
ENERGY-OPTIMAL SCHEDULES OF REAL-TIME JOBS WITH

HARD DEADLINES

A Thesis

by

JOHN V. GEORGE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2005

Major Subject: Computer Science

ENERGY-OPTIMAL SCHEDULES OF REAL-TIME JOBS WITH

HARD DEADLINES

A Thesis

by

JOHN V. GEORGE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Riccardo Bettati
Committee Members, Rabi N Mahapatra

Norman Guinasso
Head of Department, Valerie E Taylor

August 2005

Major Subject: Computer Science

iii

ABSTRACT

Energy-Optimal Schedules of Real-Time Jobs with Hard Deadlines. (August 2005)

John V. George, Bachelor of Technology, Mahatma Gandhi University;

Chair of Advisory Committee: Dr. Riccardo Bettati

In this thesis, we develop algorithms that make optimal use of frequency scaling

to schedule jobs with real–time requirements.

Dynamic voltage scaling is a technique used to reduce energy consumption in

wide variety of systems. Reducing supply voltage results in a lower processor clock

speed since the supply voltage has a proportional dependency on the clock speed of

the processing system.

In hard real–time systems, unduly reducing the speed of processor could result

in jobs missing their deadlines. The voltage scaling in such systems should therefore

take into consideration the deadline of jobs. This thesis will address two questions:

First, given a set of discrete frequency levels, we determine an energy-optimal sched-

ule of a given set of real-time jobs. We model the problem as a network flow graph

and use linear programming to solve the problem. The schedule can be used on

processors with discrete frequencies (like Transmeta Efficeon Processor and AMD

Turion 64 Processor).

Second, given a set of real–time jobs, we determine a set of optimal frequency

levels which minimizes the energy consumption while meeting all the timing con-

straints. This can be used to model variable-capacity facilities in operations re-

search, where the capacity of the facility can be controlled at a cost.

iv

DEDICATION

To my Family and Dr. Norman L. Guinasso, Jr.

v

ACKNOWLEDGMENTS

God, Thy deeds are so perfect...

I would like to express my sincere gratitude to each and every person who has

made this thesis possible.

My adviser, Dr. Riccardo Bettati, has been very patient, friendly and helpful

all through the thesis. I am amazed by his brilliant ideas and approach towards

problems. He has been an influence not only on my technical approach but also on

the way I look at life. It is difficult to overstate my gratitude to him. Dr. Bettati,

thank you so much.

I would like to thank Dr. Norman for his support throughout my stay at Texas

A&M University. It would not have been possible to fulfill this dream without the

financial and moral support of Dr. Norman. Thank you, Dr. Norman.

I express my thankfulness to Dr. Rabi for his suggestions and ideas all through-

out the thesis.

I express my sincere thanks to Mr. Homarjun Agrahari and Mr. Aravind Aluri

for their technical tips throughout the thesis. Mr. Paul Jensen, The University of

Texas at Austin, helped me in using his ORMM software to simulate algorithms

presented in this thesis. Thank you, Mr. Paul.

Without the support of my family and friends, I would never have reached this

point in my life. I lack words to express my gratitude to my family and friends for

their moral support.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II RELATED WORK . 4

III DEFINITIONS AND SYSTEM MODEL 7

A. Workload Model . 7

B. Processor Model . 8

C. Power Model . 9

D. Energy Aware Scheduling 10

IV PRELIMINARY OBSERVATIONS 12

V ENERGY OPTIMAL SCHEDULE ON DISCRETE FRE-

QUENCY PROCESSORS . 14

A. Min-Cost Max-Flow Network Flow Problem 14

1. Network Flow Problem 14

2. Min-Cost Max-Flow Network Flow Problem 15

3. Energy Optimal Scheduling Using Min-Cost Max-

Flow Network Flow 16

4. Algorithm to Create Min-Cost Max-Flow Graph . . 19

5. Proof of Correctness 21

6. Performance . 22

a. Graph Complexity 22

b. Algorithm Complexity 23

B. Linear Programming Formulation of the Discrete Fre-

quency Processor . 23

VI ENERGY OPTIMAL SCHEDULES ON CONTINUOUS

FREQUENCY PROCESSORS 26

A. Initial Approach . 27

1. Continuous Frequency Problem Evaluation 28

B. Jobs with Identical Release Time 29

1. Algorithm and Description 29

2. Proof of Correctness 32

3. Performance . 37

vii

CHAPTER Page

C. Jobs with Arbitrary Release Time 38

1. Energy Optimal Scheduling Through Extensive

Frequency Enumeration 39

2. Implicit Frequency Enumeration 41

3. Algorithm and Description 43

4. Proof of Correctness 47

5. Performance . 49

VII RESULTS . 50

VIII CONCLUSIONS AND FUTURE DIRECTIONS 58

REFERENCES . 60

VITA . 63

viii

LIST OF TABLES

TABLE Page

1 Processor models used in our experiments 50

2 Energy consumption of discrete, GNF and base 52

3 Percentage variation of energy consumption in discrete, GNF

and base . 53

4 Arcs and nodes of discrete versus GNF 54

5 Energy consumption of discrete and continuous on 5-T set . . 54

6 Energy consumption of discrete and continuous on 20-T set . . 55

7 Energy consumption of discrete and continuous on 10-T set. . 55

8 Variation of energy consumption of discrete, continuous

and base . 57

ix

LIST OF FIGURES

FIGURE Page

1 Network flow graph representation 17

2 Schedule when n = 2 . 34

3 Schedule when n = 3 and f1 > f2 35

4 Schedule when n = 3 and f2 > f1 35

5 Schedule when n = k + 1 and f1 ≤ f2 ≤ . . . ≤ fk 37

6 Schedule when n = k + 1 and f1 ≥ f2 ≥ . . . ≥ fk 38

7 Flow graph representation of frequencies 39

8 Stage wise representation of Algorithm 5 45

1

CHAPTER I

INTRODUCTION

In this thesis, we present algorithms that make optimal use of frequency scaling

to schedule jobs with real–time requirements.

A job is said to have real-time requirements (or simply said to be real–time) if

it has to finish within a certain time limit. Such jobs are often common in embedded

systems where they arise from the interaction of the system with the environment.

Reducing energy consumption in systems with real–time jobs has been a topic of

research since over a decade. Dynamic Voltage Scaling (DVS) is a technique used to

reduce energy consumption in real–time embedded systems. Energy consumption

has a quadratic dependency on supply voltage and DVS aims at reducing energy

consumption by reducing the processor’s supply voltage in tandem with its fre-

quency. For the case of real–time jobs, DVS makes use of the fact that there is no

benefit in finishing a job earlier than its deadline. Transmeta Efficeon Processor

[1] and AMD Turion 64 [2] are examples of processors that can operate at several

discrete operating frequencies based on load requirements.

Variable-voltage processors and algorithms, typically based on DVS, have been

developed for periodic, aperiodic, and sporadic jobs. Reducing supply voltage re-

sults in a lower processor clock speed since the supply voltage has a proportional

dependency on the clock speed of the processing system.

In systems with real–time jobs, unduly reducing the speed of the processor

could result in one or more jobs missing their deadline. The voltage scaling in such

This thesis follows the style of IEEE Transactions on Computer–Aided Design of
Integrated Circuits and Systems.

2

systems should therefore take in to consideration timing constraints of jobs.

In this paper, we focus on generating energy efficient schedule for jobs with hard

real–time requirements. The algorithms described in this thesis generate schedules

offline, that is, before the execution of the jobs. This thesis addresses two ques-

tions:

First, given a set of discrete frequency levels and a set of jobs, we determine an

energy–optimal schedule: Among all the feasible schedules possible an energy op-

timal schedule forms the lower bound on the energy consumption of the given job

set.

We develop an algorithm to generate energy optimal schedules, and prove its

optimality. That is, we show that the algorithm never fails to find an energy optimal

schedule if such a schedule exists. The function to generate an optimal, feasible

schedule is modelled as a minimum cost, maximum flow network flow graph problem.

Since this form of network flow problems can be solved in quadratic time, our

technique scales well to real–life job set.

Second, given a set of real–time jobs, we determine a set of frequency levels

that minimizes the energy consumption while meeting the deadline constraints.

We evaluate the algorithms using randomly generated task sets and CNC, a

real–life benchmark. We also show that the schedules generated by our algorithms

consume less energy while taking polynomial time to generate such a schedule.

Note: Throughout this thesis, we assume that the energy consumption is super–

linear with respect to the frequency levels of the processor, that is, E > O(V). This

is the case in most architectures where E ∝ V 2, where E is the energy consumed,

and f , the frequency level of the processor.

This thesis is organized as follows: In Chapter II, we give an overview on

recent and current research work on DVS that other authors have proposed. The

3

definitions and system model used in this paper are described in Chapter III. A

set of preliminary observations are stated in Chapter IV. Algorithms to generate

optimal schedules are described in Chapters V and VI.

4

CHAPTER II

RELATED WORK

Different scheduling policies and various task models have been considered

so far for Dynamic Voltage Scaling (DVS) of Real-Time Systems. DVS has been

applied to both soft real-time jobs as well as hard real-time jobs.

The schemes proposed in [3] [4] [5] are based on a two-phase scheduling algo-

rithm: Before run time, voltage settings are picked to reduce energy consumption

based on workload assumptions. During run time, an online schedule adjusts volt-

age based on the resources that remain unused (like when jobs complete early).

The authors in [4] proposes dynamic workload adaptation to take advantage of

unused computation time that results from the variation of execution time of real-

time tasks. A reward based approach to power aware scheduling is used to find

an optimal static solution based on worst case workload. Dynamic reclamation

is performed by adapting to the actual workload. The paper further proposes an

aggressive speed reduction technique that can be employed to gain more energy

savings by assuming a work load less than the worst case workload.

