ex

particle size classes.  

 

 

cept at the larger 
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CHAPTER V 

ARSENIC SORPTION ONTO HYDROUS FERRIC OXIDE 

 

5.1 Overview 

To enhance the predictive capability for arsenic sorption onto metal oxy-

hydroxide surfaces, a surface complexation equilibrium model using a thermodynamic 

equilibrium database and a sorption kinetic model using diffusion mass transport would 

be a useful tool especially for small scale arsenic sorption removal systems.  

A surface complexation model was introduced to predict arsenic sorption 

equilibrium behaviors (i.e., pH envelop and isotherm). A set of equations representing 

surface complexation model, which are related to the arsenic acid-base reactions, 

hydrous ferric oxide (HFO) surface protonation/deprotonation, and inner-sphere 

monodentate surface complexations for arsenic sorption on HFO surfaces, was solved 

with a public domain computer program. Further, the surface complexation model was 

coupled with an arsenic sorption kinetic model based on the diffusion mass transport 

mechanism using the sorption local equilibrium assumption to provide easy to use 

software that establishes predictive capability for the water treatment community.  

The improved arsenic sorption modeling technique coupled with arsenic sorption 

kinetics and equilibrium could provide enhanced predictive capability for the exact 

arsenic sorption behavior especially related to arsenic sorption kinetics, equilibrium, and 

HFO surface charge/potential evolution with reaction time, as well as required sorption 

process design parameters, sorption media capacity, sorption media doses, sorption 
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media operation life-times, residuals production, and sorption process operating costs. 

Furthermore, the surface charge/potential evolution with reaction time would be used to 

couple two models of arsenic sorption and coagulation (details will be addressed in the 

next chapter). That is, a unified coagulation model will be coupled with arsenic sorption 

model using surface charge/potential which is one of major variable parameters in 

collision efficiency calculation. 

 

5.2 Introduction 

5.2.1 Arsenic Sorption onto Freshly Precipitated Hydrous Metal Oxy-Hydroxides 

In the engineering field of water treatment, one of the most practical methods for 

removing major toxic metals (arsenic, chromium, and lead) is sorption onto amorphous 

hydrous ferric oxides (HFO, am-Fe(OH)3(s), or 2-line ferrihydrite (FepOr(OH)s·nH2O)), 

which are precipitates generated during the coagulation process. It should be noted that 

this 2-line ferrihydrite is commonly but incorrectly called “hydrous ferric oxide (HFO)” 

or “amorphous iron oxide” in various fields (Schwertmann and Cornell 2000). Although 

many researchers have proposed a chemical formula for ferrihydrite, neither the single 

formula nor the structure of ferrihydrite has been fully established (Robinson et al. 1981; 

Cornell et al. 1989; Schwertmann et al. 1999). The disagreement results from the rate 

and conditions of hydrolysis; solution pH, temperature, aging time, [OH]/[Fe] ratios, and 

the co-existence of impurities. The physical and chemical properties of the hydrous 

ferric oxy-hydroxides, consisted of amorphous ferric hydroxide (am-Fe(OH)3(s)), 

ferrihydrite (FepOr(OH)s·nH2O), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and 
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hematite (α-Fe2O3), can affect the sorption capacity for both metals and coagulation 

index due to different porosity, specific surface area, diffusion coefficient, particle size, 

pHzpc and aggregate fractal dimension. 

A number of researchers have reported on the sorption of arsenic onto the 

hydrous metal oxy-hydroxide solids that precipitate during coagulation process when the 

metal salts of Fe and Al (e.g., FeCl3, alum) are added to the solutions. Often, the 

processes in which these reagents are added are considered to be coagulation rather than 

sorption, but the reaction between arsenic and the precipitated solids can be viewed as 

adsorption or some related reaction (Gulledge and O'Connor 1973; Shen 1973; Anderson 

et al. 1976; Gupta and Chen 1978; Sorg and Logsdon 1978; Leckie et al. 1980; Pierce 

and Moore 1982; Ghosh and Yuan 1987; Fuller et al. 1993; Waychunas et al. 1993). The 

first studies on the behavior of arsenic in these types of systems indicated that both 

As(III) and As(V) could be removed by coagulation and sorption onto freshly 

precipitated hydrous iron and aluminum oxides in the suspension phase, with iron 

hydroxide being a somewhat stronger adsorbent than aluminum hydroxide on a weight 

basis (comparing FeCl3 and alum) and arsenate binding more strongly than arsenite 

(Sorg and Logsdon 1978; Leckie et al. 1980; Pierce and Moore 1982). It was reported 

that significantly more arsenic can bind to the solids if they are freshly formed in situ 

than if they are preformed and that either type of solid has a very large affinity and 

capacity for As(V) (Edwards 1994; Hering et al. 1997). It was found that arsenic 

removal in the practical systems using alum coagulation was not as good as expected 

based on the laboratory studies. In some cases, the differences could be attributed to 
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incomplete precipitation of the added aluminum as a hydrous solid or incomplete 

removal of the solids that formed (McNeill and Edwards 1995). Also, it was found that 

As(V) was adsorbed somewhat more strongly than As(III), that binding of As(III) to the 

solid was more susceptible to competition from sulfate than the binding of As(V), and 

that As(V) removal could be enhanced by the presence of calcium in the system due to 

cooperative effect of calcium by changing the surface charge to be positive at high pH 

and enhancing anion sorption at high pH (Hering et al. 1996; Wilkie and Hering 1996). 

It was reported that the removal of arsenic via coagulation by FeCl3 was much more 

effective than by alum, even when equivalent molar doses of iron and aluminum were 

compared. Arsenic removal efficiency by conventional treatment (coagulation, 

sedimentation, and filtration) was consistently over 80% at FeCl3 doses of 3 to 10mg/L 

(Cheng et al. 1994; Scott et al. 1995). 

5.2.2 Arsenic Sorption onto Pre-Synthesized Metal Oxy-Hydroxides 

Previous investigations have studied the sorption of arsenate and arsenite onto 

pre-synthesized aluminum oxides and hydroxides (Ferguson and Anderson 1974; 

Anderson et al. 1976; Anderson and Malotky 1979; Ghosh and Yuan 1987; Manning and 

Goldberg 1997; Arai et al. 2001; Goldberg et al. 2001), iron oxides and hydroxides 

(Ferguson and Anderson 1974; Anderson and Malotky 1979; Pierce and Moore 1980; 

Harrison and Berkheiser 1982; Pierce and Moore 1982; Hsia et al. 1992; Fuller et al. 

1993; Waychunas et al. 1993; Hsia et al. 1994; Hering et al. 1996; Waychunas et al. 

1996; Wilkie and Hering 1996; Hering et al. 1997; Raven et al. 1998; Suarez et al. 1998; 

Jain et al. 1999; Meng et al. 2000; Goldberg and Johnston 2001), goethite (Lumsdon et 
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al. 1984; Waychunas et al. 1995; Sun and Doner 1996; Fendorf et al. 1997; Grossl et al. 

1997; Matis et al. 1997; Manning et al. 1998; Hiemstra and van Riemsdijk 1999; Matis 

et al. 1999; Grafe et al. 2001), goethite and gibbsite (Manning and Goldberg 1996), 

goethite, akageneite, and lepidocrocite (Manceau 1995), goethite, hematite, and 

lepidocrocite (Bowell 1994), akageneite (Driehaus et al. 1998), gibbsite (Weerasooriya 

et al. 2003), manganese oxides and hydroxides (Oscarson et al. 1983; Thanabalasingam 

and Pickering 1986; Driehaus et al. 1995), alumina, hematite, quartz, and kaolin (Xu et 

al. 1988; Xu et al. 1991), kaolinite and montmorillonite (Frost and Griffin 1977), 

granular activated alumina (Lin and Wu 2001), activated alumina, bauxite, and carbon 

(Gupta and Chen 1978), and activated carbon (Huang and Fu 1984), activated alumina 

(Rosenblum and Clifford 1982), and clay minerals (Manning and Goldberg 1997). 

Recently, to enhance arsenic sorption capacity, other alternative adsorbents have been 

developed; silica gel impregnated with ferric hydroxide, basic yttrium carbonate, 

lanthanum, lanthanum impregnated saw dust carbon, hydrate zirconium oxide, porous 

resin loaded with crystalline hydrous zirconium oxide, hydrotalcite, Ce(IV)-doped iron 

oxide, and iron impregnated sand (Yoshida et al. 1976; Suzuki et al. 2000; Vaishya and 

Gupta 2003; Zhang et al. 2003). The arsenic sorption studies using various adsorbents 

are summarized in Table 5.1. 

A number of studies have indicated that various complexes are formed in the 

adsorption of As(V) on ferrihydrite (Manceau 1995; Sun and Doner 1996; Fendorf et al. 

1997). EXAFS studies on arsenic bearing ferrihydrite formed at pH > 7, have shown that 

As(V) is adsorbed onto ferrihydrite as a strongly bonded inner-sphere surface complex 
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with either monodentate or bidentate attachment (Waychunas et al. 1993; Waychunas et 

al. 1995). 

 

Table 5.1 Arsenic Sorption onto Various Adsorbents 

Adsorbent Loading Ratio Comment Reference 
2-line ferrihydrite As(V,III) 5.34×10-4 M      

          –  2.67×10-2 M 
 Fe(III)   2.25×10-2 M 
(0.025–1.187 : 1) 

As(V,III) sorption (pH 4.6 and 9.2,  0.1M NaCl, N2) Kinetic, 
isotherm, and envelop (pH 3.8–10). Diffusion controlled reaction. 
Adsorption density 0.60 (V) 0.25 (III) for pH 4.6 and 0.58 (V) 
0.16 (III) for pH 9.2. 
* 0.25(V) for Fuller, 0.11(V) for Ferguson, 5.0 (III/V) for Pierce 
(As/Fe=15:1). 

Raven et al. 1998 

2-line ferrihydrite As(V,III)  5.3–16×10-4 M    
Fe(III)     2.25×10-2 M 
(0.025–0.071 : 1) 

ZPC of ferrihydrite is 8.5, decreasing with increasing adsorbed 
As. As(III) and As(V) adsorption and OH- release/uptake. As(V) 
at pH 9.2 released up to 1mol OH- per mol As adsorbed whereas 
As(III) released <0.25 mol As per mol Fe. At pH 4.6, OH- release 
was much less for As(V) adsorption and under these conditions 
there was a net release of H+ by arsenite.  

Jain et al. 1999 

2-line ferrihydrite  
FeOOH / Fe2O3·H2O 

As(V) 1.0×10-4 M 
Fe(III) 5.0×10-4 M 
(0.2 : 1) 

As(V) sorption (pH 7.5– 9.0, 0.1M NaNO3, O2-N2-Air). At pH = 
8.0, adsorption density was 0.70 (V) in coprecipitate and 0.25 (V) 
in post-synthesis adsorbent. No surface precipitations. For 
Dzombak and Morel (1990), sorption density of 0.205(V), specific 
surface area 600 m2/g, and molecular weight 89g HFO/mol Fe.  

Fuller et al. 1993 

2-line ferrihydrite  
FeOOH / Fe2O3·H2O 

As(V) 1.0×10-4 M 
Fe(III) 5.0×10-4 M 
(0.2 : 1) 

As(V) sorption (pH 7.5– 9.0, 0.1M NaNO3, O2-N2-Air) on 
ferrihydrite. FTIR, EXAFS, and Raman spectroscopy analysis. 
As(V) adsorbs on ferrihydrite as inner-sphere surface complexes 
that are attached predominantly via bidentate linkages with some 
monodentate linkages. 

Waychunas et al. 1993 

am-FeOOH
am-Al(OH)3 
 

As(V,III)    1.0×10-3 M 
Fe(III) 7.7–8.6×10-4 M 
Al(III)  1.3–1.7×10-2 M 
(1.16 : 1) & (0.06 : 1) 

As(V,III) sorption (pH 6–8) on synthesized HFOs. Kinetic, pH 
effect, and isotherm experiments (not enough information). 
Adsorption density 0.034 for Al and 0.13 for Fe based on 99.5% 
As(III) removal.  

Ferguson and Anderson 
1974 

am-Fe(OH)3
(Ferrihydrite) 

As(V,III)  6.67×10-7 M    
          – 13.30×10-4 M 
Fe(III)     4.16×10-5 M 
(0.016–31.97 : 1) 

As(V,III) sorption (pH 4–10, 0.01M NaNO3) on synthesized HFO. 
Adsorption density 5.34 (V,III) at pH 4.0, [As]=6.67×10-4 M, and 
[Fe]=4.16×10-5 M. Fitted to Langmuir isotherm at low 
concentrations and linear isotherm at higher concentrations. 
Heterogeneous surface site model concept.  

Pierce and Moore 1982 

am-Fe(OH)3
(Ferrihydrite) 

As(III) 6.67–66.7×10-7 M    
Fe(III)  5×10-5 M  
(0.013–0.13 : 1) 

As(III) sorption (pH 4–10, 0.01M NaNO3) on synthesized HFO. 
Sorption envelop, isotherms, ZPC experiment. Linear isotherm 
indicates that the sorption reactions are reversible and coverage is 
monolayer. The Maximum sorption occurs at pH 7. Specific 
adsorption and electrostatic interactions are important 
mechanisms. 

Pierce and Moore 1980 

2-line ferrihydrite 
 

As(V)  0.01–0.1 M 
Fe(III)          0.1 M 
(0.1–1.0 : 1) 

A wide angle X-ray scattering (and EXAFS) study of 2-line 
ferrihydrite co-precipitated with varying amounts of As(V) 
suggested that the As reduced crystallite size because of the 
formation of strongly bound inner sphere complex between As(V) 
and edge sharing Fe(O,OH)6 octahedra. Saturation at As/Fe mol 
ratio of 0.68 

Waychunas et al. 1996 

2-line ferrihydrite As      53–210×10-6 M 
Fe(III) 1.7×10-3 M 
(0.03–0.12 : 1) 

Adsorption and polymerization of silicic acid (H4SiO4)on 
ferrihydrite and its effect on As(V,III) adsorption (pH 4–12, 0.1M 
NaNO3). Modified intrinsic adsorption constant. [As(V) (log 
K1=0.0  log K2=6.12  log K3=-0.76  log K4=-9.079)]. [As(III) (log 
K1=5.74  log K2=-2.88  log K3=-10.95)].  

Swedlund and Webster 
1999 

am-Fe(OH)3
(Ferrihydrite) 

As(V) 0.5–2.0×10-4 M 
Fe(III) 1.0×10-3 M 
(0.05–0.2 : 1) 

As(V) sorption (pH 4–10, 0.01M NaNO3, N2) on am-HFO. 
EDAX, FTIR, zeta potential, pH and ionic strength analysis. An 
inner-sphere complexation was identified from the results of the 
ionic strength effect and the shift in isoelectric point of the system. 
As(V) was chemisorbed on the iron oxide surface with specific 
adsorption. 

Hsia et al. 1994 
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Table 5.1 (Continued) 

Adsorbent Loading Ratio Comment Reference 
am-Fe(OH)3
(Ferrihydrite) 

As(V) 0.5–2.0×10-4 M 
Fe(III) 1.0–2.0×10-3 M 
(0.025–0.2 : 1) 

As(V) sorption (pH 4–10, 0.01M NaNO3, N2) on am-HFO. Single 
and combined model using outer sphere (surface ionization or ion-
pair form) and inner sphere (electrolyte binding or surface 
coordination occur). Inner sphere model fits well data than inner + 
outer sphere and outer sphere models. Inner sphere complexation 
for surface species =Fe(H2AsO4), =Fe(HAsO4)- and =Fe(AsO4)2- is 
the reaction mechanism. 

Hsia et al. 1992 

am-Fe(OH)3
(Ferrihydrite) 

– 

As(V) sorption on freshly prepared HFO. Infrared analysis. 
Monovalent and divalent anion bonding behavior. Without 
exception, each bidentate bridging complex forms by replacement 
of protonated and unprotonated hydroxyls. With anion geometry 
and the charge being equal, pH determines sorption capacity. 

Harrison and Berkheiser 
1982 

am-Fe(OH)3 
am-Al(OH)3

As   0.01–1.0×10-3 M 
Me  4.0, 0.5g/L 

As(V,III) sorption (pH 2–12, 0.01–1.0M NaCl) on am-HFO and 
am-HAO. FTIR, EM, pH, ionic strength analysis. 
As(V) forms inner-sphere surface complexes on both am-HFO 
and am-HAO. As(III) forms both inner- and outer sphere surface 
complexes on am-HFO and outer-sphere surface complexes on 
am-HAO.  

Goldberg and Johnston 
2001 

am-Fe(OH)3 
am-Al(OH)3 
 

As(V)     6.67×10-7 M 
Me(III)4.4–22×10-5 M 
(0.003–0.015 : 1) 

As(V) sorption (pH 5–8) during coagulation, sedimentation, and 
filtration. Main factors are pH and coagulation dose. Ferric sulfate 
achieved better removal than alum and was less sensitive to 
increases in pH. 

Gulledge and O'Connor 
1973 

am-Fe(OH)3 
am-Al(OH)3

As(V,III)2.7–133×10-5 M 
Fe(III)   3.00×10-5 M 
(0.89–44.3 : 1) 

As(V,III) sorption (pH 4–9, 0.01M NaNO3) on coprecipitate and 
synthesized HFO & HAO. Competition with NOM, SO4

2-, PO4
3-. 

PO4
3- decrease ZPC (inner sphere complex), SO4

2-  increase ZPC 
(outer sphere complex). Arsenic was much more efficiently 
removed by coprecipitate than post-synthesis HFO.   

Hering et al. 1997 

am-Fe(OH)3 
 

As(V) 4.7×10-7 M 
Fe(III) 5.0×10-5 M 
(0.01 : 1) 

As(V,III) sorption (pH 4–9) on coprecipitate and synthesized 
HFO. Effects of Ca+, SO4

2-, PO4
3-. For ferric chloride, 

stoichiometric conversion to the hydroxide solid (HFO) yields 
0.55 mg/L per mg/L FeCl3 added. 
 

Hering et al. 1996 

am-Fe(OH)3 As    1.3µM(5) 0.7µM(3) 
Fe(III) 18µM(5) 54µM(3) 
(0.07:1(5), 0.01:1(3)) 

As(V,III) sorption (pH 4–9, 0.04M KNO3, N2-Air) on co-
precipitated am-Fe(OH)3 in 60mL. Monodentate inner sphere 
surface complexation. The effect of anions (silicate, sulfate, 
carbonate). Silicate has negative effect on As sorption but sulfate 
and carbonate has negligible effects. Sorption maxima (pH 6.8 & 
9.2) was 0.65(V) & 0.1(III), 72%(V) & 11%(III) of Fe-OH site 
density (0.9mol/mol Fe).   

Meng et al. 2000 

am-Fe(OH)3 As(V,III)3.3–133×10-8 M    
Fe(III)         5.00×10-5 M 
(6.6×10-4–2.7×10-2 : 1) 

As(V,III) sorption (pH 4–9, 0.01M NaNO3) on synthesized HFO. 
SO4

- decreased adsorption of As(V) and As(III), especially at low 
pH, while Ca+ increased As(V) adsorption at high pH. 1mM 
bicarbonate did not affect either As(V) or As(III) adsorption 
greatly. ZPC of am-Fe(OH)3 is 8.1 

Wilkie and Hering 1996 

am-Fe(OH)3 As(V,III) 1– 100×10-5 M    
Fe(III)        1.87×10-3 M 
(0.005–0.5 : 1) 

As(V,III) sorption (pH 3–11, 0.01M NaCl) on synthesized HFO. 
ZPC 8.5 by EM. ZPC large negative shift occurs as initial As(V) 
increased. The hydroxyl release (OH released/As(V) adsorbed) 
was 0.19 and 1.03 for pH 5 and pH 8 respectively. The ZPC shift 
vs. hydroxyl release. ATR-FTIR analysis.  

Suarez et al. 1999 

am-Fe(OH)3 As(V) 0.05–1.33×10-5 M 
Fe(III) 0.05–1.0×10-3 M 

As(V,III) sorption on hydrous ferric oxide. Modeling the 
experimental data from literatures. 

Dzombak and Morel 1990 

am-Fe(OH)3
Goethite 
Magnetite 

As(V) 10–100×10-6 M 
Fe(III) 3.4–56.2×10-4 M 
(0.0018– 0.30: 1) 

As(V,III) sorption (pH 4–11, 0.01M NaClO4,) on fresh HFO, 
goethite, and magnetite. Reduction of As(V) in the presence of 
HFO had only minor effects on or even decrease its mobility at 
neutral pH range. As(V,III) similar surface site densities on 3 
oxides. Decrease in specific surface area and hence sorption site 
density that accompanies transformation of am-HFO to more 
crystalline phases could increase As mobility. 

Dixit and Hering 2003 

am- Al(OH)3 As(V,III) 1.0×10-3 M 
Al(III)     1.3×10-3 M 
(0.77 : 1) 

As(V,III) sorption (pH 2.5–10.5, 0.1M NaCl) on synthesized am-
HAO. Sorption envelop experiment at various surface area. 
Surface area of HAO < 15m2/g, HFO > 200m2/g.  

Goldberg et al. 2001 

CHFO As(V,III) 6.67×10-4 M 
Fe(III)    2.25×10-3 M 
(0.3 : 1)  

As(V,III) sorption (pH 6) in 50mL vessel on synthesized CHFO. 
Batch and packed column test. Particle size was 0.14–0.29 mm. 
Various aging time, anions, and regeneration of As-rich CHFO.  

Manna et al. 2003 
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Table 5.1 (Continued) 

Adsorbent Loading Ratio Comment Reference 
Goethite As/Goethite = 

0–400 µmol / g  
(As : Fe = 0–0.036 : 1) 

As(V,III) sorption (pH 3–8.5) on goethite. T-FTIR and ATR-FTIR 
analysis. Extraction experiment. As(V) has two A-type and one B-
type OH groups. As(III) has two A-type and one C-type OH 
groups. Both As(V) and As(III) form bidentate Inner-sphere 
surface complexes (A-type bond) with Fe on goethite surface. 
Adsorption maxima was 200 µmole As / g goethite (0.02 mole As 
/ mole Fe) at pH 5.5. 

Sun and Doner 1996 

Goethite As(V,III) 1.0×10-3 M 
Fe(III)    2.8×10-2 M 
(0.036 : 1) 

As(V,III) sorption (pH 3–11, 0.01M NaNO3) on α-FeOOH in 
100mL vessel. pH of kinetic was 6.5 for As(V) and 5.0 for As(III). 
Sorption kinetic and edge experiments at various DOCs co-
existence.  

Grafe et al. 2001 

Goethite As(V,III) 1.33×10-4 M 
Fe(III)  5.6–11.2×10-2 M 
(0.0012–0.0024 : 1) 

Shows pH edge at about pH 9 (pH 2–11). Adsorption density was 
40 mg As/g goethite (0.05 mole As/mole Fe), 10.5 (Samaras 
(1994)). Isotherms relevant to anion sorption are typically pseudo-
Langmuirian at all sorbate/sorbent ratios, indicating one dominant 
type of binding site (ligand exchange), Dzombak 1990)  

Matis et al. 1997 

Goethite As(V) 1.07×10-3 M 
Goethite 223 m2/L 

Successfully applied the CD-MUSIC SCM to literature data for 
anion adsorption to goethite including As(V)-P competition. The 
CD-MUSIC is the most promising of the SCM for modeling 
complex natural systems. 

Hiemstra and van 
Riemsdijk 1999 

Goethite As(V)  1.34×10-4 M 
Fe(III) 0.011M (1g/L ) 

As(V) adsorption on synthetic goethite primarily for a study of 
impact on flocculation and electrokinetics. Final pH varied but not 
defined. Average particle size was 2.5µm (80% of particles were 
less than 16µm).  

Matis et al. 1999 

Goethite As(V)  0.001 M 
Fe(III) 0.112 M (10 g/L) 
(0.0088 : 1) 

Kinetic study by pressure jump relaxation technique. I = 0.1–0.01 
M NaNO3. Monodentate (XH2AsO4, XHAsO4

- or XHAsO4
2-) and 

bidentate (X2HAsO4 or X2AsO4
-) surface species were observed. 

First step is initial ligand exchange of aqueous oxyanion with 
goethite, forming an inner-sphere monodentate surface complex. 
Second step involves a second ligand exchange, resulting an 
inner-sphere bidentate surface complex. 

Grossl et al. 1997 

Goethite As(V)  0.001 M 
Fe(III) 0.112 M (10 g/L) 

EXAFS study of As(V) sorption (pH 3–11, 0.1M NaNO3) on 
goethite. Monodentate binding favored at low surface coverages 
of As(V), bidentate at high surface coverages. Three different 
inner-sphere As(V)-goethite complexes characterized by As-Fe 
distance of 0.285, 0.323, and 0.360 nm. 

Fendorf et al. 1997 

Goethite As(III) 1.3–2.6×10-1 M    
Fe(III)        2.8×10-2 M 
(4.6–9.2 : 1) 

As(III) sorption (pH 3–11) on α-FeOOH. As(V,III). Adsorption 
envelope. An EXAFS and XANES study of As(III) adsorption to 
a α-FeOOH indicates bidentate inner-sphere complexation (As-Fe 
distance was 0.338 nm), showing little pH or concentration 
dependence at surface coverages ranging from 1.9 to 4.6 µmol/m2

Manning et al. 1998 

Goethite 
Ferrihydrite 

As/Fe = 0.001–0.6 EXAFS study of As(V). At larger As(V) concentrations on 
goethite surface the concentration of monodentate As(V) was 
found to be decreased. Three different inner-sphere As(V)-
goethite complexes characterized. 

Waychunas et al. 1995 

Goethite As/Goethite = 
50–200 µmole/g 
(As:Fe = 0.005–0.02:1) 

Infrared spectroscopy. As(V) as the acidic HAsO4
2- ion replaced 

singly coordinate surface OH groups. In this respect, As(V) is 
analogous to phosphate, but its larger size apparently causes it to 
interact more strongly with some of the OH groups that remain on 
the surface. 

Lumsdon et al. 1984 

Goethite As(V) 8.8–34×10-6 M 
Fe(III) 2.6×10-3 M 
(0.0034–0.013) 

Arsenate & Phosphate sorption on goethite (pH 3–10 in 0.1–0.7 M 
NaCl solution). Arsenate shows a similar sorption pattern but a 
higher affinity than phosphate. The model prediction 
overestimates As(V) sorption at low initial As/Fe ratio (0.0034). 
Study of anion sorption competition modeling.  

Gao and Mucci 2001 

Goethite 
Lepidocrocite 
Hematite 

As(V,III) 1.0×10-6 M 
Mineral  0.28M (25 g/L ) 
(3.57×10-6 : 1) 

As(V,III), MMAA and DMAA sorption on natural minerals 
(coarse-grained and very low He-Ar surface area). As sorption: 
generally goethite > lepidocrocite > hematite (pH 2–12, maximum 
often pH 5–8). Sorption:  As(V) > DMAA=MMAA > As(III) 
below pH 7 and As(V) > As(III) > DMAA=MMAA above pH 7. 
FA decreases As sorption 

Bowell 1994 

α-,β-,γ-FeOOH 
Ferryhydrite 
HFO 

Comparison of EXAFS 
results obtained at the As 
K-edges 

The difference of structural behavior is not supported by the 
experimental data. The reason for this discrepancy is shown to 
result from a mistaken determination by Waychynas et al. (1993) 
of the As-Fe distance.  Changes of the ferrihydrite structure at 
increasing As loading and ageing time are important. 

Manceau 1995 
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Table 5.1 (Continued) 

Adsorbent Loading Ratio Comment Reference 
GFH  
(Akageneite) 

As(V) 1×10-5–0.01M 
Fe(III) 0.011M (1g/L ) 
(9×10-5–0.9 : 1) 

As(V) sorption (pH 5–9, 0.01 M NaCl) on co-precipitated and 
granular ferric hydroxide. Granulation dose not lead to a 
considerable decrease in adsorption density (1.0mmol As/g Fe). 
SO4

- competition significant at mM concentrations below pH 7 
only; phosphate competition at natural groundwater 
concentrations 

Driehaus et al. 1998 

Goethite, gibbsite, 
am-Al(OH)3

As  0.27–1.07×10-3 M 
Me        ? 

As(V) sorption modeling using the data of Hingston (1970,1971) 
and Anserson and Malotky (1979). CCM was able to As-phospate 
competition results. 

Goldberg 1986 

Goethite 
Gibbsite 

As(V) 1.33–2.66×10-4 M 
Me     0.028 M (2.5 g/L) 
(0.0048–0.0096 : 1) 

Effects of pH (2–10)and competing anions (P, Mo) on As(V) 
sorption on α-FeOOH and γ-Al(OH)3. Two model approaches of 
one-site (monodentate) and two-site (monodentate + bidentate) 
gave comparable fits to experimental sorption data and were 
consistent with competitive sorption observed in binary sorption 
envelops. 

Manning and Goldberg 
1996 

Gibbsite As(III) 13.4×10-3 M 
Me      20 g/L 

As(III) sorption (pH 4–8, NaNO3 0.001-0.1M) on gibbsite. The 
As(III) exhibits weak affinity toward gibbsite. The heat of 
adsorption (∆Hr was 20 kJ/mol) indicates surface physical 
bonding. The CD-MUSIC/TPM model combination described 
data well when initial As(III) < 10-5 M. 

Weerasooriya et al. 2003 

am-Al(OH)3 As(V) 6.7–160×10-5 M 
Al(III) 0.002 M (0.16g/L) 
(0.0034–0.8 : 1) 

As(V) sorption (pH 3.5–10.5) on post-precipitated Al(OH)3. 
Kinetic, sorption envelop, EM, isotherm tests. Adsorption density 
was 1600µmol/g (1.6 mol As / mol Al) at pH 4.6. Fitted data to 
pH dependent Langmuir isotherm. 

Anderson et al. 1976 

Gibbsite 
(γ-Al(OH)3) 

As(III) 2.69–40×10-5 M 
Me      0.26 M (20 g/L) 
(1×10-5–1.5×10-4 : 1) 

As(III) sorption (pH 4–10, 0.01–0.1 M NaCl, N2) on gibbsite. 
As(III) showed a weak affinity for gibbsite surface. Maximum 
sorption occurs around pH 8.2. As(III) sorption data was 
quantified by CD MUSIC model using the surface complexation 
postulated (outer-sphere complexation). 

Weerasooriya et al. 2003 

Clay minerals 
am-Al(OH)3

As(V,III)  4.0×10-7 M 
Al(III)      3.2×10-2 M 
(1.25×10-5 : 1) 

As(V,III) sorption (pH 2–11, 0.1M NaCl) on kaolinite, illite, 
montmorillonite, and am-Al(OH)3 (post-synthesized) in 20mL 
vessel. Adsorption and desorption test. Oxidation of As(III) to 
As(V) was enhanced by heterogeneous oxidation on clay surfaces. 

Manning and Goldberg 
1977 

Activated Alumina 
(Granular) 

As(V,III) 2.67×10-7 M    
           – 1.60×10-4 M 
Al(III) 9.8–49×10-4 M 
(5.5×10-5– 0.16 : 1) 

As(V,III) sorption (pH 2.5–12) on am-GAA. Properties of GAA. 
Equilibrium isotherm and kinetic experiment at various GAA size 
(mesh) and As/Al rations. Tortuosity analysis was conducted. ZPC 
of GAA is 8.4–9.1 

Lin and Wu 2001 

Aluminum oxide 
(γ-Al2O3) 

As(V,III) 7.0×10-4 M 
Al(III)     9.8×10-2 M 
(0.007 : 1) 

As(V,III) sorption (pH 3–9, 0.013–0.8M NaNO3). XAS, sorption 
envelop, EM. Ionic strength and pH effects on sorption. EXAFS 
data indicate that As(VI) form inner-sphere complexes with a 
bidentate binuclear configuration, however, for As(III) inner- and 
outer-sphere adsorption coexist. 

Arai et al. 2001 

Aluminum oxide 
(γ-Al2O3) 

As(V,III) 1–20×10-3 M 
Al(III)  1–5×10-2 M 
(0.02–2.0 : 1) 

As(V,III) sorption (pH 3–10, 0.1M NaCl) on γ-Al2O3 in 125mL 
vessel. Sorption kinetic, ion strength, temperature, pH, 
equilibrium, fixed bed experiments. ZPC of γ-Al2O3 7.92, BET 
surface area 218m2/g, intrinsic acidity constants, and Nt 4.6×1014 
site/cm2. Adsorption of As is enhanced by the cation presence.   

Ghosh and Yuan 1987 

Activated Alumina 
(γ-Al2O3) 

As(V)     6.67×10-5 M 
Alumina  0.067–1.0 g/L 

As(V) from the artificial groundwater by sorption on activated 
alumina (γ-Al2O3). As(V) adsorption is extremely dependent on 
pH due to AA surface charge and As species and valence. 

Rosenblum and Clifford 
1982 

Activated Alumina 
Activated Bauxite 
Activated Carbon 

As(V,III) 5.0×10-6 M    
           – 1.3×10-4 M 
Al(III)     2.0×10-2 M 
(2.5×10-4–6.5×10-3 : 1) 

As(V,III) sorption (pH 2–12, I = 0–0.67M). These isotherms 
indicate that the reactions are reversible phenomena and the 
coverage is monolayer. As(V,III) sorption capacity is in the order 
of alumina > bauxite > carbon. As(V) sorption efficiency was 
reduced in the presence of high ionic strength (Ca2+ and Na+) at 
pH 7–8, less effect in As(III).  

Gupta and Chen 1978 

Alumina (α-Al2O3) 
Hematite (α-Fe2O3) 
Quartz (SiO2) 

As(V,III) 1.0×10-6 M 
Minerals  25 g/L 

On natural alumina, sorption was 
As(V)>As(III)>MMAA=DMAA (pH>6). Maximum adsorption at 
pH 5 for As(V) and pH 7 for As(III). As(V) but not As(III) 
sorption decreased rapidly above pH 6. Log Kd (l kg-1) at 
micromolar concentrations (pH 7) was 2.5–3.5 for As(V) and 
about 1.5 for As(III). FA decreased sorption. 

Xu et al. 1991 

Alumina, hematite, 
Kaolin, quartz 
 
 
 

As(V)      1.0×10-6 M 
Minerals  25 g/L 

As(V) sorption (pH 2–10) on natural minerals. Sorption decreases 
with pH; alumina=kaolin > hematite > quartz. Gives Kd values 
and isotherms at low concentrations. Some SO4

2- competition 
especially below pH 7. FA (>10 mg/L) generally reduced sorption 
at pH 5–7 but not above pH 7 where FA is not adsorbed 

Xu et al. 1988 
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Table 5.1 (Continued) 

Adsorbent Loading Ratio Comment Reference 
Manganese oxide 
(δ-MnO2) 

As(III) 6.7×10-5 M 
Mn      92×10-5 M  
(0.073 : 1) 

As(V,III) removal by MnO2(s) is similar, up to say 5 mmol As 
mol-1 Mn. Kinetic and Freundlich isotherm. As(III) oxidized to 
As(V). Rapid oxidation (minutes) and adsorption of As(III). 
Monitored Mn release and effect of pH, Ca2+, phosphate and 
sulphate. 

Driehaus et al. 1995 

Manganese oxides 
(α-,β-,δ-MnO2) 

As(III) 1.33×10-3 M 
MnO2 0.016 M (1.4 g/L) 
(0.083 : 1) 

As(III) oxidation and As(V,III) sorption in presence of various 
MnO2. As(III) adsorption (per unit weight of oxide): 
cryptomelane(α) > birnessite(δ) > pyrolusite(β) whereas for As(V) 
cryptomelane(α) > pyrolusite(β) > birnessite(δ) (not detectable). 
No isotherms given. First-order of As(III) depletion 
(oxidation+sorption) 

Oscarson et al. 1983 

Manganese oxides As(III)     1.0×10-5 M 
Minerals  0.6 g/L 

As(III) oxidation and As(V) sorption by MnOOH, α-MnO2, β-
MnO2 and retention of oxidation products varies with pH.  

Thanabalasingam and 
Pickering 1986 

Pyrite (FeS2) As(III) 5.06×10-4 M 
As(V) 1.58×10-4 M 
FeS2 0.85–8.35×10-2 M 
(0.002–0.012 : 1) 

As(III,V) removal (pH 2–12, I = ? M) by pyrite fines (average 
diameter of 15µm, specific area of 4.67 m2/g). pH envelop and 
sorption kinetic experiments were conducted. Further, lime and 
NaOH were added into the arsenic and pyrite suspension. 

Zouboulis et al. 1993 

Troilite (FeS) 
Pyrite (FeS2) 

As(III) 0–2.5×10-4 M 
Mineral  

As(III) removal (pH 4–9, I = 0.005–0.5 M NaCl, buffer = 0.002 M 
acetate, MOPS, borate, and initial sulfide = 0–0.002 M). XAS, 
XANES, XPS experiments. Batch and flow-cell experiments. 

Bostick and Fendorf 2003 

Kaolinite 
Montmorillonite 

As(V) 1.3–25×10-4 M 
Clays  1–4 g/L 

Sorption of As(V,III), Se(IV) from municipal landfill leachate by 
clay minerals. Montmorillonite adsorbed more As and Se than 
kaolinite (higher edge surface area). Under alkaline conditions, As 
and Se are quite mobile 

Frost and Griffin 1977 

Activated Carbon  As(V) sorption (pH 3–11, I = 0.01 M) on various types of 
activated carbons. Adsorption density was 100 µmole As / g AC. 
Maximum As(V) removal occurs at pH 4.5. Electrostatic 
attraction and formation of specific chemical bond were major 
sorption mechanisms (the reversal of surface charge).  

Huang and Fu 1984 

Other Adsorbents  Silica gel impregnated with ferric hydroxide                                        
Porous resin loaded with crystalline hydrous zirconium oxide  
Ce(IV)-doped iron oxide 
Iron impregnated sand  
AC, Zr-AC, Absorptionsmittel 3, Fe0, iron hydroxide granulates 

Yoshida et al. 1976 
Suzuki et al. 2000 
Zhang et al. 2003 

Vaishya and Gupta 2003 
Daus et al. 2004 

Engineering Fields As(V)          2.67×10-7 M 
Fe(III) 6.2–18.5×10-5 M 
(0.001–0.004 : 1) 

Enhanced coagulation for As(V) & turbidity removal (pH 5.5–7.0) 
using FeCl3. As(V) was removed better in the H2AsO4

- form than 
in the HAsO4

2- form (agreed with Gulledge & O’Conner). 
Although no correlation between turbidity and arsenic removal 
was found, turbidity removal is a prerequisite for arsenic removal. 

Cheng et al. 1994 

Engineering Fields  As(V) adsorption occurs during the rapid mixing stage, taking 
only a few minutes, and the As(III) fraction remaining soluble. 
Oxidation of As(III) to As(V) prior to coagulation is 
recommended (EPA,1998).  

Gregor 2001 

Engineering Fields As(T)  1.3×10-4 M 
Fe(III)  9–18×10-3 M 
(0.007–0.014 : 1) 

Arsenic removal from wastewater using ferric chloride, hydrated 
lime, sodium sulfide, and alum. Ca(OH)2/FeCl3 (pH 10) was able 
to remove over 99% of arsenic.  

Harper and Kingham 1992 

Engineering Fields  Arsenic removal from wastewater. The pH 6.5 and the ratio of 
As/Fe 0.2 can reduce residual arsenic to near or below analytical 
detection limits. Electro-chemical cell and H2O2 are 
recommended. 

Brewster 1992 

Engineering Fields As(T) 1.85×10-7 M 
     –  4.08×10-5 M 

POU (point-of-use) treatment techniques for arsenic removal from 
drinking water. RO, ion exchange, GAA process. 

Fox 1989 

Engineering Fields As(T)  2.1×10-8 M 
Fe(III) 1.9–6.2×10-5 M 
(0.00034–0.0011 : 1) 

Arsenic removal with ferric chloride and alum from drinking 
water treatment. This utility’s goal of 90% arsenic removal was 
attained through treatment with 6.5 mg/L FeCl3.  

Scott et al. 1995 

Engineering Fields As(V)     6.7×10-7 M 
As(III)    4.0×10-6 M 
Me         30 mg/L 

As(V,III) removal (pH 5–9). Significant removal of arsenic with 
conventional drinking water treatment and superior performance 
by the ferric coagulant (ferric sulfate) than aluminum coagulant 
(alum).   

Sorg and Logsdon 1978 

Engineering Fields As(T)  2.0×10-3 M Arsenic (organic and inorganic) removal form groundwater. 
Fenton oxidation + coprecipitation was best. Four type adsorbent 
were tested (AC, AA, ferrous sulfide, resin). TCLP test. UV and 
ozone oxidation tested. 

Kuhlmeier and Sherwood 
1996 

Engineering Fields As 6.7(5)/ 67(3)×10-7 M 
Me           5–40×10-6 M 

As(V,III) removal (pH 6–9.5) on HFO and HAO during 
coagulation. Two metals are equivalent in As(V) removal on the 
based on molar concentration at pH < 7.5. 

Edwards 1994 
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Table 5.1 (Continued) 

Adsorbent Loading Ratio Comment Reference 
Engineering Fields  First to survey soluble arsenic removal at full-scale water 

treatment (coagulation, Fe-Mn oxidation, softening). Alum 
coagulation was not as effective as expected. During coagulation 
As(V) removal was limited by small size HFO(HAO) (under 
0.45µm, filter pore size) that adsorbed arsenic.  

McNeill and Edwards 1995 

Engineering Fields  Arsenic removal during coagulation or Fe-Mn oxidation. 
Importance of particulate arsenic. At the low sorbate/sobent ratios 
common in water treatment, a simple linear isotherm may be 
derived either a Langmuir isotherm or a diffuse-layer model using 
a mass balance on As and on sorption sites on the metal surface. 

McNeill and Edwards 1997 

 
HFO = hydrous ferric oxide, amorphous ferric hydroxide, amorphous ferric oxy-hydroxide 
CHFO = crystalline hydrous ferric oxide 
HAO = hydrous aluminum oxide 
GFH = granular ferric hydroxide 
AA = activated alumina 
AC = activated carbon 
GAA = granular activated alumina 
IIS = iron impregnated sand 
IOCS = iron oxide coated sand 
SCM = surface complexation model 
EXAFS = extended X-ray absorption fine structure 
XANES = X-ray absorption near-edge structure 
EDAX = energy dispersive analysis of X-rays 
XAS = X-ray absorption spctroscopy 
FTIR = Fourier transform infrared 
T-FTIR = Transmission-Fourier transform infrared 
ATR-FTIR = Attenuated Total Reflectance-Fourier transform infrared 
MMAA    = monomethylarsonic acid, CH3AsO(OH)2
DMAA   = dimethylarsinic acid, (CH3)2AsO(OH) 
DOC = dissolved organic compound 
NOM = natural organic material 
FA = fulvic acid 
CD-MUSIC = charge distribution-multisite complexation model 
DLM = diffuse layer model (double layer model) 
CCM = constant capacitance model 
TLM = triple layer model 
EM   = electrophoretic mobility  

 

5.3 Background 

5.3.1 Characterization of Hydrous Ferric Oxide 

Hydrous ferric oxide (HFO) is generated during rapid ferric iron hydrolysis and 

also called amorphous ferric hydroxide, amorphous iron oxyhydroxide, and 2-line 

ferrihydrite (FepOr(OH)s·nH2O) (Schwertmann and Cornell 2000). Although many 

researchers have proposed the chemical formula of ferrihydrite, neither the single 

formula nor the structure of ferrihydrite has been fully established (Robinson et al. 1981; 

Cornell et al. 1989; Schwertmann et al. 1999). The disagreement results from the rate 

and conditions of hydrolysis; temperature, aging time, [OH]/[Fe] ratios, and the co-
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existence of impurities. Measurements of HFO density are in the range of 2.2 to 4.0 

g/cm3, with an average density of 3.5 g/cm3 and the formula weight of HFO is reported 

as 89 g HFO/mol Fe (Dzombak and Morel 1990).  

Freshly generated hydrous ferric oxide particles are reported to be fractal (fractal 

dimension Df of 1.7 to 2.3), which is mainly dependent of [OH]/[Fe] ratios (Lagavankar 

and Gemmell 1968; Wiesner and Mazounie 1987; Lo and Waite 2000). Furthermore, it 

is reported that the size of colloidal hydrous ferric oxide ranges from 10 nm at low 

[OH]/[Fe] ratio to 700 nm at high [OH]/[Fe] ratio (Tchoubar et al. 1991). It should be 

noted that these HFO colloid particle size values were determined below the flocculation 

threshold. However, once flocculation is induced (for example, by reduction in surface 

charge through pH increase), HFO aggregates are easily formed and can be reached to 

maximum aggregate size depending on flocculation conditions; fluid strain-rate, mixing 

device, electrolyte concentration, and solution pH. According to an experimental study 

for freshly precipitated HFO flocculation (Lo and Waite 2000), the initial colloid particle 

size distribution of freshly generated HFO ranges from 0.8 to 33.7 µm, with the volume 

average diameter of 5.2 µm.  

A theoretical surface area of HFO is reported to be 840 m2/g assuming 2-nm-

diameter spheres and its density of 3.57 g/cm3 (Davis and Leckie 1978). On the other 

hand, according to the experimental studies, measurements of HFO surface area are in 

the range of 159 to 750 m2/g. This lower experimental value of HFO surface area than 

theoretical calculation results from experimental technique such as nitrogen gas 

adsorption with BET analysis which is the most popular experimental method. However, 
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the method is not applicable to porous solids such as HFO due to low reproducibility and 

strong dependency of the outgassing procedure. This low reliability of the method is 

induced from surface decomposition during the drying step for gas adsorption 

measurements. This surface decomposition can lead to significant underestimates of 

surface area. Resulting from this disadvantage of nitrogen gas adsorption with BET 

analysis, the experimental measurements of the specific surface area of HFO may be 

lower than the actual value. Thus, it is commonly accepted that the HFO surface area be 

600 m2/g, which actual HFO surface area value is less than 840 m2/g and more than 200 

to 300 m2/g (Davis and Leckie 1978). 

Sorption site density (mole site/ mole Fe) of HFO are divided into two types; a 

small set of high-affinity strong sites and a large set of low-affinity weak sites. A weak 

site is the total reactive site to adsorb proton, cation and anion, whose site density is 

determined from experimental sorption maxima (also called maximum sorption 

capacity). A strong site corresponds to a cation-HFO binding site and its site density is 

determined from a sorption isotherm. In general, the value of the two types of site 

densities (strong and weak site density) on HFO are accepted as 0.005 and 0.1 ~ 0.3 mol 

site/mol Fe, respectively, from the arithmetic mean of the various experimental data 

(Dzombak and Morel 1990). 

The point of zero charge (ZPC or pHZPC) for HFO can be measured by acid-base 

titration, electrophoresis, and salt titration. According to the experimental studies, the 

ZPC values are in the range of 7.9 to 8.2. Further, when sufficient parameters (HFO 

properties and acid-base reaction coefficient) for surface complexation modeling are 
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provided, the theoretical ZPC value can be calculated (details will be discussed in next 

section).  

5.3.2 Surface Complexation Modeling 

Metal containing mineral surfaces become hydrated by reacting with water. The 

water coordinately reacts with metal ions at the surface by donation of lone electron 

pairs followed by chemical dissociation of the hydrogen resulting in the surface 

functional groups defined as ≡ XOH, where ≡ X represents a metal ion of the oxy-

hydroxide mineral surface bound to reactive hydroxyl group (Schindler and Stumm 

1987). These surface functional groups exhibit acid-base behavior by donating or 

accepting protons and altering the surface charge.  

Five different electrostatic double layer equilibrium models can be used for 

surface complexation modeling; CCM (Constant Capacitance Model), DLM (Diffuse 

Layer Model), TLM (Triple Layer Model), BSM (Basic Stern Model), and Triple Plane 

Model (TPM). These five models are closely related by considering a surface charge 

( σ ) using columbic correction factor ( exp( / )iF RTψ− ), where iψ  is the surface 

potential (volt) in the ith surface plane, F is the Faraday constant (C molc
−1), R is the 

molar gas constant (8.314 J mol−1 K−1), and T is the absolute temperature (K)) to account 

for the effect of surface charge on surface complexation (Table 5.2 and Fig. 5.1). Each 

surface complexation model treats sorption as a surface complexation reaction (that is, 

the reaction is treated as analogous to a solution phase complexation reaction governed 

by a mass action equation) and accounts for the electrostatic potentials at the charged 

surface. Although these models may be expressed with similar mass law and material 
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balance equations, each surface complexation model involves different descriptions of 

the electric double layer in the way that electrostatics is included. Surface charge results 

from protonation, dissociation, and/or surface complexation reactions of reactive surface 

hydroxyl groups at solid surfaces. The pH and ionic strength of solution determines the 

sign and magnitude of the solid surface charge. 

Huang, Stumm, and Jenkins (Huang and Stumm 1973) first applied the diffuse 

layer model to the surface complexation model and Dzombak and Morel (Dzombak and 

Morel 1990) extended the diffuse layer model to the generalized two-layer model 

(DLM). Like the CCM, DLM assumes that all surface complexes are inner-sphere 

complexes as shown in Figs. 5.2 and 5.3. The DLM assumption greatly simplifies the 

surface charge balance as Eq. (5.1). 

 P H isσ σ σ= +  (5.1) 

were, Pσ  represents the total net surface charge density and Hσ  (adsorbed proton charge 

density) is established through association and dissociation reactions of H+ as described 

by Eqs. (5.2) and (5.3), and isσ  (inner-sphere complex charge density) generated from 

the metal/ligand sorption onto the HFO surfaces. 

The diffuse layer model proposed by Huang, Stumm, and Jenkins (Huang and 

Stumm 1973) can lead to very high surface charge. To prevent this extreme charge on 

the solid surface Dzombak and Morel divided the diffuse layer into two planes of charge 

used to represent the surface (Dzombak and Morel 1990). That is, all surface complexes 

are placed into the surface o-plane and the diffuse layer commences at the d-plane and 

extends into solution phase (see Fig. 5.4). Furthermore, unlike the CCM, no capacitance 
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parameters are required in the DLM. This simplicity can make it easy to handle the input 

of model parameters in surface complexation modeling. 

 

 

  Table 5.2 Surface Complexation Model Matrix (Venema et al. 1996) 

Interface Model Complexation Model 

                         1 pK 
≡XOH-1/2 + H+ ⇔  ≡XOH2

+1/2    pK1

                            2 pK 
   ≡XO- + H+ ⇔  ≡XOHo      pKH1 

≡XOHo + H+ ⇔  ≡XOH2
+    pKH2

Diffuse Double Layer 
Only  Constant Capacitance Model (CCM) 

Diffuse Layer Model (DLM) 

Diffuse Double Layer + 
one charge-free layer Basic Stern Model (BSM)  

Diffuse Double Layer + 
Two charge-free layers Three Plane Model (TPM) Triple Layer Model (TLM) 

 

 

 

 

a) DLM              (b) BSM            (c) TPM/TLM 

Figure 5.1 The diagram of various surface complexation models (Venema et al. 1996) 
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Figure 5.2 A diagrammatic representation of the adsorption of ions on a HFO surface by 
the formation of outer-sphere and inner-sphere complexes (Brady and Weil 2002) 
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Figure 5.3 Arsenate sorption on a HFO surface by the formation of surface complex ((a) 
outer-sphere complex, (b) inner-sphere monodentate complex, (c) inner-sphere bidentate 

complex (mono-nuclear), and (d) inner-sphere bidentate complex (bi-nuclear) 
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Figure 5.4 Generalized two-layer model (DLM) 

 

In DLM, metal ion sorption is considered to occur on two types of sites: a small 

set of high-affinity strong sites (s) and a large set of low-affinity weak sites (w). 

Application of the DLM to systems containing both metal and ligand species is difficult 

because the pool of binding sites for protonation-dissociation and ligand adsorption is 

split into two sets of binding sites of different affinity for metal adsorption. For this 

reason, mass balance and charge balance equations are provided separately for metal and 

ligand adsorption.  
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Table 5.3 The Reactions Related to the Surface Complexation Model (DLM) 

Reactions Equilibrium Constants 
+

+ 2
2 (int) +

[ XOH ]XOH H   XOH exp[ / ]
[ XOH][H ]

K F RTψ+
+

≡
≡ + ⇔ ≡ =

≡
 (5.2)

+
+

(int)
[ XO ][H ]XOH  XO H exp[ / ]

[ XOH]
K F RTψ

−
−

−
≡

≡ ⇔ ≡ + = −
≡

 (5.3)

s ( 1) +
s m+ s ( 1) +

(int) s

[ X OM ][H ]X OH + M   X OM H exp[( 1) / ]
[ X OH][M ]

m
m s

M mK m F RTψ
−

−
+

≡
≡ ⇔ ≡ + = −

≡
 (5.4)

w ( 2) + 2
w m+ w ( 1) + 2

(int) w 2

[( X O) M ][H ]X OH + M   X OM H exp[( 2) / ]
[ X OH] [M ]

m
m w

M mK m F RTψ
−

−
+

≡
≡ ⇔ ≡ + = −

≡
 (5.5)

( 1)
+ ( 1) 1

2 (int) +

[ XL ]XOH + H + L   XL H O exp[ ( 1) / ]
[ XOH][H ][L ]

l
l l

L lK l F RTψ
− −

− − −
−

≡
≡ ⇔ ≡ + = − −

≡
 (5.6)

( 2)
+ ( 2) 2

2 (int) + 2

[ XHL ]XOH + 2H + L   XHL + H O exp[ ( 2) / ]
[ XOH][H ] [L ]

l
l l

L lK l F RTψ
− −

− − −
−

≡
≡ ⇔ ≡ = − −

≡
 (5.7)

 

For metal surface complexation these equations are: 

  (5.8) s s s + s s
T 2[ X OH] [ X OH] [ X OH ] [ X O ] [ X OM ]m−≡ = ≡ + ≡ + ≡ + ≡ ( 1)−

( 1)−  (5.9) w w w + w w
T 2[ X OH] [ X OH] [ X OH ] [ X O ] [ X OM ]m−≡ = ≡ + ≡ + ≡ + ≡

 
s + w + s ( 1)

2 2
w ( 1) s w

[ X OH ] [ X OH ] ( 1)[ X OM ]
2 ( 1)[ X OM ] [ X O ] [ X O ]

m

m

mF
a m

σ
−

− −

⎧ ⎫≡ + ≡ + − ≡⎪ ⎪= ⎨ ⎬
+ − ≡ − ≡ − ≡⎪ ⎪⎩ ⎭

−

( 2)l

 (5.10) 

For ligand surface complexation the equations are: 

 + ( 1)
T 2[ XOH] [ XOH] [ XOH ] [ XO ] [ XL ] [ XHL ]l− − − − −≡ = ≡ + ≡ + ≡ + ≡ + ≡  (5.11) 

 { }w + ( 1) ( 2)
2[ X OH ] [ XO ] ( 1)[ XL ] ( 2)[ XHL ]

2
l lF l l

a
σ − − −= ≡ − ≡ − − ≡ − − ≡ − −  (5.12) 

Further, according to the Gouy-Chapman theory, the surface charge density Pσ  (C m-2) 

is related to the surface potential 0ψ  (volt) as 
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 3 0(8 ) 10 sinh
2P o
zFRT c

RT
ψσ εε ⎛= × ⎜

⎝ ⎠
⎞
⎟  (5.13) 

where ε  is the relative dielectric constant of water (78.5 at 25ºC), oε  is the permittivity 

of free space (8.854 × 10-12 C2 J-1 m-1), c is the molar electrolyte concentration (M), and 

z is the ionic charge (Stumm and Morgan 1996).  