A novel slack estimation heuristic method to create an energy efficient DVS

is used in [6]. The paper proposes an algorithm that estimates slack times more

efficiently with a small additional overhead. The authors in [7] proposes an efficient

method to handle DVS, by creating pseudo operating frequency levels between

discrete frequency levels supported by the system. The energy efficient trade-off on

a DVS enabled real-time system when the workload includes aperiodic jobs as well

as periodic tasks is studied in [5]. The paper explores the performance of a system

that consists of both periodic as well as aperiodic jobs. A composite metric Energy

5

× Average Response Time is used as a performance measure. A static algorithm

and slack re-use scheme is also proposed in the paper.

Four voltage-scaling algorithms suitable for different system characteristics are

proposed in [8]. An optimal frequency grid that minimizes the effect of discrete

operating frequencies is derived in the paper. A formula for improving an existing

DVS algorithm without any negative effect on the performance of the algorithm is

proposed in [9].

An inter-task DVS for sporadic task model in conjunction with preemptive

EDF scheduling is presented in [10]. Three voltage scaling schemes are proposed

to schedule jobs with non-preemptive sections in [11]. Negative impacts on task

scheduling and system wide energy can be reduced by controlling task preemption

according to [12] [13]. An O(N2) algorithm, where N is the number of jobs, to

obtain minimum constant speed for each job and an O(N3) to obtain the minimum

constant speed for the whole job set is presented in [14].

The authors of [15] formulate DVS for a set of periodic jobs as a nonlinear op-

timization problem and propose an optimal off-line algorithm to solve this problem.

They further propose an online dynamic algorithm to reclaim slack cycles gener-

ated by early completion of jobs. In [16], a model of dynamically variable voltage

processor is presented. Static voltage scheduling problem is formulated as an in-

teger linear programming. A set of basic theorems for power-delay optimization is

also presented in the paper.

The first algorithm presented in this paper is most closely related to [17]. It

proposes two offline DVS schemes to minimize the energy consumed by a processor.

The first solution models DVS problem as a generalized network flow (GNF) graph

and uses the generalized network simplex algorithm to solve it. A GNF model

cannot scale to large task sets using processor model with large number of operating

6

voltages. Thus, a drawback of the solution proposed in [17] is that it cannot scale

to large number of frequencies. The second scheme discussed in [17] eliminates this

drawback by developing a near-optimal minimum-cost network flow model.

The second drawback of [17] is that it assumes voltage switching only at task

boundaries. This is called inter-task scheduling. The authors in [18] and [19] discuss

how intra-task scheduling (that is, when voltage switching can occur also during the

execution of a task) always results in greater energy savings than inter-task schedul-

ing. The method discussed in [18] though efficient, have significant impact on the

portability of the application, as it requires modifications to the operating system in

most cases. An improvement on the method (based on worst-case execution time)

in [18] is proposed in [19] (based on average-case execution time).

In this thesis, we concentrate on developing algorithms that are simple to im-

plement and have the added advantages of intra-task scheduling. Unlike, many

of the previously discussed algorithms we do not use check points or other com-

plex schemes that would make the algorithm complex or non-portable. We also

make sure that the algorithms works independent of the number, or lack there, of

frequencies or jobs.

7

CHAPTER III

DEFINITIONS AND SYSTEM MODEL

In the following section, we describe a reference model for real-time systems

used in this thesis. According to this model, each system is characterized by three

elements: (1) a workload model [20] that describes the type of applications sup-

ported by the system, (2) a processor model that describes the processing resources

available to the applications, and (3) a power model that defines the power con-

sumed when an application executes on a processing unit.

A. Workload Model

The workload model used in this thesis captures only the timing behavior of

the applications in the system. Other characteristics such as functional behavior

are ignored. In this paper we consider a workload that consists of a set of n jobs

J = {J1, J2, . . . , Jn}. Each job Ji is defined by its release time ri, its deadline di,

and the number xi of CPU cycles required to execute the jobs. Release Time of

a Job Ji is the time at which it is released. Deadline of a Job Ji is the time at

or before which Ji should complete execution. Deadline of a job is always greater

than its release time. We assume that a job can start its execution at any time

between its release time and deadline. The number of cycles required by a Job Ji

to complete its execution is the execution cycles. We represent each job Ji by a

tuple (ri, di, xi). We assume that a job can start its execution at or after its release

time. We also assume that a job can be preempted at any time, and each job is

independent of each other.

We call a task as periodic task if it executes repeatedly at regular or semi-

8

regular time intervals in a continuing basis. A task is called aperiodic task in this

paper if it has no deadline and the inter arrival times between consecutive jobs vary

widely. Tasks with inter arrival times that vary widely but have hard deadlines are

called as sporadic jobs. An executable-interval of a Job Ji is the set of intervals

occurring between ri and di.

This workload model is very general in practice. For example, periodic work-

loads in embedded systems are often scheduled by indefinitely repeating a schedule

laid out for the jobs during a so-called hyperperiod, which is the least common mul-

tiple of all the periods of the task set. We take a hyperperiod, H, of the jobs such

that no job overlaps with any other job outside its hyperperiod. H is assumed to

have n jobs.

B. Processor Model

Jobs need a processor in order to make progress towards completion. In this

thesis, we assume two types of processors. We model each type of processor sepa-

rately for the sake of convenience.

In the Discrete Frequency Model, we assume that the processor can execute at

a frequency fk if and only if fk ∈ F = {f0, f1 . . . fm}, where F , is the set of all the

frequencies that can be used by the processor, sorted in increasing order. Thus, f0

is the minimum frequency possible by P and fm the maximum frequency possible

by P . Throughout this thesis, we assume f0 to be equal to 0. We call a processor

that adheres to the discrete frequency model a discrete frequency processor.

In Continuous Frequency Model, we assume that the processor can execute

at any frequency in the scale ranging from f0 to fm, where f0 is the minimum

frequency available to the processor, and fm is the maximum frequency available to

9

the processor. We call a processor that adheres to the continuous frequency model

a continuous frequency processor.

C. Power Model

According to [21], CMOS circuits have both static and dynamic power dissipa-

tion. Static power arises from bias and leakage circuits. The reduction in the use of

static gates as well as efficient design of modern gates have led to negligible power

consumption in static gates.

Therefore the dominant part in most designs is the dynamic power consump-

tion.

From [21], dynamic power consumption can be defined in simple equation as

follows:

P ∼= V 2
dd × fclk × Ceff , (3.1)

where Vdd is the supply voltage, fclk is the clock frequency, and Ceff is expressed as

a product of physical capacitance,Cl, and the activity weighting factor, α.

Since the energy consumption is equal to the power dissipation over time, we

have

Energy ∼= V 2
dd × fclk × Ceff × t (3.2)

where t is the time for which fclk is used.

According to [18], the number of cycles, Xcyc executed in a processor, during

time t at frequency fclk is

Xcyc = fclk × t. (3.3)

From Equation (3.3), we get

Energy ∼= V 2
dd × Ceff ×Xcyc. (3.4)

10

According to [10]

td = k
Vdd

(Vdd − Vt)2
, (3.5)

where td is the circuit delay time, k a constant, and Vt the threshold voltage and

fclk =
1

Ldtd
, (3.6)

where Ld is the depth of the critical path[10].

Combining Equations (3.4), and (3.5) we get,

Energy ∝ V 2
dd ×Xcyc. (3.7)

Note: Equations (3.5) and (3.6) tell us that voltage is proportional to frequency,

and frequency is inversely proportional to time delay. Thus, by reducing voltage,

the frequency decreases, causing time delay to increase.

D. Energy Aware Scheduling

The goal of this thesis is to develop algorithms that, given a job set J , and

a processor (discrete or continuous frequency), determine a schedule of execution

of the jobs in J and a set of frequency allocations in order to meet the job’s

timing requirements (release time and deadlines) while minimizing the total energy

consumption.

We say that a schedule is valid if it schedules all the jobs in J in such a way

that no two jobs are scheduled at the same time on a single processor.

A valid schedule is feasible where all the jobs in J are scheduled in such a way

that no job misses its deadline. Among all the feasible schedules there is one or more

schedules where the total power consumption is minimal. We call such a schedule an

energy optimal schedule. We call the sequence of frequencies at which the processor

11

executes the jobs in the schedule, the frequency allocation. An optimal frequency

allocation gives rise to the minimum energy consumption. Therefore energy optimal

schedules have optimal frequency allocations.

The rest of this thesis is about algorithms that generate energy optimal sched-

ules.

12

CHAPTER IV

PRELIMINARY OBSERVATIONS

We note that the model observed in Section (III-C) is not limited to the case

of P ∝ V 2 but to any case where P > O(V). A number of simple preliminary

observations hold in this case. We list them as follows.

In the following observations, we substitute f for V by combining Equations

(3.5) and (3.6).

Lemma 1 [16] Given a single Job J = (r, d, x), the frequency allocation f is opti-

mal when it is constant and f = x
d−r

.

Corollary 1 Given two jobs with identical release time, J1 = (r, d1, x1) and J2 =

(r, d2, x2), d2 > d1. Let f1 = x1

d1−r
and f2 = x2

d2−d1

be two frequencies used by j1 and

j2 respectively. Whenever f2 > f1, the energy consumed will be minimum if f2 equal

to f1.

Lemma 2 Given two jobs with identical release time, J1 = (r, d1, x1) and J2 =

(r, d2, x2), d2 > d1. Let f1 = x1

d1−r
and f2 = x2

d2−r
be two frequencies used by j1 and

j2 respectively. Whenever f2 < f1, the energy consumed will be minimum if the jobs

execute at frequencies f1 and f2 respectively.

Proof : Let us assume that jobs J1 and J2 run at frequencies other than f1 and f2

defined in the Lemma 2. This can be done in three ways: Without loss of generality

we assume r = 0 in the following proof.

1. Decrease Job J1’s frequency below f1.

Job J1cannot run at frequency lower than f1 since it would miss its deadline

otherwise.

13

2. Increasing J2’s frequency above f2.

This would increase the overall energy consumption.