This set of equations (Eqs. (5.2)∼(5.13)) can be solved with a computer program 

(i.e., MINTEQA, FITEQL, MINEQL, and PHREEQ) using the mathematical approach 

outlined by Westall and Hohl (1980). Several applications of the surface complexation to 

arsenic sorption are summarized on Table 5.4.  

 
Table 5.4 Surface Complexation Modeling for Arsenic 
 

Adsorbent Ratio Model Reference 
am-Fe(OH)3

Goethite 
Magnetite 

As(V) 10–100×10-6 M 
Fe(III) 3.4–56.2×10-4 M 
As/Fe = 0.0018– 0.3 

DLM by FITEQL Dixit and Hering 2003 

am-Fe(OH)3 As(V,III)3.3–133×10-8 M    
Fe(III)         5.00×10-5 M 
As/Fe = 6.6×10-4–2.7×10-2

DLM by MINEQL+

 
Wilkie and Hering 1996 

2-line ferrihydrite As      53–210×10-6 M 
Fe(III) 1.7×10-3 M 
As/Fe = 0.03–0.12 

DLM by FITEQL Swedlund and Webster 1999 

am-Fe(OH)3 As(V) 0.05–1.33×10-5 M 
Fe(III) 0.05–1.0×10-3 M 
As/Fe = 0.0266–50 

DLM  
(generalized two layer model) 

Dzombak and Morel 1990 

am-Fe(OH)3

(Ferrihydrite) 
As(V) 0.5–2.0×10-4 M 
Fe(III) 1.0–2.0×10-3 M 
As/Fe = 0.025–0.2 

TLM 
Modified Langmuir isotherm 
Equilibrium partition 

Hsia et al. 1992 

am-Fe(OH)3 As    1.3µM(5) 0.7µM(3) 
Fe(III) 18µM(5) 54µM(3) 
As/Fe = 0.07 (V), 0.01 (III) 

TLM by MINEQA2 
Langmuir isotherm 

Meng et al. 2000 

am-Fe(OH)3 
am-Al(OH)3

As   0.01–1.0×10-3 M 
Me  4.0, 0.5g/L 

TLM & CCM by FITEQL Goldberg and Johnston 2001 

Goethite As(V) 8.8–34×10-6 M 
Fe(III) 2.6×10-3 M 
As/Fe = 0.0034–0.013 

BSM,TLM,CCM, by FITEQL Gao and Mucci 2001 

Goethite As(V)  0.001 M 
Fe(III) 0.112 M (10 g/L) 
As/Fe = 0.0088 

CCM by FITEQL 
 

Grossl et al. 1997 

Goethite As(III) 1.3–2.6×10-1 M    
Fe(III)        2.8×10-2 M 
As/Fe = 4.6–9.2  

CCM by FITEQL Manning et al. 1998 
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Table 5.4 (Continued) 

Adsorbent Ratio Model Reference 
Goethite 
Gibbsite 

As(V) 1.33–2.66×10-4 M 
Me     0.028 M (2.5 g/L) 
As/Fe = 0.0048–0.0096 

CCM by FITEQL Manning and Goldberg 1996 

Goethite, gibbsite, 
am-Al(OH)3

As  0.27–1.07×10-3 M 
Me        ? 

CCM by FITEQL Goldberg 1986 

Goethite As(V) 1.07×10-3 M 
Goethite 223 m2/L 

CD-MUSIC Hiemstra and van Riemsdijk 1999 

Gibbsite As(III) 13.4×10-3 M 
Me      20 g/L 

CD-MUSIC/TPM Weerasooriya et al. 2003 

Clay minerals 
am-Al(OH)3

As(V,III)  4.0×10-7 M 
Al(III)      3.2×10-2 M 
As/Al = 1.25×10-5  

CCM by FITEQL Manning and Goldberg 1977 

am-Fe(OH)3 
 

As(V) 4.7×10-7 M 
Fe(III) 5.0×10-5 M 
As/Fe = 0.0094  

SCM by MINEQL+

Simple isotherm model 
Hering et al. 1996 

Aluminum oxide 
(γ-Al2O3) 

As(V,III) 1–20×10-3 M 
Al(III)  1–5×10-2 M 
As/Al = 0.02–2.0 

SCM (for proton) 
Langmuir isotherm 

Ghosh and Yuan 1987 

 

5.3.3 Arsenic Sorption Kinetics 

The thermodynamic sorption equilibrium model (surface complexation model) 

can predict the final equilibrium state of the system. However, this equilibrium model 

cannot predict the pathway or rate of sorption toward the equilibrium state. The sorption 

kinetic model allows the prediction of reaction rates and provides insight to the reaction 

pathway or mechanism. Especially, with respect to coupling this sorption model with a 

coagulation kinetic model, the sorption kinetic model should be developed to provide 

surface charge evolution versus time, which is related to a collision efficiency parameter 

in coagulation modeling. 

Both transport and chemical reaction processes can affect the sorption rates at the 

solid-liquid interface. Transport processes include: (a) transport in the solution phase, (b) 

transport across the liquid film at the solid-liquid interface (film diffusion), (c) transport 

in liquid-filled macropores, and (d) particle diffusion processes. The processes of (a) to 

(c) are nonactivated diffusion processes and occur in mobile regions. The process (d) 
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includes diffusion of sorbate occluded in micropores (pore diffusion) and along pore-

wall surfaces (surface diffusion) and diffusion processes in the bulk of the solid, all of 

which are activated diffusion processes (Crittenden et al. 1987; Tien 1994). Pore and 

surface diffusion within the immediate region can be referred to as intraparticle diffusion 

and diffusion in the solid can be called interparticle diffusion (Tien 1994).  

The slowest of the chemical reactions and transport processes is the rate limiting 

step (Sparks 1999). In this study, it is assumed that the limiting step of arsenic sorption 

onto hydrous ferric oxide is the transport process of intraparticle diffusion through 

particle pores or surfaces (Fuller et al. 1993). That is, transported arsenic can be rapidly 

adsorbed on particle effective sites and reaches equilibrium state with local 

concentrations of arsenic. The traditional simplified sorption kinetic models include: the 

ordered models (i.e., zero-, first-, and second-order), the Elovich equation, and the 

Parabolic equation (Sparks 1999). Recently, enhanced computational equipment and 

numerical schemes have been developed and applied to the diffusion models based on 

the numerical solution of partial differential equations. In a number of studies, it has 

been shown that several simplified kinetic models describe rate data well, based on 

correlation coefficients and standard errors of the estimate. Despite this advantage of the 

simplified sorption kinetic models, there is often not a consistent relationship between 

the equation and physicochemical properties of the adsorbents (i.e., size, porosity, 

density, initial concentration, volume, mass, and a surface diffusion coefficient) and 

adsorbate (i.e., liquid film mass transfer coefficient). Another problem with some of the 
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simplified kinetic models is that they are empirical and no meaningful universal rate 

parameters can be obtained. 

The finding that slower reactions at the particle/liquid interface can be described 

by diffusion models indicates that the kinetics of chemical processes cannot be 

considered separately from physically limited transport phenomena. Thus, such a 

combination of processes cannot be treated using simplified sorption kinetic models. If 

one assumes that there are sites that cannot be reached directly from the liquid phase, but 

can be reached after the adsorbate has undergone adsorption and desorption at other sites, 

one cannot separate chemical kinetics from diffusion limited kinetics. The overall kinetic 

process obeys a diffusion equation since diffusion is the rate limiting process.  

Pore Diffusion Model (PDM) 

A pore diffusion model operates if the intraparticle mass transfer is due only to 

the diffusion of adsorbates through the pore fluid. Assuming the simple case of single 

species adsorption, Fick’s law application, and spherical shape of adsorbent, the 

macroscopic conservation equation is derived as,  

 2
2

1
p p p p

p p p

c q cD r
t t r r r

ε ρ
⎛ ⎞∂ ∂ ∂ ∂

+ = ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (5.14)

Initial condition 0 0,  0 p pc t= = r a≤ ≤  (5.15)

Boundary conditions 0 0 p
p

c t r
r

∂ ,  0= > =
∂

 (5.16)

 ( ) 0, f b p p
p

ck c c D t r a
r p

∂
− = >

∂
=  (5.17)
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where c is the adsorbate concentration in the pore fluid and q is the adsorbate 

concentration of the adsorbed phase corresponding to any given point within the particle, 

kf  is the liquid film mass transfer coefficient, Dp is the pore diffusion coefficient, and cb 

is the concentration in bulk aqueous phase. It should be noted that the equation of the 

PDM still requires that one specify appropriate initial and boundary conditions as well as 

an additional relationship between c and q.  

In the diffusion kinetic models (i.e., PDM and SDM), q is assumed to be in 

equilibrium with c in the adjacent pore water with the isotherm. The equations are often 

used to describe the relationship between c and q including the Langmuir isotherm (Eq. 

(5.18)) and the Freundlich isotherm (Eq.(5.19)), 

 
1

m eq

eq

q bcxq
m bc

= =
+

 (5.18) 

and 

 1/ n
eq

xq Kc
m

= =  (5.19) 

where x (µg) is the mass of adsorbate sorbed at time t, m (g) is the mass of adsorbent,  

(µ/L) is the adsorbate equilibrium concentration, q

eqc

m (µg/g) is a constant indicating the 

adsorbate sorbed completely required to saturate a unit mass of adsorbent, b (L/µg) is a 

constant related to the energy of adsorption, K (L/µg) is an experimental constant 

indicating the adsorption capacity of adsorbent, and n (dimensionless) is an experimental 

constant indicating the sorption intensity of adsorbent. Considered together with the 

mass balance of adsorbate (c) in the solid-liquid system, Eq. (5.14) is combined with Eqs. 

(5.15) to (5.17) and either Eq. (5.18) or (5.19) for solving c and cb at different time using 
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various numerical methods (i.e., finite difference method using explicit or implicit 

scheme and orthogonal collocation method).  

Surface Diffusion Model (SDM) 

In the case in which the intraparticle mass transfer is effected through the 

diffusion of the adsorbed molecules along pore-wall surfaces, for single species 

adsorption with spherical particles and assuming that Fick’s law applies, the intraparticle 

mass transfer is described as, 

 2
2

1p
s p

p p p

c q qD r
t t r r r

ε
ρ

⎛ ⎞ ⎛

p

⎞∂ ∂ ∂ ∂
+ =⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (5.20) 

In the previous pore diffusion model scheme, Eq. (5.14) can be replaced by Eq. (5.20) in 

the surface diffusion model (SDM). Similar to PDM, the SDM equation can be readily 

solved with several conditions such as an initial condition (Eq. (5.15)), boundary 

conditions (Eqs. (5.16) and (5.17)), and a relationship between c and q (Eq. (5.18) or 

(5.19)).  

 

5.4 Results and Discussion 

5.4.1 Arsenate Sorption Equilibrium 

A surface complexation model, generalized two-layer model (DLM), was used to 

predict the As(V) sorption pH envelops (Dzombak and Morel 1990). Characteristic 

parameters for HFO (i.e., stoichiometry, specific surface area, site density, and As(V) 

sorption density) were used as recommended by several researchers (Dzombak and 

Morel 1990; Wilkie and Hering 1996; Dixit and Hering 2003) and these parameters are 
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displayed as Table 5.5. In addition to the HFO physico-chemical parameters, two sets of 

thermodynamic data were provided in this surface complexation modeling; aqueous 

protonation constants and intrinsic surface complexation constants. A generalized two-

layer model (DLM) has two advantages to use as a surface complexation modeling tool; 

compared to other surface complexation models, the least modeling parameters are 

needed and the surface potential can be easily determined from the diffuser layer 

boundary as shown in Figs. 5.1 and 5.4. 

For surface complexation modeling, VMINTEQ/MINTEQA, FITEQL, and 

PHREEQC can be introduced for this purpose. VMINTEQ/MINTEQA and PHREEQC 

are widely used as public domain programs and FITEQL is the most popular commercial 

software in surface complexation modeling due to a parameter estimation technique for 

determining equilibrium constants using experimental data. In this study, PHREEQC 

was introduced to couple the surface complexation model with sorption kinetic model. 

Furthermore, although both MINTEQ/VMINTEQ and FITEQL have various surface 

complexation model techniques (i.e., CCM, BSM, TLM, DLM, TPM), it is impossible to 

access these program with external input and output files to interface with other 

programs (i.e., MATLAB and FORTRAN). Using PHREEQC, one can access external 

programs with user-made data file and obtain results with user-selected output file. Thus, 

to accomplish coupling, PHREEQC is necessary to combine surface complexation 

model with a sorption kinetic model and a coagulation model.  

According to an EXAFS study for As(V) sorption onto goethite (Fendorf et al. 

1997), it was reported that the monodentate complex was mostly found at low 
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As(V)/surface ratio while the bidentate complex was prevalent at high As(V)/surface 

ratio. In addition, the bidentate-binuclear complexes were found to be in the greatest 

proportion at the highest As(V)/surface ratio. Furthermore, surface complexation process 

between arsenate and goethite surface could be subdivided into two steps; a relative fast 

step forming an inner-sphere monodentate surface complex and the subsequent slow step 

resulting an inner-sphere bidentate surface complex. Thus, although both inner-sphere 

monodentate and bidentate complexes binding As(V) onto HFO surface species has been 

found by experimental studies using EXAFS (Extended X-ray Absorption Fine 

Structure) spectroscopy (Waychunas et al. 1993; Manceau 1995; Fendorf et al. 1997), 

inner-sphere bidentate surface complexation reactions (Eqs. (5.31) and (5.32) in Table 

5.6) were excluded and only monodentate complexations were considered in this study 

as sufficient information on the proportion of monodentate and bidentate surface species 

was not available. However, the equilibrium constants for the inner-sphere bidentate 

complexation can be estimated through a numerical parameter estimation scheme (i.e., 

least square error method) with sufficient experimental data but this is beyond scope of 

this study. 

 

Table 5.5 HFO Surface Parameters for Surface Complexation Modeling (DLM) 

                Parameter           Value 
Stoichiometry 89g HFO/mol Fe 
Specific surface area 600 m2/g 
As(V) sorption density 0.24 mol As(V)/mol Fe 
 2.6 sites/nm2

Weak sorption sites  (≡XwOH) 0.20   mol sites/mol 
Strong sorption sites (≡XsOH) 0.005 mol sites/mol Fe 
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Table 5.6 Reaction of As(V) Surface Complexation Modeling onto the HFO 

[1] Aqueous protonation constant Log k  
Acid-Base Reactions 
H3AsO4 + 2H+ + 2e- ⇔  H3AsO3 + H2O 
 
HAsO4

-2 ⇔ AsO4-3 + H+

H2AsO4
- ⇔ AsO4

-3 + 2H+

H3AsO4   AsO⇔ 4
-3 + 3H+

 
18.90 

 
-11.60 
-18.35 
-20.60 

(5.21) 

(5.22) 
(5.23) 
(5.24)

[2] Intrinsic surface complexation constant Log k  
Surface protonation constant 
≡XOH + H+   ≡XOH⇔ 2

+

≡XOH          ⇔  ≡XO− + H+

 
Monodentate As(V) sorption 
≡XOH + AsO4

−3 + 3H+ ⇔  ≡XH2AsO4 + H2O 
≡XOH + AsO4

−3 + 2H+ ⇔  ≡XHAsO4
− + H2O 

≡XOH + AsO4
−3 + H+   ⇔  ≡XAsO4

−2 + H2O 
≡XOH + AsO4

−3           ⇔  ≡XAsO4
−3

 
Bidentate As(V) Sorption 
2≡XOH + AsO4

−3 + 3H+ ⇔   ≡X2HAsO4 + 2H2O 
2≡XOH + AsO4

−3 + 2H+ ⇔   ≡X2AsO4
− + 2H2O 

 
7.29 

-8.93 
 
 

29.98 
24.43 
18.10 
10.58 

 
 

38.69a)

30.71a)

(5.25) 
(5.26) 

(5.27) 
(5.28) 
(5.29) 
(5.30) 

(5.31) 
(5.32)

   a) Data from As(V) sorption onto goethite study (Grossl et al. 1997) 
 

5.4.2 ZPC Calculation Using a Surface Complexation Model 

Surface protonation reactions of Eqs. (5.25) and (5.26) define the charging 

behavior of mineral surfaces. The point of zero charge (ZPC) for hydrous ferric oxide in 

the absence of specific adsorption is defined as the pH where the concentration of 

≡XOH2
+ species equals the concentration of ≡XO− and the surface is neutrally charged. 

In the absence of adsorption, solutions of pH less than the ZPC will be positively 

charged while solutions of pH greater than ZPC will be negatively charged. 
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By using a surface complexation model, each surface species concentration 

([≡XOH2
+] and [≡XO−]) was calculated for various ionic strength conditions (0.01M < I 

< 0.1M) (see Figs. 5.5 to 5.7) and the point of zero charge (pHZPC) was determined by Eq. 

(5.33). 

 { w +
2[ X OH ] [ XO ]

2
F
a

σ −= ≡ − ≡ }  (5.33) 

As a result, the pHZPC of freshly generated HFO was found to be 8.15 (see Fig. 5.8) and 

this pHZPC value was in the range of 7.9 ~ 8.2, reported by several experimental studies. 

Also, the point of zero charge for HFO can be calculated by a simple formula (Eq. 

(5.34)) with two acid-base equilibrium constants in the Eqs. (5.25) and (5.26) (Stumm 

and Morgan 1996) and the ZPC value was determined to be 8.11.  

 (int) (int)
1pH ( )
2ZPC pK pK+ −= +  (5.34) 
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Figure 5.5 pC-pH diagram for HFO surface species at various ionic strength 
using PHREEQC (I = 0.1M) 
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Figure 5.6 pC-pH diagram for HFO surface species at various ionic strength 
using PHREEQC (I = 0.01M) 
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Figure 5.7 pC-pH diagram for HFO surface species at various ionic strength 
using PHREEQC (I = 0.001M) 
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Figure 5.8 pC-pH diagram for HFO surface charge density at various ionic strength 
using PHREEQC 

 

5.4.3 As(V) Sorption pH Envelop Simulation Using Surface Complexation Model 

The sorption surface complexation modeling of As(V) onto HFO surface was 

conducted using PHREEQC public domain software. The sorption results using a 

surface complexation model were compared to literature data (Hsia et al. 1992) and 

displayed in Figs. 5.9 to 11. For this surface complexation modeling, a generalized two-

layer model (DLM) was used with model parameters of Table 5.5 and equilibrium 

constants of Table 5.6. These results were displayed as As(V) sorption edge (pH 

envelop) diagram for the initial sorption conditions; As(V) concentrations ranging from 

5×10−5 M to 2×10−4 M, HFO concentration of 1×10−3 M, and  ionic strength (I) of 

1×10−2 M. The arsenate loading ratio, [As]/[Fe] for this sorption equilibrium modeling 
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was in the range of 0.05 to 0.2, which range represents a moderate As(V) sorption 

loading condition as reported by other sorption studies in Table 5.4.  

Recently, the metal and/or ligand sorption modeling studies using a surface 

complexation model have been conducted and well predicted under a moderate 

adsorbate loading rate, ionic strength, and pH range. However, when the sorption 

loading rate increased, a surface complexation model may be not available to use as a 

sorption prediction technique due to surface precipitation. Although a general surface 

complexation model exhibits a saturation in sorption capacity at mono-layer surface 

coverage, some sorption experimental data show a continuous increase in sorption 

density  instead of showing the saturation in sorption capacity (Farley et al. 1985). Thus, 

the As(V) sorption simulation using surface complexation modeling in this study 

(moderate sorption conditions of initial [As]/[Fe] ratio of 0.05 ~ 0.2 and ionic strength 

(I) of 0.001 ~ 0.1) was used to predict the As(V) sorption behavior without a surface 

precipitation. 
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Figure 5.9 As(V) sorption envelop modeling using DLM  

([As]=2.0×10-4 M, [Fe]=1.0×10-3 M, I=0.01M) (Data from Hsia (1992))  
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Figure 5.10 As(V) sorption envelop modeling using DLM  

([As]=1.0×10-4 M, [Fe]=1.0×10-3 M, I=0.01M) (Data from Hsia (1992))  
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Figure 5.11 As(V) sorption envelop modeling using DLM  

([As]=0.5×10-4 M, [Fe]=1.0×10-3 M, I=0.01M) (Data from Hsia (1992))  
 
 

5.4.4 ZPC Evolution during As(V) Sorption onto HFO Surface  

HFO surface species and their concentrations of As(V) sorption equilibrium state 

was derived via surface complexation modeling which was described in the above 

section. As shown in Table 5.6, theoretical HFO surface species can be expected as, 

≡XOH2
+, ≡XOH, ≡XO−, ≡XH2AsO4, ≡XHAsO4

−, ≡XAsO4
−2, ≡XAsO4

−3, ≡X2AsO4
−, and  

≡X2HAsO4. The pC-pH diagrams for surface species of HFO at various As(V) sorption 

loading conditions are displayed in Figs. 5.12 to 5.14. The bidentate surface 

complexation reactions (see Eqs. (5.31) and (5.32)) between HFO surface and As(V) 

were excluded in this surface complexation modeling as the monodentate complex is 

dominant in the moderate arsenic loading ratios adopted in this study. It was found that 

the surface species concentrations were dependent on the initial As(V) loading 
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conditions and the charged surface species (≡XOH2
+, ≡XO−, ≡XHAsO4

−, ≡XAsO4
−2, and 

≡XAsO4
−3) played a key role in determining the surface charge density or charge 

potential. For a general As(V) sorption equilibrium modeling study, the surface charge 

density could be determined by using these surface species that affect the surface charge 

or surface potential as,  

 
+ 3
2 4

3 2 4

[ XO ]+[ XOH ]+[ XAsO ]+[ XAsO ]
2 +[ XHAsO ]+[ X AsO ]
F
a

σ
− −

− −

⎧ ⎫≡ ≡ ≡ ≡⎪ ⎪= ⎨ ⎬
≡ ≡⎪ ⎪⎩ ⎭

2
4
−

 (5.35) 

After excluding the bidentate complexation, the surface charge density of HFO on which 

As(V) is adsorbed can be calculated as, 

 { }+ 3 2
2 4 4[ XO ]+[ XOH ]+[ XAsO ]+[ XAsO ]+[ XHAsO ]

2
F
a

σ − − −= ≡ ≡ ≡ ≡ ≡ 3
−  (5.36) 

Using the Eq. (5.36), the surface charge density curves for various As(V) 

sorption loading conditions (initial [As]/[Fe] ratio of 0 ~ 0.2) were calculated and 

displayed in Fig. 5.15. The ZPC values of HFO were determined by letting the surface 

charge density of Eq. (5.36) be zero. From the Fig. 5.15, the ZPC value of HFO was 

shifted to the left side on the x-axis having lower pHZPC value and the shifting magnitude 

was proportional to the amount of As(V) adsorbed onto the HFO surface. Similar ZPC 

reduction of HFO for anion sorption (As(III) and As(V)) has been reported by Jain et al. 

(1999). This ZPC reduction indicates that the inner-sphere complex mechanism is 

prevalent in the adsorption of As(V), rather than outer-sphere complex reactions of Eq. 

(5.37) and (5.38) in Table 5.7.  
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Table 5.7 As(V) Surface Complexation Mechanisms on HFO Surface 

 
[1] Inner-sphere complexation 
                                 ≡XOH + AsO4

−3 + 3H+  ⇔  ≡XH2AsO4 + H2O (5.27)
                                 ≡XOH + AsO4

−3 + 2H+  ⇔  ≡XHAsO4
− + H2O (5.28)

                                 ≡XOH + AsO4
−3 + H+    ⇔  ≡XAsO4

−2 + H2O (5.29)
                                 ≡XOH + AsO4

−3             ⇔  ≡XAsO4
−3  (5.30)

 
 
[2] Outer-sphere complexation 
 ≡XOH + AsO4

−3 + 3H+  ⇔  ≡XOH2
+ ·····H2AsO4

−  (5.37)
 ≡XOH + AsO4

−3 + 2H+  ⇔  ≡XOH2
+ ·····HAsO4

−2  (5.38)
 

 

The outer-sphere complexation (low-affinity specific adsorption) of anions 

would result in increased pHZPC values. Physically adsorbed counter ions (As(V) anion) 

in the diffuse double layer would induce additional positive charge on the HFO surface 

by hydroxyl desoption (see Fig. 5.3 (a) and Table 5.7). Conversely, the inner-sphere 

complexation (high-affinity specific adsorption or chemisorption) of As(V) anion 

adsorption onto the HFO surface leads to lowering the pHZPC value, resulting in As(V) 

chemical coordination to the surface metal ion. That is, the adsorbed anion species 

becomes a part of the surface with high-affinity specific adsorption and translates its 

charge to the solid. Thus, the lowering of the pHZPC results from the inner-sphere 

complexation of an anion onto the HFO surface (Singh and Uehara 1998) (see Fig. 5.3 

(b), (c), and(d) and Table 5.7). From the HFO ZPC reduction during the sorption of 

As(V) (one of the anionic species), it is expected during As(V) sorption onto HFO that 

surface charge or potential is altered, changing the stability of HFO colloidal particles, 

and impacting HFO colloid coagulation kinetics.  
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Figure 5.12 HFO surface species modeling after As(V) sorption using DLM  

([As]=2.0×10-4 M, [Fe]=1.0×10-3 M, I=0.01M) 
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Figure 5.13 HFO surface species modeling after As(V) sorption using DLM  

([As]=1.0×10-4 M, [Fe]=1.0×10-3 M, I=0.01M) 
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Figure 5.14 HFO surface species modeling after As(V) sorption using DLM  
([As]=0.5×10-4 M, [Fe]=1.0×10-3 M, I=0.01M) 
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Figure 5.15 Surface charge evolution after As(V) sorption onto HFO using DLM  
([Fe]= 1.0×10-3 M, I=0.01M) 
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5.4.5 Arsenate Sorption Kinetics 

In this study, the intrapaticle transport expressed by the pore diffusion model of 

Eq. (5.14) and surface diffusion model of Eq. (5.20) were introduced to simulate arsenic 

sorption kinetics. These partial differential equations of Eqs. (5.14) and (5.20) can be 

solved by several numerical techniques such as  the orthogonal collocation method and 

the finite difference method. To use the finite difference method, these partial 

differential equations were discretized by replacing the derivatives in the Eqs. (5.14) and 

(5.20) with finite difference approximations at each point in the interval of integration 

(Constantinides and Mostoufi 1999).  

For pore diffusion model of Eq. (5.14), the discretization using an explicit 

scheme was derived as, 

For 1 ≤ j ≤ N 

 0
, 1 1, , 1,* 2

0

1 2 1
( )

b
j m j m j m j m

p

c t r rc c c
q r r rρ

+ + +
+ + +

+ ++ + + c+
−

⎧ ⎫⎡ ⎤ ⎡ ⎤∆ ∆ ∆⎪ ⎪= + − + −⎨ ⎬⎢ ⎥ ⎢ ⎥∆ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
 (5.39) 

For  j = N + 1 
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(5.40) 

 
The dimensionless variables are defined as, 
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where 0( b )f c  is the sorption isotherm function of Eq. (5.18) or (5.19), and  is the 

dimensionless value of the isotherm function. Further, for the surface diffusion model of 

Eq. (5.20), the results of the explicit discretization were represented by the following 

equations, 

( )F c+

For  1j =

 1, 1 1, 2,26 1
( ) ( )m m

t tq q
r r

+ +
+ +

+ + +

⎡ ⎤ ⎡∆ ∆
= − − +⎢ ⎥ ⎢∆ ∆⎣ ⎦ ⎣

2 mq+⎤
⎥
⎦

 (5.41) 

 
For 2 ≤ j ≤ N 

 , 1 1, , 1,2 2 21 2 1 1
( ) ( ) ( )j m j m j m j m

t r t t rq q q
r r r r r

+ + + + +
+ + +

+ ++ + + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤∆ ∆ ∆ ∆ ∆
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q+
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For j = N + 1 
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(5.43) 

 
After the introduction of the finite difference scheme, the partial differential equations 

were converted to a set of simultaneous nonlinear algebraic equations and could be 

easily integrated.  

To verify the As(V) sorption kinetic model adopted in this study, model 

simulation results were compared with experimental data from the literature 

(Thirunavukkarasu et al. 2003). These arsenate sorption kinetic experiments were 

conducted under the conditions of an initial As(V) concentration of 100 µg/L, granular 

ferric hydroxide of 2 g/L, particle size of 0.8 to 1.2 mm in diameter, and solution pH of 

7.6. In addition, the model parameters used simulate sorption kinetics were particle 
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porosity of 0.75 (Thirunavukkarasu et al. 2003), particle density of 1.32 g/cm3 (Driehaus 

et al. 1998), and the Freundlich isotherm parameters of K = 10.3 L/µg and n = 1.5 at 

solution pH of 7.6 (Thirunavukkarasu et al. 2003). Further, from the parameter 

estimation technique based on a least-square error method, the liquid film mass transfer 

coefficient ( ) and the pore diffusion coefficient ( ) were found as 1.82×10fk pD -5 m/sec 

and 3.77×10-15 m2/sec, respectively. The results of the model verification for arsenic 

sorption kinetics is displayed in Figure 5.16. Deviations between the experimental and 

model prediction data were compared using statistical analysis represented by the square 

of the correlation coefficient ( 2R ) and the square root of the sum-of-squares of the errors 

( SSE ), with 2R  = 0.9385 and SSE  = 0.2496.    

 

Time (Hour)

0 1 2 3 4 5 6

[A
s(

V)
] t /

 [A
s(

V)
] in

itia
l

0.0

0.2

0.4

0.6

0.8

1.0 Model Prediction
Experiment Data

kf  = 1.82 x 10-5  m/sec

Dp = 3.77 x 10-15 m2/sec 

 
 

Figure 5.16 The verification of As(V) sorption kinetics with experiment data 
(As(V)0 = 100 µg/L, granular ferric hydroxide = 2.0 g/L, pH = 7.6) 
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Another model verification was conducted by the comparison of model 

prediction values with the literature experimental data for arsenate adsorption onto the 

hydrous ferric oxide solid particles (Thirunavukkarasu 2002). The model parameters 

used were particle porosity of 0.5 (Axe and Anderson 1995), particle density of 3.57 

g/cm3 (Dzombak and Morel 1990), and the Freundlich isotherm parameters of K = 58.0 

L/µg and n = 1.1 at solution pH of 7.6 (Thirunavukkarasu 2002). The liquid film mass 

transfer coefficient ( ) and the pore diffusion coefficient ( ) used in this arsenic 

sorption on hydrous ferric oxide study were 1.82×10

fk pD

-5 m/sec and 3.77×10-15 m2/sec, 

respectively, which were derived from the previous arsenic sorption kinetic study using 

granular ferric hydroxide. The kinetic modeling results are displayed in Fig. 5.17.  
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Figure 5.17 The verification of As(V) sorption kinetics with experiment data 
(As(V)0 = 100 µg/L, hydrous ferric oxide = 0.2 g/L, pH = 7.6) 
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From the statistical analysis, the deviations between the experimental and 

simulation data were 2R  = 0.9789 and SSE  = 0.0747. From these statistical analyses, 

the sorption kinetic model is shown to predict well the experimental data with high 

accuracy. 

To apply and extend this arsenic sorption kinetic model to this study, model 

parameters were adopted from literature and summarized in Table 5.8. Two major 

parameters used in the sorption kinetic modeling are, the liquid-particle mass transfer 

coefficient  and the pore diffusion coefficient ( ), which were 1.82×10fk pD -5 m/sec and 

3.77×10-15 m2/sec, respectively. These two parameters were derived from the previous 

arsenic sorption kinetic modeling studies using granular ferric hydroxide and hydrous 

ferric oxide. By assuming that q is to be in equilibrium with c in the adjacent pore water 

with the isotherm, c and q can be coupled with the sorption isotherm equation and the 

isotherm model parameters required to solve the As(V) sorption kinetics. In this study, 

the Freundlich isotherm of Eq. (5.19) was introduced and these two isotherm parameters 

derived from the literature (Pierce and Moore 1982). 

Finally, As(V) sorption kinetic modeling was conducted by using Eqs. (5.14)

/(5.20) and (5.18), and model parameters displayed in Table 5.8. The kinetic model 

results of As(V) sorption onto HFO for various initial As(V) loading ratios (As(V)/Fe) 

ranging in 0.05 ~ 0.2 were calculated and displayed in Fig. 5.18.  
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Table 5.8 Model Parameters Used for As(V) Sorption Kinetics 

Parameters Values Reference 

 
HFO porosity ( pε ) 0.5 (Axe and Anderson 1995) 

HFO density ( pρ ) 3.57 (g/cm3) (Dzombak and Morel 1990) 

Mass transfer coefficient ( ) fk 1.82×10-5 (m/sec)  

Pore diffusion coefficient ( ) pD 3.77×10-15 (m2/sec)  

Freundlich isotherm parameters K = 55.34 (L/µg) (Pierce and Moore 1982) 

    n =   3.67  
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Figure 5.18 As(V) sorption kinetics for various initial As(V) concentrations  
([Fe] = 1.0×10-3 M and pH = 7.0) 
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5.4.6 Surface Charge/Potential Evolution 

During arsenic sorption on hydrous ferric oxide surface, the surface charge 

(potential) of the hydrous ferric oxide is altered due to protonation, deprotonation, and 

surface complexation of ionic species (see Table 5.6). Considering only the monodentate 

complexation mechanism between As(V) and hydrous ferric oxide surface, the surface 

charge (potential) is calculated from the summation of the surface charge determining 

ions using Eq. as, 

 { }+ 2
2 4 4 [ XO ]+[ XOH ]+[ XHAsO ]+[ XAsO ]+[ XAsO ]

2
F
a

σ − − −= ≡ ≡ ≡ ≡ ≡ 3
4

−  (5.36) 

Each species concentration in Eq. (5.36) can be determined by the surface complexation 

modeling between As(V) and HFO surface. Further, using the local equilibrium 

assumption, surface species concentrations at each time step can be derived by coupling 

the surface complexation equilibrium model with the As(V) sorption kinetic model 

mentioned in previous sections. The results of hydrous ferric oxide surface potential 

kinetic modeling during As(V) sorption for various initial As(V) loading ratio 

(As(V)/Fe) ranging in 0.05 ~ 0.2 were obtained and displayed in Figs. 5.19 to 22.  
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Figure 5.19 The surface potential kinetics for various initial As(V) concentrations  
([Fe] = 1.0×10-3 M, pH = 7.0, I = 0.01) 
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Figure 5.20 The kinetics of As(V) sorption and surface potential  
([As(V)o] = 0.5×10-4 M,  [Fe] = 1.0×10-3 M, pH = 7.0, and I = 0.01) 

 



 174

Time (min)

0 5 10 15 20 25 30

Su
rfa

ce
 P

ot
en

tia
l (

m
Vo

lt)

-20

0

20

40

60

80

A
s(

V
) S

or
be

d 
( µ

M
)

0

20

40

60

80

100

HFO Surface Potential
As(V) Sorbed on HFO

 
 

Figure 5.21 The kinetics of As(V) sorption and surface potential  
([As(V)o] = 1.0×10-4 M,  [Fe] = 1.0×10-3 M, pH = 7.0, and I = 0.01) 
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Figure 5.22 The kinetics of As(V) sorption and surface potential  
([As(V)o] = 2.0×10-4 M,  [Fe] = 1.0×10-3 M, pH = 7.0, and I = 0.01) 



 175

As shown in Figs. 20 to 21, the HFO surface potential decreases with As(V) 

anion sorption time for all As(V) loading ratios. It was found that the surface potential 

for relatively low As(V) loading ratio, As(V)/Fe of 0.05 approached a minimum value 

but maintained a positive surface potential of 13.8 mVolt (see Fig. 5.20). However, for 

medium to high As(V) loading conditions ranging in 0.1 ~ 0.2 of As/Fe (see Figs. 5.21 

to 22), the surface appeared to the negative surface potentials of -20.9 mVolt and -40.3 

mVolt, respectively. It is expected that the surface potential kinetics affect the particle 

surface energy or surface force due to double-layer electrostatic repulsion which is 

directly related to the particle stability ratio (W).  

To investigate the relationship between As(V) anion sorption on hydrous ferric 

oxide particle surface and particle interactions such as repulsive energy, attractive 

energy, and total energy, these particle interactions were theoretically calculated during 

As(V) anion sorption kinetics. For equal size spherical particles, the electrostatic diffuse 

double-layer repulsive energy (VR) and van der Waals attractive energy (VA) were 

calculated as (Stumm and Morgan 1996),  

 T RV V VA= +  (5.44) 

 
22

( 2 )
R

( )64V tanh
4

p HdB

p B

r zek T
R k T

e κ δδ ψπ
κ

− −⎧ ⎫+ ⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟
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 p

p

R
s

r
=  (0.1) 

where,        = Boltzmann constantT = absolute temperature Bk
κ  = reciprocal thickness of double layer  

pr  = particle radius 
pR  = distance between centers of two spheres 

δ  = thickness of (Stern) double layer, inner most layer of ions plastered  
            against the surface of a particle 
z  = charge number 
e  = elementary charge 

dψ  = surface potential at the plane where the diffuse double layer begins 
H  = shortest interaction distance between two spherical particles 
A  = Hamaker constant 

 

The surface potential (ψ) is directly related to double layer electrostatic repulsive 

energy (VR) as shown in Eq. (5.45). In general, the double layer electrostatic repulsive 

energy (VR) decreases in proportion to the separation distance and the VR decreases 

approximately in proportion to the square of the surface potential (ψ2) (Stumm and 

Morgan 1996). In addition, ionic strength and electrolyte charge number affect the 

repulsive energy which is directly proportional to net surface potential energy (VT).  

The surface potential energy versus particle separation distance at various arsenic 

loading ratios was calculated and is displayed in Figs. 5.23 to 5.28. The initial surface 

potential energy before As(V) sorption was calculated and the results displayed in Fig. 

5.23. The initial particle interaction energy calculation was conducted under the 

conditions of, [Fe] = 1.0×10-3 M, pH = 7.0, I = 0.01 M, z = 1.0, particle diameter of 1 µm, 

and ψo = 61.2 mVolt. Other modeling conditions were As(V)o = 5×10-5 M, HFO = 

1.0×10-3 M, pH = 7.0, I = 0.01 M, z = 1.0, particle diameter of 1 µm, and ψo = 13.8 ~ 

42.1 mVolt. 
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The energy barrier is characterized by the maximum of the particle interaction 

energy curve (VT,max) and the energy barrier or VT,max which is strongly related to the net 

repulsive energy (VR). As shown in Figs. 5.23 to 5.28, the energy barrier or VT,max 

decreased as surface potential (ψ) decreased or the amount of As(V) anion sorbed on the 

particle surface increased. Further, as the sorption time elapsed 1800sec (see Fig. 5.26), 

the repulsive energy (VR) was minimized and the net surface potential energy (VT) is 

approached the same magnitude of van der Waals attractive energy (VA). Thus, it was 

found that As(V) sorption on HFO particle surface can affect the surface potential 

evolution and thus the decreased surface potential/charge lowers the energy barrier 

height or the maximum of the particle interaction energy curve (VT,max). 
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Figure 5.23 Surface energy evolution during As(V) sorption onto HFO at 0 sec 

([Fe] = 1.0×10-3 M, pH = 7.0, I = 0.01 M, and ψo = 61.2 mVolt)  
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Figure 5.24 Surface energy evolution during As(V) sorption onto HFO at 360 sec 

([As(V)o]= 5×10-5 M, [Fe] = 1.0×10-3 M, pH = 7.0, I = 0.01 M, and ψo = 42.1 mVolt)  
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Figure 5.25 Surface energy evolution during As(V) sorption onto HFO at 900 sec 

([As(V)o]= 5×10-5 M, HFO = 1.0×10-3 M, pH = 7.0, I = 0.01 M, and ψo = 27.0 mVolt)  
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Figure 5.26 Surface energy evolution during As(V) sorption onto HFO at 1800 sec 

([As(V)o]= 5×10-5 M, [Fe] = 1.0×10-3 M, pH = 7.0, I = 0.01 M, and ψo = 13.8 mVolt)  
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Figure 5.27 Repulsive energy (VR) kinetics during As(V) sorption onto HFO 

([As(V)o]= 5×10-5 M, [Fe] = 1.0×10-3 M, pH = 7.0, and I = 0.01 M)  
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Figure 5.28 Total energy (VT) kinetics during As(V) sorption onto HFO 

([As(V)o]= 5×10-5 M, [Fe] = 1.0×10-3 M, pH = 7.0, and I = 0.01 M)  
 

 

Colloid stability (W) is characterized by the height of the net energy barrier 

(Vmax) or by a repulsive interaction energy (VR) and W is the factor by which particle 

collisions are slower than in the absence of an energy barrier (Stumm and Morgan 1995). 

Further, the conceptually defined colloid stability ratio (W) should correspond to the 

operationally determined particle collision efficiency α (α = 1/W). It should be noted that 

the colloid stability ratio W or collision efficiency α is strongly related to the height of 

the potential energy barrier Vmax. Thus, it is expected during As(V) sorption onto particle 

surface that surface charge (potential) is altered with kinetically controlled behavior and 

this change affects the stability of hydrous ferric oxide colloidal particles influencing 

colloid particle coagulation. 
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5.5 Conclusions 

 To enhance the predictive capability for arsenic sorption onto metal oxy-

hydroxide surfaces, a surface complexation equilibrium model using a thermodynamic 

equilibrium database and a sorption kinetic model using diffusion mass transport were 

introduce and coupled with local equilibrium assumption. The unified sorption model 

was developed as follows; First, a surface complexation model was introduced to predict 

arsenic sorption equilibrium behaviors (i.e., pH envelop and isotherm). A set of 

equations representing surface complexation model was solved with a public domain 

computer program. Second, arsenic sorption kinetic model based diffusion mass 

transport mechanism was introduced to predict arsenic sorption rate. Finally, the 

introduced surface complexation model was coupled with an arsenic sorption kinetic 

model using sorption local equilibrium assumption. To verify two arsenic sorption 

equilibrium and kinetic models, the model results were compared to experimental data 

from literature such as arsenic pH envelop data for equilibrium model verification and 

arsenic sorption rate data for kinetic model.  

The improved arsenic sorption modeling technique coupled with arsenic sorption 

kinetics and equilibrium could provide enhanced predictive capability for the exact 

arsenic sorption behavior especially related to arsenic sorption kinetics, equilibrium, and 

particle surface charge (potential) evolution over reaction time. Thus, it is expected 

during As(V) sorption onto particle surface that surface charge (potential) is altered with 

kinetically controlled behavior and this change affects the stability of hydrous ferric 

oxide colloidal particles influencing colloid particle coagulation. Furthermore, the 
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surface charge (potential) evolution can be used to couple two models of arsenic sorption 

and coagulation model. That is, a unified coagulation model will be coupled with arsenic 

sorption model using surface charge (potential) which is one of major variable 

parameters in collision efficiency calculation. 
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CHAPTER VI 

COUPLING THE COAGULATON MODEL WITH THE SORPTION MODEL 

 

6.1 Overview 

An improved discretized population balance equation (PBE) is proposed in this 

study. This improved discretized population balance equation has new probability 

distribution functions for aggregates produced in non-uniform discrete coagulation 

modeling. In this study, this model was found to be a substantial improvement in terms 

of numerical accuracy, stability, and computational efficiency over the continuous model. 

Further, this model was able to simulate the particle aggregation and breakup with 

fractal dimensions lower than 3. Moreover, comparisons were made using the fractal 

aggregate collision mechanisms of orthokinetic coagulation with the inclusion of flow 

induced breakup. This new algorithm makes it possible to solve fractal particle 

aggregation and breakup problems with high accuracy, perfect mass conservation and 

exceptional computational efficiency, thus the new model can be used to develop 

predictive simulation techniques for the coupled coagulation using computational fluid 

dynamics (CFD) and chemical reaction modeling.  

In this study, this improved coagulation model developed was coupled with 

arsenic sorption equilibrium and kinetics on fractal colloids of hydrous ferric oxide 

(HFO). The model coupling was achieved by using the colloid stability factor of 

 and/or particle collision efficiency α  as one component of the 

aggregation rate constant (

W(r , r )i j (r , r )i j

αβaggk = ) and a main function for coupling a coagulation 
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model with chemical reactions such as arsenic sorption. The study reviewed the collision 

efficiency studies for perikientic and orthokientic mechanisms and provided the 

numerical algorithms to calculate collision efficiency for two different transport 

mechanisms, depending on two colliding particle geometric sizes and surface potentials 

or surface charges. Finally, unified model that is coupled coagulation modeling with 

arsenic sorption kinetics consisting of a sorption diffusion transport model and surface 

complexation model was developed. Using the coupled model developed in this study, it 

was possible to predict arsenic sorption (equilibrium and kinetics) and colloid particle 

collision (surface potential time evolution, coagulation kinetics and particle size 

distributions) during the arsenic sorption and coagulation, simultaneously. 

 

6.2 Introduction 

 Coagulation is the multi-step process of producing larger agglomerates by 

collisions and subsequent bonding or coalescing of smaller particles contained in a fluid. 

Coagulation consists of two different reactions, aggregation and breakage. The colloidal 

particles can be either solid or fluid materials suspended in a gas or liquid. Particle 

collisions are induced by inter particle motions that have been attributed to three basic 

mass transport mechanisms: fluid motion or orthokinetic coagulation, Brownian 

diffusion or perikinetic coagulation and buoyancy or differential sedimentation. In other 

hand, fluid motion also creates disruptive stresses that can cause fracture of the 

agglomerates. Particle aggregation is primarily kinetic phenomena. For example the rate 

of coagulation of a suspension can be written as, 
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 2dn n
dt aggk= −  (6.1) 

where, n is particle concentration at time t and  is a second order aggregation rate 

constant depending on physical and chemical properties of the system (O'Melia and 

Tiller 1993). Further, the aggregation rate constant  can be expressed as, 

aggk

aggk

 (r , r ) α(r , r )β(r , r )agg i j i j i jk =  (6.2) 

where, r is the particle or agglomerate radius, i and j refers to colliding particle size class 

indices,  is collision efficiency or dimensionless sticking coefficient ( 0 ), 

and the quantity β  is termed the collision frequency or mass transport coefficient 

with dimensions of (length)

α(r , r )i j α 1≤ ≤

(r , r )i j

3/time.  

 The collision frequency or mass transport coefficient, β  can be simple 

linear operators or obtained from mass balances of the colliding particles. Smoluchowski 

analyzed the particle collisions created by a laminar shear flow in orthokinetic 

coagulation (Smoluchowski 1917) and found β  to be, 

(r , r )i j

(r , r )i j

 3x
shear

u4β (r , r ) = (r r )
3 yi j i j
∂

+
∂

 (6.3) 

where ∂ux/∂y is the flow rate of strain (non-rotational velocity gradient) in the x-y 

direction. Saffman and Turner considered homogeneous, isotropic turbulent flow and 

found (Saffman and Turner 1956),  

 3
Turb

8πβ (r , r ) = (r r )
15µi j i j
ε

+  (6.4) 



 186

where ε is the turbulent eddy energy dissipation rate and µ is the fluid viscosity. A 

similar kernel was derived as (Levich 1962),  

 3
Turb

12πβ (r , r ) = (r r )
µ15i j i j
ε

+  (6.5) 

Kramer and Clark analyzed local straining flow and derived β due to multi-

directional strain-rate induced collisions as (Kramer and Clark 1997), 

(r , r )i j

 3
shear max

4πβ (r , r ) = |γ ' |(r r )
3i j i j+&  (6.6) 

where  is the magnitude of the maximum principal component of the local flow 

strain-rate. Perikinetic coagulation is generated by random particle collisions induced by 

natural Brownian random motion. For the perikinetic mechanism, the collision 

frequency function was derived by Smoluchowski as, 

max|γ '& |

 B
Br

2k T 1 1β (r , r ) =  + (r r )
3µ r ri j i j

i j

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
 (6.7) 

where kB is Boltzmann's constant, T is the temperature, and µ is the fluid viscosity.  

Differential sedimentation occurs due to particles settling at a faster velocity than 

smaller and/or less dense particles, thus colliding and forming larger aggregates.  The 

collision frequency function for differential sedimentation is, 

 2
ds

πgβ (r , r ) = π(r + r ) v v (ρ ρ )(d + d ) d d
72µi j i j i j p l i j i j

3− = − −  (6.8) 

where v is the terminal settling velocity of each respective particle, ρ  and ρ  are the 

particle and fluid densities, d is the particle size in diameter, and g is the gravitational 

constant.   

p l
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 This chapter will discuss particle collision efficiency α  that is one 

component of the aggregation rate constant (

(r , r )i j

αβaggk = ) and a main function for coupling 

a coagulation model with chemical reaction kinetics such as arsenic sorption onto HFO 

(Hydrous Ferric Oxide). The chapter will begin with a review of the collision efficiency 

study for perikientic and orthokientic mechanisms, then provide the numerical 

algorithms to calculate collision efficiency for two different transport mechanisms, 

depending on two colliding particle geometric sizes and surface potentials (surface 

charges), and finally develop an unified model that is a coupling coagulation model with 

arsenic sorption kinetics consisting of sorption diffusion transport model and surface 

complexation model.   

 

6.3 Collision Efficiency 

 The collision efficiency (α) is a dimensionless coefficient that is the fraction of 

total inter-particle collisions resulting in particle aggregation and has values ranging 

from 0 to 1. Smoluchowski developed the particle aggregation model (Eq. (6.9)) having 

the assumption that all particle collisions are successful in producing aggregates, that is, 

the collision efficiency (α) is 1.0 (Smoluchowski 1917).  

 
max

1

dn 1 = αβ(r , r )n n   n αβ(r , r )n
dt 2

k
i j i j k l k l

i j k l+ = =

−∑ ∑  (6.9) 

In a real situation this assumption cannot be supported because not all of the collisions 

will bond and produce larger aggregates, thus leading to efficiency values less than one. 

The reduced collision efficiency is due to repulsive colloidal interactions resulting from 
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double layer repulsive forces, steric interactions, and hydrodynamic or viscous 

interactions, which tends to hinder the approach of colliding particles (Filella and Buffle 

1993; Elimelch et al. 1995).  

The colloid stability ratio (Wij) is the inverse of collision efficiency for two 

colliding particles i and j and can be expressed by the ratio of rapid aggregation rate 

constant (krapid), which is theoretically computed by Smoluchowski to the rate constant 

under the conditions of interest (kslow).  

 rapid

slow

1W
αij

ij

k
k

= =  (6.10) 

Therefore, this colloid stability ratio (or collision efficiency) can be termed as collision 

delay factor having the ratio of the aggregation rate in the absence of colloidal 

interactions to that found when there is repulsion between particles. The retardation 

factor (Wij) for slow coagulation is not constant but increases as the particles grow 

during coagulation and finally the barrier may become so high as to prevent any further 

agglomeration (Overbeek 1952). However, it has been impossible to calculate the 

retardation factor quantitatively because the agglomeration would have a very 

complicated form so that exact calculations on the particle interaction energy were not 

feasible. With the advance of colloid interface science and computational capability, the 

collision efficiency has being unveiled from perikinetic coagulation (Spielman 1970; 

Honig 1971; Valioulis and List 1984; Han and Lee 2002) and from orthokinetic 

coagulation (Curtis and Hocking 1969; van de Ven and Mason 1976; van de Ven and 



 189

Mason 1977; Zeichner and Schowalter 1977; Zeichner and Schowalter 1979; Adler 

1981a; Adler 1981b; Higashitani et al. 1982). 

6.3.1 Collision Efficiency in Brownian Random Motion (αBr) 

Fuchs derived the colloid stability for Brownian motion having total interactive 

energy (VT) between colliding particles where the interactive energy (VT) is the 

summation of van der Waals attraction energy (VA) and electrical repulsion energy (VR) 

as (Fuchs 1934),  

 T RV V VA= +  (6.11) 

 ( )T B
Br 2

Br
0

exp V /k T1W = =2 dS
α (S 2)

∞

+∫  (6.12) 

with   2S
r ri j

l
=

+
  (6.13) 

where, VT is total interactive energy between two colliding particles, kB is Boltzmann’s 

constant, T is the absolute temperature, S is dimensionless separation distance, l is the 

distance between two colliding particle centers, ri and rj are spherical particle radii for 

size class i and j, respectively. Equation (6.12) must be evaluated numerically, using 

appropriate expressions for the electrical repulsive and van der Waals attractive 

interactions (Elimelch et al. 1995). 