3. Decrease J2’s frequency below f2.

Let E be the energy consumed by the processor while executing at frequencies

f1 and f2. From Equation 3.7 we have,

E = f 2
1 x1 + f 2

2 x2. (4.1)

Substituting for x1 and x2 from Lemma 2 we get,

E = f 3
1 d1 + f 3

2 (d2 − d1). (4.2)

Assume that we decrease J2’s frequency by moving ∆y cycles from interval

[d1, d2] to interval [r1, d1]. The energy consumed E ′ in this case is

E ′ = (f1 + ∆y)3d1 + (f2 −∆y)3(d2 − d1). (4.3)

Since ∆y > 0,

(∆y)2 + 3f 2
1 + 3f1∆y > 0. (4.4)

Combining Equations (4.3, 4.2, and 4.4),

f 3
1 d1 + f 3

2 (d2 − d1) < (f1 + ∆y)3d1 + (f2 −∆y)3(d2 − d1) (4.5)

which is equivalent to E < E ′. This proves Lemma 2.

14

CHAPTER V

ENERGY OPTIMAL SCHEDULE ON DISCRETE FREQUENCY

PROCESSORS

In this chapter, we define a problem to schedule a set of jobs with arbitrary

release time, arbitrary deadline, and arbitrary execution time, on a processor with

discrete set of frequencies, in an energy optimal manner. According to [22], an

iterative flow network can be used to find a feasible cyclic schedule if such a sched-

ule exists. According to [20], this network representation can be generalized to

find schedules of jobs with arbitrary release time, arbitrary deadline, and arbitrary

execution time as shown in the next section.

A. Min-Cost Max-Flow Network Flow Problem

Network flow has been used in a variety of settings to generate optimal sched-

ules, typically in the context of generating feasible schedules or schedules that min-

imize other execution measures, such as makespan. In this section we describe

how we formulate the problem of energy-optimal scheduling on a discrete-frequency

processor as a Min-Cost Max-Flow network problem.

1. Network Flow Problem

Given a directed graph G = (V,E), where V is the set of nodes, and E is the

set of directed edges. An edge between any two nodes in G is represented by (u, v)

where u, v ∈ V . Each edge (u, v) ∈ E has a capacity c(, u, v) associated with it. We

say that c(u, v) = ∅ ,∀(u, v) 6∈ E. Given two special nodes Source s, and sink t, the

15

goal is to find a Flow f(u, v) to each edge such that,

1. ∀u, v ∈ V, f(u, v) > ∅

2. ∀u, v ∈ V, f(u, v) ≤ c(u, v)

3. ∀u, v ∈ V, f(u, v) = −f(u, v)

4. ∀u ∈ V − {s, t},
∑

v∈V

f(u, v) = ∅.

The problem is to find an allocation of flows to edges so as to maximize the total

flow from Node s to Node t. In this form, the network flow problem can be solved

by the Ford-Fulkerson method. Simple scheduling problems, such as preemptive

scheduling of jobs with arbitrary release times[20], feasible execution times, and

deadlines on a single processor can be solved using simple network flow. In the

energy optimal scheduling addressed in this paper we device a solution to a more

general network flow problem.

2. Min-Cost Max-Flow Network Flow Problem

In this variation of the Network Flow Problem each flow on an edge is associated

with a cost function σ(u, v, f(u, v)). In the following we use a linear cost function,

where

σ(u, v, f(u, v)) = Cu,v × f(u, v),

and Cu,v is some edge specific constant. For this simple case, the Min-Cost Max-

Flow Network Flow problem can be solved using Linear Programming [23].

16

3. Energy Optimal Scheduling Using Min-Cost Max-Flow Network Flow

In the following, we describe how to formulate the problem of generating an

energy-optimal schedule of a set of jobs as a Min-Cost Max-Flow network flow

problem. We will be using the following notation to reason about frequency levels

and time intervals:

We call f ′
j the difference between the frequency fj and fj−1, i.e.

f ′

j = fj − fj−1 , j ∈ 1, 2, . . . m.

In addition, we partition the time into intervals Ik as follows:

Sort the release times and deadlines of all the jobs in the system. All the neighboring

entries then form a sequence of adjoining intervals, which we call I1, I2 Our

objective function is to minimize the energy consumption given by Equation (3.7).

The above equation can be modelled as a Min-Cost Max-Flow graph with the

edge cost as a linear function of flow as shown in Figure (1). Any algorithm (like

Network Simplex algorithm) that can solve a Min-Cost Max-Flow problem can be

used to solve the graph. We define a flow graph, G = (V,E), where V is the set of

vertices, and E is the set of directed edges as follows.

· ∀ (u, v) ∈ E, we represent flow along edge (u, v) as σ(u, v).

· ∀ (u, v) ∈ E, we represent the cost of flow along edge (u, v) as σ(u, v).

The graph contains the following vertices and edges.

1. job vertex Ji, ∀ Ji ∈ J , representing job Ji.

2. interval vertex Ij, ∀ Ij ∈ I, representing interval Ij.

3. frequency vertex fk, ∀ fk ∈ F , representing frequency fk

17

s

I2n-1

I2

I1

Ij

J2

Jn

J1

Ji

t

f1

f2

fm

fk

 c = xi

 = 0

 c =

 = 0

 c =

 = 0

 c = Ij X f
’
k

 = f(Ij,f
’
k) X Vk

2

FIG. 1. Network flow graph representation

18

4. There exists two special vertices s and t, which represent the Source and Sink

of the Flow Graph respectively.

5. ∀ Ji ∈ J , there exists a directed edge (s, Ji), c(s, Ji) = xi, σ(s, Ji) = 0.

6. ∀ Ji ∈ J , ∀ Ij ∈ I, there exists a directed edge (Ji, Ij) if Ji can be scheduled

in the interval Ij, c(Ji, Ij) =∞, σ(Ji, Ij) = 0

7. ∀ Ij ∈ I, ∀ fk ∈ F , there exists a directed edge (Ij, fk), c(Ij, fk) = Ij ×

f ′
k, σ(Ij, fk) = f(Ij, fk)× V 2

k

8. ∀ fk ∈ F , there exists a directed edge (fk, t), c(fk, t) =∞, σ(fk, t) = 0

Flow along each edge of the graph can be explained as follows.

f(s, Ji) The flow along this arc corresponds to the number of execution cycles

scheduled by the flow algorithm. This edge ensures that the maximum number

of execution cycles scheduled by a job Ji ∈ J overalltheintervalsisequaltoxi.

f(Ji, Ij) This edge represents the interval over which Ji can be scheduled. The flow

along this edge corresponds to the number of cycles scheduled in each interval.

It ensures that a job is scheduled only during those intervals that lie between

its release time and deadline.

f(Ij, fk) This cost of flow along this edge corresponds to the energy consumed

to schedule the job at frequency fk. The flow along this arc also gives the

frequency sketch for each of the intervals. The objective function which min-

imizes the cost of maximum flow is implemented by this arc.

f(fk, t) This arc ensures that outflow from the source node is equal to inflow to the

sink.
n

∑

i=1

xi =
N

∑

j=1

m
∑

k=1

Ijfk. (5.1)

19

Since (Ji, Ij) gives the number of cycles executed by Ji during the interval Ij,

and (Ij, fk) gives the frequency sketch along each interval Ik, the schedule can be

obtained by combining these two information.

4. Algorithm to Create Min-Cost Max-Flow Graph

We now describe the steps of the algorithm depicted in Algorithm. 1

Step 1 All the release times and deadlines are sorted in increasing order and in-

tervals are formed by partitioning the time into 2n − 1 intervals, where n is

the number of jobs.

Step 2 A graph G is defined with vertices formed by J , I, and F . Two special

nodes Source and Sink are defined as the start and end nodes of the graph.

Steps 3-4 The capacity of (Ij, fk) is equal to the number of cycles available during

Ij at fk. Since all the cycles until frequency fk−1 would be used before fk, the

actual frequency available at fk would be equal to the fk − fk−1. Therefore,

we define f ′
k = fk−fk−1. Note that the cost of using frequency fk is still equal

to f 2
k .

Steps 5-15 The edges of the graph G are defined.

Step 16 We run a standard Simplex algorithm [23] that would generate a maxi-

mum flow which minimizes cost along flow.

Step 17 As a result of the above step, we get the frequency allocation of the energy

optimal schedule. The schedule is generated in the next step.

Step 18 From the energy optimal frequency allocation, compute the energy opti-

mal schedule as follows:

20

Algorithm 1 Discrete-Freq-Scheduler

1: Sort ri’s and di’s in increasing order. Let I be the set of non-overlapping

intervals formed by the partition of time from the earliest release time to

the latest deadline into at most N intervals.

2: Construct Graph G = (V,E) where V = {s,J , I,F , t}, is the set of vertices.

3: for all fk ∈ F do

4: f
′

0 = 0, f
′

k = fk − fk−1

5: for all Ji ∈ J do

6: Define a directed edge (s, Ji), c(s, Ji) = xi, σ(s, Ji) = 0

7: for all Ji ∈ J do

8: for all Ij ∈ I do

9: if Ji can be scheduled in the interval Ij then

10: Define a directed edge (Ji, Ij), c(Ji, Ij) =∞, σ(Ji, Ij) = 0

11: for all Ij ∈ I do

12: for all fk ∈ F do

13: Define a directed edge (Ij, fk), c(Ij, fk) = Ij × fk, σ(Ij, fk) =

f(Ij, fk)× V 2
k

14: for all fk ∈ F do

15: Define a directed edge (fk, t), c(fk, t) =∞, σ(fk, t) = 0

16: Solve the Min-Cost Max-Flow Graph using any existing algorithm.

17: Construct the Frequency Allocation

18: From Frequency Allocation construct the Energy Optimal Schedule for J .