 Several researchers considered the hydrodynamic force using Brenner’s solution, 

as well as repulsive and attraction forces (Spielman 1970; Honig 1971; Valioulis and 

List 1984). They insisted that the diffusivity between two colliding particles in the 

viscous fluid condition is a function of particle size and size ratio, not the sum of the 



 190

diffusivities of each particle resulting from the hydrodynamic interaction between the 

two particles.  

 
( ), T B

Br 2
Br ,r1+

r

D exp V /k Tr1W = = 1 dS
α r D S

i

j

i ji

j i j

∞ ∞⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫  (6.14) 

or 

 ( )T B
Br 2

Br 2

exp V /k T1 1W = =2 dS
α (S,λ) SG

∞
⎛ ⎞
⎜ ⎟
⎝ ⎠∫  (6.15) 

with Di = kBT/6πµri and Di = kBT/6πµrj where Di,j
∞/Di,j is a dimensionless value 

representing the viscous effects due to the fluid motion between the particles, and Di,j is 

the sum of Di and Dj for each size class i and j particle, and G(S,λ) is a function of the 

additional resistance due to the squeezing of the fluid between the two approaching 

particles. 

 Han and Lee (2002) modified the equation of Spielman using dimensionless 

variables, S and λ, considering electrostatic repulsive forces, van der Waals attractive 

forces and hydrodynamic forces,  

 ( )T B
Br * 2

Br 2

exp V /k Tr1 1W = = 1 dS
α r (S,λ) S

i

j G

∞⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ∫  (6.16) 

where G*(S,λ) indicates the hydrodynamic function based on Jeffrey and Onishi’s 

solution (Jeffrey and Onishi 1984). Equation (6.16) consists of two hydrodynamic 

functions, resistance function (Brenner and O'Neill 1972)) and mobility function 

(Batchelor 1976). As shown above, it is clear that the total particle interaction energy 

(VT) is a major factor in particle collision efficiency, α (or stability, W). (r , r )i j
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Consequently, in coagulation kinetics, it is essential to evaluate these interaction 

energies, properly.  

Hamaker proposed the equation for the attractive energy between spherical 

particles with size ratio λ as, 

 
22

A 2 22 2
2 2

2 2

S 42Aλ 2 2 (1 λ)V l
4(1 λ) 4 λ)3(1 λ) S 4 4λS S
(1 λ) ( λ)

⎡ ⎤
⎢ ⎥−+⎢ ⎥= − + +

− −+ −⎢ ⎥− −⎢ ⎥+ +⎣ ⎦

n
(1
1

 (6.17) 

where A is the Hamaker constant and S is dimensionless separation distance. The 

attractive energy expressed by the Hamaker summation method has been widely used to 

calculate the van der Waals-London interaction energy. For two unequal spherical 

particles having radii of r  and , respectively, the attractive energy between two 

particles is written as (Mahanty and Ninham 1976), 

i r j

 
2 2

A 2 2 2 2 2

2r r 2r r (r r )A( )V l
6 (r r ) (r r ) (r r )

i j i j i j

i j i j i j

lh
l l l
⎡ ⎤− +

= − + +⎢ ⎥
− + − − − −⎢ ⎥⎣ ⎦

2n

j

 (6.18) 

where l is the is the center to center separation between two spherical particles and A(h) 

effective Hamaker constant for two materials in a medium. A(h) is calculated from 

several methods (Mahanty and Ninham 1976; Pailthorpe and Russel 1982; Bowen and 

Jenner 1995). In the case of colliding between equal spherical particles ( ), the Eq. 

(6.18) can be reduced to, 

r ri =

 
2

A 2 2 2

S 4A( ) 2 2V l
6 S 4 S S
h n
⎡ ⎤−

= − + +⎢ ⎥−⎣ ⎦
  (6.19) 
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It should be noted that Eq. (6.17) overestimates the attractive forces due to the neglect of 

electromagnetic retardation, especially when particles are at large distances (the 

separation is larger than 10 nm). To consider the retardation effect on the attractive 

energy of Eq. (6.17), several researchers developed retarded van der Waals attraction 

energy (Schenkel and Kitchener 1960; Ho and Higuchi 1968). From the study of Ho and 

Higuchi (1968), the retarded attraction energy can be calculated as, 

 A 02 2 3
0 0 0

Aλ 1 2.45 2.17 0.59V 1
3(1 λ) (S 2) 5 15 35

p
p p p

⎛ ⎞
= − − + ≥⎜ ⎟+ − ⎝ ⎠

.0  (6.20) 

  A 02
0

Aλ 1 1V 1
3(1 λ) (S 2) 1 1.7692

p
p

⎛ ⎞
= − <⎜ ⎟+ − +⎝ ⎠

.0  (6.21) 

with   0
L

[max(r , r )](1 λ)(S 2)
=

λ
i jp

π + −
 (6.22) 

where, λ is colliding particles size ratio, S is the dimensionless separation distance, and 

λL is London wave length (typically 100 nm). 

Particle interaction energy due to electrostatic repulsion (DLVO theory) for 

spherical particles cannot be obtained as easily as the parallel plate cases. Thus, only 

approximate methods are available for the spherical case (Kihira et al. 1992). One 

simplified approach is the Derjaguin approximation which is valid for κHo > 10, 

 
0

R Overb

H

2πr r
V V

r r
i j

i j

∞

=
+ ∫ eekdH

( )

 (6.23) 

 OverbeekV G(H) G= ∆ − ∆ ∞  (6.24) 
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where, κ is Debye parameter (inverse of Debye-Huckel distance) and Ho is the shortest 

separation distance between two spherical particles. The expressions ∆G(H) and ∆G(∞) 

in Eq. (6.23) are well described and can be calculated by the study of Kihira et al. (1992) 

where Overbeek’s expression was used for the double-layer interaction energy 

calculation. The Hog-Healy-Fuerstenau (HHF) analytical expression can be applied to 

the repulsive energy between spherical particles (Hogg et al. 1966), 

 

[ ]
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R 0

2 20
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0

πr r k TV  
r r

1 exp( H )2 ln ( ) ln 1 exp( 2 H )
1 exp( H ) i j

i j
r

i j
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e
ε ε

κφφ φ φ κ
κ

⎛ ⎞= ×⎜ ⎟+ ⎝ ⎠

⎧ ⎫⎡ ⎤+ −⎪ ⎪+ + − −⎨ ⎬⎢ ⎥− −⎪ ⎪⎣ ⎦⎩ ⎭

 (6.25) 

where, e is proton charge, iφ  and jφ  are reduced Stern potentials for surfaces i and j 

potential ( Bψ / k Teφ = ), 0ε  and rε  are permittivity, vacuum and in relative cases. For 

the same surface potential of iφ = jφ , electric repulsive energy between unequal spherical 

particles can be approximated as (Han and Lee 2002), 

 2
R s

λ[max(r , r )] 2V ψ ln 1 exp 2
1 λ r r

r i j

i j

lε
κ

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + − −⎢ ⎥⎜ ⎟⎨ ⎬⎜+ ⎟+⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
 (6.26) 

where λ is particle size ratio (small to large). Other various equations are available to 

calculate the electrostatic energies (VR) and forces (FR) for different conditions, and 

these equations are  listed in Table 6.1 (Russel et al. 1989). 
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Table 6.1 Electrostatic Repulsive Energies (VR) and Forces (FR) (Russel et al. 1989) 

Geometry Constraint VR FR

Flat plates Superposition 1 2
B b64k Tn κ tanh (0.25ψ ) exp( κH)s

− −  2
B b64k Tn tanh (0.25ψ ) exp( κH)s −  

Spheres Constant potential 
2

2B
0 s

k T2 aψ ln[1 exp( κH)]
ze

πεε ⎛ ⎞ + −⎜ ⎟
⎝ ⎠

 2
2B

0 s
k T exp( κH)2 κaψ
ze 1 exp( κH)

πεε −⎛ ⎞
⎜ ⎟ + −⎝ ⎠

 

Spheres Constant charge 
2

2B
0

k T2 aq ln[1 exp( κH)]
ze

πεε ⎛ ⎞− −⎜ ⎟
⎝ ⎠

−  2
2B

0
k T exp( κH)2 κaq
ze 1 exp( κH)

πεε −⎛ ⎞
⎜ ⎟ − −⎝ ⎠

 

Spheres Linear superposition 
2 2

2B
0 s

k T a4 ψ exp( κH)
ze H 2a

πεε ⎛ ⎞ −⎜ ⎟ +⎝ ⎠
 2

2B
0 s2

k T 1 κ(H 2a) ψ exp( κH)
ze (H/2a 1)

πεε + +⎛ ⎞ −⎜ ⎟ +⎝ ⎠
 

Spheres Superposition 
2

2B
0

k T32 a tanh (0.25ψ ) exp( κH)
ze sπεε ⎛ ⎞ −⎜ ⎟

⎝ ⎠
 2

2B
0

k T32 κa tanh (0.25ψ ) exp( κH)
ze sπεε ⎛ ⎞ −⎜ ⎟

⎝ ⎠
 

 

 Equation (6.15) can be integrated to investigate perikinetic collision efficiency 

resulting from Brownian random motion. As shown in Eq. (6.15), two interaction energy 

calculations that are representing van der Waals attraction energy (VA) and electrostatic 

repulsive energy (VR) are needed to obtain the collision efficiency (αBr) between two 

colliding particles. These equations introduced to use as the perikientic collision 

efficiency calculation are rewritten as,  

 ( )T B
Br 2

Br 2

exp V /k T1 1W = =2 dS
α (S,λ) SG

∞
⎛ ⎞
⎜ ⎟
⎝ ⎠∫  (6.15) 

 T RV V VA= +  (6.11) 
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Aλ 1 2.45 2.17 0.59V 1
3(1 λ) (S 2) 5 15 35

p
p p p
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= − − + ≥⎜ ⎟+ − ⎝ ⎠

.0  (6.20) 

 A 02
0

Aλ 1 1V 1
3(1 λ) (S 2) 1 1.7692

p
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⎛ ⎞
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.0  (6.21) 
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λ[max(r , r )] 2V ψ ln 1 exp 2
1 λ r r

r i j

i j

lε
κ

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + − −⎢ ⎥⎜ ⎟⎨ ⎬⎜+ ⎟+⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
 (6.26) 
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The attraction energy (VA) of Eqs. (6.21)/(6.20) and the repulsive energy (VR) of Eq. 

(6.26) were substituted into total energy total or net interaction energy (VT) of 

perikinetic collision efficiency of Eq. (6.15). For the numerical modeling initial 

conditions, the Hamaker constant (A) was given as 4.14×10-20 J (Hiemenz and 

Rajagopalan 1997) and a moderate ionic strength value of 0.01 M was used. In this 

numerical modeling of perikinetic coagulation, the effect of hydrodynamic force on the 

collision efficiency (αBr) was neglected by letting the hydrodynamic function of G(S,λ) 

be 1 in Eq. (6.15). Thus, the numerical simplification in this study can overestimate the 

collision efficiency during perikientic coagulation rather than the exact value resulting 

from real particle collision. 

 The numerical modeling for perikinetic collision efficiency (αBr) was conducted 

under main two categories; between two equal size colliding particles (  and two 

unequal size colliding particles (

r r )i j=

r r )i j≠  at various particle surface potential conditions 

, ,(ψ ψ )s i s j= . For the study of perikinetic collision efficiency (αBr) between equal size 

colliding particles, the particle size was selected in the range of 10 nm to 1 µm, in which 

Brownian random motion is the dominant colliding mechanism among the three basic 

mass transport mechanisms: fluid motion or orthokinetic coagulation, Brownian 

diffusion or perikinetic coagulation and buoyancy or differential sedimentation. The 

result from the collision efficiency simulation for the equal size colliding particles 

governed by Brwonian diffusion was represented by Fig. 6.1. As shown in Fig. 6.1, the 

perikinetic collision efficiency (αBr) decreases as the colliding particle size increases 

under all surface potential regimes.  
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The collision between relatively large particles (200 < d < 1000 nm) can not be 

expected at the surface potential of less than -15 mV or larger than +15 mV. For the 

particle size range of 100 nm to 1000 nm, collision efficiency slightly increases, thus 

particle collision can be expected at the surface potential range of -25 mV to +25 mV. 

This result corresponds to the other perikinetic coagulation study (Subramaniam et al. 

1998). In their study, only within the surface potential range of -20 mV to +20 mV, 

homogeneous HFO (hydrous ferric oxide) particles of size range of 220 nm to 600 nm 

were observed to be destabilized. 
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Figure 6.1 Perikinetic collision efficiency (αBr) between two equal size colliding 
particles at various particle surface potential conditions 
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Moreover, it can be expected that nano-scale particle collisions (under 10 nm) 

occur even though the particle surface has the relatively high potential range of -50 mV 

to +50 mV. That is, these nano-scale particles can be easily destabilized under or over 

this surface potential magnitude limit (±50 mV) and lead to aggregate formation. Thus, it 

is expected that surface potential (charge) plays a key role in the nano-scale particle 

technologies. Without any surface potential (charge), the nano-scale particles are readily 

dispersed so that they form aggregate shape due to high perikinetic particle collision 

efficiency. In contrast, by letting the nano-size particles have surface potential (charge), 

the nano-size particles maintain their small size physico-chemical properties without 

forming aggregates. Furthermore, the large aggregate (i.e., 1000 nm in diameter) formed 

during perikinetic coagulation may not be found under the surface potential of less than -

10 mV or larger than +10 mV. More details of the relationship between surface potential 

and aggregate formation will be discussed at the last section of coupled coagulation 

modeling with sorption kinetics and equilibrium modeling. 

In addition, perikinetic collision efficiency (αBr) between unequal size colliding 

particles was simulated and these results are displayed in Figs. 6.2 to 6.5. Particle size 

ratio (dmax/dmin) of 1 to 10 was applied to the unequal size particle collision study. For all 

cases, the collision efficiency decrease as size ratio (dmax/dmin) decrease from 10 to 1 at 

various particle surface potential conditions. Further, even though the particle size ratio 

range was fixed as 1 to 10 for all unequal size particle collision cases, the overall 

perikinetic collision efficiency (αBr) has the higher at d = 10 ~ 100 nm rather than at d = 

100 ~ 1000 nm. Like equal size particle collision, this result indicates that smaller 
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particle between unequal size colliding particles is very important in the Brownian 

diffusion. Furthermore, as shown in Fig. 6.5, only within the surface potential range of -

20 mV to +20 mV, particle colliding can be expected due to colloid destabilization.  

As a result, perikinetic collision efficiency (αBr) was not a universal constant but 

rather a function of geometric size and surface potential between colliding particles. 
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Figure 6.2 Perikinetic collision efficiency (αBr) between two unequal size colliding 
particles at various particle surface potential conditions (d = 10~100 nm) 
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Figure 6.3 Perikinetic collision efficiency (αBr) between two unequal size colliding 
particles at various particle surface potential conditions (d = 20~200 nm) 
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Figure 6.4 Perikinetic collision efficiency (αBr) between two unequal size colliding 
particles at various particle surface potential conditions (d = 50~500 nm) 
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Figure 6.5 Perikinetic collision efficiency (αBr) between two unequal size colliding 
particles at various particle surface potential conditions (d = 100~1000 nm) 

 

6.3.2 Collision Efficiency in a Fluid Flow (αSh) 

Smoluchowski (1917) analyzed the collision of two particles transported by the 

movement of the surrounding fluid, considering non-interactive forces between two 

approaching particles in a simple shear flow field (α = 1.0). This collision theory was 

extended to a turbulent flow filed (Saffman and Turner 1956), assuming that “particles 

smaller than the smallest eddies move alike in a shear flow, whose rate of shear is related 

to the rate of energy dissipation through the Taylor micro-scale relations (Melis et al. 

1999)”. However, collision efficiency in a turbulent filed is not easily calculated from 

theoretical and experimental approaches. Thus, most of the existing studies on 

orthokinetic coagulation, especially in terms of theoretical collision efficiency, have 

been conducted for a simple shear flow (laminar regime), since pure laminar flow can be 

easily generated in the laboratory using co-axial rotating cylinders to generate a Couette 
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flow which has a simple mathematical description (Vanni and Baldi 2002). Also, a 

number of authors have adopted the collision efficiency calculated for laminar flow to 

predict turbulent coagulation kinetics (Higashitani et al. 1983; Boer et al. 1989; Adachi 

et al. 1994; Kusters et al. 1997).  

A simplified model was proposed to calculate orhokinetic collision efficiency 

(αSh) as  functions of fluid shear/strain-rate and collision particle size (van de Ven and 

Mason 1976; van de Ven and Mason 1977), as 

 3

Aα(r , r ) (λ / r )
36πµγrj j j

j

f=
&

 (6.27) 

where  is a flow strain-rate and  is a function of the dispersion wavelength 

(since retardation effects were included) and the particle size. From the study of van de 

Ven and Mason, in the case of a London characteristic wavelength of 100 nm (typical 

colloidal particles),  has 0.79, 0.87, and 0.95 for particles of radius 2, 1, and 0.5 

µm, respectively. From Eq. (6.27) it can be found that collision efficiency decreases as 

the particle size and the shear rate increase due to the exponential relationship of 

γ& (λ / r )jf

(λ / r )jf

0.82γ& , 

rather than being linearly dependent on shear (strain-rate), as in the Smoluchowski result 

(Elimelch et al. 1995). Although there exists an inverse relationship between collision 

efficiency and flow strain-rate, however, the collision rate constant (collision 

efficiency(α)×collision frequency(β)) increases for large particles (see Eq. (6.6)). 

Unfortunately, this simplified model is only possible to apply in equal size particle 

collisions rather than unequal size particle collisions due to the main assumption of 
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colliding between same size class particles. Thus, the advanced technique was needed to 

calculate the collision efficiency (αSh) for unequal size particle collision modeling. 

 Shear induced coagulation studies after the 1970’s (Curtis and Hocking 1969; 

van de Ven and Mason 1976; van de Ven and Mason 1977; Zeichner and Schowalter 

1977; Zeichner and Schowalter 1979; Adler 1981a; Adler 1981b; Higashitani et al. 

1982) included two-sphere trajectory analysis to predict the effects of hydrodynamic 

interaction forces on collision efficiency.  

 

γ&

 

Figure 6.6 Trajectory analysis coordinate for two spheres in a simple shear flow 
 

According to these trajectory studies, the relative motion of two spherical particles can 

be summarized in terms of polar coordinates ( r*,θ,φ ), expressed by the ordinary 

differential equations, 

 2
T2

1

dr* γr*(1 )sin sin cos (F )
dt 6 µr

θ φ φ
π

= − +&
C

A  (6.28) 

 d γ(1 )sin cos sin cos
dt
θ θ θ φ= −& B φ  (6.29) 

 2d γ cos cos 2
dt 2
φ φ φ⎛= −⎜

⎝ ⎠
&

B ⎞
⎟  (6.30) 
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where the hydrodynamic parameters , B  and  can be calculated from the trajectory 

studies (Batchelor and Green 1972; Zeichner and Schowalter 1977; Adler 1981b; 

Higashitani et al. 1982; Wang 1992). For large separations, the hydrodynamic 

parameters can be written as (Batchelor and Green 1972), 

A C

 
3 5 2 35 3 5

2 2 2
3 5

(1 λ ) (1 λ ) λ (1 λ) 25λ
(r*) (r*) (r*)
+ + + +

= − +A 6  (6.31) 

 

 
5 25
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+  (6.33) 

 

 with 2

1

rλ
r

=  and 
1

r*
r
l

=  (6.34) 

where l is the distance between colliding particle centers. Also, for very small 

separations, these hydrodynamic parameters hold as, 

 0.78ˆ ˆ ˆ ˆh h1 4.08 0.4060 4 (1 1.34 ln )ˆln
h h

h
= − = + = +A B C 1.0=     for λ  (6.35) 

 1.36ˆ ˆ ˆ ˆh h1 4.50 0.5830 9 (1 1.70 ln )ˆln
h h

h
= − = + = +A B C λ 0.5=     for  (6.36) 

 1.89ˆ ˆ ˆ ˆh h1 3.06 0.9104 36 (1 2.46 ln )ˆln
h h

h
= − = + = +A B C λ 0.2=

1

R

   for  (6.37) 

with   (6.38) 1 2
ˆ ( r r ) / rh l= − −

As shown in Eq. (6.28), total force (FT) interacting between two colliding 

particles in fluid shear flow applied needs to be calculated as, 

 T AF F F= +  (6.39) 
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The interparticle forces can be obtained by differentiating the respective interparticle 

potential energies against particle separation distance as, 

 V( ) V( ) SF =
S

d h d h d
dh d dh

=  (6.40) 

where h is separation distance defined as 1r rh l 2= − − . The Schenkel-Kitchener formula 

(Schenkel and Kitchener 1960) has been mainly used for the van der Waals attractive 

potential energy accounting for the retardation effect. Further, the attractive force can be 

derived from Schenkel-Kitchener’s attractive potential formula using the relationship 

between the energy and force of Eq. (6.40) (Wang 1992), as  

 1,2 2
A 2 2 3

A r 2.45 2.17 1.18F 1
(1 λ) 15 30 105

p
h p p p

⎡ ⎤
= − − + ≥⎢ ⎥+ ⎣ ⎦

.0  (6.41) 

 1,2 2
A 2 2

A r 1 3.54F 1
(1 λ) 6(1 1.77 )

p p
h p

⎡ ⎤+
= − <⎢ ⎥+ +⎣ ⎦

.0  (6.42) 

with  L2 S/λp π=  (6.43) 

Also, the electrostatic repulsive force can be obtained from the interparticle repulsive 

energy of Eq. (6.25) using the Eq. (6.40) (Wang 1992), as 

 
2 2

0 2 1 2 1 2
R

r 2ψ ψ (ψ ψ ) exp( )F
1 λ sinh( )

r h
h

πε ε κ κ
κ

⎡ ⎤− + −
= ⎢ ⎥+ ⎣ ⎦

 (6.44) 

From the trajectory studies, it can be assumed that the collision efficiency, 

 is related to the profile of the collision cross-section x(z) (Vanni and Baldi 

2002), 

1 2α(r , r )
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max

2
1 2 3

1 2
0

3/2α(r , r ) [ ( )]
(r r )

z

x z dz
+ ∫=  (6.45) 

Equation (6.45) can be calculated by a consideration that compares an actual non-

equatorial collision cross-section assumed by the Smoluchowski model (particles move 

like the fluid along straight streamlines until they collide with another particle) as shown 

in Fig. 6.7 (Vanni and Baldi 2002).  

 

  

Figure 6.7 Collision efficiency related to the profile of the collision cross-section x(z) 
(Vanni and Baldi 2002) 

 

The collision efficiency (αSh) in the applied fluid shear flow was calculated using 

trajectory analysis. The trajectory analysis could be achieved by integrating the set of 

ordinary differential equations of Eqs. (6.28) to (6.30). To solve the ordinary differential 

equation for particle trajectories in the applied flow field, three acting forces on the 

colliding particles were introduced into Eqs. (6.28) to (6.30); hydrodynamic effect of 
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Eqs. (6.31) to (6.38), van der Waals attractive force (FA) of Eqs. (6.41) to (6.43), and 

electrostatic repulsive force (FR) of Eq. (6.44).  

The trajectory analysis for determining orthokinetic collision efficiency (αSh) in 

the shear flow was conducted under several computational conditions proposed by 

previous researchers (Higashitani et al. 1982; Wang 1992; Vanni and Baldi 2002). The 

numerical computation was initiated with the plane 1100(r )y = −  for each trial 

( , ). A 30×30 evenly spaced quadrant mesh was placed in the start plane to 

calculate the collision cross-section. The size of each side of the quadrant mesh placed 

on the plane of , , and  was set to 

0x > 0z >

1100(r )y = − 0x > 0z > 1 21.5(r r )+ . Every quadrant 

mesh node was used as a release point for particle 2 ( ) and after beginning the 

computation the trajectory of particle 2 was integrated to determine whether the collision 

occurs or not (collision efficiency). In addition, the computation was terminated when 

the numerical criteria (collision, orbit, or separation) yielded as (Vanni and Baldi 2002), 

2r

                        Collision  2

1 1

rr* 1
r r allowε< + +  (6.46) 

                         Orbit 
2
πφ >  (6.47) 

                         Separation 
1

10y
r
>  (6.48) 

where, allowε  is error tolerance. Solutions to the trajectory equations consist of a set of the 

ordinary differential equations of Eqs. (6.28) to (6.30) and were obtained using the 

FORTRAN ODE integrating method IVPAG. The error tolerance was 10-6 for all 
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numerical solutions during the trajectory modeling. The parameter allowε  of the collision 

criterion of the Eq. (6.46) was set to 10-7 as recommended by Vanni and Baldi (2002). 

To consider the hydrodynamic effect on the particle trajectory in the shear flow, the 

three hydrodynamic parameters (A, B, and C) for far-field separation (or large 

separation) between the two colliding particles (Eqs. (6.31) to (6.34)) were introduced to 

the trajectory analysis, rather than the near-field separation (or small separation) of Eqs. 

(6.35) to (6.38). As the near-field separation formula could not be used for the unequal 

size colliding particles having a wide range of size ratio λ, far-field separation formula 

were introduced as the parameter calculation representing the hydrodynamic effect on 

the trajectory. To apply this orthokinetic collision efficiency using trajectory analysis 

into the unified coagulation model, various colliding particle size ratios should be 

required, rather than the small separation formula of Eqs. (6.35) to (6.37) having limited 

application for only colliding particle size ratios (λ) of 1.0, 0.5, and 0.2. Thus, large 

separation hydrodynamic parameters of Eqs. (6.31) to (6.33) were used in this study. 

  To investigate the effect of electrostatic force applied to two colliding particles 

on the orthokinetic collision efficiency in the applied shear flow, trajectory analysis was 

visualized in y-z 2D plane in Figs. 6.8 and 6.9. In this test, two spherical colliding 

particles of 1 µm and 10 µm in diameter was simulated in the shear flow of 15 1/sec in 

strain-rate. Like the perikinetic coagulation collision efficiency study, Hamaker constant 

(A) of 4.14×10-20 J (Hiemenz and Rajagopalan 1997) and a moderate ionic strength 

value of 0.01 M were introduced as numerical modeling initial conditions. The particle 
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trajectory simulations in applied shear flow (strain-rate of 15 1/s) were conducted under 

two different particle surface potential conditions of 0 mV and 50 mV.  

 

 

Figure 6.8 Collision trajectory (y-z) in absence of electrostatic repulsive force  
(surface potential = 0 mv, strain rate = 15 1/s)  

 
 
 

 

Figure 6.9 Collision trajectory (y-z) in presence of electrostatic repulsive force  
(surface potential = 50 mv, strain rate = 15 1/s) 
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As shown in Figs. 6.8 and 6.9, these results indicate that particle collision probability 

decreases as colliding particle surface potential increases. That is, the surface potential 

applied to the colliding particles plays a role in the determining orthokinetic collision 

efficiency as would be expected.  

The orthokinetic collision efficiency (αsh) was investigated under two main 

categories; between two equal size colliding particles (r r )i j=  and two unequal size 

colliding particles (  at various particle surface potential conditions r r )i j≠ , ,(ψ ψ )s i s j=  

and flow strain-rates. The particle surface potential ranged from -30 mV to +30 mV and 

all numerical simulation was conducted at the flow strain-rates of 10, 25, and 50 1/sec. 