21

We observe that if there is a flow from Ix to fy, there must be flows from Ix

to all fz, where fz < fy. This is caused by the cost function, which causes the

flows from Ix to saturate first for lower frequency (and therefore lower cost)

nodes. Given this, the frequency allocation of Ix can be obtained by dividing

the flow from Ix to fy by f ′y, i.e. f(Ix,fy)
f ′

y
. The number of cycles of each Job

Jr, xr, scheduled in the interval Ix, can be obtained by the flow from Jr to

Ix, f(Jr, Ix). Given the frequency allocation of an interval and the number of

cycles of each job executing during that interval, we can obtain the Energy

Optimal Schedule by shaving off parts of the interval as we allocate the jobs

in the interval.

Therefore, the total time complexity of the algorithm is equal to O(n3)[23]

5. Proof of Correctness

Theorem 1 Min-Cost Max-Flow Graph produces an energy optimal schedule, if

such a schedule exits.

Proof : To prove that Min-Cost Max-Flow Graph produces an energy optimal sched-

ule, it needs to be proven that the objective function that the graph minimizes

represents the energy consumption of the processor. It also needs to be proven that

the algorithm maximizes the flow through G, which in turn proves that G produces

a feasible schedule whenever one exists.

According to Equation (3.7), the square of frequency times the number of exe-

cution cycles used at that frequency represents energy consumption of the system.

Since more than one frequency is being used by the processor, calculating the energy

consumption at each frequency level and then adding up gives:

E = E1 + E2 + . . . Em (5.2)

22

where Ek represents the energy consumed by the processor at a frequency fk.

Ek = V 2
k (x1 + x2 + x3 + . . . xi) (5.3)

thus, proving that the minimization function represents Equation (3.7) which in

turn represents the energy consumed by a processor.

The graph created here is identical to Network flow graph explained in Section

(A). The only additional constituent is the set of nodes F , which represents the

frequency used during the schedule. But, ∀ Ij ∈ I, Ij is linked to fk,∀ fk ∈ F

which in turn is linked to the t. Thus, it is equivalent to IJ being linked directly to

t. Thus, the graph produces an feasible schedule with minimal energy consumption,

if such a schedule exists.

6. Performance

In this section we analyze the complexity of the graph as well as the algorithm

to create the graph.

a. Graph Complexity

Since there are n jobs and m frequencies, the number of nodes in the graph is

bounded from above as follows:

The graph will have n job nodes corresponding to each job, 2n − 1 interval nodes

corresponding to each interval, and m nodes corresponding to each frequency. Since

there are two special nodes corresponding to the source and the sink, the total

number of nodes are bounded from above by 3n + 1 + m.

The upper bound on the number of arcs can be estimated as follows:

The graph will have n arcs from s to Ji, i = {1, 2, . . . , n}. In the worst case, the

number of arcs from the job node to the interval node is n(2n − 1). The number

23

of arcs from the interval node to the frequency node is m(2n− 1). The number of

arcs from the interval nodes to sink is equal to m. Thus the total number of arcs is

bounded by 2n2 + 2nm.

b. Algorithm Complexity

The performance of the algorithm can be estimated as follows.

Step 1 In the worst case a good sorting algorithm takes O(nlog(n)).

Steps 2-7 Since there are 2n − 1 intervals Step (3) will take O(n), and Step (5)

will take O(n) as well.

Steps 8-11 Since there are n jobs and 2n − 1 intervals, the worst case time com-

plexity to define arc (Ji, Ij) will be O(n2).

Steps 12-14 Since there are m frequencies and 2n−1 intervals, Steps (11) through

(13) will take O(nm).

Steps 15-16 For m frequencies, Step (14 will take O(m).

Step 17 According to [23], the worst case time complexity of a Min-Cost Max-Flow

Algorithm is O(n3).

Therefore the worst case time complexity of the algorithm is O(n3 + mn).

B. Linear Programming Formulation of the Discrete Frequency Processor

Based on the network flow formulation described in Section V-A, we give an

equivalent Linear Programming formulation, which can be used as alternative to

the Network Flow formulation. This leads to more compact representation of the

problem to feed into the Linear Programming Solver. We define the following

24

parameters to formulate the problem in the Discrete Frequency Case:

Parameters

xi number of execution cycles required by Job Ji

sk start time of interval Ik

ek end time of interval Ik

Decision Variables

xjk number of cycles used during interval Ik at frequency range f ′
j

yik number of cycles used by job Ji during interval Ik

Objective

Min E =
N

∑

j=1

m
∑

k=1

V 2
j xjk (5.4)

The objective function minimizes the total energy consumption of the processor

based on the power model defined in Section (III-C).

Constraints

∀ Ji ∈ J,
N

∑

k=1

yik = xi (5.5)

Constraint 5.5 ensures that the sum of all the cycles of Ji, executed over all

intervals Ik ∈ I, is equal to the number of execution cycles, xi, required, by Ji.

∀ Ji ∈ J, ∀ Ik ∈ I, riyik ≤ sk yik (5.6)

∀ Ik ∈ I, ∀ Ji ∈ J, diyik ≥ ek yik (5.7)

Constraints 5.6 and 5.7 ensure that Ji executes only during those intervals that

lie between ri and di.

∀ Ik ∈ I,
n

∑

i=1

yik ≤ (ek − sk) fm. (5.8)

25

Constraint 5.8 ensures that no interval is assigned more execution cycles than it

can hold over its entire length at the maximum frequency, fm.

∀ Ik ∈ I,
n

∑

i=1

yik ≤
m

∑

j=0

xjk. (5.9)

Constraint 5.9 ensures that the sum of execution cycles used by all the jobs in a

particular interval is equal to the sum of the cycles used during all the frequency

ranges f ′
k at that interval.

The decision variables, xjk and yik, of Linear Programming formulation defined

above are non-negative real numbers. As said before, the above model can be input

into a Linear Programming Solver to obtain an Energy Optimal Schedule.

26

CHAPTER VI

ENERGY OPTIMAL SCHEDULES ON CONTINUOUS

FREQUENCY PROCESSORS

In the previous chapter we developed algorithms for energy optimal scheduling

of real-time jobs on a processor capable of running at any of one or more discrete

frequencies.

In this section we expand these results to the case of continuous-frequency

processors. A continuous-frequency processor is capable of running at any frequency

between a lower bound f0 and an upper bound fm.1

Continuous frequency processors can be used , for example, to model variable-

capacity facilities in operations research, where the capacity of the facility can be

controlled at a cost. We observed in Chapter IV that the frequency allocation on

a continuous-frequency processor during energy-efficient operation is discrete. The

additional degree of freedom added by continuous-frequency processors is the ability

for the designer to freely choose the frequency levels at scheduling time. For static

systems this means that the frequency allocation is performed at system design

time.

In the context of processor scheduling, continuous-frequency processor schedul-

ing therefore can for example be used to determine optimal discrete frequency set-

tings for application specific processor realizations.

In this chapter, we define the problem to schedule, in an energy-optimal feasible

1In the following we assume f0 = zero and fm to be the maximum frequency possible
by the processor. In practice, any energy optimal scheduling algorithm will assign
some maximum execution frequency. No feasible schedule exists if this frequency
exceeds fm.

27

manner, a set of jobs with arbitrary release time, arbitrary deadline, and arbitrary

execution time on a single processor that can assume any frequency between f0 and

fm.

A. Initial Approach

A possible method to estimate an optimal frequency allocation for a given job

set J is to enumerate all the probable frequencies (based on Lemmas 1 and 2 and

Corollary 1) that jobs in J can execute. Once this set of frequencies are known, the

continuous-frequency problem is reduced to a discrete-frequency problem described

in Chapter V. Unfortunately, in practice the number of possible frequencies is too

large for this approach to succeed as shown in the following.

An upper bound on the number of frequencies possible by all the jobs in J can

be calculated as follows:

⋄ If we schedule jobs of subsets of size one of J , we need at most C(n, 1) different

frequencies.

⋄ If we schedule jobs of subsets of size two, we need at most C(n, 2) additional

frequencies. These frequencies occur when the execution intervals of two jobs

intersect. The frequency is calculated as the sum of execution cycles of both

the jobs, divided by the difference of the latest deadline job with the earliest

released job among both the jobs.

⋄ Similarly, if we schedule jobs with subsets of size n we need at most

n
∑

i=1

C(n, i) (6.1)

additional frequencies.

28

⋄ If we schedule a subset of size one first, and then schedule the remaining n−1 jobs

in subsets of size 1 of J , there are at most C(n− 1, 1) additional frequencies.

⋄ Similarly, there can be at most

n−1
∑

i=1

C(n− 1, i) (6.2)

additional frequencies if we schedule the remaining n− 1 jobs of J in subsets

of size n.

⋄ Since there are n jobs, the maximum number of possible frequencies is at most

equal to

n×
n−1
∑

i=1

C(n− 1, i). (6.3)

Adding up all the possible frequencies for J , in the worst case we get,

n
∑

i=1

C(n, i) + n×
n−1
∑

i=1

C(n− 1, i). (6.4)

Thus, it can be seen from the above equation that frequency enumeration is expo-

nential.

1. Continuous Frequency Problem Evaluation

In this section we evaluate the difficulty of generating an energy optimal sched-

ule on a continuous-frequency processor. According to Equation (3.7), Energy is

proportional to the square of Voltage times the Number of Cycles.

In discrete frequency model problem, the frequencies (and their respective volt-

ages) at which a processor can be scheduled are given. Therefore, the problem to

find an energy optimal schedule on a discrete frequency processor is linear. In a

continuous-frequency model problem, voltages and the corresponding frequencies

29

are unknown and therefore the problem becomes non-linear and more difficult to

solve.

In the next section, we solve an easier problem by assuming that all the jobs

in J have identical release time. We then propose a solution in Section VI-C

to schedule a set of jobs with arbitrary release times on a continuous-frequency

processor.

B. Jobs with Identical Release Time

The scheduling problem addressed in this section can be formulated as follows:

Given a set of independent, preemptive jobs J = {J1, J2, . . . , Jn}, each with identical

release time r, arbitrary deadline di and arbitrary execution time xi, schedule the

jobs on a single processor with continuous frequencies in an energy optimal feasible

manner.

In the following, we make use of the lemma’s presented in Chapter IV to propose

an algorithm to schedule a set of jobs. We call the resulting algorithm Energy-EDF.

1. Algorithm and Description

Energy-EDF algorithm can be described as follows:

The jobs in J are sorted in ascending order based on their deadline. The execution

order of the jobs are in Earliest Deadline First (EDF) manner. We optimize each

job, starting with the job having the earliest deadline to the job having the latest

deadline, using a greedy approach.

We call Jk a neighbor of Ji if they form neighboring entries in the sorted

sequence of jobs. The first job J1 in J is scheduled in the interval [r1, d1]. For each

job Ji ∈ J , i ∈ {2, 3, . . . , n} starting with the job having the earliest deadline to

30

the job having the latest deadline: if the frequency of allocating Ji from dPREV IOUS

(deadline of job JPREV IOUS - the neighbor of Ji whose dPREV IOUS < di) to di

is less than the frequency of JPREV IOUS, fPREV IOUS then, Ji is scheduled in the

interval [dPREV IOUS, di]; Else Ji and JPREV IOUS are scheduled from the start time

of JPREV IOUS, sPREV IOUS, to di at a frequency equal to the sum of their execution

cycles divided by the total allocated execution time (di − sPREV IOUS).

Algorithm 2 ENERGY-EDF (identical release time)

Require: J = {J1, J2, . . . , Jn} where Ji = (0, di, xi)

Ensure: Energy Optimal Schedule

1: Sort the jobs in J on di such that d1 < d2 < . . . < dn

2: Let si be the start time of Ji and si = 0.

3: Create empty Stack

4: for i← 1, n do Optimize(Ji)

The algorithm to optimize a set of jobs J , is divided in to three functions.

The main function, Algorithm 2, sorts the job set and calls Optimize Algorithm 3,

to optimize the frequency allocation of each job. The third function, Algorithm 4

merges two jobs in to one.

The Algorithm 2 can be explained as follows.

Steps 1-3 J is sorted in ascending order of deadlines of jobs. A empty Stack is

created for later use and the start-time of all the jobs are initialized to their

release time.

Step 4 For each job, starting with the earliest deadline job to the latest deadline

job, Optimize is called to optimize each job.

Algorithm 3 can be described as follows:

A Stack is used to store the schedule created by the algorithm. ri is assigned the

31

Algorithm 3 Optimize jobs

1: function Optimize(job Ji)

2: if Stack is empty then

3: Schedule Ji in the interval [0, di] at frequency fi = xi

di−0

4: Push(Ji) to Stack

5: else

6: JPREV IOUS ← Stack.Pop()

7: si = dPREV IOUS

8: if xi

di−si
> fPREV IOUS then

9: JPREV IOUS = Merge(Ji, JPREV IOUS)

10: Optimize(JPREV IOUS)

11: else

12: Push(JPREV IOUS) to Stack

13: Schedule Ji in the interval [si, di] at frequency fi = xi

di−si

14: Push(Ji) to Stack

Algorithm 4 Merge jobs

1: function Merge(Ji, JPREV IOUS)

2: Create a temporary job JTEMP

3: sTEMP = sPREV IOUS, dTEMP = di, xTEMP = xi + xPREV IOUS

4: Schedule JTEMP in the interval [sTEMP , dTEMP] at frequency fTEMP =

xTEMP

dTEMP−sTEMP

5: Return JTemp

32

start time of Ji in the algorithm. Ji is scheduled from dPREV IOUS to di if fi is less

than fPREV IOUS; else both jobs are scheduled from rPREV IOUS to di.

Steps 2-4 If Stack is empty, then schedule Ji in the interval [ri, di] with frequency

fi = xi

di−ri
. Push Ji to Stack and Return.

An empty stack means that the incoming job is either the first job or is

obtained by merging all the jobs scheduled before the current time.

Steps 6-7 Else If there exists at least one job in the stack then, pop it out to

JPREV IOUS. Assign the start time of Ji to dPREV IOUS.

Steps 8-10 Let fi = xi

di−ri
. If fi > fPREV IOUS then, JPREV IOUS and Ji are sched-

uled from the start time of JPREV IOUS to di at frequency fi. Optimize function

is called recursively with JPREV IOUS as its argument.

The process of scheduling two jobs at an identical frequency as in Steps [8-10]

is done using a function called Merge. This function schedules the jobs as

stated above and returns the scheduled job.

Steps 12-14 If fi < fPREV IOUS then, both JPREV IOUS and Ji are pushed to stack

separately.

Once Energy-EDF runs to completion, the schedule can be obtained by popping

the stack. Such a schedule minimizes the energy consumed by the job set, as proven

below.

2. Proof of Correctness

Lemma 3 Any job schedulable by EDF is schedulable by Energy-EDF.

Proof : Let Ji = (r, di, xi) and Jk = (r, dk, xk) be two neighboring jobs scheduled at

33

frequency fi and fk during intervals Ii = [r, di] and Ik = [di, dk] using Energy-EDF

Algorithm. The frequency can be allotted in two ways.

Case 1: fk ≤ fi In this case, Energy-EDF does not do any re-scheduling. It assigns

Ji in the interval [r, di] and Jk in the interval [di, dk]. Since di < dk, the

algorithm schedules the jobs in an EDF manner.

Case 2: fk > fi Here, Energy-EDF re-schedules Ji and Jk at a frequency f = fk =

fi = xi+xk

dk−ri
. Since, the frequency of execution of Ji increases from fi to f , Ji

completes its execution before di. Jk starts its execution at the time when Ji

completes its execution. Both the jobs are still scheduled in an EDF manner.

Without loss of generality, the above case of scheduling two jobs can be extended

to a set of n jobs as shown in the proof below. Thus any job schedulable by EDF

is schedulable by Energy-EDF as well.

Lemma 4 Given a set of n jobs, J = {J1, J2, . . . , Jn} where Ji = (r, di, xi) sorted

in the increasing order of their deadlines di, Energy-EDF schedules J in an energy

optimal manner.

Proof : Energy-EDF is a greedy algorithm that works on two-job optimization

scheme. We call a scheme that can optimize the whole job set taking subsets

of two jobs at a time as two-job optimization scheme.

Number of jobs n = 1

If there is only a single job J1, Energy-EDF schedules J1 at a frequency f1 = x1

d1−r1

.

According to Lemma 1, this is the optimal frequency to schedule a single job.

Number of jobs n = 2

Let J1 and J2 be the two jobs to be scheduled by Energy-EDF. There are two ways

in which J1 and J2 can be scheduled by Energy-EDF.

34

r d1 d2

J1

J2

f1

f2

(a) f1 < f2

r d1 d2

J2

J1
f1

f2

(b) f1 ≥ f2

FIG. 2. Schedule when n = 2

f2 ≤ f1: In this case Energy-EDF does not do any re-scheduling. J1 and J2 are

scheduled at frequencies f1 and f2. According to Lemma 2, if f2 ≤ f1, it is

optimal to schedule J1 and J2 at frequencies f1 and f2 respectively. Therefore,

Energy-EDF schedules the job in an energy optimal manner. This is shown

in Figure 2(a).

f2 > f1: Energy-EDF schedules the jobs Ji and J2 at a frequency f = x1+x2

d2−r1

. Ac-

cording to Corollary 1, the optimal frequency to schedule J1 and J2 if f2 > f1

is x1+x2

d2−r1

. This is shown in Figure 2(b).

Thus when the number of jobs equal two, Energy-EDF generates an optimal sched-

ule.

Number of jobs n = 3

When the number of jobs equal three, Energy-EDF algorithm will first generate a

schedule for J1 and J2 before taking J3 into consideration. J1 and J2 will be sched-

uled in an energy optimal manner among themselves by the time J3 is considered

by Energy-EDF.

There are only two ways in which Job J3 will have its frequency with respect

to J2.

35

J2

J1

J3

f1

f2

f3

r d1 d2 d3

(a) f3 < f2

J2

J1

J3

f1

f2

f3

r d1 d2 d3

(b) f3 ≥ f2

FIG. 3. Schedule when n = 3 and f1 > f2

J1 & J2

r d1 d2 d3

J3

f2

f12

f3

 f1

(a) f3 < f2

J1 & J2

r d1 d2 d3

J3

f3

 f2

f12

 f1

(b) f3 ≥ f2

FIG. 4. Schedule when n = 3 and f2 > f1

36

f3 < f2: Jobs J1 and J2 can have their schedules in two ways as follows:

f2 < f1: It is already proven that J1 and J2 form an optimal schedule among

each other. Since f3 < f2, J3 and J2 form an optimal schedule according to

Lemma 2.This is shown in Figure 3(a)

f2 = f1: Since J1 and J2 merged together to form a single job of identical fre-

quency, J3 and J1, J2 can be scheduled using a two-job scheduling scheme.

Since it is already proven that Energy-EDF generates an optimal schedule

when the number of jobs equal two, the schedule is optimal in this case. This

is shown in Figure 4(a)

f3 ≥ f2: In this case J3 and J2 merge together to form a single job with equal

frequency. Now, the three job scheduling problem is reduced to two job scheduling

problem. In the pervious section we already proved that Energy-EDF generates an

optimal schedule when the number of jobs equal two. These scenarios are depicted

in Figures 3(b) and 4(b).

Assume the algorithm generates an optimal schedule for k jobs by reducing it

into two-job scheduling problem.

Number of jobs n = k + 1

When there are k+1 jobs, k jobs with earliest deadline are scheduled first. The

schedule will look as shown in Figure (5) or (6).