For the study of orthokinetic collision efficiency (αsh) between equal and unequal size 

colliding particles at various flow strain-rate conditions, the primary and maximum 

particle sizes were selected as 1 and 8 µm, respectively. In these colliding particle size 

ranges, flow strain-rate is the dominant colliding mechanism among the three basic mass 

transport mechanisms mentioned above. The results from the orthokinetic collision 

efficiency simulation for the equal and unequal size colliding particles governed by fow 

strain-rate are represented in Figs. 6.10 to 15. As expected from the perikinetic collision 

efficiency study of section 6.3.1, the orthokinetic collision efficiency (αsh) decreased as 

the colliding particle size increases from 1.0 µm to 8.0 µm under the conditions of the 

applied strain-rate ranges of 10 to 50 1/s and surface potential ranges of 0 to 30 mV. 

Further, it is found that the smaller colliding particles are more sensitive to magnitude of 

particle surface potential applied than the larger particles. Orthokinetic collision 

efficiencies of the small particles (1.0 µm) decreases as surface potentials increase from 



 210

0 to 30 mV. For the orthokinetic coagulation study, these results indicate that the 

collision between the smaller size particles is strongly governed by electrostatic 

repulsive force due to the surface potential applied to the colliding particle than in the 

collision between the large particles. However, orthokinetic collision is less dependent 

on the surface potential than in the case of perikinetic collision. It is evident that flow 

strain-rates increase the chance of colliding particles overcoming a potential energy 

barrier and being captured by a datum particle (Elimelch et al. 1995; Squires and 

Brenner 2000). Thus, it can be expected that particle collision is possible even when 

electrostatic repulsive force exists due to the surface potential applied to the colliding 

particle surface. As a result, orthokinetic collision efficiency (αsh) was not a universal 

constant but rather a function of geometric size and surface potential between colliding 

particles and the fluid strain-rate applied to the coagulation system. 
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Figure 6.10 Orthokinetic collision efficiency between two equal size colliding particles 
at a strain-rate of 10 1/s 
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Figure 6.11 Orthokinetic collision efficiency between two equal size colliding particles 
at a strain-rate of 25 1/s 
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Figure 6.12 Orthokinetic collision efficiency between two equal size colliding particles 
at a strain-rate of 50 1/s 
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Figure 6.13 Orthokinetic collision efficiency between two unequal size colliding 
particles at a strain-rate of 10 1/s 
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Figure 6.14 Orthokinetic collision efficiency between two unequal size colliding 
particles at a strain-rate of 25 1/s 
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Figure 6.15 Orthokinetic collision efficiency between two unequal size colliding 
particles at a strain-rate of 50 1/s 
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6.4 Strain-Rate Calculation 

 To complete the orthokinetic coagulation model of Eq. (6.9) with the collision 

efficiency of  derived from trajectory analysis in section 6.3 of this chapter and 

collision frequency  previously proposed (Kramer and Clark 1997), two 

hydrodynamic parameters of 

shα (r , r )i j

shβ (r , r )i j

γ&  and  are required, where  is the magnitude 

of the maximum principal component of the local flow strain-rate and  is local flow 

strain-rate. Maximum principle strain-rate ( ) is substituted into the collision 

frequency,  represented by Eq. (6.6). In addition, this maximum principle 

strain-rate ( ) is introduced into trajectory analysis for orthokinetic collision 

efficiency of Eqs. (6.28) to (6.30).   

max|γ '& | |

|

|

max|γ '&

γ&

max|γ '&

shβ (r , r )i j

max|γ '&

 
max

1

dn 1 = αβ(r , r )n n   n αβ(r , r )n
dt 2

k
i j i j k l k l

i j k l+ = =

−∑ ∑  (6.9) 

 3
sh max

4πβ (r , r ) = |γ ' |(r r )
3i j i j+&  (6.6) 

 
*

2
max T2

1

d |γ ' |r*(1 )sin sin cos (F
dt 6 µr
l θ φ φ

π
= − +&

C
A )  (6.28) 

 max
d |γ ' |(1 )sin cos sin cos
dt
θ θ θ φ= −& B φ  (6.29) 

 2
max

d |γ ' | cos cos 2
dt 2
φ φ φ⎛ ⎞= −⎜

⎝ ⎠
&

B
⎟  (6.30) 

Substituting  and  into a conventional discretized population balance 

equations of Eq. (6.9), yields an advanced coagulation model having variable collision 

shα (r , r )i j shβ (r , r )i j
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efficiency depending on fluid strain-rate, particle size and surface potential, not constant 

collision efficiency, as  

 
max

sh sh sh sh
1

dn 1 = α (r , r )β (r , r )n n   n α (r , r )β (r , r )n
dt 2

k
i j i j i j k l k l k l

i j k l+ = =

−∑ ∑  (6.49) 

As shown in Eq. (6.49), two major parameters of orthokinetic collision efficiency 

and collision frequency  are not constant but rather a function of the 

geometric size between two colliding particles and dependent on flow strain-rate.  

shα (r , r )i j shβ (r , r )i j

In this section, the flow strain-rate will be redefined and these two hydrodynamic 

parameters in the applied shear flow system will be calculated using a CFD 

(Computational Fluid Dynamics) technique. Moreover, the calculated hydrodynamic 

parameter of  will be introduced in the next section of a unified model 

development with coagulation and sorption. 

max|γ '& |

6.4.1 Strain-Rate and Maximum Principle Strain-Rate 

 To estimate a local strain-rate ( γ& ), the energy dissipation has been used (Camp 

and Stein 1943; Clark 1985; Graber 1994; Kramer and Clark 1997; Serra et al. 1997). 

The classical energy dissipation function can be derived from the First Law of 

Thermodynamics and the concepts of energy and work as they apply to fluid systems 

(the detailed derivation can be found in the literature (White 1991; Graber 1994)). The 

classical differential energy dissipation function at a point for ideal incompressible flow 

can be written as the summation of normal strain-rate and shear strain-rate, 

  
2 22 2 2

y yx z x x z
u uu u u u u2

µ x y z y x z x z y

⎡ ⎤ ⎡∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂Φ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + + + +⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

2
y z

u u ⎤∂
⎥
⎥⎦

(6.50) 
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where Φ  represents the dissipation of energy per unit volume brought about by viscous 

fluid motion. Equation (6.50) is only valid at a point in any incompressible fluid flow, 

laminar or turbulent. Equation (6.50) can be rewritten as,  

  (6.51) 
2 2 2        γ               G'                          G''

Strain Rate  Normal Strain-Rate  Shear Strain-Rate
= +
= +

&

with normal strain-rate ( ) resulting from pure normal stress, and G '

 
22 2

y2 x
uuG ' 2

x y z
zu⎡ ⎤∂⎛ ⎞∂⎛ ⎞ ⎛ ⎞= + +

∂
⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 (6.52) 

shear strain-rate ( ) resulting from pure shear stress G ''

 
2 22

y2 x x z
u uu u uG"

y x z x z y
∂ ∂⎛ ⎞ ⎛∂ ∂ ∂⎛ ⎞= + + + + +⎜ ⎟ ⎜⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝

y zu ⎞∂
⎟
⎠

 (6.53) 

Substituting the terms of (6.52) and (6.53) into Eq. (6.51), yields overall local strain-rate 

(or rate of deformation) equations as, 

 
2 22 2 2

y y2 x z x x z
u uu u u u uγ 2

x y z y x z x z y

⎡ ⎤ ⎡∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + + + +⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣
&

2
y z

u u ⎤∂
⎥
⎥⎦

(6.54) 

The energy dissipation function represents the mechanical work done on an 

element of fluid by viscous forces (or internal frictions). Camp and Stein (1943) 

eliminated the normal components of the strain-rate from the Eq. (6.54) by extrapolating 

a two-dimensional case of fluid flow to a three-dimensional case. Their research implies 

that the strain-rate tensor can be transformed into a pure off-diagonal form, or 

  
11 12 13 12 13

21 22 23 21 23

31 32 33 31 32

γ γ γ 0 γ ' γ '
γ γ γ γ γ ' 0 γ '

γ γ γ γ ' γ ' 0
ij

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

& & & & &

& & & & & &

& & & & &

 (6.55) 



 217

The transformation in Eq. (6.55) was used to justify the relationship for the energy 

dissipation function given in Eq. (6.54). In Eq. (6.54) only the shear components of 

strain-rate are included in the analyses. While the transformation conducted by Camp 

and Stein (Camp and Stein 1943) to obtain Eq. (6.55) is valid for a two-dimensional case 

of fluid flow, which is not possible to obtain the transformation in Eq. (6.55) for a 

general case of three-dimensional flow. Therefore, Eq. (6.55) is in general incorrect. 

 It might be supposed that the principal strain-rates could be used instead of the 

shear strain-rate in Eq. (6.54). However, this is also incorrect. If the local dissipation 

function is placed in terms of the principal strain-rates the energy dissipation function 

becomes 

 2 2
L 11 22 332µ (γ ' ) (γ ' ) (γ ' )2⎡ ⎤Φ = + +⎣ ⎦& & &  (6.56) 

Then, for the local energy dissipation function LΦ , Eq. (6.56) implies that a local strain-

rate, , could possibly be expressed as the Euclidean norm, or Lγ&

 2 2 2 L
L 11 22 33(a ' ) (a ' ) (a ' )

2µ
a Φ

= + + =  (6.57) 

Equation (6.57) is similar to Camp and Stein’s equation, however the error associated 

with the use of Eq. (6.57) as an estimate for the collision frequency  of particles 

must be considered. The Euclidean norm is always greater than the absolute value of any 

component of the strain-rate tensor and is always positive. This means that if Eq. (6.57) 

were to be used in place of velocity-gradient ∂ux/∂y in the collision frequency function 

shβ (r , r )i j
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of Eq. (6.3) a collision frequency greater than what the flow would actually generate will 

result. 

 To generalize an orthokientic coagulation model, collision frequency  in 

Eq. (6.6) is substituted into the coagulation model of Eq. (6.49) and then one can obtain 

the orthokinetic coagulation model in applied fluid shear, as 

shβ (r , r )i j

 
max

3 3
sh sh

1

dn 1 4π 4π = α (r , r ) γ(r r ) n n   α (r , r ) γ(r r ) n n
dt 2 3 3

k
i j i j i j l k k l k l

i j k l+ = =

+ − +∑ ∑& &  (6.58) 

 A method must be established that properly relates the components of strain-rate 

without miscounting the number of collisions or collision frequency. If all nine 

components of the strain-rate tensor were incorporated into Eqs. (6.58) and integrated, 

the result would incorrectly estimate the total collision rate and yield an inaccurate 

population size-class balance. In a general case of three-dimensional fluid flow, some 

strain-rate must be positive valued in order to satisfy continuity. Therefore, only the 

strain-rates that induce velocity towards the datum sphere must be considered and the 

strain-rates causing movement away from the sphere must be eliminated from the 

coagulation collision frequency analysis. 

 Since the strain-rate tensor is symmetric, the number of equations can be reduced 

by diagonalizing the strain-rate tensor without a loss of information (Borisenko and 

Tarapov 1980). 

 
11 12 13 11

21 22 23 22

31 32 33 33

γ γ γ γ ' 0 0
γ γ γ γ 0 γ ' 0

γ γ γ 0 0 γ '
ij

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

& & & &

& & & & &

& & & &

 (6.59) 
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The primed values of γ  are the principal strain-rates that act in the principal 

directions. A particular orientation for the axes exist (principal axes) for which shear 

rates are zero. The step to find the solution for principal values of a symmetric tensor of 

strain-rate can be formulated as an eigenvalue (eigenvector) problem. When the strain-

rate tensor is symmetric, all eigenvalues and associated eigenvectors have real roots. In 

this eigenvalue calculation, the convention of Eq. (6.60) is applied in all cases, and 

'mm&

  (6.60) 11 22 33γ ' γ ' γ '> >& & &

The continuity equation for an incompressible fluid requires that 

 yx z

11 22 33

0 or
uu u 0 or

x
γ ' γ ' γ ' 0

y z

∇⋅ =
∂∂ ∂

+ + =
∂ ∂ ∂
+ + =& & &

u

 (6.61) 

Therefore, in order to satisfy the convention of Eq. (6.60) and the continuity equation of 

Eq. (6.61), the scalars of principal strain-rates tensor are required as, 

  (6.62) 
11

22 22

33

γ ' 0
γ ' 0 or γ '
γ ' 0

>
>
<

&

& &

&

0<

Consequently, two separate cases are possible. In case A,  results in 11 33γ '  |γ' |>& & 22γ ' 0<&  

and . In case B, 11 22 33γ '  |γ' γ' |= +& & & 11 33γ '  |γ' |<& &  results in  and . 

Therefore, the absolute value of the numerically greatest component (either  or ) 

will allow for the computation of the equivalent value of the mass entering the collision 

sphere. This quantity is designated the absolute maximum principal strain-rate (Kramer 

and Clark 1997).  

22γ ' >& 0 33 11 22|γ' | γ ' γ'= +& & &

11γ '& 33|γ' |&
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To obtain the principal strain-rate tensor (the eigenvalues of strain-rate tensor) in 

two-dimensional flow analysis, the strain-rate tensor ( ) can be written as,  γ&

 

yx x

11 12

21 22 y yx

uu u1
x 2 y xγ γ

[γ ]
γ γ u uu1

2 x y y

ij

⎡ ∂ ⎤⎛ ⎞∂ ∂
+⎢ ⎥⎜ ⎟∂ ∂⎡ ⎤ ⎝ ∂ ⎠⎢ ⎥= = =⎢ ⎥ ⎢ ⎥∂ ∂⎛ ⎞∂⎣ ⎦ ⎢ ⎥+⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

γ
& &

& &
& &

 (6.63) 

Letting the vector B lie along a principal axis of the tensor , with eigenvalue γ& λ  and its 

corresponding eigenvectors satisfy the linear algebra equation as,  

 11 12 1 1

21 22 2 2

γ γ b b
γ γ b b

λ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

& &

& &
 (6.64) 

then, its components must satisfy the homogeneous system, which is equivalent to 

 11 12 1

21 22 2

γ γ b 0
γ γ b 0

λ
λ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣

& &

& & ⎦

0

 (6.65) 

Equation (6.65) can be rewritten compactly as, 

 ( )λ− =γ I B&  (6.66) 

where I is the unit tensor. Equation (6.66) has nontrivial (i.e., nonzero) solutions if the 

determinant vanishes and thus it can be rewritten as, 

 det( ) 0λ− =A I  (6.67) 

or 

 11 12

21 22

γ γ 0
γ γ 0

λ
λ

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

& &

& &
 (6.68) 

or 

  (6.69) 2
11 22 11 22 12 21(γ γ ) (γ γ γ γ ) 0λ λ− + + − =& & & & & &
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Equation (6.69) is well known as the characteristic equation of tensor  (i.e., strain-rate 

tensor). Therefore Eq. (6.65) has its nontrivial solutions (or eigenvalues) if and only if 

γ&

1 1γ 'λ λ= = &  or 2 γ '2λ λ= = &  , where 

 { }2
1 1 11 22 11 22 12 21

1γ ' (γ γ ) (γ γ ) 4γ γ
2

λ = = + + − +& & & & & & &  (6.70) 

 { }2
2 2 11 22 11 22 12 21

1γ ' (γ γ ) (γ γ ) 4γ γ
2

λ = = + − − +& & & & & & &  (6.71) 

Thus, general strain-rate tensor can be replaced by principal strain-rate tensor using 

eigenvalues of 1λ  and 2λ and represented as,  

 11 12 1 11

21 22 2 22

γ γ 0 γ' 0
[γ ]

γ γ 0 0 γ'ij

λ
λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
γ

& & &
& &

& & &
 (6.72) 

where eigenvalues can be rewritten using velocity-gradient of each components as,  

 
2 2

y yx x x
1 11

u uu u u1γ ' 2
2 x y x y y x

λ
⎧ ⎫∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪= = + + − + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

& yu∂
⎟  (6.73) 

 
2 2

y yx x x
2 22

u uu u u1γ ' 2
2 x y x y y x

λ
⎧ ⎫∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪= = + − − + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

& yu∂
⎟

0

 (6.74) 

Now, the convention of Eq. (6.75) is applied in all two-dimensional flow cases, and 

  (6.75) 11 22γ ' γ '>& &

The continuity equation for an incompressible fluid requires that 

 11 22γ ' γ '+ =& &  (6.76) 

In order to satisfy the two limitations, principal strain-rates tensor are required as, 

  (6.77) 11 22 11 22γ ' 0, γ ' 0, and γ ' (γ ' )> < = −& & & &
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 Therefore, the absolute value of nent ( 11γ '& ) will allow for the numerically greater compo

 of  and  can then be incorporated into the collision 

frequen the n l strain-r

the computation of the equivalent value of the mass entering the coll n sphere. This 

quantity is designated the absolute maximum principal strain-rate max|γ' |&  in a two-

dimensional case. 

The values

isio

 max|γ' |& shα (r , r )i j

cy function for orma ate case to yield the total collision frequency 

for the discrete fluid element. 

 
max

3 3
sh max sh max

1

dn 1 4π = α (r , r )k ∑ 4π|γ' |(r r ) n n   α (r , r ) |γ' |(r r ) n n
dt 2 3 3i j i j i j l k k l k l

i j k l+ = =

+ − +∑& & (6.78) 

e-dependent population of particles of size class k has thus 

 Couette Device 

otating inner or outer cylinders 

A rate equation for the tim

been obtained. Equation (6.78) is valid for any fluid element that is under the influence 

of continuous velocity-gradient that result in uniform strain-rates within a fluid element. 

The use of the absolute maximum principal strain-rate accounts for the directional nature 

of the collision phenomenon and accurately estimates the collision frequency for the 

modeling assumption for this section.  

6.4.2 Computational Fluid Dynamics in

 A conventional Couette device with concentric r

have been frequently used in studying mixing, coagulation, and floc break-up in two-

dimensional uniform laminar flow (Trevelyan and Mason 1951; Swift and Friedlander 

1964; Ives and Dibouni 1979; Zollars and Ali 1986; Torres et al. 1991; Oles 1992; Serra 

et al. 1997; Mishra et al. 1998; Serra and Casamitjana 1998; Selomulya et al. 2002; 

Rahmani et al. 2003; Sato et al. 2004). Under the two-dimensional uniform laminar flow 
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conditions generated from Couette device particles in the suspension can undergo pure 

orthokinetic coagulation through different flow strain-rate which is one of the mass 

(particle) transport mechanisms. 

 Although the conventional concentric Couette device having rotating cylinders 

generates a uniform state of shear flow, this uniform flow is somewhat different than 

typical mixing flow having spatial variation. To adequately examine the effect of 

increased strain-rate variance (spatial distribution) within the fluid domain on 

orthokinetic coagulation, a system with a high strain-rate variance is required.  

 

 

Figure 6.16 Geometry of eccentric Couette apparatus 
 

he conventional concentric Couette apparatus does not generate a high strain-rate 

variance at a constant angular velocity. An improved system is to reconfigure the 

 

T
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Couette device so that rotational axes of the cylinders are eccentrically located. The 

geometry of the eccentric Couette device appears in Fig. 6.16.  

Fluid flow is induced by the rotation of inner and/or outer cylinder. The fluid 

dynamic parameters were obtained using FLUENT, a commercial CFD (Computational 

Fluid D

Conditions Values 

ynamics) code, for the eccentric Couette device with a rotating outer cylinder 

(see Fig. 6.16). Before the CFD analysis, a grid (mesh) was generated using a 

commercial code of GAMBIT resulting in 256×40 cells, a total cell number of 10240, a 

minimum cell area of 2.845×10-5 cm2, and a maximum cell area of 3.465×10-5 cm2. The 

conditions used for computational fluid dynamic analysis are displayed in Table 6.2.  

 

Table 6.2 CFD Analysis Conditions Using FLUENT 

 Computational grid  Quadratic 40×256 cells 
 Outer cylinder radius (Ro) 7.620 cm 
 Inner cylinder radius (Ri) 3.175 cm 
 Eccentric 3  

 
30 rpm /sec) 

Liquid A = 0.6689 cm2/sec 
Liquid B = 0.0100 cm2/sec 

istance between oute cylinders 

ity (e)* .000 cm
 Mean Clearance (c)** 4.445 cm 
 Rotation velocity (ω)  (3.14 rad
 Kinematic viscosity (v) 
  
*   e = center to center d r and inner 
** c = Ro – Ri

 

Th ylinder was 

erified with two streamlines; generated using GAMBIT and FLUENT CFD code and 

obtaine

e CFD code for the eccentric Couette device with a rotating outer c

v

d by experimental data (see the Fig. 6.17). The streamline experiment was 

conducted under the conditions of; outer cylinder radius (Ro) of 7.62 cm, inner cylinder 

radius (Ri) of 3.175 cm, eccentricity (e) of 3.00 cm, cylinder depth of 20.32 cm, rotation 
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velocity (ω) of 30 rpm in the counterclockwise direction, and kinematic viscosity (v) of 

0.6689 cm2/sec (Thomas 1999). The smallest width of the gap between cylinders was 

1.445 cm and the ratio of depth to gap was about 14. It is reported that in this device 

geometry, the effect of the bottom of the cylinder on the flow is limited to the range 

from the bottom to nearly the same height as the gap (Sato et al. 2004). Thomas (1999) 

obtained flow visualization results through the use of a green dye and aluminum powder 

as the solid particles. Kinematic viscosity of fluid was controlled using a glycerin and 

water mixture (see the Fig. 6.17(b)). As shown in Fig. 6.17, the CFD code generated 

streamlines were in good agreement with the experimental streamlines in Thomas (1999). 

It is remarkable that the CFD code could achieve and accurately predict the proper 

development of the streamlines even with an increase in mean clearance (c) due to the 

use of smaller inner cylinder. It was reported that the increased mean clearance caused 

the analytical solution for the Couette device (Ballal and Rivlin 1976) fail to predict the 

streamlines accurately even at a small eccentricity ratio. Thus, the CFD code for 

eccentric rotating cylinder apparatus as a model flocculator was found to be accurate and 

applicable for the study of particle coagulation. The CFD code applied to this study can 

determine the flow strain-rate that induces particle collisions through the orthokinetic 

coagulation mechanism.  

The fluid flow properties of laminar shear flow resulting from CFD analysis 

using a commercial code of GAMBIT and FLUENT were displayed in Figs. 6.18 to 6.20 

and summarized in Tables 6.3 to 6.4. 
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(a) 
 

 
(b) 

 
Figure 6.17 CFD code verification with streamlines generated using counterclockwise 

rotating outer cylinder with kinematic viscosity (v) of 0.6689 cm2/sec and 30 rpm. 
(a) CFD code and (b) experimental data (Thomas 1999)  

 
 

 
(a) 

 

 
(b) 

 
Figure. 6.18 Streamlines for different fluid viscosity. (a) high viscosity of 0.6689 

cm2/sec and (b) low viscosity of 0.01 cm2/sec 
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Two flows having different viscosities of 0.6689 and 0.01 2/sec were used for 

thes ns 

mentioned in Table 6.2. The results were visualized in terms of streamlines, strain-rates 

), and maximum principal strain rate ( ). Furthermore, the variance in flow 

 cm

e CFD analyses. All CFD simulations were conducted under the conditio

( γ& max

properties (i.e., strain-rate ( γ& )) was computed as, 

 

|γ' |&

( ) ( ) ( )21Variance = γ γ Cell Area
kTotal Cell Area k mean k

⎧ ⎫⎪ ⎪⎡ ⎤− ×⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

 

∑ & &  (6.79) 

 
(a) 

 

 
(b) 

 
Figure. 6.19 Flow strain-rate ( γ& ) for different fluid viscosity. (a) high viscosity of 

0.6689 cm2/sec and (b) low viscosity of 0.01 cm2/sec (unit = 1/s) 
 

Table 6.3 Spatially Varying Flow Strain-Rate ( γ& ) 

 Liquid A 
H

uid B 
( igh viscosity) (Low viscosity) 

Liq

Maximum 47.758 (1/s)  89.481 (1/s) 
Minim  
Average*  6.036 (1/s)    7.666 (1/s) 

115.849 (1/s2) 

um  0.130 (1/s)    0.045 (1/s)

Variance 16.919 (1/s2) 
      * This average means area weighted value. 
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(a) 
 

 
(b) 

 

Figure. 6.20 Maximum principal strain rate ( ) for different fluid viscosity. (a) high 
viscosity of 0.6689 cm2/sec and (b) low viscosity of 0.01 cm2/sec 

 

     
Table 6.4 Spatially Varying Maximum Principal Strain-Rate | ) 

 

max|γ |&

 ( | maxγ&

 Liquid A
(High viscosity) 

Liquid B 
(Low viscosity) 

Maxim  um 23.891 (1/s)  46.271 (1/s)
Minimum  0.048 (1/s)    0.008 (1/s) 
Average*  3.046 (1/s)    3.868 (1/s) 

2 2) Variance   4.319 (1/s )   31.577 (1/s
      *
 

From  it was found that  can alter not on , but also 

strai thermore, there is a ence in the strain-rate variance between 

odeling of orthokinetic coagulation, a more 

omplicated approach is required to accurately predict orthokinetic coagulation in 

 This average means area weighted value. 

 the results, fluid viscosity ly stream lines

n-rates. Fur  large differ

the two computations. Thus, in the m

c

complex flows, especially with spatial varying flow having large variance, which is 
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characteristic of most coagulation systems. The summary of energy dissipation rates in 

incompressible Newtonian fluid was listed on Tables 6.5 to 6.7 and Figures 6.21 to 6.23.  

 

Table 6.5 Shear Flow Comparison with Maximum Value                        (unit = 1/sec) 

 Liquid A 
(High viscosity) 

Liquid B 
(Low viscosity) 

Strain-rate ( ) 
Maximum principal strain-rate ( ) 

47.758 
23.891 

89.481 
46.271 

γ&

max|γ' |&

 

 

e verage           1/sec)

 Liquid A 
(High viscosity) 

Liquid B 
(Low viscosity) 

Table 6.6 Shear Flow Comparison with Area W ighted A    (unit =

Strain-rate ( ) 
Maximum principal strain-rate ( ) 

6.034 
3.046 

7.666 
3.868 

γ&

max|γ' |&

 
 
 
 

n wit  Local Vari                       (unit = 1/sec2)

 Liquid A 
(High viscosity) 

Liquid B 
(Low viscosity) 

Table 6.7 Sh ar e Flow Compariso h ance    

Strain-rate ( ) 
Maximum principal strain-rate ( ) 

16.919 
4.319 

115.849 
31.577 

γ&

max|γ' |&
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Figure 6.21 The comparison of energy dissipation rates with maximum value 
 

 

Figure 6.22 The comparison of energy dissipation rates with area weighted average 
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Figure 6.23 The comparison of energy dissipation rates with local variance 
 

  

 In addition, the maximum principal strain-rate concept might be extended from 

laminar to homogeneous isotropic turbulent flow. The variance of the fluctuating 

component (velocity fluctuation) of the flow strain-rate can be equated to the fluctuating 

energy dissipation (ε) (Taylor 1935) by 

 
2

1

2

u 2ε
x 15

⎧ ⎫∂
=⎨ ⎬∂⎩ ⎭

%

µ
 (6.80) 

The exact value of energy dissipated into the flow system (ε) is not easy to determine. 