1. fk+1 < fk

According to Lemma 2, Jk+1 and Jk are scheduled in an energy optimal manner

among themselves. Since {J1, J2, . . . Jk} already form an energy optimal schedule

among themselves, the jobs in job set {J1, J2, . . . Jk+1} is also scheduled in an opti-

mal manner.

2. fk+1 > fk

37

J1

r di dk dk+1

Jk
Jk+1 …..

fk+1

fh

(a) fk+1 > fk

J1

fh

f k+1

r di dk dk+1

Jk

Jk+1

…..

(b) fk+1 < fk

FIG. 5. Schedule when n = k + 1 and f1 ≤ f2 ≤ . . . ≤ fk

Energy-EDF reschedules Jk and Jk+1, such that both the jobs are merged to form

a single job with equal frequency, thus reducing the number of jobs to be scheduled

to k. It is already proven that Energy-EDF generates an energy optimal schedule

for k jobs.

Thus Energy-EDF generates energy optimal schedule based on a greedy scheme

called two-job optimization.

3. Performance

The time complexity of the Algorithm 3 can be estimated as follows.

Step 1 A sorting algorithm takes O(nlog(n)) in the worst case.

Step 2 This step takes a constant time to execute

Step 3 Since there are n jobs, it would take O(n) to complete.

The time complexity of the Algorithm 2 can be estimated as follows:

Step 1 The function is executed O(n) times from Algorithm 2. In the worst case,

38

 J1

fh

 f k+1

r di dk dk+1

Jk

Jk+1

…..

(a) fk+1 > fk

 J1

 r di dk dk+1

Jk

Jk+1

…..

(b) fk+1 < fk

FIG. 6. Schedule when n = k + 1 and f1 ≥ f2 ≥ . . . ≥ fk

it will be called O(n) times by itself during each such call. Thus, this step

takes O(n2) in the worst case.

Step 2-8 All the other steps take a constant time to execute.

Algorithm 4 takes a constant time to execute and therefore the worst case execution

time of Energy-EDF is bounded by O(n2).

In the worst case the algorithm will take O(n) extra space to store the schedule

in a stack.

In the next section we first propose an algorithm based on the assumption that

frequency enumeration is possible. We then propose a method to cut down the

number of frequencies to polynomial and use a similar method to solve the problem

of scheduling a set of jobs with arbitrary release time.

C. Jobs with Arbitrary Release Time

The scheduling problem addressed in this section can be formulated as follows:

Given, a set of independent, preemptive jobs with arbitrary release time, arbitrary

39

deadline, and arbitrary execution time, deduce an algorithm to schedule the jobs on

a single processor in an energy optimal feasible manner.

1. Energy Optimal Scheduling Through Extensive Frequency Enumeration

S1 Si Si+1 Sn-1 Sn Sn+1

t

fn,b

fn,3

fn,2

fn,1

fn-1,3

fn-1,2

fn-1,1

fn-1,l

fi+1,1

fi+1,2

fi+1,3

fi+1,y

fi,t

fi,2

fi,1

f1,r

f1,3

f1,2

f1,1

FIG. 7. Flow graph representation of frequencies

In the following we assume that all the possible frequencies for every job in

J , can be enumerated. Then, we propose a Dynamic-Programming(DP) based ap-

proach to obtain an optimal frequency allocation on a continuous-frequency proces-

sor model.

40

1. F = {fi,j, t}, is the set of all vertices in G, where the vertices Si = {fi,1, fi,2 . . . fi,ki
},

are all the possible frequencies that Ji could be executed. In the following,

we call Si a stage in the networks.

2. An arc (fi,j, fi+1,l) ∈ E if there exists a feasible schedule when Ji and ji+1 are

executed at fi,k and fi+i,l respectively.

3. Cost of arc (fi,j, fi+1,l), σ(fi,j, fi+1,l) is V 2
i,kxi, where Vi,k is the voltage corre-

sponding to fi,j.

4. Sn+1 is a special node called sink t.

By definition, any path connecting a node in S1 to t, as shown in Figure (7),

represents a feasible schedule in J . Among all the feasible schedules in J , the

energy optimal schedule is a path which minimizes the sum of all the arc costs of

the path from a node in S1 to t.

For a given feasible frequency graph, the energy optimal schedule (i.e. the

energy optimal path) can be determined as follows.

Denote the energy optimal path from fi,q to t as Ψ(fi,q). Then,

Ψ(fi,q) =















0, if i = n + 1;

min{σ(fi,q, fi+1,r) + Ψ(fi+1,r)}, if i = 1, 2, . . . , n

where node fi,q ∈ Si, and node fi+1,r ∈ Si+1.

The value σ(fi,q, fi+1,r) represents the cost of the arc from node fi,q to node

fi+1,r.

Though dynamic programming does give us an optimal solution for the above

problem, the algorithm to generate all the possible frequencies of J would still have

an exponential time complexity.

41

Since frequency enumeration is exponential and the algorithm relies on the

assumption that frequency enumeration is possible, we now propose three lemmas

and a theorem to cut down the number of probable frequencies to polynomial. We

then use an approach similar to the one presented in this section to generate a

schedule on a continuous-frequency processor in polynomial time.

2. Implicit Frequency Enumeration

In this section, we present a set of lemmas and a theorem that we use to reduce

the number of possible frequencies to polynomial in terms of number of jobs.

Lemma 5 [16] Given a set of jobs J , the energy consumed will be minimum only

if each interval in the interval set I executes at a constant frequency.

Lemma 6 [16] Given a set of jobs J , the energy consumed will be minimum only

if each job executes at a constant frequency.

Lemma 7 Given a set of jobs J , the energy consumed will be minimum if the

frequency of execution of every job in J is equal to or lower than the frequency of

execution of all the other jobs scheduled over its executable interval.

Proof : Assume that there is at least one other job executing with a lower frequency

in the executable interval of Job Ji. We can always reschedule Ji such that it

executes at a lower frequency. By extending the proof of Lemma 2 it can be seen

that the energy consumed while executing a job at lower frequency is lower than

the energy consumed to execute a job at higher frequency, thus proving Lemma 7.

Theorem 2 For a schedule to be energy-optimal, it is necessary and sufficient for

it to satisfy Lemmas 5, 6 and 7.

42

Using the above theorem (proof given in Section VI-4), we propose a polynomial-

time DP approach to calculate the optimal frequencies. We call the resulting algo-

rithm Cont-Freq-Scheduler. The jobs are initially sorted in the increasing order of

their release times. An initial schedule is generated by scheduling the jobs from their

release time either to the release time of the next job or to it’s own deadline, which

ever comes earlier. Then, starting from job have the latest deadline to the job have

the earliest deadline, we run an Optimize algorithm to obtain an energy-optimal

schedule.

A minimum allowable frequency is assigned to every interval. No interval can

execute at a frequency lower than the minimum allowable frequency. This minimum

frequency is initialized to zero and is updated as and when new jobs are scheduled

in that particular interval. A frequency is considered relevant if it is at least as high

as the minimum allowable frequency and minimizes the energy consumption of all

the interval sets.

At each state of a stage in DP, the algorithm tries to minimize the energy

consumption of two sets of intervals, Fm and Fn by re-scheduling a job (having

deadline equal to the end time of Fn) in Fm to Fn if the frequency of Fm is higher

than Fn. Thus, the exhaustive search is reduced to a scenario of finding a relevant

frequency for two sets of intervals based on a single job.

Let Z represent a set of intervals and rZ , dZ , tZ represent the start-time, end-

time and the length of Z respectively. Let xZ equals the maximum number of

cycles executable in Z and fZ the frequency of Z. We use tZi and xZi to represent

the time interval from dZ to di and the number of cycles in the interval [di, dZ]

respectively. We use IS i to represent the set of intervals in which Ji is scheduled

initially, ∀i, IS i = I.

43

3. Algorithm and Description

Algorithm 5 Cont-Freq-Scheduler (arbitrary release time)

Require: J = (ri, di, xi)

Ensure: Energy optimal feasible schedule

1: Sort ri and di in increasing order. Let I be the set of non-overlapping intervals

formed by r′is and d′
is.

2: for all Ij ∈ I do, Ij.minima = ∅

3: if ri+1 < di then, schedule Ji in IS i = {ri, ri+1}

4: else schedule Ji in IS i = {ri, di}

5: for i← n, 1 do, Optimize(IS i)

A recursive method is used to solve the problem of generating an optimal

schedule for a processor with continuous frequencies. The jobs are scheduled from its

release time to either its own deadline or the release time of the next job, whichever

comes earlier. Thus the job that is released last is scheduled from its release time

to its deadline.

The algorithm uses a DP approach to create an energy optimal schedule. Al-

gorithm starts from the job with the latest release time and goes on backward to

schedule each job in an energy optimal manner. At each stage of the algorithm,

the next job with the latest deadline is taken in to consideration. At the end of

any stage Si, jobs considered at or after Si are scheduled in an energy optimal with

respect to each other.

A stage in the algorithm consists of several states. In each of the state it

re-schedules jobs in the interval sets being considered to minimize the energy con-

sumption of the interval sets. The schedule at the end of each stage is shown in

Figure 8. We make use of two functions to schedule the jobs optimally. The first

44

Algorithm 6 Optimize a given set of intervals

1: function Optimize(Interval Set Z)

2: for all Ji ∈ Z do

3: Take the next job Ji, having earliest deadline after dZ

4: Calculate a relevant frequency, fopt, for interval sets Z and {di, dZ}

5: if fZ cannot be minimized then, goto Step [6.3]

6: if additional execution cycles required to schedule {dZ , di} at fopt >

(xi ∈ Z) then

7: xi ∈ Z are rescheduled to {di, dZ} and the fZ and frequency of

{di, dZ} are recalculated.

8: Optimize({di, dZ})

9: else

10: Reschedule Ji ∈ Z to {di, dZ} such that both the interval sets exe-

cute at fopt.

11: Update the minima of each interval in {rZ , di}

12: Optimize({di, dZ})

13: for all Ij ∈ Z do

14: if Ij.minima < fZ then, Ij.minima = fZ

45

Jn-1

Stage i Stage n

Jn

Jn Jn-1

Jn

Jn-2

Jn-1

Jn

Ji

Ji+1

J1

J2

Jn-1

Jn

Jn-2

Stage 1

FIG. 8. Stage wise representation of Algorithm 5

46

algorithm starts a stage in DP, while the second algorithm creates the states to

obtain an optimal energy schedule for jobs considered up to the current state.

Algorithm 5 can be described as follows.

Step 1 This step sorts the release times and deadlines of all the jobs. Non- over-

lapping intervals are formed by immediate release times and deadlines.

Step 2 Initialize the minimum allowable frequency of each interval as zero.

Steps 3-4 Jobs are scheduled from their release time to either their deadlines or

to the release time of the next job, which ever occurs earlier.

Step 5 Starting from the job that is released last to the job that is released first,

intervals of each job are passed on to Algorithm 6.

Algorithm 6 takes a set of intervals as its input and minimizes the energy

consumption of jobs scheduled at or after the current interval. The steps can be

explained as follows.

Step 1 An interval set Z, is obtained in the function Optimize()

Steps 2-3 A job, Ji scheduled in Z and having the earliest deadline after the end

time of Z is taken

Steps 4-5 A relevant frequency fopt is the one which minimizes the energy con-

sumption but does not go below the minimum allowable frequency of the two

interval sets is calculated. The number of cycles required by {dz, di} to obtain

fopt is also calculated. If the frequency of Ji cannot be minimized then, we

take the next such job.

Steps 6-8 At each state only Ji is re-scheduled from Z to {dZ , di}. If xi available

in Z is less or equal to the required cycles at {dZ , di}, then we transfer as

47

much of xi available at Z to {dZ , di}, and the frequencies are updated. Now

a recursive call is made with new Z = {dZ , di}.

Steps 9-10 Else if, xi available in Z is greater than the required cycles at {dZ , di},

then we transfer to {dZ , di} as much of xi required, and the frequencies are

updated to fopt.

Step 11 The minimum allowable frequency of each interval in {rZ , di} is updated.

This can be done by considering only those jobs that have deadline at or

before di. If the frequency thus obtained is greater than the current minimum

allowable frequency, then the frequency is updated.

Step 12 Now a recursive call is made with new Z = {rZ , di}.

Steps 13-14 The minima of each interval in Z is updated with the present fre-

quency of the intervals.

4. Proof of Correctness

Theorem 3 Given, a set of independent, preemptive jobs with arbitrary release

time, arbitrary deadline, and arbitrary execution time, the Optimal Energy Sched-

uler algorithm schedules the jobs on a single processor in an energy optimal manner.

Proof : The problem of optimizing a set of n jobs with arbitrary release time, arbi-

trary deadline, and arbitrary execution time is approached using DP. DP produces

the cheapest path for a given set. Since, in our algorithm, we do not produce all

the frequencies possible by the jobs in job set, J , we need to prove that the set of

frequencies provided to the DP by our algorithm is a super set of the set of optimal

frequencies. Since the algorithm is based on Theorem 2, it is sufficient to prove the

correctness of the theorem.

48

It can be seen that Corollary 2 is false when either of Lemmas 5, 6 or 7 is false.

This proves the necessary condition.

To prove the sufficiency condition, we show that Corollary 2 is true when all

of Lemmas 5, 6 and 7 are true.

Assume that a feasible schedule S satisfies the criteria in Lemmas 5, 6 and 7.

Moreover, assume that S is not energy-optimal. Therefore, a feasible schedule S ′

must exist that has lower energy consumption that S.

Since S ′ is an energy-optimal schedule, there should exist an interval I ′ in S ′

such that the frequency allocation f ′ of I ′ is lower than the corresponding interval

I in S. Two cases arise in the way jobs are scheduled in I.

There exists some job J scheduled in I that can be feasibly re-scheduled in some

other intervals of S such that the energy consumption decreases :

In this case, S does not satisfy Lemma 7.

No job scheduled in I can be re-scheduled in any other intervals of S (with/without

increasing energy consumption):

If there exists no job in I that can be re-scheduled to any other intervals of S even

without increasing energy consumption of S then, either intervals I and I ′ should

have identical frequency allocation to obtain a feasible schedule, or Lemmas 5 or 6

has to be broken. If there exists a job in I that can be re-scheduled to any other

interval I ′′ (with higher frequency allocation) of S by increasing energy consumption

then; a job in I ′′ should be re-scheduled to I (if possible) to satisfy Lemma 5 or job

J needs a frequency allocation at least equal to f to generate a feasible schedule.

The algorithm requires n stages to produce an optimal schedule for a set J of

size n. Each stage has several states associated with it. At each state a frequency is

selected based on Theorem 2. By the end of each stage, the algorithm would have

produced all the possible frequencies for jobs released at or after that stage, based

49

on Theorem 2. Since at each state of a stage, the algorithm tries to apply Lemma

2, the set of frequencies obtained as a result is a superset of the optimal frequencies

possible till that stage.

During each stage of DP, no job Ji in J is scheduled beyond its deadline. Thus

the schedule generated by the algorithm is feasible if a feasible schedule exists.

5. Performance

The performance of the algorithm can be evaluated as follows. Each of the

steps of Algorithm 5 takes the following time complexity.

Step 1 Sorting can be done in O(nlog(n)).

Step 2-5 In the worst case these steps will take O(n).

Each of the steps in Algorithm 6 takes the following time complexity.

Step 1 The function is called O(n) by Algorithm (5). In the worst case, each inter-

val will be considered O(n) times during each call. There can be a maximum

of n calls to the function. Therefore in the worst case it will take O(n2).

Step 2-12 Each of the steps will execute to a maximum of O(n).

Step 13-14 Since the number of intervals possible is bounded by 2n−1, the worst

case execution time of this step is bounded by O(n).

Thus, the time complexity of the algorithm is O(n2).

50

CHAPTER VII

RESULTS

In this chapter we evaluate the performance of both the processor models pre-

sented in Chapters V and VI using various task sets. Simulation experiments were

conducted to calculate the effectiveness of the proposed algorithms in saving energy.

TABLE 1. Processor models used in our experiments

Processor Voltage Frequency

Transmeta Crusoe

1.3 800

1.2 667

1.1 533

1 400

0.9 300

AMD K-6 IIIE

1.8 500

1.7 450

1.6 400

1.5 350

1.4 300

For brevity we refer to the algorithm described in Chapter V as discrete and

Chapter VI as continuous. We use the term base to represent a single-frequency

processor that executes at highest available frequency.

In this section we first compare the energy consumption of discrete to that of

base. We then compare discrete to generalized network flow (GNF) model described

51

in [17]. We also compare the energy consumptions of discrete, continuous and base

using task sets generated randomly as described later. We make a fair comparison

of the models by alleviating any benefits of task timing by using a spectrum of

utilization factor values. Both, GNF and discrete were solved using an ORMM

solver [24] on a Pentium 4, 1.4 GHz machine with 512MB RAM.

The comparison of discrete with GNF and base is shown in Table 2. The

processor characteristics used for comparison is shown in Table 1. The task set

used in the above comparison was adopted from [17]. As can be seen from Table 2,

both discrete and GNF outperform base for any value of processor utilization. Also

it can be seen from Table 2 that discrete outperforms GNF in more than a couple

of tasks. This is due to the fact that GNF is restricted to inter-task scheduling,

while no such restriction applies to discrete. Thus in cases where it is optimal to

run a task or interval at two frequencies, GNF is restricted to run at the higher of

the two frequencies. Table 3 shows the percentage variation of energy consumption

between discrete, GNF and base.

Time and space complexity to run both the algorithms are shown in Table 4.

As can be seen from the table, the number of nodes and arcs required by GNF

increases exponentially as the number of jobs increases, while that of discrete in-

creases polynomially. The time required to execute GNF runs into minutes and in

some cases into hours, while that of discrete remains less that two seconds in all the

cases. Thus, discrete generates a schedule with lower energy consumption using a

compact representation and polynomial time algorithm.

It can thus be seen that GNF, which is NP Complete is not scalable for higher

number of frequencies. It also requires large number of arcs and nodes for repre-

sentation and is computationally inefficient even for small number of problems.

52

TABLE 2. Energy consumption of discrete, GNF and base

Model Task Set
Processor Energy consumption

Utilization Discrete GNF Base

Crusoe

T 1 0.27 7452 7452 15548

T 2 0.43 17406 18976 35152

T 3 0.54 16800 16800 28392

T 4 0.59 39104 39104 58136

T 5 0.65 52736 52736 74360

T 6 0.72 138751 138816 178464

T 7 0.75 61742 61760 81120

T 8 0.85 168831 169024 200096

CNC 0.48 49528 51363 103336

AMD

T 1 0.27 11270 11270 18630

T 2 0.43 25480 25480 42120

T 3 0.54 20580 20580 34020

T 4 0.59 42140 42140 69660

T 5 0.65 58569 58573 89100

T 6 0.72 155940 155992 213840

T 7 0.75 68988 69024 97200

T 8 0.85 195380 195333 239760

CNC 0.48 77707 89183 128455

53

TABLE 3. Percentage variation of energy consumption in discrete, GNF and base

Model Task

Set

Base−Discrete
Base

GNF −Discrete
GNF

Base−GNF
Base

Crusoe

T 1 52% 0% 52%

T 2 50% 8% 46%

T 3 41% 0% 41%

T 4 33% 0% 33%

T 5 29% 0% 29%

T 6 22% 0% 22%

T 7 24% 0% 24%

T 8 16% 0% 16%

CNC 54% 4% 52%

AMD

T 1 40% 0% 40%

T 2 40% 0% 40%

T 3 40% 0% 40%

T 4 40% 0% 40%

T 5 34% 0% 34%

T 6 27% 0% 27%

T 7 29% 0% 29%

T 8 19% 0% 19%

CNC 40% 13% 31%

54

TABLE 4. Arcs and nodes of discrete versus GNF

Task Set
Discrete GNF

No. of

Arcs

No. of

Nodes

Time

[mm:ss]

No. of

Arcs

No. of

Nodes

Time

[mm:ss]

1 66 24 0.01 164 74 0.04

2 92 28 0.01 248 88 2.15

3 65 23 0.01 158 68 0.01

4 94 30 0.01 260 100 0.01

5 140 44 0.01 404 164 0.01

6 378 90 0.01 1140 340 4.03

7 121 37 0.01 302 122 10.44

8 328 79 0.01 979 294 1.59

CNC 896 213 0.01 2138 763 1.03

TABLE 5. Energy consumption of discrete and continuous on 5-T set

Task Energy consumption

set continuous discrete

5-T 1 64619 126755

5-T 2 186298 253749

5-T 3 380464 380722

5-T 4 663095 663131

55

TABLE 6. Energy consumption of discrete and continuous on 20-T set

Task Energy consumption

set continuous discrete

10-T 1 179485 352040

10-T 2 517442 704816

10-T 3 1057290 1057802

10-T 4 1841150 1841303

TABLE 7. Energy consumption of discrete and continuous on 10-T set.