Furthermore, the velocity fluctuation u’ in turbulent flow is difficult to determine. The 

velocity flocculation can be expressed with specified energy spectrum using random 

Fourier modes for an isotropic, Gaussian, and pseudo-turbulence flow (Mei and Hu 

1999), as 
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 ( ) ( ) ( ) ( ) ( ) ( )

1

u u ( , ) sin( ) cos( )
x

kN
m m m m m mi

i i i
i mt

t A t Bω ω
=

⎛ ⎞∂ t⎡ ⎤= = ⋅ + + ⋅ +⎜ ⎟ ⎣ ⎦∂⎝ ⎠
∑%

x k x k x  (6.81) 

where, i = 1, 2, and 3 for three-dimension turbulent flow,  is the number of the 

random Fourier modes in one flow realization, 

kN

( )m
iA  and ( )m

iB  are random coefficient, 

and  and ( )mk ( )mω  are the wavenumber and frequency of the mth model, respectively. 

Thus, strain-rate for homogeneous isotropic turbulent flow can be calculated as, 

 
1

2

3

u ( , ) 0 0
2εγ 0 u ( , ) 0 |γ'

15µ
0 0 u ( , )

ij Turb

x t
x t

x t

⎡ ⎤
⎢⎡ ⎤ =⎣ ⎦ ⎢
⎢ ⎥⎣ ⎦

& & max |⎥
⎥  (6.82) 

 

6.5 A Unified Coagulation Model with Arsenic Sorption 

This chapter provides modeling capability for the complex arsenic removal 

mechanisms throughout the arsenic sorption and coagulation processes. To develop the 

unified sorption model, several unit models (kinetic and equilibrium) were derived and 

described in previous chapters of this study (i.e., the improved coagulation model, 

arsenic sorption kinetic model, arsenic surface complexation model, and collision 

efficiency model) and are coupled with each other for each time step. The computational 

algorithm for the unified kinetic model adopted in this study is represented by the flow 

chart shown in Fig. 6.24. 
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Figure 6.24 The computational algorithm for the unified kinetic model  
with sorption and coagulation 

 

As shown in Fig. 6.24, model coupling is achieved by combining the sorption 

model with the improved coagulation model. Using the local equilibrium assumption, 

arsenic kinetics and equilibrium (surface complexation) are incorporated at each reaction 

time step. Throughout the arsenic sorption kinetics and equilibrium models extensively 

discussed in previous chapters, the surface charges/potentials of the HFO particles used 

for arsenic adsorbent at each time step are calculated. Further, the collision efficiency 
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between colliding HFO particles is calculated by aid of the surface charges/potentials 

from the HFO particles. Thus, the collision efficiency (α) plays a key role in coupling 

the sorption model with the improved coagulation model.  

6.5.1 A Coupled Perikinetic Coagulation Model with Arsenic Sorption 

 As shown in Fig. 6.24, a perikinetic coagulation model with arsenic sorption 

kinetics and equilibrium onto hydrous ferric oxide (HFO) was coupled using the 

computational algorithm for the unified kinetic model. The detailed coupling procedure 

was represented as follow steps consisting of Eqs. (6.83) to (6.100). All model equations 

used for each step were developed or introduced at previous chapters. 

 

Step 1) Diffusion transport (mass transport) arsenic sorption kinetic modeling. 

 Liquid Liquid2Solid
2

[As] [As][As] 1 r
t t r r rp p p p

p p p

Dε ρ
⎛ ⎞∂ ∂∂ ∂

+ = ⎜⎜∂ ∂ ∂ ∂⎝ ⎠
⎟⎟  (6.83) 

Step 2) Surface complexation modeling using the sorption local equilibrium assumption. 

Acid-Base Reactions 
HAsO4

-2 ⇔ AsO4-3 + H+

H2AsO4
- ⇔ AsO4

-3 + 2H+

H3AsO4   AsO⇔ 4
-3 + 3H+

 
Surface protonation constant 
≡XOH + H+ ⇔  ≡XOH2

+

≡XOH          ⇔  ≡XO− + H+

 
Monodentate As(V) sorption 
≡XOH + AsO4

−3 + 3H+ ⇔  ≡XH2AsO4 + H2O 
≡XOH + AsO4

−3 + 2H+ ⇔  ≡XHAsO4
− + H2O 

≡XOH + AsO4
−3 + H+   ⇔  ≡XAsO4

−2 + H2O 
≡XOH + AsO4

−3            ⇔  ≡XAsO4
−3

(6.84) 
(6.85) 
(6.86) 

(6.87) 
(6.88) 

(6.89) 
(6.90) 
(6.91) 
(6.92)
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Step 3) HFO surface charge evolution modeling. 

 { }+ 3 2
2 4 4[ XO ]+[ XOH ]+[ XAsO ]+[ XAsO ]+[ XHAsO ]

2
F
a

σ − − −= ≡ ≡ ≡ ≡ ≡ 3
−  (6.93) 

Step 4) Collision efficiency calculation. 

 A 02 2 3
0 0 0

Aλ 1 2.45 2.17 0.59V 1
3(1 λ) (S 2) 5 15 35

p
p p p

⎛ ⎞
= − − + ≥⎜ ⎟+ − ⎝ ⎠

.0  (6.94) 

 A 02
0

Aλ 1 1V 1
3(1 λ) (S 2) 1 1.7692

p
p

⎛ ⎞
= − <⎜ ⎟+ − +⎝ ⎠

.0  (6.95) 

 2
R s

λ[max(r , r )] 2V ψ ln 1 exp 2
1 λ r r

r i j

i j

lε
κ

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + − −⎢ ⎥⎜ ⎟⎨ ⎬⎜+ + ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
 (6.96) 

 T RV V VA= +  (6.97) 

 ( )T B
Br 2

2

exp V /k T1α (r , r ) 2 dS
(S,λ) Si j G

∞
⎛ ⎞

= ⎜ ⎟
⎝ ⎠∫  (6.98) 

Step 5) Unified coagulation modeling. 

 ( )T B
Br 2

2

exp V /k T1α (r , r ) 2 dS
(S,λ) Si j G

∞
⎛ ⎞

= ⎜ ⎟
⎝ ⎠∫  (6.98) 

 B
Br

2k T 1 1β (r , r ) =  + (r r )
3µ r ri j i j

i j

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
 (6.99) 

 Br Br Br Br
1

dn 1 = α (r , r )β (r , r )n n   n α (r , r )β (r , r )n
dt 2

k
i j i j i j k l k l k l

i j k l

∞

+ = =

−∑ ∑  (6.100) 

 

As shown in Eqs. (6.83) to (6.100) of model coupling procedure, perikinetic 

coagulation model coupling was achieved by combining the arsenic sorption kinetic and 
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equilibrium model with the improved coagulation model that was developed and 

addressed in previous chapter. First, using the local equilibrium assumption, arsenic 

sorption kinetics and equilibrium (surface complexation) were incorporated at each 

reaction time step. Second, the surface charge(potential) of the HFO particles evolution 

at each time step was simultaneously calculated. Third, the collision efficiency between 

colliding HFO particles was calculated by aid of the surface charge (potential) from the 

HFO particles. Finally, introducing the collision efficiency (α) into the improved 

coagulation model yielded a coupled coagulation model with arsenic sorption kinetics 

and equilibrium. 

 The coupled perikinetic coagulation model equations were computed over time 

using the initial conditions presented in Table 6.8. As shown in Table 6.8, polydisperse 

initial population was used where each size class has different particle concentrations. 

The polydisperse initial population is more realistic when applied to an engineered or 

experimental system than a monodisperse initial population where all of the initial 

particles have the same particle size. The polydisperse initial population had a particle 

size distribution similar to a normal distribution. The polydisperse initial population in 

Table 6.9 corresponds to the experimental study of amorphous iron oxide size 

distribution of Lo and Waite (2000).  

The primary and maximum particle sizes used for the perikientic coagulation 

were 30 nm and 960 nm in diameter, respectively. In this particle size range, it has been 

reported that perikinetic coagulation resulting from mass transport due to Brownian 

random motion is the main particle collision mechanism. Furthermore, most particle 
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aggregates are found to be fractal and not spherical shaped. As shown in previous 

chapters related to coagulation model development, the improved model proposed in this 

study was shown to be capable for application in fractal colloidal coagulation simulation. 

Thus, a fractal geometric dimension value (Df) of 2.0 was introduced into the unified 

perikinetic coagulation model and coupled with the arsenic kinetic and equilibrium 

models. The results from the coupled perikinetic coagulation model are displayed in Figs. 

6.25 to 6.45 for various arsenic loading ratios (As/Fe = 0.25 ~ 1.0).  

 

Table 6.8 Parameters for Coupled Perikinetic Coagulation with Arsenic Sorption  

Physical Properties Values 

 
Arsenic concentration (M) 

 
2.5 × 10-5 ~ 1.0 × 10-4

HFO concentration (M) 1.0×10-4

Volume (L) 1.0 
Two film mass transfer coefficient (m/sec) 
Pore diffusion coefficient (m2/sec) 
Freundlich isotherm parameters 
Particle density (g cm-3) 

1.82×10-5

3.77×10-15

K = 55.34 (L/µg), n = 3.67 
3.57 

Particle disperstion condition 
Particle concentration (no./cm3) 

Polydisperse initial population 
NTotal = 1.038 × 109, NPrimary = 1.003 × 1010

Particle diameter (nm) dPrimary = 30, dMaximum  = 960 
Fractal dimension (Df) 2 
Break-up coefficieint (KB) 
Temperature (°K) 

0 
298 

Viscosity (g cm-1 s-1) 7.97 
Hamaker constant (J) 4.14 × 10-20

Boltzmann’s constant (J/K) 
pH 
Ionic strength (M) 

1.38 × 10-16

7.0 
0.01 
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 Perikinetic collision efficiency (αBr) for various surface potential conditions due 

to arsenic sorption onto hydrous ferric oxide (HFO) was calculated using the unified 

perikientic coagulation model for fractal colloids coupled with arsenic kinetic and 

equilibrium models developed  in this study and these results are displayed in Fig. 6.25.  
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Figure 6.25 Perikinetic collision efficiency (αBr) evolution between two particles during 
arsenic sorption (dmin = 30 nm, dmax = 960 nm, Df = 2.0, and I = 0.01 M) 

 

As shown in Fig. 6.25, the perikinetic collision efficiency (αBr) decreases as the 

colliding particle size increases under all surface potential regimes and as the surface 

potential increased from 10 mV to 25 mV. The collision between relatively large 

particles (200 ≤ d ≤ 1000 nm) can not be expected at a surface potential of larger than 15 

mV, which correspond to the previous results of section 6.3.1. However, above the 

surface potential of 25 mV, particle collisions are not expected to occur even when the 
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size range is less than 30 nm in diameter. It is notable that primary particle size or mean 

particle size of the colliding particle population is mainly affected by the collision 

efficiency during perikientic coagulation. Thus, it is expected that surface potential 

(charge) evolution due to arsenic sorption onto hydrous ferric oxide (HFO) can alter the 

particle size distribution and thus plays a key role in the perikinetic coagulation process.  

 The results of the kinetics of As(V) sorption and surface potential evolution for 

the numerical simulation conditions of As(V) = 2.5×10-5 M, Fe = 1.0×10-4 M (As/Fe = 

0.25), and perikinetic coagulation, are represented in Figs. 6.26 to 6.30 in terms of 

arsenic sorption kinetics, surface potential evolution with reaction time, particle 

concentration, coagulation mass conservation factor, particle size distribution, and 

cumulative particle size distribution. 
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Figure 6.26 Kinetics of As(V) sorption and surface potential ([As(V)o] = 2.5×10-5 M, Fe 
= 1.0×10-4 M, pH = 7.0,  I = 0.01 M, perikinetic coagulation particle range of dmin = 30 

nm and  dmax = 960 nm, Df = 2.0) 
 



 240

As can be seen from the results of Figs. 6.25 and 6.26, perikinetic coagulation 

having the lower arsenic loading ratio (As/Fe = 0.25) could not be expected to occur due 

to higher surface potential over all arsenic sorption reaction times, where the surface 

potential are over 38 mV. Thus, these results indicate that poor coagulation having low 

coagulation intensity or index is expected when perikinetic coagulation occurs with the 

lower arsenic loading ratio, and these results are displayed in Figs. 6.27 to 6.30.  
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Figure 6.27 Coagulation kinetics ([As(V)o] = 2.5×10-5 M, Fe = 1.0×10-4 M, pH = 7.0,  I 
= 0.01 M, particle range of dmin = 30 nm and  dmax = 960 nm, Df = 2.0) 
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Figure 6.28 Kinetics of coagulation and surface potential ([As(V)o] = 2.5×10-5 M, Fe = 

1.0×10-4 M, pH = 7.0,  I = 0.01 M, perikinetic coagulation particle range of dmin = 30 nm 
and  dmax = 960 nm, Df = 2.0) 
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Figure 6.29 Particle size distribution ([As(V)o] = 2.5×10-5 M, Fe = 1.0×10-4 M, pH = 7.0,  
I = 0.01 M, particle range of dmin = 30 nm and  dmax = 960 nm, Df = 2.0) 
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Figure 6.30 Cumulative oversize particle distribution (As(V) = 2.5×10-5 M, Fe = 1.0×10-

4 M, pH = 7.0,  I = 0.01 M, particle range of dmin = 30 nm and  dmax = 960 nm,  Df = 2.0) 

 

 As initial arsenic sorption loading ratio increased from As/Fe = 0.25 to As/Fe 1.0, 

numerical simulations using the coupled perikinetic coagulation model produced 

different results compared to the relatively low As/Fe ratio of 0.25. The initial conditions 

of various arsenic loading ratios were As/Fe = 0.5 (see Figs. 6.31 to 6.35), As/Fe = 0.75 

(see Figs. 6.36 to 6.40), and As/Fe = 1.0 (see Figs. 6.41 to 6.45).  

 From the results represented by arsenic sorption kinetics and surface potential 

evolution over time (see Fig. 6.31, 6.36, and 6.41), it was found that as arsenic initial 

loading ratio (As/Fe) increased from 0.25 to 0.75, minimum surface potentials on 

hydrous ferric oxide decreased to 0 mV of surface potential. However, in the case of the 

highest arsenic loading ratio of As/Fe = 1.0, the surface potential exceeded 0 mV and  

approached -25 mV. From these results, it could be expected that particle collision is 



 243

dependent on the surface potential magnitude and thus, particle coagulation could not 

occur when the surface potential magnitude is over 25 mV or under -25 mV. 

Furthermore,  higher coagulation intensity could be found when the surface potential has 

the lowest value and approaches 0 mV as expected.  

 As shown in results of coagulation (total particle concentration) kinetics and 

mass conservation (see Fig. 6.32, 6.37, and 6.42), even though the hydrous ferric oxide 

(HFO) particle is not a sphere but a fractal aggregate of Df 2.0, the coagulation mass 

(represented by the total number of primary particles for each class size) was conserved 

perfectly for all coupled perikinetic coagulation with the arsenic sorption model 

simulations. As displayed in the results of total particle concentration (particle 

coagulation) kinetics, surface potential evolution (see Fig. 6.33, 6.38, and 6.43), particle 

size distribution evolution over time (see Fig. 6.34, 6.39, and 6.44), and cumulative size 

distribution evolution (see Fig. 6.35, 6.40, and 6.45), it was found that coagulation did 

not occur until the surface potential decreased to 20mV. Thus, this very low coagulation 

intensity resulted in the lag-phase coagulation kinetics during relatively high surface 

potentials ranging over 20mV. In other words, the coupled perikinetic coagulation with 

arsenic sorption modeling could be initiated at the point of surface potential of 20 mV or 

less. Further, from Figs. 6.43, 6.44 and 6.45, as particles adsorbed large amounts of 

arsenic, the perikinetic collisions between particles stopped, especially when the surface 

potential decreased under -20 mV. Moreover, from Figs. 6.43, 6.44 and 6.45, the second 

lag-phase coagulation kinetics and particle size distribution could be found. Thus, the 

surface potential magnitude of ±20 mV is an important condition and could be used as a 



 244

primary factor to predict the behavior of perikinetic coagulation kinetics coupled with 

arsenic sorption.  

 

Table 6.9 Collision Efficiencies and Surface Potentials for Perikinetic Coagulation 

As(V) loadings As/Fe ratio Average 
Collision Efficiency Surface Potential 

As = 0.25×10-4 M 
Fe = 1.00×10-4 M 0.25 2.1846×10-3 38.65 mV 

As = 0.50×10-4 M 
Fe = 1.00×10-4 M 0.50 1.6120×10-1 16.25 mV 

As = 0.75×10-4 M 
Fe = 1.00×10-4 M 0.75 8.2840×10-1  -5.09 mV 

As = 1.00×10-4 M 
Fe = 1.00×10-4 M 1.00 4.3576×10-1 -23.70 mV 

 

It is possible to compare coagulation intensity, kinetics, and particle size 

distribution using overall average collision efficiencies between two colliding particles 

during arsenic sorption kinetics. These overall average collision efficiencies were 

calculated and are displayed in Table 6.9. These average collision efficiencies can be 

used for comparing overall collision intensity magnitude (i.e., high, intermediate, and 

low level coagulation). That is, although this overall average collision efficiency can be 

introduced into the coagulation model analysis due to its easy handling, it is impossible 

to predict the coagulation kinetics using average collision efficiency values calculated 

from Table 6.9. Especially, the average collision efficiency can not predict the lag-phase 

of the coagulation kinetics and particle size distribution evolution due to a higher surface 

potential than 20 mV (first lag-phase) or lower surface potential than -20 mV (second 
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lag-phase). Therefore, it is recommended that collision efficiency be calculated for each 

time step of arsenic sorption and particle coagulation, rather than use an average 

collision efficiency. 
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Figure 6.31 Kinetics of As(V) sorption and surface potential ([As(V)o] = 5.0×10-5 M, Fe 
= 1.0×10-4 M, pH = 7.0,  I = 0.01 M, perikinetic coagulation particle range of dmin = 30 

nm and  dmax = 960 nm, Df = 2.0) 
 

 



 246

Time (sec)

0 600 1200 1800 2400 3000 3600

Pa
rti

cl
e 

C
on

ce
nt

ra
tio

n 
(N

To
ta

l/N
O
)

0.0

0.2

0.4

0.6

0.8

1.0

M
as

s 
C

on
se

rv
at

io
n 

Fa
ct

or

0.0

0.5

1.0

1.5

2.0

Total Particle Concentration
Mass Conservation

 

Figure 6.32 Coagulation kinetics ([As(V)o] = 5.0×10-5 M, Fe = 1.0×10-4 M, pH = 7.0,  I 
= 0.01 M, particle range of dmin = 30 nm and  dmax = 960 nm, Df = 2.0) 
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Figure 6.33 Kinetics of coagulation and surface potential (As(V) = 5.0×10-5 M, Fe = 
1.0×10-4 M, pH = 7.0,  I = 0.01 M, perikinetic coagulation particle range of dmin = 30 nm 

and  dmax = 960 nm, Df = 2.0) 
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Figure 6.34 Particle size distribution ([As(V)o] = 5.0×10-5 M, Fe = 1.0×10-4 M, pH = 7.0,  
I = 0.01 M, particle range of dmin = 30 nm and  dmax = 960 nm, Df = 2.0) 
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Figure 6.35 Cumulative oversize particle distribution ([As(V)o] = 5.0×10-5 M, Fe = 
1.0×10-4 M, pH 7.0,  I = 0.01M, particle range of dmin=30 nm and dmax=960 nm, Df = 2.0)
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Figure 6.36 Kinetics of As(V) sorption and surface potential ([As(V)o] = 7.5×10-5 M, Fe 
= 1.0×10-4 M, pH = 7.0,  I = 0.01 M, perikinetic coagulation particle range of dmin = 30 

nm and  dmax = 960 nm, Df = 2.0) 
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Figure 6.37 Coagulation kinetics ([As(V)o] = 7.5×10-5 M, Fe = 1.0×10-4 M, pH = 7.0,  I 
= 0.01 M, particle range of dmin = 30 nm and  dmax = 960 nm, Df = 2.0) 
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Figure 6.38 Kinetics of coagulation and surface potential ([As(V)o] = 7.5×10-5 M, Fe = 

1.0×10-4 M, pH = 7.0,  I = 0.01 M, perikinetic coagulation particle range of dmin = 30 nm 
and  dmax = 960 nm, Df = 2.0) 
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Figure 6.39 Particle size distribution ([As(V)o] = 7.5×10-5 M, Fe = 1.0×10-4 M, pH = 7.0,  
I = 0.01 M, particle range of dmin = 30 nm and  dmax = 960 nm, Df = 2.0) 
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Figure 6.40 Cumulative oversize particle distribution ([As(V)o] = 7.5×10-5 M, Fe = 
1.0×10-4 M, pH 7.0,  I = 0.01M, particle range of dmin=30 nm and dmax=960 nm, Df = 2.0)
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Figure 6.41 Kinetics of As(V) sorption and surface potential (As(V) = 1.0×10-4 M, Fe = 
1.0×10-4 M, pH 7.0,  I = 0.01 M, perikinetic coagulation particle range of dmin = 30 nm 

and  dmax = 960 nm, Df = 2.0) 
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Figure 6.42 Coagulation kinetics ([As(V)o] = 1.0×10-4 M, Fe = 1.0×10-4 M, pH = 7.0,  I 
= 0.01 M, particle range of dmin = 30 nm and  dmax = 960 nm, Df = 2.0) 
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Figure 6.43 Kinetics of coagulation and surface potential ([As(V)o] = 1.0×10-4 M, Fe = 
1.0×10-4 M, pH = 7.0,  I = 0.01 M, perikinetic coagulation particle range of dmin = 30 nm 

and  dmax = 960 nm, Df = 2.0) 
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Figure 6.44 Particle size distribution ([As(V)o] = 1.0×10-4 M, Fe = 1.0×10-4 M, pH = 7.0,  
I = 0.01 M, particle range of dmin = 30 nm and  dmax = 960 nm, Df = 2.0) 
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Figure 6.45 Cumulative oversize particle distribution ([As(V)o] = 1.0×10-4 M, Fe = 
1.0×10-4 M, pH 7.0,  I = 0.01M, particle range of dmin=30 nm and dmax=960 nm, Df = 2.0)
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6.5.2 A Coupled Orthokinetic Coagulation Model with Arsenic Sorption 

Using the computational algorithm proposed in the section 6.5.1 (see Fig. 6.24), 

arsenic sorption kinetics and equilibrium onto hydrous ferric oxide (HFO) were unified 

with the improved orthokinetic coagulation model developed in previous chapter. The 

detailed coupling procedure was identical to that sued in the unified perikinetic 

coagulation model study of Eqs. (6.83) to (6.100), except for the collision efficiency 

model  and the collision frequency kernel , rather than  and 

.  

shα (r , r )i j shβ (r , r )i j Brα (r , r )i j

Brβ (r , r )i j

Step 1) Diffusion transport (mass transport) arsenic sorption kinetic modeling. 

 Liquid Liquid2Solid
2

[As] [As][As] 1 r
t t r r rp p p p

p p p

Dε ρ
⎛ ⎞∂ ∂∂ ∂

+ = ⎜⎜∂ ∂ ∂ ∂⎝ ⎠
⎟⎟  (6.83) 

Step 2) Surface complexation modeling using the sorption local equilibrium assumption. 

Acid-Base Reactions 
HAsO4

-2 ⇔ AsO4-3 + H+

H2AsO4
- ⇔ AsO4

-3 + 2H+

H3AsO4   AsO⇔ 4
-3 + 3H+

 
Surface protonation constant 
≡XOH + H+ ⇔  ≡XOH2

+

≡XOH          ⇔  ≡XO− + H+

 
Monodentate As(V) sorption 
≡XOH + AsO4

−3 + 3H+ ⇔  ≡XH2AsO4 + H2O 
≡XOH + AsO4

−3 + 2H+ ⇔  ≡XHAsO4
− + H2O 

≡XOH + AsO4
−3 + H+   ⇔  ≡XAsO4

−2 + H2O 
≡XOH + AsO4

−3            ⇔  ≡XAsO4
−3

(6.84) 
(6.85) 
(6.86) 

(6.87) 
(6.88) 

(6.89) 
(6.90) 
(6.91) 
(6.92)

 
Step 3) HFO surface charge evolution modeling. 
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 { }+ 3 2
2 4 4[ XO ]+[ XOH ]+[ XAsO ]+[ XAsO ]+[ XHAsO ]

2
F
a

σ − − −= ≡ ≡ ≡ ≡ ≡ 3
−  (6.93) 

Step 4) Collision efficiency calculation. 

 1,2 2
A 2 2 3

A r 2.45 2.17 1.18F 1
(1 λ) 15 30 105

p
h p p p

⎡ ⎤
= − − + ≥⎢ ⎥+ ⎣ ⎦

.0  (6.101) 

 1,2 2
A 2 2

A r 1 3.54F 1
(1 λ) 6(1 1.77 )

p p
h p

⎡ ⎤+
= − <⎢ ⎥+ +⎣ ⎦

.0  (6.102) 

 
2 2

0 2 1 2 1 2
R

r 2ψ ψ (ψ ψ ) exp( )F
1 λ sinh( )

r h
h

πε ε κ κ
κ

⎡ ⎤− + −
= ⎢ ⎥+ ⎣ ⎦

 (6.103) 

 T RF F FA= +  (6.104) 

 2
max T2

1

dr* |γ ' |r*(1 )sin sin cos (F )
dt 6 µr

θ φ φ
π

= − +&
C

A  (6.105) 

 max
d |γ ' |(1 )sin cos sin cos
dt
θ θ θ φ= −& B φ  (6.106) 

 2
max

d |γ ' | cos cos 2
dt 2
φ φ φ⎛= −⎜

⎝ ⎠
&

B ⎞
⎟  (6.107) 

 
max

2
sh 3

0

3/2α (r , r ) [ ( )]
(r r )

z

i j
i j

x z dz
+ ∫=  (6.108) 

Step 5) Unified coagulation modeling. 

 
max

2
sh 3

0

3/2α (r , r ) [ ( )]
(r r )

z

i j
i j

x z dz
+ ∫=  (6.108) 

 3
sh max

4πβ (r , r ) = |γ' |(r r )
3i j i j+&  (6.109) 
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sh sh sh sh

1

η η
,

1

dn 1 = α (r , r )β (r , r )n n   n α (r , r )β (r , r )n
dt 2

b s (n ) s (n )

k
i j i j i j k l k l k l

i j k l

k j j l k k
j

∞

+ = =

∞

=

−

+ −

∑ ∑

∑
 (6.110) 

All modeling equations used for each step were developed or introduced in 

previous chapters and sections. A unified orthokinetic coagulation model coupled with 

arsenic sorption kinetics and equilibrium was simulated using the modeling procedure 

described in the previous unified perikinetic coagulation model study. Unlike the 

perikinetic coagulation model coupled with arsenic sorption, the particle trajectory 

analysis of Eqs. (6.105) to (6.108) was used to calculate orthokinetic collision efficiency 

 and an aggregate break-up kernel was introduced to apply flow induced 

stresses that produces floc disintegration into the overall orthokinetic coagulation model 

of Eq. (6.110). Introducing the orthokinetic collision efficiency , which is 

related to arsenic sorption and surface potential into the improved coagulation model 

previously developed yields a unified orthokinetic coagulation model coupled with 

arsenic sorption. 

shα (r , r )i j

shα (r , r )i j

The unified orthokinetic coagulation model was computed using the initial 

conditions presented in Table 6.10. As shown in the unified perikinetic coagulation 

model simulation, a polydisperse initial population where each size class has different 

particle concentrations was examined due to the more realistic conditions for engineered 

or experimental systems than a monodisperse initial population where all of the initial 

particles have the same particle size. The polydisperse initial population had a particle 
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size distribution similar to a normal distribution curve. The primary and maximum 

particle sizes used for the orthokinetic coagulation were 1 µm and 32 µm in diameter, 

respectively. In this particle size range, it has been reported that orthokinetic coagulation 

resulting from mass transport phenomenon due to fluid flow strain-rate is the main 

particle collision mechanism, rather than Brownian random motion or differential 

sedimentation or buoyancy. Furthermore, a fractal geometric dimension value (Df) of 2.0 

was introduced into the orthokinetic coagulation model.  