Task Energy consumption

set continuous discrete

20-T 1 29737 58432

20-T 2 85500 116863

20-T 3 174354 175295

20-T 4 306013 306103

56

Above, we saw that discrete outperforms both GNF as well as base in gen-

erating a schedule that consumes lower energy. In the following, we simulate a

continuous-frequency processor from AMD K-6 processor shown in Table 1. The

frequency to voltage relation is calculated from the linear relation of the voltage

and frequency as shown in the Table 1. We assume that the continuous-frequency

processor can run at any frequency lower than the maximum frequency available

for the AMD processor (500 MHz).

The task sets used in the following is generated randomly. Similar methods

of generating workload is already used in [19]. We generate three different kinds

of task sets with four processor utilizations. A mixed class task set is created by

randomly generating task periods in the range of (1− 1000)µseconds, by dividing

the range into short (0 − 10)µseconds, medium (11 − 100)µseconds, and large

(101 − 999)µseconds intervals. Two random tasks are generated in the short and

large intervals while only one task is generated in the medium period range. We

then simulate a homogenous workload with a shorter period range by generating

tasks randomly in the period range of (0 − 25)µseconds and (25 − 50)µseconds.

The results of simulating these workloads are shown in Tables 5, 7, and 6. The

percentage of variation is shown in Table 8.

It can be seen from the tables that frequency generated by discrete is almost

equal to that of continuous as the processor utilization goes up (above 60%). When

utilization is low (below 40%), continuous generates a schedule that consumes lower

energy than discrete. This is because discrete cannot go below a certain minimum

frequency (300 MHz in this case) assigned to it.

57

TABLE 8. Variation of energy consumption of discrete, continuous and base

Variation = discrete− continuous
discrete

Processor

Utilization

5-T Set 10-T Set 20-T Set

20% 49% 49% 49%

40% 27% 27% 27%

60% 0% 0% 1%

80% 0% 0% 0%

58

CHAPTER VIII

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we developed two new algorithms to solve the problem of optimal

energy scheduling for hard real–time systems.

First, we developed an algorithm to schedule a set of jobs with arbitrary release

time, arbitrary deadline and arbitrary execution time on a processor with given set

of discrete frequencies. We use the network flow graph to solve the problem. The

algorithm utilizes intra-task scheduling model, thus obtaining the minimum energy

consumption possible on a given set of frequency.

Second, we developed an algorithm to schedule a set of jobs with arbitrary

release time, arbitrary deadline and arbitrary execution time, on a continuous fre-

quency processor such that the energy consumed is minimum.

We first solve a simpler version of the problem by assuming identical release

time for all the jobs. We developed a polynomial time algorithm to solve the same.

Later, we propose a polynomial time, dynamic programming based approach to

solve the optimal energy scheduling problem.

We assume a non-linear relation of voltage to energy. Though, we assume that

energy is proportional to square of voltage, our model is generalized and would work

under any model with a non-linear relation of energy to voltage. We provide proofs

for our claims of optimality and results to substantiate our claims. It is our belief

that the results obtained are the best so far in the literature.

The continuous frequency allocation assumes that the available number of fre-

quencies is not limited. This is acceptable in some systems where resource band-

width is truly variable on a continuous scale. In many other cases, such as in

59

the design of application-specific processors, the number of available frequencies is

bounded. For such cases, algorithms must be found that generate frequency level

bounded energy-optimal schedules for continuous-frequency processors.

60

REFERENCES

[1] Transmeta Crusoe TM5500 Data Sheet [Accessed on December 2004]. Avail-

able: http://www.transmeta.com/efficeon/features.html.

[2] AMD Power Now Technology. [Accessed on Decemeber 2004]. Available:

http://www.amd.com.

[3] C.M. Krishna, and Yann-Hang Lee “Voltage–clock scaling adaptive scheduling

techniques for low power in hard real–time systems,” in Proceedings of Real-

Time Technology and Applications Symposium, 2000, pp. 156–165.

[4] H. Aydin, R. Melhem, D. Mosse, and P. Mejia–Alwarez “Dynamic and aggres-

sive scheduling techniques for power–aware real–time systems,” in Proceedings

of Real-Time Systems Symposium, 2001, pp. 95–105.

[5] H. Aydin, and Qi Yang “Energy–Responsiveness tradeoffs for real–time systems

with mixed workload,” in Proceedings of Real-Time and Embedded Technology

and Application Symposium, 2004, pp. 74–83.

[6] W. Kim, J. Kim, and S. Min “A dynamic voltage scaling algorithm for

dynamic–priority hard real–time systems using slack time analysis,” in Pro-

ceedings of the Conference on Design, Automation and Test, March 2002, pp.

788-794.

[7] V. Rao, G. Singhal, and A. Kumar “Real time dynamic voltage scaling for em-

bedded systems,” in Proceedings of International Conference on VLSI Design,

2004, pp. 650–653.

61

[8] S. Saewong, and R. Rajkumar “Practical voltage–scaling for fixed–priority RT-

systems,” in Proceedings of Real-Time and Embedded Technology and Applica-

tion Symposium, 2003, pp. 106–115.

[9] J. R. Lorch and A. J. Smith, “PACE: a new approach to dynamic voltage

scaling,” IEEE Transactions on Computers, vol. 53, no. 7, pp. 856–869, July

2001.

[10] A. Qadi, S. Goddard, and S. Farritor “A dynamic voltage scaling algorithm

for sporadic tasks,” in Proceedings of the Real-Time System Symposium, 2003,

pp. 52–62.

[11] Fan Zhang, and S.T. Chanson “Processor voltage scheduling for real–time tasks

with non–preemptible sections,” in Proceedings of Real-Time Systems Sympo-

sium, 2002, pp. 235–245.

[12] W. Kim, J. Kim, and S. L. Min “Preempton–aware dynamic voltage scaling

in hard real–time systems,” in Proceedings of the International Symposium on

Low Power Electronics and Design, 2004, pp. 393–398.

[13] M. Saksena and Y. Wang, “Scalable real-time system design using preemption

thresholds,” in Proceedings of Real-Time Systems Symposium, 2000, pp. 25–34.

[14] G. Quan and X. Hu. “Energy efficient fixed–priority scheduling for real-time

systems on variable voltage processors,” in Proceedings of the Design Automa-

tion Conference, 2001, pp. 828-833.

[15] Y. Liu and A. K. Mok, “An integrated approach for applying dynamic voltage

scaling to hard real–time systems,” in Proceedings of the 9th Real–Time and

Embedded Technology and Applications Symposium, 2003, pp. 116-123.

62

[16] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically vari-

able voltage processors,” in Proceedings of International Symposium on Low-

Power Electronic Design, 1998, pp. 197-202.

[17] V. Swaminathan and K. Chakrabarty, “Network flow techniques for dynamic

voltage scaling in hard real–time systems,” in Proceedings of IEEE Transac-

tions on Computer Aided Design of Integrated Circuits and Systems, vol. 23,

no. 10, pp. 1385–1398, October 2004.

[18] D. Shin, J. Kim, and S. Lee, “Intra-task voltage scheduling for low–energy hard

real–time applications,” in IEEE Transaction on Design and Test, vol. 18, no.

2, pp. 20-30, March 2001.

[19] D. Shin and J. Kim, “A profile-based energy-efficient intra-task voltage schedul-

ing algorithm for hard real time applications,” in Proceedings of International

Symposium on Low-Power Electronic Design, 2001, pp. 271–274.

[20] Jane W. S. Liu, Real Time Systems. Upper Saddle River, New Jersey, Prentice

Hall, 2000.

[21] T. D. Burd and R. W. Brodersen, “Processor design for portable systems,”

Journal of VLSI Signal Processing, vol. 13, no. 2-3, pp. 203–222, 1996.

[22] J. Blazewicz, “Selected topics in scheduling theory,” Annals of Discrete Math-

ematica, vol. 31, pp. 1–60, 1987.

[23] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algo-

rithms, and applications, Englewood Cliffs, New Jersey, Prentice Hall, 1993.

[24] Operations research models and methods, P.A. Jenson and J. F. Bard. [Ac-

cessed on March 2005]. Available: www.ormm.net.

63

VITA

John V. George received his B. Tech degree in Computer Science and Engineer-

ing from Mahatma Gandhi University, Kerala, India in 2001 and his M.S. degree

from Texas A&M University, College Station, Texas in 2005. His major interests

are Real–Time Scheduling and Embedded Systems. While pursuing his masters, he

also worked as a research assistant in the area of embedded systems. He can be

reached at:

Edakkattukudy House

Kozhipilly P.O Kothamangalam

Ernakulam Kerala India 686691.

This thesis was typed by John V. George.