 

Table 6.10 Parameters for Coupled Orthokinetic Coagulation with Arsenic Sorption  

Physical Properties Values 
 
Arsenic concentration (M) 

 
0.25 × 10-4 ~ 2.00 × 10-4

HFO concentration (M) 1.00 × 10-3

Volume (L) 1.0 
Two film mass transfer coefficient (m/sec) 
Pore diffusion coefficient (m2/sec) 
Freundlich isotherm parameters 
Particle density (g cm-3) 

1.82 × 10-5

3.77 ×10-15

K = 55.34 (L/µg), n = 3.67 
3.57 

Particle disperstion condition 
Particle concentration (no./cm3) 

Polydisperse initial population 
NTotal = 1.071×108, NPrimary = 1.035×109

Particle diameter (µm) dPrimary = 1.0 , dMaximum  = 32.0  
Fractal dimension (Df) 2 
Break-up coefficieint (KB) 
Fluid strain-rate (1/sec) 
Temperature (°K) 

0.1 
15 
298 

Viscosity (g cm-1 s-1) 7.97 
Hamaker constant (J) 4.14 × 10-20

Boltzmann’s constant (J/K) 
pH 
Ionic strength (M) 
 

1.38 × 10-16

7.0 
0.01 

 

The results from the coupled orthokinetic coagulation model for fractal colloids 

with arsenic sorption kinetics and equilibrium model are displayed in Figs. 6.47 to 6.66 
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for various arsenic loading ratios (As/Fe = 0.025~0.2). It should be noted that the values 

of arsenic loading ratios (As/Fe = 0.025~0.2) used in the orthokinetic coagulation 

simulation are lower than the values of perikinetic coagulation study (As/Fe = 0.25~1.0). 

The inconsistency of arsenic loading ratio between two coagulation numerical 

simulations results from the relationship between arsenic sorption capacity (or specific 

surface area) and adsorbent particle size. For both perikinetic and orthokinetic 

coagulation simulations, the initial particle size rage were 0.03~0.96 µm and 1~32 µm, 

respectively. In general, the arsenic sorption capacity is inversely proportional to the 

adsorbent particle size. Therefore, the arsenic loading ratios were controlled to obtain 

moderate sorption data for both perikinetic and orthokinetic coagulation modeling. 

Orthokinetic collision efficiency (αsh) for various surface potential conditions due to 

arsenic sorption onto hydrous ferric oxide (HFO) was calculated and displayed in Fig. 

6.46. As expected from the perikinetic collision efficiency study, the orthokinetic 

collision efficiency (αsh) decreases as the colliding particle size increases under all 

surface potential regimes and as the surface potential increased from 5 mV to 50 mV 

(see Fig. 6.46). Orthokinetic collisions between relatively large particles (d > 20 µm) can 

hardly be expected at the relatively high surface potentials. As shown in the previous 

unified perikinetic coagulation model results, primary particle size or mean particle size 

of the colliding particle population and its surface potential mainly affect the collision 

efficiency during orthokinetic coagulation. Thus, it is expected that surface potential 

(charge) evolution due to arsenic sorption onto hydrous ferric oxide (HFO) can alter the 

particle size distribution and thus plays a key role in the orthokinetic coagulation process. 
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Figure 6.46 Orthokinetic collision efficiency (αsh) evolution between two particles 
during arsenic sorption (dmin = 1.0 µm, dmax = 32.0 µm, Df = 2.0, and I = 0.01 M) 
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Figure 6.47 Kinetics of As(V) sorption and surface potential ([As(V)o] = 0.25×10-4 M, 
Fe = 1.0×10-3 M, pH = 7.0,  I = 0.01 M, orthokinetic coagulation particle range of dmin = 

1.0 µm and  dmax = 32.0 µm, Df = 2.0) 
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The results of the kinetics of As(V) sorption and surface potential evolution for 

the numerical simulation conditions of As(V) = 0.25×10-4 M, Fe = 1.0×10-3 M (As/Fe = 

0.025), and orthokinetic coagulation, are shown in Figs. 6.47 to 6.51 in terms of arsenic 

sorption kinetics, surface potential evolution, particle concentration, coagulation mass 

conservation factor, particle size distribution, and cumulative particle size distribution. 

Even though orthokinetic coagulation having the lower arsenic loading ratio 

could not be expected due to the relatively higher surface potential during all arsenic 

sorption reaction times, it could be possible that orthokinetic coagulation can occur at 

the relatively higher surface potential conditions of 35 mV (see Figs. 6.46 and 6.47). 

However, these results indicate that coagulation having low coagulation intensity or 

index is expected when orthokinetic coagulation occurs with the lower arsenic loading 

ratio resulting in higher surface potential, and the results are displayed in Figs. 6.48 to 

6.51. 
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Figure 6.48 Coagulation kinetics ([As(V)o] = 0.25×10-4 M, Fe = 1.0×10-3 M, pH = 7.0,  I 
= 0.01 M, particle range of dmin = 1 µm and  dmax = 32 µm, Df = 2.0) 
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Figure 6.49 Kinetics of coagulation and surface potential ([As(V)o] = 0.25×10-4 M, Fe = 
1.0×10-3 M, pH = 7.0,  I = 0.01 M, orthokinetic coagulation particle range of dmin = 1 µm 

and  dmax = 32 µm, Df = 2.0) 
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Figure 6.50 Particle size distribution ([As(V)o] = 0.25×10-4 M, Fe = 1.0×10-3 M, pH = 
7.0,  I = 0.01 M, particle range of dmin = 1 µm and  dmax = 32 µm, Df = 2.0) 
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Figure 6.51 Cumulative oversize particle distribution ([As(V)o] = 0.25×10-4 M, Fe = 
1.0×10-3 M, pH 7.0,  I = 0.01M, particle range of dmin=1 µm and dmax = 32 µm, Df = 2.0) 
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As initial arsenic sorption loading ratio increased from As/Fe = 0.025 to As/Fe 

0.2, numerical simulations using the coupled orthokinetic coagulation model 

demonstrated different results when compared to the relatively low As/Fe ratio of 0.025. 

The initial conditions of various arsenic loading ratios were As/Fe = 0.05 (see Figs. 6.52 

to 6.56), As/Fe = 0.1 (see Figs. 6.57 to 6.61), and As/Fe = 0.2 (see Figs. 6.62 to 6.66).  

 From the results represented by the arsenic sorption kinetics and surface potential 

time evolution (see Fig. 6.52, 6.57, and 6.62), it was found that as arsenic initial loading 

ratio (As/Fe) increased from 0.025 to 0.2, minimum surface potentials on hydrous ferric 

oxide were decreased and changed from 35 mV to -40 mV, respectively. From these 

results, it could be expected that particle collision is dependent on surface potential 

magnitude. Furthermore, the higher coagulation intensity could be found when the 

surface potential has least value and approaches 0 mV.  

 As shown in results of coagulation (total particle concentration) kinetics and 

mass conservation factor (see Fig. 6.53, 6.58, and 6.63), even though the hydrous ferric 

oxide (HFO) particle is not a sphere but a fractal aggregate of Df 2.0, the coagulation 

mass (represented by the total number of primary particles for each class size) was 

perfectly conserved for all coupled orthokinetic coagulation with arsenic sorption 

simulations. As displayed in the results from total particle concentration kinetics and 

surface potential evolution with reaction time (see Figs. 6.54, 6.59, and 6.64), particle 

size distribution time evolution (see Fig. 6.55, 6.60, and 6.65), and cumulative size 

distribution time evolution (see Fig. 6.56, 6.61, and 6.66), it was found that coagulation 

did not occur until the surface potential decreased to 30mV thus very low coagulation 
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intensity resulted in lag-phase coagulation kinetics during the relatively high surface 

potentials ranging over 30mV. In other words, the coupled orthokinetic coagulation with 

arsenic sorption could only be initiated at the point of surface potential of 30 mV or less. 

Compared to the perikinetic study, it is worth while to note that surface potential has less 

influence on the orthokinetic collisions than perikinetic coagulation. This influence is 

especially true when particles have higher surface potentials, orthokinetic coagulation 

can be expected and the orthokinetic coagulation lag-phases that were easily found in the 

perikinetic coagulation study were found to be very short in the initial steps and were not 

found during arsenic sorption reaction period. That is, it can be expected that 

orthokinetic coagulation occurs even when surface potential is greater than 30 mV or 

under -30 mV.  

 

Table 6.11 Collision Efficiencies and Surface Potentials for Orthokinetic Coagulation 

As(V) loadings As/Fe ratio Average 
Collision Efficiency Surface Potential 

As = 0.25×10-4 M 
Fe = 1.00×10-3 M 0.025 4.8166×10-3 35.76 mV 

As = 0.50×10-4 M 
Fe = 1.00×10-3 M 0.050 1.4229×10-2 13.77 mV 

As = 1.00×10-4 M 
Fe = 1.00×10-3 M 0.100 1.6206×10-2 -20.93 mV 

As = 2.00×10-4 M 
Fe = 1.00×10-3 M 0.200 6.5944×10-3 -40.35 mV 

 

 



 264

It is possible to compare coagulation intensity, kinetics, and particle size 

distribution using overall average collision efficiencies between two colliding particles 

during arsenic sorption. These overall average collision efficiencies were calculated and 

displayed in Table 6.11. As mentioned in the perikinetic study, although this overall 

average collision efficiency can be introduced into coagulation model analysis easily, it 

is impossible to predict the coagulation kinetics using average collision efficiency values 

calculated from Table 6.11. Thus, it is recommended that collision efficiency calculated 

from each time step of arsenic sorption and particle coagulation, rather than an overall 

average collision efficiency be used. 
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Figure 6.52 Kinetics of As(V) sorption and surface potential ([As(V)o] = 0.5×10-4 M, Fe 
= 1.0×10-3 M, pH = 7.0,  I = 0.01 M, orthokinetic coagulation particle range of dmin = 1.0 

µm and  dmax = 32.0 µm, Df = 2.0) 
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Figure 6.53 Coagulation kinetics ([As(V)o] = 0.5×10-4 M, Fe = 1.0×10-3 M, pH = 7.0,  I 
= 0.01 M, particle range of dmin = 1 µm and  dmax = 32 µm, Df = 2.0) 
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Figure 6.54 Kinetics of coagulation and surface potential ([As(V)o] = 0.5×10-4 M, Fe = 
1.0×10-3 M, pH = 7.0,  I = 0.01 M, orthokinetic coagulation particle range of dmin = 1 µm 

and  dmax = 32 µm, Df = 2.0) 
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Figure 6.55 Particle size distribution ([As(V)o] = 0.5×10-4 M, Fe = 1.0×10-3 M, pH = 7.0,  
I = 0.01 M, particle range of dmin = 1 µm and  dmax = 32 µm, Df = 2.0) 
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Figure 6.56 Cumulative oversize particle distribution ([As(V)o] = 0.5×10-4 M, Fe = 
1.0×10-3 M, pH 7.0,  I = 0.01 M, particle range of dmin= 1 µm and dmax= 32 µm, Df = 2.0) 
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Figure 6.57 Kinetics of As(V) sorption and surface potential ([As(V)o] = 1.0×10-4 M, Fe 
= 1.0×10-3 M, pH = 7.0,  I = 0.01 M, orthokinetic coagulation particle range of dmin = 1.0 

µm and  dmax = 32.0 µm, Df = 2.0) 
 

 

Time (sec)

0 600 1200 1800 2400 3000 3600

Pa
rti

cl
e 

C
on

ce
nt

ra
tio

n 
(N

To
ta

l/N
O
)

0.0

0.2

0.4

0.6

0.8

1.0
M

as
s 

C
on

se
rv

at
io

n 
Fa

ct
or

0.0

0.5

1.0

1.5

2.0

Total Particle Concentration
Mass Conservation

 

Figure 6.58 Coagulation kinetics ([As(V)o] = 1.0×10-4 M, Fe = 1.0×10-3 M, pH = 7.0,  I 
= 0.01 M, particle range of dmin = 1 µm and  dmax = 32 µm, Df = 2.0) 
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Figure 6.59 Kinetics of coagulation and surface potential ([As(V)o] = 1.0×10-4 M, Fe = 
1.0×10-3 M, pH = 7.0,  I = 0.01 M, orthokinetic coagulation particle range of dmin = 1 µm 

and  dmax = 32 µm, Df = 2.0) 
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Figure 6.60 Particle size distribution ([As(V)o] = 1.0×10-4 M, Fe = 1.0×10-3 M, pH = 7.0,  
I = 0.01 M, particle range of dmin = 1 µm and  dmax = 32 µm, Df = 2.0) 
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Figure 6.61 Cumulative oversize particle distribution ([As(V)o] = 1.0×10-4 M, Fe = 
1.0×10-3 M, pH 7.0,  I = 0.01 M, particle range of dmin= 1 µm and dmax= 32 µm, Df = 2.0) 
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Figure 6.62 Kinetics of As(V) sorption and surface potential ([As(V)o] = 2.0×10-4 M, Fe 
= 1.0×10-3 M, pH = 7.0,  I = 0.01 M, orthokinetic coagulation particle range of dmin = 1.0 

µm and  dmax = 32.0 µm, Df = 2.0) 
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Figure 6.63 Coagulation kinetics ([As(V)o] = 2.0×10-4 M, Fe = 1.0×10-3 M, pH = 7.0,  I 
= 0.01 M, particle range of dmin = 1 µm and  dmax = 32 µm, Df = 2.0) 
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Figure 6.64 Kinetics of coagulation and surface potential ([As(V)o] = 2.0×10-4 M, Fe = 
1.0×10-3 M, pH = 7.0,  I = 0.01 M, orthokinetic coagulation particle range of dmin = 1 µm 

and  dmax = 32 µm, Df = 2.0) 
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Figure 6.65 Particle size distribution ([As(V)o] = 2.0×10-4 M, Fe = 1.0×10-3 M, pH = 7.0,  
I = 0.01 M, particle range of dmin = 1 µm and  dmax = 32 µm,, Df = 2.0) 
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Figure 6.66 Cumulative oversize particle distribution ([As(V)o] = 2.0×10-4 M, Fe = 
1.0×10-3 M, pH 7.0,  I = 0.01 M, particle range of dmin= 1 µm and dmax= 32 µm, Df = 2.0) 
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6.6 Conclusions 

In this study, this improved coagulation model developed was coupled with 

arsenic sorption equilibrium and kinetics on fractal colloids of hydrous ferric oxide 

(HFO). The model coupling was achieved by using the particle collision efficiency 

that is a main function for coupling a coagulation model with chemical reactions 

such as arsenic sorption. The study reviewed the collision efficiency studies for 

perikientic and orthokientic mechanisms and provided the numerical algorithms to 

calculate collision efficiency for two different transport mechanisms, depending on two 

colliding particle geometric sizes and surface potentials (charges). Finally, unified model 

that is coupled coagulation modeling with arsenic sorption kinetics consisting of a 

sorption diffusion transport model and surface complexation model was developed. 

Using the coupled model developed in this study, it was possible to predict arsenic 

sorption (equilibrium and kinetics) and colloid particle collision (surface potential time 

evolution, coagulation kinetics and particle size distributions) during the arsenic sorption 

and coagulation, simultaneously. 

α(r , r )i j

Using the computational algorithm proposed arsenic sorption kinetics and 

equilibrium onto hydrous ferric oxide (HFO) were unified with the perikinetic and 

orthokinetic coagulation models. It is expected that surface potential (charge) evolution 

due to arsenic sorption onto hydrous ferric oxide (HFO) can alter the particle size 

distribution and thus plays a key role in the orthokinetic coagulation process. Numerical 

simulation using the unified coagulation model provided the information of arsenic 

sorption kinetics, surface potential evolution, particle concentration, coagulation mass 
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conservation, particle size distribution, and cumulative particle size distribution. Even 

though orthokinetic coagulation having the lower arsenic loading ratio could not be 

expected due to the relatively higher surface potential during all arsenic sorption reaction 

times, it could be possible that orthokinetic coagulation can occur at the relatively higher 

surface potential conditions of 35 mV. Although overall average collision efficiency can 

be introduced into the coagulation model analysis due to its easy handling, it is 

impossible to predict the coagulation kinetics. Especially, the average collision 

efficiency can not predict the lag-phase of the coagulation kinetics and particle size 

distribution evolution due to a higher surface potential than 20 mV (first lag-phase) or 

lower surface potential than -20 mV (second lag-phase). Therefore, it is recommended 

that collision efficiency be calculated for each time step of arsenic sorption and particle 

coagulation, rather than use an average collision efficiency. 

Finally, it is anticipated that the unified coagulation model coupled with arsenic 

sorption kinetics and equilibrium modes will provide a more complete understanding of 

arsenic removal mechanism and its application to water and wastewater treatment. For 

this purpose, arsenic sorption modeling and improved coagulation modeling was used to 

develop this coupled model.  
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

The current lowering of the maximum contaminant level (MCL) established by 

the USEPA for arsenic in drinking water is 10 ppb. Thus, the need for adequate methods 

for removal of arsenic has become urgent. The sorption of the toxic metals on a hydrous 

metal oxide (HMO) is the most practical method for removing the toxic compounds 

from contaminated water. However, the hydrous metal oxide particle behavior, such as 

aggregation and break-up in the applied fluid flow, are not easily predicted especially 

when arsenic coexists within the fluid system applied. This surface behavior is due to 

particle surface charge evolution with time resulting from arsenic sorption onto the 

particle surface. To achieve predictive capability for the complex environmental system 

with coagulation and metal sorption, a unified coagulation model coupled with arsenic 

sorption should be developed. A unified coagulation model coupled with arsenic 

sorption was achieved by the following steps.  

First, an improved discretized population balance equation (PBE) was developed 

to obtain the exact solution of a conventional coagulation model coupled with chemical 

reactions (i.e., arsenic sorption kinetics and equilibrium). Furthermore, relatively little 

attention has been paid to fractal aggregate modeling including agglomeration and 

fragmentation. Spherical particle coalescence applies only to ideal bubbles and droplets 

and most particle aggregates has been found to be fractal, especially in solid colloidal 



 275

particle coagulation. Thus, fractal aggregate coagulation via the higher numerical 

stability and accuracy was needed for realistic simulation.  

Second, a surface complexation equilibrium model using a thermodynamic 

equilibrium database and a sorption kinetic model using diffusion mass transport was 

introduced. This was to predict arsenic sorption behavior onto the hydrous metal oxide 

surface and particle collision rate resulting in charged colloid particle coagulation 

phenomenon.  

Third, an improved coagulation model coupled with arsenic sorption kinetics 

and equilibrium was developed. The collision efficiency α  between colliding 

hydrous metal oxide particles was calculated by aid of the surface charge/potentials on 

the hydrous metal oxide particles.  

(r , r )i j

Finally, introducing the collision efficiency α  into the improved 

coagulation model for fractal aggregate yielded a unified improved coagulation model 

coupled with arsenic sorption kinetics and equilibrium. Thus, an improved unified 

coagulation model, consisting of a simplified non-uniform discretized population 

balance equations for fractal aggregate and arsenic sorption reactions, could provide 

high statistical accuracy, numerical stability, and computational efficiency to enhance 

predictive capability for behavior of arsenic sorption and fractal colloid particle 

aggregation and break-up, simultaneously. 

(r , r )i j

 In the course of the investigation several discoveries were made. These 

discoveries are outlined below. 
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(1) A variety of modeling techniques for the population balances resulting from 

particle coagulation were examined. The simplified models using the non-uniform 

discretization scheme were compared to uniform discrete models. Further, new 

algorithms that incorporate a non-uniform discretization were developed. In the course 

of the investigation the new algorithms were found to be substantial improvements in 

terms of computational time over the other models and compared favorably to the 

discrete/continuous model with respect to accuracy. New probability distribution 

functions for aggregates produced in non-uniform discrete coagulation modeling were 

derived and incorporated into the population balance equations. These new algorithms 

made it possible to simulate fractal aggregate coagulation with high accuracy, perfect 

mass conservation and exceptional computational efficiency. Parameter sensitivity 

analysis showed that a break-up kernel does not influence total particle concentration 

within the limited range of having the break-up coefficient less than collision efficiency, 

but does influence the particle size distribution and coagulation patterns. An aggregate 

break-up study with various kernel parameters indicated that break-up rate was more 

influenced by particle volume and not size class or diameter as previously suspected. 

The new probability distribution functions were found to be useful in fractal aggregation 

modeling via the higher numerical stability and accuracy. The new particle population 

model was shown in the investigation to be superior to all of the other models, having 

mass conservation factor of over 0.99 and computation time of 3.125×10-2 sec, thus the 

new coagulation model can be used to develop predictive simulations for coagulation in 

computational fluid dynamics and reaction modeling. 
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(2) An improved particle coagulation model previously developed was extended to 

an adjustable geometric size interval (q), where q is a volume ratio of class k+1 particles 

to class k particles ( 1υ / υk k q+ = ). This model was compared with exact numerical 

solutions of continuous (uniform discretized) population balance equations and applied 

to simulate the particle aggregation and breakup with fractal dimensions lower than 3. 

Further, comparisons were made using the fractal aggregate collision mechanisms of 

orthokinetic coagulation with the inclusion of flow induced breakup. In the course of the 

investigation the new algorithm was found to be a substantial improvement in terms of 

numerical accuracy, stability, and computational efficiency over the continuous model. 

This model was verified with the time derivative of the zero and first moments to show 

mass conservation and compared with previous analytical and numerical solutions. Also, 

the self-preserving distribution test was conducted by using size-independent and size-

dependent kernels. After direct numerical simulations (DNS), the proposed model was 

found to have excellent agreement with the analytical and continuous numerical 

solutions. In addition, this proposed model was converted to a dimensionless form to 

enhance computational efficiency in order to be coupled with computational fluid 

dynamic solutions in the future. Furthermore, a parameter estimation scheme was 

created to computationally determine the two key parameters, the collision efficiency 

 and the break-up coefficient (Kα(r , r )i j B), from orthokinetic experimental data. This 

parameter estimation scheme was able to compute the coefficients in the coagulation 

model rapidly, especially in particle systems having a fractal aggregate structure. In 

addition, an attempt to find an optimum graphical method for representing the two 
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different results (non-uniform discretized and continuous populations) on an identical 

2D plane was conducted and the results indicate that the particle cumulative population 

distribution curve is convenient to compare these results due to different aggregate class 

size scales. Using the reproduction of a continuous distribution from discrete data, it was 

concluded that this method has close agreement between non-uniform discretized and 

continuous data. This new algorithm made it possible to solve fractal particle 

aggregation and break-up problems with high accuracy, perfect mass conservation and 

exceptional computational efficiency.  

(3) To enhance the predictive capability for arsenic sorption onto metal oxy-

hydroxide surfaces, a surface complexation equilibrium model using a thermodynamic 

equilibrium database and a sorption kinetic model using diffusion mass transport were 

introduced in this study. A surface complexation model was incorporated to predict 

arsenic sorption equilibrium behavior (i.e., pH envelop and isotherm). A set of equations 

representing the surface complexation model, which are related to arsenic acid-base 

reactions, hydrous ferric oxide surface protonation/deprotonation, and inner-sphere 

monodentate surface complexations for arsenic sorption on HFO surfaces, was solved 

with a public domain computer program PHREEQC. Further, the introduced surface 

complexation model was coupled with an arsenic sorption kinetic model using the 

sorption local equilibrium assumption to provide easy to use software that establishes 

predictive capability for the water treatment community. To verify two arsenic sorption 

equilibrium and kinetic models, the model results were compared to literature 

experimental data such as arsenic pH envelop data for equilibrium model verification 
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and arsenic sorption rate data for kinetic model. Thus, the improved arsenic sorption 

modeling technique coupled with arsenic sorption kinetics and equilibrium could 

provide enhanced predictive capability for the exact arsenic sorption behavior especially 

related to arsenic sorption kinetics, equilibrium, and hydrous ferric oxide surface 

charge/potential evolution with reaction time, as well as required sorption process design 

parameters, sorption media capacity, sorption media doses, sorption media operation 

life-times, residuals production, and sorption process operating costs. Furthermore, the 

surface charge/potential evolution with reaction time can be used to couple the two 

models of arsenic sorption and coagulation. That is, a unified coagulation model is 

coupled with arsenic sorption using surface charge (potential) which is one of the major 

variables in collision efficiency calculation. 

(4) An improved discretized population balance equation (PBE) proposed in this 

study, which has new probability distribution functions for fractal aggregates produced 

in non-uniform discrete coagulation modeling, was coupled with arsenic sorption 

equilibrium and kinetics on fractal colloids of hydrous ferric oxide. The model coupling 

was achieved by using the colloid particle collision efficiency α  as one component 

of the aggregation rate constant (

(r , r )i j

αβaggk = ) and a main function for coupling coagulation 

model with chemical reactions such as arsenic sorption. The study reviewed the collision 

efficiency studies for perikientic and orthokientic mechanisms and provided the 

numerical algorithms to calculate collision efficiency for two different transport 

mechanisms, depending on two colliding particle geometric sizes and surface potentials 

or surface charges. Finally, a unified model that couples coagulation modeling with 
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arsenic sorption kinetics consisting of sorption diffusion transport and surface 

complexation was developed. Using the coupled model developed in this study, it was 

possible to predict arsenic sorption (equilibrium and kinetics) and particle collision rate 

(surface potential time evolution, coagulation kinetics and particle size distributions) 

during the arsenic sorption and coagulation, simultaneously. 

From the investigation, it is anticipated that the unified coagulation model 

coupled with arsenic sorption kinetics and equilibrium will provide a more complete 

understanding of arsenic removal mechanism and its application to water/wastewater 

treatment. Further, this coupled model can be applied to other water and wastewater 

treatment systems combined with sorption and filtration processes. These combined 

processes can be optimized by the coupled model that was developed in this study. By 

simulating the arsenic sorption and particle size distribution as a pretreatment before 

filtration (sand filtration or membrane filtration), the overall arsenic removal efficiency 

and operation cost can be estimated. 
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